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Zusammenfassung 

Die chronische Pankreatitis (CP) zeichnet sich durch eine weit verbreitete fibro-

inflammatorische Schädigung der Bauchspeicheldrüse aus. Eine Vielzahl von 

Faktoren wie chronischer Alkoholismus, Tabakkonsum, Autoimmun-

erkrankungen, duktale Obstruktion oder genetische Risikofaktoren spielen eine 

Rolle in der Pathogenese. Die CP ist eine progressive Erkrankung, die zu 

irreversiblen exo- und endokrinen Funktionsstörungen, chronischen 

Schmerzen und einem erhöhten Risiko für ein Bauchspeicheldrüsenkarzinom 

führt. Die Inzidenz und Prävalenz der CP steigt laut aktuellen 

epidemiologischen Studien kontinuierlich. Das stellt nicht nur eine potentielle 

Bedrohung der öffentlichen Gesundheit dar, sondern auch eine hohe 

wirtschaftliche Belastung für unsere Gesellschaft. Histologisch ist die CP, 

insbesondere in fortgeschrittenen Stadien, durch Atrophie von Azinuszellen, 

Obstruktion der Ausführungsgänge, starke Immunzellinfiltrate, massive Fibrose 

und Lipomatose gekennzeichnet. Obwohl die Pathogenese der CP noch nicht 

vollständig verstanden wird, gehen wir aktuell davon aus, dass die Interaktion 

von Immunzellen und aktivierten Myofibroblasten, sog. pankreatische 

Sternzellen (PSCs), die Progression der Erkrankung in Abhängigkeit von 

intrinsischen und extrinsischen Faktoren entscheidend beeinflusst. Ein 

besseres mechanistisches Verständnis basierend auf den histopathologischen 

Veränderungen bei der CP hat daher das Potential, die Entwicklung wirksamer 

Therapiestrategien zu ermöglichen.  

In der vorliegenden Studie haben wir eine Multiplex-Färbetechnik, bestehend 

aus 28 individuellen Markern, verwendet, um die zelluläre Zusammensetzung 

des Entzündungs- und Stroma-Kompartiments innerhalb einzelner Gewebe-

Mikroarray-Schnitte (TMAs) von 58 operierten Patienten mit CP in Abhängigkeit 

von der Ätiologie der Erkrankung präzise zu visualisieren. Zusätzlich 

analysierten wir mithilfe einer automatisierten maschinellen Lernanalyse 

(AutoML) die Assoziation von zelluläre Komposition mit dem klinischen 

Schweregrad, um Charakteristika zu identifizieren die mit einer exokrinen 
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Pankreasinsuffizienz assoziiert sind.  

Wir beobachteten ein vermehrtes Auftreten von CD45+-Infiltraten bei Läsionen 

der autoimmunen Pankreatitis (AIP), im Vergleich zu der alkoholischen CP und 

anderen Formen der CP. Weitere Analysen von immunzellulären Subtypen 

zeigten, dass die Häufigkeit von Granulozyten bei der AIP im Vergleich zur 

alkoholischen CP und anderen CP-Varianten erhöht war. Im Gegensatz dazu 

war die Dichte zytotoxischer T-Zellen bei der alkoholischen CP und anderen CP 

Formen im Vergleich zur AIP signifikant erhöht. In ähnlicher Weise war die 

Häufigkeit aktivierter T-Zellen sowohl bei alkoholischer CP als auch bei anderen 

CP-Varianten im Vergleich zur AIP deutlich erhöht. Obwohl die 

zugrundeliegende Ätiologie allein, keinen signifikanten Einfluss auf die 

Stromaaktivierung bei den Subtypen der CP hat, konnten wir deutliche 

Unterschiede bei Subgruppenanalyse des Immuninfiltrats, insbesondere bei 

TH0-Zellen, zytotoxischen T-Zellen und tendenziell auch Granulozyten in 

Abhängigkeit vom aktivierten Stromaindex und der Ätiologie feststellen, was die 

Rolle des Aktivierungsmusters des Immuninfiltrats für die Fibrosierung 

unterstreicht. Darüber hinaus zeigte die AutoML-Berechnung die zehn 

stärksten Prädiktoren für exokrine Insuffizienz bei Patienten mit CP an. Wir 

zeigen, dass die Dichte der aktivierten PSCs mit proliferativer Fähigkeit, gefolgt 

von NK-Zellen und beta-Zellen, am bedeutendsten für die Prädiktion des 

Beginns einer exokrinen Pankreasdysfunktion ist.  

Zusammenfassend haben wir in diesem Projekt eine 12-Plex-Färbetechnik für 

TMA-Proben von Patienten mit CP etabliert. Darüber hinaus verfeinerten wir 

ein halbautomatisiertes computergestütztes Analyseverfahren, das effizient zur 

digitalen Untersuchung histologischen Merkmale der fortgeschrittenen CP 

eingesetzt werden kann und so quantitative Analysen ermöglicht Weiterhin 

identifizierten wir die zehn wichtigsten Merkmale, die mit dem Vorliegen einer 

exokrinen Insuffizienz der Bauchspeicheldrüse assoziiert sind. Diese Arbeit 

trägt zu einem besseren Verständnis der zugrundeliegenden 

Pathomechanismen bei Entsteheung und des Fortschreitens der CP bei.  
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1. Summary 

Chronic pancreatitis (CP) is characterized by a widespread fibroinflammatory 

injury of the pancreas, which is caused by a variety of factors, such as chronic 

heavy alcohol consumption, tobacco use, autoimmune disease, ductal 

obstruction as well as genetic risk factors and rare causative mutations. CP is 

a progressive disease which ultimately leads to irreversible exocrine and 

endocrine dysfunction, chronic pain and increased risk of pancreatic cancer. 

The incidence and prevalence of the disease tend to be continuously increasing 

according to recent epidemiological studies, which is not simple a potential 

threat to public health, but brings highly economic burden to society. 

Histologically, CP, especially at advanced stages, is characterized by severe 

damage of pancreatic acinar cells, abnormalities of pancreatic ducts, large 

amounts of immune cell infiltration, massive fibrosis and fatty tissue 

replacement. Although the fundamental pathogenesis of CP is still not 

determined, it is well known that immune cellular infiltrates as well as activated 

pancreatic stellate cells play crucial roles in the development of the disease. 

Thus, improved understanding of histopathologic changes in CP have the 

potential to develop efficacious therapeutic regime for the patient involved.  

In the present study, we applied multiplex staining technique comprised of 28 

individual markers to precisely visualize pancreatic cellular compositions of the 

inflammatory and stromal compartments within individual tissue microarray 

(TMA) sections from 58 patients with CP. Additionally, we executed automatic 

machine learning (AutoML) analytics to the multiplex-stained images coupled 

with clinical parameters of the patients to identify which features were 

associated with prediction of exocrine insufficiency.  

We observed that CD45+infiltrates are more frequent in lesions from 

autoimmune pancreatitis (AIP) compared with alcoholic CP and other forms of 

CP. Further analyses of immune cellular subtypes showed that abundance of 

granulocytes was statistically enhanced in AIP when compared with alcoholic 
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CP and other CP. In contrast, density of cytotoxic T cells was significantly 

amplified in both alcoholic CP and other CP when compared with AIP. Similarly, 

the frequency of activated T cells was notably enriched in alcoholic CP as well 

as other CP compared to AIP. Although the etiology alone did not lead to 

significant changes in stroma activation in the different subtypes, subgroup 

analysis showed, that TH0 cells, cytotoxic T cells and less pronounced, 

granulocytes are associated with distinct changes in the activated stroma index 

(ASI) and relation to the underlying etiology. This further supports that the 

activation pattern of inflammation plays a role for the progression of fibrosis.  

Additionally, AutoML computation robustly indicated the top ten predictors for 

exocrine insufficiency in patients with CP. We found the density of activated 

PSCs with proliferative ability, followed by NK cells and islets, are of the greatest 

importance in predicting the onset of pancreatic exocrine dysfunction.  

Overall, in this project, we established a 12-plex staining technique applied to 

TMA sections from patients with CP and refined a semi-automated 

computational analysis method which can be efficiently used to analyze 

digitalized images. Furthermore, we depicted the histological characteristics of 

advanced CP and compared those features among distinct patient groups. 

Additionally, we identified top ten features associated with the presence of 

pancreatic exocrine dysfunction. Our work has the potential to improve the 

understanding of the underlying mechanisms in developing CP and the 

progression of the disease. 
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2. Introduction 

Chronic pancreatitis (CP) refers to a fibroinflammatory syndrome of the 

pancreas, which is induced by a variety of factors including excessive alcohol 

consumption and smoking, autoimmune disorders as well as genetic risk 

factors and rare causative mutations [1]. Patho-physiologically, CP is 

associated with the progressive damage of the pancreatic architectures and 

ultimately leads to irreversible exocrine and endocrine insufficiency [2]. 

 

2.1 Epidemiological features of chronic pancreatitis 

The epidemiological features of CP are far from perfectly elucidated. The lack 

of uniform diagnostic criteria makes it difficult to precisely identify the patients 

with CP, particularly those who are at early stages. Generally, the acquisition of 

accurate diagnosis of CP is often based on a comprehensive combination of 

the potential risk factors, typical clinical manifestations as well as specific 

imaging features [3]. Thus far, only scarce population-based studies on the 

prevalence and incidence of CP have been reported in the literature. The 

incidence of CP in European countries reportedly varies from 4/100,000 in the 

UK [4] and 6.4/100,000 in Germany [5] to 13.4/100,000 in Finland [6]. A recent 

population-based investigation conducted by Yadav et al identified 106 incident 

cases of CP in Olmsted county, US, between1977 and 2006, including 89 

clinical cases and 17 diagnosed by necropsy [7]. The overall age-adjusted and 

sex-adjusted incidence rate suggested by the investigation was 4.05/100,000 

capita-years and the age-adjusted and sex-adjusted prevalence rate was 41.76 

per 100,000 population [7]. There is a significant gender difference in the 

occurrence of CP in all studies, with men bearing a higher risk of the disease 

than women. Furthermore, the most recent analyses present an increasing 

incidence and prevalence of the disease [5]. Data from Yadav and colleagues 

demonstrate that the incidence rate of CP increased dramatically from 2.49 

cases per million inhabitant-years between 1977 and 1986 to 4.35 between 

1977 and 2006 [7]. 
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2.2 Risk factors for developing chronic pancreatitis  

It is widely accepted that the complicated interaction between genetic (intrinsic) 

and environmental (extrinsic) factors contributes to the initiation and 

progression of CP [8]. To date, a number of specific genes, like PRSS1, SPINK 

(see Table 1), that either cause or predispose to the syndrome of CP have been 

definitely confirmed. Moreover, functional experiments have partly delineated 

the roles that these genes play in the course of CP, for example, by prematurely 

activating trypsinogen in the pancreas [9].  

 

Table 1: Summary of common risky gene mutations for developing CP (modified from 

Beyer et al [1]) 

Risky gene Common mutation 

site 

Prevalence among 

patients with CP 

Mechanism for developing CP 

PRSS1  p.N29I, p.R122C, 

p.R122H 

3–10%  

 

Directly stimulate trypsinogen autoactivation, 

or indirectly stimulate the activation of cationic 

trypsinogen via CTRC-related pathways 

SPINK1 p.N34S 10%  Unclear 

CTRC p.G60, p.A73T, 

p.K247_R254del, 

p.R254W, pV235I 

30%  Stimulate autoactivation of cationic 

trypsinogen, or fail to degrade trypsin 

CPA1 p.S282P 3%  Reduce secretion, increase intracellular 

retention, and cause endoplasmic reticulum 

stress 

CEL-HYB1  hybrid CEL allele 5%  Reduce secretion and increase intracellular 

retention 

CFTR p.F508del, p.R117H,  7% Disrupt membrane ion channel activity  

CLDN2 and 

MORC4  

rs4409525, 

rs12008279; 

rs12688220, 

rs6622126 

3% Unclear 

 

Researchers have identified mutations in the cationic trypsinogen gene PRSS1 

associated with premature trypsinogen activation, which is directly linked to 

hereditary pancreatitis, an autosomal-dominant disorder with incomplete 
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penetrance [10]. A recent large-scale case-control analysis conducted by Derikx 

et al in Europe suggested a conspicuous correlation of the single-nucleotide 

polymorphisms at the PRSS1–PRSS2 locus and at the CLDN2–MORC4 locus 

with alcoholic CP [11]. Mutations in SPINK1, a serine protease inhibitor gene, 

are significantly associated with tropical calcific pancreatitis, alongside serving 

as a disease modifier involved in the progression of recurrent acute pancreatitis 

(AP) to CP [12, 13]. Accumulating evidences recognize alcohol and smoking as 

the main environmental risk factors for CP [2]. The association of alcohol intake 

and tobacco consumption with the incidence of CP tends to follow a dose-

dependent pattern, as a recent investigation performed by Di et al in Italy 

suggests smoking more than 5.5 cigarettes per day, and drinking alcohol more 

than 80 g/d are independent risk factors for the induction of CP [14, 15]. 

 

2.3 Etiological classification of chronic pancreatitis  

Despite the apparently analogous pathological characteristics, chronic 

pancreatitis indeed consists of a range of disease entities. Unfortunately, there 

is still no definitely uniformed and standardized classification of this disorder in 

the literature, which is partly due to the intricate natural history and the uncertain 

pathological mechanism of the disease [2, 16]. In the present study, we stratified 

CP, based on the causative factors, as the following forms: chronic alcoholic 

pancreatitis, autoimmune pancreatitis (AIP), chronic obstructive pancreatitis, 

chronic idiopathic pancreatitis, as well as others which are with no clear causes. 

It is well known that the natural history, clinical manifestation, and treating 

strategy of CP vary according to the distinct forms and correspondingly causal 

mechanisms [17]. Improved insights into pathological features of the individual 

forms of the disease have the potential to bring focused and specific treatments. 

Previous investigations indicate that excessive alcohol consumption 

consistently tops the list of major contributors to developing CP [15, 18]. 

Prolonged alcohol ingestion can sensitize acinar cells to pancreatic stress and 

may promote intrapancreatic activation of digestive zymogens [19, 20]. 
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Moreover, ethanol metabolites accelerate fibrogenesis through activating 

pancreatic stellate cells (PSCs) and facilitate chronic inflammatory reactions 

[21].  

AIP is a relatively rare form of pancreatitis and has typically been classified into 

two subtypes [22]. Type 1 refers to lymphoplasmacytic sclerosing pancreatitis, 

which is the pancreatic manifestation of IgG4-related disease. Type 2 is known 

as idiopathic duct-centric pancreatitis with a hallmark of the granulocytic 

epithelial lesion in the pancreas. These two entities share common 

morphological characteristics and are sensitive to steroid therapy [23]. 

Obstructive pancreatitis occurs in the areas upstream from the obstructive sites 

due to a range of reasons, such as chronic inflammatory strictures which are 

often secondary to acute pancreatitis, pancreatic trauma, ductal stone, as well 

as benign or malignant neoplasia [2]. Moreover, ductal occlusion or stricture 

resulting from the above reasons tends to hamper the normal pancreatic 

secretory flow and results in ductal hypertension, eventually driving focal 

inflammatory responses, acinar cell injury, and pre-activation of digestive 

enzymes [22, 24]. 

Tropical pancreatitis is a form of idiopathic pancreatitis, with the typical features 

of early-onset abdominal pain, main pancreatic ductal calcification, and ketosis-

resistant diabetes [25]. This type of pancreatitis is more prominent in developing 

countries, especially in tropical regions, like southern India, where malnutrition 

and cyanogenic glycosides are relatively common [26]. 

Still, a large proportion of cases of CP developed without clear evidence of the 

common causes are labeled as idiopathic. 

 

2.4 Pathogenesis of chronic pancreatitis 

The fundamental pathogenesis of CP is still not finely delineated. Over the past 

decades, several theories have been proposed but few have been validated, 

partly due to the lack of adequate animal models and the limitation of human 

tissue access. While compelling evidences show that CP frequently arises from 
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repetitive bouts of AP [27], other studies suggest that CP can also develop from 

only one or even on prior episode of AP, especially for idiopathic pancreatitis [1, 

16, 18]. The histological characteristics of CP include various degrees of 

pancreatic edema, parenchymal cell necrosis, ductal structure abnormality, 

inflammatory responses, and massive fibrosis deposition. [20]. As the disease 

progresses, pancreatic tissue is replaced by a bulk of extracellular matrix (ECM) 

and fatty tissue. Moreover, in addition to causing the failure of exocrine and 

endocrine function, long-standing inflammatory stimuli can put CP patients at 

risk of developing pancreatic ductal adenocarcinomas [28]. 

 

2.4.1 Premature activation of trypsinogen causes acinar cell injury and 

the following inflammatory responses.  

It has been proposed that inappropriately elevated activity of trypsin in the 

pancreas initiates the onset of pancreatitis and continues to play roles in driving 

the progression of the disease [29, 30]. This concept was proven by the works 

from Geisz A and colleagues in a preclinical model where T7D23A knock-in 

mice rapidly developed spontaneous AP followed by progressive CP 

manifesting with acinar cell destruction, inflammatory infiltration, fibrosis 

formation, and fatty tissue replacement [31].  

 

2.4.2 Immune cells play indispensable roles in the progression of 

pancreatitis  

Both innate and adaptive immune systems are involved in the 

pathophysiological evolution of pancreatitis, including AP and CP. Macrophages 

play an essential role in innate immune response and are known for their high 

plasticity. It is widely accepted that classically activated (M1) macrophages, 

marked by CD68 expression, are mainly implicated in the acute inflammatory 

response and the early stages of chronic inflammation. Upon the induction of 

pancreatitis, bone marrow-derived macrophages rapidly travel into the inflamed 

pancreatic areas and skewed towards M1 phenotype under the control of 
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chemoattractant factors and inflammatory mediators [32]. In addition to 

phagocytosing necrotic cellular debris, activated M1 macrophages release a 

large amount of chemokines and cytokines that are implicated in amplifying 

inflammatory responses [33, 34]. In contrast to M1, alternatively activated (M2) 

macrophages, defined by CD206 expression, are more predominant in chronic 

disease and wound healing, including CP. Animal experiments and clinical trials 

collectively indicate the remarkable enrichment of M2 macrophages in the 

lesions of CP [35, 36]. Functional research demonstrates that M2 macrophages 

are closely linked to the fibrous pathogenesis of CP through complicated 

crosstalk with activated PSCs [37].   

Dendritic cells (DCs), making up a key part of antigen-presenting cell 

populations, link the innate immune system to the adaptive immune system [38, 

39]. The mechanistic role of DCs in the development of CP remains largely 

undefined. Former investigations depicted dual roles of these cells in the 

progression of CP. This can be explained, in part, by the fact that DCs indeed 

include several different subtypes with each of those subtypes exhibiting 

distinct functions. Previous experiments reveal that DC-Sign+ expressing 

immature DCs mediate DC migration and adhesion, T cell activities, and 

immune initiation and escape [40, 41], whereas CD83 expressing mature DCs 

regulate DC activation and maintain immune homeostasis [42]. Moreover, it is 

reported that enrichment of DC populations played an important role in the 

development of pancreatic cancer on the back of CP through inducing 

pancreatic antigen-restricted TH2 deviated CD4+ T cells via inhibiting MyD88-

dependent pathway [43]. 

It is well studied that during the course of pancreatitis, pathological granulocyte 

(MPO+) infiltrates, specifically neutrophils, play critical roles in digestive 

enzymes activation, the severity of acinar cells damage, local and systemic 

inflammation, as well as complications of severe pancreatitis. Moreover, 

neutrophil infiltration contributes to the transformation of AP to CP as well as 

the formation of intrapancreatic stones [44]. 
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In addition to innate immune system, adaptive cell populations are equally 

critical for the pathogenesis of CP. Undoubtedly, T lymphocytes play a vital role 

in adaptive immune system. Based on the expression of cell surface antigens, 

T cells can be split into several subsets, including the cytotoxic T cells (CD8+), 

the regulatory T cells (FoxP3+), the T helper cells, the memory T cells, and the 

natural killer (NK) cells (CD56+), with each of them exerting distinct functions 

[45, 46]. Previous examinations indicate that the proportion of TH1 (Tbet+), TH2 

(GATA3+), and TH17 cells (IL17A+) is remarkably enhanced in the peripheral 

blood of patients with CP compared to the healthy control populations, while 

the pancreatic lesions are only dominant with TH1 cells and TH17 cells, with 

the fewer presence of TH2 subpopulations [47]. Further studies demonstrate 

that the frequency of TH1 and TH2 was enriched in intra-islet regions of CP 

patients with diabetes compared with healthy controls as well as patients 

without diabetes, indicating the involvement of these cells in β-

cell dysfunction during progression of CP [48]. TH2 cells were described as pro-

tumorigenic mediators driving chronic pancreatic fibroinflammatory disease 

towards malignant transformation [43]. The frequency of cytotoxic T cells was 

observed significantly expanding in the pancreas of patients with alcoholic CP 

and tend to be localized closely to pancreatic parenchyma, implying that 

cytotoxic cells probably lead to tissue disruption [49].  

Although accumulating trials indicate the involvement of B cells (CD20+) and 

NK cells in the pathogenesis of AP [50, 51], investigations on the contribution 

of these two types of lymphocytes to the development of CP are rare. B cells 

initiate humoral immunity in the adaptive immune system by producing specific 

antibodies. B cells initiate humoral immunity in adaptive immune system 

through producing specific antibodies. Moreover, B cells are frequently involved 

in the dynamics of T cell proliferation, differentiation, and activation via their 

antigen-presenting capacity or through producing various cytokines [52]. The 

immune function of NK cells is analogous to cytotoxic T lymphocytes, with the 

capacity to kill cancer cells and to produce various inflammatory cytokines, such 
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as IFN-γ, TNF-α, IL-18 [53]. However, the biological mechanism underlying the 

role of NK cells in the progress of CP remains to be defined. 

2.4.3 PSCs are responsible for fibrous characteristics of CP 

During the course of pancreatitis, pancreatic stellate cells (PSCs) experience 

functional state alternation that switch from quiescent to activated phenotype 

[54]. So far, it is well documented that activated PSCs play major roles in the 

development of pancreatic fibrosis. A variety of cytokines, like transforming 

growth factor β (TGFβ), platelet-derived growth factors (PDGF), and 

complement component C5a are associated with activation of PSCs and the 

consequent upregulation of extracellular matrix (ECM) synthesis [54, 55]. It is 

worth noting that the bi-directional interaction between immune infiltrates and 

PSCs drives the process of fibrogenesis during CP. Xue et al. provided strong 

evidence that CD4+T cells-derived IL-22 significantly upregulate gene profiles 

associated with ECM synthesis in PSCs in animal models of CP [56]. 

Additionally, activated PSCs produce large amounts of IL-4/IL-13, which 

strongly skew macrophages toward M2 polarization, aggravating pancreatic 

fibrosis progression [36].  

 

2.5 Aim of this study 

While decades of studies from both cell culture systems and animal models 

have been invented in an attempt to decipher the mechanism underlying the 

complicated pathogenesis of CP, clinical experts are still facing the huge 

challenges of translating laboratory findings into clinical practice. This can be 

partly explained by the fact that animal models fail to entirely mirror the natural 

course of the development of CP, which highlights the significance of directly 

analyzing human CP lesions to obtain a pathological fidelity of the disease. 

Therefore, we sought to collect human specimens from the source of patients 

resected for CP and evaluated the histopathological signatures, including 

immune infiltrates, parenchymal cells, and stromal compartments within the 

lesions using multiplex staining technique together with computational digital 
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image analysis. The combination of multiplex staining with digital image 

analysis is not limited to help accurately determine the individual cellular types 

and perform quantity analysis, but also make it possible to clearly map the 

spatial distribution characteristics of those cells and their surrounding non-

cellular architectures. Animal experiments have consistently provided evidence 

that immune cells take a key part in pushing the progression of CP. This 

indicates that deep and extensive understanding of immune signatures within 

CP lesions has the potential to modify the natural history of the disease and 

improve the clinical outcomes of the patients. In the present study, we plan to 

spot the distributional characteristics of immune cells, pancreatic functional 

cells, and stromal compartments within the lesions from patients with CP. We 

will further compare those parameters among patients with CP induced by 

distinct causes, such as alcoholic, autoimmune, obstructive, and idiopathic 

etiology to stratify patient with histological subtypes of CP. Additionally, we will 

apply automatic machine learning technique to compute potential features to 

predict the development of exocrine insufficiency of patients with CP. Our 

findings have strong potential to explicitly depict the histopathological 

signatures of CP, which will be helpful to organize future in vivo experiments 

and favor the introduction of efficacious therapeutics. 
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3 Methods 

3.1 Study objective and design 

The present study is designed to characterize the histopathological composition 

of the fibroinflammatory stroma and parenchymal architectures of patients with 

CP via the application of a comprehensive multiplex-staining technique to a 

series of tissue microarray sections (TMAs) of CP resection specimens. We will 

adopt and refine a multiplex staining protocol for analyzing TMAs based on the 

previous works from Tsuijkawa and colleagues with appropriate modifications 

[57, 58], which allows us to accomplish a maximum of twelve-consecutive 

stainings in a single section, starting with hematoxylin staining followed by 

repeated steps of primary and secondary antibody incubation, AMEC-staining, 

whole slide digital scanning, and antibody and chromogen removal. To acquire 

the entire features of stromal compartments together with parenchymal cellular 

components, three multiplex-staining panels, named lymphoid biomarker panel, 

myeloid biomarker panel, and pancreatic exocrine-endocrine and stroma 

biomarker panel, were prepared and stained with corresponding antibodies 

(Table 2). Hematoxylin staining will complement the histological 

characterization in terms of morphological changes. Quantification of 

extracellular matrix composition, immune cell deposition, and pancreatic 

parenchymal and mesenchymal components was achieved according to the 

pixel intensity of the staining in tissue cores using an algorithm developed for 

NIH ImageJ software.  

 

Table 2: Staining panels for multiplex staining assay 

Panel 

 

Order 

Lymphoid 

biomarker 

Myeloid 

biomarker 

Pancreatic 

exocrine-

endocrine and 

stroma 

biomarker 

Morphology 

1 H* H* H* HE 

2 GATA3 DC-Sign Pan-Keratin  
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3 T-bet CD206 CD45  

4 FoxP3 CD68 PHH3  

5 CD20 MPO aSMA  

6 CD8 CD20 Insulin  

7 CD4 CD56 PGP9.5  

8 CD3 CD3 Perilipin  

9 CD56 CD45 Amylase  

10 CD45 CD74 Desmin  

11 CTLA4 Tryptase MMP7  

12 IL17A CD83 Sirius-Red/Fast-

Green 

 

 

The lymphoid biomarker panel is designed for comprehensive characterization 

of lymphocytes, including T cells, B cells, and NK cells, whereas the myeloid 

biomarker panel focusses on other leukocytes such as macrophages, 

granulocytes, DCs, and mast cells as well. The so-called pancreatic exocrine-

endocrine and stroma biomarker panel concentrates on pancreatic exocrine 

and endocrine cellular compartments, nerve cells, PSCs, and ECM deposition. 

The specific marker-combination for each cellular subtype is displayed in Table 

3.  

 

Table 3: Cellular lineage and corresponding identification biomarkers 

Cellular lineage Identification biomarkers 

Leukocytes CD45+CK19-Amylase-Insulin-PGP9.5- 

Cytotoxic T cells CD45+CD3+CD8+CD4- 

Regulatory T cell CD45+CD3+CD8-FoxP3+CTLA4+ 

Activated T cell CD45+CD3+FoxP3-CTLA4+ 

TH17 CD45+CD3+CD8-FoxP3-IL17A+ 

TH1 CD45+CD3+CD4+CD8- IL17A -Tbet+ 

TH2 CD45+CD3+CD4+CD8- IL17A -GATA3+ 

T others (TH 0) CD45+CD3+CD8- IL17A -Tbet-GATA3- 

B cell CD45+CD3-CD56-CD20+ 

NK cells CD45+CD3-CD56+CD20- 

M1 Macrophages CD45+CD3-CD20-CD56- MPO -Tryptase-CD68+CD74+CD206- 

M2 Macrophages CD45+CD3-CD20-CD56- MPO -Tryptase-CD68+ CD74+CD206+ 

DC-Sign+DC CD45+CD3-CD20-CD56- MPO -Tryptase-CD68- CD74+DC-Sign+CD83- 
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CD83+ DC CD45+CD3-CD20-CD56- MPO -Tryptase-CD68- CD74+CD83+ 

Granulocytes CD45+CD3-CD20-CD56-MPO+ 

Mast cells CD45+ CD3-CD20-CD56- MPO -Tryptase+ 

PSCs quiescent CD45-CK19-Amylase-Insulin-PGP9.5-aSMA-Desmin-Perilipin+ 

PSCs activated CD45-CK19-Amylase-Insulin-PGP9.5-aSMA+Desmin+Perilipin- 

Duct cells CD45-CK19+Amylase-Insulin-PGP9.5- 

Acinar cells CD45-CK19-Amylase+Insulin-PGP9.5- 

Islets CD45-CK19-Amylase-Insulin+PGP9.5- 

Proliferation CD45-PHH3+ 

Fibrosis Picrosirius red-fast green staining 

ECM remodeling MMP7+ 

Nerves global  CD45-CK19-Amylase-Insulin-PGP9.5+ 

 

3.2 Patients  

A total of 62 patients identified from the database of Department of Pathology 

by full text search for diagnosis of “chronic pancreatitis” who underwent surgical 

pancreatic resection or drainage procedures were found eligible for the present 

project. Indications for the surgical interventions included pain, biliary 

obstruction, pseudocysts, severe vascular complications, groove pancreatitis 

with duodenal obstruction, and suspicion for pancreatic cancer. As for staining 

controls, a total of 4 adult non-malignant tonsil specimens were included in the 

TMAs (Figure 1). 

 

3.3 Tissue samples for standardizing antibody concentration 

All surgical samples from the patients involved in the present study were 

provided by Department of Pathology, Hospital of Ludwig-Maximilians-

University, Munich, Germany. Two paraformaldehyde-fixed, paraffin-embedded 

tonsil tissue blocks were sectioned at 2μm and collected on poly-lysine slides 

for standardizing the concentration of immune cell biomarkers. Chronic 

pancreatitis tissues were utilized to optimize the concentration of non-immune 

cell biomarkers. The optimal staining sequence was determined during the 

course of antibody-concentration standardization based on the staining density 

of the individual visualized targets. 
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3.4 Tissue samples for TMAs preparation 

Tissues were already embedded in paraffin blocks at the time of TMA 

development. The paraffin blocks were sectioned at 2μm for the multiplex-

staining analysis. With 3 cores per patient, a total of 594 cores made from the 

66 patients' CP resection specimens were included. Each panel contains 198 

cores. However, after cross-validating the clinical data and pathological 

outcomes, 4 patients who were initially suspected of suffering CP were 

ultimately verified with other manifestations and afterward excluded from the 

study. Thus, a total of 58 patients with confirmed CP were processed for the 

final image cytometry analysis. The consort diagram about the details of the 

involved patients for TMAs preparation is delineated in Figure 1. 

 

Figure 1. Consort diagram shows the details of the involved patients for TMAs preparation. 

 

3.5 Conventional immunochemical staining for antibody standardization 
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Paraffin slides were deparaffinized in xylene, for three times with 10 min at each 

time. After dewaxing, slides were rehydrated through a series of graded 

alcohols, starting from 100% (2 times) to 95%, 70%, and 50%, for 5 min at each 

change. Following rehydration, slides were washed with phosphate-buffered 

saline (PBS) for 5 min. Then, slides were subjected to heat-mediated antigen 

retrieval for 30 min in a pressure cooker by immersing the slides in 1X antigen 

retrieval buffer, followed by cooling down the slides in antigen retrieval buffer to 

room temperature (Table 13). Next, slides were blocked for endogenous 

peroxidase retrieval though adding 3% hydrogen peroxide on sections for 

20min. Slides were then washed with PBS, 3 times with 5min at each time. 

Afterward, slides were blocked with blocking buffer (1% Aurion BSA in PBS) for 

1h at room temperature. Again, slides were washed with PBS, 3 times with 5min 

at each time. Then, slides were incubated with primary antibody diluted with 

blocking buffer in the cooling room overnight. The next day, the primary 

antibody was removed by washing the slides with PBS, 3 times with 5min at 

each time. Next, slides were incubated with corresponding secondary antibody 

at room temperature for an hour. The slides were again washed with PBS for 3 

times with 5min at each time. The slides were then processed for 

immunohistochemical staining with DAB peroxidase substrate. After developing 

staining, slides were washed with running tap water for 2 min. Then, the slides 

were stained with hematoxylin for 1min and again washed with tap water and 

followed by 2min ddH2O washing. The slides were then passed through a series 

of graded alcohols, starting from 50% to 70%, 95%, and 100%, for the 30s at 

each change. By the end, sections were coated with permanent mounting 

medium and fixed with coverslips. 

 

3.6 Multiplex immunochemical staining for digital image cytometry 

evaluation 

To begin with, as the conventional immunochemical staining, TMAs slides were 

deparaffinized with xylene, followed by rehydrating from a serially graded 
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alcohol to PBS. After rehydration, TMAs slides were immediately stained with 

hematoxylin for 45s and followed by immersing the slides in a 0.5% ammonia 

solution for 2min. Then, TMAs slides were cleaned with 3 times quick dip in 

ddH2O. The sections were coated with aqueous mounting media (70% glycine 

in PBS) and consequently fixed with coverslips, followed by the whole-slide 

scanning in a Sysmex Panoramic MIDI II slide scanner. After scanning, the 

coverslips were removed by immersing the slide in ddH2O for 5min. Slides were 

then subjected to heat-mediated antigen retrieval for 30 min, a process which 

is exactly the same as the conventional immunochemical staining, during which 

the previous hematoxylin staining can also be completely eluted. After cooling 

down to room temperature, slides were processed for endogenous peroxidase 

retrieval by adding 3% hydrogen peroxide on sections for 20min. Slides were 

washed with PBS-T (0.05% Tween® 20 in PBS) for 3 times with 10min at each 

time. Slides were then blocked with blocking buffer (1% BSA in PBS). After 

blocking, sections were incubated with the first primary antibody diluted with 

blocking buffer in the cooling room overnight. The next day, slides were washed 

with PBS-T for 3 times with 10min at each time. Slides were then incubated with 

corresponding secondary antibody for an hour at room temperature. Again, 

slides were washed with PBS-T, three times with 10min at each time. After 

washing, the slides were processed for immunohistochemical visualization with 

the alcohol-soluble peroxidase substrate AMEC red. The sections were then 

coated with aqueous mounting media and covered with coverslips, followed by 

whole-slide scanning in the Sysmex Panoramic MIDI II slide scanner. 

Coverslips were removed by immersing slides in ddH2O for 5min. The sections 

were then subjected to AMEC red de-staining and antibody stripping (see 

below). After antibody stripping, slides were washed with PBS for 5 min and 

proceeded for the next round of staining, starting with from the blocking step as 

described above (Figure 2). 



     LMU Doctoral Thesis                                           Yonggan Xue 

25 
 

 

Figure 2. Work-flow chart adopted from Mahajan [58] reflects multiplex immunohistochemical 

staining. Highlighted Work-flow in brown area denotes multiple antibodies staining cycles. 

 

3.7 Eluting antibody by using glycine-mediated antibody stripping buffer 

After scanning the whole slides and removing the coverslips, AMEC red de-

staining of the sections was accomplished by dipping the slides in 70% ethanol 

for 2min, followed by 95% ethanol for 2 min, and backward 70% ethanol for 

2min; this process sometimes needs to be repeated until no visible red color 

has remained. For the lymphoid and myeloid panels in which specific antibodies 

are applied to label immune cells, antibody stripping is conducted by incubating 
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the slides in a preheated jar which contains glycine-mediated antibody stripping 

buffer (Table 13) and then putting the jar in a water bath with the shaking speed 

of 60 rounds per min at 50°C for 30 min. However, in pancreatic exocrine-

endocrine and stroma panel, AMEC staining of non-immune cell biomarkers, 

like α-SMA, insulin, PGP9.5, amylase, perilipin, and desmin, are relatively 

strong making it difficult to completely remove the staining color by this stripping 

approach as described above. Therefore, we attempted to double the 

concentration of glycine (50mM glycine-HCl, 1%SDS, pH2) along with 

extending the incubation time to 2 hours, which was proven efficient to entirely 

elute the staining color developed by those non-immune cell biomarkers. 

 

3.8 Picrosirius Red staining for collagenous protein deposition 

identification 

The last staining in pancreatic exocrine-endocrine and stroma panel is 

picrosirius red staining (PS), which is performed, immediately following the de-

staining of MMP7. After stripped of MMP7 antibody and washing with PBS for 

5 min, slides were subjected to specific collagen network visualization, that is 

picrosirius staining, by utilizing picrosirius red-fast green staining solution to 

coat individual sections and being kept in a dark box for an hour at room 

temperature (Table 12). Slides were then proceeded to twice short washing with 

ddH2O and passed through a series of alcohol gradients, starting from 50% 

alcohol to 70%, 95%, and 100% (2 times) alcohol, 30s at each change. 

Afterward, the sections were cleared with xylene for 3 times, 5 min at each time. 

Finally, the tissues were coated with permanent mounting medium and covered 

with coverslips, followed by whole-slide scanning. 

 

3.9 Computational digital image cytometry analysis 

All the digital image cytometric analyses were outsourced and performed using 

automated pipeline consisting of Image J, CellProfiler and FCS express 

developed in the laboratory 
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(https://github.com/umahajanlmu/multiplex_image_cytometry). Briefly, it 

involves the following steps: image registration, deconvolution, feature 

extraction, and image cytometry. Image registration was achieved by 

overlapping each of the 12 images per core according to their core identity (ID). 

Followed by co-registration, all the individual images underwent color 

deconvolution in order to outline and separate individual cells. These images 

were then co-localized based on their core ID and cellular features were 

extracted according to the pixel intensity to define distinct cell phenotypes. The 

exported images containing all identified cells were then subjected to image 

cytometric analysis using FCS express software by measuring the pixel 

intensity of each individual cell within the stacked image. Schematic 

representation of automated pipeline has been depicted in Figure 3. 

 

Figure 3. Work-flow chart depicts computational digital image cytometry analysis. 

 

3.10 Statistical analysis 

For machine learning, patients were randomly separated into two groups: an 

endpoint-balanced discovery group (80%) and a test cohort group (20%). We 
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introduce the binary variables which were defined for all baseline patient data 

including both clinic and cytometric characteristics (see Table 16). H2O.ai 

platform (https://www.h2o.ai) was employed for the base predictor to 

automatically select the optimal machine learning method in the literature. To 

save computational time, the selection of methods was confined to gradient 

boosting machine (GBM), generalized linear model (GLM), extreme gradient 

boosting (XGBoost), distributed random forest (DRF), and extremely 

randomized trees (XRT). The parameters of each method were optimized using 

an internal 10-fold cross-validation on the training set, followed by applying the 

optimal method to the test set to evaluate the final performance. In each loop, 

the best performing predictor was determined from all obtained predictors 

employing the performance measure logloss. The selection of predictors was  

on the basis of the area under the curve (AUC>0.5) and logloss<0.05. We 

selected variables related to the “base predictor” according to their scaled 

importance above 0.05 to obtain the “slim predictor” on the basis of a reduced 

set of variables. 

Statistical comparisons in two variables of cell percentages and densities 

among distinct cell lineages were assessed using Mann-Whitney tests. 

Statistical analyses of the distribution of CP with distinct causes in different 

stromal subtypes were conducted using Fisher’s Exact Test. Statistical 

differences in more than two variables of cell percentages and densities among 

distinct cell lineages were assessed using Kruskal-Wallis tests. All statistical 

operations were performed by Graphpad Prism 8. p < 0.05 was considered 

statistically significant for all experiments. 
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4. Results 

4.1 Optimizing sequence of multiplexed biomarkers stained on a single 

tissue section 

Multiplex IHC staining workflow enabling sequential or simultaneous 

visualization of multiple antigens in a same tissue section using corresponding 

biomarkers has been proposed and explored by numerous of both pathology 

experts for diagnostic purpose and laboratory scientists for fundamental 

research over the last two decades [59-62]. Glass and colleagues initially 

reported a 5-plex protocol and subsequently expanded to 12-round iteratively 

labeling strategy realizing reliable evaluation of more than 12 antigens in a 

single tissue section without losing tissue antigenicity and developing cross-

reactivity [57, 63]. Thus, the present study was carried out on the basis of the 

multiple labeling technique described by Glass and colleagues with some 

modifications. Briefly, after dewaxing and rehydration, tissue sections were 

stained with hematoxylin, followed by primary antibody incubation and 

fragment-specific secondary antibody combination. Antigen visualization were 

developed by alcohol-soluble peroxidase substrate AMEC, followed by the 

whole-slide scanning. Repeated signal visualization is accomplished by an 

iterative procedure composed of de-staining the sections in the gradient ethanol 

series, dissociating primary antibody in heated citrate buffer, and re-staining the 

sections with alternative antibodies. To comprehensively explore cellular 

complexity and architectural alternation of CP lesions, we established three 

panels of multiple consequential staining with 12 biomarkers in each panel, 

including 28 distinct epitopes to depict migratory and resident immune cells, 

pancreatic parenchymal cells, and stromal compartments. Additionally, we 

performed picrosirius red staining to specifically delineate stromal collagenous 

protein deposition. Biomarkers used for detecting each of the three panels, 

along with optimized staining sequence, are displayed in Figure 4. Integrated 

hierarchical biomarkers utilized for identifying distinct cellular lineages and 
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subtypes are listed in Table 3. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4: Sequential schematic of 12-color multiplex IHC staining. (A) Representative of 

digital scanned images from one section of TMAs depicting lymphoid panel biomarkers. (B) 

Representative of digital scanned images from one section of TMAs depicting myeloid panel 

biomarkers. (C) Representative of digital scanned images from one section of TMAs depicting 

pancreatic exocrine-endocrine and stromal panel biomarkers.  

 

 

B                  Myeloid biomarker panel 

A                  Lymphoid biomarker panel 

C   Pancreatic exocrine-endocrine and stroma biomarker panel                  
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4.2 Establishing serially scanned and digitalized image-processing 

pipeline 

After completing the multiple cycles of IHC staining, each core for a single 

staining was captured and named in accordance with its slide coordinates. 

Each of the 12 iteratively digitalized images was sorted according to its core ID 

and then subjected to the process of co-registration. The precise match of the 

12 individual images per core was achieved using a feature detection algorithm 

of the scale-invariant feature transform (SIFT) [64]. SIFT keypoints of objects 

within the individual multiple scanned images were first extracted and then 

stored in a database. The candidate matching features were identified by 

individually comparing each feature in a new image to this database. The 

correct matches were determined by the agreement of subsets of keypoints on 

the object and its location, scale, and orientation from the full set of matches 

(Figure 5) [65]. 

 

 

 

 

Figure 5: Schematic diagram depicting the process of precise co-registration of iterative 

scanned images per core. Based on distinct invariant features, iteratively scanned images 

were automatically adjusted and correctly aligned using CellProfiler pipeline. 

                  Image co-registration 
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The co-registered individual images were then passed to NIH ImageJ software 

[66], wherein the visualized AMEC and hematoxylin signals were automatically 

extracted using a color deconvolution algorithm [67], followed by the images 

converted to grayscale and subsequently assigned with distinct pseudo-color. 

Z-stacking of the pseudo-colored images was achieved in line with their ID 

using NIH ImageJ software (Figure 6).   

 

 

Figure 6: Schematic process pipeline representing pseudo-color assignment and Z-

stacking of serial-stained images. Subsequent to co-registration, all biomarkers visualized in 

consecutive sections were assigned with distinct pseudo-color followed by Z-stacking according 

to their ID using NIH ImageJ software. 

 

4.3 Stacking the pseudo-colored images depicts geographic distribution 

of migratory and resident cells and stromal compartments in CP lesions 

To specifically determine complexity of infiltrating and resident cellular features 

and contribution of stromal components in CP lesions, we established three 

panels of 12-consecutive staining in which spatial distribution of these 

parameters can be finely preserved and displayed at the tissue level. The 

lymphoid biomarker panel signals cytotoxic T cells, regulatory T cells, activated 
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T cells, TH0 cells, TH1 cells, TH2 cells, TH17 cells, B cells, and NK cells (Figure 

7A). The myeloid panel visualizes M1 macrophages, M2 macrophages, 

immature DCs (DC-Sign+), mature DCs (CD83+), granulocytes, mast cells 

(Figure 7B). The pancreatic exocrine-endocrine and stroma panel delineates 

acinar cells, duct cells, nerve cells, islet cells, fibroblast cells, fibrosis-collagen 

deposition (Figure 7C).  

 

 

 

 

Figure 7: The representative of 12-pseudo-colored aligned images to visualize a single 

CP section from each of the three panels. (A) Colocalization of 12 biomarkers visualizes with 

A 

B 

C 
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distinct pseudo-colors enable discernment of lymphoid lineage cells, including cytotoxic T cells, 

regulatory T cells, activated T cells, TH0 cells, TH1 cells, TH2 cells, TH17 cells, B cells, and NK 

cells. (B) Alignment of pseudo-colored images depicts myeloid lineage cells, such as M1 

macrophages, M2 macrophages, immature DCs, mature DCs, granulocytes, and mast cells. (C)  

Colocalization of pseudo-colored images delineates acinar cells, duct cells, nerve cells, islets, 

and stromal compartments. Biomarkers and corresponding pseudo-colors are displayed in the 

right.  

 

4.4 Cell image analysis enables reliable identification and quantification 

of distinct cell phenotypes     

To accomplish the identification and quantification of distinct cell types and 

subtypes in CP lesions, we established an automated digital cytometric image-

processing workflow through which single-cell based chromogenic intensities 

were measured using single-cell segmentation algorithms developed for 

CellProfiler software (Figure 3, 8) [68]. We utilized hematoxylin-stained images 

as a basis for single-cell segmentation based on watershed threshold 

algorithms [67, 69], followed by assigning with pseudo-color for individual 

signals. The chromogenic intensities in a series of AMEC-stained images were 

compiled and co-located with the segmented hematoxylin-stained images, 

generating a merged single-level image that yields multiple informative cellular 

features, such as cell phenotype, size, shape, and location as well. Single-cell-

based information, including pixel intensities, shape-size outcomes, and 

location, was displayed and precisely analyzed based on the assessment of 

pixel intensities, a process that is largely analogous to flow cytometric analysis 

(Figure 8). 
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Figure 8 Cytometric image analysis workflow for the quantification of consecutively 

multiplex-stained images. (A) Hematoxylin-stained images are used as the backbone for 

deconvolution. (B) Following deconvolution, images are automatically separated using     

SIFT algorithm. (C) After segmentation, images are assigned with pseudo-color for individual 

signals, followed by co-localizing all the corresponding AMEC-stained images using SIFT 

algorithm. Based on the pixel intensity of chromogenic signals, the read-out of the cytometric 

image analysis provides multiple cellular information, including cell phenotype, size, shape, and 

location. 

 

4.5 Qualitative gating strategies used for identifying complex cellular 

phenotypes and subtypes in the panels 

The qualitative gating approaches employed for the image cytometry can 

A 

C 

B 
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distinguish specific cellular phenotypes and subpopulations in a mixed context, 

yielding quantitative results largely analogous to polychromatic flow cytometry 

for dissociated cells [57, 70, 71]. Lymphoid-lineage cellular types and subtypes 

were identified by a combination of the corresponding lineage-labeling markers, 

which is depicted in Figure 9. Similarly, gating strategies for determining and 

quantifying myeloid-lineage cellular contribution in CP lesion were delineated in 

Figure 10. To explore the characterization of ductal cells, acinar cells, islet cells, 

and neural cells and alternation of stromal composition in CP tissue, we set the 

cytometric gating analysis as described in Figure 11. 
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Figure 9 Representative plot of image-

based cytometry for lymphoid-lineage 

cellular analyses from one of the included 

patients with CP. Image cytometry gating 

strategies for activated T cells (CTLA4+), 

cytotoxic T cells (CD8+), regulatory T cells 

(FoxP3+), TH17 cells (IL17A+), TH1 cells 

(Tbet+), TH2 cells (GATA3+), TH0 cells and 

other T subsets (CD45+CD3+CD8-IL17A-

Tbet-GATA3-), B cells (CD20+), and NK cells 

(CD56+) in lymphoid biomarker panel. 
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Figure 10 Representative plot of image-based cytometric analyses for the myeloid 

biomarker panel from one of the involved patients with CP. Image cytometry gating 

strategies for granulocytes (MPO+), mast cells (Tryptase+), immature dendritic cells (DC-

Sign+), mature dendritic cells (CD83+), M1 macrophages (CD68+), and M2 microphages 

(CD206+) in myeloid biomarker panel. 
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Figure 11 Representative plot of image-based cytometric analyses for the exocrine-

endocrine and stroma biomarker panel from one of the included patients with CP. Image 

cytometry gating strategies for ductal cells (PK+), acinar cells (Amylase+), islet cells (Insulin+), 

neural cells (PGP9.5+), quiescent PSCs (Perilipin+), activated PSCs (Desmin+aSMA+), and 

the proliferative and functional status of quiescent and activated PSCs in exocrine-endocrine 

and stroma biomarker panel. 

4.6 General cell distribution in alcoholic CP, AIP, and other CP lesions, 
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respectively 

Based on the etiology of CP, we divided the 58 patients into three subgroups, 

that are alcoholic CP (n=23), AIP (n=7), and other CP (n=28) which contain 

biliary or obstructive CP (n=9), idiopathic CP (n=2), and CP without a specific 

cause identified (n=17). 

To explore different cellular contributions to CP lesions, we detected and 

quantified distinct cell lineages based on the pixel intensity. Then, we classified 

the extracted cellular data as two categories, including immune cell population 

(CD45+ cells) and non-immune cell population (CD45- cells), based on a pan-

leukocyte biomarker CD45+ staining. As described in table 3, the immune 

cellular compartments compose of B cells, DCsign+DC (immature phenotype), 

CD83+DC (mature phenotype), granulocytes, M1 macrophages, M2 

macrophages, mast cells, NK cells, as well as T cell subtypes which consist of 

activated T cells (Act-T cell), cytotoxic T cells (Cyt-T cell), T regulatory cells 

(Reg-T cells), T others (TH0 cells), TH1, TH2 cells, TH17 cells. The non-

immune cellular components involve acinar cells, ductal cells, nerves, islet cells, 

aPSCs, qPSCs, and collagen deposition. To investigate the contribution of 

individual cell lineages within CP lesions in the context of distinct etiologies, we 

compared the relative content of these cells in alcoholic CP, AIP, and other CP, 

separately. In the part of immune cell population, activated T cells are most 

predominant, followed by granulocytes, B cells, cytotoxic T cells, TH0 cells, 

mast cells, NK cells, CD83+DCs, TH2 cells, TH17 cells, T regulatory cells, 

DCsign+DC, TH1 cells, M1 macrophages, and M2 macrophages. 

In alcoholic CP lesions, immune cellular compartments account for 7.67%, far 

less than non-immune cellular components (92.33%). As for non-immune 

cellular compartments, acinar cells, duct cells, and islets constitute the top three 

proportion, followed by quiescent PSCs (qPSCs), nerves, activated PSCs 

(aPSCs), qPSCs within proliferative state, aPSCs-matrix, aPSCs within 

proliferative state, and qPSCs-matrix as well (Figure 12).         
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In AIP, immune cell compartments make up 19.39% of the cellular components 

within the lesions, implying that almost one-fifth of the normal pancreatic 

architecture was replaced by immune infiltrates (Figure 13A). Further immune 

cell lineages-tracking analyses demonstrated that granulocyte components are 

the most abundant in the lesions, largely surpassing other immune infiltrates 

such as TH0 cells, activated T cells, B cells, MCs, and NK cells. By contrast, 

the frequency of DCs, macrophages, and other T cell subtypes is relatively less 

Figure 12 Distribution of immune 

and non-immune cell population 

in alcohol-related CP. 

A, Pie chart represents the 

proportion of immune and non-

immune cells in alcoholic CP. 

B, Bar graph depicts immune 

cellular distributions in alcoholic 

CP. 

C, Bar graph reflects non-

immune cellular contribution to 

alcoholic CP.  

 

A Alcoholic CP 

Alcoholic CP Alcoholic CP 

B C 

Immune cell population Non-immune cell population 
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compared to other immune cells, as shown in Figure 13B. Detection of non-

immune cell contents indicated that acinar cells, islet cells, ductal cells still 

possess the most proportion, followed by aPSCs, qPSCs, aPSCs-matrix, 

nerves, qPSCs-matrix, proliferative qPSCs, and proliferative aPSCs as well 

(Figure 13C). 

 

 

 

 

 

 

 

Our investigation looking at the cellular distribution of other CP subgroup shows 

that around 7.93% of the components in lesion area are immune compartments, 

Figure 13 Contribution of 

immune and non-immune cell 

population in AIP. 

A, Pie chart represents the 

proportion of immune and non-

immune cells in AIP. 

B, Bar graph depicts immune 

cellular distributions in AIP. 

C, Bar graph reflects non-

immune cellular contribution to 

AIP.  

 

A AIP 

B C 
AIP AIP 

Immune cell population Non-immune cell population 
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predominated by activated T cells, granulocytes, cytotoxic T cells, B cells, MCs, 

TH0 cells, and NK cells (Figure 14A, B). Cellular composition analyses of non-

immune compartments demonstrated that the major cellular compartments are 

acinar cells, followed by islet cells, ductal cells, aPSCs, qPSCs, neural cells, 

and other PSCs subgroups (Figure 14C). 

 

 

 

 

 

 
 

 

4.7 CD45+ cell infiltration in AIP lesions is significantly higher than in 

alcoholic and other CP 

Figure 14 Proportion of immune 

and non-immune cell population 

in others CP. 

A, Pie chart maps the proportion 

of immune and non-immune cells 

in Others CP. 

B, Bar graph delineates immune 

cellular distributions in Others 

CP. 

C, Bar graph reveals non-

immune cellular contribution to 

Others CP.  
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Previous animal and human investigations robustly documented that 

leukocytes are substantially enriched in CP lesions compared with healthy 

pancreatic samples and play a variety of roles in the advance of CP [21, 35, 49, 

72]. However, few studies have focused on the features of infiltrating immune 

cells in CP based on the distinct etiology. To specifically characterize leukocyte 

contribution in lesion areas of alcoholic CP, AIP, as well as CP of other causes, 

CD45+ (pan-leukocyte biomarker) cells were identified. We observed a 

statistically significant increase in the density of CD45+ leukocytes in 

autoimmune CP tissues when compared with alcoholic CP and other CP lesions 

(P=0.047). In contrast, we did not find a marked difference between alcoholic 

and other CP groups (Figure 15). 

 

 

 

                

                                             

 

Figure 15 CD45+infiltrates are slightly frequent in AIP compared with alcoholic CP and 

other CP. The representative graph denotes the mean density of CD45+cells in lesions of the 

three CP groups based on image cytometry results. Comparable analyses were conducted 

using Kruskal-Wallis tests.  

 

 

4.8 Comparison of immune subtypes and stromal compartments among 

different CP groups indicated a nuanced program driving distinct forms 
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of the disease 

To determine the characterization of immune subsets in different etiological 

forms of CP, we evaluated the density of individual immune cell subtypes in CP 

sections signaled by either lymphoid biomarkers or myeloid biomarkers and 

compared those parameters among the three CP groups. Lymphoid lineage 

subtype characterization involved the identification of B cells, NK cells, and T 

cell subsets, including activated T cells, cytotoxic T cells, TH17 cells, TH2 cells, 

TH1 cells, TH0 cells as well as regulatory T cells. Intriguingly, the density of 

cytotoxic T cells was significantly amplified in both alcoholic CP and other CP 

when compared with AIP. A similar tendency was observed in the distribution of 

activated T cells, although the differences did not reach a statistically significant 

level between alcoholic CP and AIP. On the contrary, the frequency of TH0 cells 

was boosted in AIP compared with the other two CP groups. No significant 

differences of B cells, NK cells, regulatory T cells, TH17 cells, TH1 cells, and 

TH2 cells were indicated among the three CP subgroups (Figure 16). 
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Figure 16 Comparison of the distribution of lymphoid lineage cell subsets, including B 

cells, NK cells, and T cell subsets in CP lesions among alcoholic CP, AIP and other CP.    

Comparable analyses were conducted using Kruskal-Wallis tests. Asterisk means significant 

difference with P <0.05. 

 

 

Further analyses for myeloid lineage cell subtypes included identification of 

mast cells, granulocytes, M1 macrophages, M2 macrophages, DCsign+ DCs, 
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and CD83+DCs. Notably, we found that the abundance of granulocytes was 

mildly enhanced in AIP when compared with alcoholic CP and other CP. 

However, no significant differences in the contribution of mast cells, 

macrophages subsets, and DCs subsets were noticed among the three CP 

groups (Figure 17). 
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Figure 17 Comparison of the contribution of lymphoid lineage cell subtypes, including 

mast cells, granulocytes, macrophage subsets, and dendritic cell subsets as well, in CP 

lesions among alcoholic CP, AIP and other CP. Comparable analyses were conducted using 

Kruskal-Wallis tests.  

 

We next analyzed the distribution of individual non-immune compartments, 

including acinar cells, ductal cells, islet cells, nerves, distinct PSCs subsets, 

and collagen deposition as well, among the three CP groups. We did not find 

significant divergence in the frequency of acinar cells, ductal cells, and islet 

cells among alcoholic CP, AIP and other CP. Similarly, no remarkable 

divarication in the distribution of PSC subtypes including quiescent PSCs, 

activated PSCs, quiescent PSCs staying at proliferative phases, matrix-

producing quiescent PSCs, activated PSCs staying at proliferative phases, and 

matrix-producing quiescent PSCs among the three CP subgroups. (Figure 18). 
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Figure 18 Comparison of the contribution of individual non-immune compartments, 

including acinar cells, ductal cells, nerves, distinct PSCs subsets, and collagen 

deposition as well, in CP lesions among alcoholic CP, AIP and other CP. Comparable 

analyses were conducted using Kruskal-Wallis tests.  

 

 

4.9 Distinct stromal forms shaped the discrepant pattern of immune 

infiltration among the three CP groups 
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Prominent fibrosis formation and extensive collagen deposition represent two 

major histological features of CP. It is well documented that pathogenic 

fibrogenesis with the advance of CP is mainly governed by PSCs. Typically, 

PSCs stay as quiet phenotype and play vital roles in sustaining normal tissue 

architecture via balancing the synthesis and degradation of ECM components 

[20, 26]. Upon pancreatic injury, PSCs switch to an activated phenotype, 

specifically identified by aSMA expression, and produce a bulk of ECM 

components, particularly collagen. To ascertain whether there were differences 

in the functional state of PSCs and ECM deposition among the three CP groups, 

we analyzed the percentage of area occupied by aSMA+ staining and collagen 

deposition, respectively. We observed the ratio of aPSCs seemed to be higher 

in AIP compared with alcoholic CP and other CP, but collagen deposition tended 

to be lower in AIP than the other two groups, despite the differences were not 

statistically significant (Figure 19).   
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Figure 19 Comparison of percentage of area occupied by aSMA expression and collagen 

deposition among alcoholic CP, AIP, and other CP. Comparable analyses were conducted 

using Kruskal-Wallis tests.  

 

One of the common properties between PDAC and CP is the extensive 

desmoplastic reaction, reflected by PSCs activation and collagen deposition. In 

the context of PDAC development, four distinct expression patterns of aSMA 

and collagen were delineated as dormant (low aSMA/high collagen expression), 

fibrogenic (high aSMA/high collagen expression), fibroytic (high aSMA/low 

collagen expression), and inert stroma (low aSMA/low collagen expression), 

which were proven as important prognostic biomarkers for patients with PDAC 

(Table 4) [73]. 

 

Table 4: Definition of different stromal forms based on the expression patterns of aSMA 

and collagen 

 Dormant Fibrogenic Fibroytic Inert 

aSMA low high high low 

Collagen high high low low 

 

Furthermore, previous work from our group found evidence that different 

stromal subtypes not simply affect the prognostic outcomes of patients with 

malignant events, but are closely linked to intra-tumoral immune infiltrates [58].  

Those results led us to focus on the question of whether the immune infiltrates 

play roles in shaping distinctive stromal subtypes in the context of CP with 

different etiology. To figure out the answer, we first analyzed the distribution of 

the three distinct CP subgroups in different stromal subtypes. We observed that 

13.04% (n=3) of alcoholic CP patients were classified into dormant stroma 

subtype, with 21.73% (n=5) classifying as fibrogenic stroma subtype, 30.43% 

(n=7) as fibrolytic stroma subtype, and 34.78% (n=8) as inert stroma subtype. 

In AIP subgroup, 14.29% (n=1) of patient was defined as fibrogenic stroma, 

57.14 % (n=4) of patients as fibrolytic stroma, and 28.57 % (n=2) of patients as 

inert stroma; however, there is no patient classified into dormant stroma. 



     LMU Doctoral Thesis                                           Yonggan Xue 

52 
 

Analyses of other CP suggested that 25.00% (n=7) of patients were grouped 

into dormant stroma subtype, 14.29% (n=4) into fibrogenic stroma subtype, 

28.57% (n=8) into fibrolytic CP, and 32.14% (n=9) into inert stroma subtype. 

Intriguingly, comparison of the distributional characteristics of different CP 

subgroups in distinct stromal subtypes did not indicated a statistically significant 

difference. 

 

 

                                       

 

Figure 20 Bar graph annotating the distribution of CP with distinct causes in different 

stromal subtypes. Comparable analyses were conducted using Fisher’s Exact Test. No 

statistically significant differences were observed among the distribution of etiologically different 

CP subgroup in individual distinct stromal subtypes.  

 

Furthermore, we compared the contribution of immune infiltrates in different 

stromal subtypes among the three CP groups. Analyses of lymphoid biomarker 

panel indicated that fibrolytic stroma in AIP has significantly higher numbers of 

TH0 cells compared with alcoholic CP and other CP. By contrast, the frequency 

of both activated T cells and cytotoxic T cells was dramatically reduced in AIP 

compared with the other two groups in fibrolytic stroma. The density of B cells 

and NK cells within inert stroma in AIP tend to be higher than in alcoholic CP 

and other CP, but the percentage of cytotoxic T cells was significantly reduced 

in AIP compared to other CP group (Figure 20). Additionally, the number of B 

cells and activated T cells in the context of fibrogenic stroma seem likely to be 

enriched in alcoholic CP as well as other CP when compared with that of AIP 

(see Figure 20). 
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Figure 21 Box and whiskers plot denoting the differential contributions of lymphoid cell 

subsets in distinct stromal subtype among different CP groups. Comparable analyses 

were conducted using Mann-Whitney tests and Kruskal-Wallis tests. Asterisk means significant 

difference with P <0.05. 

 

Data from myeloid biomarker panel analyses suggested that fibrolytic stroma in 

AIP tends to have more abundance of granulocytes when compared to alcoholic 

CP and other CP, as demonstrated in Figure 22.  
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Figure 22 Box and whiskers plot representing the differential contributions of myeloid 

cell subsets in distinct stromal subtype among different CP groups. Comparable analyses 

were conducted using Mann-Whitney tests and Kruskal-Wallis tests.  

 

Next, to explore the connection between stromal subtype and the distribution of 

pancreatic exocrine-endocrine cell populations and stromal compartments in 

the context of CP of different etiology, comparative correlation analyses among 

the three CP groups were conducted. It indicated that inert stroma in both 

alcoholic CP and other CP harbors higher amounts of acinar cells compared 

with AIP. Similarly, in the context of fibrolytic stroma, higher numbers of acinar 

cells were revealed in alcoholic CP and other CP when compared with AIP. By 

contrast, the composition of ductal cells within inert contexture found higher in 

AIP compared to alcoholic CP and other CP (Figure 23). 
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Figure 23 Box and whiskers plot denoting the differential contributions of acinar cells, 

ductal cells, islet cells, nerve cells, and stromal compartments in distinct stromal 

subtype among different CP groups. Comparable analyses were conducted using Mann-

Whitney tests and Kruskal-Wallis tests. 

 

 

4.10 AutoML technique predicted top ten features associated with the 

presence of exocrine insufficiency of patients with CP 

One of the most common consequences of CP is the loss of exocrine pancreatic 

function, due to the destruction of acinar cells, with impact on nutritional status 

and quality of life. Despite plenty of investigations launched in experimental 

models and clinical cohorts, the definitive mechanism underlying the 

development of exocrine insufficiency in patients with CP is still far from 

completely understood. This is partly because of the hardness to catch the 

dynamics of acinar cell disruption, especially the kinetics of their interaction with 

immune infiltrates as well as non-immune cellular compartments during the 

development of CP. To explore the potential contributors to acinar cell 
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destruction and the consequent exocrine compromise, we applied 

computational machine learning techniques together with R programming 

language statistics to analyze multi-stained TMA image characterization in 

combination with clinically testing of exocrine function from the matched 

patients.  

To accomplish this combinational analysis, we attempted to collect the clinical 

data of the 58 included patients with CP. However, 3 patients were excluded 

from the analysis due to missing clinical exocrine data. Therefore, 55 patients 

were subjected to the final analysis, with 36 patients not having exocrine 

insufficiency and 19 patients who had developed exocrine insufficiency at the 

time of surgery (Figure 24).                                                                                      

           

 

 

Figure 24 Column chart annotating exocrine function of the 55 analyzed patients with CP, 

with the red column representing the 36 patients retaining normal exocrine function and 

the blue column depicting 19 patients evidenced with exocrine insufficiency. 

 

Multiplexed image data from the 55 analyzed patients were randomly split into 

two subsets, with 80% of those data categorized into training and tuning cohort 

to create a final model, alongside 20% of those data serving as the testing 

cohort to assess and optimize the final model performance. To assure a more 

robust consistency of predicting exocrine insufficiency, we exploited a 
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combination of a stacked machine learning algorithm implementations provided 

by the R to generate automatic machine learning models for the present study. 

As explicitly demonstrated in Figure 25, deep learning dominates the stacked 

machine learning models, with the assistance of several other models including 

GBM, GLM, XGBoost, DRF, and XRT) 
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Figure 25 Automatic machine learning models applied to identify potential features to 

predict exocrine insufficiency. Deep learning model is explicitly prominent in the stacked 

machine learning model approaches, with the involvement of GBM, GLM, XGBoost, DRF as 

well as XRT model. 

 

To more accurately find out important potential features on predicting the 

presence of exocrine insufficiency in patients with CP, we computed the 

multiplex-stained images using stacked ensemble AutoML models which 
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incorporated deep learning as well as GBM, GLM, XGBoost, DRF and XRT 

algorithm. We made use of this methodology based on the fact that the stacked 

ensembles are proved to be outperforming any of the individual base learner 

predictions, like GBM and GLM [74]. Stacking the involved base learners was 

automatically accomplished by the H2O AutoML algorithm implemented in R 

programming environment. The Partial dependency-based variable importance 

scores and corresponding partial dependence plots were automatically 

constructed from the stacked models. As shown in Table 5, we list the top ten 

features associated with the presence of exocrine dysfunction of patients with 

CP. We found the number of activated PSCs specifically residing in the 

proliferative state has the strongest importance in predicting the induction of 

pancreatic exocrine dysfunction. Following the indicator of proliferative aPSCs, 

the frequencies of NK cells and islets are the second and third significant 

predictors of the presence of pancreatic exocrine insufficiency respectively. 

 

Table 5: The top ten predictors for exocrine insufficiency of patients with CP 

Variable Relative 

importance 

Scaled 

importance 

Percentage      Partial dependency plot 

 

 

aPSCs 

proliferation 

 

 

1.000 

 

 

1.000 

 

 

  0.065 

 

 

 

NK cells 

 

 

0.825 

 

 

0.825 

 

 

0.054 

 

 

 

Islets 

 

 

0.786 

 

 

0.786 

 

 

0.051 
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Age at 

diagnosis 

 

 

0.754 

 

 

0.754 

 

 

0.049 

 

 

 

qPSCs 

 

 

0.705 

 

 

0.705 

 

 

0.046 

 

 

 

Acini 

 

 

0.693 

 

 

0.693 

 

 

0.045 

 

 

 

Reg_T_cells 

 

 

0.676 

 

 

0.676 

 

 

0.044 

 

 

 

M2 

 

 

0.670 

 

 

0.670 

 

 

0.044 

 

 

 

CD83+_DCs 

 

 

0.665 

 

 

0.665 

 

 

0.043 
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5. Discussion 

CP is a fibro-inflammatory disease of the pancreas that causes irreversible 

destruction of pancreatic parenchyma and extensive extracellular matrix 

deposition [75]. CP not just links to worsened quality of life and shorter life 

expectancy due to the consequent disease-related dysfunction and 

complications but leads to severe socioeconomic burden resulting from an 

growing incidence and prevalence [7, 76, 77]. Thus far, no causative treatment 

is available for this disease due to the incomplete understanding of 

pathogenesis and the lack of druggable targets [78]. It is well documented that 

inflammation plays an essential role in developing CP, as shown by 

investigations of inflammatory cell infiltrates in both humans [47, 72, 79] and 

animal models [36, 56]. While many animal models have been designed to 

delineate the pathological trajectories of CP, the challenge remains how to 

accurately translate observations from experimental studies into clinical 

practice. Additionally, animal models can not entirely mirror the pathogenesis of 

human CP due to an artificial course of developing the disease and the species 

barrier. Also, data from animal experiments remain controversial over the 

question of whether the immune response in CP is uniform or distinct when it 

comes to the etiology of CP. The same problem needs to be solved in human 

disease [80]. Nevertheless, human studies are frequently held back by the 

limitation of pancreatic tissue access. Although investigators turn to scrutinize 

alternations in peripheral blood inflammatory cells to decipher immune 

mechanisms involved, observations might not faithfully recapitulate the kinetics 

of the local immune responses. To overcome these barriers, we utilized CP 

specimens from patients who underwent surgical intervention to define immune 

infiltration signatures and pancreatic architecture alternations using a multiplex 

immunohistochemical staining approach. This staining strategy allows us to 

repeatedly visualize distinct antigens in a single tissue section, which not simply 

resolves the difficulty of tissue accessibility, but enables us to precisely discern 
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distinctive cellular phenotypes. Moreover, the computational image-processing 

technique serves as a powerful tool for the visualization of multiple antigens 

within a single multispectral image, clearly displaying the distribution of 

individual cells and allowing for quantitative assessment of the cellular 

compartments. However, since the multiplex staining technique cannot provide 

a direct correlation between protein expression level and signal intensity, we 

employed thresholding approaches to separate individual cellular 

compartments according to the corresponding signal intensity [57]. Thus, the 

process of image cytometric analysis is largely similar to that of flow cytometry 

with respect to the qualitative gating strategy [81]. Importantly, It is worth noting 

that image cytometry provides a convenient platform that allows for 

multiparametric fluorescent analyses of heterogeneous cell lineages, 

morphological alternations of tissue structure, as well as cell-cell interaction 

studies [82]. 

 

Despite the largely similar histological characteristics, CP refers to a range of 

disease entities. In the present study, we mainly focus on describing the 

histological features of chronic alcoholic pancreatitis, AIP, other CP as well as 

comparing the subtle histological differences among them. While most patients 

present with the classic abdominal pain [83], the natural history and clinical 

manifestations vary dramatically depending on different forms of CP, as also 

found by the range of possible indications for surgery in our cohort [2]. Alcohol 

has consistently been noted as the most common causative agent for CP, 

leading to nearly 50% of cases of the disease [7]. The mechanism underlying 

the induction of alcoholic CP remains largely uncharted. Previous investigations 

collectively suggest that people harboring specific genetic mutations in certain 

gene loci, such as CLDN2, SPINK-1, have a higher risk of developing alcoholic 

CP [84, 85]. Moreover, chronic alcohol intake results in the acinar cell 

susceptible to injury either through increasing levels of digestive and lysosomal 

enzymes in acinar cells [86] or by intercepting protective mechanisms that 
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sparing the acinar cell from endoplasmic reticulum stress [87]. 

 

AIP is characterized by a rapid response to corticosteroid therapy [88]. Since 

AIP is frequently along with elevated serum immunoglobulin (Ig) G4 levels and 

extra-pancreatic organs abundant with IgG4 plasma cell infiltration, clinicians 

tend to define AIP as a pancreatic manifestation of a multiorgan disease [89]. 

Chronic obstructive pancreatitis refers to a form of chronic pancreatitis that is 

caused by physical trauma to the duct or results from partial or complete ductal 

obstruction. Obstructive pancreatitis appears in the area upstream from the 

pancreatic duct injury, leaving the downstream pancreas staying intact [90, 91]. 

It is now well established that pancreatitis starts from acinar cell injury, followed 

by the infiltration of immune cells and the over-activation of mesenchymal cells. 

However, whether the pathogenesis of CP resulting from different etiology is 

uniform or divergent remains to be defined. Additionally, deeply understanding 

this question has the potential to seek out appropriate therapeutic targets for 

each type of the disease. 

 

Both innate immunity and adaptive immunity are involved in the pathogenesis 

of CP. It is now well known that genetic and environmental factors induce initial 

injury to pancreatic acinar cells, triggering a cascade of events that lead to pre-

activated digestive enzymes released into the surrounding tissue and result in 

local destruction [78]. The injured acinar cells, along with the inflammatory 

stimulation raised from local damage, incite a series of local and systematic 

immune responses that involve both innate and adaptive immune response [78, 

92, 93]. Moreover, PSCs, which can be activated either by cellular debris from 

necrotic acinar cells or through interaction with inflammatory infiltrates, play an 

essential role in fibrosis formation and collagen deposition. Thus, closer 

examination of histological signatures of pancreatic epithelial cells and non-

epithelial cells, particularly immune cell infiltrates and PSCs, in the pancreatitis 

lesions, have the potential to improve our knowledge of the pathogenesis of the 
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disease and find out suitable therapeutic targets to intercept disease 

progression. We, therefore, generated three multiplex staining panels, including 

myeloid panel, lymphoid panel, and pancreatic exocrine-endocrine and stroma 

panel, to explore histopathological features of CP using image cytometric 

analysis. Additionally, we stratified CP into three subgroups on the basis of the 

distinct etiology and compared the cellular compositions and stromal 

compartments within CP lesions among different CP subtypes. 

 

In normal pancreatic tissue, acinar and duct cells are the predominant cell 

populations, whereas the resident immune cells are rarely to be detected [47].  

Previous studies from both experimental models and humans are pointing to 

the fact that the frequency of immune cells is strikingly enriched in the context 

of CP compared to healthy control [35, 54, 94, 95]. Similarly, our exploration of 

cellular component analysis of sections from CP tissue shows that around 8% 

to 20% of cellular composition belongs to the immune cell lineage (Figure 12-

14). While it is well established that immune infiltrates serve as key players in 

developing CP, few studies have confirmed whether there were differences in 

the contribution of immune cells to the disease progression in the context of 

distinct etiology. We, therefore, compared the portion of immune cellular 

compartments among alcoholic CP, AIP, and other CP lesions using CD45+ 

staining as a pan-leukocyte marker. We observed that the percentage of CD45+ 

leukocytes significantly increased in AIP, compared to alcoholic CP and other 

CP. 

 

To further examine whether there are differences in the distribution of the 

lymphoid cellular subtypes among alcoholic-related CP, AIP, and other CP, we 

compared B cells and T cell subsets as well. B cells as a subset of lymphocytes 

differentiate into plasma cells which are well known for their antibody-producing 

function, initiating humoral immunity in the adaptive immune system. Moreover, 

B cells play critical roles in the kinetics of T cells proliferation, differentiation, 
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and activation through their antigen-presentation and polarized cytokine-

producing function [52, 96, 97]. Typically, researchers utilize CD20 biomarker 

to identify B cells, because CD20 is expressed on almost all stages B cell 

development except early pro-B cells and plasma cells [98]. The role of B cells 

in the development of pancreatitis is still far from well elucidated. Previous 

observation demonstrated that B-cell ablation therapy with anti-CD20 antibody 

is a desirable option for patients with AIP implicating the crucial involvement of 

B cells in developing the disease [99, 100].Few studies have focused on the 

contribution of B cells in other subtypes of pancreatitis, like alcoholic 

pancreatitis and obstructive pancreatitis. In the present study, we did not 

observe significant discrepancies in the density of B cells among the three CP 

subgroups. However, whether the density of early stage of B cells as well as 

plasma cells are also different among the three CP group need to be 

determined by the ongoing investigations. 

 

NK cells are also considered to be a subset of lymphocytes and are involved in 

both innate and adaptive immune responses [45]. Functionally, NK cells are 

particularly similar to cytotoxic T lymphocytes, with the capacity to clear off 

transformed cells and foreign pathogens and to produce various inflammatory 

cytokines, like IFN-γ, TNF-α, IL-18 [53]. Previous reports suggest that NK cells 

are activated in the early stages of AP and also implicated in the pathogenesis 

of systemic inflammatory response syndrome (SIRS) and infected pancreatitis 

[101, 102]. However, although the percentage of NK cells in CP lesions is 

relatively low, the role of NK cells in the progress of the disease needs to be 

defined by further investigations. 

 

Among T cell subsets, the frequency of cytotoxic T cells and activated T cells 

was significantly lower in AIP, when compared with alcoholic CP and other CP. 

In contrast, the frequency of TH0 cells tend to be higher in AIP, compared to 

alcoholic CP and other CP. However, the density of TH1 cells, TH17 cells, TH2 
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cells and T regulatory cells are comparative among the three CP groups. It is 

very clear that cytotoxic T cells play vital roles in immune-related diseases, 

tumorigenesis, and the elimination of foreign pathogens [103]. Cumulative 

studies show that the abundance of cytotoxic T cells in the peripheral blood 

considerably decreases during the course of AP, especially severe acute 

pancreatitis (SAP) [51, 104]. Moreover, cytotoxic T cells are associated with a 

secondary hit of infection in the progress of AP [102]. Previous studies looking 

at the role of cytotoxic T cells in the progress of alcoholic CP suggested that the 

frequency of cytotoxic cells was significantly enhanced in the pancreatic lesions 

from patients with alcoholic CP, suggesting the involvement of cell-mediated 

cytotoxicity. Moreover, the activated cytotoxic cells were frequently identified in 

the vicinity of areas with parenchyma, indicating that cytotoxic T cells probably 

lead to tissue disruption in alcoholic CP [49]. Rarer studies have evaluated the 

potential role of cytotoxic T cells in the pathogenesis of AIP, partially because 

of their scarce appearance in the disease [89]. This was mirrored by our results 

that the appearance of cytotoxic T cell subtypes was significantly lower in AIP 

compared to alcoholic CP and other CP. Altogether, these data suggest that 

cytotoxic T cells are more active in the progression of alcoholic CP and other 

CP.  

 

Cytotoxic T lymphocyte antigen-4 (CTLA-4) is a cell surface molecule that is 

expressed nearly exclusively on T lymphocytes, including both CD4+ and CD8+ 

T cells [105]. Further investigation on CTLA-4 expression confirmed that CTLA-

4 molecule is selectively expressed on the surface of activated T cells, not the 

resting T cells [105-107]. Functionally, CTLA-4 is a very important molecule in 

mediating the kinetics of T cell immune activities, such as regulating T cell 

proliferation, mobility, activation, as well as maintaining of T cell homeostasis 

[108-111]. Mice with CTLA-4 depletion rapidly develop lymphoproliferative 

disorder with dramatical lymphocytic infiltration in multiorgan, particularly liver, 

heart, and pancreas, and widespread tissue destruction [110, 112, 113]. Given 
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the remarkable role of CTLA-4+ T cells (activated T cells) in mediating T cell 

immunity, we sought to determine their contribution to the progress of CP. Of 

note, we found that CTLA-4+ T cells occupied the largest percentage of 

lymphocytes in the lesions, suggesting the involvement in the development of 

CP, especially alcoholic CP. Future experiments, therefore, are required to 

identify the biological function of CTLA-4+ T cell populations in the progress of 

the disease.   

  

TH17 cells are the main source of IL-17A, which has been confirmed to directly 

drive various immune-related diseases or indirectly mediate a range of 

inflammatory responses through enhancing expressions and functions of other 

cytokines and chemokines, like IL-6, TNF-α, CXCL1, and MCP-1 [114-116]. 

Clinical investigations show that the serum level of IL-17A is strongly associated 

with the severity of AP and can predict the clinical outcomes of patients with 

SAP [117-119]. IL-17A might also drive acinar cell necrosis by upregulating a 

number of inflammatory mediators, such as IL-1β, and CXC family members 

[120]. In patients with CP, previous studies suggest that the proportion of TH17 

cells markedly increase in both the peripheral blood and the inflamed pancreatic 

tissues [47]. Furthermore, the increased deviation of TH17 subsets in 

pancreatic lesions is not just associated with clinical features of advanced CP 

but contributes to β-cells disruption and fibrosis formation [48, 121, 122]. Our 

results did not suggest a statistically significant difference of TH17 cell 

populations among alcoholic CP, AIP, and other CP, implying that these cells 

probably exert universal function in the progression of CP with regardless of 

distinct etiology. 

 

TH1 and TH2 subsets exert distinct effector functions during the course of 

pancreatitis. TH1 cells are characterized by secreting INF-γ that acts as a 

potential pro-inflammatory cytokine and plays a critical role in immunopathology 

[123], whereas TH2 cells are known as producing large amounts of IL-4, IL-5, 
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IL-13, IL-9, and IL-10 that are associated with broad ranges of anti-inflammatory 

response and mediate type 2 inflammation [124]. The dynamic balance 

between TH1 cells and TH2 cells is associated with the severity of AP and the 

progression of CP [89, 125, 126]. In the context of CP, TH1 cells are reportedly 

associated with pancreatic islet disruption [48], whereas TH2 cells are linked to 

the transition of the chronic pancreatic fibroinflammatory disease to malignant 

carcinoma [43]. However, there are contradictory results with regard to the 

TH1/TH2 balance during the progress of CP [127]. Our previous work indicates 

that AIP is a T cell-driven disorder in which the subtype of T effect cell is the 

main responder to disease progression and 

pancreatic tissue destruction [128]. Similarly, our present analysis suggests a 

tendency of a TH2-predominant immune response in the patients with CP at 

the time of surgery (Figure 16). 

 

The role of naïve CD4+T helper cells (TH0) in developing CP is still not well 

documented. It is well known that upon activation by corresponding 

inflammatory cytokines or antigens, TH0 cells can skew into TH1, TH2, and 

TH17 cells [129]. These effector T cell subsets can induce a cascade of immune 

response through generating a variety of inflammatory factors, as mentioned 

above. Our comparative analysis suggested that the frequency of TH0 cells is 

more dominant in AIP compared to alcoholic CP and other CP. Future 

experiments are suggested to elucidate the function of TH0 cell subsets in the 

development of CP, especially AIP.  

        

Treg cells are involved in a broad range of immune responses, such as 

autoimmunity, inflammation, and tumorigenesis, mainly through regulating the 

activity of other immune cells, including macrophages, DCs, NK cells, and other 

T cell subsets as well [130-132]. Previous experiments confirmed that the 

pancreatitis-specific IL-10 responses were driven by IL-10+INF-γ-FoxP3+ Treg 

cells, which were amplified not just in bone marrow, peripheral blood, but, most 
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conspicuously, in CP lesions, and exerted potent function to suppress the 

proliferation of autologous conventional T cells, suggesting those cells played 

a crucial role in the control of auto-aggression during the course of CP [72]. 

Similarly, it is reported that the number of CD4+CD25+ FoxP3+ Treg cells were 

significantly increased in pancreatic tissues and the peripheral blood of patients 

with AIP [133, 134]. Additionally, data from animal experiments demonstrate 

that increasing the number of Treg cells, either by adoptive transfer or by 

pharmacological approach, significantly attenuate the severity of L-arginine-

induced CP by suppressing the overactivation of cytotoxic T cells [135]. Given 

the potent immune-mediating function of Treg cells, we sought to define 

whether there were differences in the contribution of Treg cells in the context of 

CP with different etiology. We compared the density of Treg cells and found that 

the distribution of Treg cells were comparable among the three CP subgroups.  

 

Neutrophil granulocytes as an essential part of the innate immune system are 

known for their functions in inflammation resolution. During the course of 

pancreatitis, intercellular adhesion molecule-1(ICAM-1) is upregulated in acinar 

cells and plays crucial roles in mediating infiltration of neutrophils into the 

inflamed pancreas [136]. Moreover, ICAM-1 directly mediates neutrophils 

adhesion to pancreatic acinar cells, which may further exacerbate inflammatory 

responses and induce cell death during pancreatitis [137]. In addition to ICAM-

1, P-selectin, and lymphocyte function antigen-1 (LFA-1) are evidenced by 

separate studies in regulating neutrophil recruitment, neutrophil-endothelium 

interactions, and tissue damage [138, 139]. Infiltrating neutrophils also play 

critical roles in digestive enzymes activation, further aggravating acinar cell 

damage [140]. Additionally, neutrophil extracellular traps (NETs) generated by 

activated neutrophils contribute to the transformation of AP into CP [24]. Few 

studies have investigated the role of neutrophils in the progression of CP. We, 

therefore, analyzed the percentage of neutrophils and identified their 

contribution among different subgroups of CP. Our observations clearly 
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demonstrated that neutrophils took the largest proportion of myeloid-originated 

cell populations in CP lesions. Moreover, the density of neutrophils in the 

lesions of AIP was significantly amplified when compared with that of alcoholic 

CP and other CP. However, whether the enhanced frequency of neutrophil 

infiltrates plays more important roles in AIP remains to be defined in animal 

models and humans. 

 

Macrophages are not just critical to the clearance of necrotic and apoptotic cell 

debris, but play a vital role in the dynamic of fibrogenesis. Classically, it is 

thought that M1 macrophages dominate in the context of acute inflammation, 

whereas M2 macrophages take an essential part in the process of chronic 

inflammation. During the initial stages of pancreatitis, bone marrow-derived 

macrophages rapidly migrate into the inflamed pancreatic areas and become 

the important immune cell populations, mainly M1 macrophages, within the 

lesions [141]. While it is well known M1 macrophages clear off the injured cell 

components during pancreatitis, they are also responsive for acinar cell 

necrosis through producing large amounts of inflammatory mediators and pre-

activating digestive enzymes [142-144]. In contrast to M1, M2 macrophages 

serve as key players in CP, especially during the course of fibrosis formation. 

During the course of CP, macrophages produce large amounts of tissue 

inhibitor metalloproteinase 2 (TIMP2) and matrix metalloproteinase 9 (MMP9), 

meaning they play an immediate role in regulating the metabolism of ECM [36]. 

Additionally, macrophages are involved in fibrogenesis through a mode of bi-

directional interaction with PSCs, which are activated in the inflammatory 

microenvironment and produce large amounts of ECM [36, 145]. To evaluate 

the contribution of macrophages in the progress of CP, we quantified the 

percentage of M1 and M2 macrophages and compared among the AIP, 

alcoholic CP, and other CP. Our observations revealed that there was no 

statistically significant discrepancy in the contribution of M1 and M2 

macrophages among the three CP subgroups. 
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DCs, which make up vital parts of antigen-presenting cells, bridging between 

innate and adaptive immunity. It is well known that DCs play important roles in 

sustaining immune homeostasis during the course of infection, autoimmune-

related disease, and tumorigenesis [41]. Depending on the distinct receptors 

expressed on the cell surface, the immunomodulatory actions of DCs vary. DC-

sign is nearly exclusively expressed on DCs, including both immature and 

mature DCs [146]. While DC-sign expressing DCs can enhance immune 

response through activating the resting T cells, promoting T cell proliferation, 

and skewing T cell bias [147, 148], they can also exert immune inhibitory action 

by reducing T cell proliferation, and suppressing co-stimulator CD11c, CD83, 

and CD86 expression [149]. Unlike DC-sign expression, CD83 is only present 

in fully matured DCs [150]. Similarly, CD83+DC populations show both immune 

stimulatory and immune inhibitory function through the complex and nuanced 

interaction with T cells [151]. The impact of DCs, both immature and mature 

populations, on the evolution of CP is still not well investigated. Our results 

comparing the distribution of DC-sign+ DCs and CD83+DCs in the lesions 

among AIP, alcoholic CP, and other CP suggested that the frequency of CD83 

expressing CDs appeared to enrich in AIP. Both in vitro and in vivo experiments 

indicated that CD83 molecules have immunosuppressive roles, such as the 

inhibition of DC-mediated T cell proliferation and stimulation [152, 153]. 

Consistently, our findings also revealed a negative correlation between 

CD83+DC and activated T cells and cytotoxic T cell as well, as clearly illustrated 

by cellular analyses which AIP appears to have a higher proportion of 

CD83+DCs but lower proportion of activated T cells and cytotoxic T cell 

compared to alcoholic CP and other CP. However, the density of DC-sign 

bearing DCs was on difference among the three CP subgroups. More insights 

and investigations are required to dissect the more detailed impact of CD83+ 

DCs population on the pathogenesis of CP. 
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It is well studied that MCs are involved in both innate and adaptive immune 

systems and plays crucial roles in allergic reactions and in host-defense 

immunity. Previous investigations around the impact of MC on the process of 

AP suggested that activated MC enhances local and systemic inflammation 

through the degranulation or production of inflammatory mediators [154, 155]. 

However, the study on the role of MCs in modulating CP is relative rare. It has 

been reported that MCs is a key contributor to the pathogenesis of pain in 

patients with CP [156]. Explorations of mechanism underlying MC-associated 

role in the pain pathology implicate that MC degranulation products, like 

tryptase and histamine, can directly sensitize nociceptors of the proximal 

neurons, enhancing nociception neurotransmission [157]. To evaluate the 

distributional characteristics of MC in CP, we quantified the percentage of MC 

in the lesions of CP and further compared the findings among alcoholic CP, AIP, 

and other CP. Surprisingly, we found that MC was the second higher myeloid 

lineage cell population, perhaps pointing to the high pain intensity in these 

surgical patients. However, the density of MC was of no difference among the 

three CP subgroups. These data suggested the remarkable involvement of MC 

in the pathogenesis of CP, specifically pain development. However, whether 

the biological role of MC in mediating the evolution of CP with different causes 

is uniform or divergent remains to be defined in future trials. 

 

It is now very clear that activated PSCs are responsive for the fibrosis formation 

and collagen deposition, which are two major histological characteristics of CP, 

especially at later stages of the disease [55, 158]. Strategies designed to 

impede the activation of PSCs or restrain pathways of ECM deposition have 

been evidenced as efficacious options for precluding the progression of the 

disease [54, 159]. Improved knowledge of the phenotype of PSCs and their 

capabilities of ECM production in the development of CP with distinct etiology 

provides the great potential of understanding pathological signatures of the 

disease and formulating corresponding therapeutic regimens. We, therefore, 
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evaluated the functional and proliferative states of PSCs, fibrosis accumulation, 

collagen deposition, and compared these parameters among alcoholic CP, AIP, 

and other CP. We observed that the frequency of ECM-producing activated 

PSCs was significantly increased in AIP when compared to alcoholic CP and 

other CP. Similarly, we noticed that the proportion of ECM-producing quiescent 

subtypes of PSCs was also upregulated in the context of AIP compared to that 

of the other two subgroups. Additionally, we also found that the density of the 

quiescent phenotype of PSCs in AIP was the highest of all. The mechanisms 

underlying the increased abundance of both quiescent and activated PSCs, 

together with the enhanced proportion of both ECM-producing activated PSCs 

and quiescent ones, in AIP necessitates further investigations to determine. It 

has been well investigated that interactions between PSCs and immune 

infiltrates play critical roles in the progression of CP. For example, previous 

experiments have pointed out the bidirectional interplay between PSCs and 

macrophages in the dynamic of inflammatory response and fibrosis formation 

during CP. Cytokines like IL-4 and IL-13 released by PSCs promote M2 

polarization, whereas M2 macrophages produce large amounts of TGFβ and 

PDGFβ in turn activate PSCs [36, 93]. These observations are in line with our 

findings that AIP tends to have a higher density of macrophage populations, 

including both M1 and M2, when compared to alcoholic CP and other CP, partly 

explaining AIP appearing with higher amounts of activated PSCs and their 

ECM-producing abilities as well. Moreover, investigations on patients with CP 

demonstrated that the degrees of MC degranulation were found to rise in 

parallel with the extents of PSCs activation, hinting the strong involvement of 

MC in the course of pancreatic fibrogenesis during CP [160]. However, our 

findings did not show statistically significant differences of MC among alcoholic 

CP, AIP, and other CP, although AIP found stronger intensity of PSCs activation. 

This discrepancy perhaps results from the intricate mechanism of the 

fibrogenesis during the process CP with distinct etiology and the different 

disease stages. Additionally, experimental models have illustrated that 
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activated PSCs play as important contributors to drive the impairment of islet 

endocrine function experienced by some patients with CP as well as the 

dynamic of islet fibrogenesis associated with certain cases of type 2 diabetes 

[161]. Our studies showed that patients with AIP have higher chances of 

developing endocrine dysfunction compared to those with alcoholic CP and 

other CP, probably because AIP have a higher proportion of activated PSCs.  

 

It has been well studied that the fibro-inflammatory stromal composition has 

remarkable effects on PDAC initiation, invasion, metastatic dissemination, as 

well as relapse [162]. Like PDAC, CP is also known for its desmoplastic stroma 

reaction consisted of activated PSCs, immune cells, and ECM proteins [163]. 

The complex and subtle interplay between immune infiltrates and PSCs plays 

a major role in the cascade of desmoplasia. Inflammatory factors generated by 

immune cells lead to the shift of the quiescent PSCs towards an activated 

phenotype and the consequent ECM production. Previous studies on PDAC 

stroma suggest that distinct stromal patterns defined by differential expression 

of aSMA and collagen robustly predict PFS of patients with the disease [58, 73]. 

Therefore, to determine the impact of immune migration on modulating stromal 

composition in the context of CP with distinct etiology, we analyzed the 

distribution of immune infiltrates in different stromal subtypes and compared 

those parameters among AIP, alcoholic CP, and other CP. We observed that the 

frequency of TH0 cells was significantly increased in fibrolytic stroma subtype 

in AIP when compared with alcoholic CP and other CP. A similar distribution 

pattern was noted with granulocytes, although the differences did not reach the 

statistically significant level. In contrast, the density of cytotoxic T cells and 

activated T cells was apparently decreased in the subtype of fibrolytic stroma 

of AIP compared to other CP subgroups.  

 

In addition, we compared the distribution of acinar cells, ductal cells, islet cells, 

and nerve cells among the AIP, alcoholic CP, and other CP. Our results did not 
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show statistically significant discrepancies in the abundance of those cellular 

components among the three CP groups. These observations suggest that the 

degree of impairment in acini, ducts, islets, and neurons among the three CP 

groups at least at the time of surgery are of no stark differences. However, the 

underlying pathogenesis contributing to the destruction of those cellular 

compartments among the three CP groups remains to be determined. 

 

A former trial proved that different patterns of stroma, including dormant, 

fibrogenic, fibrolytic, and inert stroma, augured strongly for distinct long-term 

survival of patients with PDAC [73]. These observations were further validated 

by our recent investigations [58]. Therefore, in attempt to determine whether 

discrepant stromal subtypes also contribute to distinct outcomes of non-

immune cells in the context of CP with different etiology, we evaluated the 

distributional characteristics of those cells among the three CP groups. Our 

observations indicated that ductal cells were comparable in the context of 

dormant stroma between alcoholic CP and other CP. Moreover, in the setting of 

inert stroma, both alcoholic CP and other CP conserved more ductal structures 

than that of AIP. In contrast, the number of ductal cells in the context of inert 

stroma tends to be higher in AIP when compared to alcoholic CP and other CP. 

However, we did not observe significant difference of immune infiltrates in the 

context of both dormant stroma and inert stroma between the two CP groups. 

The underlying mechanism of the discrepant distribution of those non-immune 

compartments among the three CP groups in the context of inert stroma 

requires more comprehensive experiments to determine. 

 

Since exocrine dysfunction continues to be a major life-quality threat to most of 

the patients with CP, particularly those with advanced stages, we attempted to 

figure out features that are associated with the presence of exocrine 

insufficiency. We applied the stacked ensemble AutoML models, including deep 

learning, GBM, GLM, XGBoost, DRF, and XRT model, to compute the multiplex-
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stained images together with clinical data of the corresponding patients. Among 

all the features that are predictively implicated in developing exocrine 

insufficiency, we listed the top ten predictive factors, including aPSCs 

proliferation, NK cells, islets, age at diagnosis, qPSCs, acini, T regulatory cells, 

M2 macrophages, CD83+DCs, and Mast cells (Table 5). We noticed that the 

number of activated PSCs specifically at proliferative state has the strongest 

relevance of predicting the presence of pancreatic exocrine insufficiency. The 

frequency of NK cells was indicated as the second important predictor of the 

induction of exocrine abnormality, with a negative relationship with maintaining 

the exocrine function of the pancreas. By contrast, the density of islets is 

positively correlated with the maintenance of exocrine function during CP, 

probably pointing towards less severe disease. However, those factors simply 

belong to computationally predicted findings which are just based on a relatively 

small size of the database of patients with CP. Whether those predictive factors 

are virtually critical to precisely augur the appearance of exocrine compromise 

during CP remains to be answered by a large scale of database and further 

experimental models. We expect these findings would lay a foundation to reveal 

the biological process of the development of pancreatic functional abnormality 

of the patients with CP. 
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6. Conclusions and Outlook 

Our study for the first time indicated that the system of multiplex staining 

methodology is an efficient tool for comprehensively exploring and defining the 

pathohistological signatures of CP. The computationally stacked images from 

multiplex staining not simply take into account of the quantitative information 

but provide a geographic distribution of visualized features at the tissue level. 

Our findings revealed that CD45+infiltrates are more abundant within TMA 

sections from AIP when compared to alcoholic CP and other CP. Immune 

cellular subtype analyses indicated that granulocytes were statistically enriched 

in AIP compared with alcoholic CP and other CP. In contrast, the density of 

cytotoxic T cells was significantly amplified in both alcoholic CP and other CP 

when compared with AIP. Our investigations looking at stromal compartments 

did not suggest significant differences among the three CP subgroups. 

Additionally, AutoML computation robustly indicates the top ten variables, 

including aPSCs proliferation, NK cells, islets, age at diagnosis, qPSCs, acini, 

T regulatory cells, M2 macrophages, CD83+DCs, and MCs, which are 

associated with the prediction of exocrine insufficiency of the patient with CP. 

Altogether, our work provides detailed information on the histological 

characteristics of advanced CP. Moreover, we comprehensively compared 

those features among different patient groups, which will be helpful for 

designing a specific therapeutic approach for individual patient groups. 

Additionally, we identified the top ten predictors for pancreatic exocrine 

insufficiency, providing improved insight into studying the progress of exocrine 

dysfunction of the patient with CP.  
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8. Appendix 

8.1 Specific chemicals and reagents 

Table 6: Specific chemicals and reagents 

Reagent Manufacturer Catalog# 

Albumine fraction V, Bovine serum albumin 

(BSA) 

ROTH, Germany 3737.4 

Ammonia solution  ROTH, Germany CP17.1 

Citric acid monohydrate ROTH, Germany 5110.1 

Direct Red 80 Sigma-Aldrich, USA  2610-10-8 

Dulbecco ś Phosphate Buffered Saline (PBS)  Biochrom GmbH, Germany D5652 

Ethanol  ROTH, Germany K928.4 

Ethylenediaminetetraacetic acid disodium salt 

dihydrate (EDTA)  

Sigma-Aldrich, USA  

 

E5134-500G 

L-ascorbic acid SERVA, Germany 50-81-7 

Glycine  ROTH, Germany 3783.1 

Glycine  ROTH, Germany 3908.2 

Fast Green FCF Sigma-Aldrich, USA  2353-45-9 

Hematpxylin ROTH, Germany 3816.1 

Hydrochloric acid fuming 37% ROTH, Germany 4625.1 

Hydrogen peroxide 30% ROTH, Germany CP26.1 

ImmPACT AMEC RED Substrate, Peroxidase 

(HRP) 

Vector, USA  SK-4285 

ImmPACT DAB Substrate, Peroxidase  Vector, USA SK-4105 

Goat Serum normal  Dako Denmark; Denmark   

Permanent Mounting medium VectaMount Vector Laboratories, USA H-5000-60 

Potassium permanganate Merck, Germany 7722-64-7 

Sodium dodecyl sulphate (SDS) ROTH, Germany CN30.2 

Sodium hydroxide Merck, Germany 1.06482.1000 
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Sulfuric acid Sigma-Aldrich, USA 339741 

Tween® 20  ROTH, Germany 9127.1 

Xylene Applichem, Germany A2476,5000 

 

8.2 Primary antibodies 

Table 7: The details of primary antibody used in lymphoid biomarker panel 

  Round 1 Round 2 Round 3 Round 4 Round 5  

Primary Ab Hematoxylin GATA3 T-bet FoxP3 CD20 CD8 

Manufacturer  R&D 

Systems, 

USA 

Cell Marque, 

Germany 

Epitomics, 

USA 

Cell Marque, 

Germany 

Cell Marque, 

Germany 

Catalog#  MAB6330 368R-74 AC-

0304RUO 

120R-14 108M-94 

Concentratio

n 

 1:50 1:50 1:50 1:100 1:100 

Primary 

reaction 

 4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

Host species  Anti-mouse Anti-rabbit Anti-rabbit Anti-rabbit Anti-mouse 

Secondary 

reaction 

 RT 1h RT 1h RT 1h RT 1h RT 1h 

AMEC 

reaction time 

 12min 15min 7.4min 1.2min 2.4min 

 Round 6 Round 7 Round 8 Round 9 Round 10 Round 11  

Primary Ab CD4 CD3 CD56 CD45 CTLA4 IL-17A 

Manufacturer Cell Marque, 

Germany 

Dako, 

Denmark 

Cell Marque, 

Germany 

Dako,  

Denmark 

BioLegend, 

USA 

R&D 

Systems, 

USA 

Catalog# 104R-14 M7254 156R-94 M0701 369608 MAB317 

Concentratio

n 

1:100 1:100 1:100 1:100 1:100 1:50 

Primary 

reaction 

4°Covernigh

t 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

Host species Anti-rabbit Anti-mouse Anti-rabbit Anti-mouse Anti-mouse Anti-mouse 

Secondary 

reaction 

RT 1h RT 1h RT 1h RT 1h RT 1h RT 1h 

AMEC 

reaction 

3.3min 3.4min 2.2min 1.2min  6.1min 6.0min 

 

 

 

Table 8: The details of primary antibody used in myeloid biomarker panel 
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  Round 1 Round 2 Round 3 Round 4 Round 5  

Primary Ab Hematoxylin DC-sign CD206 CD68 MPO CD20 

Manufacturer  Santa 

Cruz, USA 

R&D 

Systems, 

USA 

Dako,  

Denmark 

Sigma 

Aldrich; 

Germany 

Cell Marque, 

Germany 

Catalog#  SC-74589 MAB25341 M0876 HPA021147 120R-14 

Concentration  1:100 1:50 1:100 1:500 1:100 

Primary 

reaction 

 4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

Host species  Anti-

mouse 

Anti-mouse Anti-mouse Anti-rabbit Anti-rabbit 

Secondary 

reaction 

 RT 1h RT 1h RT 1h RT 1h RT 1h 

AMEC reaction  10min 3.0min 1.0min 2.3min 2.3min 

 Round 6 Round 7 Round 8 Round 9 Round 10 Round 11  

Primary Ab CD56 CD3 CD45 CD74 Tryptase CD83 

Manufacturer Cell Marque, 

Germany 

Dako, 

Denmark 

Dako,  

Denmark 

Sigma 

Aldrich; 

Germany 

Cell Marque, 

Germany 

Sigma 

Aldrich; 

Germany 

Catalog# 156R-94 M7254 M0701 HPA010592 342R-14 HPA041454 

Concentration 1:100 1:100 1:100 1:100 1:100 1:100 

Primary 

reaction 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

Host species Anti-rabbit Anti-

mouse 

Anti-mouse Anti-rabbit Anti-rabbit Anti-rabbit 

Secondary 

reaction 

RT 1h RT 1h RT 1h RT 1h RT 1h RT 1h 

AMEC reaction 3.2min 6.0min 1.4min 1.0min 1.0min 4.0min 

 

Table 9: The details of primary antibody used in exocrine-endocrine and stroma panel 

  Round 1 Round 2 Round 3 Round 4 Round 5  

Primary Ab Hematoxylin Pan-Keratin CD45 PHH3 a-SMA Insulin 

Manufacturer  Cell 

Signaling, 

USA 

Dako,  

Denmark 

Cell 

Signaling, 

USA 

Dako,  

Denmark 

Abcam,  

UK 

Catalog#  4545 M0701 53348 M0851 AC-0119A 

Concentratio

n 

 1:100 1:100 1:500 1:1000 1:500 

Primary 

reaction 

 4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

Host species  Anti-mouse Anti-mouse Anti-rabbit Anti-mouse Anti-rabbit 

Secondary 

reaction 

 RT 1h RT 1h RT 1h RT 1h RT 1h 
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AMEC 

reaction 

 2.0min 1.3min 3.0min 1.3min 1.4min 

 Round 6 Round 7 Round 8 Round 9 Round 10 Round 11  

Primary Ab PGP9.5 Perilipin Amylase Desmin MMP7 picrosirius 

red staining 

Manufacturer R&D 

Systems, 

USA 

Cell 

Signaling, 

USA 

Santa Cruz, 

USA 

R&D 

Systems, 

USA 

R&D 

Systems, 

USA 

 

Catalog# MAB60072 9349S SC-46657 AF3844 AF2967  

Primary 

reaction 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

4°C 

overnight 

 

Host species Anti-mouse Anti-rabbit Anti-mouse Anti-goat Anti-goat  

Secondary 

reaction 

RT 1h RT 1h RT 1h RT 1h RT 1h  

AMEC 

reaction 

2.0min 1.0min 2.0min 3.5min 4.0min  

 

8.3 Secondary antibodies 

Table 10: Secondary antibody 

Antibody  Manufacturer Catalog# 

Anti-Goat IgG Jackson Immunoresearch, Germany 705-035-003 

Anti-Mouse IgG EnVision+System Dako, Denmark K4001 

Anti-rabbit IgG EnVision+System Dako, Denmark K4003 

 

8.4 Equipment 

Table 11: Equipment 

Equipment Manufacturer 

Centrifuge 5702R  Eppendorf, Germany  

Cover slips (24 x 24 mm) Thermo Fisher Scientific, USA 

IX50 Phase contrast inverted microscope  Olympus, Japan  

Laboratory fume hood ChemFAST TOP 09 ChemFAST, Germany 

Mini Plate Spinner Centrifuge-230EU Corning, USA  

Pipettes 

(0,5 μl - 10 μl, 10 μl - 100 μl, 100 μl - 1000 μl) 

Eppendorf, Germany 
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Reaction tubes (1.5 ml, 2 ml)  Sarstedt, Germany 

Reaction tubes (15 ml, 50 ml)  Sarstedt, Germany  

Rotary Microtome HM325 Thermo Scientific, USA 

Slides Polysine Thermo Fisher Scientific, USA 

Sysmex Panoramic MIDI II slide scanner Sysmex Deutschland GmbH, Germany 

Tissue Cooling Plate COP30 Medite, Germany 

Tissue Floatation Bath TFB55 Medite, Germany 

Vortex mixer NeoLab Migge GmbH, Germany 

Water bath SW22 Julabo GmbH, Germany 

 

8.5 Computer program 

Table 12: Computer program 

Program Producer 

Caseviewer (version 2.2)  3DHISTECH, Hungary  

CellProfiler Carpenter Lab 

EndNote X9 Thomson Reuters, USA 

Microsoft Office  Microsoft, USA  

NIH ImageJ Wayne Rasband, NIH, USA 

QuPath (0.1.2)  Bankhead et al.  

SIFT David Lowe et al. 

 

8.6 R programming language and packages 

• R version 3.6.3 

• alluvial_0.1-2 

• arsenal_3.5.0 

• caret_6.0-86 

• dplyr_1.0.1 

• ggplot2_3.3.2 

• lattice_0.20-41 

https://en.wikipedia.org/wiki/David_G._Lowe
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• h2o_3.30.0.7 

• lime_0.5.1 

• janitor_2.0.1 

• kableExtra_1.1.0 

• knitr_1.29 

• tidyr_1.1.1 

• RColorBrewer 1.1-2 

• rmarkdown_2.3 

 

8.7 Buffer and solution 

Table 13: Glycine-mediated antibody stripping buffer 

Reagent Final concentration Volume Mass 

Glycine 25mM  1.88g 

SDS 1%  10g 

ddH2O  1000ml   

HCl  set the pH to 2.0  

 

Table 14: Antigen retrieval buffer 10X 

Reagent Final concentration Volume Mass 

Citric Acid 100mM  19.21g 

EDTA 20mM  7.4g 

Tween 0.5% 5ml  

ddH2O  1000ml   

NaOH  set the pH to 6.2  

1X working solution was prepared by diluting the 10X original solution with ddH2O. 

 

Table 15: Picrosirius red-fast green staining solution 

Reagent                            Amount 

L-ascorbic acid                            10ml 
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Fast green FCF                            10mg 

Direct red 80                            10mg 

continuous shaking for 5 to 10 min 

 

8.8 Patient characteristics 

Table 16: Patient characteristics 

 Alcoholic  

CP (N=23) 

AIP (N=7) Others 

CP (N=28) 

Total  

(N=58) 

P 

value 

Age_at_Diagnosis                                                                          < 0.001 

  Mean (SD) 45.55 (10.02) 60.44 (14.64) 59.87 (14.79) 54.26 (14.69)  

  Range 29.31 - 66.75 41.83 - 75.93 26.52 - 82.47 26.52 - 82.47  

Gender                                                                                     0.049                    

   f 4 (17.4%) 1 (14.3%) 13 (46.4%) 18 (31.0%)  

  m 19 (82.6%) 6 (85.7%) 15 (53.6%) 40 (69.0%)  

Etiology_CP                                                                               < 0.001                 

  alcoholic 23 (100.0%) 0 (0.0%) 0 (0.0%) 23 (39.7%)  

  autoimmune 0 (0.0%) 7 (100.0%) 0 (0.0%) 7 (12.1%)  

  biliary 

obstructive 

0 (0.0%) 0 (0.0%) 9 (32.1%) 9 (15.5%)  

  idiopathic 0 (0.0%) 0 (0.0%) 2 (7.1%) 2 (3.4%)  

  Other 0 (0.0%) 0 (0.0%) 3 (10.7%) 3 (5.2%)  

  unknown 0 (0.0%) 0 (0.0%) 14 (50.0%) 14 (24.1%)  

Previous_surgery                                                                           0.134                        

  no 21 (91.3%) 7 (100.0%) 21 (75.0%) 49 (84.5%)  

  yes 2 (8.7%) 0 (0.0%) 7 (25.0%) 9 (15.5%)  

Type_of_Previous_surgery 

  N-Miss 20 7 21 48  

  DPPHR 1 (33.3%) 0 0 (0.0%) 1 (10.0%)  

  

Frey/Pustow/D

rainage 

0 (0.0%) 0 1 (14.3%) 1 (10.0%)  

  Others 1 (33.3%) 0 3 (42.9%) 4 (40.0%)  

  ppWhipple 0 (0.0%) 0 3 (42.9%) 3 (30.0%)  

  Whipple 1 (33.3%) 0 0 (0.0%) 1 (10.0%)  

Previous_Endoscopy                                                                        0.501                              

N-Miss 3 1 1 5  

  no 4 (20.0%) 1 (16.7%) 9 (33.3%) 14 (26.4%)  

  yes 16 (80.0%) 5 (83.3%) 18 (66.7%) 39 (73.6%)  

Repeat_endoscopy                                                                          0.226               

  N-Miss 3 1 2 6  

  no 8 (40.0%) 3 (50.0%) 17 (65.4%) 28 (53.8%)  
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  yes 12 (60.0%) 3 (50.0%) 9 (34.6%) 24 (46.2%)  

Age_at_Surgery                                                                             < 0.001                

Mean (SD) 46.54 (10.16) 61.99 (14.67) 61.63 (14.03) 55.69 (14.55)  

Range 29.38 - 66.75 41.84 - 75.93 26.52 - 82.53 26.52 - 82.53  

Type_of_surgery                                                                              0.042                

DPPHR 5 (21.7%) 0 (0.0%) 0 (0.0%) 5 (8.6%)  

Frey/Pustow/D

rainage 

3 (13.0%) 1 (14.3%) 1 (3.6%) 5 (8.6%)  

Left-resection 3 (13.0%) 1 (14.3%) 4 (14.3%) 8 (13.8%)  

Others 2 (8.7%) 0 (0.0%) 2 (7.1%) 4 (6.9%)  

ppWhipple 8 (34.8%) 2 (28.6%) 15 (53.6%) 25 (43.1%)  

total 

pancreatectom

y 

1 (4.3%) 0 (0.0%) 4 (14.3%) 5 (8.6%)  

Whipple 1 (4.3%) 3 (42.9%) 2 (7.1%) 6 (10.3%)  

Current_Smoker                                                                             < 0.001                      

  N-Miss 9 1 16 26  

  no 1 (7.1%) 6 (100.0%) 9 (75.0%) 16 (50.0%)  

  yes 13 (92.9%) 0 (0.0%) 3 (25.0%) 16 (50.0%)  

Previous_Smoker                                                                            < 0.001               

  N-Miss 5 0 14 19  

  no 0 (0.0%) 5 (71.4%) 9 (64.3%) 14 (35.9%)  

  yes 18 (100.0%) 2 (28.6%) 5 (35.7%) 25 (64.1%)  

Never_Smoker                                                                                0.002                 

  N-Miss 5 2 17 24  

  no 18 (100.0%) 5 (100.0%) 6 (54.5%) 29 (85.3%)  

  yes 0 (0.0%) 0 (0.0%) 5 (45.5%) 5 (14.7%)  

Current_Drinker                                                                               0.062         

  N-Miss 7 1 17 25  

  no 10 (62.5%) 5 (83.3%) 11 (100.0% 26 (78.8%)  

  yes 6 (37.5%) 1 (16.7%) 0 (0.0%) 7 (21.2%)  

Previous_Drinker                                                                            < 0.001                     

  N-Miss 1 1 16 18  

  no 1 (4.5%) 5 (83.3%) 10 (83.3%) 16 (40.0%)  

  yes 21 (95.5%) 1 (16.7%) 2 (16.7%) 24 (60.0%)  

Never_Drinker                                                                                 0.001                 

  N-Miss 1 2 19 22  

  no 22 (100.0%) 5 (100.0%) 9 (100.0%) 36 (100.0%)  

Height                                                                                        0.191                  

  N-Miss 9 1 9 19  

  Mean (SD) 1.74 (0.07) 1.69 (0.10) 1.68 (0.11) 1.70 (0.10)  

  Range 1.61 - 1.87 1.50 - 1.77 1.43 - 1.89 1.43 - 1.89  

Weight                                                                                        0.461              

  N-Miss 9 1 9 19  
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  Mean (SD) 63.86 (15.11) 72.33 (13.59) 67.90 (13.87) 67.13 (14.22)  

  Range 40.00 - 95.00 50.00 - 92.00 43.00 - 90.00 40.00 - 95.00  

Exocrine_Insuff                                                                                0.800                 

  N-Miss 3 0 0 3  

  no 12 (60.0%) 5 (71.4%) 19 (67.9%) 36 (65.5%)  

  yes 8 (40.0%) 2 (28.6%) 9 (32.1%) 19 (34.5%)  

Stool_Elastase 

  N-Miss 21 7 26 54  

  Mean (SD) 69.50 (50.21) NA 57.50 (37.48) 63.50 (36.83)  

  Range 34.00 - 105.00 NA 31.00 - 84.00 31.00 - 105.00  

Endocrine_Insuff                                                                            0.280                

  N-Miss 1 0 0 1  

  no 18 (81.8%) 6 (85.7%) 18 (64.3%) 42 (73.7%)  

  yes 4 (18.2%) 1 (14.3%) 10 (35.7%) 15 (26.3%)  

Insulin_dependent                                                                           0.491               

  N-Miss 1 0 0 1  

  no 20 (90.9%) 6 (85.7%) 22 (78.6%) 48 (84.2%)  

  yes 2 (9.1%) 1 (14.3%) 6 (21.4%) 9 (15.8%)  

Analgesics                                                                                  0.285                  

  Mean (SD) 0.57 (0.95) 0.29 (0.49) 0.25 (0.52) 0.38 (0.72)  

  Range 0.00 - 3.00 0.00 - 1.00 0.00 - 2.00 0.00 - 3.00  

BMI                                                                                         0.031                 

  N-Miss 9 1 9 19  

  Mean (SD) 20.98 (4.01) 25.26 (3.27) 24.02 (3.66) 23.12 (4.01)  

  Range 13.06 - 27.17 22.22 - 31.10 18.29 - 30.12 13.06 - 31.10  

NRS                                                                                         0.119                

  Mean (SD) 4.09 (2.04) 2.86 (3.29) 2.64 (2.61) 3.24 (2.54)  

  Range 0.00 - 7.00 0.00 - 8.00 0.00 - 9.00 0.00 - 9.00  

HbA1c                                                                                       0.245                

  N-Miss 1 0 1 2  

  Mean (SD) 6.06 (0.90) 6.84 (1.05) 6.44 (1.33) 6.34 (1.16)  

  Range 5.00 - 8.00 5.70 - 8.40 4.70 - 11.20 4.70 - 11.20  

Platelets                                                                                     0.893                 

  N-Miss 1 0 0 1  

  Mean (SD) 283.14 (94.92) 264.57 (66.05) 270.00 (132.51) 274.40 (111.19)  

CD45+_panel1                                                                                0.149                                                                                                     

  Mean (SD) 8.233 (8.691) 21.566 (19.593) 9.222 (9.249) 10.320 (11.312)  

  Range 0.543 – 37.230 2.527 – 59.970 1.007 – 31.400 0.543 – 59.970  

Act-T-cells_CD45+                                                                                                                               0.039 

  Mean (SD) 13.037 (7.157) 7.037 (3.318) 15.444 (9.156) 13.507 (8.203)  

  Range 2.040 – 25.680 3.607- 12.917 4.440 – 35.780 2.040 – 35.780  

B-cells_CD45+                                                                                                     0.653 

 Mean (SD) 5.862 (6.258) 6,601 (5,626) 5,931 (4,301) 5.985 (5.221)  

 Range 0.000 - 25.520 1,520 - 16,677 0,137 - 17,050 0.000 – 25.520  
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NK-cells_CD45+                                                                                                   0.596 

 Mean (SD) 3.401 (2.528) 3.075 (3.614) 3.134 (2.010) 3.233 (2.403)  

  Range 0.160 – 10.687 0.757 – 10.883 0.473 – 8.690 0.160 – 10.883  

Cyt-T-cells_CD45+                                                                                          0.004 

 Mean (SD) 5.377 (3.910) 1.666 (0,805) 6.159 (4.455) 5.307 (4.166)  

  Range 0.617 – 14.790 0.427 – 2.437 0.587 – 17.880 0.427 – 17.880  

Reg-T-cells_CD45+                                                                                          0.921 

 Mean (SD) 0.342 (0.927) 0.105 (0.076) 0.281 (0.770) 0.284 (0.787)  

  Range 0.000 – 4.390 0.000 - 0.237 0.000 – 4.067 0.000 – 4.390  

TH17-cells_CD45+                                                                                          0.184 

 Mean (SD) 0.967 (1.200) 1.248 (0.931) 0.603 (0.511) 0.825 (0.908)  

  Range 0.000 – 4.827 0.431 – 2.587 0.000 – 2.007 0.000 - 4.827  

TH1-cells_CD45+                                                                                                        0.597 

 Mean (SD) 0.269 (0.289) 0.162 (0.146) 0.453 (0.839) 0.345 (0.617)  

  Range 0.000 – 1.053 0.030 – 0.450 0.000 – 4.347 0.000 - 4.347  

TH0-cells_CD45+                                                                             0.173           

   Mean (SD) 4.535 (6.895) 10.688 (9.525) 4.066 (4.688) 5.051 (6.542)  

   Range 0.000 – 26.133 0.000 - 20.987 0.000 – 17.277 0.000 – 26.133  

TH2-cells_CD45+                                                                             0.545          

 Mean (SD) 1.121 (0.906) 1.314 (0.556) 1.272 (0.916) 1.217 (0.868)  

  Range 0.037 – 3.223 0.631 – 1.917 0.020 – 4.000 0.020 – 4.000  

CD45+_panel2                                                                                < 0.001                                                                                           

Mean (SD) 6.251 (3.610) 21.516 (14.922) 7.089 (7.151) 20.648 (14.860)  

   Range 1.100 – 14.260 2.383 – 47.997 1.053 – 30.227 8.498 – 8.747  

Granulocytes_CD45+                                                                          0.214            

 Mean (SD) 10.844 (5.969) 20.804 (18.058) 10.345 (8.197) 11.805 (9.554)  

  Range 1.367 – 21.097 1.803 – 53.947 2.360 – 34.900 1.367 - 53.947  

Mast_cells_CD45+                                                                             0.968 

 Mean (SD) 3.861 (2.633) 4.249 (4.496) 4.082 (3.527) 4.015 (3.274)  

  Range 0.170 – 11.223 0.773 – 13.840 0.467 – 13.830 0.170 - 13.840  

M1_macrophages_CD45+                                                                     0.080 

 Mean (SD) 0.245 (0.267) 0.909 (0.983) 0.877 (1.250) 0.631 (0.984)  

  Range 0.000 - 863 0.137 - 2.757 0.000 – 5,447 0.000 – 5.447  

M2_macrophages_CD45+                                                                     0.068 

 Mean (SD) 0.056 (0.123) 0.211 (0.341) 0.072 (0.135) 0.082 (0.170)  

  Range 0.000 - 0.490 0.000 - 0.947 0.000 - 0.530 0.000 - 0.947  

CD83+DC_CD45+                                                                             0.0483                                                                                     

 Mean (SD) 1.554 (1.402) 2.259 (1.850) 1.316 (0.995) 1.524 (1.294)  

  Range 0.127 – 5.377 1.060 – 6.067 0.000 – 3.657 0.000 – 6.607  

DCsign+_CD45+                                                                              0.995 

 Mean (SD) 0.317 (0.459) 0.290 (0.617) 0.238 (0.393) 0.276 (0.443)  

  Range 0.000 – 1.540 0.000 – 1.687 0.000 – 1.577 0.000 – 1.687  

CD45+_panel3                                                                                0.068   

 Mean (SD) 8.531 (5.659) 15.007 (12.067) 8.900 (5.549) 9.499 (6.830)  
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  Range 1.787 – 24.113 5.703 – 38.757 0.670 – 26.937 0.067 – 38.757  

CD45-_panel3                                                                                 0.113 

 Mean (SD) 90.640 (6.261) 84.293 (12.363) 89.881 (5.859) 89.507 (7.170)  

  Range 72.113 – 97.467 60.340 – 93.957 72.270 – 98.683 60.340 - 98.683  

Islets_CD45-                                                                                 0.995 

 Mean (SD) 2.854 (4.200) 6.583 (11.624) 4.886 (7.233) 4.285 (6.890)  

  Range 0.070 – 15.830 0.053 – 31.507 0.047 – 25.510 0.047 – 31.507  

Nerve_CD45-                                                                                 0.164 

   Mean (SD) 1.277 (1.386) 1.290 (2.069) 0.786 (0.866) 1.042 (1.269)  

   Range 0.040 – 5.663 0.003 – 5.800 0.073 – 4.193 0.003 – 5.800  

Ducts_CD45-                                                                                 0.552 

   Mean (SD) 6.209 (7.941) 6.564 (10.991) 4.156 (5.633) 5.261 (7.298)  

   Range 0.107 – 26.980 0.283 – 30.903 0.120 – 22.580 0.107 – 30.903  

Acini_CD45-                                                                                  0.968 

   Mean (SD) 26.108 (15.486) 27.163 (22.867) 25.650 (13.020) 26.014 (15.104)  

   Range 1.940 – 54.627 1.047 – 59.460 3.636 – 56.557 1.047 – 59.460  

qPSCs_CD45-                                                                                0.365 

   Mean (SD) 1.971 (2.665) 2.770 (3.404) 1.631 (2.082) 1.903 (2.479)  

   Range 0.000 – 12.083 0.573 – 10.113 0.007 – 8.010 0.000 – 12.083  

aPSCs_CD45-                                                                                0.906 

   Mean (SD) 1.157 (0.912) 6.316 (12.536) 2.546 (3.400) 2.450 (4.985)  

   Range 0.053 – 3.870 0.000 – 34.350 0.003 – 14.200 0.000 – 34.350  

qPSCs-matrix_CD45- 0.961 

   Mean (SD) 0.044 (0.090) 0.280 (0.630) 0.057 (0.107) 0.079 (0.237)  

   Range 0.000 - 0.403 0.000 - 1.693 0.000 – 0.440 0.000 – 1.693  

qPSCs-proliferation_CD45-                                                                    0.511 

 Mean (SD) 0.277 (0.624) 0.124 (0.167) 0.089 (0.153) 0.168 (0.415)  

  Range 0.000 – 2.777 0.000 - 0.373 0.000 – 0.673 0.000 - 2.777  

aPSCs-proliferation_CD45-                                                                     0.471 

   Mean (SD) 0.139 (0.222) 0.062 (0.098) 0.203 (0.332) 0.160 (0.273)  

   Range 0.000 - 0.760 0.000 – 0.263 0.000 – 1.260 0.000 – 1.260  

aPSCs-matrix_CD45-                                                                         0.391 

   Mean (SD) 0.253 (0.347) 2.096 (5.342) 0.598 (1.035) 0.642 (1.969)  

   Range 0.000 - 1.070 0.000 – 14.207 0.000 – 3.897 0.000 – 14.207  

aSMA                                                                             0.202 

   Mean (SD) 27.975 (7.934) 33.324 (9.916) 27.373 (6.510) 28.330 (7.635)  

   Range 10.996 – 43.754 16.755 – 46.453 15.202 – 37.961 10.996 – 46.453  

Collagen                                                                             0.532 

   Mean (SD) 56.138 (17.301) 49.389 (22.142) 52.586 (15.992) 53.608 (17.133)  

   Range 10.425 – 78.497 22.625 – 78.945 16.564 – 92.096 10.425 – 92.096  
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