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Abstract

Coal-fueled power plants are responsible for 30 % of anthropogenic carbon dioxide (CO2)
emissions and can therefore be considered important drivers of climate warming. The 2015
Paris Climate Accord has established a global stock take mechanism, which will assess
the progress of global carbon emission reduction policies in five-yearly tallies of worldwide
emissions. However, there exists no independent monitoring network, which could verify
such stock takes. Remote sensing of atmospheric CO2 concentrations from air- and space-
borne sensors could provide the means of monitoring localized carbon sources, if their
ground sampling distance is sufficiently fine (i.e. below the kilometer scale). Increased
spatial resolution can be achieved at the expense of decreasing the spectral resolution of
the instrument, which in turn complicates CO2 retrieval techniques due to the reduced
information content of the spectra. The present thesis aims to add to the methodology
of remote CO2 monitoring approaches by studying the compromise between spectral and
spatial resolution with CO2 retrievals from three different sensors.

First, the trade-off between coarse spectral resolution and retrieval performance is dis-
cussed for a hypothetical imaging spectrometer which could reach a spatial resolution of
∼ 50 × 50 m2 by measuring backscattered sunlight in the short wave infrared spectral
range at a resolution of ∆λ ∼ 1 nm. To this end, measurements of the Greenhouse gases
Observing SATellite (GOSAT) at ∆λ = 0.1 nm are artificially degraded to coarser spectral
resolutions to emulate the proposed sensor. CO2 column retrievals are carried out with
the native and degraded spectra and the results are compared with each other, while data
from the ground based Total Carbon Column Observing Network (TCCON) serve as inde-
pendent reference data. This study identifies suitable retrieval windows in the short wave
infrared spectral range and a favorable spectral resolution for a CO2 monitoring mission.

Second, CO2 column retrievals are carried out with measurements of the air-borne
AVIRIS-NG sensor at a spectral resolution of ∆λ = 5 nm. This case study identifies
advantageous CO2 retrieval configurations, which minimize correlations between retrieval
parameters, near two coal-fired power plants. A bias correction method is proposed for the
retrievals and a plume mask is applied to the retrieved CO2 enhancements to separate the
CO2 emission signal from the atmospheric background. Emission rates of the two facilities
are calculated under consideration of the local wind speed, compared to a public inventory
and discussed in terms of their uncertainties.

Third, CO2 retrievals are extended to spectral resolutions on the order of ∆λ ∼ 10 nm
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by analyzing spectra of the specMACS imager near a small power plant. Retrieval effects
that hamper the detection of the source signal are discussed.



Zusammenfassung

Kohlekraftwerke verursachen 30 % der gesamten anthropogenen Kohlenstoffdioxid (CO2)
Emissionen und werden daher als wesentliche Faktoren für die Erwärmung des Erdklimas
betrachtet. Das Pariser Klimaabkommen von 2015 sieht einen globalen, fünfjährlichen Bi-
lanzierungsmechanismus vor, in dem der Fortschritt globaler CO2 Emissionsreduktionsziele
bewertet wird. Allerdings existiert kein unabhängiges Netzwerk zur Überwachung von CO2

Emissionen, das die Emissionsbilanzen der Staaten verifizieren könnte. Eine Möglichkeit
zur Überwachung von Kohlekraftwerken stellt die passive Fernerkundung atmosphärischen
Kohlenstoffdioxids mit Flugzeug- und Satellitensensoren dar. Zu diesem Zweck werden
Instrumente benötigt, die eine feine räumliche Bodenauflösung realisieren (Abtastung der
Erdoberfläche in Abständen unter 1 km), beispielsweise indem sie auf eine hohe spek-
trale Auflösung des Spektrometers verzichten. Der Verlust spektraler Information stellt
jedoch eine Herausforderung für die Ableitung der CO2 Konzentration dar. Diese Arbeit
adressiert den Kompromiss zwischen spektraler und räumlicher Auflösung in drei Fallstu-
dien, in denen CO2 Konzentrationen aus Messungen drei verschiedener Sensoren berechnet
werden.

Zunächst wird ein hypothetischer Satellitensensor mit einer Bodenauflösung von∼ 50×
50 m2 untersucht, der von der Erde zurückgestreutes Sonnenlicht im kurzwelligen Infrarot
Spektralbereich bei einer spektralen Auflösung von ∆λ ∼ 1 nm misst. Dabei werden
Messungen des Greenhouse gases Observing SATellite (GOSAT) bei ∆λ = 0.1 nm spek-
tral degradiert, um die reduzierte Spektralauflösung des vorgeschlagenen Instruments zu
imitieren. Die Ableitung der Säulenkonzentration des CO2 geschieht unter Verwendung
der nativen und der degradierten Spektren und die Berechnungen der CO2 Konzentratio-
nen werden miteinander verglichen. Ebenso wird ein Vergleich mit dem unabhängigen,
stationären Total Carbon Column Observing Netzwerk (TCCON) angestellt, so dass der
Zusammenhang zwischen spektraler Auflösung und Performanz der CO2 Berechnung un-
tersucht werden kann. Auf diese Art werden geeignete Spektralfenster im kurzwelligen
Infrarot identifiziert, die die Ableitung der CO2 Konzentration ermöglichen, und es lässt
sich eine favorisierte spektrale Auflösung für eine zukünftige CO2 Emissions-Monitoring
Mission bestimmen.

Dann werden CO2 Säulenkonzentrationen aus Messungen eines Flugzeugspektrometers
mit einer Auflösung von ∆λ = 5 nm abgeleitet. Diese Fallstudie zeigt vorteilhafte Kon-
figurationen der CO2 Inversion auf, welche Korrelationen zwischen der berechneten CO2
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Konzentration, der Bodenalbedo und der Wasserdampfsäule minimieren. In der Anwen-
dung auf Überflüge von zwei Kohlekraftwerken wird eine a posteriori Korrektur Methode
für die CO2 Berechnung entwickelt und die Abgasfahne wird mit einem Filter vom atmo-
sphärischen Hintergrund getrennt. Unter Einbeziehung der lokalen Windgeschwindigkeit
lassen sich so die Emissionsraten der beiden Anlagen abschätzen und mit öffentlichen Emis-
sionsinventaren vergleichen.

Schließlich wird die Methodik der CO2 Fernerkundung auf das abbildende Spektrometer
specMACS mit ∆λ ∼ 10 nm angewendet und das Emissionssignal eines kleinen Kraftwerks
untersucht. Effekte, die die Detektion der CO2 Abgasfahne verhindern, werden diskutiert.



Chapter 1

Introduction

Carbon dioxide (CO2) warms the atmosphere of Earth through its absorption of long-
wave radiation. Ever since the industrial revolution anthropogenic CO2 emissions to the
atmosphere have significantly enhanced carbon dioxide concentrations in the air, thereby
altering the temperature of the planet. The burning of coal in power plants presently
accounts for 30 % of all human CO2 emissions (International Energy Agency, 2021). Al-
though most nations in the world recognize this man-made climate change as a major
challenge an independent monitoring network which could deliver information on climate
policy performance is yet to be created (Ciais et al., 2014). In the case of power plant emis-
sions it is currently standard practice to adopt emission tallies from the very companies
that own the facilities into national emission reports. The 2015 Paris Climate Accord, in
which the global community aims to keep global warming below 2◦ K above preindustrial
levels, calls for the establishment of five-yearly global stock takes that will asses the impact
of global climate policies. The present work is motivated by the lack of independent car-
bon emission monitoring and verification and it pursues the development of remote sensing
methods which are suited to quantify CO2 emissions from localized sources.

This thesis focuses on CO2 monitoring methods based on Earth-observing space- and
air-borne sensors. Remote sensing of atmospheric carbon dioxide concentrations from
these platforms relies on the measurement of a spectrum of light. Figure 1.1 illustrates a
spectrum of radiation as it arrives at the sensor. This is a simplified model of a spectrum
in a broad spectral range before it enters the optics of the instrument, i.e. an atmospheric
transmittance calculation at zenith/nadir viewing angle at infinite spectral resolution. The
atmospheric composition was chosen to be representative of that of Earth by including the
seven most prominent absorbing molecules of our atmosphere: H2O, CO2, O3, N2O, CO,
CH4 and O2. Concentrations of these seven species were selected according to their natural
occurrence in the atmosphere. The spectral range modeled here reflects the spectral range
that is most interesting from a remote sensing perspective for there are many atmospheric
“windows”, i.e. spectral ranges which are not opaque and which provide information on
the molecules that absorb there.
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The measurement process convolves the spectrum shown in Fig. 1.1 to a coarser spectral
resolution, ∆λ > 0 nm, which is a sensor-specific process. In this thesis sensors that span
three orders of magnitude in spectral resolution space will be discussed; from ∆λ = 0.1 nm
to ∆λ ∼ 10 nm. Spectrometers that measure at high spectral resolution require longer
measurement integration times than coarse-spectral-resolution instruments with compara-
ble optics in order for the recorded signal to sufficiently exceed the measurement noise.
The size of the ground area over which the instrument collects radiation is therefore typ-
ically related to the spectral resolution. Qualitatively this means high spectral resolution
requires long integration which causes a large ground area due to the rapid movement of
air- and space-borne platforms. Conversely, coarse spectral resolution can enable rather
small ground pixels.

To monitor power plant emissions or other localized carbon dioxide sources with passive
air- or space-borne instruments it is critical to enable spectral measurements, which provide
not only high accuracy and precision in retrieved column-averaged dry-air mole fractions
of CO2 (XCO2) but also high spatiotemporal sampling, so that they could potentially
serve as a gauge for climate action plans and emission reduction objectives proposed by
governments around the world. High spatial sampling limits the ground swath of remote
sensing instruments, but spatial coverage could be enhanced to the global scale by deploying
satellite sensors in a fleet, which would ultimately necessitate an uncomplicated design of
the sensor.

Over the course of the last three decades the CO2 remote sensing community has devel-
oped a number of space-borne instruments, which have gradually approached ever-smaller
ground pixel sizes at the cost of reduced spectral resolving power (i.e. wavelength, λ, di-
vided by full width at half maximum, ∆λ, of the sensor’s spectral response function). First
worldwide space-borne XCO2 concentration measurements were explored by the SCanning
Imaging Absorption SpectroMeter for Atmospheric CHartographY mission, SCIAMACHY
(e.g. Burrows et al., 1995, Reuter et al., 2010, Schneising et al., 2013), which had ground
pixels of ∼60×30 km2 (Bovensmann et al., 1999). The Greenhouse Gases Observing Satel-
lite (GOSAT) accomplished finer ground resolution (at λ

∆λ
> 20, 000) with a 10.5 km

diameter ground footprint (Kuze et al., 2009, 2016) and the Orbiting Carbon Observatory
(OCO-2 with λ

∆λ
> 20, 000) later achieved 1.3×2.3 km2 ground resolution (Crisp et al.,

2008, 2017). Likewise, the TanSat mission has followed the OCO-2 approach (Yang et al.,
2018) and the OCO-2 concept has been implemented on the International Space Station
as OCO-3 (Eldering et al., 2019).

Observations of natural processes of the terrestrial carbon cycle (Chatterjee et al., 2017,
Guerlet et al., 2013a, Liu et al., 2017, Parazoo et al., 2013) and anthropogenic emission
signals (Hakkarainen et al., 2016) have been carried out with GOSAT and OCO-2. Both
sensors, as well as OCO-3, have been shown to capture urban CO2 emission patterns, for
instance in the Los Angeles basin (Eldering et al., 2017, Kiel et al., 2021, Kort et al., 2012,
Schwandner et al., 2017). Furthermore, emissions from individual power stations have been
resolved in OCO-2 imagery by Nassar et al. (2017). The power of imaging remote sensing
has subsequently been recognized as a promising concept for future missions addressing
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localized carbon dioxide emissions. The CarbonSat mission (Bovensmann et al., 2010)
and its successor, the CO2M mission (Sierk et al., 2019), are examples of future XCO2

imaging sensors – with CarbonSat (at λ
∆λ

> 4, 000) a former candidate for a European
CO2 monitoring mission (e.g. Broquet et al., 2018, Pillai et al., 2016, Reuter et al., 2019)
and CO2M (ground resolution: 4 km2, λ

∆λ
> 6, 000) intended for launch in 2025/26 by the

European Space Agency (Kuhlmann et al., 2020, Wu et al., 2020).

A common design aspect of all of the above mentioned sensors is their spectral mea-
surement configuration, which includes the oxygen (O2) A-band at ∼0.76 µm in the near
infrared (NIR) as well as the CO2 absorption bands in the short wave infrared at 1.6
(SWIR-1) and 2.0 µm (SWIR-2). In the case of typical GOSAT retrievals this spectral
set-up allows for estimates of XCO2 and aerosol scattering parameters from these bands.

Further, it has been established that methane (CH4) hot-spots can be detected from
space at even lower spectral resolutions ( λ

∆λ
< 1, 000) with sensors that resolve the surface

of the Earth with a ground sampling distance of 30 m and which only employ one absorption
band near 2.35 µm (Thompson et al., 2016). Aircraft spectrometers that operate at similar
resolving powers can reach even smaller ground pixel sizes and may serve to quantify
methane emissions (Dennison et al., 2013, Krings et al., 2018, Thorpe et al., 2016a,b).
It has been proposed by Dennison et al. (2013) that a single-band satellite spectrometer
with resolving power λ

∆λ
≈ 200 centered on the SWIR-2 spectral range (at 2.0 µm, i.e.

FWHM= ∆λ = 10 nm) would be able to reach ground resolutions of 60×60 m2. Spectral
measurements near 2 µm with the AVIRIS-NG instrument (∆λ = 10 nm) have showcased
CO2 emission quantification ability for point source plumes (Thorpe et al., 2017). Thorpe
et al. (2016b) argued that, for quantitative methane retrievals, the most favorable trade-
off between spectral resolution and ground pixel size may be a spectrometer design with
λ

∆λ
≈ 2, 000, i.e. a spectral resolution of 1 nm. As methane presents similar remote sensing

challenges as CO2 it is worthwhile applying these recent developments to CO2 spectrometer
concepts, while the specific implementation of such approaches is investigated in this work.

This thesis adds to the discourse on CO2 emission monitoring methods in three indi-
vidual case studies, which aim to analyze the effect of coarse spectral resolution on XCO2

retrieval performance.

Firstly, an opportunity for a new spectral sensor design, which could resolve XCO2 on
scales of ∼ 50 × 50 m2 when deployed in space, will be investigated. In this case study
(chapter 4.1) GOSAT spectra are utilized for a CO2 retrieval sensitivity study in resolving
power space – by convolving the measurements from λ

∆λ
> 20, 000 to λ

∆λ
< 2, 000 – to

determine a favorable spectral sizing for a potential future satellite sensor. Retrievals in
the SWIR-1 and SWIR-2 spectral ranges are compared and target spectral resolutions
are recommended. The second case study of this thesis (ch. 4.2) employs power plant
observations of the AVIRIS-NG aircraft sensor at λ

∆λ
= 400 to analyze CO2 monitoring

capabilities from actual spectrometer imagery. Aircraft sensors serve to examine remote
sensing challenges in advance of satellite missions as versatile and less expensive options.
Advantageous retrieval configurations based on an analysis of test spectra selected from
a background region over various surface materials will be discussed. A posterior XCO2
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correction method is proposed and flux rate quantification techniques suited for these
measurements are applied. Thirdly and lastly, XCO2 power plant signals are examined in
measurements of the specMACS aircraft sensor, which has λ

∆λ
∼ 200 (ch. 4.3).

An overview of the physical background of CO2 remote sensing is provided in chapter
2 and an introduction to the data sets and methods of this work is given in chapter 3,
followed by the three case studies in chapter 4. Finally, chapter 5 holds the conclusions
drawn from this work as well as an outlook on future developments in CO2 monitoring
methods with passive sensors.
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Chapter 2

From Radiation to Carbon Dioxide
Concentrations

The goal of this chapter is to contextualize the research question introduced above within
the framework of physics. An overview of the science behind the process chain of passive
trace gas remote sensing, from radiation to concentrations of atmospheric species will be
given here.

This introduction will include the fundamental principles of absorption, emission and
scattering of radiation in the atmosphere (section 2.1) as well as the concept of measuring
spectral properties of radiation (section 2.2). The process of modeling such observations
will subsequently be introduced in section 2.3. Finally, the basic approach of retrieving an
atmospheric variable from the measurement by making use of the model and its derivatives
will be presented (section 2.4).

The following sections cover standard textbook material and therefore not all state-
ments in this chapter are backed up with references. Instead, the books by Goldstein et al.
(2006), Hansen and Travis (1974), Liou (1980), Paus (2007), Petty (2006), Rodgers (2008),
van de Hulst (1981), Wallace and Hobbs (2006), Zdunkowski et al. (2007), which inspired
this chapter, represent starting points for further reading.

2.1 Interaction of Radiation with the Atmosphere

Radiation is the primary source of energy in the atmosphere of Earth. Both shortwave
radiation from the sun (∼ 0.2 − 3.5 µm) and longwave radiation from the Earth and the
atmosphere itself (∼ 3.5−100 µm) are the drivers of a plethora of atmospheric phenomena.
It is quite fascinating that the interaction of radiation with the constituents of our atmo-
sphere (atoms, molecules, particles) can be described by just three fundamental processes:
absorption, emission and scattering (see for instance Zdunkowski et al., 2007, ch. 1.6).
The purpose of this section is to give an overview of these important forms of interaction.
While the following discussion focuses on the interaction of radiation with molecules, the
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same principles generally apply when considering the interaction with atoms.

2.1.1 Absorption and Emission

Molecules exist in states of discrete energies with regard to their electronic, vibrational
and rotational configuration. Each state, ψ, with energy, E, is ultimately a solution to the
Schrödinger equation

Hψ = Eψ (2.1)

where the Hamiltonian, H, is the sum of the quantum mechanical operators of kinetic
and potential energy of the molecule. Although equation 2.1 cannot be derived from a
higher principle, similarly discontinuous energy “states” can be observed for vibrating
objects in classical physics. When the complicated intra-atomic potential of a concep-
tual/hypothetical molecule is approximated, classically, as the potential of coupled har-
monic oscillators with coupling strengths, k, and vibrating masses, m, one finds resonant
energies at E ∼

√
k/m for the vibrations of the molecule (Goldstein et al., 2006, ch. 6.4).

Qualitatively, this is also observed in real molecules1, although actual molecular Hamiltoni-
ans are, of course, much more complicated. The above discussion foreshadows the idea that
resonance phenomena are the key to generating transitions between different energy states
of a molecule, which can generally occur through either kinetic or radiative processes.

Kinetically, collisions of the molecule with its surrounding can both increase and de-
crease the energy of the system such that the molecule transitions to a higher or lower en-
ergy state, respectively. While this kinetic pathway plays a very important role in restoring
local thermodynamic equilibrium2 in (the lower parts of) our atmosphere, the next para-
graphs will deal primarily with the radiative pathways of absorption and emission, because
they cause the signals that can be used to detect molecules remotely.

Basic Concepts Radiatively, a molecule can be transferred into a higher energy state
when exposed to an external radiation field that delivers the amount of energy needed
to bridge the gap between the discrete states of the system. This process is known as
absorption, i.e. the incident photon is absorbed by the molecule. Once excited to a higher
energy state, there are two radiative processes which can relax the molecule to a lower state:
spontaneous and stimulated emission. Both processes include the re-radiation of a photon
with energy equivalent to the transition energy. The direction of the emitted radiation
is random for spontaneous emission and identical to the direction of incident photons in
the case of stimulated emission. Excited states are never stable in quantum physics, i.e.

1As an example from the atmosphere: the anti-symmetric stretch vibration of CO2 occurs at λ =
4.26 µm. If one of the oxygen atoms is replaced by a more massive sulfur atom, the resulting carbonyle
sulfide molecule, OCS, is still linear and also double bonded. However, its anti-symmetric stretch is found
at λ = 4.85 µm, qualitatively demonstrating that the increased mass leads to resonance at decreased
energies.

2Local thermodynamic equilibrium means that the local group of molecules populates the energy states,
Ei, according to a Boltzmann distribution: Ni ∼ exp(− Ei

kT )
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even without collisions there is a probability for a spontaneous transition to a lower level.
Hence, it is a matter of when an emission occurs, which can be predicted theoretically
through transition probability coefficients derived by Einstein (e.g. Rothman et al., 1987).
In essence, one can show that the probability for a molecule to undergo spontaneous
emission is proportional to the third power of the transition energy. Stimulated emission,
on the other hand, is triggered by incoming radiation. As for absorption, the external
photon must have an energy that resonates with the energy gap between upper and lower
state of the molecule to induce the transition/the emission. Stimulated emission does not
play a significant role in the atmosphere of Earth.

Despite the many processes involved on the molecular scale, radiative energy is finally
conserved, i.e. emission and absorption processes are balanced out exactly in our atmo-
sphere (Kirchhoff’s law). Yet, as the air gets thinner above the stratosphere (> 50 km),
the equilibrating effect of collisions is lost and the door opens to a world where molecules
start behaving in ways that will be left to experts of non local thermodynamic equilibrium
to write about. Here, a first step is made towards the application of remote sensing by dis-
cussing which absorption and emission processes occur and how these manifest themselves
as spectral lines and bands.

Allowed Transitions and Spectral Lines Just like the wave functions of a harmonic
oscillator, energy states of a molecule, ψ, can be either symmetric or antisymmetric under
symmetry operations (e.g. inversion, nucleus exchange, etc.). A transition between the
states ψ1 and ψ2 is only allowed, i.e. it can only occur, if the external radiation field can
couple to the electric (or magnetic) molecular dipole moment, η. The relative strength
of this coupling is described by the transition dipole moment, 〈p〉, between these states
defined by the volume integral

〈p〉 =

∫
ψ1ηψ2dV. (2.2)

As a scalar, observable quantity, the transition dipole moment must be totally sym-
metric under any kind of symmetry operation. In the absence of a permanent electric
dipole moment (like H2O), whether or not certain transitions are allowed depends on the
symmetries of the wavefunctions and the dipole moment in eq. 2.23. As a result, there
are forbidden transitions, e.g. vibrations which are theoretically possible, but which can-
not be excited in nature (〈p〉 = 0). One prominent example is the CO2 transition from
the vibrational ground state into the symmetric stretch vibration, which is a vibrational
mode in which both oxygen atoms move away/towards the carbon atom simultaneously.
Fundamentally, it is the vanishing transition dipole moment, which prohibits this tran-
sition. But intuitively, the symmetric stretch does not create a dipole moment within a
linear, triatomic molecule, to which incident radiation could couple. This also explains

3To illustrate this idea, consider dipole oscillation occurring along a given axis of the molecule, as a
linear (antisymmetric) function, i.e. η(t) ∼ e · z(t) (e being the oscillating charge and z the distance along
the oscillation axis). The transition moment then vanishes for all combinations of vibrations ψ1 and ψ2

where these functions have the same symmetry under inversion.
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why diatomic molecules like the dominant constituents of our atmosphere, N2 and O2, do
not absorb through vibrations (or rotations): their vibrations have no electronic dipole
moment. Diatomics can only be excited into a rotation or vibration, if interactions with
the surrounding molecules become strong enough to temporarily induce a dipole (collision
induced absorption, CIA).

Now that the concepts of absorption and emission are introduced as resonant dipole
coupling events between the molecule and an external radiation field, it should be empha-
sized that – although the energy for a transition is theoretically expected at a single energy
value – in reality one observes transitions as spectral lines with a finite width. Spectral
lines cannot have a vanishing width, ∆E, because that would mean that the lifetime of
the initial state of the transition, ∆t, becomes infinitely long, according to Heisenberg’s
theorem

∆E∆t ≥ ~. (2.3)

As the transition is taking place, the lifetime of the initial state becomes finite, which calls
for a finite width of the transition energy. This natural broadening, however, is of no rel-
evance in the atmosphere where the width, and more generally, the shape of the resulting
spectral line depend on the pressure and temperature of the environment, but also on the
atmospheric species that surround the molecule (through collisions). Two dominant mech-
anisms responsible for a broadening of spectral lines can be identified in our atmosphere:
1) Collisional broadening, where collisions stochastically distort the molecular energy levels
through electromagnetic interaction and thus increase the width of the observed spectral
line and 2) Doppler broadening, where spectral lines are broadened due to the thermal mo-
tion of molecules in low pressure (i.e. high altitude) environments, which results in Doppler
shifts of the transition energy. Collisional broadening produces significantly broader line
wings than Doppler broadening and the spectroscopic community has therefore introduced
line shape functions that account for both processes. For rotational-vibrational transitions,
the Hartmann-Tran-Profile (HTP, Tennyson et al. (2014)) is the standard description of
the shape of spectral lines to date. It captures a number of collisional line shape effects
that primarily play a role at very high spectral resolution and at intermediate pressure
levels, where the line shape transitions from the collisional to the Doppler regime. In this
thesis, a simplification of the HTP will be used for many applications, the Voigt profile
(for details see Humlicek, 1982):

f(λ,m, p, T ) ∼
√
m

T
e−(λ2 m

T )︸ ︷︷ ︸
Gaussian

~
γ(p, T )

(λ− δ(p, T ))2 + γ(p, T )2︸ ︷︷ ︸
Lorentzian

(2.4)

The line shape function, f , in eq. 2.4 is the convolution of the Gaussian and Lorentzian
line shapes associated with Doppler and collisional broadening, respectively. For a given
wavelength, λ, away from the line center at λ = 0, the line shape is influenced by the mass
of the molecule, m, as well as by the state of the atmosphere (pressure, p, temperature,
T ). The pressure broadened half width, γ, as well as the pressure shift correction to the
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line position, δ, can be calculated for a combination of pressure and temperature from
spectroscopic parameters compiled in databases like HITRAN (Gordon et al., 2017).

A final line shape effect that will be taken into account separately in this thesis is
line mixing. This is a phenomenon that occurs in high pressure environments between
overlapping rotational-vibrational lines of a molecule and it is essentially a mix of radiative
and kinetic state changes. For example, in addition of undergoing a transition between
two states ψ1 and ψ2 through emission or absorption, the molecule can be transferred to
a neighboring transition ψ1,neighbor through a collision, undergo the transition ψ1,neighbor to
ψ2,neighbor there and then transfer back to ψ2 through a collision. As a result, both spectral
lines are skewed towards their mutual center.

When the line shape, f , is known, one can introduce the absorption/emission coeffi-
cient, βabs, which is a monochromatic quantity at wavelength λ0 that indicates how much
radiation is depleted from the incident field by a single absorption process (or conversely
added by emission) and it is given by

βabs(λ0, p, T ) = S(T ) · f(λ0, p, T ) (2.5)

with S(T ) the spectral line intensity which is tabulated in databases (Rothman et al.,
1987). The unit of βabs is 1/(molecule·cm−2) and the coefficient will be needed in section
2.3 to propagate radiation through an absorbing medium. The absorption coefficient can be
normalized to units of 1/cm by multiplying eq. 2.5 by the number of absorbing molecules
per unit gas volume. Molecular absorption cross sections, σabs are derived by multiplying
absorption coefficients with the corresponding molecular mixing ratio.

Before closing this section on absorption and emission processes, the spectral structures
of the CO2 molecule that will be required throughout this thesis to derive concentrations
of carbon dioxide are introduced.

Spectral Bands of CO2 near 1.6 and 2.0 µm In general, vibrational transitions of
a molecule occur under simultaneous change in rotational state, Erot, (while the electronic
state remains unchanged) and one therefore commonly refers to rotational-vibrational tran-
sition bands. These are sets of spectral lines that appear in close proximity of each other;
the individual line strengths being governed by the population of the respective rotational
and vibrational levels (with selection rules derived from equation 2.2) and the magnitude
of the transition dipole moment. Typical energies needed to excite such transitions are in
the infrared spectral range (IR, ∼ 1− 15 µm)4.

In this thesis, rotational-vibrational absorption bands of carbon dioxide will be used
constantly to derive CO2 concentrations. CO2 has three fundamental vibrations: the
forbidden symmetric stretch, “ν1”, the bending mode, “ν2”, and the antisymmetric stretch,

4At greater radiative energies (visible (VIS, ∼ 400 − 700 nm) or ultraviolet (UV, ∼ 200 − 300 nm) or
at even higher energies) molecules can be excited to change electronic state, or the radiation may also
disassociate the atoms of the molecule. Beyond the IR, purely rotational absorption bands can be excited
in the far infrared (FIR, > 15µm).
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“ν3”. The strong rotational-vibrational bands observed near 1.6 and 2.0 µm each form
through linear combinations of the ν1 and ν3 band (2ν1 + ν3 near 2 µm and 3ν1 + ν3 near
1.6 µm). The reason why there are so many bands of CO2 associated with these vibrations
is an accidental resonance between the ν1 vibration and the first overtone of the ν2 band
(Rothman and Young, 1981), i.e. the ν1 band occurs at twice the energy of the ν2 band. As
a result of this coincidence, the energy level of the 2ν1 + ν3 band near 2.0 µm, for example,
can be reached through three combinations of vibrational modes which all have roughly
the same energy and are therefore in resonance with each other: 2ν1 + ν3, 4ν2 + ν3 and
ν1 + 2ν2 + ν3, which appear as three CO2 absorption bands. The wave functions of these
vibrations are linear combinations of the unperturbed states.

2.1.2 Scattering

Much like during absorption or emission, atmospheric constituents that scatter radiation
interact with the oscillating electromagnetic field of the incident radiation. The mechanism
of scattering can generally be understood as the generation of a secondary electromagnetic
wave sent out from a particle whose charges oscillate at the frequency of the incident radi-
ation field (elastic scattering) or at a shifted frequency (inelastic scattering). A plethora of
scattering phenomena exist that strongly depend on the size, composition (charge distribu-
tion, refractive index) and shape of the particle, the distance to other scattering particles
and the wavelength of the incoming radiation. This thesis will focus on elastic scattering
effects that play a significant role for solar and terrestrial radiation in the atmosphere of
Earth, namely processes where the size parameter, a, of the scattering particle with radius
r at wavelength λ

a =
2πr

λ
(2.6)

is on the order 10−3 < a < 103.

The lower boundary condition reflects the requirement for scattering to occur, i.e. wave-
lengths too great (frequencies too low) cannot force dipole oscillations in small particles
(e.g. radio waves do not even scatter off rain drops). The motivation for the choice of the
upper bound will become clearer in section 2.3. Briefly, scattering scenarios with a > 103

are typically so complex in our atmosphere, that they make passive trace gas remote sens-
ing too complicated. Inelastic scattering events primarily occur in the UV-VIS spectral
range in the terrestrial atmosphere and thus they are neglected in this discussion, as is the
scattering of radiation at the surface of the Earth. For the purpose of this thesis it will be
sufficient to approximate surface scattering by isotropic backscattering as will be explained
in section 2.3.

The following introduction is condensed significantly with regard to the mathematical
framework to favor qualitative aspects of scattering phenomena over mathematical rigor.
Scattering events are represented here by scalar functions, although the full description of
polarized radiation in the Stokes-Müller formalism would involve a generalization to four
dimensional vector calculus (see for instance Zdunkowski et al., 2007, ch. 10).
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Rayleigh Scattering The scattering regime defined by size parameters in the range
10−3 < a < 10−1 is known as the Rayleigh regime. When the incident wavelength is much
greater than the extent of the particle, the amplitude of the electronic part of the alter-
nating radiation field forces the electrons of the scattering particle to follow its frequency,
inducing a dipole with subsequent coherent reradiation of radiation (the scattered wave is
in phase with the incident wave). The ability of radiation to force charges of a particle
into oscillation is generally a function of the refractive index of the particle, which in turn
is a function of wavelength. In the present regime of small particles, the refractive index
can be assumed to increase with the number of bound electrons of the particle, but this
generalization is no longer valid in the aerosol scattering regime. It can be shown that the
Rayleigh scattering cross section, σR, which indicates how much radiative energy is lost
from the incident direction after the scattering event, strongly depends on particle radius,
r, and wavelength, λ (Petty, 2006):

σR ∼
r6

λ4
(2.7)

The strong wavelength dependence is responsible for the blue color of the sky, as Rayleigh
scattering is much more effective towards smaller wavelengths and the smallest wavelength
the human eye is sensitive to is blue. A scattering coefficient, βR (in units of 1/cm),
can be obtained by multiplying the scattering cross section with the number of scattering
molecules/particles per unit gas volume.

Rayleigh scattering as a dipole radiation phenomenon creates polarized radiation, even
though the radiation coming from the sun is not polarized. According to the characteristic
dipole radiation, reradition of unpolarized light in a dipole scattering event occurs pre-
dominantly orthogonally to the dipole axis. As a consequence, Rayleigh scattering is not
isotropic, since less light is scattered towards 90°(where the radiation is polarized orthogo-
nally to the incident direction), but it is symmetric with regard to backward and forward
scattering. The angular distribution of scattered radiation, the so called phase function,
p(Θ), is given by

p(Θ) =
3

4

(
1 + cos(Θ)2

)
(2.8)

where the angle Θ is the angle between incident and scattered radiation. The phase function
is displayed as a function of the scattering angle, Θ, in Fig. 2.1 (dashed line).

Aerosol scattering Whereas Rayleigh scattering of solar and terrestrial radiation occurs
for molecules and atoms in the atmosphere of Earth, bigger particles lead to more complex
scattering characteristics. Specifically, aerosols – small particles such as dust, sea salt,
pollen and many others – fall into a range of size parameters that covers 10−1 < a <
103. In this scattering regime, clearly, incident radiation will cause all sorts of oscillations
(electric/magnetic dipole or multi-pole oscillations) within the particle, causing interference
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Figure 2.1: Phase functions of Rayleigh (dashed line) and Mie (solid line) scattering at
a = 0.05 and a = 1, respectively. The arrow shows the direction of the incident radiation.
The phase functions were taken from Prahl (2020).

between many incoherently scattered and polarized electromagnetic waves.5 Consequently,
scattering characteristics of aerosols are much more complex than what is observed in the
Rayleigh regime. For homogeneous, spherical particles, Mie theory allows the computation
of the far field of the scattered radiation. Evidently, due to the assumption of spherical
particles, the relative angle between incident and outgoing radiation, Θ, fully determines
the spatial/geometric distribution of the scattered wave. The analytical expression of the
Mie phase function is, however, very complex. In practice, the phase function in the size
parameter range 10−1 < a < 103 must therefore be approximated numerically in some way
(see section 2.3). Fig. 2.1 shows the (approximated) phase function of an idealized aerosol
at a = 1 (solid line), which is heavily antisymmetric with a large fraction of radiation
scattered into a forward direction. Generally, the greater a value of a is reached, forward
scattering becomes even more dominating for aerosol scattering in the Mie approximation
and one eventually observes a peak at zero degree scattering, which increases in magnitude
with a. At a = 103, the value of the phase function for forward and backward scattering
angles are finally orders of magnitude apart.

An interesting result of Mie calculations is that the scattering cross section of aerosols,
σM , as a function of the size parameter and its refractive index, m, contains a dampened
oscillation behavior caused by interference of radiation from the many oscillators within the
particle (van de Hulst, 1981). Thus, one can expect that certain combinations of size and
refractive index will lead to constructive interference and increased scattering. Yet, such
maxima are not observed in the atmosphere, because aerosols in the atmosphere appear
at many different sizes, the scattering signals of which are mixed together in observations,

5Aerosol particles can also absorb radiation, if their refractive index has a non-vanishing imaginary
part (van de Hulst, 1981, ch. 14.1), as for example black carbon. Aerosol absorption is largely neglected
in this work, since many natural aerosols are non-absorbing (see section 3.1.2 for details).
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effectively smoothing out interference patterns expected for a single particle scattering
event. To derive aerosol properties from radiative, atmospheric measurements, one there-
fore has to choose parameters that sufficiently characterize the aerosol distribution (see
section 3.1.2). The scattering cross section of aerosols additionally depends on wavelength
through the size parameter and the refractive index (which can depend strongly on wave-
length). However, in contrast to scattering in the Rayleigh regime, aerosols and small
water droplets tend to have similar scattering cross sections across orders of magnitude in
wavelength space.

In the limit of a ∼ 10−1, Mie theory scattering cross sections converge towards the
Rayleigh expression, while at a ∼ 103 Mie scattering characteristics converge towards those
obtained with geometric optics calculations (essentially ray tracing through homogeneous
spheres, characterized by massive forward-scattering peaks).

2.2 From Radiation to Spectra

Turning broadband solar or terrestrial radiation into a wavelength dependent observation
– a spectrum – is the key step in most atmospheric passive remote sensing applications.
In this thesis, radiation will be measured in units of W m−2sr−1nm−1, which is known as
spectral radiance, Iλ. This quantity specifies the energy, dQ, that passed through an area,
dA, orthogonal to the viewing direction in solid angle, dΩ, per time, dt, and wavelength
interval, dλ.

Iλ =
dQ

dA dΩ dt dλ
(2.9)

An integration over the wavelength axis yields the radiance, I, in units of W m−2sr−1 and
an additional integration of solid angles (taking the solar zenith angle into account) gives
the flux or irradiance, F , in W m−2.

This section will introduce the principles of measuring spectral radiances with the ex-
amples of grating spectrometers and Fourier Transform Spectrometers (FTS) and imaging
spectrometers, because such measurement data will be used later in chapter 4. This section
also aims at giving the reader a perspective on how radiative energy can be converted to
electric energy in the detector of a spectrometer and how these electronic signals are finally
converted into physically meaningful radiative quantities (sections 2.2.2, 2.2.3).

2.2.1 Spectrometers

Spectrometers are interferometers that split up a beam of incident light, for instance with
a dispersive element such as a prism or a grating. An optical path difference (OPD) is in-
troduced into the different parts of the beams which subsequently leads to an interference
pattern in wavelength space: the desired measurement of a radiance spectrum, Iλ. While
radiation incident on the spectrometer can be thought of as being at “infinite spectral reso-
lution” (i.e. each spectral line has a width that is solely governed by the processes described
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in section 2.1.1), every spectrometer introduces an instrument specific spectral resolution,
∆λ, which expresses the smallest distance between two spectral lines at which these lines
can still be resolved individually. The quantity ∆λ is the width of the spectral response
function (SRF) of a spectrometer, which is the instrument’s response to a monochromatic
radiation input. Hence, the spectrometer measurement can be thought of as a convolution
of the incident radiation with the spectral response function of the instrument.

Because this thesis revolves around spectral measurements at spectral resolutions across
orders of magnitude, the following discussion of basic spectrometer types will focus on their
interferometric mechanisms and the typical shape of their spectral response functions.

Fourier Transform Spectrometers

The Fourier Transform Spectrometer is a special case of an interferometer in the sense
that it splits the incident beam into only two parts, which then recombine. Inherently, this
special property assures a high throughput of the spectrometer, because all incident (broad-
band) radiation participates in the interference process. By splitting up the incident light
beam and directing each half onto a mirror before recombining the beam, Fourier Transform
Spectrometers borrow their build from Michelson interferometers. Linear motion of one
or both mirrors leads to path length differences which in turn cause interference of the
radiation with itself upon recombination. Path length differences can also be created by
replacing the mirrors by cube-corner-mirrors and moving both in a rotary motion (see
chapter 3.2). The signal of recombined radiation as a function of optical path difference
(OPD) of the two beams is referred to as an interferogram. The spectrum as a function of
wavenumber, ν = 104/λ (λ in nm and ν in cm−1), can be recovered from the interferogram
by means of Fourier transformation:

S̃(ν) =

∫ ∞
−∞

I(x) · e−2iπνx dx (2.10)

where S̃(ν) ≡ 1
2

[S(ν) + S(−ν)] is a two-sided, symmetric spectrum in wavenumber space
and I(x) is the interferogram in OPD space (unit of x is meter, and x is measured via
interference signals from a monochromatic reference light source). Conversely, one can
transform a measured spectrum, S(ν), back into an interferogram. Eq. 2.10 is an idealiza-
tion in several aspects: in reality, the integral will be evaluated as a sum, in which dx will
not be infinitesimally small and the optical path difference, x, cannot reach infinity in the
lab. These limitations have important implications.

Firstly, the sampling of the interferogram in OPD space, dx, has to be sufficiently small,
because it determines the number of samples in the spectrum, N , through N = 2L

dx
, where

L is the length of the interferogram along the optical path difference axis (−L ≤ x ≤ L).
In fact, when a spectrum shall be measured in the spectral range ν < νmax, dx must be
chosen according to

1

dx
> 2νmax (2.11)
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Figure 2.2: The sinc function dominates the shape of FTS spectral response function. Its
full width half maximum (FWHM) goes with ∼ 1

L
, with L the maximum optical path

difference of the measurement.

in order to avoid artefacts from the convolution process in the measured spectrum S(ν)
(an effect known as aliasing).

Secondly, the limitation |x| < ∞ means that the interferogram is cut off at a certain
value of optical path difference, x, during the measurement. Mathematically this can be
expressed as a multiplication of the interferogram by a boxcar function. Due to the Fourier
transform theorem, this operation is equivalent to a convolution of the spectrum with the
Fourier transform of the boxcar in wavelength space. The Fourier transform of the boxcar
function is the sinc function, shown in Fig. 2.2. Its FWHM is proportional to 1

L
, with L

being the maximum OPD value.

As a consequence, the spectral response function of an FTS can be approximated as

SRF ∼ Πa ~ sinc ~ Πd (2.12)

The boxcar function Πd reflects the cut-off of the beam, which occurs at the detector
behind the spectrometer (the field stop), while Πa is a result of divergent, off-axis light
beams introduced by the finite size of the aperture stop at the spectrometer entrance. This
is, of course, a qualitative discussion that leaves out many optical effects that contribute
to the shape of the SRF (e.g. misalignment of the moving mirror, effects of additional
mirrors, collimating elements, etc.).

The dominating term for the spectral response of a Fourier transform spectrometer is
the sinc term in eq. 2.12, i.e. typical spectral response functions behave like a sinc. As a
consequence, the FWHM (the spectral resolution ∆λ) of the instrument is critically driven
by the length of the interferogram, L. High spectral resolution implies large optical path
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differences, meaning that the moving mirror must be moved far along the optical axis of
the system. Some FTS systems (like the ones introduced in section 3.5) therefore have
L ∼ 2 m. While the possibility to reach very narrow spectral response functions is a great
advantage of FTS technology, its realization through large instruments with moving parts
can be challenging for field deployment in atmospheric science. On the other hand, the
circular shape of the aperture is an additional advantage in FTS systems, as the input
flux to the instrument is proportional to (aperture radius)2 instead of linear in slit width.
The spectral range of an FTS is only limited by the detector spectral range, so that one
spectrometer may be used to carry out measurements in a large spectral range. However,
photon noise increases with broader spectral coverage, so that some Earth-observing FTS
instruments restrict coverage to narrow bands. Since a monochromatic light source is used
as a reference to measure OPD in the sensor, Fourier transform spectrometers provide their
own wavelength calibrations, which is another major benefit (although re-calibration of the
wavelength axis is often necessary at very high resolving powers λ/∆λ > 20, 000). Finally,
Fourier transform spectrometers only need one detector unit, which is another benefit.

Grating Spectrometers

In comparison to a FTS, grating spectrometers have a smaller spectral range and they
typically cannot match the resolving power (λ/∆λ) of an FTS, but they are usually more
compact and more robust due to the lack of moving parts. A grating causes interference of
the incident light. Upon interaction with the grating structure, which contains N grating
lines, the incident beam is split up into many parts, which recombine and interfere after
transmission through (or reflection off) the grating. Different orders of diffraction can be
observed behind the grating (see Fig. 2.3 and also Paus (2007, ch. 52.4)), but constructive
interference only occus if the order, m, of diffraction is not zero (i.e. no spectrum is observed
at m = 0). The presence of neighboring orders of diffraction limits the spectral range a
grating spectrometer can possess, because the spectra will eventually overlap with each
other. To remedy the fact that a lot of energy is lost in unnecessary diffraction orders, the
grating lines can be shaped such that they focus more radiation into a desired diffraction
order (blazed gratings). As a rule, for a beam incident orthogonally on the grating, spectral
observations are expected at angles θ, which satisfy the interference condition

D · sin(θ) = m · λ, (2.13)

where D is the lattice constant (typically on the order of a few micrometers) of the
grating and λ the wavelength. It should be emphasized that as a result of equation 2.13,
gratings deflect red light towards larger angles than blue light (the opposite is true for
prisms). Also, the smaller the lattice constant (the higher the density of slits on the
grating) the farther apart the maximums of interference will appear from each other. One
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Figure 2.3: Diffraction pattern of a grating as a function of diffraction order, m. The
FWHM of a grating strongly depends the number of grating lines, N .

can show, that the diffraction pattern, G, has a shape proportional to

G ∼
(

sin(Nφ)

N sin(φ)

)2

(2.14)

with N the number of lines on the grating and φ ∼ D · sin(θ)/λ (Paus, 2007). A
qualitative plot of a diffraction pattern is shown in Fig. 2.3. The FWHM is found to
be inversely proportional to the number of grating lines, i.e. the finer the grating, the
higher the spectral resolution: ∆λ ∼ λ

N
. Similar to the spectral response of the FTS,

the spectral response of a grating can be approximated as a convolution of the diffraction
pattern, G, with the boxcar functions representing the entrance slit, Πa, and the detector,
Πd (Mouroulis and Green, 2018):

SRF ∼ Πa ~G~ Πd. (2.15)

Since more optical elements for collimation and focusing of the light beam are present
in the spectrometer, the SRF typically originates from even more boxcar-like convolution
operations. It turns out that, as a result, many grating spectrometers have response
functions similar to a Gaussian (or “super Gaussian”) shape (Beirle et al., 2017). Finally, it
should be noted that many detector elements are needed to capture the spectral information
of the grating.



20 2. From Radiation to Carbon Dioxide Concentrations

Telescope Spectrometer

Slit

d

f

x
z y

Detector

Figure 2.4: Sketch of a push-broom imaging spectrometer with rectangular slit. The
smaller the ratio of focal length, f, and aperture, d, of the telescope the more light can be
collected by the sensor. Behind the slit, the light is guided through dispersive elements
onto the detector. Spectra are expanded along the y-axis, which is also the direction of
motion of the entire system. Spatial information is collected along the length of the split
in x-direction.

Push Broom Imaging Spectrometers

Push broom imaging spectrometers do not only collect spectral information of radiation
incident on the instrument, but they simultaneously collect spatial information of the at-
aperture radiation field along a spatial line. The general principle is illustrated in Fig. 2.4.
The sensor has four critical components along the instrument axis z: a telescope with
aperture diameter, d, a slit in the x-y-plane at distance f from the aperture, a spectrometer
and a detector array parallel to the slit.

The telescope is needed to direct sufficient radiation collected from the desired viewing
angle into the instrument. While many technical realizations of telescopes exist, an intu-
ition about the quality of any telescope can be gained from the ratio of focal length and
aperture diameter f

d
, which is commonly referred to as “F number”. Optical systems with

low F number are called “fast optics”, as exposures with sufficient signal can be realized
in shorter time6. The slit of the instrument serves to constrain the radiation field to a
dimension that will later fit onto the detector. It is oriented perpendicular to the incident
light (in the xy-plane in Fig. 2.4). The spectrometer subsequently disperses the radiation
in y-direction and propagates the spatial components in x-direction towards the detector.
Spatial and spectral information is recorded at the same time by mapping the field of view
onto a two-dimensional set of detectors, also known as a focal plane array (see section
2.2.2).

A single measurement results in one image that looks like a line. When the sensor is
moved along the y-axis and the measurement process is continuously repeated, one can
essentially map the at-aperture radiation field along both the spectral and spatial axis.

The spectral response functions of push broom imaging instruments generally depend

6A small F number of two (notation f/2) collects four times as many photons as a f/4 telescope (aperture
area varies with d2).
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on the implementation of the spectrometer. Yet, the majority of push broom instruments
are based on grating spectrometers so that a typical SRF behaves like the SRF of a grating
(see previous paragraphs).

A detailed review of imaging spectrometer design has been presented by Mouroulis and
Green (2018) and Jia et al. (2020) give an overview of established push broom imaging
instruments.

2.2.2 Detectors and Spectral Noise

Following the previous discussion of how radiation can be dispersed in a spectrometer,
this section introduces the concept of how that signal is actually recorded and why the
measurement is noisy.

Once radiation with radiance I has been dispersed to a spectral resolution of ∆λ and
focused in the optics of the sensor, it hits the detector with a signal, S, for a duration of
tint

S ∼ I ·∆λ · tint + σtot (2.16)

where σtot is the total measurement noise (see for instance Strandgren et al. (2020)). Mea-
surement noise arises from a variety of effects. On the one hand, the amount of photons, N ,
received by the instrument is inherently a noisy quantity, with signal shot noise, σss ∼

√
N .

On the other hand, measurement noise is typically driven by the detector.

The detector consists of a semi-conductor material with band gaps between valence and
conduction bands small enough to be excited by the incident radiation7. This process is
very similar to the molecular absorption process described in section 2.1.1. The excitation
then creates a photo current, the contributing electrons of which are temporarily “stored”
in a potential well (a capacitor) for the duration of the measurement integration. The
number of electrons can then be read out and it can be related directly to the number
of photons absorbed by the semi-conductor. The read out process goes along with an
amplification of the signal, which can be adjusted according to the relative intensity of
incident radiation. In practice, noise is introduced into the measurement signal through a
number of detector related effects, some of which are listed below:

� Semi-conductor materials provide a photo current even in the absence of an absorp-
tion process. This current, known as dark current, is caused by random thermal
current generation in the semi-conductor material.

� The semi-conductor will receive radiation even if the aperture of the instrument
is closed, because of thermal background radiation from the various parts of the
spectrometer. This introduces a thermal background noise.

7Only a few materials, like silicon (Si), mercury cadmium telluride (HgCdTe) and indium gallium
arsenide (InGaAs), are suited for measurements of UV-VIS-IR radiation.
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� The process of reading the charge accumulated in the capacitor over the course of the
measurement introduces another (small) source of noise, due to noise in the read-out
amplifier.

The dark current noise, σdc, and the thermal background noise, σtb, can both be re-
duced by cooling of the detector (and instrument), while read-out noise, σro, is constant
in temperature and cannot be avoided. Since σdc ∼

√
N (like σss), it can be shown that

noise as a function of signal can be approximated as (Li et al., 2016):

σtot(N) ∼
√
N + σ2

ro (2.17)

Although this is an oversimplified description of noise characteristics of a spectral mea-
surement where many more effects typically need to be taken into acount, it explains the
overall observation in the lab: At low signal levels (N → 0), the total noise is dominated by
the read-out term σtot ∼ σro, while at high signal levels (N <∞), total measurement noise
follows σtot ∼

√
N ∼

√
S. Finally, eq. 2.17 is no longer valid when N →∞, because detec-

tor saturation conditions are reached and σtot becomes highly non-linear in signal-space,
mostly making such measurements useless for the purposes of atmospheric science.

The combination of many detector elements into a two-dimensional focal plane array
finally enables imaging spectroscopy as described in the previous chapter. An overview
of focal plane array characteristics and applications can be found for example in Mackay
(1986).

Up to here, the signal, S, in eq. 2.16 was given in units of digital numbers, i.e. the
number of electrons counted by the detector. In the next section the general idea of
converting digital numbers into physically meaningful variables will be discussed.

2.2.3 Sensor Characterization

A critical step in the processing chain of spectral data is the conversion of digital units (the
detector measurement, see above) into radiometric units. Regardless of the spectrometer
type, a common radiometric calibration approach is to reference the signal measured by
the detector to a standard radiometer. These are low-radiance-uncertainty light sources
– like the sun, the moon, or artificial standards in the laboratory (e.g. Eppeldauer et al.,
2009, Taubert et al., 2013). The radiance standard, Iref , in units of W sr−1nm−1m−2 can
be related to the detector measurement, S (from eq. 2.16), as

Iref = tint ·R · S (2.18)

with tint the integration time and R the calibration coefficient in units of radiance per time
and digital numbers. When the calibration coefficients have been determined in an exper-
iment, they can be applied to future measurements of the same sensor to convert digital
numbers to radiances. Eq. 2.18 is a simplification of the actual calibration procedure,
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because the signal, S, is generally a function of temperature (see section 2.2.2). Addition-
ally, the detector signal may depend non-linearly on the at-aperture-radiance, I (see eq.
2.16). However, the specific corrections applied to eq. 2.18 in the real world depend on
the problem and they vary in complexity.

As explained in section 2.2.1 a defining property of any spectrometer is its spectral
response function (SRF), because it convolves the incident “infinite-spectral-resolution”
radiation to a coarser spectral resolution, ∆λ (see eq. 2.16). The shape of the SRF was
shown to be a function of the effects of entrance aperture, dispersive elements and the
detector on the propagation of radiation through the sensor. As a result, the SRF must
be determined experimentally so that the detector signal, S, can be characterized. The
level of experimental detail, which is required to correctly measure a sensor’s instrumental
response function in the lab goes beyond the scope of this thesis. Here, merely a qualitative
idea will be given with respect to how these experiments are usually designed .

In the case of Fourier Transform Spectrometers, one conducts measurements of spectral
lines that are thinner in width than the spectral response of the instrument (e.g. narrow
lines in the Doppler broadening regime), because the SRF will then dominate the line
shape. The SRF can subsequently be calculated from the measured spectrum by adjusting
a low number of model parameters (e.g. Hase et al., 1999). Alternatively, a monochromatic
signal from a laser can be used to characterize the SRF.

In the case of a grating spectrometer each detector pixel is illuminated with monochro-
matic radiation that is varied over the spectral range of the detector pixel (e.g. Baumgart-
ner, 2019). This provides a detailed measurement of the SRF and allows for a derivation of
the center wavelength of the spectral pixel. For an imaging spectrometer, the instrument’s
response must be characterized both in the spectral dimension (same approach as for a
grating) and in the spatial dimension. Spatially, calibration is carried out by moving the
image of a point source across each detector pixel for the designated along and across track
scan direction, while registering the sensor response (see for example Baumgartner et al.
(2012)).

2.3 Radiative Transfer

The processes that control the measurements of spectral radiances in the atmosphere of
Earth have been introduced in the previous sections – from fundamental physical mecha-
nisms to instrument related effects on the measurement. In the following paragraphs, the
framework used to model the measurement process will be introduced with a focus on the
Earth-observing viewing geometry in the solar spectral range that is central to trace gas
observations in this work. To this end – and as in section 2.1.2 – polarization effects will be
neglected here, i.e. unpolarized (spectral) radiances and scattering events will be treated
as scalars and scalar functions, respectively. Effects of three-dimensional radiative transfer
and the spherical shell shape of the atmosphere will also be neglected. The interested
reader may find the full treatment of vector radiative transfer for example in Zdunkowski
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et al. (2007, ch. 10) or Hasekamp and Landgraf (2002) and Landgraf et al. (2001), more
information on 3D radiative transfer for example in Mayer (2009) and a starting point for
radiative transfer in a spherical-shell atmosphere in Dahlback and Stamnes (1991).

Radiative Transfer Equation To model spectral measurements in the atmosphere of
Earth, one must consider the transfer of radiation through the atmosphere from source to
sensor. In this thesis the source is the sun and the sensor is an Earth-observing passive
spectrometer (which convolves the at-aperture radiance with the SRF). As long as the
zenith angle of incident sunlight is sufficiently small, i.e. θ0 < 70°(see for instance Dave and
Mateer (1967)), one can treat the atmosphere as a plane-parallel volume. This assumption
makes the formulation of the transfer equation possible in a standard cartesian coordinate
system. When a beam of sunlight is observed under a viewing zenith angle θ and an
azimuth angle ϕ through the atmosphere along a path ds = dz/cos(θ) ≡ dz/µ, its radiance,
I, will be depleted through absorption and (out-) scattering, while some radiance will be
added by (in-) scattering from different beams, resulting in a total change in radiance,
dI/ds = µdI/dz (see Fig. 2.5). Thermal (black body) emission of the atmosphere is
generally also added to the beam, but will be neglected in this introduction, because the
remote sensing instruments in this thesis do not measure in the thermal spectral range
where atmospheric emission matters (∼ 3.5 < λ < 100 µm). Hence, the radiative transfer
equation for at-aperture radiance in the solar spectral range can be summarized by

µ
dI

dz
= µ

dIabs

dz
+
dIout−scat

dz︸ ︷︷ ︸
extinction

+
dIin−scat

dz︸ ︷︷ ︸
source J’

 = −βextI + J ′ (2.19)

where the subscripts refer to absorption, out-scattering and in-scattering. The combination
of absorption and out-scattering processes on the right-hand-side of eq. 2.19 is defined
through an extinction coefficient

dIabs

dz
+
dIout−scat

dz
= −βabsI − βscatI ≡ −βextI (2.20)

with the absorption coefficient, βabs, which was introduced in eq. 2.5 and the scattering
coefficient βscat = βR + βM the sum of Rayleigh and aerosol (Mie) scattering cross sections
introduced in section 2.1.2.

The increase in radiance due to in-scattering from the direction (θ′, ϕ′) into the sensor
viewing direction (θ, ϕ) (the source term in eq. 2.19) is what makes radiative transfer a
challenge. In-scattering can occur from every direction in space and therefore one needs
to account for all solid angles and evaluate the scattering phase function for each of these
possibilities. This is a problem that cannot be solved analytically and it becomes even more
challenging when clouds are introduced into the atmosphere (remember the complexity of
scattering phase functions of large particles). For this reason, clouds are left out of this
introduction entirely – and in trace gas remote sensing one tries to avoid clouds in almost
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Figure 2.5: Sketch of radiative transfer through a two-dimensional, plane-parallel at-
mosphere visualizing the upwelling radiance at viewing zenith angle θ (µ = cos(θ)),
I(0, µ > 0), presented in eq. 2.24. There are two contributions – “direct” radiation
reflected at the surface and attenuated by extinction processes in each atmospheric layer
dτ and an exemplary “diffuse” light path. Solar radiation with flux F0 is incident at the
top under zenith angle θ0.

all situations. While Rayleigh and Mie phase functions for individual scattering events
are azimuth-symmetric, the source J ′ in eq. 2.19 must be expressed by integrating the
scattering phase function over all zenith and azimuth angles as

J ′ ≡ µ
dIin−scat

dz
=
βscat

4π

∫ 2π

0

∫ 1

−1

p(µ, ϕ;µ′, ϕ′)I(µ′, ϕ′)dµ′dϕ′ (2.21)

where p(µ, ϕ;µ′, ϕ′) is the scattering phase function for a scattering event from any direction
(µ′, ϕ′) into the viewing direction (µ, ϕ) – as introduced in section 2.1.2.

Solution of the Radiative Transfer Equation for Upwelling Radiance Due to
the complexity of the scattering phase function eq. 2.19 does not possess an analytical
solution. Here, a general expression for upwelling radiance will be derived, i.e. µ > 0, as
observed by an Earth-observing instrument (see Fig. 2.5). To this end, one can consider
the atmosphere as one or more homogeneous layers that all have a similar optical path,
dτ , where τ(z) is defined as

τ(z) = −
∫ TOA

z

βext(z
′)dz′. (2.22)

The optical depth or optical thickness, τ , is a vertical axis of the atmosphere, which indi-
cates the downward increasing amount of extinction (see Fig. 2.5). Using dτ = −βextµds =
−βextdz and J = J ′/βext one can simplify the radiative transfer equation 2.19 to

µ
dI

dτ
= I − J. (2.23)
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A formal solution of the transfer equation can be achieved after multiplication with the
transmittance, T = e−τ/µ, so that eq. 2.23 can be integrated over the atmosphere, for
example from top to surface, τ = 0 to τ = τS (Liou, 1980, ch. 1.4.4). While radiative
transfer models typically propagate radiances between many closely neighboring layers in
optical depth space, the following is a simplification to identify the most critical contribu-
tion to the radiance measurements that this thesis deals with. One can show for upwelling
radiance at TOA (τ = 0) and direction µ > 0 (see Fig. 2.5):

I(0, µ > 0) = I(τS, µ > 0)e−τS/µ︸ ︷︷ ︸
“direct”

+
1

µ

∫ τS

0

J · e−(τ ′)/µdτ ′︸ ︷︷ ︸
diffuse

. (2.24)

As one would assume intuitively, radiance at the top of the atmosphere (at the sen-
sor) consists of two separate contributions: a “direct” and a diffuse term. The “direct”
term originates from radiance reflected at the surface under the specific viewing direction,
I(τS, µ > 0), and attenuated by the transmittance (strictly speaking this contribution is
therefore a single-scattering contribution). The diffuse term contains scattered radiation
from all levels in the atmosphere, which are all attenuated by the respective transmit-
tances. For the reflected radiance, one can show similarly that I(τS, µ > 0) contains direct
radiance from the sun (attenuated by transmittance) plus diffuse contributions. The fact
that one can separate direct and diffuse terms in radiative transfer also separates viewing
geometries in passive remote sensing. Whenever a sensor is oriented towards the source –
for example a ground based spectrometer oriented towards the sun – the diffuse term can
safely be neglected, because the magnitude of the direct term is so much greater (as long
as the target source is the brightest source in the system). Transfer calculations become
much easier in such cases, but, on the other hand, any information about aerosols is lost.

Scattering of radiation at the surface of the Earth usually involves absorption, i.e. cer-
tain wavelengths are absorbed and scattering occurs anisotropically (and often with altered
polarization state) into the atmosphere. Yet, lacking alternatives, for downward-looking
trace gas remote sensing instruments, which only view the scene from one specific azimuthal
angle, the reflectivity of the surface in the shortwave spectral range is approximated by a
single value, which is referred to as the surface albedo, a = a(λ). The albedo is essentially
the probability for a reflection to occur (i.e. a = 1: full reflection towards the sensor)
under the assumption that the surface reflects isotropically (as a “Lambertian” reflector).

Many approximations have been proposed to handle the diffuse radiation term in eq.
2.24. Most of these approaches somehow approximate the diffuse radiation field I(µ′) and
the phase function p(µ′, µ), that make up the diffuse source term, J = J(I, p) (see eq.
2.21). Simple choices include setting I(µ) = I(µ > 0) + I(µ < 0) = const. (two stream
approximation) or I(µ) = I0 + µI1 (Eddington approximation). Under such assumptions,
the phase function can either be represented by a few parameters or one can expand the
phase function into a series of Legendre polynomials.

In the next paragraph a short introduction to a specific technique will be given to solve
the radiative transfer equation which may help to gain more of an intuition about diffuse



2.3 Radiative Transfer 27

radiation.

Successive-Orders-of-Scattering-Approach In this approximation the azimuth di-
mension shall be neglected for simplicity and the source term of diffuse radiation in eq.
2.24 is treated as a sum of distinct orders of scattering, Jn, i.e.

J(τ, µ) = Σ∞n=1Jn(τ, µ) (2.25)

where the index n is the order of scattering; n = 1, 2, ... meaning that the beam is scattered
once, twice, etc. on its path to the sensor. In this approximation, one can show (Liou,
1980, ch. 6.2.1) that the diffuse upwelling radiance field at scattering order n can likewise
be calculated as a sum of scattering orders. When the solar flux, F0 (at TOA), and the
solar zenith angle, µ0, are known, it is straightforward to obtain the direct transmittance
towards the ground at optical depth τ ′: I0 = πF0e

−τ ′/µ0δ(µ′−µ0). All diffuse source terms
in eq. 2.25 are then defined by the recursive relationships

Jn+1 =
ω

2π

∫ 1

−1

p(µ′, µ)In(µ′)dµ′ (2.26)

In≥1 =
1

µ

∫ τS

0

Jn · e−(τ ′)/µdτ ′ (2.27)

with ω = βscat/βext the so called single scattering albedo (0 ≤ ω ≤ 1). Depending on the
value of ω, i.e. depending on the atmospheric composition8, high order terms can effectively
be neglected in eq. 2.25, because, as one can see from the recursion formulas, In ∼ ωn.
Thus, one can determine an order N at which the sum in eq. 2.25 can be truncated and
one also typically replaces the integrations over µ and τ in eqs. 2.26, 2.27 by a sum over
a certain number of layers and directions (referred to as “streams” in the literature).

The steps outlined above enable modelling of (spectral) radiances at the top of the
atmosphere through radiative transfer calculations. The specific details of the radiative
transfer model, as employed in this thesis, will be presented in chapter 3.1. In the fol-
lowing and last section of this chapter, it will be shown how the transfer model can be
combined with measurements to retrieve information about the atmospheric state (e.g.
CO2 concentrations).

8The single scattering albedo is a function of wavelength, so that it may vary strongly even within
individual spectral lines. For example, one can typically expect ω to be lower towards absorption line
centers (where absorption increases) and greater in the line wings, which means that the radiative path
through the atmosphere is generally shorter at the line center than in the wings.
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2.4 From Spectra to CO2 Concentrations

The previous sections have shown that measurements of spectral radiances in the atmo-
sphere of Earth contain a lot of information about a number of processes. To retrieve an
atmospheric state variable – like the profile of CO2 concentration – from the measurement,
one tries to compare the measured radiance spectrum to a simulated spectrum from a
radiative transfer model (with variable CO2) and tune the desired model parameters such
that the difference between measurement and model is on the order of (or smaller than)
the measurement noise. However, achieving agreement between measurement and model
can be ambiguous, especially for Earth-observing spectrometers, where, for example, vari-
ations in a spectral absorption feature can be caused by several atmospheric species with
overlapping absorption lines, by changes in the lightpath due to aerosol scattering or by
the reflection properties of the surface or even by artifacts of the spectrometer. As a result,
CO2 retrievals rely on statistical methods, many of which have been described by Rodgers
(2008). In the following, an introduction to the specific approach used in this work will be
given.

The remote sensing problem The goal of remote sensing in this thesis is to derive n
characteristic quantities of the atmosphere (trace gas concentrations, surface albedo, etc.),
assembled in a vector #»x from a spectral measurement, #»y , with spectral dimension m and
a forward (radiative transfer) model,

#»

F, through the relationship

#»y =
#»

F( #»x ) + #»σ . (2.28)

At this point, the vector #»σ in eq. 2.28 only contains the total measurement noise from eq.
2.17, but it will be expanded later to also accommodate errors of the model. By linearizing
#»

F around some initial state #»x 0 by means of Taylor expansion one can rewrite eq. 2.28 as

#»y ≈ #»

F( #»x0) + K( #»x − #»x0) + #»σ (2.29)

⇒ #̃»y = K #»x + #»σ (2.30)

with #̃»y = #»y − #»

F( #»x0) + K #»x 0. The m × n matrix Kij = δ
#»
Fi(

#»x )
δ #»x j

is known as the Jacobian

or weighting function matrix. It is a measure of the sensitivity of the observed radiance
at spectral index i to changes in the respective state vector element xj. The Jacobian

can be obtained numerically by calculating the derivatives of the transfer model,
#»

F, with
respect to state vector parameters, or analytically through adjoint perturbation theory
borrowed from neutron transport calculations in nuclear reactors, which will be discussed
briefly in chapter 3.1.2. Formally, eq. 2.28 has now been simplified into a linear algebra
problem, where the solution #»x can be found by inverting the Jacobian matrix. However,
this inversion is often not straight forward.

In the case of atmospheric sounding, the Jacobian usually cannot be inverted analyti-
cally, because it is almost never a square matrix, i.e. mostly m > n. In addition, it is not
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possible to reduce typical Jacobians into to an n×n shape – which could then be inverted
– because the rows of K,

#»

Ki, are not linearly independent (which means that they contain
redundant or inconsistent information, e.g. due to measurement noise). In the present
case, eq. 2.28 is the kind of problem that is ill-posed in the sense that it is simultaneously
over- and under-determined. It is over-determined since more measurements are available
than state vector entries to solve for and it is under-determined, because some components
of the actual state of the atmosphere cannot be captured adequately by the measurement.
For example, a satellite measurement of upwelling radiation intrinsically does not contain
much information about the vertical structure of trace gas profiles, because of the observing
geometry. The next paragraph will explain why such under-determined retrieval problems
can occur from a linear algebra point of view.

Singular Vector Decomposition of the Jacobian Mathematically, under-determi-
nation of the remote sensing problem manifests itself in vanishing singular values for some
entries of the Jacobian (see Rodgers (2008, ch. 2.2.2)). According to Rodgers (2008, Ap-
pendix A.4), a singular vector decomposition is a sort of eigenvalue problem constructed
for an arbitrary m × n matrix, K, which can be decomposed into the singular vectors U
and V and a matrix Λ through

Km×n = Um×nΛn×nV
T
n×n. (2.31)

The dimensions of the vectors and matrices are indicated as subscripts above. Such a
singular vector decomposition (SVD) can generally be used to solve eq. 2.30 numerically,
via the pseudo inverse Jacobian K� = VΛ−1UT .The matrix Λ is of special interest, because
it is a diagonal matrix that contains the singular values, λi, of the Jacobian, which can be
sorted such that the λi become smaller with increasing index i (see for instance Borsdorff
et al. (2014)). As a consequence, equation 2.30 can be shown to decompose into a sum
over the singular values of K:

#̃»y = Σn
i=1λi

(
#»vT
i

#»x
)

#»u i + #»σ (2.32)

where the vectors #»u i,
#»v i are the column vectors of the singular vectors U and V, respec-

tively. Contributions with high indices i impact the measurement, #̃»y , much less than the
first few contributions, i.e. λi→n → 0. Additionally, after inversion with K� (and trunca-
tion of the sum in eq. 2.32) the state vector can be shown to be proportional to #»x ∼ Λ−1 #»σ
(Rodgers, 2008, ch. 6.3). This means that when there are vanishing singular values λi,
the SVD inversion produces results that are nothing more but amplified noise. Such state
vector components are said to be within the null space of K – their values are not acces-
sible in the measurement data. While there are many statistical techniques that stabilize
the inversion with respect to variables that are hard to extract from the measurement
(Rodgers, 2008), the next section focuses on a regularized retrieval variant, which reduces
the noise that propagates into some components of the state vector.
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Twomey-Phillips-Tikhonov Regularization The idea behind statistical inversion ap-
proaches for eq. 2.30 is to make use of some prior information that is available before the
measurement is even made. For instance, when inverting CO2 concentrations, it is safe
to assume that the value of CO2 in the atmosphere must lie between zero and positive
infinity. From the range of possible values, one a priori value can be chosen for each state
vector entry to form the a prior state vector #»x a. Twomey, Phillips and Tikhonov have
proposed to find the state vector, #»x , by minimizing the following cost function (Phillips,
1962, Twomey, 1963).

χ2 = ( #»x − #»x a)
TγW( #»x − #»x a) +

(
#»y − #»

F( #»x )
)T

S−1
σ

(
#»y − #»

F( #»x )
)

(2.33)

The scalar γ is the regularization parameter and W is the regularization matrix and there
can in general be various γ to scale subentities of W. Setting γ to zero reduces eq. 2.33
to a classic least squares solution; weighted with the measurement error covariance matrix
Sσ that contains the square of the measurement noise contributions on the diagonal. This
right-hand-side term introduces the measurement noise into the retrieval and will eventually
cause unphysical results, as discussed above, if sensitivity to some state vector variable is
very low. These are the situations, when it is favorable to constrain the result to the prior
value. The smoothing operator W that mediates the difference between retrieval result
and the prior can be chosen freely, but for simplicity I’ll assume W = 1 here. As γ is
increased towards higher values, the a priori information contributes more and more to the
retrieved state vector. By evaluating d/d #»x χ2 = 0, the minimum of eq. 2.33 is found for

=⇒ #»x = #»x a + (KTS−1
y K + γW)−1KTS−1

y︸ ︷︷ ︸
G

( #»y − #»

F( #»x a)). (2.34)

The above equation can be summarized simply as

#»x = #»x a + G( #»y − #»

F( #»x a)). (2.35)

The difficulty in any regularized retrieval approach is to find appropriate values of γ for
those state vector elements that shall be regularized in the retrieval. Ideally, γ should
smooth the retrieval result, but still allow for a physical interpretation of the inversion
beyond the prior information. In chapter 4.1, Fig. 4.4 shows how a regularization can
be realized and how suitable regularization parameters are chosen in this work. Another
approach of constraining the regularization parameters is presented in Hansen (1992),
Hansen and O’Leary (1993).

The formal solution of the remote sensing problem has been found in eq. 2.35 by
taking the derivative of the cost function with respect to the state vector. As a result, eq.
2.35 will produce the correct result for a problem, that is linear in state vector space, yet
the regularization was introduced precisely because the forward model is not linear with
respect to some state vector components (that lie in the near-null space of the Jacobian).
Thus, the retrieved state vector #»x has to be found iteratively, with repeated updates to
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the gain matrix, G, which dominates the iteration step direction (see chapter 3.1.3). Some
iterative methods for the minimization of the cost function, which differ primarily in their
computational efficiency and their ability to reach convergence when unfavorable starting
points are chosen, are summarized in Rodgers (2008, ch. 5).

The regularized state vector found in eq. 2.35 is only an approximation of the true state
of the atmosphere. In the next paragraph, retrieval error characterization will provide the
limits within which retrieval results are valid.

Retrieval Error One can characterize the deviation of the estimated state vector #»x
from the true state, #»x true by accounting for both measurement and forward model error
terms #»σM ,

#»σF in eq. 2.28 :

#»y =
#»

F( #»x true) + #»σM + #»σF (2.36)

≈ #»

F( #»x a) +K( #»x true − #»x a) + #»σM + #»σF (2.37)

Two kinds of errors in the forward model can be distinguished: those that arise from
simplifications in radiative transfer modeling (see section 2.3) and those that arise from
uncertainty in auxiliary parameters used by the model; for example, spectroscopic param-
eters. While actual modeling errors must typically be assessed in simulation studies and
comparisons with more sophisticated models (Butz et al., 2009), errors of auxiliary param-
eters may be more readily available. Substituting eq. 2.37 into eq. 2.35, the error of the
retrieved state #»x can be quantified as a deviation from the true state (Rodgers, 2008, ch.
3):

#»x − #»x true = (A− 1)( #»x true − #»x a) + G #»σM + G #»σF (2.38)

The matrix A = GK is known as the averaging kernel and the three error contributions
on the right-hand-side are referred to as smoothing error, noise error and forward model
error. Diagonal entries of the averaging kernel can be understood as the Degree of Freedom
for Signal, DFS, of the corresponding state vector entry. The DFS of each retrieval variable
indicates the information content of the measurement with respect to that variable, i.e.
DFS close to zero means the variable is not well constrained by the measurement. To
interpret eq. 2.38 consider solving for the retrieved state #»x :

#»x = A #»x true + (1−A) #»x a + G #»σM + G #»σF (2.39)

The inversion can thus be understood as a smoothing operation of the real atmospheric
state, where the ability to carry over true information from the atmosphere into the state
vector is characterized by the averaging kernel (see also Rodgers and Connor (2003)). The
component of the true atmosphere, that is not picked up into the retrieval (because the
measurement is insensitive to it) is replaced by prior information, (1−A) #»x a. Finally, the
gain matrix propagates the measurement noise and forward model errors into the retrieval.
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Chapter 3

Methods and Data

This chapter introduces the methods and datasets that are at the core of this work. The
central algorithm, with which most of the analyses of this thesis have been carried out, is the
RemoTeC retrieval code, presented in section 3.1. It has been applied to a range of datasets
including measurements of the TANSO-FTS on board of the GOSAT satellite (section 3.2),
and the AVIRIS-NG (section 3.3) and specMACS (section 3.4) imagers. Additionally, the
TCCON dataset has been used for validation purposes and will be introduced in section
3.5.

3.1 The RemoTeC Retrieval Algorithm

The RemoTeC retrieval algorithm (e.g. Butz et al., 2009, Guerlet et al., 2013b) is a software
that consists of two components: a radiative transfer model (Hasekamp and Landgraf,
2002, Landgraf et al., 2001, Schepers et al., 2014) and a regularization based inversion
algorithm (e.g. Butz et al., 2010, 2011). The code can be used to retrieve atmospheric
state variables – like trace gas abundances – from radiance spectra measured by earth-
observing instruments. Technical details of the retrieval method will be presented in the
following sections 3.1.1, 3.1.2 and 3.1.3, while section 3.1.4 finally gives an overview of
previous applications of the algorithm.

3.1.1 Auxiliary Data

Several auxiliary datasets need to be merged in a preprocessing step to operate the re-
trieval code. These include gridded meteorological data for the observation scene such
as vertical pressure, temperature and humidity profiles, as well as surface pressure and
surface winds, which are obtained from weather reanalyses from the European Centre
for Medium-Range Weather Forecasts (ECMWF), see Berrisford et al. (2011), Coperni-
cus Climate Change Service (C3S) (2017), Hersbach et al. (2020)). The reanalysis data are
interpolated to the ground footprint of the sounding taking into account ground elevation
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data from the Shuttle Radar Topography Mission (SRTM) digital elevation model (Hennig
et al., 2001). In addition, the initial guess for the vertical distribution of carbon dioxide
is approximated by the 2011 CarbonTracker model (Peters et al., 2007). Further input
parameters to the algorithm are a high spectral resolution solar reference spectrum (Sneep
et al., 2015) and zenith and azimuth angles defining the solar position and the viewing
geometry.

3.1.2 Radiative Transfer Model

The radiative transfer model solves eq. 2.23 by splitting the plane-parallel model atmo-
sphere obtained from the preprocessing procedure into 36 barometrically equidistant layers.
Each layer is split up once more to calculate molecular absorption cross sections, σabs (as
in eq. 2.5), on a pressure and temperature grid with higher resolution. The values of the
absorption cross sections are then interpolated to the center of each layer of the transfer
model. To solve the radiative transfer equation, the diffuse radiation field is discretized
into 16 zenith angle streams (compare chapter 2.3, page 26). Further, the scattering phase
function is expanded into Legendre polynomial series with regard to azimuth angles (see
Hasekamp and Landgraf, 2002).

Molecular cross sections The calculation of the molecular absorption cross sections is
carried out in a line-by-line fashion, where every spectral line tabulated in the HITRAN
database (Gordon et al., 2017, Rothman et al., 2009) is used to infer σabs for a given
molecule at very high spectral resolution (∆λ < 0.05 nm). In this work, the line shape
function used to determine σabs depends on the application. For retrievals at coarse spectral
resolution and for atmospheric species that interfere with the CO2 spectrum (e.g. H2O),
the Voigt profile (eq. 2.4) offers sufficient performance. When retrieving CO2 concentra-
tions at high spectral resolution, spectral line mixing (see page 11) can be accounted for
through a more sophisticated line shape profile from Lamouroux et al. (2010). Collision
induced absorption (CIA) features of oxygen are modeled with a software from Tran and
Hartmann (2008). Line-by-line calculations are carried out in advance of the retrieval to
save computational effort.

Aerosol cross sections Scattering and absorption cross sections, σaer,scat and σaer,abs,
of spherical aerosols as well as their phase functions are taken from a look-up-table by
Dubovik et al. (2006). These crucial aerosol optical properties can be extracted from the
look-up-table when the total column number density of aerosols, Naer, the size distribution
naer(r) and the real and imaginary parts of the aerosol refractive index m = mr − i ·mi

are known (recall σaer,abs ∼ mi, van de Hulst (1981, ch. 14.1)). In the present work, the
refractive index is fixed at m = 1.4 − i · 0.003 across all wavelengths1 so that the aerosol

1This choice of refractive index leads to negligible absorption for small spherical particles (van de Hulst,
1981, ch. 14.1) and m is similar to values expected, for example, for Saharan sand aerosol particles in the
SWIR spectral range (compare ARIA Database, University of Oxford, 2020).
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total column and the size distribution are the only free variables.

Aerosol Parameterizations To simplify and stabilize the retrieval, the size distribution
of aerosols is assumed to follow a power-law (Butz et al., 2009, Fig. 2):

naer(r) =


A r ≤ r1

A (r/r1)α r1 < r ≤ r2

0 r > r2

(3.1)

with A a normalization parameter, the limiting particle radii are r1 = 0.1 µm and r2 =
10 µm and the exponent α a single retrieval parameter characterizing the size distribution.
Calculation of aerosol optical depth in a given layer of the model can be carried out
according to eq. 2.22 when a further assumption about the vertical profile of aerosol
particles is made. The RemoTeC algorithm uses a Gaussian parameterization of the height
profile h(z):

h(z) = B exp

(
−4 ln2(z − zaer)2

waer(zaer)2

)
(3.2)

where B is a normalization parameter and the width, waer, about the center height of the
aerosol layer, zaer, is fixed to 2,000 m. RemoTeC retrieves Naer, α and zaer from radiance
measurements to approximate aerosol optical properties. The vertical aerosol optical depth
of each model layer k, τaer,k, is finally given by the product of aerosol cross sections with
the aerosol profile function

τaer,k = (τaer,abs + τaer,scat) · h(zk)∆zk. (3.3)

The modeling of aerosol scattering effects described by eqs. 3.1 to 3.3 must be re-
garded as an effective aerosol parameterization. The RemoTeC aerosol model neglects
non-spherical particle shapes and the variability in real-world aerosol size and height dis-
tributions is not represented in eqs. 3.1 and 3.2. Thin (sub-visual) cirrus clouds are also not
considered in the particle scattering forward model, yet Butz et al. (2009) and Guerlet et al.
(2013b) showed that the model has some capability to account even for cirrus scattering.
The effective aerosol retrieval can be thought of as an attempt to generate knowledge about
light path changes by minimizing any spectral residuals that remain after fitting the trace
gas concentrations. At the same time the aerosol parameterization ensures convergence
of the inversion algorithm, because information content on aerosol scattering properties is
limited in the measurements that RemoTeC is typically applied to (see section 3.1.3).

Analytical Calculation of Jacobians Apart from its ability to simultaneously adjust
aerosol and trace gas properties as discussed above, another key quality of the RemoTeC
algorithm is its analytical treatment of the Jacobian matrix, K (see eq. 2.30). Instead
of calculating the derivatives of the forward model with respect to the state vector vari-
ables numerically (which is computationally expensive), the derivatives can be obtained
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analytically as described in Hasekamp and Landgraf (2002), Landgraf et al. (2001, and ref-
erences therein). In summary, there exists an adjoint formulation of the radiative transfer
equation (2.23), which propagates the adjoint radiance, I+, from the sensor backwards to
the source. Mathematically, this is equivalent to changing the sign of the streaming term
µ dI
dτ
⇒ −µdI+

dτ
in the transfer model and reversing all scattering events in the source term

(see eq. 2.21) of the transfer model by reverting the direction of scattering in the phase
function: p(µ′ → µ) ⇒ p(µ′ ← µ). Conceptually, the information about an atmo-
spheric state, #»x , contained in the (forward) modeled at-sensor-radiance, I, is equivalently
contained in the (backward) modeled adjoint radiance, I+, at the top of the atmosphere
at the point of entry of incident solar radiation. These two mathematically equivalent ex-
pressions of how radiation is propagated through the atmosphere are both descriptions of
the model F( #»x ). In first order perturbation theory one can then show that the derivatives
of the model are given by an integral over I+ · I over solid angles and optical depth which
can be solved analytically. Hence, the Jacobian can be caluclated in a computationally
fast manner by solving the forward and backward formulations of the radiative transfer
equation and a final integration. For a full introduction to adjoint radiative transfer see
Zdunkowski et al. (2007, ch. 5, eq. 5.66).

3.1.3 Inversion Strategy

Regularization Set-Up Throughout this work, the RemoTeC retrieval algorithm is
operated with a Twomey-Phillips-Tikhonov regularization method (see chapter 2.4) with
respect to the three effective aerosol parameters Naer, α, zaer (eqs. 3.1,3.2) and sometimes
also with respect to CO2 column concentrations, XCO2. Specifically, the inversion algo-
rithm solves eq. 2.34 with a smoothing operator, W, that is chosen as the first squared
difference operator (Rodgers, 2008) for the CO2 inversion, which is given by

W =


1 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1

 (3.4)

for order six. The inversion of aerosol parameters uses the unity matrix as regularization
matrix W. The regularization parameters γ for trace gas concentrations and aerosol pa-
rameters are selected according to the application, i.e. some measurements may contain
more information about these state vector variables than others2. A discussion of effects
of variable regularization strengths for aerosol parameters is given in chapter 4.1, Fig. 4.4.

2The average value for degrees of freedom for the three aerosol parameters for GOSAT measurements
is near DFS∼ 2.5 Guerlet et al. (2013b)
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Iterative Method The solution for the state vector #»x is approached iteratively with a
Gauss-Newton with reduced step-size method (Rodgers, 2008, ch. 5.3), which adjusts the
iteration step size, ∆ #»x , after each step. The basic idea is to find the state vector #»x by
applying a dampening in the iteration step towards the solution through a parameter λ
according to

#»x i+1 = #»x i +
1

1 + λi
∆ #»x i. (3.5)

The step size, ∆ #»x i, can be constructed from the first and second derivatives of the cost
function χ2 (eq. 2.33). As a result the step direction is given by the gain matrix, G (eq.
2.35), and the magnitude of the step depends on the difference between the model and the
measurement as well as the (regularized) difference between the current state, #»x i and the
prior state (for details see Rodgers, 2008, eq. 5.8). In the first iteration (when #»x 0 would
be the initial guess, derived from a prior), λ0 = 10 is chosen so that ∆ #»x 0 is significantly
constrained. In each iteration thereafter, the value of the residuals, χ2, is compared to
the value of χ2 of the previous iteration. If the residuals have increased by more than
10%, the iteration is reapeated with a step size λi+1 that is further reduced by multiplying
λi+1 = λi×2.5. In the rest of cases the dampening parameter is divided by two to increase
the step size in order to approach the solution, λi+1 = λi/2. RemoTeC considers the
inversion to have “properly converged” in iteration step n only if the parameter λn finally
approaches zero (λn < 0.05).

The reduced step size method described above is only used in RemoTeC for retrievals
that attempt to calculate all three effective aerosol parameters, since these are the cases
with the most complex χ2 surfaces. In all other cases, the step size is only constrained in
the first step of the solver.

3.1.4 Algorithm Legacy

Its flexibility with regard to state vector configuration and the selection of spectral retrieval
windows has enabled adaptation of RemoTeC for retrievals of methane and carbon dioxide
column concentrations (XCO2, XCH4) from a number of satellite sensors over the past
decade. These efforts include – among others – XCO2 retrievals (Buchwitz et al., 2017,
Butz et al., 2011, Guerlet et al., 2013b) from GOSAT measurements (Butz et al. (2011),
Kuze et al. (2009, 2016), see also section 3.2) and XCO2 retrievals (Wu et al., 2018, 2019)
from the OCO-2 satellite (Crisp et al., 2008, 2017). The operational ESA XCH4 product
from Sentinel-5 Precursor/TROPOMI (Veefkind et al., 2012) is also based on RemoTeC
retrievals (Butz et al., 2012, Hu et al., 2016, 2018, Lorente et al., 2020). RemoTeC retrieval
results have been used in several studies to inversely infer sources (and sinks) of carbon
dioxide (Basu et al., 2013, 2014, Guerlet et al., 2013a, Reuter et al., 2014, Takagi et al.,
2014) and methane (Varon et al., 2019, Zhang et al., 2020).

The algorithm has also been employed to carry out radiative transfer simulations to
study the expected retrieval performances of proposed satellite instruments (Butz et al.,
2015, Strandgren et al., 2020). RemoTeC can further be utilized to retrieve chlorophyll
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fluorescence signals of vegetation from solar backscatter measurements (Schepers et al.,
2014).

Typical RemoTeC state vector variables common to most of the retrievals mentioned
above are: a) 12-layer vertical profile of trace gas number densities b) H2O total column
number density c) three effective aerosol parameters Naer, α, zaer d) a polynomial describ-
ing the ground albedo in every retrieval window (typically of second order) and e) spectral
shifts in every retrieval window. The trace gas total columns are then calculated by divid-
ing the respective sum of the retrieval sub-layer number densities (total column number
density, denoted [CO2]) by the dry air mass ([O2]), derived from the auxiliary ECMWF
and SRTM data according to XCO2 = 0.2095 · [CO2]/[O2] (Wunch et al., 2011a).

3.2 The TANSO-FTS Spectrometer aboard GOSAT

The Greenhouse gases Observing SATellite (GOSAT) was launched in 2009 with the pri-
mary goal to measure global CO2 and CH4 column concentrations (Kuze et al., 2009,
2016, Nakajima et al., 2017). GOSAT is the platform carrying the Thermal And Near in-
frared Sensor for carbon Observations (TANSO) Fourier Transform Spectrometer and the
Cloud and Aerosol Imager (CAI) on a sun-synchronous, near-Earth orbit. While the CAI
instrument (Ishida et al., 2011) mainly serves to identify clear-sky scenes3, the measure-
ments of the TANSO-FTS sensor are of particular interest for this thesis. In the following
paragraphs, the instrument properties, its radiometric calibration, observation strategy
and the scientific highlights that TANSO measurements have brought forward will be dis-
cussed briefly. The attributes of TANSO presented here, and more detailed descriptions of
all instrument related issues, can be found in Kuze et al. (2009, 2011, 2014, 2016).

The Instrument Because space-borne sensors experience a lot of mechanical stress dur-
ing launch and operation, it is favorable to adapt the design of Fourier transform spec-
trometers for satellite applications. Instead of a linear movement of one of the mirrors, the
TANSO-FTS relies on a rotary pendulum motion of two cube-corner-mirrors making the
measurement process less sensitive to vibrations or shocks (see Jaacks and Rippel (1989)
for a description of such sensors). The mirrors are aligned with each other and the TANSO-
FTS can reach a maximum optical path difference of ±2.5 cm with mirror movements on
the scale of only ∼ 6 mm (Kuze et al., 2009), i.e. the interferogram (I(x) in eq. 2.10) is
fully two-sided. One interferogram is measured by a one-way motion of the pendulum from
one turning point to the other. Interferograms are sampled according to eq. 2.11 to enable
slight over-sampling of the recorded spectra with a sampling ratio of 1.2 in the SWIR bands.
This means that the SRF is greater than the spectral sampling interval by a factor of 1.2.
The SWIR spectra are measured at very high resolving powers of λ/∆λ > 20, 000 (see Table
3.1). TANSO observations comprise upwelling spectral radiances between 0.75− 0.78 µm
(O2 A-band), 1.56−1.72 µm (SWIR-1), 1.92−2.08 µm (SWIR-2) and also in the long-wave

3The CAI sensor can also be used to derive a normalized difference vegetation index (Liu et al., 2011).
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Pointing ±35° across-track
±20° along-track

Aperture 6.8 cm
Maximum OPD ±2.5 cm
Integration Time 4 sec

O2 A-band SWIR-1 SWIR-2 TIR
Spectral Range / µm 0.75− 0.78 1.56− 1.72 1.92− 2.08 5.5− 14.3
Detector(s) 2× Si 2× InGaAs 2× InGaAs HgCdTe
FWHM / nm <0.1 <0.1 <0.1 1.4

Table 3.1: Key specifications of the TANSO-FTS system; adapted from Kuze et al. (2009).
The short-wave bands measure two polarization directions and thus require two detectors
each.

spectral range between 5.5 − 14.3 µm (TIR). The high spectral resolution at correspond-
ingly high values of Signal-to-Noise-Ratio (SNR4= S/σ > 300, compare eqs. 2.16, 2.17) is
accomplished through long integration times; typically tint = 4 sec and a large aperture di-
ameter of 6.8 cm. Shorter exposure times are feasible as well and the SNR is also controlled
through three detector read-out-amplifier gain settings, which can be adjusted according
to the brightness of the observation scene (recall chapter 2.2.2). GOSAT measures the
three short-wave bands in two perpendicular polarization states, so that two detectors
are necessary for each of these bands. Measurements of polarization states are possible
due to the polarization sensitive zinc selenide beam splitter. The detectors are based on
typical semi-conductor materials with band gaps in the range of VIS-IR photon energies,
such as silicon (Si), indium gallium arsenide (InGaAs) and mercury cadmium telluride
(HgCdTe). Total (unpolarized) spectral radiances, Iλ, can be obtained by averaging the
spectra recorded for the two polarization planes (O’Brien et al., 2013). The entire optical
system is temperature controlled to minimize any detrimental thermal expansion of optical
components.

The sensors aboard GOSAT have been monitored with regard to their geometric, spec-
troscopic and radiometric performance throughout the mission. In the next paragraph,
some detail on the radiometric characterization procedures will be given to provide a real-
world example of the calibration strategy discussed in chapter 2.2.3.

Radiometric Calibration The TANSO sensor has been characterized radiometrically
before launch according to the procedure described in chapter 2.2.3, eq. 2.18, i.e. the
measured signal has been referenced to a standard radiation source (Kuze et al., 2009).
Absolute radiometric accuracy of the short-wave bands of the TANSO-FTS before launch
was within 3% (Kuze et al., 2014). The corresponding calibration coefficients are contin-

4for a reference scene with albedo 0.3 and solar zenith angle SZA= 30°(Crisp et al., 2012)
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ually being monitored through in-flight calibrations of the two GOSAT sensors. In case
of the short-wave bands of the TANSO-FTS, the signal is referenced to direct solar ra-
diation once a month and the spectral response functions are monitored using a custom
on-board laser. The TIR spectra are referenced to an on-board standard black body and
observations of deep space. CAI measurements are calibrated by looking at the lunar sur-
face. Additionally, vicarious calibration activities are necessary, because of degradation of
the on-board calibration components (diffuser plates, etc.). Extensive TANSO calibration
campaigns have been carried out at the Railroad Valley playa (Kuze et al., 2011, 2014),
where the surface reflectance and the state of the atmosphere above the TANSO footprint
can be characterized very well. Differences between recorded spectra and radiative transfer
models can hence give insights into the degradation of the radiometric calibration of the
sensor. The radiometric calibration of the TANSO sensor has been very stable since an
initial degradation in the first two years of operation (Kuze et al., 2016).

Observation Strategy GOSAT observes the Earth with the help of a pointing mirror
system that can be operated in nominal, glint or target observation mode. The pointing
mirrors can move within an angular range of ±35° in the across-track and ±20° in the
along-track direction with respect to the orbit of the satellite. In nominal mode over
land, GOSAT collects five (before summer 2010) or three (since summer 2010) separate
across track measurements over a swath width of roughly 800 km, each measurement
with a circular ground pixel diameter of 10.5 km at the sub-satellite point, while off-nadir
soundings have larger and elliptical ground pixels (Crisp et al., 2012, Kuze et al., 2011).
Above the oceans, which reflect so little SWIR radiation that trace gas retrievals are not
possible, TANSO-FTS targets the bright spot of specular reflection (glint) on the ocean
surface in its so called glint mode. Due to the sun-satellite geometry, glint observations are
limited by the along-track pointing ability of the system so that glint can only be observed
at ±20° around the sub-solar latitude (compare Table 3.1). Near sites of interest – mega
cities, volcanoes, ground reference stations, etc. – target mode data acquisition allows
for high density measurements of these locations employing forward-motion-compensation
of the satellite and/or reduced integration times. The glint and target pointing modes
described here are only operated when the satellite is on the day side of Earth, while the
nominal mode can also be used for TIR band observations on the night side. The orbit of
GOSAT has a three-day revisit cycle of all nominal ground locations (over 3,000 individual
footprints) and the observations occur at around 13:00 hours local time to allow for low
solar zenith angles (SZA).

Scientific Applications The GOSAT mission – still operational in 2021 – can be con-
sidered one of the path finding satellite missions in remote sensing of carbon dioxide and
methane from space. Its successes have inspired follow-up missions such as GOSAT-2 (Suto
et al., 2021), which was launched in 2018, and GOSAT-GW (WMO, 2020), expected for
2023. Some applications of TANSO-FTS measurements are highlighted here.

The scientific advances that GOSAT has driven are mainly based on the three short-
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wave bands of the TANSO sensor. Generally, the rationale behind this choice of spectral
windows is to have access to CO2 and CH4 absorption bands in the SWIR-1 and SWIR-
2 bands, while the O2 A-band contains information about the atmospheric light path.
These measurements have enabled accurate XCO2 and XCH4 inversions that capture, for
instance, natural, seasonal cycles of these gases (see Jiang et al., 2021, Lindqvist et al.,
2015, Parker et al., 2020, and references therein), or emissions from strong anthropogenic
sources (Kort et al., 2012, Kuze et al., 2020). TANSO-FTS short-wave measurements
have been employed to conduct inversions of sources and sinks of CO2 and CH4 on global,
continental and national scales (Baray et al., 2021, Basu et al., 2013, Miller et al., 2019,
Turner et al., 2015). Moreover, GOSAT data have helped constrain large process-based
fluxes of the terrestrial carbon cycle, such as wetland CH4 emissions (Pandey et al., 2017)
or even global photosynthetic activity (Frankenberg et al., 2011).

The TIR spectral window of the TANSO sensor is a special feature of the GOSAT
mission, as telluric emission spectra can be used to infer information about the vertical
distribution of trace gases (CO2, CH4, O3, NH3), because the averaging kernels peak in
the upper troposphere or lower stratosphere (de Lange and Landgraf, 2018, Saitoh et al.,
2016, Someya et al., 2020). In principle, these TIR spectra could be used synergistically
with the SWIR spectral bands to retrieve several CO2 sub-columns or layers (Herbin et al.,
2013, Kulawik et al., 2017, Worden et al., 2015), however such retrievals have not been im-
plemented operationally. Since the combination of the SWIR spectral windows is sufficient
to constrain CO2 total columns, the TIR measurements are neglected in the present work.

Dataset for this Work Backscattered radiances of the level 1B (L1B) data version
201.202 were utilized in this thesis and the GOSAT data record was filtered for cloud-
free, quality screened soundings over land to save computational costs. The data set
has been produced by the algorithm configuration used in Butz et al. (2011) in native
GOSAT RemoTeC retrievals within the framework of the Climate Change Initiative of
the European Space Agency (ESA) (Buchwitz et al., 2017), which can be accessed at
http://www.esa-ghg-cci.org. This collection of GOSAT spectra in the period from
April 1, 2009 to December 31, 2016 consists of 469,689 L1B soundings.

3.3 The Air-Borne AVIRIS-NG Sensor

The Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG) instrument is
a push broom imaging spectrometer (see page 20) developed for a wide range of terrestrial
ecosystem science (Bender et al., 2010, Hamlin et al., 2011). It is the successor of the
well-established AVIRIS instrument (Chrien et al., 1990, Green et al., 1998), which serves
as an air-borne demonstrator for the HyspIRI mission (e.g. Lee et al., 2015) and which has
also inspired similar sensors, for instance the VSWIR instrument of the Airborne Taxo-
nomic Mapping System (Asner et al., 2012) or the Airborne Methane Plume Spectrometer
(Thorpe et al., 2016b).

http://www.esa-ghg-cci.org
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The Instrument AVIRIS-NG observes upwelling spectral radiances across most of the
solar spectrum between 380−2, 510 nm at a spectral resolution of ∼ 5 nm. With a spectral
sampling ratio of 1− 1.5, these measurements are conducted on a single HgCdTe detector
with 425 spectral pixels (Chapman et al., 2019). AVIRIS-NG has an across-track field

Field of view (across-track) 36°
Spatial pixels 600
F-number f/3
Spectral range / nm 380− 2, 510
Detector HgCdTe
FWHM / nm ∼ 5
Spectral sampling / nm ∼ 5

Table 3.2: Key specifications of the AVIRIS-NG sensor system.

of view of 36° and standard data products contain 600 spatial elements (see Table 3.2),
each with an instantaneous field of view of 1 mrad2. Ground sampling distance is, for
example, 10 m for an aircraft altitude of 10 km and exposure times are usually on the
order of 10 milliseconds. The sensor has a 9 mm aperture resulting in a f/3 optics that
enables observations with high signal-to-noise ratios, e.g. SNR∼ 200 − 400 (Cusworth
et al., 2019). The instrument is enclosed in a vacuum-container and equipped with an
active temperature control to stabilize environmental conditions. Fig. 3.1 illustrates a
typical AVIRIS-NG measurement.
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Figure 3.1: Illustration of an AVIRIS-NG measurement near New Madrid, MO, USA.
Left: RGB image of the scene. Right: Selected spectra from four color-coded spatial pixels
containing spectra of sand (red), cloud (orange), vegetation (green) and water (cyan).

Characterization Radiometric and spectral calibration of AVIRIS-NG is carried out
before each research flight and additionally during the flight at the end of each flight line.
The characterization procedures have been described by Chapman et al. (2019). While
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the initial (lab) characterizations of AVIRIS-NG are comparable to the calibration efforts
of specMACS (see ch. 3.4), acquiring boresight and in-flight radiometric and spectral
responses has the added value of monitoring the stability of calibration parameters de-
termined in the lab (i.e. SRF shape and FWHM, radiometric calibration coefficients).
Thompson et al. (2018a) demonstrated an in-scene spectral response validation method
that exploits the absorption features of the O2 A-band to correct the SRF for stray light
effects. Further, AVIRIS-NG is equipped with on-board calibration sources to enable ra-
diometric and spectral characterization during operation. It has been shown that the
properties of the sensor characterization remain very stable, both in terms of radiometric
and spectral accuracy, over a period of several years (Chapman et al., 2019). The SRF
for the AVIRIS-NG data used in this thesis is Gaussian and homogeneous over the spatial
dimension of the detector, i.e. all spatial pixels exhibit the same spectral response, which
varies across the wavelength axis by less than ±5 %. Absolute radiometric accuracy of the
sensor is 95% (Green, 2012).

Scientific Applications Due to its successes in many different areas of Earth system
science, the AVIRIS-NG sensor has had a large impact on the development of imaging
spectrometers. AVIRIS-NG has previously been used to study methane emissions (Ayasse
et al., 2018, 2019, Borchardt et al., 2021, Cusworth et al., 2020, Duren et al., 2019, Foote
et al., 2020, Frankenberg et al., 2016, Krautwurst et al., 2017, Thompson et al., 2015, 2016,
Thorpe et al., 2013, 2017, 2020, Zhang et al., 2017) and also carbon dioxide emissions
(Deschamps et al., 2011, Marion et al., 2004, Raychaudhuri et al., 2019, Thorpe et al.,
2017). Other applications include atmospheric correction (Thompson et al., 2018b), remote
sensing of aerosols (Mauceri et al., 2019), lithological mapping (Tripathi et al., 2020) and
many more.

Dataset for this Work The flightlines ang20190621t200919 and ang20150420t181345
are analyzed in chapter 4.2.4. The former was obtained on June 21, 2019, at a solar
elevation of 72° and it contains the “Four Corners Power Plant” near Farmington, NM,
USA. The latter dataset is the flight that was analyzed by Thorpe et al. (2017) to retrieve
CO2 concentrations near the “San Juan Generating Station”, which is located roughly
20 km north of the Four Corners facility. These spectra were recorded on April 20, 2015,
at a solar elevation of 61°. The two datasets were obtained at above-ground sensor altitudes
of 2.7 km (Four Corners) and 1.1 km (San Juan), so that the ground sampling distances are
2.7 m and 1.1 m, respectively, for these flights. Noise vectors for AVIRIS-NG measurements
were not available at the time of publication of this thesis.
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3.4 The Air-Borne specMACS Sensor

The spectrometer of the Munich Aerosol and Cloud Scanner (specMACS) is a combination
of two push broom imaging spectrometers that primarily serve the study of cloud physics.
It has been deployed in various viewing geometries – as a ground-based sensor or on board
of the German research aircraft HALO (Ewald et al., 2016, Stevens et al., 2019).

The Instrument specMACS consists of two complementary sensors in the VNIR (∼
400 − 1, 000 nm) and SWIR (∼ 1, 000 − 2, 500 nm) spectral ranges. In the airborne
configuration of the system, the two sensors are aligned such that their fields of views
overlap for a mutual field of view of 32°, which is somewhat smaller than the individual
fields of view of each sensor (see Table 3.3). Different detectors are deployed in the two
sensors – a fact that leads to differences in radiometric accuracy and differences in spatial
and spectral resolution of the instruments. The VNIR focal plane array does not require
cooling, but the SWIR HgCdTe detector must be operated at 200 K. While both sensors
have comparable optics with f/2.4 and f/2.1 in the VNIR and SWIR, respectively, the VNIR
sensor has a significantly higher spectral resolution than the SWIR sensor (3.1 vs. 10.3 nm
on average). The average spectral (over-) sampling ratios of the two cameras are 3.9 in the
VNIR and 1.6 in the SWIR. Many updates to the specMACS system have been implemeted
over the last years. Among these are an enclosure to enable operation of specMACS in
non-pressurized areas of an aircraft and the addition of two cameras sensitive to different
polarzation states of incident radiation. An overview of the key sensor parameters is given
in Table 3.3.

VNIR SWIR
Field of view (across-track) 32.7° 35.5°
Spatial pixels 1, 312 320
F-number f/2.4 f/2.1
Spectral range / nm 417− 1, 016 1, 015− 2, 496
Detector Si HgCdTe
FWHM / nm 2.2− 6.0 7.1− 19.6
Spectral sampling / nm 0.6− 1.0 5.2− 6.9

Table 3.3: Key specifications of the specMACS sensor system, comprising a VNIR and a
SWIR sensor.

The field of view of an individual detector pixel, the instantaneous field of view, is
1.4 × 2.0 mrad2 and 3.8 × 1.8 mrad2 for the VNIR and SWIR detectors. At a flight
altitude of 10 km above ground, this translates into nadir pixel sizes of 14 × 20 m2 and
38× 18 m2, respectively. Integration times for both sensors are typically on the order of a
few milliseconds.



3.4 The Air-Borne specMACS Sensor 45

Characterization The instrument has been characterized by Ewald et al. (2016) who
found the SRF in the VNIR to be non-Gaussian, while the Gaussian approximation fits
well with the SWIR sensor. However, large variations in FWHM are expected across the
spectrum and across the spatial domain of the sensor (see Fig. 3.2). The CO2 absorption
bands in the short wave-infrared are sampled with quite different spectral resolution by the
sensor. While the average spectral resolution in the SWIR-2 (1960 – 2130 nm) is 8.5 nm
across all spatial pixels, the average in the SWIR-1 range (1, 540− 1, 640 nm) is 12.4 nm.

A major difference between the VNIR and SWIR sensors with regard to their radio-
metric performance is the stability of their respective dark current levels (σdc, see chapter
2.2.2). Ewald et al. (2016) showed that large drifts in the SWIR dark current can occur
during air-borne operation of specMACS, while the VNIR dark current is stable. These
variations depend both on temperature and integration time, making in-flight dark current
measurements as well as temperature control of the entire camera crucial in order to be
able to calibrate the detector reading to absolute spectral radiances. Radiometric uncer-
tainties on the order of < 5% remain in the VNIR band for a well-lit scene, while accuracy
in the SWIR is highly wavelength dependent. At the spectral bands of CO2 absorbtion
near 1.6 µm and 2.0 µm the absolute radiometric accuracy is better than 10%, although
other spectral ranges are associated with uncertainties as high as 50% (Ewald et al., 2016,
Fig. 22).

specMACS has been characterized only once in 2016, and since no in-flight calibration
has been developed yet, no information about the stability of its calibration is available.

Scientific Applications Typical applications of specMACS deal with the derivation
of macroscopic cloud parameters, such as their geometry (Kölling et al., 2019), or with
retrievals of cloud microphysical parameters (Ewald et al., 2019, Höppler et al., 2020, Jäkel
et al., 2017, Zinner et al., 2019). The present study is the first attempt to use the broad
spectral range of specMACS to retrieve trace gas information.

Dataset for this Work Due to a sparse cloud-free data set, only few archived scenes
could be identified, which contain a stronger localized source. One such data set was
recorded on September 27, 2016, during a transfer flight of the North Atlantic Waveguide
and Downstream Impact Experiment campaign (NAWDEX, Schäfler et al. (2018)), when
specMACS observed the city of Andernach, Germany, and an adjacent power plant from an
altitude of ∼ 12.6 km above ground at a solar elevation of 65.5°. XCO2 retrievals from this
flight scene will be discussed in chapter 4.3. Measurement noise vectors were not available
for this study, but typical SNR values5 in the SWIR-1 spectral range can be expected to be
above SNR > 100, with average SNR at 127 across the flight track and 73 % of all scenes
having SNR > 100. The noise level is proportional to σtot ∼

√
S (see eq. 2.17 and find

5SNR calculated as the value of the 1, 560 nm signal (continuum radiance close to the SWIR-1 bands)
devided by the standard deviation of the signal in the neighboring opaque water vapor band between
1, 827− 1, 936 nm.
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Figure 3.2: Visualization of the FWHM of the specMACS sensor across the SWIR detector
array. The CO2 absorption bands in SWIR-1 and SWIR-2 are located between the dashed
lines, where the average FWHM is 12.4 nm and 8.5 nm, respectively. The top axis shows
the center wavelengths along the central spatial detector row (number 160).

details in Ewald et al. (2016), Fig. 13), i.e. the darker the surface the lower is the SNR.

3.5 The Ground Based TCCON Network

The Total Carbon Column Observing Network (TCCON) is a global network of ground
based FTS instruments that routinely measure direct solar absorption spectra between
0.7 and 2.6 µm (Kiel et al., 2019, Messerschmidt et al., 2011, Wunch et al., 2011a,b) at
spectral resolutions below ∆λ = 0.01 nm. Their measurements are used to infer column
concentrations of a number of molecules in the (clear-sky) atmosphere of Earth, such as
O2, CO2, CH4, CO, HF and others. As the impact of scattering on direct solar radiation is
negligible (e.g. Oshchepkov et al., 2013), such measurements enable the determination of
carbon dioxide column concentrations with high precision and accuracy, both better than
0.3% of XCO2 (Messerschmidt et al., 2011). The present study uses measurements from
24 TCCON stations around the world from the “GGG2014” data product (available at
https://tccondata.org). An overview of the data sets employed in this work can be found
in Table B.1 in appendix B.

Column concentrations reported by TCCON are calibrated with respect to World
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Meteorological Organization (WMO) standards (Messerschmidt et al., 2011, Zhao and
Tans, 2006). This provides an absolute calibration of XCO2 data across the network
and a traceable link to standardized in-situ CO2 measurement networks (e.g. ICOS ,
https://www.icos-cp.eu/).

Due to the operational continuity, standardized instrumentation, data processing and
calibration, the record of the TCCON network has become a valuable source for validation
studies of satellite instruments targeting XCO2.

In recent years, new FTS technology has enabled similarly high accuracy in measuring
trace gas columns with much smaller ground-based spectrometers, which may become an
addition to the TCCON network in the future (Frey et al., 2019, Knapp et al., 2021, Luther
et al., 2019).

https://www.icos-cp.eu/
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Chapter 4

Results

In this chapter three case studies are presented which are carried out with the RemoTeC
retrieval algorithm. Its application to the measurement data introduced in the previ-
ous chapter will be discussed with regard to the challenges and possibilities offered by
coarse-spectral-resolution sensors. First, section 4.1 discusses which spectral resolution
and spectral window would be favorable for a satellite sensor targeting localized XCO2

enhancements. Second, section 4.2 explores power plant XCO2 retrievals from the AVIRIS-
NG sensor and lastly, section 4.3 analyzes XCO2 retrievals from specMACS measurements
near a small power plant.

4.1 Spectral Sizing of a Coarse-Spectral-Resolution

Satellite Sensor

Substantial parts of the text in this section as well as many figures are adopted from
the Atmospheric Measurement Techniques article published by the author of this
thesis (Wilzewski et al., 2020).

From an XCO2 retrieval perspective, the present chapter explores the margins available
in the spectral resolution of CO2 absorption band measurements with the aim of enhancing
ground resolution and facilitating a single-band sensor configuration, which may allow for
such sensors to be deployed in a fleet of low-cost satellites. Fig. 4.1 schematically depicts
the key advantage of a hypothetical 50×50 m2 ground resolution spectrometer over a sensor
with km-scale resolution for point-source monitoring. Satellite sensor ground pixels which
capture only a part of the source plume average the plume enhancement with the local
background concentration. In case of the example in Fig. 4.1, this produces a maximum
enhancement of 3 ppm for the satellite sensor with 2×2 km2 ground resolution, whereas
reduced ground pixel sizes of 50×50 m2 yields a maximum enhancement of 12 ppm at 2 km
downwind distance, as well as a higher sampling rate of the plume with over 10 pixels along
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the plume cross-section. This augmented performance can be understood as larger fractions
of each (smaller) pixel being occupied by plume enhancements. With increased downwind
distance from the source, per-pixel enhancements become comparable for the two sensors,
but the increased spatial sampling of the fine ground resolution sensor would still allow
to observe the plume in many ground pixels. Thus, a fine-ground-resolution sensor poses
less stringent per-pixel precision requirements and offers the possibility of recording the
plume shape at higher detail. One design aspect for passive sensors with high ground
resolution is to gather a sufficient amount of backscattered photons in each of the small
spatial pixels, which is generally more challenging at finer the ground sampling distances.
A typical approach to increase the light throughput of the system is to coarsen the spectral
resolution. Finer spatial resolution is also accompanied by narrower swath widths, so that
global monitoring of localized CO2 sources surely requires a fleet of sensors, ideally with a
simple, single-band spectral set-up instead of the expensive, full spectral coverage provided
by existing missions.

In this chapter, the performance of a hypothetical coarse-spectral-resolution spectrom-
eter will be assessed that only covers one spectral band. Specifically, the following sections
will appraise a sensor concept which is based on either the 1.6 (SWIR-1) or the 2.0 µm
(SWIR-2) CO2 absorption bands at resolving powers approximately between the AVIRIS-
NG and CarbonSat concepts (i.e. 700 < λ

∆λ
< 10, 000). Galli et al. (2014) proposed an

avenue towards the envisioned performance tests by convolving high-spectral-resolution
GOSAT soundings down to resolving powers of λ

∆λ
≈ 3, 000 and retrieving XCO2 with

the common 3-band configuration (NIR, SWIR-1, SWIR-2). Their study concluded that,
when validated with ground truth, reduced spectral resolution retrievals typically lead to
increased systematic and statistical XCO2 errors. Here, the approach of Galli et al. (2014)
is being followed, but taken beyond the range of resolving powers discussed there and re-
trievals are limited to a single spectral band. In terms of single-band XCO2 measurements,
Wu et al. (2019) have demonstrated that when restricting OCO-2 retrievals to one band
(and leaving spectral resolution untouched), XCO2 retrieval precision and accuracy suffer
virtually no degradation in comparison to the full spectral configuration.

The methodological approach of spectrally degrading GOSAT soundings in the SWIR-
1 or SWIR-2 bands is introduced in section 4.1.1. Section 4.1.2 summarizes the findings
regarding various coarse-spectral-resolution XCO2 retrievals by comparing the results with
ground-truth from the Total Carbon Column Observing Network (TCCON). Favorable
target spectral resolutions are identified and subsequently evaluated on a global scale with
respect to “native” GOSAT retrievals in section 4.1.3. GOSAT soundings of the Los
Angeles mega-city are also investigated in an attempt to apply the SWIR retrievals to a
true anthropogenic XCO2 gradient. However, this gradient appears to be unresolved even
in native GOSAT retrievals as opposed to previous reports and therefore this path was not
pursued any further (see appendix A).
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Figure 4.1: Schematic, noise-free XCO2 enhancements (∆XCO2) of a Gaussian plume
emanating from a power plant with a flux of 12.3 MtCO2 y−1 (Guifford-Pasquill stability
class C, wind from left to right; source located at the origin; sensor motion from bottom
to top, sampling occurs left to right) as observed by hypothetical satellite instrument with
2×2 km2 ground pixels (left), and 50×50 m2 ground pixels (right). Inset plots indicate
∆XCO2 recorded by the sensors at 2 km (red) and 8 km (black) downwind of the source
along the plume cross section (dashed lines). Figure adopted from Wilzewski et al. (2020).

4.1.1 Spectral Degradation of GOSAT Measurements

With its broad spectral coverage in the SWIR-1 and SWIR-2 spectral ranges, GOSAT is es-
pecially suited for the present study, as opposed to other sensors (e.g. OCO-2), because the
wide bandpass of the instrument permits a relatively free choice of the retrieval windows.
The wide spectral windows observed by GOSAT (except for the TIR-band) are shown in
Fig. 4.2. To imitate a coarse-resolution sensor, a Gaussian convolution of variable FWHM
was applied to the native GOSAT spectra. The same convolution was also assigned to the
noise of the native GOSAT spectra, i.e. no additional noise was included here. By setting
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the noise of the coarse-resolution spectrometer to the convolved noise of the native spectra,
this work focuses on the sole effect of decreasing the spectral resolution. Of course, extra
noise must be expected for a hypothetical small-ground-pixel sensor. However, adding the
noise calculated from a detailed instrument model (as discussed in Strandgren et al. (2020))
would introduce another artificial feature to the analysis. Here, those conditions will be
studied under which the noise of the detector is in essence negligible, as commonly found
for GOSAT (where errors are typically governed by systematic patterns, like spectroscopic
errors, uncertain scattering effects, etc.). Systematic sources of error will be addressed in
sections 4.1.2 and 4.1.3 by correlating retrieval results with geophysical parameters. Fig-
ure 4.2 visualizes the convolution approach in comparison to the native GOSAT spectra
for hypothetical resolving powers of 1,200 (blue line) and 1,600 (red line) in SWIR-1 and
SWIR-2, respectively. A 256 spectral pixel focal plane array was assumed for the proposed
sensor.
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Figure 4.2: Observed GOSAT spectrum of the radiance backscattered in the NIR, SWIR-
1 and SWIR-2 spectral ranges (left to right) depicted in grey with respective GOSAT
retrieval windows shown in bold black. Measurements after Gaussian convolution at re-
solving powers of ∼ 1,200 (SWIR-1) and ∼ 1,600 (SWIR-2) are illustrated in bold blue
and bold red, respectively. Figure adopted from Wilzewski et al. (2020).

Native and degraded GOSAT spectra were analyzed with the RemoTeC retrieval soft-
ware (Butz et al., 2009, 2011, Guerlet et al., 2013b). The retrieval configuration for GOSAT
measurements at native spectral resolution is the so called full-physics (“native” GOSAT)
retrieval, where RemoTeC takes into account four spectral windows in the NIR, SWIR-1
and SWIR-2 spectra ranges (see Table 4.1 and Fig. 4.2) and inverts the measurements for
XCO2, XCH4 simultaneously with surface albedo and spectral shifts as well as three particle
scattering parameters (compare chapter 3.1). This native GOSAT set-up corresponds to
the standard retrieval which is operated for ESA’s climate change initiative (e.g. Buchwitz
et al. (2017)).

To emulate a single-band spectrometer, either of the SWIR spectral ranges were used
alone at coarse spectral resolution, and XCO2 (as well as XCH4 in SWIR-1) and spectral
shift and surface albedo parameters were retrieved. The convolution of the modeled, coarse-
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resolution spectra was carried out in analogy to the standard retrieval procedure: Firstly,
RemoTeC models spectra at native GOSAT spectral resolution and subsequently mimics
the proposed low-spectral-resolution spectra by means of a Gaussian convolution. While
the spectrally degraded SWIR-1 retrievals also fit H2O and XCH4, they do not take particle
scattering into account (Rayleigh scattering is incorporated). As such, the low-resolution
SWIR-1 retrievals are basically transmittance computations along the geometric lightpath,
which are hereafter denominated non-scattering retrievals. Sensitivity studies suggest that
coarse-resolution SWIR-1 retrievals of atmospheric scattering parameters deteriorate XCO2

retrieval performance (with regard to the non-scattering retrieval) and that they exhibit
low information content for aerosols. In the SWIR-2, XCO2 was retrieved simultaneously

Coarse spectral resolution
sensor

native GOSAT

SWIR-1 SWIR-2
0.7741 - 0.7560

1.559 - 1.593
Spectral Win-
dows Used / nm

1.595 - 1.628 1.593 - 1.621
1.630- 1.672 1.629 - 1.654

1.982 - 2.038
2.040 - 2.092 2.042 - 2.081

FWHM / cm−1 0.75 . . . 5.1 . . . 8.0 0.75 . . . 3.1 . . . 7.0 0.24
FWHM / nm 0.20 . . . 1.37 . . . 2.15 0.31 . . . 1.29 . . . 2.90 0.1
approx. Resolving
Power

8,100. . . 1,200. . . 760 6,500. . . 1,600. . . 700 > 20,000

Table 4.1: GOSAT retrieval windows at native and coarse spectral resolution. For the
different retrieval configurations, the spectral resolution that was identified for subsequent
analyses is given in bold font (see section 4.1.2). Table adopted from Wilzewski et al.
(2020).

with XH2O. Furthermore, by applying the standard Phillipps-Tikhonov regularization of
RemoTeC (e.g. Butz et al. (2012) and see chapter 3.1), three standard, effective particle
parameters were retrieved from the SWIR-2. A regularization strength was identified which
yielded an average of 0.38 degrees of freedom (DFS) for aerosols (DFS '1.5 are usually
observed in native GOSAT retrievals). In spite of this low value for aerosol DFS, the
performance of these “scattering” retrievals was significantly enhanced in comparison to
the non-scattering fits. As the GOSAT spectra are convolved to lower spectral resolutions,
the average degrees of freedom for particles decreases as well (e.g. from 0.45 at a resolving
power of 6,500 to 0.32 at a resolving power of 700). While altering the DFS available for
the effective aerosol fit may impact the convergence rate of the retrieval algorithm, more
than 75 % of all retrievals converge at any given FWHM that was considered in this study.
More details about the choice of suitable particle scattering regularization parameters is
provided in the following section (ch. 4.1.2). Note, that although the SWIR-1 and SWIR-2
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Figure 4.3: The scaling factor for the strong CO2 band near 2.01 µm was derived from
a set of aerosol and cloud free GOSAT spectra. The figure shows how the ratio of CO2

derived from the two bands (at native spectral resolution) varies over the course of 2013.
The mean (∆) and standard deviation (σ) are noted on the lower left.

retrievals use separate sub-windows to fit each CO2 band, only one XCO2 value is retrieved
from each spectral range by coupling XCO2 between the sub-windows.

Table 4.1 lists and Fig. 4.2 shows the definitions of the spectral retrieval windows. These
spectral boundaries were used throughout this work when convolving spectra to various
values of FWHM. Both coarse-spectral-resolution SWIR retrieval configurations include
two CO2 absorption bands to maximize CO2 information content at low spectral resolution,
while native GOSAT retrievals only utilize one of the CO2 bands in each SWIR spectral
range to save computational costs and because the extra bands would introduce largely
redundant information. Yet, the boundaries of the selected spectral windows may need to
be refined in the future, when the sensor design is more advanced in terms of a noise model,
etc.. The retrieval windows for coarse resolution spectra encompass optically (almost)
transparent spectral ranges, which serve to characterize the surface albedo. Retrieval
performance was observed to profit significantly from spectral windows that did not “cut
off” parts of CO2 absorption bands, in order to preserve as much spectral information
about CO2 absorption as possible (not shown here).
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FWHM native 0.3 0.4 0.5 0.6 0.7 0.8 1.2 1.3 1.7 2.1 2.5 3.0
/ nm
scaling 0.9814 0.9843 0.9864 0.9867 0.9863 0.9859 0.9856 0.9837 0.9834 0.9838 0.9847 0.9867 0.9859
factor

Table 4.2: Scaling factors for the strong CO2 band cross sections (HITRAN08) at different
spectral resolutions derived with the upper-edge method (Butz et al., 2013).

As discussed in chapter 3.1.1, the dry airmass for each sounding was determined from
the average surface pressure of a meteorological reanalysis (ERA-Interim) and a digital
elevation model (SRTM). Retrieval errors that originate from erroneous satellite pointing
(which in turn incurs errors in the airmass calculation) are one element of the total error
declared for the TCCON validation sites (section 4.1.2).

CO2 absorption cross sections from the HITRAN08 spectroscopic database (Rothman
et al., 2009) are known to introduce small offsets in XCO2 retrievals when the SWIR-1
and SWIR-2 bands are used separately. Butz et al. (2013) found that XCO2 retrievals
from the 2.06 µm and 2.01 µm absorption bands produced inconsistent results, which
could be corrected by scaling the cross sections of the 2.01 µm band. Here, their study is
reiterated and extended to extend it to the longer measurement period employed here and
to derive the necessary scaling parameter (which generally may depend on the resolving
power of the convolved spectra). Butz et al. (2013) proposed the “upper-edge” method, in
which ocean-glint scenes free of aerosols and clouds are used for non-scattering retrievals
in the 2.01 µm and the 2.06 µm bands separately. The mean ratio of the retrieved XCO2

distributions can be interpreted as the scaling factor, which equals 0.981± 0.002 at native
GOSAT spectral resolution (i.e. the 2.01 µm cross sections require scaling by 0.981). Fig.
4.3 illustrates the derivation of the scaling factor from the upper-edge ensemble for the
year 2013, comprising 22,000 GOSAT glint soundings. Scaling factors were derived on a
sub-set of available GOSAT spectra to save computational resources. It appears that the
XCO2 offset and standard deviation found here generally agree with the results of Butz
et al. (2013) who estimated the scaling factor to be 0.978 ± 0.007. Fig. 4.3 hints at a
slight seasonality in the XCO2 offset between the two SWIR-2 bands, which will not be
investigated further in this work. Butz et al. (2013) found no systematic temporal patterns
over a course of three years in their analysis of relative differences between individual CO2

bands, but they discuss possible variability induced by the seasonally changing glint spot
observation pattern of GOSAT. This study follows the approach of Butz et al. (2013)
and assumes that temporal variability plays no role in the correction of HITRAN08 cross-
sections the strong CO2 band. Correspondingly, an appropriate scaling factor is calculated
at every spectral degradation selected in this study to reveal the impact of the convolution
procedure on the coarse-resolution spectra. These factors were found to vary on the sub-
permil level from the correction factor at native GOSAT spectral resolution. A complete
list of scaling factors is given in Table 4.2.
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4.1.2 Validation with the TCCON Network

As explained in section 4.1.1, XCO2 retrievals were operated on a global set of cloud-free
GOSAT measurements for both, the native as well as the coarse-spectral-resolution SWIR
configurations. The SWIR-1 and SWIR-2 configurations were carried out at a range of
values of the FWHM of the Gaussian SRF which is used to degrade the native GOSAT
spectra by means of convolution. Additionally, both retrieval configurations were analyzed
in terms of convergence rate and the effects of adjusting effective aerosol parameters with
variable regularization set-ups of the Philips Tikhonov scheme of RemoTeC. A state-of-the-
art full-physics reference retrieval was conducted on the same data set at native GOSAT
resolution using the typical three-band configuration (from NIR to SWIR). The SWIR-1
and SWIR-2 retrieval runs at coarse spectral resolutions serve as test cases for a possible
future spectrometer with single-band coverage and low resolving power. Retrieved XCO2

values are evaluated through comparisons to measurements of the ground-based TCCON
network (Kiel et al., 2019, Messerschmidt et al., 2011, Wunch et al., 2011a,b). A GOSAT
sounding is considered colocated with a TCCON station, if the satellite sounding occurred
within a 5° radius with respect to latitude/longitude of the respective ground station. In
such a case, the GOSAT XCO2 retrieval is validated against the average TCCON XCO2

recording within ± 2 hours of the GOSAT sounding time.

XCO2 retrieval precision is usually measured as the standard deviation of the differ-
ences (“scatter”) between TCCON and GOSAT. Figure 4.4 illustrates the parameter space
spanned by the constraining metrics scatter, convergence, aerosol DFS for both the SWIR-
1 and SWIR-2 spectral ranges for various resolving powers (color code). Interestingly, the
two SWIR windows display very different behaviors when the strength of the regularization
is increased (i.e. the value of DFS for aerosol is decreased). This is a scenario, when the
retrieval is similar to a non-scattering retrieval, essentially setting the aerosol parameters
to values that are very close to the aerosol prior. In the SWIR-1, lower DFS for the aerosol
retrieval generally translates into improved retrieval performance with regard to TCCON.
This is an indication that the loss of spectral resolution has a severe impact on the avail-
ability of aerosol information in the spectra, which makes a non-scattering retrieval the
most obvious choice for this spectral range. The non-scattering retrieval has a performance
with respect to TCCON that is very similar to the highly regularized aerosol retrieval, but
due to its simple state vector the time needed for the retrieval is much shorter. Conversely,
the SWIR-2 XCO2 retrieval can be improved when some aerosol information is retrieved.
The right-hand side panel of Fig. 4.4 shows that at intermediate regularization strengths,
i.e. in the range between 0.3 and 1.0 degrees of freedom for the three aerosol parame-
ters, XCO2 retrieval scatter around TCCON drops by a few tenths of ppm. This pattern
is especially pronounced at high resolving powers, which shows that spectral resolutions
closer to the native spectral resolution of GOSAT are more sensitive to aerosol scatter-
ing properties in the SWIR-2. This trend is only reversed at very low resolving powers,
when the aerosol information finally seems to vanish from the coarsely resolved spectra.
A common feature of the SWIR spectral ranges is that the percentage of spectra that can
be analyzed successfully is decreased when more DFS are allowed for the aerosol retrieval.
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Figure 4.4: Analysis of retrieval sensitivity as a function of scatter around TCCON, aerosol
degrees of freedom, resolving power (color coded) and data yield (i.e. convergence rate;
proportional to symbol size). In the SWIR-1 (left), there is little sensitivity for scattering
parameters with increased data yield and decreased XCO2 scatter for low DFS aerosol. In
the SWIR-2 (right), an effective aerosol fit with low DFS aerosol helps to decrease XCO2

scatter with only moderate losses in data yield, especially for high resolving powers.

This observation can be expected from the above considerations: when little information
about aerosol scattering is available in the measurement, a retrieval of particle scattering
parameters will be increasingly difficult, because the inverse problem is strongly ill-posed.
In the following, the non-scattering SWIR-1 retrieval and the SWIR-2 retrieval with av-
erage DFS for aerosol at 0.38 are selected for all further analyses. Figure 4.5 illustrates
that lower resolving powers entail greater overall scatter for these retrievals, while there
exists some margin for the selection of spectral resolution in the SWIR-1 band. The fig-
ure also implies that the scatter around TCCON stabilizes temporarily at a “plateau” in
resolving power space located right beyond the spectral resolution needed to discriminate
between neighboring CO2 absorption lines in the SWIR-1 (the critical resolving powers are
∼3,300 in SWIR-1 and ∼2,700 in SWIR-2; see dotted vertical lines in Fig. 4.5). As the
convolution operation combines individual spectral lines into a wider spectral shape, the
non-scattering SWIR-1 retrieval maintains a rather stable scatter around TCCON for an-
other 1,000 resolving powers. SWIR-2 retrievals exhibit gradually enhanced scatter around
TCCON (without a “plateau” pattern) as the resolving power is decreased (bold red line
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Figure 4.5: XCO2 retrieval standard deviation for SWIR-1 (left) and SWIR-2 (right) re-
trievals colocated with TCCON measurements shown as a function of resolving power. The
faint red line illustrates the standard deviation for a non-scattering SWIR-2 retrieval. Dot-
ted lines indicate the resolving powers at which individual spectral lines become visually
inseparable in the degraded spectra. The scatter of the native GOSAT retrieval around
TCCON is shown as a black horizontal line. The × signifies the resolving power examined
in the rest of this chapter. Figure adopted from Wilzewski et al. (2020).

in Fig. 4.5). In a sensitivity study without the effective aerosol retrieval in the SWIR-2
spectral range (i.e. employing the same non-scattering set-up in the SWIR-2 as in the
SWIR-1), SWIR-2 retrieval scatter with respect to TCCON was significantly amplified
(light red curve in Fig. 4.5). This points to advantageous retrieval performance when the
effective aerosol retrieval is turned on, although DFS for the particle retrievals is low. The
present investigation is in broad agreement with the works by Galli et al. (2014) and Wu
et al. (2020) who also observed enhanced retrieval scatter as spectral resolution became de-
graded to lower levels, although the current analysis exceeds the spectral resolution range
studied by these previous research designs. In this respect, this thesis actually examines
the usage of a hyperspectral imager, whereas the above mentioned studies are still in the
regime of conventional spectrometers.

The scatter with respect to TCCON is the key variable to constrain the spectral res-
olution of the hypothetical satellite sensor, because the spectrometer will be designed to
resolve local scale XCO2 augmentations. Thus, resolving powers above the ones which
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Figure 4.6: XCO2 retrievals from GOSAT correlated with colocated TCCON measure-
ments. Left to right: native GOSAT, SWIR-1 and SWIR-2 retrievals. Resolving powers
in the SWIR-1 and SWIR-2 are 1,200 and 1,600, respectively. Grey lines: 1:1 correlation.
Linear fits to the data sets are shown as colored lines. The scatter around TCCON mea-
sures 2.43 ppm (native, consider e.g. Guerlet et al. (2013b)), 3.00 ppm (SWIR-1) and
3.28 ppm (SWIR-2). Figure adopted from Wilzewski et al. (2020).

introduce a sharp increase in XCO2 scatter in Fig. 4.5 appear reasonable choices. Since a
256 spectral pixel sensor with a spectral sampling ratio of three is envisaged for the future
spectrometer, this technical constraint narrows down the possible spectral resolution of
the sensor. Hence, target resolving powers of 1,200 and 1,600 in SWIR-1 and SWIR-2
(denoted with a × in Fig. 4.5) can be identified, which will image the entire spectrum onto
the detector and allow for only moderate increases in XCO2 retrieval scatter. Figure 4.6
illustrates the correlation of the SWIR-1, SWIR-2 and native GOSAT XCO2 retrievals with
respect to colocated TCCON measurements for the defined target spectral resolutions. The
standard deviations around the ground truth, TCCON, reach 2.43 ppm (native), 3.00 ppm
(SWIR-1) and 3.28 ppm (SWIR-2). The three retrieval configurations produce distinct
mean differences (“biases”) with regard to TCCON (no bias correction was applied to
the retrievals). However, as the goal of these measurements is to record concentration
gradients to enable emission estimates on local scales, the presence of an absolute bias is
not critical. Biases of satellite derived XCO2 products are commonly observed and it is
common practice to correct for such offsets by scaling the retrieval to match the ground
benchmark measurements.

Figure 4.7 examines the biases per TCCON ground station for the SWIR-1 and SWIR-
2 retrievals at resolving powers of 1,200 and 1,600, respectively. Such station-by-station
biases are often analyzed in terms of their collective standard deviation (“bias variability”),
which is then interpreted as a measure for regional systematic errors. These regional-scale
spurious gradients hamper the assessment of sources and sinks on a regional scale. The pro-
posed retrieval configurations exhibit only minor enhancements in TCCON bias variability
– from 0.94 ppm for native GOSAT increased to 0.99 ppm and 0.97 ppm in SWIR-1 and
SWIR-2 retrievals, respectively. XCO2 retrieval standard deviations by TCCON station
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Figure 4.7: Illustration of retrieval performances at individual TCCON sites, ordered north
to south. The marker size is proportional to the number of colocated GOSAT spectra at
each site. Left: Site-by-site average differences between TCCON and the native, SWIR-
1 and SWIR-2 retrievals (black, blue and red, respectively). The standard deviation of
average differences among the stations, σ, totals 0.94 ppm (native), 0.99 ppm (SWIR-1)
and 0.97 ppm (SWIR-2). Right: Scatter about TCCON per station for the native, SWIR-1,
and SWIR-2 configurations. Vertical lines indicate the mean standard deviations (native:
2.43 ppm, SWIR-1: 3.00 ppm, SWIR-2: 3.28 ppm). Figure adopted from Wilzewski et al.
(2020).

are also shown in Figure 4.7. A detailed overview of the retrieval performance at individual
TCCON sites is provided in Table B.2 in appendix B.

Since the aim of the proposed retrievals is to resolve gradients on a local scale, regional-
scale variability is not a top priority here. In fact, retrieval error correlation induced by
parameters which fluctuate on the local scale are more instructive.

To determine spurious correlations of the retrieved XCO2 on geophysical parameters
that fluctuate on the local scale, several parameter dependencies of GOSAT-TCCON dif-
ferences were analyzed, namely surface albedo, scattering optical thickness (SOT) and the
three effective aerosol parameters zpar, Npar, and αpar defining particle layer height, par-
ticle number density and particle size. Surface albedo values refer to albedo at 0.774 µm
for native GOSAT, albedo at 1.600 µm for the SWIR-1 configuration, and SWIR-2 albedo
at 2.099 µm. Particle scattering parameters are adopted from the native GOSAT re-
trievals, because the SWIR-1 retrievals do not adjust the particle parameters and because
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the SWIR-2 retrievals display little DFS. GOSAT-TCCON biases in the SWIR-2 retrievals
appear not to correlate significantly with surface albedo, while small dependencies of the bi-
ases (R> 0.1) with respect to albedo are observed in the native and SWIR-1 configurations.
As the SWIR-1 retrieval does not account for aerosol scattering, it seems reasonable that
GOSAT-TCCON offsets correlate with surface albedo, since surface reflectance strongly
influences the effect of scattering with regard to the direct lightpath. However, SWIR-1
departures from TCCON are only weakly dependent on SOT, aerosol size and aerosol layer
height (R< 0.1), while minor error correlations are found with respect to aerosol number
density near TCCON stations (R=0.11). SWIR-2 retrieval errors appear to correlate es-
pecially with the particle layer height (R< −0.3), although SWIR-2 retrievals adjust this
parameter in the inversion process. Yet, the high regularization of the SWIR-2 retrieval
strongly limits the aerosol parameter space in which the algorithm converges to a narrow
range near the scattering parameter a priori (αpar=3.5, τ=0.1, zpar=3000 m – a stan-
dard choice for RemoTeC GOSAT retrievals). As a consequence, remaining correlations
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Figure 4.8: Correlation of TCCON-GOSAT differences for some geophysical parameters
for native (left), SWIR-1 (center) and SWIR-2 (right) retrievals. Pearson’s correlation
coefficient R is given in the lower right corner of every subplot. Linear fits shown as
solid lines. Relative occurrence of data points is visualized through the color-map. Figure
adopted from Wilzewski et al. (2020).
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with aerosol scattering parameters in the SWIR-2 retrieval are not particularly large. An
examination of the impact of the particle scattering parameters on the SWIR-2 XCO2

retrieval performance indicated that only a moderate sensitivity to the aerosol priors ex-
ists, although there is a de-facto sensitivity which is actually quite large. Altering aerosol
optical depth by a factor of two or one half, for example, implies only minor changes in
the retrieval standard deviation with respect to TCCON (+0.22 ppm and −0.08 ppm, re-
spectively). Varying the aerosol layer height priors to zpar=5000 m or zpar=1000 m raised
the scatter around TCCON by +0.43 ppm and +0.04 ppm, respectively. Likewise, XCO2

standard deviation around TCCON varies by −0.05 ppm and +0.22 ppm if the prior αpar
is adjusted to 5.0 and 3.0, respectively. SWIR-2 retrieval errors around TCCON stations
do not depend strongly on SOT, aerosol size parameter and number density. Small cor-
relations with all aerosol parameters are consistently found for native GOSAT retrievals.
Additional analyses (not shown here) found that SWIR-1 (and not SWIR-2) retrievals also
exhibit correlations with |R| > 0.1 with other geophysical variables such as the water vapor
column (R=0.21) and the slant airmass of the geometric lightpath (R=-0.17).

Figure 4.9: Global XCO2 retrievals of the SWIR-1 (left) and SWIR-2 (right) configurations
versus the equivalent native GOSAT retrievals. Linear fits shown as colored lines, 1:1
correlation displayed as grey line. Standard deviations of 2.85 ppm and to 2.69 ppm are
found for SWIR-1 and SWIR-2, respectively. Correlation coefficients shown in the lower
right corners. Relative occurrence of data points is visualized through the color-maps.
Figure adopted from Wilzewski et al. (2020).

4.1.3 Global Evaluation with Native GOSAT Retrievals

Native GOSAT retrievals offer an opportunity to evaluate the proposed coarse-resolution
configurations at resolving powers of 1,200 and 1,600 in the SWIR-1 and SWIR-2, respec-
tively, on the global scale. Here, the biases determined in the previous TCCON analysis
were subtracted from all XCO2 retrivals (i.e -3.6 ppm, 2.49 ppm and 1.04 ppm for the
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Figure 4.10: Bias and scatter of SWIR-1 (top row) and SWIR-2 (bottom row) with respect
to global native GOSAT XCO2 over land (resolved in 16° bins). Mean bias and scatter
indicated by bold circles; seasonal fluctuations displayed for boreal fall (SON, stars), winter
(DJF, diamonds), spring (MAM, squares) and summer (JJA, plus). The relative number
of GOSAT observations over land in the corresponding latitudinal bin is symbolized by
marker size. Figure adopted from Wilzewski et al. (2020).

native, SWIR-1 and SWIR-2 configurations, respectively).

The correlations of the SWIR-1 and SWIR-2 retrievals with the native GOSAT config-
uration are illustrated in Fig. 4.9. Standard deviations of the differences with respect to
native GOSAT (“scatter”) amount to 2.85 ppm and 2.69 ppm for SWIR-1 and SWIR-2,
respectively, and correlation coefficients for the two SWIR retrievals are 0.90. Despite the
subtraction of the overall TCCON biases from the coarse-resolution runs, non-vanishing
mean differences (“bias”) remain in the global analysis with native GOSAT reference re-
trievals. The present analysis contains many more spectra than the TCCON study of the
previous chapter (even glint spectra) and the observed biases are presumably a result of
the uneven distribution of TCCON stations around the globe. Figure 4.10 shows bias and
scatter of the SWIR retrievals for the four seasons and resolved in geographic latitude. The
upper panels of Figure 4.10 indicate that SWIR-1 bias and scatter are both increased in
the northern hemisphere. Across all seasons, SWIR-1 bias and scatter reach top average
values at 1.93 ppm and 3.34 ppm, respectively, between 20 and 30° N, i.e. at the location
of the large deserts of Earth. Deserts are typically bright surfaces and their dust aerosols
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may influence the SWIR-1 retrievals, which neglect scattering by particles. A meridional
gradient for scatter as well as an unclear pattern for bias are observed in the lower panels
of Fig. 4.10 for the SWIR-2 configuration. Mean SWIR-2 scatter ranges between 3.20 ppm
at 65° N and 2.03 ppm at 15° S. The bias appears to imply that SWIR-2 retrievals under-
estimate the native GOSAT XCO2 near the desert latitudes (20° N) and overestimate the
CO2 column in higher latitudes (60° N). No clear correlation with the seasons is detectable,
while seasonal variations generally exhibit the annual average patterns. Maps of the dif-
ferences between the native GOSAT configuration and the two SWIR set-ups are shown
in Figure 4.11, where these differences are averaged on 1×1° pixels for the entire record of
GOSAT observations between 2009 and 2016. The world maps depict the general obser-
vations of the zonal means in Fig. 4.10. throughout the high albedo regions of the Sahara,
central Asia, and tentatively in central Australia, SWIR-1 retrievals exaggerate XCO2 in
comparison to the native GOSAT retrievals. SWIR-2 produces higher CO2 columns than
native GOSAT in the high latitudes and in Amazonia, whereas mixed patters are found
over the deserts.

Fig. 4.12 analyzes correlations of the retrieval differences with selected geophysical pa-
rameters in analogy to the examination carried out for TCCON (section 4.1.2, Fig. 4.8).
The most relevant correlations are observed for those geophysical parameters which govern
the scattering regime, i.e. number density of aerosols (Npar), center height of the particle
layer (zpar), the power-law parameter for the aerosol size distribution (αpar), surface albedo
and SOT. Correlations to aerosol scattering parameters are shown for the respective pa-
rameters derived from native GOSAT retrievals. In general, both SWIR retrievals exhibit
more significant parameter correlations than what has been observed in the evaluation
with colocated TCCON spectra. Correlation coefficients, R, on the order of 0.2-0.3 are
typical, while the peak correlation coefficient of the SWIR-2 configuration is found at 0.5
for the XCO2 bias as a function of the number density of aerosol, Npar. This relatively
large correlation occurs although the SWIR-2 retrieval adjusts particle parameters with
some freedom (DFS=0.38 on average). Performing a non-scattering SWIR-2 retrieval (not
shown here) yielded substantially inferior retrieval performance (compare also Fig. 4.5) due
to correlations with, for example, the slant airmass and the water vapor column.

To put the retrieved RemoTeC aerosol parameters into context, retrieved scattering
optical thickness from GOSAT measurements were compared with colocated aerosol robotic
network (AERONET) aerosol optical depth (AOD) Level 2.0 data (Giles et al., 2019). Only
converged full physics retrievals of GOSAT soundings that were obtained within one hour of
an AERONET measurement and within a radius of 0.1° around the respective AERONET
station were considered. Globally, this resulted in 8,834 matched measurements between
2009 and 2016. Since AERONET does not provide aerosol optical depth at the O2 A-
band, where it is retrieved in RemoTeC/GOSAT, the AOD measured at 500 nm was
extrapolated to 760 nm with the Angstrom coefficient for the spectral range 500-870 nm
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Figure 4.11: World map of native GOSAT-SWIR-1 (top) and SWIR-2 (bottom) XCO2 dif-
ferences averaged on 1×1° pixels and over eight years of GOSAT measurements. The global
average biases over land of 0.45 ppm (SWIR-1) and 0.03 ppm (SWIR-2) were removed in
the graphs. Figures adopted from Wilzewski et al. (2020).
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Figure 4.12: SWIR-1 (left) and SWIR-2 (right) retrieval differences with respect to native
GOSAT for selected geophysical parameters. R denotes Pearson’s correlation coefficient
and is listed in each subplot corner. The black line indicates a linear fit to the data.
Relative occurrence of data points is visualized through the color-map. Figure adopted
from Wilzewski et al. (2020).

that is part of the AERONET L2.0 data set1. The agreement between AERONET and
RemoTeC in terms of scattering optical depth (SOT) is small. RemoTeC, in its full-physics
configuration, seems to underestimate aerosol optical depth systematically, which may be

1The Angstrom coefficient is the parameter, α, of a power law to transform aerosol optical depth (AOD)
from wavelength λ1 to wavelength λ2:

AODλ2
= AODλ1

·
(
λ2
λ1

)α
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Figure 4.13: Comparison of scattering optical thickness from native GOSAT/RemoTeC
and the AERONET reference network. 8,834 AERONET measurements between 2009
and 2016 were taken within ±1 h and a radius of 0.1° of the GOSAT sounding.

an effect of the simplified aerosol forward model of the algorithm (see ch. 3.1). Figure 4.13
illustrates that the range of SOT values retrieved from GOSAT with RemoTeC is far less
dynamic than the AERONET reference measurements.

Although previous analyses do not strictly favor one of the SWIR bands, Fig. 4.14
illustrates that SNR considerations tend to favor the SWIR-2 set-up. The noise error
shown in Fig. 4.14 corresponds to the GOSAT radiance noise propagated through the
RemoTeC algorithm with Gaussian error propagation. Likely because of the presence
of stronger absorption lines in the SWIR-2, the SWIR-1 noise errors were found to be
greater than the SWIR-2 errors by a factor of 2.9 on average. Strandgren et al. (2020)
generally confirmed this tendency in a simulation study using a realistic noise model for
the proposed instrument and they recommended the SWIR-2 spectral range in terms of
acquiring sufficient SNR.

In summary, the above study has shown that the resolving power of the suggested
CO2 monitoring sensor should not be selected below a resolving power of 1,000 where
retrieval scatter around TCCON worsened substantially. Especially the SWIR-2 spectral
range showed promising performance at a spectral resolution of 1.3 nm (resolving power
of 1,600) with moderate scatter around TCCON and potential for low noise errors. While
this spectral range and can be recommended at the specified resolving power, the impact
of aerosol scattering should be studied thoroughly in a follow-up analysis, which would
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Figure 4.14: SWIR-1 (y-axis) and SWIR-2 (x-axis) XCO2 noise errors. The 1:1 correlation
is depicted as a grey line. Relative occurrence of data points is visualized through the
color-map. Figure adopted from Wilzewski et al. (2020).

address, for instance, typical aerosol loads of power plant exhaust air. The importance
of aerosol contamination for local plume investigations must be addressed, since XCO2

retrievals at the above mentioned spectral resolving power were shown to have limited
sensitivity to changes in the atmospheric lightpath.
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4.2 Power Plant CO2 Emission Rates Retrieved from

Air-Borne AVIRIS-NG Measurements

In this chapter AVIRIS-NG overflights of power plants are investigated to study CO2 mon-
itoring capabilities with this sensor in combination with the RemoTeC retrieval algorithm.
The chapter is structured as follows. Firstly, an overview of previous trace gas retrieval
studies based on AVIRIS-NG measurements is given (section 4.2.1). Secondly, an ensemble
of test spectra is selected in section 4.2.2 to test various retrieval configurations (section
4.2.3). The most favorable retrieval set-up is utilized in section 4.2.4 to derive the CO2

fields near two power plants. Posterior bias correction methods are discussed in section
4.2.5 and the flux inversion is finally conducted in section 4.2.6.

4.2.1 AVIRIS-NG Retrieval Approach

The AVIRIS-NG sensor, introduced in chapter 3.3, has been used extensively to detect
and quantify methane emissions from localized sources through a number of retrieval ap-
proaches. These approaches, which could generally be applied to CO2 as well, differ primar-
ily with regard to their representation of radiative transfer physics and their computational
speed.

One of the most basic trace gas retrieval approaches for AVIRIS-NG, the continuum
interpolated band ratio (CIBR) method, was described by Bruegge et al. (1990) and Thomp-
son et al. (2015). The CIBR method associates trace gas concentration with the relative
depth of an absorption band – a fast but low-accuracy retrieval.

Another trace gas retrieval method, the residual radiance method, has been presented
by Roberts et al. (2010) and Zhang et al. (2017). They approximate the surface albedo and
carry out radiative transfer calculations with background trace gas concentrations (taken
from a standard atmosphere or appropriate field measurements). By comparing the model
to the measurement, information about trace gas enhancements can be extracted from the
remaining spectral residuals in a spectral range where the respective trace gas absorption
overwhelms other species. While also being quite fast, this method suffers from errors
introduced, for instance, by assuming a constant spectral albedo.

Matched filter algorithms are quite advanced, yet computationally inexpensive retrieval
methods that were developed by Funk et al. (2001) and subsequently improved, for exam-
ple, by Manolakis et al. (2006), Manolakis et al. (2009) and Foote et al. (2020). The general
idea of the matched filter method is to compare measured spectra with modeled spectra
that are constructed through a multiplication of the trace gas concentration with a spectral
target signature. This target signature can be the methane or carbon dioxide absorption
spectrum or the respective Jacobian vector, which has to be calculated only once for each
flight altitude and viewing geometry. Matched filter techniques have proved to be com-
putationally efficient and sensitive to small emission sources and the method is subject
to on-going developments that address e.g. low albedo scenes (Ayasse et al., 2019, Foote
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et al., 2020). However, matched filter methods do not account for atmospheric parameters
that are spatially variable within a single observation scene, for instance concentrations of
interfering absorbing species (e.g. H2O).

To this end, physics based retrieval algorithms have been developed for AVIRIS-NG,
namely the Iterative Maximum A Posteriori Differential Optical Absorption Spectroscopy
(IMAP-DOAS) code (Frankenberg et al., 2005, Thorpe et al., 2014) and the Weighting
Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS) algorithm
(Buchwitz et al., 2000, Krings et al., 2011). The original idea of the DOAS technique (Platt
and Stutz, 2008) is to remove the broad-band spectral background from a measurement of
weak absorption features so that only the spectral signals caused by the absorbing species
remain and the key assumption of DOAS is that the absorption optical depth is small
(τ < 0.01). This can be achieved by fitting and subtracting a low-order polynomial to and
from the spectrum in order to eliminate the background (comprising the solar spectrum,
scattering effects, surface reflectance signals, etc.). A differential spectrum remains that can
be evaluated for trace gas concentrations when the absorption cross-sections and the SRF
of the sensor are known. The IMAP-DOAS algorithm is a non-scattering radiative transfer
scheme that adjusts concentrations of strongly absorbing trace gases (CH4, H2O, CO2,
...) in several atmospheric retrieval layers, thereby taking the pressure and temperature
dependence of spectral lines into account. The IMAP-DOAS method has been used by
Thorpe et al. (2017) to quantify CO2 emissions from a power plant with AVIRIS-NG
imagery. The WFM-DOAS algorithm similarly employs a radiative transfer model that
updates the trace gas concentrations depending on the respective height-resolved Jacobians
(i.e. weighting functions).

A common finding of most of the AVIRIS-NG trace gas retrieval approaches described
above, for example Borchardt et al. (2021), is the challenge of separating molecular absorp-
tion features from surface albedo features. Ayasse et al. (2018) have carried out simulations
of methane retrievals that show that there are thresholds in surface reflectance below which
methane retrievals essentially become dominated by noise. It has been demonstrated by
Dennison et al. (2013) and Thorpe et al. (2017) that similar challenges arise in CO2 re-
trievals.

This chapter is about the application of the RemoTeC algorithm (chapter 3.1) to
AVIRIS-NG measurements with the goal to retrieve carbon dioxide point source emis-
sion rates. Although a full-physics based retrieval is used here for AVIRIS-NG, the results
of chapter 4.1 have made it clear that the coarse spectral resolution of AVIRIS-NG will
essentially remove information about aerosol scattering from the spectra. Consequently,
RemoTeC will be operated in its non-scattering configuration, assuming the geometric
lightpath. To constrain an optimal retrieval configuration with regard to spectral window
and state vector selection, different retrieval configurations are applied to an ensemble of
background spectra in the following sections.
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4.2.2 An Ensemble of Test Spectra

The large spectral range of AVIRIS-NG offers the possibility to retrieve CO2 concentra-
tions from both the SWIR-1 and the SWIR-2 spectral range. In order to determine which
spectral range(s) support stable and accurate retrieval performance, retrievals were carried
out with a test dataset to provide benchmark background spectra and also to save com-
putational resources. Here, an ensemble of test spectra was selected from the AVIRIS-NG
flight line ang20190621t200919. These measurements were obtained under clear-sky con-
ditions near the APS Four Corners power plant in the desert of the Colorado Plateau in
New Mexico, USA. This facility operates on coal from a nearby mine and had an estimated
emission of 7.71 MtCO2y−1 in 2018 (EPA, 2020). Only spectra obtained upwind of the
facility were considered here so that they do not contain the CO2 exhaust plume from the
stack. Essentially, the underlying idea is to collect spectra which all have identical trace
gas column concentrations. In total the ensemble is comprised of 1, 369 spectra collected

Figure 4.15: Spectra for the test ensemble were selected from eight individual areas. a)
RGB-image of the selected flight line with colored rectangles indicating the origin of the test
spectra. b) Overview of the ensemble in the spectral range 1.4− 2.5 µm; colors match the
rectangles in a). Green and pink spectra have been identified as observations of pavement
and coal, respectively, while the other colors represent unknown soil types.

over an area of ∼ 1 km2 and should allow to study most challenges that may arise in the
retrieval, because they cover a range of various surface types and different radiance levels.
Elevation differences of up to 20 m exist between some scenes within the test-ensemble, but
geocoding errors are expected to be on the sub-pixel scale (Chapman et al., 2019), where
one ground pixel has ∼ 2.7 × 2.7 m2. Thus, CO2 retrieval differences between ensemble
spectra are not expected to be driven by uncertainty in ground elevation. The ensemble
was selected from eight individual, rectangular areas (as indicated in Fig. 4.15) with a
mean and median spectral radiance of 0.7 µWsr−1cm−2nm−1 at 2, 100 nm. Surface materi-
als of two rectangular areas (pavement of a parking lot and a coal deposit) were determined
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from visual inspection of Google Earth imagery. The darkest test spectra with radiances
below 0.2 µWsr−1cm−2nm−1 at 2, 100 nm were chosen from the coal deposit, while the
brightest scenes come from what is probably barren desert soil. Five other unknown soil
kinds are represented in the ensemble and some observations were explicitly excluded, for
instance, water surfaces or pixels dominated by shadow as well as spectra measured above
metallic roofing materials. The latter turned out to be so bright, possibly due to glint,
that the sensor reached saturation conditions. Spectra above dark ground pixels notori-
ously present some of the most challenging scenes in trace gas remote sensing, i.e. spectra
recorded above water surfaces are mostly too dark for meaningful retrievals (e.g. Ayasse
et al., 2018) and pixels containing shadow have non-geometric light paths. The rationale
behind this choice of test spectra is to cover a wide dynamic range of the sensor, which is
representative of the downwind scenes expected on the Colorado Plateau. Fig. 4.15 shows
that the test spectra span a nearly continuous range of at-sensor radiances near the CO2

bands in the short-wave infrared.

4.2.3 Comparison of Retrieval Configurations

In this section, the ensemble of background spectra defined above was treated as a test bed
to conduct carbon dioxide retrieval studies with the RemoTeC algorithm. This approach
allows for a rigorous comparison of different retrieval configurations with regard to their
performance with the test spectra, so that various retrieval set-ups can be compared in
terms of statistical metrics. The retrieval procedures analyzed here explore the obvious
question for the choice of spectral retrieval windows. Specifically, the test configurations
can be categorized into two kinds: CO2 retrievals that solely use one of the two SWIR
spectral ranges (near either 1.6 µm, page 72, or near 2.0 µm, page 75) and retrievals that
use both, the SWIR-1 and the SWIR-2, spectral ranges with the absorber amounts of CO2

(and H2O) either coupled or separated (page 81). While it is clear from first principles of
retrieval theory that more spectral information on a given absorbing species should result
in an improved fit, this chapter aims to test this idea quantitatively. In addition, oxygen
retrievals from the absorption bands near 0.76 and 1.27 µm were examined in an effort
to improve knowledge about the atmospheric light path (page 84). A retrieval will be
considered favorable here when spectral residuals, correlations between state vector entries
and scatter in CO2 (and H2O) concentrations are all low and a high fraction of retrievals
converge. XCO2 and XH2O columns are obtained by dividing the column number densities
of these species by the air number density calculated from prior meteorology.

CO2 retrieved from the SWIR-1

The SWIR-1 spectral range (∼ 1, 540− 1, 640 nm) is dominated by two weak carbon diox-
ide absorption bands and interfering water vapor absorption signals. Hence, all retrieval
configurations tested in the SWIR-1 fitted the total column number densities of these two
species. In addition, a spectral shift parameter and the degree of the polynomial fitted to
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the baseline (to derive the albedo) was adjusted in the fit (2=line fit, 3=parabola fit). The
test set-ups included retrievals with spectral windows that covered just one of the two CO2

bands near 1.6 µm (1, 550 − 1, 597 nm and 1, 585 − 1, 639 nm) and other retrievals that
covered both bands simultaneously (1, 538− 1, 639 nm and 1, 550− 1, 634 nm). Retrievals
were conducted with variable off-band spectral margins and a summary of nine retrieval
tests is illustrated in Fig. 4.16. Three general observations can be deduced from this test.

Firstly, the retrieval convergence rate in the SWIR-1 spectral band is low for most
selections of spectral windows (67 % convergence on average across the nine retrieval tests
shown in Fig. 4.16). Convergence is lowest at below 50 % on average when both CO2

absorption bands are contained in only one spectral window (colums 3-6 in Fig. 4.16).
Fitting the two bands individually or separately in a coupled fit increases the convergence
rate to over 80 %. This finding can partly be explained by large spectral residuals that
were observed for the majority of these fits; see Fig. 4.17. The residual structures were
persistent, even when different spectroscopic databases (i.e. HITRAN08, HITRAN16)
were used. As the magnitude of the residuals is quite large, these features may hint at
instrumental issues between 1, 540 and 1, 570 nm, as well as between 1, 590 and 1, 615 nm.
Spectral residuals could be significantly reduced when the two CO2 absorption bands were
fitted separately with baseline polynomials of degree three (see the set-up in the last column
in Fig. 4.16, last row in Fig. 4.17). In such a set-up, both XCO2 and XH2O are coupled
between the two retrieval windows. By uncoupling either or both of these state vector
entries, convergence of the retrieval was decreased.

Secondly, the choice of the baseline polynomial has a significant impact on the mean
values of XCO2 and XH2O in these tests. For instance, CO2 average values change by
±6 % on average when changing the baseline representation from a linear to a quadratic
fit. Altering the polynomial degree while keeping the state vector and spectral window
unchanged also impacts the convergence rate and also the distribution of retrieved albedo
values. Root mean square differences (RMS=Σpixels((ymeas − ymod)2/Ny)

1/2) between the
measurement and the forward model are likewise affected by changes in the baseline fit.
This observation suggests that surface reflectance, CO2 and H2O absorption features are
not entirely separable in the retrieval.

Thirdly, both water vapor and carbon dioxide columns retrieved from the SWIR-1 have
large standard deviations amounting to 54 % and 6 % of the respective means of XH2O
and XCO2 on average.

In summary, the SWIR-1 cannot be regarded an ideal spectral range for CO2 retrievals
from AVIRIS-NG, as was similarly concluded by Borchardt et al. (2021) (for CH4 retrievals
from the SWIR-1). Thorpe et al. (2017) have also omitted the 1.6 µm range for CO2

retrievals. It may be possible that some of the retrieval issues described above are caused
simply by a combination of the coarse spectral resolution of AVIRIS-NG and the lack of
strong CO2 absorption signals near 1.6 µm that have high contrast above the spectral
continuum. The most favorable retrieval set-up in terms of low spectral residuals and high
convergence rate is the configuration where CO2 and H2O are retrieved from individual
spectral windows each covering one of the two CO2 bands (1, 550− 1, 597 nm and 1, 585−
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Figure 4.16: Tests of retrieval configurations in the 1.6 µm range. Each column represents
a retrieval configuration labeled on the top of the figure (indicating spectral range and
polynomial power of the baseline fit). The last column of the Figure shows a retrieval
configuration, where two spectral windows were combined and CO2 and H2O were coupled
in the fit. The colored squares show images of retrieval variables (the test ensemble contains
1, 369 = 37×37 spectra). White dots represent spectra that did not converge in the fit.
The violin plots show distributions of critical retrieval parameters. From top to bottom:
XCO2, XH2O, albedo (at the longwave limit of the respective spectral window), RMS. Note
that albedo and RMS do not only depend on the retrieval configuration, but foremost on
the radiance in the respective spectral window.
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Figure 4.17: Averaged residuals of all test spectra that converged for various retrieval
configurations in the SWIR-1. Top: Example spectrum from the test ensemble. Narrow
panels: averaged residuals color coded for retrievals where a second order polynomial (red)
or third order polynomial (blue) was used for the baseline fit. Residuals for a coupled
retrieval from two windows shown in the last row.

1, 639 nm). All retrievals reveal relatively high scatter in XCO2 and XH2O.

CO2 retrieved from the SWIR-2

The SWIR-2 spectral range (∼ 1, 960 − 2, 140 nm) contains two CO2 absorption bands.
Water vapor absorption occurs throughout the band, and an opaque water vapor band
limits the SWIR-2 spectral range at ∼ 1, 900 nm. As in the SWIR-1 band, the group of
retrievals tested here all adjust XCO2, XH2O, spectral shift and a baseline polynomial to
the measurements. In comparison to the SWIR-1 performance tests, several aspects of
retrieval performance are enhanced in the SWIR-2 experiments. All AVIRIS-NG SWIR-2
spectra converged in the present retrieval study and retrieval tests in the SWIR-2 spectral
range consistently exhibited significantly lower standard deviations in the retrieved XCO2

and XH2O fields at 2 % and 10 % of the respective means on average. Fig. 4.18 gives an
overview of some retrieval configurations tested with the ensemble of background spectra.

As in the SWIR-1 tests, XCO2, XH2O and albedo are not fully separable in AVIRIS-
NG retrievals in the SWIR-2 spectral range. Changes in the fit of the spectral baseline
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Figure 4.18: Tests of various retrieval configurations in the 2.0 µm range. Figure set-up
as in Fig. 4.16. As in the SWIR-1 tests, XCO2, XH2O and albedo are not fully separable
in AVIRIS-NG retrievals in the SWIR-2 spectral range. The last column represents the
retrieval deemed most favorable due to low standard deviation in the trace gas distributions
and low spectral residuals.

directly impact the shape and mean values of retrieved XCO2 and XH2O distributions.
The interdependence of state vector variables is especially pronounced in retrievals that
consider both CO2 bands in one spectral window. Columns three to six in Fig. 4.18
show that these retrievals lead to large shifts in XH2O distributions. This effect was also
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Figure 4.19: Averaged residuals for various retrieval configurations in the SWIR-2 region.
Top: Example spectrum from the test ensemble. Narrow panels: averaged residuals color
coded for retrievals, where a second order polynomial (red) or third order polynomial (blue)
was used for the baseline fit. Residuals for a coupled retrieval from two windows shown in
the last row.

observed for the retrieval windows 1, 972 − 2, 105 nm and 1, 961 − 2, 105 nm, which are
not displayed here. At the same time average correlation coefficients of XH2O w.r.t albedo
increased to R = 0.50 in the two-band set-ups while R = 0.34 in retrieval configurations
that only covered one of the CO2 bands. These tests suggest that SWIR-2 retrievals profit
from splitting the spectral range into two retrieval windows.

XCO2 retrievals are stable within±1 % of the total column (419 ppm<XCO2 <427 ppm),
but they correlate clearly with the ground albedo of the test ensemble tile (second row in
Fig. 4.18, average correlation coefficient R = 0.68).

Changing the degree of the baseline polynomial also had an effect on the spectral
residuals. The last row in Fig. 4.18 illustrates that using three polynomial coefficients
systematically decreased residuals across the different test cases. Apparently, including
more of the longwave water vapor absorption into the retrieval window (beyond 2, 110 nm
to 2, 137 nm considered here) is a driver of spectral residuals in the SWIR-2, as can also
be observed in Fig. 4.19. These residuals are independent of using the HITRAN08 or
HITRAN16 spectroscopic databases as input. However, short retrieval windows covering
only the longwave SWIR-2 band (e.g. 2, 030 − 2, 105 nm) are not favorable for XCO2 re-
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trievals if not combined with a coupled retrieval window near the strong CO2 band, because
further tests revealed that such single-window configurations shift the XCO2 distribution
retrieved from this spectral window by up to ±4 %. Therefore, reduced spectral residuals
and favorable retrieval performance can be achieved by coupling the 1, 961 − 2, 043 nm
and 2, 030 − 2, 137 nm bands (last row in Fig. 4.19, last column in Fig. 4.18). Note
that the retrieval window only covering the strong CO2 band near 2.0 µm has very similar
overall retrieval performance. However, because large amounts of CO2 absorption signals
are beneficial from a physics point of view, the configuration including the weak band is
considered more favorable.

Concluding, the SWIR-2 spectral range shows promising performance with regard to
XCO2 retrievals with full convergence and low XCO2 scatter, supporting the findings of
Thorpe et al. (2017) who retrieved XCO2 between 1, 904− 2, 099 nm and Borchardt et al.
(2021) who only used the weak SWIR-2 band at 2, 040 − 2, 100 nm. The above analysis
has shown that the specific choice of spectral retrieval windows significantly impacts the
water vapor column retrieval. This observation supports the idea that retrievals from weak
absorption features (H2O beyond 2, 000 nm) intrinsically interfere more with the baseline
fit – they are harder to distinguish from surface reflectance features. As a consequence,
favorable SWIR-2 retrievals use two coupled retrieval windows (1, 961 − 2, 043 nm and
2, 030 − 2, 137 nm) with a quadratic polynomial adjusted to the spectral background to
reduce residuals. To improve the XH2O retrieval, a third retrieval window was introduced
near the strong water vapor absorption band that separates the SWIR-1 and SWIR-2
spectral ranges in the following paragraph. This dedicated water vapor retrieval window
can be used to enhance stable, low-scatter XH2O retrievals by coupling to the SWIR
spectral windows.

Dedicated H2O retrieval window

To better constrain background XH2O concentrations, different retrieval configurations
were tested in the 1.7 − 1.9 µm spectral range – in the wing of a strong water vapor
band where absorption by other atmospheric species can be neglected. Fig. 4.20 gives
an overview of a range of retrieval tests conducted here. As before, the state vector is
comprised of the trace gas column, a spectral shift parameter and a polynomial to adjust
the spectral baseline and the prior water vapor concentration was obtained from ERA5
reanalysis data.

While the retrieved XH2O fields in the SWIR-1,2 spectral ranges had average standard
deviations of 2.48� and 0.19�, respectively, the present XH2O fits suggest that the
background spectra have narrower XH2O distributions (average scatter across the ten tests
is 0.11�). Moreover, the tests indicate that the value of the atmospheric water vapor
background is near 2.28 ± 0.04�, i.e. slightly larger than in the SWIR-2 retrievals (e.g.
1.94 ± 0.15� in the coupled SWIR-2 test). Such enhanced XH2O values were also
observed in test retrievals near 1.3 µm and 1.5 µm (not shown in Fig. 4.20). In light
of the large amount of (strong) water vapor absorption lines available near 1.8 µm and
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Figure 4.20: Tests of various retrieval configurations in the edge of the water vapor band
near 1.8 µm. Figure set-up as in Fig. 4.16. The most favorable set-up, which did not pro-
duce large spectral residuals, captured the ground reflectance well and also had a reduced
XH2O standard deviation is the third column, i.e. 1, 749− 1, 820 nm [2].

specifically due to the low retrieval scatter, this spectral range can therefore be considered
advantageous to retrieve the H2O column.

Many retrieval configurations have similar performance regarding the XH2O retrieval,
but they differ substantially with respect to spectral residuals and retrieved albedo. Al-



80 4. Results

−0.1
0.1

−0.1
0.1

−0.1
0.1

−0.1
0.1

−0.1
0.1

−0.1
0.1

−0.1
0.1

−0.1
0.1

−0.1
0.1

1700 1750 1800 1850 1900
Wavelength / nm

−0.1
0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
a
d
ia
n
ce

 /
µ
W
cm

−2
n
m
−1
 r
−1

M
e
a
 u

re
d
 -
 M

o
d
e
lle

d
 /

µ
W
cm

−2
n
m
−1
 r
−1

ba eline [2]

ba eline [3]

Figure 4.21: Averaged residuals of all test spectra that converged for the H2O fit near 1.7
µm. Top: Example spectrum from the test ensemble, narrow panels: averaged residuals
color coded for retrievals, where a second order polynomial (red) or third order polynomial
(blue) was used for the baseline fit.

though “only” H2O concentrations are adjusted in these retrievals, changes in the degree
of the baseline polynomial strongly interfere with the water vapor/surface reflectance re-
trievals. XH2O distributions are generally broader when the baseline is represented by a
parabola than when a line fit is used. Some quadratic baseline fits (i.e. spectral windows
1, 751−1, 899 nm, 1, 751−1, 852 nm) also produce unrealistic albedo retrievals; see columns
eight and ten in Fig. 4.20. This implies that a second order background polynomial may
be a good choice. Further, spectral analysis revealed that the less opaque part of the water
vapor band wing is affected by residual structures that persisted even when other spectro-
scopic databases (HITRAN08, HITRAN16) were used. These features, shown in Fig. 4.21
occur near 1, 730 nm and therefore this spectral range should be avoided. One can only
speculate that an instrumental issue causes these spectral residuals.

The three retrieval configurations which did not cause amplified spectral residuals and
which do not use a background polynomial of degree three are shown in columns three,
seven and nine in Fig. 4.20 (1, 751−1, 899 nm [2], 1, 751−1, 852 nm [2] and 1, 749−1, 820 nm
[2]). Of these remaining set-ups, the 1, 749−1, 820 nm spectral window produced the lowest
scatter XH2O field (σ = 0.1�) and additionally had the lowest correlation with surface
reflectance (albeit still high at R = 0.92).
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Thus, to increase the performance of H2O retrievals and thereby increase CO2 retrieval
performance, it seems favorable to conduct dedicated water vapor fits between 1, 749 −
1, 820 nm.

CO2 retrieved from combinations of SWIR bands

The above sections have discussed the most favorable retrieval configurations for the en-
semble of background spectra in the SWIR-1,2 and 1.8 µm ranges. Combinations of these
configurations were used to investigate any added value that can be achieved by coupling
several of these spectral windows. This paragraph concludes the present sensitivity study
by selecting the retrieval with the most promising overall retrieval performance in terms
of spectral residuals and scatter of CO2 and H2O.

Fig. 4.22 gives an overview of these retrieval tests. Although the SWIR-1 spectral
range – by itself – only enabled low-performance retrievals, coupling the most favorable
SWIR-1 retrieval configuration (spectral windows 1, 550− 1, 597 nm coupled with 1, 585−
1, 639 nm) to the SWIR-2 spectral range reduced the standard deviation of the retrieved
XCO2 field (see Table 4.3). This was observed regardless of whether the coupled SWIR-
2 (1, 961 − 2, 043 nm coupled with 2, 030 − 2, 105 nm) retrieval or only the strong band
SWIR-2 set-up (1, 961− 2, 043 nm) retrieval was used in combination with the SWIR-1.

In the previous analysis of the SWIR-2 spectral range, the coupled retrieval and the
strong-band-retrieval both performed well. Here, retrieval tests where the SWIR-2 was
coupled with other bands demonstrate that leaving out the weak CO2 band in the SWIR-2
range slightly reduced both the scatter in XCO2 and the mean value of the retrieved XCO2

field. However, such retrievals that only use the strong SWIR-2 band also exhibit somewhat
larger spectral residuals, when the water vapor or SWIR-1 spectral band is included in the
retrieval. All differences between these configurations are too small to be statistically
significant (see Table 4.3) and therefore the set-up including the additional weak band
is regarded the optimized retrieval configuration due to a first principles approach that
more CO2 bands lead to better retrievals. Fig. 4.23 illustrates that the addition of the
weak SWIR-2 CO2 band impacts spectral residuals foremost in the neighboring strong
CO2 band. The Figure shows that changes in the spectral residuals follow the three other
SWIR CO2 band structures, which indicates that the weak band may provide added value
in fitting CO2 concentrations from AVIRIS-NG spectra.

Because no ground truth XCO2 data are available for this flight, the absolute XCO2

values can only be assessed from the present retrievals. Yet, since the goal of this work is
to assess differences in the carbon dioxide columns across the spatial domain of the sensor,
such offsets in the total column are not critical (offsets of more than 1 ppm are observed
for different tests in Table 4.3).

When adding the dedicated water vapor retrieval window to the retrievals, an improve-
ment in the standard deviation of the retrieved XH2O field was observed. The water vapor
concentrations were coupled across all windows, since uncoupling the water vapor lead to
significant decreases in the convergence rate of RemoTeC. Both, Table 4.3 and Figure 4.22,
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Figure 4.22: Performance of retrievals with XCO2, XH2O coupled across spectral bands.
First column: reference single-band retrieval at the strong SWIR-2 band. Retrieval con-
figurations are noted at the top of each column. SWIR-1: 1, 550− 1, 597 nm coupled with
1, 585− 1, 639 nm, SWIR-2 (coupled): 1, 961− 2, 043 nm coupled with 2, 030− 2, 105 nm,
SWIR-2 (strong): 2, 030 − 2, 105 nm, H2O: 1, 749 − 1, 820 nm. The baseline fit used
a quadratic polynomial in all bands except for the H2O window (linear fit). Column 5
achieves an advantageous combination of low scatter in XCO2, XH2O and low spectral
residuals.
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Retrieval ∅XCO2 σ(XCO2) ∅XH2O σ(XH2O) RH2O
ALB RCO2

ALB ∅RMS
Configuration /ppm /ppm /� /� /Radiance

SWIR-2 (strong) 426.26 8.74 1.94 0.15 0.25 0.71 0.025

SWIR-2 (coupled) 426.60 8.75 1.94 0.15 0.27 0.71 0.028

SWIR-1 + 425.14 8.32 1.98 0.16 0.32 0.69 0.048
+ SWIR-2 (strong)
SWIR-1 + 426.59 8.46 1.99 0.16 0.37 0.69 0.043
+ SWIR-2 (coupled)
SWIR-1 + H2O + 425.68 8.33 2.30 0.10 0.91 0.69 0.046
+ SWIR-2 (coupled)
SWIR-1 + H2O + 424.21 8.27 2.30 0.10 0.91 0.69 0.050
+ SWIR-2 (strong)
SWIR-2 (coupled) + 426.50 8.64 2.30 0.10 0.91 0.72 0.039
+ H2O
SWIR-2 (strong) + 424.81 8.60 2.31 0.10 0.91 0.71 0.042
+ H2O

Table 4.3: Overview of retrieval performance data for the most promising configurations
tested in this thesis. The first column indicates the spectral retrieval windows (see text and
Fig. 4.22 for more information). Remaining columns: average (∅) and standard deviation
(σ) of the trace gas fields, correlation coefficients for correlations between CO2 and H2O
(RCO2

H2O) as well as between CO2 and albedo (RCO2
ALB) and average value of spectral RMS

in units of absolute spectral radiances (µWcm−2nm−1sr−1). The yellow row marks the
configuration that is considered a favorable set-up, because of both low scatter in XH2O
and XCO2 as well as low spectral residuals and because it uses all available CO2 bands.

show that the XH2O scatter was significantly reduced with this extra spectral window
and that the average values of the water vapor distribution were enhanced with respect
to retrievals without this window. The average values of XH2O retrieved in these coupled
retrievals agree with the values reported previously for XH2O retrievals solely using the
1.8 µm band to within their standard deviation. The inclusion of the dedicated water
vapor retrieval window also decreased the standard deviation in the XCO2 field in every
case, although the effect is small (see Table 4.3). At the same time, the added water vapor
window had the effect of increasing correlation between H2O and the surface reflectance.
This effect can be understood by looking at the square images of the XH2O “tiles” in Fig.
4.22 (row four): these retrieval configurations retrieve XH2O at high accuracy and therefore
they display a similar retrieval correlation to ground albedo as observed for XCO2. Both
XCO2 and XH2O exhibit distributions with rather long tails towards low values, which in
turn are associated with low ground reflectance. No retrieval solutions have been found
which would remove the remaining correlations between trace gas columns and surface
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Figure 4.23: Adding the weak SWIR-2 CO2 band to the coupled retrievals impacts averaged
residuals in the other CO2 bands. Top: An example spectrum from the test ensemble
showing the spectral range used in the coupled retrievals. Bottom: averaged residuals
from the retrievals in rows 5 and 6 of Table 4.3, (black and orange), i.e. the optimized
configurations with and without the weak SWIR-2 CO2 band. The red line shows the
difference between these averaged residuals, which occur at the spectral locations of CO2

absorption across the SWIR.

reflectance. Albedo correlations will be addressed in an a posteriori manner in chapter
4.2.5, where a bias correction is introduced.

To conclude, several retrieval configurations with favorable retrieval performance have
been identified. Among these, the retrieval that coupled the SWIR-1, SWIR-2 bands and
the dedicated water vapor band had enhanced overall performance (five spectral windows:
1, 550 − 1, 597 nm, 1, 585 − 1, 639 nm, 1, 749 − 1, 820 nm, 1, 961 − 2, 043 nm, 2, 030 −
2, 105 nm).

O2 Retrieval Attempts

The retrievals described above assume the geometric lightpath through the atmosphere. By
retrieving the oxygen column number density from its spectral signature(s), changes in the
lightpath can theoretically by detected so that a corrected dry air column mixing ratio of
CO2 can be obtained. O2 absorption bands near 760 nm and 1, 270 nm were used in studies
with the ensemble of AVIRIS-NG test spectra. In each test retrieval, oxygen as well as
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collision induced absorption of oxygen (CIA, taken from Richard et al. (2012)) was adjusted
together with a spectral shift parameter and a polynomial to fit the spectral baseline. In
addition and only in the presence of water vapor absorption (i.e. in the 1, 270 nm window),
the water column was retrieved as an interfering species. All retrievals attempted in this
work provided such low accuracy and low precision that when the retrieved O2 column
number densities were used to calculate XCO2, the standard deviation in the optimized
XCO2 field (previous section) increased at least by a factor of two in comparison to when
the prior O2 column was used. Oxygen column number density retrievals had standard
deviations of at least 5 % of the total column in every set-up investigated. Since the test
scenes are known to be free of haze or smoke, such large scatter in the oxygen column must
be a result of inaccuracies in the retrieval.

In case of the oxygen retrievals that were tested in the spectral range 1, 180−1, 330 nm,
large and systematic spectral residuals were observed at 1, 205 nm and near 1, 283 nm, of
which especially the latter structure interfered with oxygen absorption lines. Large spectral
residuals also occurred for spectral retrieval configurations examined in the 730− 790 nm
range, specifically in the off-band continuum. These spectral residuals seem the most
obvious explanation for inaccurate oxygen retrievals from AVIRIS-NG measurements.

As a result of these relatively unsuccessful retrieval attempts, the following analysis will
rely on oxygen columns derived from prior meteorology (not retrieved oxygen columns)
to calculate XCO2. While it is unfortunate, that the large spectral range of AVIRIS-NG
could not be used to retrieve applicable O2 columns simultaneously with the carbon dioxide
concentration, using the prior O2 is a well established retrieval approach (Butz et al., 2011).

4.2.4 Retrieval of Power Plant Plumes

The optimized retrieval configuration including all four CO2 absorption bands near 1.6 and
2.0 µm was applied to two data sets that contain coal-fueled power plants in the flightline
of AVIRIS-NG, namely the “Four Corners Power Plant” and the “San Juan Generating
Station” (see page 43). The former is the same flightline from which the ensemble of test
spectra was selected. The Four Corners Power Plant had an estimated emission rate of
8.8 MtCO2 per year in 2019 (EPA, 2020). Reported emissions of the San Juan facility were
9.9 MtCO2 in the year of the AVIRIS-NG measurement (EPA, 2020).

Four Corners Power Plant

Fig. 4.24 displays the retrieved XCO2 in the vicinity of the Four Corners Power Plant as
retrieved from the AVIRIS-NG measurement on June 21, 2019. The CO2 exhaust plume
is clearly visible in the retrieval and small turbulent eddies on the sub-plume scale are
apparently resolved. In terms of plume morphology, XCO2 enhancements of more than
200 ppm (i.e. total columns with XCO2 > 625 ppm) can be observed for several pixels
close to the stack and the plume appears rather stream-lined, which indicates a relatively
high wind speed at the time of measurement. Significant correlations of the CO2 column
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Figure 4.24: XCO2 retrieval near the Four Corners Power Plant. Left: RGB image of
the AVIRIS-NG measurement with scale and arrows indicating the solar location (Sun)
and north (N) at the bottom. Center, right: XCO2 retrieval with different color-maps
illustrating two XCO2 scales. A CO2 plume can be observed emerging from an exhaust
stack and the internal structure of the plume is resolved. White pixels indicate non-
convergence of the retrieval.

to surface reflection features remain in Fig. 4.24. Notably, a number of pixels directly
downwind of the point source are affected by shadow and there is a small water surface
near the stack. These features result in very low XCO2 retrievals, which are in strong
contrast to the surrounding plume. Further retrieval biases correlated with the ground
albedo can be observed throughout Fig. 4.24. The presence of water surfaces towards
large across-track pixels leads to both non-convergence of the retrieval algorithm and large
scatter in XCO2. More subtle albedo effects are observed over land, where individual
small-scale structures, e.g. roads, are reflected in small-scale XCO2 biases. Additionally,
the XCO2 retrieval exhibits “stripes”, i.e. small systematic biases between neighboring
spatial pixels, which appear as faint lines, especially over homogeneous non-plume regions
over land.

Fig. 4.25 illustrates other critical parameters of the retrieval near the power plant.
Retrieved XH2O displays a plume structure emanating from the power plant, which has
the same shape as the XCO2 plume but extends over a shorter spatial range. The water
vapor plume is also hidden in the dark pixels near the stack. Strikingly, XH2O values are
strongly negatively biased over an oval ground area close to the plume (the surface material
could not be identified, but it certainly is of a man-made nature). These spectra all exhibit
increased spectral residuals that occurred in the 1.8 µm spectral window, i.e. the dedicated
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Figure 4.25: Four Corners Power Plant retrieval. Left: true color image of the AVIRIS-NG
measurement with scale and arrows indicating the solar location (Sun) and north (N) at
the bottom. Column two to four: retrieved XH2O, albedo (at 2.1 µm) and spectral RMS.
The exhaust plume is visible in the water vapor retrieval as well. Large RMS values for
the oval surface in the top center of the flightline are caused by residuals in the 1.8 µm
spectral window of the retrieval. Corresponding XH2O values are significantly biased.

water vapor retrieval window. Such artifacts could be explained through albedo features
that disturb the molecular (H2O) absorption signal. Retrieved albedo values in the SWIR-
2 exemplify that the measurement scene only contains few dark land pixels in the short
wave infrared spectral range. In terms of spectral residuals, greater RMS error is generally
associated with darker scenes (i.e. water surfaces). Pixel-to-pixel stripe signatures were
observed both in the illustration of retrieved XH2O and spectral residuals.

San Juan Generating Station

Retrievals conducted for the San Juan Generating Station, shown in Fig. 4.26, generally
support the results of Thorpe et al. (2017) who also retrieved two separate plumes asso-
ciated with two of the facility’s units. The broader angular plume shape indicates slower
wind speeds than the Four Corners observation (Jongaramrungruang et al., 2019). Wa-
ter vapor condensate downwind of the two active stacks is visible in the true color image
of the AVIRIS-NG observation. The retrieved XCO2 field shows turbulent behavior of
both plumes and retrieval biases driven by ground albedo are clearly visible. Such arti-
facts are most prominent for a range of brightly reflecting anthropogenic materials as well
as for very dark scenes and pixels affected by shadow. What appears to be some kind
of encased conveyor belt system (the bright, linear structures) lead to increased XCO2

retrievals downwind of the stack to the right in Fig. 4.26 and the shadows that these
structures cast strongly reduce XCO2 in the present analysis. Scenes affected by shadow
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Figure 4.26: XCO2 retrieval near the San Juan Generating Station. Left: RGB image
of the AVIRIS-NG measurement, delimited to the left by the across-track dimension of
the sensor’s field of view (black area: no data) with scale and arrows indicating the solar
location (Sun) and north (N) at the bottom. Center, right: XCO2 retrieval with different
color-maps. A CO2 plume can be observed emerging from an exhaust stack, internal
structure of the plume is resolved. White pixels indicate non-convergence in the retrieval.

exhibited radiance levels below 0.1 µWsr−1cm−2nm−1 at 2, 100 nm, as did the spectra col-
lected over the surfaces that are heavily negatively biased in the retrieved XCO2 field (e.g.
near across-/along-track pixels 100/600 in Fig. 4.26, possibly water ponds).

Figure 4.27 illustrates the retrieved water vapor columns, albedo and spectral RMS
error of the retrieval. Although XH2O is increased in the water vapor condensate plumes
emitted by the two stacks, no significant water vapor plume is visible further downwind
of the power plant. Enhancements in XH2O are sometimes, but not always, co-located
to larger surface reflectance values. This hints at the presence of certain surface types
that may interfere with the water vapor absorption signal. In general, the present scene
is darker than the Four Corners Power Plant observation discussed above. As a result,
spectral residuals are mostly lower in this flightline, except when bright man-made surface
types are present. With the solar radiation coming from the left of the image, it may be
possible that some surfaces reflect radiation in a specular fashion, introducing large RMS
values specifically on the left sides of some anthropogenic structures.

The results obtained here indicate that the retrieval configuration that was derived
earlier is applicable to a wide range of AVIRIS-NG observations, although caveats apply.
Specifically, the retrieved CO2 column has a pronounced correlation to the surface albedo
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Figure 4.27: San Juan Generating Station retrieval. Left: true color image of the AVIRIS-
NG measurement with scale and arrows indicating the solar location (Sun) and north (N)
at the bottom. Column two to four: retrieved XH2O, albedo (at 2.1 µm) and spectral
RMS.

and low albedo pixels (water surfaces, shadows) introduce additional scatter and increased
spectral residuals into the retrieval.

4.2.5 Posterior XCO2 Correction

To improve the XCO2 retrievals discussed above, a posterior correction was applied to
the retrieved XCO2 fields to address the strong albedo dependence of the XCO2 retrieval.
Historically, many trace gas retrievals have been corrected for spurious correlation of the
trace gas column with respect to surface reflectance (Lorente et al., 2020, O’Dell et al.,
2018, Wunch et al., 2011a). A linear correction with respect to albedo biases was carried
out here according to eq. 4.1.

XCO2,corrected = XCO2,retrieved −m · (albedo@2.1µm −mean(albedo@2.1µm)) . (4.1)

The correction term was found to be m = 64.68± 1.84 ppm (±1σ) and the average albedo
at 2.1 µm was 0.238 with the retrieval results of the background test ensemble (using
the SWIR-1+SWIR-2 +H2O benchmark retrieval configuration). Fig. 4.28 illustrates the
effect of the albedo bias correction on the XCO2 results of the benchmark retrieval. In
general, this linear correction significantly reduced the scatter of the retrieved XCO2 fields
as well as the correlation to surface albedo (see Table 4.4). The standard deviation of
bias corrected XCO2 values was reduced by over 2 ppm in every retrieval and correlation
coefficients were reduced to R< 0.1. Small changes in the mean value of XCO2 were also
observed when the bias correction was applied, which can be explained by slightly different
albedo retrievals for some retrieval configurations. For instance, the average albedo at
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Figure 4.28: Bias Correction Derived from Test Ensemble. Left: linear correction of the
retrieved XCO2 using the test ensemble and the benchmark retrieval configuration accord-
ing to eq. 4.1. Right: XCO2 retrieval visualization for the test retrievals before and after
bias correction (black and red violin plots and tiles, respectively). Albedo distribution in
the test ensemble in the last row for reference.

2.0 µm was 0.244 in all retrievals that neglected the weak SWIR-2 band, i.e. greater than
the average value used in eq. 4.1.

The applicability of the albedo bias correction to the Four Corners and San Juan
plume data sets depends on the extrapolation of the correction towards albedo values that
are not present in the test ensemble (i.e. below 0.06 and above 0.40). The analyses in
previous sections have indicated that some surface types, especially those with low ground
albedo, can introduce additional scatter and residuals into the XCO2 retrieval. Figure
4.29 illustrates that local scatter in the retrieved XCO2 field is greatly increased as the
surface albedo decreases below 0.03. Since there was no access to the AVIRIS-NG noise
vectors, the measurement noise could not be propagated into the retrieved CO2 column.
Hence, a local XCO2 scatter metric was introduced to identify problematic retrieval regions.
This metric (σ(XCO2)) is the standard deviation of the local XCO2 field with size 5 × 5
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Retrieval ∅XCO2 σ(XCO2) RCO2
ALB

Configuration /ppm /ppm
SWIR-2 (strong) 425.96 6.16 0.07

(426.26) (8.74) (0.71)
SWIR-2 (coupled) 426.71 6.15 0.09

(426.60) (8.75) (0.71)
SWIR-1 + 424.82 6.05 -0.01
+ SWIR-2 (strong) (425.14) (8.32) (0.69)
SWIR-1 + 426.69 6.09 0.03
+ SWIR-2 (coupled) (426.59) (8.46) (0.69)
SWIR-1 + H2O + 425.68 6.04 0.00
+ SWIR-2 (coupled) (425.68) (8.33) (0.69)
SWIR-1 + H2O + 423.79 6.02 -0.03
+ SWIR-2 (strong) (424.21) (8.27) (0.69)
SWIR-2 (coupled) + 426.54 6.04 0.08
+ H2O (426.50) (8.64) (0.72)
SWIR-2 (strong) + 424.39 6.09 0.04
+ H2O (424.81) (8.60) (0.71)

Table 4.4: Performance data for the test retrievals after albedo bias correction. Table
configuration as in Table 4.3. The corresponding data obtained before bias correction are
given in parentheses for reference.

pixels around each spatial pixel of the power plant scenes2. Increases in local standard
deviations point to systematic retrieval errors associated with surface albedo (if albedo
can be assumed constant on these small spatial scales). Fig. 4.29 clearly shows that
dark water surfaces and pixels affected by shadow (all with albedo below 0.03) dominate
the local scatter statistics with regional XCO2 standard deviations much greater than
20 ppm. At the same time, the majority of sufficiently bright spectra are located in low
local standard deviation clusters, although the darker AVIRIS-NG flight scene above the
San Juan generating station exhibits greater scatter in XCO2. For a quantitative analysis
of the albedo bias correction, the procedure was applied to non-plume spectra of both
flight lines, selected from the lower left and lower right corners of the Four Corners and
San Juan data sets, respectively. For these scenes, panels c) and g) of Fig. 4.29 resolve
XCO2 retrieval standard deviation as a function of albedo in bins of 0.03. In both cases,
the per-spectrum XCO2 retrieval scatter strongly trends towards greater values for lower
albedo. In case of the Four Corners background spectra (Fig. 4.29 c)) the number of scenes

2The size of the field for local statistics must not be chosen too large in order to separate albedo effects
from the plume structure. The present choice of 5× 5 pixels (13.5× 13.5 m2) was considered reasonable,
because it is mostly insensitive to the internal plume structures of both power plant data sets (except for
the first downwind meters of the Four Corners facility which indicates larger in-plume XCO2 variability
for these scenes as well as a stronger contrast between plume and background).
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with albedo below 0.1 is limited, as is representative for the non-water spectra of this flight.
By applying the albedo correction to the retrievals, XCO2 retrieval scatter is reduced in
all albedo bins with a significant amount of scenes. It also appears that extrapolating the
correction to albedo values present in the test ensemble leads to decreases in XCO2 scatter.
Additionally, Fig. 4.29 d) shows that the correction reduces the overall standard deviation
from 7.5 to 6.0 ppm (similar to the result obtained in the test ensemble) for this set of
spectra and that the correlation coefficient between albedo and XCO2 is reduced as well.
Some albedo correlation remains, however, this may be an artifact of the extrapolation
process of the albedo correction, which should be investigated in a future study. For the
San Juan power plant scene, one can observe that XCO2 standard deviation per 0.03 albedo
bin is strongly enhanced for low-albedo bins, with a scatter of 70 ppm observed in the 0-
0.03 albedo bin. Such dark surfaces should therefore be excluded from all further analyses3.
The San Juan scene generally exhibits greater local scatter as well as per-albedo-bin scatter
in XCO2, which is most likely due to the low surface reflectance across the scene (i.e. the
more bright scenes are included the lower the scatter will be). However, the albedo bias
correction brings down the overall standard deviation of the selected background spectra by
more than 1 ppm and reduces the Pearson correlation coefficient between XCO2 and albedo
from 0.4 to 0.1. The inset in Fig. 4.29 g) shows that the per-albedo-bin difference between
retrieved and corrected XCO2 is comparable to what is found for the Four Corners scene,
although some outliers exist. Even if the impact of the correction may be relatively small
for this subset of spectra in albedo space, Fig. 4.29 h) demonstrates that the correction
slightly improves the general retrieval performance.

It is worth noting, that when extrapolating the albedo correction towards brighter
scenes than albedo=0.4 (limit in the testensemble) in the Four Corners case, it appears
that there is a slight tendency of “over-correction” of the retrieved XCO2 in bright scenes
(Fig. 4.29 d)). Yet, some findings support the extrapolation of the bias correction to the
albedo range between 0.03-0.8. Firstly, the low correlation coefficients between corrected
XCO2 and albedo suggest that the correction performs well. Secondly, not performing
the bias correction above albedo=0.4 resulted in increased XCO2 standard deviation and
albedo correlation when compared with the full correction up to albedo=0.8. Thirdly, only
4.7% of all scenes in the Four Corners tile and only 0.1% of scenes in the San Juan tile have
albedo greater than 0.4. Because these bright scenes are relatively rare in both flight lines,
one can expect the improvements of the bias correction in low albedo scenes to greatly
outweigh any potential degradation of the retrieval in the few bright scenes found in the
regions of the XCO2 plumes.

In summary, a linear bias correction derived with the ensemble of test spectra was shown
to successfully reduce albedo correlation and XCO2 scatter in both power plant flights
analyzed in this work and thereby deliver a valuable improvement to the retrievals. The
range of albedo values, for which the correction was found to be valid is 0.03<albedo<0.80.

3Spectra with albedo greater than 0.8 should also be removed for downstream data products, such as
the power plant emission rate estimate (see chapter 4.2.6), because such bright scenes may pose problems
due to specular reflection, overexposure, non-linearity of the detector, etc.
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Figure 4.29: Limits and application of the bias correction method in the Four Corners
(a)-d)) and San Juan (e)-h)) data sets. a) albedo distribution at 2.1 µm in the flight
line, scenes with albedo below 0.03 in orange. b) local scatter of the retrieved XCO2 field
(σ(XCO2)) over a 5 × 5 pixel box around each pixel. c) Standard deviation of retrieval
results binned in increments of albedo (bin width=0.03) with marker size proportional to
number of data per bin; inset shows the difference (blue dots) between retrieved (black)
and bias corrected (red) retrievals per bin. d) Application of the linear bias correction to
non-plume background scenes from the power plant flight line (same data as c)) filtered for

albedo
!
> 0.03. Standard deviation, σ, and XCO2-albedo-correlation coefficient, R, given

below plot (black: retrieved, red: corrected). e)-h) same as a)-d) but for the San Juan
flight. The non-plume pixels in c)-d) and g)-h) correspond to more than 45, 000 spectra
collected from the lower left and lower right regions of the Four Corners and San Juan
flight tiles, respectively.

For further analysis, XCO2 retrievals with surface albedo at 2.1 µm below 0.03 and above
0.8 should be removed from the data-sets. This approach is in line with the work of Ayasse
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et al. (2018) and Borchardt et al. (2021) who have also filtered out the darkest AVIRIS-NG
scenes for trace gas retrievals. In a future study, a bias correction could be derived from an
ensemble of background spectra, which covers the entire dynamical range of surface albedo,
so that more adequate corrections (possibly involving higher degree polynomials) can be
applied. Alternatively, future research could explore the approach chosen by Foote et al.
(2020) who correct for albedo effects in the retrieval by introducing an “albedo factor”
with which they normalize the retrieved trace gas column.

4.2.6 Emission Rate Quantification

The exploration of methods enabling emission rate quantification from trace gas measure-
ments is a very active area of research. A common struggle across the different techniques
employed in the community is to obtain a reliable estimate of wind speeds, and wind pro-
files. Trace gas products, such as the (bias corrected) XCO2 field in the vicinity of a source
(see previous sections) must be coupled to the speed of the wind at the time of observation
– either through a transport model, empirical relationships or measurements. The need for
wind information is currently the greatest disadvantage in the remote sensing processing
chain from spectroscopic measurements to emission rates. While in-situ measurements on
board of aircrafts usually collect wind information along the flight path, remote sensing
applications depend on external wind information, which often is not available for the exact
location of the measurement. On the other hand, remote sensing can provide column infor-
mation, while in-situ data may miss parts of the plume. Once wind information is available
there are two methods that are predominantly discussed in the literature to retrieve emis-
sion rates from passive trace gas measurements: a) the mass balance or cross-sectional flux
approach (e.g. Krings et al., 2013) and b) the integrated mass enhancement method (e.g.
Varon et al., 2018). Other more idealized or exploratory methods have also been discussed
(e.g. Bovensmann et al., 2010, Jacob et al., 2016, Jongaramrungruang et al., 2019, Nassar
et al., 2017), but will not be employed here.

The cross-sectional flux method solves for the emission rate by postulating mass balance
at a cross section downwind of the source. CO2 emerging from the stack (per unit of time)
must be equal to the product of wind speed, u, and the integral of plume enhancements,
∆ε, along an axis, y, orthogonal to the wind direction.

Q = u · C with C =

∫ +∞

−∞
∆ε(x, y)dy (4.2)

The integral C has units of kg/m, i.e. ppm enhancements need to be multiplied by the
column airmass and the column dimension (pixel size). The mass balance method relies
on a separation of plume and background scenes and has the advantage that the plume
cross-section integral can be calculated several times along the plume which, by virtue
of averaging, enables a more accurate estimate of Q (Klausner et al., 2020, Varon et al.,
2018). This method assumes a constant wind speed and direction of the mean flow and it
neglects turbulence of the plume.
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The integrated mass enhancement (IME) method is based on observations of a linear
correlation between source flux and the sum of all column enhancements within the re-
motely sensed plume (Frankenberg et al., 2016, Jongaramrungruang et al., 2019). Varon
et al. (2018) argued that the IME within the entire detectable plume depends on the life-
time of trace gas molecules in the plume before they are blown out of the area that is
characterized as the plume. This residence time can be calulated from the wind speed, u,
divided by plume length or size, L. The emission rate of the source, Q, can be obtained
through

Q =
u

L
· IME, (4.3)

where IME is calculated as the sum over the product of column mass enhancement, εi,
times pixel area, Ai, for all N pixels of the plume:

IME = Σi=N
i=1 ∆εi · Ai. (4.4)

Mass enhancements have units kg CO2/m2 and they can be calculated by multiplying
XCO2 with the total column airmass. After deriving a plume mask, Varon et al. (2018)
propose to use the square root of the mask area,

√
Marea, as the length of the plume.

The IME method has been shown to result in reliable emission estimates also in low-wind
scenarios. On the other hand, this method requires a full image of the plume, which may
not always be available.

Both the mass-balance and IME method are generally prone to errors under low wind
speed conditions, as relative errors in wind speed translate into relative errors in the emis-
sion estimate. Before the applicability of these two methods to the AVIRIS-NG power
plant data and the resulting challenges will be discussed, a plume mask for both power
plant scenes will be constructed in the next section.

Construction of Plume Masks

In a first step, the scene background concentration was calculated from a histogram of the
bias corrected XCO2 distribution of the whole scene (or - in the case of the San Juan flight
- from a plume-free subset of the scene) by computing the occurrence-weighted average
of XCO2 from the top 5% of histogram bins with the highest occurrence4. A weighted
average concentration is suited to reflect potential asymmetries in XCO2 around the mean
and filtering for the most frequent XCO2 signals ensures that the background is not cal-
culated from pixels belonging to the plume (as the plume does not contribute to the top
frequent XCO2 values). Standard deviations of the corresponding XCO2 retrieval results
with highest occurrence are taken as the 1σ standard deviations of the background con-
centrations. For the Four Corners and San Juan data sets, the background concentrations
were determined to be XCObg

2 = 423.3± 7.5 ppm and XCObg
2 = 398.9± 12.5 ppm, respec-

tively. This result parallels the findings of Fig. 4.29 d) and h), where sub-samples from the
Four Corners and San Juan flights had averages of 422.6± 6.0 ppm and 400.1± 9.9 ppm,

4The histograms span the range of retrieved XCO2 values with bin size 0.5 ppm.
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respectively. It is clear that the selection of background values is afflicted with uncertainty,
the consequences of which are analyzed in a later section. However, given the large data
set of spectra used here and the weighting of various XCO2 contributions to the average
calculation, the present statistics are considered robust.

To construct the plume mask, the procedure described by Varon et al. (2018) was
adopted. Each spatial pixel of the scene was taken as the center of a 5 × 5 or 11 × 11
pixel square (Four Corners or San Juan, respectively) to perform a local Z-test between
the local XCO2 mean, XCOlocal

2 , with respect to the background concentration, XCObg
2 ,

and the standard deviation of the background, σ:

Z =
XCOlocal

2 − XCObg
2

2σ
(4.5)

Different local square sizes were defined to reflect the difference in pixel size of the two
measurements so that both local areas were on the order of 10-15 m2. A Z-score confidence
level of 95 % was used as the threshold to separate the plume from the background, as
proposed by Varon et al. (2018). However, the 2σ standard deviation of the background
concentration was employed in the denominator of eq. 4.5 (instead of the 1σ error as in
Varon et al. (2018)). This has the effect of apparently making the Gaussian smoothing
operation of the procedure of Varon et al. (2018) redundant. In fact, Gaussian smoothing
with kernel sizes on the order of 2-5 pixels as suggested by Varon et al. (2018) deteriorated
the mask performance, because narrow features, which clearly belonged to the plume,
were removed. After the Z-test, the resulting plume mask was adjusted further with a
median filter operated on the surrounding 5× 5/11× 11 pixel square. This has the effect
of smoothing the plume mask and removing false-classifications. For the San Juan scene, a
simple cloud filter was applied; based on the observed radiances I in the 501.6 nm (“white”),
1,548.4 nm (SWIR-1, off-band) and 2,054.3 nm (SWIR-2, on-band) bands. Empirically, it
appears that pixels with I1,548/I2,054 + I502/1 µWsr−1cm−2nm−1 >11 match the true-color
pixels which seem to contain condensate emanating from the two smoke-stacks (see also
Fig. 4.33). This cloud mask should be tuned in a future study to minimize false detections
of clouds minimized here by restricting the application of the cloud mask to the pixel range,
where clouds are visible in the true color image.



4.2 Power Plant CO2 Emission Rates Retrieved from Air-Borne AVIRIS-NG
Measurements 97

F
ig

u
re

4.
30

:
C

on
st

ru
ct

io
n

of
th

e
p
lu

m
e

m
as

k
fo

r
th

e
F

ou
r

C
or

n
er

s
sc

en
e.

T
h
e

p
lu

m
e

ap
p

ea
rs

to
h
av

e
b

ee
n

cu
t

off
b
y

th
e

gr
ou

n
d

sw
at

h
of

th
e

se
n
so

r.



98 4. Results

F
ig

u
re

4.
31

:
C

on
st

ru
ct

io
n

of
th

e
p
lu

m
e

m
as

k
fo

r
th

e
S
an

J
u
an

sc
en

e.



4.2 Power Plant CO2 Emission Rates Retrieved from Air-Borne AVIRIS-NG
Measurements 99

The procedure to construct the masks is illustrated in Figs. 4.30 and 4.31. It appears
that the plume of the Four Corners facility is cut off by the swath of AVIRIS-NG to
the lower right of the scene. The San Juan flight line, conversely, seems to contain all
significant enhancements emitted by the facility and the shape of the mask is similar to
the observations of Thorpe et al. (2017) (Fig. 7b), although the current analysis detects
additional plume enhancements farther away of the sources in along-track direction. The
application of the median filter reduced the total plume mass by 0.4 % and 6.9 % in the
Four Corners and San Juan data, respectively. In terms of plume dimension, the area
of the plume was similarly decreased by 0.6 % (Four Corners) and 5.6 % (San Juan),
indicating the median-filtering of XCO2 is roughly proportional to the resulting loss of
area (i.e. the median filter does not remove significant enhancement clusters, but rather
false classifications). The cloud filter for the San Juan scene removes another 10.0 % of
mass from the median-filtered plume while the plume area is only reduced by 5.7 %. As the
pixels affected by condensate occur directly downwind of the two stacks, they are expected
to contain large XCO2 enhancements, so that one would expect a relatively large ratio
between filtered mass and filtered area.

This section has shown that the Four Corners scene does not capture the entire plume,
which is why the IME method is not suited for emission rate quantification in this case.
The plume shape hints at a high wind speed and it thus seems adequate to retrieve the
source rate with the mass-balance method. Conversely, the San Juan scene features two
localized sources, presumably low wind speeds, the entire plume is captured by the swath
of the sensor, and no large water surfaces prevent plume detection. As the two stacks seem
to emit CO2 in somewhat different directions, indicating local variability in wind direction
and highly non-laminar flow, the integrated mass enhancement method was applied to
this scene (because the mass balance approach requires perpendicular cross-sections of the
plume, which were not readily available here).

Emission Rates

The two source rate estimation techniques applied here require the local wind speed, u, at
the altitude of the stacks. Stack heights of the Four Corners and San Juan facilities have
been reported previously by Weidner (2007) (Four Corners: 116 m, San Juan: 122 m).
Local wind information at the respective altitudes is not available for the remote AVIRIS-
NG measurements analyzed in this study. Three wind speed data sources are compared
here: height-resolved ERA5 meteorological reanalysis data (Hersbach et al., 2020), 30
m reanalysis wind speeds from the North American Regional Reanalysis (NCEP, 2005)
project and surface wind measurements obtained at the Four Corners Regional airport
weather station, located roughly 25 km east of both power plants (data acquired from
NOAA (2021)). ERA5 has a spatial resolution of 25 × 25 km2, a height resolution of
∼ 25 m in the lowermost levels of the troposphere, hourly temporal resolution and the two
power plants are located within a 10 km radius next to a ERA5 grid point. NARR wind
speeds were interpolated on its 32 km grid with a three-hourly resolution. The temporal
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resolution of the local weather station is 2 hours and average wind speeds in the time of
±1 hour around the AVIRIS-NG measurements were used in this study. The terrain in
the region around the power plants and the airport is a mesa landscape with no major
topographic obstacles between the weather station and the power plants so that the wind
conditions can be assumed to be similar at these locations. Borchardt et al. (2021) also used
ERA5 and the regional airport to investigate wind speeds and noticed that ERA5 wind
reanalyses had a systematic low bias with respect to the local wind measurements, which
could reach differences of an order of a magnitude (Fig. A1 of their paper). Here, too,
large differences between the ERA5 and weather station wind speeds were observed. The
(weighted) average ERA5 wind speeds at the times of observation and at the altitude of
the stacks were 0.6 and 1.2 m/s for the Four Corners and San Juan data sets, respectively,
but wind speeds at the weather station are listed as 7.5 and 3.1 m/s during the Four
Corners and San Juan flights, respectively. While ERA5 wind profiles indicate in both
cases that the wind speed at 100-200 m was slightly lower than the surface wind, the very
low values of ERA5 seem unrealistic for the two AVIRIS-NG observations of this study.
The 30 m wind speeds of the NARR reanalysis are 6.1 and 4.3 m/s for the Four Corners
and San Juan locations, respectively, supporting the finding that ERA5 underestimates
the wind speed. While Borchardt et al. (2021) adopted the surface weather station wind
speeds for their analysis of methane emissions at the surface, this work uses the 30 m wind
speeds from NARR. It should be noted that a future study must address the derivation of
effective 100-200 m wind speeds from surface (or 30 m) wind speed measurements or more
suitable reanalysis products must be identified that contain 100-200 m winds. The large
uncertainty in the wind speeds will be discussed in the next paragraphs.

Four Corners Power Plant Due to the fact that the plume of this power plant was
not fully within the swath of AVIRIS-NG, the source rate was calculated with the mass-
balance method. Fig. 4.32 illustrates the plume (from the median-filtering mask) rotated
around its central axis, which separates the plume in two equal halves in terms of pixel
enhancements. Angular and along-plume histograms of the plume enhancements are also
shown in Fig. 4.32. The narrow angular distribution of the plume suggests that a high
wind speed is present here (compare Fig. 9 of Jongaramrungruang et al. (2019)), although
the actual angular distribution may be broader, since the plume is not fully captured in
this measurement. By calculating the average cross-sectional enhancement integral for a
contiguous part of the plume (2, 602.7 ± 511.6 ppm, see horizontal line in upper panel of
Fig. 4.32) one can readily calculate the emission rate from eq. 4.2. Using a wind speed of
6.1 m/s, the estimated projected annual source rate is 16.9 MtCO2y−1, while the emission
rate reported by the U.S. Environmental Protection Agency (EPA) is 8.8 MtCO2y−1 (EPA,
2020).

San Juan Generating Station XCO2 enhancements above the respective background
levels, ∆εi, of the San Juan flight were used to calculate the integrated mass enhancement
according to eqs. 4.3 and 4.4. The plume dimension, L, was taken to be the square root
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Figure 4.32: Morphology of the Four Corners plume. The image shows the plume rotated
around its central axis, which divides the plume mass in half. The angular distribution
of mass enhancements (IME, right panel) is created by sweeping a 0.5° slice (centered on
the source) across the plume. Integrals of across-plume enhancements in the top panel
visualize the effects of turbulence on the internal plume structure. Two solid lines indicate
the contiguous plume section from which average across-plume integrals are derived.

of the area of the entire plume. Solution of eq. 4.3 – using the full plume masks and the
interpolated NARR wind speed (4.3 m/s) – finally yields emission rates of 19.1 MtCO2y−1

with the cloudy pixels and 17.8 MtCO2y−1 without the cloudy pixels. As the reported EPA
emission value is 9.9 MtCO2y−1 for this facility (EPA, 2020), it may make sense to discard
the cloudy pixels downwind of the stack as they may exaggerate the CO2 enhancements
through 3D radiative transfer effects. Fig. 4.33 illustrates the application of the cloud
mask. To conclude, the uncertainties that affect the flux quantification will be discussed
to constrain the accuracy of the present approach.

Flux Uncertainty The calculation of power plant emission rates must take into account
the uncertainties of the upstream variables such as wind speed, u, the plume dimension, L,
and the integrated mass enhancement of the plume, IME, or the across-plume enhancement
integral, C.
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Figure 4.33: The cloud mask for the San Juan data set classifies scenes with I1,548/I2,054 +
I502/1 µWsr−1cm−2nm−1 >11 as cloudy pixels. Left: True color image, right: cloud pixels
darkened.

The previous discussion of wind speed data shows that wind information is associated
with by far the largest uncertainty in these two case studies. In the Four Corners case,
wind information from a meteorological reanalysis differs by roughly an order of magnitude
from the data of a regional weather station; in the San Juan case, the difference in wind
speed is “only” a factor of 2.6. The NARR reanalysis wind speeds that were subsequently
employed for the flux inversion are in general agreement with the surface measurements
and the observed shapes of the two plumes. Borchardt et al. (2021) faced a similar situation
when working with ERA5 data and local wind measurements and assumed an uncertainty
in wind speed of 1.5 m/s for the local wind data, which they justify with observations of
typical (1σ) deviations between ERA5 surface wind speeds with weather stations. Varon
et al. (2018) concluded that the error incurred on the 10 m effective wind speed from a
meteorological reanalysis data base was 2 m/s for large plumes. In the present case, such
an uncertainty seems an underestimation, because wind information in the NARR data
set are reported at 30 m above ground, while the stacks release the CO2 plumes at more
than 100 m above ground. As a conservative approach the uncertainty that Borchardt
et al. (2021) used for ground winds was doubled in this work, i.e. ∆u=3 m/s. For the
San Juan measurement, where the surface wind speed at the airport nearby was 4.3 m/s,
this translates into a 70 % uncertainty in wind speed, whereas ∆u/u=49 % for the Four
Corners flight line. It seems crucial to derive techniques that will allow for an estimation of
effective 100 or 200 m wind speeds in the future. The steps taken by Jongaramrungruang
et al. (2019), who established a connection between plume angular width and wind speed
could possibly be developed further to make wind speed estimation independent of external
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information. Alternatively, flight patterns for upcoming measurement campaigns could be
adapted to contain double fly-overs of the target to establish the wind speed from two
subsequent measurements of the plume.

The uncertainties of the CO2 enhancement sums (integral C in the mass balance ap-
proach and the normalized integrated mass enhancement of the IME technique) were deter-
mined by varying the background concentration, the Z-score confidence level of the plume
classification scheme and the size of the smoothing kernel of the median filter plume mask
within reasonable bounds (see Table 4.5). All of the variations applied here result in plume
masks that closely resemble the shape of the masks discussed above (i.e. only reasonably
small variations are applied, which leave the plume intact). This sensitivity study shows
that the Four Corners plume is rather insensitive to small changes in the kernel of the me-
dian filter, which can be expected for such a streamlined plume with large enhancements.
An erroneous overestimation of the background concentration could induce errors in C on
the scale of 9 % for the Four Corners data, while the uncertainty in C from the Z-score con-
fidence level is below 3 %. The value of IME/L of the San Juan plume, which is generally
broader and exhibits many low-enhancement pixels, changes by 21 % if background XCO2

is underestimated by 1 %. The San Juan observation is also more sensitive to changes in
the confidence threshold of the mask, for which the test indicates an uncertainty of 24 %
at most. Small variations in the median-mask kernel shape have a negligible influence on
the total integrated mass of the plume.

Plume mask configuration C IME/L
/ kg/m / kg/m

Benchmark 90.5 131.4

XCObg
2 +1 % 82.6 104.4

XCObg
2 -1 % 95.5 149.2

Z-score level: 92 % 91.9 150.3
Z-score level: 98 % 87.7 100.0
Median-Filter Kernel = 7× 7 90.4
Median-Filter Kernel = 3× 3 90.5
Median-Filter Kernel = 15× 15 130.8
Median-Filter Kernel = 11× 11 132.1

Table 4.5: Impact of changes in plume mask variables on C and IME/L for the Four
Corners and San Juan data sets, respectively. Benchmark denotes the result obtained with
the plume mask as described in the previous sections and without the cloudy pixels in the
case of the San Juan facility. Changes in background XCO2 (XCObg

2 ) as well as variations
in the confidence level of the Z-test of the plume mask (benchmark: 95 %) and variations
in the dimension of the median filter smoothing kernel are investigated.

By adding the above errors in quadrature and propagating the errors of C and IME/L
(∆C/C = 0.11, ∆ (IME/L)/(IME/L)=0.37) into the source rate along with the wind speed
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errors, one obtains emission rates of 17.4±8.8 MtCO2y−1 and 17.8±14.1 MtCO2y−1 for the
Four Corners and San Juan scenes, respectively.

It is clear that the above discussion of flux uncertainties is only a starting point for future
inverse studies of power plant emission strengths. While not all errors could be addressed
here in their entirety (e.g. errors induced by XCO2 “stripes” of individual detector pixels)
and rather conservative uncertainty budgets have been chosen, it is clear that no reliable
emission rate calculations can be performed without a good knowledge of the local wind
speed.

The fact that the presented emission estimates differ from the EPA inventory by several
MtCO2y−1 in both cases is not unusual, given that no information about seasonal changes
in the activity of the two power plants is available here.
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4.3 Air-Borne specMACS Observation of a Small Power

Plant

This chapter summarizes the challenges encountered when retrieving XCO2 from spec-
MACS spectra while trying to resolve the XCO2 plume of a small power plant. In
contrast to the AVIRIS-NG sensor, specMACS has an even coarser spectral resolution
(FWHM>7 nm; recall Fig. 3.2) and the instrument, which is targeted at cloud properties,
has not been used for trace gas monitoring purposes before.

The specMACS measurement scene analyzed here is located near the town of Andernach
in the western part of Germany, and it includes a small power and heat generating station
with a source rate of about 0.18 MtCO2y−1 (EPRTR, 2021). At such low emission rates
and given the spatial resolution of specMACS, CO2 total column enhancements caused by
the power plant are expected to be on the order of 1 ppm in a Gaussian plume model.
Turbulence may create higher enhancements in confined areas, but nonetheless this facility
is not expected to create a plume with enhancements of an order of magnitude greater
than the retrieval noise (as in the two AVIRIS-NG cases in chapter 4.2). Previous chapters
of this thesis have shown that decreased spectral resolution leads to decreased accuracy
in XCO2 retrievals and thus it would be a surprise if the present specMACS scene would
actually resolve the plume of the small, local source. Yet, regardless of a plume detection,
the present chapter will provide some insights into the performance of CO2 retrievals at
specMACS resolving powers below λ/FWHM< 300.

Fig. 4.34 gives an overview of the measurement scene around the power plant south
of Andernach with an illustration of some exemplary specMACS spectra. Even for closely
neighboring pixels, variations in the spectral shape of CO2 absorption bands in the SWIR
spectral range are observable. These variations manifest themselves both in the slope of the
underlying spectral continuum as well as in the shape of the bands themselves. Two possible
explanations for this observation seem likely. First, recall that the FWHM of specMACS
varies across the spatial and the spectral dimensions of the sensor with changes on orders
of roughly 1 nm every 50 spatial pixels and even greater variability along the spectral
axis (see Fig. 3.2). These variations may induce visible differences even in spatial pixels
that are relatively close to each other – a phenomenon which underscores the importance
of an accurate ISRF characterization (and which may explain why AVIRIS-NG spectra
appeared more homogeneous in shape for closely neighboring spatial pixels). Second, since
the ground pixel size during this flight was on the order of ∼ 22×46 m2 in this observation,
it is possible that a non-negligible number of detector pixels suffer from inhomogeneous
illumination due to the presence of mixed surfaces within each pixel, which may drive
(small, but uncharacterized) changes in the instrumental spectral response function of the
sensor (compare e.g. Hummel et al. (2021)). Note that the aircraft ground track has not
been ortho-corrected for these measurements, so that each across-track column in Fig. 4.34
corresponds to one spatial focal plane array element.

A range of CO2 retrieval configurations was tested that included retrievals from either
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or both SWIR spectral regions (i.e. near 1.6 µm and/or 2.0 µm), but also retrievals from
the oxygen band near 1.3 µm to constrain the airmass of the atmospheric column. These
retrieval configurations differed mainly in the selection of (coupled/uncoupled) spectral
windows and the parameterization of the surface albedo (through a polynomial of variable
degree). Given the low source rate of the local CO2 point source, it is not surprising that
no retrieval set-up could be identified with which the CO2 plume from the power station
could be resolved in the specMACS imagery.

0 50 100 150 200 250 300
Across Track Pixel

0
50

100
150
200
250

Fr
a
m

e

4

8

12

R
a
d
ia

n
ce

 @
 1

.6
 µ

m
/ 
m

W
m
−2

n
m
−1

sr
−1

160

180

200

220

240

Fr
a
m

e

1500 1800 2100
Wavelength / nm

0

1

2

3

4

5

R
a
d
ia

n
ce

 /
 m

W
m
−2

n
m
−1

sr
−1

1500 1800 2100
Wavelength / nm

0

2

4

6

8

10

Figure 4.34: Overview of the flight scene south of Andernach, Germany, with the Rhine
river visible as a dark structure between across-track pixels 50-100 (top). Zoom into areas
containing an industrial area (red box) and nearby agricultural fields (orange box) (middle
row). Example spectra in the SWIR spectral range (bottom), color coded to the selected
pixels (‘x’) in the respective panels above.

However, the retrieval study with specMACS measurements revealed some more general
properties of the sensor’s CO2 measurement abilities in the SWIR spectral range. To this
end, only one spectral retrieval set-up is discussed here, which has been found to reduce
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residuals, and provide high convergence rates. This configuration uses the spectral windows
1, 538−1, 639 nm in the SWIR-1 coupled with the 1, 961−2137 nm band in the SWIR-2, as
well as baseline parameterizations with third and second degree polynomials in the SWIR-
1 and SWIR-2, respectively. The fit adjusts a spectral shift parameter in each spectral
window. In the oxygen band between 1, 181 − 1, 333 nm, the background was adjusted
through a line fit and O2-O2 CIA was taken into account according to Tran and Hartmann
(2008).

In contrast to AVIRIS-NG retrievals, convergence of the RemoTeC retrieval with spec-
MACS spectra was strongly reduced when the individual CO2 absorption bands were dealt
with in individual fitting windows. Spectral residuals were significantly reduced when
relatively large spectral windows were selected; specifically in the SWIR-1 range (e.g. a
shorter spectral retrieval window between 1, 538 − 1, 626 nm produced large residuals).
Fig. 4.35 illustrates the average spectral fitting quality of more than 30, 000 spectra that
converged in the specMACS scene near Andernach (selected from the upper 100 frames of
the scene). It is striking that large systematic spectral residuals remain especially in the
two CO2 spectral ranges, where the average deviation between model and measurement
seems greatest in between the two CO2 bands. These residuals could not be reduced by
changing the spectroscopic database, or by changing the configuration of the retrieval state
vector (i.e. introducing an intensity offset, coupling or decoupling H2O or CO2, changing
the degree of the polynomial to fit the spectral baseline). In contrast, residuals in the O2

band are rather low, except for the short wave end of the retrieval window.
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Figure 4.35: Averaged spectra (measured: solid line, modeled: dashed line) of specMACS
retrievals in the SWIR spectral range covering the oxygen absorption band near 1.3 µm
and the CO2 bands near 1.6 and 2.0 µm.

To evaluate the XCO2 retrieval performance, consider Fig. 4.36, which displays the
retrieved XCO2 field (total columns and column enhancements) along with the local scatter
of the retrieval and the correlation of XCO2 with albedo.

The overall standard deviation of retrieved XCO2 in the specMACS scene is 39 ppm
with an average XCO2 of 358 ppm. As a result of this large scatter in the retrieval,
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no plume could be detected in the scene. Note that XCO2 retrieval scatter increases to
over 60 ppm when retrieving XCO2 from only one of the SWIR spectral ranges. Large
standard deviations of ∼ 20 % were also observed in the oxygen column retrieval from the
1.3 µm band (not shown here). As such, the present O2 column retrievals are not suited to
improve the XCO2 retrieval by removing errors due to light scattering from the retrieved
column as they would introduce even more variability into the retrieval – consequently, all
subsequent XCO2 values discussed here were calculated using airmass values derived from
meteorological reanalyses.

There is a strong bias of the retrieved CO2 column that is observed along the spatial
detector axis (see Fig. 4.36 c)). The dependence of this bias on the spatial dimension of the
sensor hints at an instrumental artifact that propagates into the XCO2 retrieval. Several
effects should be regarded possible causes of this effect. On the one hand, these biases
could be caused by insufficiencies in the calibration of the SWIR sensor of specMACS.
It is possible that the radiometric calibration obtained in the lab does not match the
performance of the sensor in flight. The same could be true for the spectral calibration and
the Gaussian approximation of the SRF may also introduce errors. To some degree, such
spectral calibration issues could also cause the large residuals observed in Fig. 4.35. On the
other hand, such effects could be partly driven by non-Lambertian reflectance at the ground
(recall that there were hints of specular reflection induced retrieval issues in the previous
analysis of AVIRIS-NG spectra) or an unknown dependence of the measured signal on the
polarization state of the incident radiation. In future retrievals with detectable plumes,
such biases could be removed by calculating the median XCO2 concentration of each across-
track detector element in a background observation and correcting the retrieval with these
values. Similar “destriping” efforts have been explored, for example, by Borsdorff et al.
(2019). It would also be desirable to obtain an in-flight characterization of the sensor or to
renew the characterization that was carried out by Ewald et al. (2016) to check for changes
in the sensor’s calibration. Retrieval performance would surely increase were these issues
corrected in some way.

Retrieving XCO2 from either the SWIR-1 or the SWIR-2 bands alone resulted in stan-
dard deviations of 61 ppm in the SWIR-1 and 163 ppm in the SWIR-2. This shows that
although the spectral resolution of specMACS is lower in the shortwave CO2 bands than in
the 2 µm range, the higher signal levels of the SWIR-1 apparently provide added value to
the retrieval which out-competes the lower spectral resolution. Yet, coupling all CO2 bands
resulted in the lowest XCO2 retrieval standard deviation (σ = 39 ppm), which mirrors the
findings of the previous chapter. Further, as also observed in the previous chapters, a
spurious dependence of XCO2 with respect to the surface albedo remains visible in Fig.
4.36 b) and d). Although the XCO2-albedo correlation coefficient is merely 0.18 across the
scene, the pixels with lowest radiances also introduce the largest local standard deviation
into XCO2 and greater surface reflectance is associated with higher retrieval accuracy. Lo-
cal retrieval standard deviation is defined as the standard deviation of a 5 × 5 pixel box
around each spatial pixel in the scene, used here in lieu of proper retrieval errors, which
would require full specMACS noise vectors that were not available in this study. This local
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Figure 4.36: Overview of the specMACS retrieval with CO2 coupled between the SWIR
bands near Andernach, Germany. The red cross in a)-d) indicates the location of the power
plant. a) Measured radiances at 1.6 µm. b) XCO2 retrieval. c) Deviations of XCO2 from
the mean value (358 ppm). d) Local scatter metric calculated from the standard deviation
in XCO2 over the 5× 5 pixels around each scene. e) XCO2 versus albedo at 1.6 µm (note
logarithmic color-scale).
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scatter is greater over darker surfaces than over brighter ones, which is in line with the
observation of the previous chapter.

While the plume of the facility in the present data set could not be resolved, it seems
that large XCO2 enhancements should principally be observable with specMACS, although
this work cannot provide proof of this statement due to the lack of a sufficiently strong
source within the archived specMACS data set. Therefore, the current work can only be
regarded as a starting point for a future CO2 retrieval study with specMACS, where the
presented spectral set-up might serve as a first attempt to resolve the plume of a future
measurement. Special care must be taken in the interpretation of retrievals over surfaces
with low albedo, because it appears that these introduce systematic scatter and bias into
the retrievals. Furthermore, the present study indicates that a re-calibration of the sensor
may be beneficial in order to remove potential instrument artifacts that may arise from
errors in the spectral or radiometric characterization of specMACS.



Chapter 5

Conclusions and Outlook

In this thesis XCO2 retrievals were conducted across three orders of magnitude in spectral
resolution space with the goal of enabling CO2 emission monitoring techniques. A central
conclusion from the three case studies presented in chapter 4 is that a spectral resolution
of ∆λ =1.3 nm in the SWIR spectral range is the most promising spectral resolution for
CO2 emission monitoring purposes.

Finer spectral resolution (e.g. native GOSAT) may bring about moderate enhancements
in XCO2 retrieval performance, but at the cost of greatly increased spatial ground reso-
lution, which in turn would prohibit the detection of emission signals from small facilities
with emission rates below 10 MtCO2y−1.

Coarser spectral resolution (e.g. AVIRIS-NG, specMACS) can serve to qualitatively
resolve emission plumes in higher spatial detail, but the mixing of information on CO2

absorption (and H2O absorption) and albedo features in the retrieval becomes a decisive
factor against such sensors. Despite many attempts to separate molecular absorption
signals and ground reflectance signals in the retrievals, no decoupling of albedo and XCO2

was possible due to the low spectral resolution (∆λ ∼ 5 nm for AVIRIS-NG and ∆λ ∼
10 nm for specMACS) . Retrievals at such coarse spectral resolutions therefore require the
application of posterior bias correction methods and they are also afflicted with significantly
greater retrieval uncertainty than XCO2 retrievals at ∆λ = 1.3 nm.

A number of specific results from the present work are discussed in this chapter and
the three XCO2 retrieval case studies, namely chapters 4.1 to 4.3 are reflected upon.

Chapter 4.1 addresses the performance of a hypothetical satellite spectrometer at mod-
erate spectral resolution (∆λ ∼ 1 nm) in either the SWIR-1 (near 1.6 µm) or the SWIR-2
band (near 2.0 µm) with regard to XCO2 retrievals from solar backscatter measurements.
Retrievals of spectrally degraded GOSAT measurements were compared, without the addi-
tion of extra noise, with native GOSAT retrievals and the ground-based reference network
TCCON. Retrieval performance was also discussed across a range of resolving powers that
approximately bridges the gap between the AVIRIS-NG and CarbonSat instrument con-
cepts, namely resolving powers between 8,100 and 760 for the SWIR-1 and between 6,500
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and 700 for the SWIR-2.

Chapter 4.2 derives CO2 emission rates from two AVIRIS-NG measurements of power
plants by carrying out a retrieval study with an ensemble of the ∆λ ∼ 5 nm spectra of
AVIRIS-NG selected from a background region and selected from different surface kinds.
Favorable retrieval configurations were identified and the retrievals were subsequently cor-
rected for albedo bias. Plume masks were created and flux rates were calculated from
the mass balance and integrated mass enhancement methods as appropriate for different
measurement scenarios.

In chapter 4.3 XCO2 enhancements from air-borne specMACS measurements near a
small power plant were retrieved. Retrieval performance in the SWIR-1 and SWIR-2
spectral ranges was discussed and challenges that induce large scatter in the retrieved
XCO2 field thereby masking the plume in this measurement were identified.

Loss of information content in the retrieval caused by the reduction of spectral
resolution

It has been shown throughout chapter 4 that the information content of the retrieval
parameters describing absorption and scattering processes in the atmosphere is gradually
lost as spectral resolution is degraded.

In the first case study of this thesis, ch. 4.1, some sensitivity of SWIR-2 spectra at de-
graded spectral resolutions was observed with respect to three parameters that characterize
light scattering through effective parameters (size, height, and amount of aerosol particles).
However, the information content of this particle retrieval was limited to 0.38 degrees-of-
freedom for the three parameters on average. The analysis indicates that, nonetheless,
such a highly constrained aerosol fit significantly improves retrieval accuracy and preci-
sion when compared to a non-scattering XCO2 retrieval in the SWIR-2. In case of the
SWIR-1 spectral range, even lower average DFS for a particle retrieval was observed so
that the target SWIR-1 retrieval set-up neglects lightpath modifications due to scattering
events. As resolving power was decreased the XCO2 retrieval scatter around TCCON was
moderately enhanced. Below a resolving power of 1,000 a steep deterioration of retrieval
performance was observed in the SWIR-2. Target resolving powers of 1,200 and 1,600 were
identified in the SWIR-1 and SWIR-2, respectively, which were used as standard retrieval
configurations throughout further analyses. At these resolving powers, scatter around
TCCON measured 3.00 ppm (SWIR-1) and 3.28 ppm (SWIR-2), whereas the scatter of
native GOSAT retrievals amounted to 2.43 ppm. The proposed SWIR configurations can
be mapped onto a 256-spectral-pixel detector at a sampling ration of three per FWHM.
Additional retrieval metrics in the TCCON comparison indicate that the degraded spectral
resolution retrievals did not show significantly worse performance than the native GOSAT
retrievals (i.e. bias or correlations with the aerosol parameters were mostly small). Global
scale native GOSAT retrievals were used to evaluate the low-resolution SWIR runs, where
differences in the range of 2 to 3 ppm were found, which, in case of the SWIR-1, evidently
occured over desert areas. As opposed to the TCCON assessment the departures from na-
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tive GOSAT for the two SWIR set-ups also exhibited correlations with the effective aerosol
parameters (R frequently in the range 0.2-0.3 and up to 0.5). Given that native GOSAT
retrievals fare better at capturing the truth the performance of both SWIR retrievals is
expected to deteriorate in the presence of aerosols, which may induce regionally correlated
errors.

By degrading spectral resolution from ∆λ ∼ 0.1 nm to ∆λ ∼ 1 nm in the first case study,
individual CO2 absorption lines were found to blend into a homogeneous band structure
which apparently removes a large portion of the available information on atmospheric
aerosol. When ∆λ is further increased to 5 nm as studied with the AVIRIS-NG sensor
in ch. 4.2, it seems that the accuracy of XCO2 retrievals deteriorates further. It has
been demonstrated in this work that trace gas retrievals at such low resolving powers
profit from including many spectral signatures into the retrieval windows. Specifically,
the addition of a dedicated water vapor retrieval window near the opaque H2O band at
1.9 µm reduced the scatter in the retrieved XH2O field from 0.19�(SWIR-2) to below
0.1� and simultaneously reduced albedo correlation. The scatter of background XCO2

retrievals in the two AVIRIS-NG scenes had a variability of 7.5 ppm and 12.5 ppm for the
relatively bright Four Corners and the darker San Juan scenes, respectively. This indicates
that overall XCO2 retrieval scatter is greater than in the previous study with the degraded
GOSAT spectra at ∆λ ∼ 1 nm. In addition to increased XCO2 scatter large correlations
exist between trace gas columns and retrieved albedo values (correlation coefficients above
0.90 for XH2O and above 0.60 for XCO2). In fact the standard deviation of the retrieved
XCO2 can be regarded a function of surface albedo, where low albedo increases the retrieval
scatter while bright scenes exhibit less scatter. For this reason the darkest scenes where
the 2.1 µm albedo is below 0.03 must be excluded from all further analyses. The XCO2 of
the remaining scenes can be largely detrended from the surface albedo by means of a linear
bias correction that was derived from the ensemble of test spectra. A linear correction
was shown to reduce standard deviation in background XCO2 retrievals by more than one
ppm and to reduce albedo correlation coefficients from R=0.6 to R=0.2 (Four Corners data
set) and from R=0.4 to R=0.1 (San Juan data set), so that correlated retrieval errors are
weakened.

From the vantage point of XCO2 retrievals there is a strong indication that the loss
of spectral information to the levels of λ/∆λ < 2, 000 (as proposed for the hypothetical
50 × 50 m2 sensor in ch. 4.1 and as for AVIRIS-NG and specMACS) comes at the cost
of losing the ability to resolve natural processes of the carbon cycle on a global scale
with such instruments. Local scale retrieval accuracy may be sufficient to discriminate a
plume from the background and quantify XCO2 enhancements, but as these coarse-spectral-
resolution measurements are not suited for a retrieval of particle scattering parameters,
they will induce (albedo- and aerosol-related) biases between scenes captured around the
globe. In terms of improving the assessment of the atmospheric lightpath by means of
oxygen retrievals, large scatter was observed in O2 retrievals carried out at coarse-spectral
resolution with the AVIRIS-NG and specMACS sensors (both of which measure the 1.27 µm
O2 band). The specMACS XCO2 retrievals appeared to be strongly biased along the spatial
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axis of the detector of the instrument, which may hint at an instrument induced artifact
in the retrieval. This underscores the importance of sensor characterization, which is key
to a successful plume retrieval.

Spectral window selection: Optically thick absorption features and transparent
regions enhance retrieval performance

Traditional CO2 retrievals (e.g. native GOSAT) employ the “three-band” spectral set-up
consisting of the O2 A-band and the longwave SWIR-1 and SWIR-2 CO2 bands. This
thesis proposes spectral windows for CO2 retrievals at coarse spectral resolutions.

The target retrieval configurations, SWIR-1 and SWIR-2 of chapter 4.1, contain tens
of CO2 spectral lines, and more H2O lines, and the chosen retrieval windows all include
transparent regions toward the longwave and shortwave limits to constrict surface albedo
as well as its spectral variation. A major difference between the two retrieval set-ups is
the generally lower absorption optical depth of CO2 lines in the SWIR-1 compared to the
SWIR-2. Additionally, the SWIR-1 range contains a methane absorption band.

The aim of this work is to examine the appropriateness of the SWIR-1 and SWIR-2
configurations for a proposed imaging spectrometer that targets localized CO2 emission
sources at high spatial resolution. It has been demonstrated here that, at least for errors
that seem to be random in the TCCON and native GOSAT analyses, no substantial dete-
rioration of XCO2 retrieval performance is expected from confining spectral band coverage
to a single SWIR band and decreasing spectral resolving power to 6,000 and 1,000.

Yet, the SWIR-1 and SWIR-2 retrieval configurations suffer from enhanced errors that
are induced by particle scattering effects. With ground resolution of the order of 50×50 m2,
the hypothetical satellite sensor shall be focused on resolving plumes above the background
on the scale of a few kilometers at most. Hence, the findings suggest that, in terms of ran-
dom errors, a spectral set-up using a single SWIR band is promising. While this work has
not dealt with the question of whether or not a compact, single-band SWIR spectrome-
ter could reach a satisfactory signal-to-noise level, Strandgren et al. (2020) developed a
detailed instrument noise model for the proposed sensor and demonstrated through simu-
lations that random noise errors below 2 ppm are a reasonable assumption. At this noise
level the non-scattering SWIR-2 configuration resolved simulated plumes of a source with
an emission rate of 0.3 MtCO2 y−1 (Strandgren et al., 2020). Whether or not particle
scattering induced errors play a greater role for the hypothetical sensor, depends on the
homogeneity of the aerosol regime on the respective spatial scale of the CO2 plume. Cus-
worth et al. (2019) have determined ground albedo as a critical driver of CH4 retrieval
precision and strong albedo correlation in XCO2 retrievals with AVIRIS-NG have been ob-
served in this study. However, it is possible that surface reflectance could be characterized
in a straightforward fashion by independent measurements, as opposed to aerosols, which
are perhaps less temporally consistent in the vicinity of a local source.

Although both SWIR spectral ranges individually seem suited for coarse-spectral reso-
lution XCO2 retrievals, the enhanced random noise observed in the SWIR-1 indicates that
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the SWIR-2 may be the better choice. Increased noise levels in the SWIR-1 are likely due
to the weak absorption lines of CO2 found in this spectral range, so that a greater noise
propagates into the retrieval there. In addition, the SWIR-2 range appears the better fit
for the construction of a cloud mask, as its two CO2 bands display strongly varying opti-
cal depths. It is common practice in GOSAT cloud filtering approaches to retrieve XCO2

individually from the SWIR-2 bands and subsequently exclude scenes with large discrep-
ancies. A similar approach has shown promising performance in removing cloudy scenes
from AVIRIS-NG measurements, although future research should refine this technique.

The selection of retrieval windows in the AVIRIS-NG study showed that the SWIR-2
with its optically thick absorption bands fared better at retrieving low-standard-deviation
XCO2 fields from the measurements than the SWIR-1. Having the full SWIR spectral
range available in the retrieval adds to the information content on XCO2 and also en-
ables cloud filtering techniques that employ, for example, radiances in the SWIR-1 and
SWIR-2 and in the visible spectral range. Specifically, the radiance signals at 502 nm,
1, 548 nm and 2, 054 nm could be employed to construct a fast cloud mask by classify-
ing I1,548 nm/I2,054 nm + I502 nm/1 µWsr−1cm−2nm−1 >11 as cloudy pixels. Furthermore,
retrieval advantages were observed that manifested themselves through decreased scatter
and reduced spectral residuals, when each CO2 absorption band was contained within an
individual retrieval window, each of which included continuum radiance. One can con-
clude here that the strong bands in the SWIR-2 are crucial for a low-standard-deviation
XCO2 retrieval. The same seems to be true for the water vapor retrieval which bene-
fited from including strong H2O absorption near 1.8 µm. Additionally, the choice of small
spectral retrieval windows emphasizes that retrievals at such coarse spectral resolution are
prone to mixing information on albedo and trace gas signals and therefore, albedo must
be characterized in small spectral intervals.

However, interference of particular surface types with molecular absorption signals can-
not always be avoided, as for example in the case of a man-made surface structure which
inhibits the water vapor retrieval from the 1.8 µm band in the Four Corners flight line.
The retrieval study has also shown that surfaces with albedo below 0.03 are too dark for
meaningful analyses. As a consequence, CO2 plumes that are blown over water or very
dark vegetation may systematically escape detection. To remedy the strong albedo depen-
dence of XCO2 retrievals in my AVIRIS-NG analysis, a linear bias correction was developed
which was shown to reduce overall XCO2 scatter and albedo correlations (R on the scale
of 0.1-0.2).

The analysis of specMACS retrievals shows that large systematic spectral residuals
are observed in the SWIR spectral ranges. A future study should try to minimize these
residuals, and should then compare retrieval performance in the two SWIR bands. This
study found a lower XCO2 standard deviation for SWIR-1 retrievals than for SWIR-2-only
retrievals, which is opposed to the expectation that the spectral range with finer spectral
resolution should perform better (∆λ = 12.4 nm in SWIR-1 and ∆λ = 8.5 nm in SWIR-
2). This observation may hint at a retrieval advantage at the low spectral resolution of
specMACS due to higher signal levels in the SWIR-1, which may be explored in another
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study. It would be interesting to incorporate the actual noise vectors of AVIRIS-NG and
specMACS in future studies with these sensors so that a more robust analysis of retrieval
accuracy can be obtained.

Implications of local wind speed uncertainties on CO2 monitoring capabilities

Once XCO2 has been retrieved at a high spatial resolution near a localized carbon dioxide
source, the CO2 monitoring capability of such a measurement and retrieval ultimately
depends on low uncertainties in the knowledge of the local wind speed. Chapter 4.2 has
highlighted that the absence of reliable wind information will incur large uncertainties on
any flux estimate from a remote measurement. As noted by Varon et al. (2018), flux
rate errors in low wind speed scenarios quickly become dominated by wind speed errors,
which was also observed in this work, where the San Juan emission rate has an error of
79 % due to the poor knowledge of the wind speed. Although poor knowledge of the local
wind speed is a major impediment in CO2 monitoring techniques with passive sensors,
high spatial resolution is still necessary to detect plumes from weak sources and it reduces
errors in the mass balance and IME flux inversion methods, because the plume shape is
resolved. As opposed to methane, which is often released near the ground, power plants
pose an additional challenge as their stacks can reach heights of 100 to 200 m, which has
to be considered for an appropriate emission estimate (see also Brunner et al. (2019)).
As a consequence, surface wind information from weather stations cannot readily be used
for the flux inversion. NARR 30 m wind speed reanalyses were adopted here and an
uncertainty of 3 m/s was applied, which is motivated by the study of Borchardt et al. (2021)
who applied a 1.5 m/s uncertainty when working with regional surface measurements for
methane sources near the surface. Doubling the uncertainty of Borchardt et al. (2021)
seems like a conservative approach in the absence of established methods to estimate wind
speed errors for tall emission stacks. Future studies should therefore investigate if there
are relationships between surface winds and winds in the lowest 300 m of the troposphere.
Alternatively, further studies could try to derive wind speed information from a proxy
species, such as NO2 (see e.g. Kuhlmann et al. (2019)), or from empirical relationships
involving the plume angular distribution (Jongaramrungruang et al., 2019).

Outlook

The field of CO2 (and CH4) remote sensing from air- and space-borne instruments is
evolving rapidly and the present study shows that XCO2 retrievals can resolve localized
XCO2 enhancements at resolving powers as low as λ/∆λ ∼ 400. While a significant effort
is currently spent on designing sensors that are custom-built for trace gas imaging (e.g.
ch. 4.1), the scientific community has started exploring CO2 retrieval possibilities from
sensors that were not originally built for gas detection, such as AVIRIS-NG. It appears
that there is a trend to derive trace gas (especially CH4) information from sensors that
one would not intuitively associate with trace gas retrieval capability, e.g. the specMACS
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cloud sensor (ch. 4.3), although no plume could be identified here. These developments
include (Cusworth et al., 2019) trace gas retrievals from satellite sensors such as EMIT
(∆λ ∼ 7 − 10 nm, Green et al. (2020)), EnMAP (∆λ ∼ 10 nm, Guanter et al. (2015)),
PRISMA (∆λ ∼ 10 nm, Loizzo et al. (2018)), or HyspIRI (∆λ ∼ 10 nm, Hochberg et al.
(2015)). In fact, even instruments like Sentinel-2 (Martimort et al., 2012), which do not
measure continuous spectra, but rather collect radiation in several distinct spectral bands
(each with bandwith on the order of ∆λ > 15 nm) have been shown to be sensitive
to large methane enhancements (Varon et al., 2021). It is possible that such monitoring
opportunities will also be realized for CO2 point sources (potentially using the same sensors)
and that the ever expanding number of Earth-observing satellites will enable higher spatial
and temporal coverage of large point sources through multi-satellite observations of the
same sources (Cusworth et al., 2021).

The loss of spectral information content in measurements with degraded spectral reso-
lution indicates that there are thresholds for CO2 plume detection which were not derived
here. Nonetheless it seems clear that the above mentioned case studies of methane plume
detections at ∆λ > 5 nm, which are carried out against a relatively small atmospheric CH4

background, do not immediately translate into CO2 monitoring capabilities with these sen-
sors. Strandgren et al. (2020) illustrate that 64 % of worldwide CO2 emissions from power
plants originate from power plants with medium source strengths, i.e. facilities that emit
1-10 MtCO2y−1. Thus, it is crucial that CO2 monitoring instruments can resolve plumes
from relatively small sources so that their measurements are relevant to inform climate
policies. Because of the high atmospheric CO2 background, one can remain doubtful that
such medium sized CO2 sources can be monitored reliably and in a quantitative fashion
with sensors that have resolutions on the scale of ∆λ ∼ 10 nm. This thesis shows that
potential exists for coarse-spectral resolution sensors to resolve CO2 plumes of localized
sources, but in the case of specMACS, it would likely take a large source (as in the AVIRIS-
NG examples) for a successful detection. One of the biggest sources of uncertainty, which
was not addressed in this study, is the impact of particle scattering on the (mostly) non-
scattering coarse-spectral-resolution XCO2 retrievals carried out in this work. Work by
Huang et al. (2020) hints at aerosol-scattering induced retrieval biases in methane inver-
sions from AVIRIS-NG, which are on the order of ∼ 5 % of the total column. A simulation
study is necessary to approximate the influence of aerosols and clouds on CO2 monitoring
methods. Challenges that arise with complicated atmospheric aerosol scenarios may be
overcome eventually by operating a dedicated aerosol sensor (e.g. the instrument proposed
by Hasekamp et al. (2019)) in parallel to the CO2 sensor. While the general feasibility of
measuring XCO2 at coarse spectral resolution has been demonstrated here, further studies
should especially address the effects of aerosol scattering on the local error budget.

While the present study follows a rather traditional path of applying full-physics XCO2

retrievals to spectra of high-spatial-resolution imagers, computationally less expensive re-
trieval approaches may become more important in the future when large amounts of imag-
ing spectrometer data may be used synergetically and for a vast number of individual
sources. To this end, it is conceivable that neural networks (e.g. David et al. (2021))
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and matched filter retrievals (e.g. Foote et al. (2020)) will play a more visible role in CO2

monitoring applications. Algorithms, which automate methane plume detection and plume
mask generation already exist (Kumar et al., 2020) and future research will surely drive
similar achievements for CO2 monitoring, although it is unclear whether such techniques
can replace the many steps involved in deriving the flux rate of a point source.

Finally, emission estimates may be optimized by sampling the plume at an early time of
day, where turbulence is not as pronounced as during the midday flights of the AVIRIS-NG
sensor of ch. 4.2. However, the sampling time must still allow for a sufficiently large solar
zenith angle.



Appendix A

Does GOSAT Capture the Los
Angeles XCO2 Enhancement?

With its 10.5 km diameter ground footprint, the GOSAT satellite has enabled studies of
greenhouse gas concentrations above major urban agglomerations. For instance, Kort et al.
(2012) have studied XCO2 enhancements above the Los Angeles (LA) megacity and found
a systematic offset between the city center and the rural regions east and north of it. They
reported an average offset between GOSAT measurements over urban and rural sites of
+3.2±1.5 ppm. In connection with the spectral sizing effort for a high spatial resolution
XCO2 sensor (ch. 4.1), the work by Kort et al. (2012) would be well suited to illustrate
the effect of decreased spectral resolution on the ability to retrieve XCO2 gradients from
GOSAT measurements. As it is not known which GOSAT observations Kort et al. (2012)
have used for their study, this study tries to identify spectra measured above and near LA,
that can be used to show the XCO2 gradient between the megacity and its surroundings. To
this end, GOSAT retrieval data of the Atmospheric CO2 Observations from Space (ACOS)
algorithm were used with which Kort et al. (2012) performed their analysis (JPL, 2018,
O’Dell et al., 2012, 2018). These data correspond to build version 3.5 (B35) of the ACOS
algorithm and the retrievals are not bias corrected.

The data were examined for soundings that were recorded within 0.5 ◦ of downtown LA
(“urban” observations) and soundings that were recorded at a distance 0.75 ◦ < r < 2.5 ◦

away from downtown LA (“rural” observations) and the soundings were specifically filtered
for the temporal range of GOSAT measurements that Kort et al. (2012) used as well.

The left hand side plot of Fig. A.1 shows the result of this survey. The vast majority of
the urban soundings shown here were obtained with the target mode pointing approach of
GOSAT. Without filtering any of the downloaded data – neither at background or urban
sites – one can reproduce a similar XCO2 offset between the megacity and its surround-
ings, ∆XCO2=4.3±3.9 ppm, albeit with less statistical significance than in the original
publication (∆XCO2 = 3.2 ± 1.5 ppm reported in Kort et al. (2012)). This difference
may originate from a potential filtering of data in the rural background, since the supple-
mentary material given by Kort et al. (2012, Fig. S2) show that the authors used only
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Figure A.1: GOSAT soundings near LA between June 2009 and August 2010 identified
in ACOS data sets plotted on a physical map. The locations of the cities Bakersfield and
San Diego are indicated with circles. Left: center locations of soundings that are found
in the downloaded data. All soundings whose centers lie within the large circle around
LA, were considered to be “urban” GOSAT measurements. Right: A zoom on the LA
megacity basin shows that ACOS B35 (orange diamonds) and B73 (red circles) differ in
the geolocation of the soundings (i.e. “original” (B35) vs. “best estimated” (B73) ).
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Figure A.2: Time series of ACOS B35 XCO2 data. Qualitatively, results by Kort et al.
(2012) can be retraced, albeit with decreased statistical significance. Left: downloaded
ACOS B35 data, right: differences between urban and rural soundings in 10-day bins.

82 soundings in the desert whereas 280 rural soundings were considered here (Fig. A.1).
It may make sense to discard certain soundings when the location of a sounding does not
reflect typical conditions at the respective site. Although Kort et al. (2012) do not go into
detail, they might have neglected some of the available background observations like the
ones west of Los Angeles on days when the wind comes from the east so as to not use
background spectra contaminated with the city plume.
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The time series of differences for the ACOS B35 data product is shown in Fig. A.2.
These results were obtained by binning differences of urban and rural XCO2 concentrations
in 10–day bins in the time between June 2009 and August 2010. Changing the width of
the bins to 7 or 14 days respectively, changes the offset value to ∆XCO2=4.0±4.6 ppm
and ∆XCO2=4.3±3.2 ppm, respectively.
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Figure A.3: Time series of XCO2 concentrations around LA for ACOS B73 and RemoTeC
calculations (top left and bottom left, respectively) and differences between urban and
rural soundings in 10-day bins (right).

After the publication of Kort et al. (2012), GOSAT geolocations were revised in 2013,
which affected all previous (and future) target mode measurements of GOSAT, because of
inaccurate pointing of the instrument. This revision caused significant deviations of the
sampling pattern over the urban area of Los Angeles in the time span considered by Kort
et al. (2012). Fig. A.1 (right hand side) shows that the update in geolocations means that
individual soundings over LA are corrected to ground spots as far as ∼10 km away from the
originally assumed measurement location. Rural observation sites were not affected by the
correction of geolocations, because they were not recorded in target pointing mode. The
updated ACOS-GOSAT product corresponds to build 7.3 (B73) and was provided by H.
Suto (Suto, 2018). Corrected geolocations of GOSAT are referred to as “best estimated”
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geolocations1.

It is interesting to try to reproduce the study by Kort et al. (2012) once more with the
newer ACOS B73 dataset as well as with RemoTeC to see if the XCO2 signal above the
city still exists when the new geolocations are applied.

Fig. A.3 shows that the XCO2 offset observed between city and desert disappears in
both ACOS and RemoTeC retrievals using the updated geolocations. The offsets observed
between the city and the desert is ∆XCO2=1.2±3.0 ppm (ACOS B73) and ∆XCO2=-
0.9± 4.0ppm (RemoTeC)2. In other words, the retrievals using updated geolocations do
not exhibit a significant XCO2 urban-rural gradient near LA.
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Figure A.4: Early versions of GOSAT data products (as in ACOS B35, orange diamonds)
contain geolocations that may lead to XCO2 concentrations above LA, which are in conflict
with the values obtained with the “best estimated” update of the sounding locations (as
in RemoTeC, grey stars).

This change is caused by a variation in ground elevation that goes along with the
change in geolocation. Similar observations have been discussed in detail by Kiel et al.
(2019) who emphasized the impact of erroneous a priori surface pressure and elevation

1These are the geolocations used in all GOSAT analyses in this work and which are currently used with
RemoTeC.

2When the size of the bin intervals is changed to 7 and 14 days, respectively, ACOS B73 ∆XCO2 values
become ∆XCO2=1.3±3.2 ppm and ∆XCO2=1.2±2.4 ppm, respectively. Likewise, RemoTeC offsets are
not qualitatively affected by changing the bin size. ∆XCO2 values become ∆XCO2=-0.8±3.4 ppm and
∆XCO2=-1.3±4.2 ppm for 7 and 14 day bins, respectively.
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databases. The Los Angeles basin is bounded by a mountain range to the north and
the basin consequently exhibits a steep elevation profile. As a result, satellite sounding
locations over LA at distances of ∼10 km may have differences in elevations on the order
of 100 m. Such differences in ground elevation have a strong impact on the calculation
of XCO2, because the spectroscopically determined CO2 number density is divided by the
airmass of the atmospheric column beneath the satellite sensor, to obtain XCO2. The
airmass will vary considerably depending on ground altitude. GOSAT observations above
the “urban” region of LA were primarily affected. Changes in urban XCO2 retrievals are
presented in Fig. A.4, which highlights that the new geolocations systematically lead to
lower XCO2 retrievals.
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Figure A.5: Comparison of ACOS B35 and B73 XCO2 data above the city of LA to colo-
cated TCCON soundings at the nearby Pasadena station in 2013. ACOS B73 – built with
the updated geolocations – exhibits a standard deviation about TCCON measurements of
2.4 ppm while ACOS B35 shows a greater scatter of 4.7 ppm around TCCON.

This finding implies that – given the geolocation update actually improved GOSAT
sounding accuracy – the gradients resolved by Kort et al. (2012) may be regarded as
artifacts of erroneous geolocations/poor knowledge of the actual satellite pointing. To
test this hypothesis, one can compare XCO2 values from the different ACOS versions B35
and B73 to XCO2 measured at the TCCON station in Pasadena (within the Los Angeles
basin). Fig. A.5 indicates that the newer dataset compares better to that TCCON site
than the B35 product with old geolocations. The scatter around TCCON is decreased from
4.7 ppm (old geolocations) to 2.4 ppm when the updated, “best estimated” geolocations
are utilized.
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Figure A.6: Assuming erroneous ground elevation data for satellite remote sensing methods
that rely on accurate knowledge of the airmass below the satellite introduces roughly 1 ppm
XCO2 error for every 20 m error.

Thus, one can conclude that the GOSAT geolocation correction truly improved the
retrieved XCO2 values and that the results of Kort et al. (2012) are a relic of erroneous
sounding location data. The key message of this analysis is that the accuracy of a point-
ing system for a satellite sensor is absolutely crucial for the measurements to be useful.
Especially over hilly terrain do pointing errors result in large uncertainties in the ground
altitude of the observed ground spot. Such errors in height directly translate into errors in
XCO2, which add up to ∼1 ppm per 20 m. This correlation is shown in Fig. A.6, where
the difference in XCO2 of colocated ACOS B35 and B73 soundings is plotted with respect
to the respective difference in ground altitude.

Hence, the LA megacity could not be used as a testbed to assess the impact of de-
graded spectral resolution retrievals on XCO2 gradients, because even native GOSAT does
not resolve such gradients over a measurement period of ∼ 500 days. In conclusion, ac-
curate knowledge of the ground location of satellite soundings is essential to infer XCO2

concentrations from such measurements. Sensors with especially small ground footprints
will show an increased sensitivity to ground altitude. At the same time smaller ground
pixels, and especially imaging information, may also help to assign a correct geolocation to
the instrument, because of increased sensitivity to changes in surface reflectance on small
spatial scales.



Appendix B

Supplemental Information for
TCCON Analyses

This appendix lists two supplemental Tables providing traceability of the TCCON data
used in this study (Table B.1) and additional details on inter-station-variability of native
and degraded GOSAT retrievals (Table B.2). The latter contains the data displayed in
Fig. 4.7.
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TCCON station Reference

Sodankyla Kivi et al. (2014)
Lamont Wennberg et al. (2016b)
Bialystok Deutscher et al. (2015)
Anmeyondo Goo et al. (2014)
Bremen Notholt et al. (2014)
Tsukuba Morino et al. (2018a)
Karlsruhe Hase et al. (2015)
Edwards Iraci et al. (2016a)
Paris Té et al. (2014)
JPL Wennberg et al. (2016a)
Orleans Warneke et al. (2014)
Pasadena Wennberg et al. (2015)
Garmisch Sussmann and Rettinger (2018a)
Saga Kawakami et al. (2014)
Zugspitze Sussmann and Rettinger (2018b)
Hefei Liu et al. (2018)
Park Falls Wennberg et al. (2017)
Rikubetsu Morino et al. (2018b)
Izana Blumenstock et al. (2017)
Ascension Island Feist et al. (2014)
Indianapolis Iraci et al. (2016b)
Darwin Griffith et al. (2014a)
Four Corners Dubey et al. (2014), Lindenmaier et al. (2014)
Reunion De Mazière et al. (2017)
Wollongong Griffith et al. (2014b)
Lauder 1 Sherlock et al. (2014a)
Lauder 2 Sherlock et al. (2014b)

Table B.1: TCCON data sets utilized in this work. Adopted from the supplementary
documentation of Wilzewski et al. (2020).
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TCCON N Bias / ppm σ / ppm
station FP SWIR-1 SWIR-2 FP SWIR-1 SWIR-2 FP SWIR-1 SWIR-2

Sodankylä 217 211 217 -0.38 -0.83 2.55 2.08 2.71 3.47
Bia lystok 714 673 708 -0.76 -0.88 -0.6 2.14 2.82 3.46
Bremen 229 218 229 -0.28 -0.75 1.49 2.43 3.11 3.47
Karlsruhe 512 478 512 -0.82 -0.66 0.39 2.49 3.26 3.86
Paris01 215 211 214 -1.52 -1.37 -0.52 2.61 3.4 3.2
Orléans 740 712 736 -0.77 -1.02 0.28 2.06 3.13 3.52
Garmisch 493 462 493 -0.4 -0.47 0.39 2.14 2.93 3.7
Zugspitze 69 66 69 -1.47 -1.24 0.83 2.85 3.04 4.24
Park Falls 940 905 896 -0.53 -0.35 -0.21 2.09 2.84 3.41
Rikubetsu 68 60 68 -1.47 -1.52 -1.02 1.82 2.87 3.12
Indianapolis01 195 193 188 0.18 -0.15 1.24 1.84 2.62 2.99
Four Corners 45 30 34 -0.6 0.14 0.29 3.36 2.24 2.19
Lamont 5047 4939 4208 -0.62 -0.02 -1.15 1.98 2.83 2.62
Anmyeondo 9 9 9 -1.1 0.53 1.05 2.75 2.29 2.63
Tsukuba 837 731 830 1.15 0.16 0.63 2.81 3.38 3.83
Edwards 1666 1575 1462 1.98 2.07 2.31 2.64 2.95 3.0
JPL02 713 652 659 0.52 0.15 0.36 1.95 2.77 2.79
Pasadena01 2209 2084 1979 0.27 0.09 0.7 2.58 2.97 3.05
Saga 293 264 287 -0.2 -1.21 -0.96 2.29 3.31 3.53
Hefei 159 148 159 -0.96 -0.09 -0.77 2.24 3.2 3.0
Darwin 1521 1510 1404 1.07 0.63 -0.51 1.59 2.14 2.43
Wollongong 1029 975 974 -0.4 -1.05 -0.58 2.22 2.7 3.12
Lauder02 65 61 65 -2.22 -1.92 -0.06 2.04 2.61 3.48
Lauder01 17 15 17 -1.48 -3.11 -0.25 2.7 2.67 4.1

Table B.2: Performance of full-physics (FP), SWIR-1 and SWIR-2 retrievals for GOSAT
scenes colocated with individual TCCON sites. Sites are ordered north to south (TCCON
station). Number of GOSAT spectra (N), average differences between the current retrievals
and TCCON (Bias) and standard deviation (σ) are shown. Table adopted from Wilzewski
et al. (2020).
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L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovens-
mann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen,
K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert,
J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima,
Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond,
M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang,
G. van der Werf, D. Wickland, M. Williams, and C. Zehner. Current systematic carbon-
cycle observations and the need for implementing a policy-relevant carbon observing
system. Biogeosciences, 11(13):3547–3602, 2014. doi: 10.5194/bg-11-3547-2014. URL
https://bg.copernicus.org/articles/11/3547/2014/.

Copernicus Climate Change Service (C3S). ERA5: Fifth generation of ECMWF atmo-
spheric reanalyses of the global climate. Copernicus climate change service Climate Data
Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/home, 2017. Last Ac-
cessed: 2021-01-03.

D. Crisp, C. E. Miller, and P. L. DeCola. NASA Orbiting Carbon Observatory: measuring
the column averaged carbon dioxide mole fraction from space. Journal Of Applied Remote
Sensing, 2(March 2008):23508, 2008. doi: 10.1117/1.2898457. URL https://doi.org/

10.1117/1.2898457.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown,
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