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Zusammenfassung 

In vielen Bereichen der Wissenschaft gewinnt die Dynamik der RNA-Modifikationen zuneh-

mend an Bedeutung. So häufen sich die Nachweise von Korrelationen zwischen bestimmten 

RNA-Modifikationen und Krankheitsbildern wie Krebs oder neurologischen Störungen. Muta-

tionen im Enzym TRMT1 und eine damit einhergehende Änderung der m22G-Abundanz wurde 

beispielsweise mit der neurologischen Erkrankung amyotrophe Lateralsklerose (ALS) in Ver-

bindung gebracht. Ein besseres allgemeines Verständnis der RNA-Modifikationsdynamik ist 

daher essenziell. Gerade die molekularen Ursachen und Funktionen der Biosynthese sowie der 

Reifung und des Abbaus von RNA-Molekülen erfordern eingehendere Untersuchungen.  

Massenspektrometrische Analysen tragen dabei maßgeblich zur Untersuchung der molekularen 

Ursachen und Auswirkungen von RNA-Modifikationen bei. Eine Einschränkung dabei ist al-

lerdings, dass größtenteils statische Level analysiert werden und der Aspekt der Modifikations-

dynamik somit meist vernachlässigt wird. Eine Technik, welche imstande ist, einige der Schwä-

chen von Massenspektrometrie zu kompensieren, ist NAIL-MS (Nucleic Acid Isotope Labeling 

coupled Mass Spectrometry). Am erfolgversprechendsten ist die mögliche Durchführung von 

„Pulse-Chase“-Experimenten zur simultanen Analyse bereits existierender und neu transkri-

bierter RNA-Moleküle. Das primäre Ziel im Zuge meiner Arbeit bestand daher in der Etablie-

rung und Anwendung von NAIL-MS in Zellkulturen. Die gewünschte Isotopenmarkierung 

wurde über die Supplementierung von isotopenmarkierten Varianten der Nukleobase Adenin 

und des Nukleosids Uridin erreicht. Zudem wurde zur Verfolgung von Modifizierungsprozes-

sen dem Zellkulturmedium D3-Methionin zugegeben, welches als Methylgruppen-Donor dient.  

Durch die anschließende Anwendung von NAIL-MS war es mir beispielsweise möglich aufzu-

zeigen, dass das Molekül Rhein vermutlich nicht – wie kürzlich in der Literatur beschrieben – 

eine spezifische Inhibition des Enzyms ALKBH3 hervorruft. ALKBH3 soll für die Demethyl-

ierung von m1A und m3C in tRNA-Molekülen verantwortlich sein. Weder über unmarkierte 

LC-MS/MS-Analytik noch über NAIL-MS-Untersuchungen konnte ich diese Behauptung je-

doch bestätigen. Stattdessen konnte über NAIL-MS ein Effekt von Rhein auf die Transkripti-

onsrate von tRNA-Molekülen festgestellt werden, wodurch die beobachtete Änderung des Mo-

difikationsprofils hervorgerufen werden. Aufgrund dieser Anpassung entstand vermutlich die 

Fehlinterpretation, Rhein sei für die spezifische Inhibition von ALKBH3 geeignet. Die in der 

Literatur beobachteten Effekte können aufgrund der über NAIL-MS erhobenen Daten demnach 

aber vielmehr auf allgemeine Adaptionsmechanismen der Zellen zurückgeführt werden.  
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Ebenso gelang es mir, den Effekt des methylierenden Agens Methylmethansulfonat (MMS) auf 

DNA und RNA näher zu beleuchten. Während MMS in der Wissenschaft oft als Methylie-

rungsagens von DNA-Molekülen verwendet wird, ist eine Methylierung von RNA kaum be-

schrieben. Über unmarkierte LC-MS/MS-Analytik konnte auch ich ausschließlich Schäden in 

DNA, aber nicht in RNA detektieren. Durch die Anwendung von NAIL-MS konnte ich jedoch 

zeigen, dass in RNA MMS-induzierte Methylierungen vergleichbaren Ausmaßes stattfinden. 

Besonders ausgeprägt ist dies für m7G in rRNA; entsprechende Schäden in tRNA werden von 

der Zelle nahezu vollständig ignoriert. Eine Detektion dieser gelang durch unmarkierte LC-

MS/MS-Analytik nicht, da die Menge an Modifikationen in RNA allgemein sehr hoch ist, und 

somit die vergleichsweise geringen Signale der induzierten Schäden überlagert wurden.  

Die mitunter wohl größte Stärke von NAIL-MS ist die Möglichkeit „Pulse-Chase“-Experi-

mente durchzuführen, um einen genaueren Einblick in die RNA-Modifikationsdynamiken zu 

gewinnen. NAIL-MS ermöglichte mir somit eine genauere Untersuchung des Reifungsprozes-

ses verschiedener RNA-Moleküle. Gängige LC-MS/MS-Analytik kann dadurch um eine Di-

mension, nämlich Zeit, erweitert werden. So konnte ich zeigen, dass beim Einbau von Modifi-

kationen in tRNAPhe eine sequenzielle Ordnung zu bestehen scheint. Während bestimmte Mo-

difikationen in der D-Schleife und der TΨC-Schleife vergleichsweise schnell inkorporiert wer-

den, können hohe Mengen der in der Anticodon-Schleife lokalisierten Modifikationen erst spä-

ter nachgewiesen werden. Eine Hierarchie im Einbau von Modifikationen wurde ebenso über 

zeitaufgelöste NMR-Experimente nachgewiesen. Besonders interessant erscheint außerdem die 

Dynamik von m5U in den meisten tRNA-Isoakzeptoren, speziell aber in tRNAAsn. Die Menge 

an m5U ist zu Beginn des Lebenszyklus von tRNA-Molekülen stets höher als erwartet und 

nimmt erst im Laufe der Reifung ab. Dies deutet auf eine bisher nicht beschriebene aktive De-

modifizierung einer m5U-Position hin und könnte als Teil der Reifung von tRNA-Molekülen 

essenziell sein. 

Einen besonderen Fokus legte ich auf den molekularen Einfluss der Modifikation Queuosin (Q) 

und dessen Zucker-Derivate. Der Einbau dieser Modifikationen ist von der, in den zugegebenen 

Nährstoffen enthaltenen Nukleobase Queuin abhängig. Für eine volle Modifizierung der Q-

Modifikationen in den entsprechenden tRNA-Isoakzeptoren ist eine zusätzliche Supplementie-

rung von Queuin nötig. Über NAIL-MS wurden zahlreiche Effekte dieser Supplementierung 

auf andere Modifikationen erfasst. Wie bereits zuvor berichtet, wurde eine Abhängigkeit zwi-

schen m5C38 und ManQ34 in tRNAAsp beobachtet. In der hier vorgelegten Arbeit konnte ich 
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näher auf die zugrundeliegenden molekularen Mechanismen eingehen. Aufgrund der erhobe-

nen Daten wird ein vergleichbarer Effekt für m1Ψ39 in tRNATyr postuliert. Im selben tRNA-

Isoakzeptor wurde bei Fehlen von Queuin für die Modifikation m22G eine erhöhte Einbaueffi-

zienz festgestellt. Besonders stark ausgeprägt ist zudem der 20-fache Anstieg von Gm im Ver-

gleich zur ursprünglichen Menge. In An- bzw. Abwesenheit von Queuin scheint die Reifung 

von tRNA-Molekülen somit stark verändert zu sein. Alle beobachteten Effekte deuten auf eine 

Abhängigkeit zwischen den einzelnen Modifikationen hin. RNA-Modifikationen, insbesondere 

in tRNA-Molekülen, sollten daher nicht isoliert, sondern immer in ihrem Netzwerk betrachtet 

werden. Besonders bei der Untersuchung der Effekte von RNA-Modifikationen und deren Dy-

namik hinsichtlich der berichteten Krankheitsmodelle sollte dies beachtet werden. 

Zusammenfassend konnte ich durch die Anwendung von NAIL-MS zahlreiche bemerkenswerte 

Mechanismen der Modifikationsdynamik und Unterschiede im Modifikationsprofil beobach-

ten, welche ohne die Anwendung von NAIL-MS größtenteils nicht analysierbar gewesen wä-

ren. Der Erkenntnisgewinn bezüglich der untersuchten Mechanismen könnte hinsichtlich des 

steigenden Interesses an RNA-Modifikationen und deren weitreichenden Einflüsse in der Zelle 

für klinische Zwecke von hoher Relevanz sein. 
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Abstract 

In many areas of science, the dynamics of RNA modifications are becoming increasingly im-

portant. There is more and more evidence of correlations between certain RNA modifications 

and diseases such as cancer or neurological disorders. For example, mutations in the TRMT1 

enzyme and an associated change in the amount of m22G modification have been linked to the 

neurological disease amyotrophic lateral sclerosis (ALS). Therefore, a better general under-

standing of RNA modification dynamics is essential. Especially the molecular causes and func-

tions of biosynthesis, as well as maturation of RNA molecules, but also of their degradation, 

require more detailed investigations.  

Mass spectrometric analyses contribute significantly to the investigation of the molecular 

causes and effects of RNA modifications. A limitation is, however, that mostly static levels are 

analyzed, and the aspect of modification dynamics is thus mostly neglected. One technique that 

is able to compensate for some of the weaknesses of mass spectrometry is NAIL-MS (Nucleic 

Acid Isotope Labeling coupled Mass Spectrometry). Most promising is the possible perfor-

mance of Pulse-Chase experiments for simultaneous analysis of pre-existing and newly tran-

scribed RNA molecules. The primary goal of my work was therefore to establish and apply 

NAIL-MS in cell cultures. The desired isotopic labeling was achieved by supplementing iso-

topically labeled variants of adenine (nucleobase) and uridine (nucleoside). To follow modifi-

cation processes, D3-methionine was added to the cell culture medium, which serves as a methyl 

group donor of the methylated modifications.  

Subsequent application of NAIL-MS allowed me to demonstrate that the small molecule Rhein 

probably does not cause specific inhibition of the enzyme ALKBH3, as recently described in 

literature. ALKBH3 is thought to be responsible for the demethylation of m1A and m3C in 

tRNA molecules. However, neither via unlabeled LC-MS/MS analysis nor via NAIL-MS stud-

ies could I confirm this hypothesis. Instead, NAIL-MS revealed an effect of Rhein on the tran-

scription rate of tRNA molecules, causing the observed change in the modification profile. This 

adaptation probably led to the misinterpretation of Rhein being suitable for the specific inhibi-

tion of ALKBH3. However, based on the NAIL-MS data, effects observed in literature can 

rather be attributed to general adaptation mechanisms of the cells.  
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I also succeeded in shedding more light on the effect of the methylating agent methyl me-

thanesulfonate (MMS) on DNA and RNA. While MMS is often used in science as a methylating 

agent of DNA molecules, methylation of RNA has hardly been described. Using unlabeled 

LC-MS/MS analysis, I also could only detect damage in DNA but not in RNA. By using NAIL-

MS, however, I was able to show that damage of comparable dimension occurs in RNA mole-

cules. These could not be detected by unlabeled LC-MS/MS analysis, due to the generally very 

high levels of modifications in RNA molecules. Especially rRNA seems to be affected, whereas 

damage in tRNA is almost completely ignored by the cell.  

Probably one of the greatest strengths of NAIL-MS is the ability to perform Pulse-Chase ex-

periments to gain a more detailed insight into RNA modification dynamics. NAIL-MS thus 

allowed me to examine the maturation process of various RNA molecules in more detail. Com-

mon LC-MS/MS techniques can thus be extended by the dimension "time". Thus, I could show 

that there seems to be a sequential order in the incorporation of modifications into tRNAPhe. 

While certain modifications in the D-loop and the TΨC-loop are incorporated comparatively 

quickly, high amounts of modifications localized in the anticodon loop can only be detected 

later. A hierarchy in the incorporation of modifications was also demonstrated by time-resolved 

NMR experiments. Furthermore, the dynamics of m5U in most tRNA isoacceptors, but espe-

cially in tRNAAsn, appears to be particularly interesting. The amount of m5U is always higher 

than expected at the beginning of the life cycle of tRNA molecules and only decreases during 

maturation. This suggests a previously undescribed active demodification of an m5U position 

and could be essential as part of the maturation of tRNA molecules. 

I placed a particular focus on the molecular impact of the queuosine modifications. The incor-

poration of this modification is dependent on the nutrient queuine. For a full modification of 

the Q-modifications in the corresponding tRNA isoacceptors, an additional supplementation of 

queuine is necessary. Numerous effects of this supplementation on other modifications were 

detected via NAIL-MS. As previously reported, a dependency between m5C38 and ManQ34 in 

tRNAAsp was observed. In the work presented here, I was able to elaborate on the underlying 

molecular mechanisms. Based on the data collected, a comparable effect is postulated for 

m1Ψ39 in tRNATyr. In the same tRNA isoacceptor, increased incorporation efficiency was ob-

served in the absence of queuine for the m22G modification. Moreover, the 20-fold increase in 

Gm compared with the original amount is particularly striking. In the presence or absence of 

queuine, the maturation of tRNA molecules thus appears to be strongly altered. All observed 
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effects indicate a dependence between the individual modifications. RNA modifications, espe-

cially in tRNA molecules, should therefore not be considered in isolation but always in their 

corresponding network. Especially when studying the effects of RNA modifications and their 

dynamics with respect to reported disease models, this should be kept in mind. 

In summary, through the application of NAIL-MS, I was able to observe numerous remarkable 

mechanisms of modification dynamics and differences in modification profiles, most of which 

would not have been analyzable without the application of NAIL-MS. The knowledge of the 

investigated mechanisms could potentially be of high relevance for clinical purposes due to the 

increasing interest in RNA modifications and their far-reaching influences in the cell. 

 

 



1.1 Ribonukleinsäuren und ihre Aufgabe in der Zelle 

1 

1. Einleitung und Theorie 

1.1 Ribonukleinsäuren und ihre Aufgabe in der Zelle 

 Vom genetischen Code zum Protein 

Vielen mag der Name Francis Crick im Zusammenhang mit der Strukturaufklärung der Des-

oxyribonukleinsäure (DNA) bekannt sein. Zusammen mit James Watson gelang ihm im Jahr 

1953 die Aufklärung des Aufbaus der DNA als Doppelhelix.1 Zudem stellte er das sogenannte 

„zentrale Dogma der Molekularbiologie“ auf, welches noch heute als Grundpfeiler dieser For-

schungsrichtung angesehen wird. Seine 1958 erstellte Hypothese – welche er 1970 geringfügig 

überarbeitete – besagt, dass DNA in Ribonukleinsäure (RNA) transkribiert, also übertragen 

wird, welche wiederum als Vorlage für die Translation, also Übersetzung in Proteine dient.2 

Während dies zwar nur eine stark vereinfachte Darstellung der entsprechenden zellulären 

Prozesse liefert, behält die Kernaussage bis heute ihre Gültigkeit. Die zentrale Rolle in diesem 

System wird demnach von RNA eingenommen. 

Das Grundgerüst von RNA-Molekülen ist stets identisch: Der eigentliche Code wird geschaf-

fen, indem die vier Nukleobasen Cytosin, Ura-

cil, Guanin und Adenin, in bestimmter Abfolge 

aneinandergereiht werden. In DNA wird Uracil 

dabei durch das strukturell ähnliche Thymin er-

setzt. Diese werden über eine glykosidische 

Bindung an das C1‘-Atom einer Ribose gekop-

pelt (in DNA wird Desoxyribose verwendet), 

und bilden somit die Nukleoside Cytidin (C), 

Uridin (U), Guanosin (G) und Adenosin (A). 

Durch das Anfügen einer Phosphatgruppe an 

die Hydroxygruppe des C5‘-Atoms der Ribose 

werden dann die entsprechenden Nukleotide 

gebildet. Diese werden anschließend über ein 

Phosphodiester-Ribose-Rückgrat, (kurz: Phos-

phat-Rückgrat) miteinander verbunden, 

wodurch ein Strang von aufeinanderfolgenden 

Nukleobasen entsteht (Abbildung 1.1). Die 

Abbildung 1.1: Aufbau von RNA. Das 
Phosphat-Rückgrat ist grau hinterlegt. Die 
Nukleobasen von oben nach unten (5‘ → 3‘) 
sind Cytosin (C), Guanin (G), Uracil (U) und 
Adenin (A). 
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einzelnen Nukleotide werden aus kleinen Metaboliten wie CO2, Glutamin, Aspartat, Glycin, 

Formiat und Glukose von einem Biosyntheseapparat der Zellen synthetisiert und dienen an-

schließend dem Aufbau von RNA-Molekülen (Abbildung S1). Je nach sequenzieller Anord-

nung dieser, entstehen in Form von Boten-RNA (engl. messenger RNA, mRNA),3, 4 nicht nur 

die Baupläne unterschiedlichster Proteine, sondern auch viele weitere RNA-Moleküle, welche 

essenzielle Funktionen im zellulären Umfeld übernehmen. Weitere häufig in der Zelle vertre-

tene RNA-Moleküle sind beispielsweise Transfer-RNAs (tRNA), welche als Adapter-Moleküle 

zur Bereitstellung der zur Proteinbiosynthese benötigten Aminosäuren dienen, oder auch die 

ribosomale RNA (rRNA), welche enzymatisch an der eigentlichen Proteinbiosynthese beteiligt 

ist.5–7 Darüber hinaus existieren noch unzählige weitere RNA-Moleküle wie beispielsweise 

„small interfering“ RNA (siRNA), „micro“ RNA (miRNA) oder „small noncoding“ RNA 

(snRNA), welche größtenteils in die Regulierung der Transkription und Translation involviert 

sind. 

All diese RNA-Moleküle unterscheiden sich jedoch nicht nur in ihrer Primärstruktur – also der 

sequenziellen Anordnung der Nukleotide – sondern auch in ihrer räumlichen Struktur, die über 

Faltung dieser Nukleotid-Ketten durch Wasserstoffbrückenbindungen zwischen den Nukleoba-

sen zustande kommt. Für die korrekte Faltung in die Sekundärstruktur ist die Ausbildung der 

Basenpaare C:G und U:A ausschlaggebend (bzw. T:A in DNA). Da dies die ersten in DNA 

entdeckten strukturgebenden Wechselwirkungen waren, spricht man auch von Watson-Crick-

Basenpaaren. Während das Basenpaar C:G dabei drei Wasserstoffbrückenbindungen ausbildet, 

sind es im Basenpaar U:A lediglich zwei. Ähnlich wie in der DNA kann es durch die Ausbil-

dung von Basenpaaren auch in RNA zu einer Zusammenlagerung zu doppelsträngigen Elemen-

ten kommen. Für die anschließende Faltung in die Tertiärstruktur sind ebenfalls vorrangig Was-

serstoffbrückenbindungen verantwortlich, teilweise sind jedoch auch andere Wechselwirkun-

gen wie Dipol-Dipol- und van-der-Waals-Kräfte beteiligt. Ein Beispiel für eine solche Faltung 

wird später anhand von tRNA-Molekülen noch genauer betrachtet.  

Zudem unterscheiden sich die verschiedenen RNA-Moleküle stark in ihrer Länge. So bestehen 

die 18S und die 28S Untereinheiten der rRNA – welche für den Translationsprozess zusam-

mengeführt werden müssen – aus jeweils ~ 1800 und ~ 5000 Nukleotiden. Für gewöhnlich be-

stehen mRNA-Moleküle aus mehreren Tausend Nukleotiden, wohingegen tRNA-Moleküle 

stets eine Länge von 76–93 Nukleotiden aufweisen.8, 9 Alle übernehmen in einem großen Netz-

werk entscheidende Funktionen, um einen geregelten Ablauf in der Zelle zu gewährleisten. 
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 Chemische Modifikationen in RNA 

Neben den vier kanonischen Nukleosiden C, U, G und A treten in der RNA jedoch auch zahl-

reiche chemische Abwandlungen, sogenannte RNA-Modifikationen auf. Diese sorgen für eine 

spezifischere Anpassung der RNA-Moleküle auf ihre jeweilige Aufgabe. Das Forschungsgebiet 

um RNA-Modifikationen, welches deren Einbau in RNA-Moleküle und die Abhängigkeiten 

untereinander, sowie die molekularen Auswirkungen behandelt, wird RNA-Epigenetik oder 

auch Epitranskriptomik genannt. Aktuell sind über 170 strukturell verschiedene RNA-Modifi-

kationen bekannt,10 welche unterschiedlichste Funktionen in der Zelle übernehmen. Durch die 

Beeinflussung von Basenpaarungseigenschaften reichen die Effekte von einer Feinabstimmung 

der Translation, über die Stabilisierung von räumlichen Strukturen bis hin zur modulierten Er-

kennung durch Enzyme.11, 12 Ein Großteil der RNA-Modifikationen ist entweder in die Stabili-

sierung oder anderweitige Modifizierung der Tertiärstruktur oder in die Unterstützung der Co-

don-Anticodon-Erkennung involviert. Interaktionen zwischen zwei Nukleosiden werden dabei 

durch verstärkte oder verringerte Basenstapelung und durch ionische Effekte beeinflusst.13, 14 

So kann der Einbau einer Methylgruppe beispielsweise eine Verschlechterung der Basenpaa-

rungseigenschaften des entsprechenden Nukleosid-Paares hervorrufen. Oftmals führen feh-

lende Modifikationen zu Translationsdefekten wie z.B. Rastermutationen. Auf einige spezielle 

Mechanismen am Beispiel ausgewählter Modifikationen soll später noch genauer eingegangen 

werden. 

Um eine einheitliche Nomenklatur zu gewährleisten, bekommt jedes einzelne Atom der Nuk-

leoside eine festgelegte Zahl zugewiesen. Die Nummerierung der Pyrimidine (C und U) erfolgt 

dabei nach der IUPAC-Nomenklatur. Die Zählweise beginnt in der Nukleobase am Stickstoff 

der glykosidischen Bindung und wird so fortgesetzt, dass die im Ring befindlichen Heteroatome 

möglichst kleine Zahlen erhalten. Die Nummerierung der Purine beginnt traditionsbedingt am 

von der glykosidischen Bindung am weitesten entfernten Ringstickstoff und endet am Stickstoff 

der glykosidischen Bindung (Abbildung 1.2). Die Nummerierung der Ribose folgt wiederum 

der IUPAC-Nomenklatur entsprechend der Fischer-Projektion, wobei jede Position hier zusätz-

lich ein Apostroph erhält, um eine Differenzierung zwischen den Atomen der Ribose und der 

Nukleobase zu gewährleisten. Da die Phosphatgruppen der Nukleotide jeweils die 5‘-Position 

der Ribose des einen Nukleosids mit der 3‘-Position des vorherigen Nukleosids verbindet, weist 

jeder RNA-Strang ein 5‘-Ende („Anfang“) und ein 3‘-Ende („Ende“) auf. Die Hydroxygruppe 

am 2‘-Kohlenstoff der Ribose bleibt frei (siehe Abbildung 1.1). 
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Für die zusätzlichen funktionalen Gruppen der RNA-Modifikationen werden die Abkürzungen 

der Gruppe vor das Kürzel des entsprechenden kanonischen Nukleosids gestellt (m für Methyl, 

s für Schwefel, n für Amino, uvm., komplette Liste in Tabelle S1). Eine hochgestellte Ziffer 

zwischen beiden Buchstaben gibt dabei die Position der Gruppe im Ring an (siehe 5-Methyl-

cytidin: m5C). Bei mehreren Gruppen werden diese nacheinander einzeln aufgezählt, wobei bei 

mehrfachem Auftreten einer Gruppe an derselben Ringposition entweder eine tiefgestellte Zif-

fer für die Anzahl, oder eine weitere Ausführung der hochgestellten Ziffer eingefügt werden 

kann (siehe N6,N6-Dimethyladenosin: m6
2A oder m66A). Befindet sich die funktionale Gruppe 

an der Ribose wird die entsprechende Abkürzung erst nach dem Kürzel des kanonischen Nuk-

leosids angefügt (siehe 2‘-O-Methylcytidin: Cm). Einige Modifikationen weisen große funkti-

onale Gruppen auf oder können aus anderen Gründen nur schwer durch die oben beschriebene 

Nomenklatur benannt werden. Hier werden teils eigene Buchstaben/Symbole verwendet (siehe 

Pseudouridin: Ψ, Queuosin: Q, Wybutosin: yW). 

Ein Großteil der Modifikationen sind einfache Methylierungen der entsprechenden Nukle-

obase. So konnten schon früh 2-Methyladenosin (m2A), N6-Methyladenosin (m6A) und N6,N6-

Dimethyladenosin in Hefe und 5-Methylcytidin in E. coli nachgewiesen werden.15, 16 Des Wei-

teren wurden methylierte Guanosinderivate in Pflanzen, Hefe, Bakterien und Säugetieren iden-

tifiziert.17 Besonders in rRNA sind häufig auch Methylierungen der freien Hydroxygruppe am 

Abbildung 1.2: Nomenklatur und Beispiele von RNA-Modifikationen. Die Zählweise für 
die korrekte Nomenklatur von Pyrimidin- (C und U) und Purin-Modifikationen (G und A) wird 
im Kasten links angegeben. Einige Modifikationen zur Veranschaulichung der korrekten No-
menklatur sind rechts ergänzt. Rib. = Ribose. 
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2‘-Kohlenstoffatom der Ribose vertreten. Weitere chemische Modifizierungen wie Thiolierun-

gen, Desaminierungen, Acetylierungen oder gar die Kopplung zu größeren Molekülen, wie bei-

spielsweise zu Aminosäuren, treten fast ausschließlich in tRNA-Molekülen auf. Bei der Kopp-

lung zu großen funktionalen Gruppen, wie es zum Beispiel auch für Queuosin oder Wybutosin 

der Fall ist, spricht man allgemein von hypermodifizierten Nukleosiden. Eine besonders häufig 

vertretene Modifikation ist Pseudouridin (Ψ).18–20 Diese wurde zu Anfang als fünftes Nukleosid 

beschrieben und bekam daher ein eigenes Symbol zugewiesen. Ψ wird durch Pseudouridin-

Synthasen (PUS) in RNA-Moleküle inkorporiert indem die C-N glykosidische Bindung des 

Uridins aufgebrochen, die Nukleobase um ihre eigene N3-C6-Achse gedreht, und anschließend 

über eine C-C glykosidische Bindung wieder mit der Ribose verknüpft wird.21 Die Nummerie-

rung der Atome ändert sich dadurch nicht und kann Abbildung 1.2 entnommen werden. Heut-

zutage ist klar, dass viele RNA-Modifikationen universell in allen Bereichen des Lebens und 

in einer Vielzahl von verschiedenen RNA-Molekülen vorzufinden sind.  

 Die Besonderheiten von tRNA-Molekülen 

Wie bereits zuvor erwähnt, dient die tRNA als Adapter-Molekül für die Bereitstellung der bei 

der Biosynthese von Proteinen benötigten Aminosäuren. Jedes tRNA-Molekül wird am 3‘-Ende 

der Nukleotid-Sequenz mit einer definierten Aminosäure beladen. Prinzipiell wird die 

Vermittlung der korrekten Aminosäure dann über die Basenpaarung des Anticodons der tRNA 

zum revers komplementären Codon der mRNA sichergestellt (Abbildung 1.3 A). Die 

Nukleobasen des Anticodons treten dabei im katalytischen Zentrum des Ribosoms über 

Wasserstoffbrückenbindungen mit den entsprechenden Basen des Codon-Tripletts der mRNA 

in Wechselwirkung. Bei einem Repertoire von 20 verschiedenen Aminosäuren wäre demnach 

theoretisch eine Anzahl von 20 verschiedenen tRNA-Molekülen erforderlich. Durch die 

Anordnung von vier unterschiedlichen Basen (C, U, G und A) in einem Triplett entstehen 

jedoch 43 = 64 verschiedene Anticodon-Möglichkeiten. Durch diese sogenannte Degeneration 

des genetischen Codes kann ein und dieselbe Aminosäure somit unter Umständen durch 

verschiedene tRNA-Moleküle mit abweichenden Anticodon-Tripletts decodiert werden. tRNA-

Moleküle, welche die gleiche Aminosäure übertragen, jedoch ein unterschiedliches Anticodon 

aufweisen werden tRNA-Isoakzeptoren genannt. Für die explizite Angabe der einzelnen tRNA-

Isoakzeptoren wird das Kürzel der entsprechenden Aminosäure in dieser Arbeit hochgestellt, 

gefolgt vom Anticodon in tiefgestellter Schrift. So ergibt sich für den Tyrosin (Tyr) übertragen-

den tRNA-Isoakzeptor mit dem Anticodon GUA beispielsweise die Abkürzung tRNATyr
GUA.  
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Die Existenz von tRNA-Isoakzeptoren führt dazu, dass einige Aminosäuren von mehreren ver-

schiedenen tRNA-Isoakzeptoren decodiert werden können. Die Aminosäure Leucin (Leu) wird 

beispielsweise durch sechs verschiedene Codone beschrieben und könnte daher von sechs 

verschiedenen tRNA-Isoakzeptoren mit abweichendem Anticodon decodiert werden. Glycin 

(Gly) kann von jedem beliebigen tRNA-Isoakzeptorn mit dem Anticodon NCC decodiert 

werden, wobei für N jedes beliebige Nukleotid eingesetzt werden kann. Tatsächlich werden in 

humanen Zellen allerdings weitaus weniger als 64, nämlich < 45 verschiedene tRNA-Moleküle 

verwendet.22 Dies wird möglich, indem ein und derselbe tRNA-Isoakzeptor wiederum 

unterschiedliche mRNA-Codone ablesen kann. Größtenteils wird das durch die Inkorporation 

von RNA-Modifikationen an der tRNA-Position 34 im Anticodon, auf welche später noch 

genauer eingegangen wird, realisiert. Der tRNA-Isoakzeptor tRNATyr
GUA decodiert 

beispielsweise einerseits das revers komplementäre Codon UAC, ist andererseits durch den 

Einbau von Galaktosyl-Queuosin (GalQ) anstelle von G aber auch in der Lage das Codon UAU 

abzulesen, welches ebenso für Tyrosin codiert.23, 24 Für zwei unterschiedliche Codone, wird 

demnach nur ein tRNA-Isoakzeptor verwendet. Zusätzlich existieren tRNA-Moleküle, die sich 

weder in der zu übertragenden Aminosäure noch in der Anticodon-Sequenz unterscheiden. 

Diese tRNA-Moleküle variieren lediglich in anderen Sequenzbereichen oder den inkorporierten 

RNA-Modifikationen und werden tRNA-Isodecoder genannt. 

Bis auf wenige Ausnahmen weisen alle tRNA-Isoakzeptoren eine kleeblattförmige Sekun-

därstruktur auf, welche wiederum in verschiedene Bereiche unterteilt werden kann: Am Ak-

zeptorstamm wird eine definierte Aminosäure über einen CCA-Rest durch die entsprechende 

Abbildung 1.3: Struktur von tRNA. (A) Die Basenpaarungen des tRNA Anticodons (grün) 
mit dem mRNA Codon (grau). (B) Zweidimensionale „Kleeblatt“-Struktur von tRNA. Die ein-
zelnen Bereiche sind unterschiedlich eingefärbt. (C) Dreidimensionale Faltung von tRNA durch 
Hybridisierung von D- und TΨC-Schleife. Als Vorlage dient tRNAPhe aus S. cerevisiae (1EHZ 
in Protein-Datenbank: PDB). 
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Aminoacyl-tRNA-Synthetase mit dem 3‘-Ende der tRNA verbunden. Auf den Akzeptorstamm 

folgt vom 5‘-Ende beginnend der D-Arm, der Anticodon-Arm, die variable Schleife und der 

TΨC-Arm oder auch kurz T-Arm genannt (Abbildung 1.3 B). Jeder Arm besteht dabei aus 

einem doppelsträngigen Stamm, in dem einzelne Basen über Wasserstoffbrückenbindungen 

miteinander paaren, und einer einzelsträngigen Wendung, auch Schleife genannt. Der Akzep-

torstamm und der D-Arm sind hauptsächlich für die korrekte Erkennung durch die Aminoacyl-

tRNA-Synthetasen beteiligt und gewährleisten somit die Beladung des tRNA-Moleküls mit der 

passenden Aminosäure. Außerdem dienen die sogenannte Diskriminator-Base, welche sich di-

rekt 5‘ vor dem CCA-Anhang befindet, und andere Sequenzelemente, die sich typischerweise 

im Anticodon-Arm befinden, der Erkennung durch Aminoacyl-tRNA-Synthetasen.25  

Das Anticodon besteht, wie die Codone der mRNA auch, aus drei aufeinanderfolgenden Nuk-

leobasen. Das Anticodon einer jeden tRNA paart revers komplementär mit dem entsprechenden 

Codon der mRNA und sorgt somit für den Einbau der korrekten Aminosäure in die wachsende 

Polypeptidkette. Der TΨC-Arm ist hauptsächlich an Interaktionen mit dem Ribosom beteiligt 

und unterstützt somit eine effiziente Translation. Für die Faltung in die L-förmige Tertiärstruk-

tur hybridisieren Teile der D-Schleife mit der TΨC-Schleife, welche zusammen die „Ellenbo-

gen“-Domäne der tRNA ausbilden (Abbildung 1.3 C). Die variable Schleife weist, wie der 

Name schon vermuten lässt, in unterschiedlichen tRNA-Molekülen eine variable Länge auf. 

Eine durchgehende Nummerierung der tRNA-Moleküle ist aufgrund der unterschiedlichen 

Länge der variablen Schleife oftmals nicht möglich. Stattdessen werden einzelne Positionen in 

der D-Schleife und der variablen Schleife, welche lediglich vereinzelt in tRNA-Molekülen ver-

treten sind, bei der fortschreitenden Nummerierung übersprungen und stattdessen mit zusätzli-

chen Buchstaben nummeriert.26 Das Anticodon befindet sich somit immer an den Positionen 

34–36 und auch andere regelmäßig auftretende Modifikationen wie beispielsweise Ψ55 in der 

TΨC-Schleife, erhalten so stets die gleiche Nummer. Dies erleichtert den Vergleich des 

Modifikationsprofils zwischen verschiedenen tRNA-Molekülen. 

 Die Prozessierung von tRNA-Molekülen 

Alle RNA-Moleküle durchlaufen nach der Transkription eine Prozessierung. Ein Teil dieser ist 

das Spleißen, also das Herausschneiden bestimmter Sequenz-Elemente. In Eukaryoten wird 

tRNA im Zellkern von RNA-Polymerase III transkribiert. Der Großteil der entstehenden prä-

tRNAs ist mit einem 5‘-Anfang (5‘-Leader) und einem 3‘-Anhänger (3‘-Trailer) ausgestattet, 

welche im Zuge der Reifung von tRNA-Molekülen durch zwei unterschiedliche Endonukleasen 
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abgespalten werden. Während der 5‘-Leader durch RNase P entfernt wird und ein 5‘-Mono-

phosphat hinterlässt, übernimmt RNase Z das Entfernen des 3‘-Trailers.27–30 An das entste-

hende 3‘-Ende wird durch tRNA-Nukleotidyltransferase 1 (TRNT1) anschließend ein CCA-

Trinukleotid angefügt.31 In einigen Fällen befindet sich zusätzlich ein Intron, also ein zu ent-

fernender Sequenz-Abschnitt in der Anticodon-Schleife. Diese Exzision wird im Menschen 

durch den tRNA-Spleiß-Endonuklease(TSEN)-Komplex eingeleitet, der die initiale Spaltungs-

reaktion durchführt.32 Die weiteren Schritte und beteiligten Enzyme konnten jedoch noch nicht 

vollständig aufgeklärt werden. Alle gespleißten Oligonukleotide wurden in Zellen nachgewie-

sen und könnten somit ebenfalls in regulatorische Funktionen involviert sein. Ein Überblick der 

tRNA-Prozessierung ist in Abbildung 1.4 A gegeben. 

Die Inkorporation von RNA-Modifikationen kann dabei Einfluss auf die tRNA-Reifung neh-

men, genauso ist es jedoch möglich, dass der Einbau einer bestimmten Modifikation erst nach 

Spleißen des tRNA-Moleküls vorgenommen werden kann. Ein Beispiel wäre das notwendige 

Vorhandensein eines Introns in tRNATyr für die Modifizierung von U35 zu Ψ35, welches für 

die korrekte Codon-Erkennung unabdinglich ist. Ein ähnlicher Mechanismus konnte für die 

Modifizierung von C34 zu m5C34 in tRNALeu beobachtet werden.33–35 

Doch auch nach vollständiger Reifung der tRNA-Moleküle beschränkt sich die Funktion dieser 

nicht nur auf die Bereitstellung der entsprechenden Aminosäuren für die Proteinbiosynthese. 

Durch verschiedene enzymatische Prozesse können tRNA-Moleküle in kleinere Fragmente ge-

spalten werden (Abbildung 1.4 B). Obwohl die Unterteilung in der Literatur nicht einheitlich 

ist, können die entstehenden RNA-Moleküle grob zwei Hauptgruppen zugewiesen werden. 

Zum einen die tRNA-Hälften, welche durch ribonukleolytische Spaltung reifer tRNAs unter 

Stressbedingungen durch die Endonuklease Angiogenin gebildet werden. Dieses schneidet in 

der Anticodon-Schleife und es entstehen ein ~ 33 Nukleotide langes 5‘-tRNA Fragment und 

ein etwas längeres 3‘-tRNA Fragment.36–39 Diese werden auch als von tRNA stammende, 

stressinduzierte kleine RNAs (tiRNAs) bezeichnet.37 Zum anderen entsteht durch die endonuk-

leolytische Spaltung durch Dicer oder Angiogenin im D- oder TΨC-Arm eine scheinbar eigen-

ständige Gruppe von kleinen RNAs, welche allgemein als von tRNA stammende RNA-Frag-

mente (tRFs) eingestuft werden.40–42 Dieser Mechanismus scheint unabhängig von Stressbedin-

gungen aufzutreten und betrifft sowohl reife als auch Vorläufer-tRNA-Moleküle. Die Funktion 

all dieser kleinen RNA-Moleküle konnte noch nicht vollständig geklärt werden, allerdings 

wurde vermehrt eine Assoziation von tRFs und tiRNAs mit der Translationsmaschinerie fest-
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gestellt.43, 44 Ein erhöhtes Level an tRNA-Fragmenten konnte durch verringerte Mengen an Po-

lysomen mit allgemein reduzierter Proteinbiosynthese in Verbindung gebracht werden. Interes-

santerweise scheint dieser Mechanismus durch RNA-Modifikationen regulierbar zu sein. Beim 

Fehlen von m5C38 in tRNAAsp
GUC wird dieser tRNA-Isoakzeptor beispielsweise anfälliger ge-

genüber der Endonuklease Angiogenin. Somit erhöht sich die Anzahl der tiRNAs, welche wie-

derum eine Herabregulation der allgemeinen Proteinbiosynthese bewirken.23, 24 

Allgemein ist die Inkorporation von RNA-Modifikationen in tRNA-Moleküle ein wichtiger 

Teil der Prozessierung. Schon früh konnte gezeigt werden, dass sich der Großteil der Modifi-

kationen im „löslichen“ Teil der RNA befindet, heute ist bekannt, dass dieser Teil hauptsächlich 

tRNA enthält.45 Von den derzeit über 170 bekannten RNA-Modifikationen konnten 93 Varian-

ten in tRNA-Molekülen nachgewiesen werden. Dort können sie entsprechend ihrer Komplexi-

tät grob in zwei Gruppen unterteilt werden: 

In der ersten Gruppe sind größtenteils einfache Methylierungen oder andere einfache Modifi-

zierungen, welche durch eine einzelne enzymatische Reaktion inkorporiert werden können, ver-

treten. Diese können sich an nahezu jeder Position des tRNA-Moleküls befinden, treten jedoch 

vermehrt im D-Arm und TΨC-Arm auf, wo sie die Stabilisierung der tertiären Struktur über-

Abbildung 1.4: Prozessierung von tRNA-Molekülen. (A) Reifung von tRNA-Molekülen 
am Beispiel von tRNATyr

GUA. (B) Vollständig prozessierte tRNATyr
GUA mit Aminosäure und 

mögliche ribonukleolytische Spaltungen von tRNA-Molekülen durch Dicer und Angiogenin. 
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nehmen. So befindet sich an Position 55 beispielsweise durchgängig die Modifikation Ψ wäh-

rend an Position 54 oftmals ein 5-Methyluridin (m5U, teilweise auch rT) vorzufinden ist.46 Ge-

rade Ψ55 nimmt eine essenzielle Rolle in der Hybridisierung der Schleife des TΨC-Arms mit 

der Schleife des D-Arms ein, indem ein tertiäres Basenpaar zwischen  Ψ55 und G18 gebildet 

wird (Ψ55:G18). Somit wird die Stabilität der Ellenbogen-Domäne und folglich die dreidimen-

sionale Struktur der tRNA-Moleküle erhöht.47 Aufgrund der hohen evolutionären Konservie-

rung der Modifikationen wurde dieser Bereich schließlich TΨC-Arm genannt. Aufgrund ver-

mehrten Auftretens der Dihydrouridin-Modifikation (D) erhielt entsprechend der D-Arm seinen 

Namen.48 Ähnlich häufig wie Ψ und universell in allen Domänen des Lebens konserviert ist die 

Modifikation 1-Methyladenosin (m1A). Die Methylierungen von A an Position 58 und Position 

9 in tRNA sind dabei besonders häufig vertreten und verleihen der tRNA-Tertiärstruktur zu-

sätzliche strukturelle Stabilität.49, 50  

Modifikationen der zweiten Gruppe zeichnen sich durch allgemein höhere Komplexität aus und 

können größtenteils in, oder nahe der Anticodon-Schleife vorgefunden werden. Sie sorgen ei-

nerseits für die korrekte Ausrichtung des Anticodons und ermöglichen durch Modulierung der 

Codon-Anticodon-Erkennung zusätzlich eine effiziente Translation.51, 52 Da das korrekte Aus-

lesen des mRNA-Codons lediglich durch das Anticodon und dessen benachbarten Nukleotide 

beeinflusst wird, ist eine exakte Abstimmung auf die entsprechenden Umstände von höchster 

Relevanz. Daher ist die strukturelle Variabilität der RNA-Modifikationen im Bereich des An-

ticodons ausgesprochen hoch. Besonders häufig treten Modifikationen an der Wobble-Position 

(Position 34) der tRNA auf. Diese bildet ein Basenpaar mit der dritten Base des entsprechenden 

Codons der mRNA aus, und sorgt bei Anwesenheit einer Modifikation für eine Änderung der 

Bindungseigenschaften.12 Während man früher, wie der Name impliziert (engl. wobble = wa-

ckelig), von einer prinzipiell lockereren Bindung zum Codon ausgegangen ist, sind heutzutage 

auch Fälle nachgewiesen, in denen die Wobble-Modifikation einen gegenteiligen Effekt auf die 

Bindung aufweist und den Codon-Anticodon-Duplex als Ganzes verstärkt, indem die Form der 

tRNA-Wendung angepasst wird.53, 54 Somit wird zum einen die Translationsgenauigkeit ver-

bessert, über die Beeinflussung der Translationsgeschwindigkeit kann aber auch die Faltung 

des Proteins moduliert werden. Einen ähnlichen Einfluss zeigen Modifikationen, welche sich 

direkt nach dem Anticodon an Position 37 befinden. Ein besonders gut untersuchtes Beispiel 

ist die Inkorporation von Ψ37 anstelle von G37 in Hefe tRNAPhe
GAA, welche durch verstärkte 

Basenstapelung und ionische Wechselwirkungen innerhalb des Ribosoms die Codon-Antico-

don-Interaktion stabilisiert.13, 14. Das Fehlen von Ψ37 kann dabei, wie das Fehlen von vielen 

anderen Modifikationen nahe des Anticodons auch, zu Translationsdefekten führen.  
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1.2 RNA-Modifikationen in Eukaryoten 

 Rolle ausgewählter Modifikationen 

Während zuvor schon auf ein paar allgemeine Effekte von RNA-Modifikationen eingegangen 

wurde, soll in diesem Kapitel ein stärkerer Fokus auf einige ausgewählte Modifikationen gelegt 

werden. Da in dieser Arbeit größtenteils das Modifikationsprofil von tRNA-Molekülen unter-

sucht wurde, wird der Schwerpunkt dabei auf Modifikationen gelegt, welche vermehrt in 

tRNA-Molekülen vorzufinden sind. Eine besondere Aufmerksamkeit erhalten Modifikationen 

nahe des Anticodons und im TΨC-Arm, allerdings wird auch auf einige weitere, hoch konser-

vierte RNA-Modifikationen eingegangen. Dies soll zu einem groben Überblick und dem allge-

meinen Verständnis der Wirkmechanismen von Modifikationen in tRNA-Molekülen beitragen. 

Eine genaue Charakterisierung aller in tRNA-Molekülen vertretenen Modifikationen würde den 

Umfang dieser Arbeit deutlich überschreiten.  

Modifikationen im TΨC-Arm 

Mitunter die höchste Dichte an Modifikationen herrscht im TΨC-Arm der tRNA-Moleküle. 

Wie schon zuvor erwähnt ist die namensgebende Modifi-

kation Ψ55 in nahezu allen Organismen, und fast allen 

tRNA-Isoakzeptoren vorzufinden. Ψ55 trägt durch die 

Ausbildung eines tertiären Basenpaars mit G18 in der D-

Schleife zur Faltung in die korrekte dreidimensionale 

Struktur von tRNA-Molekülen bei.55 Interessanterweise 

sind über die gesamte tRNA-Struktur verteilt weitere Ψ -

Modifikationen vertreten, welche möglicherweise eben-

falls zur Stabilisierung der korrekten Form beitragen.56, 57 

Eine chemische Besonderheit von Ψ ist die C-C glykosidi-

sche Bindung der Nukleobase zur Ribose. Somit steht für 

die Ausbildung von Wasserstoffbrückenbindungen zusätz-

lich das N1-Wasserstoffatom der Nukleobase zur Verfü-

gung. Für die Ausbildung von Wechselwirkungen bietet Ψ 

in der anti-Konformation die geeignete Geometrie und 

Distanz für die Koordination eines Wassermoleküls zwi-

schen ebendiesem N1-H und den Sauerstoff-Atomen der 

Phosphodiester-Bindungen sowohl von Ψ zum vorherigen 

Abbildung 1.5: Modifikatio-

nen im TΨC-Arm. (A) Struktur 
von Ψ55 und die Koordination 
eines Wassermoleküls über be-
nachbarte Sauerstoff-Atome des 
Phosphat-Rückgrats. Adaptiert 
von Lorenz et al.12 (B) TΨC-Arm 
mit häufig auftretenden Modifi-
kationen. 
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Nukleosid, als auch der vorhergehenden beiden Nukleosiden (Abbildung 1.5 A).58, 59 Zusätz-

lich zwingt Ψ die Ribose in eine 3‘-endo-Konformation und erhöht somit die Stapelungseigen-

schaften zu benachbarten Nukleobasen. Tatsächlich treten vermehrt Berichte auf, dass die ver-

besserte Basenstapelung der wichtigste Beitrag von Ψ zur Stabilisierung der tRNA-Struktur 

sein könnte.60–64 Beide Effekte schränken die Basenkonformation und die Beweglichkeit des 

Phosphat-Rückgrats ein und führen somit zu mehr Starrheit der tertiären Struktur.60, 61 Nicht-

destotrotz konnte in Zellen mit fehlendem Ψ55 in tRNA-Molekülen kein signifikanter Phänotyp 

festgestellt werden. Trotz der universellen Inkorporation von Ψ55 in tRNA-Moleküle und des-

sen Einfluss auf die Struktur, scheint Ψ55 weder für die Aminoacylierung noch für die Trans-

lation zwingend erforderlich zu sein.65  

Abgesehen von Ψ55, welches mit G18 interagiert, bilden noch weitere Modifikationen in der 

TΨC-Schleife tertiäre Basenpaare aus, welche ebenfalls zur Stabilisierung der dreidimensiona-

len Struktur beitragen. In der Ellenbogenregion des L-förmigen tRNA-Moleküls bilden sich die 

tertiären Basenpaare G18:Ψ55, G19:C56 sowie m5U54:m1A58 aus, um die tertiäre Struktur der 

tRNA zu stabilisieren (Abbildung 1.5 B).47, 55, 66 In den meisten tRNA-Isoakzeptoren sind diese 

zusätzlich für die korrekte Erkennung durch Aminoacyl-tRNA-Synthetasen relevant.67, 68 So 

wurde beispielsweise gezeigt, dass jeder Austausch von G18:Ψ55 oder G19:C56, der die Aus-

bildung von tertiären Strukturen unterbindet, die Übertragung der Aminosäure Leucin auf den 

entsprechenden tRNA-Isoakzeptor aufhebt.69 Das tertiäre Basenpaar m5U54:m1A58 spielt da-

bei eine besonders wichtige Rolle bei der Aminoacylierung: Durch die Methylierung befindet 

sich m1A58 in einem vollständig protonierten und dadurch positiv geladenen Zustand. Durch 

eine Nicht-Watson-Crick-Basenpaarung mit m5U54 wird die Ladung des Adenins auf der Ober-

fläche der tRNA präsentiert,70 welche dort an der spezifischen Erkennung der tRNA durch di-

verse Proteine beteiligt sein könnte.70 

N2,N2-Dimethylguanosin nahe des D-Arms 

Besonders in GC-reichen Sequenzen besteht oftmals die Möglichkeit der Ausbildung alternati-

ver Basenpaare, welche zu inkorrekter Faltung der tRNA-Moleküle führen. Durch die doppelte 

Methylierung von Guanosin am N2-Atom entsteht N2,N2-Dimethylguanosin (m22G). Auf-

grund der resultierenden Eliminierung des Wasserstoffbrücken-Donors an dieser Position kann 

kein Watson-Crick-Basenpaar mehr ausgebildet werden. (Abbildung 1.6 A). Dementspre-

chend werden Nicht-Watson-Crick-Basenpaarungen wie G:U-Wobbles oder G:A-Wechselwir-

kungen bevorzugt. Lediglich durch modifizierte sterische Anordnung des Cytosins könnte ein 

alternatives G:C-Basenpaar gebildet werden, indem ein Wassermolekül im vergrößerten Raum 
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zwischen N3 des Cytosins und N1 des Guanins koordiniert.71 Der Einbau von m22G im oder 

nahe des D-Arms sorgt oftmals für die korrekte Faltung des tRNA-Moleküls.71, 72 Ein Beispiel 

wäre der humane zytosolische Isoakzeptor tRNAAsn, in dem sich an Position 26 ein m22G be-

findet und somit die Bildung der kanonischen C11:G26-Bindung unterbricht, wodurch das 

Transkript in die korrekte Struktur gezwungen wird (Abbildung 1.6 B).71 Ähnliche strukturelle 

Effekte sind für tRNATyr beschrieben worden.73, 74 Diese Beispiele verdeutlichen, wie die In-

korporation einer einzelnen Modifikation die Faltung der dreidimensionalen Struktur beeinflus-

sen kann.  

Es konnte zudem gezeigt werden, dass nahezu alle m22G-Modifikationen in mitochondrialer 

sowie zytoplasmatischer humaner tRNA durch das Enzym tRNA-Methyltransferase 1 

(TRMT1) eingebaut werden.75 Bei Abwesenheit von m22G in TRMT1-Knockout-Zellen konnte 

eine verringerte globale Translationsrate und Hypersensitivität gegenüber oxidierenden Agen-

zien detektiert werden.75 Dies impli-

ziert eine biologische Rolle von m22G 

im Redox-Stoffwechsel. Mutationen in 

TRMT1 führen dabei zu bestimmten 

Formen von autosomal-rezessiver geis-

tiger Beeinträchtigung. Interessanter-

weise konnte eine Transfektion der mu-

tierten Variation, welche in Patienten 

der autosomal-rezessiven geistigen Be-

einträchtigung vorgefunden wurde, be-

obachtete Effekte in TRMT1-Knock-

out-Zellen nicht umkehren. Dies 

spricht für die direkte Involvierung von 

m22G in die Ausprägung ebendieses 

Phänotyps. 

5-Methylcytidin nahe des Anticodons 

Die Modifikation 5-Methylcytidin konnte schon früh an den Positionen C34, 38, 40, 48–50 und 

72 nachgewiesen werden. Nach bisherigem Wissensstand sind die katalysierenden Enzyme für 

die Inkorporation in zytoplasmatische tRNA-Moleküle in humanen Zellen NSUN2, NSUN6 

und DNMT2. Im Zuge dieser Arbeit konnte jedoch gezeigt werden, dass NSUN6 hauptsächlich 

Methylierungen in der mRNA katalysiert. Dort beeinflusst m5C die mRNA-Translation, den 

Abbildung 1.6: m22G in tRNA. (A) Basenpaarung 
zwischen Guanosin und Cytidin. Rot umkreiste 
Wasserstoffe stehen bei zweifacher Methylierung 
(m22G) nicht mehr zur Verfügung. (B) Effekt von 
m22G auf die Struktur des D-Arms von tRNAAsn. 
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Transport und die Stabilität von mRNA. Die Modifikation ist dabei vorwiegend in der kodie-

renden Sequenz angereichert, wobei Sequenzabschnitte, welche unmittelbar nach Start-Codo-

nen und vor Stopp-Codonen lokalisiert sind, die höchste Menge an m5C aufwiesen.76 Kürzlich 

durchgeführte Studien zeigten, dass eine negative Korrelation zwischen m5C und der mRNA-

Translationseffizienz signifikant mit der Anreicherung von Methylierungen in der codierenden 

Sequenz verbunden war, während eine erhöhte Methylierung in der 3′-UTR mit einer positiven 

Korrelation zwischen diesen Merkmalen verbunden war.76–79  

DNMT2 katalysiert spezifisch die Methylierung an Position 38 einiger tRNA-Moleküle, wäh-

rend NSUN2 für die meisten anderen Positionen zuständig ist.80, 81 Allgemein führt der Einbau 

von m5C zu mehr Stabilität der tRNA-Struktur und dient der Regulierung des Zellstoffwech-

sels.77, 81–84 In Hefe ist der Anteil der TRM4(NSUN2-Homolog)-modifizierten m5C-Stellen in 

tRNALeu
CCA bei oxidativem Stress (dort: Wasserstoffperoxid) beispielsweise erhöht, um die 

Translation spezifisch auf die Stressantwort anzupassen. Das bedeutet, dass einzelne Modifika-

tionen, wie in diesem Fall m5C, für eine Umprogrammierung des Zellmetabolismus notwendig, 

jedoch gleichzeitig ausreichend sind.85 Entsprechend wurde in NSUN2-Mutanten eine redu-

zierte tRNA-Stabilität und eine Hypersensitivität gegenüber oxidativem Stress beobachtet.82, 86 

Des Weiteren beeinflusst m5C den Ort der Mg2+-Kontakte mit dem Phosphat-Rückgrat. Die 

Bindung von Mg2+ ist essenziell für die Stabilität von tRNA-Molekülen, indem die negativen 

Ladungen des Phosphat-Rückgrats abgeschirmt werden. Die Methylierung in m5C40 sorgt so-

mit für eine Delokalisation des Mg2+-Ions in den oberen Teil des Anticodon-Stamms.87, 88  

Die DNMT2-abhängige Methylierung an Position 38 der Isoakzeptoren tRNAGly
GGG und 

tRNAAsp
GTC schützt dagegen vor endonukleolytischer Spaltung durch Angiogenin.89 Wie schon 

zuvor besprochen würden die so entstehenden tiRNAs eine Herabregulation der allgemeinen 

Proteinbiosynthese induzieren. Darüber hinaus wurde berichtet, dass in Doppel-Knockout-Zel-

len von NSUN2 und DNMT2 eine starke Reduktion der Isoakzeptoren tRNAGly
GGG und 

tRNAAsp
GTC beobachtet werden konnte, während dies in DNMT2-/- oder NSUN2-/- Single-

Knockout-Zellen nicht der Fall war.90 Dies deutet auf eine kooperative Stabilisierung der ent-

sprechenden tRNA-Isoakzeptoren durch beide Enzyme hin. 
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Weitere Modifikationen in der Anticodon-Schleife 

Häufig in der Anticodon-Schleife inkorporierte Modifikationen sind Wobble-Uridine an Posi-

tion 34 (Abbildung 1.7 A). So ist U34 in fast ausnahmslos jedem Organismus modifiziert.91, 92 

Bei der gleichzeitig hohen Variation der exakten chemischen Struktur kann von einem starken 

evolutionären Druck der Modifizierung dieser Position ausgegangen werden. Weitestgehend 

nehmen unmodifizierte Uridine eine C2‘-endo-Konformation an, welche relativ flexibel ist und 

somit nur schwache Stapelwechselwirkungen mit benachbarten Nukleosiden zulässt.93, 94 Das 

Vorhandensein von 2-Thiomodifikationen in Uridinen führt zur Präferenz der C3‘-endo-Kon-

formation, welche durch hydrophobe Wechselwirkungen und optimierter Basenstapelung zur 

korrekten Ausrichtung der Base in der Anticodon-Schleife sorgt.94, 95 Somit werden Basenpaa-

rungen mit A im mRNA-Codon begünstigt.93, 94 Während eine Thiolierung die Konformation 

der Anticodon-Schleife also einschränkt, besteht die Rolle weiterer modifizierter Gruppen an 

C5 der Nukleobase, wie sie beispielsweise in 5-Methoxycarbonylmethyl-2-thiouridine 

(mcm5s2U) vorzufinden sind, der Verschiebung der Elektronverteilung im Ring zugunsten der 

Enol-Form der Nukleobase. Somit wird die strukturelle Starrheit ein wenig gelockert und Was-

serstoffbrückenbindungen zwischen U34 und G im 

mRNA Codon werden möglich.96, 97 Die Modifizierung 

von U34 sorgt somit durch optimale Modellierung der 

Anticodon-Schleife allgemein für eine effektive Trans-

lation.98 Da die Effekte von inkorporierten Wobble-

Uridinen an Position 34, wie eben beschrieben oftmals 

voneinander abweichen, kann eine allgemeine Aussage 

zur exakten Funktion und der Effekte auf die Basen-

paarungseigenschaften nicht getroffen werden.99 Einen 

guten Überblick über die verschiedenen modifizierten 

Nukleoside an Position U34 liefert Takai und Yoko-

yama.100  

Abgesehen von Wobble-Uridinen werden auch andere Modifikationen in der Anticodon-

Schleife inkorporiert. Ein Beispiel ist tRNATyr
GUA bei dem unter anderem U35 durch Ψ35 er-

setzt wird. Durch das entsprechende Anticodon GΨA können die Stopp-Codone UAA und 

UAG abgelesen werden, was somit zu einer Suppression der Translations-Termination führt.101 

Es wurde postuliert, dass Ψ35 durch verstärkte Basenpaarung mit A im mRNA-Codon nicht-

kanonische Interaktionen wie G:A oder G:G an der Wobble-Position verstärkt.61 Wie dennoch 

Abbildung 1.7: Positionen häufig 

modifizierter Nukleoside in der 

Anticodon-Schleife. 
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dafür gesorgt wird, dass die entsprechenden Stopp-Codone nicht unabsichtlich durch 

tRNATyr
GUA abgelesen werden, wird im Kapitel 1.2.2 Queuosin – ein hypermodifiziertes 

Nukleosid näher behandelt.  

Eine zuvor schon angeschnittene Aufgabe der Modifikationen in der Anticodon-Schleife ist die 

Stabilisierung der dreidimensionalen Struktur ebendieser. Für die korrekte Decodierung des 

mRNA-Codons ist eine akkurate Ausrichtung der Basen des tRNA-Anticodons essenziell. Mo-

difikationen an Position 34 und 37 sorgen oftmals für die Ausbildung einer sogenannten U-

Wende in der Anticodon-Schleife, welche für die korrekte Ausrichtung der Nukleobasen sorgt. 

Dies wird durch den erhöhten hydrophoben Charakter der entsprechenden Modifikationen und 

der daraus resultierenden besseren Stapeleigenschaft zu benachbarten Basen bewerkstelligt.102 

Diese Wechselwirkungen reduzieren die strukturelle Flexibilität der Anticodon-Schleife und 

verstärken somit die Ausprägung der typischen U-Wende, wie sie für ein korrektes Ablesen des 

Codons essenziell ist.51 Die kanonische Anticodon-Schleife besteht aus sieben ungepaarten 

Nukleobasen. Bei der Abwesenheit von bestimmten Modifikationen in dieser Schleife konnten 

sowohl Wechselwirkungen zwischen U32 und A38 als auch von U33 mit A37 festgestellt wer-

den, was zu einem Zusammenbruch der typischen U-Wende und somit zu verringerter Trans-

lationseffizienz und -genauigkeit führte.103–105 In nativen tRNA-Molekülen wird dies oftmals 

durch den Einbau sterisch anspruchsvoller Modifikationen an Position 37 verhindert (Abbil-

dung 1.7 B).51, 106, 107 Prominente Beispiele für Modifikationen, welche diese Funktion über-

nehmen sind Wybutosin, Threonylcarbamoyladenosin (t6A) oder auch 2-Methylthio-N6-iso-

pentenyladenosin (ms2i6A).103, 107, 108  

Ribose-Methylierungen 

Methylierungen der 2‘-Hydroxygruppe der Ribose treten größtenteils in rRNA auf, können je-

doch auch in einigen tRNA-Isoakzeptoren entweder zu Beginn der D-Schleife oder nahe des 

Anticodons, besonders an Position 32 inkorporiert werden (Abbildung 1.7 C).109–111 

tRNAPhe
GAA ist ein besonderes Beispiel, da hier mit Cm32 und Gm34 (2‘-O-Methylguanosin) 

gleich zwei Ribose-Methylierungen in einem tRNA-Isoakzeptor vorhanden sind. Allgemein 

führt der Einbau einer Methylgruppe am 2‘-Hydroxygruppe der Ribose zu einer C3‘-endo-Kon-

formation der Ribose, da in einer C2‘-endo-Konformation der sterische Anspruch des 3‘-Phos-

phat und der Base für eine Methylierung zu groß ist. Dieser Effekt tritt zwar insbesondere in 

Pyrimidinen auf, betrifft jedoch auch Purine.110, 112 Im Fall von Gm18, welches in eukaryoti-

scher tRNASer
UGA vorhanden ist, sorgt die entstehende C3‘-endo-Konformation für mehr Starr-
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heit und Stabilität des kompletten D-Arms.110, 113 Im Anticodon könnte eine entsprechende Mo-

difizierung durch Erzwingen der C3‘-endo-Konformation, ähnlich wie die Wobble-Modifika-

tionen für das korrekte Auslesen des mRNA Codons sorgen, indem die Anticodon-Schleife 

optimal ausgerichtet wird.114 Außerdem tragen 2’O-Methylierungen generell zu einer höheren 

Beständigkeit gegenüber hydrolytischer Spaltung bei. Eine unmodifizierte 2‘-Hydroxygruppe 

könnte über einen internen nukleophilen Angriff auf das Phosphat-Rückgrat zu einem Strang-

bruch führen,115 was durch eine Methylierung der 2‘-Hydroxygruppe verhindert wird. Abgese-

hen von der Stabilisierung der Struktur konnten noch keine weiteren spezifischen Effekte der 

ribose-methylierten Modifikationen nachgewiesen werden. Eine Involvierung in diverse neu-

rologische Krankheiten wurde jedoch bereits des Öfteren bestätigt.116  

 Queuosin – ein hypermodifiziertes Nukleosid 

Das hypermodifizierte Guanosin-Analogon Queuosin ist eine der komplexesten bisher entdeck-

ten RNA-Modifikationen.117 Während Queuosin bereits 1968/1969 entdeckt wurde118–120 und 

1972 festgestellt werden konnte, dass sich dieses stets an Position 34 der Histidin, Asparagin, 

Aspartat und Tyrosin decodierenden tRNA-Isoakzeptoren befindet,121 konnte die Struktur erst 

1975 vollständig aufgeklärt werden:122 An ein 7-Desaza-Guanosin wird über eine Aminome-

thyl-Seitenkette an Position 7 ein Cyclopentendiol-Derivat angehängt.123 Während Queuosin 

als Name für das komplette Nukleosid gewählt wurde, bezeichnet Queuin (QBase, q) die ent-

sprechende Nukleobase.  

Abbildung 1.8: Biosynthese von Queuosin in Prokaryoten. Abkürzungen der Zwischen-
produkte sind unter dem jeweiligen Molekül angegeben. Abkürzungen der beteiligten Enyzme 
sind kursiv über den Reaktionspfeilen angegeben. 
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Eukaryotische Zellen sind aufgrund fehlender Enzyme nicht in der Lage Queuin selbst zu syn-

thetisieren und daher auf die Aufnahme entweder aus der Nahrung117, 124 oder aus dem Mikro-

biom125 angewiesen. Aus diesem Grund wird Queuosin teilweise auch als Vitamin bezeich-

net.126 Die Biosynthese in Prokaryoten startet mit Guanosin-5‘-triphosphat (GTP), welches in 

einer ersten Reihe von enzymatischen Reaktionen in das Vorläufer-Molekül preQ0 umgewan-

delt wird.127, 128 Dabei entsteht zuerst das Dihydroneopterintriphosphat (H2NTP), welches ne-

ben der dreistufigen Umsetzung zu preQ0 129–131 auch als Zwischenprodukt des Folat- und Bi-

opterin-Stoffwechsels dient.132 Durch eine NADPH-abhängige Reduktion wird die Nitrilgruppe 

des PreQ0 anschließend zum Amin reduziert, um PreQ1 zu erhalten.131, 133 Dieses wird dann 

durch bakterielle tRNA-Guanin-Transglykosylasen (bTGT) an Position 34 der entsprechenden 

tRNA-Moleküle inkorporiert134, 135 und erst dort in zwei weiteren Schritten zum endgültigen 

Queuosin modifiziert. Zuerst wird ein Cyclopentandiol-Epoxid angefügt, welches von entspre-

chend derivatisierter Ribose des S-Adenosylmethionins (SAM) bereitgestellt wird.136–138 Als 

Zwischenprodukt entsteht Epoxy-Queuosin (oQ), welches in prokaryotischer tRNATyr direkt 

inkorporiert wird.139 Für die Produktion von Queuosin dient Vitamin B12 in einer letzten Re-

aktion als Cofaktor für die Reduktion der Epoxygruppe.139 Reguliert wird die de novo Biosyn-

these demnach unter anderem durch die Verfügbarkeit der Stoffwechselsubstrate GTP, SAM 

und Vitamin B12. Die finale Aufklärung des insgesamt achtstufigen Prozesses gelang erst 2011 

mit der Entdeckung des letzten beteiligten Enzyms.136 Eine grobe Übersicht der einzelnen Re-

aktionsschritte ist in Abbildung 1.8 gegeben. 

Außerdem kann Queuosin durch Anfügen zusätzlicher Gruppen weiter modifiziert werden. In 

Prokaryoten vertreten sind die Modifikationen Epoxy-Queuosin (oQ) und Glutamyl-Queuosin 

(GluQ).139, 140 Während oQ ein direkter Vorläufer des finalen Queuosins ist,136, 141 wird für 

GluQ nach vollständiger Biosynthese von Queuosin auf dieses noch eine zusätzliche Glutamyl-

Gruppe übertragen. Über welche der beiden Hydroxygruppen der Cylcopentendiol-Gruppe die 

Veresterung abläuft konnte noch nicht geklärt werden. GluQ und oQ konnten in Eukaryoten 

zwar bisher nicht nachgewiesen werden, stattdessen treten dort aber die Modifikationen Galak-

tosyl-Queuosin (GalQ) und Mannosyl-Queuosin (ManQ) auf (Abbildung 1.9).142, 143 Entspre-

chenden Enzyme zur Übertragung des Zuckers wurden bisher für keine der Q-Modifikationen 

entdeckt. Zudem stellt sich auch hier die Frage nach der Position der Glykosylierung. Der ent-

sprechende Zucker kann über eine α- oder β-glykosidische Bindung entweder an die homoal-

lylische oder die allylische Hydroxygruppe angefügt werden. Während schon früh postuliert 

wurde, dass die Verknüpfung stets über eine β-glykosidischen Bindung an der homoallylischen 

Hydroxygruppe erfolgt,143 konnte in der Dissertation von Peter Thumbs aus der Arbeitsgruppe 
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um Prof. Dr. Thomas Carell ebendiese Struktur nur für das β-Galaktosyl-Queuosin bestätigt 

werden.144 Dieselbe Gruppe forscht indessen an der korrekten Struktur des Mannosyl-Deriva-

tes. Durch die Arbeit von Timm Ensfelder aus derselben Forschungsgruppe konnte bereits be-

stätigt werden, dass es sich beim angefügten Zucker tatsächlich um eine Mannose handelt.145 

Die Experimente legen jedoch eine α-glykosidische Bindung zur Cyclopentendiol-Gruppe 

nahe. Eine Publikation zur tatsächlichen Struktur wird noch im Jahr 2021 erwartet (Hillmeier 

et al.).  

Alle Derivate haben gemeinsam, dass sie lediglich in spezifischen tRNA-Isoakzeptoren vor-

handen sind. In eukaryotischen Zellen ist nicht weiter modifiziertes Queuosin in tRNAAsn
GUU 

und tRNAHis
GUG vorzufinden, während GalQ in tRNATyr

GUA und ManQ in tRNAAsp
GUC inkor-

poriert wird.142, 143, 146 All diese tRNA-Isoakzeptoren besitzen ein GUN-Anticodon, wobei für 

N jedes beliebige Nukleotid eingesetzt werden kann. Je nach Nukleosid an dieser Position wird 

die Identität der zu inkorporierenden Aminosäure bestimmt. Das entsprechende Queuosin-De-

rivat ist in diesen tRNA-Isoakzeptoren stets an der Wobble-Position (34) anstelle von G vorzu-

finden.121 

Während eine de novo Biosynthese in Eukaryoten nicht möglich ist, reicht die Aufnahme von 

Queuin über die Nährstoffe aus, um die Inkorporation der Queuosin-Modifikationen in tRNA-

Moleküle zu gewährleisten. Dies kann durch die Aufnahme von Nährstoffen über die Nahrung 

oder symbiotisch über die Darmflora erfolgen. In Zellkultur-Experimenten konnte gezeigt wer-

den, dass die Zugabe der freien Base Queuin zum Medium einen Anstieg der Q-Modifikationen 

bewirkt.23 In Säugetieren wird Queuin über einen bisher nicht bestimmten Transport-Mecha-

nismus vom extrazellulären Raum in das Zytosol transportiert.147–150 Die Aufnahme anderer 

Abbildung 1.9: Queuin (A) und in Eukaryoten vertretene Queuosin-Derivate (B) 
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Queuosin-Formen wie Queuosin-5‘-Phosphat, Queuosin-3‘-Phosphat oder dem Nukleosid 

Queuosin erscheint ebenfalls möglich, konnte bisher jedoch nicht belegt werden. Aufgrund des 

Umsatzes von tRNA-Molekülen wurde sowohl das freie Nukleosid als auch die beiden phos-

phorylierten Formen in der Zelle vorgefunden, konnten allerdings noch nicht mit einer physio-

logischen Wirkung in Verbindung gebracht werden. Bei der Degradation von tRNA-Molekülen 

entsteht beispielsweise Queuosin-5‘-Phosphat, über welches in Eukaryoten – durch einen effi-

zienten Rückgewinnungsmechanismus – anschließend wieder Queuin gewonnen werden 

kann.149, 151, 152 In Bakterien ist ein solcher Mechanismus aufgrund der alternativen Möglichkeit 

einer de novo Biosynthese nicht vorhanden. Trotz der Konservierung über alle Domänen des 

Lebens kann demnach davon ausgegangen werden, dass die Erweiterung des Epitranskriptoms 

um die Q-Modifikationen in den verschiedenen Organismen evolutionär unabhängig voneinan-

der erfolgte. 

Ähnlich wie bei Prokaryoten wird der Einbau von Queuin in Eukaryoten von einer (eukaryoti-

schen) tRNA-Guanin-Transglykosylase (eTGT), ebenfalls Queuine-tRNA-Ribosyltransferase 

genannt, durchgeführt.153–156 Im Gegensatz zu Prokaryoten – in denen sich das Enzym aus zwei 

homodimeren Untereinheiten zusammensetzt – bildet sich die eukaryotische Variante aus zwei 

heterodimeren Untereinheiten.156–158 Durch die Einführung gezielter Mutationen in das Substrat 

tRNATyr konnte gezeigt werden, dass die Sequenz U33-G34-U35 in der Anticodon-Schleife als 

Erkennungsmerkmal dient.159 Weiterführende Maus-Studien konnten belegen, dass die Positi-

onen 36, 37 und 38 sowohl einen Einfluss auf die Modifizierung mit Queuosin als auch auf 

dessen weitere Modifizierung haben.160  

 Biologische Funktionen von Queuosin-Derivaten 

Eine der wichtigsten Funktionen von Queuosin und seinen Derivaten ist der Einfluss auf 

Wobble-Basenpaarungen zwischen dem Anticodon der tRNA-Isoakzeptoren und den entspre-

chenden Codonen der mRNA.23, 24 So konnte gezeigt werden, dass das GUN-Anticodon – wel-

ches in den Isoakzeptoren tRNAHis, tRNAAsn, tRNAAsp und tRNATyr vertreten ist – bei der An-

wesenheit von Q statt G an der Wobble-Position nicht nur mit dem reverse komplementären 

Codon NAC paart, sondern zusätzlich in der Lage ist das Codon NAU zu decodieren. Somit 

wird für die Decodierung beider mRNA-Codone nur ein einzelner tRNA-Isoakzeptor benö-

tigt.24, 161–163 In HeLa-Zellen werden alle Codone schneller abgelesen, als es durch das kanoni-

sche Anticodon der Fall wäre, wobei das NAU-Codon von diesem Effekt meist stärker betrof-

fen ist. Dies entspricht den Erwartungen, da eine Watson-Crick-Basenpaarung zwischen dem 

NAC-Codon und dem GUN-Anticodon selbst ohne Modifizierung durch Q möglich ist, für das 
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Ablesen des NAU-Codons ist die entsprechende Modifizierung jedoch zwingend erforderlich. 

Lediglich in tRNAAsp konnte ein stärkerer Effekt auf das NAC-Codon festgestellt werden.23 

Auch in Schizosaccharomyces pombe konnten Auswirkungen der Q-Inkorporation in das An-

ticodon auf die Basenpaarung mit den entsprechenden Codonen festgestellt werden; dort waren 

die Ergebnisse jedoch weitaus heterogener ausgeprägt.24 In allen Fällen wurde das Nicht-

Watson-Crick-Basenpaar nach dem Einbau des entsprechenden Q-Derivats jedoch besser als 

zuvor gebildet. Somit wird das Gleichgewicht in Richtung des NAU-Codons verschoben, was 

einer Äquilibrierung beider Codone gleichkommt. Bei der Injektion von drosophila melano-

gaster tRNAHis in Xenopus Oozyten war dieser Effekt so stark ausgeprägt, dass Queuosin-mo-

difizierte tRNA-Moleküle eine Präferenz gegenüber dem NAU-Codon zeigten.164  

Zudem könnte Queuosin zur Stabilität von tRNA-Molekülen beitragen. In keimfreien Mäusen 

wurde untersucht, wie sich eine spezielle Queuine-freie Diät auf die jeweiligen Modifikationen 

in den entsprechenden tRNA-Isoakzeptoren auswirkt. Interessanterweise sank das Level von 

nicht weiter modifiziertem Queuosin in tRNAAsn und tRNAHis um ~ 80 % ab, wohingegen die 

Level von ManQ und GalQ in tRNAAsp und tRNATyr nahezu unverändert blieben.124, 165 Erst 

nach einjährigem Entzug von Queuin, konnte kein Q-Derivat mehr nachgewiesen werden. Dies 

verdeutlich die Relevanz der Wiedergewinnung von Queuin aus degradierten tRNA-Molekülen 

und bedarf zum genaueren Verständnis eingehendere Untersuchungen der beteiligten Enzyme. 

Erstaunlicherweise war der einzige phänotypische Effekt der Queuin-Diät jedoch eine vermin-

derte Fortpflanzungsfähigkeit.124, 165 Anhand derselben Mäuse konnte gezeigt werden, dass bei 

Fütterung von Queuin nach längerem Entzug der Einbau von ManQ in tRNAAsp gegenüber den 

anderen Q-Derivaten priorisiert wird; hier stiegen die Level schneller wieder an.124 Ebenfalls 

konnte eine Abhängigkeit zwischen der Abundanz von Q-Modifikationen und dem Alter von 

Mäusen festgestellt werden. In neugeborenen Mäusen wurde ein verringertes Level der Q-Mo-

difikationen vorgefunden, was auf das schnelle Wachstum und dem damit einhergehenden gro-

ßen Bedarf an Queuin zurückgeführt wurde.145 Dabei waren die glykosylierten Q-Derivate ge-

genüber unmodifiziertem Q weniger starken Schwankungen ausgesetzt, was erneut für die Pri-

orisierung von ManQ und GalQ spricht. Ein ähnlicher Effekt konnte in Dictyostelium dis-

coideum beobachtet werden. Unter Anwesenheit von Queuin im Kulturmedium sank bei einem 

Stopp der RNA-Synthese durch Actinomycin C nur das Level der Isoakzeptoren tRNAAsn und 

tRNAHis. Wurde das gleiche Experiment jedoch ohne die Supplementierung von Queuin durch-

geführt, sank die Abundanz aller Q-abhängigen tRNA-Isoakzeptoren.166 Dies deutet ebenfalls 

auf eine Priorisierung der tRNA-Moleküle mit glykosylierten Q-Derivaten hin. 
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Des Weiteren wird vermutet, dass die Q-Modifikationen als Erkennungsmotiv für bestimmte 

Enzyme dienen. Durch Sequenzierung konnte in Zellkultur bei der Zugabe von Queuin zum 

Medium ein Anstieg von m5C38 in tRNAAsp beobachtet werden. Dieses wird von DNMT2 in-

korporiert und schützt das tRNA-Molekül vor einem stress-induzierten Abbau durch die RNase 

Angiogenin.167 So konnte bei einem Gen-Knockout von DNMT2 und NSUN2 ein verringertes 

Level an tRNAAsp festgestellt werden.90 Der genaue Einfluss von ManQ auf die Methylierungs-

reaktion konnte noch nicht aufgeklärt werden, es wird jedoch vermutet, dass die Anwesenheit 

von ManQ eine Konformationsänderung im Anticodon hervorruft, welche DNMT2 wiederum 

einen besseren Zugang zu C38 verschafft.168, 169 Das aktive Zentrum des Enzyms ist dann zwar 

vergleichsweise weit von ManQ entfernt, die Konformationsänderung könnte aber ebenso zu 

einer Stabilisierung eines instabilen Übergangszustandes führen und die Enzymkinetik somit 

erhöhen.168, 170  

Zuvor wurde bereits erwähnt, dass Ψ durch das zusätzlich verfügbare N1-Wasserstoffatom und 

den daraus resultierenden besseren Basenstapelungseigenschaften, einen positiven Einfluss auf 

die Stabilität von RNA-Doppelsträngen zeigt.61, 171 Durch den gleichen Effekt wird die Codon-

Anticodon-Basenpaarung im Isoakzeptor tRNATyr
GUA durch den Einbau von Ψ35 verstärkt.61 

Somit werden nicht nur die entsprechenden Tyrosin-codierenden Basentriplets UAU und UAC 

ausgelesen, sondern auch die Decodierung des Amber-Stopp-Codons UAG ermöglicht.172, 173 

Dabei bildet sich eine durch Ψ-induzierte G:G-Basenpaarung aus, welche durch eine Rotation 

des Guanosins von der anti- in die syn-Konformation ermöglicht wird.174 Wird dieses Stopp-

Codon von tRNATyr ausgelesen, kommt es nicht, wie durch den genetischen Code vorgegeben 

zu einem Translations-Stopp, sondern zum Einbau von Tyrosin und somit zu einer mutierten 

Variante des entsprechenden Proteins. Um dies zu verhindern wird an der Wobble-Position die 

GalQ-Modifikation inkorporiert, welche durch die Cyclopentendiol-Gruppe eine Rotation in 

Abbildung 1.10: Modifikationen im Anticodon von tRNATyr
GUA und deren 

Auswirkung auf die Basenpaarung. Modifikationen im Anticodon (hellgrün) sind 
rot hervorgehoben. Rotes Kreuz = keine Basenpaarung mit dem mRNA-Codon 
(grau) möglich. 
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die syn-Konformation blockiert und die Basenpaarung zum Amber-Stopcodon somit unterbin-

det (Abbildung 1.10).171, 175 

Außerdem scheint Queuosin in den Tyrosin-Stoffwechsel involviert zu sein. Säugetiere sind in 

der Lage Tyrosin aus der essenziellen Aminosäure Phenylalanin zu synthetisieren. Die nötige 

Hydroxylierung des aromatischen Rings wird über das Enzym Phenylalanin Hydroxylase 

(PAH) katalysiert, welches vom Cofaktor Tetrahydrobiopterin (BH4) abhängig ist.176–179 Eine 

Tyrosin- und Queuin-freie Diät in keimfreien Mäusen wirkt letal mit Symptomen wie er-

schwerte Atmung und Krampfanfälle. Allein durch die Zugabe von Queuin konnten jedoch alle 

beobachteten Effekte unterbunden werden.125 Die Anwesenheit von Queuin scheint für die Bio-

synthese von Tyrosin aus Phenylalanin daher notwendig zu sein. Zusätzlich wurde kontrolliert, 

ob Queuin selbst an der Reaktion beteiligt ist, oder der Einbau von Queuin in tRNA-Moleküle 

erforderlich ist. In einem Mausmodell mit defekter eTGT – welche die Inkorporation von Queu-

osin übernimmt – konnte gezeigt werden, dass die Tyrosin-Biosynthese trotz Anwesenheit von 

Queuin beeinträchtigt ist. Bei Fehlen von eTGT waren die BH4-Werte stark verringert, wäh-

rend die Werte der oxidierten Form BH2 stark anstiegen.180 Dementsprechend scheint der Ein-

bau von Queuosin für die Reduktion von BH2 zu BH4 entscheidend zu sein. Nichtsdestotrotz 

konnten bei Tyrosin-freier Diät keine der zuvor beobachteten Symptome festgestellt werden. 

Schon zuvor war bekannt, dass Queuosin einen positiven Effekt auf die Aktivität diverser anti-

oxidativer Enzymen hat,181 die genauen molekularen Mechanismen sind jedoch noch uner-

forscht. 
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1.3 Dynamik des Modifikationsprofils 

 Writer, Eraser und Reader 

Wie bereits zuvor besprochen sind RNA-Modifikationen besonders häufig in funktionellen 

RNA-Molekülen wie tRNA und rRNA vorzufinden. Dort sind diese maßgeblich an der Bioge-

nese, Funktionalität und Stabilität der RNA beteiligt. Für einige Modifikationen hat sich dabei 

herausgestellt, dass diese nicht stöchiometrisch und statisch, sondern partiell und dynamisch 

inkorporiert werden. Das heißt, dass bestimmte Modifikationen nur in einem gewissen Anteil 

der entsprechenden RNA-Moleküle vorhanden sind und die Menge dort dynamisch hoch- oder 

herunterreguliert werden kann. Das Level einiger Modifikationen kann demnach situationsab-

hängig angepasst werden und ist für die biologische Regulation der Zellabläufe von Relevanz. 

So konnte über Sequenzierung beispielsweise eine teilweise Modifizierung diverser Positionen 

von m1A, N1-Methylguanosin (m1G) und N3-Methylcytidin (m3C) in tRNA festgestellt wer-

den.182 Die Inkorporation in tRNA-Moleküle scheint dabei stressabhängig zu sein. In Hefe 

konnte für die Modifikationen m5C, Cm und m22G unter diversen Stressbedingungen schon 

zuvor eine Regulation beobachtet werden, wobei sich kein einheitliches Bild beim Trend der 

Modifikationslevel ergab.85, 183  

Ein konkreteres Beispiel wäre die ebenfalls zuvor bereits angeschnittene Inkorporation der Ψ-

Modifikation: Über die Pseudouridin-Synthase (PUS) wird dabei die C-N-glykosidische Bin-

dung der Nukleobase des Uridins zur Ribose gelöst, das Uracil anschließend um die eigene N3-

C6-Achse gedreht und schließlich über eine nun C-C-glykosidische Bindung wieder mit der 

Ribose verbunden.21 Die PUS-Enzyme, sowie alle weiteren RNA-modifizierenden Enzyme, 

sind sogenannte „Writer“. Diese sind für die Inkorporation der jeweiligen Modifikationen in 

RNA-Moleküle zuständig. Die in RNA-Molekülen anwesende Menge an Ψ wird demnach mit-

unter durch die Enzyme der PUS-Familie reguliert, welche durch Hitzeschock induziert werden 

können.184 Erneut zeigt sich also, wie die Zelle durch Regulation des Modifikationsprofils auf 

Stressfaktoren reagieren kann. 

Ein weiterer wichtiger Writer für die Modifizierung von tRNA-Molekülen ist NSUN2. Für die-

ses konnte die Inkorporation der m5C-Modifikation nicht nur an den Positionen 34, 40 und 48–

50 diverser tRNA-Isoakzeptoren nachgewiesen werden, sondern auch in bis zu 300 verschie-

denen mRNAs.185–187 Darüber hinaus kann m5C durch Enzyme der TET-Familie weiter zu 5-

Hydroxymethylcytidin (hm5C) oxidiert werden, welches besonders in DNA regulatorische 
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Funktionen besitzt, allerdings auch in RNA nachgewiesen werden konnte.188, 189 Für die Inkor-

poration von m6A in mRNA ist ein heterodimerer Komplex aus den Enzymen METTL3 und 

METTL14 (engl.: Methyltransferase-like) zuständig. Durch den Einbau wird unter anderem der 

Reparaturmechanismus von durch UV-Bestrahlung hervorgerufenen DNA-Schäden beschleu-

nigt.190 Die Inkorporation von m3C in tRNA-Moleküle wird dagegen von METTL6 durchge-

führt. Die Diversität der Writer-Enzyme ist nahezu so groß wie die der RNA-Modifikationen. 

Obwohl bereits viele Writer identifiziert werden konnten, sind die verantwortlichen Enzyme 

für einige Modifikationen noch unbekannt. Zudem sind die genauen molekularen Mechanismen 

– die Ursachen und Auswirkungen – der Inkorporation von Modifikationen oftmals noch nicht 

gänzlich erforscht. 

Das Gegenstück zu den Writern sind die „Eraser“. Diese entfernen Modifikationen von den 

RNA-Molekülen und sorgen somit für die Wiederherstellung des kanonischen Nukleosids. 

Hierfür sind mehrere Mechanismen wie beispielsweise Basen- oder Nukleosid-Exzisionsrepa-

ratur (BER oder NER) denkbar. Auch ein Abbau der modifizierten RNA-Moleküle ist denkbar 

und trägt zu einem gewissen Maße sicherlich zur Abnahme der Modifikationsdichte bei. Der 

Großteil der aktiven Demodifizierung im Menschen beruht auf der oxidativen Decarboxylie-

rung der entsprechenden Methylgruppen durch Familienmitglieder der ALKBH-Enzyme. Von 

diesen humanen Homologen der bakteriellen Eisen(II)/α-Ketoglutarat-abhängigen Dio-

xygenase AlkB existieren insgesamt 9 Familienmitglieder (ALKBH1–8 und FTO). Unter Ein-

bezug von α-Ketoglutarat und einem Sauerstoff-Molekül wird das Eisen(II)-Ion im katalyti-

schen Zentrum des Enzyms zu einem hochreaktiven Eisen(IV)-Oxo-Komplex oxidiert, welcher 

anschließend durch die Übertragung einer Hydroxygruppe auf die Methylgruppe des modifi-

zierten Nukleosids eine Abspaltung ebendieser Gruppe als Formaldehyd katalysiert (Abbil-

dung 1.11).191, 192 Dieser Mechanismus wirkt vorrangig an N-methylierten Nukleosiden. 

ALKBH1, welches für die Demethylierung von m1A58 in tRNA-Molekülen verantwortlich sein 

soll, konnte als erster humaner Eraser identifiziert werden.193 Durch die Entfernung von m1A58 

wird die Menge an anwesenden tRNAiMet-Molekülen angepasst und somit die Initiation der 

Translation reguliert. Ebenso wird die Elongation beeinflusst, indem die Affinität weiterer 

tRNA-Isoakzeptoren zum Elongationsfaktor eEF1A erhöht wird.193 Die zellulären Ziele der 

verwandten Demethylase ALKBH3 konnten noch nicht abschließend bestimmt werde.194, 195 

Während die entsprechenden Writer für die meisten RNA-Modifikationen bereits bekannt sind, 

ist der Forschungsbereich um Eraser noch vergleichsweise jung. Beide Enzymklassen greifen 
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in die gezielte Anpassung des Modifikationsprofils ein und könnten somit für die Anwendung 

in Forschung und Medizin in Zukunft von hoher Relevanz sein. 

Das Zusammenspiel von Writern und Erasern ist äußerst dynamisch und wird von der Zelle 

stets an interne und externe Einflüsse angepasst. So entsteht für jedes RNA-Molekül ein auf die 

jeweilige Situation speziell angepasstes Modifikationsprofil. Einzelne Modifikationen können 

dann von „Readern“ erkannt werden, welche eine entsprechende molekulare Reaktion einleiten. 

So ist es beispielsweise möglich, dass eine enzymatische Reaktion nur in Anwesenheit einer 

bestimmten Modifikation stattfindet. Hier beschränkt sich der Fortschritt der Forschung bisher 

größtenteils auf Effekte in mRNA-Molekülen. Die m6A-Modifikation rekrutiert beispielsweise 

Proteine der YTH-Domänenfamilie, welche dann eine Regulation der prä-mRNA-Prozessie-

rung, der Translationsinitiation und des mRNA-Zerfalls bewirken.196 Die Modifikation m5C 

dagegen wird vom mRNA-Exportadapterprotein ALYREF erkannt, was auf eine Rolle beim 

Export aus dem Nukleus hinweist.197  

Abbildung 1.11: Mechanismus von Eisen(II)/α-Ketoglutarat-abhängigen Dioxygenasen. 

Mittig ist das Enzym ALKBH3 mit Fokus auf das katalytische Zentrum abgebildet. Der Me-
chanismus der oxidativen Decarboxylierung ist anhand der Demethylierung von 3-Methylcyti-
din (m3C, schwarze Kästen) gezeigt. 
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 Verschiedene Stressfaktoren 

Das Modifikationsprofil von RNA-Molekülen – wie es von Writer- und Eraser-Enzymen ab-

hängig von zellulären (endogenen) und externen (exogenen) Einflüssen aufgebaut wird – stellt 

sicher, dass die molekularen Mechanismen entsprechend der Situation angepasst werden. Im 

Menschen wird Zellstress beispielsweise durch energiereiche Strahlung wie UV-Licht ausge-

löst,198 kann aber auch durch Infektionen199 oder durch physischen oder psychischen Stress 

entstehen.200 Auf molekularer Ebene äußert sich dies meist durch chemische Modifizierung di-

verser, in der Zelle befindlicher Makromoleküle. Besonders kritisch sind derartige Schäden an 

der DNA. Werden diese nicht von der Zelle erkannt und entsprechend entfernt, kann das der 

Auslöser für verschiedene Krebsarten sein.201 Aber auch Lipide und Proteine können geschä-

digt werden,202 der Fokus dieser Arbeit soll jedoch selbstverständlich auf entstehenden RNA-

Schäden liegen.  

Ein endogener Faktor, der das Modifikationsprofil beeinflusst, sind in der Zelle entstehende 

reaktive Sauerstoff-Spezies (ROS). Diese führen zu Schäden in RNA-Molekülen, indem die 

Nukleoside oxidiert werden. Ein häufig in der Zelle vorkommender Methylgruppen-Donor ist 

dagegen der Cofaktor SAM, welcher bei hohen Konzentrationen spontane, ungewollte Methy-

lierungen auslösen könnte.203 Exogene Faktoren sind äußerst vielfältig und reichen von UV-

Strahlung über andere Umwelteinflüsse wie Infektionen bis hin zur direkten Schädigung durch 

diverse Reagenzien/Chemikalien. Teilweise kann eine solche Schädigung auch erwünscht sein, 

wie es beispielsweise bei einigen Chemotherapeutika der Fall ist. Diese führen oftmals zu Me-

thylierungen (z.B. Temozolomid) und führen somit zur gezielten Apoptose der entsprechenden 

Tumor-Zellen.204 

Besonders anfällig gegenüber methylierenden Agenzien sind die Ringstickstoffe der Nukle-

obase, jedoch können auch exozyklische Amine oder Ketogruppen betroffen sein. Diese sind 

besonders nukleophil und stellen daher ein geeignetes Ziel für Methylgruppen-Donoren dar. 

Durch das methylierende Agens Methylmethansulfonat werden in RNA so besonders die Nuk-

leoside m7G, m1A, m3C und m3U gebildet (Abbildung 1.12). Gerade Methylierungen der Ring-

positionen N1, und N3 sind dabei problematisch, da diese oftmals an der Ausbildung von 

Watson-Crick-Basenpaaren beteiligt sind, welche nach einer entsprechenden Methylierung so-

mit unterbunden wird. Eine genauere Untersuchung von Methylierungsschäden erscheint daher 

sinnvoll. In Eukaryoten besteht eine Problematik jedoch darin, dass nahezu alle methylierten 
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Nukleoside ebenso ein natürliches Vorkommen auf-

weisen. Somit ist eine Differenzierung zwischen 

von der Zelle gewollter, enzymatischer Methylie-

rung und Schäden, welche durch ungewollte Methy-

lierung eingeführt werden, schwierig. In der vorlie-

genden Arbeit wurde dieses Problem durch Isoto-

penmarkierung gelöst: Durch Zugabe von D3-Me-

thionin zum Zellkulturmedium werden alle enzyma-

tisch gebildeten Modifikationen isotopenmarkiert, 

während Methylgruppen, welche durch die direkte 

Methylierung ausgehend von MMS entstehen, un-

markiert bleiben. 

Allgemein sind die Folgen solcher Schäden an 

RNA-Molekülen äußerst divers. Oftmals beruhen 

diese auf der Unterbindung von Basenpaarungen und sind Auslöser von Krankheiten wie Krebs 

oder neurologischen Defekten. Aufgrund der hohen Exposition gegenüber diversen Stressoren 

hat die Zelle daher mehrere Mechanismen entwickelt, um DNA- und RNA-Schäden zu repa-

rieren. Schon länger bekannt sind Mechanismen wie die homologe Rekombination oder die 

Nicht-homologe Endverknüpfung (NHEJ) bei DNA-Doppelstrangbrüchen. Auch Nukleotid- 

oder Basen-Exzisionreparatur wird von der Zelle regelmäßig verwendet,205 es existieren jedoch 

auch Reparaturmechanismen, welche direkt am Schaden angreifen und diesen enzymatisch ent-

fernen. Unter diese Kategorie fallen zum Beispiel die zuvor bereits besprochenen Eraser-En-

zyme der ALKBH-Familie.205 Während viele dieser Dioxygenasen aufgrund ihrer enzymati-

schen Demethylierung von DNA entdeckt wurden, wird nach und nach auch deren Aktivität 

gegenüber RNA-Modifikationen – seien diese enzymatisch gewollt oder durch einen Schaden 

entstanden – berichtet.206  

 Korrelationen zu humanen Krankheiten 

Das Modifikationsprofil von RNA-Molekülen bestimmt die molekularen Mechanismen maß-

geblich. Daher ist es nicht verwunderlich, dass bei Defekten der Writer- oder Eraser-Enzyme 

bestimmte Zellvorgänge fehlerhaft ablaufen. Dies führt oftmals zu definierten Phänotypen, wel-

che sich im Menschen nicht selten in diversen Krankheiten äußert, darunter Krebs, neurologi-

sche und mitochondriale Störungen. Viele Modifikationen wurden zwar schon mit bestimmten 

Krankheiten in Verbindung gebracht, deren vollständige Pathologie konnte meist jedoch noch 

Abbildung 1.12: Häufig in RNA auf-

tretende Schäden durch alkylierende 

Agenzien. Der Schaden ist jeweils als 
rote Methylgruppe dargestellt. 
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nicht geklärt werden. Zum besseren Verständnis der Krankheitsauslöser und den damit verbun-

denen Therapiemöglichkeiten sind weiterführende Studien daher essenziell. Diese werden nicht 

nur zum Verständnis der biologischen Regulation beitragen, sondern auch das Verständnis von 

menschlicher Gesundheit und Krankheit im Kontext von RNA-Modifikationen fördern.  

Die Diversität der möglichen Krankheiten ist durch die hohe Anzahl an Modifikationen äußerst 

hoch. In Tabelle 1.1 wird eine Zusammenfassung der Korrelation zwischen in tRNA häufig 

vertretenen Modifikationen und den entsprechend diagnostizierten Krankheiten gegeben. Dabei 

ist jeweils das involvierte Enzym angegeben. Oftmals handelt es sich dabei um Writer-Enzyme, 

teilweise – beispielsweise im Falle von FTO – aber auch um die entsprechenden Eraser-En-

zyme. Die Informationen wurden Jonkhout et al.207 entnommen. Dort, aber auch in Barbiere et 

al.208 und darüber hinaus in vielen weiteren Review-Artikeln sind weitaus mehr Modifikationen 

und deren Korrelationen zu humanen Krankheiten tabellarisiert. 

Tabelle 1.1: Korrelationen von tRNA-Modifikationen und Krankheiten. 

  

Modifikation assoziierte Krankheit Enzym Quellen 

mcm5s2U 
Blasenkrebs 
Brustkrebs 

ALKBH8 
ELP3 

209, 210 
211 

m5U Brustkrebs TRMT2A 212 

Ψ Dyskeratosis congenita 
Laktatazidose 

DKC1 
PUS1 

213–215 

m3C 
Brustkrebs 
Lungenkrebs 

METTL6 
METTL6 

216 
217 

m5C 
autosomal-rezessive geistige Behinderung 
Dubowitz-Syndrom 
Noonan-Syndrom 

NSUN2 
NSUN2 
NSUN2 

218, 219 
220 
221 

m1G Diabetes II TRMT10A 222, 223 

m7G geistige Behinderung WDR4 224 

m22G geistige Behinderung TRMT1 225 

m2G Prostatakrebs TRMT11 226, 227 

m1A Mitochondriopathie TRMT10C 228 

m6A 
Brustkrebs 
Leukämie 
Prostatakrebs 

FTO 
FTO 
FTO 

229 
230 
231 
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1.4 Detektionsverfahren für RNA-Modifikationen 

 Arten von Detektionsmethoden 

Um ein besseres Verständnis der molekularen Ursachen und Auswirkungen von RNA-Modifi-

kationen zu erhalten, und somit deren Zusammenhang zu menschlichen Krankheiten zu verste-

hen, benötigen Wissenschaftler geeignete Detektionsmethoden. Mit am häufigsten verwendet 

wird dabei Massenspektrometrie und Sequenzierung. Diese Technologien erfreuen sich großer 

Beliebtheit in der Nukleinsäure-Analytik, wobei beide Vor- und Nachteile aufweisen, welche 

die jeweils andere Methode größtenteils in der Lage ist zu kompensieren. Ein Einsatz der zwei 

Techniken zusammen ist für die meisten Projekte daher vorteilhaft.232 Sequenzierung bietet den 

Vorteil, dass die Sequenzinformation erhalten bleibt und ermöglicht somit eine eindeutige Po-

sitions-Zuordnung der entsprechenden Modifikation im Transkriptom. Ein Nachteil besteht al-

lerdings darin, dass strukturell ähnliche Modifikationen oftmals nicht voneinander unterschie-

den werden können. Hier greift die Massenspektrometrie ein: Über hochauflösende als auch 

über Tandem-Massenspektrometrie kann die Identität einer Modifikation zumeist ohne Zweifel 

bestimmt werden. Die Position im Transkriptom könnte zwar theoretisch über Oligonukleotid-

MS festgestellt werden, ist aber noch nicht so zuverlässig und praktikabel wie die Bestimmung 

über Sequenzierung. Neue Methoden für die Analyse von Oligonukleotiden über Massenspek-

trometrie sind zwar auf dem Vormarsch,233, 234 meist ist für die genaue Identifikation der ent-

sprechenden Modifikationen allerdings ein Verdau zu Nukleosiden erforderlich, wodurch jeg-

liche Sequenzinformation verloren geht. Darüber hinaus existieren noch viele weitere Techni-

ken zur Analyse von Ribonukleinsäuren, welche jedoch oftmals nur einen beschränkten Zugang 

zur epitranskriptomischen Untersuchung ermöglichen. Zu nennen wäre hier beispielsweise die 

Polyacrylamid-Gelelektrophorese (PAGE) oder das darauf oftmals folgende Northern-Blotting. 

Auch NMR-Analytik wird vermehrt zur Untersuchung von RNA-Modifikationen, speziell in 

der Strukturaufklärung eingesetzt.235  

Bei vielen der zuvor erwähnten Analyse-Methoden kann eine vorherige Derivatisierung der zu 

untersuchenden Modifikationen hilfreich sein. Dabei steht eine Vielzahl von chemischen Rea-

genzien zur Verfügung, um einzelne Positionen in einem Oligonukleotid modifikations-spezi-

fisch zu markieren. Moderne Verfahren zur Sequenzierung und in der Massenspektrometrie 

nutzen diese Markierungsstrategien, um RNA-Modifikationen in Nukleinsäuren effizient nach-

zuweisen und zu lokalisieren. Die Umsetzung von RNA mit N-cyclohexyl-N‘-β-(4-methylmor-

polinium)ethylcarbodiimide-p-tosylat (CMCT) führt beispielsweise zu einer kovalenten Bin-

dung, welche im Falle von Ψ irreversibel ist.236 Bei folgender Sequenzierung entsteht an dieser 
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Stelle ein Strangbruch, wodurch die Position von Ψ-Modifikationen festgestellt werden kann. 

Aber auch die massenspektrometrische Analyse dieses Derivates ist möglich und wird zur Un-

terscheidung von U und Ψ bei Oligonukleotid-MS eingesetzt.237 Für die Lokalisierung von 

m5C-Positionen wird dagegen oftmals Bisulfit-Sequenzierung angewandt. Bei der Umsetzung 

mit Bisulfit werden zwar alle Cytidine in Uridin umgewandelt, aufgrund abweichender Elekt-

rophilie ist m5C von dieser Reaktion jedoch nicht betroffen. Erneut kann dies anschließend über 

Sequenzierung festgestellt werden. Eine weitere Methode zur Feststellung der Position von 

RNA-Modifikationen ist die Anreicherung der entsprechenden Oligonukleotide. Über spezifi-

sche Antikörper werden die entsprechenden Modifikationen beispielsweise gebunden und kön-

nen somit angereichert werden.238 Darauffolgende Massenspektrometrie oder Sequenzierung 

kann Aufschluss über die Position des modifizierten Oligonukleotids im Transkriptom geben. 

Der Nachweis von Queuosin könnte dagegen über die stärkere Retardation auf Boronat-Poly-

acrylamid-Gelen gegenüber unmodifizierter RNA erfolgen.239 Eine Zusammenfassung aktuel-

ler chemischer Detektionsmethoden für Nukleinsäuren wurde im Zuge meiner Masterarbeit in 

Zusammenarbeit mit Prof. Dr. Stefanie Kellner erstellt:240  

„Detection of nucleic acid modifications by chemical reagents“, M. Heiss und 
S. Kellner; RNA Biology, 2017, 14(9): 1166-1174. 

Autorenbeitrag: Der Review wurde von Stefanie Kellner und mir ausgearbeitet. 

 

 Massenspektrometrie zur Untersuchung von RNA-Modifikationen 

Für die Analytik mittels Massenspektrometrie gibt es mehrere Möglichkeiten. An erster Stelle 

steht die Wahl einer geeigneten Ionisierungsmethode. Mit der Entwicklung von MALDI (engl.: 

matrix assisted laser desorption ionization)241 und ESI (Elektrospray-Ionisation)242 wurden die 

Möglichkeiten der Nukleinsäure-Analytik durch geeignete Ionenquellen stark ausgeweitet. 

MALDI bietet dabei den Vorteil, dass Oligonukleotide leicht ionisiert werden können.243, 244 

Die entstehenden Ionen tragen jedoch meist nur eine Ladung, wodurch diese vergleichsweise 

instabil sind.245, 246 Eine ESI-Quelle bietet dagegen den Vorteil, dass sie – im Gegensatz zu 

MALDI – problemlos mit vorgeschalteter Hochleistungsflüssigkeitschromatographie (HPLC) 

gekoppelt werden kann.247, 248 Dies ermöglicht die Trennung verschiedener Substanzen vor der 

Analytik und vereinfacht somit die Auswertung der entstehenden Spektren. Zudem ist die Io-

nisierung über ESI besonders schonend und kann durch die Elektronik einfach an die Analyten 

angepasst werden. 
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Aber auch bei den verschiedenen Detektionsverfahren gibt es weitreichende Unterschiede. Für 

hochauflösende Massenspektrometer wird meist ein TOF-Detektor (engl.: time of flight) oder 

eine Orbitrap verwendet. Die höchste Sensitivität kann dagegen durch ein Triple-Quadrupol-

Massenspektrometer (QQQ) erreicht werden. Nach der Ionisierung in der Quelle werden die 

Ionen hierfür über einen ersten Quadrupol anhand ihres Masse-zu-Ladung-Verhältnisses (m/z) 

gefiltert. Nach Selektion der sogenannten Vorläufer-Ionen werden diese in die Kollisionszelle 

weitergeleitet, in der über Kollision mit einem inerten Gas (oftmals Stickstoff) Produkt-Ionen 

freigesetzt werden (CID, engl.: collision induced dissociation). Bis auf wenige Ausnahmen 

(bspw. Ψ) wird in der Nukleosid-Analytik über diesen Massenübergang somit die geladene 

Nukleobase erhalten. Diese wird durch Einstellung des entsprechenden m/z-Verhältnisses über 

einen zweiten Quadrupol erneut gefiltert und somit zum Detektor weitergeleitet. Dort löst das 

ankommende Ion über einen Signalverstärker eine Kettenreaktion aus und wird dann in Form 

einzelner freigesetzter Elektronen nachgewiesen. Dieser Messmodus nennt sich (D)MRM, 

(engl.: (dynamic) multiple reaction monitoring). In Sekundenbruchteilen kann die Elektronik 

der einzelnen Bauteile so verändert werden, dass in einer einzigen Sekunde über 50 verschie-

dene Massenübergänge detektiert werden können. Durch die gezielte Auswahl einzelner Ionen 

werden Hintergrundsignale so weit wie möglich eliminiert und somit eine hohe Sensitivität 

erreicht. Der generelle Aufbau eines Triple-Quadrupol-Massenspektrometers ist in Abbildung 

1.13 A gezeigt.  

Die zuvor beschriebene Methode ist insbesondere für die quantitative Bestimmung von kleine-

ren Molekülen (hier: Nukleosiden) geeignet. In Kombination mit einer vorgeschalteten HPLC 

und einer ESI-Quelle ist somit bei hoher Sensitivität die simultane Quantifizierung mehrerer 

Nukleoside gleichzeitig möglich.249, 250 Ein QQQ-Massenspektrometer stellt in der Regel je-

doch mehrere verschiedene Modi zur Verfügung. So können beispielsweise alle Ionen detek-

tiert werden, welche ein Neutralteilchen zuvor bestimmter Masse verlieren. Dies ist oftmals bei 

Nukleosiden der Fall, da in der Kollisionszelle die Ribose abgespaltet wird. Über diese Methode 

gelang in der Vergangenheit bereits die Entdeckung einiger neuer Modifikationen.251, 252 Ein 

weiterer Modus wäre die Erstellung eines sogenannten MS2-Scans, bei dem lediglich der 

zweite Quadrupol in Sekundenbruchteilen zwischen den Filtereigenschaften wechselt. So wird 

die Aufzeichnung eines Spektrums in festgelegtem m/z-Bereich ermöglicht. Darüber hinaus 

existieren weitere Möglichkeiten, auf welche hier jedoch nicht näher eingegangen werden soll. 
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Generell zu beachten ist, dass Massenspektrometrie an sich keine quantitative Methodik ist. 

Dennoch ist eine Quantifizierung über interne Standards und die Erstellung eine Kalibrierge-

rade möglich.253 Verdünnungen eines Nukleosids werden mit gleichbleibender Menge eines 

internen Standards gemischt und anschließend gemessen. Daraus kann eine Kalibriergerade er-

stellt werden.254 Den Proben wird die gleiche Menge an internem Standard zugegeben, wodurch 

die Menge an Nukleosid in der jeweiligen Probe über die Kalibriergerade bestimmt werden 

kann. (Abbildung 1.13 B). Der interne Standard soll dabei sicherstellen, dass Effekte wie Io-

nensupression oder abweichende Ionisierungseigenschaften keinen Einfluss auf die Ergebnisse 

haben und ist daher im besten Fall ein Isotopolog des zu analysierenden Nukleosids.  

 

Abbildung 1.13: Allgemeine Funktionsweise eines LC-MS/QQQ-Systems. (A) Aufbau 
eines LC-MS/QQQ Systems und Fragmentierung von Nukleosiden. (B) Quantifizierung von 
Nukleosiden über Massenspektrometrie mithilfe von internen Standards (ISTD). NIF = 
Nukleosid-Isotopen Faktor, rRFN = relativer Signal-Faktor für Nukleoside. 
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 Isotopenmarkierung als Hilfsmittel in der Wissenschaft 

Besonders hilfreich in der Entdeckung von neuen RNA-Modifikationen und deren molekularen 

Mechanismen über Massenspektrometrie ist dabei die Markierung der entsprechenden RNA-

Moleküle mit stabilen Isotopen. Die Anwendung von Isotopenmarkierung zur Aufklärung mo-

lekularer Vorgänge ist keine neue Erfindung. Bereits Melvin Calvin verwendete Isotopenmar-

kierung um die Mechanismen des nach ihm benannten Calvin-Zyklus nachzuvollziehen,255 und 

auch das Meselson-Stahl-Experiment, welches die semikonservative Replikation der DNA be-

legte, wurde durch den Einsatz von Isotopen ermöglicht.256 Die Markierung von Proteinen in 

Zellkultur mithilfe von isotopenmarkiertem Medium (SILAC)257, 258 zählt heute zu Standard-

verfahren in der Proteinanalytik und wurde durch die Bereitstellung geeigneter Medien bereits 

kommerzialisiert. Ebenso kommt isotopenmarkierte RNA bei der Untersuchung von RNA-

Strukturen und deren Dynamik über Kernspinresonanzspektroskopie (NMR) zum Einsatz.259 

Aber auch in der Epigenetik und der Epitranskriptomik findet das Konzept der Isotopenmar-

kierung immer mehr Anwendungen. Durch entsprechende Experimente konnte so beispiels-

weise die Dynamik und Funktion der oxidierten Modifikationen von m5C in DNA von Maus-

Stammzellen verfolgt werden.260, 261  

Isotopenmarkierung von RNA in vivo eröffnet ein weitreichendes Feld an analytischen Metho-

den für RNA-Modifikationen. Gerade bei der Entdeckung neuer Modifikationen wurden über 

entsprechende Markierungs-Experimente in den letzten Jahren große Erfolge erzielt. So wurde 

im Mausmodell über die Zugabe von D3-Methionin – welches anschließend als Methylgruppen-

Donor für RNA-Modifikationen dient – die Modifikation 5-Hydroxymethyl-2’-O-methylcyti-

din (hm5Cm) entdeckt.262 Über hochauflösende Massenspektrometrie und die Fragmentierung 

der unbekannten Modifikation konnten Rückschlüsse auf die Summenformel gezogen werden. 

Zudem konnte die Dynamik der Modifikationen 5-Hydroxymethylcytidin (hm5C) und 5-

Formylcytidin (f5C) untersucht werden.188 Chemisch synthetisierte, isotopenmarkierte Varian-

ten der entsprechenden Modifikationen dienten als interne Standards (ISTD) zur Bestätigung 

der angenommenen Struktur. Für die Untersuchung von Oligonukleotiden wurde die soge-

nannte CARD263bzw. SIL-CARD264 (engl.: Stable Isotope Labeling Comparative Analysis of 

RNA Digests) Technik entwickelt, welche ebenso auf Isotopenmarkierung von RNA-Molekü-

len beruht und die gezielte Analyse von Veränderungen im Modifikationsprofil von Oligonuk-

leotiden ermöglicht. 

In Bakterien reichen die Möglichkeiten besonders weit: Durch die Zugabe einfacher, isotopen-

markierter Salze oder anderer kleiner Metaboliten (bspw. Glukose) zum Kulturmedium ist eine 
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vollständige Isotopenmarkierung der RNA möglich. Somit ist die Markierung durch 13C-, 15N- 

oder 34S-Atome möglich. Durch Masseunterschiede einzelner Signale aus den jeweiligen Kul-

turen konnte auf die Summenformel einer bis dahin unbekannten Modifikation geschlossen 

werden, wodurch die Entdeckung von 2-Methylthiomethylenethio-N6-isopentenyl-adenosin 

(msms2i6A) gelang.265 Über eine vergleichbare Methode und die Anwendung eines Neutralteil-

chen-Verlust-Scans (NLS, engl.: Neutral Loss Scan) über Tandem-Massenspektrometrie konn-

ten Summenformeln für 10 weiteren Signale ermittelt werden, welche keiner, bis dahin bekann-

ten Modifikation zugewiesen werden konnten.252 Eine Bestimmung der Summenformel wäre 

ohne die Anwendung von Isotopenmarkierung nur über hochauflösende Massenspektrometrie 

möglich, dort ergibt sich aber das Problem weitaus geringerer Sensitivität gegenüber Tandem-

Massenspektrometrie. 

Besonders praktisch ist die biosynthetische Herstellung eines isotopenmarkierten internen Stan-

dards, welcher als SILIS (engl.: Stable Isotope Labeled Internal Standard) bezeichnet wird. Die 

Herstellung wäre zwar auch auf synthetischem Wege möglich,266 ist aufgrund der hohen Diver-

sität an RNA-Modifikationen aber kaum für alle durchführbar. Durch Isotopenmarkierung in 

vivo wird die Herstellung eines SILIS, und somit die absolute Quantifizierung aller im Orga-

nismus anwesenden Modifikationen über Massenspektrometrie ermöglicht.267 Die Retentions-

zeiten der aus dem SILIS stammenden Isotopologe stimmen aufgrund der gleichbleibenden 

physikochemischen Eigenschaften mit den Retentionszeiten der nicht isotopenmarkierten Nuk-

leoside aus der Probe überein. Somit können Einflüsse wie Ionensuppression oder strukturab-

hängige Ionisierungseigenschaften ausgeglichen werden. Ohne die Verwendung des entspre-

chenden SILIS ist nur eine relative Quantifizierung und damit lediglich ein Vergleich von ein-

zelnen Proben untereinander möglich.268 Bei gleichzeitiger Isotopenmarkierung der eigentli-

chen Proben ist ein Masseunterschied zwischen den SILIS-Isotopologen und den Proben-Iso-

topologen von mindestens 2 Dalton anzustreben, um fehlerhafte Quantifizierungen aufgrund 

des natürlich auftretenden 13C-Atoms auszuschließen. 

Da Isotopenmarkierung von RNA-Molekülen vielerlei Vorteile aufweist, spezialisierte sich un-

ser Labor um Prof. Dr. Stefanie Kellner schon früh auf die Etablierung und Anwendung von 

verschiedenen Markierungs-Techniken in diversen Modellorganismen. So konnten wir schon 

früh das Akronym „NAIL-MS“ einführen, welches für Isotopenmarkierung von Nukleinsäuren 

gekoppelt mit Massenspektrometrie steht (engl.: Nucleic Acid Isotope Labeling coupled Mass 

Spectrometry). Über NAIL-MS eröffnen sich dabei mehrere Möglichkeiten einen tieferen Ein-

blick in die Welt der RNA-Modifikationen zu gewinnen (Abbildung 1.14). Die Entdeckung 
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neuer Modifikationen, wie sie zuvor bereits zum Teil Anwendung fand, ist nur eine davon. 

Weitere Möglichkeiten sind das Verfolgen von Modifikationsdynamiken, oder verglei-

chende/komparative Studien, ähnlich zu den in der Proteomik im Kontext von SILAC durch-

geführten Experimenten. Darüber hinaus wird die biosynthetische Herstellung von internen 

Standards in Form von SILIS in mehreren Modellorganismen ermöglicht. Die Vorteile der An-

wendung von NAIL-MS269, 270 konnten ebenso wie erste Erfolge bereits in mehreren Publikati-

onen veröffentlicht werden, welche zum Teil auch Inhalt der vorliegenden Dissertation sind. 

So gelang die Entdeckung von 2-Methylthiocytidin (ms2C),251 sowie die Aufklärung der Modi-

fikationsdynamik nach MMS-Schäden in Bakterien.271, 272 In meiner Masterarbeit war es mir 

zudem bereits möglich, NAIL-MS erfolgreich auf die Untersuchung von tRNA-Modifikations-

dynamiken in S. cerevisiae anzuwenden:273 

„Observing the fate of tRNA and its modifications by nucleic acid isotope 
labeling mass spectrometry: NAIL-MS“, M. Heiss, VF. Reichle, S. Kellner; 
RNA Biology, 2017, 14(9): 1260‒1268. 

Autorenbeitrag: Alle in vivo Experimente, die RNA Isolation und Aufreinigung von RNA, die 

Quantifizierung über LC-MS/MS, sowie HRMS Messungen wurden von mir geplant und 

durchgeführt. Valentin Reichle half bei der Durchführung einzelner „Pulse-Chase“-Experi-

mente. Stefanie Kellner half mir bei der Planung der Experimente. Die Ausarbeitung des Ma-

nuskripts erfolgte durch enge Zusammenarbeit von Stefanie Kellner, Valentin Reichle und mir. 

Abbildung 1.14: Anwendungsgebiete von NAIL-MS. 
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2. Ziel der Arbeit 

Massenspektrometrische Analysen tragen maßgeblich zur Untersuchung der molekularen Ur-

sachen und Auswirkungen von RNA-Modifikationen bei. Eine Einschränkung dabei ist aller-

dings, dass größtenteils statische Level analysiert werden und der Aspekt der Modifikationsdy-

namik somit meist vernachlässigt wird. Da vermehrt Korrelationen zwischen RNA-Modifika-

tionen und vielen Krebsarten und neurologischen Krankheiten berichtet wurden, trägt das ge-

naue Verständnis ebendieser Dynamik grundlegend zum Fortschritt der Diagnostik und Be-

handlung dieser Erkrankungen bei. Durch die Untersuchung von RNA-Modifikationsdynami-

ken in humanen Zellen könnte mehr Einsicht in molekulare Mechanismen gewonnen werden 

und somit der Fortschritt in Forschung & Medizin vorangetrieben werden. Eine Technik, wel-

che imstande ist, einige der Schwächen von Massenspektrometrie zu kompensieren, ist NAIL-

MS (Nucleic Acid Isotope Labeling coupled Mass Spectrometry). Das primäre Ziel der vorlie-

genden Arbeit war daher die Etablierung und Anwendung von NAIL-MS in Zellkulturen und 

somit über Markierung von RNA-Molekülen mit stabilen Isotopen einen vertieften Einblick in 

die Funktionen von RNA-Modifikationen und speziell deren Dynamik zu gewinnen.  

Für geeignete Isotopenmarkierung in Zellkultur ist die Wahl der Isotopologe, welche in Form 

von RNA-Nukleosiden inkorporiert werden sollen, essenziell. Aufgrund der Komplexität von 

Zellkulturmedien wurde eine weitreichende Unterdrückung der de novo Nukleotid-Biosynthese 

angestrebt. Über diverse Validierungs-Experimente sollte zusätzlich die Integrität von NAIL-

MS sichergestellt werden. NAIL-MS sollte schließlich auf die Untersuchung der Prozessierung 

neuer und bereits existierender RNA-Moleküle angewandt werden, indem durch einen entspre-

chenden Mediumwechsel der Einbau von Modifikationen in neu entstehende RNA-Moleküle 

zeitaufgelöst verfolgt werden kann. Gleichzeitig ist die Aufklärung molekularer Prozesse in 

bereits existierenden RNA-Molekülen möglich. So kann die molekulare Ursache von Änderun-

gen im Modifikationsprofil durch NAIL-MS festgestellt werden. Sowohl die Verdünnung durch 

neu entstehende, unmodifizierte RNA-Moleküle, als auch die zielgerichtete Degradation modi-

fizierter RNA-Moleküle würde zu einem Absinken der Modifikationsdichte führen. Eine aktive 

Demodifizierung durch eine der momentan heiß debattierten Demethylasen stellt eine weitere 

Möglichkeit dar das Modifikationslevel zu senken. Durch die Anwendung von NAIL-MS soll 

aufgeklärt werden, wie diese molekularen Mechanismen zu einer Änderung im Modifikations-

profil beitragen. 
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Konkret sollten diese Mechanismen in 28S rRNA, 18S rRNA und einigen ausgewähltem tRNA-

Isoakzeptoren untersucht werden. Im Zuge der Etablierung von NAIL-MS wurden Zellen di-

versen Stressfaktoren ausgesetzt, und anschließend die Unterschiede im Modifikationsprofil 

bestimmt. Stressexperimente wurden mit Rhein und MMS, und außerhalb der NAIL-MS Ana-

lytik mit NaAsO2 durchgeführt. Zudem sollte der Effekt von Queuin-Supplementierung auf die 

entsprechenden tRNA-Isoakzeptoren und deren Modifikationsprofil untersucht werden. Da 

Queuin von Eukaryoten nicht synthetisiert werden kann, ist der Einbau der Queuosin-Modifi-

kation von der externen Supplementierung abhängig. Dies könnte zu Veränderungen des Mo-

difikationsprofils der Queuin-abhängigen tRNA-Isoakzeptoren führen. Abbildung 2.1 gibt ei-

nen Überblick zu den einzelnen Projekten und zeigt auf, wie durch die Anwendung von NAIL-

MS eine Differenzierung verschiedener molekularer Mechanismen vorgenommen werden soll. 

Letztendlich soll NAIL-MS in Zellkulturen dazu beitragen, die Mechanismen hinter RNA-Mo-

difikationen und deren Dynamik aufzuklären, und so eine bessere Einsicht in die molekularen 

Ursachen und Symptome von Krankheiten wie Krebs und neurologischen Störungen zu erhal-

ten. 

 

Abbildung 2.1: Zielsetzungen der Arbeit. Die Etablierung von NAIL-MS in Zellkultur steht 
im Mittelpunkt der Arbeit. Mithilfe von NAIL-MS soll die Auswirkung vom Nährstoffangebot 
und von Zellstress auf die Modifikationsdynamik und die allgemeinen Reifungsprozesse von 
RNA-Molekülen untersucht werden. NAIL-MS ermöglicht dabei die Diskriminierung ver-
schiedener Adaptionsmechanismen. Rot = Medium 1, hier unmarkiert (unm); blau = Medium 2, 
hier isotopenmarkiert (iso); gelbe Sterne = Modifikationen 
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3. Ergebnisse und Diskussion 

3.1 Etablierung und Anwendung von NAIL-MS in Zellkulturen 

Gemeinsamer Prolog 

In den letzten Jahren rückte die Relevanz von RNA-Modifikationsdynamik immer weiter in 

den Fokus der Wissenschaft. Dies kann größtenteils darauf zurückgeführt werden, dass zuletzt 

vermehrt Korrelationen zwischen den chemischen Modifikationen der kanonischen Nukleoside 

Cytidin, Uridin, Guanosin und Adenosin und vieler neurologischer Krankheiten berichtet wur-

den.207 Problematisch hierbei ist, dass mit herkömmlichen Methoden, wie Sequenzierung oder 

Massenspektrometrie oftmals nur statische Level analysiert werden, und nicht näher auf die 

Dynamik in vivo eingegangen wird. NAIL-MS (kurz für engl.: nucleic acid isotope labeling 

coupled mass spectrometry) adressiert dieses Problem, indem Nukleoside in Zellen durch Zu-

gabe von stabilen Isotopen markiert werden. Diese können anschließend durch Massenspektro-

metrie aufgrund abweichender Molekülmassen, von unmarkierten Nukleosiden unterschieden 

werden. Nach der bereits erfolgreichen Etablierung von NAIL-MS in S. cerevisiae während 

meiner Masterarbeit (siehe weitere Publikationen), war es mein Ziel, diese Methodik auch für 

humane Zellen zu implementieren. Während die Einführung von stabilen Isotopen in RNA von 

Bakterien und Hefen vergleichsweise unkompliziert ist, gestaltete sich dies aufgrund der höhe-

ren Komplexität des Mediums in Zellkultur als schwierig. Die Supplementierung mehrerer ein-

facher Metaboliten, wie 15N-Glutamin oder 13C6-Glukose führte nicht zu einheitlicher Markie-

rung der Nukleoside. Die gewünschte Isotopenmarkierung konnte durch die Zugabe von 

13C5,15N2-Uridin und 15N5-Adenin erreicht werden. Kombiniert mit der Zufütterung von D3-

Methionin, konnten RNA-Reifungsprozesse am Beispiel von 18S rRNA und tRNAPhe
GAA auf-

geklärt werden. Des Weiteren wurde die molekulare Reaktion der Zellen auf Methylierungs-

Stress durch Methylmethansulfonat (MMS) näher beleuchtet (Nat. Comm., 2021). Die gesamte 

Methodik von NAIL-MS, inklusive RNA-Isolation und -Aufreinigung, wurde in einer weiteren 

Publikation für verschiedene Modellorganismen zusammengefasst (Methods, 2019), und die 

detaillierten Einzelschritte zusätzlich in einem Buchkapitel beschrieben (Methods in Mol. Biol., 

2021). Ergänzende Studien zu Effekten der Isotopenmarkierung, sowie Kinetiken des Auf- und 

Abbaus und die Prozessierung von RNA-Molekülen werden im folgenden Abschnitt behandelt. 
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“Cell culture NAIL-MS allows insight into human tRNA and rRNA modification 
dynamics in vivo”, M. Heiss, F. Hagelskamp, V. Marchand, Y. Motorin, S. 
Kellner; Nat. Comm., 2021, 12 (1): 389. 

Autorenbeitrag: Alle in vivo Experimente, die RNA-Isolation und -Aufreinigung von RNA, die 

Quantifizierung über LC-MS/MS, sowie HRMS-Messungen wurden von mir geplant und 

durchgeführt. Bei der Etablierung der Isotopenmarkierung (insbesondere für HeLa Zellen) half 

Felix Hagelskamp. Sequenzierungs-Daten wurden von Virginie Marchand und Yuri Motorin 

bereitgestellt. Die Ausarbeitung des Manuskripts erfolgte durch Stefanie Kellner, Felix Hagels-

kamp und mich. 

Kopie des Artikels mit Erlaubnis des Verlages: https://www.nature.com/ncomms/ 

 

„Surpassing limits of static RNA modification analysis with dynamic NAIL-
MS“, V. F. Reichle, S. Kaiser, M. Heiss, F. Hagelskamp, K. Borland, S. 
Kellner; Methods (San Diego, Calif.), 2019, 156: 91‒101. 

Autorenbeitrag: Alle in vivo Experimente in Zellkultur und Hefe wurden von mir geplant, 

durchgeführt und etabliert. Weitere Ergebnisse wurden von den anderen AutorInnen bereitge-

stellt. Die Ausarbeitung des Manuskripts erfolgte durch intensive Zusammenarbeit aller Auto-

rInnen. 

Kopie des Artikels mit Erlaubnis des Verlages: https://www.journals.elsevier.com/methods 

 

„Quantification of modified nucleosides in the context of NAIL-MS“, M. Heiss, 
K. Borland, Y. Yoluç, S. Kellner; Methods in Mol. Biol., 2021, RNA Modifica-
tions (18) 

Autorenbeitrag: Die beschriebenen Zellkulturmethoden wurden von mir entwickelt. Alle wei-

teren beschriebenen Methoden wurden über die Jahre hinweg von allen AutorInnen, sowie wei-

teren Labormitgliedern etabliert und optimiert. Die Ausarbeitung des Manuskripts erfolgte 

durch intensive Zusammenarbeit aller AutorInnen  

Kopie des Artikels mit Erlaubnis des Verlages: https://www.springer.com/series/7651 

https://www.nature.com/ncomms/
https://www.journals.elsevier.com/methods
https://www.springer.com/series/7651
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Recently, studies about RNA modification dynamics in human RNAs are among the most

controversially discussed. As a main reason, we identified the unavailability of a technique

which allows the investigation of the temporal processing of RNA transcripts. Here, we

present nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS) for efficient,

monoisotopic stable isotope labeling in both RNA and DNA in standard cell culture. We

design pulse chase experiments and study the temporal placement of modified nucleosides in

tRNAPhe and 18S rRNA. In existing RNAs, we observe a time-dependent constant loss of

modified nucleosides which is masked by post-transcriptional methylation mechanisms and

thus undetectable without NAIL-MS. During alkylation stress, NAIL-MS reveals an adaptation

of tRNA modifications in new transcripts but not existing ones. Overall, we present a fast and

reliable stable isotope labeling strategy which allows in-depth study of RNA modification

dynamics in human cell culture.
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M
ost RNAs studied to date were found to be covalently
modified by dedicated enzymes in a site-specific man-
ner. In addition to the placement of RNA modifications

by RNA writer enzymes, their direct removal through e.g.,
demethylation by RNA erasers was reported. In human cells, the
α-ketoglutarate dependent dioxygenases ALKBH5 and/or FTO
were found to catalyze the demethylation of e.g., (2′-O-methyl-)
N6-methyladenosine (m6A(m)) in mRNA1,2 and thus influence,
e.g., the stability and translational function of mRNA1,3–8.

For human tRNAs, a similar relationship of RNA writers and
erasers was observed. E.g., ALKBH1 demethylates 1-methyladenosine
(m1A) and appears to be responsive to glucose starvation in some cell
lines9. Considering the half-life of mammalian tRNAs (~100 h10), a
fast adaptation by removal of modified residues appears beneficial to
react to changes in the cellular environment11. Unfortunately, it is
currently not possible to analyze the speed of both modification and
demethylation reactions inside human cells. Thus, it is not possible to
study the impact of external stimuli and stress on human RNA
modification kinetics and processing of mature RNA.

tRNA is the most extensive and chemically diverse modified
RNA with ~10–15% of all nucleosides being modified12. Recent
studies showed that certain modified nucleosides in specific
tRNAs are only partially modified13,14 and that tRNA modifica-
tion abundance differs among tissues15,16. This would allow for
an adaptation of translation by tRNA modification as recently
suggested17. While the speed of tRNA amino acid charging18 and
tRNA transcription and half-live are known10, the speed of
modification processes is difficult to study. For example, tRNAPhe

is heavily post-transcriptionally modified and in addition one of
the best studied RNAs19–21. By using stable isotope labeled
tRNAPhe substrate and cellular extracts, the modification
dynamics and hierarchy was recently solved in S. cerevisiae using
NMR spectroscopy22. Under the influence of chemical stress,
S. cerevisiae was reported to adapt its abundance of tRNA
modifications and thus influence its translation and the term
stress induced tRNA reprogramming was coined11,23. Similar
evidence has been observed in other organisms, including
mammals24. In this context, the question remains by which
mechanism and how fast tRNA modifications respond to external
stimuli.

In contrast to tRNA, 18S rRNA is mainly modified by
methylation of ribose and altogether only 2.05% nucleosides are
modified. While tRNA modifications are easily accessible for
potential RNA erasers, rRNA modifications are placed in the
functional regions of the ribosome25. Although modified sites in
rRNA have been reported to regulate translation initiation by
promoting the recognition of different mRNA subsets26, their
inaccessibility in mature ribosomes makes them a difficult target
for RNA erasers.

Current studies of RNA modifications are limited to either
mass spectrometric analysis16 or sequencing27,28. Both techniques
provide information on the modification status at the time point
of sample harvest and give no details on the mechanisms of RNA
modification adaptation. To overcome this limitation, we have
recently developed NAIL-MS (nucleic acid isotope labeling cou-
pled mass spectrometry) in bacteria29,30 and yeast31, which
reveals the dynamics of RNA modification processes. The tech-
nique is based on metabolic stable isotope labeling of RNA using
simple nutrients with e.g., carbon-13, nitrogen-15, or sulfur-34.
By combining differentially labeled media in a pulse chase set-up,
we recently succeeded to observe tRNA demethylation through
AlkB in E. coli in vivo. Currently, NAIL-MS studies are not
available for human cell lines as a monoisotopic labeling of all
four canonical nucleosides is highly complex.

Here, we report a fast and reliable method for monoisotopic
stable isotope labeling in both RNA and DNA (>95% within

7 days) in common human cell lines and growth media. We apply
the cell culture NAIL-MS method and reveal the dynamics of
human tRNA and 18S rRNA modifications in depths unreachable
by any other tool for RNA modification analysis. Furthermore, we
resolve the mechanism of stress induced tRNA modification
reprogramming in the presence of methylation stress. With cell
culture NAIL-MS it is finally possible to study the speed of both
modification and demethylation reactions inside human cells.
Thus, it will be possible to study the impact of external stimuli
and stress on human RNA modification kinetics and processing
of mature RNA.

Results
Absolute quantification of human tRNAPhe modifications.
tRNAPhe is heavily post-transcriptionally modified and in addi-
tion one of the best studied RNAs19–22. Thus, it is an ideal model
to study the temporal dynamics of its modifications. In a first
step, we purified tRNAPhe

GAA from HEK 293 cells using a
complementary DNA probe13. We used our established isotope
dilution LC-MS/MS analysis for absolute quantification of mod-
ified nucleosides and plotted the modification profile in Fig. 116.
For pseudouridine (Ψ), dihydrouridine (D), 2,2-dimethylguano-
sine (m2

2G), and 2′-O-methylguanosine (Gm) our experimental
data matches the expected values and we see full modification32.
The abundance of 1-methyladenosine (m1A position 14 and 58),
7-methylguanosine (m7G), 5-methyluridine (m5U or rT), and 2′-
O-methylcytidine (Cm) is lower compared to the literature,
presumably due to partial modification of the respective sites.
Partial modification has been suggested to play a role in stress
induced reprogramming of tRNA modifications17. The abun-
dance of 5-methylcytidine (m5C) is slightly higher than expected
and can be explained by the additional methylation of C48 by
NSUN233.

Although 1-methylguanosine (m1G) is not reported in
tRNAPhe

GAA, we found around 0.3 m1G per tRNA. This
observation can be explained by the fact that m1G is a precursor
during the biosynthesis of wybutosine (yW), a hypermodified
nucleoside reported at position 37 of tRNAPhe

GAA
34,35. Due to the

unavailability of a synthetic standard, yW could not be quantified
in this study. In addition, we also quantified the abundance of
other modified nucleosides (Table S1). We found around 0.3 6-
methyladenosine (m6A) per tRNA, potentially caused by
intracellular Dimroth rearrangement of m1A36. In addition, we
found 0.063 inosine (I) and 0.026 1-methylinosine (m1I) per
tRNAPhe. These are most likely artefacts from spontaneous A and
m1A deamination. All other modified nucleosides were found
with an abundance of less than 1.6% (e.g., 0.016 N6-threonylcar-
bamoyladenosine (t6A) per tRNA) which indicates a high purity
of isolated tRNAPhe. Northern Blot analysis and deep sequencing
of purified tRNAPhe

GAA sample indicated that this tRNA
represents >90% with only minor contaminations by other
tRNAs and rRNA (Figs. S1a and S2).

Overall, the detected quantities of modified nucleosides from
purified tRNAPhe

GAA are in accordance with the reported values
and thus it is a suitable model to study the temporal placement of
modified nucleosides.

Stable isotope labeling of RNA in human cell culture. For this
purpose, a method is needed which allows the discrimination of
mature RNA from new transcripts. NAIL-MS (nucleic acid iso-
tope labeling coupled mass spectrometry) relies on the metabolic
incorporation of stable isotope labeled nutrients into RNA and
allows the distinction of original RNA and new RNA within a
pulse chase experiment. With this tool, we studied the temporal
placement of modified nucleosides in S. cerevisiae total tRNA31
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and the demethylation during tRNA repair in E. coli37. Both
organisms are rather simple and can be grown in minimal media
with controlled availability of stable isotope labeled nutrients.

In contrast, human cell culture medium is highly complex and
requires the addition of fetal bovine serum (FBS). FBS is a natural
product of undefined composition and variable concentration of
metabolites. Thus, a complete and monoisotopic labeling of
nucleosides and even nucleobases for a pulse chase NAIL-MS
assay is challenging.

From our experience, the target isotopologue of a nucleoside
must be at least 3 u heavier compared to the naturally occurring
nucleoside to avoid false positive results by the detection of the
natural carbon-13 signals.

De novo synthesis of nucleosides utilizes several amino acids
such as glutamine or aspartic acid (Fig. S3A, B)38. Hence, we
supplemented the growth media with stable isotope labeled
glutamine. After 5 days (2 passages), we observed the expected
stable isotope labeling of RNA (Fig. S3C). Cytidine, guanosine
and adenosine got a mass increase of +2 whereas uridine just
increased by +1. Due to the overlap with naturally occurring
(13C)-isotopologues, this mass increase was not sufficient for our
planned experiments.

As recently described, it is possible to use glucose-free growth
medium and supplement with 13C6-glucose37. The feeding with
13C6-glucose leads to the formation of nucleosides with a variable
number of 13C-atoms per nucleoside (Fig. S3C). During method
development, we utilized the non-monoisotopic nature of 13C6-
glucose labeling to test the incorporation efficiency of various
unlabeled metabolites. Addition of aspartate and pyruvate did not
allow the envisioned monoisotopic labeling (Fig. S4). The
addition of the nucleobases adenine and uracil resulted in ribose
labeled purines but undefined labeled pyrimidines. This indicates
a direct usage of adenine from the medium which is then
enzymatically connected with 13C5-ribose followed by further
processing to guanosine and the respective triphosphates
(Fig. S3B). RNA supplemented with the nucleosides adenosine
and uridine showed undefined labeled purines and only unlabeled
pyrimidines (Fig. S5). This indicates that uridine is taken up by
the cells and immediately utilized for cytidine and RNA synthesis
(Fig. S3A). In summary, our data indicates that the addition of
adenine and uridine blocks de novo purine and pyrimidine
synthesis (Fig. S3A, B) and 13C6-glucose medium is not necessary
for our labeling strategy (Fig. S5). Concentration optimization of
both compounds revealed that final concentrations of 0.1 mM
adenine and 0.2 mM uridine in the 13C6-glucose medium are
needed to suppress signals from de novo synthesized nucleosides
(Fig. S6).

Hence, we used 15N5-adenine and 13C5,15N2-uridine (Fig. 2a)
in medium with unlabeled glucose. The high-resolution mass
spectra of the resulting RNA nucleosides showed the desired
labeling for >95% of all canonical nucleosides after 7 days
(Fig. 2b). A+7 mass increase is observed for cytidine and uridine
and a +5 and +4 mass increase for adenosine and guanosine,
respectively. By using dialyzed FBS, the signal of unlabeled
adenosine could be further reduced in comparison to normal FBS
(Fig. S7). Similarly, DNA nucleosides become stable isotope
labeled (Fig. S8).

With these metabolites, a pulse chase NAIL-MS study is
possible in human cell culture. To this end, we achieve excellent
labeling in HEK 293, HAP and HeLa cell lines using
supplemented DMEM, RPMI or IMDM medium (Fig. S9).

In mouse embryonic stem cells (mESC), the addition of 15N5-
adenine and 13C5,15N2-uridine leads to non-monoisotopic
labeling. Here, the labeling efficiency is improved from 35 to
70% by the usage of dialyzed FBS (Fig. S10).

In HEK 293 cells, the signals of new tRNA transcripts became
detectable and quantifiable after 120 min of labeling (Figs. S11/
S12).

Most modified nucleosides in RNA carry one or more
methylations. To follow the fate of these methylated nucleosides
in the context of RNA maturation and methylation damage
response, we used CD3-labeled methionine. Methionine is the
precursor amino acid of S-adenosylmethionine (SAM) which in
turn is cofactor of most RNA methyltransferases. In the presence
of CD3-methionine, most methylated nucleosides get a mass
increase of +3 and can thus be distinguished from nucleosides
modified in the presence of unlabeled methionine. High
resolution mass spectra of fully labeled m5C, m7G, and m1A
are exemplarily shown in Fig. 2c. In order to achieve complete
labeling of methyl-groups, methionine depleted medium has to be
used. We chose DMEM D0422 (from Sigma-Aldrich, Munich,
Germany) which lacks glutamine, cystine and methionine
(Fig. S13). Neither cell shape nor growth speed were influenced
by the labeling and both were comparable to standard DMEM
(e.g., D6546, from Sigma-Aldrich) (Fig. S14).

The combination of nucleoside and methyl-group labeling
allows the design of elegant pulse chase studies to follow the fate
of RNA in human cells.

Validation of human cell culture NAIL-MS. After finding a
suitable way for monoisotopic labeling of RNA in human cells, we
wanted to rule out the possibility of the labeling itself impacting
the abundance of RNA modifications. For this purpose, cells were
grown in labeled or unlabeled media for 7 days. Both media

Fig. 1 Absolute quantification of human tRNAPhe
GAA modifications. The tRNA cloverleaf on the left shows the expected sequence of human tRNAPhe

GAA

including reported modifications32. Right: Absolute quantification of purified tRNAPhe
GAA from HEK 293 cells done by LC-MS/MS. All experiments are

from n= 3 biol. replicates. Bars reflect the mean and error bars reflect standard deviation.
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contained adenine, uridine and methionine as either unlabeled or
labeled nutrients. Cells were harvested with TRI reagent and split
into two aliquots. One aliquot (2/3 Vol) was used for immediate
RNA isolation and purification, while the remaining aliquot of
the labeled and unlabeled cells were mixed and RNA was co-
isolated and co-purified (Figs. 3a and S15). The total tRNA was
enzymatically digested to nucleosides and their abundance
determined by isotope dilution mass spectrometry16. In the ali-
quot from unlabeled samples, only unlabeled nucleosides were
detectable, while the aliquot of the labeled cells showed mainly
signals (>98%) for labeled nucleosides. As expected from the
mixed sample, we detected unlabeled and labeled isotopologues of
all canonicals in similar amounts (Fig. 3b). Next, we quantified
the abundance of modified nucleosides. For normalization,
unlabeled modifications were referenced to unlabeled canonicals
and labeled modifications were referenced to labeled canonicals.
The calculated quantities of modified nucleosides present in
tRNAPhe (according to Fig. 1) are plotted for the unlabeled
against labeled tRNA in Fig. 3c. This validation revealed that the
quantities of modified nucleosides are independent of the media
and that the labeling procedure itself does not interfere with the
isotope dilution MS quantification. This finding is in accordance
with our northern blot data, where we observe no change in
tRNAPhe abundance in dependence of the labeling medium
(Fig. S1b). The deviation from the expected values (dotted diag-
onal line) is the error of this NAIL-MS experiment and the
limitation to detect differences in a biological setup (also see
Fig. S16). E.g., In total tRNA, 2′-O-methyluridine (Um) has

the largest error as its abundance deviates 1.6 fold in labeled and
unlabeled media.

The promising results from the validation experiments allowed
the design of pulse chase experiments. Such experiments start
with cells seeded in medium-I which, upon experiment initiation,
is exchanged to medium-II with different isotopically labeled
nutrients. The concept is shown in Fig. 3d. To rule out possible
differences in the results in dependence of the starting medium,
we designed a brief validation experiment. In the forward
experiment, cells are seeded in unlabeled medium and switched
to labeled medium while the reverse experiment starts in labeled
medium (after a 7 day labeling period) before switching to
unlabeled.

For analysis of modified nucleoside quantities, we harvested the
cells and extracted total tRNA after switching to medium-II (time
points 0, 6, 24, and 48 h). To assess the suitability of the method
for temporal placement of modified nucleosides into the total
tRNA, we focused on the abundance of new modified nucleosides
in the newly transcribed tRNA. For direct comparison, the ratio
of found (6, 24, 48 h–new transcripts) and expected (0 h–original
transcripts) modified nucleoside quantity was formed and plotted
over time. As expected, we observed the incorporation of
modified nucleosides into the new tRNA after medium exchange.
While the timing of the tRNA modification process was
comparable in the reverse and forward experiment, the start
values were obscured in the reverse experiment due to low, but
detectable signals of unlabeled nucleosides. For this and economic
considerations, we decided to perform forward pulse chase

Fig. 2 High resolution mass spectra of stable isotope labeled nucleosides from cell culture. a Labeling of compounds used for stable isotope labeling in

cell culture. Grey circles indicate the positions of isotopes (13C, 15N, or 2H/D). b Merged high resolution mass spectra of the 4 canonical nucleosides of

total tRNA after labeling of HEK 293 cells with shown compounds for 7 days. Background signals are marked with asterisks. c Merged high resolution mass

spectra of three exemplary modifications (m5C, m7G, and m1A) in total tRNA after stable isotope labeling of HEK 293 cells for 7 days.
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experiments in the future to avoid the excessive use of labeled
medium.

Temporal placement of modified nucleosides in RNA. From a
biological perspective, we observed that most modified nucleo-
sides reach their final abundance (100% compared to the starting
point) within 48 h (Fig. 3e). Some modified nucleosides, such as
m1A, m5C, Ψ, and m5U, are already >90% after 6 h which

indicates a fast incorporation after transcription. These modified
nucleosides are located in the structure-stabilizing positions of the
tRNA’s D-loops and TΨC-loops and thus a fast and reliable
modification is to be expected39. m7G is also involved in structure
stabilization40 and yet, this methylation is placed rather slowly in
total tRNA. Other modified nucleosides such as Cm, Gm, and the
base-methylated G derivatives (m1G, m2G, and m22G) are
incorporated more slowly and the final modification density is
not reached within 48 h.

Fig. 3 Validation of cell culture NAIL-MS. a Cells were grown in unlabeled or fully labeled media for 7 days. Upon harvesting one aliquot was mixed prior

to processing (mix). Total tRNA was purified and all samples were analyzed by LC-MS/MS. b Summed amount of canonical nucleosides (C+U+G+A)

detected by LC-MS/MS for unlabeled and labeled isotopologues. The bars show single replicates of three unlabeled, three labeled and three mixed

aliquots. c Abundance of labeled modifications plotted against the abundance of unlabeled modifications in the mix samples. The dotted line indicates the

location of the expected values as a visual guide. d Experimental setup of time course study to investigate temporal placement of RNA modifications. The

experiment was done forward (start with unlabeled, change to labeled medium) and reverse (vice versa). e Results of time course study. Plotted on the y-

axis is the abundance of modification in new transcripts normalized to the abundance before experiment initiation (T= 0). Note: In the reverse experiment,

minor signals of unlabeled nucleosides are present at T= 0 and thus the starting value is sometimes larger than 0%. All experiments were done with

purified total tRNA and are from n= 3 biol. replicates. Symbols reflect the mean and error bars reflect standard deviation.
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While the modified nucleosides of total tRNA are placed by
various enzymes at various positions, we were interested to
observe the modification process of defined enzymes in a defined
substrate. For this purpose, we performed a pulse chase
experiment and purified tRNAPhe

GAA after 0, 2, 4, 6, 24, and
48 h. The abundance of modified nucleosides in new tRNA
transcripts is shown in Fig. 4. We observe an immediate high
abundance of Ψ, which argues towards an immediate isomeriza-
tion of e.g., U55 to Ψ55 as observed in yeast22. In fact, we observe
1.5-fold more Ψ in the early lifetime of tRNAPhe

GAA as is
expected from mature tRNAPhe

GAA (Fig. 1). At these early time
points, the abundance of new tRNAPhe

GAA transcripts is low and
thus the MS signal intensity is close to the lower limit of
quantification (LLOQ). Uridine and its modifications have a low
ionization efficiency and thus a higher LLOQ compared to other
modified nucleosides. Thus, biological interpretation of Ψ and
m5U (Fig. S17) quantities must be conducted carefully. D is not
included in this analysis, due to its artificial addition to the
samples through the deaminase inhibitor tetrahydrouridine
(which was omitted for analysis in Fig. 1 and thus allowed
quantification of D). While m7G is the next modified nucleoside
placed in yeast tRNAPhe, our data hints towards a fast
incorporation of m5C followed by m1A and finally m7G. Here,
the dynamic placement of modifications in the TΨC-loop seems
to be slightly different between yeast and human. The slow
incorporation of m2G in the D-stem is in accordance with the
reports from yeast. In the anticodon-loop (ac-loop), we observe a
rather slow formation of Gm and Cm. These modified nucleo-
sides are not involved in structure stabilization but codon-

anticodon binding41,42 and protein translation. Our data implies
that structure stabilization by modified nucleosides is a key
necessity and must thus happen early on, while ac-loop
modifications are not immediately needed and are potentially
placed on-demand. One exception is the formation of wybutosine
(yW). Its precursor modification m1G is immediately incorpo-
rated into tRNAPhe before its abundance drops at later time
points, presumably due to its further processing into yW.

Dynamics of tRNA and 18S rRNA modifications. With the
design of our pulse chase NAIL-MS assay, we can observe RNA
maturation processes by quantifying the abundance of modified
nucleosides in new transcripts. In addition, we can follow the fate
of original RNA (unlabeled nucleosides in forward experiment)
and observe methylation or demethylation events.

In Fig. 5a, we plotted the abundance of exemplary modified
nucleosides from original total tRNA, which were present before
medium exchange. Other modified nucleosides are shown in
Fig. S18. Similar to our initial observations in S. cerevisiae31, we
observed a constant loss of modified nucleosides from original
tRNAs. In the common, unlabeled analysis of modified nucleo-
sides, the decrease in modification density from original tRNA is
not visible as it is masked by the addition of new methyl marks to
original tRNAs at early time points (post-methylation) and by
quickly modified new transcripts at later time points (ratio
original/new transcripts in Figs. S18/19). Here, the post-
methylation reaction is captured by the CD3-methionine added
in the chase phase (medium-II) and is termed “methyl” in Fig. 5a.

Fig. 4 Temporal placement of modified nucleosides in tRNAPhe
GAA. Cells were grown in unlabeled DMEM D0422 (supplemented with unlabeled uridine

and adenine) for 7 days. At T= 0 the medium was exchanged to DMEM D0422 supplemented with labeled uridine and adenine. Cells were harvested after

set time points. tRNAPhe was purified and analyzed by LC-MS/MS. Modifications are plotted next to their location in the D-, TΨC- or anticodon loop.

Plotted on the y-axis is the abundance of modification in new transcripts normalized to the respective nucleoside originating from unlabeled medium before

experiment initiation (T= 0). The experiment was done in n= 3 biol. replicates for time points 2, 4, and 48 h and in n= 6 biol. replicates for time points 0,

6, and 24 h. Symbols reflect the mean and error bars reflect standard deviation.
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Intriguingly, the extent of post-methylation depends on the
modified nucleoside. For m7G and Cm, it is more pronounced
compared to m1A. Interestingly, many modified nucleosides
which are placed almost immediately after transcription, show
low amounts of post-methylation while those with a delayed
incorporation showed substantial post-methylation.

Similar to tRNA, ribosomal RNA nucleosides are modified,
mainly at locations close to the functional region of the
ribosome25. From yeast studies, it is known that most ribose
rRNA modifications are inserted immediately or even co-
transcriptionally43. For Ψ and other base modifications, the time
point of placement during rRNA maturation is yet unknown. In a
forward pulse-chase experiment, we have isolated 18S rRNA and
quantified the abundance of the original and new modified
nucleosides. As expected from yeast, ribose methylations appear
early on in new 18S rRNA transcripts. Intriguingly, m6A and Ψ
are inserted as fast or even faster. This indicates an immediate
placement after transcription which is in agreement with their
inaccessibility at later stages of ribosome biogenesis (Fig. S19).

Impact of methylation stress on tRNA modification processes.
We have recently applied NAIL-MS to profile bacterial tRNA
damage by methylating agents29 and described the repair
mechanisms in vivo37. With the goal to study the stress response
in human cells, we determined the effect of methyl methane-
sulfonate (MMS) on growth of HEK 293 cells (Fig. S20). In these
experiments, we observed a strong influence of trypsinization on
cell survival, which we avoided in later experiments.

Until now, it was not possible to study the extent of m1A and
m7G damage formation in human RNA due to the presence of
enzymatically placed m1A and m7G. With our cell culture
labeling scheme, we succeeded to implement a methylome
discrimination assay and determine the absolute abundance of

these major RNA damages. For this purpose, cells were grown in
CD3-methionine supplemented medium for 7 days before
addition of 1 mM MMS. While enzymatically placed methyla-
tions are CD3-labeled, MMS damaged sites are CH3-labeled and
thus easily distinguishable from the enzymatic sites by mass
spectrometry. To enable the tracing of the damaged tRNAs
without interference of new transcripts, we included a switch to
fully labeled media (13C/15N-nucleoside body + CD3) for labeling
of new transcripts. The timeline and concept is given in Fig. 6a.
Samples of MMS and MOCK treated cells were taken before and
after 1 h of MMS exposure and up to 6 h after removal of MMS,
where cells were left to recover from MMS treatment.

From these samples, we purified tRNAPhe
GAA and quantified

the abundance of canonical and modified nucleosides. By
comparison of canonical nucleosides, we could observe a higher
ratio of new transcripts over original transcripts in the unstressed
samples compared to the stressed samples (Fig. S21). This is to be
expected as stressed cells stop growing and thus less transcription
and translation are taking place. In addition, the prolonged
abundance of original tRNA suggests that methylation stress does
not lead to extensive degradation of tRNAs.

The quantification of methylated nucleosides derived from
direct MMS methylation indeed showed formation of the known
damage products m7G and potentially m1A. In comparison to the
natural abundance of these modified nucleosides (~0.5 m7G and
1 m1A per tRNAPhe

GAA), the damage accounts for less than 1% of
these methylated nucleosides (Fig. 6b). In other words, only 1 out
of around 200 tRNA molecules gets an additional m7G by MMS
damage. For m1A the damage is found in 1 out of 1000 tRNAs
(0.1%). No other reported MMS damage products were detected
in human tRNAPhe.

While RNA methylation damage repair was observed in E. coli,
using a similar NAIL-MS approach, no demethylation was

Fig. 5 Dynamics of modified nucleosides in total tRNA and 18S rRNA. a Results for total tRNA. b Results for 18S rRNA. Original nucleosides (originals,

black line) existed before experiment initiation. Post-methylated nucleosides (methyl, dark grey line) are modifications arising from the methylation of

original RNA after experiment initiation. New nucleosides (new, light grey line) show the incorporation of modification into new transcripts. Data points

reflect the mean and standard deviations of n= 3 biol. replicates.
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detectable in the human cell line. Even 6 h after removal of the
methylating agent, the abundance of non-enzymatically methy-
lated m7G and m1A stayed unchanged in the original transcripts.
This observation indicates that human cells either have a highly
expressed and fast acting RNA demethylase for RNA damage
repair or no RNA demethylase at all. Also, the abundance of
damaged nucleosides could be below a threshold limit to trigger
damage repair in human cells.

We next asked the question, whether human cells react to
methylation stress by adaptation of tRNA modifications. This
adaptation can be mechanistically achieved by addition or
removal of modified nucleosides to original tRNAs, by delayed
modification of new tRNAs or a combination of both. For
methylation stress, we did not see a difference in modified
nucleoside abundance in original tRNA compared to the
unstressed control (Fig. S22). (Note: In this NAIL-MS study,
the supplemented methionine was CD3-labeled in both the pulse
and the chase phase. Thus, it is not possible to observe the
decrease of enzymatically placed modifications in original tRNA
over time as shown in Fig. 5).

Finally, we studied the abundance of modified nucleosides in
new tRNA transcripts in dependence of stress. For methylated
guanosine derivatives (m7G, m1G, m2G, and m22G), we observed
a slightly reduced, but statistically significant (e.g., m7G p6h=
0.0096) incorporation into tRNAPhe

GAA under stress compared to

the control samples (Figs. 6c and S22). For Cm and Gm, we
observed a higher abundance under stressed conditions while
m1A or m5C were comparable. Our results imply that human
cells (i) adapt their tRNA modifications to methylation stress by
differentially modifying new transcripts and (ii) consider tRNA
modification as a highly important process and thus continue
even during stress exposure.

Discussion
Current analyses of the epitranscriptome are limited to snapshot
moments and cannot truly follow dynamic processes inside cells.
While NAIL-MS allows the observation of RNA modification
adaptation processes37,44 it was not possible to apply the tech-
nique in human cell culture due to the complexity of culture
medium. 13C6-glucose is a reasonable and economic option for
stable isotope labeling (28 € per 50 mL medium)45 but it suffers
from the formation of multiple isotopologues which complicates
its application especially when additional feeding with CD3-
methionine is required. In such studies, the signals of partially
13C-labeled nucleosides and CD3-methylated nucleosides can
overlap and quantification becomes impossible. In contrast,
supplementation of various media with 15N5-adenine and
13C5,15N2-uridine results in monoisotopic labeling with no
overlap with naturally occurring 13C-isotopologues or artificially
CD3-methylated nucleosides (305 € per 50 mL medium). Thus, a

Fig. 6 Effect of methylation stress on tRNA modifications. a 70% confluent CD3-methionine labeled cells were incubated with fully labeled media for 2 h

before the LD50 dose of methyl methanesulfonate (MMS, yellow shaded area) was added. Control samples were treated the same, substituting the MMS

stock solution with PBS. After 1 h the stress (or control) media was replaced by fresh labeled media. After set time points, cells were harvested and

tRNAPhe
GAA was purified and subjected to LC-MS/MS analysis. b Unlabeled modifications were referenced to unlabeled canonicals to calculate the amount

of modifications arising from direct methylation damage by MMS. Red numbers at time point 0 give the percentage of damaged nucleoside referenced to

the naturally occurring amount of the respective modification (amount of original modification before experiment initiation). c Labeled modifications were

referenced to labeled canonicals to calculate the amount of modification in new tRNA transcripts. The numbers at time point 6 give the percentage of

modification amount in the control sample referenced to the naturally occurring amount of the respective modification. All experiments are from n= 3 biol.

replicates. Symbols reflect the mean and error bars reflect standard deviation. P-values from student t-test (equal distribution, two-sided): *p < 0.05, **p <

0.01, ***p < 0.001, and ****p < 0.0001. Where reasonable, exact P-values are given as grey numbers in the figure.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20576-4

8 NATURE COMMUNICATIONS |          (2021) 12:389 | https://doi.org/10.1038/s41467-020-20576-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


broad applicability and even quantification by isotope dilution
mass spectrometry is possible. While we observe best results with
dialyzed FBS, it is also possible to use regular FBS instead if it is
preferable to the cells. If the nucleoside of interest is a G or A
derivative, 13C6-glucose labeling can be combined with supple-
mentation of unlabeled adenine. This approach is less costly and
produces monoisotopically labeled A and G derivatives with a
13C5-ribose moiety (Figs. S5 and S6).

An important consideration for any NAIL-MS study is the
constant supplementation with adenine and uridine, even when
unlabeled medium is used to prevent activation of de novo
synthesis pathways. Independently of the chosen nucleic acid
labeling scheme, we strongly recommend validation experiments
as shown in Fig. 3c. Such an experiment is crucial to later judge
the statistical significance of e.g., pulse chase studies. For example,
our validation experiment indicates that a less than 1.6 fold
change in Um would not be biologically significant (Fig. S16). In
such a case we recommend the direct comparison to a control
sample (such as those in Fig. 6) to judge the accuracy of the
received NAIL-MS data.

Furthermore, we suggest careful interpretation of new tran-
script data at early time points of pulse chase experiments. As
described for Ψ and m5U (Fig. S17), it is possible that some
modified nucleosides are early on too close to the lower limit of
quantification (LLOQ) in new transcripts and thus the received
quantities must be interpreted carefully.

We have studied the temporal placement of modified nucleo-
sides in tRNAPhe as a model. Our data implies that structure
stabilization by modified nucleosides is a key necessity and must
thus happen early on, while anticodon-loop modifications are
not immediately needed and are potentially placed on-demand.
One exception is the formation of wybutosine (yW). Its precursor
modification m1G is immediately incorporated into tRNAPhe

before its abundance drops at later time points, presumably due to
its further processing into yW. By NMR spectroscopy in combi-
nation with stable isotope labeling, Barraud et al. recently observed
an inhibition of m22G formation by m2G22. In our hands, m22G is
placed into tRNAPhe as fast as is m2G, but as both modifications
are incorporated slowly it is possible that m22G is placed in a non-
m2G modified sub-population. This question might be approa-
ched by combining NAIL with oligonucleotide MS.

With NAIL-MS we are not limited to RNA modification stu-
dies in new transcripts. In addition, we can follow the fate of RNA
modifications in mature transcripts. In human cells, we observe a
constant loss of modified nucleosides from tRNAs, similar to our
initial report in S. cerevisiae31. The extent of the decrease is
similar for all modified nucleosides in tRNA (~50% lower within
48 h) including non-methylated modifications, which argues
towards a preferential degradation of modified tRNA. In 18S
rRNA, we see a similar loss of modified nucleosides from original
transcripts which is with ~20% within 48 h less pronounced as in
tRNA. The ~2-fold longer half-life of rRNA compared to tRNA46

supports our hypothesis of preferred degradation of modified
RNA which is most likely connected to the life time of RNA.

The constant loss of pre-existing modifications from original
RNA is masked in the early time points of the experiment by
observable post-transcriptional methylation of original RNA. For
many modified nucleosides, the extent of post-methylation of
existing transcripts is connected to the extent of modification in
new transcripts (Figs. S18 and S19). Some modified nucleosides
such as m7G, m3U, m3C, mcm5s2U and Um show no correlation
between post-methylation and new methylation abundance.
Except m7G, all these modified nucleosides are placed in or close
to the anticodon-loop which indicates that the modification
extent at these positions reflects rather demand than maturation.
Another hypothesis for the post-methylation arises from reports

on tRNA demethylation. For m1A and m3C, demethylation by
members of the ALKBH family has been proposed9,47,48. Such a
demethylated site might be target to re-methylation and this
process would lead to the formation of post-methylated nucleo-
sides. While the common analysis of tRNA modifications by
sequencing and quantitative mass spectrometry provides a static
view on the substrates of ALKBH enzymes, future NAIL-MS
experiments will shed light onto the dynamic performance of
these enzymes in vivo.

Such a detailed analysis is especially important for understanding
the processes behind stress induced adaptation of tRNA modifica-
tions. To this end, we have studied the impact of methylation stress
on tRNA modifications. Even at a harsh dose of MMS (1mM), we
observe only 1 damage derived m1A and 5 m7G per 1000 tRNAs.
Other damage products were not observed. Intriguingly, these
damages do not seem to be repaired in human cells.

In our hands, methylation stress has no impact on the abun-
dance of modified nucleosides in tRNA present during the stress
exposure. In contrast, the abundance of some modified nucleo-
sides is slightly, but significantly changed in new transcripts. This
indicates that cells regulate their tRNA modifications on the level
of new transcripts and not existing transcripts. Overall mod-
ification processes of tRNA are not stalled during stress recovery
which indicates that properly modified tRNAs are of high
importance to the cell.

NAIL-MS is a powerful technique which depends, as common to
state-of-the-art mass spectrometry of modified nucleosides, on a
complete enzymatic digest to the nucleoside building block. Thus,
all sequence context surrounding modified nucleosides is lost and
the technique relies strongly on the purity of the sample. This is
especially important for mRNA49. If reliable mRNA purification is
possible, the true dynamics of m6A and other mRNA modifications
becomes finally available through NAIL-MS.

Methods
Salts, reagents, media, and nucleosides. All salts, reagents and media were
obtained from Sigma-Aldrich (Munich, Germany) at molecular biology grade unless
stated otherwise. The isotopically labeled compounds 13C5,15N2-Uridine (Ribose-13C5,
98%; 15N2, 96–98%) and 15N5-Adenine (15N5, 98%) were obtained from Cambridge
Isotope Laboratories (Tewksbury, MA, USA). Unlabeled glutamine, isotopically labeled
L-glutamine-amide-15N (98 atom% 15N), L-aspartic-15N acid (98 atom% 15N) and
(D3)-L-methionine (98 atom% D) were obtained from Sigma-Aldrich. Isotopically
labeled 13C6-glucose (≥99 atom% 13C) was obtained from Eurisotope (Saarbruecken,
Germany). All solutions and buffers were made with water from a Sartorious arium®

pro ultrapure water system (Goettingen, Germany). The nucleosides adenosine (A),
cytidine (C), guanosine (G) and uridine (U), were obtained from Sigma-Aldrich. 1-
Methyladenosine (m1A), N3-methylcytidine (m3C), N6-methyladenosine (m6A), 7-
methylguanosine (m7G), 5-methylcytidine (m5C), 5-methyluridine (m5U), 2′-O-
methylcytidine (Cm), 2′-O-methylguanosine (Gm), 1-methylguanosine (m1G), N2-
methylguanosine (m2G), 2-dimethylguanosine (m22G), pseudouridine (Ψ), inosine (I),
2′-O-methyluridine (Um), 2′-O-methyladenosine (Am), and 5-
methoxycarbonylmethyl-2-thiouridine (mcm5s2U) were obtained from Carbosynth
(Newbury, UK). Dihydrouridine (D) was obtained from Apollo Scientific (Stockport,
UK). N6-threonylcarbamoyladenosine (t6A) was obtained from TRC (North York,
Canada). N3-methyluridine (m3U) and N6-isopentenyladenosine (i6A) were generous
gifts from the Dedon lab. 5-carbamoylmethyl-2-thiouridine (ncm5s2U) was a generous
gift from the Helm lab. 1-Methylinosine (m1I) was a generous gift from STORM
Therapeutics LTD (Cambridge, UK).

Cell culture. All cell culture media and supplements were obtained from Sigma-
Aldrich (Munich, Germany) unless stated otherwise. Standard Basal medium for
HEK 293 culture was DMEM D6546 high glucose supplemented with 10% FBS and
0.584 g/L L-glutamine. Cells were split 1:7 using standard procedures every
2–3 days to counter overgrowth. Cells cultured in DMEM medium were kept at
10% CO2 for proper pH adjustment. For all experiments where labeling of
nucleosides was involved DMEM D0422 without methionine and cystine was used.
DMEM D0422 was supplemented with 10% dialyzed FBS (Biowest, Nuaillé,
France), 0.584 g/L L-glutamine, 0.063 g/L cystine (stock concentration 78.75 g/L
dissolved in 1 M HCl), 0.03 g/L methionine, 0.05 g/L uridine, and 0.015 g/L ade-
nine. Uridine, adenine and methionine were either added as unlabeled or labeled
compounds depending on the desired labeling. HeLa cells were cultured and
labeled using the same media.
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For Labeling in RPMI R0883, dialyzed FBS, glutamine, methionine, uridine, and
adenine were added in the same concentrations as for DMEM D0422.

HAP1 cells were either labeled using DMEM D0422 as described above or
IMDM I3390 where FBS, glutamine, uridine, adenine and methionine were added
in the same concentrations as used for DMEM D0422 medium. Cells grown in
RPMI or IMDM medium were kept at 5% CO2 for proper pH adjustment.

Mouse embryonic stem cells (mESC) were cultured as recently reported50.
Isotopically labeled compounds were added as described for regular cell culture
labeling.

For biological replicates one culture was split into several flask at least 24 h prior
to experiment initiation.

Cell lysis and RNA purification. Cells were directly harvested on cell culture
dishes using 1 mL TRI reagent for T25 flasks or 0.5 mL TRI reagent for smaller
dishes. The total RNA was isolated according to the supplier’s manual with
chloroform (Roth, Karlsruhe, Germany). tRNA and 18S rRNA were purified by size
exclusion chromatography (AdvanceBio SEC 300 Å, 2.7 μm, 7.8 × 300 mm for
tRNA and BioSEC 1000 Å, 2.7 μm, 7.8 × 300 mm for 18S rRNA, Agilent Tech-
nologies) according to published procedures31,51. The RNA was resuspended in
water (35 μL).

Isoacceptor purification. The procedure was adapted from Hauenschild et al.13.
For tRNAPhe

GAA purification, a mixture of 1 μg SEC-purified total tRNA and 100
pmol complementary oligonucleotide was heated to 90 °C for 3 min in a total
volume of 100 µL 5× SSC buffer (0.75 M NaCl, 75 mM trisodiumcitrate pH 7) and
subsequently incubated for 10 min at 65 °C. The sequence of the biotinylated
2′-deoxyoligonucleotide is 5′–(Biotin) AAATGGTGCCGAAACCCGGGATCGA
ACCAGGGT–3′ (Sigma Aldrich, Munich, Germany). For each sample, 25 µL
Magnetic Dynabeads® MyOne™ Streptavidin T1 (Thermo Fisher Scientific,
Darmstadt, Germany) were primed three times in Binding and Wash buffer (5 mM
Tris-HCl pH 7.5, 0.5 mM EDTA, 1M NaCl) and once in 5× SSC buffer. An aliquot
of 25 µL magnetic beads in 5× SSC buffer was added to the prepared mixture of
tRNA and oligonucleotide and incubated for 30 min at room temperature. Beads
were then washed once with 1× SSC buffer and three times with 0.1× SSC buffer
before elution of purified tRNAPhe

GAA in 20 µL Milli-Q water at 75 °C for 3 min.

Northern blot analysis. Isolated RNA samples and control oligonucleotides
(in vitro synthesized tRNASer

UGA, tRNA fragment GlycinGCC) were separated by
implementing a 12% TBE-urea PAGE in 1× TBE buffer (Roth, Karlsruhe, Ger-
many). Samples were denatured at 90 °C for 1 min, directly loaded on the gel and
run at 275 V for 40 min. The RNA was then transferred onto a Hybond-N+
nylonmembrane (GE Healthcare, Chicago, US) at 375 mA, 4 °C in 1× TBE buffer
for 2 h and subsequently crosslinked twice with UV light at the energy of 120 mJ/
cm2. The membrane was incubated in hybridization buffer (5x Denhardt’s solution,
1% SDS, 6.6× SSPE) for 30 min before 100 pmol of the respective probe was added.
Fluorescent probes (3′ and 5′ Cyanine-3 modified, from Sigma-Aldrich, Munich,
Germany) were designed to overlap with ~30 nt of the target RNA using the same
sequence for tRNAPhe as used for isoacceptor purification. The sequence of all
probes used can be found in Table S2. Hybridization was performed overnight at
37 °C in a shaking incubator. After two wash steps in 2× SSPE, 0.5% SDS for 10
min at room temperature the membrane was imaged at an Amersham Imager 680.
Stripping was done by pouring boiling 0.1× SSPE buffer onto the membrane and
incubation for 5 min. To get rid of remaining signal completely this procedure was
repeated 10 times before reprobing.

Sequencing. Analysis of tRNAPhe
GAA purity by deep sequencing was performed by

mild RNA fragmentation under strong alkaline conditions (5 min, 96 °C, pH 9.2).
Resulting fragments were 3′-dephosphorylated by Antarctic phosphatase (New
England Biolabs, Frankfurt, Germany) and 5′-phosphorylated by PNK/ATP
treatment52. Library preparation was done using NEBNext® Multiplex Small RNA
Library Prep Set for Illumina (NEB) according to the manufacturer’s instructions.
Quality of the library preparation was assessed by HS DNA chip on Bioanalyzer
2100 (Agilent). Sequencing was done using HiSeq1000 in single-read SR50 mode.
Resulting raw reads (~10 mln/sample) were trimmed by trimmomatic v.032 to
remove the adapted sequence and aligned using bowtie2 to the reference con-
taining human rRNA sequences and non-redundant subset of human tRNAs. Over
90% of the reads was mapped by this approach, demonstrating that contamination
by other cellular RNAs remains minor.

tRNA digestion for mass spectrometry. Total tRNA (300 ng) in aqueous diges-
tion mix (30 μL) was digested to single nucleosides by using 2 U alkaline phos-
phatase, 0.2 U phosphodiesterase I (VWR, Radnor, Pennsylvania, USA), and 2 U
benzonase in Tris (pH 8, 5 mM) and MgCl2 (1 mM) containing buffer. Further-
more, 0.5 µg tetrahydrouridine (Merck, Darmstadt, Germany), 1 µM butylated
hydroxytoluene, and 0.1 µg pentostatin were added to avoid deamination and
oxidation of the nucleosides. When quantification of dihydrouridine was intended
tetrahydrouridine was omitted. After incubation for 2 h at 37 °C, 20 µL of LC-MS
buffer A (QQQ) was added to the mixture and then filtered through 96-well filter
plates (AcroPrep Advance 350 10 K Omega, PALL Corporation, New York, USA) at

3000 × g and 4 °C for 30min. A stable isotope labeled internal standard (SILIS) was
produced in S. cerevisiae using 13C and 15N rich growth medium (Silantes, Munich,
Germany, Product# 111601402) following recently described procedures16,31. 1/10
Vol. of SILIS was added to each filtrate before analysis by QQQ mass spectrometry.
For each sample 10 µL were injected (~60 ng of sample tRNA).

High resolution mass spectrometry. The ribonucleosides were separated using a
Dionex Ultimate 3000 HPLC system with a Synergi, 2.5 μm Fusion-RP, 100 Å,
100 × 2mm column (Phenomenex®, Torrance, California, USA). Mobile phase A
was 10 mM ammonium formate and mobile phase B was 80% acetonitrile con-
taining 2 mM ammonium formate. Gradient elution started with 0% B and
increased to 12% B after 10 min and to 80% after 12 min. After 4 min elution at
80% B and subsequently regeneration of starting conditions to 100% A after 5 min,
the column was equilibrated at 100% A for 8 min. The flow rate was 0.2 mL/min
and the column temperature 30 °C. High-resolution mass spectra were recorded by
a ThermoFinnigan LTQ Orbitrap XL operated in positive ionization mode. The
parameters of the mass spectrometer were tuned with a freshly mixed solution of
uridine (10 μM). Capillary voltage was set to 20 V and capillary temperature to
300 °C. Sheath gas and sweep gas flow rate was set to 0, and auxiliary gas flow rate
to 35. Source voltage was set to 4.0 kV and tube lens to 75 V.

QQQ mass spectrometry. For quantitative mass spectrometry an Agilent 1290
Infinity II equipped with a diode-array detector (DAD) combined with an Agilent
Technologies G6470A Triple Quad system and electrospray ionization (ESI-MS,
Agilent Jetstream) was used. Operating parameters: positive-ion mode, skimmer
voltage of 15 V, cell accelerator voltage of 5 V, N2 gas temperature of 230 °C and N2

gas flow of 6 L/min, sheath gas (N2) temperature of 400 °C with a flow of 12 L/min,
capillary voltage of 2500 V, nozzle voltage of 0 V, and nebulizer at 40 psi. The
instrument was operated in dynamic MRM mode (Table S3).

For separation a Synergi, 2.5 μm Fusion-RP, 100 Å, 100 × 2mm column
(Phenomenex®, Torrance, California, USA) at 35 °C and a flow rate of 0.35mL/min
was used in combination with a binary mobile phase of 5 mM NH4OAc aqueous
buffer A, brought to pH 5.3 with glacial acetic acid (65 μL/L), and an organic buffer
B of pure acetonitrile (Roth, Ultra LC-MS grade, purity ≥99.98). The gradient
started at 100% solvent A for 1 min, followed by an increase to 10% solvent B over 4
min. From 5 to 7min, solvent B was increased to 40% and maintained for 1 min
before returning to 100% solvent A in 0.5 min and a 2.5 min re-equilibration period.

Calibration. For calibration, synthetic nucleosides were weighed and dissolved in
water to a stock concentration of 1–10 mM. The calibration solutions ranged from
0.025 to 100 pmol for each canonical nucleoside and from 0.00125 pmol to 5 pmol
for each modified nucleoside. Each calibration was spiked with 10% SILIS. The
sample data were analyzed by the quantitative and qualitative MassHunter Soft-
ware from Agilent. The areas of the MRM signals were integrated for each mod-
ification. The values of integrated MS signals from target nucleosides were set into
relation to the respective MS signals of the respective isotope labeled SILIS
nucleosides after Eq. (1) to receive the nucleoside isotope factor (NIF):

NIFnucleoside ¼
signal areanucleoside

signal arearespective SILIS
ð1Þ

Results from Eq. (1) were plotted against the expected molar amount of
nucleosides and regression curves were plotted through the data points. The slopes
represent the respective relative response factors for the nucleosides (rRFN) and
enable an absolute quantification. The principle is described in more detail in our
published protocol16. The plotting of these calibration curves is done automatically by
the quantitative MassHunter Software and should be checked manually for linearity.

Data analysis. Molar amounts of nucleosides in samples were calculated after Eq.
(2) using the signal areas of target compounds and SILIS in the samples and the
respective rRFN, determined by calibration measurements. This step is done
automatically by the quantitative MassHunter Software.

nsample nucleoside ¼
signal areasample nucleoside

rRFNnucleoside�signal arearespective SILIS
ð2Þ

To make different samples quantitatively comparable, the molar amount of each
modified nucleoside was normalized by the molar amount of injected RNA to receive
the number of modifications per RNA. Therefore, the calculated amounts of injected
canonicals were divided by their expected occurrence in the respective RNAs and
averaged afterwards (see Eq. (3) for tRNA). The numbers for each canonical
nucleoside were either taken from the sequence of 18S rRNA, tRNAPhe (reported
modifications subtracted)32, or determined empirically for total tRNA analyses.

ntRNA ¼

nC
#C

þ nU
#U

þ nG
#G

þ nA
#A

4
ð3Þ

In the case of NAIL-MS experiments, the different isotopologues were
referenced to their respective labeled canonicals, so that original (unlabeled)
modifications were referenced to original tRNA molecules and new (labeled)
modifications were referenced to new tRNA molecules (see Eqs. (4) and (5)).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20576-4

10 NATURE COMMUNICATIONS |          (2021) 12:389 | https://doi.org/10.1038/s41467-020-20576-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Table S4 gives a summary of the calculations exemplarily for m7G.

#mod=tRNA originalð Þ ¼
nsample nucleosideðunlabeledÞ

ntRNAðunlabeledÞ
ð4Þ

#mod=tRNA newð Þ ¼
nsample nucleosideðlabeledÞ

ntRNAðlabeledÞ
ð5Þ

Statistics. All experiments were performed at least 3 times (biological replicates) to
allow student t-test analysis. P-values of student t-test (unpaired, two-tailed, equal
distribution) were calculated using Excel.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing data are available under accession PRJEB41141 at ENA database. The data
supporting the findings of this study are available from the corresponding authors upon
reasonable request. Source data are provided with this paper.
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A B S T R A C T

Ribonucleic acids (RNA) are extensively modified. These modifications are quantified by mass spectrometry (LC-
MS/MS) to determine the abundance of a modification under certain conditions or in various genetic back-
grounds. With LC-MS/MS the steady state of modifications is determined, and thus we only have a static view of
the dynamics of RNA modifications. With nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS) we
overcome this limitation and get access to the dynamics of RNA modifications. We describe labeling techniques
for E. coli, S. cerevisiae and human cell culture and the current instrumental limitations. We present the power of
NAIL-MS but we also outline validation experiments, which are necessary for correct data interpretation.

As an example, we apply NAIL-MS to study the demethylation of adenine and cytidine, which are methylated
by the damaging agent methyl-methanesulfonate in E. coli. With NAIL-MS we exclude the concurrent processes
for removal of RNA methylation, namely RNA degradation, turnover and dilution. We use our tool to study the
speed and efficiency of 1-methyladenosine and 3-methylcytidine demethylation.

We further outline current limitations of NAIL-MS but also potential future uses for e.g. relative quantification
of tRNA isoacceptor abundances.

1. Introduction

1.1. State-of-the-art quantification of modified nucleosides

Ribonucleic acids (RNA) are key players in the central dogma of
molecular biology. Messenger RNA (mRNA), ribosomal RNA (rRNA)
and transfer RNA (tRNA) participate in protein synthesis, while the
group of non-coding RNAs (ncRNAs) are crucial for many processes,
including gene regulation as interfering RNAs (miRNAs) and guide
RNAs. As RNAs fulfill many important and diverse functions, more than
4 building blocks are needed. Therefore, a large chemical diversity of
ribonucleoside modifications can be found [1]. The chemical altera-
tions of the canonical RNA nucleosides are comprised of simple me-
thylations, isomerization, thiolation or even addition of complex groups
like amino acids. Modifications that occur on the base are usually in-
dicated by a small letter (e.g. m- for methylation or s- for thiolation)
before calling the base (C, U, G or A). The position on the base is in-
serted as superscript between the short abbreviation and the base; e.g.
5-methylcytidine is abbreviated as m5C. Some modifications, like the
hypermodification queuosine, are abbreviated with their own capital
letter, e.g. Q. Specific enzymes insert RNA modifications post-tran-
scriptionally.

Studies of modified RNA rely on sensitive detection of modified
nucleosides, which is commonly done with triple quadrupole mass
spectrometry (described in various reviews [2–4]). The principle and
workflow of such analyses is shown in Fig. 1a. After purification of the
RNA of interest (here tRNA), the RNA is enzymatically digested into
nucleosides and ideally an internal standard is added. The sample is
injected on the LC-MS/MS system where the nucleosides are separated
chromatographically and their mass transitions are monitored in the
mass spectrometer. Using calibration curves, the absolute quantity of
each nucleoside can be calculated and the number of modification per
tRNA can be plotted.

1.2. Nucleic acid isotope labeling (NAIL)

Key to the quantification of nucleosides by mass spectrometry is the
availability of the synthetic nucleoside in weighable quantities (or a
known extinction coefficient) and an internal standard. The internal
standard is ideally an isotopomer of the nucleoside of interest. While
the natural nucleoside contains regular isotopes like hydrogen (H)
carbon-12 (12C), nitrogen-14 (14N) its isotopomer will contain one or
more heavy isotopes like deuterium (D), carbon-13 (13C) or nitrogen-15
(15N). The isotopomer is therefore heavier than the natural nucleoside
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and it can be used as an internal standard in mass spectrometry. Such
internal standards are referred to as stable isotope labeled internal
standards (SILIS) and the technique as isotope dilution mass spectro-
metry. The generation of these isotopomers can be done either syn-
thetically [5–7] or biosynthetically by metabolic labeling in bacteria,
yeast or algae [8–10].

Metabolic labeling relies on the incorporation of heavy isotopes
from heavy-labeled growth media into the RNA. The heavy labeled RNA
is isolated and processed for preparation of a SILIS for quantification.
The usage of SILIS reduces the detection fluctuations of the mass
spectrometer and thus reliable quantitative data becomes available to
study RNA modifications.

However, nucleic acid isotope labeling (NAIL) should not be limited
to quantification purposes. One can envision the use in a variety of
experiments, which are or will become valuable tools in the research of
modified nucleosides. Fig. 1b reviews the current usage of NAIL and
potential future uses in RNA modification analysis. In addition to the
usage of NAIL in quantification, its use to facilitate the discovery of
novel modified nucleosides is widespread. Here, isotope labeling has
become a key tool for sum formula generation and is highly helpful for
structure prediction and verification [11–14].

1.2.1. Comparative NAIL

One of the caveats in the area of RNA modification research is the
lack of key technologies comparable to those boosting protein research
[15,16]. In the field of proteomics, a variety of mass spectrometry tools
have emerged and allowed scientists to study proteins and their net-
works in more detail. Many of these tools focus on the comparison of
proteomes (all proteins within a cell) in the context of stress studies or

functional analyses by, e.g. multiplexing. Multiplexing allows the direct
comparison of samples by mixing them within a single tube and per-
forming a single analysis. They can be distinguished by mass spectro-
metry either by a chemical labeling step prior to mixing or by metabolic
isotope labeling during sample generation. Especially metabolic isotope
labeling has the advantage of overcoming purification biases. Ad-
ditionally, mass spectrometric detection fluctuations are of no con-
sequence. Metabolic isotope labeled proteomics (SILAC-Proteomics
[17]) allows a direct comparison of proteomes within a single mea-
surement with high accuracy. In principle, SILAC-like multiplexing is
possible by NAIL, and we see a significant potential in such a SILAC-like
approach in RNA modification research. We refer to this technique as
comparative NAIL, which is also a useful tool for validation of dy-
namic NAIL-MS experiments.

1.2.2. Dynamic NAIL

While epigenetics is an intensively studied area, the analogue pro-
cess in RNA, termed epitranscriptomics, is far less studied. This is
mainly caused by our limited number of tools to study the dynamics of
RNA modifications and, in addition, the complex process of finding
biological consequences to RNA modifications. DNA is the storage of
the genetic code. Therefore, modifications of DNA must be removed by
an enzymatic process, which leaves the DNA sequence untouched and
the DNA intact. Otherwise, mutations would occur and harm the or-
ganism. While it should be possible for the cell to use similar removal
mechanisms in RNA, RNA has a second option for removal of an un-
wanted modification – the whole RNA itself is degraded and an un-
modified new RNA is transcribed. The potential competition between
these two processes makes it difficult to study the dynamics of RNA

Fig. 1. a General workflow for quantification of modified nucleosides. The RNA is isolated and digested to the nucleoside building blocks (here, 5-methylcytidine).
The stable isotope label internal standard (SILIS) is added and the sample is subjected to LC-MS/MS analysis. After chromatographic separation, the nucleosides are
detected in the mass spectrometer and the abundance can be calculated and plotted. b Current and potential uses of NAIL-MS (nucleic acid isotope labeling coupled
mass spectrometry).
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modifications. Although many studies described that mRNA is en-
zymatically demodified, the mechanisms are still reviewed skeptically
[18]. These doubts arise from the used techniques for in vivo analysis of
the demodification process. In these studies, quantitative mass spec-
trometry of RNA modifications was used to observe an active demodi-
fication in vivo [19]. However, the absolute number of a modification
within an RNA does not reflect the origin of the modification. A de-
crease in modification density can be explained by enzymatic demo-
dification processes but also by increased degradation of modified RNA
or even by increased transcription of unmodified RNA. Vice versa, an
increase in modification density can be explained by additional mod-
ification events in the original RNA or by increased degradation of non-
modified RNAs.

Current analyses of nucleic acid modifications are limited in respect
to their blindness towards the underlying mechanisms, which lead to
changes of modification content. NAIL-MS expands our current analy-
tical toolbox and overcomes limitations by providing insight into the
dynamics of nucleic acid modifications.

1.3. Nucleic acid isotope labeling as a tool to observe nucleic acid

modification dynamics

From the natural RNA modifications known to date (∼160), 70
contain a methylation of the base or the ribose [1]. These methylations
are enzymatically incorporated at defined positions of the RNA. Espe-
cially m6A in mRNA has gained major interest since this is the first RNA
modification, which is incorporated by a methyltransferase (writer) and
can be removed by demethylation via FTO or AlkBH5 (erasers).

In yeast, it was found that tRNA modifications are highly dynamic
during cellular stress and are used by the cell for efficient stress survival
by changing the translational speed of stress response proteins [20].
Although the dynamic nature of tRNA modifications is crucial to cell
survival, it remains unclear how the cell achieves the adaptation of the
modification profile. Additionally, cells are facing various stressors that
can actively methylate the RNA such as methyl-methanesulfonate
(MMS). Such methylations are randomly distributed across the acces-
sible sites in RNA. In vitro tests showed that methylation of positions 1
of adenine and 3 of cytosine are quickly repaired by AlkB in E. coli [21].

Only one study showed the repair of m1A by AlkB in vivo. This early
pulse-chase study, based on radioactively labeled adenine, showed re-
moval of m1A from MMS damaged RNA by AlkB in vivo. Other studies
that report demethylation processes in RNA did not present clear in vivo

evidence of demethylation due to the limitations of static LC-MS/MS
quantification.

Our first steps to overcome this limitation was in 2017, when we
utilized non-radioactive isotope labeling of DNA to observe damage and
repair of a DNA modification in bacteria. The combination of different
labeling media allowed the creation of a pulse-chase experiment, which
was used to observe repair of phosphorothioates in bacterial DNA [22].
The principle is shown in Fig. 2a. The bacteria were pre-cultured in
heavy labeled media resulting in complete heavy labeling of the DNA
nucleosides. In the heavy media, the bacteria were exposed to hypo-
chlorous acid and the DNA present at this moment was damaged. After
the exposure the bacteria were placed into unlabeled media and re-
plication produced unlabeled DNA. By this approach it was possible to
distinguish DNA present during the exposure from DNA synthesized
after the exposure by mass spectrometry. Thus, we could see the loss of
original phosphorothioates upon reaction with the chemical in vivo and
the subsequent repair by the phosphorothiolating dnd enzymes. In the
same year, we adapted the approach to RNA modification analysis in
yeast [9]. As shown in Fig. 2b, we followed the modification density of
tRNA in dependence of the growth phase and we identified the un-
derlying mechanisms for several modified nucleosides (here 7-methyl-
guanosine, m7G, is shown). With NAIL-MS we can assess RNA turnover,
RNA biosynthesis and dilution effects and determine the modification
content of RNAs in response to e.g. growth or stress.

With LC-MS/MS the steady state of modifications is determined and
thus is limited to a static view on dynamic RNA modification processes.
Here, we present nucleic acid isotope labeling coupled mass spectro-
metry (NAIL-MS) which overcomes these current limitations and allows
dynamic analysis of RNA modifications. We describe labeling techni-
ques for E. coli, S. cerevisiae and human cell culture and the current
instrumental limitations and recommended validation experiments.

We apply NAIL-MS to study the repair of adenine and cytidine,
which are methylated by the damaging agent MMS in E. coli. With
NAIL-MS, we exclude the concurrent processes for removal of RNA
methylation, namely RNA degradation, turnover and dilution. The
power of NAIL-MS is demonstrated by showing the kinetics of de-
methylation of damage-derived 1-methyladenosine and 3-methylcyti-
dine in E. coli in vivo. We further outline current limitations of NAIL-MS
but also potential future uses for e.g. relative quantification of RNA
abundances.

2. Material and methods

2.1. Salts, reagents, isotopes and nucleosides

All salts were obtained from Sigma Aldrich (Munich, Germany) at
molecular biology grade unless stated otherwise. Isotopically labeled
compounds: 15N-NH4Cl (≥98% atom) and L-methionine-methyl-D3

(98% atom) from Sigma-Aldrich. 13C6-glucose (≥99% atom) and
Na2

34SO4 (≥99.1% atom) from Eurisotop (Saarbruecken, Germany).
1,3-15N2-uracil (98% atom) from Cambridge Isotope Laboratories
(Tewksbury, MA, USA). All solutions and buffers were made with water
from a Millipore device (Milli-Q, Merck). Nucleosides: adenosine (A),
cytidine (C), guanosine (G), uridine (U) and N2-methylguanosine (m2G)
from Sigma Aldrich. 1-Methyladenosine (m1A), 2-methyladenosine
(m2A), N3-methylcytidine (m3C), N6-methyladenosine (m6A), 7-me-
thylguanosine (m7G), 5-methylcytidine (m5C), 5-methyluridine (m5U),
2′-O-methylcytidine (Cm), 2′-O-methylguanosine (Gm), 1-methylgua-
nosine (m1G) and 3-methyluridine (m3U) from Carbosynth (Newbury,
UK).

2.2. Specific laboratory equipment

Injection vial for HPLC and LC-MS: 0.3mL PP Snap Ring Micro Vial,
32× 11.6mm, transparent, VWR (Radnor, PA, USA), Cat. No. 548-
0120.

Injection vial cap: 11mm Snap Ring Cap, tr., natural rubber/TEF,
60°, 1.0 mm, VWR (Radnor, PA, USA), Cat. No. 548-0014.

Fraction Collector glass vial: 1.5 mL Screw vial, 32× 11.6mm
clear, VWR (Radnor, PA, USA), Cat. No. VWRI548-0018.

Glass vial cap: 8mm PP-Screw cap black hole, VWR (Radnor, PA,
USA), Cat. No. VWRI548-3322.

Culture tube: Centrifuge tube 50, TPP (Trasadingen, Switzerland),
Product No.91050

2.3. Experimental settings

2.3.1. Metabolic isotope labeling

2.3.1.1. Bacteria. For each experiment a single colony from an LB agar
plate with E. coli BW25113 was picked and used for culture inoculation.

We used minimal media M9 with and without the indicated isotopes
for all bacterial cultures.

Unlabeled 10× M9 stock solution: mix 68 g/L Na2HPO4, 30 g/L
KH2PO4, 2.5 g/L NaCl and 10 g/L NH4Cl and autoclave. Store at room
temperature.

Nitrogen-15-labeled 10x M9 stock solution: mix 68 g/L Na2HPO4,
30 g/L KH2PO4, 2.5 g/L NaCl and (!) 10 g/L 15N-NH4Cl (!) and auto-
clave. Store at room temperature.

Other stock solutions: MgCl2 (0.1M), CaCl2 (0.1M), Na2SO4 (0.1M)
and 20 w/w% glucose (or 13C6-glucose) are prepared by sterile
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filtration.
For an unlabeled 5mL pre-culture (or 50mL exposure culture, re-

spectively) mix 500 µL (5mL) 10x M9 stock solution with 100 µL (1mL)
glucose, 100 µL (1mL) MgCl2, 100 µL (1mL) Na2SO4 and 5 µL (50 µL)
CaCl2.

For 13C-labeled cultures, 13C6-glucose was used.
For 15N-labeled cultures, the 15N-10x M9 stock solution was used.
For CD3-labeling, 200 µL of L-methionine-methyl-D3 (stock 5 g/L)

were added to 5mL of culture volume.

2.3.1.2. Yeast. A single colony of a S. cerevisiae BY4741 YPD agar plate
was picked and used for inoculation of 5mL YNB media. 10x YNB (Carl
Roth GmbH, Karlsruhe, Germany) was prepared according to
manufacturer’s manual. 1x YNB media was supplemented with the
following metabolites to a final concentration of: 10 g/L glucose,
0.02 g/L uracil, 0.02 g/L methionine, 0.02 g/L arginine, 0.1 g/L
aspartic acid, 0.1 g/L glutamine, 0.02 g/L histidine, 0.06 g/L leucine,
0.03 g/L lysine, 0.05 g/L phenylalanine, 0.4 g/L serine, 0.2 g/L
threonine, 0.04 g/L tryptophan, 0.03 g/L tyrosine and 0.15 g/L valine
(only L-amino acids were used). Depending on the desired labeling,
13C6-glucose and L-methionine-methyl-D3 were used instead of the
unlabeled compounds.

2.3.1.3. Mammalian cells. HEK 293 T cells were cultured in Dulbeccós
Modified Eagle Media (DMEM) or RPMI 1640 media (Gibco, Carlsbad,
CA, USA). DMEM media was prepared by dissolving 8.4 g DMEM
powder D5030 (Sigma Aldrich) in 1 L milli-Q water. Before sterile
filtration, carbonate and phenol red were added to a final concentration
of 3.7 g/L NaHCO3 and 0.0159 g/L phenol red. Stocks of glucose
(200 g/L) and L-glutamine (15 g/L) were prepared and sterile filtered.
These were added to the DMEM media before usage to a final
concentration of 2 g/L glucose, 0.584 g/L L-glutamine and 10%
dialyzed fetal calf serum (Sigma Aldrich, Product No. F0392-500ML).
The methionine concentration was 0.15 g/L in the final media.

Depending on the desired labeling either 13C6-glucose and L-
methionine-methyl-D3 or their unlabeled isotopomers were used. The
cells were incubated at 10% CO2 atmosphere and cultivated in the
labeled media for at least 2 days (5 days for complete labeling). For
splitting, the cells were treated with TrypLE Express (Gibco, Carlsbad,
CA, USA).

2.3.2. RNA isolation and tRNA purification

Bacteria cultures were centrifuged at 1200×g for 5min, yeast cul-
tures at 3500×g for 5min. The supernatant was discarded and the cell
pellet was suspended in 1mL TRI-Reagent® (Sigma-Aldrich) per 5mL
culture, respectively. Yeast cells were additionally vortexed for 5min
using acid-washed Glass beads (Sigma-Aldrich) equivalent to ∼200 μL.
HEK cells were harvested directly in cell culture dishes/flasks using
1mL TRI-Reagent® per 25 cm2. After transfer into an Eppendorf tube
and incubation at room temperature for 5min, 200 µL of chloroform
(≥99% purity, Roth) were added to 1mL of the TRI-Reagent® solution
of each organism and the mixture was vortexed for at least 10 s. The
biphasic solution was allowed to settle at room temperature for 5min
and centrifuged at room temperature for 20min at 10,000×g. The clear
upper phase (∼500 µL) was transferred into a new vial, 500 µL of iso-
propanol (Roth, Karlsruhe, Germany) were added and the solution was
mixed thoroughly. The mixture was stored at -20 °C overnight. The
precipitated total RNA was pelleted by centrifugation for 40min at
12,000×g and 4 °C. The RNA pellet was washed two times with
100–200 µL 70% EtOH and finally dissolved in 30 µL water.

For purification of tRNA from total RNA size exclusion chromato-
graphy (SEC) [23] was used on an Agilent 1100 HPLC system (Degasser,
G1279A; Quat Pump, G1311A; ALS, G1313A; COLCOM, G1316A; VWD,
G1314A; Analyt FC, G1364C) with an AdvanceBio column, 300 Å pore
size, 2.7 µm particle size, 7.8× 300mm (Agilent, Waldbronn, Ger-
many). For elution, a 1mL/min isocratic flow of 0.1 M ammonium
acetate was used. Eluting RNA was detected at 254 nm with a diode
array detector. Under these conditions, tRNA elutes at a retention time

Fig. 2. a Principle of a NAIL-MS assay, which allows the observation of DNA modification damage repair in vivo. The bacteria are cultured in heavy isotope
containing media, and therefore the DNA is heavy labeled, as observed by mass spectrometry. After exposure to the damage, the media is exchanged to a light media
and newly replicated DNA is light labeled. The repair of original, but damaged DNA is observed by the formation of an intermediately labeled species in the mass
spectrometer. (Adapted from [22].) b Principle of a dynamic NAIL-MS assay of tRNA in S. cerevisiae and the dynamics of 7-methylguanosine (m7G) in tRNAs after
experiment initiation. The drop in pre-existing m7G is masked by an increase of post-methylated m7G added to the pre-existing tRNAs (from [9]).
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between 7 and 8min. The 1mL tRNA fraction was collected and eva-
porated (GeneVac, EZ-2 PLUS, Ipswich, UK) to a volume of ∼100 µL
before precipitation by addition of 0.1 vol of 5M ammonium acetate
and 2.5 vol of ice-cold ethanol (100%). (!) Ammonium acetate is the
precipitation method of choice if mass spectrometric analysis is desired.
Sodium ions interfere with mass spectrometric detection of nucleosides
and should be avoided if possible (!) After rigorous mixing, the tRNA
was allowed to precipitate at −20 °C overnight. The tRNA was pelleted
by centrifugation (12,000g, 40min, 4 °C), washed with 70% ethanol
and resuspended in 30 µL water.

2.3.3. Pulse-Chase NAIL-MS

A single E. coli colony was picked and grown in 5mL unlabeled M9
media overnight (37 °C, shaking at 250 rpm). From this pre-culture, a
second overnight culture was prepared by inoculating 50mL unlabeled
media with the complete 5mL pre-culture. On the next day, these
bacteria were added to 120mL of unlabeled M9 media to a final OD of
1.0. After 60min of growth at 37 °C and 250 rpm, the first 7 mL aliquot
was taken for RNA isolation. The remaining culture was equally split in
2 Erlenmeyer flasks (100mL glass size) of 56.5 mL each. One was ex-
posed to 95.7 µL MMS (99% purity), the other to the same amount of
water (MOCK) and gently stirred before both cultures were left to grow
for 60min at 37 °C with shaking at 250 rpm. After 60min exposure, an
aliquot of 7mL was drawn from each culture and the RNA was isolated.
The remaining bacteria were centrifuged (1200×g, 5 min) and the
MMS/MOCK containing supernatants were discarded. The bacteria
pellets were washed with 5mL 15N/CD3-methionine labeled M9 media
and each suspended in 50mL fresh 15N/CD3-methionine M9 media. For
recovery, the bacteria were grown at 37 °C, 250 rpm and after 1, 2, 3, 4
and 10 h 7mL aliquots were drawn for RNA isolation.

2.3.4. tRNA digestion for mass spectrometry

100 ng tRNA in 30 µL aqueous digestion mix were digested to single
nucleosides by using Alkaline Phosphatase (0.2 U, Sigma-Aldrich,
Munich, Germany), Phosphodiesterase I (0.02 U, VWR, Radnor,
Pennsylvania, USA) and Benzonase (0.2 U Sigma-Aldrich, Munich,
Germany) in Tris (5 mM, pH 8.0) and MgCl2 (1 mM) containing buffer.
Furthermore, tetrahydrouridine (THU, 0.5 µg from Merck), butylated
hydroxytoluene (BHT, 1 µM, Sigma-Aldrich, Munich, Germany) and
Pentostatin (0.1 µg, Sigma-Aldrich, Munich, Germany) were added to
avoid deamination and oxidation of nucleosides [2]. All mentioned
concentrations/amounts are final concentrations/amounts used in a
30 µL final digestion volume. The mixture was incubated with the RNA
for 2 h at 37 °C and filtered through 96 well filterplates (AcroPrep
™Advance 350 10 K Omega™, PALL Corporation, New York, USA) at
4 °C for 30min at 3000×g, or through single tubes (VWR, 10 kDa
MWCO) at room temperature for 7min at 5000×g. The filtrate was
mixed with E. coli SILIS 10:1 (stable isotope labeled internal standard
[8]) and measured with the triple quadrupole mass spectrometer.

2.4. LC-MS instruments and methods

2.4.1. Triple quadrupole instrument

For quantification an Agilent 1290 Infinity II equipped with a DAD
combined with an Agilent Technologies G6470A Triple Quad system
and electro-spray ionization (ESI-MS, Agilent Jetstream) was used.
Optimized operating parameters: positive ion mode, skimmer voltage
15 V, Cell Accelerator Voltage 5 V, N2 gas temperature 230 °C and N2

gas flow 6 L/min, sheath gas (N2) temperature 400 °C with a flow of
12 L/min, Capillary Voltage of 2500 V, Nozzle Voltage of 0 V and the
Nebulizer at 40 psi. The instrument was operated in dynamic MRM
mode and the individual mass spectrometric parameters for the nu-
cleosides are given in Supplementary Tables S2 and S3. Mobile phase A
was 5mM NH4OAc (≥99%, HiPerSolv CHROMANORM®, VWR),
brought to pH=5.3 with glacial acetic acid (≥99%, HiPerSolv CHR-
OMANORM®, VWR). Mobile phase B was pure acetonitrile (Roth, LC-

MS grade, purity ≥99.95). A Kinetex EVO column (Phenomenex®,
Torrance, California, USA; Kinetex® 1.7 µm EVO C18 100 Å,
150× 2.1mm) at a temperature of 35 °C with an eluent flow rate of
0.35mL/min was used. The gradient started at 100% solvent A, fol-
lowed by an increase to 10% solvent B over 10min. From 10 to 15min
solvent B was increased to 45% and maintained for 3min before re-
turning to 100% solvent A and a 3min re-equilibration period. Alter-
natively, a Synergi Fusion-RP column (Phenomenex®, Torrance, Cali-
fornia, USA; Synergi® 2.5 µm Fusion-RP 100 Å, 150× 2.0mm) at 35 °C
and a flow rate of 0.35mL/min was used for yeast and mammalian cell
analysis. Gradient elution started with 100% A for 1min, increased to
10% B after 5min, and to 40% after 7min. The column was flushed
with 40% B for 1min. After regeneration of starting condition for
0.5 min the column was re-equilibrated at 100% A for 3 additional
minutes.

2.4.2. High-resolution mass spectrometry

The ribonucleosides were separated using a Dionex Ultimate 3000
HPLC system on an Interchim Uptisphere120-3HDO C18 or an RP-18
column (Synergi, 2.5 µm Fusion-RP C18 100 Å, 100×2mm;
Phenomenex®, Torrance, California, USA). Mobile phase A was 2mM
ammonium acetate and mobile phase B was 80% acetonitrile con-
taining 2mM ammonium acetate. Gradient elution started with 0% B
and increased to 12% B after 10min and to 80% after 12min. After
4min elution at 80% B and subsequently regeneration of starting
conditions to 100% A after 5min, the column was equilibrated at 100%
A for 8min. The flow rate was 0.2 mL/min and the column temperature
30 °C. High-resolution mass spectra of precursor and product ions were
recorded by a ThermoFinnigan LTQ Orbitrap XL. The parameters of the
mass spectrometer were tuned with a freshly mixed solution of ade-
nosine (5 μM). The parameters were sheath gas flow rate, 5 arb; aux-
iliary gas flow rate, 35 arb; sweep gas flow rate, 0 arb; spray voltage,
5.0 kV; capillary temperature, 200 °C; capillary voltage, 20 V, tube lens
65 V.

2.5. Calibration and equations

For calibration, synthetic nucleosides were weighed and dissolved
to a stock concentration of 1–10mM. Calibration solutions ranging
from 0.15 pmol to 500 pmol for each canonical nucleoside and from
0.15 fmol to 500 fmol for each modified nucleoside were prepared in
water. The calibration solutions were mixed with the E. coli SILIS and
analyzed with the appropriate method. The value of each integrated
peak area of the nucleoside was divided through the respective SILIS
area. The linear regression for each nucleoside’s normalized signal/
concentration plot gives the relative response factor for nucleosides
(rRFN) [8]. The sample data were analyzed by the Quantitative and
Qualitative MassHunter Software from Agilent. The areas of the nu-
cleoside signals were integrated for each modification and their isotope
derivatives. The area was divided through the respective SILIS area and
divided through the rRFN value from the respective calibration to re-
ceive the absolute amount of the modification or canonical. Finally, the
absolute amounts of the modifications were referenced to the absolute
amounts of the precursor canonical. In case of the validation and dy-
namic NAIL-MS experiment the different isotopomers were referenced
to their respective labeled canonicals, so that original modifications are
referenced to original canonicals and new modifications were refer-
enced to new canonicals. See the following equations for m1A as an
example:

m1A (fmol) A (fmol) Normalization

Original
Here: unla-
beled

×

area m A unlabeled

RFN m A area m A SILIS

1 ( )

1 1 ( ) ×

area A unlabeled

RFN A area A SILIS

( )

( )

m A original

A original

1 ( )

( )

V.F. Reichle et al. Methods 156 (2019) 91–101

95



New
Here: labeled ×

area m A labeled

RFN m A area m A SILIS

1 ( )

1 1 ( ) ×

area A labeled

RFN A area A SILIS

( )

( )

m A new

A new

1 ( )

( )

2.6. Other instruments

Orbital Shaker-Incubator ES-20 (BioSan, Riga, Latvia); Rotina 380 R
centrifuge (Hettich, Tuttlingen, Germany); Centrifuge 5427 R
(Eppendorf, Hamburg, Germany); Perfect Spin 24 R refrigerated micro
centrifuge (PeQlab/VWR, Erlangen, Germany); Vortexer (Heathrow
Scientific, IL, USA), Product Code: 120212; Nanophotometer N60
Touch (Implen, Munich, Germany), T60966; Speedvac EZ-2PLUS

(GeneVac, Ipswich, UK).

3. Important considerations for NAIL-MS studies

As the term NAIL-MS states, there are two key features for setting up
such studies. The first is defined isotope labeling of the nucleic acid
(NAIL) and the second is the availability of a mass spectrometer (MS).
In addition, we recommend rigorous validation of NAIL-MS studies,
which will be discussed in detail.

3.1. Labeling techniques

Before starting a NAIL-MS experiment, a labeling technique must be
established, which leads to a defined labeling of the nucleic acid.
Microorganisms like E. coli [8] and S. cerevisiae [9] are effortlessly la-
beled in minimal media or complete media (e.g. from Silantes, Munich,
Germany). In addition, algae like Chlamydomonas reinhardtii or worms
such as Caenorhabditis elegans can be labeled [10,24]. Fig. 3a shows the
mass spectra of digested tRNA from an E. coli culture in minimal media
M9 using 13C6-glucose as the carbon source (left) or using CD3-me-
thionine (right). By feeding 13C6-glucose overnight, 83% of carbon
atoms in the tRNA are 13C labeled in the exemplary nucleoside gua-
nosine (G). Thus a mass increase of +10 is observed for G compared to
unlabeled G (and ∼17% of a +9 species). Most enzymatic methylation
reactions require S-adenosyl methionine (SAM) as the methyl donor.
After the methylation, the resulting S-adenosyl homocysteine is re-
charged with a methyl group by methionine. Feeding organisms CD3-
methionine leads to the formation of CD3-SAM and transfer of heavy
methyl marks onto nucleic acids [25,26]. This is also observed for 7-
methylguanosine (m7G) from CD3-methionine supplemented bacterial
cultures, which has a mass increase of +3 compared to unlabeled m7G
(note: the +4 is the natural 13C isotope peak of m7G). We recently
shared this labeling technique, which helped Dal Magro et al. to de-
termine the structure of a novel RNA modification in bacteria, namely
msms2i6A [11].

For purines in S. cerevisiae, we mainly observe a +6 mass increase
upon culturing in 13C6-glucose media overnight and a +3 for m7G in
CD3-methionine media (Fig. 3b). It is noteworthy that both labeling
techniques do not lead to a single defined isotopomer. Further valida-
tion is necessary to assess the impact of multiple isotopomer formation
(see chapter on validation). In addition to the presented 13C6-glucose
and CD3-methionine labeling, it is possible to use 15NH4Cl or

34Na2SO4

[22] in E. coli or 15N2-uracil in yeast for further labeling options. It is
also possible to combine the carbon, nitrogen, sulfur and methyl
sources into a single media.

While yeast is already less efficiently labeled in minimal media
compared to E. coli (compare Fig. 3a and b), labeling in human cell
culture is even more difficult. We have tested HEK 293 T and Hela cell
lines in both DMEM and RPMI media using 13C6-glucose and CD3-me-
thionine. While labeling of methyl groups with CD3-methionine is si-
milarly successful in HEK cells (Fig. 3c) as it is in yeast cells, 13C6-
glucose labeling is less promising. We observed for all nucleosides a
variety of formed isotopomers, which were found to be independent of
the used serum. Culturing for a longer time did not increase labeling

efficiency. Fig. 3c shows the guanosine signal from tRNA of a 5 day-
labeled HEK culture in the presence of 2 g/l13C6-glucose. Here, a mass
shift of +5, +6, +7 and +8 is observed for G. The +5 reflects a
guanosine with a 13C5-labeled ribose but unlabeled base. The +6 to +8
labeled peaks reflect guanosine isotopomers with 13C5-labeled ribose
and 13CX-labeled base. Such a labeling technique is not suitable for
comparative NAIL-MS studies (but potentially for dynamic NAIL-MS).
13C6-glucose appears not to be the metabolite of choice for successful
NAIL-MS experiments in cell culture systems. The determination of a
metabolite or even a mixture of metabolites, which can be used to
achieve a defined labeling in cell culture, is the major bottleneck in
establishing NAIL-MS in cell culture.

When choosing a labeling technique for comparative or pulse-chase
NAIL-MS, the abundance of natural isotopes, especially 13C (1.1% rel.
abundance) has to be considered. Pyrimidines and purines have 9 and
10 Carbon atoms, respectively. Statistically, ∼10% of all nucleosides
carry one 13C atom (m/z +1), 1% carry two 13C atoms (m/z +2) and
0.1% carry three 13C atoms (m/z +3). We recommend labeling tech-
niques, which increase the mass by at least 3 Dalton to avoid the de-
tection of the natural 13C-isotopomers of the nucleosides.

The preparation of isotopically labeled media requires the acquisi-
tion of isotopically labeled compounds, which are more expensive than
the unlabeled compound. We have summarized the cost of 1 Liter NAIL-
MS media in an overview in Table 1. Per NAIL-MS experiment around
20–50mL heavy labeled media is necessary. The least expensive isotope
labeling is achieved in bacteria (76 €/L) and cell culture (290 €/L), but
here the labeling efficiency is quite low. Yeast minimal media (945 €/L)
labeling is affordable, but yeast complete media (2025 €/L) is the most
expensive and therefore solely recommended for the production of in-
ternal standards.

3.2. Mass spectrometry

For the detection of modified nucleosides, sensitive triple quadru-
pole instruments are used. The first quadrupole filters for the nucleo-
sides’ m/z values (e.g. m/z 298 for m7G). In the collision cell (histori-
cally second quadrupole), the nucleoside is fragmented into nucleobase
and ribose and the charge remains on the nucleobase. The third
quadrupole filters for the nucleobases’ m/z values (e.g. m/z 166 for
m7G). The detection of product ions from defined precursor ions is
called a mass transition. For m7G, the mass transition is 298→ 166.
Commonly, 20–30 modified nucleosides are analyzed in a single run.
This is achieved by fast switching from one nucleoside’s mass transition
to the next (around every 5–10ms). If ions from the previous nucleoside
remain in the mass spectrometer, although the instrument selects for
the next nucleoside, false positive signals can be observed. Especially
for co-eluting isotopomers with small differences in mass transitions,
carry-over in the collision cell falsifies the detected quantities of the
compounds. Linear collision cells with hexapoles and octopoles have
high carry-over tendencies and should be validated for usability for
NAIL-MS methods. The desired method can be tested by injection of
single-labeled samples, which should only produce signals for the iso-
topomers from the used label. Signals from other isotopomer mass
transitions are considered artefacts and the method is not usable for
NAIL-MS studies. The carry-over error can be reduced by programming
only 1–2 nucleosides into the method or by using time-gated selection
of mass transitions. The new generation of QQQ instruments use faster
collision cells (curved or T-wave), which have less to no carry-over.
Note: Carry-over is rarely a problem in common nucleoside quantifi-
cation as most nucleosides are chromatographically separated and thus
do not disturb each other in the mass spectrometer.

3.3. Validation of NAIL-MS experiments

Insufficient labeling and a slow mass spectrometry can result in false
positive results or misinterpretation. Thus, NAIL-MS experiments must
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be carefully validated before they can be used for biological questions.
The first step in validation should be to determine the labeling effi-
ciency. As previously mentioned, it is crucial that the labeling leads to
only one labeled isotopomer (e.g. 95% m/z of +5) and not several (e.g.
37% m/z +5, 31% m/z +6 and 18% m/z +7 as seen for guanosine in
Fig. 3c). We recommend testing each labeling strategy by scanning the
nucleoside mass range (e.g. m/z 240–400) and validate the abundance
of all nucleoside isotopomers. If more than one isotopomer is formed
under one labeling condition, we recommend optimization of the la-
beling technique. Sometimes low purity of the isotopically labeled
metabolites/salts can also result in labeling inefficiency. In these cases,
materials from other suppliers with higher isotope purity should be
tested.

For validation of multiplexing and dynamic NAIL-MS we further
recommend a control multiplexing experiment as shown in Fig. 4a. The
media of choice is prepared in the unlabeled and isotopically labeled

variant.
At this step it is crucial that both media are identical except for the

isotope composition. Small differences in media composition already
influence the abundance of modified nucleosides and the validation
result. Thus, we recommend parallel preparation of the media using
labeled and unlabeled stock solutions (!).

The two media are inoculated with the same number of cells and
grown in parallel under identical conditions. After the appropriate
amount of time (e.g. overnight for E. coli, 24 h for yeast and 5 days for
HEK cells), the cells are harvested in e.g. TRI® reagent and mixed in a
single container. From now on all processing steps are performed in
parallel to avoid purification biases. From the isolated total RNA, the
RNA of interest (e.g. tRNA) is isolated and prepared for LC-MS/MS by
enzymatic digestion. The sample contains labeled and unlabeled nu-
cleosides, and the amount of each modified nucleoside can be de-
termined, normalized and plotted. Fig. 4b shows a successful validation
of an E. coli 13C6-glucose labeling procedure. Here, the quantities of
most modified nucleosides from total tRNA are identical in labeled and
unlabeled media.

The abundance of D (dihydrouridine) is in general higher in the 12C
samples compared to the 13C samples. This is explained by con-
taminating 12C-dihydrouridine from the used deaminase inhibitor tet-
rahydrouridine. Other uridine and cytidine derivatives showed a com-
parable modification profile in the 12C and 13C tRNA. A more than 1.1
fold difference in modification density is observed for m2A. The

Fig. 3. High resolution mass spectra from 13C labeled guanosine and CD3-labeled 7-methylguanosine in E. coli (a), S. cerevisiae (b) and HEK 293 T (c). The grey bars in
the spectra point out the expected m/z value of the unlabeled compounds. *Coeluting compound.

Table 1

Costs of NAIL-MS suitable media per Liter media in €uro.

Used isotope CD3
13C 15N 34S

Bacteria (E. coli) 17 360 76 510
Yeast minimal 45 945 / /
Yeast complete 1125 2025 / /
Human cell culture 123 290 / /
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observed fold difference between labeled and unlabeled tRNA is defined
as the limit of precision in comparative NAIL-MS experiments and
should be given in a table for any NAIL-MS study (Supplementary Table
S1). The 13C6-glucose labeling can be used for comparative NAIL studies
of organisms with varying genetic background or under various growth
conditions. It is also very useful if samples from complex purification
procedures are compared as co-purification eliminates potential pur-
ification biases. It is also suitable for pulse-chase NAIL-MS studies,
which focus on both the original RNA modification content and the new
transcript modification content.

Fig. 4c shows the validation of a 15N labeling technique in E. coli,
which is less successful. Here, we observe lower modification content in
the 15N labeled bacterial tRNA compared to the unlabeled tRNA. The
limit of precision of this validation experiment is larger as shown in
Supplementary Table S1. 15N labeling is more error prone compared to
13C labeling in E. coli due to the media preparation. M9 media requires
the preparation of a M9 salt stock, which also contains the 15NH4Cl salt
for 15N labeling. This M9 stock mix has a limited shelf life, and upon
aging of the M9 stock mix the modification content in bacteria changes.
Thus, 15N labeling can be only used for comparative NAIL when both
unlabeled and labeled M9 stock mix are freshly prepared and ideally in
parallel. For pulse-chase NAIL-MS 15N labeling is acceptable if, for ex-
ample, the labeling is only used to distinguish original RNA from newly
transcribed RNA. In these studies, modification profiles cannot be
compared, but changes in the RNA modification profile of e.g. original
RNA can be studied and effects of transcription can be excluded.

4. Results

4.1. Observing the repair of methylation damage in E. coli tRNA by pulse-

chase NAIL-MS

We recently applied NAIL-MS to discriminate the origin of methy-
lated RNA nucleosides in E. coli treated with the methylating agent
MMS. We observed direct methylation of all canonical nucleosides and
7-methylguanosine, 1-methyladenosine, 6-methyladenosine, 3-methyl-
cytidine and 3-methyluridine as the main damage products. In a dy-
namic NAIL-MS assay we followed the fate of these damage products
and we observed demethylation of 1-methyladenosin and 3-methylcy-
tidine after 24 h [27]. Here, we want to present the assay in more detail
and we performed a NAIL-MS time-course experiment, which allows the
determination of the demethylation kinetics. An assay to observe the
repair of methylated RNA nucleosides is possible by NAIL-MS under the
following conditions: A) A “backbone” labeling technique is needed,
which allows discrimination of the damaged RNA from newly tran-
scribed RNA. B) Availability of a labeling technique, which additionally
distinguishes the damaged modification from the natural modification
(here CD3-methyl groups) [27]. C) The “damage” label and “backbone”
label must be sufficiently resolvable in the mass spectrometer, i.e. if the
“damage” label is +3, the “backbone label” cannot be +3 but should
be ideally larger than +5. D) An internal standard must be available
which is clearly distinguishable from all potential heavy isotope com-
binations from the biological assay.

In this study, we used 15-Nitrogen for the “backbone” labeling
which results in a labeling of +5 for purines, +3 for cytidine and +2

Fig. 4. a The principle of comparative NAIL-MS for validation of labeling. b and c E. coli comparative NAIL validation from a 13C labeled culture mixed with an
unlabeled culture (b) and a 15N-labeled culture mixed with an unlabeled culture (c). y-axis labeling: Mod. per 1000 nts (Modification per 1000 nucleotides). Results
from labeled RNA are marked in red, from unlabeled in black. (data represents 3 biol. replicates and error bars reflect the standard deviation.) (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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for uridine. As the “damage/methylation” label we used CD3-methio-
nine (+3). The assay was set up as outlined in Fig. 5a and samples were
drawn every hour after removal of the MMS. The bacteria are grown in
unlabeled M9 media and exposed to the LD50 dose of MMS
(Supplementary Fig. S1). The original RNA as well as all methylated
nucleosides were unlabeled (m/z±0). After 60min, the MMS is re-
moved by media exchange. The new media contains only 15N as the
nitrogen source and CD3-methionine. Newly transcribed RNA is now
labeled with 15N (m/z +5, +3 or +2) and methylated nucleosides
have an additional +3 label (m/z is thus +8, +6 or +5). Original
tRNA, which is enzymatically methylated after media exchange re-
ceives a +3 label from the CD3-methionine (m/z is thus +3). Using
mass spectrometry, the tRNA exposed to the MMS and the newly
transcribed tRNA can be clearly distinguished and the abundance of
modified nucleosides in the original tRNA can be quantified. An ex-
emplary list for the mass transitions of all m1A isotopomers is given in
Table 2 and for the other nucleosides in Supplementary Table S3. Here,
and in the recently published study [27], we solely focused on the fate
of the damaged tRNA from unlabeled bacteria culture. In such a case,
the validation of NAIL-MS can be omitted, as the modification profile of
the new transcripts is not of interest.

In E. coli, the quantities of the usually unnatural nucleosides m1A
and m3C peak after 2 h with around 1% damaged adenosines (Fig. 5b)
and only 0.08% damaged cytidines (Fig. 5c) in tRNA. The abundance of
m1A is slowly decreasing in the damaged tRNA over the 10 h recovery
period. Two potential scenarios can explain this: The first scenario is
degradation of m1A-damaged tRNAs. The sequence of each tRNA con-
tains at least 10 adenines in E. coli [1]. 1% of all adenosine methylation
damage thus translates to a statistical abundance of m1A in 1 out of 10
tRNAs. Thus 10% of the total tRNA pool needs to be degraded for re-
moval of m1A. If m1A-targeted tRNA degradation was the cause, a faster
tRNA dilution rate in comparison to unstressed E. coli would be ob-
servable. However, we observe the opposite (Supplementary Fig. S2b).
The original tRNA pool from MMS stressed bacteria is less quickly di-
luted by newly transcribed tRNA in comparison to the unstressed bac-
teria. Thus, we consider the scenario of m1A-targeted tRNA degradation
as unlikely.

The second scenario is the proposed repair by demethylation. We
see this hypothesis as proven, since we did not observe increased de-
gradation of the original, damaged tRNA pool. Therefore, the only
cause for the decrease in m1A abundance is active demethylation of
m1A (potentially by AlkB [28]).

With our NAIL-MS assay, we can also follow the speed of m3C repair
by demethylation in vivo. The repair is even quicker (Fig. 5c), which is
most likely caused by the comparably low abundance of m3C sites in the
tRNAs.

5. Discussion and outlook

LC-MS/MS is the method of choice for quantification of modified
nucleosides. However, it is currently limited and only provides data on
the quantities of modified nucleosides in an RNA but not about the
dynamic changes and the underlying mechanisms. These limitations
can be overcome by using nucleic acid isotope labeling coupled mass
spectrometry (NAIL-MS). We present currently used approaches of
isotope labeling in microorganisms such as E. coli and S. cerevisiae.
Furthermore, we demonstrate the difficulties of adapting these methods

Fig. 5. a Concept of a pulse-chase NAIL-MS assay to distinguish the modified nucleosides from damaged tRNAs and newly transcribed tRNAs. (Adapted from [27].) b
and c Pulse-chase NAIL-MS assay for 1-methyladenosine (b, m1A) and 3-methylcytidine (c, m3C). Color code: Black: damaged tRNAs. Red: newly trtranscribed tRNAs
(Error bars represent the standard error of 3 biological replicates.)

Table 2

Mass transitions of 1-methyladenosine isotopomers in pulse-chase NAIL-MS for
RNA repair observation.

Compound
Group

Compound
Name

Precursor
Ion

Product
Ion

Ret Time
(min)

Unlabeled (original) A 268 136 5.7
m1A 282 150 1.7

15N and 13C labeled
(internal standard)

A SILIS 283 146 5.7
m1A SILIS 298 161 1.7

CD3 labeled
(post-methylated)

m1A CD3 285 153 1.7

15N labeled (new) A 15N 273 141 5.7
15N and CD3 labeled

(new)
m1A 15N_CD3 290 158 1.7
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to human cell culture. In our hands, cell culture labeling by addition of
13C6-glucose is not sufficient to allow successful application of com-
parative NAIL-MS experiments. However, for dynamic pulse-chase ex-
periments where e.g. only the original RNA is the focus of the analysis,
the labeling should allow sufficient resolution to distinguish the ori-
ginal RNA from new transcripts. Thus, we foresee a wide usage of cell
culture labeling by addition of 13C6-glucose in dynamic NAIL-MS ex-
periments to answer current questions regarding open questions in the
field such as: Is the change in the epitranscriptome due to a complete
renewal of the transcriptome? Are modifications added to the existing
transcriptome to confront e.g. stress? And are modifications removed
actively in vivo? Due to the many isotopomers formed for each nu-
cleoside and its respective modifications, we also foresee that massive
validation is necessary to answer these questions by 13C6-glucose in
dynamic NAIL-MS. Ideally, other metabolites, e.g. precursors of nu-
cleoside biosynthesis are found which lead to single isotopomer for-
mation in cell culture. Thus, the usage of comparative NAIL and more
elegant pulse-chase experiments would become possible in cell culture.

Regarding comparative NAIL-MS, we also foresee a unique oppor-
tunity towards determination of changes in RNA abundance as a con-
sequence of stress or the loss of an RNA modification. Instead of
quantifying the abundance of modified nucleosides, it should be pos-
sible to focus on the quantities of canonical nucleosides instead. As
Fig. 6 shows, the total RNA from a comparative NAIL experiment is
analyzed and the ratio of canonical nucleosides from labeled and un-
labeled total RNA is determined. The ratio from the total RNA is later
used for normalization and set to 100%. From the total RNA mixture,
the RNA of interest, here isoacceptor tRNAs, can be purified [29]. The
quantities of canonical nucleosides from an isoacceptor tRNA can be
determined and subsequently the ratio of labeled and unlabeled is
formed. In a control experiment, the abundance of all tRNA iso-
acceptors is expected to be identical in the unlabeled and labeled
samples. The ratio of the pure isoacceptor tRNA can be compared to the
total RNA ratio and plotted in %. Indeed, we observe in our 13C6-glu-
cose validation experiments from E. coli (Fig. 6) the same ratio of la-
beled and unlabeled canonical nucleosides for total RNA and several
purified tRNA isoacceptors.

In a comparative NAIL experiment, it should be possible to detect
changes in e.g. tRNA isoacceptor abundances because of stress or ge-
netic manipulation of an RNA writer. By mixing an unlabeled control
sample with a labeled, but e.g. stressed sample, the potential changes of
tRNA isoacceptor abundance should be detectable. We expect that the
ratio of canonical nucleosides would be different in total RNA and the
purified tRNA isoacceptor and thus the impact of the stress on the re-
lative abundance of the tRNA isoacceptor should be revealed. If our
assumption is correct, we see a broad usability of comparative NAIL-MS

to determine relative abundances of RNAs.
As an example, we show the repair kinetics of 1-methyladenosine

(m1A) and 3-methylcytidine (m3C) in bacterial tRNA after exposure to
MMS in vivo. We find that m1A is slowly removed from original tRNA
over the timeframe of observation. This is in accordance with previous
work done with radioisotope labeling [28]. In contrast to the published
work, we used E. coli without previous induction of AlkB which is re-
flected in the rather slow repair of m1A observed in our NAIL-MS study.
Similarly, we can observe the removal of m3C from the bacterial tRNA
which appears to happen a lot faster. The reason can be the relatively
low abundance of m3C damage compared to m1A damage. It is also
possible that m3C is the better substrate for the tRNA demethylase.

In this study, we found around 1% of all adenines in tRNA are
methylated by the methylating agent MMS after one hour of exposure
to the LD50 dose. From a chemical point of view, the N1 position of
adenine can be considered a good nucleophile which is easily methy-
lated by an electrophile such as MMS. Therefore, we wonder how
strongly the N1 position of adenine interacts with natural electrophiles
such as S-adenosyl methionine (SAM). SAM is the natural methylating
agent of the cell, and the methylation reaction of nucleic acids usually
depends on an enzyme which activates the nucleoside first. However,
chemically, the N1 position of adenosine is already a good nucleophile,
and it should be possible, that some methylation occurs by reaction
with SAM inside the cell, especially in those environments, which are
rich in SAM and those RNAs that have one or more non base-paired
adenosines. Considering the current dispute on the distribution of m1A
in mRNA [30–32], we wonder if some of the 0.02% m1A (per A) [33] in
mRNA is due to non-enzymatic methylation by SAM. In eukaryotic
mRNA, the 5′ end is methylated (m7G of the mRNA cap) and thus the 5′
end and its adenosines are always exposed to high amounts of SAM.
Statistically, a sub-stoichiometric methylation of these adenosines is
possible and should be taken into account during data interpretation. Of
course, the origin of the 5′ UTR methylation, enzymatic or chemical,
does not play a major role upon determining the function of the me-
thylated adenosine.

With nucleic acid isotope labeling coupled mass spectrometry
(NAIL-MS) we overcome current limitations and assess the dynamics of
RNA modifications. We show the repair of m1A and m3C in vivo by
discriminating the concurrent processes for removal of RNA methyla-
tion, namely RNA degradation, turnover and dilution. Dynamic NAIL-
MS and comparative NAIL-MS are powerful tools which finally allow
the observation of dynamic processes of RNA and its modifications.
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1Chapter 18

2Quantification of Modified Nucleosides in the Context of
3NAIL-MS

4Matthias Heiss, Kayla Borland, Yasemin Yoluç, and Stefanie Kellner

5Abstract

6Recent progress in epitranscriptome research shows an interplay of enzymes modifying RNAs and enzymes
7dedicated for RNAmodification removal. One of the main techniques to study RNAmodifications is liquid
8chromatography-coupled tandem mass spectrometry (LC-MS/MS) as it allows sensitive detection of
9modified nucleosides. Although RNA modifications have been found to be highly dynamic, state-of-the-
10art LC-MS/MS analysis only gives a static view on modifications and does not allow the investigation of
11temporal modification placement. Here, we present the principles of nucleic acid isotope labeling coupled
12with mass spectrometry, termed NAIL-MS, which overcomes these limitations by stable isotope labeling in
13human cell culture and gives detailed instructions on how to label cells and process samples in order to get
14reliable results. For absolute quantification in the context of NAIL-MS, we explain the production of
15internal standards in detail. Furthermore, we outline the requirements for stable isotope labeling in cell
16culture and all subsequent steps to receive nucleoside mixtures of native RNA for NAIL-MS analysis. In the
17final section of this chapter, we describe the distinctive features of NAIL-MS data analysis with a special
18focus toward absolute quantification of modified nucleosides.

19Key words Epitranscriptome, RNA modification, Stable isotope labeling, Mass spectrometry, tRNA,
20LC-MS/MS

211 Introduction

22RNA fulfills major functions for example in translation or gene
23regulation and requires an extended set of building blocks to
24allow this functionality. For this purpose, RNA is chemically mod-
25ified by dedicated enzymes at predefined positions. To study the
26impact and function of RNA modifications two techniques are
27primarily used. The first one is sequencing that often exploits the
28chemical reactivity of modified nucleosides [1, 2] or requires anti-
29bodies specific to a modification of interest [3]. The second tech-
30nique is mass spectrometry coupled for example with complete
31enzymatic digestion of RNA to the nucleoside level. The resulting
32nucleoside mixture is analyzed by liquid chromatography-coupled
33tandem mass spectrometry (LC-MS/MS). Firstly, the nucleosides
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34are separated on the HPLC by their physicochemical attributes and
35then analyzed in the mass spectrometer. To allow absolute quanti-
36fication of modified nucleosides, stable isotope-labeled internal
37standards (SILIS) are used. These can be produced synthetically
38[4] or biosynthetically. The SILIS is added to the calibration solu-
39tions and samples in defined amounts [5–7].
40Sequencing and mass spectrometry are often used as orthogo-
41nal techniques to clearly define the modification status of RNA at a
42given time point. Both techniques do not allow the tracing of
43modified nucleosides over time and the mechanisms of their place-
44ment, their dynamics, and potential removal often remain elusive.
45This problem can be overcome by metabolic labeling of the RNA in
46a pulse-chase setup. This technique, termed nucleic acid isotope
47labeling-coupled mass spectrometry (NAIL-MS), relies on stable
48isotope-labeled nutrients (e.g., E. coli [8], yeast [9], human cells
49[10]) which results in the formation of nucleosides with a defined
50number of stable isotopes (isotopologue). An example of isotopo-
51logues resulting from NAIL-MS experiments is given in Fig. 1a.
52Isotopologues possess the same physicochemical attributes and
53consequently co-elute. Even though isotopologues are not sepa-
54rated on the HPLC, these nucleosides can be differentiated due to
55their different masses, and thus a signal can be assigned to the pulse
56or chase phase of the experiment. By the additional introduction of
57a labeled methyl group, the origin and fate of methylation marks,
58the most prominent type of RNAmodifications, can be studied in a
59time-resolved fashion. To allow absolute quantification in the con-
60text of NAIL-MS a suitable SILIS is needed, which does not
61interfere with the signals from all emerging isotopologues of a
62nucleoside resulting from a NAIL-MS experiment. In a sophisti-
63cated setup, such as our recently reported study in human cell lines
64[10], more than five different isotopologues of the modified
65nucleosides can be reliably differentiated by mass spectrometry.
66Sensitive quantification is commonly achieved by tandem mass
67spectrometry (MS/MS). Here, the first mass analyzer selects the
68ionized nucleoside as the precursor ion and passes it on to the
69fragmentation chamber. The common fragmentation pattern of
70modified nucleosides is the cleavage of the glycosidic bond, which
71results in the formation of a neutral ribose moiety while the charge
72remains on the nucleobase (Fig. 1b). The charged nucleobase
73(product ion) is then selected in the second mass analyzer and
74enters the detector. A key problem of many mass spectrometers is
75the slow transition of the product ion into the second MS which
76might result in false signals if the product ion m/z of two isotopo-
77logues are identical. Thus, we recommend a labeling scheme which
78leads to nucleobase isotopologues. In this work, we give a complete
79workflow on human cell culture NAIL-MS (Fig. 1c) and an over-
80view of modified nucleosides available for NAIL-MS analysis
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81(Table 1) and point out the important steps for successful applica-
82tion of NAIL-MS experiments.

832 Materials

84Prepare all solutions and buffers in ultrapure type I water. All steps
85starting from RNA isolation should be performed with RNase-free
86equipment and reagents. For LC-MS/MS analysis only use salts
87and reagents of LC-MS grade.

2.1 Stable Isotope

Labeling in Cell Culture

881. Cell line of interest (here HEK293 cells are used).

892. L-Methionine-methyl-D3 (98% atom, Sigma-Aldrich).

903. 13C5,
15N2-uridine (ribose-13C5, 98% atom; 15N2, 96–98%

91atom, Cambridge Isotope Laboratories).

924. 15N5-adenine (15N5, 98% atom, Cambridge Isotope
93Laboratories).

945. Growth medium: Dulbecco’s modified Eagle media (DMEM)
95D0422, 10% dialyzed FBS, 0.584 g/L L-glutamine, 0.063 g/
96L cystine, 0.03 g/L methionine, 0.05 g/L uridine, and
970.014 g/L adenine.

986. Quenching medium: DMEM D0422, 10% dialyzed FBS.
99

Fig. 1 Principles of NAIL-MS in cell culture. (a) Structure of 5-methylcytidine (m5C) and various isotopologues

which emerge in a human cell culture NAIL-MS experiment. (b) MS/MS spectra of the various m5C

isotopologues shown in A. (c) General workflow of a NAIL-MS experiment. First cells are cultured in stable

isotope-labeled media. RNA is isolated and purified. After digestion to nucleosides, LC-MS/MS is performed

Quantification of Modified Nucleosides in the Context of NAIL-MS
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2.2 SILIS Preparation 1001. Saccharomyces cerevisiae (strain BY4741 MATa his3Δ1 leu2Δ0
101met15Δ0 ura3Δ0).

1022. 13C6-glucose (�99% atom, Eurisotop, Saarbruecken,
103Germany).

1043. 13C, 15N-rich growth medium for yeast (Silantes, Munich,
105Germany).

1064. TES buffer: 10 mM Tris–Cl, pH 7.5, 10 mM EDTA,
1070.5% SDS.

1085. Acidic phenol: 25 g Phenol, 10 mL ultrapure water, pH 5.
109Store at -20 �C.

1106. Theophylline.

1117. Ultrapure water.

1128. 5 M NH4OAc.

1139. Ethanol.
114

2.3 RNA Isolation

and Purification

1151. PBS.

1162. TRI Reagent.

1173. Chloroform.

1184. Isopropanol and 70% ethanol.

1195. Ultrapure water.

1206. HPLC system for SEC: Any isocratic system with UV detec-
121tion, e.g., Agilent 1100.

1227. SEC columns: for tRNA; AdvanceBio SEC 300 Å, 2.7 μm,
1237.8 � 300 mm and for rRNA; AdvanceBio SEC 1000 Å,
1242.7 μm, 7.8 � 300 mm (Agilent).

1258. SEC buffer: 0.1 M NH4OAc.

1269. 100 μM Biotinylated DNA oligonucleotide (ON). Below is an
127example of a biotinylated ON used to purify tRNAPhe: [Btn]
128AAATGGTGCCGAAACCCGGGATCGAACCAGGGT.

12910. B&W buffer: 5 mM Tris–HCl, pH 7.5, 0.5 mM EDTA,
1301 M NaCl.

13111. SSC buffer (20�): 3 M NaCl, 300 mM trisodium citrate,
132pH 7.0.

13312. SSC buffer (5�, 1�, 0.1�): Dilute SSC buffer (20�) in water
134accordingly.

13513. Dynabeads® MyOne™ Streptavidin T1.
136

2.4 Digestion (See

Table 2)

1371. Alkaline phosphatase.

1382. Phosphodiesterase I.

1393. Benzonase.

1404. Tetrahydrouridine.
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1415. Butylated hydroxytoluene.

1426. Pentostatin.

1437. 20 mM MgCl2.

1448. 100 mM Tris, pH 8.

1459. 96-Well filter plate (10 kDa MWCO).
146

2.5 LC-MS 1471. High-resolution LC-MS: For example Dionex Ultimate 3000
148HPLC system coupled with LTQ Orbitrap XL.

1492. High-sensitivity LC-MS/MS: For example Agilent 1290 Infin-
150ity II with diode array detector (DAD) and G6470A triple-
151quadrupole, electrospray ionization (ESI-MS) (Agilent).

1523. Chromatography: Phenomenex®, Synergi Fusion-RP 100 Å,
1532.5 μm, 150 � 2.0 mm column (Phenomenex).

1544. LC-MS buffer/aqueous solvent (A): 5 mMNH4OAc, pH 5.3.
155Dissolve 0.3854 g NH4OAc in ultrapure water, add 65 μL
156glacial acetic acid, and bring to a final volume of 1 L in ultra-
157pure water.

1585. Organic solvent (B): Acetonitrile.

1596. LC-MS vials: With 200 μL insert.

1607. Unlabeled synthetic nucleosides for calibration (Table 1).
161

1623 Methods

3.1 General Design

of NAIL-MS

Experiments

163NAIL-MS experiments can be subdivided into several categories
164depending on the purpose of the experiment. The two major
165categories are comparative and pulse-chase NAIL-MS. Compara-
166tive NAIL-MS experiments are comparable to SILAC proteomics
167experiments and are highly useful for method validation. Through
168pulse-chase NAIL-MS experiments, the dynamics of the epitran-
169scriptome are investigated (Fig. 2). It is possible to use these NAIL-
170MS experiments without the addition of a SILIS and determine the
171relative changes of RNA modifications. However, we recommend
172the production and addition of a SILIS in order to receive absolute
173values for modified nucleosides in NAIL-MS experiments.
174

3.1.1 Considerations for

SILIS Production

175If a biosynthetic SILIS is used as an internal standard (ISTD), for
176many modifications complete labeling of all nucleosides is crucial.
177To circumvent an overlap with isotopologues of the NAIL-MS
178samples the mass increase should be as high as possible. We recom-
179mend S. cerevisiae for the production of a eukaryotic SILIS. Culti-
180vation in 15N- and 13C-labeled Silantes complete growth medium
181leads to the m/z values shown in Table 1. This SILISGen2 labeling
182ensures a mass difference of at least 2 Dalton (Da) to any NAIL-
183derived nucleosides, which is important for reliable differentiation
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184by the mass spectrometer. Our previously reported SILISGen1 [7] is
185less suitable for NAIL-MS experiments as it contains some residual
186nucleosides with incompatible labeling (see Note 1).
187

3.1.2 Considerations for

Comparative NAIL-MS

188Choosing the correct labeling strategy is crucial for comparative
189NAIL-MS experiments. The chosen medium must lead to distinct
190mass differences for nucleosides emerging from each culture (see
191Note 2). The goal is to enable mixing of the culture of interest
192(e.g., knockout (KO) strain, chemical treatment) and the control
193culture at the stage of cell lysis, followed by co-processing to reduce
194purification bias.

Fig. 2 Experimental procedure of comparative NAIL-MS (left) and pulse-chase NAIL-MS experiments (right).

Although they differ in cell handling, the downstream processing is comparable. Gray and red represent media

with different stable isotope labeling. The production of SILIS is shown in the middle and its addition is

recommended for absolute quantification of NAIL-MS experiments
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1953.1.3 Considerations for

Pulse-Chase NAIL-MS

196For pulse-chase experiments the same principles as described for
197comparative NAIL-MS apply. It is important that the exchange of
198medium A by medium B results in isotopologues that differ by at
199least 2 Da. Only then it is possible to reliably distinguish between
200RNA molecules already existent before the experiment’s initiation
201and RNA molecules transcribed after the experiment’s initiation
202(seeNote 3). This allows the detailed study of modification dynam-
203ics in vivo.
204

3.2 Preparation of

SILIS (10�) in S.

cerevisiae

2051. For preparation of SILISGen2 in S. cerevisiae, prepare 5 mL of
206

13C, 15N Silantes-rich growth medium supplemented with 1%
207(w/w) 13C-glucose. (here: 250 μL sterile 13C6-glucose stock
208solution (200 g/L) to 4.75 mL 13C, 15N Silantes-rich growth
209medium), inoculate with a single-cell colony, and cultivate
210yeast overnight (30 �C, 250 rpm) in a shaking incubator.

2112. Dilute the culture to OD 0.1 with fresh 13C, 15N medium
212supplemented with 13C6-glucose. We recommend a final cul-
213ture volume of 100 mL. Continue cultivation for 2 days.

2143. Split the culture into 50 mL aliquots and harvest the cells by
215centrifugation (3000 � g, 5 min, 4 �C). After discarding the
216supernatant, wash the pellet with 5mL ultrapure water, transfer
217the suspension to clean tubes, and centrifuge again (3000 � g,
2185 min, 4 �C).

2194. After discarding the supernatant, resuspend each pellet in 4 mL
220TES buffer and add 4 mL acidic phenol to the suspension (see
221Note 4).

t:1 Table 2

Master mix for RNA digestion to nucleoside level

Compound Stock Goal Volumet:2

MgCl2 20 mM ! 1 mM 1.75 μlt:3

Tris, pH ¼ 8 100 mM ! 5 mM 1.75 μlt:4

Benzonase 1 U/μL ! 2 U 2 μlt:5

CIP (Alk. Phos.) 1 U/μL ! 2 U 2 μlt:6

SPD (PDE1) 0.1 U/μL ! 0.2 U 2 μlt:7

Pentostatin 1 mg/mL ! 1 μg 1 μlt:8

THU 5 mg/mL ! 5 μg 1 μlt:9

BHT 10 mM ! 10 nmol 1 μlt:10

H2O ad AU12.5 μlt:11

t:12 Multiply volume by sample number to prepare the proper amount of master mix. Pentostatin, THU, and BHT are added

to avoid deamination and oxidation of nucleosides
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2225. Incubate the sample at 65 �C for 1 h and vigorously vortex the
223mixture every 15 min.

2246. After 1 h of incubation, place the sample on ice for 5 min, and
225then centrifuge the sample (3000 � g, 5 min, 4 �C) to induce
226phase separation.

2277. Transfer the upper aqueous phase into a clean centrifugation
228tube and add 4 mL acidic phenol. Vortex this mixture vigor-
229ously for 20 s and place on ice for 5 min. Centrifuge the sample
230at 3000 � g for 5 min at 4 �C.

2318. Again, transfer the upper aqueous phase into a clean centrifu-
232gation tube and add 4 mL chloroform. Vortex this mixture
233vigorously and keep it on ice for 5 min. Subsequently, centri-
234fuge the sample (3000 � g, 5 min, 4 �C).

2359. Aliquot 1 mL of the resulting upper aqueous phase into 5 mL
236reaction tubes. Perform an ethanol precipitation with
237NH4OAc followed by an ethanol wash.

23810. Dissolve the resulting RNA in 250 μL ultrapure water. The
239RNA isolation procedure for yeast is summarized in Fig. 3.

24011. The total RNA SILIS can be purified to tRNA and rRNA SILIS
241by SEC as will be described in Subheading 3.5.

24212. After purification and precipitation of tRNA or rRNA, digest
2433 μg of the RNA to nucleosides as will be described in Sub-
244heading 3.7.

24513. The SILIS (10�) should contain 10 mM theophylline as an
246external standard (see Note 5). Therefore, prepare a 100 mM
247theophylline stock in water and add 15 μL of it to 35 μL of
248RNA digest and add 100 μL of LC-MS buffer, resulting in
249150 μL of SILIS (10�).
250

3.3 Stable Isotope

Labeling of RNA in Cell

Culture

251For stable isotope labeling of HEK293 cells we chose DMEM
252D0422, which lacks methionine (and cysteine) and thus allows
253complete labeling of methyl groups [10]. Cells grown in DMEM
254should be kept at 5–10% CO2 for proper pH adjustment. Labeling
255of other cell lines and use of alternative media are also possible (see
256Note 6).

2571. Prepare stock solutions of 29.2 g/L glutamine (50�) and
2585.0 g/L uridine (100�) in water and freeze in aliquots. Prepare
259stock solutions of 15.0 g/L methionine (500�) and 0.7 g/L
260adenine (50�) in water and 78.8 g/L cystine in 1 M HCl and
261store at 4 �C.

2622. Prepare the growth medium using DMEM D0422, dialyzed
263FBS, and stock solutions of glutamine (50�), methionine
264(500�), cystine (1250�), uridine (100�), and adenine
265(50�). For example for the preparation of 50 mL of fully
266labeled media mix 42.4 mL DMEM D0422 with 5 mL
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267dialyzed FBS, 1 mL glutamine, 100 μL CD3-labeled methio-
268nine, 40 μL cystine, 500 μL 15N2,

13C5-labeled uridine, and
2691 mL 15N5-labeled adenine (Fig. 4). Otherwise, uridine, ade-
270nine, and methionine are either added as unlabeled or labeled
271compounds depending on the desired labeling (see Note 7).

2723. To prevent incomplete labeling, quenching medium should be
273used for trypsin deactivation during splitting procedures. It
274consists of DMEM D0422 and dialyzed FBS only and thereby
275prevents the carryover of (un)labeled compounds into the new
276cell culture flask (see Note 8).

2774. For complete labeling of HEK293 cultures, cells should be
278cultivated in the growth medium for at least 7 days (including
279at least two splitting steps with fresh medium). LC-MS/MS
280signals of stable isotope-labeled nucleosides are already detect-
281able after 1 h of labeling. 50% labeling is achieved after ~2 days
282of labeling.
283

3.4 RNA Isolation

from Human Cells

284All steps starting from RNA isolation should be performed with
285RNase-free reagents and equipment.

2861. After aspiration of the medium, wash cells carefully with PBS
287(see Note 9).

2882. After aspirating PBS, cells are directly harvested and lysed in
289culture flasks using TRI Reagent. We suggest using 1 mL per
2908 � 106 cells (≙ confluent T25 flask of HEK293). Thoroughly
291pipette up and down and transfer the cell suspension into a
2921.5 mL tube.

Fig. 3 Yeast RNA isolation procedure used for the preparation of SILIS. Yeast cells are harvested by

centrifugation. The RNA is isolated by hot phenol/chloroform extraction, followed by ethanol precipitation

with each step outlined
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2933. Vortex for 20 s and then incubate for 5 min at room tempera-
294ture (see Notes 10 and 11).

2954. Add 1
5 of the volume of TRI Reagent used for cell lysis of

296chloroform (e.g., 200 μL chloroform to 1 mL cell suspension
297in TRI Reagent) and mix thoroughly until the whole suspen-
298sion becomes uniformly opaque.

2995. Leave the mixture at room temperature for 5 min and centri-
300fuge for 10 min at 10,000 � g at 4 �C.

3016. Transfer the aqueous phase (upper, clear) into a new 1.5 mL
302tube and add an equal volume of isopropanol (e.g., ~500 μL
303isopropanol per 1 mL TRI Reagent).

3047. Mix thoroughly and precipitate RNA overnight at �20 �C (see
305Note 12).

3068. Centrifuge RNA at 4 �C at 12,000� g for 60min. Implement a
307wash step with 70% ethanol.

3089. Resuspend pellet in 30–100 μL ultrapure water. Resuspended
309RNA can be stored at �20 �C for several years (see Note 13).
310

3.5 RNA Purification

by Size-Exclusion

Chromatography (SEC)

3111. For purification of tRNA and bulk rRNA, size-exclusion chro-
312matography (SEC) on anHPLC system is employed using SEC
313buffer as the mobile phase [12]. An AdvanceBio SEC 300 Å,
3142.7 μm, 7.8 � 300 mm column allows fast separation of tRNA
315from rRNAs using an isocratic elution at 1 mL/min with a
316column temperature of 40 �C [13]. After equilibration of the
317column for at least 30 min, up to 100 μg of total RNA can be
318injected. The large rRNA subunits co-elute from 3.5 to 4.8 min
319and the pure tRNA elutes from 6.9 to 7.9 min (see Note 14).

3202. For purification of 18S rRNA and 28S rRNA an AdvanceBio
321SEC 1000 Å, 2.7 μm, 7.8 � 300 mm column is used. Para-
322meters are the same as for the 300 Å column. 28S rRNA elutes
323from 5.0 to 7.2 min and 18S rRNA from 7.5 to 8.5 min (see
324Note 15).

3253. If parallel purification of 28S rRNA, 18S rRNA, and tRNA is
326desired, the two columns can be installed in tandem. The
3271000 Å column can be directly connected behind the 300 Å
328column using a short piece of 0.15 mm inner diameter capil-
329lary. One run takes 30 min with all other chromatographic
330parameters remaining identical to single column use. 28S
331rRNA then elutes from 9.5 to 11.9 min, 18S rRNA from
33212.6 to 14.8 min, and tRNA from 18.0 to 20.0 min (Fig. 5).

3334. Collect the desired fractions and concentrate them to ~50 μL
334using a lyophilizer or vacuum concentrator (see Note 16).

3355. Add 1
10 of the volume of 5 M NH4OAc, and then add 2.5� of

336the volume of ice-cold 100% ethanol (seeNote 17). Precipitate
337and resuspend RNA as described in Subheading 3.4.
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3383.6 RNA Purification

by Oligonucleotide

Hybridization Assay

339Purification of specific RNA types can be done by oligonucleotide
340hybridization. Our protocol is a variation of a published protocol by
341the Helm lab [14]. Please see Fig. 6 for an overview of the
342procedure.

3431. A DNA oligonucleotide (ON) of ~30 nucleotides in length
344with an additional AAA-tail and a biotin tag is designed com-
345plementary to the sequence of the target RNA (see Note 18).
346For example, the biotinylated ON used to purify tRNAPhe is
347shown below: [Btn] AAATGGTGCCGAAACCCGGGATC
348GAACCAGGGT.

3492. Equilibrate the beads by transferring 25 μL of streptavidin
350beads T1 (see Note 19) for each sample into a 1.5 mL tube
351(e.g., 200 μL for eight samples).

3523. Place the tube on a magnetic rack and leave it until the beads
353are attached to the wall of the tube. Then, carefully aspirate and
354discard the liquid.

3554. Resuspend the remaining beads in 25 μL (here: 200 μL for
356eight samples) of B&W buffer and repeat step 3. Repeat the
357wash twice with B&W buffer and then once with SSC buffer
358(5�). Finally, resuspend the beads in 25 μL (here: 200 μL for
359eight samples) SSC buffer (5�).

3605. For hybridization of RNA, mix up to 100 pmol of, ideally, size-
361prepurified RNA (see Note 20) with 100 pmol of ON in SSC
362buffer (5�) in a final volume of 100 μL. For example, mix
36320 μL total tRNA (or RNA of interest) (75 ng/μL), 1 μL ON
364(100 μM), 25 μL SSC buffer (20�), and 54 μL water. Heat the
365mixture to 90 �C for 3 min, and then instantaneously incubate
366for 10 min at 65 �C. Finally, allow the mixture to cool down to
367room temperature.

3686. Transfer 25 μL of equilibrated beads into each of the hybri-
369dized RNA samples. Mix thoroughly and incubate the samples

Fig. 4 Compounds used for stable isotope labeling in cell culture. Structures of 13C5,
15N2-uridine (left),

15N5-

adenine (middle), and CD3-methionine (right) are shown
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370on a thermomixer for 30–60-min shaking at 600 rpm at room
371temperature.

3727. To remove unbound RNA, place the sample back on the mag-
373netic rack and repeat step 3 above. Resuspend the beads in
37450 μL SSC buffer (1�). Repeat step 7 with SSC buffer (0.1�)
375three times.

3768. Finally, resuspend the beads in 10–30 μL water and incubate
377for 2 min at 75 �C. Subsequently, put the sample on the
378magnetic rack and transfer the RNA-containing liquid into a
379new tube.
380

3.7 RNA Digestion

and Filtration

3811. Dilute up to 1 μg of purified RNA in 20 μL ultrapure water.

3822. Freshly prepare a master mix for digestion according to
383Table 2.

3843. Add 15 μL of the master mix to each sample and mix by
385pipetting up and down.

3864. Incubate the samples for 2 h at 37 �C.

3875. Add 15 μL of LC-MS buffer (see Note 21).

3886. Transfer the whole sample volume to a 96-well filter plate
389(10 kDa MWCO) mounted on a skirted PCR plate (alterna-
390tively use single-filter tubes with 10 kDa MWCO; see the
391manufacturer’s manual) and centrifuge for 30 min at
3923000 � g and 4 �C (see Note 22).

3937. Transfer 2.5 μL of SILIS (10�) into LC-MS vials and add
39422.5 μL of the digested centrifuged RNA sample (from step
3956). Mix by pipetting up and down (see Note 23).
396

3.8 Calibration 3971. For calibration, weigh and dissolve all synthetic nucleosides
398(Table 1) in water to a stock concentration of 10 mM. Excep-
399tions are G, m2G, m22G, and Q which are, due to low solubility
400in water, dissolved to a stock concentration of 1 mM.

Fig. 5 Elution profiles of total RNA separated by size-exclusion chromatography. For purification, a 300 Å

column, a 1000 Å column, or both in combination are used. Small RNA may consist of 5S rRNA, 5.8S rRNA,

and tRNA. (*) indicates common contaminants (small molecules) in RNA samples isolated with TRI Reagent
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4012. To prepare the calibration solutions, first mix and dilute the
402desired nucleosides in a final concentration of 100 μM for the
403canonical nucleosides and 5 μM for the modified nucleosides
404(see Note 24). Aliquot the resulting “nucleoside start mix” in
40525 μL and store at -20 �C.

4063. Prior to usage, thaw one aliquot and dilute 10 μL with 90 μL
407water. This solution is used for the highest concentration of
408calibration (¼L12).

4094. We suggest serial dilution by mixing 50 μL with 50 μL water.
410Repeat until 12 solutions with descending concentration are
411prepared (L1–L12, 12�, 1:2 dilution).

4125. Transfer 2.5 μL of SILIS (10�) into LC-MS vials and add
41322.5 μL of calibration solution. Mix by pipetting up and
414down. An overview of preparation of calibration solutions and
415the resulting chromatogram is shown in Fig. 7.
416

3.9 LC-MS/MS

Measurement

4171. The chromatographic separation of the analytes is implemen-
418ted by high-performance liquid chromatography (HPLC). The
419separation is performed using a Synergi Fusion-RP 100 Å

4202.5 μm, 150 � 2.0 mm column from Phenomenex with a
421gradient elution.

4222. Regarding the separation of nucleosides on the HPLC we
423suggest the following setup:

424Parameter Setting

425Column oven temperature 35 �C

426Flow rate 0.35 mL/min

427Aqueous solvent (A) LC-MS buffer

428Organic solvent (B) Pure acetonitrile
429

Fig. 6 RNA purification using oligonucleotide hybridization. SEC-purified tRNA is incubated with a biotinylated

DNA probe (green) complementary to the tRNA of interest (red). Using streptavidin-coated magnetic beads, the

tRNA of interest is purified from total tRNA. This procedure can be applied to other RNA molecules in addition

to tRNA
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4303. The liquid chromatography is run with the following gradient:

431Time

Aqueous solvent (A)

LC-MS buffer

Organic solvent (B)

Acetonitrile

4320–1 min 100% 0%

4331–4 min Decreasing to 90% Increasing to 10%

4344–7 min Decreasing to 60% Increasing to 40%

4357–8 min 60% 40%

4368–11 min 100% 0%
437

4384. We suggest optimization of source parameters using a mix of
439the four canonical nucleosides. Optimized parameters deter-
440mined by our lab using Agilent’s “Source Optimizer” software
441are as follows:

442Parameter Setting

443Ionization ESI

444Ion mode Positive

445Skimmer voltage 15 V

446Cell accelerator voltage 5 V

447N2 gas temperature 230 �C

448N2 gas flow rate 6 L/min

449Sheath gas (N2) temperature 400 �C

450Sheath gas (N2) flow rate 12 L/min

451Capillary voltage 2500 V

452Nozzle voltage 0 V

453Nebulizer 40 psi
454

4555. Continue with the optimization of individual nucleosides.
456Implement a product ion scan in order to determine the frag-
457mentation of the respective nucleoside. Then continue with the
458optimization of fragmentor voltage (50–250 V) and collision
459energy (5–25 eV) and the determination of retention times for
460every nucleoside of interest with the goal of receiving the high-
461est sensitivity possible. This can be conducted manually or with
462Agilent’s “Optimizer” software. Optimized parameters for
463each nucleoside used in our settings are given in Table 3 (see
464Note 25).

4656. Design a dynamic multiple reaction monitoring (dMRM)
466method for sample measurement. As the sample contains a
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467mixture of nucleosides and their isotopologues, determine the
468precursor ion and product ion for every isotopologue that
469might occur in your mixture. Then, fill in the optimized para-
470meters for each nucleoside. If you decide to use a retention
471time window (ΔRT), determine the ΔRT for each compound.
472For most modified nucleosides, we suggest a 0.5–1 min ΔRT.
473Slight changes of pH in the samples might lead to shifted
474retention times, especially for m3C, m1A, and m7G. Thus, we
475recommend a ΔRT of 2–3 min for those.

4767. For later analysis using Agilent’s “Quantitative Mass Hunter”
477software it is important to specify every isotopologue by a
478unique compound name. Additionally, assign every analyte,
479including SILIS and the isotopologues, to their respective
480compound group and tick the SILIS box only for the SILIS
481isotopologue. An example is given in Table 4.

3.10 Data Analysis 482We analyze data with the quantitative and qualitative MassHunter
483Software from Agilent. Detailed instruction on how to handle
484Agilent’s MassHunter Workstation Software for Quantitative Anal-
485ysis is given in their Familiarization Guide which can be found
486online (https://www.agilent.com/cs/library/usermanuals/Pub
487lic/G3335_90061_Quant_Familiarization-EN.pdf) or in a video
488on the Kellner lab homepage (https://www.cup.lmu.de/oc/
489kellner/).

4901. The areas of the MS signals are integrated for each nucleoside.
491For the calibration, the values of integrated MS signals from
492target nucleosides are set in relation to the MS signals of the
493respective SILIS (seeNote 26) to receive the nucleoside isotope
494factor (NIF, Eq. (1)):

Fig. 7 LC-MS/MS calibration measurement. (a) Overview of calibration solution preparation. (b) Chromatogram

with UV (blue) and MS (black) trace indicating the identity of all peaks. 1: D, 2:Ψ, 3: C, 4: ncm5U, 5: m3C, 6: U,

7: m1A, 8: m5C, 9: m7G, 10: I, 11: G, 12: s2U, 13: Um, 14: m3U, 15: m1I, 16: m1G, 17: Gm, 18: mcm5U, 19:

m2G, 20: A, 21: t6A, 22: m22G, 23: Am, 24: mcm5s2U, 25: m6A, 26: m6Am, 27: m66A, 28: i6A

Quantification of Modified Nucleosides in the Context of NAIL-MS
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NIFnucleoside ¼
signal areanucleoside

signal arearespective SILIS

ð1Þ

495

4962. Results from Eq. (1) are plotted against the expected molar
497amount of nucleosides and regression curves are plotted
498through the data points. The slopes represent the respective
499relative response factors for the nucleosides (rRFN) and enable
500an absolute quantification. The plotting of these calibration
501curves is done automatically by the quantitative MassHunter
502software and should be checked manually for linearity (seeNote
50327). This principle is outlined in Fig. 8a. The calibration curves
504measured with the synthetic standards (unlabeled) are used for
505each isotopologue of the respective compound (see Note 28).

5063. Molar amounts of nucleosides in samples are then calculated
507according to Eq. (2) using the signal areas of target compounds
508and SILIS in the samples and the respective rRFN, determined
509by calibration measurements. This step is done automatically
510by the quantitative MassHunter software:

nsample nucleoside ¼
signal areasample nucleoside

rRFNnucleosideñsignal arearespective SILIS

ð2Þ

511

5124. To make different samples quantitatively comparable, the
513molar amount of each modified nucleoside has to be normal-
514ized by the molar amount of canonical nucleosides. This can be
515done by normalizing the molar amount of a single or the sum
516of canonical nucleosides or by normalizing the molar amount
517of injected RNA to receive the number of modifications per
518RNA molecule. Therefore, the calculated amount of injected
519canonical nucleotides must be divided by their expected occur-
520rence in the respective RNAs and averaged afterwards
521(Eq. (3)). The numbers for each canonical nucleoside are either
522taken from known sequences or determined empirically.
523Figure 8b summarizes the theory of MS quantification. The
524different isotopologues have to be referenced to their
525corresponding labeled canonicals (e.g., unlabeled modifica-
526tions have to be referenced to unlabeled canonicals). An exam-
527ple for the labeled nucleoside m7G is shown in Table 5. A quick
528overview of the principles of absolute quantification in a NAIL-
529MS experiment is shown in Fig. 8c:

ntRNA ¼
nC

#C þ nU

#U þ nG

#G þ nA

#A

4
ð3Þ

530

531
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t:1 Table 3

Optimized QQQ parameters for nucleosides

Compound

name

Precursor

ion

MS1

Res

Product

ion

MS2

Res

Ret time

(min)

Delta Ret

time Fragmentor

Collision

energyt:2

A 268.1 Wide 136 Unit 5.2 1 200 20t:3

ac4C 286.1 Wide 154 Unit 5 1 85 9t:4

acp3U 346.1 Wide 214 Unit 2.3 1 95 15t:5

Am 282.1 Wide 136 Unit 6 1 130 17t:6

C 244.1 Wide 112 Unit 2.1 1 200 20t:7

Cm 258.1 Wide 112 Unit 4.1 1 180 9t:8

D 247.1 Wide 115 Unit 1.6 1 70 5t:9

G 284.1 Wide 152 Unit 4.3 1 200 20t:10

Gm 298.1 Wide 152 Unit 5 1 100 9t:11

I 269.1 Wide 137 Unit 4.1 1 100 10t:12

i6A 336.3 Wide 204 Unit 8 1 140 17t:13

m1A 282.1 Wide 150 Unit 2.2 1.5 150 25t:14

m1G 298.1 Wide 166 Unit 4.9 1 105 13t:15

m1I 283.1 Wide 151 Unit 4.8 1 80 12t:16

m1Ψ 259.0 Wide 223 Unit 3.1 1 85 5t:17

m22G 312.1 Wide 180 Unit 5.7 1 105 13t:18

m2G 298.1 Wide 166 Unit 5.1 1 95 17t:19

m3C 258.1 Wide 126 Unit 2.3 1,5 88 14t:20

m3U 259.1 Wide 127 Unit 4.8 1 75 9t:21

m5C 258.1 Wide 126 Unit 3.8 1 185 13t:22

m5U 259.1 Wide 127 Unit 4.4 1 95 9t:23

m66A 296.0 Wide 164 Unit 7.1 1 130 21t:24

m66Am 310.0 Wide 164 Unit 7.5 1 120 15t:25

m6A 282.1 Wide 150 Unit 6.5 1 125 17t:26

m6Am 296.0 Wide 150 Unit 7 1 125 17t:27

m7G 298.1 Wide 166 Unit 3.6 1 100 13t:28

mcm5s2U 333.1 Wide 201 Unit 6.2 1 92 8t:29

ncm5s2U 318.1 Wide 186 Unit 4.2 1 95 7t:30

mcm5U 317.1 Wide 185 Unit 5 1 95 5t:31

ncm5U 302.0 Wide 170 Unit 2.5 1 85 8t:32

cm5U 303.1 Wide 171 Unit 2 1 100 7t:33

(continued)

Quantification of Modified Nucleosides in the Context of NAIL-MS



5324 Notes

5331. The first generation of SILIS is suited for quantification of
534unlabeled RNA samples from, for example, tissue samples. It
535is produced in the presence of 12CD3-methionine using
536

13C-rich growth medium. Due to the presence of 13CH3-
537methionine in the 13C-rich growth medium only 80% of the
538methyl marks were 12CD3-labeled while 20% were 13CH3-
539labeled and thus 2 Da lighter than required for our newly
540developed cell culture NAIL-MS experiments (Fig. 9). Our
541second-generation SILIS does not rely on methionine labeling
542and the successful monoisotopic labeling is shown in Fig. 10.

5432. For example, labeling of purines and the respective modifica-
544tions in medium A (+5 for adenosines, +4 for guanosines) with
545a CD3-methionine-labeled culture in medium B (+3 for all
546methylated nucleosides) could potentially lead to difficulties
547in data acquisition as the resulting isotopologues differ by
548only 1–2 Da. We recommend one unlabeled culture while the
549other culture is 15N-, 13C-, and D3-labeled.

5503. Compared to unlabeled nucleosides, we observe very low MS
551background signals for labeled nucleosides. Therefore, we rec-
552ommend starting with unlabeled cells and switch to labeled
553medium upon initiation of the experiment. We refer to this
554approach as “forward” experiment. This is important as the
555abundance of new nucleosides (¼labeled in forward) is natu-
556rally very low upon experiment initiation.

t:34 Table 3

(continued)

Compound

name

Precursor

ion

MS1

Res

Product

ion

MS2

Res

Ret time

(min)

Delta Ret

time Fragmentor

Collision

energyt:35

Q 410.2 Wide 295 Unit 4.3 1 115 12t:36

s2U 261.1 Wide 129 Unit 4.3 1 80 6t:37

t6A 413.1 Wide 281 Unit 5.8 1 130 9t:38

U 245.1 Wide 113 Unit 3 1 95 5t:39

Um 259.2 Wide 113 Unit 4.6 1 96 8t:40

Ψ 245.1 Wide 209 Unit 1.7 1 90 5t:41

ManQ 572.3 Wide 295.5 Unit 3.9 1 120 20t:42

GalQ 572.3 Wide 295.5 Unit 4.1 1 115 20t:43

t:44 Determined by using unlabeled synthetic nucleosides. The same parameters can be applied to labeled nucleosides (with

separate compound name) when m/z of precursor and product ions are increased accordingly
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5574. Collart et al. [15] suggest storing acidic phenol at 4 �C. We
558observed diminished extraction efficiency over time, when
559acidic phenol was stored at 4 �C. Instead we store acidic phenol
560in aliquots at �20 �C and thaw it directly before use to ensure
561uniform extraction efficacy.

5625. If a NAIL-MS sample shows low signal intensity of the SILIS,
563the UV detection of theophylline at 260 nm acts as an external
564standard to rule out potential errors.

5656. Instead of DMEM medium, it is possible to use RPMI R0883
566or IMDM I3390 if supplemented with the labeled compounds
567using the same concentrations as for DMEM. As these media
568are already supplemented with methionine, the complete label-
569ing of methyl groups may not work. For this purpose, choose
570media that lack methionine. HeLa (in DMEM or RPMI) and
571HAP (in DMEM or IMDM) cells were also successfully labeled
572in these media.

5737. Labeled adenine is used for the labeling of all purines whereas
574labeled uridine is used for the labeling of all pyrimidines.
575Labeled methionine is supplemented if the labeling of
576SAM-dependent methyl groups is desired. If available, different
577labeled isotopologues can be used. Keep in mind that all mass

t:1 Table 4

Setting of compound groups during dMRM method setup of nucleosides

(here shown for Am)

Compound name Compound group ISTDt:2

Am Am Falset:3

Am D3 lab Am Falset:4

Am core lab Am Falset:5

Am fully lab Am Falset:6

Am SILIS Am SILIS Truet:7

t:1 Table 5

Quantification of m7G per AU2tRNA (based on G)

m7G (pmol) G (pmol) m7G per tRNAt:2

area m7G 15
0 N,CD3ð Þ

rRFN m7Gñarea m7G SILISð Þ

area G 15
0 Nð Þ

rRFN Gñarea G SILISð Þ

m7G pmolð Þ
G pmolð Þ

#of G in sequencet:3

t:4 First the molar amount of injected nucleosides is calculated based on the signal areas of target nucleosides and SILIS and

the respective calibration curves (here for m7G and G). These steps are done automatically by the quantitative Mas-

sHunter software. Then the molar amount of modification is divided by the molar amount of respective RNA molecules

calculated by dividing the molar amount of canonical nucleosides by the expected number (#) of the respective canonical

(here based on G)
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578transitions potentially differentiate from the ones reported
579here. For proper evaluation by MS, all resulting masses should
580be more than 2 Da higher than the respective other

Fig. 8 Concepts of absolute quantification by LC-MS/MS. (a) Calibration curves are plotted by calculating the

NIF of each nucleoside. (b) Absolute amounts of canonicals and modifications are calculated by dividing the

sample area by the respective SILIS area and by applying the previously determined calibration curves.

Modification per tRNA can be calculated by referencing to the injected amount of RNA molecules (based on

expected numbers of canonicals). (c) Absolute amounts of modifications have to be referenced to the

respective labeled canonicals. Thereby original, new, and post-methylated transcripts can be investigated

in parallel
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581isotopologues to ensure that there is no overlap with nucleo-
582sides already carrying naturally occurring 13C-atoms.

5838. Instead of quenching medium, the respective growth medium
584(supplemented with the labeled compounds as desired) can be
585used. For economic reasons, we suggest using the cheaper
586quenching medium.

5879. PBS wash is only required if a portion of cells are to be har-
588vested for protein/non-RNA analysis or if a large portion of the
589cells die during the experiment.

59010. Lysed cells can be stored at �20 �C for up to 1 month.

59111. The harvesting procedure might differ for other cell types, e.g.,
592for yeast.

59312. Precipitation for 1 h is possible but may result in lower quan-
594tities. Incubating at �80 �C should be considered for very
595short precipitation times.

59613. From our experience, thiolated nucleosides and especially wob-
597ble uridines are susceptible to degradation upon long-term
598storage.

59914. The retention time of rRNA subunits from different organisms
600may be different as a consequence of the subunit’s sizes. Also,
601retention times might shift depending on the operating life of
602the column. Always inject a test sample for proper evaluation of
603retention times.

60415. tiRNA purification is possible with a 130 Å column [13].

60516. Take care that the RNA is not concentrated to dryness as this
606might lead to RNA degradation.

60717. Alternatively, co-precipitants (e.g., 1 μL of GlycoBlue™) can
608be added to each sample to facilitate RNA precipitation and
609simplify washing steps.

61018. CG- or AU-rich sequences and a high number of modifications
611can alter the necessary melting temperature and may require
612optimization.

61319. In our experience, all four types of streptavidin-coated Dyna-
614beads® can be used. M-270 and M-280 beads require the use
615of 50 μL instead of 25 μL (as used for T1 and C1 beads) per
616sample.

61720. The use of pre-purified RNA is crucial to avoid unspecific
618binding of other RNAs with similar sequence motifs which
619are highly abundant in total RNA preparations.

62021. The addition of LC-MS buffer (pH 5.3) to digested samples
621(pH 8.0) lowers the pH and improves nucleoside stability,
622detection efficiency, and retention time reproducibility. How-
623ever, if the concentration of RNA is very low, it may be consid-
624ered to skip this step.

Quantification of Modified Nucleosides in the Context of NAIL-MS



62522. Filtration of digested samples is important to avoid contamina-
626tion of the HPLC with digestion enzymes and particles. How-
627ever, some filter materials might interact with the nucleosides
628(e.g., Na+ adducts) and perturb analysis.

62923. Samples should be measured directly after digestion to avoid
630degradation of unstable modifications such as wobble uridines.

63124. These concentrations apply for tRNA analysis. Here, the mod-
632ified nucleosides D and Ψmight be added in higher concentra-
633tions (e.g., 20 μM). For the analysis of different RNA
634molecules, it may be necessary to change the concentration
635ratio in order to adapt to the natural-occurring RNA modifica-
636tion density.

63725. Most types of RNA have a substantial excess of canonical
638nucleosides, which would saturate the MS detector at the
639injection amounts needed for detection of modified nucleo-
640sides. Thus, we use nonoptimal MS parameters for all canonical
641nucleoside isotopologues (e.g., fragmentor voltage or collision
642energy substantially higher) to artificially impair sensitivity. For
643analysis of purified RNAs such as tRNA isoacceptors, we rec-
644ommend using optimal parameters for canonical nucleosides.

64526. Assign each isotopologue to its respective SILIS compound.
646For example, all m5C compounds (unlabeled and labeled)
647should be referenced to the m5C SILIS compound.

64827. The range of calibration must be wide enough to include the
649measured concentrations of each isotopologue. Special care
650should be taken that the calibration curve is linear in each
651segment that is used for sample analysis. Therefore, calibration
652points that fall below the lower limit of quantification and
653higher concentrations that result in detector saturation should
654be excluded.

65528. In Agilent’s quantitative MassHunter software navigate to
656“Tools” > “Actions” > “Copy Calibration Level” in the
657method adjustment window. This will activate a script which
658transfers the respective peak areas of the unlabeled calibration
659compound to each isotopologue which is in the respective
660compound group (also see Table 4). From this timepoint on
661it is crucial to only quantify the batch if needed. Activating
662“Analyze batch” results in reversing of the used script to copy
663calibration curves to each isotopologue.
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3.1 Etablierung und Anwendung von NAIL-MS in Zellkulturen 
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 Uniformität der Isotopenmarkierung 

Eine Grundvoraussetzung für die Funktionalität von NAIL-MS in Zellkultur ist die Deaktivie-

rung der de novo Nukleotid-Biosynthese. HEK-293-Zellen, sowie die meisten anderen Zellkul-

tursysteme, verfügen über einen Biosyntheseapparat welcher Metaboliten wie CO2, Glutamin, 

Aspartat, Glycin, Formiat und Glukose benötigt, um Nukleotide biosynthetisch selbst herzu-

stellen (Abbildung S1). Diese werden anschließend als Grundbausteine der RNA-Moleküle 

und der entsprechenden Modifikationen verwendet. Die Biosynthese vieler dieser Metaboliten 

bedient sich wiederum verschiedenster anderer Zellmetaboliten und Nährstoffe wodurch ein 

komplexes System aufgebaut wird. Die Substitution aller Inhaltsstoffe eines Zellkulturmediums 

durch ausschließlich isotopenmarkierte Nährstoffe, um dadurch vollständige Isotopenmarkie-

rung aller Nukleotide zu erhalten, ist aufgrund der Komplexität von Zellkulturmedien nicht 

realisierbar. Zudem ist die Supplementierung von fetalem Rinderserum (engl.: fetal bovine se-

rum, FBS) für die meisten Zellkultursysteme und Medien vorherge-

sehen. FBS ist ein Naturstoffgemisch und setzt sich daher ebenfalls 

aus unmarkierten Nährstoffen wie Serumproteinen, Wachstumsfak-

toren, Hormonen, aber auch kleinen Metaboliten zusammen. Wäh-

rend in den letzten Jahren vermehrt an biosynthetischen Alternativen 

mit definierter Zusammensetzung geforscht wurde, wird der Einsatz 

dieser, trotz positiver Berichte274, 275 noch mit Skepsis betrachtet. 

Um trotz Zugabe von FBS – und des daraus resultierenden nicht kon-

trollierbaren Nährstoffgemischs in Zellkulturmedien – eine einheit-

liche Isotopenmarkierung der Nukleotide zu erhalten, wurde eine 

Suppression der de novo Nukleotid-Biosynthese angestrebt. Die 

Supplementierung des Nukleosids (13C5,15N2-)Uridin und der Nuk-

leobase (15N5-)Adenin im Medium hat sich für diese Aufgabe als 

ideal herausgestellt (Abbildung 3.1). Zur Isotopenmarkierung von 

Methylgruppen wurde 2H3-Methionin (D3-Methionin) verwendet.  

Für vollständige Isotopenmarkierung aller Nukleoside in RNA-Molekülen wurden Zellen vor 

Aufreinigung der RNA über eine Dauer von 7 Tagen in isotopenmarkiertem Medium kultiviert 

(Abbildung 3.2). Wie schon in Heiss et al. (Nat. Comm., 2021) durch hochauflösende Massen-

spektrometrie (HRMS) gezeigt, sind in der zu Nukleosidebene verdauten Probe kaum noch un-

markierte Nukleoside vorhanden. Da die de novo Nukleotid-Biosynthese von im Zellkulturme-

Abbildung 3.1: Iso-

topenmarkierung von 

Uridin und Adenin. 
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dium vorhandenen unmarkierten Metaboliten abhängig ist, kann anhand dieser Ergebnisse da-

von ausgegangen werden, dass die de novo Biosynthese durch die Zugabe von Uridin und A-

denin ganz oder zumindest größtenteils deaktiviert wird. Der minimale Anteil an verbleibenden, 

unmarkierten Nukleosiden kann auf das Vorhandensein langlebiger RNA-Moleküle276 (z.B.: 

rRNA) von Zellen, welche bereits vor dem Start der Isotopenmarkierung vorlagen, erklärt wer-

den. Außerdem wird vom Hersteller eine Isotopenreinheit von 96–98 % für 13C5,15N2-Urdidin 

und 15N5-Adenin angegeben, wodurch ebenfalls eine minimale Menge unmarkierter Nukleoside 

vorhanden sein könnte. Eine weitere Erklärung für die Präsenz unmarkierter Nukleoside wäre 

die Wiederverwendung von bereits in RNA-Molekülen eingebauten Nukleosiden, die von der 

Zelle rückgewonnen und anschließend für die Biosynthese neuer RNA-Moleküle verwendet 

werden. Greifen die Zellen nicht ausschließlich auf die zugefütterten Isotopen-Varianten von 

Adenin und Uridin zurück, kann es somit vorkommen, dass Oligonukleotide entstehen, welche 

sowohl aus unmarkierten als auch isotopenmarkierten Nukleosiden aufgebaut sind. Dies hätte 

eine Verzerrung insbesondere bei „Pulse-Chase“-Experimenten zufolge, da vor Allem zu Be-

ginn der „Chase“-Phase neu synthetisierte RNA-Moleküle nicht von originalen, bereits existie-

renden RNA-Molekülen unterschieden werden können. 

Um sowohl die de novo Nukleotid-Biosynthese, als auch die Rückgewinnung und den Wieder-

einbau von originalen Nukleosiden als Fehlerquelle auszuschließen, wurde ein natives RNA-

Fragment aufgereinigt und auf dessen Isotopenverteilung untersucht. Eine Voraussetzung an 

das gewählte Oligonukleotid ist die Möglichkeit der eindeutigen Zuordnung: Eine identische 

Sequenz sollte im Rest des Transkriptoms nicht vorhanden sein. Um zusätzlich die Untersu-

chung der Auswirkung von Isotopenmarkierung auf Modifikationen zu ermöglichen, wurde ein 

46-mer am 3‘-Ende der 18S rRNA gewählt. Dieses enthält die Modifikationen m6A, m66A und 

ac4C (Abbildung 3.3). Für die Analyse durch hochauflösende Massenspektrometrie ist ange-

Abbildung 3.2: Vorgehensweise zur vollständigen Isotopenmarkierung aller Nukleoside 

in RNA-Molekülen. Subkultiv. = Subkultivierungen 
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sichts der resultierenden, höheren Sensitivität eine Aufreinigung der gewählten Sequenz sinn-

voll. Nach Aufreinigung der 18S rRNA über Größenausschlusschromatographie (SEC) sollte 

das Oligonukleotid über das Mung-Bean-Nuklease(MBN)-System aufgereinigt werden. Diese 

Methode beruht auf der Hybridisierung der gewünschten Sequenz mit einem revers komple-

mentären DNA-Oligonukleotid und anschließendem Verdau von einzelsträngiger, also nicht 

hybridisierter RNA durch MBN. Nach anfänglichen Schwierigkeiten im Prozess der Aufreini-

gung konnte ein vielversprechendes Protokoll, welches in Kapitel 5.3 Biochemische Metho-

den beschrieben wird, etabliert werden. 

Die erfolgreiche Aufreinigung der Sequenz wurde durch absolute Quantifizierung der Nukleo-

side mittels Nukleosid-MS überprüft. Das gemessene Modifikationsprofil wurde mit dem zu 

erwartenden verglichen (Tabelle 3.1). Als Kontrolle diente aufgereinigte, nicht mit MBN be-

handelte 18S rRNA. Gezeigt werden lediglich Modifikationen, die im durch MBN aufgereinig-

ten Oligonukleotid detektiert wurden. Weitere Modifikationen, die in der intakten 18S rRNA 

Untereinheit quantifiziert wurden, sind im Kapitel 3.5.3 Allgemeine Modifikations-Studien 

zusammengefasst.  

Bei der Gegenüberstellung der Daten vor und nach Anwendung des MBN-Verdaus fällt auf, 

dass das gemessene Modifikationsprofil dem zu erwartenden eher entspricht, wenn auf den 

MBN-Verdau verzichtet wird. Der Anteil an quantifizierter ac4C-Modifikation entspricht im 

Verdau von intakter 18S rRNA 106% und befindet sich somit nahe am Erwartungswert. Im 

durch MBN verdauten Oligonukleotid ist dieser Wert mit 15% weitaus geringer. Anzumerken 

ist, dass in 18S rRNA insgesamt zwei Positionen berichtet wurden, an denen eine ac4C-Modi-

fikation inkorporiert wird. In der Sequenz nach MBN-Verdau ist nur eine dieser Positionen 

enthalten. Die Menge an m6A entspricht in 18S rRNA 70% des zu erwartenden Wertes. Im 

durch MBN verdauten Oligonukleotid beträgt diese nur 49%. Die Unterschiede können dabei 

durch den MBN-Verdau selbst herbeigeführt werden. Dieser besteht aus mehreren Schritten, 

Abbildung 3.3: Sequenz des zu analysierenden Oligonukleotids aus 18S rRNA. Die ge-
zeigte Sequenz befindet sich am 3‘-Ende der 18S rRNA Untereinheit und wurde zur Überprü-
fung des Wiedereinbaus von bereits verwendeten Nukleosiden (unmarkiert) in neue RNA-Mo-
leküle (isotopenmarkiert) verwendet. Das für die MBN-Methode nötige DNA-Oligonukleotid 
ist revers komplementär zum in schwarz geschriebenen Sequenzabschnitt. Blaue Linien zwi-
schen den Nukleosiden zeigen die Schnittstellen von RNase T1 an (nach jedem Guanosin). 
Blaue Kästen (#1, #2 und #3) heben die drei Oligonukleotide hervor, die durch hochauflösende 
Massenspektrometrie analysiert werden sollten. 
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und ist somit vergleichsweise fehleranfällig. So ist es beispielsweise möglich, dass die Hybri-

disierung des DNA-Oligonukleotids an die Zielsequenz durch vorhandene Modifikationen er-

schwert wird. Das Resultat wäre eine präferierte Aufreinigung von unmodifizierten RNA-Se-

quenzen. Ebenso ist es möglich, dass die Menge an aufgereinigtem Material nach dem MBN-

Verdau selbst für QQQ-Messung zu gering ist. Das Ergebnis könnte daher aufgrund zu geringer 

Signal-Intensitäten durch Hintergrundrauschen verzerrt sein.  

Tabelle 3.1:  Anteil an quantifizierten Modifikationen im MBN-Verdau und 18S rRNA. 
Die Menge an jeweiliger Modifikation pro Molekül wurde für den MBN-Verdau und intakte 
18S rRNA über Massenspektrometrie bestimmt (gemessen) und mit den in der Literatur publi-
zierten Werten (berichtet) verglichen. Der Quotient aus beiden Werten gibt den prozentualen 
Anteil der berichteten Modifikation im jeweiligen Molekül an (%).  

Im nächsten Schritt wurde die Qualität eines RNase-T1-Verdaus von intakter 18S rRNA mit 

der Qualität eines RNase-T1-Verdaus des durch MBN verdauten Oligonukleotids verglichen. 

Für beide konnten durch hochauflösende Massenspektrometrie spezifische Oligonukleotide 

nachgewiesen werden. Am prominentesten war das 7-mer #1, welches die m6A-Modifikation 

trägt (Abbildung 3.4 A). Dieses konnte sowohl im +2 als auch im +3 Ladungszustand detektiert 

werden. Das Oligonukleotid #2 konnte mit weitaus geringerer Intensität ebenfalls nachgewie-

sen werden. Die Detektion des Oligonukleotids #3, welches zwei m66A-Modifikationen trägt 

blieb erfolglos. Die Detektion zweier zu erwartender Oligonukleotide im MBN-Verdau zeugt 

von zumindest teilweisem Erfolg der Aufreinigung. Das gesuchte Oligonukleotid #1 konnte 

auch im RNase-T1-Verdau intakter 18S rRNA detektiert werden. Dort lieferte es, trotz der hö-

heren Komplexität der Probe, ein besseres Signal-zu-Rausch-Verhältnis. Aufgrund der gerin-

geren Fehleranfälligkeit wurden weiterführende Experimente daher mit intakter 18S rRNA 

durchgeführt und auf die weitere Optimierung des MBN-Verdaus im Zuge dieser Arbeit ver-

zichtet. 

 MBN Verdau 18S rRNA 

 gemessen berichtet277 % gemessen berichtet277 % 

m66A 1,93 1,88 103 1,70 1,88 90 

m6A 0,49 1,00 49 0,70 1,00 70 

ac4C 0,15 1,00 15 1,90 1,80 106 
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Nach erfolgreicher Detektion der spezifischen Oligonukleotide sollte der Effekt der Isotopen-

markierung auf ebendiese untersucht werden. Zellen wurden über eine Dauer von 7 Tagen in 

isotopenmarkiertem Medium kultiviert (13C5,15N2-Uridin, 15N5-Adenin und D3-Methionin). An-

schließend wurde die 18S rRNA über SEC aufgereinigt, durch RNase T1 zu Oligonukleotiden 

verdaut und über HRMS analysiert. Das Oligonukleotid #1 konnte mit dem durch die Isotopen-

markierung zu erwartenden Massenanstieg detektiert werden (Abbildung 3.4 A/B). Um den 

Wiedereinbau von bereits zuvor verwendeten Nukleosiden in diesem Oligonukleotid auszu-

schließen wurde ein „Pulse-Chase“-Experiment durchgeführt. Zellen wurden in unmarkiertem 

Medium kultiviert bevor bei einer Konfluenz von etwa 70% auf isotopenmarkiertes Medium 

gewechselt wurde. Während nach 6 h noch kein Oligonukleotid neuer (isotopenmarkierter) 

18S rRNA detektiert werden konnte, war nach 24 h ein eindeutiges Signal erkennbar (Abbil-

dung 3.4 C). Trotz erheblicher Menge an neu synthetisierter rRNA nach 24h, konnte kein Oli-

gonukleotid, welches einen gemischten Aufbau von isotopenmarkierten und unmarkierten Nuk-

leosiden aufweist, detektiert werden. Dies spricht gegen den Wiedereinbau bereits genutzter 

Nukleotide für die Biosynthese neuer rRNA-Moleküle. Wie zu erwarten kann nach 7 Tagen 

Kultivierung in isotopenmarkiertem Medium fast ausschließlich das isotopenmarkierte Oligo-

nukleotid nachgewiesen werden. Für das unmarkierte Oligonukleotid konnte nahezu kein Sig-

nal detektiert werden. 

Abbildung 3.4: HRMS nach RNase T1 Verdau von 18S rRNA. Die 18S rRNA Unterein-
heit wurde aufgereinigt und mit RNase T1 zu Oligonukleotiden verdaut. Gezeigt sind Massen-
spektren von (A) unmarkierter 18S rRNA und (B) isotopenmarkierter 18S rRNA. Gezeigt ist 
jeweils ein zweifach und dreifach geladenes Kation des prominentesten Oligonukleotids. Alle 
Zellen wurden 7 Tage im entsprechenden Medium kultiviert. (C) HRMS Spektren des zeitli-
chen Verlaufs nach Mediumwechsel von unmarkiertem zu isotopenmarkiertem Medium. 
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Zusammenfassend lässt sich sagen, dass der Wiedereinbau bereits von der Zelle verwendeter 

Nukleotide in neu entstehende RNA-Moleküle nicht nachweisbar ist. Eine direkte Durchmi-

schung des originalen und neuen Nukleotid-Bestands scheint nicht stattzufinden. Es kann aller-

dings nicht ausgeschlossen werden, dass andere Sequenzbereiche des rRNA-Moleküls eine ab-

weichende Isotopenmarkierung aufweisen. In der untersuchten Sequenz traten für die gewähl-

ten Zeitpunkte keine RNA Oligonukleotide auf, welche sowohl aus unmarkierten als auch iso-

topenmarkierten Nukleosiden aufgebaut sind. Eine zusätzliche Untersuchung des Isotopenmus-

ters nach zwei bis vier Tagen erscheint sinnvoll. Für weiterführende Untersuchungen anhand 

von NAIL-MS sollte diese Validierung für tRNA-Moleküle und falls möglich auch andere 

RNA-Moleküle wie bspw. mRNA durchgeführt werden. Da die Kinetik des Auf- und Abbaus 

dieser RNA-Moleküle teils stark von dem der 18S rRNA abweicht sind Unterschiede im Er-

gebnis nicht auszuschließen. Die Aufreinigung über das Mung-Bean-Nuklease System sollte 

weiter optimiert werden, um die Sensitivität für niedrig abundante RNA-Moleküle zu erhöhen. 
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 Einfluss von NAIL-MS auf tRNA-Isoakzeptoren (Northern-Blotting) 

In Heiss et al. (Nat. Comm., 2021) wurde der Einfluss von NAIL-MS auf tRNA, dort explizit 

für tRNAPhe
GAA gezeigt. Äquivalente Studien wurden für tRNAHis

GUG, tRNATyr
GUA, 

tRNAAsn
GUU, tRNAAsp

GUC, tRNAGly
GCC und tRNASer

UGA durchgeführt. 

Anhand von Northern-Blotting wurde die Abhängigkeit der Abundanz der tRNA-Moleküle von 

der Isotopenmarkierung analysiert. Zellen wurden in unmarkiertem oder isotopenmarkiertem 

(13C5,15N2-Uridin, 15N5-Adenin und D3-Methionin) Medium kultiviert und nach 7 Tagen geern-

tet. Die gesamte RNA wurde aufgereinigt und über Gelelektrophorese aufgetrennt. Nach der 

Übertragung auf eine Membran wurde jeweils unmarkierte und isotopenmarkierte 5S rRNA 

zusammen mit dem jeweiligen tRNA-Isoakzeptor durch die eigens hierfür synthetisierten 

DNA-Sonden nachgewiesen (~30mer DNA-Oligonukleotide gekoppelt mit dem Cyanin-Farb-

stoff Cy3). 5S rRNA diente als Ladekontrolle und wurde zur Normalisierung bei der Berech-

nung der tRNA-Isoakzeptor-Abundanz verwendet.  

Alle tRNA-Moleküle weisen eine geringe Reduzierung der Abundanz in isotopenmarkiertem 

Medium auf (Abbildung 3.5). Während die tRNA-Isoakzeptoren tRNAGly, tRNATyr, tRNAPhe 

und tRNAAsp eine Reduzierung um 6–8 % aufweisen, sind es bei tRNASer und tRNAAsn 15 %. 

Eine erneute Durchführung der Gelelektrophorese lieferte vergleichbare Resultate. Die Bande 

von tRNASer läuft geringfügig höher als die restlichen tRNA-Isoakzeptoren. Dies ist auf die 

Abbildung 3.5: Northern Blot Analyse unmarkierter und isotopenmarkierter tRNA-Iso-

akzeptoren. In beiden Medien wurden Adenin, Uridin und Methionin jeweils als entsprechen-
des Isotopolog zugegeben (ctr = unmarkiert, iso = isotopenmarkiert). Nach Extraktion der Ge-
samt-RNA wurden jeweils 1,3 µg geladen, über PAA-Gelelektrophorese aufgetrennt und an-
schließend auf eine Nylon-Membran übertragen. Die Detektion erfolgte über komplementäre 
DNA-Sonden an die jeweils an beiden Enden ein Cyanin-Farbstoff (Cy3) gekoppelt wurde (λex 
= Anregungswellenlänge, λem = Emissionswellenlänge). Die obere Bande repräsentiert jeweils 
5S rRNA, die untere Bande den ausgewiesenen tRNA-Isoakzeptor. Die Intensität der Banden 
wurde quantifiziert und daraus die Abundanz in isotopenmarkiertem Medium berechnet. Diese 
ist als Prozentzahl unter den jeweiligen tRNA-Isoakzeptoren angegeben. 
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Länge der variablen Schleife zurückzuführen, welche in tRNASer aus deutlich mehr Nukleosi-

den besteht. Ein Grund für die geringe Abweichung zwischen den publizierten Daten von 

tRNAPhe (98 %) und den hier gezeigten (92 %) könnte darin liegen, dass die Zellen bei Durch-

führung des Experiments jeweils eine unterschiedliche Passagenzahl durchlaufen hatten. Ab-

hängig von der Passagenzahl kann die Transkriptionsrate von tRNA-Isoakzeptoren, aber auch 

von anderen RNA-Molekülen verschieden sein. Die Zugabe isotopenmarkierter Metabolite 

könnte diesen Effekt verstärken und somit zur Diskrepanz zwischen den publizierten und den 

hier gezeigten Daten führen.  

Anders als im hier gezeigten Experiment, wurde für die Datenerhebung der unmarkierten Zellen 

in der Publikations-Studie Standard-Medium (DMEM D6546) verwendet. Dieses wird mit nor-

malem FBS (nicht dialysiert) supplementiert. Bei Standard-Medium wurde auf die Zugabe von 

Adenin und Uridin verzichtet. Die entsprechend isotopenmarkierten Zellen wurden in Spezial-

Medium (DMEM D0422) kultiviert, welches mit dialysiertem FBS und den entsprechenden 

Isotopologen von Uridin, Adenin und Methionin supplementiert wird. Dieser Ansatz sollte si-

cherstellen, dass weder die allgemeine Verwendung des Spezial-Mediums, noch die Zufütte-

rung der isotopenmarkierten Präparate einen Einfluss auf die die Transkriptionsrate von tRNA-

Molekülen haben.  

Die Zugabe von Uridin und Adenin im Spezial-Medium könnte einen Anstieg der Transkripti-

onsrate von tRNA hervorrufen. Die isotopenmarkierte Variante von Uridin konnte laut Herstel-

ler allerdings nicht vollständig von einem der Edukte getrennt werden konnte. Diese Verunrei-

nigung wurde vom Hersteller mit ~ 20 % angegeben. Stocklösungen gleicher Konzentrationen 

(ermittelt über Einwaage, Isotopenmarkierung berücksichtigt) von unmarkiertem und isotopen-

markiertem Uridin wurden über Massenspektrometrie verglichen. Die Intensität des Signals für 

isotopenmarkiertes Uridin betrug lediglich 71% der Intensität des unmarkierten Isotopologs. Es 

kann daher davon ausgegangen werden, dass die unbekannte Verunreinigung bis zu 29 % be-

trägt. Dies führt zu geringeren Konzentrationen von isotopenmarkiertem Uridin im Zellkultur-

medium und schleppt zusätzlich die unbekannte Verunreinigung ein. Eine molekulare Antwort 

der Zelle könnte eine entsprechende Regulierung der tRNA-Transkription sein. Der potenzielle 

Anstieg der tRNA-Transkriptionsrate würde durch Zugabe von Uridin und Adenin in Spezial-

Medium immer auftreten. Durch die Verunreinigung von isotopenmarkiertem Uridin könnte 

der Anstieg der tRNA-Transkriptionsrate in isotopenmarkiertem Medium jedoch gedrosselt 

werden (Abbildung 3.6 A). 
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Wird nun die tRNA-Transkriptionsrate der Zellen in Standard-Medium mit der tRNA-Tran-

skriptionsrate von Zellen aus isotopenmarkiertem Spezial-Medium verglichen, wiegen sich die 

Effekte der Supplementierung der isotopenmarkierten Varianten von Adenin und Uridin gegen-

einander auf. Wie in der Publikation gezeigt, ist kein Unterschied in der Transkriptionsrate von 

tRNAPhe zu erkennen. Werden isotopenmarkierte Zellen allerdings mit in unmarkiertem Spe-

zial-Medium kultivierten Zellen verglichen, tritt in beiden Kulturen der Effekt der Adenin- und 

Uridin-Zufütterung ein. Im Medium der isotopenmarkierten Zellen wird jedoch eine geringere 

Konzentration an Uridin und die unbekannte Verunreinigung supplementiert. Somit entsteht 

eine Herabregulation der tRNA-Transkriptionsrate in isotopenmarkierten Zellen gegenüber un-

markierten, wie sie in Abbildung 3.5 detektiert wurde. Die Abundanz von 5S rRNA wird in 

diesem Szenario nicht, oder nur geringfügig durch die Zugabe von Uridin und Adenin reguliert. 

Die Biosynthese von 5S rRNA ist streng an die Biosynthese der anderen ribosomalen Unterein-

heiten gekoppelt.278 Eine unveränderte Transkriptionsrate der 5S rRNA Untereinheit ist daher 

wahrscheinlich. 

Zur Überprüfung obengenannter Hypothese wurden Zellen parallel in allen drei Medien-Vari-

anten kultiviert und die tRNA-Transkriptionsrate über Northern-Blot-Analytik verglichen. Zu-

sätzlich wurden Zellen in Spezial-Medium kultiviert, welches mit isotopenmarkiertem Adenin 

Abbildung 3.6: Hypothese (A) und Ergebnis (B) des Einflusses von Adenin und Uridin auf 

die tRNA-Transkriptionsrate. Standard-Medium = DMEM D6545 + normales FBS, Spezial-
Medium = DMEM D0422 + dialysiertes FBS + Adenin + Uridin, unm = unmarkiert, iso = 
isotopenmarkiert. 1,3 µg Gesamt-RNA wurden über PAA-Gelelektrophorese aufgetrennt und 
auf eine Nylon-Membran übertragen. Die Detektion erfolgte über komplementäre DNA-Son-
den an die jeweils an beiden Enden ein Cyanin-Farbstoff (Cy3) gekoppelt wurde (λex = Anre-
gungswellenlänge, λem = Emissionswellenlänge). Die Intensität der Banden wurde quantifiziert 
und daraus die Abundanz gegenüber Standard-Medium berechnet. Diese ist als Prozentzahl 
angegeben. 
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aber unmarkiertem Uridin supplementiert wurde. Im Vergleich zu Standard-Medium ist in un-

markiertem Spezial-Medium ein Anstieg der tRNAPhe-Abundanz auf 116 % zu verzeichnen 

(Abbildung 3.6 B). Anzumerken ist, dass die Bande der unmarkierten Probe aus Spezial-Me-

dium Ungleichmäßigkeiten aufweist. Dies könnte zu einem Fehler in der Quantifizierung füh-

ren. Bei der Verwendung von isotopenmarkiertem Adenin und unmarkiertem Uridin wird ein 

weiterer Anstieg auf 123 % detektiert. Für die Supplementierung von Uridin und Adenin wer-

den diese als Stock-Lösungen hergestellt. Aufgrund des abweichenden Herstellungsdatums 

zwischen unmarkiertem und isotopenmarkiertem Adenin kann durch Degradationsprozesse ein 

Konzentrationsunterschied entstehen. Während keine Stock-Lösungen verwendet wurden, die 

älter als 6 Monate waren, kann eine geringere Adenin-Konzentration im unmarkierten Spezial-

Medium nicht ausgeschlossen werden. Dies könnte den Unterschied der tRNAPhe-Abundanz 

zwischen den beiden Proben erklären. Der Anstieg von 116 % auf 123 % ist vergleichsweise 

geringen Ausmaßes und könnte ebenso auf allgemeine Ungenauigkeiten der Northern-Blot-

Analytik zurückgeführt werden.  

Wie zuvor postuliert kann bei der Supplementierung von isotopenmarkiertem Uridin ein Ab-

sinken der tRNAPhe-Abundanz gegenüber den anderen Spezial-Medien detektiert werden (8 % 

und 15 %). Dies kann vermutlich auf die Verunreinigung des isotopenmarkierten Uridins zu-

rückgeführt werden. Dennoch ist ein leichter Anstieg der tRNA-Isoakzeptor-Abundanz gegen-

über dem Standard-Medium zu verzeichnen (8 %). Diese Feststellung weicht von den bisheri-

gen Ergebnissen ab. Erneut kann dies auf unterschiedliches Alter der Stock-Lösungen oder an 

allgemeinen Ungenauigkeiten der Northern-Blot-Analytik zurückgeführt werden. In zukünfti-

gen Experimenten sollte daher verstärkt auf Vergleichbarkeit der Stock-Lösungen geachtet 

werden. Eine Änderung in der Abundanz unter 10 % sollte zudem kritisch betrachtet werden. 

Während der postulierte Trend bestätigt werden konnte, bleibt unklar wie stark sich die Ver-

wendung unterschiedlicher Medien auf die Abundanz verschiedener tRNA-Isoakzeptoren aus-

wirkt. Eine gerichtete Anpassung der tRNA-Transkriptionsrate von 10‒20 % kann nicht ausge-

schlossen werden. 
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 Einfluss von NAIL-MS auf tRNA-Isoakzeptoren (NAIL-MS) 

Zur Überprüfung des Einflusses von NAIL-MS auf die tRNA-Isoakzeptor-Abundanz wurden 

Zellen über eine Dauer von 7 Tagen in unmarkiertem oder isotopenmarkiertem Spezial-Me-

dium (DMEM D0422) kultiviert. Gleiche Anteile unmarkierter und isotopenmarkierter Zellen 

wurden unmittelbar vor der RNA-Extraktion vereinigt und prozessiert. Nach der Aufreinigung 

der tRNA-Isoakzeptoren können unmarkierte Nukleoside von isotopenmarkierten über Mas-

senspektrometrie unterschieden und so getrennt voneinander ausgewertet werden. Dieser An-

satz stellt sicher, dass keine Fehler aufgrund unterschiedlicher Effizienz bei der Aufreinigung 

entstehen. Nach Anreicherung der tRNA über SEC, wurden die einzelnen tRNA-Isoakzeptoren 

über Oligonukleotid(ON)-Hybridisierung isoliert. Aus denselben Proben wurde 5S rRNA zur 

Normalisierung aufgereinigt. Hierfür wurden RNA-Moleküle der Länge 100‒500 Nukleotide 

über SEC angereichert, bevor die 5S rRNA aus dieser Fraktion ebenfalls über ON-Hybridisie-

rung isoliert wurde. Aufgereinigte RNA wurde zu Nukleosiden verdaut und über Nukleosid-

MS quantifiziert. Über Gleichung 1 kann die Abundanz des jeweiligen tRNA-Isoakzeptors in 

isotopenmarkiertem Medium (iso) gegenüber unmarkiertem (unm) berechnet werden. 

𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑧 (%) =   𝐼𝑠𝑜𝑎𝑘𝑧𝑒𝑝𝑡𝑜𝑟𝑖𝑠𝑜 (𝑝𝑚𝑜𝑙)5𝑆 𝑟𝑅𝑁𝐴𝑖𝑠𝑜 (𝑝𝑚𝑜𝑙)    /    𝐼𝑠𝑜𝑎𝑘𝑧𝑒𝑝𝑡𝑜𝑟𝑢𝑛𝑚 (𝑝𝑚𝑜𝑙)5𝑆 𝑟𝑅𝑁𝐴𝑢𝑛𝑚 (𝑝𝑚𝑜𝑙)  

Zusätzlich wurde getestet, ob eine Normalisierung über Gesamt-RNA möglich ist. Die Terme 

für 5S rRNA werden hierfür durch die Menge entsprechend markierter Gesamt-RNA ersetzt. 

Ein Vorteil bei der Verwendung von Gesamt-RNA wäre, dass weitaus größere Mengen zur 

Verfügung stehen. Durch die Normalisierung auf die Gesamtheit der RNA können allerdings 

Verzerrungen der Ergebnisse hervorgerufen werden, wobei nicht klar ist, ob diese eine verbes-

serte oder verschlechterte Abbildung der tatsächlichen Lage liefern. Ebenso ist unklar, wie sich 

die Isotopenmarkierung auf die Abundanz der 5S rRNA auswirkt. Die Gesamt-RNA setzt sich 

zu ~ 80 % aus den rRNA-Untereinheiten zusammen, welche wie 5S rRNA auch, eine ver-

gleichsweise geringe Reaktion auf die Anwendung von NAIL-MS zeigen sollten. 

Wie aus Tabelle 3.2 zu entnehmen, fällt der Unterschied an tRNA-Isoakzeptor-Abundanz zwi-

schen unmarkierten und isotopenmarkierten Zellen über NAIL-MS geringer aus als über 

Northern-Blot-Analytik. Wird über Gesamt-RNA normalisiert bewegen sich die Werte im Be-

reich 96–99 %. Dieser marginale Effekt könnte auf unvollständiger Isotopenmarkierung man-

cher tRNA-Moleküle basieren und kann daher in den meisten Experimenten vernachlässigt 

werden. Wird über 5S rRNA normalisiert fallen die Unterschiede geringfügig höher aus und 

nähern sich den Northern-Blot-Ergebnissen an. Die Werte bewegen sich zwischen 92 % und 

(1) 
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96 %. Beide Methoden lassen darauf schließen, dass abhängig von den verwendeten Isotopolo-

gen kaum Anpassungen der tRNA-Isoakzeptor-Abundanz vorgenommen werden. Eine mögli-

che Erklärung für den Unterschied zwischen der Normalisierung über 5S rRNA und Gesamt-

RNA wäre, dass sich in Gesamt-RNA ebenso ein geringer Anteil an tRNA befindet (~ 10 %). 

Die potenziell geringere Transkriptionsrate von tRNA ist in den Werten der Gesamt-RNA ent-

halten und eine Normalisierung über Gesamt-RNA lässt den Effekt auf die tRNA-Isoakzeptor-

Abundanz daher geringer erscheinen. 

Über Northern-Blot-Analytik war die Bestimmung des Effekts von NAIL-MS auf tRNAHis
GUG 

erschwert, da die Bande lediglich ein minimales, kaum quantifizierbares Signal lieferte. Durch 

die hohe Abundanz von 5S rRNA in Gesamt-RNA war eine Auswertung aufgrund der stark 

unterschiedlichen Intensitäten kaum möglich. Während in der Northern-Blot-Analytik tRNAPhe 

als Referenz zu den publizierten Daten gezeigt wurde, konnte die Veränderung der tRNAHis-

Abundanz über NAIL-MS problemlos berechnet werden. 

Tabelle 3.2:  Abundanz der tRNA-Isoakzeptoren in isotopenmarkierten Zellen. Die LC-
MS/MS Signale der tRNA-Isoakzeptoren wurden entweder auf die Signale von aufgereinigter 
5S rRNA oder von Gesamt-RNA referenziert. Die normalisierten Werte für isotopenmarkierte 
Nukleoside wurde durch die normalisierten Werte unmarkierter Nukleoside dividiert, um den 
prozentualen Anteil an isotopenmarkierten tRNA-Isoakzeptoren gegenüber unmarkierten zu 
bestimmen. Zum Vergleich sind zusätzlich die Werte der vorangegangenen Northern-Blot-
Analytik eingetragen. 

 

Während nicht gänzlich klar ist woher die Abweichungen zwischen Northern-Blot- und NAIL-

MS-Analytik kommen, wird abermals die Stärke von NAIL-MS aufgezeigt. Mithilfe der ver-

wendeten Isotopenmarkierung kann die Veränderung der tRNA-Isoakzeptor-Abundanz anhand 

von LC-MS/MS bestimmt werden. Ohne geeignete Isotopenmarkierung wäre dies erschwert, 

da die Möglichkeit einer Normalisierung nur über die Injektionsmenge zu bewerkstelligen ist. 

Hier können kleine Abweichungen entstehen, welche letztendlich zu großen Verfälschungen 

der Ergebnisse führen. Die Ursache der geringfügigen Diskrepanz zwischen den Northern-Blot-

Ergebnissen und der Bestimmung über NAIL-MS sollte eingehender untersucht werden, um 

mögliche Fehlerquellen in zukünftigen Stressexperimenten zu eliminieren. 

 His Tyr Asn Asp Ser Gly 

über 5S rRNA 94 % 94 % 96 % 92 % 96 % 95 % 

über Gesamt-RNA 97 % 97 % 99 % 96 % 98 % 97 % 

über Northern Blot n.a. 92 % 85 % 94 % 85 % 92 % 
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NAIL-MS bietet die Möglichkeit vergleichende Studien, ohne den Einfluss von Prozessierungs-

Schritten durchzuführen. Analog zu SILAC (kurz für engl. stable isotope labeling by amino 

acids in cell culture) werden zwei Kulturen in verschieden isotopenmarkierten Medien kulti-

viert. Eine Kultur dient der Kontrolle, während die zweite Kultur Gegenstand des Forschungs-

interesses wird. So kann beispielsweise eine Kontroll-Kultur in unmarkiertem Medium kulti-

viert werden, während eine Knockout-Kultur in isotopenmarkiertem Medium kultiviert wird. 

Beide können vor der RNA-Isolation und -Aufreinigung vereinigt werden. Bei der Analyse 

über Nukleosid-MS können beide Kulturen aufgrund des Masseunterschieds der Nukleoside 

unterschieden und getrennt voneinander ausgewertet werden. 

Die durch die Isotopenmarkierung entstehende Abweichung im Modifikationsprofil sollte zu-

vor bestimmt werden. Für jede Modifikation entsteht so ein Schwellenwert, der überschritten 

werden sollte, um einen klaren Effekt identifizieren zu können. Diese Validierung wurde, pa-

rallel zur Bestimmung der tRNA-Isoakzeptor-Abundanz, aus denselben NAIL-MS Daten ent-

nommen. Für jeden tRNA-Isoakzeptor wurde die Modifikationsmenge pro tRNA-Molekül be-

stimmt. Zur besseren Veranschaulichung wurden die Werte für unmarkierte und isotopenmar-

kierte Modifikationen gegeneinander aufgetragen. Ausgewiesen werden lediglich Modifikatio-

nen mit einer Abundanz > 0,2 pro tRNA-Molekül. Zusätzlich wurde eine Diagonale in die Di-

agramme eingetragen. Datenpunkte, welche sich auf dieser befinden repräsentieren Modifika-

tionen, deren Abundanz sich im jeweiligen tRNA-Isoakzeptor, abhängig von der Isotopenmar-

kierung, nicht ändert (Abbildung 3.7). Absolute Messwerte können Tabelle S2 entnommen 

werden. 

Die meisten Modifikationen zeigen kaum eine Abhängigkeit zwischen der Modifikationsmenge 

und der Isotopenmarkierung. Allgemein scheint m5C in den meisten tRNA-Isoakzeptoren der 

isotopenmarkierten Zellen leicht angehoben zu sein, während Ψ einen gegenteiligen Trend auf-

weist. Für tRNAAsp, tRNAHis und tRNAGly sind lediglich minimale Veränderungen im Modifi-

kationsprofil zu erkennen. Hier kann NAIL-MS problemlos angewandt werden, um Modifika-

tionsdynamiken in vivo zu untersuchen. In den tRNA-Isoakzeptoren tRNATyr, tRNAAsn und 

tRNASer weichen einige Modifikationen leicht von der Diagonalen ab. Besonders anfällig für 

diesen Effekt scheint tRNATyr zu sein. Insbesondere m22G zeigt gegenüber den unmarkierten 

Zellen ein vermehrtes Auftreten in isotopenmarkiertem Medium. Dieser Effekt ist auch in 

tRNAAsn und tRNASer zu erkennen. Erneut soll hier erwähnt werden, dass das supplementierte 

isotopenmarkierte Uridin Verunreinigungen enthält. Diese können eine Anpassung des Modi-

fikationsprofils hervorrufen, wie sie für manche tRNA-Isoakzeptoren zu erkennen ist. Eine 
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mögliche Schlussfolgerung wäre beispielsweise die Relevanz von tRNATyr und des entspre-

chenden Modifikationsprofils als Antwort der Zellen auf diese Verunreinigung.  

Zusätzlich wurde die Abundanz der Modifikationen in Gesamt-RNA und tRNA bestimmt (Ab-

bildung S2). Verglichen mit den einzelnen tRNA-Isoakzeptoren sind kaum Änderungen im 

Modifikationsprofil zu erkennen. Lediglich m5C und Ψ zeigen dieselben Effekte wie sie schon 

für einzelne tRNA-Isoakzeptoren zu beobachten waren. Dies lässt darauf schließen, dass eine 

allgemeine Reaktion der Zelle auf die Isotopenmarkierung entsteht. Allerdings könnte für diese 

beiden Modifikationen ebenso ein systematischer Fehler in der Analytik über NAIL-MS vor-

liegen, welcher bisher nicht näher bestimmt werden konnte. Erhöhte Mengen an acp3U könnten 

durch falsche Einwaagen des Kalibrier-Standards oder durch Degradationsprozesse ebendieses 

erklärt werden. Dieser scheint Verunreinigungen zu enthalten, welche letztendlich zu einer zu 

hohen Einschätzung der Konzentration von acp3U führen. 

Abbildung 3.7: Auswirkung von NAIL-MS auf das Modifikationsprofil von tRNA-Iso-

akzeptoren. Zellen wurden in unmarkiertem und isotopenmarkiertem Medium kultiviert und 
während der RNA-Extraktion vereinigt. tRNA-Isoakzeptoren wurden aufgereinigt und auf das 
Modifikationsprofil untersucht. Auf der x-Achse ist jeweils die gemessene Anzahl an ausge-
wiesener Modifikation in unmarkierten Zellen aufgetragen. Auf der y-Achse ist die entspre-
chende Menge isotopenmarkierter Modifikation aufgetragen. Die gestrichelte Linie stellt eine 
Diagonale dar. Modifikationen, welche sich auf dieser befinden, zeigen keine Änderung der 
Abundanz abhängig vom gewählten Medium. 
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Der Vergleich des Modifikationsprofils zwischen unmarkierten und isotopenmarkierten RNA-

Molekülen dient hier lediglich der Validierung der NAIL-MS Methodik. Es bleibt anzumerken, 

dass für entsprechende NAIL-MS Experimente stets die Auswirkung der Isotopenmarkierung 

auf die Abundanz und das Modifikationsprofil der zu untersuchenden RNA festgestellt werden 

sollte. Nur so kann sichergestellt werden, dass etwaige Effekte im finalen Experiment korrekt 

interpretiert werden. In Kapitel 3.4 Queuosine-Modifikationen und ihr Auftreten in der 

Zelle wird anhand von vergleichenden NAIL-MS Experimenten untersucht wie sich die Zugabe 

von Queuin in Zellkultur auf die tRNA-Abundanz und die Modifikationsmenge auswirkt. 
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 Kinetik des Auf- und Abbaus von RNA-Molekülen 

Die erhobenen Daten aus Heiss et al. (Nat. Comm., 2021) können des Weiteren zur Untersu-

chung des Auf- und Abbaus der jeweiligen RNA-Moleküle verwendet werden. Originale Mo-

leküle sind bereits vor einem Mediumwechsel von unmarkiert zu isotopenmarkiert vorhanden, 

wohingegen neue Moleküle erst nach Wechsel des Mediums von den Zellen synthetisiert wer-

den. Die absoluten Mengen wurden gemäß Gleichung 2, durch Multiplikation des Quotienten 

aus originalen und neuen Molekülen (ermittelt über QQQ) mit der aufgereinigten Menge an 

jeweiligem Molekül (ermittelt über Nanophotometrie), für jeden Zeitpunkt t ermittelt. Dieser 

Berechnungsschritt stellt sicher, dass die absoluten Mengen zu unterschiedlichen Zeitpunkten 

untereinander vergleichbar sind. 

𝑚𝑡(𝑢𝑔) =  𝑢𝑛𝑙𝑡 (𝑝𝑚𝑜𝑙)𝑙𝑎𝑏𝑡 (𝑝𝑚𝑜𝑙) ∙ 𝑐𝑡 (𝑢𝑔µ𝐿) ∙ 𝑣𝑡(µ𝐿) 

Betrachtet man den Abbau originaler tRNA-Moleküle lässt sich beobachten, dass nach etwa 

48 h eine Halbierung ebendieser stattgefunden hat (Abbildung 3.8). Wird durch den Startwert 

von 1,445 pmol bei Zeitpunkt 0 und den Endwert von 0,646 pmol bei Zeitpunkt 48 eine Gerade 

gelegt, wird Gleichung 3 erhalten. Durch Umstellen und Lösen ebendieser für 50 % der Start-

menge an originaler tRNA ergibt sich eine Halbwertszeit von t1/2 ≈ 43 h. Dies entspricht der 

Zeit, in der die Hälfte der originalen tRNA-Moleküle abgebaut wurde. Dieser Wert deckt sich 

mit der Literaturangabe für vergleichbare Zellen276, 279 und zeigt abermals die Stärke von NAIL-

MS auf. 

𝑦 = −0,017𝑥 + 1,445 (3) 

(2) 

Abbildung 3.8: Zeitlicher Verlauf des Auf- und Abbaus von RNA-Molekülen. Anhand 
der aufgereinigten Menge des jeweiligen RNA-Moleküls (tRNA, 18S rRNA oder 28S rRNA) 
und dem Verhältnis von originalen zu neuen Molekülen, ermittelt über QQQ-Messung, wurden 
die absoluten Mengen originaler und neuer RNA-Moleküle berechnet und über die Zeit geplot-
tet. 
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Die entsprechende Berechnung der Halbwertszeit für 18S und 28S rRNA ist für diesen Experi-

mentaufbau nicht möglich. Betrachtet man den Abbau originaler 18S und 28S rRNA-Moleküle 

fällt auf, dass der Anteil an originalen, also unmarkierten Molekülen, direkt nach Wechsel auf 

isotopenmarkiertes Medium zu Anfang noch deutlich ansteigt. Obwohl zuvor gezeigt wurde, 

dass sowohl die de novo Biosynthese von Nukleotiden als auch die Wiederverwendung bereits 

in RNA eingebauter Nukleoside keine, oder eine nur untergeordnete Rolle in 18S rRNA spielt, 

wirkt es in diesem Datenset so, als würden originale Nukleoside für die Biosynthese neuer 

RNA-Moleküle verwendet werden. Auffällig ist, dass dieser Effekt lediglich für ribosomale 

RNA, nicht aber für tRNA eintritt. Im Vergleich zu tRNA sind beide ribosomalen Untereinhei-

ten um einiges länger, wodurch die Prozessierung, welche unter anderem Spleißen und Modi-

fizierung beinhaltet, deutlich komplexer ist und mehr Zeit in Anspruch nimmt. Während ein 

tRNA-Molekül im Schnitt etwa 75 Nukleotide lang ist, sind es bei der 18S rRNA Untereinheit 

fast 1800 und bei der 28S rRNA-Untereinheit nahezu 5000 Nukleotide. Zudem werden die 18S, 

die 28S und die 5,8S rRNA-Untereinheiten durch eine einzelne Gensequenz codiert. Dies hat 

zur Folge, dass das transkribierte RNA-Molekül zuerst zu den einzelnen Untereinheiten pro-

zessiert werden muss.280 Obwohl die initiale Prozessierung der rRNA-Untereinheiten nur we-

nige Minuten dauert, kann nicht ausgeschlossen werden, dass die entstandenen RNA-Moleküle 

aufgrund anderer Effekte (bspw. Bindung zu DNA oder Proteinen) erst später detektiert werden 

können.  

Eine Erklärung für das hier auftretende Phänomen wäre, dass von den Zellen bereits vor Medi-

umwechsel eine erhebliche Menge an nicht fertig prozessierter rRNA synthetisiert wurde. 

Durch die unvollständige Prozessierung werden diese bei der Isolation von 18S und 28S rRNA 

mit dem aktuellen Design der Extraktions- und Aufreinigungsmethoden aufgrund eines bisher 

nicht näher bestimmten Grundes jedoch nicht aufgereinigt und fehlen daher in der Analytik. 

Unmarkierten Nukleoside dieser rRNA-Moleküle werden dann erst nach vollständiger Prozes-

sierung detektiert. Dies könnte erklären, warum nach 6 h ein Anstieg an originaler 18S rRNA 

und sogar noch nach 24 h für 28S rRNA zu verzeichnen ist. Für die Prozessierung der größeren 

28S rRNA wird mehr Zeit in Anspruch genommen als für die kleinere 18S rRNA Untereinheit. 

Erst nach diesen Zeitpunkten fällt die Menge an unmarkierten Molekülen wieder ab. Bei enge-

rer Wahl der Zeitpunkte könnte die Halbwertszeit der 18S und 28S rRNA vermutlich dennoch 

bestimmt werden. Hierfür müsste durch das Maximum an originaler RNA und den Endpunkt 

die entsprechende Gerade gelegt und die Steigung daraus berechnet werden. 

Bei der Betrachtung von neu synthetisierten RNA-Molekülen fällt auf, dass nach 24 h der An-

teil an neuer RNA (isotopenmarkiert) den der originalen RNA (unmarkiert) übersteigt. Dies ist 
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sowohl für tRNA als auch für die ribosomalen Untereinheiten der Fall.  Da die Verdopplungs-

rate der verwendeten HEK-293-Kultur auf ~ 20 h bestimmt wurde, ist dies auf die nun höhere 

Anzahl an Zellen, welche nach Mediumwechsel entstanden sind, zurückzuführen. Alle neu ent-

stehenden Zellen bedienen sich der zugefütterten, isotopenmarkierten Varianten von Adenin 

und Uridin für die Biosynthese neuer RNA-Moleküle. 

Ein Faktor, der in den vorangegangenen Berechnungen nicht berücksichtigt wurde, ist der Ver-

lust von RNA während der Isolation und Aufreinigung der jeweiligen RNA-Moleküle. Sowohl 

die Ausbeute für Gesamt-RNA als auch die für aufgereinigte tRNA, 18S rRNA und 28S rRNA 

lagen im erwarteten Bereich. Zudem weisen alle drei RNA-Moleküle einen unterschiedlichen 

Trend auf, was gegen die Ursache eines Materialverlustes bei der initialen Aufreinigung der 

Gesamt-RNA für die gezeigten Ergebnisse spricht. Dennoch kann nicht ausgeschlossen wer-

den, dass die Ergebnisse durch Verluste bei einzelnen Proben während der weiteren Aufreini-

gung der RNA-Moleküle verfälscht wurden. Diesem Fehler könnte durch die Zugabe eines 

Standards vor der RNA-Aufreinigung entgegengewirkt werden. Eine Voraussetzung dieses 

Standards ist, dass er vom Rest der aufgereinigten RNA unterschieden werden kann. Dies kann 

beispielsweise durch ein in vitro synthetisiertes RNA-Molekül mit definierter Isotopenmarkie-

rung – welche sich von der im Experiment verwendeten Isotopenstrategie unterscheidet – be-

werkstelligt werden. Durch äquivalente Zugabe des Standards vor der RNA-Aufreinigung kann 

die Ausbeute nach der Fällung in allen Proben anhand der Menge an wiedergewonnenem Stan-

dard berechnet werden. 

Allgemein kann, wie zuvor bereits besprochen, davon ausgegangen werden, dass Zellen auf die 

zugefütterten Isotopen-Varianten von Adenin und Uridin zurückgreifen, sobald diese dem Me-

dium zugegeben werden. Halbwertszeiten von RNA-Molekülen in der Zelle können bestimmt 

werden, sofern die Biosynthese und Prozessierung aller ursprünglichen RNA-Moleküle vollen-

det ist. Der Anstieg von Nukleosiden nach Mediumwechsel, welche die Isotopenmarkierung 

des ursprünglichen Mediums tragen, kann durch die noch nicht vollendete Prozessierung der 

jeweiligen RNA-Moleküle erklärt werden. Diese fehlen aufgrund des Designs der RNA-Ex-

traktions- und -Aufreinigungsmethoden in der Analytik und erscheinen dort erst nach vollstän-

diger Prozessierung. Dieser Effekt ist unter anderem abhängig von der Länge der jeweiligen 

RNA-Moleküle und sollte daher, insbesondere für Untersuchungen an mRNA, für das jeweilige 

Molekül bestimmt werden. Dies beugt der falschen Interpretation von Daten aufgrund des ge-

zeigten Phänomens vor. 
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 Prozessierung der 28S rRNA Untereinheit 

In Heiss et al. (Nat. Comm., 2021) wurde sowohl auf die Prozessierung von tRNA und im 

speziellen tRNAPhe, als auch auf die Prozessierung der 18S rRNA Untereinheit eingegangen. 

Aus denselben Proben wurde 28S rRNA aufgereinigt und über Nukleosid-MS analysiert. Ori-

ginale Modifikationen (original) sind bereits vor Mediumwechsel vollständig maturiert und 

wurden auf originale kanonische Nukleoside referenziert. Kanonische Nukleoside, welche nach 

Experimentstart methyliert wurden (methyl) sind ebenfalls auf originale kanonische Nukleoside 

referenziert, wohingegen neue Modifikationen (neu), auf neue kanonische Nukleoside referen-

ziert wurden. Absolute Mengen der gefundenen RNA-Modifikationen werden in Kapitel 3.5.3 

Allgemeine Modifikations-Studien zusammengefasst.  

Die Daten offenbaren eine hohe Vergleichbarkeit des Abbaus von Modifikationen in 

28S rRNA. Abgesehen von Ψ und ac4C ist nach 48 h für alle Modifikationen eine Abnahme 

von etwa 20 % der jeweiligen Ausgangsmenge zu erkennen (Abbildung 3.9). Eine parallele, 

zu gleichen Anteilen auftretende aktive Demodifizierung aller in 28S rRNA auftretenden Mo-

difikationen erscheint unwahrscheinlich. Das Absinken des Modifikationslevels ist demnach 

entweder auf Degradation der 28S rRNA oder auf die Verdünnung ebendieser durch neu ent-

stehende 28S rRNA zurückzuführen. Im Normalfall wird der Effekt der Verdünnung durch die 

Anwendung von NAIL-MS messbar und kann somit vernachlässigt werden. Wie allerdings be-

reits zuvor in Kapitel 3.1.4 Kinetik des Auf- und Abbaus von RNA-Molekülen gezeigt 

wurde, kann ein Einfluss dieses Effekts bei ribosomaler RNA nicht ausgeschlossen werden. 

Selbst nach Mediumwechsel konnte noch ein Anstieg originaler Nukleoside verzeichnet wer-

den. Durch die anschließende Prozessierung erscheint es möglich, dass die originalen, unmar-

kierten RNA-Moleküle ihre Methylgruppen von isotopenmarkiertem Methionin im neuen Me-

dium erhalten und daher – trotz Modifizierung noch während des initialen Reifungsprozesses – 

unter die Kategorie der nachträglich modifizierten Moleküle fallen. Wird der Abbau originaler 

Modifikationen mit dem Anstieg nachträglich modifizierter Moleküle verglichen, lässt sich eine 

umgekehrte Korrelation erkennen. Die Summe aus originalen und nachträglich methylierten 

Modifikationen weist dabei für die meisten Modifikationen über den kompletten Experiment-

verlauf ein konstantes Level auf. Dies spricht sowohl gegen einen präferierten Abbau von mo-

difizierten rRNA-Molekülen als auch gegen die aktive Demodifizierung dieser. Der Rückgang 

der Modifikationsmenge in originaler 28S rRNA ist demnach höchstwahrscheinlich auf Ver-

dünnung durch neu entstehende 28S rRNA-Moleküle zurückzuführen. 
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Für die meisten Modifikationen ist in neuen Transkripten nach 6 h bereits ein Modifikationsle-

vel von > 80 % zu verzeichnen. Einige Modifikationen weisen jedoch einen besonders schnel-

len Einbau in neue 28S rRNA-Moleküle auf. Während Am und m6A nach 6 h bereits zu 100 % 

modifiziert sind, werden auch Um und m1A recht schnell inkorporiert. Dies spricht für eine 

frühe Modifizierung der entstehenden 28S rRNA-Moleküle mit diesen Modifikationen. Inte-

ressanterweise weisen die gleichen Modifikationen ein vergleichsweise geringes Level an nach-

träglicher Modifizierung auf. Dies war zu erwarten, da durch die frühe Modifizierung der je-

weiligen Position der nachträgliche Einbau der entsprechenden Modifikation nicht mehr nötig 

ist. Besonders auffällig ist die geringe Menge an nachträglicher Modifizierung für Um, aber 

auch Am, m1A und m6A weisen ein eher geringes Level auf. Dies deckt sich mit den Modifi-

kationen, welche einen raschen Einbau in neue 28S rRNA-Moleküle aufweisen. 

Abbildung 3.9: Dynamik ausgewählter modifizierter Nukleoside in 28S rRNA. Gezeigt 
sind alle Modifikationen mit einer Abundanz > 0,9 Modifikation pro 28S rRNA. Ursprüngliche 
Nukleoside (original, schwarze Linie) existierten bereits vor Mediumwechsel. Nachträglich 
methylierte Nukleoside (methyl, dunkelgraue Linie) sind Modifikationen, die durch nachträg-
liche Methylierung der ursprünglichen RNA nach Mediumwechsel entstanden sind. Neue Nuk-
leoside (neu, hellgraue Linie) zeigen den Einbau der Modifikation in neue Transkripte. Die 
Datenpunkte geben den Mittelwert und die Standardabweichungen von n = 3 biologischen Rep-
likaten wieder. 
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Die Menge an m6A in neuer 28S rRNA steigt anfänglich auf über 100 % der zu erwartenden 

Menge (Menge originaler Modifikation bei t = 0). Zudem ist hier ein besonders ausgeprägter 

Rückgang der Modifikationsmenge in originaler 28S rRNA zu Beginn des Experiments zu ver-

zeichnen. Dieser Effekt ist ausschließlich für m6A zu beobachten, daher kann davon ausgegan-

gen werden, dass eine aktive Demodifizierung von m6A stattfindet, oder Moleküle, welche die 

m6A-Modifikation tragen bevorzugt degradiert werden. Es erscheint möglich, dass sich eine 

m6A-Position in der 28S rRNA befindet, welche anschließend entfernt wird. Beispielsweise 

könnte sich diese in einem herauszuschneidenden Teil der nicht fertig prozessierten 28S rRNA 

befinden und durch das anschließende Spleißen dieses Introns den verstärkten Rückgang der 

m6A-Menge erklären. Dies steht jedoch im Konflikt mit der Hypothese, dass nicht fertig pro-

zessierten 28S rRNA-Moleküle durch die verwendeten Aufreinigungsmethoden aus der Ana-

lytik ausgeschlossen werden. Außerdem könnte m6A für den Export der 28S rRNA aus dem 

Nukleus erforderlich sein, wie es schon für mRNA beobachtet wurde. 281, 282 Eine anschließende 

aktive Demodifizierung im Zytoplasma würde den beobachteten Effekt ebenfalls erklären. Ein 

wahrscheinlicheres Szenario ist allerdings, dass sich ein gewisser Anteil von mRNA in der auf-

gereinigten 28S rRNA-Fraktion befindet und über den eben beschriebenen Mechanismus zu 

dem beobachteten Effekt führt. Im Vergleich zu rRNA-Molekülen weisen mRNA-Moleküle 

eine geringe Halbwertszeit auf, weshalb der Effekt zu Beginn des Experiments besonders stark 

ausgeprägt ist. 

Eine besondere Rolle in diesem Experiment nimmt die Modifikationen Ψ ein: Das Level von 

Ψ ist über lange Zeit konstant und selbst nach 48 h sind noch 95 % der ursprünglichen Ψ-Mo-

difikationen zu detektieren. Die Relevanz von Ψ im 28S rRNA-Molekül bestätigt sich auch 

durch den raschen Einbau in neue Transkripte. Bereits nach 6 h wurde die volle, zu erwartende 

Menge quantifiziert. Auch diese bleibt über den weiteren Experimentverlauf konstant. Anders 

als für die meisten Modifikationen ist hier keine Verdünnung der originalen Modifikationen 

durch neu entstehende rRNA-Moleküle zu erkennen. Dies kann darauf zurückgeführt werden, 

dass Ψ, aufgrund der nicht vorhandenen Methylgruppe, unabhängig von der Isotopenmarkie-

rung des zugefütterten Methionins eingebaut wird. Durch die Isomerisierung von Uridin erhält 

Ψ stets dasselbe Isotopenmuster wie die respektiven kanonischen Nukleoside der jeweiligen 

rRNA-Moleküle.46, 283 Eine Verdünnung der originalen Ψ-Modifikationen durch nachträglich 

modifizierte rRNA-Moleküle findet daher nicht statt. Ein ähnlicher Effekt wäre für ac4C zu 

erwarten. Im Vergleich zu anderen Modifikationen schwankt die Menge von ac4C über die Zeit 
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jedoch stark und eine Interpretation ist daher nur schwer möglich. Der Anstieg originaler Mo-

difikationen nach Mediumwechsel deutet jedoch auf eine deutlich ausgeprägte nachträgliche 

Modifizierung hin, welche in weiteren Experimenten genauer untersucht werden sollte. 

Es kann geschlussfolgert werden, dass die 28S rRNA-Untereinheit während oder, abhängig von 

der Modifikation, direkt nach der Transkription mit den jeweiligen Modifikationen ausgestattet 

wird. Diese Erkenntnis steht im Einklang mit der Tatsache, dass die meisten Regionen der ri-

bosomalen Untereinheiten nach der Biosynthese, Prozessierung und Faltung für modifizierende 

Enzyme nur schwer zugänglich im Inneren des Ribosoms vorliegen.277 Dies erfordert eine di-

rekte Modifizierung der entsprechenden Nukleoside noch während der Transkription, wie sie 

in der Literatur bereits berichtet wurde.284 Angesichts der Tatsache, dass sich das Gleichgewicht 

für einige Modifikationen erst nach mehreren Stunden einstellt, kann davon ausgegangen wer-

den, dass ebendiese Modifikationen zusätzlich eine nachträgliche Modifizierung bestimmter 

Positionen zeigen, wie sie ebenfalls bereits berichtet wurde.285, 286 Die nachträgliche Modifizie-

rung bereits existierender RNA-Moleküle, wie sie in diesem Experiment zu erkennen ist, 

könnte jedoch überbewertet sein: Einige Modifikationen werden anscheinend durch die Ver-

wendung von D3-Methionin für die Methylierung originaler (unmarkierter) kanonischer Nuk-

leoside als nachträglich modifiziert eingestuft, obwohl von einer Modifizierung noch während 

der Prozessierung ausgegangen werden kann.  

Die Dynamik weiterer detektierter, jedoch weniger abundanter Modifikationen (m66A, m7G, 

m3U) kann Abbildung S3 entnommen werden. 
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Prolog 

Neben Massenspektrometrie ist Kernspinresonanz-Spektroskopie (NMR – nuclear magnetic re-

sonance) eine grundlegende Methode zur Untersuchung der Struktur von Molekülen. Beide 

Herangehensweisen sind allerdings nur bedingt geeignet, wenn dynamische Prozesse innerhalb 

eines Organismus untersucht werden sollen. Für massenspektrometrische Analysen wurde die-

ses Problem teilweise durch die zuvor beschriebene Isotopenmarkierung durch NAIL-MS be-

hoben. Aber auch NMR-Analytik kann zur Aufklärung von Reifungsprozessen biologischer 

Moleküle herangezogen werden. Hierfür wurde unmodifizierte, 15N-markierte tRNAPhe in vitro 

hergestellt und anschließend mit Zellextrakten aus Hefe inkubiert. Bei der Gewinnung des Zel-

lextrakts wurde auf die bestehende Funktionalität der enthaltenden Enzyme geachtet. Die Inku-

bation erfolgte im NMR-Probenröhrchen selbst und ermöglichte somit die zeitaufgelöste, fort-

laufende Aufzeichnung von Spektren. Somit konnte nicht nur die Kinetik des Einbaus einzelner 

Modifikationen untersucht werden, sondern auch näher auf die Hierarchie des Einbaus einge-

gangen werden. Es konnte gezeigt werden, dass Modifikationen in einer definierten sequenzi-

ellen Reihenfolge eingeführt werden. Unter anderem konnte eine starke Abhängigkeit der In-

korporation von m5U54 von Ψ55 festgestellt werden, welche beide wiederum den Einbau von 

m1A58 begünstigen. Des Weiteren konnte durch die Inkubation mit Zellextrakten aus Knock-

out-Varianten (KO) für diverse Enzyme die Abhängigkeit der einzelnen Modifikationen unter-

einander bestätigt werden. Massenspektrometrische Untersuchungen dieser KO-Zelllinien un-

terstützen dabei die gefundenen Effekte und Abhängigkeiten und zeigen, dass die in Hefeex-

trakt mit NMR identifizierten Modifikationskreisläufe auch den tRNA-Modifikationsprozess in 

lebenden Zellen beeinflussen. 

„Time-resolved NMR monitoring of tRNA maturation“, P. Barraud, A. Gato, 

M. Heiss, M. Catala, S. Kellner, C. Tisné; Nature communications, 2019, 10 

(1): 3373. 

Autorenbeitrag: Die Etablierung und Durchführung zeitaufgelöster NMR-Experimente fand im 

Labor von C. Tisné statt. Die Aufreinigung und massenspektrometrische Datenerhebung und 

Analyse der tRNA aus den entsprechenden Hefekulturen wurde von mir durchgeführt. 

Kopie des Artikels mit Erlaubnis des Verlages: https://www.nature.com/ncomms/ 

https://www.nature.com/ncomms/
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Time-resolved NMR monitoring of tRNA
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Although the biological importance of post-transcriptional RNA modifications in gene

expression is widely appreciated, methods to directly detect their introduction during RNA

biosynthesis are rare and do not easily provide information on the temporal nature of events.

Here, we introduce the application of NMR spectroscopy to observe the maturation of tRNAs

in cell extracts. By following the maturation of yeast tRNAPhe with time-resolved NMR

measurements, we show that modifications are introduced in a defined sequential order, and

that the chronology is controlled by cross-talk between modification events. In particular, we

show that a strong hierarchy controls the introduction of the T54, Ψ55 and m1A58 mod-

ifications in the T-arm, and we demonstrate that the modification circuits identified in yeast

extract with NMR also impact the tRNA modification process in living cells. The NMR-based

methodology presented here could be adapted to investigate different aspects of tRNA

maturation and RNA modifications in general.
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O
ver 170 nucleotide modifications are currently reported in
RNAs from the three domains of life, the vast majority
being found in tRNAs1,2. This family not only displays the

largest variety of post-transcriptional decorations among RNA
molecules, but also the highest density of modifications per RNA
transcript3,4. The introduction of post-transcriptional chemical
modifications is central in the maturation process to generate
functional tRNA molecules5–7. The biogenesis of tRNAs is a
multi-step process that comprises the synthesis of a tRNA pre-
cursor (pre-tRNA) by transcription of a tRNA gene, the removal
of the 5'-leader and 3'-trailer sequences, the addition of the 3'-CCA
amino-acid accepting sequence, the removal of intronic sequences
when present, and the incorporation of a large number of post-
transcriptional chemical modifications8. Modifications are found
in two main regions of the L-shaped structure of tRNAs, the tRNA
core, and the anticodon-loop region (ACL)4. All cellular functions
of tRNAs, including their alternative functions outside translation,
are controlled and modulated by modifications5,9,10. While
modified nucleotides in the ACL participate in decoding during
protein synthesis11,12, those in the tRNA core are collectively
implicated in the folding and stability of tRNAs13.

While a simple model would be that modifications are intro-
duced to tRNA independently, several modification circuits have
been identified in which one or more modifications stimulate
formation of a subsequent modification7,14. This obviously drives
a defined sequential order in the tRNA modification process. In
addition, the interdependence of multiple modification events
might in certain cases be responsible for the variations of tRNA
modifications in response to environmental perturbations2,7,15–17.
The characterization of modification circuits is therefore central to
understand the dynamic regulation of modifications in tRNAs,
however their identification remains difficult, since monitoring
tRNA maturation at a single nucleotide level in a time-resolved
fashion is technically challenging18.

In the past 10 years, NMR spectroscopy became a pre-eminent
method to investigate post-translational modifications (PTMs) in
proteins19,20. Time-resolved NMR measurements provided the
means to monitor the establishment of PTMs in vitro, in cellular
extracts and in living cells21–25. In addition, monitoring the
introduction of PTMs with NMR has provided mechanistic
insights into modification hierarchies, with initial modifications
exhibiting stimulatory or inhibitory effects on subsequent mod-
ification events26,27.

Here, inspired by the NMR monitoring of PTMs in cellular
environments, we report an original methodology to monitor
RNA modifications in cellular extracts with NMR. Using yeast
tRNAPhe as a model system, we demonstrate that multiple
modification events can be monitored in yeast extract with NMR
in a time-resolved fashion. Using continuous NMR measure-
ments to measure a series of snapshots of the tRNA along the
maturation route, we observe a sequential order in the intro-
duction of several modifications. This suggests that modification
circuits could control the tRNAPhe maturation process in yeast.
We next adopted a reverse genetic approach and investigated the
interplay between the different modifications in yeast tRNAPhe

with both NMR and mass spectrometry and show that mod-
ification circuits identified in the yeast extract on tRNAPhe also
influence the process of tRNA modification in living cells.

Results
Monitoring RNA modifications in cellular extracts with NMR.
In order to investigate the different steps along the maturation
pathway of post-transcriptionally modified RNAs, we sought to
implement NMR-based methods for monitoring the introduction of
modifications in RNA substrates. As a general concept, we believed

that modification reactions by RNA-modifying enzymes could be
probed by NMR in cell extracts containing enzymatic activities
responsible for the modification of the RNA substrate of interest.
Introducing isotope-labeled RNAs into unlabeled cell extracts
combined with the use of isotope-filters in NMR experiments
enables the detection of the sole RNA of interest within the complex
cell extract environment. The non-disruptive nature of NMR pro-
vides the means to directly monitor RNA modification events in a
continuous and time-resolved fashion, by measuring successive
NMR experiments on a single sample (Fig. 1a). In addition, since
NMR spectroscopy provides information at atomic-resolution,
multiple RNA modifications introduced on the same substrate, e.g.
methylations on nearby nucleotides, can be easily distinguished.

Our approach for monitoring of RNA post-transcriptional
modifications with NMR relies on the fact that imino signals of
RNAs are very sensitive to their chemical environment. Imino
groups are carried by uridines and guanosines, and are easily
observed in 1H–15N correlation spectra on condition that the
imino proton is protected from exchange with the solvent by
hydrogen bonding in, e.g. a Watson–Crick-like pairing. Different
types of behavior for imino signals can in principle be observed in
1H–15N correlation spectra upon enzymatic modifications
(Fig. 1b). The incorporation of a chemical group on a defined
nucleotide will affect the chemical environment of the modified
nucleotide itself but also of nearby nucleotides. Overall, this will
cause the progressive disappearance of signals from the unmodi-
fied RNA and the correlated appearance of new signals from the
modified RNA. For the sake of clarity, the disappearance and the
correlated appearance related to the imino signal of a nucleotide
experiencing a chemical modification will be thereafter called ‘a
direct effect’ (signal M on Fig. 1b), whereas the disappearance and
the correlated appearance associated with the imino signal of a
nearby nucleotide will be referred to as ‘an indirect effect’ (signal P
on Fig. 1b). The possibility to observe indirect effects enables the
detection of modifications on adenosines and cytosines, even
though they do not carry imino groups.

Yeast tRNAPhe as a model for monitoring RNA modifications.
As a proof of concept, we undertook the investigation of the
maturation of the yeast tRNAPhe in yeast extract. Matured
tRNAPhe contains 14 modified nucleotides (Fig. 2a and Supple-
mentary Table 1), among which: (i) T54, Ψ55, and D16 are found
in almost all yeast tRNAs; (ii) m1A58, m2

2G26, m2G10, Ψ39,
m7G46, and m5C49 are frequently found in yeast tRNAs; and (iii)
Gm34, yW37, and m5C40 are found uniquely in tRNAPhe in
yeast1. To evaluate the ability of yeast extracts to modify yeast
tRNAPhe, we first produced an unmodified 15N-labeled tRNAPhe

by in vitro transcription (Fig. 2a), which to a certain extent can be
regarded as a tRNAPhe precursor (pre-tRNAPhe) with processed
5′- and 3′-termini and spliced intron, but lacking all RNA
modifications. This choice of substrate affects the introduction of
certain modifications near the anticodon28, but constitutes a
simplified system, which has the advantage to spotlight nucleotide
modifications over RNA processing steps. The chemical shifts of
imino groups involved in secondary and tertiary interactions were
assigned using standard NMR procedures for RNAs29. NMR-
fingerprints of tRNAs can be efficiently acquired with 1H–15N
Band-selective excitation short-transient Transverse relaxation
optimized spectroscopy (BEST-TROSY) experiments30. To serve
as a reference spectrum of yeast tRNAPhe without any mod-
ifications, we measured a 1H–15N BEST-TROSY experiment
in vitro (Fig. 2b), in a buffer aiming to approach cellular condi-
tions. We next incubated this tRNA at 30 °C for 12 h in yeast
cellular extracts prepared under mild conditions in order to
preserve most enzymatic activities of the cell. Cellular extracts
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were supplemented with enzymatic cofactors, such as S-adenosyl-
L-methionine (SAM), the almost universal methyl donor of RNA
methylations by methyltransferases31 (MTases), and reduced
nicotinamide adenine dinucleotide phosphate (NADPH), a
hydride donor implicated in the reduction of uridines to dihy-
drouridines32. After the 12 h of incubation, we measured a BEST-
TROSY experiment (experimental time of 2 h) directly in yeast
extracts. The 15N-isotope filter of the experiment enables the
exclusive detection of the 15N-labeled tRNAPhe signals, even in
this complex environment (Fig. 2b). The comparison of this
spectrum with the reference spectrum revealed obvious differ-
ences, with apparent additional signals, as well as duplicated or
shifted signals (Fig. 2b). Remarkably, tRNA signals are still
observed after this long incubation, confirming that tRNA tran-
scripts are not rapidly degraded by RNases down to single
nucleotides and are stable for several hours in yeast extracts28. In
addition, the line-width of the NMR signals is not particularly
broadened in the extracts, meaning that the overall tumbling time
of the 15N-labeled tRNAPhe is unchanged compared with the
in vitro situation, and therefore that it remains mostly free and
does not predominantly associate with proteins or other cellular
components within large molecular complexes. These two hur-
dles, namely substrate degradation and signal line broadening,
were identified in a pioneer study as the most prominent diffi-
culties that complicate in depth investigations of nucleic acids
with NMR in cellular environments33. We did not face these
difficulties in the case of tRNA transcripts in yeast extracts, which
opened the way to a thorough investigation of the fate of tRNAs
throughout their maturation pathway with NMR.

Changes in the NMR-fingerprint of tRNAPhe (Fig. 2b) can be
associated with expected chemical modifications. For instance the
signal of U55, a residue that gets modified into Ψ55 and that is
found near two other modified nucleotides, i.e. T54 and m1A58,
gave rise to three individual signals (Fig. 2a, b). Another example
comes from the signal of G24, which is split into two (Fig. 2b),
and for which the appearance of the second signal could be linked
to the m2G10 modification, since the G24:C11 base pair stacks
over this modified nucleotide (Fig. 2a). However, the exact
assignments of all the changes on the NMR-fingerprint of
tRNAPhe, which are potentially generated by direct and indirect
effects from all modifications, remains impractical only from the
signal assignments of the initial unmodified tRNA transcript. We
thus performed further investigations by NMR in order to
accurately interpret these changes on the NMR-fingerprint of
tRNAPhe upon incubation in yeast extracts.

The NMR signature of individual modifications. To character-
ize the effect of modifications on the NMR-fingerprint of tRNAPhe,
we measured NMR spectra on three distinct tRNAPhe samples
differing in their modification content. The first sample is the
aforementioned tRNAPhe sample produced by in vitro transcrip-
tion, which presents none of the modifications (Fig. 3a, left). The
second sample corresponds to native tRNAPhe purified from Sac-
charomyces cerevisiae, and therefore contains all 14 modifications
found in fully modified yeast tRNAPhe (Fig. 3a, right). The third
sample corresponds to a recombinant yeast tRNAPhe produced in
and purified from an Escherichia coli strain overproducing this
tRNA with a system previously described34,35. Since E. coli has a
less prolific but related tRNA modification machinery than
S. cerevisiae, the modification pattern of this sample resembles that
of the fully modified yeast tRNAPhe, but overall exhibits fewer
modifications (Fig. 3a, center). The modification status of a tRNA
expressed in heterologous systems can be inferred from the
transposition of the known tRNA modification patterns found in
the host organism onto the recombinant tRNA sequence. This
approach predicts that yeast tRNAPhe produced in E. coli contains
eight modifications, six of which are identical to the ones found in
natural tRNAPhe (Fig. 3a). This modification pattern was con-
firmed by further NMR analysis of the sample.

We next performed the chemical shift assignments of the
imino groups of the two modified tRNAPhe samples, produced in
E. coli and yeast, with the same approach used for the unmodified
tRNAPhe sample. Imino protons assignments of the fully
modified tRNAPhe are consistent with the ones reported by early
NMR studies of this tRNA36,37. Chemical shifts assignments of
the imino groups of the three samples are reported on 1H–15N
BEST-TROSY experiments measured in identical conditions in
Fig. 3b. The comparison of the NMR fingerprints of the three
samples revealed the NMR signature of individual modifications
(Fig. 3c). The identified direct effects and indirect effects are
reported in Fig. 3c with solid line arrows and dashed line arrows,
respectively. NMR signatures of modifications in the anticodon
loop could not be identified on this type of NMR spectra, since
their imino protons are not engaged in base pairing and are not
protected from exchange with the solvent, and are therefore not
detectable. For the identification of the NMR signature of
modifications, the 3D structure of yeast tRNAPhe provided a
valuable aid, enabling the precise identification of the nearest
modifications to an imino group38. The identified NMR
signatures (Fig. 3c) might seem puzzling if one looks at the 2D
cloverleaf representation of tRNAs, but become more apparent if
one has in mind the complicated 3D L-shaped structure of tRNAs
(Supplementary Fig. 1). As an example, we describe a few NMR
signatures of individual modifications derived from the
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comparison of the NMR fingerprints. For instance, the compar-
ison of the unmodified with the E. coli-produced tRNAPhe

(Fig. 3c, left) reveals the NMR signature of the T54 modification,
with a direct effect on the imino group of U54 (solid line) and an
indirect effect on U52 (dashed line). Moreover, the comparison of
the NMR-fingerprints of the three samples (Fig. 3c, right) reveals
an NMR signature for the m1A58 modification, with an indirect
effect on the imino group of T54 (dashed line). The indirect effect
is very pronounced in this case, most probably because T54 forms
a non-canonical base pair with A58, the chemical environment of
which is highly perturbed by the positive charged appearing on
the A58 base after methylation at position 1. Similarly, the
comparison of the unmodified with the E. coli-produced tRNAPhe

(Fig. 3c, left) reveals the NMR signature of the Ψ55 modification,
with a direct effect on the imino group of U55 (solid line); and the
comparison of the NMR-fingerprints of the three samples (Fig. 3c,
right) reveals an NMR signature for the m1A58 modification,
with an indirect effect on the imino group of Ψ55 (dashed line).
Overall, we identified the NMR signatures for nine modifications,
most of which are located in the tRNA core, i.e. m2G10, D16, and
m2

2G26 in the D-arm; m5C40 in the anticodon-arm; m7G46 in
the variable region; and m5C49, T54, Ψ55, and m1A58 in the

T-arm (Fig. 3). This paved the way to a detailed investigation of
the introduction of RNA modifications in yeast tRNAPhe

by NMR.

Time-resolved NMR monitoring of RNA modifications. In
order to record time-resolved snapshots along the tRNAPhe

modification pathway, we incubated the unmodified 15N-labeled
tRNAPhe at a concentration of 40 μM in active yeast extract
supplemented with the modification enzymes cofactors SAM and
NADPH. The incubation was done at 30 °C directly in an NMR
tube in the NMR spectrometer, and a series of 1H–15N BEST-
TROSY experiments were measured from initial mixing time up
to ~24 h after starting the monitoring of tRNA maturation
(Fig. 4a). At this concentration of 15N-labeled tRNA, reasonable
signal-to-noise ratio (SNR) is achieved with an acquisition time of
2 h, and therefore each NMR fingerprint measurement spreads
over a 2 h time period (Fig. 4a). Importantly, all changes observed
in the NMR-fingerprints can be rationalized and attributed to
specific RNA modifications on the basis of the NMR signatures
identified above (Fig. 3). The identifications of specific RNA
modification in each snapshot are displayed with solid line and
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dashed line arrows for direct and indirect effects, respectively
(Fig. 4a). We observed different types of behavior for different
modifications. First, some modifications appear early in the
sequence, such as Ψ55, m7G46, and T54; and some appear late,

such as m1A58. Second, some modifications are introduced
during a short interval of time, such as Ψ55 and m7G46, whereas
others are introduced over a long time period, such as T54 and
m2G10, suggesting different levels of intrinsic catalytic activities
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for the different modification enzymes. In detail, the time-
resolved NMR monitoring of RNA modifications in yeast
tRNAPhe reveals that the modification Ψ55 is the first one to be
introduced and that U55 is completely modified before any other
modification can be detected (Fig. 4a, t= 0–2 h), showing that
Pus4 is one of the most active modification enzymes in yeast and
suggesting that it is highly efficient on a non-modified tRNA

transcript and does not require prior modifications. Then, m7G46
and T54 are the two next modifications to be introduced (Fig. 4a,
t= 2–4 h), and whereas m7G46 is rapidly fully modified (t= 2–6
h), T54 is introduced over a longer time period (t= 2–18 h),
suggesting that Trm2 is a less active enzyme than the
Trm8–Trm82 complex. The three next modifications to be
observed in the sequence are m2G10, m5C49, and D16 (Fig. 4a,
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t= 4–6 h). Among these three enzymes, the complex responsible
for the introduction of the m2G10 modification
(Trm11–Trm112) appears to be the least active one. Even though
the T54 modification is observed earlier in the time-course of
modification, the three modified nucleotides m2G10, m5C49, and
D16 are initially detected at a time point, where U54 is not
completely converted into T54, meaning that these modifications
could, in principle, be introduced on tRNAs lacking the T54
modification. The strict sequential introduction of m2G10,
m5C49, and D16, only after T54 is fully present is also compatible
with our data, since ensemble-averaged measurements do not
allow us to discriminate between these two possibilities (see
below). The last modification to be detected along the tRNA
maturation pathway is the m1A58 modification (Fig. 4a, t=
8–10 h). Similarly, the m1A58 modification is initially detected at
a time point, where U54 is not completely modified into T54,
meaning that it could, in principle, be introduced on tRNAs
lacking the T54 modification. However, our data suggest that the
m1A58 modification is strictly introduced after T54. Indeed, we
detect the m1A58 modification by its indirect effect on the T54
imino group signal (Fig. 3c). If the m1A58 modification is
introduced on a tRNA lacking the T54 modification, it would be
detected by a large perturbation on the U54 imino group that
would then resonate at a different position than that of T54
(δH= 12.27 ppm; δN= 158.2 ppm), since it lacks the T54 mod-
ification. Importantly, no unidentified transient signal, which
could correspond to tRNAs with m1A58 but still lacking T54, is
observed during the incubations. The m1A58 modification of
U54-containing tRNAs is therefore not observed in our experi-
ments, suggesting a strict introduction of m1A58 after T54.

As a summary, the sequence in the introduction of modifica-
tions in yeast tRNAPhe as monitored by NMR is schematically
represented in Fig. 4b. Two modifications for which NMR
signatures have been identified (Fig. 3c) were not observed with
these conditions and incubation time, namely m2

2G26 and
m5C40. The lack of the m5C40 modification was expected, since it
was reported to strictly depend on the presence of the intron at
the level of the anticodon region28. Taken as a whole, we clearly
observed a sequential order in the introduction of the modifica-
tions found in the heart of the 3D structure of yeast tRNAPhe

(Fig. 4b), which could suggest that regulatory circuits are
controlling the introduction of these modifications. However,
since the modification content observed by NMR is averaged over
the total tRNAPhe population, the exact modification status of
each tRNA molecule cannot be firmly established. This type of
questions that needs to be addressed at a single molecule level,
cannot be resolved with currently available methods aimed at
quantifying the modification content of RNAs. For instance, in
our case it is not possible to know whether or not all m2G10-
containing tRNAs also contain T54 and m7G46 modifications.
Importantly, with our experimental setup, it is difficult to
discriminate between an authentic dependence on the prior
introduction of certain modifications and a sequential order
caused by different intrinsic catalytic activities of the enzymes. In
order to address these important questions concerning tRNA
maturation and identify potential interdependencies among RNA
modifications, we have adopted a reverse genetic approach and
conducted a systematic analysis of tRNAPhe maturation in
different yeast strains.

Complex circuits of RNA modifications in yeast tRNAPhe. In
order to identify a potential interplay between different mod-
ification enzymes, we recorded several time-resolved snapshots of
the tRNAPhe modification pathway in identical conditions as in
Fig. 4, with the exception that the unmodified 15N-labeled

tRNAPhe was incubated in various extracts prepared from yeast
strains depleted of one specific modification enzyme at a time
(Fig. 5a and Supplementary Figs. 2–8). The modification pattern
was then compared with that of the wild-type yeast extract
(Fig. 4). First, this provided independent confirmation of the NMR
signatures of the individual modifications identified previously,
since changes in the NMR spectra associated with a given mod-
ification were no longer observed in the corresponding depleted
yeast extract. Second, the detailed analysis of the different profiles
of the tRNAPhe modification pathways, provided a way to visua-
lize any subtle interdependence between the multiple modification
events. To identify these correlated changes, it is best to compare
the whole series of snapshots measured in the wild-type and
depleted yeast extracts side by side (Fig. 4a and Supplementary
Figs. 2–8). However, for ease of visualization, a single time point,
intermediate in the time-course of the tRNAPhe modification
pathway, and at which most of the differences between the wild-
type and depleted strains are apparent, is shown in Fig. 5a.

Very strong effects are seen in some cases, as for instance in the
case of the pus4∆ strain, where not only the Ψ55 modification is
absent after a long incubation in the corresponding yeast extract, as
expected, but the m1A58 modification is absent as well. In addition,
the incorporation of T54 is substantially hindered in the pus4∆
strain. Likewise, the incorporation of m1A58 is much reduced in the
trm2∆ strain (preventing T54 formation), which altogether suggest a
regulatory circuit in the T-arm of tRNAPhe. In this circuit of
modification, Ψ55 has a positive effect on the introduction of T54
and m1A58 by their respective enzymes (Supplementary Table 1),
and T54 has a positive effect on the introduction of m1A58 (Fig. 5b).
Another strong effect is observed in the case of the trm11∆ strain
(preventing m2G10 formation), where the m2

2G26 modification is
apparent after ~14 h of incubation in the trm11∆ yeast extract, but is
undetectable in wild-type and all other depleted strain extracts after
~24 h of incubation. Therefore, m2G10 has a negative effect on the
introduction of m2

2G26 (Fig. 5b). Less drastic effects are also
apparent in the different time-courses of the tRNAPhe modification
pathway (Fig. 4a and Supplementary Figs. 2–8), and reveal more
subtle interplay in the introduction of certain modifications. For
instance, dihydrouridines introduced in the D-arm by Dus1 are seen
to have a positive effect on the introduction of m1A58 in the T-arm
and a negative effect on the introduction of m2G10 in the D-arm
(Fig. 4a and Supplementary Fig. 2). Moreover, m2

2G26 has a
positive effect on the introduction of the nearby m7G46 but also on
the more distant m1A58 in the T-arm (Fig. 4a and Supplementary
Fig. 4). Our analysis has revealed a complex interplay between
different modifications in the tRNA core, with the introduction of
some modifications appearing to be strongly coupled (Fig. 5b). We
next set out to analyze these modification circuits in vivo.

Modification circuits in other yeast tRNAs. The modification
circuits identified here in yeast extracts are very clear, but we
wanted to rule out the possibility that these interdependences
could be the consequence of monitoring the modification path-
ways in yeast extracts, in which numerous cellular activities are
present but many others are likely missing. In addition, we
wondered whether the modification circuits uncovered here on
tRNAPhe are specific to this tRNA or whether they are relevant to
tRNA modifications in general. To address these two points, we
undertook to quantify the modification content of total yeast
tRNAs prepared from different yeast strains depleted of one
specific modification enzyme at a time. The absolute quantifica-
tion of the different modified nucleosides was performed by
liquid-chromatography coupled with tandem mass spectrometry
(LC–MS/MS) and compared with the modification content of
wild-type yeast cultured under the same experimental conditions.
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Modification abundances were quantified by isotope dilution
mass spectrometry39 for the following modifications: D, Ψ, m2

2G,
T, m5C, m7G, m2G, and m1A in wild-type and depleted strains as
used for the NMR monitoring in yeast extracts, namely dus1Δ,
pus4Δ, trm1Δ, trm2Δ, trm4Δ, trm8Δ, and trm11Δ (Fig. 6). Their
quantification in total tRNAs (Fig. 6a, b) reflects the sum of the
individual modification changes in all tRNA species and therefore
alterations specific to a single tRNA are most probably averaged
out and masked in these measurements. Substantial changes in
the tRNA modification contents of depleted strains therefore
reflect changes that must be common to several tRNA species.
Apart from the expected loss of modifications corresponding to

the depleted gene itself, significant alterations in the modification
content of total tRNAs were measured in the pus4Δ and trm2Δ
strains (Fig. 6a, b and Supplementary Fig. 9). In the pus4Δ strain,
both the levels of T and m1A are much reduced, whereas in the
trm2Δ strain, the level of m1A is slightly but significantly reduced
(Fig. 6b). This shows that the effects we have observed with NMR
in yeast extracts on tRNAPhe (namely that Ψ55 has a positive
effect on the introduction of T54 and m1A58, and T54 has a
positive effect on the introduction of m1A58) also occur in vivo
and must be present in several tRNAs. Our measurements clearly
establish the existence of a conserved modification circuit invol-
ving T54, Ψ55, and m1A58 in the T-arm of tRNAs in yeast, but
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the extent to which a given tRNA is responsive to this circuit is
likely to be tRNA-species-dependent (see the “Discussion” sec-
tion). Apart from this modification circuit in the T-arm, other
more subtle interdependences detected by NMR on tRNAPhe

were not observed on total tRNAs (Figs. 5 and 6a, b), which led us
to quantify the modification content of specifically purified
tRNAPhe prepared from these same total tRNA samples. The
number of modified nucleosides in tRNAPhe from wild-type yeast
is shown in Supplementary Fig. 10, while the relative abundance
is shown in Fig. 6c, d and Supplementary Fig. 11). Similarly to

what was observed for total tRNAs, the levels of T and m1A in the
purified tRNAPhe samples confirm interdependence of mod-
ifications in the T-arm of tRNAPhe (Fig. 6c, d and Supplementary
Fig. 11). It is worth noting that the effects on the T and m1A
levels in the pus4Δ strain are even more pronounced for tRNAPhe

than in total tRNAs, with almost no m1A detected in this strain in
tRNAPhe (Fig. 6b, d). In addition, dihydrouridines introduced by
Dus1 in the D-arm and m2

2G26 introduced by Trm1 have both a
positive effect on the introduction of m1A58 in the T-arm
(Fig. 6d). These effects were also observed by NMR in yeast
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extracts (Fig. 5). Finally, our mass spectrometry (MS) measure-
ments suggest other small effects that were not detected by NMR
in yeast extracts, such as m2

2G26 and m5C modifications, which
both have a slight but significant positive effect on the intro-
duction of T54 (Supplementary Fig. 11). Overall, the quantifica-
tion of modifications performed here with MS demonstrates that
interdependences between modifications observed by NMR in
yeast extracts on tRNAPhe also occur in yeast in vivo and that
some of these modification circuits are not limited to tRNAPhe

but are common to several yeast tRNAs.

Discussion
In this study, we developed an original methodology for monitoring
the introduction of modified nucleotides in tRNAs using NMR in a
time-resolved fashion. Our methodology enabled us to demonstrate
that the modifications in yeast tRNAPhe are introduced in a parti-
cular order and that there are complex interplays between certain
modifications. In particular, modifications T54, Ψ55, and m1A58 in
the T-arm are strongly interconnected in a circuit of modifications
that drives the modification process along a defined route, namely
Ψ55, then T54 and finally m1A58. Our study has important
implications for our understanding of the regulation of tRNA
modifications in yeast. These aspects are discussed below.

By monitoring the introduction of modifications in tRNAs in a
time-resolved fashion with NMR, our methodology enables the
identification of sequential events and therefore reveals potential
regulatory circuits in the system under study. If the introduction
of a certain modification is influenced by the presence of prior
modifications, this dependency indeed drives a defined order in
the introduction of these modifications. Only a handful of
modification circuits have been reported to date, most probably
because their study remains difficult, since monitoring the
maturation of tRNA in real-time at a single nucleotide level is
technically challenging18. Most of the well-documented examples
of modification circuits occur in the ACL and involve modifica-
tions at the frequently modified positions 34 and 371,4. Although
the reasons for which modification circuits exist in tRNAs are not
known, it was recently proposed that the first modifications act as
additional recognition elements for other modifying enzymes,
which provides the mean for adding modifications with con-
siderable variation in the ACL14. This theory is highly convincing
for modifications in the ACL, but cannot account for the mod-
ification circuit identified here in the T-arm of yeast tRNAs. The
three modifications involved are indeed highly conserved, with
T54 and Ψ55 being present in all but the initiator tRNA in yeast
(the specific case of tRNAi

Met is discussed below), and the m1A58
modification being present in about two-thirds of yeast cytosolic
tRNAs1. Similarly, other small effects uncovered here in tRNAPhe,
for instance the dihydrouridines in the D-arm and the m2

2G26

modification, which have a positive influence on the introduction
of the m1A58 modification in the T-arm (Fig. 5 and Supple-
mentary Fig. 11), cannot be explained by the need for an
increased modification variability in the tRNA core, since these
modifications are also highly conserved in yeast tRNAs. The
modification circuits uncovered here in the tRNA core of yeast
tRNAs are reminiscent of the circuits that have been reported in
Thermus thermophilus tRNAs40–42. Although different in the
exact nature of the connections between modifications, both the
modification circuits revealed here in yeast and those found in T.
thermophilus involve conserved modifications from the tRNA
core and link modifications from several tRNA regions such as
the T- and D-arms42. In the case of T. thermophilus, the mod-
ification circuits influence and regulate the levels of modifications
in response to changes in external temperature, a mechanism that
has been linked to an adaptation of protein synthesis to tem-
perature change43. Whether the circuits identified here in yeast
are part of a regulatory mechanism for adaptation to environ-
mental changes is a stimulating idea that deserves further studies.

It is worth noting the self-coherence of the modification cir-
cuits reported here in yeast tRNAs. For instance, the branch D⊣

m2G10⊣ T54→m1A58 is consistent, regarding the influence of
the dihydrouridine modifications on the m1A58, with the direct
branch D→m1A58 (Fig. 5b). Similarly, the branch Ψ55→
T54→m1A58 is consistent with the direct branch Ψ55→m1A58
(Fig. 5b). It should be remembered that the type of global analysis
that we carried out here with NMR or MS, cannot distinguish
direct from indirect effects. The effects that appear in the form of
a short-branch circuit might therefore be indirect effects arising
from accumulated direct effects in a long-branch circuit with
identical endpoints. To discriminate direct from indirect effects is
an important point that could be addressed in vitro by per-
forming careful enzymology with purified enzymes and tRNA
substrates bearing or not pre-existing modifications. Among
other techniques, this approach could be implemented with NMR
using different types of labeling, e.g. 15N-labeling of the tRNA
substrate and a similar experimental setup as presented here, or
13C-labeling of the transferable methyl of the SAM cofactor and a
monitoring of the modification process with 1H–13C correlation
spectra showing the incorporation of the methyl groups into the
tRNA substrate. However, whether some of the effects observed
here are direct or indirect does not radically change their fun-
damental quality: a connection exists between two modifications.

If one compares the effects of modifications observed with
NMR on tRNAPhe (Fig. 5) and those measured by MS on total
tRNAs (Fig. 6a and Supplementary Fig. 9), it seems reasonable to
conclude that the identity of the tRNA has an influence on the
conservation and the intensity of a given modification circuit.
Apart from the effects of the Ψ55→ T54→m1A58 modification
circuit in the T-arm, the other effects observed on tRNAPhe with

Fig. 6 Quantitative analysis of nucleoside modifications in yeast tRNAs with LC–MS/MS. a Heat map depicting the relative comparison of normalized

modification levels in total yeast tRNAs prepared from depleted strains (dus1Δ, pus4Δ, trm1Δ, trm2Δ, trm4Δ, trm8Δ, and trm11Δ) using the wild-type levels as

reference. The nucleotides quantified by LC–MS/MS are listed on the left side of the map. The scale bar indicates the fold change in modification levels

compared with the wild-type strain (increased levels shown as red, no change as white, and decreased levels as blue). b Histograms showing the relative

abundance of T and m1A modifications in total yeast tRNAs prepared from the depleted strains using the wild-type levels as reference. c Heat map

depicting the relative comparison of normalized modification levels in specifically purified yeast tRNAPhe prepared from the depleted strains using the wild-

type levels as reference. The scale bar indicates the fold change as in panel a. d Histograms showing the relative abundance of T and m1A modifications in

specifically purified yeast tRNAPhe prepared from the depleted strains using the wild-type levels as reference. In panels b and d, black dots represents

individual measurements, data heights represent the mean of the biological replicates. Error bars correspond to the s.d. In all panels, significant changes

compared to wild type are reported as *** for p < 0.001, ** for p < 0.01 and * for p < 0.05, n= 3. All other changes are not statistically significant. Statistical

analyses of the variations compared to the wild-type strain were performed using a two-sided Student’s t-test. See also Supplementary Figs. 9 and 11 for

similar analysis of all modified bases in total tRNA and purified tRNAPhe. Modifications were quantified in three independent biological replicates, except for

the modifications Ψ, m7G, and m1A in the specifically purified tRNAPhe of the trm4Δ strain, for which n= 2. Source data are provided as a Source Data file
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NMR are not apparent in the MS analysis of total tRNAs. This
means that these particular effects are not found in all the dif-
ferent tRNAs but are averaged out and therefore are not detected
in the total tRNA population. The observed differences are not
derived from potential discrepancies between NMR and MS
analysis, since the MS measurements on purified tRNAPhe are
more similar to the NMR measurements than the MS data on
total tRNAs (Figs. 5 and 6 and Supplementary Figs. 9 and 11).
This conclusion is corroborated by the difference in the absolute
quantification of modified nucleosides performed by MS on total
tRNA and purified tRNAPhe. As a comment, it is worth men-
tioning that the differences that exist between the NMR and MS
measurements on purified tRNAPhe can have two different ori-
gins. First, they can reflect the fact that cell extracts do not fully
recapture the enzymatic activities of intact cells, especially
regarding protein localization (see below). Second, our approach
examines the de novo synthesis of modifications on an unmo-
dified tRNA with NMR and the steady-state levels of modifica-
tions in mature tRNAs with MS. Differences can therefore arise
from the fact that the relatively weak effects on rates of mod-
ifications detected by NMR during de novo synthesis might not
give rise to significant changes in the steady-state levels of
modified nucleosides measured with MS. Concerning the role of
tRNA identity, it has been proposed that some modifications
might matter more in certain tRNA species than in others44. Our
data are consistent with the extension of this idea to the con-
nections between modifications, meaning that modification cir-
cuits may have more pronounced effects in certain tRNA species
than in others. From a mechanistic point of view, this means that
for a certain tRNA species, which is an intrinsically poor substrate
of a given enzyme, decent modification activity is only achieved in
the presence of a prior modification. Whereas for another tRNA
species, an intrinsically good substrate of the same enzyme, the
presence of a prior modification, although beneficial, has only a
minor effect on the catalysis. In such a situation, the modification
circuits would have a more pronounced effect on the first tRNA
species than on the second one. In accordance with this idea, in
the Ψ55–T54–m1A58 modification circuit in the T-arm, which is
certainly conserved in several tRNAs (Fig. 6b), the strength of the
connections most likely depends on the identity of the tRNA.
The effects observed in the pus4Δ and trm2Δ strains are indeed
more pronounced on tRNAPhe than on total tRNAs (Fig. 6b, d),
meaning that the effects of these circuits are necessarily less
pronounced on other tRNA species. It is important to mention
here that this reasoning can be safely applied in this particular
case, since the m1A58 and T54 modifications are the only source
of m1A and T in yeast tRNAs1.

Although these extract-based NMR measurements may not
accurately reflect the spatially controlled enzyme activities of
intact cells, they nevertheless permit comparative assessments of
global RNA modification activities and their changes upon
depletion of a specific modification enzyme. In other words, even
though our NMR approach might be biased by the lack of
compartmentalization, by the use of a relatively high concentra-
tion of substrate tRNA (40 μM) that stretches the modification
process over an artificial time span, by an intrinsic decay of
enzymatic activities during incubation that is likely enzyme-
dependent, and by the fact that the transcription is here dis-
sociated from the modification process, it enables the identifica-
tion of connections between modifications. In support of our
methodology, most of the modification circuits identified in
extracts with NMR have been corroborated by MS data on tRNAs
purified from living yeast cells. The most striking difference
between the NMR-derived circuits and the MS measurements
concerns the strong negative influence of m2G10 on the intro-
duction of m2

2G26 observed with NMR, a connection which is

absent from the MS data (Figs. 5 and 6). We believe that the
significant inhibition observed in NMR describes a true reduction
of the Trm1 activity in the presence of m2G10, an effect that is
perfectly compatible with the three-dimensional structure of yeast
tRNAPhe, in which m2G10 and m2

2G26 stack on one another
(Supplementary Fig. 1)38. However, this situation might never
arise in cells as a consequence of the subcellular localization of the
different enzymes. Indeed, Trm11 (responsible for m2G10) is a
cytoplasmic protein whereas Trm1 (producing m2

2G26) is a
nuclear protein, and since the m2

2G26 formation is insensitive to
the presence of the intron, the m2

2G26 modification most likely
occurs before the primary export of tRNAs to the cytoplasm
(Supplementary Table 1)45–47. The m2

2G26 modification is thus
introduced on tRNAs lacking the m2G10 modification, and in the
light of our data it is tempting to speculate that Trm11 is localized
in the cytoplasm to avoid it inhibiting the m2

2G26 modification.
In another example, the subcellular location of Trm2 is
unknown8, but there is indirect evidence of an m5U54-
methylation activity in the nucleus, and Trm2 is therefore
thought to be, at least partially, a nuclear protein48–50. Our data
perfectly agree with a nuclear Trm2 protein. In the trm2Δ strain,
the levels of m1A, introduced at position 58 by the Trm6/Trm61
nuclear complex51, are indeed slightly but significantly reduced
(Fig. 6b, d). This means that the T54 modification has a slight
positive effect on the introduction of m1A58, an effect that is
incompatible with a situation, where tRNAs would be modified
first with m1A58 in the nucleus by Trm6/Trm61 and modified by
Trm2 in the cytoplasm after tRNA export.

In this study, we report a robust modification circuit in the
T-arm of yeast tRNAs, with Ψ55 positively influencing the
introduction of both T54 and m1A58, and T54 positively influ-
encing the introduction of m1A58 (Figs. 5 and 6). This mod-
ification circuit was initially postulated based on the ordered
modification process revealed by the time-resolved monitoring of
tRNAPhe modifications in yeast extracts (Fig. 4). A survey of the
tRNAPhe modification process in yeast extracts using radi-
olabelled nucleotides and 2D chromatography on thin-layer
plates to identify modified nucleotides has been previously
reported28. Several aspects of the reported kinetics are in accor-
dance with our observations, with for instance the pseudouridine
modifications being the fastest modification introduced, but the
ordered modification process in the T-arm was not identified.
The T54 modification is indeed introduced with no lag-phase,
arguing for T54 being a modification that does not require any
prior modification. Unfortunately the m1A58 modification was
not detected in their experimental conditions, preventing the
examination of a potential ordered modification process invol-
ving this nucleotide28. We believe it is worth emphasizing that
our methodology has the advantage of providing information on
modifications within their sequence context, meaning that one
can differentiate, for instance, the m5C40 from the m5C49
modification, or the different pseudouridine modifications,
information that is absent when tRNAs are digested down to
nucleotides before analysis. Since nucleotides 54, 55, and 58 are
almost absolutely conserved as U54, U55, and A58 in tRNA
genes, and since these positions are often modified to T54, Ψ55,
and m1A58 in the three domains of life4,52, it would be interesting
to understand whether the T54–Ψ55–m1A58 modification circuit
identified in yeast, is conserved in other organisms. E. coli lacks
m1A58 modifications in its tRNAs, but interestingly, the enzyme
catalyzing the Ψ55 modification in E. coli (TruB) prefers to bind
unmodified tRNA, whereas the enzyme catalyzing the T54
modification (TrmA) binds tRNA containing Ψ55 more strongly
(Ute Kothe, personal communication). This suggests that the Ψ55
and T54 modifications are likely introduced in the same order in
E. coli and yeast. In T. thermophilus, complex modification
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circuits exist in the T-arm, including the m1A58 modification,
which is stimulated by T5453; the s2T54 modification of T54,
which is stimulated by m1A5854; and the s2T54 and m1A58
modifications, which are negatively regulated by Ψ5541. Although
the yeast and T. thermophilus circuits have the T54→m1A58
branch in common, the two circuits are fairly different. First, in
T. thermophilus, the m1A58 modification is negatively regulated
by Ψ55, whereas it is strongly favored by Ψ55 in yeast (Figs. 5 and
6). And second, the connections in T. thermophilus lead to slight
changes in the modification content of the analyzed tRNAs
(±10% compared to wild-type), whereas the strong influence of
Ψ55 on m1A58 in yeast tRNAPhe produces large changes, with the
m1A58 level in the pus4Δ strain decreasing to ~10% of the wild-
type level (Fig. 6d). Altogether, even though some connections
might be conserved in different species, potential modification
circuits in the T-arm of tRNAs are likely organism-dependent.

Finally, it is worth mentioning that the trm6/trm61 genes,
coding for the heterodimer catalyzing the m1A58 modification,
are among the few genes coding for tRNA modification enzymes
that are essential in yeast6. It might seem counterintuitive at first
sight that the deletion of the pus4 gene, which causes a dramatic
decrease in the level of m1A58 in tRNAs (Fig. 6), results in no
detectable phenotype in yeast55. However, the essentiality of the
m1A58 modification has been studied in detail and was shown to
correspond to an increased and deleterious instability of the
initiator tRNAi

Met when lacking m1A5856,57. The initiator
tRNAi

Met is the only yeast cytoplasmic tRNA lacking both the
T54 and Ψ55 modifications1. Yeast tRNAi

Met has a very peculiar
T-loop sequence, and contains unmodified A54 and U55, which
together with other features give rise to a particular tRNA elbow
structure58. Overall, initiator tRNAi

Met has its own pathway of
modification in the T-arm, which does not depend on the T54–
Ψ55–m1A58 modification circuit identified here, and the level of
m1A58 in tRNAi

Met is therefore most likely unaffected in the
pus4Δ and trm2Δ strains.

Overall, our work establishes NMR spectroscopy as an
enlightening technique to analyze tRNA modification pathways.
Our innovative methodology indeed reports on the sequential
order of modification events and provides valuable information
on the regulatory circuits in tRNAs. We expect that our NMR-
based methodology will be applicable to investigate several
aspects of tRNA maturation and RNA modifications in general,
such as the dynamic adaptation of RNA modifications in
response to environmental changes.

Methods
Yeast strains. Yeast strains used in this study are listed in Supplementary Table 2.
The wild-type S. cerevisiae BY4741 strain and the YKO collection kanMX strains
carrying deletions of the genes for modification enzymes (YML080w, YNL292w,
YDR120c, YKR056w, YBL024w, YDL201w, and YOL124c) were obtained from
Euroscarf and used for tRNA preparations for MS analysis.

The proteinase-deficient S. cerevisiae strain c13-ABYS-8659 was used for the
preparation of yeast extracts used in NMR experiments. Chromosomal deletion of
genes coding for modification enzymes (YML080w, YNL292w, YDR120c,
YKR056w, YBL024w, YDL201w, and YOL124c) was carried out by homologous
recombination in the c13-ABYS-86 genetic background. The kanamycin-resistance
cassettes kanMX were amplified by high-fidelity PCR (Phusion, ThermoFisher)
from the appropriate YKO collection kanMX strains (Euroscarf) followed by
transformation of the DNA into the c13-ABYS-86 strain and selection on plates
containing G418 at 300 μg/mL. All strain constructions were verified by PCR using
appropriate oligonucleotides (listed in Supplementary Table 3).

tRNAPhe samples for NMR. Unmodified yeast tRNAPhe was prepared by standard
in vitro transcription with T7 polymerase with unlabeled NTPs (Jena Bioscience)
for unlabeled samples or 15N-labeled UTP and GTP (Eurisotop) and unlabeled
ATP and CTP (Jena Bioscience) for 15N-[U/G]-labeled samples. The DNA tem-
plate and T7 promotor primer were purchased from Eurogentec. The transcript
was purified by ion exchange chromatography (MonoQ, GE Healthcare) under
native conditions, dialyzed extensively against Na-phosphate pH 6.5 1 mM, and
refolded by heating at 95 °C for 5 min and cooling down slowly at room

temperature. Buffer was added to place the tRNAPhe in the NMR buffer (Na-
phosphate pH 6.5 10 mM, MgCl2 10 mM), and the sample was concentrated to
~1.5–2.0 mM using Amicon 10,000 MWCO (Millipore).

The yeast 15N-labeled tRNAPhe sample produced in and purified from E. coli
was prepared following previously published procedures60. Briefly, the gene coding
yeast tRNAPhe was cloned in the pBSTNAV vector (Addgene ID 45801), expressed
in LB for unlabeled sample preparation or 15N-labeled Spectra-9 medium
(Eurisotop) for 15N-labeled sample preparation. After standard procedures of
phenol extraction of soluble RNAs, yeast tRNAPhe was purified by ion exchange
chromatography under native conditions, dialyzed against the NMR buffer and
concentrated to ~0.5–1.0 mM.

Unlabeled matured yeast tRNAPhe was purchased from Sigma, resuspended in
and dialyzed against the NMR buffer and concentrated to 0.8 mM.

Yeast extract preparation. Yeasts (c13-ABYS-86 strain) were grown in YEPD
medium (1% (w/v) yeast extract, 2% (w/v) peptone, 2% (w/v) glucose) for 24 h at
30 °C and harvested by centrifugation. Pellets were stored at −80 °C until further use.
Pellets were unfrozen and resuspended in their same weight of lysis buffer (Na2HPO4/
KH2PO4 pH 7.0 25mM, MgCl2 10mM, EDTA 0.1mM) complemented with 2mM
dithiothreitol (DTT), 1 mM phenylmethylsulphonyl fluoride (PMSF), 1mM benza-
midine, and 1 μg/mL each of leupeptin, pepstatin, antipain, and chymostatin. Cells
were rapidly frozen and lysed in an Eaton pressure chamber61 at 30,000 psi in a
hydraulic press. The homogenate was centrifuged at 30,000 × g for 1 h at 8 °C to
remove cellular debris. The supernatant was further centrifuged at 100,000 × g for 1 h
at 8 °C. The resulting supernatant (15–20mg/mL of proteins) was quickly aliquoted
and frozen in liquid nitrogen. Aliquots were stored at −80 °C until used. Yeast
extracts from the depleted strains were prepared following the same procedure.

NMR spectroscopy. All in vitro NMR spectra of yeast tRNAPhe were measured at
either 38 or 30 °C on Bruker AVIII-HD 600MHz and AVIII-HD 700MHz spec-
trometers (equipped with TCI 5-mm cryoprobes) with 5-mm Shigemi tubes. Imino
resonances of the tRNAPhe samples were assigned using 2D jump-and-return-echo
(1H,1H)-NOESY62,63, 2D (1H,15N)-BEST-TROSY30, and standard 2D (1H,15N)-
HSQC experiments measured in the NMR buffer (NaH2PO4/Na2HPO4 pH 6.5
10 mM, MgCl2 10 mM) supplemented with D2O 5% (v/v). NMR spectra in yeast
extracts were measured at 30 °C on Bruker AVIII-HD 700MHz spectrometer with
5-mm Shigemi tubes. Unmodified 15N-[U/G]-labeled tRNAPhe were prepared at
40 μM in yeast extracts (final concentration of 11 mg/mL of proteins) supple-
mented with NaH2PO4/K2HPO4 pH 7.5 150 mM, NH4Cl 5 mM, MgCl2 5 mM,
DTT 2mM, EDTA 0.1 mM, SAM 4mM, ATP 4 mM, NADPH 4mM, and D2O 5%
(v/v)64. This concentration of tRNAPhe (40 μM) was chosen to achieve sufficient
SNR in NMR measurements while seeking to approach cellular tRNA concentra-
tions (as a comparison, the concentration of total tRNAs have been estimated to
100–200 μM in yeast and 200–350 μM in E. coli, with typical concentrations of
individual tRNAs of 2–15 μM65,66). For monitoring the maturation of tRNAPhe in
yeast extract, each 2D (1H,15N)-BEST-TROSY experiment was measured with a
recycling delay of 200 ms, a SW(15N) of 26 ppm, 96 increments for a total
experimental time of 120 min. A reference 2D (1H,15N)-BEST-TROSY spectrum of
unmodified tRNAPhe was also measured at 303 K in a buffer containing NaH2PO4/
K2HPO4 pH 6.75 100 mM, MgCl2 5 mM, ATP 4mM, NADPH 4mM and D2O 5%
(v/v)64. The data were processed using TOPSPIN 3.5 (Bruker) and analyzed with
Sparky (http://www.cgl.ucsf.edu/home/sparky/).

Total tRNA samples from yeast for mass spectrometry. Total tRNA from
S. cerevisiae BY4741 wild-type or mutant strains used for mass spectrometry
analysis were prepared following previously published procedures67. For each
strain, all cultures and tRNA preparations were performed in triplicate for statis-
tical analysis. Briefly, the protocol was adapted as follows. Yeast cells were grown in
YEPD medium at 30 °C. Yeasts were collected in logarithmic growth phase and
washed with water. Pellets were resuspended in one volume of NaCl 150 mM and
mixed with two volumes of water-saturated phenol. After mild shaking at room
temperature for 30 min, one volume of chloroform was added and the mixture was
vortexed for 15 min. The water and phenol phases were separated by centrifugation
for 20 min at 8000 × g at 4 °C. RNAs were precipitated from the aqueous phase for
2 h at −20 °C by adding 2.5 volumes of cold ethanol and 0.1 volume of potassium
acetate 2M. RNAs were pelleted by centrifugation at 10,000 × g for 15 min at 4 °C.
Dry pellets were resuspended in 400 μL of Tris–HCl pH 8.0 2M and tRNAs were
incubated for 90 min at 37 °C for aminoacyl-tRNA deacylation. RNAs were pre-
cipitated with 2.5 volumes of cold ethanol at −20 °C. Pellets were resuspended in
100 μL of Li/K-acetate buffer (lithium acetate 2M, potassium acetate 0.1 M pH
5.0). After incubation at 4 °C for 20 min, most of the insoluble ribosomal RNAs
were eliminated by centrifugation. Soluble tRNAs in the supernatant were recov-
ered by precipitation with 2.5 volumes of cold ethanol. Finally, tRNAs were
resuspended in Tris–HCl pH 7.5 1 mM, magnesium acetate 10 mM, and pre-
cipitated with 0.1 volume of ammonium acetate 5M and three volumes of cold
ethanol for 2 h at −20 °C. After centrifugation, tRNAs were dissolved in RNase-free
water (Thermofisher). The total tRNA samples prepared with this procedure
contains small contaminations of other small RNAs < 200 nts, mainly 5S and 5.8S
rRNAs (both the 5S and 5.8S rRNA contain a single pseudouridine in their
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sequence and no other modifications). Using size exclusion chromatography (SEC),
tRNAs were estimated to account for ~80% of the small RNAs in these samples.

Specific isolation of yeast tRNAPhe. Yeast tRNAPhe was isolated from ~1 µg total
tRNA samples (RNAs < 200 nts) with a first step of SEC following previously
published procedures39,68, and a subsequent purification using T1 Dynabeads
(Thermo Fisher Scientific, Product no. 65801D) and a DNA probe specific to
tRNAPhe ([Btn]AAATGGTGCGAATTCTGTGGATCGAACACAGGACCTCCAG
ATCTTC, Sigma-Aldrich, Munich, Germany) as previously reported69.

Digestion of tRNAs to nucleosides. Total tRNA samples (300 ng for each sample)
and the purified tRNAPhe samples were digested to single nucleosides for 2 h at
37 °C with alkaline phosphatase (0.2 U, Sigma-Aldrich, St. Louis, MO, USA),
Phosphodiesterase I (0.02 U, VWR, Radnor, PA, USA), and Benzonase (0.2 U) in a
buffer containing Tris–HCl pH 8.0 5 mM and MgCl2 1 mM. Tetrahydrouridine
(THU, 0.5 µg from Merck), butylated hydroxytoluene (BHT, 1 µM), and Pentos-
tatin (0.1 µg) were also added to protect modifications. Afterwards samples were
filtered through multi-well plates (Pall Corporation, 10 kDa MWCO) at 4 °C for
30 min at 3000 × g to remove digestive enzymes. Stable isotope-labeled internal
standard (SILIS, 0.1 volume of 10X solution) from yeast was added for absolute
quantification39.

Mass spectrometry. For quantification, an Agilent 1290 Infinity II equipped with a
DAD combined with an Agilent Technologies G6470A Triple Quad system and
electro-spray ionization (ESI-MS, Agilent Jetstream) was used. Operating parameters
were as follows: positive ion mode, skimmer voltage 15 V, cell accelerator voltage
5 V, N2 gas temperature 230 °C, and N2 gas flow 6 L/min, sheath gas (N2) tem-
perature 400 °C with a flow of 12 L/min, capillary voltage of 2500 V, nozzle voltage of
0 V, and the Nebulizer at 40 psi. The instrument was operated in dynamic MRM
mode (individual mass spectrometric parameters for the nucleosides are given in
Supplementary Table 4. The mobile phases were: A as 5mM NH4OAc (≥99%,
HiPerSolv CHROMANORM®, VWR) aqueous buffer, brought to pH= 5.6 with
glacial acetic acid (≥99%, HiPerSolv CHROMANORM®, VWR) and B as pure
acetonitrile (Roth, LC–MS grade, purity ≥ 99.95%). A Synergi Fusion-RP column
(Phenomenex®, Torrance, CA, USA; Synergi® 2.5 µm Fusion-RP 100 Å, 150 ×
2.0mm) at 35 °C and a flow rate of 0.35 mL/min was used. The gradient began with
100% A for 1min, increased to 10% B by 5min, and to 40% B by 7min. The column
was flushed with 40% B for 1min and returned to starting conditions to 100% A by
8.5min followed by re-equilibration at 100% A for 2.5 additional minutes.

For calibration, synthetic nucleosides were weighed and dissolved to a stock
concentration of 1–10 mM. Calibration solutions ranging from 0.25 to 100 pmol
for each canonical nucleoside and from 0.0125 to 5 pmol for each modified
nucleoside were prepared in water (D, Ψ= 0.025–10 pmol). The calibration
solutions were mixed with the yeast SILIS and analyzed by LC–MS/MS. The value
of each integrated peak area of the nucleoside was divided through the respective
SILIS area. The linear regression for each nucleoside’s normalized signal/
concentration plot gives the relative response factor for nucleosides (rRFN)39. The
data were analyzed by the Quantitative and MassHunter Software from Agilent.
Finally, the absolute amounts of the modifications were referenced to the absolute
amounts of summed canonical nucleosides. The number of modifications per
tRNAPhe was calculated by determining the amount of injected tRNA from the
signal of canonicals and the number of canonicals from the tRNAPhe sequence.
Statistical analyses of the variations compared to the wild-type strain were
performed using a two-sided Student’s t-test.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
A reporting summary for this Article is available as a Supplementary Information file.
The source data underlying Fig. 6 and Supplementary Figs. 9–11 are provided as a Source
Data file. All data is available from the corresponding author upon reasonable request.
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Gemeinsamer Prolog 

Eine häufig in RNA-Molekülen auftretende Modifikation ist 5-Methylcytidin (m5C). Be-

sonders häufig ist diese in tRNA vorzufinden und befindet sich dort in teilweise mehr-

facher Ausführung in der variablen Schleife. Alternativ kann m5C in, oder nahe der 

Anticodon-Schleife vorgefunden werden. Aber auch in anderen RNA-Molekülen wie 

mRNA, rRNA oder nicht-codierende Sequenzen kann m5C detektiert werden. Die In-

korporation wird von einer der acht evolutionär konservierten m5C-RNA-Methyltrans-

ferasen übernommen: NSUN1–7 und DNMT2. Für einige dieser Methyltransferasen 

konnte eine Korrelation zu neurologischen Krankheiten festgestellt werden. So wurde 

in bestimmten Tumor-Zellen beispielsweise ein verringertes Level an NSUN6 vorge-

funden, während eine Erhöhung der Enzymmenge eine positive Auswirkung auf die 

Überlebensrate betroffener Patienten zeigte. Die mechanistischen Grundlagen dieser 

Enzyme sind jedoch noch größtenteils unerforscht.  

In Gkatza et al. (PLoS Biology, 2019) wurde die Funktion von NSUN2 in der moleku-

laren Stressantwort genauer betrachtet. Eine Herabregulation des NSUN2-Levels als 

Reaktion auf oxidativen Stress führte zu verringerter Methylierung spezifischer tRNA-

Positionen beispielsweise in tRNALeu. Die fehlende Methylierung wiederum führte zu 

einer erhöhten Menge an nicht-codierenden Fragmenten aus tRNA-Molekülen (tRF). 

Diese entstehen durch die Nuklease-Aktivität von Angiogenin, welche eine Abhängig-

keit von der entsprechenden Methylierung in tRNA-Molekülen zeigt. Die tRFs hemmen 

die allgemeine Proteinbiosynthese und führen zu einer katabolischen Reaktion der 

Zelle. NSUN2 agiert somit als Sensor der Zelle auf oxidativen Stress. 

In Selmi et al. (Nucleic Acids Research, 2020), konnte das Sequenzmotiv für NSUN6-

abhängige Methylierung identifiziert werden. Dies gelang durch eine Variation der 

miCLIP-Methode (kurz für engl.: methylation dependent individual nucleotide crosslin-

king immunoprecipitation), welche auf der Fixierung des Enzyms am RNA-Strang, aus-

gelöst durch eine Punktmutation im katalytischen Zentrum, beruht. Die von NSUN6 

methylierten CTCCA-Motive befinden sich größtenteils in der 3‘-untranslatierten Re-

gion von codierenden Sequenzen. Dort ist die Methylierung vermutlich in den Mecha-

nismus der Qualitätskontrolle, und der Genauigkeit der Translationsterminierung invol-

viert.  
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Abstract

Posttranscriptional modifications in transfer RNA (tRNA) are often critical for normal devel-

opment because they adapt protein synthesis rates to a dynamically changing microenviron-

ment. However, the precise cellular mechanisms linking the extrinsic stimulus to the intrinsic

RNAmodification pathways remain largely unclear. Here, we identified the cytosine-5 RNA

methyltransferase NSUN2 as a sensor for external stress stimuli. Exposure to oxidative

stress efficiently repressed NSUN2, causing a reduction of methylation at specific tRNA

sites. Using metabolic profiling, we showed that loss of tRNA methylation captured cells in a

distinct catabolic state. Mechanistically, loss of NSUN2 altered the biogenesis of tRNA-

derived noncoding fragments (tRFs) in response to stress, leading to impaired regulation of

protein synthesis. The intracellular accumulation of a specific subset of tRFs correlated with

the dynamic repression of global protein synthesis. Finally, NSUN2-driven RNAmethylation

was functionally required to adapt cell cycle progression to the early stress response. In

summary, we revealed that changes in tRNA methylation profiles were sufficient to specify

cellular metabolic states and efficiently adapt protein synthesis rates to cell stress.

Introduction

Clinical and genetic heterogeneity in diseases such as metabolic disorders and cancer remains

a major challenge for targeted therapies. Phenotypic disease variation can be caused by cell

type–specific modulation of gene products via both the transcription and translation machin-

eries [1,2]. Recently, the formation of a variety of chemical modifications in RNA emerged as

an additional regulatory layer of gene expression programmes [3].
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Of the over 170 known RNAmodifications, methylation is the most common [4]. In RNA,

5-methylcytosine (m5C) is often required for normal development, and its formation is medi-

ated by at least eight highly conserved enzymes (NSUN1–7 and DNMT2) [5]. For instance,

loss-of-function mutations in the human NSUN2 and NSUN3 genes cause neurodevelopmen-

tal and mitochondrial disorders, respectively [6–9]. NSUN2 methylates transfer RNAs

(tRNAs) site-specifically at either the anticodon or variable loop (VL), thereby protecting

tRNAs from endonucleolytic cleavage [10,11]. This protection is important to prevent the

accumulation of tRNA-derived fragments (tRFs), which would otherwise inhibit protein syn-

thesis [11–13].

Phenotypically, the loss of NSUN2 thus leads to an expansion of low translating stem and

progenitor populations in skin and brain [11,12,14]. Low protein synthesis in slowly cycling or

quiescent stem cells saves energy and prevents premature exhaustion [12,15–17] and is

required to maintain a fully functional stem cell state by enhancing resilience towards differen-

tiation cues [12].

The precise mechanisms linking external stresses to RNAmodifications and protein syn-

thesis have remained largely unknown in mammals. Here, we reveal that one such mechanism

is the endogenous and dynamic methylation of RNA by NSUN2. Our data show that expres-

sion of NSUN2 is required to metabolically support high protein synthesis rates. By perform-

ing a time course that mapped endogenous, stress-induced tRNAmethylation, we observed

for the first time, to our knowledge, that loss of methylation occurs in a highly site-specific

manner as early as 2 hours following an insult. Stress-induced loss of tRNA methylation

altered both the fragmentation pattern among tRNAs and protein synthesis rates. Thus, our

data reveal how RNAmethylation is mechanistically integrated into metabolic homeostasis.

Results

NSUN2 regulation of stem cell differentiation is not controlled via
transcription

Disruption of the Nsun2 gene in mice causes global hypomethylation of tRNAs and a develop-

mental growth retardation [5]. The abnormal development of tissues including brain and skin

is the result of impaired stem cell differentiation [11,14,18] (S1A and S1B Fig). The expression

of NSUN2 is highly dynamic within tissues. For instance, NSUN2 is absent in quiescent stem

cells in hair follicle bulges (BGs), steadily increases in progenitor cells in the hair germ (HG),

and is highest in the growing (anagen) hair bulb (HB) (Fig 1A and 1B).

To dissect the underlying molecular pathways that decrease stem cell sensitivity towards

differentiation stimuli in the absence of NSUN2, we transcriptionally profiled mouse stem and

progenitor cell populations in the hair follicles, as well as hair follicles in the resting (telogen)

or growing (anagen) state. Stem and progenitor cells were isolated by flow sorting using the

cell surface marker integrin alpha-6 (ITGA6) and then further separated into quiescent stem

cells (ITGA6high/CD34+) and activated, cycling progenitors (ITGA6low/P-cadherin [PCAD]+)

(S1B–S1D Fig) [19–21]. In Nsun2−/−mouse skin, quiescent stem cells increase at the expense

of activated progenitors (S1B Fig) [12,18]. Transcriptional comparison of stem and progenitor

cells isolated from wild-type and Nsun2−/−mice revealed that this increase does not appear to

be transcriptionally driven (Fig 1C and 1D). Transcriptionally, these cell populations were

highly similar, regardless of their expression of NSUN2 (S1 Data).

Similarly, loss of NSUN2 in actively growing hair follicles (anagen) that highly express

NSUN2 in wild-type cells (Fig 1B) resulted in the differential expression of just over 100 genes

(red) (Fig 1E). Metabolic genes were highly enriched in these few differentially expressed

m5C levels in tRNAs adapt protein synthesis to cellular metabolic requirements

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000297 June 14, 2019 2 / 35

Funding: Authors received funding from Cancer

Research UK - Senior Cancer Research Fellowship

(C10701/A15181) and Cancer Research UK - PhD

student stipend (C10701/A16134), www.

cancerresearchuk.org; and European Research

Council - Consolidator Grant (m5C; 310360),

https://erc.europa.eu/. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: MF is consulting for

Storm Therapeutics.

Abbreviations: ADMA, asymmetric

dimethylarginine; BG, bulge; BS, bisulfite; BS-seq,

BS sequencing; CHX, cycloheximide; FC, fold-

change; FDR, false discovery rate; HB, hair bulb;

HG, hair germ; IFE, interfollicular epidermis; ITGA6,

integrin alpha-6; m5C, 5-methylcytosine; MS, mass

spectrometry; mTORC1, mammalian target of

rapamycin complex 1; NMR, nuclear magnetic

resonance; NPMI, nucleophosmin; OP-puro, O-

propargyl-puromycin; PCA, principal component

analysis; PCAD, P-cadherin; RNA-seq, RNA

sequencing; RT, reverse transcription; SAH, S-

adenosyl-homocysteine; SAM, S-adenosyl-

methionine; SDMA, symmetric dimethylarginine;

TCA, tricarboxylic acid; tRF, tRNA-derived

fragment; tRNA, transfer RNA; VL, variable loop.

https://doi.org/10.1371/journal.pbio.3000297
http://www.cancerresearchuk.org
http://www.cancerresearchuk.org
https://erc.europa.eu/


Fig 1. Loss of NSUN2 triggers a shift of the metabolic state towards catabolism. (A, B) Detection of Nsun2 RNA in
Nsun2+/+ and Nsun2−/−mouse skin in early (A) and late (B) anagen. Scale bar: 50 μm. (C-E) Transcriptional changes
in skin of wild-type (Nsun2+/+) and Nsun2 knockout (Nsun2−/−) mice. Highlighted in red are significant FC
expression differences (FDR< 0.05) in hair follicle stem cells (CD34+/ITGA6high) (C), progenitor cells (PCADhigh/
ITGA6low) (D), and anagen skin (E). (n = 3–4 mice per genotype and condition). (F-H) Multivariate analyses of data
obtained fromMS (F) or NMR spectroscopy–based metabolic profiling (G) using mouse back skin (n = 3–5 mice) or
human dermal fibroblasts (n = 5 samples per genotype) (H). Model parameters: R2X = 94.5%, R2Y = 99.9%, and Q2 =
95.8% using partial least square discriminant analysis (F), R2X = 70% and Q2 = 30% (G), and R2X = 85.9% and Q2 =
78.6% (H), using principal component analysis. (I-K) Metabolic differences betweenNSUN2+/− and NSUN2
−/− normalised to NSUN2+/+ human dermal fibroblasts relating to the methionine cycle (I), free amino acids (J), and
the TCA cycle (K). The underlying data for this figure can be found in S1–S3 Data and S1 File. BG, hair follicle bulge;
FC, fold-change; FDR, false discovery rate; HB, hair bulb; IFE, interfollicular epidermis; ITGA6, integrin alpha-6; MS,
mass spectrometry; NMR, nuclear magnetic resonance; PC1, Principal Component 1; PC2, Principal Component 2;
PCAD, P-cadherin; TCA, tricarboxylic acid.

https://doi.org/10.1371/journal.pbio.3000297.g001
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genes, suggesting that changes in metabolism might account for the insensitivity of stem cells

to differentiation cues (S1E and S1F Fig).

NSUN2 regulates metabolism by promoting an anabolic cell state

NSUN2 methylates most tRNAs and a smaller number of noncoding and coding RNAs using

S-adenosyl-methionine (SAM) as the methyl donor (S1G Fig) [5,22–24]. SAM and its down-

stream metabolite, S-adenosyl-homocysteine (SAH), are integral to the one-carbon metabo-

lism encompassing the folate and methionine cycles (S1H Fig). The one-carbon metabolism

supports multiple physiological processes, including nucleotide biosynthesis (purines and thy-

midine), amino acid homeostasis, and the redox defence system [25]. Similar to NSUN2 dele-

tion, dysregulation of the one-carbon metabolism impairs foetal growth and has been linked

to neurodevelopmental disorders and cancer [25–27].

We therefore asked whether NSUN2 controlled the one-carbon metabolic cycles that gener-

ate the methyl donor required for NSUN2 to modify RNA. We used mass spectrometry (MS)

and nuclear magnetic resonance (NMR) spectroscopy to measure how metabolites were

affected by loss of NSUN2. We compared wild-type and Nsun2−/−mouse skin in anagen, as

well as human dermal fibroblasts expressing (NSUN2+/+ and NSUN2+/−) or lacking NSUN2

(NSUN2−/−) (S2 Data) [7]. Multivariate analysis of either the MS or NMR spectroscopic data

clearly separated the genotypes (Fig 1F–1H). Therefore, loss of NSUN2 established a distinct

cellular metabolic state.

Three major metabolic pathways were affected by deletion of NSUN2: (1) the methionine

cycle, (2) amino acid synthetic pathways, and (3) the tricarboxylic acid (TCA) cycle (Fig 1I–

1K; S1I–S1N Fig; S2 Data; S3 Data). First, higher levels of metabolites of the methionine cycle

strongly indicated that protein degradation was enhanced in the absence of NSUN2. Cellular

metabolism up-regulated methionine and SAM, but not SAH, in response to loss of NSUN2

(Fig 1I). Such an alteration in the stochastic ratio of SAM to SAH can reshape the landscape of

protein methylation [28]. In particular, increased levels of free symmetric dimethylarginine

(SDMA) and asymmetric dimethylarginine (ADMA) can only be caused by enhanced protein

degradation, because they are generated solely upon proteolysis of methylated proteins [29].

Second, we found substantial enhancement of free amino acid levels in the absence of NSUN2

(Fig 1J; S1J and S1M Fig), indicating a reduced rate of protein synthesis. Third, the changes we

observed in the metabolites of the TCA cycle indicated that upon loss of NSUN2, metabolism

rebalanced from oxidative phosphorylation towards glycolysis (Fig 1K).

In conclusion, the metabolic changes we observed included increased protein degradation,

suppressed protein synthesis, and enhanced glycolysis and together showed that cells lacking

NSUN2 are maintained in a catabolic state (S1O Fig).

Methylation-dependent and -independent NSUN2 functions regulate
metabolism

NSUN2-expressing and -lacking mouse epidermal cell populations were metabolically differ-

ent, but their transcriptomes were highly similar. In contrast, RNA sequencing (RNA-seq) of

human NSUN2-expressing and -lacking dermal fibroblasts identified 2,867 differentially

expressed genes (S2A and S2B Fig; S4A Data). However, the transcriptome of NSUN2−/− cells

remained largely unaltered when we reexpressed the NSUN2 protein (S2C–S2E Fig; S4B

Data), indicating that the differences in gene expression were cell line–specific rather than

driven by the presence or absence of NSUN2. To confirm that we indeed rescued tRNAmeth-

ylation, we reexpressed the wild type (NSUN2), an enzymatic dead version of NSUN2

(K190M), or the empty vector (e.vector) as a control in NSUN2−/− cells [30]. Quantitative MS
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and RNA bisulfite sequencing (BS-seq) confirmed remethylation of NSUN2-specific sites in

tRNAs (Fig 2A–2E; S5 Data).

One functional role of m5C in tRNAs is to protect from endonucleolytic cleavage by angio-

genin [10,11]. To measure the production of tRFs, we performed small RNA-seq in the rescued

NSUN2−/− cells. Next, we identified all significantly different tRFs between K190M- and NSU-

N2-expressing cells (padj< 0.05) that were unaltered when K190M was compared to the

empty vector control (padj> 0.75) (Fig 2F; S6 Data). Overexpression of the wild-type but not

the enzymatic dead NSUN2 protein rescued the formation of tRFs smaller than 46 nucleotides

(Fig 2G and 2H), demonstrating that the biogenesis of distinct tRFs was driven by NSUN2--

specific methylation.

Angiogenin-mediated tRNA cleavage inhibits global protein synthesis [31]. Therefore, we

next asked how mRNA translation was affected by removal of NSUN2. Polysome profiling

confirmed differences in the global abundance of polysomes following NSUN2-removal (Fig

2I; S2F Fig). To quantify de novo protein synthesis, we measured the incorporation of the

reporter molecule O-propargyl-puromycin (OP-puro) into nascent polypeptides (S2G Fig)

[32]. OP-puro forms covalent conjugates that can be imaged by microscopy and quantified by

flow cytometry (S2H Fig). Treatment with cycloheximide (CHX), a potent inhibitor of mRNA

translation, served as a positive control [33]. Deletion of NSUN2 repressed protein synthesis

(Fig 2J), whereas inhibition of angiogenin was sufficient to up-regulate protein synthesis (S2I

Fig). Inhibition of mammalian target of rapamycin complex 1 (mTORC1) using rapamycin

down-regulated NSUN2 protein expression but reduced protein synthesis similarly in NSU-

N2-expressing and -lacking cells (S2J–S2L Fig). Thus, loss of NSUN2 led to decreased protein

synthesis rate. Accordingly, reexpression of NSUN2 enhanced de novo protein synthesis, but

this effect was independent of its methylation activity (Fig 2K). One explanation for why

expression of K190M also led to the up-regulation of protein synthesis might be that its bind-

ing protected the unmethylated tRNAs from processing.

Finally, we asked whether restoring NSUN2-specific methylation sites also affected the one-

carbon metabolism. Although reexpression of NSUN2 or K190M significantly altered the met-

abolic profile of NSUN2−/− cells (S2M and S2N Fig), NSUN2 expression was not sufficient to

reverse the catabolic cell state (Fig 2L–2N; S7 Data).

Together, NSUN2-dependent methylation protected tRNAs from processing into tRFs, and

reexpression of NSUN2 in NSUN2−/− cells enhanced protein synthesis in a methylation-inde-

pendent manner. However, expression of NSUN2 was not sufficient to switch from a catabolic

to anabolic cell state.

NSUN2 functions in the dynamic adaptation of protein synthesis in
response to stress

One explanation for why up-regulation of NSUN2 was not sufficient to induce an anabolic cell

state was that both tRNA methylation and metabolism normally function in response to exter-

nal cues. Therefore, we next sought to determine the importance of NSUN2-mediated RNA

methylation in response to a changing microenvironment. As a stimulus, we chose stress

because NSUN2 is required for the proper cellular response upon stress signals in brain and

skin in vivo [11,12].

The dynamic regulation of protein synthesis is an integral part of the cellular stress response

[34]. Global protein synthesis is repressed in response to oxidative stress, and translation of

mRNAs that encode specific stress-related proteins is enhanced (Fig 3A). Therefore, we ana-

lysed how global protein synthesis changed over time in response to stress by measuring OP-

puro incorporation (Fig 3B). In NSUN2+/+ cells, protein synthesis rates changed dynamically
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upon sodium arsenite (NaAsO2) treatment and recovered within 4 hours (Fig 3C; S3A Fig).

NSUN2-depleted cells showed attenuated changes to protein synthesis rates (Fig 3C and 3D;

S3A Fig), which we confirmed using fluorescence imaging (S3B and S3C Fig). Protein synthe-

sis rates of rescued NSUN2−/− cells (NSUN2) were comparable to NSUN2+/+ cells and

slightly, but not significantly, reduced when the enzymatic dead version of NSUN2 (K190M)

was expressed (Fig 3E).

Polysome profiling confirmed a recovery of mRNA translation between 2 and 4 hours of

stress (Fig 3F). We also measured a difference of the heavy polysomes after 4 hours in NSUN2

+/+ cells, which appeared to be less evident in NSUN2−/− control or K190M-overexpressing

cells (Fig 3F–3H; S3D Fig). NSUN2−/− cells rescued with the wild-type NSUN2 protein

responded similarly to NSUN2+/+ cells and recovered the heavy polysomes after 4 hours of

stress (Fig 3F and 3I; S3D Fig).

In summary, cell stress caused a strong but temporary reduction of protein synthesis, which

was attenuated by loss of NSUN2.

NSUN2 functions in the oxidative stress response by altering the cell cycle
phases

To test for the functional relevance of NSUN2-regulated protein synthesis rates, we asked what

impact NSUN2 deletion had on cell survival, as oxidative modifications to RNA can result in

cell death [35]. In both NSUN2-expressing and -lacking cells, cell survival began to decrease

between 2 and 4 hours after stress exposure, but at these early time points there were no differ-

ences in cell death (S3E–S3G Fig). We then asked whether cell division was affected by the

absence of NSUN2, since the lengths of the cell cycle phases can play important roles in cellular

adaptation and response to external stress stimuli [36]. For example, cells exposed to sodium

arsenite often slow cell cycle progression to facilitate repair of oxidative lesions [37]. To test

whether RNAmethylation was required for adapting cell cycle to stress, we measured the cell

cycle progression of NSUN2-expressing and -lacking cells upon exposure to arsenite (Fig 3J–

3M; S3H Fig). In response to stress, the percentage of NSUN2+/+ cells decreased in the G1/

G0-phase but increased in the S-phase and G2/M-phase of the cell cycle (Fig 3K–3M; grey). In

contrast, the cell cycle progression of NSUN2−/− cells remained stable (Fig 3K–3M; red), indi-

cating that NSUN2−/− cells failed to adapt the cell cycle phases to the stress stimulus. A tight

regulation of global protein synthesis might be needed to avoid accumulation of proteins dur-

ing cell cycle arrest and repair.

Fig 2. Methylation-dependent and -independent functions of NSUN2. (A) Schematic representation of
NSUN2-methylated tRNA sites in the anticodon loop (C34) and the VL (C46, C47). (B, C) Number of m5C per tRNA
in all tRNAs (B) or tRNA leucine (C) quantified by mass spectrometry inNSUN2−/ cells reexpressing NSUN2, the
enzymatic dead version of NSUN2 (K190M), or the empty (‘e.’) vector control. �padj< 0.05; ����padj< 0.0001
(ordinary one-way ANOVA, multiple comparisons). (D) Quantification of m5C levels in all rescued tRNAs
(padj< 0.05) using RNA bisulfite sequencing. (E) Heatmaps of example tRNAs showing the rescued m5C sites in five
replicates ofNSUN2+/+ cells orNSUN2−/− cells reexpressing NSUN2, K190M, or the empty vector (‘e.v.’). (F) PCAs
of tRFs differentially abundant in NSUN2-overexpressingNSUN2−/− cells. (G, H) Log2 coverage of tRFs smaller than
46 nucleotides (G) or larger than 46 nucleotides (H). (I) Polysome profile of NSUN2-expressing (NSUN2+/+) and
-lacking (NSUN2−/−) cells. Shown is one out three replicates. (J, K) Protein synthesis levels measured by flow
cytometry using OP-puro in the indicated cells. CHX served as a control. Data represent mean, and error bars are ±SD.
Student’s t test. �p< 0.05, ��p< 0.01, ����p< 0.0001. (L-N) Metabolic differences betweenNSUN2−/− cells
overexpressing the NSUN2 or K190 protein normalised (‘norm.’) to NSUN2−/− cell infected with the empty vector
control (‘e.V.’) relating to the methionine cycle (L), free amino acids (M), and the TCA cycle (N). The underlying data
for this figure can be found in S5–S7 Data and S1 File. ADMA, asymmetric dimethylarginine; CHX, cycloheximide;
FC, fold-change; m5C, 5-methylcytosine; OP-puro, O-propargyl-puromycin; PCA, principle component analysis;
SAH, S-adenosyl-homocysteine; SAM, S-adenosyl-methionine; SDMA, symmetric dimethylarginine; TCA,
tricarboxylic acid; tRF, tRNA-derived fragment; tRNA, transfer RNA; VL, variable loop.

https://doi.org/10.1371/journal.pbio.3000297.g002
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Fig 3. NSUN2 functions in the cell cycle to adapt dynamic protein synthesis in response to stress. (A) Schematic
representation how oxidative stress modulates global and gene-specific translation. (B) Treatment regime using arsenite to
induce stress and OP-puro to measure protein synthesis. (C) Log2 FC of protein synthesis inNSUN2+/+,NSUN2+/− and
NSUN2−/− cells in response to stress compared to the untreated controls (‘Ctr’). CHX served as a control. (n = 2–3 samples
per time point). (D) Relative protein synthesis levels in response to stress in NSUN2+/+ and −/− cells measured as FC
compared to CHX control. (E) Log2 FC of protein synthesis inNSUN2−/− cells rescued with NSUN2 or the enzymatic dead
version K190M after exposure to stress at the indicated time points. (F-I) Polysome profile of NSUN2+/+ (F) and NSUN2
−/− cells rescued with wt (I) or mutated NSUN2 (K190M) (H). The empty vector (‘e.V.’)-infected cells served as control (G).
Shown is one out of two replicates. (J) Gating used for cell cycle analyses using DAPI incorporation. (K-M) Percentage of
NSUN2+/+ (grey) and NSUN2−/− (red) cells in G0/G1- (K), S- (L), and G2/M- (M) phases of the cell cycle after treatment
with sodium arsenite for the indicated time. (n = 3 samples per time point). Data presented as mean, error bars ± SD. p-
Value: two-way ANOVA calculating row (grey; treatment) and column (black; genotype) factor variation. The underlying
data for this figure can be found in S1 File. CHX, cycloheximide; eIF2, eukaryotic initiation factor 2; FC, fold-change; Norm.
abs., normalised absorbance; OP-puro, O-propargyl-puromycin; wt, wild-type.

https://doi.org/10.1371/journal.pbio.3000297.g003
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Cytosine-5 RNAmethylation is a metabolic sensor of external stress

Since the dynamic regulation of protein synthesis was reduced when cells lacked NSUN2 and

the down-regulation of global translation is integral to the cellular stress response, we next

asked whether NSUN2 acted as a sensor of the external stress stimulus. We measured how

endogenous NSUN2 expression was affected by oxidative stress induced by exposure to

sodium arsenite (Fig 4A). NSUN2 expression decreased sharply on RNA and protein levels

between 1 and 2 hours of sodium arsenite treatment (Fig 4B and 4C), which coincided with

the formation of stress granules in the cytoplasm (S4A Fig). Similarly, one stimulus of UVB

exposure was sufficient to rapidly reduce Nsun2 RNA levels in human epidermal and dermal

cells (S4B Fig), whereas vehicle control treatments did not affect NSUN2 expression (S4C Fig).

The nucleolus, where NSUN2 resides, can act as a stress sensor [38,39]. Nucleophosmin

(NPMI) is a marker for nucleolar stress, and we observed a rapid, strong down-regulation of

both NPMI and NSUN2 upon arsenite treatment (Fig 4C). Additional NSUN family members

residing in the mitochondria (NSUN3, NSUN4) and cytoplasm (NSUN6) were similarly

repressed in response to arsenite stress (Fig 4C). In conclusion, expression of NSUN2 and at

least three of its m5C RNAmethyltransferase family members were repressed in response to

oxidative stress.

Stress induces a site-specific and dynamic loss of m5C

We then asked how stress-related loss of NSUN2 altered tRNAmethylation (Fig 4D). Indeed,

MS quantifying total m5C in tRNAs confirmed that cells chronically lacking NSUN2 (NSUN2

−/−) show low levels of m5C (Fig 4E) [11]. However, acute depletion of NSUN2 by oxidative

stress exposure resulted in no significant differences in total m5C levels in tRNAs (Fig 4E).

Because tRNAs are highly abundant and stable and commonly contain m5C, we considered

the possibility that early site-specific changes might not be detectable by MS. Therefore, we

performed RNA BS-seq to quantify m5C at single-nucleotide resolution in tRNAs (S4D Fig)

[11,40].

RNA BS-seq revealed only a modest overall reduction of cytosine-5 tRNA methylation at

NSUN2-dependent sites in two independent experiments (Fig 4F; S4E Fig; S8A and S8B Data).

NSUN2-independent methylated sites were unaffected (S4F Fig). Furthermore, our data

allowed a high-resolution inspection of specific sites that require NSUN2 activity, which

showed dynamic and reproducible changes in response to stress (Fig 4G–4I; S4G–S4I Fig). For

example, methylation at C34 in LeuCAA decreased gradually with arsenite treatment (Fig 4H

and 4I; S4H Fig). Methylation of AspGTC at position C47 only significantly changed at 2 hours

of arsenite treatment, whereas nearby sites (C38, C48) remained unchanged (Fig 4H and 4I;

S4I Fig). We observed a similar change in methylation levels when we pooled all other poten-

tially non–tRNA targeted sites by NSUN2, whereas other m5C sites were unaffected by stress

(Fig 4J; S9A and S9B Data). Together, our data revealed that NSUN2-mediated deposition of

m5C at distinct sites in tRNAs changed dynamically in response to oxidative stress.

Dynamic changes of site-specific m5C levels require NSUN2

Next, we asked whether NSUN2 was solely responsible for causing the site-specific methyla-

tion changes in tRNAs in response to oxidative stress. We rescued NSUN2−/− cells with

NSUN2, K190M, or the empty vector as a control and performed RNA BS-seq. We selected for

all sites with a minimum coverage of 100 and more than 5%methylation in the pooled repli-

cates (n = 5) of untreated NSUN2-overexpressing cells (approximately 7,400 sites) (S10 Data).

Reexpression of NSUN2 significantly restored 525 methylation sites when compared to the

empty vector control (Fig 5A) and 431 sites when compared to K190M-overexpressing cells
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Fig 4. Levels of m5C changes site-specifically and dynamically in response to oxidative stress. (A) Time course of
sodium arsenite treatment. (B) Log2 FC ofNsun2 RNA expression in NSUN2+/+ and NSUN2+/− cells relative to GAPDH
and normalised to the untreated control (‘Ctr’). Shown are 3 replicates. (C) Western blot analysis of the indicated proteins
using whole cell lysates from NSUN2+/+ and NSUN2−/− cells. Hsp90 served as a loading control. (D,E) Detection of m5C in
sodium arsenite–treated and untreated (‘ctr’) NSUN2+/+ and −/− cells using mass spectrometry. (n = 3 samples per time
point). (F) Quantification of tRNAmethylation percentage using RNA bisulfite sequencing of NSUN2+/+ and NSUN2
−/− cells (n = 4 samples per time point). (G) Heatmap of methylation status of individual tRNAmolecules shown in (F). (H,
I) Quantification (H) and heatmap (I) of methylation changes in the tRNAs LeuCAA and AspGTC inNSUN2+/+ and NSUN2
−/− cells. (J) Quantification of methylation in non-tRNA targets. Data represent median in F, H, and J. Error bars are ±SD.
p-Values: Student’s t test, �p< 0.05 and ��p< 0.01. ���p< 0.001. The underlying data for this figure can be found in S8 and
S9 Data and S1 File. FC, fold-change; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; HSP90, heat shock protein 90;
m5C, 5-methylcytosine; NPMI, nucleophosmin; tRNA, transfer RNA; VL, variable loop.

https://doi.org/10.1371/journal.pbio.3000297.g004
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(Fig 5B). Reexpression of NSUN2 restored the level of tRNA methylation similarly to endoge-

nous NSUN2 (S5A Fig).

We confirmed that the overexpressed proteins behaved like endogenous NSUN2 and were

down-regulated upon exposure to arsenite (S5B Fig), and then we assessed how global methyl-

ation levels changed. We selected all significant sites with more than 20% methylation in the

NSUN2-rescued cells when compared to K190M-infected cells and found that the overall

median methylation levels remained largely unaltered (Fig 5C). MS for m5C using all tRNAs

or tRNA LeuCAA confirmed similar methylation levels after exposure stress (Fig 5D and 5E).

Thus, global methylation levels in NSUN2−/− rescued cells remained largely stable in response

to stress.

Then, we identified all individual m5C sites showing significantly different methylation lev-

els in NSUN2-rescued cells after 2 or 4 hours of stress (Fig 5F). A majority of these specific

sites required NSUN2 (Fig 5F), and their changes in methylation were highly comparable to

cells expressing endogenous NSUN2 (NSUN2+/+; Fig 4G–4I). For instance, C34 in the antico-

don loop of tRNA LeuCAA exhibited up to 4-fold reduction of methylation (Fig 5G and 5H).

Levels of m5C located to other positions showed a more modest reduction or were unaltered

(Fig 5I–5L). Thus, we identified specific m5C sites that recapitulated the same changes in

methylation when exposed to stress as described for NSUN2+/+ cells. Our rescue experiment

therefore demonstrates that distinct m5C sites in tRNAs changed dynamically in response to

stress and that these changes in methylation levels directly depended on NSUN2.

Methylation levels within the same tRNAmolecule are independent from
each other

To explain why the site-specific methylation levels were not detected by MS, we first consid-

ered the possibility that unmethylated tRNAs escaped the MS analysis because of the long half-

life of methylated tRNAs and the enhanced biogenesis of tRFs in response to stress. To test this

hypothesis, we measured m5C in stress-exposed tRNAs in the presence of an angiogenin inhib-

itor (N65828) [41]. Indeed, we measured a reduction of m5C in all tRNAs and more than

2-fold reduction in tRNA LeuCAA (Fig 5M), confirming that angiogenin was a major endonu-

clease cleaving unmethylated tRNAs (S5C Fig). However, the number of m5C per tRNA

LeuCAA decreased only slightly after 4 hours of stress (Fig 5M; upper panel). tRNA LeuCAA

contained two methylation sites, one in the anticodon C34 and one in the VL (Fig 5N–5P),

and these sites were affected differently by oxidative stress. Only C34 decreased upon stress

(Fig 5N–5P). We observed a similar dynamic change of methylation patterns within tRNA

HisGTG (S5E Fig). Moreover, other leucine isotype tRNAs such as LeuCAG were not methylated

at C34 (S5D Fig). Thus, our data revealed that site-specific methylation of tRNAs changes

dynamically during the cellular stress response even within the same tRNAmolecule.

Site-specific tRNAmethylation determines tRFs biogenesis in response to
oxidative stress

Next, we asked how altered expression of NSUN2 during the cellular stress response affected

the biogenesis of tRFs. We performed small RNA-seq to identify all tRNA-derived sequences

that significantly (padj< 0.01) changed in NSUN2−/− cells after exposure to sodium arsenite

for 2 hours (S11A and S11B Data). As expected, most tRNA-derived sequences started from

the first tRNA nucleotide. Furthermore, we observed an enrichment of fragments starting at

around positions 20 and 36, corresponding to the D-loop and the anticodon loop, respectively

[42,43] (Fig 6A). Because some RNAmodifications can stall reverse transcription (RT) and

potentially cause sequencing biases, we only analysed tRNA-derived sequences with consistent
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coverage in all four replicates and omitted all fragments with missing read values in any of the

conditions from the analyses (S11C Data).

Next, we focused specifically on tRFs that were smaller than 40 nucleotides, which capture

the products of endonucleolytic cleavage (S11D Data). Principal component analysis (PCA)

confirmed a clear separation by both genotype and treatment (Fig 6B), and tRFs from NSUN2

−/− cells clustered closer to NSUN2+/+ cells exposed to stress for 4 hours (Fig 6B). Further-

more, tRFs clearly separated the 2- and 4-hours-treated NSUN2−/− cells from their untreated

control. In contrast, NSUN2+/+ cells only showed distinct changes in tRFs when exposed for 4

hours to arsenite (Fig 6B). When subjected to stress, we discovered three distinct patterns of

tRF production (Fig 6C; Cluster 1–3). Each cluster was dominated by distinct tRNA isoaccep-

tors (Fig 6D), indicating that tRNAs were subjected to processing based on their sequence and

potentially other corresponding internal modifications. Our data support a model in which all

cells produce tRFs but the tRNA fragmentation pattern depends on the identity of the isoac-

ceptor and the presence of modifications at distinct sites within the tRNA molecule.

In line with the reduction of NSUN2 protein expression in response to stress, tRFs derived

from NSUN2-methylated tRNAs significantly increased after 4 hours of stress (S6A–S6C Fig;

red and S5C Fig). The same tRFs remained unchanged or decreased in NSUN2-depleted cells

(S6A–S6C Fig; blue and S5C Fig). In conclusion, the production of tRFs in response to stress

differed substantially in the absence of NSUN2, confirming that tRF biogenesis was influenced

by tRNAmethylation, isoacceptor identity, and cellular stress.

Biogenesis of tRF subsets is directly determined by tRNAmethylation

To identify tRFs whose biogenesis directly required the enzymatic activity of NSUN2, we per-

formed small RNA-seq analyses in the rescued NSUN2−/− cells that were either untreated or

exposed to sodium arsenite. We identified all tRFs with differential abundance in NSUN2-res-

cued cells after 4 hours of stress (Fig 6E; S12 Data). Untreated NSUN2-rescued cells clustered

close to K190M-overexpressing cells (Fig 6E), which was due to a distinct set of up-regulated

and down-regulated tRFs (Fig 6F; ‘NSUN2 4h’). The production of these tRFs required

NSUN2-mediated methylation because they remained unchanged in K190M-overexpressing

cells (Fig 6G and 6H). As described for cells expressing endogenous levels of NSUN2 (NSUN2

+/+), the up- and down-regulated groups of tRFs were dominated by specific tRNA isoaccep-

tors (Fig 6I; S6D Fig). We concluded that NSUN2-mediated methylation at distinct sites

within the tRNAmolecule protected from processing into tRFs and thereby promoted efficient

mRNA translation.

In particular, the formation of tRNA GluCTC-derived tRFs depended on NSUN2 (Fig 6I).

tRFs inhibit protein synthesis via several mechanisms including through direct inhibition of

the ribosome or displacement of RNA-binding proteins [13,44,45]. To demonstrate that tRFs

Fig 5. NSUN2-mediated tRNAmethylation is dynamic and site-specific. (A, B) Volcano plot depicting the significant
methylation changes when NSUN2 was reexpressed in NSUN2−/− cells compared to empty (‘E.’) vector (A) or K190M
controls (B). (C) Global methylation levels of all m5C sites identified in (B) after treatment with arsenite for 0, 2, or 4 hours.
Shown are all sites>20%methylation in NSUN2-rescued cells. (D, E) Mass spectrometry analyses to quantify the number of
methylated sites (m5C) in all tRNA (D) or only tRNA LeuCAA (E) in response to stress. (F) Heatmap showing all significantly
different m5C sites (p< 0.05) changing upon stress in NSUN2-overexpressing cells. (G-L) Examples of m5C sites identified in
(F). �padj< 0.05; ��padj< 0.01; ����padj< 0.0001 (ordinary one-way ANOVA, multiple comparisons). (M) Mass
spectrometry analyses to quantify m5C in tRNA leucine (upper panel) and all tRNAs (lower panel) in the presence of an
angiogenin inhibitor (‘Angi’) and arsenite. Data presented as mean (n = 3), error bars ± SD. p-Value: padj ANOVA. (N-P)
Methylation levels (pooled from 5 replicates) of cytosines along tRNA 74-Leu CAA (upper panels) and 145-Leu CAA (lower
panels) detecting all m5C sites within the tRNAmolecule with different dynamic changes in response to stress. The
underlying data for this figure can be found in S10 Data and S1 File. m5C, 5-methylcytosine; tRNA, transfer RNA; VL,
variable loop.

https://doi.org/10.1371/journal.pbio.3000297.g005
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Fig 6. Site-specific tRNAmethylation determines biogenesis of distinct tRFs. (A) Density plot of tRNA-derived
sequences beginning at the indicated positions. (B) Clustering of tRNA-derived fragments< 40 nucleotides in NSUN2
+/+ andNSUN2−/− cells untreated (‘Ctr’) or treated with sodium arsenite for 2 or 4 hours. Shown are 3 out of 4 replicates
per time point. (C, D) Heatmap (C) and log2 FC of tRFs shown in (C). (E, F) PCAs (E) and heatmap (F) of significantly
different tRFs inNSUN2−/− cells rescued with a wild-type (NSUN2) or point mutated (K190M) NSUN2 construct after 4
hours of exposure to stress compared to the untreated control (‘0h’). (G, H) Violin plots showing the read distribution of
the tRFs shown in (E, F). (I) Log2 FC of the up-regulated tRFs when NSUN2-overexpressing cells are exposed to stress for 4
hours. tRNA glutamic acid–derived tRFs are highlighted in red. Line indicates the mean. The underlying data for this figure
can be found in S11 and S12 Data and S1 File. FC, fold-change; PCA, principle component analysis; tRF, tRNA-derived
fragment; tRNA, transfer RNA.

https://doi.org/10.1371/journal.pbio.3000297.g006
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directly link stress sensing by NSUN2 to repression of protein synthesis, we independently

added synthetic 50 and 30 tRNA GluCTC fragments to NSUN2+/+ and −/− cells and measured

protein synthesis (S6E–S6H Fig). A scrambled noncoding RNA served as a negative control.

Within 2 hours, 50 and 30 derived tRFs reduced protein synthesis in NSUN2+/+ cells (S6F Fig).

Similar to the stress response, the protein synthesis rate was only temporarily repressed (S6F

Fig). In contrast, protein synthesis in NSUN2−/− cells was unaffected by the introduction of

additional tRFs, since NSUN2−/− cells are already saturated (S6G Fig; S6C Fig; S5C Fig). We

confirmed that the transfection efficiency was comparable in NSUN2+/+ and −/− cells (S6H

Fig). Thus, our data demonstrate that the intrinsic formation of tRFs is sufficient to dynami-

cally regulate protein synthesis.

m5C is required to balance anabolic and catabolic pathways during the
stress response

To better understand how the failure to adapt protein synthesis rates to the external stress

stimulus affected metabolic pathways, we identified all differentially expressed genes in

NSUN2−/− cells after exposure to sodium arsenite (Fig 7A; S13A–S13C Data). A total of 2,799

genes were differentially expressed in NSUN2−/− cells when compared with NSUN2+/+ cells

in all conditions and thus not influenced by the stress signal. We identified 884 and 1,584 mis-

regulated genes in NSUN2−/− cells after 2 and 4 hours of stress, respectively (Fig 7A).

Two hours after stress exposure, regulators controlling mitochondrial function were signifi-

cantly enriched in the differentially expressed genes (Fig 7B; S14A Data). In particular, genes

encoding for complex I subunit assembly significantly changed in the absence of NSUN2.

Complex I is the major entry point for electrons into the respiratory chain and likely to act as

the rate-limiting step in respiration [46]. In line with these results, we confirmed that NSUN2

−/− cells contained less-active mitochondria in particular during the early stress response

(S7A and S7B Fig).

Four hours after stress exposure, the differentially expressed genes were significantly

enriched in regulators of RNA and protein catabolic pathways (Fig 7C; S14B Data). These

results closely parallel those of our metabolic assay that showed how loss of m5C captures cells

in a catabolic state and affected mitochondrial function (Fig 1).

Finally, we asked whether factors promoting the stable catabolic state inNSUN2−/− cells were

translationally regulated and could therefore be identified using ribosome profiling (Ribo seq).

We used our previous published dataset (phs000645.v5.p1), in which we profiledNSUN2−/− cells

that were rescued with NSUN2 or two different enzymatic dead versions of the protein (C271A,

C321A) and compared them to the empty vector control cells (S15 Data) [12]. We confirmed that

genes specifically enriched in the NSUN2-rescued cells were regulators of mRNA translation and

RNA catabolic processes (S7C–S7E Fig). We now have further demonstrated that the formation

of m5C balances protein synthesis with the metabolic requirements of stress responses.

In summary, our data revealed a highly dynamic regulation of protein synthesis rates in

response to stress that is tightly coordinated by tRNAmethylation and cleavage. We further

discovered that loss of a major RNAmethyltransferase shaped the biogenesis of tRNA frag-

ments and thereby induced a catabolic cell state.

Discussion

mRNA translation is a critical step for all gene expression programmes and also represents the

most energy-consuming processes within cells [47]. Therefore, global and transcript-specific

translation are continuously adapted to environmental cues including nutrients, growth fac-

tors, and stress stimuli. How precisely the external cues are sensed by the mRNA translation
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machinery, integrated into metabolic pathways, and then coordinated to trigger the appropri-

ate cell response is less well understood. Here, we identify NSUN2 as an important sensor for

oxidative stress. NSUN2 further links the environmental cue to the protein synthesis

Fig 7. Loss of NSUN2 alters mitochondrial function and catabolic pathways in response to stress. (A) Venn diagram
showing all significantly expressed genes in NSUN2−/− cells compared to NSUN2+/+ when untreated (‘Ctr’) or treated for
2 and 4 hours with sodium arsenite. (B, C) Gene enrichment analysis for biological processes (GOrilla) using the 884
uniquely changed genes in NSUN2−/− cells after 2 hours (B) or the 1,584 uniquely changed genes after 4 hours (C) of
stress exposure. Colour code indicates p-value, and size reflects enrichment. The underlying data for this figure can be
found in S13 and S14 Data.

https://doi.org/10.1371/journal.pbio.3000297.g007
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machinery via tRNA methylation. Loss of NSUN2 repressed global protein synthesis and

thereby induced a catabolic cell state without affecting gene transcription.

External stress stimuli repress global protein synthesis, causing a switch of translation to

stress- and cell type–specific regulatory proteins [48]. tRNAs play multiple regulatory roles in

the adaptation of protein synthesis to the cellular stress response. For instance, the content of

internal tRNA modifications and also the level of charged tRNAs rapidly changes in response

to stress [49]. Loss of tRNA methylation at the VL causes global reduction of protein synthesis

[11,12]. Changing the modifications at the wobble anticodon position alters transcript-specific

translation [50–52].

Mature mammalian tRNAs are extremely stable, with an estimated half-life of 2–4 days

[49,53], making the detection of dynamically changing m5C sites within hours of a stress

response challenging. Nevertheless, we detected site-specific changes by RNA BS-seq. How

m5C was site-specifically removed in distinct tRNAs is unknown, as no eraser protein has been

identified so far. Alternatively, unmodified tRNAs might have a higher turnover and are there-

fore more difficult to capture than fully modified tRNAs.

Nucleotide modifications outside the anticodon loop are often linked to differential pro-

cessing and cleavage of tRNAs [10,11,54,55]. Accordingly, NSUN2-expressing and -lacking

cell populations differed in their production of tRFs under normal conditions and when

exposed to cell stress. Depending on NSUN2-expression and stress, we observed distinct

tRNA processing patterns. For instance, tRFs derived from tRNA GluCTC were specifically

enriched in NSUN2-depleted cells and decreased in abundance with stress. Similarly, synthetic

tRNA GluCTC fragments efficiently repressed protein synthesis, yet the effect was only short-

lived. How the half-life of tRFs is regulated is currently unknown, but our data strongly indi-

cate a dynamic turnover of the tRFs in response to stress. A high turnover of distinct tRFs can

also explain the only temporal repression of global protein synthesis after stress exposure.

In summary, NSUN2-mediated formation of m5C is critical for integrating the cellular met-

abolic state with global protein synthesis and thereby triggers the appropriate cellular

responses to external stress stimuli.

Methods

Ethics statement

The research including mice has been regulated under the Animals (Scientific Procedures) Act

1986 Amendment Regulations 2012 following ethical review and approval by the University of

Cambridge Animal Welfare and Ethical Review Body (AWERB) under the terms of the United

Kingdom Home Office licences PPL80/2231, PPL80/2619 and PPL_P36B3A804.

Transgenic mice

The NSUN2 knockout mice (homozygous Nsun2Gt[D014D11]Wrst) were generated and geno-

typed as previously described [18].

Cell sorting and analysis

Mouse keratinocytes from skin in telogen at postnatal day (P)49 of wild-type or NSUN2−/−

male mice were isolated as follows: whole mouse back skin was sterilised with 10% Betadine

and 70% ethanol and washed in phosphate-buffered saline (PBS). The dermal side was floated

on 0.25% trypsin without EDTA (Thermo Fisher Scientific) for 2 hours at 37˚C. The epidermis

was subsequently scraped from the dermis and disaggregated by gentle pipetting in low-cal-

cium medium with 10% FCS and filtered through a 70 μm cell strainer. The cells were pelleted
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and resuspended in the following antibodies to cell surface markers in 2% bovine serum albu-

min (BSA): PE-conjugated anti-ITGA6 (1:500, clone GoH3, eBiosciences), Alexa Fluor

647-conjugated anti-CD34 (1:50, RAM34, eBiosciences), and goat anti-PCAD (1:50, R&D Sys-

tems). After incubation for 30 minutes at 4˚C, cells were washed twice in PBS. For detection of

PCAD, cells were incubated for 10 minutes at 4˚C with anti-goat Alexa Fluor 488-congugated

secondary antibody (1:500, Thermo Fisher Scientific). Cells were gated using forward versus

side scatter to eliminate debris. Doublet discrimination was carried out using pulse width. The

viable cells were then gated by their exclusion of sytox. Cells were sorted with a MoFlo high-

speed sorter (Beckman Coulter) as follows: ITGA6high/CD34+ as hair follicle BG stem cells

and ITGA6low/P-CADhigh as HG progenitor cells.

Amplification of RNA from flow-sorted cells

Whole back skin of wild-type or NSUN2−/− male mice at P49 was collected as skin in telogen

and at P32–34 as skin in anagen. Hair follicle stages in telogen and anagen were verified by HE

staining for each skin biopsy. RNA from flow-sorted cells was purified using Pure-Link RNA

Micro Isolation Kit (Thermo Fisher Scientific). RNA was purified from 105 to 3 × 105 ITGA6-
high/CD34+ per biological replicate and 104 to 5 × 104 ITGA6low/PCADhigh per biological repli-

cate. For each biological replicate, flow-sorted cells from 1 to 3 mice were pooled. Total RNA

(75 pg; with an RIN of 8 or above) were amplified using an adapted version of the Kurimoto

protocol [56]. The main changes to their published protocol included the use of an increased

amount of Superscript III, primers, and dNTPs as well as a longer RT reaction. Samples were

amplified for a total of 29 cycles, and each sample was split into 4 during this amplification

process and combined at the end to avoid errors introduced by PCR being overrepresented in

the final library. Low-DNA/RNA bind tips and tubes were used throughout the experiment.

Gene expression arrays and analyses

RNA samples were amplified using the Genechip WT Plus kit (Thermo Fisher Scientific).

Briefly, the RNA was converted into cDNA and amplified using a mix of primers to target

polyA and non-polyA mRNAs generating biotin-labelled cRNA. The cRNA was then hybri-

dised to the Gene ST array, stained, and scanned using the GeneTitan Instrument (Thermo

Fisher Scientific). After purification, quality control, and quantity normalisation, the cRNAs of

four samples per genotype and condition were hybridised to the Affymetrix MouseWG-6 v2.0

Expression BeadChip (Illumina). Hybridisation, washing, staining, and scanning were per-

formed according to standard Illlumina protocols (Illumina Whole-Genome Gene Expression

DirectHyb Assay). Microarray hybridisation, washing, and scanning were performed at the

Cambridge Genomic Services at the Department of Pathology (University of Cambridge,

Cambridge, UK). Differential expression analysis was done with the R limma package using

default settings.

In situ hybridisation via RNAscope

Nsun2 RNA in mouse skin was labelled using the RNAscope in situ hybridisation technology

[57]. Freshly cut paraffin-embedded tissue sections were first heated at 56˚C for 1 hour,

dewaxed, and dehydrated. Endogenous peroxidases were blocked, followed by target retrieval

steps (antigen retrieval and protease digestion). The Nsun2 probe (Cat.426721) was hybridised

for 2 hours at 40˚C, followed by the six-step amplification protocol. The signal was developed

with DAB, and slides were counterstained with 6%Mayer’s Haematoxylin, further dehydrated,

cleared in Xylene, and mounted in DPX.
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Cell lines and culture conditions

NSUN2+/+ human dermal fibroblasts were purchased from Invitrogen (C0135C; Thermo

Fisher). NSUN2+/− and two lines of NSUN2−/− human dermal fibroblasts were established as

previously described [7]. All cells were cultured in Minimum Essential Medium (MEM,

31095–052; Thermo Fisher) supplemented with 20% HyClone FBS (SV30180.03; GE Health-

care) and 1% Penicillin-Streptomycin (P0781; Sigma-Aldrich). For the rescue experiments,

NSUN2−/− cells were stably infected with the wild-type or an enzymatic dead version of

NSUN2 carrying a single point mutation (K190M) [30]. Empty vector (pBABE)–infected cells

served as a control. All NSUN2−/− rescue cells were cultured in MEM (31095–052; Thermo

Fisher) supplemented with 20% HyClone FBS (SV30180.03; GE Healthcare) and no

antibiotics.

Cells were passaged using Trypsin-EDTA (0.25%, 25200072; Thermo Fisher) diluted in PBS

to a 1:1 ratio and split as required. Cells were maintained at 37˚C in a humidified incubator

with a 5% CO2 atmosphere. Cells were grown on plastic dishes or flasks of tissue culture grade,

depending on the experiment (Falcon; Corning and Nunc; Thermo Fisher).

To induce oxidative stress, cells at 80% confluency were incubated with fresh prewarmed

media containing 200 μM sodium arsenite (stock solution 200 mM in PBS; NaAsO2, Sodium

[meta]arsenite, S7400; Sigma-Aldrich) for the indicated time. To induce UV radiation stress,

cells at 80%–90% confluency without medium were exposed to 100 J/m2 of UV light in a CL-

1000 Ultraviolet Crosslinker (UVP). Fresh media were added directly after the exposure. To

label the active mitochondria, the MitoTracker Red CMXRos reagent was used (M7512; Invi-

trogen) following the manual’s recommendations. Cells were incubated with 200 mMMito-

Tracker reagent (in DMSO) dissolved in cell culture medium for 30 minutes. To inhibit the

mTOR pathway, rapamycin was used at a 500 nm or 1 μM concentration diluted in cell culture

medium (stock solution: 2.74 mM in DMSO, R8781; Sigma-Aldrich). To inhibit angiogenin,

cells were exposed to 43 μM of the small-molecule inhibitor N65828 (8-amino-5-[40-hydroxy-

biphenyl-4-yl azo] naphthalene-2-sulphonate) obtained from the National Cancer Institute

(http://dtp.cancer.gov) (stock aliquots of 1 mg/mL: 1 mg powder in 100 μl DMSO and 900 μl
PBS). Cells incubated with 0.5% (v/v) PBS or 0.5% (v/v) DMSO in cell culture medium served

as controls.

For transfection with tRNA fragments, cells were grown in 6-well plates and additionally

transfected with synthetic 50 and 30 tRNA fragments. For this, 10 μM of tRNA fragments were

mixed with antibiotic-free medium and the DharmaFECT1 Transfection Reagent, by follow-

ing manufacturer’s recommendations (T-2001, Dharmacon; GE Healthcare). The tRNA frag-

ments used were 50-Glu-CTC tRNA-F synthetic sense (50 UCC CUG GUG GUCUAG UGG

UUA GGA UUC GGC GCU CUC) and 30-Glu-CTC-tRNA-F synthetic sense (50 CCG CCG

CGG CCC GGG UUC GAUUCC CGG UCA GGG AA) (Thermo Fisher). Mock control sam-

ples with just the transfection reagent and 10 μM of fluorescently labelled control siRNA (Qia-

gen) served as negative controls. Samples were collected in a time course for up to 24 hours

posttransfection.

Metabolic analysis

For LC-MS/MS, NSUN2+/+, NSUN2+/−, and two biological replicates of NSUN2−/− cells

were cultured in 150 mm round dishes and in five technical replicates each. In total, 8 to 10

million cells were collected per sample, pelleted, and flash-frozen in liquid nitrogen until fur-

ther analysis. In addition, back skin from NSUN2−/− was collected from P26–P27 male mice

in anagen. A total of 5 wild-type and 3 NSUN2−/−mice were used. Fat and connective tissue

was scraped off, and the skin samples were snap frozen in liquid nitrogen. Each sample (70
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mg) was homogenised on ice in methanol/chloroform using a tissue homogeniser (Polytron

PT2500, Kinematica). To assess the metabolic content of these samples, LC-MS/MS was per-

formed and optimised with internal standards, for the targeted analysis of aqueous metabolites

including methionine and TCA cycle intermediates, nucleotides, and amino acids [58,59]. For

NMR spectroscopy, skin samples from 4 wild-type and 3 NSUN2−/−mice were prepared as

described before and processed as previously described [60].

RNA isolation, RT, and RT-qPCR

Total RNA was prepared using Trizol reagent (Thermo Fisher Scientific) according to manu-

facturer’s instructions. For further purification, total RNA was subjected to 30 minutes

TURBO DNase treatment (AM2239; Invitrogen) at 37˚C following manufacturer’s instruc-

tions. To inactivate the reaction, the samples were Phenol:Chloroform (77617; Sigma-Aldrich)

extracted and precipitated using sodium acetate (pH 5.5) and 1–2 μl Glycoblue (AM9516;

Ambion) overnight at −80˚C. The RNA was washed with ethanol and resuspended. The con-

centration of each sample was assessed using a Qubit Fluorometer and the Qubit RNA HS

Assay Kit (Q32855; Invitrogen) following the kit’s instructions.

Double-stranded cDNA was synthesised from 1 μg of RNA and the Superscript III reverse

transcriptase (18080085; Life Technologies) following manufacturer’s instructions using Ran-

dom Primers (C1181; Promega). Each RT quantitative PCR (RT-qPCR) reaction was set up in

MicroAmp Optical 96-well plates (N8010560) using 1 μl cDNA, 5 μl TaqMan Fast Universal

PCRMaster Mix (4366073), 3.5 μl RNAse-free water, and 0.5 μl of a predesigned Nsun2 probe

(Hs00214829_m1; Applied Biosystems). A human GAPDH probe was used for normalisation

using the ΔCt method (4333764T; Applied Biosystems). RT-qPCR and data acquisition were

conducted using the StepOnePlus Real-Time PCR System (Applied Biosystems).

Protein extraction and western blotting

Cells were first rinsed with PBS and lysed in ice-cold RIPA buffer (50 mM Tris-HCL [pH 7.4],

1% NP-40, 150 mMNaCl, 0.1% SDS, 0.5% Sodium deoxycholate– 1 mL RIPA per T75 or 100

mm culture dish). RIPA was supplemented with cOmplete Mini EDTA-free Protease Inhibitor

Cocktail tablets (11836170001, Roche), and cells were collected using a cell scraper. The lysates

were centrifuged for 15 minutes at maximum speed in a precooled centrifuge at 4˚C and their

supernatant collected and kept on ice. The concentration of each protein sample was assessed

using the Pierce BCA Protein Assay kit (23225; Thermo Fisher) according to the manufac-

turer’s instructions and measured using a spectrophotometer and the Softmax software for

protein quantification.

Cell protein lysates were mixed with NuPAGE LDS Sample Buffer (4X) (NP0007; Invitro-

gen) and run on 7.5% or 12.5% separating polyacrylamide gels. PageRuler Prestained Protein

Ladder (26616; Thermo Fisher) was loaded as a size marker. All gels were run in 1x SDS Run-

ning Buffer (30 g Tris Base, 144 g Glycine, 10 g SDS, and H2O to 1 L; for 10x buffer) at 160V

for approximately 1 hour, after which the proteins were transferred to a nitrocellulose or

PVDF membrane (GE Healthcare) in 1x Transfer Buffer (30.3 g Tris Base, 144 g Glycine, and

H2O to 1 L; for 10x buffer) containing 15% (v/v) methanol at 90 V, for 1.5 hours on ice. Mem-

branes were blocked for a minimum of 1 hour at room temperature in 5% (w/v) nonfat milk

or 5% (w/v) BSA (A4503-50G; Sigma-Aldrich) in 1x TBS and 0.1% Tween-20 (TBS-T) (48.4 g

Tris Base, 160 g NaCl, and H2O to 1 L; for 20x TBS buffer at adjusted pH 7.6) and incubated

with primary antibody in blocking solution overnight at 4˚C. Each membrane was washed

three times for 10 minutes in TBS-T prior to incubation with the appropriate horseradish per-

oxidase (HRP)-labelled secondary antibody (1:10,000) in TBS-T at room temperature for 1
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hour (anti-mouse NA931 and anti-rabbit IgG HRP NA934; GE Healthcare–anti-goat IgG

HRP sc-2020; Santa Cruz). Finally, the membranes were washed as before and the antibodies

detected by using the Amersham ECL Prime Western Blotting Detection Reagent (RPN2232;

GE Healthcare). The primary antibodies used were NSUN2 (1:1,000, 20854-1-AP, Protein-

tech), NSUN3 (1:500, GTX46175, GenTex), NSUN4 (1:500, ab101625, Abcam), NSUN6

(1:500, 17240-1-AP, Proteintech), NPMI (1:500, B0556, Sigma-Aldrich), and HSP90 (1:500, sc-

13119, Santa Cruz).

Immunofluorescence

Cells were grown directly on autoclaved glass coverslips placed in 12-well culture dishes. Cell

culture and sodium arsenite or recombinant angiogenin treatments were carried out as

described before. To fix the cells, the glass coverslips were first briefly rinsed with wash buffer

comprising 0.1% Tween-20 in 1x PBS and incubated for 10 minutes at room temperature with

paraformaldehyde (4% PFA in PBS; Santa Cruz). Cells were then washed three times with ice-

cold wash buffer for a couple of minutes. To examine intracellular proteins, cells were permea-

bilised for 10 minutes with PBS containing 0.25% Triton X-100 at room temperature and

washed again three times for 5 minutes in wash buffer. This step was omitted for the study of

membrane proteins. To block nonspecific antibody binding, cells were incubated with block-

ing buffer comprising 1% BSA and 22.52 mg/mL glycine in PBS with 0.1% Tween-20 (PBST)

for 1 hour. To detect specific proteins of interest, cells were then incubated with primary anti-

bodies diluted in 1% BSA in PBST at 4˚C overnight. The cells were then washed three times in

wash buffer for 5 minutes each. To label the detected proteins, cells were incubated with the

respective Alexa Fluor secondary antibodies diluted in 1% BSA in PBST for 1 hour at room

temperature on a shaker and protected from light (1:1,000; Life Technologies). Cells were

washed as before and their nuclei counterstained with DAPI (1:3,000 in PBS; Sigma) for 5 min-

utes. Finally, cells were rinsed with wash buffer and the glass coverslips mounted on slides

with PBS:glycerol solution (1:1). The primary antibodies used were Angiogenin (1:500,

PC317L, Calbiochem), eIF4A1 (1:200, sc-14211, Santa Cruz), and p-eIF2a (1:1,000, 9721S, Cell

Signaling).

Detection of m5C by MS

Human dermal fibroblasts were grown and treated with sodium arsenite as described above.

NSUN2+/+ and NSUN2−/− cells were cultured in 100 mm dishes. Three replicates per condi-

tion and genotype were used for the experiments. Cell pellets were collected and lysed directly

in Trizol for RNA extraction. To measure the m5Cmodifications, optimised MS analysis was

performed [61]. Total RNA was loaded on a size-exclusion column (Agilent Bio SEC-3, 3 μm,

300 Å, 7.8 × 300 mm, Agilent, Waldbronn, Germany) and RNA fractions eluted with 100 mM

ammonium acetate at pH 7 as the mobile phase. tRNA was separated from rRNA and small

RNAs, vacuum concentrated, and reconstituted in water. tRNA concentrations were deter-

mined by UV spectroscopy at 260 nm. rRNA and other large RNA species were excluded from

the fractions.

Purified tRNA (approximately 400 ng) was digested using a mixture of benzonase (2 U),

bacterial alkaline phosphatase (2 U), and phosphodiesterase I (0.2 U) in a final reaction volume

of 20 μL. The reaction mixture was supplemented with MgCl2 to a final concentration of 1

mM and Tris-HCl (pH 8.0) to a final concentration of 50 mM. Nucleobase deaminase inhibi-

tor coformycin and tetrahydrouridine were added at a final concentration of 10 μg/mL and

50 μg/ml, respectively, and butylated hydroxytoluene (an antioxidant) was added at a final

concentration of 0.5 mM (for further detail, see [62]). The digestion was allowed to proceed
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for 2 hours at 37˚C and was stopped by filtering through a 10 kDa MWCO filter (AcroPrep

Advance, 350 μl, Omega 10KMWCO, Pall, Dreieich, Germany) at 3,000g for 30 minutes.

After addition of 10 μl pure water for salt dilution purposes, 18 μL of filtrate was mixed with

2 μL of internal standard (produced as recently described [63]). Each sample (10 μL) was
injected for LC-MS/MS analysis (corresponding to around 150 ng tRNA digest). Calibration

solutions for absolute quantification were prepared as recently described [63].

For quantification, an Agilent 1290 Infinity II equipped with a DAD combined with an Agi-

lent Technologies G6470A Triple Quad system and electro-spray ionisation (ESI-MS, Agilent

Jetstream) was used. Operating settings were as follows: positive ion mode, skimmer voltage

15 V, cell accelerator voltage 5 V, N2 gas temperature 230˚C and N2 gas flow 6 L/minute,

sheath gas (N2) temperature 400˚C with a flow of 12 L/minute, capillary voltage of 2,500 V,

nozzle voltage of 0 V, and the nebuliser at 40 psi. The instrument was operated in dynamic

MRMmode, and the individual MS parameters for the nucleosides are summarised in S16

Data. The mobile phases were A as 5 mMNH4OAc (�99%, HiPerSolv CHROMANORM,

VWR) aqueous buffer, brought to pH 5.6 with glacial acetic acid (�99%, HiPerSolv CHRO-

MANORM, VWR), and B as pure acetonitrile (Roth, LC-MS grade, purity� 99.95). A Synergi

Fusion-RP column (Phenomenex, Torrance, CA, United States; Synergi 2.5 μm Fusion-RP 100

Å, 150 × 2.0 mm) at 35˚C and a flow rate of 0.35 ml/minute were used. The gradient began

with 100% A for 1 minute and increased to 10% B by 5 minutes and to 40% B by 7 minutes.

The column was flushed with 40% B for 1 minute and returned to starting conditions to 100%

A by 8.5 minutes followed by re-equilibration at 100% A for 2.5 additional minutes.

For the isolation of single tRNA isoacceptors, a modified approach was used to the one pre-

viously described in [64]. Briefly, tRNA LeuCAA was hybridised with a reverse complemen-

tary, biotinylated DNA-oligonucleotide (AGT CTG GCG CCT TAG ACC ACT CGG CCA

TCC TGA CAA A [Biotin]) followed by immobilisation on streptavidin-coated magnetic

beads (Dynabeads MyOne Streptavidin T1, Life Technologies). The hybridisation step was

performed in 5× SSC buffer (20x: 3 M NaCl, 300 mM trisodium citrate [pH 7.0]) using 1 μl
biotinylated oligonucleotide (100 μM) and 1 μg of SEC purified total tRNA per 25 μl beads.
Samples were denatured at 90˚C for 3 minutes, hybridised at 65˚C for 10 minutes, and cooled

to room temperature. The magnetic Dynabeads were washed as described in [64]. Immobilisa-

tion of the hybrid was performed at 25˚C under shaking for 30 minutes. The supernatant con-

taining nontarget tRNAs was removed, and the beads were washed once in 1× SSC buffer and

three times in 0.1× SSC buffer. Finally, the beads were resuspended in 20 μl MilliQ water and

heated to 80˚C for 3 minutes to elute the target tRNA. No further DNase treatment was carried

out. The isolated tRNA was digested with 10 μl digestion mix (final volume: 30 μL). Finally,
9 μl of the digested and isolated tRNA was coinjected with 1 μl stable isotope-labelled internal

standards for measurement by MS [63].

Sucrose density centrifugation

Sucrose gradients were used to separate subpolysomal and polysomal ribosomes. Sucrose gra-

dients (10%–50% [w/v]) were prepared in gradient buffer (300 mMNaCl2, 15 mMMgCl2, 15

mM Tris-HCL [pH 7.5], 1 mMDTT, 0.1 mg/ml CHX).

Human dermal fibroblasts were grown and treated with sodium arsenite as described

above. At 70%–80% confluency, cells were washed twice in PBS-CHX (100 μg/ml) and scraped

into 500 μl lysis buffer (300 mMNaCl2, 15 mMMgCl2, 15 mM tris-HCL [pH 7.5], 1 mMDTT,

0.2 M sucrose, 0.1 mg/ml CHX, 0.5% IGEPAL, 100 U RNasin Plus RNase Inhibitor [N2615;

Promega] per 0.5 ml). Cell lysates were incubated on ice for 3 minutes prior to pelleting the

cells at 1,300g for 5 minutes. The supernatant was then layered on top of the gradient and
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centrifuged at 38,000 rpm (acceleration 9, deceleration 6) for 2 hours at 4˚C using an ultracen-

trifuge (Beckman Coulter). Gradients were fractioned using a gradient fractionation system

(Presearch), and fractions were collected at 1-minute intervals using the FOXY Jr collection

system (Presearch) at a flow rate of 1 ml/minute. Absorbance was measured constantly at 254

nm using a UA-6 UV-VIS detector (Presearch).

Sequencing library preparation

For all sequencing experiments, total RNA was isolated from human dermal fibroblasts, as

described. The quality of the RNA and prepared libraries was assessed using the appropriate

high-sensitivity RNA and DNAmicrofluidics chip on the Agilent Bioanalyzer platform (Agi-

lent Technologies). All cDNA libraries were subjected to a cleanup step with the use of Agen-

court AMPure XP beads (Beckman Coulter) and further multiplexed for sequencing on a

HiSeq platform (Illumina).

RNA BS-seq

RNA BS-seq libraries were generated from untreated and sodium arsenite–treated human der-

mal fibroblasts for 2 or 4 hours. Two independent experiments were performed; the first con-

sisted of 4 and the second of 5 replicates per genotype and time point. Thus, a total of 9

replicates per condition and genotype were processed and analysed. To generate the samples,

RNA was prepared and BS-treated as previously described [11]. Briefly, 15 μg of total RNA was

depleted from the ribosomal RNA population by using the Ribo-zero kit (MRZH11124, Illu-

mina). Approximately 1–2 μg of rRNA-depleted samples were then BS-treated by mixing them

with 42.5 μl 40% sodium BS solution (pH 5.0) and 17.5 μl DNA protection buffer supplied

with the EpiTect Bisulfite Kit (59104; Qiagen). The reaction mixture was then incubated for

three to four cycles of 5 minutes at 70˚C, followed by 1 hour at 60˚C on a thermal cycler. To

desalt the reaction, all samples were passaged through Micro Bio-Spin 6 chromatography col-

umns, following the manufacturer’s instructions (732–6221; Bio-Rad), and next desulfonated

by adding an equal volume of 1 M Tris (pH 9.0) to the reaction mixture and incubating for 1

hour at 37˚C. BS-treated RNA samples were then precipitated overnight with 2.5 volumes of

100% ethanol, 0.1 volumes of 3 M sodium acetate (pH 5.5), and 1–2 μl Glycoblue (AM9516;

Ambion). To repair the 20,30-cyclic phosphate and 5’-hydroxyl termini produced during the

BS/desulfonation reaction, T4 Polynucleotide Kinase (PNK) was used by mixing the RNA with

10x T4 PNK reaction buffer, 10 mM ATP, 10 U of T4 PNK enzyme, and RNase-free H2O to a

final volume of 50 μl (M0201S; New England Biolabs). This was incubated at 37˚C for 30 min-

utes, followed by a heat inactivation of the enzyme at 65˚C for 20 minutes and an overnight

precipitation of the RNA, as before. Approximately 400 ng of BS-converted RNA was finally

used to generate BS-seq libraries. Taking into account that the above BS treatment and desulfo-

nation protocol cleaves long RNAs into 100-nucleotide fragments, the TruSeq Small RNA

preparation kit was used (Illumina) to generate platform-compatible libraries. In brief, kit-pro-

vided RNA-seq adapters were ligated to the BS-converted RNAs, reverse transcribed at 50˚C

for 1 hour with SuperScript III and 2 mM of each dNTP (18080085; Thermo Fisher Scientific),

and followed by a PCR amplification programme, following the user manual’s recommenda-

tions, to finalise the process.

Standard and small RNA-seq

Standard RNA-seq libraries were generated from human dermal fibroblasts previously treated

with sodium arsenite for 2 or 4 hours. All cell samples were processed in four replicates per

condition. Total RNA was extracted as described and depleted from ribosomal RNA using the
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Ribo-zero rRNA Removal Kit (MRZH11124, Illumina). The rRNA-depleted RNA was then

used to generate RNA-seq libraries using the NEXTflex Rapid Directional RNA-seq Kit (5138–

08; Illumina) or RNAHyper with Riboerase Kit (NEB).

Small RNA libraries were generated from human dermal fibroblasts treated with sodium

arsenite for 2 or 4 hours, as described. At least four replicates per condition and genotype were

processed and analysed. To generate the small RNA libraries, 10 μg of total RNA was subjected

to a deaminoacylation reaction by mixing the purified RNA with 0.1 M Tris-HCl (pH 9.0), 1

mM EDTA, and RNAse-free H2O to a final volume of 300 μl. This reaction was incubated for

30 minutes at 37˚C to deaminoacylate mature tRNAs. To further size-select the RNA, samples

were loaded on Novex TBE Urea 6% gels (EC68652BOX; Thermo Fisher) and the desired

RNA fractions purified. TBE Urea gels were pre-run in 1x TBE buffer (for 5x stock: 54 g Tris

base, 27.5 g boric acid, 20 mL of 0.5 M EDTA [pH 8.0]) at 200 V for 30 minutes, while each

sample was mixed with 2x Denaturing Sample Buffer (LC6876; Thermo Fisher) and denatured

at 80˚C for 5 minutes. To avoid renaturation, all samples were kept on ice. The polyacrylamide

gels were then loaded with the RNA samples and the RNAMarker Low Easy ladder (R0002;

Abnova) and run at 180 V for 1 hour. Each gel was next stained with ethidium bromide in 1x

TBE buffer on a shaker for a few minutes, prior to being visualised over a UV transluminator.

Using a scalpel and the RNA ladder as a guide, 20–150 bp fragments were excised. The gel

piece was placed in a 0.5 ml tube pierced with a needle to create perforations, fitted in a 2 ml

RNAse-free tube. To shatter the gel, the tubes were centrifuged for 5 minutes at maximum

speed in a precooled 4˚C benchtop centrifuge, and the gel pieces were eluted in 600 μl NaCl
and 1 μl RNasin Plus RNase Inhibitor (N2615; Promega) overnight while rotating in a cold

room. To remove any gel remnants and salts, each gel eluate was passed through a sterile

Costar Spin-X centrifuge tube filter (CLS8160; Corning). The RNA flow-through was precipi-

tated overnight, with ethanol and sodium acetate in −80˚C. To collect the size-selected RNA,

all samples were centrifuged for 30 minutes at maximum speed in a precooled 4˚C benchtop

centrifuge, the pellets washed with 70% ethanol, air dried, and finally resuspended in 12 μl
RNAse-free H2O. To prepare the ends of the fragments for adapter ligation and library prepa-

ration, the samples were first heated at 70˚C for 10 minutes and then mixed with 10x T4 PNK

Reaction Buffer, 20 U of T4 PNK enzyme, and RNase-free H2O to a final volume of 50 μl
(M0201S; New England Biolabs). This was incubated at 37˚C for 1 hour, followed by a heat

inactivation of the enzyme at 65˚C for 20 minutes and a final phenol:chloroform cleanup step

and overnight ethanol precipitation. The final RNA pellet was resuspended in 7 μl RNAse-free
H2O. The libraries were generated using the TruSeq Small RNA Preparation Kit (Illumina),

for which 30 adenylated and 50 phosphorylated adapters, suitable for Illumina RNA-seq, were

ligated to an average of 400 ng small purified RNA fractions. Samples were then reverse tran-

scribed at 50˚C for 1 hour with the SuperScript III cDNA synthesis kit (18080085; Thermo

Fisher Scientific), followed by a PCR amplification programme with Phusion DNA polymerase

(F530S; Thermo Fisher Scientific).

Sequencing data analyses

For all sequencing datasets, automatically generated FastQC reports (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc) were used for the initial assessment of the

quality and basic processing of the reads. Sequencing adapters were trimmed from the 50 and

30 ends of the reads using cutadapt (v.1.8.1; https://pypi.python.org/pypi/cutadapt/1.8.1).

For standard RNA-seq data, adapters were removed and paired-end RNA-seq reads were

aligned to the human reference genome (GRCh38/g38) using Tophat2 (v.2.0.9; options:–read-

mismatch 2 –max-multihits 1 –GTF) guided by ENSEMBL gene models (release 82), while

m5C levels in tRNAs adapt protein synthesis to cellular metabolic requirements

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000297 June 14, 2019 24 / 35

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://pypi.python.org/pypi/cutadapt/1.8.1
https://doi.org/10.1371/journal.pbio.3000297


allowing for two mismatches per read and unique alignments only. In order to determine the

mRNA abundance, RNA-seq read counts for the full transcript were obtained using feature-

Counts (v1.5.0-p1; http://subread.sourceforge.net; options: -O—minOverlap 10 -p -C -M -B -t

exon -g gene_id -T 6 -a). The datasets were then normalised, and the statistical significance of

differential expression was evaluated by using the R/Bioconductor DESeq2 package (https://

bioconductor.org/packages/release/bioc/html/DESeq2.html).

To determine RNAmethylation levels using RNA BS-seq data, a tailored approach to the

one previously published was followed [11]. BS-seq reads were aligned to the human reference

genome (GRCh38/hg38) by using Bismark (http://www.bioinformatics.babraham.ac.uk/

projects/bismark; v.0.14.4; options: ‘–directional–n 1 –l 100’). To complete the mapping,

tRNA gene predictions were obtained from GtRNAdb (http://lowelab.ucsc.edu/GtRNAdb).

Heatmaps displaying either C or T in the aligned reads at each cytosine position were gener-

ated using custom PERL scripts and matrix2png (http://www.chibi.ubc.ca/matrix2png/) for

visualisation. Cytosine positions on the heatmaps were reported relative to the annotated tran-

scriptional start sites of the documented beginning of each tRNA.

For small RNA-seq data and to determine the abundance of tRNA fragments, a tailored

approach was followed [11] in which first adapter-trimmed paired-end reads were mapped to

the human reference genome (GRCh38/hg38) using bowtie (v.2.1.0; http://bowtie-bio.

sourceforge.net/bowtie2; options:—no-mixed—no-discordant—end-to-end), while consider-

ing only reads that mapped uniquely to the genome. To annotate the tRNA-seq fragments,

tRNA genes were downloaded from GtRNAdb (http://lowelab.ucsc.edu/GtRNAdb). Counts

per tRNA fragments were normalised, and their respective abundances were statistically evalu-

ated using the R/Bioconductor DESeq2 package (https://bioconductor.org/packages/release/

bioc/html/DESeq2.html) and represented as log2(DESeq2-normalised counts).

For tRNA fragment analyses, four replicates per condition and genotype were used from

the second biological replicate. To identify tRNA-derived sequences, all significant fragments

(p< 0.01) in NSUN2−/− cells versus NSUN2+/+ cells after 4 hours of sodium arsenite treat-

ment were selected and filtered for fragments smaller than 40 nucleotides. All rows with miss-

ing values (0) in any condition were excluded. The PCAs and heatmaps show all four or the

most similar three replicates. PCA and heatmaps were generated using https://biit.cs.ut.ee/

clustvis/.

Gene set enrichment analyses were done using Enrichr (http://amp.pharm.mssm.edu/

Enrichr/) [65,66]. To analyse the affected biological processes and cellular pathways in

response to stress, we used the RNA-seq data obtained from human dermal fibroblasts and

performed gene enrichment analyses using GOrilla (http://cbl-gorilla.cs.technion.ac.il/) [67].

As running mode, we used ‘two ranked lists of genes’ using the 2,799 commonly regulated as a

background list.

Cell cycle and apoptosis

For cell cycle analyses, human dermal fibroblasts untreated and treated with sodium arsenite

were briefly rinsed with PBS and collected with Trypsin-EDTA (1:1 in PBS). Following two

consecutive washes with cold PBS, the cells were fixed and resuspended in ice-cold 70% etha-

nol. All samples were kept at 4˚C until further processing. The samples were centrifuged at

12,000g for 5 minutes and rinsed twice with PBS. All pellets were resuspended in 3 ml PBS

containing DAPI dye (1:3,000) and incubated at room temperature for 30–45 minutes while

protected from light. The fluorescence of each sample was measured on a flow cytometer at

450/50 405 nm. To analyse the data, DAPI fluorescence measurements were visualised by his-

togram and the cell cycle phases determined by the curves and x-axis values.
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For cell viability analyses, human dermal fibroblasts untreated and treated with sodium arse-

nite were assayed with the FITC Annexin V kit following the manufacturer’s recommendations

(556419; BD Biosciences). Briefly, cells were rinsed with PBS and collected with Trypsin-EDTA

(1:1 in PBS). The fluorescence of each sample was measured at 530/30 488 nm and 610/20 561

nm. To analyse the data, fluorescence measurements were visualised by scatterplot, while com-

pensation and quadrants were set up based on control samples of unstained cells, cells only

stained with FITC Annexin V (no PI), and cells stained with PI (no FITC Annexin V).

Global mRNA translation analysis

To investigate global protein synthesis, human dermal fibroblasts untreated and treated with

sodium arsenite, recombinant angiogenin, or tRNA fragments were complemented with OP-

puro and further labelled as previously described [16]. Reconstituted OP-puro (50 μM; 10 mM

reconstituted stock [pH 6.4]; Medchem Source) was added to each sample in culture medium

precisely 1 hour prior to collection. In each assay, a sample not treated with OP-puro served as

a negative control, and as a positive control, samples treated with 50 μg/mL CHX (100 mg/ml

in DMSO, C4859; Sigma-Aldrich) for 15 minutes were used. Cells were rinsed with PBS and

then collected with Trypsin-EDTA (1:1 in PBS). After pelleting the collected cells and washing

them once with PBS, these were resuspended in 0.5 ml PFA (1% w/v in PBS; Santa Cruz) and

kept for 15 minutes on ice in the dark. Following fixation, samples were washed in PBS and

permeabilised in PBS supplemented with 3% FBS and 0.1% Saponin (47036; Sigma-Aldrich)

for 5 minutes at room temperature. To conjugate OP-puro to a fluorochrome, an azide-alkyne

cycloaddition was performed for 30 minutes at room temperature in the dark. For this, the

Click-iT Cell Reaction Buffer Kit (C10269; Life Technologies) and 5 μM of Alexa Fluor

555-Azide (A20012; Life Technologies) were used. To remove excess reagents and reduce the

background signal, the cells were washed twice in PBS supplemented with 3% FBS and 0.1%

Saponin. Finally, all samples were resuspended in PBS containing DAPI (1:3,000) and kept at

4˚C until further analysis. The fluorescence of each sample was measured at 450/50 405 nm for

DAPI and 585/15 561 nm for OP-puro. To analyse the data, fluorescence measurements were

visualised by histogram, and the raw fluorescence values were extracted.

To visualise polypeptide synthesis in cultured cells, human dermal fibroblasts were grown

directly on autoclaved glass coverslips placed in 12-well culture plates. Cell culture, sodium

arsenite treatments, and the incorporation of OP-puro were carried out as described. To fix

the cells, the glass coverslips were first briefly rinsed with 1x PBS and incubated for 15 minutes

at room temperature with PFA (4% PFA in PBS; Santa Cruz). To permeabilise the cells and

additionally block unspecific antibody binding, all coverslips were first incubated with 0.4%

Triton X-100 in PBS for 15 minutes and next with 3% BSA in PBS for 1 hour at room tempera-

ture. To conjugate OP-puro to a fluorochrome, an azide-alkyne cycloaddition was performed

for 30 minutes at room temperature and in the dark. For this, the Click-iT Cell Reaction Buffer

Kit (C10269; Life Technologies) and 5 μM of Alexa Fluor 555-Azide (A20012; Life Technolo-

gies) were used. To remove excess reagents and reduce the background signal, the cells were

washed once with 3% BSA in PBS. Op-puro-labelled cells were counterstained for their nuclei

by using Hoechst (working dilution 0.5 μg/mL) for 10 minutes and mounted on glass slides

with a PBS:glycerol solution (1:1). Glass slides were stored in the dark at 4˚C until imaging.

Flow cytometry data acquisition and analysis

Flow cytometry analysis of all cell assays described was performed with the LSRFortessa Flow

Cytometer (BD Biosciences). Data were analysed using the FlowJo software. All samples were

gated using forward versus side scatter to eliminate debris.
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Image acquisition and analysis

All bright-field and immunofluorescence images were acquired using an Axio Imager 2

Upright Research Microscope (Zeiss) with ORCA-Flash4.0 digital camera (Hamamatsu) or

AxioCamMRc colour digital camera (Zeiss). All images were initially processed using the

ZENMicroscope and Imaging Software and later the Adobe Photoshop CS6 package. The

CellProfiler software packages were used for image quantifications and analysis. Finally, all

images and figures were arranged using Adobe Illustrator CS7.

Data analysis and statistical tests

Data analysis and plotting were performed with the RStudio package and the GraphPad Prism

7 software. Statistical tests were performed with GraphPad Prism 7. If not stated otherwise,

data are presented as mean values, and error bars represent standard deviation (SD).

Supporting information

S1 Fig. Metabolic profiles of NSUN2-expressing and -lacking cells. (A) Schematic represen-

tation of stem cell differentiation in the absence or presence of NSUN2. (B) Marker expression

and cellular differences in hair follicles expressing or lacking NSUN2. (C) Gating used for flow

cytometry sorting of BG stem cells (ITGA6high/CD34+) in telogen (P49) wild-type and NSUN2

−/−mice. (D) Gating used for flow cytometry sorting of HG progenitor cells (ITGA6low/

PCAD+) in telogen (P49) wild-type and NSun2−/−mice. (E,F) Log2 FC (E) and Gene Ontol-

ogy categories (F) of combined differential expressed genes (FDR< 0.05) in anagen and pro-

genitor (ITGA6low/PCAD+) populations from skin of NSUN2+/+ and −/−mice. (G)

Schematic representation of NSUN-dependent methylation at cytosine-5. (H) Overview of the

one-carbon metabolism network. (I-N) Metabolic differences between NSUN2+/+ and

NSUN2−/−mice relating to the methionine cycle (I,L), free amino acids (J,M), and free nucle-

otides (K,N) measured by NMR-based (I-K) or MS-based (L-N) metabolic profiling (n = 3–5

mice). (O) Model of how protein homeostasis changes the balance between protein synthesis

and degradation in NSUN+/+ (upper panel) and NSUN2−/− (lower panel) cells. The underly-

ing data for this figure can be found in S2 Data and S1 File. BG, bulge; DP, dermal papilla; FC,

fold-change; FDR, false discovery rate; HG, hair germ; IFE, interfollicular epidermis; ITGA6,

integrin alpha-6; MS, mass spectrometry; NMR, nuclear magnetic resonance; PCAD, P-cad-

herin; SAH, S-adenosyl-homocysteine; SAM, S-adenosyl-methionine; SG, sebaceous gland.

(TIF)

S2 Fig. Rescue for loss of NSUN2 by reexpressing the wild-type or enzymatic dead protein.

(A, B) Differentially expressed genes in NSUN2−/− compared to NSUN2+/+ cells (A) and

Nsun2 RNA levels in NSUN2+/+, +/−, and −/− cells (B) measured by RNA sequencing. (C, D)

The transcriptional profile of NSUN2−/− cells overexpressing the NSUN2 protein is largely

unaltered (C) although Nsun2 is highly expressed (D). Expression of the empty (‘e.’) vector

served as a control. (E) Venn diagram of differentially expressed genes (padj< 0.01) in

NSUN2−/− versus +/+ compared to NSUN2-rescued cells. (F) Two out of three replicates of

polysome profiles using NSUN2+/+ and −/− cells. (G) Schematic representation of OP-puro

incorporation in actively translating ribosomes. OP-puro mimics an amino-acyl-loaded tRNA

molecule. (H) Example raw data outputs from OP-puro fluorescence analysis using a flow

cytometer. CHX served as a control. (I) Protein synthesis measured by OP-puro incorporation

in NSUN2+/+ and −/− cells after incubation with an angiogenin inhibitor (ANGi). (J) Western

blot for NSUN2 and tubulin after incubation with 500 or 1,000 nm RAPA for 12 or 24 hours

(h). (K) Quantification of protein expression shown in (J). (L) De novo protein synthesis in
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NSUN2+/+ and −/− after incubation with RAPA or CHX. DMSO served as a vehicle control

(J-L). (M, N) Metabolic differences of NSUN2−/− cells rescued with the empty vector (‘e.v.’),

K190M, or the NSUN2 protein shown as a PCA plot (M) or as Log2 FC differences of the sig-

nificant different (p< 0.01 NSUN2 versus e.v.) metabolites (N). The underlying data for this

figure can be found in S4 and S7 Data and S1 File. CHX, cycloheximide; OP-puro, O-propar-

gyl-puromycin; PCA, principle component analysis; RAPA, rapamycin; tRNA, transfer RNA.

(TIF)

S3 Fig. NSUN2 regulates cell cycle phases and global protein synthesis during the cellular

stress response. (A) Example raw data outputs from OP-puro fluorescence analysis using a

flow cytometer for human dermal fibroblasts treated with sodium arsenite. Dotted line repre-

sents the mean level of OP-puro positive control. (B) Immunofluorescence detection of OP-

puro incorporation in human dermal fibroblasts. DAPI: nuclear counterstain. Scale bar:

20 μm. (C) Measurement of OP-puro fluorescence intensity in cells using microscope-

acquired images. Each dot represents one cell. Data are represented as median. (D) Second

replicate of polysome profiling of NSUN2+/+ and NSUN2−/− cells rescued with wt or mutated

NSUN2 (K190M). The empty vector (‘e.V.’)-infected cells served as control (see Fig 3F–3I).

(E) Example of raw data output from AnV and PI analysis to measure cell death. (F, G) Per-

centage of cells that are viable, apoptotic, or necrotic in NSUN2+/+ and NSUN2−/− cells

exposed to sodium arsenite for the indicated hours (hr) (n = 3 samples per time point). (H)

Summary of cell cycle distribution shown in Fig 3A–3D. Data represented as mean in (K-H).

Error bars are ±SD. The underlying data for this figure can be found in S1 File. AnV, Annex-

inV; OP-puro, O-propargyl-puromycin; PI, propidium iodide; wt, wild-type.

(TIF)

S4 Fig. RNAmethylation levels change dynamically in response to oxidative stress. (A)

Immunofluorescence detection of the stress granules markers eIF4A1 (upper panels) and p-

eIF2A (lower panels) in untreated (control) or sodium arsenite–treated NSUN2+/+ and

NSUN2−/− cells. DAPI: nuclear counterstain. Scale, 20 μm. (B) Nsun2 RNA levels in response

to UVB exposure in primary human keratinocytes and dermal fibroblasts. (C) Western blot

for NSUN2 in NSUN2+/+ and −/− cells incubated with vehicle control (DMSO, PBS). (D)

Experimental outline of sample collection and RNA BS sequencing. (E,F) Quantification of

tRNAmethylation percentage of NSUN2-dependent (E) and -independent (F) sites in a sec-

ond independent experiment (n = 5 samples per time point). (G) Second independent RNA

BS-seq data shown as heatmap of methylation status of individual tRNAmolecules in NSUN2

+/+ and NSUN2−/− cells. (H, I) Quantification of methylation changes in the tRNAs LeuCAA

and AspGTC in NSUN2+/+ and NSUN2−/− cells shown in (E). Data represented as median in

(E, F, H, I). One-way ANOVA adjusted p-value (H,I), ��p< 0.005, ���p< 0.0005,
����p< 0.0001. The underlying data for this figure can be found in S8 Data and S1 File. BS,

bisulfite; BS-seq, BS sequencing; eIF2, eukaryotic Initiation Factor 2; tRNA, transfer RNA.

(TIF)

S5 Fig. Dynamic levels of NSUN2, tRFs, and methylation in response to stress. (A) Reex-

pression of NSUN2 but not K190M in NSUN2−/− cells restores methylation to similar levels

of endogenous NSUN2 (NSUN2+/+). (B) Western blot for NSUN2 inNSUN2−/− cells infected

with an empty (‘E.’) vector control, the enzymatic dead K190M, or the wild-type NSUN2 con-

struct in cells untreated (0) or treated for 2 and 4 hours (h) with sodium arsenite. HSP90

served as a loading control. (C) Raw data (reads) for the indicated tRNAs obtained from small

RNA sequencing in NSUN2-expressing (+/+; black) or -lacking (−/−; red) untreated (0h) or

(h) treated 2 and 4 hours with arsenite. (D, E) Methylation levels (pooled from 5 replicates) of

m5C levels in tRNAs adapt protein synthesis to cellular metabolic requirements

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000297 June 14, 2019 28 / 35

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000297.s003
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000297.s004
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000297.s005
https://doi.org/10.1371/journal.pbio.3000297


cytosines along tRNA 71-Leu CAG (C) and 1-His GTG (F) detecting m5C sites, in the variable

loop (D) and C70 (E). The underlying data for this figure can be found in S10 Data and S1

File. HSP90, heat shock protein 90; m5C, 5-methylcytosine; tRF, tRNA-derived fragment;

tRNA, transfer RNA.

(TIF)

S6 Fig. Site-specific methylation shapes tRF formation to regulate protein synthesis. (A-C)

Comparison of site-specific tRNAmethylation and fragmentation in NSUN2+/+ (red) and

NSUN2−/− (blue) cells. (n = 4 samples per time point). Data represent median and range.

Adjusted p-value: one-way ANOVA. ��p< 0.005, ���p = 0.0005. (D) Log2 FC of the down-reg-

ulated tRFs when NSUN2-overexpressing cells are exposed to stress for 4 hours. tRNA lysine-

derived tRFs are highlighted in red; tRNA histidine-derived tRFs are highlighted in blue. Line

indicates the mean. (E) Treatment regime to measure global protein synthesis of NSUN2

+/+ and −/− cells transfected with tRNA GluCTC-derived 50 and 30 tRFs after exposure to

sodium arsenite. (F, G) Log2 FC of protein synthesis in NSUN2+/+ (F) and NSUN2−/− (G) in

response to synthetic 50 or 30 tRFs. (n = 3 samples per time point). (H) A fluorescence siRNA

was used as a control for transfection efficiency. The underlying data for this figure can be

found in S11 and S12 Data and the S1 File. FC, fold-change; siRNA, small interfering RNA;

tRF, tRNA-derived fragment; tRNA, transfer RNA.

(TIF)

S7 Fig. Mitochondrial activity is reduced and catabolic pathways enhanced in the absence

of NSUN2. (A, B) Mitochondrial activity (‘mito’) and protein synthesis (‘OP-puro’) after expo-

sure to arsenite for the indicated time (hours) or CHX in NSUN2+/+ (A) and NSUN2−/− (B)

cells. (C) GO analyses using Ribo seq data in NSUN2−/− cells rescued with NSUN2 or the

enzymatic dead versions of NSUN2 C321A (left panel) and C271A (right panel). (D, E) PCA

plot (D) and heatmap (E) of genes belonging to the GO: nuclear-transcribed mRNA catabolic

process, nonsense-mediated decay. The underlying data for this figure can be found in S15

Data and S1 File. CHX, cycloheximide; GO, Gene Ontology; OP-puro, O-propargyl-puromy-

cin; PCA, principle component analysis; seq, sequencing.

(TIF)

S1 Data. Mouse skin microarray complete dataset.

(XLSX)

S2 Data. Mass spectrometry raw data. S2A: Mass spectrometry data for human dermal fibro-

blasts; S2B: Mass spectrometry data for mouse skin; S2C: NMR data for mouse skin. NMR,

nuclear magnetic resonance.

(XLSX)

S3 Data. Multiple t test for metabolites shown in Fig 1I–1K.

(XLSX)

S4 Data. RNA sequencing data. S4A: RNA sequencing data of NSUN2+/+, NSUN2+/−, and

two lines of NSUN2−/− human dermal fibroblasts. S4B: RNA sequencing data NSUN2−/−

cells reexpressing the NSUN2 protein or the empty vector as a control.

(XLSX)

S5 Data. RNA bisulfite sequencing of NSUN2−/− cells rescued with the wild-type NSUN2

construct or the enzymatic dead NSUN2 construct K190M, and the empty vector as a con-

trol.

(XLSX)
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S6 Data. Small RNA sequencing of rescued NSUN2−/− cells using the wild-type or enzy-

matic dead version of NSUN2 or the empty vector as control.

(XLSX)

S7 Data. Mass spectrometry data for rescued NSUN2−/− cells using the wild-type or enzy-

matic dead version of NSUN2 or the empty vector as control.

(XLSX)

S8 Data. RNA BS sequencing data. S8A: BS-seq tRNA methylated sites (n = 4 conversion

assays) from first experimental replicate. S8B: BS-seq tRNAmethylated sites (n = 5 conversion

assays) from second independent experimental replicate. BS, bisulfite; BS-seq, BS sequencing;

tRNA, transfer RNA.

(XLSX)

S9 Data. RNA BS sequencing data identifying other potentially non–tRNA targeted sites

by NSUN2. S9A: BS-seq to detect other potentially non–tRNA targeted sites by NSUN2 from

1 replicate (n = 4 conversion assays). S9B: BS-seq to detect other all sites not targeted by

NSUN2 from 1 replicate (n = 4 conversion assays). BS, bisulfite; tRNA, transfer RNA.

(XLSX)

S10 Data. RNA BS sequencing data of unstressed and stressed NSUN2−/− cells infected

with the empty vector control, the wild-type NSUN2, or the enzymatic dead construct

K190M. BS, bisulfite.

(XLSX)

S11 Data. Small RNA sequencing in unstressed and stressed cells. S11A: tRNA fragments

found in the small RNA-seq dataset. S11B: tRNA fragment sequencing and analysis (p< 0.01

NSUN2−/− at 2 hours of stress). S11C: tRNA fragment sequencing and analysis (samples with

missing values removed). S11D: tRNA fragment sequencing and analysis (fragments smaller

than 40 nucleotides). RNA-seq, RNA sequencing; tRNA, transfer RNA.

(XLSX)

S12 Data. tRNA fragments in NSUN2, K190M, or empty vector infected cells after 0, 2,

and 4 hours of treatment with sodium arsenite.

(XLSX)

S13 Data. RNA sequencing data. S13A: RNA-seq data from human dermal fibroblasts

untreated (‘ctr’) or treated with sodium arsenite for 2 or 4 hours. Shown are transcriptional

differences between NSUN2−/− and NSUN2 +/+ cells in the control. S13B: RNA-seq data

from human dermal fibroblasts untreated (‘ctr’) or treated with sodium arsenite for 2 or 4

hours. Shown are transcriptional differences between NSUN2−/− and NSUN2 +/+ cells after 2

hours of stress. S13C: RNA-seq data from human dermal fibroblasts untreated (‘ctr’) or treated

with sodium arsenite for 2 or 4 hours. Shown are transcriptional differences between NSUN2

−/− and NSUN2 +/+ cells after 4 hours of stress. RNA-seq, RNA sequencing.

(XLSX)

S14 Data. Gene ontology analyses. S14A: Gene enrichment (Cellular processes_Gorilla) for

differentially expressed genes in NSUN2+/+ versus NSUN2−/− cells after 2 hours of exposure

to sodium arsenite. S14B: Gene enrichment (Cellular processes_Gorilla) for differentially

expressed genes in NSUN2+/+ versus NSUN2−/− cells after 4 hours of exposure to sodium

arsenite. S14C: Gene enrichment (Cellular processes_Gorilla) for differentially expressed

genes in NSUN2+/+ versus NSUN2−/− cells in untreated condition revealed no significant
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enrichment.

(XLSX)

S15 Data. Ribo seq data of NSUN2−/− cells rescued with NSUN2 (wt) or enzymatic dead

versions of the NSUN2 protein (C321C, C271A) or the empty vector (‘empty’) as control.

wt, wild type.

(XLSX)

S16 Data. Individual mass spectrometric parameters for the nucleosides.

(XLSX)

S1 File. Underlying data for Figs 1C–1E, 1I–1K, 2B–2D, 2D–2N, 3C–3E, 3K–3M, 4E, 4F,

4H, 4J, 5A–5E, 5G–5P, 6D and 6G–6I and S1E, S1F, S1I–S1N, S2B, S2D, S2I–S2L, S2N,

S3C, S3F–S3H, S4B, S4E, S4F, S4H, S4I, S5A, S5D, S5E, S6A–S6D, S6F–S6H, S7A–S7C and

S7E Figs.

(XLSX)
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ABSTRACT

The highly abundant N6-methyladenosine (m6A) RNA

modification affects most aspects of mRNA function,

yet the precise function of the rarer 5-methylcytidine

(m5C) remains largely unknown. Here, we map

m5C in the human transcriptome using methylation-

dependent individual-nucleotide resolution cross-

linking and immunoprecipitation (miCLIP) combined

with RNA bisulfite sequencing. We identify NSUN6

as a methyltransferase with strong substrate speci-

ficity towards mRNA. NSUN6 primarily targeted three

prime untranslated regions (3′UTR) at the consen-

sus sequence motif CTCCA, located in loops of hair-

pin structures. Knockout and rescue experiments re-

vealed enhanced mRNA and translation levels when

NSUN6-targeted mRNAs were methylated. Ribosome

profiling further demonstrated that NSUN6-specific

methylation correlated with translation termination.

While NSUN6 was dispensable for mouse embryonic

development, it was down-regulated in human tu-

mours and high expression of NSUN6 indicated bet-

ter patient outcome of certain cancer types. In sum-

mary, our study identifies NSUN6 as a methyltrans-

ferase targeting mRNA, potentially as part of a quality

control mechanism involved in translation termina-

tion fidelity.

INTRODUCTION

Over 170 known RNA modifications extensively increase
the functional diversity of RNA molecules (1). Accord-
ingly, RNA modifications emerged as an important addi-
tional regulatory layer of gene expression programs and
are often required for normal development (2). Recent ad-
vances in detection technology,mostly associatedwith high-
throughput sequencing, have revealed how RNA modifi-
cations influence many stages of RNA metabolism, and
thereby effect diverse biological processes including cell fate
decisions, immune responses, and tumorigenesis (3–5).

One of the best-studied modifications is N6-
methyladenosine (m6A), the most abundant mRNA mod-
ification that controls gene expression (6). The prevalence
and function of other rarer mRNA modifications such as
N1-methyladenosine (m1A), N6,2′-O-dimethyladenosine
(m6Am), m5C, 5-hydroxymethylcytosine (hm5C), and
Pseudouridine (�) are less well-characterised and often
somewhat controversial (7). One of the most disputed
modifications in mRNA is m5C as current conventional
detection methods are associated with high background
levels, making this low-abundance modification particu-
larly challenging to define (8,9). Furthermore, the total
levels of m5C in mRNA varies between tissues (10). Nev-
ertheless, NSUN2, a m5C RNA methyltransferase mainly
targeting tRNAs, has consistently been linked to mRNA
methylation (11–15).
NSUN2 is one of eight evolutionary conserved m5C

RNA methylases (NSUN1–7 and DNMT2) (2). Of these,
NSUN2, 3, 6 andDNMT2have all been shown tomethylate
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tRNAs, yet in a non-overlapping and site-specific manner
(15–20). NSUN2 is however the only enzymewith a broader
substrate-specificity, methylating the majority of expressed
tRNA, other abundant non-codingRNAs and a small num-
ber of mRNAs (11–15,21).
Here, we map NSUN6-dependent m5C sites in RNAs

in the human transcriptome using our recently developed
miCLIP method (12,22). Unexpectedly, we find that most
sites located to protein coding RNAs within the consen-
sus sequence motif CTCCA. NSUN6-specific sites were en-
riched in the 3′UTR and marked translation termination.
RNA bisulfite (BS) sequencing confirmed m5C sites in mR-
NAs that were lost in knockout cells and rescued by over-
expressing the NSUN6 protein. NSUN6-targeted mRNAs
were more abundant with higher translation rates. NSUN6
was dispensable for mouse embryonic development. How-
ever, NSUN6-expression levels were down-regulated in tu-
mours when compared to normal tissues, and high NSUN6
positively correlated with patient survival rate. Together,
our study shows for the first time thatNSUN6mediates site-
specific deposition of m5C in mRNA, potentially as part of
a novel translation quality control mechanism.

MATERIALS AND METHODS

Cell culture

The human embryonic stem cell (hESC) line Hues9 (H9)
was obtained from the Wicell Research Institute (Madison,
WI) and maintained in Essential 8 media (Thermo Fisher
Scientific) on hESC-Qualified Matrigel (Corning) coated
plates. Media was refreshed daily and the cultures were dis-
sociated in clumps every 4 days using 0.5 mM EDTA in
PBS. In the embryoid bodies experiments, 70% confluent
hESC were dissociated in clumps and seeded on ultra-low
attachment well plates (Corning) maintaining a 1:1 dilution
factor. After plating, hESC were cultured in Essential 6 me-
dia (Thermo Fisher Scientific) plus 10 �M rock-inhibitor
(Y-27632) (Stem Cell Technologies Canada) for the first 24
h and for further 7 days in Essential 6media (ThermoFisher
Scientific).
HEK293 (HEK) (ATCC) and MBA-MD-231 (ATCC)

cells were grown in DMEM Media (Thermo Fisher Scien-
tific) supplemented with 1mM Glutamax (Thermo Fisher
Scientific), 10% heat inactivated FBS (Thermo Fisher Sci-
entific). All cells were grown at 37◦C, 5% CO2.

Migration assays

NSUN6 was knocked down in MDA-MB-231 using
NSUN6 siRNA pools (siTOOLsBIOTEC) via RNAimax
transfection reagent (Thermo Fisher Scientific), accord-
ing to manufacturer’s instructions. Twenty-four hours post
transfection, NSUN6 and control siRNA treated cells were
cultured for another 24 h in DMEM containing 1% heat in-
activated FBS. On the day of the experiment, 5000 starved
cells were plated onto aTranswell insert (Costar, 8�mpores)
in DMEM containing 1% heat inactivated FBS. The plate
well was filled with DMEM containing 10% FBS to pro-
mote migration. After 24 h, Transwell inserts were fixed and
stained with a solution of Crystal Violet in 80% Methanol
for 10min, followed by three washes in PBS.Non-migratory

cells, on the upper side of the membrane, were removed by
gently swiping with cotton swabs. Cells that migrated to the
lower side of the Transwell were quantified by microscopy
and counted using ImageJ software. At least three represen-
tative images were taken per Transwell filter. Each sample
was tested in quadruplicates

Generation of NSUN6 knockout, rescue and overexpressing
lines

NSUN6 knockout H9 cells were generated either by us-
ing homology directed recombination (HDR) or by insert-
ing random Indels in response of double strand breaks
(NHEJ). For HDR, we targeted exon 2 of NSUN6 with
wild type Cas9 (pSpCAs9(BB)2A-GFP) plus the recombi-
nation vector pD07 (Genecopoeia) carrying the selection
genes puromycin and eGFP under control of EIF1a pro-
moter and with homology arms on Introns 1 and 2. gRNAs
were designed using the gRNA design software from the
Feng Zhang lab at MIT (Exon2 gRNA1: ATT TTT CAC
ATG TTG TAC TG AGG, Exon2 gRNA2: GAT GAA
CTT CAG AAG GTT TG TGG). Four days after nucleo-
fection with the AMAXANucleofectorKit (Lonza), we ap-
plied puromycin selection until we observed the appearance
of green colonies, which were screened for integration of
the recombination cassette and for the presence of NSUN6
exon 2. For NHEJ, we targeted the exon 9 of NSUN6 with
wild type Cas9 (pSpCAs9(BB)2A-GFP) (Exon 9 gRNA:
ATC CAG AAG AAT TCG GTC AA AGG), 3 days af-
ter nucleofection, the targeted cells were sorted and re-
plated at low density in E8 conditioned media. We then
screened by Sanger Sequencing the grown colonies for In-
Dels in NSUN6 exon 9. For generating NSUN6 overex-
pressing H9, NSUN6 CDS was PCR amplified from the
TrueORF pCMV-Entry vector (Origene) and cloned via
Gibson assembly (NEB) into the destination piggybac vec-
tor pBPCAG-cHA-IN (kindly provided by Austin Smith).
This vector and the piggy bac transposase were then nucleo-
fected intoH9 using the AMAXAnucleofector kit (Lonza).
Puromycin selection started 4 days following nucleofection
and the surviving clones were screened by qPCR and West-
ern Blot for NSUN6 expression. The NSUN6 knockout
HEK293 cells were generated employing a similar NHEJ-
based methodology, using the guide RNA sequence: CTG
ATG ACA TAC TTC AGT TC. The same overexpression
strategy used in H9 was also adopted to rescue NSUN6 ex-
pression in knockout HEK293 cells.

Luciferase reporter assay

NSUN6 knockout and overexpressing HEK cells were
seeded in a 24-well plate and after 24 h transfected
with either the ANGEL1–3′UTR-luciferase vector
(GeneCopoeia, HmiT006021-MT05) or the control-
luciferase vector (GeneCopoeia, CmiT000001-MT05)
using Lipofectamine2000 according to the manufacturer’s
instruction (Thermo Fisher Scientific). After 48 h, the
medium was collected and the luciferase assay was per-
formed with the Secrete-Pair Dual Luminescence Assay Kit
according to the protocol (Genecopoeia). To quantify the
reporter activity, we first normalized for transfection effi-
ciency using secreted Alkaline Phosphatase (SEAP), which
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is encoded on the same plasmid. Second, we measured the
relative luciferase activity from the reporter containing the
Angel1 3′ UTR sequence compared to the reporter without
the 3′ UTR (CmiT000001-MT05).

Measuring global protein synthesis with OP-puromycin

FaDu cells were reverse transfected with a siPOOL de-
signed against NSUN6 or a scrambled control siPOOL
(siTOOLs Biotech). After 48 or 72 h, cells were treated with
OP-puromycin for an hour. Afterwards, the cells were col-
lected, fixed and permeabilized. Using Click-it chemistry
(Thermo Fisher Scientific), the OP-puromycin containing
peptides were stained with Alexa Fluor 647 and analysed
on a FACSCanto Cell Analyzer (BD Biosciences). Cyclo-
heximide treated cells were used as a control.

Mass spectrometry

NSUN2, NSUN6 and DNMT2 were depleted by transfect-
ing the corresponding siRNA Pools or a Negative Control
siRNA pool (siTOOLsBIOTECH). The transfections were
carried out using Lipofectamine RNAiMAX transfection
reagent (ThermoFisher Scientific) in six-well plates, accord-
ing to manufacturer’s instructions. The siRNAs were de-
signed to target the transcripts coding for NSUN2 (NCBI
Gene ID: 54888), NSUN6 (NCBI Gene ID: 221078) and
DNMT2 (NCBI Gene ID: 1787). For sample collection,
cells were directly lysed in Trizol (ThermoFisher Scien-
tific) and total RNA was extracted according to the man-
ufacturer’s instruction. mRNA was purified in HEK wild-
type as well as NSUN6 knockout and rescued cells using
DYNAL Dynabeads mRNA purification kit (ThermoFis-
cher Scientific) using half the beads and reagents recom-
mended by the manufacturer. The resulting poly A enriched
RNA was further purified with RiboMinus Eukaryote kit
v2 (ThermoFischer Scientific) according to manufacturer’s
instruction followed by ammonium acetate precipitation.
Mass spectrometry to quantify m5C was performed as de-
scribed previously (10,23).

Generation of the Nsun6 knockout mice

All mice were housed in the Wellcome Trust-Medical Re-
search Council Cambridge Stem Cell Institute Animal
Unit. All mouse husbandry and experiments were carried
out according to the local ethics committee under the terms
of a UKHomeOffice license P36B3A804 and PPL70/7822.

Two embryonic stem cell lines containing a knockout first
allele (with conditional potential) were obtained from Eu-
MMCR (Nsun6tm1a(EUCOMM)Hmgu). Mice homozygote for
the targeted trap allele was used to analyse Nsun6 total
knockout. Genotyping primers were:Nsun6-forward (AAT
CCAGCATTCCTGTTGTTCAGC), LoxR (TGAACT
GAT GGC GAG CTC AGA CC), Nsun6–5′arm-2 (ACA
GTG AGT CAG GTG AGG TGT GCC), and Nsun6-rev
(CAC AAT GAG ACA GCA CCC AG). The LacZ-neo
cassette was used as reporter for Nsun6 RNA expression in
wild-type andNsun6 total knockout mice. LacZ staining on
whole mounts and sections of embryos was performed as
described previously (24).

RT-qPCR and western blotting

Total RNA was extracted using TRIZOL (Thermo Fisher
Scientific) according to manufacturer instructions. Reverse
transcription was performed using SuperScript III Reverse
Transcriptase (Thermo Fisher Scientific) and random
primers (Promega). Quantitative PCR were run using
TaqMan probes (Thermo Fisher Scientific) for eukaryotic
18S rRNA (X03205.1), MARCKSL1 (Hs00702769 s1),
TRAF7 (Hs00260228 m1), ANGEL1 (Hs00380490 m1),
CALM3 (Hs00968732 g1), BAG6 (Hs00190383 m1),
CUX1 (Hs00738851 m1), TRIMM50 (Hs01390531 m1),
BUB3 (Hs00945687 m1), EEF (Hs00265885 g1), MACF1
(Hs00201468 m1), DLX5 (Hs01573641 mH), DNMT3B
(Hs00171876 m1), FOXD3 (Hs00255287 s1), GATA6
(Hs00232018 m1), HOXA1 (Hs00939046 m1), NANOG
(Hs02387400 g1), POU5F1 (Hs03005111 g1), TDGF1
(Hs02339497 g1).
For protein isolation, cells were first rinsed with PBS

and lysed in ice-cold RIPA buffer (50 mM Tris–HCl
pH 7.4, 1% NP-40, 150 mM NaCl, 0.1% SDS, 0.5%
sodium deoxycholate). RIPA was supplemented with cOm-
plete Mini EDTA-free Protease Inhibitor Cocktail tablets
(11836170001, Roche). Cells were collected using a cell
scraper and the lysates were centrifuged for 15 min at max-
imum speed in a pre-cooled centrifuge at 4◦C, and their su-
pernatant collected and kept on ice. Cell protein lysates were
mixed with NuPAGE LDS Sample Buffer (4X) (NP0007;
Invitrogen) and run on polyacrylamide gels. Proteins were
transferred to a nitrocellulose or PVDF membrane (GE
Healthcare). Membranes were blocked for a minimum of 1
h at room temperature in 5% (w/v) non-fatmilk or 5% (w/v)
BSA (A4503–50G; Sigma Aldrich) in TBS-T (1× TBS and
0.1% Tween-20) and then incubated with primary antibody
in blocking solution overnight at 4◦C. Each membrane was
washed three times for 10 min in TBS-T prior to incuba-
tion with the appropriate Horseradish peroxidase (HRP)-
labeled secondary antibody (1:10 000) in TBS-T at room
temperature for 1 h. After washing, the antibodies were de-
tected by using the AmershamECLPrimeWestern Blotting
Detection Reagent (RPN2232; GE Healthcare). The pri-
mary antibody was NSUN6 (1:500, 17240-1-AP, Protein-
tech). Anti-� -Tubulin (T6557; SigmaAldrich), Anti-HSP90
(sc-13119; Santa-Cruz) or Ponceau staining served as load-
ing controls.

miCLIP

Full-length cDNA constructs for NSUN6 in the pCMV6-
Entry-Myc vector were obtained from OriGene. Site-
directed mutagenesis to generate the miCLIP-mutants was
performed using the QuikChange II Site-Directed Mutage-
nesis Kit from Agilent as per the manufacturer’s instruc-
tions. To generate the NSUN6 miCLIP mutant, cysteine
326 was mutated to alanine using the following primers:
(forward) GAA TTC TTC TGG ATG CAC CCG CTA
GTG GAA TGG GAC AGA GAC; (reverse) GTC TCT
GTC CCA TTC CAC TAG CGG GTG CAT CCA GAA
GAA TTC. HEK293 cells were transfected with either
NSUN6 wild-type and the miCLIP-mutant construct using
Lipofectamine 2000 (Life Technologies) and harvested 24
h later.
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The harvested cells were lysed in lysis buffer consisting of
50 mM Tris–HCl pH 7.4, 100 mM NaCl, 1% NP-40, 0.1%
SDS, 0.5% sodium deoxycholate. Lysates were then treated
with high concentration ofDNase and low concentration of
RNaseI to partially fragment RNAs. Lysates were cleared
by centrifugation at 13 000 rpm for 15 min at 40◦C and then
incubated with Protein G Dynabeads (Life Technologies)
in the presence of an anti-Myc antibody (9E10, Sigma).
Following stringent washing, 3′ end dephosphorylation was
performedwith T4 polynucleotide kinase (NewEnglandBi-
olabs) before addition of a pre-adenylated linker usingRNA
ligase (New England Biolabs). 5′ end labelling was then per-
formed using T4 PNK and 32P-ATP before protein–RNA
complexes were eluted and run on denaturing gels. Nitro-
cellulose transfer was performed, and the radioactive sig-
nal was used to dissect nitrocellulose pieces that contained
NSUN6-partially digested RNA complexes. RNA was re-
covered by incubating the nitrocellulose pieces in a buffer
containing ProteinaseK and 3.5Murea. Next, reverse tran-
scription was performed using oligonucleotides contain-
ing two inversely oriented adaptor regions separated by a
BamHI restriction site. cDNAs were size-purified on TBE–
urea gels before being circularized by CircLigase II (Epicen-
tre). Circularised cDNAs were then annealed to an oligonu-
cleotide complementary to the BamHI site and thenBamHI
digested. Linearized cDNAs were then PCR-amplified us-
ing primers complementary to the adaptor regions using
25 cycles of PCR. Libraries were then subjected to high-
throughput sequencing using the Illumina HiSeq 2000 plat-
form.

RNA bisulfite conversion and sequencing

Total RNA fromH9 wild-type (WT), knockout (KO), over-
expression (OEX) and HEK293 WT, KO and NSUN6 res-
cue (RES) cells was first extracted using Trizol (Thermo
Fisher Scientific) and subsequently treated with DNaseI
(Ambion) and RiboZero (Illumina) to remove contaminat-
ing DNA and ribosomal RNAs. The remaining RNA was
then converted as previously described (15,25). Briefly, 10
�g of RNA was resuspended in 10 �l of RNAse free wa-
ter and mixed with sodium bisulfite pH 5.0 (42.5 �l) and
DNA protection buffer (17.5 �l) (EpiTect Bisulfite Kit, Qi-
agen). The deamination reaction was then carried out by
incubating in a thermal cycler for four cycles of 5 min at
70◦C followed by 1 h at 60◦C and then desalted with Mi-
cro Bio-spin 6 chromatography columns (Bio-Rad). RNA
was desulphonated by adding an equal volume of 1 M
Tris (pH 9.0) to the reaction mixture for 1 h at 37◦C,
followed by ethanol precipitation. The bisulfite-converted
RNA quality and concentration were assessed on a Bio-
analyzer 2100 RNA nano-chip (Agilent). About 120 ng of
bisulfite-converted RNA were used to generate Bisulfite-
seq libraries using the TruSeq Small RNA preparation
kit (Illumina). Before library preparation, the fragmented
RNAwasend-repaired with T4 PNK and Spermidine (New
England Biolabs). The size selection step was omitted, as
the bisulfite-converted RNAwas sufficiently fragmented by
the previous conversion reaction. First the Illumina RNA
adapters were then ligated, reverse-transcribed at 50◦C for
1 h with SuperScript III and 1 mM of each dNTP (Super-

Script III cDNA synthesis kit, Invitrogen) followed by 18-
cycle PCR amplification.

RNA sequencing and ribosome profiling

Total RNA extraction, ribosome profiling (Ribo-seq) and
libraries for H9 NSUN6 WT and KO cells (at least four
replicates each) were performed as described before (26–28).
The samples were multiplexed and sequenced on the HiSeq
4000 platform (Illumina).

Processing, mapping and quantification of RNA-seq and
Ribo-seq reads

TheH9RNA-seq datawas sequenced as paired-end 2× 150
nt and theHEKRNA-seq data was sequenced as single-end
50 nt. All Ribo-seq data was single-end 50 nt. To process
the data, Trim galore! (https://github.com/FelixKrueger/
TrimGalore) with parameters ‘–stringency 6 -e 0.1’ and ‘–
paired’ for the paired-end data was first used to remove Illu-
mina adapters and to exclude trimmed reads shorter than 20
nt. Alignment was done using Tophat2 (v2.1.0) using an in-
dex with known transcripts (Gencode v23) as guidance and
with novel splice junctions permitted. The RNA-seq reads
were aligned directly to the reference genome (hg38). Ribo-
seq reads were first aligned to a set of known rRNA and tR-
NAs (downloaded from the UCSC RepeatMasker tracks),
followed by alignment of all unmapped reads to the refer-
ence genome. Multi-mapping read were excluded. Feature-
Counts was used to quantify the number of reads per gene
using the Gencode v23 gene models. Only reads aligning to
the sense strand of the gene, represented either by its ex-
ons (RNA-seq) or its coding sequence (Ribo-seq), and with
mapping quality at least 20 were counted. For the paired-
end RNA-seq the additional flags ‘-p -B -C’ was specified
to exclude chimeric reads and/or reads mapping with only
one end.

RNA-seq and Ribo-seq differential expression analyses

Differential expression analysis was done using the R Bio-
conductor edgeR package. Genes with mean expression
below 1 count per million mapped reads were consid-
ered non-expressed and excluded from the analysis. The R
Bioconductor cqn packages (29) was used for conditional
quantile normalization to calculate offsets correcting for
gene lengths (from featureCounts) and GC content (from
biomaRt). The offsets were passed to the edgeR DGEList
object, followed by a likelihood ratio test using glmFit and
glmLRT. Five knockout cell lines (four H9 and two HEK)
were compared to their respective control cell line (two H9
and one HEK). Each cell line was sequenced in four repli-
cates.
Differential translation efficiency (TE) analysis was done

with DESeq2 due to its ability to report the standard error
(SE) associated with each log2 fold change (log2 FC). First,
Nsun6 knockout was compared with control using the
RNA-seq or Ribo-seq data separately to estimate log2FCs
and SEs for each gene and assay. Translational efficiency of
a gene can be defined as the difference between log2 FCRibo

and log2 FCRNA and the associated P-value is the probabil-
ity that this difference is zero. Assuming that the log2 FCs

https://github.com/FelixKrueger/TrimGalore
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follow a normal distribution, the T-statistic was calculated

as T = |log2FCRibo−log2FCRNA|√
(SE2

Ribo+SE2
RNA),

$. The resulting two-tailed P-

values were further corrected for multiple testing by false
discovery rate correction using the R function P.adjust.

Determining read periodicity and codon enrichments using
Ribo-seq

Codon usage in the Ribo-seq data was calculated follow-
ing (28). The analysis was focused on reads of length 27–29,
which were showing the strongest periodicity. Position 12–
14were determined to correspond to the codon at the P-site.
The bam file for each sample with uniquely aligned reads

was converted to bed format. Bedtools intersect was used to
select reads with at least 50%overlap toGencode-annotated
coding sequences. Next, the reading frame of the 5′ end of
each read was determined using the frame information in
the Gencode annotation. If the frame did not agree with the
expected reading frame for that read length, the read was
discarded. Then, nucleotide positions 1–27 were extracted
from each read as nine codons, numbered as codon posi-
tion –5 to +3, where 0 corresponded to the A-site. As ex-
pected, position –4 to –2 and +1 to +3 correlated well to
the genome-wide distribution of codons in the human trans-
latome, whereas counts from the predicted P-site and A-site
did not.
The number of codon occurrences were counted sepa-

rately for each ribosome-protected codon position and con-
verted into a fraction of the total number of codons. Nor-
malized codon counts were obtained by dividing the codon
fraction at a specific position by the mean fraction across
all nine positions.

Processing and mapping of miCLIP reads

In order to reduce amplification bias, the primers used for
reverse transcription during miCLIP experiments were de-
signed to include a 6-nucleotide random barcode at po-
sitions 1–3 and 8–10 to enable tracing of individual cD-
NAs. Reads were de-multiplexed using the experimental
barcode at positions 4–7, and reads with identical ran-
dom barcodes, representing PCR products, were filtered.
The number of different random barcodes for each unique
read, which represented cDNA counts, was stored for fur-
ther analysis. Barcodes were trimmed from the 5′end, and
the adapter sequence ‘AGATCGGAAGAGCGGTTCAG’
from the 3′end of the reads with cutadapt (https://code.
google.com/p/cutadapt; options: ‘-O 4 –e 0.06’), and only
reads with a minimal length of 18 nt were retained.
TrimmedmiCLIP readsweremapped to the human refer-

ence genome (UCSCGRCh37/hg19) by using bowtie (http:
//bowtie-bio.sourceforge.net/index.shtml) with parameters
‘-m1 -v1 –best –strata’ to select uniquely mapping reads
allowing one mismatch. Methylation sites were thus in-
ferred from miCLIP read truncation positions by assign-
ing the read counts to the closest cytosine within ±2nt of
the truncation site. Pooled read counts per cytosine were
normalized per million uniquely mapping reads (RPM). If
not stated otherwise, only high-confidencemethylation sites
with normalized read counts >50 RPM in at least two out
of three replicates were selected for down-stream analyses.

Quantifying coding sequence annotation and Ribo/RNA-seq
reads at miCLIP sites

To visualize coding sequence across miCLIP sites, anno-
tated coding sequences (Gencode V28) were merged using
bedtools merge and was then converted to bigWig format
using the UCSC bedGraphToBigWig tool. This was done
separately for both strands. Furthermore, to allow visu-
alization of RNA-seq and Ribo-seq read coverage at mi-
CLIP sites, deepTools bamCoveragewas used to convert the
aligned reads to bigWig format. Each strand was quantified
separately, and a blacklist file containing all rRNA, tRNA,
snoRNA, snRNA and miRNA regions was provided. The
bin size was set to 1 and an offset of 12 was used to only
consider a single nucleotide corresponding to the ‘P’ site
predicted from each read.
Next, deepTools computeMatrix in ‘reference-

point’ mode with parameters -b 1500 -a 1500 –
missingDataAsZero’ was used to extract annotation
or reads coverage across miCLIP sites. The Ribo-seq read
coverage was used to classify the miCLIP sites as start,
middle and end of translation, based on the difference
between the number of covered bases up-stream and
down-stream of the miCLIP site. The standard error
(SE) of the differences was calculated and a threshold of
±1.96SE was used to defined ‘start’ and ‘end’ of trans-
lation. The remaining sites were classified as ‘middle’.
Custom R scripts were used to combine sites on both
strands and to visualize it as a heatmap or a profile
plot. The scripts related to this analysis are available at
https://github.com/susbo/Selmi-et-al-scripts.

Calculating overlap between miCLIP sites and differentially
expressed genes

Out of the 15,885 genes expressed in HEK, 1,853 genes
were defined as down-regulated and 2008 as up-regulated
at Padj < 0.05 and abs(log2FC) > 0.5 in both HEK knock-
out clones. Next annovar (30) was used to identify the clos-
est genes for all 252,135 putative miCLIP sites. The set of
genes with exonic miCLIP sites (at 0, 0.5, 1, 3, 5, 10 or 50
RPM) was compared with genes without exonic miCLIP
sites. The relative enrichment or depletion of gene down- or
up-regulation was calculated as an odds ratio with a 95%
confidence interval using Fisher’s exact test.

Processing and mapping of BS-seq reads

The BS-seq was processed as described previously (21).
First, Trim Galore! (v0.4.0) with parameters ‘–stringency 3
-e 0.2 -a TGGAATTCTCGGGTGCCAAGGA’ was used
to remove sequencing adapters and exclude reads shorter
than 20 nucleotides. Next, alignment to the hg38 reference
genome was done using Bismark (v0.14.4) with parameters
‘-n 2 -l 50 –un –ambiguous –bowtie1 –chunkmbs 2048’, to
allow for up to two mismatches and to save unaligned and
ambiguously mapping reads separately. Seqtk with param-
eters ‘-e 3’ was used to remove the last three bases (a poten-
tial tRNA ‘CCA’ tail) from the unaligned and ambiguous
reads followed by a second alignment attempt using Bis-
mark. Finally, ngsutils (v0.5.9) in the ‘junction’ mode was
used to extract splice junctions fromknown genes (Gencode

https://code.google.com/p/cutadapt
http://bowtie-bio.sourceforge.net/index.shtml
https://github.com/susbo/Selmi-et-al-scripts
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v28) and unaligned reads from the second alignment were
aligned to the junctions using Bismark. Reads aligned to
the junctions were converted back to genomic coordinates
using bamutil (https://github.com/statgen/bamUtil) in ‘con-
vertregion’ mode. ‘N’ in the cigar string was replaced with
‘D’ for compatibility with bismark methylation extractor.

Samtools merge was used to combine aligned reads
from all three alignment attempts. Reads with >1/3
methylated cytosines were discarded as they are likely
artifacts from conversion-resistant regions. The bis-
mark methylation extractor with the ‘–bedGraph –counts
–CX context’ options was used to extract methylated
cytosines.
For comparisons with methylation sites in Huang et al.

(11) we used the publishedmethylation sites from their Sup-
plementary Table S4. The liftover tools was used to convert
hg19 coordinates to hg38 coordinates. However, to visualize
the methylation levels in those samples, we re-aligned those
datasets to the hg38 genome using our pipeline.
To detect tRNA methylation, we downloaded high-

confidence tRNA annotations from GtRNAdb (http://
gtrnadb.ucsc.edu, hg38). Some tRNAs have multiple gene
copies for the same transcript sequence. We selected the
first gene copy (identified by a ‘1’ in the fifth field of its
name, e.g., ‘tRNA-Ala-AGC-9–1’), reducing the number of
tRNA copies from 432 to 261. Next, introns were removed,
the ‘CCA’ tail added, and two flanking ‘N’ on each site of
the transcript was added to avoid Bismark warnings due
to missing sequence context. In order not to exclude multi-
mapping reads during the alignment, a genome index was
prepared for each individual tRNA transcript, followed by
alignment of all reads to all tRNA indices using Bismark
with the parameters described above.
All valid tRNA alignments for each read were extracted.

If a read mapped to multiple transcripts, one alignment
among alignments with the fewest mismatches was selected
at random and the others alignments were discarded. This
ensures that no read is counted multiple times. Reads with
>1/3 methylated cytosines were discarded as they are likely
artifacts from conversion-resistant regions. Finally, the bis-
mark methylation extractor with the ‘–bedGraph –counts
–CX context’ options was used to extract cytosine methy-
lation levels.

Quantification of methylation at miCLIP sites and known
methylation sites

Methylation signal was quantified across protein-coding
miCLIP sites and across the 13 published lists of methy-
lation sites from Huang et al. (11) representing HEK293,
HeLa (control and NSUN2 knockout) and seven tissues.
Genomic coordinates were converted to hg38 using the
liftover tool, and the genomic context (±10 nucleotides) of
the site was extracted. For each set of sites, we analysed sites
with the CTC[CT]Amotif and sites without the motif sepa-
rately. To reduce the noise from themiCLIP experiment,mi-
CLIP sites located next to a motif were shifted to the motif
and duplicate sites were removed. For each cytosine within
10 nucleotides from the methylation site, the total number
of reads that either supported or did not support methy-
lation were calculated. To avoid having very high-covered

sites dominating the analysis, sites with more than 5 reads
were normalized to 5 reads before the reads were summa-
rized. Methylation level was calculated as the number of
normalized reads supporting methylation, divided by the
total number of normalized reads.

Analysis related to translation readthrough

To determine if miCLIP sites in 3′ UTRs of protein cod-
ing genes (n = 522) could be associated to translation
readthrough, we determined the frequency of in-frame
stop codons between the nearest up-stream annotated stop
codon and the 3′ UTR miCLIP site. As a control, we used
a region of equal size immediately down-stream of the mi-
CLIP site.
Translational readthrough is associated with usage or

rare stop codons and unfavoured stop codon contexts, de-
fined as the base immediately down-stream of the stop
codon. The stop codon context for all annotated stop
codons (Gencode V23) was retrieved using samtools faidx.
Genes with multiple annotated stop codons were repre-
sented as a fraction of stop codons with sum 1. The over-
all stop codon context was calculated for all protein-coding
genes or those that were identified as miCLIP targets, re-
spectively.

RESULTS

miCLIP reveals enzymatic targets of NSUN6

RNA:m5C methyltransferases contain a catalytic domain
with a common structural core and the S-Adenosyl
methionine-binding site (Supplementary Figure S1A). Two
conserved cysteines, both located within the methyltrans-
ferases active site, are required for completion of the cat-
alytic process (31). Methylation is initiated when cysteine
(C1) forms a covalent bond with the cytosine pyrimidine
ring (32). The second conserved cysteine (C2) is required to
then break the covalent adduct and to release the methy-
lated RNA (Supplementary Figure S1B). Mutating C2 to
alanine results in the irreversible formation of an enzyme-
RNA crosslinked complex precisely at the methylated cy-
tosine (Supplementary Figure S1C) (31,33,34). The cross-
linked site can then be directly identifiedwithout further fix-
ation steps during the immunoprecipitation protocol, omit-
ting unspecific RNA-protein events (12,22). Because the
crosslinking occurs during the methylation reaction, we
termed the method methylation iCLIP (miCLIP) (12).

We previously utilized miCLIP to identify NSUN2 and
NSUN3 methylated nucleosides transcriptome-wide (Fig-
ure 1A; Supplementary Figure S1A-C) (12,17). Here, we
analysed a third related m5C RNA methyltransferase,
NSUN6. We sequenced all RNAs crosslinked to the mu-
tatedNSUN6protein (Figure 1B) and found that themajor-
ity of miCLIP sites located to mRNAs (Figure 1C; Supple-
mentary Table S1). In contrast toNSUN6,NSUN2-specific
miCLIP sites mainly occurred in tRNAs (Figure 1D; Sup-
plementary Table S2) (12). NSUN2 andNSUN6 shared less
than 4% of identified miCLIP targets (Supplementary Fig-
ure S1D), and the vast majority of shared sites in mRNAs
located to non-coding RNAs or untranslated regions (Sup-

https://github.com/statgen/bamUtil
http://gtrnadb.ucsc.edu
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Figure 1. NSUN6 miCLIP reveals consensus motif in targeted RNA. (A) Schematic overview of the miCLIP method. (B) Polyacrylamide gel showing
NSUN6-tagged proteins and released RNA after RNase treatment, which was isolated and sequenced. C2A: construct carrying the point mutations
C→A; WT: wild-type construct. (C, D) Number of NSUN6 (C) and NSUN2 (D) miCLIP sites in the indicated RNAs. (E) Number of NSUN6 miCLIP
sites in protein coding RNAs. (F) Distribution of NSUN6miCLIP sites alongmRNA. (G) Number of detectedNSUN6miCLIP sites within 50 nucleotides
windows in a total of 1279 RNAs. (H, I) Binding motifs (upper panels) of NSUN2 (H) and NSUN6 (I) and frequency of miCLIP sites at the respective
position (lower panels). (J) Illustration of structural motifs analysed by GraphProt. (K) Identified sequence (upper panel) and structural motif (lower
panel) of NSUN6-targeted sites. (L) Examples of hairpin loop structures in NSUN6-targeted mRNAs. Me: methylation. (M) Overlap of predicted (grey)
and observed (blue) miCLIP sites containing the sequence structure motif in the HEK transcriptome.

plementary Figure S1E). Thus, NSUN6 has a distinct sub-
strate specificity, different from NSUN2.

NSUN6 targets 3′ UTRs in a sequence- and structure-specific
manner

We previously identified that a small number of NSUN2-
specific miCLIP sites in mRNAs which mostly occurred in
introns of nuclear-encoded genes (Supplementary Figure
S1F) (12). In contrast, NSUN6-mediated methylation oc-

curred mainly in the 3′UTR (Figure 1E, F). The advantage
of miCLIP over other RNA immunoprecipitation meth-
ods is the covalent cross-link of the enzyme to the cytosine
undergoing methylation, allowing the detection of the en-
zymatic reaction at nucleotide-resolution (12,22). Accord-
ingly, we found that NSUN6-specific target sites predomi-
nantly occurred as single sites (Figure 1G).

Only NSUN6-targeted sites occurred in a sequence-
specific manner, and the consensus sequence motif was
present in the vast majority (80%) of all targeted sites (Fig-
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ure 1H, I; Supplementary Figure S1G). Since RNA sec-
ondary structures can modulate protein binding (35), we
asked whether local RNA structure influenced NSUN6 tar-
geting. We determined the sequence- and structure-specific
preferences of NSUN6miCLIP sites using GraphProt (Fig-
ure 1J) (36), and found that the methylated sites occurred
preferentially centred within hairpin loops (H) of stem
loop structures (Figure 1K, L). The fraction of predicted
structural motifs was independent of the miCLIP thresh-
old (10–50 RPM) (Supplementary Figure S1H). Our data
is consistent with a previous study showing that NSUN2-
independent methylation sites in mRNAs located to stem
loop structures (11).
Finally, we asked what fraction of mRNAs contained a

NSUN6-targeted sequence-structure element (Supplemen-
tary Figure S1I). First, we calculated that the minimum
free energy of NSUN6-targeted RNA sequences to form a
stem loop was –5 kcal/mol (Supplementary Figure S1J),
and 47% of all miCLIP sites formed a stem loop under
this condition (Supplementary Figure S1J). Then, we com-
pared the predicted with the observed number of NSUN6-
targeted sites in the transcriptome, and found that ∼14% of
all predicted sites in mRNAs were also targeted by NSUN6
(Figure 1M).

In conclusion, mRNA targeting by NSUN6 is based on
a defined sequence-structure element in mRNAs.

RNA bisulfite sequencing confirms NSUN6-specific methyla-
tion and consensus motif

The miCLIP method relies on over-expressing the mu-
tated protein (37). To confirm endogenous NSUN6-specific
methylation sites, we performed RNA bisulfite (BS) se-
quencing (BS-seq) (25,38). BS-seq on mRNAs remains
challenging due to high RNA degradation during the pro-
tocol resulting in low mRNA coverage (39). To increase
the confidence in all discovered sites, we used two indepen-
dent cell lines, the human embryonic cell lines Hues9 (H9)
and HEK293 (HEK). As negative controls, we generated at
least two independent knockout clones via CRISPR/Cas9
genome editing for each cell line (Supplementary Figure
S2A). Furthermore, we over-expressedNSUN6 in two inde-
pendent H9 clones, and rescued two HEK knockout clones
by stably over-expressing the NSUN6 construct (Supple-
mentary Figure S2A). At least four replicates from each
condition were subjected to the BS conversion protocol,
generating a total of 68 RNA BS-seq datasets (Supplemen-
tary Figure S2A). For the analyses of the RNA BS-seq data
we used our established pipeline (Figure 2A; Supplemen-
tary Table S3) (https://github.com/susbo/trans-bsseq) (21).
After mapping the reads (Figure 2B), all technical repli-

cates were pooled to achieve the highest number of reads
per cytosine in each condition. In summary, we analysed
the following conditions: (i) NSUN6 knockout (KO) cells
(n = 28), (ii) wild-type (WT) cells with endogenous expres-
sion of NSUN6 (n = 24), (iii) NSUN6 rescued (RES) cells
(n = 8) and (iv) NSUN6 over-expressing (OEX) cells (n =
8) (Supplementary Figure S2B–E).
Next, we used the BS-seq data to evaluate the miCLIP

sites, focusing on predicted sites with the sequence motif
and located in protein-coding genes. As expected, the over-

all methylation and mRNA read coverage was often low
(Supplementary Table S4).Nonetheless, the BS-seq datasets
covered about 20%ofmiCLIP sites (Figure 2C; Supplemen-
tary Table S4). The total number of m5C sites detected by
both methods correlated well with expression of NSUN6
(Figure 2D). The vast majority of m5C sites (∼80%) de-
tected by both methods depended on NSUN6 in both cell
lines (Figure 2E; Supplementary Table S4). Furthermore,
the NSUN6-targeted RNAs substantially overlapped in the
two cell lines (Figure 2F). Together, our BS-seq analysis
reliably detected endogenous NSUN6-specific methylation
sites in the transcriptome, but strongly relied onRNAabun-
dance and methylation level at the specific cytosines.
To further confirm endogenous methylation of NSUN6-

specific sites we performed mass spectrometry analysis. We
revealed that only deletion of NSUN6 simultaneously with
NSUN2 and DNMT2 resulted in a detectable reduction
of m5C levels in tRNAs and large RNAs (Supplementary
Figure S2F, G). Nevertheless, m5C levels were highest in
NSUN6-rescued HEK cells in purified mRNA, but m5C
levels in 18S rRNA was unaffected (Figure 2G). Other
mRNA modifications (m6A and m7G) did not consistently
change (Supplementary Figure S2H). Thus, the mass spec-
trometry analyses confirmed that NSUN6-dependent m5C
sites in mRNA were present at low stoichiometry.
Next, we asked whether BS-seq confirmed the consen-

sus motif CTCCA. All of the top seven RNAs identified
by BS-seq containing NSUN6-mediated m5C sites, con-
tained the CTCCAmotif (Figure 2H; Supplementary Table
S5). One of these sites located to tRNAThr (ACG), a previ-
ously knownNSUN6-target (20). In this case, the motif was
only present when taking CCA-editing of tRNAs into ac-
count (Figure 2H) (40). Since our analyses excluded multi-
mapping reads (Figure 2A), we obtained poor read coverage
over many tRNAs. tRNAs have low sequence uniqueness
and therefore, they were not detected in our global anal-
ysis. To confirm that we can identify all known NSUN6-
mediated methylation sites in tRNAs, we re-aligned our
data to all tRNA genes. In this analysis, we allowed for
multi-mappers. In addition to tRNAThr (ACG), we confirm
tRNAThr (TGT), (CGT), (AGT) and tRNACys (GCA) to be
specifically methylated by NSUN6 (Figure 2I, J) (20). No
other NSUN6-dependent m5C sites were found in tRNAs.

In conclusion, three independent methods identify
NSUN6-dependent methylation in mRNA. However, in
line with previous studies the overall number of m5C was
low and single sites having methylation levels of >20% were
extremely rare (8).

NSUN6-specific methylation strictly depends on the consen-
sus sequence

Since NSUN6 mainly targeted mRNAs (Figure 1C), we
next focused on miCLIP sites within protein coding re-
gions. As those miCLIP sites were covered by compara-
bly few reads in the BS-seq data (Figure 3A), we extended
our analysis by asking which NSUN6 miCLIP sites were
also identified in previously published datasets (Supplemen-
tary Table S4) (11,13). The miCLIP sites consistently over-
lapped with known m5C sites across 13 different cell lines
and tissues, and the greatest overlap was found in NSUN2-

https://github.com/susbo/trans-bsseq


Nucleic Acids Research, 2020 9

Figure 2. BS-sequencing confirms NSUN6 methylation sites. (A) Pipeline of data analyses using BS-sequencing data. (B) Summary of all mapped reads in
the different conditions (left panel). WT: Wild-type; KO: knockout; RES: Rescue of NSUN6. Total number of mapped reads (right panel). (C) Overlap of
miCLIP sites with m5C sites detected by BS-seq in H9 and HEK cells. (D) Methylated sites identified by miCLIP and BS-seq in the indicated conditions
in HEK and H9 cells. (E) m5C sites identified by miCLIP and BS-seq (dark blue) in H9 (left panel) and HEK (right panel) cells. (F) Overlap of RNAs
containing m5C sites detected by both miCLIP and by BS-seq in H9 and HEK cells. (G) Quantification of m5C in purified mRNA (left) and 18S rRNA
(right) by mass spectrometry in the indicated HEK samples. (H) NSUN6-dependent methylation sites identified by BS-seq only in H9 and HEK cells. Red:
CTCCA consensus motif. (I) Heatmap of tRNA Thr and Cys isotypes carrying a NSUN6-mediated methylation site (red; star). (J) Quantification of (I)
showing average methylation levels in the indicated samples.
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Figure 3. Methylation at NSUN6 consensus sequence. (A) Number of protein coding miCLIP sites and coverage of BS-seq reads. (B) Fraction of methy-
lation sites identified in the indicated datasets overlapping with NSUN6 miCLIP sites. (C) NSUN6-targeted sites with confirmed m5C in more than 5 out
of 14 different datasets. (D–H) Representative heatmaps showing the methylation levels in the indicated selected mRNAs (D-G), tRNAThr (CGT) as a
control (H). (I) NSUN6-dependent methylation around the consensus sequence. (J, K) Mean methylation levels in knockout (KO), wild-type (WT), and
NSUN6-overexpressing (OEX) cells at 994 miCLIP sites containing the consensus motif (J), and 275 sites without the consensus motif (K). Shown are
biological replicates in H9 and HEK cells. (L–O) Methylation levels at published m5C sites (11) containing the consensus motif identified in all datasets
(L) or in selected tissues of frontal cortex (M) and testis (N), or lacking the motif (O). (P, Q) Illustration of the luciferase reporter containing the Angel1
3′UTR and transfection into twoNSUN6HEK knockout clones (KO1, KO2) and one rescued KO clone re-expressing NSUN6 (P), or co-transfection with
constructs expression the wild-type (wt) or methylation-deficient (mut) NSUN6 protein in HEK KO1 (Q). (R) Luciferase reporter assay using constructs
shown in (P). (S) Luciferase reporter assay using constructs shown in (Q). ****padj < 0.0001; ***Padj < 0.001; *Padj < 0.05. one-way ANOVA (R,S). (T)
RT-QPCR for selectedmRNAs carryingNSUN6-methylated cytosine in control, knockout (KO) and over-expressing (OEX)H9 cells. Data are normalized
to 18S rRNA and shown relative to control cells. Outlier (highest and lowest values) are removed. **Padj < 0.01; *Padj < 0.05. Two-way ANOVA (all data
points).
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knockout cells (Figure 3B). Thus, many of the NSUN6-
dependent miCLIP sites were confirmed to be methylated
in a wide range of biological conditions (Figure 3C). For in-
stance, them5C site found in translocase of inner mitochon-
drial membrane 50 (TIMM50) was the most commonly
detected NSUN6-specific site and present in 13 out of 14
datasets, including our study (Figure 3C; Supplementary
Table S4). As expected, the methylation levels of NSUN6-
targeted mRNA varied between conditions, but was often
supported by multiple additional datasets (Figure 3D–H;
Supplementary Figure S3A). Thus, NSUN6 miCLIP reli-
ably detected m5C in the transcriptome.
Next, we asked whether the consensus motif was im-

portant for NSUN6-specific methylation. NSUN6 miCLIP
sites containing the motif CTC[CT]A lackedm5C in knock-
out cells, but showed enhanced methylation levels in wild-
type and over-expressing cells (Figure 3I, J; Supplemen-
tary Table S6). miCLIP sites without the consensus mo-
tif displayed constant methylation levels, independent of
NSUN6-expression (Figure 3K).
To further confirm that only CTC[CT]A-containing

methylation sites depended onNSUN6, we analysedmethy-
lation levels in our BS-seq data across all previously identi-
fied m5C sites (Supplementary Table S7) (11,13). The level
of methylation across published m5C sites also strongly
correlated with expression of NSUN6, but only when the
NSUN6-target motif was present (Figure 3L–O). We ob-
tained the same results when using all identified m5C sites
or only those detected in frontal cortex and testis (Figure
3L–O).

In conclusion, NSUN6-specific methylation of mRNA is
widely present in published datasets and strictly depended
on the consensus sequence motif.

NSUN6-targeting enhances mRNA abundance and transla-
tion

To test how NSUN6 affected the targeted mRNAs, we
cloned the 3′ UTR of Angel1 into a luciferase reporter con-
struct. First, we expressed the reporter in NSUN6 knock-
out (KO) and rescued (RES) HEK clones (Figure 3P). Sec-
ond, we co-transfected the reporter with constructs express-
ing either the wild-type (wt) or methylation-deficient mu-
tant (mut) NSUN6 protein (Figure 3Q). The reporter ac-
tivity was significantly higher when NSUN6 was present
(Figure 3R). Next, we asked whether the methylation ac-
tivity was required to enhance the reporter activity. Re-
expression of the wild-type (wt) NSUN6 protein signifi-
cantly up-regulated the reporter activity when compared
to the mutated (mut) NSUN6 protein (Figure 3S). Thus,
NSUN6-dependent methylation enhanced the reporter ac-
tivity.
To further characterize the effect of NSUN6-dependent

methylation on endogenous mRNA levels, we measured the
level of m5C containing mRNAs in the absence and pres-
ence of NSUN6 (Figure 3T; Supplementary Figure S3B).
In both knockout cell lines, mRNA levels were reduced in
the absence of NSUN6, but reversed to normal levels when
NSUN6 expression was restored (Figure 3T; Supplemen-
tary Figure S3B), suggesting that NSUN6-mediated methy-
lation directly or indirectly enhanced mRNA levels.

To test whether NSUN6-targeted mRNAs shared com-
mon functions, we identified enriched gene ontology (GO)
terms in all protein coding RNAs containing a miCLIP
site (n = 906; Supplementary Table S4). NSUN6-targeted
mRNAs mostly encoded for RNA- and protein-binding
proteins, indicating a role in regulating gene expression
(Figure 4A). Most NSUN6 miCLIP targets were down-
regulated in knockout cells in RNA-seq experiments (Fig-
ure 4B, C; Supplementary Figure S4A–C; Supplementary
Table S8). This was highly significant in HEK cells, where
an mRNA with miCLIP sites were 5-fold more likely to
be down-regulated compared with mRNAs without mi-
CLIP sites (Supplementary Figure S4D). Repressed mR-
NAs encoded proteins involved in both RNA processing
and translation, such as the polyadenylate-binding proteins
PABPC1 and PABPN1 and the translation initiation factors
EIF4G1 and EIF1 (Figure 4D, E). Thus, our data identify
a function for NSUN6-targeted mRNAs in regulating post-
transcriptional and translational processes (Supplementary
Figure S4E). Transcriptional profiling of NSUN6-depleted
HEK andH9 cells confirmed that genes encoding for RNA-
binding proteins, and in particular of pre-mRNA and 3′

UTR, were significantly repressed (Supplementary Figure
S4F–H; Supplementary Table S8).
Since NSUN6 mostly methylated 3′ UTRs, we specu-

lated that deposition of m5C regulated mRNA translation.
To test for translation differences, we performed ribosome
profiling in wild-type and knockout H9 cells (Supplemen-
tary Table S9) (41). We confirmed that ribosome occu-
pancy ofNSUN6 targetedmRNAswas lower in the absence
of NSUN6 (Figure 4F, blue dots; Supplementary Figure
S4I; Supplementary Table S9). Since ribosome occupancy
cannot distinguish between altered mRNA abundance or
higher coverage of ribosomes per mRNA, we next calcu-
lated translation efficiencies. The translation efficiency of
most NSUN6-targeted mRNAs was repressed (Figure 4G,
blue dots; Supplementary Figure S4J; Supplementary Ta-
ble S9). However, global protein synthesis was not signif-
icantly affected by depletion of NSUN6 (Supplementary
Figure S4K). Again, inhibition of translation primarily af-
fected RNA- and protein-binding factors involved in regu-
latingmRNAprocessing and translation (Figure 4H). Thus,
our data indicated that NSUN6 regulated gene expression
on the post-transcriptional and translational level.

NSUN6-targeted CTCCA motifs mark translation termina-
tion sites

To determine howNSUN6-dependent methylation affected
mRNA translation, we calculated the ribosome occupancy
around miCLIP sites in mRNAs containing the CTCCA
motif (n = 994) (Figure 5A). The ribosome footprints dis-
played a strong bias towards only one side of the CTCCA
motif. Therefore, we grouped the ribosomes occupancies
into (a) lower, (b) unchanged or (c) higher up-stream of the
NSUN6 miCLIP site (Figure 5A,B). The majority of mR-
NAs had higher ribosome occupancies up-stream of the mi-
CLIP site (Figure 5B,C), which was expected because most
miCLIP sites localized to 3′ UTRs (Figure 5D). The differ-
ence in ribosome occupancy at miCLIP sites was indepen-
dent of mRNA levels (Supplementary Figure S5A).
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Figure 4. NSUN6-targetedRNAs regulateRNAprocessing and translation. (A) GeneOntology (GO) analysis (molecular function) of all NSUN6-targeted
protein codingRNAs inHEK cells usingGOrilla (http://cbl-gorilla.cs.technion.ac.il/). Background: All expressed genes inHEK cells. (B) Log2 fold-change
(FC) expression of all miCLIP targets. Orange dots: miCLIP targets belonging to the GO category ‘RNA-binding’ (GO: 0003723). Blue dots: All other
miCLIP targets. (C) Cumulative fraction of log2 fold-change (FC) expression levels of all miCLIP targets (blue) compared to all other protein coding genes.
P-value was calculated using the Kolmogorov-Smirnov test. (D, E) Examples of top up- (red) and down-regulated (blue) mRNAs targeted by NSUN6 in
HEK (D) andH9 cells (E) whenNSUN6 is depleted. (F, G) Ribosome occupancy (F) and translation efficiency (G) (illustration, left panels) of all ribosome
covered mRNAs (grey) and miCLIP targets (blue) in wild-type (WT) versus NSUN6 knockout (KO) H9 cells. (H) Gene Ontology analysis of mRNAs with
significantly (padj<0.05) changed translation efficiency.

Moreover, the sharp drop in ribosome occupancy shortly
after the miCLIP site in group (c), suggested translation
termination. To further explore the idea that NSUN6-
targeted CTCCA motifs marked translation termination,
we measured the level of annotated protein coding se-
quences around the miCLIP site in groups (a), (b) and (c)
(Figure 5E). We were surprised to see protein coding se-
quences directly abuttingmiCLIP sites in group (c), because
most of those miCLIP sites overlapped with non-coding
3′UTRs (Figure 5D; Supplementary Figure S5B). To con-
firm this result, we repeated the analyses only considering

3′ UTR miCLIP sites (Figure 5F), revealing a significant
enrichment of coding sequences up-stream of the miCLIP
site, followed by a sharp drop thereafter (Figure 5G). As a
control we used randomly selected 3′ UTR CTCCA sites
(Figure 5G).
The absence of ribosome footprints directly after the mi-

CLIP sites suggested stalling or removal of ribosomes. Be-
cause the miCLIP consensus sequence does not cover stop
codons (Figure 1I), we asked where stop codons were po-
sitioned relative to the miCLIP sites (Figure 5H). We find
annotated stop codons significantly enriched in close prox-

http://cbl-gorilla.cs.technion.ac.il/
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Figure 5. NSUN6 miCLIP sites with CTCCA consensus motif mark translation termination. (A) Illustration of the Ribo-seq data analysis. (B) Number
of miCLIP sites with ribosome occupancy shown in (A). (C) Heatmaps of Ribo-seq reads around the miCLIP sites in NSUN6 knockout (KO) and control
cells (shown are two representative replicates each). Arrowheads indicate position 0 of miCLIP sites. (D) Percentages of miCLIP sites located in the CDS,
5′ and 3′ UTRs in the indicated groups (a–c) (E) Fraction of annotated protein coding sequences with (a) lower (upper panel), (b) unchanged (middle
panel), or (c) higher (lower panel) number of reads before the miCLIP sites. (F, G) Illustration (E) and quantification (G) of annotated CDS around 509
miCLIP or randomly selected motif sites in 3′ UTRs. The random selection was repeated 1000 times and the mean and confidence interval are shown. (H,
I) Illustration (H) and quantification (I) of annotated stop codons around 509 miCLIP or randomly selected sites in 3′ UTRs. Random selection repeated
as for (G). (J) Codon enrichment in NSUN6 knockout cells versus control cells at the indicated positions of the ribosomes’ active sites. Stop codons are
marked red. Codons requiring NSUN6-methylated tRNAs are marked in blue and green. (K) Illustration of codon usage analyses covering the miCLIP
consensus sequence (CTCCA). (L–N) Normalized read coverage with CTCCA at the indicated position of the ribosome footprint (N) with calculated
significance levels (M) and illustration of codon positions at tRNAs at the P- and E-sites (N).
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imity to, but mostly up-stream of, miCLIP sites (Figure 5I).
Together, our data revealed that NSUN6-targeted CTCCA
sites marked translation termination.
To explore whether NSUN6 was involved in regulating

translation termination, we evaluated whether depletion of
NSUN6 resulted in stop codon biases during mRNA trans-
lation. When we calculated the codon frequencies at the ri-
bosome active sites (E, P, A) we found stop codons were
enriched at the ribosomal P-site in the absence of NSUN6
(Figure 5J). As the presence of a stop codon at the ribo-
some A-site is generally the signal to terminate protein syn-
thesis, our data indicated altered translation termination in
NSUN6-depleted cells. In contrast, we found no differences
in codon usage for the NSUN6-methylated tRNAs Thr and
Cys in NSUN6-depleted cells (Figure 5J).
Together, our data indicated that NSUN6-targeted

CTCCA sites marked translation termination, even when
these sites occurred in the 3′ UTRs (Supplementary Figure
S5B). Detecting translation events in the 3′ UTR suggests
that the ribosome has read through stop codons in these
specific transcripts. While ribosome-profiling experiments
commonly uncover stop-codon read-through (42–44), it is
a very rare event (0.02% to 1.4%), and largely caused by
incidental cellular errors during translation (42,43,45,46).
Moreover, the rate of transcriptional read-through often de-
pends on specific stop codons and their flanking sequences
(47).While NSUN6-targetedmRNAswere not consistently
enriched for specific stop codons (Supplementary Figure
S5C), we measured slightly fewer alternative stops between
the annotated stop and the miCLIP site when compared
to nearby control sequences of the same lengths (Supple-
mentary Figure S5D). Thus, our data suggested a potential
role of NSUN6 in promoting translation fidelity by ensur-
ing translation termination at targeted mRNAs.
To test whether NSUN6 methylation contributed to

translation fidelity, we measured ribosome occupancies at
CTCCA motifs (Figure 5K). In the presence of NSUN6,
we found that m5CTCCA motifs appeared significant less
often at positions 11 and 14 of the E- and P-binding sites
for tRNA in the ribosome (Figure 5K–M). In these cases,
the corresponding ‘CCA’ bases of the motif occupy the ri-
bosome A- or P-site respectively (Figure 5L). Since ‘CCA’
encodes for proline, we confirmed that proline codons were
significantly enriched at the ribosome A-site (Supplemen-
tary Figure S5E; Supplementary Table S10).
In conclusion, mRNAs with the codon sequence (N-

m5C-T) followed by (C–C–A) spent less time at the ribo-
somes’ P- and E-site in the presence of NSUN6, possibly
due to a faster removal of the ribosome (Figure 5N).

NSUN6 is dispensable for development but might be a prog-
nostic marker in cancer

Knockout of NSUN6 in H9 and HEK cells did not cause
any apparent cellular phenotype. Since RNA modification
enzymes often act directly in response to external stim-
uli (2), we asked whether differentiation of human embry-
onic stem cells was affected when NSUN6 was depleted.
We differentiated the H9 cells into embryoid bodies and
confirmed reduced levels of NSUN6-targeted mRNAs in
embryoid bodies lacking NSUN6 (Supplementary Figure

S6A). While pluripotency factors were not differentially ex-
pressed, some mesoderm markers and Hoxa1 were consis-
tently reduced in the absence of NSUN6 (Supplementary
Figure S6B). Finally, we asked whether loss of NSUN6 af-
fected embryonic development. To generate total knock-
out mice, we used two embryonic stem cell clones carry-
ing the LacZ-reporter in exon 2 of the Nsun6 gene leading
to transcriptional disruption of a functional NSUN6 pro-
tein (Supplementary Figure S6C). Although LacZ expres-
sion revealed that Nsun6 was quite ubiquitously expressed,
we observed no gross phenotype in the absence of NSUN6
(Supplementary Figure S6D). We concluded that mouse
embryonic development was largely unaffected by total loss
of NSUN6.
To identify other potential cellular functions of NSUN6,

we compared Nsun6 expression levels in human tissues col-
lated in the Genotype-Tissue Expression (GTEx) database
(Figure 6A).Nsun6was ubiquitously expressed with highest
levels found in testis and lowest expression in blood (Figure
6A). When we analysed tumours derived from tissues with
high or lowNsun6-expression, we foundNsun6mRNA lev-
els to be down-regulated in tumours, but only when derived
from high Nsun6-expressing tissues (Figure 6B; upper pan-
els).Nsun6was significantly down-regulated in tumours de-
rived from testis, thyroid and ovaries. In contrast, we found
no difference in RNA levels when the tumours derived from
low-expressing tissues, such as blood, kidney or pancreas
(Figure 6B; lower panels).
In line with our finding that Nsun6 was higher ex-

pressed in normal liver than liver tumours, over-expression
of NSUN6 has recently been shown to inhibit cell pro-
liferation of liver cancer cells (48). Cell proliferation and
migration are often reciprocally controlled (49), and we
find that NSUN6-expression enhanced migration in can-
cer cells (Figure 6C, D; Supplementary Figure S6E). How-
ever, Nsun6-expression was also significantly lower in later
pathological stages of tumours derived from high express-
ing tissues (Figure 6B, upper panel; Figure 6E), and cor-
related with better patient survival (Figure 6F). Thus,
NSUN6 might be a novel biomarker for positive patient
outcome in cancers derived from testis, ovary, thyroid, liver
and brain.
In summary, here we identify NSUN6 as a methyltrans-

ferase strictly targeting mRNAs at a consensus sequence
motif near non-canonical translation termination sites.
Loss of NSUN6-mediated methylation decreased mRNA
levels and reduced translation. NSUN6 was not required
for embryonic development. However, NSUN6 was down-
regulated in at least some cancers and might be a novel
biomarker predicting patient outcome.

DISCUSSION

RNA modifications add flexibility, diversity and complex-
ity to cell type and state-specific gene expression programs.
Mapping theseRNAmodifications on single nucleotide res-
olution is a critical step towards understanding the under-
lying regulatory pathways. Despite recent advances in tech-
nologies to detect RNA modifications in mRNAs (3,50–
52), the prevalence and precise location of in particular
low abundance modifications remain often unclear (9). Al-
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Figure 6. NSUN6 as a putative predictive biomarker in cancer. (A) Nsun6 RNA expression levels in adult human tissues (https://www.gtexportal.org/
home/). (B) Nsun6 RNA expression levels in tumours derived from high (upper panel) and low (lower panel) Nsun6 expressing tissues shown in (A)
(http://gepia.cancer-pku.cn/). (C, D) Knock-down of NSUN6 (C) and migration assay (D) of cancer cells (MBA-MD-231). * P-value < 0.05. Unpaired
t-test. (E, F) Stage plot (E) and survival plot (F) of Nsun6-low expressing cancers shown in (B; upper panel).

though the need for more robust detection methods was
recognised very early in the field (53), RNA BS-seq remains
the method of choice for mapping m5C transcriptome-wide
because it is currently the only available method detecting
m5C sites on endogenous mRNAs in a quantitative manner
(39).
Optimizing RNA BS-seq protocols and computational

analyses is one strategy to improve the detection of m5C
(8,11). The most recent study identified about 100 m5C sites
per mega base in a given mammalian tissue or cell type (11).
Huang et al. (11) further demonstrated thatmany but not all
detected sites were NSUN2-dependent, and that NSUN2-
independent sites were marked by a 3′TCCAmotif. The au-
thors suggested that this sequence motif was targeted by an
uncharacterised cytosine-5 RNAmethyltransferase (11). In
our study, we discover the same consensus motif (CTCCA)
inmRNAs and further demonstrate that it is in fact targeted
by the characterised cytosine-5 methyltransferase NSUN6.
Together, our data implicate a role for NSUN6-

methylation in regulating translation termination. The pres-
ence of the methyl group at CTCCA motifs in protein
coding RNA correlated with greater RNA abundance
and translation, while the motif itself was enriched in 3′

UTRs near sites of translation termination down-stream
of annotated stop codons. Ribosome profiling further re-
vealed an enrichment of stop codons at the ribosome P-
site in NSUN6-depleted cells. Given that ribosome foot-
prints occurred mostly up-stream, but rarely down-stream,
of miCLIP sites including in 3′ UTRs, NSUN6-dependent

methylation might be part of quality control mechanisms
ensuring termination of translation, possibly after stop
codon read-through. The low levels of stop codon read-
through may explain why the percentage of methylation is
low in most NSUN6-targeted mRNAs. Our data further in-
dicate a potential function of NSUN6 in translation termi-
nation fidelity of primarily RNA and protein-binding pro-
teins in adult tissues of testis, ovaries and liver for example.
Our finding that targetedmRNAs are more abundant in the
presence of m5C is in line with the recent finding that m5C
protects maternal mRNA from decay in the maternal-to-
zygotic transition (54).
We find that most of m5C sites in the protein coding

RNAs are catalysed by NSUN6. Our observation that the
majority of such sites occur at low stoichiometry is one ex-
planation why the prevalence of m5C in mRNAs has pre-
viously been controversial. Furthermore, the low methyla-
tion levels of mRNAs hampers studying the functional rel-
evance of m5C, and may also explain the apparent lack of
any gross phenotype in NSUN6-depleted mice. However,
NSUN6 may confer cellular fitness advantages in specific
environmental context, as we find NSUN6 to be higher ex-
pressed in healthy tissues than in tumours.
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Prolog 

Queuosin (Q) ist ein hypermodifiziertes Nukleosid, welches in humaner tRNAHis, 

tRNAAsn, tRNATyr und tRNAAsp vorgefunden werden kann. Während in tRNATyr an die-

ses noch ein zusätzlicher Galaktosylzucker (Gal) gekoppelt ist, wird in tRNAAsp diese 

Rolle durch Mannose (Man) eingenommen. Nach erfolgreicher Vollsynthese von Ga-

laktosyl-Queuosine (GalQ), welche in Thumbs et al. erstmals beschrieben wird, konnte 

das Vorhandensein ebendieses Nukleosids in der RNA von Mäuseleber bestätigt wer-

den. Des Weiteren wurde die Häufigkeit des Auftretens der Q-Modifikationen in ver-

schiedenen Mäuseorganen näher untersucht. Dabei konnte festgestellt werden, dass 

mit ansteigendem Alter der Mäuse die Abundanz der Q-Modifikationen ansteigt. Dieser 

Effekt ist bei Q ohne angehängte Zucker-Gruppe besonders ausgeprägt und abhängig 

vom jeweilig untersuchten Organ. Zusätzlich wurde untersucht, wie sich die Zufütte-

rung von Queuin (QBase – Nukleobase von Queuosine) in Zellkultur auf die Q-Modifi-

kationen auswirkt. Während geringe Level der Modifikationen auch ohne spezielle Zu-

fütterung von Queuin in den jeweiligen tRNA-Isoakzeptoren vorhanden sind, steigen 

diese mit der Zufütterung um ein zwei- bis dreifaches an. Im weiteren Verlauf dieses 

Projekts wurde untersucht, wie sich eine solche Zufütterung auf die allgemeine  

Abundanz der tRNA-Isoakzeptoren und der Prozessierung des Modifikationsprofils 

auswirkt. 

„Synthesis of Galactosyl-Queuosine and Distribution of Hypermodified Q-

Nucleosides in Mouse Tissues“, P. Thumbs, T. T. Ensfelder, M. Hillmeier, M. 

Wagner, M. Heiss, et al.; Angewandte Chemie (International ed. in English), 

2020, 59 (30): 12352. 

Autorenbeitrag: Alle Experimente in Zellkultur, die entsprechende RNA-Isolation und Aufrei-

nigung sowie die Quantifizierung über LC-MS/MS wurden von mir durchgeführt. Die Synthese 

von Galaktosyl-Queuosine wurde größtenteils von Peter Thumbs und Markus Hillmeier durch-

geführt, während Timm Ensfelder und Mirko Wagner primär für die Präparation und Auswer-

tung der Maus-RNA zuständig waren. 
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Abstract: Queuosine (Q) is a hypermodified RNA nucleoside

that is found in tRNAHis, tRNAAsn, tRNATyr, and tRNAAsp. It is

located at the wobble position of the tRNA anticodon loop,

where it can interact with U as well as C bases located at the

respective position of the corresponding mRNA codons. In

tRNATyr and tRNAAsp of higher eukaryotes, including humans,

the Q base is for yet unknown reasons further modified by the

addition of a galactose and a mannose sugar, respectively. The

reason for this additional modification, and how the sugar

modification is orchestrated with Q formation and insertion, is

unknown. Here, we report a total synthesis of the hyper-

modified nucleoside galactosyl-queuosine (galQ). The avail-

ability of the compound enabled us to study the absolute levels

of the Q-family nucleosides in six different organs of newborn

and adult mice, and also in human cytosolic tRNA. Our

synthesis now paves the way to a more detailed analysis of the

biological function of the Q-nucleoside family.

In all three domains of life, RNA contains next to the

canonical bases (A, C, G, and U) a large variety of modified

nucleosides.[1] Most of these are chemically simple derivatives

of the canonical nucleosides. They often carry methylations at

various positions of the heterocycle or the sugar, but others

are heavily modified, involving multistep biosynthesis path-

ways. Queuosine 1 (Q) is one of the most complex of these so-

called hypermodified nucleosides. (Figure 1). It is found in

a large number of different species and also present in the

cytosolic and mitochondrial tRNATyr, tRNAAsp, tRNAHis, and

tRNAAsn of humans.[2–8] Interestingly, in the human cytosolic

tRNATyr and tRNAAsp, Q is further modified with galactose

(galQ) and mannose (manQ), respectively.[9, 10] In these

tRNAs, the sugar is proposed to be attached to the

homoallylic hydroxyl group of the cyclopentene ring system

that is linked to the 7-deazaheterocycle.[11] While the chemical

synthesis of Q has been achieved,[12–14] no reports exist about

the preparation of its sugar-modified derivatives galQ 2 and

manQ 3, which has hampered investigations of their biolog-

ical role. Accordingly, the exact function of galQ andmanQ as

part of the human cytosolic tRNATyr and tRNAAsp is

unknown. In addition, we do not know to which extent the

corresponding tRNAs are modified with different Q-family

nucleosides, and how the G/Q-exchange process and the sugar

derivatization is orchestrated. Furthermore, quantitative data

about Q-modification levels in different organs is also lacking.

To address these questions, we performed the first total

synthesis of galactosyl-queuosine 2. This allowed us to

confirm its proposed structure and to report the absolute

levels of all Q-family members in different tissues of newborn

and adult mice. Finally, we were able to measure to which

extent human cytosolic tRNAs are modified with the three Q-

family nucleosides.

Figure 1. Depiction of the hypermodified RNA nucleoside queuosine

(1, Q) and of the galactosylated and mannosylated Q derivatives galQ

(2) and manQ (3) present in human cytosolic tRNATyr and tRNAAsp,

respectively.
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Galactosyl-Q 2 was constructed from three appropriately

protected parts (Figure 2): The 7-formyl-7-deazaguanosine 6

was prepared, as reported by us, with Bz-protected hydroxyl

groups at the ribose, and a pivaloylate protection group at the

2-amino residue.[14] The galactose sugar was introduced as

a TBS- and 2-chloroisobutyryl-protected trichloroacetimidate

4, and the cyclopentene unit 5 was used with Fmoc-protected

allyl amine and a TBS-protected allylic alcohol. We choose

the 2-chlorobutyryl protecting group for the sugar-donor 4

because of its bulkiness in order to avoid unwanted orthoester

formation as the main product of the glycosylation reaction,

a strategy reported by Szpilman et al.[15]

The galactosyl-donor 4 itself was prepared from d-galactal

7, which was first TBS-protected (Scheme 1A).[16] cis-Dihy-

droxylation of the double bond from the sterically less

shielded side furnished compound 8.[17] This step was followed

by protection of the two newly introduced hydroxyl groups

with 2-chloroisobutyric acid to give the galactose-donor

precursor 9. Deprotection of the anomeric hydroxyl group

with hydrazine provided the galactose precursor with a free

anomeric hydroxyl group which was subsequently converted

into the trichloroacetimidate donor 4 using a standard

procedure.

Scheme 1B shows the synthesis of the protected 5(S)-

amino-3(S),4(R)-dihydroxycyclopent-1-ene 5. The starting

point was mannose 10,[18] which was converted as reported

into the double-acetonide-protected mannofuranoside 11

with an acetyl-protected anomeric center in two steps.

Selective cleavage of the acetonide protecting group at the

primary hydroxyl group, followed by an orthoester-based

elimination, allowed introduction of a terminal double bond

(12). Anomeric deprotection, followed by a Wittig reaction,

provided the precursor 13 for the ring-closing metathesis

reaction. The free hydroxyl group in 14 was then the starting

point for an Overman rearrangement, providing the amine

protected as the trichloroacetamide-protected amine 15.[19]

Cleavage of this protecting group with NaOHwas followed by

Fmoc protection of the free amine using a standard proce-

dure. We finally opened the acetal and protected the allylic

hydroxyl group selectively with TBS-OTf in DMF at �55 8C.

In this reaction, the temperature is particularly important.

When the reaction was performed at higher temperatures and

with prolonged reaction times, we noted selective protection

of the homoallylic position.

The assembly of the galQ nucleoside 2 from the pre-

cursors 4–6 is shown in Scheme 2. We first galactosylated the

cyclopentene derivative 5. This sterically demanding step was

successfully achieved by activation of the trichloroacetimi-

date with 2-chloro-6-methylpyridinium triflate in dichloro-

methane at room temperature.[15,20] We achieved selective

formation of the b-configured galactoside due to the neigh-

boring-group effect. Subsequent cleavage of the Fmoc

protection group gave product 16, which was followed by

a two-step reductive amination. First, the imine was formed in

benzene, subsequently followed by reduction of the imine

with NaBH4 in methanol to afford protected galQ 17. In

a two-step deprotection protocol, we first removed the TBS

groups with HF·NEt3, followed by cleavage of ester-type

Figure 2. Retrosynthetic analysis for galQ 2, showing the three key

precursors 4, 5, and 6.

Scheme 1. Synthesis of the key precursors 4 and 5. A) Synthesis of the

galactose precursor 4 : a) TBSCl, imidazole, DMF, 55 8C, 2 d;

b) K2OsO4·2H2O, NMO, THF, t-BuOH, H2O, rt, 4 h; c) 2-chloroisobu-

tyric acid, DIC, DMAP, 0 8C, 30 min!rt, 2 h; d) N2H4·AcOH, DMF,

�40 8C to rt, 3 h; e) Cl3CCN, Cs2CO3, DCM, rt, 4 h. B) Synthesis of the

cyclopentene precursor 5 : a) 2,2-dimethoxypropane, acetone, p-TsOH,

rt, 1 h; b) Ac2O, pyridine, 0 8C!rt, 18 h; c) aq. AcOH (66%), 55 8C,

4 h; d) triethylorthoformate, 100 8C, 30 min; e) Ac2O, 130 8C, 5 h; f) t-

BuOK, MeOH, 20 min; g) NaH, DMSO, Ph3PMeBr, THF, rt!68 8C,

2 h; h) Grubbs(I) catalyst, DCM, rt, 26 h; i) Cl3CCN, DBU, DCM, rt,

20 min; k) o-xylene, 150 8C, 5 h; l) NaOH, MeOH, rt, overnight;

m) Fmoc-OSu, NaHCO3, H2O, 1,4-dioxane; n) AcOH, H2O, EtOAc,

50 8C, 24 h; o) TBSOTf, DMF, �55 8C, 15 min.
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protecting groups under Zempl�n conditions. For the cleav-

age of the pivaloyl amide protecting group, we needed to use

0.5m NaOMe in methanol. This strategy provided the target

compound 2 with an overall yield of 0.5% in 20 linear steps

from the mannose starting molecule for the cyclopentene

unit. The synthesis provided a sufficient amount of material

for all further investigations.

We next investigated whether our synthetic b-homoallylic

galQ 2 is identical with the natural product, because analytical

data available for galQ was very limited.[11] For this experi-

ment, we isolated total RNA frommouse liver and performed

an enzymatic digestion of the isolated RNA to the nucleoside

level. This nucleoside mixture was analyzed by HPLC-MS.

Indeed, under our HPLC conditions, we detected two signals

with the appropriate m/z value for galQ and manQ in the

extracted ion chromatogram with a retention time of around

32 and 35 min. No other peaks were present in the same m/z

range. We next co-injected our synthetic b-homoallylic galQ

2, which led to a marked increase of the second signal with

a retention time of about 35 min (Figure 3). This result

unambigously showed that our synthetic compound galQ 2

and the co-eluting natural compound with the same mass are

identical. Therefore, this natural compound is indeed a b-

galactosylated Q derivative. Taken together, our experiment

confirms the proposed chemical structure of galQ, in which

the bond between the homoallylic hydroxyl group of queuo-

sine and galactose is in b-configuration.

Having identified the HPLC retention time of galQ and

therefore also of manQ, we finally were able to determine the

absolute levels of galQ, manQ, and Q in different tissues of

newborn (postnatal day 1; pd1) and adult mice (postnatal

month 3; pm3). For an initial broad study, we measured the

respective nucleoside levels in cortex, cerebellum, liver,

kidney, heart, and spleen, using the same RNA isolation

and digestion protocol as for the co-injection experiment

(Figure 4A).

From our data it is clearly evident that the levels of all

three modifications (galQ, manQ, and Q) generally increase

with age. This effect is by far most pronounced with Q, while

galQ and manQ only show a modest increase, if at all.

Furthermore, and for all three modifications investigated, we

see differences between the six organs at the same age. Heart,

followed by brain tissues, contains the largest levels of Q and

its sugar-modified derivatives, followed by kidney, liver, and

spleen. In general, the changes of the modification levels

observed by us positively correlate with the respective organ-

specific protein-synthesis demands, as we have shown

before.[7] Nevertheless, there are some prominent outliers.

These outliers (e.g. heart tissue) seem to rather correlate with

the organ-specific density of mitochondria. It was shown

before that the Q-base in mitochondrial tRNATyr and

tRNAAsp is not sugar-modified.[8] We therefore speculate

that the organ-specific differences in the levels of galQ,

manQ, and Q are due to a combination of two independent

effects: The organ-specific protein-synthesis ratio and the

organ-specific mitochondrial density.

It is well-established that for biosynthesis of Q (and its

sugar-modified derivatives), eukaryotes have to take up the

queuine base from their diet,[21,22] mammals thereby profiting

from their gut microbiome.[23] We therefore speculate that the

low levels of Q-family nucleosides in newborn mice observed

here may be caused by a lack of queuine supply in newborn

mice, which only later establish their microbiome. Further-

more, high rates of cell divison and tissue development in

young mice may cause additional queuine supply problems.

To further study the influence of queuine availability on

Q-family modification levels, cell culture experiments were

performed: Human embryonic kidney cells (HEK 293T) were

grown either in culture medium supplemented with 20 nm

queuine (enriched medium) or in medium without additional

Scheme 2. Depiction of the galQ 2 assembly from the three key

precursors 4, 5, and 6. a) 2-Chloro-6-methylpyridinium triflate, DCM,

rt, 2 h; b) DBU, MeCN, rt, 1.25 h; c) benzene, rt, 5 h; d) NaBH4,

MeOH, 0 8C, 1 h; e) HF·NEt3, DCM, rt, 4 d; f) NaOMe, MeOH, rt, 2 d.

Figure 3. Results of a co-injection study confirming the identity of our

synthetic b-homoallylic-galQ 2 and the natural product. Depicted are

the extracted-ion chromatograms (m/z=572.2148–572.2248) of two

HPLC-MS analyses, either with (right) or without (left) prior spiking of

the synthetic galQ 2. The exact mass [M+H]+ of galQ (and manQ) is

572.2198 u, showing a perfect match to the two MS peaks observed by

us with less than 4 ppm deviation.
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queuine (standard medium). Queuine is the substrate of the

TGTenzyme, which performs the exchange of a guanine base

by the queuine heterocycle during tRNA maturation.[24–26]

From both cell populations, cytosolic tRNATyr, tRNAAsp,

tRNAHis, and tRNAAsn were isolated and digested to the

nucleoside level. For each of these four individual tRNA

species, the number of galQ, manQ, and Q modifications per

tRNA was then determined by a mass-spectrometry-based

isotope-dilution method using the reference compound

synthesized here (see the Supporting Information).

Indeed, our data show that the extent of Q-modification in

the wobble position of cytosolic tRNATyr, tRNAAsp, tRNAHis,

and tRNAAsn is strongly dependent on queuine availability

(Figure 4B).[24] In the case of tRNATyr (galQ), tRNAHis, and

tRNAAsn (Q), the difference in modification extent between

cells grown in enriched versus standard medium is threefold,

while for tRNAAsp (manQ) it is 1.7 fold. These results are well

in line with our hypothesis and might therefore explain the

lower modification levels in newborn mice. Of note, in all of

our experiments even a sufficient queuine supply did not lead

to fully modified tRNAs. This might again be an indication of

the modification machinery lagging behind the de novo

synthesis of tRNA in highly proliferating cells.

Furthermore, we detected a Q-only-modified tRNATyr

form in our experiments lacking the galactose sugar, while

tRNAAsp was always found to be either modified with manQ

or completely unmodified. It seems that, in our experimental

setup, mannosylation of tRNAAsp may be more tightly

connected to G/Q-exchange than the galactosylation of Q-

only-bearing tRNATyr. Testing this exciting hypothesis is an

interesting starting point for future studies.

In summary, we here report the first total synthesis of the

human natural product galactosyl-queuosine 2. Our synthetic

material allowed us to confirm the proposed galQ structure by

direct comparison with natural material, and we show that

this hypermodfied nucleoside is present in all tissues of

newborn and adult mice. We furthermore report the absolute

levels of all three Q-family members in six different mouse

organs and in human cytosolic tRNAs. Taken together, our

results confirm the crucial importance of tRNA galQ and

manQ modification.
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 Auswirkungen von Queuin-Supplementierung in Zellkultur 

In Thumbs et al. (Angewandte Chemie, 2020) wurden HEK-293-Zellen mit Queuin, der Nuk-

leobase des Nukleosids Queuosin (Q) gefüttert, um festzustellen wie sich die Zufütterung auf 

die Abundanz der Q-Modifikationen Queuosin, Mannosyl-Queuosin (ManQ) und Galaktosyl-

Queuosin (GalQ) auswirkt. Es konnte gezeigt werden, dass in Standard-Zellkulturmedium 

(DMEM D6546 – siehe Kapitel 5.1 Materialien) mit 10% fetalem Rinderserum (FBS) eine 

Zufütterung von Queuin zu einem Anstieg der respektiven Q-Modifikationen führt. Absolute 

Mengen an Q-Modifikationen bei Zufütterung von Queuin wurden auf ~ 0,8 Q pro tRNAHis
GUG 

bzw. ~ 0,75 Q pro tRNAAsn
GUU bestimmt. Die Menge an GalQ beträgt ~ 0,75 Modifikationen 

pro tRNATyr
GUA, die Menge von ManQ ~ 0,6 pro tRNAAsp

GUC. Aufgrund fehlenden Standards 

wurde die Menge von ManQ über den synthetisierten GalQ-Standard berechnet und kann durch 

abweichende Ionisierungs- und Detektionseffizienz bei der Nukleosid-MS somit verfälscht 

sein. Aufgrund beobachteter Degradations-Prozesse von GalQ in der verdünnten wässrigen Ka-

librier-Stocklösung wurde im folgenden Abschnitt auf die absolute Quantifizierung der Q-Mo-

difikationen größtenteils verzichtet. Stattdessen sollen die relativen Unterschiede zwischen Pro-

ben näher betrachtet werden. 

In einem initialen Experiment wurde die Konzentration an Queuin ermittelt, welche dem Zell-

kulturmedium zur vollständigen Modifizierung der respektiven Positionen zugegeben werden 

muss. Das Experiment wurde in Standard-Medium mit 10 % dialysiertem FBS durchgeführt. 

Durch die Dialyse wird Queuin, wie auch andere kleine Metaboliten, aus FBS entfernt und 

somit sichergestellt, dass das Ergebnis nicht durch das, im FBS normalerweise enthaltene 

Queuin verfälscht wird. Als Start-Kultur dienten Zellen, welche zuvor für mindestens 7 Tage 

ohne zusätzliche Queuin-Supplementierung in Medium mit dialysiertem FBS kultiviert wur-

den. Nach Kultivierung der Zellen für 2 Tage im entsprechenden Medium mit Queuin-Kon-

zentrationen zwischen 0–100 nM wurde die RNA isoliert und einzelne tRNA-Isoakzeptoren 

aufgereinigt. Bei 20 nM scheint die maximale Menge an Q-Modifikationen erreicht zu sein 

(Abbildung 3.10 A). Lediglich für ManQ ist ein minimaler Anstieg bei 50 nM zu verzeichnen. 

Dieser entfällt bei der Verwendung von 100 nM jedoch wieder und kann demnach ebenso ein 

Artefakt der einmaligen Durchführung des Experiments sein. In einem späteren Experiment 

wird zudem gezeigt, dass eine Kultivierungsdauer von 2 Tagen im entsprechenden Medium für 

die volle Modifizierung der jeweiligen Positionen ausreichend ist (Abbildung 3.15), und diese 

daher keinen Einfluss auf die hier ermittelten Ergebnisse zeigen sollte. 
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Interessanterweise ist in tRNAAsp (ManQ) und tRNATyr (GalQ) ebenso ein Anstieg von Q ab-

hängig von der gewählten Konzentration zu erkennen (Abbildung 3.10 B). Dies lässt darauf 

schließen, dass geringe Mengen dieser tRNA-Isoakzeptoren durch eine Q-Modifikation ohne 

zusätzliche Zucker-Gruppe modifiziert sind. Dies war zu erwarten, da die jeweilige Zucker-

Gruppe erst nach Einbau von Q an Position 34 der tRNA durch Hexose-Transferasen – in die-

sem Fall tRNA-Queuin-Glycosyltransferasen – auf die Q-Modifikationen übertragen wer-

den.160, 287 Ein Vergleich der absoluten Mengen zwischen beiden tRNA-Isoakzeptoren deutet 

darauf hin, dass dieser Effekt für tRNATyr weitaus ausgeprägter ist. So wird in tRNATyr ~ 10× 

mehr Q pro tRNA-Molekül detektiert als in tRNAAsp. Entweder ist die weitere Modifizierung 

der Q34 Modifikation in tRNAAsp höher priorisiert als die, der Q34 Modifikation in tRNATyr 

Abbildung 3.10: Konzentrationsbestimmung der Queuine-Zufütterung. (A) Der Anstieg 
von Queuosin in tRNAAsn und tRNAHis und von ManQ bzw. GalQ in tRNAAsp bzw. tRNATyr 
nach Zugabe von Queuin. 100 % entsprechen dem höchsten Wert, der im jeweiligen tRNA-
Isoakzeptor in diesem Experiment gemessenen wurde. (B) Anstieg von Q in tRNAAsp und 
tRNATyr nach Zugabe von Queuin. In beiden tRNA-Isoakzeptoren ist bekannt, dass Q zusätz-
lich durch Mannose (tRNAAsp) bzw. Galaktose (tRNATyr) modifiziert ist. 
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oder für die initiale Modifizierung der Position 34 in tRNAAsp durch Q wird mehr Zeit benötigt 

als für die äquivalente Modifizierung in tRNATyr. Beide Szenarien würden zu einer niedrigeren 

Menge an Q in tRNAAsp führen. 

Des Weiteren wurde getestet wie sich die Auswahl von FBS – dialysiert oder nicht – auf die 

Abundanz der Q-Modifikationen auswirkt. Zellen wurden in drei verschieden Medien kulti-

viert: i) Standard-Medium mit normalem FBS und 50 nM zusätzlichem Queuin, ii) Standard-

Medium mit normalem FBS ohne zusätzliche Queuin-Supplementierung und iii) Standard-Me-

dium mit dialysiertem FBS ohne zusätzliche Queuin-Supplementierung. Im Vergleich zu 

50 nM supplementiertem Medium fällt auf, dass Zellen aus Standard-Zellkulturmedium ohne 

zusätzliche Queuin-Supplementierung in etwa 30 % der Modifizierung aufzeigen (Abbildung 

3.11). Dies entspricht dem Level, welches ebenfalls bei ei-

ner Zugabe von etwa 10 nM Queuin detektiert werden 

konnte. In etwa diese Konzentration scheint bei der Zugabe 

von nicht dialysiertem FBS im Zellkulturmedium vorhan-

den zu sein. Bei der Verwendung von dialysiertem FBS 

sind nahezu keine Signale der Q-Modifikationen zu detek-

tieren. Queuin ist also nicht, oder in zu geringen Mengen 

in dialysiertem FBS enthalten. Lediglich für ManQ ist noch 

ein minimales Level quantifizierbar. Eventuell werden für 

die Inkorporation von ManQ in tRNAAsp geringe Mengen 

an Queuin recycelt und erneut verwendet. Erst nach Kulti-

vierung über mehrere Passagen würde das Level allmäh-

lich abnehmen (hier: 10 Tage, 4 Passagen). Dies würde, 

wie bereits zuvor vermutet, für eine Priorisierung der 

ManQ-Modifikation gegenüber den anderen Q-Modifika-

tionen sprechen.  

Für die volle Modifizierung der entsprechenden Positionen sollte dem Medium in jedem Fall 

Queuin supplementiert werden. Während in der Publikations-Studie dem Medium Standard-

FBS (nicht dialysiert) und 20 nM Queuin supplementiert wurde, sind alle folgenden Studien – 

falls nicht anders vermerkt – unter Supplementierung von 50 nM Queuin durchgeführt worden. 

Die höhere Konzentration an Queuin soll eine volle Modifizierung der entsprechenden tRNA-

Moleküle sicherstellen. 

Abbildung 3.11: Queuin-Kon-
zentration in nicht dialysiertem 
FBS. Vergleich der Zufütterung 
von Queuin (supp.) mit Medien, 
welche lediglich mit dialysiertem 
(dia.) oder nicht dialysiertem 
(n.d.) FBS supplementiert wur-
den am Beispiel Queuosin in 
tRNAAsn. Die Balken geben den 
Mittelwert und die Standardab-
weichungen von n = 3 biologi-
schen Replikaten wieder. 
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Da die Modifizierung ein elementarer Schritt in der Prozessierung von tRNA-Isoakzeptoren ist, 

sollte untersucht werden, ob sich die Abundanz der tRNA-Isoakzeptoren abhängig von der 

Queuin-Supplementierung ändert. Ein Mangel an Queuin im Wachstumsmedium und eine da-

mit verbundene Reduzierung der Q-Modifikationen könnte Einfluss auf den allgemeinen Rei-

fungsprozess der tRNA-Isoakzeptoren haben. Zellen wurden in Standard-Medium mit 10 % 

dialysiertem FBS je in Abwesenheit und unter Supplementierung von 50 mM Queuin kultiviert. 

Je 1 µg Gesamt-RNA wurde über ein TBE-Harnstoff-Gel (12 % Polyacrylamid) aufgetrennt. 

Nach der Übertragung auf eine Membran wurden die tRNA-Isoakzeptoren durch die eigens 

hierfür synthetisierten Detektionssonden nachgewiesen (~ 30mer revers komplementäre DNA 

Oligonukleotide gekoppelt mit dem Cyanin-Farbstoff Cy3). 5S rRNA diente als Ladekontrolle 

und wurde zur Normalisierung bei der Berechnung der tRNA-Isoakzeptor-Abundanz verwen-

det. Eine Alternative zu 5S rRNA stellt U6 snRNA dar. Beide RNA-Moleküle sollten konstitu-

tiv transkribiert werden und daher als sogenannte Haushalts-RNA (engl.: housekeeping RNA) 

geeignet sein. Die Eignung beider RNA-Moleküle wird im folgenden Abschnitt ebenfalls ana-

lysiert. 

Die Isoakzeptoren tRNAGly
GCC, tRNAPhe

GAA und tRNASer
UGA enthalten keine Q-Modifikation. 

Wie erwartet ändert sich die Abundanz abhängig von der Zufütterung von Queuin nicht maß-

geblich (Abbildung 3.12 A). Ausschließlich bei der Verwendung von U6 snRNA als Haus-

halts-RNA zeigt sich für tRNAPhe
GAA ein Anstieg der Abundanz, wenn Queuin dem Medium 

entzogen wird. Während es möglich erscheint, dass dies eine Reaktion der Zelle auf das Fehlen 

von Queuin im Medium ist, kann ebenso die Abundanz von U6 snRNA aufgrund zellulärer 

Mechanismen beeinflusst sein. Somit wäre U6 snRNA ‒ wider Erwarten – nicht als Haushalts-

RNA geeignet.  

Die Isoakzeptoren tRNATyr
GUA, tRNAAsp

GUC, tRNAHis
GUG und tRNAAsn

GUU, welche allesamt 

eine Q-Modifikation tragen, weisen bei der Normalisierung über 5S rRNA eine Reduzierung in 

Queuin-mangelndem Medium auf. (Abbildung 3.12 B). Für tRNATyr
GUA, tRNAAsp

GUC und 

tRNAAsn
GUU entspricht dies einer Reduzierung von 22–24 %. Aufgrund erheblich geringerer 

Intensität des Signals, musste für tRNAHis
GUG auf die Normalisierung über U6 snRNA zurück-

gegriffen werden. Hier wurden 7,5 µg geladen, was zu einer Übersättigung des 5S rRNA Sig-

nals führen würde. Wie schon zuvor resultiert die Quantifizierung über U6 snRNA in ver-

gleichsweise höheren Werten. Wird davon ausgegangen, dass die Quantifizierung über 

U6 snRNA fehlerhaft ist, lässt sich dieser Fehler anhand der unterschiedlichen tRNAPhe Ergeb-

nisse berechnen und beträgt ~ 17 %. Wird dieser als Korrektur auf tRNAHis angewandt, ergibt 
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sich dort ein Wert von 77 %. Dies liegt exakt im Bereich der anderen Q-abhängigen tRNA-

Isoakzeptoren. Ein systematischer Fehler wird demnach entweder durch die Verwendung von 

5S rRNA oder von U6 snRNA eingeführt. In beiden Fällen ist jedoch die Abundanz der Isoak-

zeptoren tRNAAsn, tRNAAsp, tRNATyr und tRNAHis im Vergleich zu den anderen tRNA-Isoak-

zeptoren verringert. Bei genauer Betrachtung kann mit bloßem Auge trotz gleicher Auftrags-

menge an Gesamt-RNA beim Fehlen von Queuin für die Queuin-abhängigen tRNA-Isoakzep-

toren ein Verlust der Signalintensität erkannt werden. Da die Ergebnisse bei Normalisierung 

über 5S rRNA daher eher den Erwartungen entsprechen, sollte die Verwendung von U6 snRNA 

für zukünftige Experimente kritisch betrachtet werden. 

  

Abbildung 3.12: Northern-Blot-Analyse der tRNA-Isoakzeptor-Abundanz in Abhängig-
keit von Queuin. Auf ein 12% TBE-Harnstoff-Gel wurde jeweils 1 µg Gesamt-RNA (7,5 µg 
für Analyse von tRNAHis) aufgetragen. Verglichen wird RNA aus Zellen welche unter Zugabe 
von 50 nM Queuin (QBase) kultiviert wurden (+) mit RNA aus Zellen, welche ohne Queuin 
kultiviert wurden (-). Für die Herstellung beider Medien wurde dialysiertes FBS verwendet. 
Normalisiert wurde jeweils auf 5S rRNA (bzw. auf U6 snRNA für tRNAHis und testweise für 
tRNAPhe). Die Abundanz der tRNA-Isoakzeptoren im Medium ohne QBase im Vergleich zur 
Abundanz in Medium mit Queuin ist als Prozentzahl unter den jeweiligen tRNA-Isoakzeptoren 
angegeben. (A) Links: Drei tRNA-Isoakzeptoren (tRNAGly, tRNAPhe, tRNASer) in denen keine 
Q-Modifikation eingebaut wird.  Rechts: Zusätzliche Quantifizierung von tRNAPhe über 
U6 snRNA. (B) Die vier tRNA-Isoakzeptoren in denen die Q-Modifikationen Q (tRNAAsn, 
tRNAHis), ManQ (tRNAAsp) und GalQ (tRNATyr) vorzufinden sind. 
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 Effekt von Queuosin auf andere Modifikationen 

Im Anschluss sollte untersucht werden, wie sich die Supplementierung von Queuin, und der 

damit verbundene Einbau der Q-Modifikationen auf andere Modifikationen der jeweiligen 

tRNA-Isoakzeptoren auswirkt. Zellen wurden in Standard-Medium mit normalem oder dialy-

siertem FBS kultiviert. Beide Varianten wurden je mit oder ohne zusätzliche Supplementierung 

von 50 nM Queuin kultiviert. Nach 10 Tagen wurde die RNA isoliert, die tRNA-Isoakzeptoren 

aufgereinigt und über Nukleosid-MS analysiert. Neben den bereits zuvor analysierten tRNA-

Molekülen wurden ebenso die Isoakzeptoren tRNASer
UGA und tRNAGly

GCC aufgereinigt und 

analysiert. Absolute Werte für alle analysierten Modifikationen, inklusive Standardabweichung 

aus drei biologischen Replikaten können Tabelle S3 entnommen werden.  

Aus Gründen der Überschaubarkeit wurde für den folgenden Abschnitt eine Auswahl aus den 

insgesamt 24 analysierten Modifikationen getroffen. Diese bezieht Modifikationen ein, welche 

häufig in den tRNA-Isoakzeptoren vertreten sind und/oder solche, die eine starke Änderung 

abhängig von der Verfügbarkeit von Queuin aufzeigen. Die Ergebnisse sind in Abbildung 

3.13 A in Form einer Heatmap, welche als Tabelle interpretiert werden kann, aufgelistet. Je 

stärker (grün) eine Modifikation in dieser Tabelle eingefärbt ist, desto häufiger deren Auftreten 

im jeweiligen tRNA-Isoakzeptor. So fällt direkt auf, dass m5C und Ψ die beiden am häufigsten 

vertretenen Modifikationen sind. Für acp3U sind die Werte wider Erwarten ebenfalls sehr hoch. 

Eine plausible Erklärung wäre die fehlerhafte Quantifizierung aufgrund falscher Konzentration 

der verwendeten Kalibrierlösung, welche wiederum auf Degradationsprozesse oder falsche 

Einwaage (bedingt durch minimale Salzreste im aufgereinigten Produkt) zurückgeführt werden 

kann. Nichtsdestotrotz können relative Unterschiede zwischen Proben problemlos analysiert 

werden. Ein ähnlicher Effekt ist für m2G zu beobachten. Dieses Problem fiel schon zuvor bei 

anderen Experimenten auf, konnte aufgrund des Mangels an alternativen Herstellern bisher aber 

nicht gelöst werden. Alle weiteren Modifikationen liegen im erwarteten Bereich (modomics).10  

Um die korrekte Quantifizierung der Modifikationsmenge in den einzelnen tRNA-Isoakzepto-

ren zu gewährleisten ist eine erfolgreiche Aufreinigung essenziell. Die Reinheit der tRNA-Iso-

akzeptoren wurde über Sequenzierung bestimmt. Die Reinheit von tRNATyr konnte auf 96 % 

bestimmt werden. tRNAAsn weist mit 86 % ebenfalls einen hohen Grad an Reinheit auf. Verun-

reinigungen sind größtenteils tRNALys
CTT (7 %) und tRNAArg

CCT/CCG (2 %). In aufgereinigter 

tRNAHis konnten tRNAGlu
GTC/TTC (9 %) und tRNAGly

CCC/GCC (12 %) nachgewiesen werden; die 

Menge an tRNAHis wurde mit 76 % bestimmt. tRNAAsp ist durch tRNAGly
CCC/GCC (51 %) und 

tRNAGlu
GTC/TTC (4 %) verunreinigt und konnte somit nur zu 41% angereichert werden. Dies 
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wird auch durch die hohe Vergleichbarkeit der Modifikationsmengen in tRNAAsp und tRNAGly 

verdeutlicht. Insbesondere die Interpretation der Daten dieser beiden tRNA-Isoakzeptoren 

sollte daher kritisch betrachtet werden. Da in tRNASer und tRNAGly keine Q-Modifikation in-

korporiert wird und diese daher nur der Kontrolle dienen, wurde die Reinheit dieser tRNA-

Isoakzeptoren nicht bestimmt. 

Bei den Änderungen, die sich ergeben, wenn dem Medium Queuin entzogen wird, fällt direkt 

auf, dass das Modifikationsprofil in tRNASer und tRNAGly vergleichsweise stabil ist (Abbil-

dung 3.13 B). Da in beiden tRNA-Isoakzeptoren keine Q-Modifikationen berichtet sind war 

dies zu erwarten. Statistisch signifikante Änderungen, wie sie für m1A und m2G zu beobachten 

sind, bewegen sich im sehr geringen Bereich. Eine allgemeine Adaption der Zelle auf das Feh-

len von Queuin könnte der Auslöser hierfür sein. Im Folgenden soll auf die stärker ausgeprägten 

Effekte in den Queuin-abhängigen tRNA-Isoakzeptoren eingegangen werden. Bei diesen fällt 

beispielsweise direkt eine deutliche Änderung der Abundanz von I auf, allerdings ohne das 

Vorhandensein einer statistischen Signifikanz. Die Menge an I in den meisten tRNA-Isoakzep-

toren ist sehr gering. Daher erscheint es plausibel, dass gewisse Mengen an I durch Schäden in 

der Zelle, aber hauptsächlich durch spontane Desaminierung während der RNA-Aufreinigung 

Abbildung 3.13: Änderung von Modifikationen, beim Fehlen von Queuin im Medium. (A) 
Absolute Mengen detektierter Modifikationen in Zellen aus Standard-Medium supplementiert 
mit nicht dialysiertem FBS und 50 nM Queuin. Je dunkelgrüner das Feld, desto höher die 
Menge an Modifikation. Messwerte geben den Mittelwert aus n = 3 biologischen Replikaten 
wieder. In der obersten Zeile (Seq.) ist die mittels Sequenzierung bestimmte Reinheit der tRNA-
Isoakzeptoren angegeben. (B) Faktor der Änderung, wenn dem Medium kein Queuin zugege-
ben wird. Links: Effekt mit dialysiertem FBS, rechts: Effekt mit nicht dialysiertem FBS. Der 
Faktor wurde aus den Mittelwerten von n = 3 biologischen Replikaten ermittelt. Die statistische 
Signifikanz wurde über einen homoskedastischen, zweiseitigen t-Test ermittelt. * = p <0,05; 
** = p <0,01; *** = p <0,001; ***** = p <0,00001 
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und dem enzymatischen Verdau entstehen. Diese Änderungen sind höchstwahrscheinlich Ar-

tefakte, welche unabhängig von der Supplementierung von Queuin sind. 

In tRNAHis scheinen auf den ersten Blick viele Modifikationen eine Reaktion auf das Fehlen 

von Queuin zu zeigen. Modifikationsmengen werden vorwiegend hochreguliert, erneut befin-

den sich diese Änderungen jedoch nicht im statistisch signifikanten Bereich. Besonders ausge-

prägt sind diese Änderungen für Modifikationen, welche eine geringe Abundanz aufweisen 

(0,04–0,31 Modifikationen pro tRNA). Einzig Gm, welches sich in nur 19 % der Fälle in 

tRNAHis befindet, zeigt einen statistisch signifikanten Anstieg beim Fehlen von Queuin im Zell-

kulturmedium. Dieses Phänomen kann ebenfalls in tRNATyr beobachtet werden. Während die 

meisten Modifikationen hier minimal, jedoch signifikant geringere Level beim Fehlen von 

Queuin aufweisen, kann für Gm in Medium mit dialysiertem FBS eine 20× höhere Menge nach-

gewiesen werden. In Medium mit normalem FBS ist dieser Effekt mit einer ~ 10× höheren 

Menge zwar nicht so stark ausgeprägt, allerdings immer noch auffallend signifikant. Dass der 

Effekt bei der Verwendung von nicht dialysiertem FBS absinkt, kann außerdem durch folgende 

Hypothese erklärt werden: Die nicht vorhandene Supplementierung von Queuin im entspre-

chenden Medium wird zum Teil von den geringen Mengen an Queuin in normalem FBS 

(~10 nM, siehe vorheriges Kapitel) kompensiert. Dies manifestiert sich in einer partiellen An-

passung der Modifikationsmenge von Gm. Diese Beobachtung spricht für die Tatsache, dass 

das Vorhandensein von Queuin einen direkten Einfluss auf die anderen Modifikationen, in die-

sem Fall speziell auf Gm hat.  

Mit ~ 0,1 Gm pro tRNATyr befindet sich diese Modifikation zwar allgemein in einem sehr ge-

ringen Bereich, ohne große Zweifel kann aber davon ausgegangen werden, dass dies eine mo-

lekulare Reaktion der Zelle auf den Mangel von Queuin im Medium ist. So könnte Gm bei-

spielsweise einen entscheidenden Einfluss auf die Inkorporation von Queuosin haben und 

würde demnach erst nach vollständiger Modifizierung von tRNATyr entfernt werden. Eine wei-

tere Hypothese wäre der Einbau von Gm als Kompensation zum Fehlen von Queuosin in 

tRNATyr oder sogar die weitere Modifizierung von Gm zu GalQm. Bei Anwesenheit von 

Queuin im Zellkulturmedium könnte Gm, aufgrund der weiteren Modifizierung zu GalQm 

demnach kaum detektiert werden. 

Weitere Effekte in tRNATyr sind die Verringerung der Modifikationen m1G, m22G und m5C. 

Alle drei weisen eine gewisse statistische Signifikanz auf, die Änderung sind mit 3–5 % aller-

dings sehr gering und nicht mit dem Ausmaß der Änderung von Gm zu vergleichen. Zudem 

sind diese Effekte ausschließlich bei der Verwendung von dialysiertem FBS zu beobachten. Im 
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Gegensatz dazu ist ein statistisch signifikanter Anstieg von Ψ lediglich bei der Verwendung 

von nicht dialysiertem FBS zu erkennen. In dialysiertem FBS ist die Abweichung zwischen den 

einzelnen Replikaten zu groß. 

Eine allgemeine Reduktion der Modifikationsdichte bei Fehlen von Queuin im Medium weist 

tRNAAsn auf. Die einzig statistisch signifikante Änderung einer Modifikation ist erneut die einer 

Ribose-methylierten, nämlich Um. Diese ist in 15 % der tRNAAsn Moleküle vorzufinden und 

damit erneut eher selten. Die meisten Ribose-methylierten Modifikationen befinden sich, 

ebenso wie die Q-Modifikationen, in der Anticodon-Schleife. Eine direkte Abhängigkeit dieser 

Modifikationen von Queuin erscheint also plausibel. Der auffälligste Wert in tRNAAsp ist die 

Änderung von m5C. Ein Zusammenhang zwischen ManQ34 in tRNAAsp und m5C38 konnte 

schon zuvor festgestellt werden.23, 24 Bei Fehlen der ManQ34-Modifikation wurde ein geringe-

res Level an m5C38 nachgewiesen. Interessant ist, dass der Effekt lediglich in Medium mit 

dialysiertem FBS statistisch signifikant ist. Bereits kleine Mengen an Queuin im Medium, wie 

sie in normalem FBS vorhanden sind, scheinen ausreichend zu sein, um eine volle Modifizie-

rung von m5C38 zu induzieren. Wie zuvor gezeigt sind diese Mengen für die vollständige Mo-

difizierung von ManQ34 allerdings nicht ausreichend und es werden lediglich ~ 75 % erreicht 

(Abbildung 3.10 C/D). Wie durch Sequenzierung bestimmt wurde, beträgt der Anteil von 

tRNAAsp in der analysierten Probe lediglich 41 %, während tRNAGly zu 51 % enthalten ist. In 

tRNAGly wurde ebenfalls m5C38 und zusätzlich drei weitere m5C-Modifikationen in der vari-

ablen Schleife berichtet. Aufgrund des Fehlens einer Q-Modifikation kann jedoch davon aus-

gegangen werden, dass die Inkorporation von m5C38 und aller weiteren m5C-Modifikationen 

in tRNAGly unabhängig von der Zufütterung von Queuin ist. Ein stetig hohes Level an m5C in 

tRNAGly könnte den beobachteten Effekt in tRNAAsp daher geringer erscheinen lassen. Es kann 

davon ausgegangen werden, dass dieser, bei besserer Aufreinigung von tRNAAsp somit stärker 

ausgeprägt wäre. 

Zusammenfassend sollte erwähnt werden, dass die meisten dieser Änderungen hier erstmals 

beobachtet wurden. Die genauen molekularen Ursachen und Auswirkungen, sowie die Positio-

nen der betroffenen Modifikationen sind daher noch ungeklärt. Speziell der starke Anstieg von 

Gm in tRNATyr bei Queuin-Mangel erscheint, basierend auf den bisherigen Daten, als vielver-

sprechender Kandidat für weitere Untersuchungen und sollte eingehender erforscht werden. 
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 Vergleichende NAIL-MS Untersuchungen der Queuin-Fütterung 

Zur näheren Untersuchung der Auswirkungen von Queuin-Supplementierung sollten NAIL-

MS-Experimente durchgeführt werden. Änderungen im Modifikationsprofil der einzelnen 

tRNA-Isoakzeptoren können somit bestimmt werden. Außerdem kann aus den Daten der glei-

chen Messung die tRNA-Isoakzeptor-Abundanz berechnet werden. Zellen wurden in unmar-

kiertem Medium ohne zusätzliche Supplementierung von Queuin kultiviert und parallel in iso-

topenmarkiertem Medium mit zusätzlicher Supplementierung von 50 nM Queuin kultiviert. 

Während der Zellernte wurden beide Kulturen vereinigt und gemeinsam prozessiert. Für die 

Bestimmung der tRNA-Isoakzeptor-Abundanz muss sowohl der jeweilige tRNA-Isoakzeptor 

als auch eine Referenz-RNA zur Normalisierung aufgereinigt werden. Hierfür wurde 5S rRNA 

gewählt welche, wie die tRNA-Isoakzeptoren auch, nach vorheriger SEC Anreicherung über 

Oligonukleotid-Hybridisierung aufgereinigt wurde. Nach Gleichung 4 kann nun die Abundanz 

der tRNA-Isoakzeptoren über Nukleosid-MS bestimmt werden. Die Menge an detektiertem 

tRNA-Isoakzeptor in Queuin-mangelndem Medium (hier: unmarkiert) wird durch die entspre-

chende Menge an 5S rRNA normalisiert (ebenfalls unmarkiert). In denselben Proben wird die 

gleiche Berechnung für den tRNA-Isoakzeptor in Queuin-supplementiertem Medium (hier: iso-

topenmarkiert) durchgeführt. Anschließend können die beiden Werte verglichen und somit die 

Änderungen der tRNA-Isoakzeptor Abundanz ermittelt werden. Die hier beschriebene Vorge-

hensweise bezieht sich auf das „vorwärts“-Experiment (forward/fwd), wurde allerdings eben-

falls als „rückwärts“-Experiment (reverse/rvs) durchgeführt. Für das rvs-Experiment wurden 

Zellen ohne zusätzliche Queuin Supplementierung demnach isotopenmarkiert und umgekehrt. 

Eine Veranschaulichung des experimentellen Designs kann Abbildung 3.14 A entnommen 

werden. Beide Varianten wurden als Duplikat durchgeführt. 

𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑧 (%) =   𝐼𝑠𝑜𝑎𝑘𝑧𝑒𝑝𝑡𝑜𝑟𝑄𝑢𝑒𝑢𝑖𝑛− (𝑝𝑚𝑜𝑙)5𝑆 𝑟𝑅𝑁𝐴𝑄𝑢𝑒𝑢𝑖𝑛− (𝑝𝑚𝑜𝑙)    /    𝐼𝑠𝑜𝑎𝑘𝑧𝑒𝑝𝑡𝑜𝑟𝑄𝑢𝑒𝑢𝑖𝑛+ (𝑝𝑚𝑜𝑙)5𝑆 𝑟𝑅𝑁𝐴𝑄𝑢𝑒𝑢𝑖𝑛+ (𝑝𝑚𝑜𝑙)  

Die Werte der tRNA-Isoakzeptoren wurden durch den zuvor bestimmten Effekt der Isotopen-

markierung korrigiert (Kapitel 3.1.3 Einfluss von NAIL-MS auf tRNA-Isoakzeptoren 

(NAIL-MS), Tabelle 3.2 für 5S rRNA). Vor der Anpassung wiesen die Daten des fwd- und 

rvs-Experiments entgegengesetzte Ergebnisse auf. Da sich zusammen betrachtet die Unter-

schiede aufgrund des Effektes der Isotopenmarkierung zwischen fwd- und rvs-Experiment je-

doch nivellieren sollten, und sich beide Experimente nur in ihrer Isotopenmarkierung unter-

scheiden, erscheint es sinnvoll diese Korrektur vorzunehmen. 

(4) 
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Allgemein ist, wie schon durch Northern-Blot-Analytik festgestellt, bei Mangel von Queuin im 

Medium eine Reduzierung der Q-abhängigen tRNA-Isoakzeptoren zu beobachten (Abbildung 

3.14 B). Diese fällt mit Werten zwischen maximal 80–94 % allerdings merklich geringer aus 

als zuvor. Des Weiteren fällt auf, dass trotz der Berücksichtigung des Fehlers, der durch die 

Zufütterung der Isotopologe von Adenin und Uridin entsteht, noch ein erheblicher Unterschied 

zwischen den fwd- und rvs-Ergebnissen vorzufinden ist. Dieser war zwar vor der Korrektur 

weitaus stärker ausgeprägt, weist aber dennoch darauf hin, dass noch immer ein Fehler durch 

die Isotopenmarkierung eingeschleust werden könnte.  

Wie erwartet, wird für tRNASer weder im fwd- noch im rvs-Experiment eine Änderung der 

tRNA-Isoakzeptor-Abundanz beobachtet. tRNAGly weist im rvs-Experiment zwar eine deutli-

che Verringerung der Abundanz um ~ 10 % auf, dieser Effekt bestätigt sich im fwd-Experiment 

allerdings nicht. Die Fehler innerhalb der einzelnen Werte sind hier zudem vergleichsweise 

hoch, wodurch eine genauere Interpretation erschwert wird. Die Isoakzeptoren tRNAHis, 

tRNAAsn und tRNAAsp weisen sowohl im fwd- als auch im rvs-Experiment eine Reduzierung 

beim Mangel von Queuin auf. Dennoch unterscheidet sich der Effekt aufgrund der Isotopen-

markierung zwischen dem fwd- und rvs-Experiment. Es ist davon auszugehen, dass sich die 

tatsächliche Veränderung der tRNA-Isoakzeptor-Abundanz zwischen beiden Werten befindet. 

Für tRNATyr sind diese Unterschiede so stark ausgeprägt, dass das fwd- und rvs-Experiment 

entgegengesetzte Ergebnisse aufweisen. Daher scheint diese Methode, insbesondere für 

tRNATyr eher weniger geeignet zu sein. Obwohl die Interpretation des hier gezeigten Datensat-

zes erschwert ist, konnte der Trend, welcher bereits durch Northern-Blot-Analytik festgestellt 

wurde, bestätigt werden. Für eine konkretere Aussage sollte sowohl die Bestimmung des Ef-

fekts, der durch die Zufütterung der Isotopologe von Adenin und Uridin entsteht, als auch das 

Experiment zur Auswirkung von Q-Mangel erneut durchgeführt werden. Dabei sollte darauf 

geachtet werden, dass für beide Experimente ausreichend Replikate vorhanden sind, um ver-

lässliche Ergebnisse erhalten. 

Anhand desselben Datensatzes sollten die Unterschiede im Modifikationsprofil in Abhängig-

keit von Queuin gezeigt werden. Zum Zwecke der besseren Überschaubarkeit wurden die Er-

gebnisse erneut als Heatmap dargestellt (Abbildung 3.14 C). Absolute Werte aller Modifikati-

onen in den aufgereinigten tRNA-Isoakzeptoren in Anwesenheit und Abwesenheit von Queuin 

können Abbildung S4 entnommen werden. Während in den einzelnen Heatmaps zwar einige 

statistisch signifikante Effekte zu beobachten sind, können diese jeweils nur im fwd- oder nur 
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im rvs-Experiment festgestellt werden. Allgemein kann beobachtet werden, dass viele Modifi-

kationen im fwd- und rvs-Experiment einen entgegengesetzten Trend aufweisen. Da die Durch-

führung beider Experimente auf entgegengesetzter Isotopenmarkierung beruht, erscheint es 

wahrscheinlich, dass die beobachteten Effekte primär auf die Zufütterung der Isotopologe von 

Adenin und Uridin, statt auf den Effekt der Anwesenheit von Queuin zurückgeführt werden 

können. 

 

Abbildung 3.14: NAIL-MS Daten des Einflusses von Queuin auf tRNA-Isoakzeptoren. 
(A) Design des Experiments. Fwd = „Vorwärts“-Experiment, rvs = „rückwärts“-Experiment, 
unm = unmarkiert, iso = isotopenmarkiert. Die gewählten Farben dienen der Veranschauli-
chung und sind unabhängig von der folgenden Heatmap. (B) Änderung der tRNA-Isoakzeptor-
Abundanz bei Queuin-Mangel. Die Werte wurden gemäß Gleichung 3 berechnet. Datenpunkte 
geben den Mittelwert und die Standardabweichungen aus n = 2 biologischen Replikaten wie-
der. (C) Änderung der Modifikationsdichte bei Queuin-Mangel. Modifikationen mit einer A-
bundanz < 0,1 pro tRNA-Isoakzeptor sind grau hinterlegt. Die Ergebnisse spiegeln den Mittel-
wert aus n = 2 biologischen Replikaten wider. Die statistische Signifikanz wurde über einen 
homoskedastischen, zweiseitigen t-Test ermittelt. * = p < 0,05; ** = p < 0,01. 
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Die einzige Modifikation, die einen statistisch signifikanten, im fwd- und rvs-Experiment 

gleichgerichteten Effekt aufzeigt, ist Ψ in tRNATyr. Wie schon zuvor beobachtet (Kapitel 3.4.2 

Effekt von Queuosin auf andere Modifikationen), kann ein Anstieg der Modifikationsmenge 

bei Fehlen von Queuin festgestellt werden. Die Quantifizierung von isotopenmarkiertem Ψ 

wurde aufgrund eines Hintergrundsignals jedoch erschwert. Die Interpretation des Einflusses 

von Queuin auf die Abundanz von Ψ ist in diesem Datensatz daher kritisch zu betrachten. Zu-

dem wurden Änderungen und statistische Signifikanzen durch lediglich 2 biologische Replikate 

ermittelt.  

Eine Aussage über die Auswirkung des Fehlens von Queuin im Medium auf das Modifikati-

onsprofil kann aufgrund des Effektes der Zufütterung der Isotopologe von Uridin und Adenin 

kaum getroffen werden und soll daher auch nicht angestrebt werden. Nichtsdestotrotz kann 

durch die Daten ein Erkenntnisgewinn erzielt werden: Eine Korrektur der Ergebnisse hinsicht-

lich des Effekts, der durch die Isotopenmarkierung eingeschleppt wird, erscheint, wie schon 

zuvor für die Bestimmung der tRNA-Isoakzeptor-Abundanz sinnvoll. Auf diese wurde hier al-

lerdings bewusst verzichtet, da es sich bei der Bestimmung des Isotopeneffektes um eine ein-

zelne Durchführung des entsprechenden Experiments handelt und die hier gezeigten Daten aus 

einem Duplikat berechnet wurden. Falls eine Korrektur erwünscht ist, fordert der komplexe 

Versuchsaufbau jedoch die Bereitstellung mehrerer Replikate, um eine verlässliche Aussage 

treffen zu können. Der Versuch der Bereinigung der hier gezeigten Daten lieferte daher auch 

keine tieferen Einblicke in die molekularen Geschehnisse bei Queuin-Mangel. In zukünftigen 

Experimenten sollte daher in Betracht gezogen werden, dass bei vergleichenden NAIL-MS-

Experimenten zusätzlich auf den Effekt der Isotopenmarkierung eingegangen wird. Dies wird 

in Reichle et al. (Methods, 2019) ebenso verdeutlicht. Sowohl die Bestimmung des Isotopenef-

fektes als auch die Durchführung des eigentlichen Experiments sollten mindestens im Triplikat 

erfolgen. Nur so kann ein verlässliches Ergebnis geliefert werden. 
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 Fütterung/Entzug von Queuin in unmarkierter Zellkultur 

In diesem Kapitel wird auf die Dynamik der Q-Modifikationen in den entsprechenden tRNA-

Isoakzeptoren bei Fütterung oder Entzug von Queuin eingegangen. Zellen wurden über eine 

Dauer von 7 Tagen in Standard-Medium (DMEM D6546) mit dialysiertem FBS kultiviert. Ein 

Teil der Zellen wurde unter Supplementierung von 50 nM Queuin kultiviert, während ein an-

derer Teil der Zellen in Abwesenheit von Queuin kultiviert wurde. Durch einen Wechsel des 

Mediums wurde den Zellen Queuin dann entweder entzogen oder zugefüttert und der dynami-

sche Verlauf der Q-Modifikationen in den aufgereinigten tRNA-Isoakzeptoren verfolgt. Werte 

wurden folgendermaßen auf den zu erwartenden Wert referenziert: Die Menge an jeweiliger 

Modifikation pro tRNA-Isoakzeptor wurde durch die Menge, welche für die Queuin supple-

mentierten Zellen bei Experimentstart ermittelt wurde, dividiert und gegen die Zeit aufgetragen. 

Bei der Zufütterung von Queuin fällt auf, dass ManQ in tRNAAsp aber auch Q in tRNAHis am 

schnellsten das zu erwartende Level erreichen (Abbildung 3.15 A). Nach lediglich 6 h errei-

chen beide Modifikationen bereits über 80 % der zu erwartenden Modifikationsmenge. Für Q 

in tRNAAsn kann nach 6 h erst ein Level von 40 % Modifizierung beobachtet werden. Beim 

Entzug von Queuin fällt erneut ManQ in tRNAAsp auf. Im Vergleich zu den anderen Q-Modifi-

kationen sinkt das Level von ManQ in tRNAAsp deutlich langsamer ab. Nach 1 Tag verbleibt 

~ 55 % der anfänglichen Modifikationsmenge. Die anderen tRNA-Isoakzeptoren weisen zu 

Abbildung 3.15: Zufütterung und Entzug von Queuin. Zellen wurden in Standard-Medium 
und dialysiertem FBS mit oder ohne die zusätzliche Supplementierung von Queuin kultiviert. 
Nach 7 Tagen wurde die Medien getauscht und der Effekt der Fütterung bzw. des Entzugs von 
Queuin über mehrere Tage hinweg beobachtet. Absolute Werte wurden auf die Menge der 
Queuin-supplementierten Zellen bei Experimentstart referenziert. (A) Zeitlicher Verlauf von Q, 
GalQ und ManQ in den entsprechenden tRNA-Isoakzeptoren. (B) Zeitlicher Verlauf von Q in 
tRNAAsp und tRNATyr. 
 



3.4 Queuosine-Modifikationen und ihr Auftreten in der Zelle 

209 

diesem Zeitpunkt eine Modifizierung von < 40 % auf. Dieser Effekt ist auch nach einigen Ta-

gen noch zu beobachten. Nach 3 Tagen können die Q-Modifikationen in tRNAHis, tRNATyr und 

tRNAAsn kaum noch nachgewiesen werden; ManQ in tRNAAsp weist noch ~ 20 % der ursprüng-

lichen Modifikationsmenge auf. Erst nach Kultivierung über 7 Tage ist auch für ManQ nahezu 

kein Signal mehr zu detektieren.  

Sowohl die Zufütterung als auch der Entzug von Queuin sprechen für eine Priorisierung von 

ManQ in tRNAAsp. Dieser Effekt kann durch zwei unterschiedliche molekulare Ursachen ent-

stehen. Entweder ist die Modifizierung von ManQ34 in tRNAAsp schneller und wird in fertig 

prozessierten tRNA-Molekülen länger aufrechterhalten oder der Umsatz an tRNAAsp Molekü-

len ist im Vergleich zu anderen tRNA-Isoakzeptoren geringer. Im zweiten Fall entstehen weni-

ger neue tRNAAsp-Moleküle, wodurch den entsprechenden Enzymen mehr Zeit für die Modifi-

zierung von ManQ34 zur Verfügung steht. Arbeiten diese in der gleichen Geschwindigkeit wie 

die der anderen Q-Modifikationen, manifestiert sich das in einem schnelleren Anstieg von 

ManQ34 in tRNAAsp. Durch den geringeren Umsatz würden fertig prozessierte tRNAAsp-Mole-

küle zudem länger erhalten bleiben. Diese werden aufgrund des geringeren Umsatzes weniger 

stark von neu entstehenden tRNA-Molekülen verdünnt, wodurch ebenfalls ein geringeres Ab-

sinken der Modifikationsdichte zu beobachten wäre. Dieser Effekt könnte durch die Anwen-

dung eines NAIL-MS Experiments näher untersucht werden, erfordert jedoch die Isotopenmar-

kierung von Queuosin. Diese konnte zum Zeitpunkt der Erstellung dieser Arbeit noch nicht 

vollständig etabliert wurde. Ein weiterer Grund für das langsamere Absinken der Q-Modifika-

tion in tRNAAsp könnte eine langsamere aktive Demodifizierung sein. Dies setzt voraus, dass 

für die Entfernung der Q-Modifikationen in tRNA-Molekülen spezielle Enzyme vorhanden 

sind. Bis jetzt ist die Existenz solcher Enzyme nur für einige Modifikationen bekannt, dennoch 

sollte diese Möglichkeit in zukünftigen Untersuchungen in Betracht gezogen werden. 

Wie schon zuvor bei der Konzentrationsoptimierung von Queuin, kann in tRNAAsp und tRNATyr 

neben ManQ und GalQ auch Q detektiert werden (Abbildung 3.15 B). In den anfänglichen 6 h 

nach Zufütterung von Queuin ist ein bedeutender Anstieg von Q zu verzeichnen. In tRNATyr 

entspricht dies 200 % der zuvor detektierten Menge, in tRNAAsp sogar 300 %. Interessanter-

weise ist die absolute Menge von Q in tRNATyr allerdings zu allen Zeitpunkten ~ 10× höher als 

in tRNAAsp. Auch dies konnte schon zuvor bei der Konzentrationsoptimierung festgestellt wer-

den. Nach der initialen Modifizierung von Q34 könnte die weitere Modifizierung durch 

Hexose-Transferasen in tRNAAsp schneller erfolgen als für tRNATyr. In tRNAAsp-Molekülen 

wäre daher größtenteils ManQ inkorporiert, wohingegen in tRNATyr noch eine erhebliche 
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Menge an Q vorzufinden ist. Dies deutet auf eine Priorisierung von ManQ in tRNAAsp gegen-

über GalQ in tRNATyr hin. Eine schnellere initiale Modifizierung von Q34 als Erklärung für die 

weitaus höheren Mengen an Q in tRNATyr erscheint aus zwei Gründen unwahrscheinlich. Ers-

tens ist nach 6 h im Vergleich zu GalQ eine bereits höhere Menge an ManQ zu detektieren. 

Dies setzt voraus, dass bereits zuvor ein Q an Position 34 eingebaut wurde und erfordert in 

tRNAAsp daher eine höhere oder zumindest gleiche Einbaurate von Q. Zweitens ist der relative 

Anstieg von Q in tRNAAsp doppelt so stark ausgeprägt. Auch dies spricht eher für einen schnel-

leren Einbau von Q in tRNAAsp. Vergleichsweise hohe Mengen an Q in tRNATyr können somit 

auf die langsamere Modifizierung zu GalQ zurückgeführt werden. Bereits nach einem Tag kann 

in beiden tRNA-Isoakzeptoren wiederum ein Rückgang der Q-Modifikationsmenge auf die zu 

erwartende Menge festgestellt werden. Die entsprechenden Hexosen wurde vermutlich auf eine 

Hydroxygruppe des Cyclopenten-Rings übertragen. 
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 Modifikationsdynamik von tRNA in Abhängigkeit von Queuin 

Abschließend wurde die Abhängigkeit der Dynamik des allgemeinen Modifikationsprofils der 

tRNA-Isoakzeptoren von Queuin über ein NAIL-MS-Experiment beurteilt. Zellen wurden in 

Spezial-Medium (DMEM D0422) mit dialysiertem FBS in Anwesenheit oder Abwesenheit von 

Queuin kultiviert. Bei Experimentstart wurde das unmarkierte Medium jeweils durch isotopen-

markiertes ersetzt und neu entstehende tRNA-Moleküle nach festgelegten Zeitpunkten über 

Nukleosid-MS analysiert. Eine Veranschaulichung des experimentellen Designs kann Abbil-

dung 3.16 A entnommen werden. Absolute Mengen der einzelnen Modifikationen in den aus-

gewählten tRNA-Isoakzeptoren decken sich größtenteils mit den zuvor bestimmten Mengen 

(Kapitel 3.4.2 Effekt von Queuosin auf andere Modifikationen). Der Fokus wird im Folgen-

den daher verstärkt auf die relative Dynamik der einzelnen Modifikationen gelegt. Hierfür 

wurden absolute Mengen der Modifikation pro neu entstehenden tRNA-Isoakzeptoren auf den 

zu erwartenden Wert (Menge originaler Modifikation bei Zeitpunkt t = 0) der Queuin-

supplementierten Zellen referenziert (Abbildung 3.16 B). 

5-Methyluridin im Reifungsprozess von tRNA-Molekülen 

Direkt fällt der starke Anstieg von m5U in allen tRNA-Isoakzeptoren auf. Wie zuvor bestimmt 

(Abbildung 3.13), liegen die Erwartungswerte von m5U in den einzelnen tRNA-Isoakzeptoren 

aus Zellen, welche in Queuin supplementiertem Medium kultiviert werden bei 0,31 m5U in 

tRNAHis, 1,27 in tRNATyr, 0,07 in tRNAAsn und 1,08 in tRNAAsp. Absolute Mengen nach der 

Kultivierung über 24 h in isotopenmarkiertem Medium sind nahezu deckungsgleich (Tabelle 

3.3). Obwohl teilweise von zweifelslos sehr geringer Abundanz gesprochen werden kann, 

scheinen diese Level dennoch konstant nachweisbar zu sein. m5U54 wurde in fast allen tRNA-

Isoakzeptoren nachgewiesen288 

und bildet eine reverse Hoogs-

ten-Basenpaarung mit dem eben-

falls fast ubiquitären m1A58 

aus289. Interessanterweise 

konnte m5U in tRNAHis und 

tRNAAsn bisher jedoch nicht 

nachgewiesen werden.10 Durch 

NAIL-MS wurde in diesen 

tRNA-Isoakzeptoren dennoch 

Tabelle 3.3: Absolute Mengen an m5U in den 
tRNA-Isoakzeptoren über Zeit. tRNA-Isoakzeptoren 
wurden auf die jeweilige Sequenz normalisiert. Gesamt-
tRNA wurde auf 60 kanonische Nukleoside referenziert. 

m5U His Tyr Asn Asp 
Gesamt 
tRNA 

0h 0,00 0,00 0,00 0,00 0,00 

2h 0,53 2,14 0,90 1,35 0,96 

4h 0,52 1,86 0,54 1,17 0,80 

6h 0,47 1,72 0,37 1,11 0,75 

24h 0,31 1,38 0,12 1,02 0,55 
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m5U detektiert, welches in früheren Studien vermutlich aufgrund der geringen Abundanz über-

sehen wurde. Eine Besonderheit, die bei der Betrachtung des Verlaufs der Menge an m5U auf-

fällt, ist das sehr hohe Level nach 2 h, welches anschließend schnell wieder absinkt. Dieser 

Effekt ist besonders stark ausgeprägt für tRNAAsn. Hier kann standardmäßig nur ~ 0,1 m5U pro 

tRNA-Molekül nachgewiesen werden. Wie Tabelle 3.3 zu entnehmen, befindet sich die Menge 

nach 2 h allerdings im Bereich von 0,9 m5U pro tRNA-Molekül. Dies erklärt den starken An-

stieg, wie er in Abbildung 3.16 B zu verzeichnen ist.  

Für die anderen tRNA-Isoakzeptoren werden allgemein höhere Level an m5U vorgefunden, 

weshalb der Effekt dort weniger ausgeprägt wirkt. Wird jedoch die Differenz der m5U-Menge 

nach 2 h gegenüber der zu erwartenden Menge berechnet, fällt auf, dass der Anstieg für andere 

tRNA-Isoakzeptoren ebenfalls vorhanden ist. Dieser beträgt jeweils 0,21 pro tRNAHis, 0,76 pro 

Abbildung 3.16: Auswirkung von Queuin auf tRNA-Isoakzeptor Reifung. (A) Design des 
Experiments. (B) Modifikationsdynamik in neu entstehenden tRNA-Isoakzeptoren. Durchge-
zogene Linien geben das Level in Zellen unter QBase Supplementierung an, während gestri-
chelte Linien das Level in Zellen ohne QBase angeben. Jede Farbe & Symbol repräsentiert eine 
Modifikation. Geplottet wurden lediglich Modifikationen mit einer Abundanz ≥ 0,1 pro tRNA-
Molekül. Das zu erwartende Modifikationsprofil mit den entsprechenden Positionen ist für je-
den tRNA-Isoakzeptor skizziert. Für tRNAHis konnten einige detektierte Modifikationen (≥ 0,1) 
keiner Position zugewiesen werden. 
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tRNATyr, 0,78 pro tRNAAsn und 0,33 pro tRNAAsp. In tRNAAsn und in tRNATyr scheint dieser 

Effekt demnach ähnlich stark vorhanden zu sein. Zusätzlich ist der Effekt des starken Anstiegs 

und der darauffolgenden Reduzierung an m5U auch in Gesamt-tRNA zu beobachten (Tabelle 

3.3 und Abbildung S5). 

In der Sequenz von tRNATyr konnte bereits eine m5U-Modifikation an Position 54 

nachgewiesen werden.10 Angesichts der aus dem NAIL-MS Experiment erhobenen Daten 

scheint in tRNATyr eine weitere Position, die zu m5U modifiziert wird, vorhanden zu sein. 

Welche der beiden Positionen verantwortlich für den festgestellten Effekt ist, kann allerdings 

nur gemutmaßt werden. Da m5U54 eine wichtige Rolle in der Stabilisierung der 

dreidimensionalen Struktur von tRNA-Molekülen einnimt, und dort daher hoch konserviert 

auftritt und zuverlässig nachgewiesen werden kann, erscheint es plausibler, dass sich die m5U-

Modifikation, welche für den hier beobachteten Effekt verantwortlich ist, an anderer Stelle 

befindet. Oligonukleotid-MS, könnte hier zur Aufklärung der Fragestelltung beitragen, und 

sollte für zukünftige Experimente in Betracht gezogen werden.  

Falls als Teil des Reifungsprozesses von tRNA-Molekülen tatsächlich eine Entfernung von 

m5U stattfindet, wäre eine noch frühere Inkorporation von m5U in entstehende tRNA-Moleküle 

notwendig. Dies kann entweder durch die direkte Inkorporation von m5UTP in das naszierende 

Oligonukleotid oder durch die nachträgliche Methylierung eines Uridins geschehen. Ersteres 

setzt voraus, dass das entsprechende Triphosphat von der Zelle gebildet wird und könnte ebenso 

einen zufälligen fehlerhaften Einbau von m5U in tRNA-Moleküle darstellen. Während dies 

nicht ausgeschlossen werden kann, sind im Nukleotid-Stoffwechsel keine Enzyme beschrieben, 

welche eine entsprechende Reaktion katalysieren. Eine Methylierung der C5-Position durch das 

Enzym Thymidylat-Synthethase findet in Uridin ausschließlich statt, falls dieses in Form von 

dUMP vorliegt. Für das daraus entstehende dTMP existiert wiederum kein beschriebener Re-

aktionspfad, um dieses in m5UTP umzuwandeln. Darüber hinaus wird für die Methylierung von 

dUMP zu dTMP der Cofaktor 5-Methyl-Tetrahydrofolat verwendet, welcher zwar für die Me-

thylierung von Homocystein zu Methionin verwendet wird, umgekehrt aber nicht von Methio-

nin remethyliert werden kann. Die im vorliegenden Experiment gezeigten Ergebnisse kommen 

jedoch durch die Inkorporation einer D3-Methylgruppe in die m5U-Modifikation zustande. Da 

dies durch Zufütterung von D3-Methionin erreicht wurde, kann davon ausgegangen werden, 

dass das entstehende m5U nicht über den (zwangsweise unmarkierten) Cofaktor Folat methyl-
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iert wurde, und daher auch nicht in Form von m5UTP in naszierende Oligonukleotide inkorpo-

riert wurde. Eine enzymatische, cotranskriptionale Methylierung eines Uridins erscheint daher 

schlüssiger als der direkte Einbau von m5U. 

Als Teil des Reifungsprozesses der tRNA-Moleküle wäre eine anschließende Entfernung von 

m5U entweder durch einen bisher nicht beschriebenen Eraser oder durch Spleißen des Sequenz-

bereiches, in dem sich m5U befindet, erforderlich. Ein ähnlicher Mechanismus wurde kürzlich 

in mRNA entdeckt. Dort werden Introns mit der Modifikation m1Ψ versehen, welche anschlie-

ßend im Reifungsprozess der mRNA herausgeschnitten werden.290 Basierend auf der Anreiche-

rung von tRNA über Größenausschlusschromatographie (SEC) kann allerdings davon ausge-

gangen werden, dass m5U erst nach vollendetem Spleißen der prä-tRNA entfernt wird. Aufge-

reinigt wurden lediglich Moleküle der Länge 60 – 90 Nukleotide. Jegliche größere Moleküle, 

wie in vielen Fällen beispielsweise prä-tRNA (~ 90–150 Nukleotide)291 werden daher in der 

Analytik nicht beachtet. Ein erhöhtes Level an m5U müsste demnach selbst in fertig gespleißten 

tRNA-Molekülen vorhanden sein. 

Nach Erreichen des jeweils zu erwartenden Levels, 

fällt die Menge an m5U in tRNAAsn weiterhin ab. Dies 

konnte festgestellt werden, da nach dem Wechsel zu 

isotopenmarkiertem Medium bereits existierende 

tRNA-Moleküle aufgrund des entstehenden Masseun-

terschieds von neu entstehenden unterschieden wer-

den können. Das Absinken der Menge an m5U in den 

originalen tRNAAsn-Molekülen ist im Vergleich zu 

anderen Modifikationen überproportional stark ausge-

prägt (Abbildung 3.17). Dies spricht gegen den Ab-

bau von tRNA-Molekülen als Ursache für die Reduk-

tion von m5U. Die Hypothese einer aktiven Demodi-

fizierung von m5U als Teil des Reifungsprozesses von 

tRNA-Molekülen wird daher gestärkt.  

Alle Signale der Nukleosid-MS Analytik waren zudem ohne Probleme integrierbar und befan-

den sich weit über dem unteren Quantifizierungslimit (LLOQ) im linearen Bereich der Kalib-

riergeraden. Da in originalen tRNA-Molekülen ein ähnlicher Effekt zu beobachten ist, die Level 

zu Experimentbeginn dort jedoch merklich höher sind, sollte ein Fehler aufgrund falscher 

Abbildung 3.17: Auswirkung von 
Queuin auf originale tRNAAsn. Ab-
solute Mengen an originaler Modifi-
kation pro tRNAAsn wurden auf die je-
weilige Menge bei Zeitpunkt t = 0 un-
ter Queuin Supplementierung referen-
ziert. 
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Quantifizierung ausgeschlossen werden können. Außerdem wurde geprüft, ob isotopenmarkier-

tes Uridin, welches für die Markierung der Nukleoside verwendet wurde, durch m5U verunrei-

nigt ist. Eine solche Verunreinigung würde dazu führen, dass m5U an die Zellen verfüttert wird, 

und könnte durch Inkorporation ebendieses in RNA-Moleküle somit ein erhöhtes Level an m5U 

erklären. Bei der massenspektrometrischen Untersuchung der Uridin-Stocklösung konnte aller-

dings kein Signal für m5U detektiert werden.  

Die vorgefundenen Daten deuten auf die cotranskriptionale Methylierung eines Uridins zu m5U 

hin, welches anschließend, im Zuge des Reifungsprozesses von tRNA-Molekülen von einem 

Eraser entfernt wird. Für acp3U in tRNATyr konnte im Übrigen ein vergleichbarer Effekt beo-

bachtet werden. Hier steigt das Level ebenfalls erst drastisch auf ~ 150 % an, bevor die Menge 

erneut auf den Erwartungswert abfällt. Allerdings konnte acp3U nicht problemlos quantifiziert 

werden, weshalb die Ergebnisse hier kritischer betrachtet werden müssen. Während deshalb 

nicht näher auf den Effekt von acp3U eingegangen wird, sollte auf dessen Dynamik in Zukunft 

ebenfalls geachtet werden. 

Dynamik weiterer Modifikationen in Abhängigkeit von Queuin 

Zuletzt soll näher auf die von Queuin abhängigen Unterschiede weiterer Modifikationen im 

Reifungsprozess von tRNA-Molekülen eingegangen werden. Die größten Abweichungen sind 

meist 6 h nach Mediumwechsel zu beobachten, weshalb Tabelle 3.4 eine bessere Übersicht der 

Modifikationsmengen zu diesem Zeitpunkt darstellt. Gelistet sind lediglich Modifikationen, 

welche in mindestens einem der tRNA-Isoakzeptoren eine Abweichung im Reifungsprozess 

abhängig von Queuin-Supplementierung aufwiesen.  

Eine auffallende Abweichung tritt bei der Inkorporation von m5C in tRNAAsp auf. So ist die 

Menge an m5C in tRNAAsp nach 6 h um 21 % erhöht, wenn Zellen in Anwesenheit von Queuin 

kultiviert wurden (Abbildung 3.16 und Tabelle 3.4). Ein Zusammenhang zwischen der Anwe-

senheit von ManQ, bedingt durch die Zufütterung von Queuin, und der Abundanz von m5C in 

tRNAAsp konnte bereits zuvor über Bisulfit-Sequenzierung nachgewiesen werden.23 Eine Zu-

fütterung von Queuin konnte dabei mit erhöhter Modifikationsmenge von m5C38 in tRNAAsp 

in Verbindung gebracht werden. Die molekulare Ursache hinter der erhöhten Menge von 

m5C38 in tRNAAsp in Anwesenheit von ManQ konnte zwar nicht vollständig geklärt werden, 

prinzipiell sind hierfür jedoch zwei Mechanismen denkbar: Sowohl eine erhöhte Methylie-

rungsrate von C38, als auch ein verringerter Abbau von m5C38-modifizierter tRNAAsp könnte 

dieses Phänomen erklären. Bekannt ist außerdem, dass m5C38 im Gegensatz zu den häufig 



3.4 Queuosine-Modifikationen und ihr Auftreten in der Zelle 

216 

vertretenen Modifikationen m5C48 und m5C49 vom Enzym DNMT2 statt von NSUN2 inkor-

poriert wird.292 Eine tRNA-assoziierte Kristallstruktur von DNMT2 zur Aufklärung des Me-

chanismus konnte bisher nicht analysiert werden. Durch gezielte Mutationen einzelner Amino-

säuren des Enzymes konnten jedoch Vermutungen über die Bindungsstellen am tRNA-Molekül 

aufgestellt werden.169 So besteht eine hohe Wahrscheinlichkeit, dass DNMT2 das tRNA-Mo-

lekül unter anderem über die Anticodon-Schleife erkennt. ManQ könnte bei der Substraterken-

nung eine essenzielle Rolle einnehmen. In einer Hypothese initiiert ManQ eine leichte Ände-

rung der Geometrie des Anticodon-Loops, um DNMT2 einen besseren Zugang zu C38 zu ver-

schaffen.169 Die entstehende Bindung führt dabei zu einem energetisch ungünstigen Übergangs-

zustand. Dieser könnte ebenfalls durch eine Konformationsänderung, welche durch die Anwe-

senheit von ManQ beeinflusst wird, stabilisiert werden und somit die katalytische Aktivität von 

DNMT2 erhöhen.168, 170 In allen Szenarien wäre die Inkorporation von m5C38 durch die Anwe-

senheit von ManQ begünstigt.  

Tabelle 3.4  Unterschiede im Reifungsprozess von tRNA-Molekülen in Abhängigkeit 
von Queuin. Zellen wurden ohne (-) oder mit (+) 50 nM Queuin in Spezial-Medium mit dia-
lysiertem FBS kultiviert. Die Werte geben die Anzahl an Modifikation pro tRNA-Isoakzep-
tor-Molekül bzw. pro 1000 Nukleosiden im Falle von Gesamt-tRNA an. Die hier aufgeführten 
Werte entsprechen dabei der Modifikationsdichte in neu entstehenden tRNA-Molekülen nach 
6 Stunden Kultivierung in isotopenmarkiertem Medium. Der Faktor gibt die Änderung der 
Modifikationsmenge bei Fehlen von Queuin im Medium an. 

tRNA Queuin Ψ m1A m5U m5C m22G 

His 

- 2,74 0,72 0,44 3,02  

+ 3,10 0,72 0,47 3,13  

Faktor (%) 88 100 93 97  

Tyr 

- 2,77 0,73 1,73 1,26 1,92 

+ 2,04 0,73 1,72 1,32 1,64 

Faktor (%) 135 99 101 95 117 

Asn 

- 3,00 0,64 0,30  0,67 

+ 2,98 0,77 0,37  0,66 

Faktor (%) 101 83 81  101 

Asp 

- 1,23 0,46 1,05 2,37  

+ 1,40 0,49 1,11 2,99  

Faktor (%) 88 94 94 79  

Gesamt- 
tRNA 

- 48,9 10,9 10,9 30,6 6,7 

+ 59,8 11,0 12,4 35,4 6,4 

Faktor (%) 82 99 87 86 105 
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Während zuvor über die mechanistischen Ursachen des Anstiegs von m5C38 nur Vermutungen 

angestellt werden konnten, kann durch die erhobenen Daten aus dem vorliegenden NAIL-MS 

Experiment mehr Einsicht gewonnen werden. Diese belegen eine Entstehung des Unterschieds 

in der Modifikationsmenge schon früh im Lebenszyklus des tRNA-Moleküls. Bereits nach 

2 Stunden kann eine Differenz zwischen beiden Kulturen festgestellt werden, welche nach 

6 Stunden noch deutlicher ausgeprägt ist (Abbildung 3.16 und Tabelle 3.4). Diese kann ledig-

lich über eine erhöhte Einbaurate von m5C-Modifikationen abhängig von Queuin erklärt wer-

den. Da sich der Unterschied zwischen beiden Kulturen bereits nach 2 h einstellt und bis zum 

Ende des Experiments bestehen bleibt, kann die Differenz auf die Modifikationsmenge von 

m5C38 zurückgeführt werden. Eine durch die ManQ-Modifikation verbesserte Erkennung des 

Substrats durch DNMT2, wie sie zuvor erläutert wurde wirkt schlüssig. Da der Effekt bereits 

nach 2 h das volle Ausmaß erreicht, erscheint es wahrscheinlich, dass ManQ zu diesem Zeit-

punkt ebenfalls voll modifiziert ist. Die zuvor argumentierte hohe Priorisierung von ManQ in 

tRNAAsp gegenüber den anderen Q-Modifikationen in den entsprechenden tRNA-Isoakzepto-

ren spricht für diesen Verdacht. Interessanterweise konnte jedoch festgestellt werden, dass be-

reits 10 nM Queuin für die volle m5C38-Modifizierung ausreichend sind (Abbildung S6). Bei 

dieser Konzentration konnte jedoch nur 77 % der zu erwartenden Modifikationsmenge für 

ManQ beobachtet werden. Für GalQ waren es 66 %, während Q jeweils nur knapp über 40 % 

aufwies.  

Eine Änderung der m22G-Menge in tRNATyr fiel im Zuge dieser Arbeit in unmarkierter Zell-

kultur ebenfalls schon zuvor auf (Abbildung 3.13). Bei Fehlen von Queuin im Medium konnte 

eine minimale, aber statistisch signifikante Reduzierung von m22G festgestellt werden. In vo-

rangegangenen, hier nicht gezeigten Experimenten konnte bei Abwesenheit von Queuin in ei-

nigen Fällen jedoch auch ein Anstieg von m22G beobachtet werden. Diese zuerst widersprüch-

lich erscheinenden Ergebnisse können nun durch den Reifungsprozess von tRNATyr erklärt wer-

den: In Abwesenheit von Queuin scheint die Inkorporation von m22G in tRNATyr effizienter 

und damit schneller abzulaufen (Abbildung 3.16 und Tabelle 3.4). Zum Endzeitpunkt nach 

24 h ist in beiden Kulturen jedoch eine nahezu identische Menge an m22G vorhanden. Je nach 

Zeitpunkt der Zellernte können abhängig von der Queuin-Supplementierung somit unterschied-

liche Mengen an m22G detektiert werden. Eine potenzielle Erklärung für dieses Phänomen 

könnte die Auswirkung einer sterischen Hinderung durch GalQ sein. Dieses wird im Anticodon 

an Position 34 eingebaut, weist vergleichsweise große funktionelle Gruppen auf und befindet 

sich nach Faltung der tRNA in räumlicher Nähe zu Position 26 an welcher m22G üblicherweise 

inkorporiert wird.55 Das für den Einbau verantwortliche Enzym TRMT1,293, 294 könnte somit 
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ausgehend von einer sterischen Hinderung durch GalQ34 verminderten Zugang zur Position 26 

haben, wodurch die m22G-Modifikation letztendlich langsamer eingebaut wird. Zusätzlich 

konnte in aktuellen Untersuchungen TRMT1-defizienter Zellen ein Anstieg von GalQ in 

tRNATyr beobachtet werden (unpublizierte Daten, Gregor Ammann, AK Kellner). Der genaue 

Zusammenhang dieser beiden Modifikationen kann zwar aufgrund der aktuellen Datenlage 

noch nicht geklärt werden, eine Abhängigkeit scheint aber zweifelslos zu bestehen.  

Des Weiteren kann in fast allen tRNA-Isoakzeptoren ein Unterschied im Einbau von Ψ festge-

stellt werden (Abbildung 3.16 und Tabelle 3.4). Es sollte allerdings erwähnt werden, dass die 

meisten Ψ-Signale aus neu entstehenden tRNA-Molekülen von einem Hintergrundsignal über-

lagert werden, welches lediglich beim Massenübergang von isotopenmarkiertem Ψ auftritt. 

Eine zuverlässige Quantifizierung ist daher kaum möglich. Besonders davon beeinträchtigt sind 

die Werte nach 2 h und 4 h, zum Teil aber auch noch nach 6 h. Erst nach 24 h kann wieder von 

einer größtenteils korrekten Quantifizierung ausgegangen werden. Sowohl in tRNAHis und 

tRNAAsp, als auch in Gesamt-tRNA wird ein geringeres Level an Ψ detektiert wenn Zellen in 

Abwesenheit von Queuin kultiviert werden. Dies deckt sich nur teilweise mit zuvor ermittelten 

Daten und erschwert daher eine Interpretation. In tRNATyr dagegen ist im „Pulse-Chase“-Ex-

periment nach 24 h ein deutlicher Anstieg an Ψ zu erkennen. Beim Mangel von Queuin wird 

ein deutlich höherer Wert von 135 % detektiert. Dies konnte bereits zuvor in Kapitel 3.4.1 

Auswirkungen von Queuin-Supplementierung in Zellkultur beobachtet werden und scheint 

daher ein reproduzierbarer Effekt zu sein. Eine mögliche Erklärung könnte durch die berichtete 

Modifikation m1Ψ39 in tRNATyr geliefert werden,10 welche im vorliegenden Datensatz leider 

nicht analysiert wurde. Bei Abwesenheit von Queuin kann jedoch eine höher als zu erwartende 

Menge an Ψ detektiert werden. Laut diverser Datenbanken werden in tRNATyr lediglich zwei 

Ψ-Modifikationen inkorporiert: Ψ35 und Ψ55. Dies entspricht recht genau der hier beobachte-

ten Menge von 2,04 bei Anwesenheit von Queuin. Bei der Abwesenheit von Queuin wurde 

allerdings eine weitaus höhere Menge von 2,77 Ψ-Modifikationen vorgefunden. Ähnlich wie 

bereits zuvor für DNMT2 beobachtet, könnte die Pseudouridine-N1-Methyltransferase (für 

tRNA noch unbekanntes Enzym, Nep1 für rRNA), welche für die weitere Modifizierung von 

Ψ39 zu m1Ψ39 verantwortlich ist, eine Abhängigkeit von GalQ zeigen. Ein Fehlen von GalQ34 

würde somit zu einer höheren Menge an Ψ und einer geringeren Menge an m1Ψ führen. m1Ψ 

sollte daher in zukünftigen Experimenten in die Analyse aufgenommen werden. 

Die Modifikation m1A zeigt lediglich in tRNAAsn einen geringfügigen Effekt (Abbildung 3.16 

und Tabelle 3.4). Wie schon zuvor anhand unmarkierter Zellkultur-Experimente festgestellt 
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(Abbildung 3.13), ist unter Queuin-Mangel eine verringerte Menge an m1A vorzufinden. Nach 

6 h im isotopenmarkierten Medium entspricht dies einer Reduktion von 17 %. Nach 24 h wird 

in beiden Kulturen allerdings wieder ein identisches Level an m1A ermittelt. Da hier nur von 

minimalen Effekten die Rede ist, und die Ergebnisse zuvor entweder äußerst schwach ausge-

prägt oder statistisch nicht signifikant und daher nicht sehr aussagekräftig waren, wird auf eine 

Interpretation hier verzichtet. 

Der bereits mittels Bisulfit-Sequenzierung festgestellte Einfluss von Queuin-Fütterung auf die 

Inkorporation von m5C38 in tRNAAsp konnte im Zuge dieser Arbeit mittels LC-MS und der 

Anwendung von NAIL-MS bestätigt werden. Zusätzlich konnte die molekulare Ursache der 

erhöhten m5C-Menge auf eine schnellere Methylierung zurückgeführt werden. Ohne die An-

wendung von NAIL-MS wäre dies über keine andere massenspektrometrische Technik mög-

lich. Da die Bestätigung einer Abhängigkeit zwischen der Anwesenheit von Queuosin und der 

Inkorporation von m5C38 durch DNMT2 zum Teil auch als Validierung der NAIL-MS-Metho-

dik angesehen werden kann, wird die Stichhaltigkeit aller weiteren beobachteten Effekte erhöht.  

Die Zugabe von Queuin zum Medium und die damit verbundene Inkorporation der Q-Modifi-

kationen in die jeweiligen tRNA-Isoakzeptoren scheint weitere vielfältige Einflüsse auf andere 

Modifikationen zu nehmen und sollte daher eingehender untersucht werden. Alles in Allem 

scheint tRNATyr für diese Unterfangen am besten geeignet zu sein. Der für m5U beobachtete 

Effekt ist bei stets hoher Menge an m5U in tRNATyr vergleichsweise stark ausgeprägt. Dadurch 

kann eine verlässliche Quantifizierung schon zu frühen Zeitpunkten erfolgen. Der gleiche Ef-

fekt ist in tRNAAsn prozentual zwar stärker ausgeprägt, dort gestaltet sich die Quantifizierung 

aufgrund der teils sehr geringen Mengen allerdings schwieriger. In allen tRNA-Isoakzeptoren 

wäre eine aktive Demodifizierung einzelner Positionen als Teil des Reifungsprozesses eine bis-

her nicht beschriebene, bahnbrechende Entdeckung. In tRNATyr ist außerdem die Modifikation 

acp3U enthalten, welche einen vergleichbaren Effekt zeigte. Weitere interessante Beobachtun-

gen unter Abwesenheit von Queuin sind die höhere Einbaukinetik von m22G und die stark er-

höhten Level an Gm in tRNATyr. Durch Studien in Mensch und Maus konnte eine Korrelation 

zwischen der m22G-Inkorporation durch TRMT1/TRM1 und neurologischen Erkrankungen 

festgestellt werden.75, 295 Dies verdeutlicht die Relevanz der hier gefundenen Effekte.  

Für weiterführende Experimente sollte zudem eine Isotopenmarkierung von Queuosin ange-

strebt werden. Die Zufütterung von unmarkiertem Queuin kombiniert mit Medien, welche un-

markierte Glukose enthalten, führt aufgrund der Biosynthese in Eukaryoten stets zu unmarkier-
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tem Queuosin.296, 297 Isotopenmarkiertes Queuin ist kommerziell nicht erhältlich, die Zufütte-

rung von isotopenmarkierter Glukose erscheint für die Markierung von Q-Modifikationen al-

lerdings vielversprechend. Erste erfolgreiche Versuche, welche nicht mehr Teil dieser Arbeit 

sind, konnten bereits eine Isotopenmarkierung der Ribose und der angehängten Hexose belegen 

und sollten somit den Weg für weitere aufschlussreiche Untersuchungen ebnen.  
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3.5 Weitere Nicht publizierte Daten 

 Inhibition von ALKBH3 durch Rhein 

Methylgruppen an Nukleosiden, insbesondere von m1A und m3C, werden in der Zelle von En-

zymen der Familie der α-Ketoglutarat-abhängigen Dioxygenasen, kurz ALKB entfernt.206, 298–

300. Dies geschieht über Oxidation der Methylgruppe durch einen Eisen(II)- und α-Ketoglutarat-

abhängigen Mechanismus und darauffolgende Decarboxylierung.301 Schon früh war bekannt, 

dass diese Enzyme ungewollte Methylierungs-Schäden an DNA entfernen. Später konnte fest-

gestellt werden, dass die Familie der ALKB-Enzyme, insbesondere ALKBH3, ebenso eine 

wichtige Rolle in der Reparatur von durch MMS geschädigter mRNA und tRNA einnehmen.194 

Durch die Korrelation solcher Schäden zu einigen neurologischen Krankheiten wird dieses For-

schungsfeld besonders interessant. Viele Chemotherapeutika basieren auf alkylierenden Eigen-

schaften. Alkylanzien, wie Melphalan (gegen multiples Myelom) oder Chlorambucil (gegen 

Leukämie) werden oftmals für die Behandlung verschiedenster Krebserkrankungen verwen-

det.302 Die Aktivität der ALKB-Enzyme erschwert dabei die Anwendung vieler dieser Thera-

peutika. In einigen Krebsarten konnte gezeigt werden, dass Enzyme der ALKB-Familie beson-

ders aktiv sind, und die Methylierungs-Schäden, welche zum Absterben der Zellen führen sol-

len, somit wieder abgenommen werden.195, 303–305 Dies führt dazu, dass die Therapeutika nicht 

in vollem Umfang wirken können. Eine gezielte Inhibition der ALKB-Enzyme kann hier hilf-

reich sein.306 Ein solcher Inhibitor wäre beispielsweise α-Hydroxyglutarat, welches in der Zelle 

bei einer Mutation der Isocitrat-Dehydrogenase angereichert ist. Durch α-Hydroxyglutarat wer-

den ALKBH-Enzyme kompetitiv inhibiert, indem die Bindungsstelle von α-Ketoglutarat blo-

ckiert wird. Patienten, welche eine Mutation der Isocitrat-Dehydrogenase tragen sind daher ge-

genüber Alkylanzien sensibilisiert, was zu einem nachgewiesenem Anstieg des Erfolgs von 

bestimmten Chemotherapien führt.307 Rhein, einem Naturprodukt aus der Gruppe der Anth-

ranoide, wurde ebenfalls eine inhibierende Wirkung auf FTO (Fat mass and obesity-associated 

protein, ALKB-Familie) und ALKBH3 zugesprochen.308, 309 Während in der Literatur die Wir-

kung von Rhein als Inhibitor von ALKBH-Enzymen nur indirekt nachgewiesen werden konnte, 

kann NAIL-MS Aufschluss darüber geben, ob Rhein tatsächlich als Inhibitor der ALKBH-En-

zyme wirkt. Aus diesem Grund sollte der Effekt von Rhein auf das Modifikationsprofil von 

RNA anhand von NAIL-MS untersucht werden.  

Der in Dimethylsulfoxid (DMSO) gelöste Rhein-Stock wurde im Zellkulturmedium je nach 

Experiment 500-fach oder stärker verdünnt. Die daraus resultierende DMSO-Konzentration im 
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Medium beträgt stets unter 0,2 % und sollte daher für die Zellen unschädlich sein. Kontrollstu-

dien wurden dennoch mit der entsprechenden Menge an reinem DMSO (Mock) durchgeführt. 

In einer ersten Studie wurde die ideale Konzentration an Rhein (Abbildung 3.18 A) ermittelt. 

Zellen wurden in aufsteigenden Konzentrationen zwischen 0 µM und 50 µM für einen oder 

zwei Tage, beginnend 24 h nach dem Aussäen, kultiviert. Während Zellen bis zu einer Kon-

zentration von 10 µM Rhein einen kaum veränderten Phänotyp aufwiesen, wurden bei Zellen, 

welche in 20 µM Rhein kultiviert wurden, erste Anzeichen von Zellstress sichtbar: Die Zellen 

wurden runder und die Teilungsrate verringerte sich leicht. Bei 50 µM Rhein fand kaum noch 

Zellteilung statt, die Zellen scheinen sich in einem Zellzyklus-Arrest zu befinden.310  

Anschließend wurde tRNA über SEC angereichert und nach Verdau zu Nukleosiden über Nuk-

leosid-MS quantifiziert. Modifikationsmengen wurden pro tRNA-Molekül berechnet und über 

die Kontrolle (0 µM) normalisiert. Für die Modifikation m5C ist für jede Konzentration ein 

Werte von ~ 100 % zu erwarten, da m5C kein bekanntes Substrat von ALKBH3 ist. Für die 

Kultivierung über 2 Tage trifft dies größtenteils zu (Abbildung 3.18 B). Alle Werte befinden 

sich im Bereich 89–106 %. Diese Ergebnisse stellen ein einzelnes Experiment, ohne Replikate 

dar und befinden sich im erwarteten Bereich. Bei der Kultivierung über 1 Tag fällt der Anstieg 

an Modifikationsmenge mit ansteigender Rhein-Konzentration auf. Eine mögliche Erklärung 

hierfür wäre, dass den modifizierenden Enzymen aufgrund des Zellzyklus-Arrests mehr Zeit 

für die Modifizierung von tRNA-Molekülen zur Verfügung steht. Die Diskrepanz zwischen der 

Kultivierung über 1 Tag oder 2 Tage könnte darauf zurückgeführt werden, dass Zellen nach 

Mediumwechsel eine gewisse Zeit für die Akklimatisation benötigen. Während 2 Tage für die-

sen Prozess ausreichend sind, sind nach 1 Tag noch Anpassungs-Effekte im Modifikationspro-

fil zu erkennen. Erwähnenswert ist außerdem, dass beide Experimente zu unterschiedlichen 

Zeitpunkten durchgeführt wurden. Dadurch entsteht Variation sowohl in der Passagen-Anzahl 

der Zellen als auch in der Verwendung der jeweiligen FBS-Charge. Beides kann einen Einfluss 

auf die Stressantwort der Zellen hervorrufen. Zudem kann verbesserte Handhabung der Zellen 

bei der Kultivierung über 2 Tage gegenüber den Zellen, welche lediglich über einen Tag kulti-

viert wurden, nicht ausgeschlossen werden. Dies liegt an persönlichem Erfahrungszuwachs im 

Umgang mit Zellkulturen, welcher sich in dem Zeitraum zwischen beiden Experimenten 

(> 1 Jahr) ergeben hat.  

Für ALKBH3-abhängige Modifikationen (m1A, m3C und m7G) zeigt sich ein vergleichbarer 

Effekt. Hier wäre ein verändertes Modifikationsprofil zu erwarten. Bei der Kultivierung über 

2 Tage ist kaum eine Änderung des Modifikationsprofils abhängig von der verwendeten Rhein-
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Konzentration zu erkennen (Abbildung 3.18 C). Alle Werte bewegen sich im Bereich 87–

106 %. Hier wäre ein Anstieg, aufgrund der Inhibition der Demethylierung zu erwarten. Bei 

der Kultivierung über 1 Tag ist dies der Fall. Da dies allerdings auch für m5C zutrifft, kann 

davon ausgegangen werden, dass dieser Effekt nicht durch die spezifische Inhibition von 

ALKBH3 zustande kommt. Vielmehr kann erneut die Argumentation des Zellzyklus-Arrests 

herangezogen werden, wodurch modifizierenden Enzymen mehr Zeit für die Modifizierung von 

tRNA-Molekülen zur Verfügung steht. Lediglich für m3C ist in keinem der Experimente ein 

Anstieg der Modifikationsmenge zu beobachten. 

Während nicht ausgeschlossen werden kann, dass Rhein als Inhibitor von ALKBH3 fungiert, 

weisen die erhobenen Daten auf einen anderen Mechanismus hin. Ein potenzieller Modifikati-

onsanstieg bei höheren Konzentrationen von Rhein könnte auf allgemeine Stressantworten der 

Zelle, wie etwa den Zellzyklus-Arrest, zurückzuführen sein. You et al. zeigten kürzlich, dass 

die Zugabe von Rhein die Lebensfähigkeit von Zellen verringert und Apoptose hervorrufen 

Abbildung 3.18: Konzentrationsbestimmung von Rhein in Zellkultur. (A) Strukturformel 
von Rhein. (B) Effekt von Rhein auf die Modifikationsmenge von m5C. Die Modifikations-
menge pro tRNA wurde berechnet und anschließend über die Kontrolle (0 µM) normalisiert. 
100% entspricht einer Änderung von 0% gegenüber der Kontrolle. (C) Effekt von Rhein auf 
die Modifikationsmenge von m1A, m3C und m7G. Berechnungen erfolgten analog zu m5C. 
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kann.310 Außerdem konnten vermehrt reaktive Sauerstoff-Spezies (ROS) nachgewiesen wer-

den, bei Mitochondrien war ein Verlust des Membranpotentials zu vermerken und die Transla-

tion einiger Proteine wurde beeinflusst. Die Veränderung des Modifikationsprofils bei Zugabe 

von Rhein kann statt durch spezifische Inhibition von ALKBH3 demnach auch indirekt über 

eine Kaskade von Stressantworten der Zelle bewirkt werden. 

Vorerst wurden die Konzentrationen 10 µM und 50 µM zur Erhebung weiterer Daten ausge-

wählt. Der Versuchsaufbau gestaltet sich ähnlich wie zuvor, mit dem Unterschied, dass Zellen 

zu unterschiedlichen Zeitpunkten geerntet werden. Dies sollte mehr Aufschluss über den Ein-

fluss der Kultivierungsdauer, bei paralleler Anwendung einer niedrigen und hohen Konzentra-

tion von Rhein geben. Erneut wurde die Modifikationsmenge von m1A, m3C, m7G und m5C 

analysiert. 

Für keine der analysierten Modifikationen ist eine nennenswerte Veränderung über die Zeit 

oder abhängig von der Rhein-Konzentration zu erkennen (Abbildung 3.19). Dies entspricht 

den Ergebnissen der Kultivierung über 2 Tage aus dem vorherigen Experiment. Beide Experi-

mente wurden im gleichen Zeitraum durchgeführt, was die höhere Reproduzierbarkeit dieser 

Ergebnisse erklären könnte. Die absoluten Modifikationsmengen pro tRNA-Molekül befinden 

sich ebenfalls in einem plausiblen Bereich, wodurch die Stichhaltigkeit der Ergebnisse erhöht 

wird. Dennoch ist abhängig von Rhein, wider Erwarten keine Veränderung des Modifikations-

profils zu erkennen. Ein Grund hierfür könnte die Maskierung der Demethylierung durch neu 

entstehende Modifikationen sein. Eine Abnahme der Modifikationsdichte in den Kontroll-Zel-

Abbildung 3.19: Zeitlicher Verlauf der Modifikationsmenge bei Rhein-Zugabe. Zellen 
wurden verschiedenen Konzentrationen an Rhein (0 µM, 10 µM, 50 µM) ausgesetzt und zu 
unterschiedlichen Zeitpunkten (0 h, 6 h, 24 h, 48 h) geerntet. tRNA wurde über SEC aufgerei-
nigt und nach Verdau zu Nukleosiden über LC-MS/MS analysiert. m1A, m3C und m7G sind 
potenzielle Substrate von ALKBH, während m5C als Kontrolle dient. 
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len würde somit von der parallelen Modifizierung neuer tRNA-Moleküle verdeckt werden. An-

dererseits könnte eine Zunahme der Modifikationsdichte in den ALKBH-inhibierten Zellen 

durch die vermehrte Produktion unmodifizierter tRNA-Moleküle maskiert werden. In beiden 

Fällen kann durch das Design eines geeigneten NAIL-MS Experiments der jeweilige Störfaktor 

getrennt analysiert, um somit die Dynamik der originalen tRNA-Moleküle verfolgt werden. 

Entsprechend wurden Zellen in unmarkiertem Medium kultiviert. Bei der Zugabe von 50 µM 

Rhein wurde auf isotopenmarkiertes Medium gewechselt (Abbildung 3.20). Alle neu entste-

henden tRNA-Moleküle werden somit isotopenmarkiert und können von den originalen, bereits 

existierenden unterschieden werden. Die Zugabe von D3-Methionin stellt sicher, dass erneute 

Methylierungsprozesse nicht mit der Verfolgung der originalen methylierten Modifikationen 

interferiert. Erneut zeigt sich für m5C, welches kein Substrat von ALKBH3 darstellt, ein zu 

m1A, m3C und m7G vergleichbarer Effekt (Abbildung 3.20 B/C). In der Kontrolle ist ein Ab-

Abbildung 3.20: Zeitlicher Verlauf der Modifikationsmenge über NAIL-MS. (A) Design 
des NAIL-MS Experiments. Verwendet wurden 50 µM Rhein oder dasselbe Volumen DMSO 
als Kontrolle. (B) Effekt von Rhein auf die Modifikationsmenge von m5C (als Kontrolle). Die 
Modifikationsmenge pro tRNA wurde berechnet und anschließend über die Menge des Zeit-
punkts 0 h (100 %) normalisiert. 100 % entspricht daher keiner Änderung gegenüber des Start-
wertes. (C) Effekt von Rhein auf die Modifikationsmenge von m1A, m3C und m7G. Berech-
nungen erfolgten analog zu m5C. Alle Datenpunkte geben den Mittelwert und die Standardab-
weichungen aus n = 4 biologischen Replikaten für den Zeitpunkt 24 h und aus n = 2 biologi-
schen Replikaten für die restlichen Zeitpunkte wieder. 
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sinken der Modifikationsmenge nach 6 h zu verzeichnen. Nach ~ 30 h führt dies zu einer Hal-

bierung der ursprünglichen Modifikationsdichte. Lediglich m3C zeigt erneut abweichendes 

Verhalten. Hier bleibt das Modifikationslevel über längere Zeit konstant und beginnt erst ab 

24 h leicht abzusinken. Wie zu erwarten, kann nach 48 h für m1A, m3C und m7G in der durch 

Rhein inhibierten Kultur jeweils mehr originale Modifikation nachgewiesen werden. Dies 

könnte auf die Inhibition von ALKBH3 durch Rhein und die daraus folgende geringere Deme-

thylierungsrate zurückzuführen sein. Da der gleiche Effekt für m5C zu verzeichnen ist erscheint 

dieses Szenario allerdings unwahrscheinlich. Erneut zeichnet sich ab, dass die Zugabe von 

Rhein zwar Änderungen im Modifikationsprofil hervorruft, dies allerdings nicht auf die gezielte 

Inhibition von ALKBH3 zurückzuführen ist, sondern auf allgemeine Stressantworten der 

Zelle.310 Die Abnahme originaler Modifikationen kann somit sowohl durch aktive Demethylie-

rung als auch durch präferentielle Degradation der modifizierten tRNA-Moleküle hervorgeru-

fen werden. Wird dem Zellkulturmedium Rhein supplementiert kommt es zu einem Zellzyklus-

Arrest. Neue tRNA-Moleküle werden kaum noch synthetisiert, originale tRNA-Moleküle zu 

einem geringeren Ausmaß abgebaut. Die Modifikationsdichte in gestressten Zellen sinkt daher 

langsamer als in der Kontroll-Kultur. 

Es erscheint sinnvoll in zukünftigen Experimenten eine Inhibition von ALKBH3 durch Rhein 

mit der (vorherigen) Zugabe alkylierender Agenzien wie beispielsweise Methylmethansulfonat 

(MMS) zu kombinieren. Durch MMS entstehen in erster Linie m7G-Schäden an DNA und 

RNA, aber auch m1A und m3C Schäden konnten nachgewiesen werden. Eventuell kann ein 

erhöhtes Level dieser Modifikationen mehr Einblick in die Mechanismen bringen, welche 

durch die anschließende Zugabe von Rhein ausgelöst werden. Aufgrund der aktuellen Daten-

lage ist nicht gänzlich klar, ob Rhein eine spezifische Inhibition der ALKBH-Enzyme (hier 

ALKBH3) bewirkt oder ob die berichteten Effekte308, 309 durch eine allgemeinere Reaktion der 

Zellen auf Rhein hervorgerufen wurden. 
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 Auswirkung von Methylierungs-Stress auf DNA 

In Heiss et al. (Nat. Comm., 2021) wurde auf den Effekt alkylierender Agenzien, speziell von 

Methylmethansulfonat (MMS) auf tRNA-Moleküle eingegangen. MMS wird größtenteils in 

der Methylierung von DNA angewandt, da dort quantitativ die meisten Schäden entstehen.311 

In RNA werden weitaus weniger Nukleoside methyliert, weshalb für die Detektion dieser in 

Heiss et al. die Anwendung von NAIL-MS notwendig war. Der Unterschied im Ausmaß der 

Methylierungs-Schäden zwischen DNA- und RNA-Molekülen soll im Folgenden direkt mitei-

nander verglichen werden. Nach der Inkubation mit 1 mM MMS wurde daher sowohl die DNA 

als auch die RNA aus derselben Kultur aufgereinigt. Als Kontrolle diente eine Kultur, welche 

mit einer äquivalenten Menge an PBS inkubiert wurde. (Abbildung 3.21 A). DNA und RNA 

wurden analog zu Nukleosiden verdaut und die Modifikationsmenge von m7G, m3C, m1A und 

m6A pro 1000 Nukleoside ermittelt. In DNA wurden die entsprechenden Desoxynukleoside 

analysiert, welche der Einfachheit halber im folgenden Abschnitt und den dazugehörigen Ab-

bildungen direkt mit den Nukleosiden aus RNA verglichen werden. Zur besseren Visualisie-

rung der Ergebnisse wurde die Differenz zwischen der mit MMS gestressten Kulturen und der 

Kontroll-Kulturen gebildet (Abbildung 3.21 B/C). 

Der primär durch MMS entstehende Schaden ist dm7G in DNA. Hier beträgt der Anstieg bei 

Inkubation mit MMS konstant 0,35 Modifikationen pro 1000 Nukleoside. Da dm7G nicht na-

türlich in DNA vorkommt, kann hier von einem ausgeprägten Effekt gesprochen werden. Für 

dm1A und dm6A konnten ebenfalls Signale quantifiziert werden, diese befanden sich jedoch im 

substöchiometrischen Bereich (< 0,001 Modifikation pro 1000 Nukleoside). Für dm3C konnte 

kein Signal detektiert werden. Bei dm1A könnte es sich auch um dm3A handeln, welches in 

DNA in Folge von MMS-Stress entsteht.311 Aufgrund nicht vorhandenem Standards konnte 

dies allerdings nicht genauer untersucht werden. Als Kontrolle wurde die Menge von dm5C 

quantifiziert, welches kein Produkt von MMS-Schädigung darstellen sollte. Wie erwartet ist 

hierfür das Level in DNA recht konstant (Abbildung S7).  

Während in DNA fast ausschließlich dm7G nachgewiesen werden konnte, wurden in tRNA 

m7G, m3C, m1A und geringe Mengen an m6A detektiert. Da diese Modifikationen standardmä-

ßig in tRNA inkorporiert werden ist es in unmarkierter Zellkultur kaum möglich den Einfluss 

von MMS auf die Menge dieser festzustellen. In Heiss et al. gelang dies durch die Anwendung 

von NAIL-MS, im hier gezeigten Experiment kann aufgrund der hohen Varianz im Vergleich 

zur geringen Änderung jedoch kein Fazit gezogen werden. So ist der Anstieg von 16,6 auf 16,8 

m1A pro 1000 Nukleoside in tRNA zwar ähnlich stark ausgeprägt wie der von dm7G in DNA, 
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die Abweichung zwischen den Replikaten ist allerdings zu hoch um dies als eindeutigen Effekt 

einordnen zu können. Ähnlich verhält es sich für die anderen Modifikationen in tRNA. Ledig-

lich für m5C konnte ein leichter Anstieg in der gestressten Kultur beobachtet werden (Abbil-

dung S7). Während m5C nicht direkt durch die Schädigung, ausgehend von MMS entstehen 

sollte, ist es möglich, dass allgemeine Anpassungsreaktionen der Zelle zu diesem Ergebnis füh-

ren. Im Gegensatz zu DNA und rRNA, kann das Level von tRNA-Molekülen sehr dynamisch 

reguliert werden. Eine verringerte Menge an tRNA-Molekülen und damit kanonischen Nukle-

osiden würde somit die Normalisierung verzerren. Tatsächlich war die Menge an detektierten 

Nukleosiden in der gestressten Kultur ~ 2× geringer und könnte somit den beobachteten An-

stieg von m5C in tRNA erklären. Im Gegensatz zu m5C sind m7G, m3C, m1A und m6A in tRNA 

weitaus seltener vertreten. Eine entsprechende Anpassung könnte für diese daher geringer aus-

fallen. 

Abbildung 3.21: Vergleich von MMS-Schäden in DNA und RNA. (A) Zellen wurden für 
eine Stunde mit 1 mM Methylmethansulfonat (MMS) gestresst. Anschließend wurden DNA 
und RNA aus der gleichen Kultur extrahiert. (B) Absolute Modifikationsmenge pro 1000 Nuk-
leoside in DNA, tRNA und Gesamt-RNA in einer Kontrolle und den gestressten Zellen. Die 
Balken geben den Mittelwert und die Standardabweichungen von n = 3 biologischen Replikaten 
wieder. (C) Die absolute Differenz aus gestressten Zellen und der Kontrolle. Die Balken geben 
den Mittelwert und die Standardabweichungen von n = 3 biologischen Replikaten wieder. Hier-
für dienten 3 Kontroll-Kulturen und 3 MMS-inkubierte Kulturen. Von den Werten je einer ge-
stressten Kultur wurde der Mittelwert der ungestressten Kulturen subtrahiert. 
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In Gesamt-RNA, welche größtenteils rRNA enthält, scheint wie in DNA ein signifikanter An-

stieg von m7G in Erscheinung zu treten. So ist in der gestressten Kultur ein Anstieg von 0,2 m7G 

pro 1000 Nukleoside zu verzeichnen. Hier wäre eine genauere Untersuchung des Effekts von 

MMS auf 18S rRNA und 28S rRNA interessant.  

In einem weiterführenden Experiment sollte die potenzielle Reparatur von Methylierungs-

Schäden in DNA über NAIL-MS verfolgt werden. Wie bereits in Heiss et al. gezeigt, kann eine 

vollständige Isotopenmarkierung der DNA durch die Zugabe von 15N2,13C5-Uridin 15N5-Adenin 

und D3-Methionin erzielt werden. Zellen wurden daher über eine Dauer von 7 Tagen in isoto-

penmarkiertem Medium kultiviert. Für die Zugabe von 1 mM MMS wurde auf unmarkiertes 

Medium gewechselt, welches wiederum nach 1 Stunde Inkubation durch frisches, unmarkiertes 

Medium ersetzt wurde. Um den potenziellen Abbau der entstandenen Schäden zu verfolgen 

wurden Zellen nach festgesetzten Zeitpunkten geerntet (Abbildung 3.22 A). Die Verwendung 

von isotopenmarkiertem Medium zu Beginn des Experiments stellt sicher, dass lediglich Schä-

den, welche durch direkte Methylierung ausgehend von MMS entstehen, analysiert werden. 

Potenzielle enzymatische Methylierungen – wie sie in DNA für dm7G ohnehin nicht zu erwar-

ten wären – können durch die Zugabe von D3-Methionin bei der Auswertung gesondert analy-

siert werden (wie erwartet konnten diese Isotopologe nicht nachgewiesen werden). Im voran-

gegangenen Experiment konnte lediglich dm7G als maßgebender Schaden in DNA festgestellt 

werden. Dieses Ergebnis konnte durch das NAIL-MS Experiment bestätigt werden, weshalb im 

Folgenden auf die Darstellung weiterer MMS-Addukte verzichtet wird. Relative Modifikati-

onsmengen von dm5C dienen der Kontrolle. 

Zuerst wurde die Summe aller Isotopologe gebildet um ein Experiment ohne Isotopenmarkie-

rung zu simulieren. Ein Vergleich zeigt hier eindeutig, dass das Level an dm5C konstant bleibt 

und sich zwischen der gestressten und der Kontroll-Kultur nicht maßgeblich unterscheidet. Da-

hingegen entsteht, ausgelöst durch MMS, eine signifikante Menge an dm7G in DNA (Abbil-

dung 3.22 B). Die absoluten Mengen sind vergleichbar mit den zuvor quantifizierten. Erst nach 

24 h ist ein Rückgang von ~ 50 % des Schadens zu verzeichnen. Hier stellt sich die Frage nach 

der molekularen Ursache. Daher wurden die Ergebnisse für originale (isotopenmarkierte) und 

neue (unmarkierte) DNA-Moleküle getrennt dargestellt (Abbildung 3.22 C). Bei der Betrach-

tung geschädigter originaler DNA-Moleküle fällt auf, dass das Ausmaß des Absinkens nach 

24 h weitaus geringer ausgeprägt ist, als es zuvor ohne Beachtung der Isotopenmarkierung der 

Fall war. In neuen DNA-Molekülen, welche ebenfalls dm7G-Schäden aufweisen ist der Rück-

gang dagegen weitaus stärker ausgeprägt. Dies kann durch die Verdünnung geschädigter DNA 
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durch in den sich teilenden Zellen neu synthetisierte DNA begründet werden. Dieser Effekt 

kann aufgrund der Isotopenmarkierung für originale DNA-Moleküle vernachlässigt werden. 

Das Absinken kann dort entweder auf die Reparatur der entsprechenden DNA-Moleküle zu-

rückgeführt werden, oder stellt die Apoptose der betroffenen Zellen, und somit die Degradation 

der geschädigten DNA dar. Apoptotische Zellen werden aufgrund der Tatsache, dass diese nicht 

mehr am Boden der Zellkulturschale haften, beim Absaugen des Mediums vor der Ernte ent-

fernt und beeinflussen die Ergebnisse daher nicht. Verbleibende Zellen weisen eine geringere 

Menge an Schäden auf und verringern somit die vorgefundene Menge an dm7G. Einer Repara-

tur würde durch das Zusammenspiel von Methylpurin-N-Glykosylasen (MPG)312–315 und der 

daraus resultierenden Basen-Exzisionsreparatur316 erfolgen.  

Abbildung 3.22: NAIL-MS „Pulse-Chase“-Experiment an DNA unter MMS-Stress. (A) 
Design des Experiments. Die DNA von Zellen wurde über 7 Tage isotopenmarkiert. Anschlie-
ßend wurde bei Zugabe von Methylmethansulfonat (MMS) auf unmarkiertes Medium gewech-
selt. Zellen wurden 1 Stunde mit MMS inkubiert (-1 h – 0 h, gelb hinterlegter Bereich). An-
schließend wurde das Medium erneut abgenommen und durch frisches unmarkiertes Medium 
ersetzt. Zellen wurden nach festgesetzten Zeitpunkten geerntet und die DNA extrahiert. (B) 
Summe aller Isotopologe der jeweiligen Modifikation. *Für dm5C lag zum Zeitpunkt der Da-
tenerhebung kein Standard vor, daher werden hier nur relative Werte angegeben. (C) Links: 
m7G Modifikationen welche durch Schädigung originaler Nukleoside entstanden. Rechts: m7G 
Modifikationen welche durch Schädigung neuer Nukleoside entstanden. Die Datenpunkte ge-
ben den Mittelwert und die Standardabweichungen von n = 3 biologischen Replikaten wieder. 
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Anhand der erhobenen Daten kann nicht geklärt werden welcher der beiden Mechanismen aus-

schlaggebend für den Rückgang von dm7G ist. Eine Reparatur der ermittelten Schäden würde 

erst nach 24 h erfolgen und lediglich ~ 20 % der geschädigten Positionen betreffen. In diesem 

Fall könnte argumentiert werden, dass entsprechende Schäden zu geringen Ausmaßes sind um 

eine aktive Demodifizierung durch entsprechende Enzyme einzuleiten. In diesem Szenario 

scheint ein gewisses Maß an dm7G-Schäden von der Zelle toleriert zu werden. Somit wäre der 

Rückgang nach 24 h eher auf das Absterben geschädigter Zellen zurückzuführen.  

Letztendlich bleibt festzustellen, dass dm7G in DNA von HEK-293-Zellen den primären, durch 

MMS hervorgerufenen Schaden darstellt. Dieser ist aufgrund der Abwesenheit von dm7G in 

ungestresster DNA selbst ohne NAIL-MS quantifizierbar. Weitere bekannte Schäden mono-

funktionaler alkylierender Agenzien sind dm3A und dm3G.311, 312 Diese konnten aufgrund feh-

lender Standards allerdings nicht analysiert werden. Des Weiteren scheint m7G in rRNA in 

Folge des Methylierungs-Stresses zu entstehen. Dieses Phänomen sollte auf Reproduzierbarkeit 

überprüft und gegebenenfalls weiter untersucht werden. Andere Methylierungs-Schäden in 

RNA können nur durch Anwendung von NAIL-MS quantifiziert werden, da diese sonst im 

Hintergrund der natürlich vorkommenden Modifikationen nicht analysierbar sind. Besonders 

interessant ist der Rückgang von dm7G in DNA nach 24 h. Durch die Anwendung von NAIL-

MS kann dies hauptsächlich auf die Verdünnung durch neu entstehende DNA zurückgeführt 

werden. In originaler DNA kann der weitaus geringere Rückgang sowohl durch Absterben der 

entsprechenden Zellen, als auch durch Reparatur der geschädigten DNA begründet sein. Zwei-

teres erscheint aufgrund des geringen Ausmaßes allerdings als eher unwahrscheinlich. 
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 Allgemeine Modifikations-Studien 

Modifikationsdynamik über Passagenanzahl 

Zur Untersuchung der Modifikationsdynamik über die Kultivierungsdauer wurden Zellen 

2-wöchentlich geerntet. Die Gesamt-RNA, als auch die, über SEC angereicherte tRNA wurden 

über Nukleosid-MS analysiert. Vor Start des Experiments wurden frisch aufgetaute Zellen eine 

Woche kultiviert. Die Modifikationsmenge pro 1000 Nukleoside wurde bestimmt und dient der 

Normalisierung der Ergebnisse aller weiteren Wochen. 

Für den Großteil der Modifikationen in tRNA ist kein eindeutiger Trend zu beobachten (Ab-

bildung 3.23). Änderungen in der Modifikationsdichte sind zwar zu erkennen, in den seltensten 

Fällen konnte allerdings eine statistische Signifikanz festgestellt werden. So ist für Cm bei-

spielsweise eine Verringerung von durchschnittlich 27 % nach 4–8 Wochen zu verzeichnen, 

die Ergebnisse weichen zwischen den einzelnen Experimenten allerdings erheblich voneinan-

der ab. Ursache dafür könnten minimale Unterschiede im verwendeten Medium sein. So kön-

nen Degradationsprozesse einzelner Komponenten im Medium, als auch die Verwendung einer 

Abbildung 3.23: Modifikationsdynamik über Passagenanzahl. HEK-293-Zellen wurden 
2-wöchentlich geerntet und die tRNA (links) und Gesamt-RNA (rechts) jeweils über 
Nukleosid-MS analysiert. Der Zeitpunkt Woche = 0 gibt den absoluten Wert der 
entsprechenden Modifikation pro 1000 Nukleoside eine Woche nach Auftauen der Zellen an. 
Dieser wurde als Referenz für alle weiteren Wochen verwendet. Mittelwerte für tRNA wurden 
aus je n = 4 biologischen Replikaten ermittelt (mcm5U, t6A, acp3U und mcm5s2U jeweils aus 
einem Unikat). * = p < 0,05. Für Gesamt-RNA liegt allgemein nur ein Unikat vor. 
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neuen FBS-Charge zu Änderungen im Modifikationsprofil führen. Ähnlich stark ausgeprägt ist 

dieses Phänomen für m1G und m7G. Lediglich für Ψ und m1A scheinen die ermittelten Ände-

rungen reproduzierbar zu sein. Ψ zeigt eine minimale Verringerung von 4–8 %, bei m1A beläuft 

sich diese sogar auf 5–21 %. Beide Modifikationen werden überwiegend in der TΨC-Schleife 

der tRNA eingebaut und die Modifizierung von Ψ55 und m1A58 ist ein elementarer Schritt in 

der Prozessierung von tRNA-Molekülen. Eine Abhängigkeit dieser beiden Modifikationen von-

einander konnte auch in Barraud et al. (Nat. Comm., 2019) bestätigt werden, eine gleichgerich-

tete Änderung der Menge scheint demnach schlüssig. Für die Aufklärung der molekularen Ur-

sachen und Folgen sollten daher weitere Untersuchungen herangezogen werden. 

Bei der Analyse von Gesamt-RNA, welche sich zu ~ 80 % aus rRNA zusammensetzt, ergibt 

sich ein gänzlich anderes Bild. Für die Modifikationen Cm, Gm, Am, Ψ, m6A, m66A und ac4C, 

welche in rRNA vergleichsweise oft vertreten sind, zeigt sich, abgesehen von ac4C, kaum eine 

Änderung über die Kultivierungsdauer. Der Anstieg von ac4C findet bereits nach 2 Wochen 

statt, danach bleibt das Level im Großen und Ganzen konstant. Dahingegen ist für die restlichen 

Modifikationen ein Anstieg nach 6 Wochen und ein darauffolgender Rückgang nach 8 Wochen 

zu verzeichnen. Viele dieser Modifikationen werden größtenteils in tRNA-Moleküle inkorpo-

riert und eine Änderung dieser in Gesamt-RNA könnte somit auch eine Änderung des Verhält-

nisses zwischen rRNA und tRNA widerspiegeln. Nach 6 Wochen wäre ein erhöhtes Level an 

tRNA vorhanden, welches nach 8 Wochen stark verringert ist. Anpassungen dieser Art können 

durch vielfache Auslöser begründet sein. Eine Änderung der allgemeinen tRNA-Abundanz 

kann beispielsweise durch minimale Abweichungen in der Zusammensetzung des Mediums 

hervorgerufen werden. Dies konnte bereits zuvor in Kapitel 3.1.2 Einfluss von NAIL-MS auf 

tRNA-Isoakzeptoren (Northern-Blotting) festgestellt werden. Während kaum Aufschluss 

über die Modifikationsdynamik in tRNA gegeben werden konnte, bleibt festzuhalten, dass bei 

andauernder Kultivierungsdauer der Zellen ein Effekt auf die tRNA-Abundanz vorhanden zu 

sein scheint. 
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tRNA-Modifikationsdynamik über Passagendauer 

Zellen wurden 24 h, 48 h und 72 h nach Aussaat geerntet, die tRNA anschließend aufgereinigt 

und über Nukleosid-MS analysiert. Die Modifikationsmenge pro 1000 Nukleoside wurde für 

alle Zeitpunkte berechnet und die entsprechenden Werte der 48 h und 72 h Zeitpunkte daraufhin 

auf die Werte des 24 h Zeitpunkts referenziert. Nach 24 h erreichten Zellen eine Konfluenz von 

~ 30 %, nach 48 h ~ 75 % und schließlich 100 % nach 72 h. Für 72 h kultivierte Zellen wiesen 

aufgrund Platzmangels in der Zellkultur-Flasche zudem bereits einen veränderten Phänotyp auf. 

Dies äußerte sich in erster Linie durch runde, verkleinerte Zellform.  

Nur wenige Modifikationen weisen eine Veränderung im Modifikationsprofil abhängig von der 

Kultivierungsdauer auf (Abbildung 3.24). Zahlen unterhalb des Diagramms geben die Anzahl 

der jeweiligen Modifikation pro 1000 Nukleoside nach 24 h wieder. Für mcm5s2U, welches nur 

in einigen wenigen tRNA-Isoakzeptoren inkorporiert wird, ist ein leichter Anstieg der Modifi-

kationsmenge nach 48 h zu verzeichnen. Nach 72 h verstärkt sich dieser Effekt und gewinnt an 

Signifikanz. Hier scheint eine Anpassung der Modifikationsmenge abhängig von der Kultivie-

rungsdauer stattzufinden. Die Isolation und Analyse der entsprechenden tRNA-Isoakzeptoren 

im Rahmen eines NAIL-MS Experimentes könnte hier weiteren Aufschluss über die moleku-

laren Mechanismen geben. Am, eine Modifikation, welche ebenso äußerst selten in tRNA-Iso-

Abbildung 3.24: Modifikationsdynamik über Passagendauer. Zellen wurden ausgesät und 
nach 24 h, 48 h und 72 h geerntet. Die tRNA wurde isoliert und über Nukleosid-QQQ 
analysiert. Die Modifikationsmenge wurde pro 1000 Nukleoside berechnet. Die bei 24 h 
quantifizierte Menge wird unterhalb des Diagramms angegeben (#). Diese dienen der 
Normalisierung der jeweils ermittelten Werte nach 48 h und 72 h. Die Datenpunkte geben den 
Mittelwert und die Standardabweichungen von n = 3 biologischen Replikaten wieder. 
 



3.5 Weitere Nicht publizierte Daten 

235 

akzeptoren vorzufinden ist, zeigt nach 48 h einen gleichgerichteten, doch deutlich stärker aus-

geprägten Effekt. Für Am wurden in vorangegangenen Experimenten jedoch oftmals wider-

sprüchliche Ergebnisse erhalten. Während eine Anpassung von Am abhängig von externen Fak-

toren somit wahrscheinlich ist, gestaltete es sich in der Vergangenheit als schwierig einen Trend 

zu erkennen. Auch hier könnte die Isolation und Analyse entsprechender tRNA-Isoakzeptoren 

eventuell weitere Einsichten bieten. 

Wie schon zuvor in Kapitel 3.4 Queuosine-Modifikationen und ihr Auftreten in der Zelle 

beobachtet, zeigt sich erneut ein minimaler, aber dennoch eindeutig statistisch signifikanter 

Anstieg von Gm. Dies kann darauf zurückgeführt werden, dass Zellen für dieses Experiment 

ohne zusätzliche Supplementierung von Queuin kultiviert wurden. Für die Herstellung des Me-

diums wurde nicht dialysiertes FBS verwendet, welches eine geringe Menge an Queuin enthält. 

Schon zuvor wurde gezeigt, dass diese für die volle Modifizierung der Q-Modifikationen nicht 

ausreichend ist. Das im Medium vorhandene Queuin wird zu Anfang des Experiments in tRNA-

Moleküle inkorporiert. Im Laufe der Kultivierung kann eine konstant hohe Menge an Q-Modi-

fikationen in den respektiven tRNA-Isoakzeptoren nicht sichergestellt werden. Eine Verringe-

rung von Queuin im Medium und eine damit verbundene Verringerung von GalQ in tRNATyr 

scheint zu einem ausgeprägten Anstieg von Gm zu führen. In einem separaten Experiment sollte 

untersucht werden, ob ein 24-stündlicher Austausch des Mediums diesen Mangel behebt. In der 

Kontroll-Kultur wurde das Medium ebenfalls abgenommen, allerdings wieder durch das bereits 

verwendete ersetzt. Während in beiden Kulturen das Level an Q mit andauernder Kultivierungs-

dauer abfällt, ist dieser Effekt in der Kul-

tur, welche im Intervall von 24 h mit je-

weils frischem Medium kultiviert wurde, 

um einiges geringer (Abbildung 3.25). 

Für eine ausreichende Menge ist dennoch 

die zusätzliche Supplementierung von 

Queuin notwendig. Ein weiterer Effekt, 

der beobachtet werden kann, ist die Ver-

ringerung von m5C nach 72 h. Auch hier 

ist der Mangel von Queuin entscheidend. 

Die Abwesenheit von ManQ in tRNAAsp 

verringert die Einbaurate von m5C38 und 

führt somit zur ermittelten Abnahme.23 

Abbildung 3.25: Dynamik von Q in Standard-
Medium. Zellen wurden in Standard-Medium, 
ohne zusätzliche Supplementierung von QBase 
kultiviert. Im Intervall von 24 h wurde das Me-
dium gewechselt. Dieses wurde entweder nur ab-
genommen und den Zellen direkt wieder zugege-
ben (gebraucht) oder durch frisches ersetzt 
(frisch). Balken geben den Mittelwert und die 
Standardabweichungen von n = 2 biologischen 
Replikaten wieder. 
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Modifikationsmengen in aufgereinigten RNA-Molekülen 

Abbildung 3.26 stellt in erster Linie eine Zusammenstellung bereits präsentierter Daten in Ta-

bellenform dar und soll als Referenz für zukünftige Experimente dienen. Alle Zellen wurden, 

falls nicht anders vermerkt in Standard-Medium (DMEM D6546 – siehe Kapitel 5.2 Zellkul-

turmethoden) mit Standard-FBS und zusätzlicher Supplementierung von 50 nM Queuin kul-

tiviert. Nach Isolation der Gesamt-RNA wurden 28S rRNA, 18S rRNA, kleine RNAs (80‒300 

Nukleotide) und tRNA-Moleküle über Größenausschlusschromatographie (SEC) angereichert. 

Die einzelnen tRNA-Isoakzeptoren wurden über Oligonukleotid-Hybridisierung aus der tRNA-

Fraktion aufgereinigt. Dabei sollte beachtet werden, dass die Reinheit einiger tRNA-Isoakzep-

toren über Sequenzierung auf < 90 % bestimmt wurde (siehe Kapitel 3.4.2 Effekt von Queu-

osin auf andere Modifikationen). Insbesondere tRNAAsp und tRNAGly konnten nicht effektiv 

voneinander getrennt werden (~ 45 % tRNAAsp). Aus diesem Grund wurden zur Aufreinigung 

dieser beiden tRNA-Isoakzeptoren neue DNA-Oligonukleotide geordert, anhand welcher die 

genaue Modifikationsmenge der beiden tRNA-Isoakzeptoren erneut ermittelt werden sollte. 

5S rRNA und U6 snRNA wurden analog aus der Fraktion der kleinen RNAs aufgereinigt. Für 

die Ermittlung der Daten von U6 snRNA und 5S rRNA wurden zum Teil isotopenmarkierte 

Zellen verwendet, weshalb die Ergebnisse auch hier mit Vorsicht betrachtet werden sollten. 

Alle aufgereinigten RNA-Moleküle wurden anschließend zu Nukleosiden verdaut und über 

Nukleosid-MS analysiert. Für Moleküle mit bekannter Sequenz wurde die Modifikationsmenge 

pro RNA-Molekül berechnet (siehe Kapitel 5.4 Analytik). Lediglich für die durch SEC ange-

reicherte tRNA wurde die Menge pro 60 kanonische Nukleoside ermittelt (~ 1 tRNA-Molekül). 

Berechnete Werte wurden stets auf zwei Nachkommastellen gerundet und geben den Mittelwert 

aus 3 biologischen Replikaten wieder. 
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Abbildung 3.26: Modifikationsmenge in aufgereinigten RNA-Molekülen. Angezeigte 
RNA-Moleküle wurden über Größenausschlusschromatographie und gegebenenfalls Oligonuk-
leotid-Hybridisierung aufgereinigt, zu Nukleosiden verdaut und über Nukleosid-MS analysiert. 
Die Menge ist pro RNA-Molekül angegeben (für tRNA pro 60 kanonische Nukleoside). Weiße
Felder ohne Zahl stehen für Modifikationen welche zwar analysiert aber < 0,01 Modifikationen 
pro RNA-Molekül aufwiesen. Grau hinterlegte Modifikationen wurden nicht analysiert. Die 
Mengen für 5S rRNA und U6 snRNA wurden aus vergleichenden NAIL-MS Experimenten 
ermittelt. Hier können Ungenauigkeiten aufgrund der verwendeten Isotopenmarkierung nicht 
ausgeschlossen werden. Alle Zellen wurden in Standard-Medium unter Supplementierung von 
50 nM QBase kultiviert. Werte geben den Mittelwert aus n = 3 biologischen Replikaten wieder. 
Die relativen Standardabweichungen können Abbildung S8 entnommen werden. 
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4. Fazit & Ausblick 

Alles in Allem kann von einer erfolgreichen Etablierung von NAIL-MS in Zellkultur gespro-

chen werden. Zwar entsteht aufgrund der Zufütterung von Adenin und Uridin eine geringfügige 

Anpassung des Modifikationsprofils, dennoch kann durch die etablierte Isotopenmarkierung 

die Reifung und der Abbau verschiedenster RNA-Moleküle verfolgt werden. Unerwünschte 

Anpassungen sind vermutlich in erster Linie auf die Verunreinigung des isotopenmarkierten 

Uridins zurückzuführen, eine genauere Untersuchung dahingehend sollte in Betracht gezogen 

werden. NAIL-MS beruht auf einem zu SILAC vergleichbaren System. Studien zur Kombinie-

rung beider Methoden laufen aktuell und könnten für einen Durchbruch in der Forschung von 

RNA-modifizierenden Enzymen sorgen. 

Zeitaufgelöste NMR-Experimente stellen eine orthogonale Alternative zur NAIL-MS Metho-

dik dar, weisen jedoch Limitierungen in der in vivo Anwendung auf. Dennoch konnte eine Hie-

rarchie im Einbau von Modifikationen in S.cerevisiae tRNAPhe festgestellt werden. Dies hebt 

das dynamische Zusammenspiel vieler Modifikationen und der entsprechenden Enzyme hervor. 

Stressexperimente deuten darauf hin, dass ALKBH3 nicht, wie bisher erwartet, von Rhein in-

hibiert wird. Vielmehr scheint die Zugabe von Rhein in den Zellen eine Kaskade von Reaktio-

nen hervorzurufen, welche letztendlich zu einer Anpassung des Modifikationsprofils führt. Eine 

Anpassung der m3C- und m1A-Menge ist demnach nicht primär auf die selektive Inhibition von 

ALKBH3 zurückzuführen, sondern stellt eine Reaktion der Zelle auf die allgemeine Stressant-

wort dar. Falls Rhein für die Inhibition von ALKBH3 in Betracht gezogen wird, sollten zuvor 

weitere Untersuchungen zur Spezifität durchgeführt werden. 

In Heiss et al. (Nat. Comm., 2021) wurde der Effekt von MMS auf RNA-Moleküle untersucht. 

Zuvor wurde MMS größtenteils für die Methylierung von DNA verwendet. Ein direkter Ver-

gleich zwischen MMS-ausgelösten Schäden in DNA und RNA konnte zeigen, dass das Haupt-

addukt wie erwartet m7dG in DNA ist. Ebenso konnte geklärt werden, dass der Rückgang der 

m7dG-Schäden in DNA größtenteils auf die Verdünnung durch neu entstehende DNA zurück-

geführt werden kann. Ob Schäden in bedeutungsvoller Menge von DNA-Molekülen abgenom-

men werden bleibt unklar. Ein Rückgang der m7dG-Menge in originalen DNA-Strängen könnte 

ebenso auf das Absterben der entsprechenden Zellen zurückgeführt werden. Weitere, nicht in 

dieser Arbeit untersuchte aber bekannte Schäden in DNA sind m3dA und m3dG. In zukünftigen 

Studien sollten diese in die Analytik aufgenommen werden. 
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Eine erhebliche Menge m7G entsteht ebenfalls in ribosomaler RNA. Ob der Schaden in 18S 

rRNA, in 28S rRNA oder in beiden Molekülen entsteht wurde bisher nicht untersucht, sollte 

jedoch durch zukünftige Experimente geklärt werden. In unmarkierter Zellkultur konnte eine 

Schädigung an tRNA-Molekülen aufgrund hoher allgemeiner Abundanz der entsprechenden 

Modifikationen nicht nachgewiesen werden. NAIL-MS Experimente zeigten jedoch auch dort 

einen deutlichen Anstieg von, durch MMS induziertem m7G. Dies zeigt die Stärke und das 

Potenzial von NAIL-MS auf. Gerade die Untersuchung niedrig-abundanter Modifikationen und 

deren Dynamik kann durch NAIL-MS gefördert werden.  

So konnte ebenfalls gezeigt werden, dass die Menge an m5U im frühen Lebenszyklus von 

tRNA-Molekülen weitaus höher als erwartet ist. Eine mögliche Erklärung wäre der Einbau von 

m5U in die entsprechenden tRNA-Isoakzeptoren, welche anschließend im Zuge der Reifung 

wieder von den RNA-Molekülen abgenommen wird. Eine solche aktive Demodifizierung als 

Teil des Reifungsprozesses von tRNA-Molekülen wurde bisher nicht beschrieben und wäre 

eine eindrucksvolle Entdeckung. 

Mitunter am interessantesten sind die Untersuchungen zur Supplementierung von Queuin in 

Zellkultur. Queuin, die Nukleobase von Queuosin, kann von Eukaryoten nicht hergestellt wer-

den und muss daher über die Nährstoffe aufgenommen werden. Ein geringer Anteil befindet 

sich in Standard-FBS, für eine volle Modifizierung der Q-Modifikationen in Zellkultur ist al-

lerdings eine zusätzliche Supplementierung notwendig. Die Abwesenheit von Queuin in Zell-

kultur führt offenbar zu einer Anpassung der Q-abhängigen tRNA-Isoakzeptor-Abundanz. Au-

ßerdem konnten teilweise erhebliche Unterschiede im Modifikationsprofil festgestellt werden. 

Besonders die Menge an 2‘-O-Methylguanosin (Gm) in tRNATyr steigt beim Fehlen von Queuin 

stark an (10×‒20×). Obwohl die absolute Menge äußerst gering ist (< 0,1 Gm pro tRNA-Isoak-

zeptor), kann ohne große Zweifel von einem eindeutigen Effekt gesprochen werden. Auch die 

Inkorporationsrate von m22G ändert sich abhängig von der Zufütterung von Queuin. Obwohl 

final eine identische Modifikationsmenge erreicht wird, kann in tRNA-Molekülen ohne Galak-

tosyl-Queuosin eine deutlich schnellere Inkorporation von m22G beobachtet werden. Eine mög-

liche Erklärung ist die sterische Hinderung von TRMT1 durch Galaktosyl-Queuosin. 

Einige andere Modifikationen dagegen zeigen eine verbesserte Inkorporationsrate, wenn die 

jeweilige Q-Modifikation anwesend ist. So konnte gezeigt werden, dass eine größere Menge 

m5C38 in tRNAAsp inkorporiert wird, wenn dem Medium Queuin zugegeben wird. Dieser Ef-

fekt manifestiert sich schon bei unvollständiger Modifizierung der Position 34 (ManQ), kann 

durch NAIL-MS aber dennoch auf die bessere Erkennung des entsprechenden Enzyms der 
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tRNA aufgrund von ManQ zurückgeführt werden. Ein ähnlicher Effekt wird für m1Ψ in 

tRNATyr postuliert. m1Ψ wurde nicht analysiert, allerdings konnte bei Fehlen von Queuin eine 

höher als zu erwartende Menge an Ψ festgestellt werden. Eine mögliche Erklärung wäre die 

unvollständige Prozessierung der Ψ39-Modifikation zur berichteten m1Ψ39-Modifikation. 

Diese wäre demnach ebenfalls abhängig von der Zufütterung von Queuin und des entsprechen-

den Einbaus von GalQ an Position 34. Daher sollte m1Ψ und andere weitermodifizierte Ψ-Mo-

difikationen in zukünftigen Experimenten in die Analytik aufgenommen werden. 

Zusammenfassend konnte NAIL-MS in Zellkultur erfolgreich etabliert werden und somit Ein-

blicke in vielfältige molekulare Prozesse bieten (Abbildung 4.1). Besonders die Anpassungen 

des Modifikationsprofils abhängig von der Verfügbarkeit von Queuin im Zellkulturmedium er-

scheinen interessant und sollten eingehender untersucht werden. Gerade im tRNATyr
GUA-Isoak-

zeptor treten weitreichende Veränderungen des Modifikationsprofils auf, weshalb sich dieser 

für weitere Untersuchungen besonders anbietet. 

 

Abbildung 4.1: Zusammenfassung der Arbeit. Die Etablierung von NAIL-MS in Zellkultur 
stand im Mittelpunkt der Arbeit. Mithilfe von NAIL-MS sollte die Auswirkung vom Nährstoff-
angebot (hier: Queuin) und von Zellstress (hier: Rhein, MMS, NaAsO2) auf die Modifikations-
dynamik und die allgemeinen Reifungsprozesse von RNA-Molekülen untersucht werden. 
NAIL-MS ermöglichte die Diskriminierung verschiedener Adaptionsmechanismen. Rot = Me-
dium 1, hier unmarkiert (unm); blau = Medium 2, hier isotopenmarkiert (iso); gelbe Sterne = 
Modifikationen; grün = entsprechende Kapitelnummern; grüne Häkchen = erfolgreiche An-
wendung. 
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5. Material und Methoden 

Die im Folgenden beschriebenen Materialien und Vorgehensweisen beziehen sich auf die un-

veröffentlichten Ergebnisse. Protokolle zu Materialien und Methoden der veröffentlichten Er-

gebnisse finden sich direkt in der Publikation unter der Sektion „Materials and Methods“ oder 

in den jeweiligen Zusatzinformationen. Lediglich interne Hinweise oder detailliertere Beschrei-

bungen zur Durchführung der bereits in den Publikationen beschriebenen Verfahren werden in 

diesem Abschnitt ergänzt. 

5.1 Materialien 

Chemikalien und Nukleoside 

Alle Salze und Chemikalien wurden, sofern nicht anders vermerkt, von Sigma-Aldrich (Mün-

chen, Deutschland) in molekular-biologischer Qualität erhalten. Zellkulturmedien sowie 

Trypsin und PBS wurden ebenfalls von Sigma-Aldrich erhalten. FBS (dialysiert und nicht dia-

lysiert) wurden von BioWest SAS (Nuaillé, Frankreich) bezogen. Die isotopenmarkierten Ver-

bindungen 13C5,15N2-Uridin (Ribose-13C5, 98%; 15N2, 96–98%) und 15N5-Adenin (15N5, 98%) 

wurden von Cambridge Isotope Laboratories (Tewksbury, MA, USA) bezogen. (D3)-L-Methio-

nin (98 Atom-% D) wurde von Sigma-Aldrich bezogen. Lösungsmittel in LC-MS Qualität 

(Acetonitril, Isopropanol, Methanol) wurden von der Firma Roth (Karlsruhe, Deutschland) be-

zogen. Lösungsmittel in HPLC Qualität wurden von VWR (Darmstadt, Deutschland) bezogen. 

Puffer und Chemikalien für TBE-Harnstoff-Gele sowie für Northern-Blot-Analytik wurden 

ebenfalls von Roth bezogen. SSPE-Puffer (20×) wurde von Sigma-Aldrich bezogen. Denhardt's 

Lösung (50×) wurde von Thermo Fisher (Waltham, MA, USA) bezogen. Alle Lösungen und 

Puffer wurden mit Wasser aus einer Sartorious arium® Pro Reinstwasseranlage (Göttingen, 

Deutschland) hergestellt. Die Nukleoside Adenosin, Cytidin, Guanosin und Uridin wurden von 

Sigma-Aldrich erworben. Dihydrouridin (D) wurde von Apollo Scientific (Stockport, UK) er-

worben. N6-Threonylcarbamoyladenosin (t6A) wurde von TRC (North York, Kanada) erwor-

ben. N6-Dimethyladenosin (m66A) wurde von Alfa Chemistry (New York, USA) erworben. 

Queuosin (Q), N3-Methyluridin (m3U), N6-Isopentenyladenosin (i6A), 2-Methylguanosin 

(m2G) und 5-Methoxycarbonylmethyluridin (mcm5U) waren großzügige Geschenke des De-

don-Labors. 1-Methylinosin (m1I) war ein großzügiges Geschenk von STORM Therapeutics 

LTD (Cambridge, UK). Galaktosyl-Queuosin war ein großzügiges Geschenk des Carell-La-
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bors. 3-(3-Amino-3-carboxypropyl)uridin (acp3U) wurde von Christoph Borek aus dem eige-

nen Arbeitskreis (AK Kellner) synthetisiert. Alle weitere RNA-Nukleoside wurden von Carbo-

synth (Newbury, UK) erworben. 1-Methyldesoxyadenosin (m1dA) und 3-Methyldesoxycytidin 

(m3dC) wurden von Jena BioScience (Jena, Deutschland) bezogen. 6-Methyldesoxyadenosin 

(m6dA) wurde von Carbosynth bezogen. Alle anderen Desoxynukleoside wurden von Sigma-

Aldrich (München, Deutschland) bezogen. Für alle hier nicht ausgewiesenen Materialien wird 

die Herkunft im jeweiligen Kapitel angegeben. 

Geräte 

Tabelle 5.1: Geräteliste 

Gerät Genaue Bezeichnung 

CO2-Inkubator 
Thermo Scientific Heracell™ VIOS 160i CO2-Inkubator 

mit Edelstahlkammer 

LaminarFlow Hood Thermo Scientific Safe 2020 

automatischer Zellzähler Invitrogen Countess® II automated cell counter 

HPLC Agilent 1100 HPLC System 

LC-MS/MS 
Agilent 1260 Infinity II LC System 

Agilent 6470A QQQ mit Jet Stream ESI-Quelle 

SpeedVac Genevac EZ-2 Plus Evaporating System 

Nanophotometer Implen NanoPhotometer® N60 

Bioanalyzer Agilent 2100 Bioanalyzer 

Thermocycler SensoQuest Labcycler 

Voltmeter (PAGE) Pharmacia Biotech Elektrophorese Netzteil EPS 600 

Voltmeter (NB) BioRad PowerPac™ HC High-Current Power Supply 

UV-Crosslinker Stratagene Stratalinker® UV Crosslinker 1800 

Schüttel-Inkubator (NB) BioSan Orbital Shaker-Incubator ES-20 

Imaging-Gerät (NB) Amersham Imager 680 blot and gel imager 

HRMS 
Thermo Scientific Dionex Ultimate 3000 LC System 

Thermo Scientific LTQ Orbitrap XL mit HESI-Quelle 

 



5.1 Materialien 

245 

Medien und Stocklösungen für Zellkultur 

•  „Standard-Medium“:* 44 mL DMEM D6546, 5 mL FBS (nicht dialysiert ODER dialy-

siert), 1 mL L-Glutamin (50×), 5 µL Queuin (10.000×) 

• „Spezial-Medium“: 42,4 mL DMEM D0422, 5 mL FBS (meist dialysiert), 1 mL L-Glu-

tamin (50×), 1 mL Adenin (50×), 500 µL Uridin (100×), 100 µL Methionin (500×), 40 µL 

Cystin (1250×), 5 µL Queuin (10.000×) 

• „Quenching-Medium“:** 45 mL DMEM D6546 ODER DMEM D4022, 5 mL FBS 

(nicht dialysiert ODER dialysiert) 

• „Auftau-Medium“: 39 mL DMEM D6545, 10 mL FBS (nicht dialysiert), 1 mL L-Gluta-

min (50×), 5 µL Queuin (10.000×) 

• „2× Kryo-Stock“: 8 mL FBS (nicht dialysiert), 2 mL DMSO 

* Gegebenenfalls wurde dem Standard-Medium zusätzlich Adenin und Uridin supple-

mentiert. Entsprechend hing die Wahl von nicht dialysiertem oder dialysiertem FBS 

von der Gestaltung des Experiments ab und wird jeweils explizit angegeben. 

** Quenching-Medium dient dem Quenching von Trypsin bei der Subkultivierung von 

Zellen und wurde mit den zum jeweiligen Experiment passenden Medium und FBS 

hergestellt. Somit können insbesondere bei den isotopenmarkierten Varianten von A-

denin und Uridin Einsparungen vorgenommen werden. 

Tabelle 5.2: Herstellung der Stocklösungen für die Verwendung in Zellkultur. Aliquots 
von Glutamin, Uridin und Queuin wurden bei ‒20 °C gelagert. Alle weiteren Stocklösungen 
wurden bei 4 °C gelagert. Einwaagen sind für die jeweilige Konzentration der unmarkierten 
Varianten angegeben. Bei Verwendung der isotopenmarkierten Varianten wurde die Einwaage 
entsprechend angepasst. Alle Stocklösungen wurden nach der Herstellung steril filtriert und 
gegebenenfalls aliquotiert. Die nötige Verdünnung in Zellkulturmedium ist in Klammern ange-
geben. 

Stocklösung Herstellung 

200 mM  Glutamin (50×) 292 mg in 10 mL MilliQ-Wasser 

325 mM  Cystin (1250×) 
157 mg in ~ 1 M HCl (1 mL HCl konz. + 11 mL 

MilliQ-Wasser 

100 mM  Methionin (500×) 153 mg in 10 mL MilliQ-Wasser 

5 mM  Adenin (50×) 6,8 mg in 10 mL MilliQ-Wasser 

20 mM  Uridin (100×) 24,4 mg in 5 mL MilliQ-Wasser 

0,5 mM  Queuin (10.000×) 1,4 mg in 10 mL MilliQ-Wasser 
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SEC-Puffer 

In eine saubere 1 L Labor Gewindeflasche wurden 7,7 g NH4OAc (molekular-biologische Qua-

lität) gegeben und mit 1000 mL hochreinem Wasser aufgefüllt, sodass eine 1 M Lösung vorlag. 

20× SSC Puffer 

Zu 2 mL einer 1,5 M Trinatriumcitrat-Lösung (pH 7,0) wurden 1,75 g NaCl zugegeben. Es 

wurde mit reinem Wasser auf ein Gesamtvolumen von 10 mL aufgefüllt. Endkonzentrationen: 

Trinatriumcitrat-Lösung (300 mM), NaCl (3 M). Andere Konzentrationen des SSC Puffers 

wurden durch entsprechende Verdünnung des 20× SSC Puffer mit MilliQ-Wasser hergestellt. 

1× B&W Puffer 

584 mg NaCl wurden mit 38,5 µL einer 1M EDTA Lösung und 50 µL einer 1 M Tris-HCl Lö-

sung (pH 7,5) vereint. Dieses Gemisch wurde mit hochreinem Wasser auf ein Gesamtvolumen 

von 10 mL gebracht. Endkonzentrationen: NaCl (1 M), EDTA (0,5 mM), Tris-HCl (5 mM). 

4× Hybridisierungs-Puffer (MBN) 

2,98 g HEPES und 1,86 g KCl wurden in 45 mL 5 % (v/v) DMSO gelöst und mit 1 M HCl auf 

pH 7 eingestellt. Anschließend wurde mit 5 % (v/v) DMSO auf ein Gesamtvolumen von 50 mL 

aufgefüllt. Endkonzentrationen: 0,25 M HEPES, 0,5 M KCl, 5 % (v/v) DMSO, pH 7 

12 % TBE-Harnstoff-Gel 

24 mL Gelkonzentrat wurden mit 11 mL Gelverdünner, 5 mL Pufferkonzentrat und 10 mL Mil-

liQ-Wasser gemischt. (Bei Ersatz von 10 mL MilliQ-Wasser durch die gleiche Menge Geld-

verdünner wird eine Harnstoff-Konzentration von 50 % (w/v) anstatt von 40 % (w/v) erhalten.) 

Für die Herstellung von 2 Gelen wurde zu 20 mL dieser Mischung 200 µL APS (100 g/L) ge-

geben, die Lösung vermischt und anschließend 20 µL TEMED hinzugegeben. Nach erneuter 

Mischung wurde die Lösung bei Raumtemperatur zügig zwischen die zuvor installierten Glas-

platten im Gelgießstand gegeben und mit einem Zehn-Taschenkamm für 20 min polymerisiert. 

Polymerisierte Gele wurden bis zu Verwendung in feuchtes Zellulose-Papier gewickelt und bei 

4 °C in einem verschließbaren Plastikbeutel aufbewahrt (maximal 1 Monat). 
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Hybridisierungs-Puffer (NB) 

5 mL einer 10 % SDS-Lösung (w/v) wurden mit 23,5 mL MilliQ-Wasser verdünnt. Nach Zu-

gabe von 5 mL Denhardt’s Lösung (50×) wurden 16,5 mL SSPE-Puffer (20×) zugegeben. Vor 

der Benutzung wurde der Hybridisierungs-Puffer (NB) bei 37 °C in einem Schüttelinkubator 

bei 100 rpm inkubiert, bis sich alle Bestandteile komplett gelöst haben. Endkonzentrationen: 

1 % (w/v) SDS, 5× Denhardt’s Lösung, 6,6× SSPE-Puffer. 

Wasch-Puffer (NB) 

50 mL SSPE-Puffer (20×) wurden mit 425 mL MilliQ-Wasser verdünnt und anschließend 

25 mL 10 % SDS-Lösung (w/v) zugegeben. Vor der Benutzung wurde der Wasch-Puffer (NB) 

bei 37 °C in einem Schüttelinkubator bei 100 rpm inkubiert, bis sich alle Bestandteile komplett 

gelöst haben. Endkonzentrationen: 0,5 % (w/v) SDS, 2× SSPE-Puffer. 

LC-MS/QQQ Puffer 

In eine saubere 1 L Labor Gewindeflasche wurden 0,385 g NH4OAc (LC-MS Qualität, ≥ 99 %, 

VWR), gegeben und mit 1000 mL hochreinem Wasser aufgefüllt (Endkonzentration 5 mM). 

Zur Einstellung des korrekten pH-Werts (5,3) wurden 65 µL Essigsäure (HiPerSolv 

CHROMANORM for LC/MS, Essigsäure 99 %, VWR Chemicals) zugegeben. 

LC-MS/HRMS Puffer 

In eine saubere 1 L Labor Gewindeflasche wurden 0,771 g NH4OAc (LC-MS Qualität, ≥ 99 %, 

VWR), gegeben und mit 1000 mL hochreinem Wasser aufgefüllt (Endkonzentration 10 mM, 

pH 7). 
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5.2 Zellkulturmethoden 

Zellen wurden in wasserdampfgesättigter Atmosphäre unter 10 % CO2 bei 37 °C kultiviert. 

Medien und Lösungen wurden vor Benutzung auf 37 °C erwärmt. Für Subkultivierungen wurde 

die Konfluenz über mikroskopische Betrachtung bestimmt. 

Kryokonservierung von Zelllinien 

Für die Kryokonservierung von HEK-293-Zellen wurde diese in 2× T75 Zellkulturflaschen 

kultiviert und anschließend trypsiniert (3 mL Trypsin pro Flasche). Jeweils 12 mL Standard-

Medium wurde zugegeben, die Zellen resuspendiert und die Konzentration bestimmt. Zellen 

wurden zentrifugiert (130× g, 3 min) und in der entsprechenden Menge Standard-Medium re-

suspendiert um eine Konzentration von 4×106 Zellen/mL zu erhalten. Die gleiche Menge 2× 

Kryo-Stock wurde vorsichtig zugegeben um eine finale Konzentration von 2×106 Zellen/mL zu 

erhalten. Je 1 mL der Zellsuspension wurde in Kryoröhrchen überführt und über Nacht bei  

‒70 °C in einem mit Isopropanol gefüllten Gefrierbehälter (Thermo Scientific™ Mr. Frosty™) 

gelagert. Zellen wurden am nächsten Tag in einen Flüssigstickstoff-Tank überführt. 

Revitalisierung von Zelllinien 

Für die Revitalisierung von Zelllinien wurde 1 mL gefrorene Zellsuspension bei 37 °C 

schnellstmöglich aufgetaut. Diese wurde vorsichtig in 5 mL vorgewärmtes Auftau-Medium 

überführt und anschließend zentrifugiert (130× g, 3 min). Das Zellpellet wurde in Auftau-Me-

dium resuspendiert und in einer T25 Zellkulturflasche kultiviert. Für eine folgende Subkulti-

vierung wurde ebenfalls Auftau-Medium verwendet. 

Subkultivierung 

Die an der Zellkulturflasche haftenden Zellen wurden vorsichtig mit 5 mL PBS gespült, um 

einerseits abgestorbene Zellen loszuwerden und andererseits inhibierende Einflüsse von Se-

rumbestandteilen auf die Trypsin-Aktivität zu verhindern. Anschließend wurden die Zellen für 

2 min in 1 mL Trypsin bei 37 °C inkubiert. Mit 4,5‒7 mL Quenching-Medium (je nach ge-

wünschter Subkultivierung) wurde die Zellsuspension homogenisiert und anschließend 1 mL 

davon zentrifugiert (130× g, 3 min). Das Zellpellet wurde in 5 mL frischem Medium resuspen-

diert und in einer T25 Zellkulturflasche kultiviert. Es wurde stets eine Subkultivierung bei einer 

Konfluenz von ~ 90 % angestrebt. Subkultivierungen wurde in der Regel montags, mittwochs 

und freitags vorgenommen. 
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Stressexperimente 

Für die Aussaat von Zellen für Stressexperimente (Rhein, MMS, etc.) wurde die Zelldichte 

mithilfe des automatischen Zellzählers bestimmt. Nach einer Kultivierung von mindestens 24 h 

aber höchstens 48 h wurde der jeweilige Stressfaktor durch einen entsprechenden Wechsel des 

Mediums zugegeben. Auf einen PBS-Spülschritt wurde – falls nicht anders vermerkt – verzich-

tet. Falls aufgrund des experimentellen Designs ein erneuter Mediumwechsel nötig war, wurde 

dieser analog durchgeführt. Dabei wurde stets darauf geachtet, dass das ursprüngliche Medium 

restlos abgenommen wird. 
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5.3 Biochemische Methoden 

Isolation der Gesamt-RNA 

Für die Extraktion von RNA wurden Zellen nach Absaugen des Mediums direkt in TRI Rea-

gent® aufgenommen (1 mL pro 25 cm2, 0,5 mL für kleinere Flächen). Die Zellsuspension 

wurde 20 Sekunden gevortext und 5 min bei Raumtemperatur inkubiert. Das 0,2-fache Volu-

men an Chloroform (bspw. 200 µL Chloroform pro 1 mL TRI Reagent®) wurden zugegeben 

und sorgfältig gevortext, bis eine einheitlich trübe Mischung entstand. Nach 5 min wurde die 

Mischung zur vollständigen Phasentrennung 10 min bei 10.000× g und 4 °C zentrifugiert. Die 

obere wässrige Phase wurde in ein neues Mikroreaktionsgefäß überführt und mit identischem 

Volumen Isopropanol vermischt (bspw. 500 µL wässrige Phase + 500 µL Isopropanol). Nach 

Fällung der RNA bei ‒20 °C über Nacht wurde die Lösung bei 12.000× g und 4 °C für mindes-

tens 30 min zentrifugiert. Der Überstand wurde abgenommen, das Pellet vorsichtig mit 70 % 

Ethanol gewaschen und erneut zentrifugiert (12.000× g, 4 °C, 5‒10 min). Nach sorgfältiger Ab-

nahme des Ethanols wurde das RNA-Pellet in ~ 30 µL MilliQ-Wasser resuspendiert. 

RNA-Aufreinigung über SEC 

Für die Aufreinigung von tRNA und Gesamt-rRNA wurde Größenausschlusschromatographie 

(SEC) verwendet. Als mobile Phase diente SEC-Puffer. Eine AdvanceBio SEC 300 Å 2,7 µm, 

7,8 × 300 mm Säule ermöglichte die Trennung von tRNA von Gesamt-rRNA unter Verwen-

dung einer isokratischen Elution bei 1 mL/min und einer Säulentemperatur von 40 °C. Nach 

Äquilibrieren der Säule für mindestens 30 min wurde bis zu 100 µg der Gesamt-RNA injiziert. 

Die großen rRNA-Untereinheiten eluieren von 3,5‒4,8 min und die tRNA von 6,9‒7,9 min. 

Diese Zeiten wurden mit ansteigendem Alter der Säule geringfügig angepasst. 

Für die Aufreinigung von 18S rRNA und 28S rRNA wurde eine AdvanceBio SEC 1000 Å 

2,7 µm, 7,8 × 300 mm Säule verwendet. Sonstige Parameter sind die gleichen wie zuvor. 28S 

rRNA eluiert von 5,0‒7,2 min und 18S rRNA von 7,5‒8,5 min. 

Die gewünschten Fraktionen wurden gesammelt und mit einer SpeedVac auf 30‒50 µL aufkon-

zentriert. Ein 0,1-faches Volumen NH4OAc (5 M) und 1 µL GlycoBlue™ (Thermo Fisher, 

Waltham, MA, USA) und anschließend das 2,5-fache Volumen an eiskaltem Ethanol (100%) 

wurden zugegeben. Nach Fällung der RNA bei ‒20 °C über Nacht wurde die Lösung bei 

12.000× g und 4 °C für mindestens 30 min zentrifugiert. Der Überstand wurde abgenommen, 

das Pellet vorsichtig mit 70 % Ethanol gewaschen und erneut zentrifugiert (12.000× g, 4 °C, 5‒
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10 min). Nach sorgfältiger Abnahme des Ethanols wurde das RNA-Pellet in ~ 30 µL MilliQ-

Wasser resuspendiert. 

RNA Aufreinigung über Oligonukleotid-Hybridisierung 

Die Aufreinigung spezifischer RNA-Moleküle erfolgte über Oligonukleotid(ON)-Hybridisie-

rung. Ein angepasstes Protokoll von Hauenschild et al.317 wurde verwendet. Ein ~ 30 Nukleo-

tide langes, zur Sequenz der Ziel-RNA revers komplementäres Oligonukleotid, das über einen 

kurzen AAA-Adapter synthetisch mit einem Biotin-Tag versehen wurde, wurde für jedes auf-

zureinigende RNA-Molekül entworfen. Die Sequenzen können Tabelle 5.3 entnommen wer-

den. Pro aufzureinigende Probe wurden 25 µL Dynabeads™ Streptavidin (T1 oder C1, bei der 

Verwendung von M270 und M280 wurde die doppelte Menge verwendet) in einem Mikrore-

aktionsgefäß vorgelegt. Über eine magnetische Halterung werden die Dynabeads™ am Ge-

fäßrand konzentriert und die klare Lösung anschließend abpipettiert. Die Dynabeads™ wurden 

so anschließend 3-mal mit je 25 µL pro Ansatz 1× B&W Puffer gewaschen und zusätzlich ein-

mal mit 25 µL 5× SSC Puffer pro Ansatz. 

Tabelle 5.3: Oligonukleotide für die RNA-Aufreinigung. Die Identität gibt das aufzureini-
gende RNA-Molekül an. *Interne Kennnummer in der Oligo-Datenbank des AK Kellner (Stand 
2021) 

Identität 
Kenn-

nummer* 
Sequenz (5‘ – 3‘) 

tRNAHis
GUG SK06 [Btn]TGCCGTCACTCGGATTCGAACCGAGGTTGCTG 

tRNATyr
GUA SK123 [Btn]AAATGGTCCTTCGAGCCGGAATCGATCCAGCGA 

tRNAAsn
GUU SK102 

[Btn]AAATGGCGTCCCTGGGTGGGCTCGAACCACCAACCTTTT-

CGGTTAACAGCC 

tRNAAsp
GUC SK03 

TGGCTCCCCGTCGGGGAATTGAACCCGGTCTCCCGCGT-

GACAGGCGGGGATACTAACCACTATACTAACGAGGAAAA[Btn] 

tRNASer
UGA SK22 [Btn]AAATTTCAAGTCCATCGCCTTAACCACTCGGCCACGACTAC 

tRNAGly
GCC SK05 [Btn]TGCATTGGCCGGGAATCGAACCCGGGGCCTC 

tRNAPhe
GAA SK97 [Btn]AAATGGTGCCGAAACCCGGGATCGAACCAGGGT 

5S rRNA SK149 [Btn]AAACCGACCCTGCTTAGCTTCCGAGATCAGACG 

U6 snRNA SK124 [Btn]AAAAAATATGGAACGCTTCACGAATTTGCGTGTCATCCTTGC 

 

Es wurde 1 µL Biotin-DNA-Oligo (100 µM) in ein Mikroreaktionsgefäß vorgelegt. 1‒1,5 µg 

in MilliQ-Wasser gelöste angereicherte RNA wurde zugegeben. Für die Aufreinigung von 
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tRNA-Isoakzeptoren wurde tRNA verwendet. Für die Aufreinigung von 5S rRNA und 

U6 snRNA wurden über SEC angereicherte RNA-Moleküle der Länge ~ 80‒300 Nukleotide 

verwendet. Nach der Zugabe von 25 µL 20× SSC Puffer wurde das Gesamtvolumen durch Auf-

füllen mit MilliQ-Wasser auf 100 µL erhöht. Das Gemisch wurde zur Denaturierung der RNA 

für 3 min bei 95 °C erhitzt und danach direkt in einen Heizblock bei 65 °C überführt und dort 

10 min inkubiert. Nach anschließendem Abkühlen auf Raumtemperatur (~ 3 min) wurde jedem 

Ansatz 25 µL äquilibrierte Dynabeads™ in 5× SSC Puffer zugegeben (T1 oder C1, bei der 

Verwendung von M270 und M280 wurde die doppelte Menge verwendet). Der Ansatz wurde 

30‒60 min bei 25 °C bei 600 rpm inkubiert. Nicht hybridisierte RNA wurde durch Abnehmen 

des Überstandes unter Verwendung der magnetischen Halterung entfernt. Die Dynabeads™ 

wurden einmal mit 50 µL 1× SSC Puffer gewaschen, 3-mal mit 25 µL 0,1× SSC Puffer und 

anschließend in 20 µL MilliQ-Wasser angelöst. Nach Inkubation bei 75 °C für 3 min wurde die 

von den Dynabeads™ getrennte RNA-haltige Lösung in ein frisches Mikroreaktionsgefäß über-

führt. 

Isolation der DNA 

Für die Extraktion von DNA wurden Zellen trypsiniert und anschließend pelletiert (130× g, 

3 min). Die DNA wurde über das genomische DNA Aufreinigungs-Kit von NEB (New England 

Biolabs, Ipswich, MA, USA) gemäß Herstellerprotokoll aufgereinigt. 

RNA/DNA-Konzentrationsbestimmung  

Die RNA-Ausbeuten wurden mit Hilfe eines Nanophotometers bestimmt. Dazu wurde die ge-

fällte RNA in hochreinem Wasser angelöst und 1 µL zur Konzentrationsbestimmung verwen-

det. 

Bioanalyzer-Messungen 

Nach Vorbereitung der jeweiligen Agilent RNA Chips (6000 Pico RNA Chip oder Small RNA 

Chips) gemäß den Anleitungen des Herstellers wurden jeweils 1 µL der entsprechend verdünn-

ten Proben auf den jeweiligen Chip aufgetragen und im Agilent 2100 Bioanalyzer mit den vor-

installierten Methoden „Eukaryote Total RNA Pico Series II.xsy“ bzw. „Small RNA Series 

II.xsy“ gemessen. 
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Verdau für Nukleosid-Analytik 

Ein Master-Mix zum Verdau zu Nukleosiden kann gemäß Tabelle 5.4 für die entsprechende 

Anzahl an Proben hergestellt werden. MgCl2 und TRIS sind Bestandteile des Puffersystems. 

Benzonase und SPD (engl. snake venom diesterase) sind Nukleasen und CIP (engl. calf intes-

tine phosphates) die Phosphatase. Pentostatin und THU (Tetrahydrouridin) schützen die Nuk-

leoside vor Desaminierung und BHT (Butylhydroxytoluol) wirkt als Antioxidans. Für den hier 

gezeigten Master-Mix müssen 15 µL Probe mit 15 µL Master-Mix verdaut werden. Bei abwei-

chenden Volumina wurde die Menge an MgCl2 und TRIS entsprechend angepasst. Alle weite-

ren Angaben beziehen sich auf den Verdau von 10 µg RNA und müssen/können nur bei einer 

Erhöhung/Verringerung der RNA-Menge angepasst werden. Nach Verdau für 2 h bei 37 °C 

wurden alle Proben mit ~ 50 Vol % LC-MS Puffer verdünnt (bspw. 30 µL Verdau + 15 µL LC-

MS Puffer). Mit jeder Probe wurde 1 µL SILIS (10×) co-injiziert (bspw. 9 µL Probe + 1 µL 

SILIS). Der Verdau von DNA erfolgte analog und die Messung wurde entsprechend mit eigens 

hergestelltem DNA-SILIS durchgeführt. Für die Herstellung des DNA-SILIS wurden Hefe-

Zellen mit MMS gestresst, die DNA isoliert, zu Nukleosiden verdaut und als 10× DNA-SILIS 

präpariert. 

Tabelle 5.4: Beispielhafter Master-Mix für den Verdau von RNA. Der gezeigte Master-Mix 
bezieht sich auf den Verdau von 15 µL Probe mit 15 µL Master-Mix. 10 µg RNA oder DNA 
werden innerhalb von 2 h bei 37 °C zu Nukleosiden verdaut. 

Substanz Stammlösung  Zielkonzentration 1x 50x 

MgCl2 10 mM → 1 mM 3 µL 150 µL 

TRIS pH = 8 50 mM → 5 mM 3 µL 150 µL 

Benzonase 1 U/µL → 2 U 2 µL 100 µL 

CIP (Alk.Phos.) 1 U/µL → 2 U 2 µL 100 µL 

SPD (PDE1) 0,1 U/µL → 0,2 U 2 µL 100 µL 

Pentostatin 1 mg/mL → 1 µg 1 µL 50 µL 

THU 5 mg/mL → 5 µg 1 µL 50 µL 

BHT 10 mM → 10 uM 1 µL 50 µL 
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Mung-Bean-Nuklease(MBN)-Verdau 

50 pmol aufgereinigte 18S rRNA (~ 32 µg) und 500 pmol zur Zielsequenz revers komplemen-

täres DNA-Oligonukleotid (ON, Sequenz: CCTTCCGCAGGTTCACCTACGGAAACCTT-

GTTACGACTTTTACTTCCTC) wurden in einem 0,33-fachen Volumen an 4× Hybridisie-

rungs-Puffer (MBN) aufgenommen (bspw. 31 µL 18S rRNA + 5 µL ON + 12 µL Puffer). In 

einem Thermocycler wurde der Reaktionsansatz für 5 min auf 90 °C erhitzt und dann über eine 

Dauer von 2 h langsam von 90 °C auf 45 °C gekühlt (0,375 °C pro Minute). Anschließend wur-

den dem Ansatz 2 U MBN (2 µL), 100 ng RNase A (5 µL) und ~ 10 Vol % 10× MBN Puffer 

(hier: 6 µL) zugegeben und 1 h bei 35 °C inkubiert (MBN, RNase und MBN-Puffer von NEB, 

Ipswich, MA, USA). RNase A wurde durch Erhitzen auf 90 °C für 2 min inaktiviert. Nicht ver-

daute RNA wurde direkt mit TRI Reagent® (200 µL) und Chloroform (40 µL) unter Zuhilfen-

ahme von GlycoBlue™ gefällt (siehe RNA-Aufreinigung).  

Probenvorbereitung für Oligonukleotid-MS 

RNase T1 wurde auf 10 U/μL verdünnt, indem 2 μl der RNase T1 Stammlösung (186 U/μl, 

Sigma-Aldrich, München, Deutschland) mit 35,2 μl TRIS pH 7,5 (25 mM) gemischt wurden 

(verdünnte RNase T1 wurde bei 4 °C gelagert). 3 μg RNA wurde mit RNase T1 bei 37 °C für 

1 h in einem Gesamtvolumen von 40 μl mit Endkonzentrationen von 10 mM TRIS pH 7,5, 

0,5 mM MgCl2, 1 U/μl RNase T1 und 0,02 U/μl CIP verdaut. Die verdauten Proben wurden 

durch einen Cut-Off-Filter mit einem Molekulargewicht von 10 kDa (VWR, Dreieich, Deutsch-

land,) filtriert. 

TBE-Harnstoff-PAGE 

12% TBE-Harnstoff-Gele (Herstellung s.o.) wurden für 20 min bei einer konstanten Spannung 

von 200 V vorgewärmt. 1‒1,5 µg Gesamt-RNA (7,5 µg für tRNAHis Analyse) in 10 µL Volu-

men wurden mit 10 µL 2× Ladepuffer (90 % Formamid) vermischt und anschließend für 1 min 

bei 90 °C inkubiert. Das volle Volumen (20 µL) wurde dann direkt in die Gel-Taschen eines 

12% TBE-Harnstoff Gels geladen. Zusätzlich wurde in mindestens eine freie Tasche 6 µL 2x 

RNA-Ladefarbstoff (NEB, Ipswich, MA, USA) gegeben. Laufbedingungen sind 45‒60 min 

(blauer Farbstoff nahezu am unteren Ende des Gels), 275 V bei Raumtemperatur in 1× TBE 

Puffer (Roth, Karlsruhe, Deutschland) 



5.3 Biochemische Methoden 

255 

Northern-Blotting 

Nach TBE-Harnstoff-PAGE wurde das Gel entnommen und unter Verwendung von drei 

„Whatman® Blotting Paper“ auf jeder Seite über Gelelektrophorese auf eine Nylonmembran 

(Amersham Hybond™-N+) übertragen. Als Blotting-Puffer wurde, der zuvor bereits für PAGE 

verwendete TBE-Puffer verwendet und mit MilliQ-Wasser auf ~ 0,8× verdünnt. Laufbedingun-

gen sind 2 h, 380 mA bei 4 °C. Anschließend wurde die transferierte RNA durch UV-Bestrah-

lung auf der Nylonmembran fixiert. Hierfür wurde die Membran auf einem feuchten „What-

man® Blotting Paper“ mit der RNA-Seite nach oben zeigend im UV-Crosslinker positioniert 

und 2 min mit einer Wellenlänge von 254 nm und einer Energie von 120 mJ/cm2 bestrahlt. Die 

Membran wurde anschließend 20 min bei 37 °C und 100 rpm in einem Schüttelinkubator in 

Hybridisierungs-Puffer (NB) inkubiert. 100 pmol eines zur Zielsequenz revers komplementä-

ren Oligonukleotids, an das an beide Enden ein Cyanin3-Farbstoff gekoppelt ist, wurde zuge-

geben und über Nacht bei 37 °C und 100 rpm unter Lichtausschluss inkubiert. Die Sequenzen 

der Oligonukleotide können Tabelle 5.5 entnommen werden. Die Membran wurde unter Licht-

ausschluss anschließend zweimal für je 10 min mit Wasch-Puffer (NB) bei 100 rpm und Raum-

temperatur gewaschen, bevor die Signale an einem Imaging-Gerät über eine Anregung bei 

520 nm visualisiert wurden. 

Tabelle 5.5: Oligonukleotide für Northern-Blotting.  Die Identität gibt das zu detektierende 
RNA-Molekül an. Cy3 = Cyanin3-Farbstoff, *Interne Kennnummer in der Oligonukleotid-Da-
tenbank des AK Kellner (Stand 2021) 

Identität 
Kenn-

nummer* 
Sequenz (5‘ – 3‘) 

tRNAHis
GUG SK154 [Cy3]AAATGCCGTCACTCGGATTCGAACCGAGGTTGCAAA[Cy3] 

tRNATyr
GUA SK156 [Cy3]AAATGGTCCTTCGAGCCGGAATCGATCCAGCGAAAA[Cy3] 

tRNAAsn
GUU SK155 

[Cy3]AAATGGCGTCCCTGGGTGGGCTCGAACCACCAACCTTT-

TAAA[Cy3] 

tRNAAsp
GUC SK153 

[Cy3]AAACCGCGTGACAGGCGGGGATACTAACCA-

CTATACTAACGAGGAAAA[Cy3] 

tRNASer
UGA SK145 

[Cy3]TTTCAAGTCCATCGCCTTAACCA-

CTCGGCCACGACTAC[Cy3] 

tRNAGly
GCC SK146 [Cy3]CAGGCGAGAATTCTACCACTGAACCACCAATGC[Cy3] 

tRNAPhe
GAA SK144 [Cy3]TGGTGCCGAAACCCGGGATCGAACCAGGGT[Cy3] 

5S rRNA SK149 [Cy3]AAACCGACCCTGCTTAGCTTCCGAGATCAGACG[Cy3] 

U6 snRNA SK143 
[Cy3]AAATATGGAACGCTTCACGAATTTGCGTGTCA-

TCCTTGC[Cy3] 
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5.4 Analytik 

Sequenzierung 

Die Reinheit über Sequenzierung wurde durch milde RNA-Fragmentierung unter stark alkali-

schen Bedingungen (5 min, 96 °C, pH 9,2) durchgeführt. Die resultierenden Fragmente wurden 

durch Antarctic Phosphatase (New England Biolabs, Frankfurt, Deutschland) 3′-dephosphory-

liert und durch PNK/ATP-Behandlung 5′-phosphoryliert. Die Erstellung einer Sequenzierungs-

Bibliothek erfolgte über das NEBNext® Multiplex Small RNA Library Prep Set für Illumina 

(NEB) gemäß den Anweisungen des Herstellers. Die Qualität der Bibliothek wurde mit dem 

HS-DNA-Chip am Bioanalyzer 2100 bewertet. Die Sequenzierung wurde mit HiSeq1000 im 

Single-Read-SR50-Modus durchgeführt. Um die angepasste Sequenz zu entfernen wurden die 

resultierenden Rohdaten (~ 10 Mio./Probe) mit trimmomatic v.032 getrimmt, und mit bowtie2 

an der Referenz, welche menschliche rRNA-Sequenzen und eine nicht redundante Teilmenge 

menschlicher tRNAs enthält, ausgerichtet. 

Nukleosid-MS (QQQ) 

Die Trennung der Nukleoside erfolgte über eine Synergi Fusion-RP-Säule (Synergi® 2,5 μm 

Fusion-RP 100 Å, 150 × 2,0 mm, Phenomenex®, Torrance, CA, USA). Als Puffer wurden LC-

MS/QQQ Puffer (Puffer A) und pures Acetonitril (Puffer B) verwendet. Der Gradient beginnt 

mit 100 % Puffer A für 1 min, gefolgt von einem Anstieg auf 10 % Puffer B über eine Dauer 

von 4 min. Puffer B wird dann über 2 min auf 40 % erhöht und für 1 min beibehalten bevor 

über eine Dauer von 0,5 min wieder auf 100 % Puffer A gewechselt und die Säule für 2,5 min 

re-equilibriert wird. Die Gesamtzeit beträgt 11 min und die Flussrate 0,35 mL/min bei einer 

Säulentemperatur von 35 °C. 

Für die Ionisierung der Nukleoside wurde eine ESI Quelle verwendet (ESI-MS, Agilent Jet-

stream). Die Gastemperatur (N2) lag bei 230 °C mit einer Flussrate von 6 L/min. Die Sheath-

Gastemperatur lag bei 400 °C mit einer Flussrate von 12 L/min. Die Kapillarspannung (capil-

lary voltage) lag bei 2500 V, die Skimmer-Spannung bei 15 V, die Düsenspannung (nozzle 

voltage) bei 0 V und der Vernebelungsdruck (nebulizer pressure) bei 40 Psi. Die Zellbeschleu-

nigungsspannung (cell accelerator voltage) lag bei 5 V. Alle Methoden wurden im DMRM- 

und positiven Ionenmodus durchgeführt. Die Fragmentorspannung und die Kollisionsenergie 

wurden für jedes Nukleosid spezifisch optimiert. Optimierte Parameter befinden sich zusam-

men mit den Retentionszeiten und den Massenübergängen unmarkierter und isotopenmarkierter 
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Nukleoside in Tabelle S4 für RNA-Nukleoside und Tabelle S5 für DNA-Nukleoside. Die 

MS1-Auflösung wurde jeweils auf „Wide“ und die MS2-Auflösung auf „Unit“ gesetzt und der 

SILIS-Übergang jeweils direkt als interner Standard ausgewiesen. 

Kalibrierung 

Zur Kalibrierung wurden synthetische Nukleoside eingewogen und in Wasser auf eine Stamm-

konzentration von 1‒10 mM gelöst. Die Kalibrierlösungen reichten von 0,025 pmol bis 

100 pmol für jedes kanonische Nukleosid und von 0,00125 pmol bis 5 pmol für jedes modifi-

zierte Nukleosid. Die Konzentrationen von Ψ und D reichten von 0,005 pmol bis 20 pmol. Ana-

log zu den Proben wurde mit jeder Kalibrierung 1 µL SILIS (10×) co-injiziert. Die Erstellung 

der Kalibriergerade und die entsprechende Auswertung der Proben erfolgte über die quantita-

tive MassHunter Software von Agilent. Das Prinzip der Quantifizierung mithilfe eines SILIS 

wird in Borland et al.270 genauer beschrieben. 

Normalisierung / Berechnung pro RNA-Molekül 

Um verschiedene Proben quantitativ vergleichbar zu machen, wurde die molare Menge jedes 

modifizierten Nukleosids auf die molare Menge der Summe der injizierten kanonischen Nuk-

leoside referenziert und anschließend – falls nicht anders ausgewiesen – pro 1000 kanonische 

Nukleoside angegeben. In einzelnen Fällen wurden Modifikationen in Gesamt-tRNA auf 60 

kanonische Nukleoside referenziert, um die Modifikationsmenge in einem durchschnittlichen 

tRNA-Molekül anzugeben. Bei bekannter Sequenz des RNA-Moleküls (bspw. tRNA-Isoakzep-

toren) wurde auf die Menge an RNA-Molekülen (nRNA) normiert, um die Anzahl der Modifi-

kationen pro RNA-Molekül zu erhalten. Dazu wurden die berechneten Mengen der injizierten 

kanonischen Nukleoside (bspw. nC) gemäß Gleichung 5 durch ihre zu erwartende Menge (#) 

im jeweiligen RNA-Molekül dividiert und anschließend gemittelt. Die Zahlen für jedes kano-

nische Nukleosid (#) wurden aus der Sequenz der RNA-Moleküle entnommen. 

𝑛𝑅𝑁𝐴 = 𝑛𝐶#𝐶 + 𝑛𝑈#𝑈 + 𝑛𝐺#𝐺 + 𝑛𝐴#𝐴4  

Im Falle der NAIL-MS Experimente wurden die verschiedenen Isotopologe auf ihre entspre-

chend markierten kanonischen Nukleoside referenziert, so dass ursprüngliche (unmarkierte) 

Modifikationen auf die ursprünglichen RNA-Moleküle und neue (isotopenmarkierte) Modifi-

kationen auf neue RNA-Moleküle referenziert wurden. 

(5) 
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HRMS von Oligonukleotiden 

Die Trennung der Oligonukleotide erfolgte über eine Synergi Fusion-RP-Säule (Synergi® 

2,5 μm Fusion-RP 100 Å, 150 × 2,0 mm, Phenomenex®, Torrance, CA, USA). Als Puffer wur-

den LC-MS/HRMS Puffer (Puffer A) und pures Acetonitril (Puffer B) verwendet. Der Gradient 

beginnt bei 0 % Puffer B und steigt bis 10 min auf 5% Puffer B und anschließend bis 12 min 

auf 50 % Puffer B an. Nach 1 min bei 50 % Puffer B wurde über eine Dauer von 1 min zu 

100 % Puffer A umgespült. Die Säule wurde für 4 min bei 100 % A re-equilibriert. Die Ge-

samtzeit beträgt 18 min und die Flussrate 0,35 mL/min bei einer Säulentemperatur von 35 °C.  

Hochauflösende Massenspektren der Oligonukleotid-Ionen wurden mit einem Thermo Fin-

nigan LTQ Orbitrap XL mit einer beheizten Elektrospray-Ionisationsquelle (HESI) aufgenom-

men, die im positiven Ionisationsmodus mit einer Kapillarspannung von -10 V und einer Tem-

peratur von 310 °C betrieben wurde. Die Sprühspannung wurde auf 3,3 kV und die Temperatur 

für die chemische Ionisation bei Atmosphärendruck (APCI) auf 135 °C eingestellt. Sheath-, 

Auxiliary- und Sweep-Gase wurden auf 5, 35 und 7 „arbitrary Units“ eingestellt. MS1-Spektren 

wurden von 400 bis 2000 m/z aufgenommen und die datenabhängige Erfassung (DDA, engl.: 

data dependent acquisition) wurde so eingestellt, dass MS2-Spektren der beiden häufigsten Io-

nen mit einer Vorläufer-Ionenliste von 636,1, 646,4, 742,5, 756,2, 953,7, 969,2, 1113,2 und 

1133,7 erfasst wurden. Die MS2-Fragmentierung verwendete CID mit einer normalisierten 

Kollisionsenergie von 35. Die Datenerfassung und -analyse erfolgte mit der Softwareplattform 

Thermo Xcalibur. 
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6. Anhang 

6.1 Zusätzliche Daten 

Tabelle S1: Kürzel aller gängigen funktionalen Gruppen in RNA-Modifikationen. Die 
Kürzel können kombiniert werden, um komplexere RNA-Modifikationen zu beschreiben. 

Abkürzung volle Gruppenbezeichnung 

ac acetyl 

acp amminocarboxypropyl 

ca carboxyl 

chm carboxyhydroxymethyl 

cmo glyoxylat 

cmnm carboxymethylaminomethyl 

f formyl 

g glycinyl 

gal galactosyl 

ge geranyl 

glu glutamyl 

hn hydroxynorvalylcarbamoyl 

ho/hm hydroxy/hydroxymethyl 

i isopentenyl 

io cis-hydroxyisopentenyl 

m methyl 

man mannosyl 

mchm carboxyhydroxymethyl methylester 

mcm methoxycarbonylmethyl 

mcmo glyoxylat methylester 

mnm methylaminomethyl 

mo methoxy 

ncm carbamoylmethyl 

n amino 

r(p) 5-O-phosphono-b-D-ribofuranosyl 

s thio 

se seleno 

t threonylcarbamoyl 

tm taurinomethyl 
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Abbildung S1: Biosynthese von Nukleosiden. Die Nukleoside werden in der Zelle aus den 
gezeigten Metaboliten (grau), welche an den gezeigten Stellen eingebaut werden (graue Pfeile), 
synthetisiert. 

 

Tabelle S2: Modifikationsprofil in unmarkierten und isotopenmarkierten Isoakzepto-
ren. Die Daten stammen aus einem vergleichenden NAIL-MS Experiment. Grau hinterlegt = 
unmarkiert, hellgrau hinterlegt = isotopenmarkiert. Modifikationen mit einer Abundanz < 0.01 
pro RNA-Molekül werden nicht ausgewiesen. 

 
His Tyr Asn Asp Gly Ser tRNA RNA 

m5C 
3,20 1,29 <0,1 3,99 3,85 1,41 34,61 3,07 

3,66 1,44 <0,1 4,59 4,32 1,54 39,45 3,19 

Gm 
0,14    0,18 0,67 3,70 4,02 

0,15    0,19 0,70 3,42 3,71 

m1A 
0,74 0,78 0,81 0,75 0,38 0,77 13,12 1,20 

0,77 0,84 0,85 0,78 0,42 0,78 13,73 1,25 

m1G 
1,20 1,48 1,46  <0,1 0,58 13,59 1,17 

1,14 1,46 1,36  0,12 0,57 12,74 1,04 

m22G 
<0,1 2,32 1,03  0,22 1,20 8,34 0,71 

0,10 3,02 1,27  0,25 1,40 9,59 0,81 

m2G 
1,03 2,41 1,45 1,12 1,05 1,05 22,48 2,01 

1,02 2,40 1,48 1,11 1,01 1,04 21,92 2,00 

m5U 
0,28 1,17 <0,1 0,89 0,69 1,04 8,25 0,62 

0,35 1,40 <0,1 1,00 0,77 1,19 8,72 0,71 

m6A 
<0,1 <0,1 <0,1 <0,1 <0,1 <0,1 0,63 0,22 

<0,1 <0,1 <0,1 <0,1 <0,1 <0,1 0,62 0,22 

m7G 
<0,1 0,91 0,87  0,19  8,76 0,67 

<0,1 0,79 0,73  0,18  7,74 0,57 

t6A 
  0,94    3,28 0,27 

  0,84    2,92 0,24 

acp3U 
<0,1 2,15 2,25  0,19  1,93 0,16 

0,11 2,30 2,36  0,23  2,01 0,17 

Y 
2,63 1,83 2,52 1,59 1,47 2,74 45,54 13,12 

2,61 1,35 2,06 1,45 1,25 2,43 43,75 11,25 
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Abbildung S2: Auswirkung von NAIL-MS auf das Modifikationsprofil von tRNA und 
Gesamt-RNA Zellen wurden in unmarkiertem und isotopenmarkiertem Medium kultiviert und 
während der RNA Extraktion vereinigt und anschließend auf das Modifikationsprofil unter-
sucht. Auf der x-Achse ist jeweils die gemessene Anzahl an ausgewiesener Modifikation in 
unmarkierten Zellen aufgetragen. Auf der y-Achse ist die entsprechende Menge isotopenmar-
kierter Modifikation aufgetragen. Die gestrichelte Linie stellt eine Diagonale dar. Modifikatio-
nen, welche sich auf dieser befinden, zeigen keine Änderung der Abundanz abhängig vom ge-
wählten Medium. 
 

 

Abbildung S3: Dynamik weiterer modifizierter Nukleoside in 28S rRNA. Ursprüngliche 
Nukleoside (original, schwarze Linie) existierten vor Beginn des Experiments. Post-methylierte 
Nukleoside (methyl, dunkelgraue Linie) sind Modifikationen, die durch die Methylierung der 
ursprünglichen RNA nach dem Start des Experiments entstanden sind. Neue Nukleoside (neu, 
hellgraue Linie) zeigen den Einbau der Modifikation in neue Transkripte. Die Datenpunkte ge-
ben den Mittelwert und die Standardabweichungen von n = 3 biologischen Replikaten wieder. 
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Tabelle S3: Modifikationsmengen in verschiedenen Standard-Medien. Zellen wurden in 
Standard-DMEM D6546 mit nicht dialysiertem (nd) oder dialysiertem (dia) FBS kultiviert. 
Beide Varianten wurden je einmal ohne zusätzliche Supplementierung von Queuin kultiviert 
(nd- und dia-) und einmal mit 50 nM Queuin (nd+ und dia+). RNA wurde nach Kultivierung 
über 10 Tage isoliert, die jeweiligen tRNA-Isoakzeptoren aufgereinigt und über Nukleosid-
QQQ analysiert. Modifikationsmengen wurden auf die Menge des jeweilig injizierten tRNA-
Isoakzeptors normalisiert. Für jede Modifikation ist der Mittelwert und die Standardabwei-
chung aus drei biologischen Replikaten angegeben. Zur besseren Übersicht wurden alle Werte 
> 0,05 hellgrün eingefärbt, alle Werte > 0,2 mit grün und Werte > 0,5 dunkelgrün. Für jegliche 
Modifikationen welche einen Zahlenwert aufweisen, konnten Signale integriert werden. Ledig-
lich Modifikationen welche in der Tabelle weiße Bereiche aufweisen konnten nicht detektiert 
werden. 
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Fortsetzung Tabelle S3: 
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Abbildung S4: NAIL-MS Daten des Einflusses von Q auf tRNA-Isoakzeptoren. Im for-
ward-Experiment wurden Zellen aus isotopenmarkiertem und Queuine supplementiertem (q+) 
Medium vor RNA Extraktion mit Zellen aus unmarkiertem Medium ohne Queuine (q-) verei-
nigt und prozessiert. Im reverse-Experiment wurden die Zellen umgekehrt markiert. Absolute 
Werte der Modifikationsmengen sind jeweils für q+ und q- angegeben. Die Balken geben den 
Mittelwert und die Standardabweichungen von n = 3 biologischen Replikaten wieder. 
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Abbildung S5: Auswirkung von Queuin auf tRNA-Isoakzeptor-Reifung. Absolute Men-
gen an Modifikation pro 1000 Nukleoside wurden auf die jeweilige Menge bei Zeitpunkt 0 
unter Queuin Supplementierung referenziert. Durchgezogene Linien zeigen das Level in Zellen 
unter Queuin Supplementierung während gestrichelte Linien das Level in Zellen ohne Queuin 
zeigen. Jede Farbe & Symbol repräsentiert eine Modifikation. 
 

 

Abbildung S6: m5C in tRNAAsp bei Konzentrationsoptimierung von Queuin. Zellen wur-
den in Standard-Medium (DMEM D6546) mit dialysiertem FBS und aufsteigenden Konzent-
rationen an Queuin kultiviert. Die absolute Modifikationsmenge von m5C in tRNAAsp wurde 
über Nukleosid-MS bestimmt. Werte geben die durchschnittliche Anzahl an m5C pro tRNA-
Molekül an. 
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Abbildung S7: Menge an (d)m5C nach MMS Stress in DNA, tRNA und Gesamt-RNA. 
Zellen wurden mit 1 mM MMS gestresst. Nach Extraktion der DNA und RNA wurden die Mo-
difikationsmengen mit einer Kontrolle vergleichen. dm5C aus DNA konnte aufgrund fehlenden 
Standards nicht quantitativ ausgewertet werden. *Die Werte für dm5C in DNA wurden daher 
durch 150 dividiert, um die Ergebnisse mit tRNA und Gesamt-RNA zu plotten. Die Balken 
geben den Mittelwert und die Standardabweichungen von n = 3 biologischen Replikaten wie-
der. 
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Abbildung S8: Relative Standardabweichung der Modifikationsmengen in aufgereinig-
ten RNA-Molekülen. Angezeigte RNA-Moleküle wurden über Größenausschlusschromato-
graphie und gegebenenfalls Oligonukleotid-Hybridisierung aufgereinigt, zu Nukleosiden ver-
daut und über Nukleosid-MS analysiert. Angegeben ist die relative Standardabweichung der 
Modifikationsmenge pro RNA-Molekül (für Gesamt-tRNA pro 60 kanonische Nukleoside). 
Weiße Felder ohne Zahl stehen für Modifikationen welche zwar analysiert aber < 0,01 Modifi-
kationen pro RNA Molekül aufwiesen. Grau hinterlegte Modifikationen wurden dagegen nicht 
analysiert. Die Mengen für 5S rRNA und U6 snRNA wurden aus vergleichenden NAIL-MS 
Experimenten ermittelt. Hier können Ungenauigkeiten aufgrund der Isotopenmarkierung nicht 
ausgeschlossen werden. Alle Zellen wurden in Standard-Medium unter Supplementierung von 
50 nM Queuin kultiviert. Werte geben die relative Standardabweichung aus n = 3 biologischen 
Replikaten wieder. 
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Tabelle S4: Optimierte Parameter für RNA-Nukleosid DMRM-Methode.  

Compound 
Gruppe 

Compound 
Name 

Vorläufer 
Ion 

Produkt 
Ion 

Rt 
(min) 

∆Rt 
(min) 

Frag-
mentor 

Kollisions 
Energy 

A A 268,1 136,0 5,3 1 200 20 

A A lab 273,0 141,0 5,3 1 200 20 

A SILIS A SILIS 283,0 146,0 5,3 1 200 20 

ac4C ac4C 286,1 154,0 5 1 85 9 

ac4C ac4C lab 293,0 156,0 5 1 85 9 

ac4C SILIS ac4C SILIS 300,0 163,0 5 1 85 9 

acp3U acp3U 346,1 214,1 2,3 1 95 15 

acp3U acp3U lab 353,1 216,1 2,3 1 95 15 

Am Am 282,1 136,0 6 1 130 17 

Am Am D3 285,0 136,0 6 1 130 17 

Am Am lab 287,0 141,0 6 1 130 17 

Am Am lab D3 290,0 141,0 6 1 130 17 

Am SILIS Am SILIS 298,0 146,0 6 1 130 17 

C C 244,1 112,0 2,1 1 200 20 

C C lab 251,0 114,0 2,1 1 200 20 

C SILIS C SILIS 256,0 119,0 2,1 1 200 20 

Cm Cm 258,1 112,0 4,1 1 180 9 

Cm Cm D3 261,0 112,0 4,1 1 180 9 

Cm Cm lab 265,0 114,0 4,1 1 180 9 

Cm Cm lab D3 268,0 114,0 4,1 1 180 9 

Cm SILIS Cm SILIS 271,0 119,0 4,1 1 180 9 

D D 247,1 115,0 1,6 1 70 5 

D D lab 254,0 117,0 1,6 1 70 5 

D SILIS D SILIS 258,0 121,0 1,6 1 70 5 

G G 284,1 152,0 4,3 1 200 20 

G G lab 288,0 156,0 4,3 1 200 20 

G SILIS G SILIS 299,0 162,0 4,3 1 200 20 

Gm Gm 298,1 152,0 5 1 100 9 

Gm Gm D3 301,0 152,0 5 1 100 9 

Gm Gm lab 302,0 156,0 5 1 100 9 

Gm Gm lab D3 305,0 156,0 5 1 100 9 

Gm SILIS Gm SILIS 314,0 162,0 5 1 100 9 

I I 269,1 137,0 4,1 1 100 10 

I I lab 273,0 141,0 4,1 1 100 10 

I SILIS I SILIS 283,0 146,0 4,1 1 100 10 

i6A i6A 336,3 204,1 8 1 140 17 

i6A i6A lab 341,3 209,1 8 1 140 17 

i6A SILIS i6A SILIS 356,0 219,0 8 1 140 17 

m1A m1A 282,1 150,0 2,2 1,5 150 25 

m1A m1A D3 285,0 153,0 2,2 1,5 150 25 

m1A m1A lab 287,0 155,0 2,2 1,5 150 25 

m1A m1A lab D3 290,0 158,0 2,2 1,5 150 25 

m1A SILIS m1A SILIS 298,0 161,0 2,2 1,5 150 25 
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Compound 
Gruppe 

Compound 
Name 

Vorläufer 
Ion 

Produkt 
Ion 

Rt 
(min) 

∆Rt 
(min) 

Frag-
mentor 

Kollisions 
Energy 

m1G m1G 298,1 166,0 4,9 1 105 13 

m1G m1G D3 301,0 169,0 4,9 1 105 13 

m1G m1G lab 302,0 170,0 4,9 1 105 13 

m1G m1G lab D3 305,0 173,0 4,9 1 105 13 

m1G SILIS m1G SILIS 314,0 177,0 4,9 1 105 13 

m1I m1I 283,1 151,0 4,8 1 80 12 

m1I m1I D3 286,1 154,0 4,8 1 80 12 

m1I m1I lab 287,1 155,0 4,8 1 80 12 

m1I m1I lab D3 290,1 158,0 4,8 1 80 12 

m1I SILIS m1I SILIS 298,0 161,0 4,8 1 80 12 

m22G m22G 312,1 180,0 5,7 1 105 13 

m22G m22G D3 318,0 186,0 5,7 1 105 13 

m22G m22G lab 316,0 184,0 5,7 1 105 13 

m22G m22G lab D3 322,0 190,0 5,7 1 105 13 

m22G SILIS m22G SILIS 329,0 192,0 5,7 1 105 13 

m2G m2G 298,1 166,0 5,1 1 95 17 

m2G m2G D3 301,0 169,0 5,1 1 95 17 

m2G m2G lab 302,0 170,0 5,1 1 95 17 

m2G m2G lab D3 305,0 173,0 5,1 1 95 17 

m2G SILIS m2G SILIS 314,0 177,0 5,1 1 95 17 

m3C m3C 258,1 126,0 2 1,5 88 14 

m3C m3C D3 261,0 129,0 2 1,5 88 14 

m3C m3C lab 265,0 128,0 2 1,5 88 14 

m3C m3C lab D3 268,0 131,0 2 1,5 88 14 

m3C SILIS m3C SILIS 271,0 134,0 2 1,5 88 14 

m3U m3U 259,1 127,0 4,8 0,6 75 9 

m3U m3U D3 262,0 130,0 4,8 0,6 75 9 

m3U m3U lab 266,0 129,0 4,8 0,6 75 9 

m3U m3U lab D3 269,0 132,0 4,8 0,6 75 9 

m5C m5C 258,1 126,0 3,8 1 185 13 

m5C m5C D3 261,0 129,0 3,8 1 185 13 

m5C m5C lab 265,0 128,0 3,8 1 185 13 

m5C m5C lab D3 268,0 131,0 3,8 1 185 13 

m5C SILIS m5C SILIS 271,0 134,0 3,8 1 185 13 

m5U m5U 259,1 127,0 4,4 1 95 9 

m5U m5U D3 262,0 130,0 4,4 1 95 9 

m5U m5U lab 266,0 129,0 4,4 1 95 9 

m5U m5U lab D3 269,0 132,0 4,4 1 95 9 

m5U SILIS m5U SILIS 271,0 134,0 4,4 1 95 9 

m66A m66A 296,0 164,0 7,1 1 130 21 

m66A m66A D3 302,0 170,0 7,1 1 130 21 

m66A m66A lab 301,0 169,0 7,1 1 130 21 

m66A m66A lab D3 307,0 175,0 7,1 1 130 21 

m66A SILIS m66A SILIS 313,0 176,0 7,1 1 130 21 
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Compound 
Gruppe 

Compound 
Name 

Vorläufer 
Ion 

Produkt 
Ion 

Rt 
(min) 

∆Rt 
(min) 

Frag-
mentor 

Kollisions 
Energy 

m6A m6A 282,1 150,0 6,5 1 125 17 

m6A m6A D3 285,0 153,0 6,5 1 125 17 

m6A m6A lab 287,0 155,0 6,5 1 125 17 

m6A m6A lab D3 290,0 158,0 6,5 1 125 17 

m6A SILIS m6A SILIS 298,0 161,0 6,5 1 125 17 

m7G m7G 298,1 166,0 3,5 1,5 100 13 

m7G m7G D3 301,0 169,0 3,5 1,5 100 13 

m7G m7G lab 302,0 170,0 3,5 1,5 100 13 

m7G m7G lab D3 305,0 173,0 3,5 1,5 100 13 

m7G SILIS m7G SILIS 314,0 177,0 3,5 1,5 100 13 

mcm5s2U mcm5s2U 333,1 201,0 6,2 1 92 8 

mcm5s2U mcm5s2U D3 336,1 204,0 6,2 1 92 8 

mcm5s2U mcm5s2U lab 340,1 203,0 6,2 1 92 8 

mcm5s2U 
mcm5s2U lab 
D3 

343,1 206,0 6,2 1 92 8 

mcm5s2U SI-
LIS 

mcm5s2U SI-
LIS 

347,1 210,0 6,2 1 92 8 

mcm5U mcm5U 317,1 185,1 5 1 95 5 

mcm5U mcm5U D3 320,1 188,1 5 1 95 5 

mcm5U mcm5U lab 324,1 187,1 5 1 95 5 

mcm5U 
mcm5U lab 
D3 

327,1 190,1 5 1 95 5 

mcm5U SILIS mcm5U SILIS 331,0 194,0 5 1 95 5 

ncm5U ncm5U 302,0 170,0 2,5 1 85 8 

ncm5U ncm5U lab 309,0 172,0 2,5 1 85 8 

ncm5U SILIS ncm5U SILIS 316,0 179,0 2,5 1 85 8 

Q Q 410,2 295,1 4,3 1 115 12 

t6A t6A 413,1 281,1 5,8 1 130 9 

t6A t6A lab 418,1 286,1 5,8 1 130 9 

t6A SILIS t6A SILIS 434,0 297,0 5,8 1 130 9 

U U 245,1 113,0 3 1 95 5 

U U lab 252,0 115,0 3 1 95 5 

U SILIS U SILIS 256,0 119,0 3 1 95 5 

Um Um 259,2 113,0 4,6 1 96 8 

Um Um D3 262,2 113,0 4,6 1 96 8 

Um Um lab 266,2 115,0 4,6 1 96 8 

Um Um lab D3 269,2 115,0 4,6 1 96 8 

Um SILIS Um SILIS 271,1 119,0 4,6 1 96 8 

Y Y 245,1 209,0 1,7 1 90 5 

Y Y lab 252,0 216,0 1,7 1 90 5 

Y SILIS Y SILIS 256,0 220,0 1,7 1 90 5 

ManQ ManQ 572,3 295,5 3,9 1 120 20 

GalQ GalQ 572,3 295,5 4,1 1 120 20 
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Tabelle S5: Optimierte Parameter für DNA-Nukleosid DMRM Methode.  

Compound 
Gruppe 

Compound 
Name 

Vorläufer 
Ion 

Produkt 
Ion 

Rt 
(min) 

∆Rt 
(min) 

Frag-
mentor 

Kollisions 
Energy 

dA dA 252,1 136,3 5,7 1 90 14 

dA dA lab 257,1 141,3 5,7 1 90 14 

dA SILIS dA SILIS 267,1 146,3 5,7 1 90 14 

dC dC 228,1 112,0 3 1 160 12 

dC dC lab 235,1 114,0 3 1 160 12 

dC SILIS dC SILIS 240,1 119,0 3 1 160 12 

dG dG 268,1 152,3 4,8 1 120 9 

dG dG lab 272,1 156,3 4,8 1 120 9 

dG SILIS dG SILIS 283,1 162,1 4,8 1 120 9 

dm1A dm1A 266,1 150,3 2,6 2 90 14 

dm1A dm1A D3 269,1 153,3 2,6 2 90 14 

dm1A dm1A lab 271,1 155,3 2,6 2 90 14 

dm1A dm1A lab D3 274,1 158,3 2,6 2 90 14 

dm1A SILIS dm1A SILIS 282,1 161,3 2,6 2 90 14 

dm3C dm3C 242,1 126,3 2,7 1,5 80 12 

dm3C dm3C D3 245,1 129,3 2,7 1,5 80 12 

dm3C dm3C lab 249,1 128,3 2,7 1,5 80 12 

dm3C dm3C lab D3 252,1 131,3 2,7 1,5 80 12 

dm3C SILIS dm3C SILIS 254,1 133,3 2,7 1,5 80 12 

dm5C dm5C 242,1 126,3 3,4 1,5 80 12 

dm5C dm5C D3 245,1 129,3 3,4 1,5 80 12 

dm5C dm5C lab 249,1 128,3 3,4 1,5 80 12 

dm5C dm5C lab D3 252,1 131,3 3,4 1,5 80 12 

dm5C SILIS dm5C SILIS 254,1 133,3 3,4 1,5 80 12 

dm6A dm6A 266,1 150,3 6,7 1 100 14 

dm6A dm6A D3 269,1 153,3 6,7 1 100 14 

dm6A dm6A lab 271,1 155,3 6,7 1 100 14 

dm6A dm6A lab D3 274,1 158,3 6,7 1 100 14 

dm6A SILIS dm6A SILIS 282,1 161,3 6,7 1 100 14 

dm7G dm7G 282,1 166,3 3,5 1 80 15 

dm7G dm7G D3 285,1 169,3 3,5 1 80 15 

dm7G dm7G lab 286,1 170,3 3,5 1 80 15 

dm7G dm7G lab D3 289,1 173,3 3,5 1 80 15 

dm7G SILIS dm7G SILIS 298,1 177,0 3,5 1 80 15 

dT dT 243,1 127,3 5 1 80 8 

dT dT lab 250,1 129,3 5 1 80 8 

dT dT lab D3 253,1 132,3 5 1 80 8 

dT SILIS dT SILIS 255,1 134,3 5 1 80 8 
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