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Zusammenfassung 

Über 95% der erwachsenen Bevölkerung weltweit sind asymptomatisch und dauerhaft mit dem 

Epstein-Barr-Virus (EBV) infiziert. EBV ist mit einer Vielzahl von Erkrankungen sowohl lymphoiden 

als auch epithelialen Ursprungs assoziiert, darunter infektiöse Mononukleose, Hodgkin-Lymphom, 

Burkitt-Lymphom und Nasopharynxkarzinom. Ein Schlüssel-EBV-Protein ist der 

Transkriptionsfaktor EBV nukleäre Antigen 2 (EBNA2), der die B-Zell-Proliferation durch 

Aktivierung viraler und zellulärer Zielgene initiiert. In dieser Arbeit wurde die Bindung der 

mitotischen Polo-like Kinase 1 (PLK1) an EBNA2 charakterisiert, PLK1 phosphoryliert die EBNA2 

Transaktivierungsdomäne und inhibiert deren Aktivität. EBNA2 Mutationen, die die PLK1-Bindung 

beeinträchtigen oder die Phosphorylierung durch PLK1 blockieren, sind Funktionsgewinnmutanten. 

Sie erhöhten die Transaktivierungskapazitäten, beschleunigen die Proliferation infizierter B-Zellen 

und förderten die Entwicklung von Lymphomen in humanisierten Mäusen. Zusammengefasst 

koordiniert PLK1 die Aktivität von EBNA2, um das Risiko von Tumorinzidenzen zugunsten der 

Entstehung einer Latenz im infizierten Wirt zu verringern. 

.



 

Abstract 

Over 95% of the adult population worldwide is asymptomatically and persistently infected with 

Epstein-Barr virus (EBV). EBV is associated with a diverse range of diseases of both lymphoid and 

epithelial origin, including infectious mononucleosis, Hodgkin's lymphoma, Burkitt’s lymphoma, and 

nasopharyngeal carcinoma. A key EBV protein is the transcription factor EBV nuclear antigen 2 

(EBNA2), which initiates B cell proliferation by activating viral and cellular target genes. In this thesis, 

the complex of EBNA2 and polo-like kinase 1 (PLK1) was characterized. PLK1 phosphorylated the 

transactivation domain of EBNA2, and thereby inhibited its transactivation activity. EBV mutants 

that impair PLK1 binding or block phosphorylation by PLK1 are gain of function mutants. They have 

enhanced transactivation capacities, they accelerate the proliferation of infected B cells, and they 

promote the development of lymphomas in humanized mice. In conclusion, PLK1 coordinates the 

activity of EBNA2 to attenuate the risk of tumor incidences in favor of the establishment of latency 

in the infected host. 
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1. Introduction 

In 1961, Antony Epstein, a young pathologist attended a lecture presented by Denis Burkitt, a 

surgeon working in Uganda. Denis Burkitt reported a novel sarcoma found in African children in 

1958 (Burkitt, 1958). The two set up a collaboration to discover a transmissible vector-borne agent 

in Denis Burkitt’s biopsy specimens of the tumor, which was subsequently termed “Burkitt’s 

Lymphoma” (BL). In December 1963, with the help of Yvonne Barr (Antony’s Ph.D. student) and 

Bert Achong (Antony’s colleague), Antony established a suspension cell line from a BL mass, 

fortunately (now called EB1 cell line), which is the first cell line established from a human lymphoma, 

and sequentially in early 1964, he observed unequivocal herpes-like virus particles in these BL cells 

examined by electron microscopy (Epstein et al., 1964). So the first human tumor virus was 

discovered. 

The virus was confirmed to be a novel member of the herpesvirus family at that time and the 

term “Epstein-Barr virus (EBV)” was coined for convenience hereafter (Henle et al., 1968; 

Hummeler et al., 1966). In tissue culture, EBV has the potential to transform B cells, a process 

which is termed B cell immortalization (Pope et al., 1968).  

Since its initial discovery in BL, EBV is associated with a diverse range of malignancies of 

both lymphoid and epithelial origin. In 1968, EBV was shown to play an important role in infectious 

mononucleosis in a seroepidemiological study (Henle et al., 1968). In 1970, Lars Santesson’s lab 

could detect the EBV genome in nasopharyngeal carcinoma (NPC) using DNA-DNA hybridization 

(zur Hausen et al., 1970). In 1988, EBV was identified in T-cell lymphoma (Jones et al., 1988) and 

Hodgkin lymphoma (Donhuijsen-Ant et al., 1988). In addition, EBV is speculated, to some extent, 

to be associated with autoimmune illnesses such as multiple sclerosis (Bar-Or et al., 2020) and 

systemic lupus erythematosus (Draborg et al., 2012). 

Considering the vast majority of the adult population (over 95%) worldwide is 

asymptomatically and persistently infected with EBV (Münz, 2019), progress in the molecular 

mechanisms of EBV carcinogenesis will lead to better prevention, diagnosis, staging, and treatment 

strategies for EBV-associated diseases. 

1.1. Epstein-Barr virus 

Epstein-Barr virus (EBV), taxonomically designated human herpesvirus 4 (HHV4), belongs to 

Lymphocryptovirus (LCV) (or gamma 1) genus of the -herpesviridae (Cho et al., 1999). Like other 

herpesviruses, the EBV virion is about 200 nm in diameter and has a toroid-shaped DNA core in a 

nucleocapsid consisting of 162 capsomeres, an outer envelope with external glycoprotein spikes 

which are important for binding and subsequent fusion of the virion envelope with cellular 
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membranes, and a tegument which consists of viral and cellular proteins between the nucleocapsid 

and envelope (Figure 1).  

 

Figure 1. Diagram of EBV virion.  

The major structural components of the virion include the spikes, the virion envelope, the tegument; the capsid; and 

the viral genomic DNA. 

1.1.1. EBV genome 

The genome of EBV is a linear double-stranded DNA (~172 kb) in the nucleocapsid while it 

circularizes to replicate as an episome in latently infected cells (Figure 2). There are more than 100 

potential open reading frames (ORFs) encoded by the viral genome. The nomenclature of these 

ORFs is based on their position (1st ORF, 2nd ORF, 3rd ORF, and so on) and direction (rightward or 

leftward) within BamH I digested fragments (A, B, C, and so on in decreasing size) of the viral 

genome (Baer et al., 1984). For example, BYRF1 (also known as EBNA2) is the first rightward ORF 

in the BamH I Y fragment (BamH I Y fragment rightward open reading frame 1). There are two EBV 

types (type 1 and 2) circulating worldwide. The two types differ mainly on EBNA2 by 54 % identity 

in the protein sequence (Farrell, 2015). The major biological discrepancy between the two viral 

types is that type 1 EBV is much more efficient in the immortalization of B cells in vitro than type 2 

EBV (Rickinson et al., 1987). In this thesis, only type 1 EBNA2 (UniProtKB: P12978) was studied. 

The EBV infection in vitro leads to the outgrowth of immortalized B cells, termed 

lymphoblastoid cell lines (LCLs), which exhibit a specific latent transcription program. They are 

considered as a model to study the early infection by EBV. The function of all latent genes has been 

extensively studied. The current understanding of these genes is briefly summarized below.  
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Epstein-Barr virus nuclear antigen 2 (EBNA2) is one of the first expressed viral genes 

upon EBV infection (Schlee et al., 2004). EBNA2 is required for the immortalization of EBV-infected 

B cells (Cohen et al., 1989; Hammerschmidt and Sugden, 1989; Pich et al., 2019). It functions as 

a transactivator protein that is involved in the regulation of latent viral and cellular transcription 

(Henkel et al., 1994). Since EBNA2 cannot bind to its responsive element directly, it uses cellular 

adaptor proteins (e.g. CBF1 or PU.1) to target the cis-regulatory regions of its target genes and 

indirectly confers sequence-specific DNA contact. The large EBNA transcript is first initiated from 

Wp in primary infected cells while after the expression EBNA2 and LP Cp promoter dominates 

EBNA transcription driven by EBNA2 (Kempkes and Ling, 2015). 

Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) is one of the first expressed 

viral genes upon EBV infection along with EBNA2 (Harada and Kieff, 1997). EBNA-LP cooperates 

with EBNA2 in transcriptional regulation and increases the activation of viral target genes (Kempkes 

and Ling, 2015). However, EBNA-LP only coactivates EBNA2 on a subset of EBNA2-responsive 

genes (Peng et al., 2005).  

Epstein-Barr virus nuclear antigen 1 (EBNA1) is expressed in all forms of EBV latency in 

dividing cells. EBNA1 binds to the latent origin of plasmid DNA replication (OriP) of the EBV genome 

and tethers the viral episome to the human chromosomes during cell division. In EBV infected B 

cell exhibiting a non-latency III program EBNA1 is transcribed from Qp promoter, and not from the 

EBNA2 driven Cp promoter (Frappier, 2015). 

Epstein-Barr virus nuclear antigen 3 (EBNA3) protein family includes 3 proteins called 

EBNA3A, EBNA3B, and EBNA3C. EBNA3A is critical for maintaining lymphoblastoid cell line 

growth (Maruo et al., 2003). EBNA3B is a viral tumor suppressor whose inactivation promotes 

immune evasion and virus-driven lymphomagenesis (White et al., 2012). EBNA3C contributes to 

EBV-induced lymphomagenesis in vivo (Romero-Masters et al., 2018). 

Epstein-Barr virus latent membrane protein 1 (LMP1) is a transmembrane protein that 

triggers a series of signal transduction pathways. LMP1 mimics a constitutively active tumor 

necrosis factor (TNF) receptor, is a principal activator of the nuclear factor-κB (NF-κB) pathway in 

LCLs (Le Clorennec et al., 2006), and mimics CD40 signaling which is essential for the 

differentiation of B cells (Uchida et al., 1999). 

Epstein-Barr virus latent membrane protein 2A (LMP2A) and 2B (LMP2B) are 

transmembrane proteins. LMP2A constitutively mimics a B cell receptor (BCR) signal which 

provides a survival signal for EBV infected cells in the absence of antigen (Cen and Longnecker, 

2015). LMP2B is related to LMP2A but lacks the domain required for LMP2A tyrosine kinase 

signaling, and modulates LMP2A activity (Le Clorennec et al., 2006).  

Epstein-Barr virus-encoded small RNAs (EBERs, including EBER1 and EBER2) are by 

far the most abundant EBV viral transcript in latently infected cells. EBERs are expected to form a 
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double-stranded RNA-like structure. EBERs contribute to oncogenesis by modulating innate 

immunity in patients with nasopharyngeal carcinoma (NPC) and Burkitt's lymphoma (Takada, 2012). 

BamHI-A Rightward Transcripts (BARTs) represent another abundant, stable viral RNA 

species present in all infected cell types. They are indisputably abundant in EBV-associated 

epithelial tumors, e.g. NPC, and are therefore thought to be a contributing factor in NPC 

pathogenesis (Skalsky and Cullen, 2015). 

Amongst these genes, EBNA2 is required for B cell immortalization. However, how EBNA2 

regulates B cell immortalization is unclear so far. Since EBNA2 is one of the major subjects in this 

thesis, more detail about it will be depicted in chapter 1.2.  

 

Figure 2. Schematic representation of the EBV genome.  

Shown are the transcripts of BARTs and EBERs, messenger RNAs (mRNAs) from different promoters, Wp, Cp, and 

Qp, and major proteins, EBNA 1, 2, 3A, 3B, 3C, and LP, and LMP1 and 2A/B (grey boxes). The terminal repeats 

(TR) for EBV episome circularization, the origin of DNA replication (OriP), and lytic origins of replication (OriLyt) are 

indicated. 

1.1.2. The life cycle of EBV 

EBV has a tropism for human B lymphocytes and epithelial cells (Hochberg et al., 2004; Möhl et al., 

2016). Like other herpesviruses, EBV possesses the capacity to switch between the latency and 

lytic cycle. David Thorley-Lawson and his colleagues contributed lots of wisdom in the 

characterization and modeling of EBV viral latent and lytic cycles (Thorley-Lawson, 2001, 2005, 



1. Introduction 

 

 
5  

2015; Thorley-Lawson and Allday, 2008; Thorley-Lawson and Gross, 2004). Their stunning 

germinal center (GC) model provides a historical perspective of EBV’s life cycle. There are also 

other models to explain EBV’s life cycle, e.g. the direct infection model suggesting that EBV directly 

infects memory B cells. This section will describe the GC model only. 

In the GC model, EBV is considered to use the normal pathways of B cell biology in 

Waldeyer’s ring, a lymphoid tissue including tonsils and adenoids to initiate infection, differentiation, 

persistence, replication, and reactivation (Figure 3).  

Initially, EBV is transmitted through saliva contact, like kissing, and crosses the epithelial 

barrier of Waldeyer’s ring to infect naïve B cells. Upon infection, it drives the infected cell to become 

a proliferating B blast using the latency III program.  

Next, EBV-infected naïve blasts migrate into the follicle to initiate a GC reaction and they 

switch latency III program to latency II program which provides surrogate antigens and helper T 

cell signals by expressing latent membrane protein 1 (LMP1) and latent membrane protein 2A/B 

(LMP2A/B). 

Subsequently, the latently infected GC B cells leave the follicle as resting memory B cells 

circulating in the periphery. There is no EBV viral protein expressed in the infected cells, which are 

designated as latency 0.  

In the infected memory B cells, these cells occasionally divide in the periphery to maintain 

memory B cell homeostasis. At this time, termed latency I, the virus expresses EBNA1 to tether 

the viral episomes onto the B cell genome, which allows the viral genome to replicate along with 

the cells. 

In EBV infected humans, latently infected memory B lymphocytes (latency 0 and I) circulate 

systemically and serve as lifelong viral reservoirs (Luzuriaga and Sullivan, 2010).  

If an EBV latently infected resting memory B cell returns to Waldeyer’s ring and receives 

signals that initiate terminal differentiation into a plasma cell, the plasma cell will activate the lytic 

cycle of EBV in which a large amount of infectious progeny virus is produced de novo (Laichalk and 

Thorley-Lawson, 2005). 

The released virions can initiate a new round of naïve B cell infection or infect the epithelial 

cells. The infection of epithelial cells leads to the lytic cycle of the virus, which remarkably amplifies 

the amount of infectious progeny virus. Ultimately the progeny virus is shed into saliva for infectious 

transmission to new hosts.  

In the GC model, EBV gene expression is tightly regulated in a tissue-specific manner. 

Dysregulation of the viral or cellular genes can lead to lymphomas or carcinoma which arise from 

each stage of EBV infection predicted by the model.  
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Figure 3. Schematic representation of the EBV life cycle.  

EBV crosses the epithelial barrier, infects naïve B cells, and drives them to become proliferating B lymphoblasts. 

The B lymphoblasts migrate to the germinal center (GC) and undergo a GC reaction to differentiate into memory B 

cells. The memory B cells further differentiate into plasma cells, the lytic cycle is activated, and large amounts of 

EBV progeny are produced. The released virial particles can either be further amplified by infection of the epithelial 

cells or initiate a new round of naïve B cell infection. Each position in vivo, life cycle stage, and host of the EBV are 

indicated. 

1.1.3. EBV-associated diseases 

EBV has been classified in group 1 carcinogenic viruses including another human -herpesvirus, 

Kaposi's Sarcoma Herpesvirus (KSHV, also called Human Herpesvirus 8 (HHV8)), by the 

International Agency for Research on Cancer (IARC) since 1997. It is estimated that more than 

200,000 cancer cases worldwide could be attributed to EBV each year (Khan and Hashim, 2014) 

and that EBV-attributable malignancies lead to 1.8% of all cancer deaths (de Martel et al., 2020). 

The most common EBV-associated diseases are shortly described below. 

Infectious mononucleosis (IM) is a clinical syndrome characterized by sore throat, cervical 

lymph node enlargement, fatigue, and fever, which is most commonly seen in adolescents and 

young adults and lasting several weeks (Luzuriaga and Sullivan, 2010). IM is usually caused by 
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EBV primary infection. The EBV primary infection is established by saliva contacts, such as kissing, 

sharing contagious food, or utensils among adolescents and young adults. 

Post-transplantation lymphoproliferative disease (PTLD) is characterized by abnormal 

proliferation of lymphoid cells (~90% B cell origin) occurring after transplantation (Dharnidharka et 

al., 2016). Recipients of solid organ or allogeneic hematopoietic stem cell transplants have an 

increased risk of lymphomas largely related to immunosuppression and EBV infection (Dierickx and 

Habermann, 2018). The clinical symptoms of PTLDs can be highly variable (fever, night sweats, 

weight loss, or allograft dysfunction) or related to problems at the site of the lymphoid mass (lymph 

node enlargement or symptoms in the gastrointestinal tract, brain, liver, lungs, or kidneys 

(Dharnidharka et al., 2016). The pathogenesis of EBV-positive PTLDs is obvious in recipients. An 

immunosuppression-related decrease in T cell immunosurveillance can lead to the proliferation and 

transformation of the EBV-infected B cells. 

Hodgkin's lymphoma (HL) is a lymphoid malignancy characterized by the presence of 

pathognomonic Hodgkin/Reed-Sternberg (HRS) cells. EBV is found in HRS cells in about 40% of 

classical HL in the Western world. In EBV positive HRS cells, three viral proteins (EBNA1, LMP1, 

and LMP2A) and two non-coding RNAs (BARTs and EBERs) are expressed (Küppers, 2008). 

Nasopharyngeal carcinoma (NPC) is cancer arising from the nasopharynx epithelium 

(Chua et al., 2016). Undifferentiated NPC is constantly associated with EBV, displays a latency II 

expression pattern (see Table 1), and is endemic in specific areas, e.g. southern China, 

Mediterranean Africa, and some regions of the Middle East (Raab-Traub, 2015). Since the 

geographical distribution of NPC is unbalanced, host genetics (e.g. HLA genotype), environmental 

factors (e.g. nitrosamine-containing food), and EBV infection as well are considered as contributors 

to the development of NPC (Chen et al., 2019). 

Burkitt's lymphoma (BL) is a cancer characterized by the translocation of chromosomes 8 

and 14 (2 or 22 as well). The translocation places the proto-oncogene C-MYC originally from 

chromosome 8 under the transcriptional control of an immunoglobulin locus, which leads to 

constitutive upregulation of C-MYC. The high level of C-MYC drives the expression of many genes 

involved in cell proliferation, which contributes to tumor formation. EBV-positive BL cells express a 

small fraction of viral latent genes, like EBNA1 and EBERs, which are not fully understood to date 

(Rochford and Moormann, 2015). 

EBV is also associated with other malignancies, such as NK/T cell lymphoma, Gastric cancer, 

and so on. Even though the EBV-associated diseases differ in their clinical symptoms, the EBV-

positive cells might show similar latent or lytic transcriptional programs. A summary of the viral 

transcription programs in the latent or lytic state is provided in Table 1. 
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Table 1. The transcription programs of EBV. 

Program Protein Noncoding RNA Clinical relevance 

Latency III 

EBNA1, 2, 3A, 3B, 

3C, and -LP, and 

LMP1 and 2A/B 

EBER1 and 2, BART 

miRNAs, BHRF1 

miRNAs 

IM, PTLD, immunosuppressed 

or immunodeficient patients 

Latency II 
EBNA1 and LMP1 

and 2A/B 

EBER1 and 2, BART 

miRNAs 

HL, NPC, NK/T cell lymphoma, 

and Gastric cancer 

Latency I EBNA1 
EBER1 and 2, BART 

miRNAs 
BL 

Latency 0  EBER1 and 2, BART 

miRNAs 
 

Lytic cycle 
BZLF1, BRLF1, and 

p350…… 
  

 

The infection of B cells with EBV in vitro results in the outgrowth of immortalized 

lymphoblastoid cell lines (LCLs) which show a latency III transcription program. The process of LCL 

formation in culture is considered as a research model to investigate the early infection and 

diseases exhibiting a latency III program, e.g. IM and PTLD. 

1.2. EBNA2 

EBNA2 is one of the first expressed genes upon EBV infection and functions as the major 

transcriptional activator in latency III. As EBNA2 plays an important role in EBV pathogenesis, this 

section will summarize the current knowledge of EBNA2. 

1.2.1. EBNA2 features and its binding proteins 

As depicted in Figure 4, EBNA2 comprises multiple functional features. The EBNA2 N-terminal 

dimerization domain (END) (1-58 aa) mediates multiple molecular functions including self-

association (Harada et al., 2001), transactivation (Gordadze et al., 2004), and functional 

cooperation with EBNA-LP (Peng et al., 2005). END binds to early B cell factor 1 (EBF1) to promote 

the assembly of the EBNA2/chromatin complexes in EBV-infected B cells (Glaser et al., 2017). The 

three-dimensional structure of the END domain was solved by heteronuclear nuclear magnetic 

resonance (NMR) spectroscopy. The END monomer consists of four -strands and a single -helix 

and two END monomers form a homodimer by the interaction of two -strands from each monomer 

(Friberg et al., 2015). The poly-proline (polyP) stretch bridges the END and the other dimerization 

domain (DIM) which mediates homodimerization (Harada et al., 2001). The central adaptor region 

(WW) of EBNA2 (318-327 aa) targets C-promoter binding protein (CBF1), also known as 

recombination signal binding protein for immunoglobulin kappa J region (RBPJ) (Ling and Hayward, 

1995). CBF1/RBPJ is a sequence-specific DNA binding protein, is ubiquitously expressed in all 
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human cells, and is also an important downstream element of the cellular Notch signal transduction 

pathway (Hsieh et al., 1996). EBNA2 assembles to the responsive elements of its cellular and viral 

target genes, like C-MYC and LMP1, respectively, through interaction with CBF1/RBPJ (Kaiser et 

al., 1999; Wang et al., 1990). The C-terminal transcriptional activation domain (TAD) (440-469 aa) 

is flanked by the poly-arginine-glycine (polyRG) repeat and a C-terminal canonical nuclear 

localization signal (NLS) (478-485 aa). The TAD domain recruits components of the basic 

transcriptional machinery, like TFIIE, to the TFB1/p62 subunit of the TFIIH complex, through 

interaction with p100, TFIIB, and TAF40 (Cohen et al., 1991; Tong et al., 1995c, 1995a, 1995b). It 

recruits histone acetyltransferase activity through interaction with p300, CBP, and PCAF (Wang et 

al., 2000). The TAD domain is intrinsically unstructured alone but forms a 9-residue -helix in 

complex with the TFB1/p62 (Chabot et al., 2014). A second internal NLS (341-355 aa) 

encompassing the RG repeat can substitute for the canonical NLS to ensure appropriate nuclear 

localization to exert EBNA2’s transactivation (Cohen and Kieff, 1991; Ling et al., 1993). 

 

Figure 4. Schematic illustration of selected features of EBNA2.  

The poly-proline (polyP) and the poly-arginine-glycine (RG) stretches, EBNA2 N-terminal dimerization domain 

(END), the second dimerization domain (DIM), the central adaptor region (WW), the C-terminal transcriptional 

activation domain (TAD), and the two nuclear localization signals (NLS) are indicated. 

1.2.2. Posttranscriptional modification of EBNA2 and 
its function 

EBNA2 functions as a major transactivator in latency III. It is localized in the nucleus, docks to the 

responsive elements through interaction with DNA binding adaptor, e.g. CBF1 and PU.1, and works 

as a scaffold protein recruiting co-activators, chromatin remodelers, and the transcription machinery 

to drive its target viral and cellular gene expression. The post-transcriptional modification (e.g. 

phosphorylation, methylation, and ubiquitination) of EBNA2 by specific catalytic enzymes 

modulates its biochemical properties, might further regulate its transactivation, substrate 

recognition, subcellular localization, singling transduction pathway, and conformational changes.  

EBNA2 proteins isolated from distinct nuclear components display differential 

phosphorylation patterns in a cell cycle-dependent fashion and the hyperphosphorylation of EBNA2 

suppresses its transactivation of the LMP1 promoter (Grässer et al., 1991; Petti et al., 1990; Yue et 

al., 2004). The phosphorylation of S243 of EBNA2 by either a viral serine/threonine-protein kinase 

(PK) encoded by the BGLF4 gene or cellular Cyclin B1/CDK1 contributes to the repression of 

EBNA2’s transactivation (Yue et al., 2005, 2006). In addition, the phosphorylation of SS469 by 

casein kinase 2 (CK2) regulates EBNA2’s interaction with hSNF5/Ini1 and EBNA2-driven 

proliferation (Grässer et al., 1992; Kwiatkowski et al., 2004). Interestingly, it was reported that S457 

of the EBNA2 TAD domain is not phosphorylated by casein kinase 1 (CK1) (Grässer et al., 1992). 
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EBNA2 is supposed to be methylated on the arginines of the RG repeat. The methylation of 

EBNA2 is a prerequisite for binding to SMN to facilitate B cell immortalization (Barth et al., 2003). 

Even though Lysine residues of EBNA2 do not confer ubiquitination or SUMOylation, they modulate 

EBNA2‘s transactivation (Hille et al., 2002). 

1.3. Polo-like kinase family 

Polo-like kinase (PLK) family comprises five serine/threonine-protein kinases: PLK1, 2, 3, 4, and 5 

in mammalian cells so far (Joukov and Nicolo, 2018). In 1988, PLK was first found to be essential 

for undergoing normal mitosis in Drosophila melanogaster (named Polo, not PLK here) by David M. 

Glover’s laboratory (Sunkel and Glover, 1988). In the next year, polo was characterized as a 

homolog to a serine/threonine kinase (Llamazares et al., 1991). The PLKs are highly conserved 

from budding yeast (Cdc5) to Drosophila (Polo), Xenopus (Plxs), and mammals (PLKs) . As 

depicted in Figure 5, the PLKs are characterized by a well-conserved N-terminal catalytic kinase 

domain (KD) and C-terminal domain with one or more polo-box domains (PBD) (Li et al., 2014). 

PLKs are key regulators in mitosis, cytokinesis, and even meiosis in eukaryotes (Barr et al., 

2004). PLK1 is the most well-studied one in the PLK family and is a multifunctional kinase implicated 

in various aspects of mitosis and cytokinesis. PLK2 (also named SNK) localizes at the centrosomes 

and plays a role in the S phase entry (de Cárcer et al., 2011). PLK3 (also known as FNK or PRK) 

is required at the G1-S phase transition and for DNA replication (Zimmerman and Erikson, 2007b, 

2007a). PLK4 (also named SAK or STK18) functions as a critical regulator of centriole duplication 

both in Drosophila and mammals (Kleylein-Sohn et al., 2007). The human PLK5 encloses only a 

small portion of the kinase domain along with one PBD and acts as a tumor suppressor in brain 

cancer (de Cárcer et al., 2011; Goroshchuk et al., 2019). 

 

Figure 5. The general structure of the PLK family.  

The structure includes an N-terminal serine/threonine kinase domain (truncated in PLK5, without the T-loop) and a 

C-terminal polo-box domain (PBD). PLK1, 2, 3, and 5 have two PBDs. PLK4 has one PBD and one crypto PBD. 

PLK5 has a truncated and inactive kinase domain. The figure is adapted from Goroshchuk et al., 2019. 
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1.3.1. PLK1 function 

PLK1 phosphorylates multiple proteins, e.g. Cyclin B1, involved in mitosis. In mitosis and 

cytokinesis, PLK1 plays versatile roles including mitotic entry, centrosome separation and 

maturation, chromosome arm segregation, microtubule-kinetochore attachment, and spindle 

assembly checkpoint silencing. Inhibition of either PBD or KD or depletion of PLK1 is sufficient for 

abolishing PLK1 function in vivo, resulting in the arrest of cells in a prometaphase-like state, with 

unseparated centrosomes and monopolar spindles and defects in microtubule-kinetochore 

attachment and chromosome alignment (Archambault et al., 2015; Schmucker and Sumara, 2014). 

1.3.2. Substrate phosphorylation by PLK1 

PLK1 is characterized by an N-terminal KD and a C-terminal PBD. PLK1 alone is autoinhibitory 

since the PBD binds and rigidifies the hinge region of the KD intramolecularly (Xu et al., 2013). As 

illustrated in Figure 6, Phosphorylation of Ser137 within KD or PBD docking to a binding partner 

interrupts the intramolecular interaction and releases the mutual inhibition (Jang et al., 2002). 

Through its PBD which recognizes specific phosphorylated motifs, PLK1 docks onto its substrates 

to perform critical mitotic functions (Schmucker and Sumara, 2014). The PBD docking causes 

conformational changes in PLK1, which exposes the KD to partially activate the kinase. Full 

activation of PLK1 requires its phosphorylation in the activation loop or T-loop (T210) of KD by 

Aurora kinases (Asteriti et al., 2015; Seki et al., 2008). The phosphorylation of the docking site of 

the PBD binding motif is a prerequisite for binding to PBD. The priming phosphorylation is mediated 

either by PLK1 itself, a process called self-priming or by a proline-directed kinase, such as CDK1 

or MAPK, a process called non-self-priming (Elia et al., 2003a, 2003b; Neef et al., 2007). However, 

the interaction between PLK1 and its substrate Bora does not require priming phosphorylation (Seki 

et al., 2008). Activated PLK1 can either phosphorylate additional sites on the same substrate or 

residues on proteins in close proximity in multiprotein complexes (Lee et al., 2014; Zitouni et al., 

2014). 

Although the amino acid sequence of PLK1 shows a high identity with closely related PLK2 

and PLK3, in vitro biochemical analyses have shown that the three PLKs have different substrate 

specificities (Park et al., 2009). Furthermore, the PBDs of each PLK interact with specific motifs on 

their binding partners (Elia et al., 2003b; Reindl et al., 2009). 
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Figure 6. Schematic diagram of the mechanism of PLK1 phosphorylation.  

(A) PLK1 is autoinhibited through the interaction of PBD with KD. PLK1 is partially activated through either 

phosphorylation of S137 within KD or PBD docking to its substrate. Phosphorylation of T210 (for example, by Aurora 

A/B) fully activates PLK1. (B) PBD1-binding target is generated either by a Pro-directed kinase such as CDK1 

(nonself-priming) or by PLK1 itself (self-priming). (C) Once activated PLK1 binds to a phosphorylated target, it 

phosphorylates its substrate. 

1.3.3. PLK1: an oncogene or tumor suppressor gene? 

Interestingly, extensive studies have shown that PLK1 expression is upregulated in most tumor 

entities including non-small-cell lung cancer, head and neck cancer, esophageal cancer, B-cell 

acute lymphoblastic leukemia, gastric cancer, melanomas, breast cancer, ovarian cancer, 

endometrial cancer, colorectal cancer, gliomas, and thyroid cancer (Goroshchuk et al., 2020; Takai 
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et al., 2005). The PLK1 overexpression is also associated with poor prognosis and chemotherapy 

resistance (Liu et al., 2017). PLK1 is considered as an attractive anti-cancer target (Rosenblum et 

al., 2020), which gives rise to the development of numerous either KD-specific small-molecule 

inhibitors including volasertib (BI6727) or PBD-specific small-molecule inhibitors, e.g. Poloxin. 

Volasertib is highly active across a variety of carcinoma cell lines and induces tumor regression in 

several xenograft models (Van den Bossche et al., 2016). Unfortunately, most so-called PBD-

specific small-molecule inhibitors are non-specific protein alkylators (Archambault and Normandin, 

2017). Therefore, further efforts are still needed to develop PBD-specific inhibitors. 

 

Increasing pieces of evidence in vivo show that PLK1 has a tumor-suppressive potential. 

PLK1 homozygous null mice were embryonic lethal, and early PLK1-/- embryos failed to survive 

after the eight-cell stage, while PLK1 heterozygotes were healthy at birth and the incidence of 

tumors in these mice was 3-fold higher than that in their wild-type counterparts, suggesting that 

PLK1 functions as a haploinsufficient tumor suppressor (Lu et al., 2008). In ApcMin/+ mice, PLK1 

inhibition promotes the development of adenomatous polyps, and overexpression of PLK1 

significantly increases the survival rate of colon cancer patients exhibiting a truncated APC (Raab 

et al., 2018). Furthermore, in an inducible knock-in mouse model, PLK1 overexpression prevents 

the development of Kras-induced and Her2-induced mammary gland tumors and PLK1 

overexpression correlates with improved survival in patients with specific breast cancer subtypes 

(de Cárcer et al., 2018). Therefore, whether PLK1 is an oncogene or tumor suppressor is still under 

hot debate.  

1.4. Association of EBV pathogenesis with PLK1 

Evidence showed that PLK1 is upregulated in EBV positive (or EBNA2-expressing) cells even 

though EBV-related studies focused on PLK1 are very rare. PLK1 gene was overexpressed in many 

BL cell lines compared to normal lymphocytes (Syed et al., 2006). Cells with exogenously 

expressing EBNA2 showed upregulated PLK1 in mRNA and protein levels (Pan et al., 2009). PLK1, 

along with Aurora A/B and CDK1, was upregulated in EBV-transformed LCLs (Dai et al., 2012). 

Interestingly, in 2016, Dr. Sybille Thumann (AG Kempkes) and Dr. Stefanie Hauck (HMGU) 

identified polo-like kinase 1 (PLK1) enriched in EBNA2 co-immunoprecipitates by liquid 

chromatography with tandem mass spectrometry (LC-MS/MS), indicating EBNA2 and PLK1 interact 

with each other. However, the role of PLK1 played in EBV-associated tumorigenesis is still unclear. 

1.5. Objective 

Even though EBNA2 and PLK1 have attracted much attention since their first discoveries, studies 

focusing on the regulation of EBNA2’s transactivation and the contribution of PLK1’s 
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phosphorylation to EBV-induced carcinogenesis have been lagging, and our knowledge about how 

EBNA2 and PLK1 interact at the molecular level remains quite rudimentary. 

Considering the importance of EBNA2’s transactivation in B cell immortalization and PLK1’s 

phosphorylation in the cell cycle, I want to characterize the interaction of EBNA2 and PLK1 and the 

function of the EBNA2/PLK1 complex in vitro and in vivo in my thesis. Based on my goal, the 

following four working packages were defined in this thesis: 

(1) Characterization of the interaction of EBNA2 and PLK1 

(2) Identification of phosphorylation sites of EBNA2 by PLK1 

(3) Characterization of the function of EBV expressing EBNA2 deficient on PLK1 docking or 

phosphorylation in vitro 

(4) Characterization of the function of EBV expressing EBNA2 deficient on PLK1 docking or 

phosphorylation in vivo 
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2. Material 

2.1. Human donor samples 

Anonymous human adenoid samples from routine adenoidectomy were collected from the 

Department of Otorhinolaryngology, Klinikum Grosshadern, Ludwig Maximilians University of 

Munich, Germany. The local ethics committee (Ethikkommission bei der LMU Muenchen) approved 

the use of this human material. 

2.2. Mouse models 

The humanized mice which are the immunodeficient mice (NOD-scid c
null) engrafted with human 

fetal liver CD34+ hematopoietic progenitor cells were generated and maintained in Prof. Dr. 

Christian Münz’s lab. 

2.3. Human primary B cells 

The human primary B cells were isolated from human donor adenoids. The local ethics committee 

(Ethikkommission bei der LMU Muenchen) approved the use of this human material. 

2.4. Cell lines 

Table 2. General and commercially available cell lines. 

Cell line Description Source Reference 

DG75 Human EBV negative Burkitt’s lymphoma cell line 
AG 

Kempkes 

(Ben-

Bassat et 

al., 1977) 

DG75Dox HA-EBNA2 
Doxycycline inducible N-terminal HA-tagged EBNA2 

expressing DG75 cell line 

AG 

Kempkes 

(Glaser et 

al., 2017) 

HEK 293 
Human embryonic kidney epithelial cell line 

transformed by DNA fragments of adenovirus type 5 
DSMZ ACC 305 

Raji Human EBV positive Burkitt’s lymphoma cell line 
AG 

Kempkes 

(Pulvertaft, 

1964) 
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Sf21 
An ovarian cell line isolated from Spodoptera 

frugiperda 

Sigma-

Aldrich 
05022801 

 

Table 3. Recombinant EBV producer cell lines. 

Cell line BACmid Recombinant EBV 

XZ156.7 

pXZ143 EBNA2-HA WT XZ156.12 

XZ156.13 

XZ227.17 
pXZ203 EBNA2-HA S379A 

XZ227.18 

XZ219.1 
pXZ146 EBNA2-HA S457A T465V 

XZ239.4 

 

Table 4. Lymphoblastoid cell lines. 

Donor Recombinant EBV Clone Cell line 

D6 

EBNA2-HA WT 

1 XZ454.1 

2 XZ454.2 

3 XZ454.3 

EBNA2-HA S379A 

1 XZ455.1 

2 XZ455.2 

3 XZ455.3 

EBNA2-HA S457A/T465V 

1 XZ456.1 

2 XZ456.2 

3 XZ456.3 

D8 

EBNA2-HA WT 

1 XZ471.1 

2 XZ471.2 

3 XZ471.3 

EBNA2-HA S379A 

1 XZ472.1 

2 XZ472.2 

3 XZ472.3 

EBNA2-HA S457A/T465V 

1 XZ473.1 

2 XZ473.2 

3 XZ473.3 

D9 EBNA2-HA WT 1 XZ481.1 
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2 XZ481.2 

3 XZ481.3 

EBNA2-HA S379A 

1 XZ482.1 

2 XZ482.2 

3 XZ482.3 

EBNA2-HA S457A/T465V 

1 XZ483.1 

2 XZ483.2 

3 XZ483.3 

D10 

EBNA2-HA WT 

1 XZ494.1 

2 XZ494.2 

3 XZ494.3 

EBNA2-HA S379A 

1 XZ495.1 

2 XZ495.2 

3 XZ495.3 

EBNA2-HA S457A/T465V 

1 XZ496.1 

2 XZ496.2 

3 XZ496.3 

2.5. Bacterial strains 

Table 5. Bacterial strains. 

Strain Genotype Source Application 

DH5 

F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR 

nupG purB20 φ80lacZΔM15 Δ(lacZYA-argF) U169 

hsdR17(rk
-mk

+) λ- 

AG 

Kempkes 
Cloning 

Rosetta 2 

(DE3) 

F-ompT hsdSB(rB
-mB

-) gal dcm(DE3) pRARE2 

(CamR) 

Merk 

Millipore 

Protein 

expression 

SW105 
DH10B [λc1857 (cro-bioA)<>Tet] gal490 (cro-

bioA)<>araC-PBADFlpe gal+ ΔgalK 

(Warming et 

al., 2005) 

BAC 

recombineering 

GM2163 

F- ara-14 leuB6 thi-1 fhuA31 lacY1 tsx-78 galK2 

galT22 supE44 rpsL136(StrR) xyl-5 mtl-1 

dam13:Tn9 (CamR) dcm-6 mcrB1 hsdR2(rk
-mk

+ ) 

mcrA 

AG 

Kempkes 
Cloning 
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2.6. Recombinant DNA 

Table 6. Plasmids used in mammalian cells 

Plasmid Description Source 

pSG5 A eukaryotic expression vector 
Agilent 

Technologies 

pAG155 
A C-terminal HA-tagged EBNA2 gene inserted in the backbone 

of pSG5 
AG Kempkes 

pCKR656 
A truncation of 342-487aa in C-terminus of EBNA2 gene in the 

backbone of pAG155 
This thesis 

pCKR657 
A truncation of 475-487aa in C-terminus of EBNA2 gene in the 

backbone of pAG155 
This thesis 

pEGFP/NLS 

A eukaryotic expression vector encoding enhanced green 

fluorescence protein (eGFP) and nucleus localization signal 

(NLS)  

AG Kempkes 

pXZ150 

An EBNA2 327-487aa integrated into the frame and C-terminus 

of the eGFP gene between BamH I and Xba I in the backbone 

of pEGFP/NLS 

This thesis 

pXZ151 

An EBNA2 327-407aa integrated into the frame and C-terminus 

of the eGFP gene between BamH I and Xba I in the backbone 

of pEGFP/NLS 

This thesis 

pXZ152 

An EBNA2 408-487aa integrated into the frame and C-terminus 

of the eGFP gene between BamH I and Xba I in the backbone 

of pEGFP/NLS 

This thesis 

pCKR672 

An EBNA2 342-474aa integrated into the frame and C-terminus 

of the eGFP gene between BamH I and Xba I in the backbone 

of pEGFP/NLS 

This thesis 

pXZ229 

An EBNA2 342-422aa integrated into the frame and C-terminus 

of the eGFP gene between BamH I and Xba I in the backbone 

of pEGFP/NLS 

This thesis 

pCKR661 

An EBNA2 423-474aa integrated into the frame and C-terminus 

of the eGFP gene between BamH I and Xba I in the backbone 

of pEGFP/NLS 

This thesis 

pXZ153 
Substitutions of ST266AV within EBNA2 gene in the backbone 

of pAG155 
This thesis 

pXZ154 
Substitutions of TSS377VAA within EBNA2 gene in the 

backbone of pAG155 
This thesis 

pXZ155 
Substitutions of SPSS467APAA within EBNA2 gene in the 

backbone of pAG155 
This thesis 

pXZ179 
A substitution of S379A within EBNA2 gene in the backbone of 

pAG155 
This thesis 

pXZ288 
Substitutions of F400A/WY444AA/YIF460AAA within EBNA2 

gene in the backbone of pAG155 
This thesis 
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pXZ289 
Substitutions of S379A/F400A/WY444AA/YIF460AAA within 

EBNA2 gene in the backbone of pAG155 
This thesis 

pCKR675 
A substitution of S184A within EBNA2 gene in the backbone of 

pAG155 
This thesis 

pCKR676 
A substitution of S258A within EBNA2 gene in the backbone of 

pAG155 
This thesis 

pXZ140 
A substitution of S457A within EBNA2 gene in the backbone of 

pAG155 
This thesis 

pXZ141 
A substitution of T465V within EBNA2 gene in the backbone of 

pAG155 
This thesis 

pCKR677 
A substitution of S479A within EBNA2 gene in the backbone of 

pAG155 
This thesis 

pXZ142 
Substitutions of S457A/T465V within EBNA2 gene in the 

backbone of pAG155 
This thesis 

pCKR678 
Substitutions of S457A/T465V/S479A within EBNA2 gene in 

the backbone of pAG155 
This thesis 

pCKR679 
Substitutions of S258A/S457A/T465V/S479A within EBNA2 

gene in the backbone of pAG155 
This thesis 

pCKR680 
Substitutions of S184A/S258A/S457A/T465V/S479A within 

EBNA2 gene in the backbone of pAG155 
This thesis 

pGa981-6 

A reporter construct encoding firefly luciferase upstreamed by 

hexamerized 50 bp EBNA2 response element of the TP-1 

promoter 

(Minoguchi et al., 

1997) 

pPGK Renilla luciferase expression plasmid Promega 

pcDNA3.1 

Hygro 
A eukaryotic expression vector AG Strebhardt 

3× Flag-

tagged PLK1 

A PLK1 integrated into C-terminus of Flag tag between EcoR I 

and Hind III in the backbone of pcDNA3.1 Hygro 
AG Strebhardt 

3× Flag-

tagged PLK1 

K82M 

A substitution of K82M within PLK1 gene in the backbone of 3× 

Flag-tagged PLK1 
AG Strebhardt 

p509 A prokaryotic expression plasmid encoding BZLF1 
AG 

Hammerschmidt 

p2670 A prokaryotic expression plasmid encoding BALF4 
AG 

Hammerschmidt 

 

Table 7. Plasmids used in protein expression from E.coli or Sf21 insect cells. 

Plasmid Description Source 

pGEX 4T2 
A prokaryotic expression vector encoding Glutathione S-

transferase (GST) and a Thrombin recognition site 

GE 

Healthcare 
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pAH362 
An EBNA2 246-487aa integrated into the frame and C-terminus of 

GST gene in the backbone of pGEX 4T2 

AG 

Kempkes 

pXZ92 
An EBNA2 342-487aa integrated into the frame and C-terminus of 

GST gene in the backbone of pGEX 4T2 
This thesis 

pXZ93 
An EBNA2 342-422aa integrated into the frame and C-terminus of 

GST gene in the backbone of pGEX 4T2 
This thesis 

pXZ94 
An EBNA2 423-487aa integrated into the frame and C-terminus of 

GST gene in the backbone of pGEX 4T2 
This thesis 

pXZ109 
An EBNA2 423-474aa integrated into the frame and C-terminus of 

GST gene in the backbone of pGEX 4T2 
This thesis 

pXZ110 
An EBNA2 423-445aa integrated into the frame and C-terminus of 

GST gene in the backbone of pGEX 4T2 
This thesis 

pXZ111 
An EBNA2 446-474aa integrated into the frame and C-terminus of 

GST gene in the backbone of pGEX 4T2 
This thesis 

pXZ112 
An EBNA2 475-487aa integrated into the frame and C-terminus of 

GST gene in the backbone of pGEX 4T2 
This thesis 

pXZ113 
An EBNA2 446-487aa integrated into the frame and C-terminus of 

GST gene in the backbone of pGEX 4T2 
This thesis 

pXZ198 
Substitutions of S457A/T465V within EBNA2 gene in the backbone 

of pAH362 
This thesis 

pGEX 6P1 
A prokaryotic expression vector encoding GST and a PreScission 

protease recognition site 
AG Sattler 

pXZ162 
An EBNA2 423-474aa integrated into the frame and C-terminus of 

GST gene between in the backbone of pGEX 6P1 
This thesis 

pXZ299 

An EBNA2 453-474aa flanked by Arginines and integrated into the 

frame and C-terminus of GST gene between in the backbone of 

pGEX 6P1 

This thesis 

pXZ190 

An EBNA2 342-422aa integrated into the frame and C-terminus of 

GST gene between BamH I and Not I in the backbone of pGEX 

6P1 

This thesis 

pXZ261 
Substitutions of F400A/WY444AA within EBNA2 gene in the 

backbone of pXZ162 
This thesis 

pXZ262 
Substitutions of SID448AAA within EBNA2 gene in the backbone of 

pXZ162 
This thesis 

pXZ263 
Substitutions of YIF460AAA within EBNA2 gene in the backbone of 

pXZ162 
This thesis 

pXZ264 
Substitutions of F400A/WY444AA/SID448AAA within EBNA2 gene 

in the backbone of pXZ162 
This thesis 

pXZ265 
Substitutions of F400A/WY444AA/YIF460AAA within EBNA2 gene 

in the backbone of pXZ162 
This thesis 

pXZ266 
Substitutions of F400A/WY444AA/SID448AAA, YIF460AAA within 

EBNA2 gene in the backbone of pXZ162 
This thesis 
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pGEX 

5X1-CRS 

A Cyclin B1 fragment 104-159aa integrated into the frame and C-

terminus of GST gene between EcoR I and Xho I in the backbone 

of pGEX 5X1 

AG 

Strebhardt 

pETM-11 
A prokaryotic expression vector encoding a TEV protease 

recognition site 
AG Sattler 

pXZ164 

A PLK1 13-345aa integrated into C-terminus of hexahistidine (6× 

His) tag gene between Afl III and Hind III in the backbone of pETM-

11 

This thesis 

pXZ165 
A PLK1 345-603aa integrated into C-terminus of hexahistidine (6× 

His) tag gene in the backbone of pETM-11 
This thesis 

pXZ304 
An EBNA2 upstream of an Arginine and integrated into the frame 

of C-terminus of 6× His tag gene in the backbone of pETM-11 
This thesis 

pFastBac 

HT A 
A donor vector used in the baculovirus protein expression system AG Sattler 

pXZ161 
A PLK1 integrated into C-terminus of 6× His tag gene in the 

backbone of pFastBac HT A 
This thesis 

pXZ191 
A substitution of S379A within the EBNA2 gene in the backbone of 

pXZ190 
This thesis 

 

Table 8. Plasmids used for other purposes 

Plasmid Description Source 

pXZ132 
A synthetic DNA included in pUC57, to insert HA tag in C-terminus 

of EBNA2 gene in a BACmid, p6008 
This thesis 

p6012 
A plasmid used as a template in PCR to amplify rpsL/aph cassette 

in BAC recombineering 

AG 

Hammerschmidt 

 

Table 9. BACmids used in this thesis. 

BACmid Description Source 

p6008 

An EBV BACmid of B95.8 genome inserted the 12 kb deletion with 

the autologous sequences of the M-ABA EBV isolate to restore 

right-handed OriLyt and to express all 25 EBV-encoded pre-

miRNAs from their endogenous viral promoters as well as the LF1, 

LF2, and LF3 genes with eukaryotic expression of eGFP and 

puromycin N-acetyl-transferase. 

AG 

Hammerschmidt 

pXZ135 
An insertion of rpsL/aph cassette into C-terminus of EBNA2 gene 

in the backbone of p6008 
This thesis 

pXZ143 
An HA tag integrated into the C-terminus of the EBNA2 gene in 

the backbone of p6008 
This thesis 
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pXZ201 
An insertion of rpsL/aph cassette at position 1392 in EBNA2 gene 

locus in the backbone of pXZ143 
This thesis 

pXZ146 
Substitutions of S457A/T465V within EBNA2 gene in the 

backbone of pXZ143 
This thesis 

pXZ202 
An insertion of rpsL/aph cassette at position 1134 in EBNA2 gene 

locus in the backbone of pXZ143 
This thesis 

pXZ203 
A substitution of S379A within the EBNA2 gene in the backbone of 

pXZ143 
This thesis 

2.7. Oligonucleotides 

All oligonucleotides used in this thesis were designed through Primer3 web-based software 

(http://bioinfo.ut.ee/primer3/) and ordered at Metabion, Germany. All oligonucleotides are described 

and listed in Table S1, Table S2, and Table S3. 

2.8. Peptides 

The EBNA2 fragment 376-382aa derived peptide (NH2-NTSSPSM-COOH) with phosphorylated or 

unphosphorylated serine 379 was synthesized by Peptide Specialty Laboratories, Germany. 

2.9. Antibodies 

Table 10. Antibodies used in immunoprecipitation and primary antibodies used in western blotting. 

Name Form Host Subtype IP WB Source 

-N-His (2F12) monoclonal Mouse IgG 2b  1:50 MAB, HMGU 

-EBNA2 (R3) monoclonal Rat 
IgG 2a 

kappa 
 1:50 MAB, HMGU 

-EBNA2 (1E6) monoclonal Rat 
IgG 2a 

kappa 
100 µl   MAB, HMGU 

-GST (6G9) monoclonal Rat 
IgG 2a 

kappa 
100 µl  1:50 MAB, HMGU 

-HA (3F10) monoclonal Rat IgG 1 100 µl  1:50 MAB, HMGU 

-GFP (3E5) monoclonal Rat IgG 1 100 µl   MAB, HMGU 

-BSA (3C5) monoclonal Mouse IgG 2b 100 µl   MAB, HMGU 

-LMP1 (1G6) monoclonal Rat IgG 2a  1:5 MAB, HMGU 

-C-MYC (9E10) monoclonal Mouse IgG 1  1:10 MAB, HMGU 

-GAPDH (Mab374) monoclonal Mouse IgG 1  1:1000 Merck Millipore 

http://bioinfo.ut.ee/primer3/
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-Flag M2 (F3165) monoclonal Mouse IgG 1 1 µg 1:1000 Sigma-Aldrich 

-PLK1 [35-206] 

(ab17056) 
monoclonal Mouse IgG 2b 1 µg 1:1000 Abcam, UK 

-GFP (7.1 and 

13.1) 
bi-monoclonal Mouse 

IgG 1 

kappa 
 1:1000 

Roche, 

Switzerland 

-p300 (C-20) (sc-

585) 
polyclonal Rabbit  IgG  1:1000 

Santa Cruz, 

USA 

IP, immunoprecipitation. WB, western blotting. 

Table 11. Secondary antibodies used in western blotting. 

Name Host Addition WB Source 

-Rat-IgG-HRP (sc-2006) Goat HRP 1:5000 Santa Cruz, USA 

-Mouse-IgG-HRP (sc-2005) Goat HRP 1:4000 Santa Cruz, USA 

-Rabbit-IgG-HRP (sc-2004) Goat HRP 1:5000 Santa Cruz, USA 

-Mouse-IgG k-BP-HRP (sc-

516102) 
Goat HRP 1:4000 Santa Cruz, USA 

-Mouse-IgG-HRP (7076S) Horse HRP 1:4000 Cell Signaling Technology 

 

Table 12. Antibodies used in flow cytometry. 

Name Host Subtype Addition FACS Source Identifier 

-Human CD19 

(HIB19) 
Mouse IgG1 kappa APC 1:50 

BD 

Pharmingen 
555415 

isotype control 

(MCA928APC) 
Mouse IgG1 kappa APC 1:50 Bio-Rad MCA928APC 

-Human CD3 

(UCHT1) 

Mouse 

BALB/c 
IgG1 kappa PE 1:50 

BD 

Pharmingen 
555335 

isotype control 

(MCA928PE) 
Mouse IgG1 kappa PE 1:50 Bio-Rad MCA928PE 

FACS, fluorescence-activated cell sorting.  

2.10. Cell culture materials 

Name Source 

RPMI 1640 GIBCO, UK 

OptiMEM GIBCO, UK 
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Fetal Bovine Serum (FBS) PAA Laboratories, Austria 

L-Glutamine (200 mM) GIBCO, UK 

Penicillin-Streptomycin (10,000 U/mL) GIBCO, UK 

Sodium pyruvate (100 mM) Thermo Fisher Scientific, USA 

Sodium selenite Sigma-Aldrich, USA 

Thiols Sigma-Aldrich, USA 

Doxycycline Sigma-Aldrich, USA 

Puromycin Merck (Calbiochem), Germany 

Trypsin-EDTA (0.05%) GIBCO, UK 

Dimethyl sulfoxide (DMSO) Merck, Germany 

BSA MP Biomedicals, Germany 

Ficoll-Paque Plus GE Healthcare, UK 

Trypan blue GIBCO, UK 

Cyclosporin A Sigma-Aldrich 

 

2.11. Bacterial culture materials 

Name Source 

Agar BactoTM, BD, USA 

Tryptone BactoTM, BD, USA 

Yeast Extract BactoTM, BD, USA 

Ampicillin Sigma-Aldrich, USA 

Chloramphenicol Sigma-Aldrich, USA 

Streptomycin Sigma-Aldrich, USA 

Kanamycin Sigma-Aldrich, USA 

IPTG (Isopropylthio-β-galactoside) Biotiumm, USA 

 

2.12. Chemicals and reagents 

Name Source 

cOmplete Protease Inhibitor Roche Diagnostics, Germany 

PhosSTOP Phosphatase Inhibitor Cocktail Tablets Sigma-Aldrich, USA 

L-Glutathione reduced Sigma-Aldrich, USA 

PLK1, Active SignalChem, Canada 
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Cyclin B1/CDK1, active Merk Millipore, UK 

Lambda phosphatase (PPase) Santa Cruz Biotechnology 

Protein Kinases (PK) buffer New England Biolabs, USA 

 [-32P] ATP (3000 Ci/mmol, 50 mCi/ml) Hartmann analytic, Germany 

Benzonase Nuclease Millipore, Germany 

Glutathione Sepharose 4B  GE Healthcare, UK 

Protein G-Sepharose GE Healthcare, UK 

PerfectPro Ni-NTA Agarose  5 Prime, Germany 

Acrylamide/Bis-acrylamide, 30% Roth, Germany 

APS MP Biomedicals, Germany 

Isopropanol Roth, Germany 

TEMED GE Healthcare, UK 

Triton X-100 Sigma-Aldrich, USA 

Tween 20 AppliChem, Germany 

Nonfat dried milk powder AppliChem, Germany 

Page Ruler Prestained Protein Ladder Thermo Fisher Scientific, USA 

Page Ruler Prestained Protein Ladder, Plus Thermo Fisher Scientific, USA 

ECL GE Healthcare (Amersham), UK 

Volasertib (BI 6727) Selleck Chemicals, USA 

Agarose Invitrogen, USA 

Ethidium bromide Merck, Germany 

Proteinase K (PCR grade) Roche Diagnostics, Germany 

RNase A Merck, Germany 

Alkaline Phosphatase, Calf Intestinal (CIP) New England Biolabs, USA 

T4 DNA Ligase New England Biolabs, USA 

T4 polynucleotide kinase (T4 PNK) Thermo Fisher Scientific, USA 

All restriction endonucleases 
New England Biolabs, USA or Thermo 

Fisher Scientific, USA 

Polyethylenimine (PEI) Sigma-Aldrich, USA 

dNTP mix (10 mM each) Thermo Fisher Scientific, USA 

 DNA-Hind III Digest New England Biolabs, USA 

 DNA-BstE II Digest New England Biolabs, USA 

Phusion High-Fidelity PCR Kit Thermo Fisher Scientific, USA 

peqGold Taq Polymerase, all inclusive PEQLAB, Germany 

All chemicals and reagents which are not listed in the table were purchased at Merck, AppliChem, 

Roth, and Sigma-Aldrich. 
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2.13. Kits 

Name Source 

QIAamp DNA Blood Mini Kit QIAGEN, Germany 

NucleoSpin Gel and PCR Clean-up Macherey-Nagel, Germany 

NucleoSpin Plasmid Macherey-Nagel, Germany 

PureLink™ HiPure Plasmid Maxiprep Kit Thermo Fisher Scientific, USA 

NucleoBond Xtra BAC kit Macherey-Nagel, Germany 

Qubit™ dsDNA BR Assay Kit Invitrogen, USA 

Dual-Luciferase® Reporter Assay System Promega, USA 

Immobilon-P PVDF Membrane Merk Millipore, Germany 

Fuji Medical X‐Ray Film FUJIFILM Corporation, Japan 

CellTrace™ Violet cell proliferation kit  Invitrogen, USA 

 

2.14. Laboratory equipment 

Name Source 

Gene Pulser II Electroporation System Bio-Rad Laboratories 

1 mm-gap Gene Pulser Electroporation Cuvette Bio-Rad Laboratories 

2 mm-gap Gene Pulser Electroporation Cuvette Bio-Rad Laboratories 

BD FACS Canto Becton, Dickinson and Company, USA 

BD LSR Fortessa Becton, Dickinson and Company, USA 

REAX2000 Heidolph, Germany 

Centrifuge 5415D Eppendorf, Germany 

BioPhotometer D30 Eppendorf, Germany 

Thermomixer compact Eppendorf, Germany 

Vacumat 100 Helmut Saur Laborbedarf, Germany 

Qubit 2.0 Fluorometer Invitrogen, USA 

Orion Microplate Luminometer MPL4 Berthold, Germany 

Mark III Refractometer Reichert, USA 

Hemocytometer Carl Roth, Germany 

Gravity and Spin Chromatography Columns Bio-Rad Laboratories 
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2.15. Bioinformatics tools 

Name Source Identifier 

FlowJo v10 Becton, Dickinson and Company, USA https://www.flowjo.com/ 

Clone Manager 

Basic 9 
Scientific & Educational Software, USA https://scied.com/ 

BLAST 
National Center for Biotechnology 

Information, USA 

https://blast.ncbi.nlm.nih.gov/

Blast.cgi 

UCSC Genome 

Browser 
University of California, USA https://genome.ucsc.edu/ 

Primer3 
Whitehead Institute for Biomedical 

Research, USA 
http://bioinfo.ut.ee/primer3/ 

GraphPad Prism 8 GraphPad Software, USA https://www.graphpad.com/ 

MEGA X Pennsylvania State University, USA 
https://www.megasoftware.ne

t/ 

ImageJ Schneider et al., 2012 https://www.flowjo.com/ 

PyMOL v1.7.4 Schrödinger, USA https://pymol.org/2/ 

 

https://www.flowjo.com/
https://scied.com/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://bioinfo.ut.ee/primer3/
https://www.graphpad.com/
https://www.megasoftware.net/
https://www.megasoftware.net/
https://imagej.nih.gov/ij/
https://pymol.org/2/
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3. Methods 

3.1. Mammalian cell culture methods 

3.1.1. Cell culture 

3.1.1.1. Suspension cell lines 

All EBV transformed lymphoblastoid cell lines (LCLs) were maintained in RPMI 1640 supplemented 

with 10% fetal bovine serum (FBS), 1% non-essential amino acids, 2 mM L-glutamine, 1 mM sodium 

pyruvate, 50 U/ml penicillin, and 50 μg/ml streptomycin at 37℃ in 6% CO2 atmosphere. DG75 cells 

(Ben-bassats et al., 1977) were cultivated in RPMI 1640 supplemented with 10% FBS, 4 mM L-

glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin at 37℃ in 6% CO2 atmosphere. EBNA2 

inducible DG75Dox HA-EBNA2 cells (Glaser et al., 2017) were maintained in the same condition as 

DG75 cells with the addition of 1 μg/ml puromycin for pRTR plasmid selection. Raji (Pulvertaft, 1964) 

cells were maintained RPMI 1640 supplemented with 10% FBS, 1 mM sodium pyruvate, 100 nM 

sodium selenite, 50 µM thiols, 100 U/ml penicillin, and 100 μg/ml streptomycin at 37℃ in 6% CO2 

atmosphere. Sf21 insect cells were maintained in Lonza Insect-Xpress media at 27℃ with shaking 

in Prof. Michael Sattler’s lab. Cells were maintained at 2 – 5 × 105 cells/ml and subcultured with 

fresh medium every 3 – 4 days. 

3.1.1.2. Adherent cell lines 

HEK 293 cells were maintained in the same condition as Raji cells were. All recombinant EBV 

producer cells were cultivated under the same condition as HEK 293 cells in the presence of 1 

μg/ml puromycin for BACmid selection. To detach adherent cells from the culture dishes, cells were 

washed briefly with PBS, subsequently digested with trypsin-EDTA (0.05%), and incubated at 37℃ 

for approx. 1 min until cell detachment was observed under a microscope. Cells were diluted by 1:2 

– 1:10 with fresh medium and subcultured every 3 – 4 days. 

PBS (pH 7.4) 137 M NaCl, 2.7 M KCl, 7.3 M Na2HPO4, 1.5 M KH2PO4 

 

3.1.1.3. Human primary B cells 

Human primary B cells freshly isolated from donor adenoids were maintained in RPMI 1640 

supplemented with 10% fetal bovine serum (FBS), 1% non-essential amino acids, 2 mM L-

glutamine, 1 mM sodium pyruvate, 50 U/ml penicillin, and 50 μg/ml streptomycin in a 50 ml Falcon 

tube at 4℃ with rolling for no more than 24 h before infection. 

3.1.2. Long term cell storage 
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To store cells for a longer period, cells were frozen in liquid nitrogen. In brief, 1 × 107 cells were 

pelleted by centrifugation (300 g, 10min), resuspended in 1 ml freezing medium, and transferred to 

a 1.8 ml Cryotube (NUNC). Cells were slowly cooled down to -80℃ using an isopropanol-filled 

freezing container and stored there for no more than half of a year. Subsequently, tubes were 

transferred to liquid nitrogen. To re-cultivate frozen cells, the frozen cells were thawed rapidly in a 

37℃ water bath, optionally washed with 10 ml medium to remove DMSO, and then resuspended in 

fresh medium. Selection additions were added to the medium on the day after if required. 

Freezing medium 90% (v/v) FBS and 10% (v/v) DMSO 

 

3.1.3. Generation of clonal recombinant EBV producer 
cell lines 

3.1.3.1. Transfection of BACmid DNA into HEK 293 cells 

HEK293 cells were plated in a 6-well-plate on the day before transfection (~50% density). For the 

transfection two reaction batches were pre-mixed: i) 500 µl OptiMEM with 1 µg of the desired 

BACmid (tips were cut to enlarge the opening to avoid damaging the BACmid DNA) and ii) 500 µl 

OptiMEM with 4.5 µg PEI (1 mg/ml). Subsequently, the BACmid solution was mixed with the PEI 

solution and incubated for 15 min at room temperature (RT). For transfection, the culture medium 

was replaced by 1 ml OptiMEM and the BACmid/PEI mixture was added to the cells dropwise. 

Optionally, the reaction solution was replaced by 2 ml fresh medium without selection 4 hours post-

transfection. The transfected cells were incubated at 37℃ in 6% CO2 atmosphere. Ideally, many 

cells should be green after 24 h if checked under a fluorescence microscope. 

3.1.3.2. Selection of the single clones 

One day post-transfection, the infected cells were trypsinized and subcultured in a high dilution in 

five 15 cm in diameter culture dishes with fresh medium containing 1 µg/ml puromycin for the 

selection of cells containing the desired BACmid. Around 2 weeks later eGFP-expressing single 

clonal colonies derived from single cells grew out. These colonies were identified under a 

fluorescence microscope. To pick colonies the culture medium was removed, the cells were washed 

carefully with PBS, and small pieces of filter paper, sterilized by autoclaving and soaked by trypsin, 

were carefully put onto the desired colonies using tweezers. After 1 min incubation, the filter piece 

was immediately transferred in a well of a 6-well-plate pre-filled with 3 ml fresh medium 

supplemented with 1 µg/ml puromycin. Clonal transfected cell lines were checked daily under a 

microscope for cell density and subcultured accordingly. For each recombinant EBV genome, 

several clones were picked, cultivated, and induced to check virus titers (see chapter 3.1.5) of 

recombinant EBVs. Potent clones were stored, maintained, and used for further recombinant EBV 

production (see chapter 3.1.4). 
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3.1.4. Production and concentration of recombinant 
EBV 

To produce a large scale of recombinant EBV, clonal recombinant EBV producer cells described 

above (see chapter 3.1.3), were transiently transfected with BZLF1 (p509) and BALF4 (p2670) 

expression plasmids which induce the lytic cycle of EBV to produce large amounts of viral particles. 

In brief, EBV producer cells were seeded on 15 cm diameter culture dishes with approx. 20 – 30% 

confluency one day before transfection. For the transfection, the culture medium was replaced by 

30 ml of fresh medium without puromycin selection. 6 µg p509 and 6 µg p2670 were diluted by 2.5 

ml RPMI1640 for each transfection. 72 µl PEI (1 mg/ml) was added to the DNA solution and mixed 

well. Subsequently, the reaction was incubated for 15 min at RT. Then 2.5 ml DNA/PEI mixture was 

added per dish dropwise and the cells incubated for 3 days at 37℃ in 6% CO2 atmosphere. After 3 

days of incubation, the recombinant EBV containing supernatants were harvested, centrifuged 

twice (1,200 rpm and 4,000 rpm for 10 min each) to remove all cells and cell debris, and stored at 

4℃.  

For small-scale production to check the virus titers, a similar protocol was applied. In brief, 

The clonal cells were seeded in 2 ml culture medium without puromycin selection in a well of a 6-

well-plate. 0.5 µg p509, 0.5 µg p2670, and 6 µl PEI (1 mg/ml) were mixed in 200 µl RPMI 1640 and 

transfected in the clonal cells. 3 days after transfection, the recombinant EBV containing 

supernatants were harvested, filtrated (0.8 µm) to remove all cells and cell debris, and stored at 

4℃.  

For the infection of humanized mice through intraperitoneal injection (i.p) of recombinant EBV, 

the recombinant EBV supernatant was concentrated to reduce the infection volume. In brief, 30 ml 

virus supernatant was ultracentrifuged at 24,000 g for 4 h in a Beckman SW28 rotor. Approx. 200 

µl was left after discarding most of the supernatant. White viral particles could be observed at that 

time. The virus was added with 200 – 300 µl PBS containing a cOmplete protease inhibitor, 

dissolved with slow shaking at 4℃ overnight, and stored at 4℃.  

3.1.5. Titration of recombinant EBV 

For quantification of viral titers, 1 × 105 Raji cells were infected with 100 µl virus supernatant (small-

scale production), or with 5, 10, 20, 50, 100, and 500 µl virus supernatant (large-scale production), 

respectively, or with 0.5, 1, 2, 5, 10 and 20 µl virus concentrate, respectively, and further cultivated 

in 2 ml fresh medium in a well of a 24-well-plate. 3 days after infection the cells were harvested by 

centrifugation (500 g, 5 min), washed twice in 1 ml PBS/5% FBS. Subsequently, GFP-positive cells 

were quantified by FACS analysis. The infection volumes along with 10 – 20% of GFP+ cells were 

used to plot and apply linear regression. Viral titers were termed as green Raji units (GRUs) per ml 

and calculated as follows: GRUs/ml = the slope of the graph × 106.  
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3.1.6. Preparation of human primary B cells from 
adenoids 

Anonymous adenoids from routine adenoidectomy were collected from the Department of 

Otorhinolaryngology, Klinikum Grosshadern, Ludwig Maximilians University of Munich, Germany. 

Human primary B cells were isolated from adenoids by Ficoll density gradient centrifugation. In brief, 

an adenoid was disrupted mechanically using scalpels and ground on a cell strainer (100 µm) with 

a syringe plunger to generate cell mash. The cell mash went through another cell strainer (100 µm) 

and diluted in fresh cell culture medium to generate approx. 30 ml single-cell suspension in a 50 ml 

Falcon tube. 0.5 ml sheep red blood cells were mixed in the cell suspension to deplete T cells by 

erythrocyte rosette following centrifugation. The cell suspension was carefully overlaid onto 20 ml 

Ficoll-Paque Plus to form two phases. The two phases were centrifugated at 1,800 rpm for 30 min 

with the lowest acceleration and deceleration at 4℃. The lymphocytes from the interphase were 

transferred to a new 50 ml Falcon tube and washed in 50 ml PBS three times (1,600 rpm, 1,400 rpm, 

1,200 rpm for 10 min each). The remaining erythrocytes were lysed in 5 ml red blood cell lysis buffer 

for 2 min followed by centrifugation (1,200 rpm for 10 min). The lymphocytes were resuspended in 

10 – 30 ml cell culture medium, counted, analyzed by FACS. 

To quantify the percentage of human primary B cells in the cell suspension, the cells were 

analyzed by FACS as follows. 4 reactions of 1 × 106 cells were prepared, washed with 1 ml PBS/5% 

FBS, and resuspended in 50 µl PBS/5% FBS. For each reaction, 1 µl of the following specific 

antibodies were added: i) APC-conjugated mouse anti-human CD19 (BD Pharmingen, 555415), for 

B cell identification, ii) APC-conjugated mouse IgG1 isotype control (BioRad, MCA928APC), as an 

isotype control for i), iii) PE-conjugated mouse anti-human CD3 (BD Pharmingen, 555333), for B 

cell identification, and vi) PE-conjugated mouse IgG1 isotype control (BioRad, MCA928PE) as an 

isotype control for iii). The reactions were incubated for 30 min on ice in the dark, subsequently 

washed twice with 1 ml PBS/5% FBS and finally resuspended in 500 µl PBS/5% FBS. The 

percentage of APC or PE positive cells was quantified via FACS analysis. Flow cytometry data 

were analyzed using the FlowJo software. 

Red blood cell lysis buffer 155 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA (pH 8) 

 

3.1.7. Establishment of LCLs by recombinant EBV 

To establish LCLs human primary B cells were infected with recombinant EBV to initiate and 

maintain cell proliferation, which leads to B cell immortalization or LCL establishment. In brief, 1.5 

× 105 human primary B cells were infected with 1.5 × 104 GRUs of a recombinant EBV to make the 

multiplicity of infection (m.o.i.) as 0.1 in 200 µl cell culture medium in a well of a 96-well-plate. For 

each recombinant EBV and B cells form each donor triplicates were applied. 2 days post-infection 

150 µl culture medium were carefully replaced by fresh culture medium containing 1µg/ml 
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Cyclosporin A to suppress T cells proliferation. The cells were subcultured by 1:2 in a well of a 

multi-well plate with a bigger surface but should be never split too harshly, like the cell density below 

1 × 105 cells/ml. After the cells were transferred into tissue flasks, no Cyclosporin A was added to 

the culture medium anymore.  

3.1.8. Cell proliferation assays 

In this study, I applied several different assays to check cell proliferation. Assays for cell proliferation 

can monitor the number of cells over time, e.g. Trypan Blue viability assay, the number of cellular 

divisions, e.g. CellTrace Violet assay. A detailed description is given below. 

3.1.8.1. Trypan Blue viability assay 

To monitor the proliferation of LCLs established by recombinant EBVs, 8 × 105 cells were seeded 

in a well of a 6-well-plate in 2 ml cell culture medium. Cell numbers were monitored daily from day 

0 to day 6. In brief, cells were diluted by 1:2 with trypan blue, added to a hematocytometer and 

unstained living cells were counted under a light microscope. The cell concentration was calculated 

as follows: cells/ml = mean of cell numbers of four big squares × 2 (the dilution factor) × 104. For 

each LCL triplicates were performed. 

3.1.8.2. CellTrace Violet assay 

Fresh human primary B cells were pelleted by centrifugation (300 g, 10 min, 4℃), incubated in 

CellTrace Violet (5 µM) for 20 minutes in a 37℃ water bath in dark, washed with RPMI 1640/2% 

FBS to remove the unbound dye, and resuspended in cell culture medium. 1 × 106 B cells were 

infected with 1 × 105 GRUs of recombinant EBV (m.o.i. = 0.1) in 1,200 µl cell culture medium in a 

well of a 24-well-plate. From 0 to 6 days post-infection, cells were pelleted by centrifugation (500 g, 

5 min, 4℃), washed with PBS/5% FBS, and stained with an APC-conjugated mouse anti-human 

CD19 antibody (BD Pharmingen, 555415) for B cell identification as described previously. 

Subsequently, the cells were analyzed on a BD FACS Fortessa machine.  

3.2. Bacterial culture methods 

3.2.1. Propagation and storage of bacteria 

Bacteria were cultured in LB medium at 37℃ with shaking (200 rpm) or for isolation of colonies 

streaked on LB agar plates at 37℃. All mediums and reagents were sterilized by autoclaving or 

filtering (0.22 µm) if heat-sensitive. Bacteria transformants were selected by the addition of 

appropriate antibiotics according to the resistance gene. Bacteria were store at 4℃ for no more 

than 2 days. For short-term storage, bacteria were frozen -20℃ with 20% glycerol, and for long-

term storage frozen -80℃ with 20% glycerol.  

LB medium (pH 7.4) 1% Tryptone, 0.5% Yeast Extract, 1% NaCl 
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saltfree LB medium (pH 7.4) 1% Tryptone, 0.5% Yeast Extract 

LB agar LB medium supplemented with 1.5% (w/v) Agar 

Antibiotics 
100 µg/ml Ampicillin, 50 µg/ml kanamycin, 1 mg/ml 

streptomycin, and/or 12.5 µg/ml chloramphenicol, respectively 

 

3.2.2. Preparation of chemically competent bacteria 

500 ml LB medium containing 20 mM KCl and 20 mM MgSO4 were inoculated with 5 ml overnight 

culture of single clonal E. coli (e.g. DH5, Rosetta 2 (DE3), GM2163, and so on) and incubated at 

37℃ with shaking (200 rpm) for 2 – 3 h until an OD595 of 0.4 – 0.55 was reached. Subsequently, the 

culture was divided into precooled 50 ml Falcon tubes, incubated on ice for 10 min, and pelleted by 

centrifugation (4,000 rpm, 10 min, 4℃). Each pellet was resuspended in 15 ml ice-cold TFB1 

solution, incubated for 5 min on ice, and pelleted by centrifugation (4,000 rpm, 10 min, 4℃) again. 

Finally, each pellet was resuspended in 2 ml ice-cold TFB2 solution, aliquoted in 200 µl per pre-

cooled 1.5 ml Eppendorf tube, shock frozen on dry ice, and stored at -80℃. 

TFB1 solution (pH 5.8, HAc) 
30 mM KAc, 50 mM MnCl2, 100 mM RbCl, 10 mM CaCl2, and 

15 % (w/v) Glycerol, sterile filtrated (0.22 µm) and stored at 4℃ 

TFB2 solution 
10 mM MOPS (pH 7, NaOH), 75 mM CaCl2, 10 mM RbCl, 15 % 

(w/v) Glycerol, sterile filtrated (0.22 µm) and stored at 4℃ 

 

3.2.3. Preparation of electro-competent bacteria 
SW105 

The E.coli strain SW105 optionally with the BACmid of interest was streaked on an LB agar plate 

containing chloramphenicol incubated at 32℃ overnight, and a fresh single colony was cultured into 

40 ml saltfree LB agar medium containing chloramphenicol at 32℃ overnight with shaking (200 

rpm). The overnight culture was inoculated into 50 ml salt-free LB medium containing 

chloramphenicol and cultured for 2 h at 32℃ overnight with shaking (200 rpm) until an OD595 of 0.6 

was reached. Subsequently, the bacteria culture was immediately put in a 42℃ water bath for 15 

min with shaking (200 rpm) to induce the expression of the recombinases. Then the bacteria culture 

was incubated on ice for 20 min and divided into precooled 50 ml Falcon tubes (20 ml bacteria per 

tube). The bacteria were pelleted by centrifugation (4,000 rpm, 10 min, 4℃). Each pellet was 

suspended in 10 ml precooled ddH2O without stirring and pelleted by centrifugation (4,000 rpm, 10 

min, 4℃) again. Each pellet was resuspended in 10 ml precooled ddH2O again and pelleted by 

centrifugation (4,000 rpm, 10 min, 4℃) again. Each bacteria pellet was resuspended in 1.5 ml 

precooled ddH2O. The bacteria were read to transform immediately if you like or could be long-term 

stored as follows. The bacteria were pelleted by centrifugation (15,000 rpm, 15 sec, 4℃), 
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resuspended in 160 µl 20% glycerol, aliquoted by 40 µl per pre-cooled 1.5 ml Eppendorf tube, shock 

frozen on dry ice, and stored at -80℃. 

3.2.4. Heat shock transformation of E.coli 

50 µl of chemically competent E. coli were thawed on ice and 50 ng of the DNA of interest, e.g. a 

plasmid, were added, mixed, and incubated for 10 min on ice. Then the bacteria were heat-shocked 

for 1 min at 42℃, immediately incubated on ice for 2 min, and then cultured in 600 µl LB medium 

for 1 h at 37℃ with vigorous shaking. Optionally, bacteria were pelleted by centrifugation (2,000 

rpm, 2 min, RT) and suspended in 100 µl LB medium containing the appropriate antibiotic. To select 

the transformant, the bacteria were streaked on LB agar plates containing the appropriate antibiotic 

by serial dilutions and incubated at 37℃ overnight.  

3.2.5. Electroporation of E.coli  

40 µl electro-competent E. coli SW105 were mixed with 100 – 500 ng of target DNA (less than 5 µl 

in ddH2O). The bacteria/DNA mixture was transferred into a precooled cuvette (1 mm gap) and 

electroporated (1,700 V, 200 Ω, 25 μF) using a BioRad GenePulser II device. The electroporated 

bacteria were transferred in 1 ml LB medium and incubated for 1 h at 32℃ with vigorous shaking. 

To select the transformant, the bacteria were streaked on LB agar plates containing the appropriate 

antibiotic by serial dilutions and incubated at 32℃ for 24 h. 

3.2.6. Cloning and mutagenesis of plasmids 

All the plasmid used in the study were cloned based on conventional PCR, restriction digestion, 

and ligation. Mutated alleles were generated by overlap PCR adapted from the previous protocol 

(Francis et al., 2017). The essence of overlap PCR is based on four strategically designed primers. 

Internally positioned primers must contain complementary sequences to each other, and both of 

them must contain the mutation of interest, like a substitution, a deletion, or an insertion. The 

flanking primers might contain restriction enzyme recognition sites to facilitate the cloning of the 

amplified fragment. Two steps were performed, in the first round of PCR reactions using the forward 

primer of the flanking primers with the reverse primer of the internally positioned primers and vice 

versa, respectively. The resulting amplified short fragments worked as templates when mixed with 

the flanking primer pairs, which results in amplification of the final long fragment with the desired 

mutation in the second round of PCR.  

The sequence of EBNA2 fragment 1-341aa was amplified from pAG155 using the following 

forward: xz54-F, 5’- ACGACCAACAATTACATCATCTACCCT-3’ and reverse: xz317-R, 5’-

ATTAGCTAGCGTAATCTGGAACATCGTATGGGTATCCCCGGCTCTGGCCTTG-3’ primers. The 

PCR product was purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and 

cloned into pAG155 between Ava I and Nhe I restriction sites to yield the plasmid termed pCKR656. 
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The sequence of 1-474aa was amplified from pAG155 using the following forward: xz54-F, 

5’- ACGACCAACAATTACATCATCTACCCT-3’ and reverse: xz318-R, 5’- 

ATTAGCTAGCGTAATCTGGAACATCGTATGGGTAATAATCTTCATCTGAGCTAGGAGATTCTG

T-3’ primers. The PCR product was purified from agarose gel using a NucleoSpin Gel and PCR 

Clean‐up kit and cloned into pAG155 between Ava I and Nhe I restriction sites to yield the plasmid 

termed pCKR657. 

The sequence of EBNA2 S457A was amplified from pAG155 by 2 step PCR reactions. In the 

first PCR reactions the following forward: xz72-F, 5’- 

ATATGAATTCCATCATGCCAGAGCCAAACACCTCCAGTCC -3’ and reverse: xz129-R, 5’- 

CAAAAATGTAATCCCAAGCTTCGTCTAAGTCTG-3’ primers and forward: xz129-F, 5’- 

CAGACTTAGACGAAGCTTGGGATTACATTTTTG-3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers were used. The resulting PCR products were 

purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used as templates in 

the second PCR reaction with the following forward: xz72-F, 5’- 

ATATGAATTCCATCATGCCAGAGCCAAACACCTCCAGTCC -3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pAG155 between Bbs I and Nhe I 

restriction sites to yield the plasmid termed pXZ140. 

The sequence of EBNA2 T465V was amplified from pAG155 by 2 step PCR reactions. In the 

first PCR reactions the following forward: xz72-F, 5’- 

ATATGAATTCCATCATGCCAGAGCCAAACACCTCCAGTCC -3’ and reverse: xz130-R, 5’-

GAGCTAGGAGATTCTACTGTCTCAAAAATG-3’ primers and forward: xz130-F, 5’-

CATTTTTGAGACAGTAGAATCTCCTAGCTC-3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers were used. The resulting PCR products were 

purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used as templates in 

the second PCR reaction with the following forward: xz72-F, 5’- 

ATATGAATTCCATCATGCCAGAGCCAAACACCTCCAGTCC -3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pAG155 between Bbs I and Nhe I 

restriction sites to yield the plasmid termed pXZ141. 

The sequence of EBNA2 S457A/T465V was amplified by 2 step PCR reactions. In the first 

PCR reactions the template pXZ140 with the forward: xz72-F, 5’- 

ATATGAATTCCATCATGCCAGAGCCAAACACCTCCAGTCC-3’ and reverse: xz130-R, 5’-

GAGCTAGGAGATTCTACTGTCTCAAAAATG-3’ primers and the template pXZ141 with the 

forward: xz129-F, 5’- CAGACTTAGACGAAGCTTGGGATTACATTTTTG-3’ and reverse: xz53-R2, 

5’-ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers were used respectively. The resulting PCR 

products were purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used 

as templates in the second PCR reaction with the following forward: xz72-F, 5’- 
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ATATGAATTCCATCATGCCAGAGCCAAACACCTCCAGTCC -3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pAG155 between Bbs I and Nhe I 

restriction sites to yield the plasmid termed pXZ142. 

The sequence of EBNA2 ST266AV was amplified from pAG155 by 2 step PCR reactions. In 

the first PCR reactions the following forward: xz53-F1, 5’- AGCCCCTCAGGCCAGGTTGGTCCAG-

3’ and reverse: xz153-R1, 5’- CTGGATCATTTGGGACGGCTTGATGAGTAAG-3’ primers and 

forward: xz153-F2, 5’-CTTACTCATCAAGCCGTCCCAAATGATCCAG-3’ and reverse: xz52-R, 5’- 

CTCTGGTCTCCAAGGTCCACCG-3’ primers were used. The resulting PCR products were purified 

from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used as templates in the 

second PCR reaction with the following forward: xz53-F1, 5’- 

AGCCCCTCAGGCCAGGTTGGTCCAG-3’ and reverse: xz52-R, 5’- 

CTCTGGTCTCCAAGGTCCACCG-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pAG155 between Bsu36 I and Ava 

I restriction sites to yield the plasmid termed pXZ153. 

The sequence of EBNA2 TSS377VAA was amplified from pAG155 by 2 step PCR reactions. 

In the first PCR reactions the following forward: xz54-F, 5’- 

ACGACCAACAATTACATCATCTACCCT-3’ and reverse: xz154-R1, 5’- 

AGGCATGCTAGGAGCGGCGACGTTTGGCTCTGG-3’ primers and forward: xz154-F2, 5’-

CCAGAGCCAAACGTCGCCGCTCCTAGCATGCCT-3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers were used. The resulting PCR products were 

purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used as templates in 

the second PCR reaction with the following forward: xz54-F, 5’- 

ACGACCAACAATTACATCATCTACCCT-3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pAG155 between Ava I and Nhe I 

restriction sites to yield the plasmid termed pXZ154. 

The sequence of EBNA2 SPSS467APAA was amplified from pAG155 by 2 step PCR 

reactions. In the first PCR reactions the following forward: xz54-F, 5’- 

ACGACCAACAATTACATCATCTACCCT-3’ and reverse: xz155-R1, 5’- 

CATAATCTTCATCTGCGGCAGGAGCTTCTGTTGTCTC-3’ primers and forward: xz155-F2, 5’- 

GAGACAACAGAAGCTCCTGCCGCAGATGAAGATTATG-3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers were used. The resulting PCR products were 

purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used as templates in 

the second PCR reaction with the following forward: xz54-F, 5’- 

ACGACCAACAATTACATCATCTACCCT-3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers. The PCR product was purified from agarose gel 
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using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pAG155 between Ava I and Nhe I 

restriction sites to yield the plasmid termed pXZ155. 

The sequence of EBNA2 S379A was amplified from pAG155 by 2 step PCR reactions. In the 

first PCR reactions the following forward: xz54-F, 5’- 

AGGCATGCTAGGACTGGCGGTGTTTGGCTCTGG-3’ and reverse: xz179-R1, 5’- 

AGGCATGCTAGGAGCGGAGGTGTTTGGCTCTGG-3’ primers and forward: xz179-F2, 5’- 

CCAGAGCCAAACACCTCCGCTCCTAGCATGCCT-3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers were used. The resulting PCR products were 

purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used as templates in 

the second PCR reaction with the following forward: xz54-F, 5’- 

ACGACCAACAATTACATCATCTACCCT-3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pAG155 between Ava I and Nhe I 

restriction sites to yield the plasmid termed pXZ179. 

The sequence of EBNA2 S184A was amplified from pAG155 by 2 step PCR reactions. In the 

first PCR reactions the following forward: xz51-F, 5’- 

ATTAGAATTCCATCATGGGGCATGGACCTCTAGCATCTG-3’ and reverse: xz346-R, 5’-

TAAGCCTCGGTTGTGcCAGAGGTGACAAAATGGTGGG-3’ primers and forward: xz346-F, 5’- 

TTGTCACCTCTGgCACAACCGAGGCTTACCCCTC-3’ and reverse: xz53-R1.1, 5’-

ATTAggtctcaggCATGCGTGGTGGTGATGGT-3’ primers were used. The resulting PCR products 

were purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used as 

templates in the second PCR reaction with the following forward: xz54-F, 5’- 

ACGACCAACAATTACATCATCTACCCT-3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pAG155 between BstE II and Aar I 

restriction sites to yield the plasmid termed pCKR675. 

The sequence of EBNA2 S258A was amplified from pAG155 by 2 step PCR reactions. In the 

first PCR reactions the following forward: xz203-Fwd Seq, 5’- 

CTCCTACCCCTCTGCCACCTGCAAC-3’ and reverse: xz347-R, 5’- 

TAAGAGGGTGCATTGcTTGGTCTGGCACATGCAAGACA-3’ primers and forward: xz347-F, 5’-

CATGTGCCAGACCAAgCAATGCACCCTCTTACTCATCAAAG-3’ and reverse: xz317-R, 5’- 

attaGCTAGCGTAATCTGGAACATCGTATGGGTATCCCCGGCTCTGGCCTTG-3’ primers were 

used. The resulting PCR products were purified from agarose gel using a NucleoSpin Gel and PCR 

Clean‐up kit and used as templates in the second PCR reaction with the following forward: xz203-

Fwd Seq, 5’- CTCCTACCCCTCTGCCACCTGCAAC-3’ and reverse: xz317-R, 5’- 

ATTAGCTAGCGTAATCTGGAACATCGTATGGGTATCCCCGGCTCTGGCCTTG-3’ primers. The 

PCR product was purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and 

cloned into pAG155 between Aar I and Ava I restriction sites to yield the plasmid termed pCKR676. 
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The sequence of EBNA2 S479A was amplified from pAG155 by 2 step PCR reactions. In the 

first PCR reactions the following forward: xz53-F2.2, 5’- 

ATTAGGTCTCATGCCAGAGCCAAACACCTCCA-3’ and reverse: xz348-R, 5’- 

GGGCGAGGTCTTTTAGCGGGTCCCTCCACATAATCTTCA-3’ primers and forward: xz348-F, 5’- 

TATGTGGAGGGACCCgcTAAAAGACCTCGCCCCT-3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers were used. The resulting PCR products were 

purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used as templates in 

the second PCR reaction with the following forward: xz53-F2.2, 5’- 

ATTAGGTCTCATGCCAGAGCCAAACACCTCCA-3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pAG155 between Bbs I and Nhe I 

restriction sites to yield the plasmid termed pCKR677. 

The sequence of EBNA2 S457A/T465V/S479A was amplified from pXZ142 by 2 step PCR 

reactions. In the first PCR reactions the following forward: xz53-F2.2, 5’- 

ATTAGGTCTCATGCCAGAGCCAAACACCTCCA-3’ and reverse: xz348-R, 5’- 

GGGCGAGGTCTTTTAGCGGGTCCCTCCACATAATCTTCA-3’ primers and forward: xz348-F, 5’- 

TATGTGGAGGGACCCgcTAAAAGACCTCGCCCCT-3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers were used. The resulting PCR products were 

purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used as templates in 

the second PCR reaction with the following forward: xz53-F2.2, 5’- 

ATTAGGTCTCATGCCAGAGCCAAACACCTCCA-3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pXZ142 between Bbs I and Nhe I 

restriction sites to yield the plasmid termed pCKR678. 

The sequence of EBNA2 S258A/S457A/T465V/S479A was generated by subcloning. The 

insert of pCKR676 between Aar I and Ava I sites was digested, purified from agarose gel using a 

NucleoSpin Gel and PCR Clean‐up kit and cloned into pCKR678 between the same sites to yield 

the plasmid termed pCKR679. 

The sequence of EBNA2 S184A/S258A/S457A/T465V/S479A was generated by subcloning. 

The insert of pCKR676 between BstE II and Aar I sites was digested, purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pCKR679 between the same sites 

to yield the plasmid termed pCKR680. 

The sequence of EBNA2 F400A/WY444AA/YIF460AAA was amplified from pAG155 by 2 

step PCR reactions. In the first PCR reactions the following forward: xz72-F, 5’-

ATATGAATTCCATCATGCCAGAGCCAAACACCTCCAGTCC-3’ and reverse: xz261-R, 5’-

AGCCGCATCATCGGGGGCGAGAATGGGAGCCTCT-3’ primers, forward: xz261-F, 5’-

GCCCCCGATGATGCGGCTCCTCCATCTATAGACCCC-3’ and reverse: xz263-R, 5’- 
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AGCAGCGGCATCCCAACTTTCGTCTAAGTCT-3’ primers and forward: xz263-F, 5’-

GCCGCTGCTGAGACAACAGAATCTC-3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers were used, respectively. The resulting PCR 

products were purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used 

as templates in the second PCR reaction with the following forward: xz72-F, 5’-

ATATGAATTCCATCATGCCAGAGCCAAACACCTCCAGTCC-3’ and reverse: xz53-R2, 5’-

ATCTTTAGCTAGCGTAATCTGGAAC-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pAG155 between Bbs I and Nhe I 

restriction sites to yield the plasmid termed pXZ288. 

The sequence of EBNA2 S379A/F400A/WY444AA/YIF460AAA was generated by subcloning. 

The insert of pXZ288 between Bbs I and Nhe I sites was digested, purified from agarose gel using 

a NucleoSpin Gel and PCR Clean‐up kit and cloned into pXZ179 between the same sites to yield 

the plasmid termed pXZ289. 

The sequence of EBNA2 327-487aa was amplified from pAG155 using the following forward: 

xz150-F, 5’-TATAGGATCCATCTGCGACCCCCCGCAAC-3’ and reverse: xz150-R, 5’-

ATTATCTAGATCACTGGATGGAGGGGCGAGGT-3’ primers. The PCR product was purified from 

agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pEGFP/NLS between 

BamH I and Xba I restriction sites to yield the plasmid termed pXZ150. 

The sequence of EBNA2 327-407aa was amplified from pAG155 using the following forward: 

xz150-F, 5’-TATAGGATCCATCTGCGACCCCCCGCAAC-3’ and reverse: xz151-R, 5’-

attatctagatcaATTGGATGGGCCAGGAGTTGG-3’ primers. The PCR product was purified from 

agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pEGFP/NLS between 

BamH I and Xba I restriction sites to yield the plasmid termed pXZ151. 

The sequence of EBNA2 408-487aa was amplified from pAG155 using the following forward: 

xz152-F, 5’-TATAGGATCCAATGCCGCCCCCGTTTGTA-3’ and reverse: xz150-R, 5’-

ATTATCTAGATCACTGGATGGAGGGGCGAGGT-3’ primers. The PCR product was purified from 

agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pEGFP/NLS between 

BamH I and Xba I restriction sites to yield the plasmid termed pXZ152. 

The sequence of EBNA2 342-474aa was amplified from pAG155 using the following forward: 

xz190-F, 5’-ATTAGGATCCGGACAGAGCAGG-3’ and reverse: xz331-R, 5’-

AATTTCTAGACTAATAATCTTCATC-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pEGFP/NLS between BamH I and 

Xba I restriction sites to yield the plasmid termed pCKR672. 

The sequence of EBNA2 342-422aa was amplified from pAG155 using the following forward: 

xz190-F, 5’-ATTAGGATCCGGACAGAGCAGG-3’ and reverse: xz229-R, 5’-

ATTATCTAGACGTTAGGGG-3’ primers. The PCR product was purified from agarose gel using a 
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NucleoSpin Gel and PCR Clean‐up kit and cloned into pEGFP/NLS between BamH I and Xba I 

restriction sites to yield the plasmid termed pXZ229. 

The sequence of EBNA2 423-474aa was amplified from pAG155 using the following forward: 

xz162-F, 5’-ATTAGGATCCCCAATACATGAACCG-3’ and reverse: xz331-R, 5’-

AATTTCTAGACTAATAATCTTCATC-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pEGFP/NLS between BamH I and 

Xba I restriction sites to yield the plasmid termed pCKR661. 

The sequence of EBNA2 342-487aa was amplified from pAG155 using the following forward: 

xz92-F, 5’-ATTAGTCGACTGGACAGAGCAGG-3’ and reverse: xz92-R, 5’-

ATTAGCGGCCGCTACTGGATGGA-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 4T2 between Sal I and Not I 

restriction sites to yield the plasmid termed pXZ92. 

The sequence of EBNA2 342-422aa was amplified from pAG155 using the following forward: 

xz92-F, 5’-ATTAGTCGACTGGACAGAGCAGG-3’ and reverse: xz93-R, 5’-

ATTAGCGGCCGCTAAACGTTAGG-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 4T2 between Sal I and Not I 

restriction sites to yield the plasmid termed pXZ93. 

The sequence of EBNA2 423-487aa was amplified from pAG155 using the following forward: 

xz94-F, 5’-ATTAGTCGACTTCACCAATACATGAAC-3’ and reverse: xz92-R, 5’-

ATTAGCGGCCGCTACTGGATGGA-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 4T2 between Sal I and Not I 

restriction sites to yield the plasmid termed pXZ94. 

The sequence of EBNA2 342-422aa was amplified from pAG155 using the following forward: 

xz190-F, 5’-ATTAGGATCCGGACAGAGCAGG-3’ and reverse: xz93-R, 5’- 

ATTAGCGGCCGCTAAACGTTAGG-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 6P1 between BamH I and Not 

I restriction sites to yield the plasmid termed pXZ190. 

The sequence of EBNA2 423-474aa was amplified from pAG155 using the following forward: 

xz162-F, 5’- ATTAGGATCCCCAATACATGAACCG -3’ and reverse: xz111-R, 5’- 

AATTGCGGCCGCTAATAATCTTCATC -3’ primers. The PCR product was purified from agarose 

gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 6P1 between BamH I and 

Not I restriction sites to yield the plasmid termed pXZ162. 

The sequence of EBNA2 423-474aa was amplified from pAG155 using the following forward: 

xz94-F, 5’-ATTAGTCGACTTCACCAATACATGAAC-3’ and reverse: xz111-R, 5’-

AATTGCGGCCGCTAATAATCTTCATC-3’ primers. The PCR product was purified from agarose 
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gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 4T2 between Sal I and 

Not I restriction sites to yield the plasmid termed pXZ109. 

The sequence of EBNA2 423-445aa was amplified from pAG155 using the following forward: 

xz94-F, 5’-ATTAGTCGACTTCACCAATACATGAAC-3’ and reverse: xz110-R, 5’-

AATTGCGGCCGCTAATACCAATCA-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 4T2 between Sal I and Not I 

restriction sites to yield the plasmid termed pXZ110. 

The sequence of EBNA2 446-474aa was amplified from pAG155 using the following forward: 

xz111-F, 5’-ATTAGTCGACTCCTCCATCTATAGACC-3’ and reverse: xz111-R, 5’-

AATTGCGGCCGCTAATAATCTTCATC-3’ primers. The PCR product was purified from agarose 

gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 4T2 between Sal I and 

Not I restriction sites to yield the plasmid termed pXZ111. 

The sequence of EBNA2 475-487aa was amplified from pAG155 using the following forward: 

xz112-F, 5’-ATTAGTCGACTGTGGAGGGACCCAG-3’ and reverse: xz92-R, 5’-

ATTAGCGGCCGCTACTGGATGGA-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 4T2 between Sal I and Not I 

restriction sites to yield the plasmid termed pXZ112. 

The sequence of EBNA2 446-487aa was amplified from pAG155 using the following forward: 

xz111-F, 5’-ATTAGTCGACTCCTCCATCTATAGACC-3’ and reverse: xz92-R, 5’-

ATTAGCGGCCGCTACTGGATGGA-3’ primers. The PCR product was purified from agarose gel 

using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 4T2 between Sal I and Not I 

restriction sites to yield the plasmid termed pXZ113. 

The sequence of EBNA2 246-487aa S457A/T465V was amplified from pXZ142 using the 

following forward: xz198-F, 5’-ATTAGTCGACTCGCATGCATCTCCCTGTCTTG-3’ and reverse: 

xz92-R, 5’-ATTAGCGGCCGCTACTGGATGGA-3’ primers. The PCR product was purified from 

agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 6P1 between Sal 

I and Xba I restriction sites to yield the plasmid termed pXZ198. 

The sequence of EBNA2 423-474aa F400A/WY444AA was amplified from pAG155 by 2 step 

PCR reactions. In the first PCR reactions the following forward: xz162-F, 5’-

ATTAGGATCCCCAATACATGAACCG-3’ and reverse: xz261-R, 5’-

AGCCGCATCATCGGGGGCGAGAATGGGAGCCTCT-3’ primers and forward: xz261-F, 5’-

GCCCCCGATGATGCGGCTCCTCCATCTATAGACCCC-3’ and reverse: xz111-R, 5’-

AATTGCGGCCGCTAATAATCTTCATC-3’ primers were used, respectively. The resulting PCR 

products were purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used 

as templates in the second PCR reaction with the following forward: xz162-F, 5’-

ATTAGGATCCCCAATACATGAACCG-3’ and reverse: xz111-R, 5’-

AATTGCGGCCGCTAATAATCTTCATC-3’ primers. The PCR product was purified from agarose 
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gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 6P1 between BamH I and 

Not I restriction sites to yield the plasmid termed pXZ261. 

The sequence of EBNA2 423-474aa SID448AAA was amplified from pAG155 by 2 step PCR 

reactions. In the first PCR reactions the following forward: xz162-F, 5’-

ATTAGGATCCCCAATACATGAACCG-3’ and reverse: xz262-R, 5’-

GGCTGCAGCTGGAGGATACCAATCATCG-3’ primers and forward: xz262-F, 5’-

GCTGCAGCCCCCGCAGACTTAGACGA-3’ and reverse: xz111-R, 5’-

AATTGCGGCCGCTAATAATCTTCATC-3’ primers were used, respectively. The resulting PCR 

products were purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used 

as templates in the second PCR reaction with the following forward: xz162-F, 5’- 

ATTAGGATCCCCAATACATGAACCG-3’ and reverse: xz111-R, 5’-

AATTGCGGCCGCTAATAATCTTCATC-3’ primers. The PCR product was purified from agarose 

gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 6P1 between BamH I and 

Not I restriction sites to yield the plasmid termed pXZ262. 

The sequence of EBNA2 423-474aa YIF460AAA was amplified from pAG155 by 2 step PCR 

reactions. In the first PCR reactions the following forward: xz162-F, 5’-

ATTAGGATCCCCAATACATGAACCG-3’ and reverse: xz263-R, 5’-

AGCAGCGGCATCCCAACTTTCGTCTAAGTCT-3’ primers and forward: xz263-F, 5’-

GCCGCTGCTGAGACAACAGAATCTC-3’ and reverse: xz111-R, 5’-

AATTGCGGCCGCTAATAATCTTCATC-3’ primers were used, respectively. The resulting PCR 

products were purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used 

as templates in the second PCR reaction with the following forward: xz162-F, 5’-

ATTAGGATCCCCAATACATGAACCG-3’ and reverse: xz111-R, 5’-

AATTGCGGCCGCTAATAATCTTCATC-3’ primers. The PCR product was purified from agarose 

gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 6P1 between BamH I and 

Not I restriction sites to yield the plasmid termed pXZ263. 

The sequence of EBNA2 423-474aa F400A/WY444AA/SID448AAA was amplified by 2 step 

PCR reactions. In the first PCR reactions the template pXZ261 with the following forward: xz162-F, 

5’-ATTAGGATCCCCAATACATGAACCG-3’ and reverse: xz264-R, 5’-

GGCTGCAGCTGGAGGAGCCGCATC -3’ primers and template pXZ262 with the following forward: 

xz262-F, 5’-GCTGCAGCCCCCGCAGACTTAGACGA-3’ and reverse: xz111-R, 5’-

AATTGCGGCCGCTAATAATCTTCATC-3’ primers were used, respectively. The resulting PCR 

products were purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used 

as templates in the second PCR reaction with the following forward: xz162-F, 5’-

ATTAGGATCCCCAATACATGAACCG-3’ and reverse: xz111-R, 5’-

AATTGCGGCCGCTAATAATCTTCATC-3’ primers. The PCR product was purified from agarose 

gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 6P1 between BamH I and 

Not I restriction sites to yield the plasmid termed pXZ264. 
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The sequence of EBNA2 423-474aa F400A/WY444AA/YIF460AAA was amplified from 

pXZ261 by 2 step PCR reactions. In the first PCR reactions the following forward: xz162-F, 5’-

ATTAGGATCCCCAATACATGAACCG-3’ and reverse: xz263-R, 5’-

AGCAGCGGCATCCCAACTTTCGTCTAAGTCT-3’ primers and forward: xz263-F, 5’-

GCCGCTGCTGAGACAACAGAATCTC-3’ and reverse: xz111-R, 5’-

AATTGCGGCCGCTAATAATCTTCATC-3’ primers were used, respectively. The resulting PCR 

products were purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used 

as templates in the second PCR reaction with the following forward: xz162-F, 5’-

ATTAGGATCCCCAATACATGAACCG-3’ and reverse: xz111-R, 5’-

AATTGCGGCCGCTAATAATCTTCATC-3’ primers. The PCR product was purified from agarose 

gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 6P1 between BamH I and 

Not I restriction sites to yield the plasmid termed pXZ265. 

The sequence of EBNA2 423-474aa F400A/WY444AA/SID448AAA/YIF460AAA was 

amplified by 2 step PCR reactions. In the first PCR reactions the template pXZ265 with the following 

forward: xz162-F, 5’-ATTAGGATCCCCAATACATGAACCG-3’ and reverse: xz264-R, 5’-

GGCTGCAGCTGGAGGAGCCGCATC-3’ primers and the template pXZ264 with the following 

forward: xz262-F, 5’- GCTGCAGCCCCCGCAGACTTAGACGA-3’ and reverse: xz111-R, 5’-

AATTGCGGCCGCTAATAATCTTCATC-3’ primers were used, respectively. The resulting PCR 

products were purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and used 

as templates in the second PCR reaction with the following forward: xz162-F, 5’-

ATTAGGATCCCCAATACATGAACCG-3’ and reverse: xz111-R, 5’-

AATTGCGGCCGCTAATAATCTTCATC-3’ primers. The PCR product was purified from agarose 

gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 6P1 between BamH I and 

Not I restriction sites to yield the plasmid termed pXZ266. 

The sequence of EBNA2 342-422aa S379A was amplified from pXZ179 with the following 

forward: xz190-F, 5’-ATTAGGATCCGGACAGAGCAGG-3’ and reverse: xz93-R, 5’-

ATTAGCGGCCGCTAAACGTTAGG-3’ primers. The resulting PCR product was purified from 

agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pGEX 6P1 between 

BamH I and Not I restriction sites to yield the plasmid termed pXZ191. 

The sequence of EBNA2 453-474aa flanked by arginines was amplified from pAG155 with the 

following forward: xz299-F, 5’-ATTAggatcccgtGACTTAGACGAAAGTTGG -3’ and reverse: xz299-

R, 5’-TATAGCGGCCGCTAATAATCacgTTCATCTGAGCTAGGAG -3’ primers. The resulting PCR 

product was purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned 

into pGEX 6P1 between BamH I and Not I restriction sites to yield the plasmid termed pXZ299. 

The polyR region sequence of EBNA2 was amplified from pAG155 using peqGold Taq 

Polymerase with the following forward: xz302-F, 5’-

ATTACGTCTCACATGAGGATGCCTACATTCTATCTTGCG-3’ and reverse: xz51-R, 5’-
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GCAAAATAAGGCCCCGGTCA-3’ primers. The PCR product was digested by BsmB I and BamH 

I, purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pETM-

11 between Nco I and BamH I restriction sites to yield the plasmid termed pXZ302mdt. The rest 

sequence of EBNA2 was amplified from pAG155 using Phusion High-Fidelity DNA Polymerase with 

the following forward: xz302-F, 5’-ATTACGTCTCACATGAGGATGCCTACATTCTATCTTGCG-3’ 

and reverse: xz213-R, 5’-ATTACTCGAGTCACTGGATGGAGGGGCGAG-3’ primers. The PCR 

product was purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned 

into pXZ302mdt between BamH I and Xho I restriction sites to yield the plasmid termed pXZ304. 

The sequence of PLK1 was amplified from 3× Flag-tagged PLK1 with the following forward: 

xz161-F, 5’-ATTAGAATTCATGAGTGCTGCAGTGACTGCAGG-3’ and reverse: xz213-R, 5’-

AATTAAGCTTAGGAGGCCTTGAGACGGTT-3’ primers. The PCR product was purified from 

agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned into pFastBac HTA between 

EcoR I and Xho I restriction sites to yield the plasmid termed pXZ161. 

The sequence of PLK1 13-345aa was amplified from 3× Flag-tagged PLK1 with the following 

forward: xz164-F, 5’-ATTAACATGTTAGCACCGGCCGACCCTG-3’ and reverse: xz164-R, 5’-

AATTAAGCTTTTTATTGAGGACTGTGAGGGGCTTC-3’ primers. The PCR product was digested 

by Afl III and Hind III, purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and 

cloned into pETM-11 between Nco I and Hind III restriction sites to yield the plasmid termed pXZ164. 

The sequence of PLK1 345-603aa was amplified from 3× Flag-tagged PLK1 with the 

following forward: xz165-F, 5’-ATTACCATGGCGAAAGGCTTGGAGAACCCCCTGCCTG-3’ and 

reverse: xz165-R, 5’-AATTAAGCTTAGGAGGCCTTGAGACGGTTGCTGG-3’ primers. The PCR 

product was purified from agarose gel using a NucleoSpin Gel and PCR Clean‐up kit and cloned 

into pETM-11 between Nco I and Hind III restriction sites to yield the plasmid termed pXZ165. 

3.2.7. Isolation of plasmids 

To isolate a small scale (mini-prep) of plasmid DNA from E.coli (e.g. DH5 and GM2163), bacteria 

were collected from 5 ml overnight culture (OD595 = 2.5 – 5) and the plasmid was isolated using the 

NucleoSpin Plasmid Kit according to the manufacturer’s instructions. To isolate a large scale (maxi-

prep) of plasmid DNA from E.coli (e.g. DH5 and GM2163), bacteria were collected from 400 ml 

overnight culture (OD595 = 2.5 – 5) and the plasmid was isolated using the PureLink HiPure Plasmid 

Maxiprep Kit according to the manufacturer’s instructions.  

3.2.8. BAC recombineering 

All BAC used to produce recombinant EBV strains used in this study were generated by a two-step 

selection protocol using the  prophage-based heat-inducible Red recombination system 

expressed in a streptomycin-sensitive E.coli strain, SW105. For the first step, an rpsL/aph 

expression cassette was flanked by 50 bp EBV sequences of the respective EBNA2 gene locus by 
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PCR using the template p6012. The resulting PCR product was used to insert the rpsL/aph cassette 

by homologous recombination into the specific EBV/EBNA2 target site by transformation and 

kanamycin (30 µg/ml) and chloramphenicol (12.5 µg/ml) selection of SW105 pre-transformed with 

the recombinant target EBV BACmid. As a second step, a synthetic DNA fragment or PCR product 

carrying the desired mutation flanked by ~300 bp of the genomic viral sequence was used to replace 

the rpsL/aph cassette by homologous recombination to generate the final mutant EBV plasmid by 

streptomycin (1 mg/ml) and chloramphenicol selection (12.5 µg/ml).  

3.2.8.1. BACmid with C-terminal HA-tagged EBNA2 

The sequence of the rpsL/aph cassette was amplified form p6012 with the following forward: xz135-

F, 5’-

ATGAAGATTATGTGGAGGGACCCAGTAAAAGACCTCGCCCCTCCATCCAGGGCCTGGTGAT

GATGGCGGGATCG-3’ and reverse: xz135-R, 5’-

GTAACATTTATTTGGGATACATTGGTTGCTGGAGAGGGCAAGGGTTTTTATCAGAAGAACTC

GTCAAGAAGGCG-3’ primers. The resulting PCR product was purified from agarose gel, 

electroporated into an E. coli strain SW105 harboring p6008 and selected by kanamycin (positive) 

and streptomycin (replica negative) to yield the BACmid termed pXZ135. 

Next, the synthetic DNA sequence (GenScript) of HA tag flanked by 300 bp upstream and 

300 bp downstream of EBNA2 stop codon was harbored in a plasmid termed pXZ132, pXZ132 was 

digested by BsmB I. A ~650 bp fragment was purified from agarose gel, electroporated into an E. 

coli strain SW105 harboring pXZ135 and selected by chloramphenicol and streptomycin to yield 

the BACmid termed pXZ143. 

3.2.8.2. BACmid with HA-tagged EBNA2 S457A/T465V 

The sequence of the rpsL/aph cassette was amplified form p6012 with the following forward: xz201-

F, 5’- 

TATAGACCCCGCAGACTTAGACGAAAGTTGGGATTACATTTTTGAGACAGGGCCTGGTGATG

ATGGCGGGATCG-3’ and reverse: xz201-R, 5’- 

TCTTTTACTGGGTCCCTCCACATAATCTTCATCTGAGCTAGGAGATTCTATCAGAAGAACTCG

TCAAGAAGGCG -3’ primers. The resulting PCR product was purified from agarose gel, 

electroporated into an E. coli strain SW105 harboring pXZ143 and selected by kanamycin (positive) 

and streptomycin (replica negative) to yield the BACmid termed pXZ201. 

Next, the DNA sequence of EBNA2 S457A/T465V flanked by 300 bp upstream and 300 bp 

downstream of EBNA2 S457 was amplified by 2 step of PCR reactions. In the first PCR reactions 

the template pXZ142 with the following forward: xz146-F, 5’-GGAGACCAGAGCCAAACACC-3’ 

and reverse: xz130-R, 5’-GAGCTAGGAGATTCTACTGTCTCAAAAATG-3’ primers and the 

template pXZ135 with the following forward: xz130-F, 5’-

CATTTTTGAGACAGTAGAATCTCCTAGCTC-3’ and reverse: xz146-R, 5’-

TTGGGACTGGGGTAAAAGTGG-3’ primers were used, respectively. The resulting PCR products 
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were purified from agarose gel and used as templates in the second PCR reaction with the following 

forward: xz146-F, 5’-GGAGACCAGAGCCAAACACC-3’ and reverse: xz146-R, 5’-

TTGGGACTGGGGTAAAAGTGG-3’ primers. The PCR product was purified from agarose gel, 

electroporated into an E. coli strain SW105 harboring pXZ201 and selected by chloramphenicol 

and streptomycin to yield the BACmid termed pXZ146. 

3.2.8.3. BACmid with C-terminal HA-tagged EBNA2 S379A 

The sequence of the rpsL/aph cassette was amplified form p6012 with the following forward: xz202-

F, 5’-

CAAGCAACGCAAGCCCGGTGGACCTTGGAGACCAGAGCCAAACACCTCCAGGCCTGGTGAT

GATGGCGGGATCG-3’ and reverse: xz202-R, 5’-

TTGTCCCTGATGAAGACCGAGGACTGGACTTAGTTCAGGCATGCTAGGACTCAGAAGAACTC

GTCAAGAAGGCG-3’ primers. The resulting PCR product was purified from agarose gel, 

electroporated into an E. coli strain SW105 harboring pXZ143 and selected by kanamycin (positive) 

and streptomycin (replica negative) to yield the BACmid termed pXZ202. 

Next, the DNA sequence of EBNA2 S379A flanked by 300 bp upstream and 300 bp 

downstream of EBNA2 S379 was amplified from pXZ179 with the following forward: xz203-F, 5’-

TGCCAGACCAATCAATGCACCCTC-3’ and reverse: xz203-R, 5’-

GGGCGAGGTCTTTTACTGGGTCCCT-3’ primers. The resulting PCR products were purified from 

agarose gel, electroporated into an E. coli strain SW105 harboring pXZ202 and selected by 

chloramphenicol and streptomycin to yield the BACmid termed pXZ203. 

3.2.9. Isolation of BACmids 

To isolate a small scale (mini-prep) of BACmid DNA from E.coli SW105, bacteria were streaked on 

half of an LB agar plate containing appropriate antibiotics and incubated at 37℃ for one day. The 

lawn of the fresh bacteria was collected with an American toothpick and resuspend in 200µl of 

Solution I. 200 µl freshly-prepared solution II was added, the reaction was shocked sharply on a 

hard surface (no vortexing here! ) to mix well, and incubated on ice for 5 minutes to lyse the bacteria. 

Then 200 µl precooled solution III was added, mixed by inverting gently and then vigorously for a 

few seconds, and incubated for 5 min on ice to neutralize the reaction. The lysate was cleared by 

centrifugation (16,000 g, 10 min, 4℃) and the supernatant was transferred to a new 1.5 ml 

Eppendorf tube. Then 350 µl isopropanol was added and mixed well by inverting. The BACmid DNA 

was pelleted by centrifugation (16,000 g, 10 min, RT), washed once with 500 µl 80% ethanol, and 

pelleted again by centrifugation (16,000 g, 10 min, RT). Any traces of supernatant were removed 

by pipetting. The pellet was shortly airdried and then dissolved in 40 µl TE Buffer. 

To isolate a large scale (maxi-prep) of BACmid DNA from E.coli SW105, bacteria were 

collected from 4× 400 ml overnight culture (LB containing 300 mM NaCl) (OD595 = 2.5 – 5), and the 
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plasmid was isolated using the NucleoBond Xtra BAC kit according to the manufacturer’s 

instructions.  

To further purify the supercoiled BACmid DNA, a mass (g) of CsCl was dissolved in a volume 

(ml) of maxi-prep of BACmid DNA. The mixture was transferred to an ultracentrifuge tube (~12 ml) 

and the tube was filled by 1.55 g/ml CsCl solution, followed by adding 200 µl 1% ethidium bromide 

(EtBr), and sealed firmly. The BACmid DNA was separated by ultracentrifugation (35,000rpm, 20℃) 

for 3 days and DNA bands were visualized under UV light (350 nm). A hole on the top of the tube 

and a hole which is 0.5 cm under the lower band (where the supercoiled BACmid DNA are) were 

punctuated using a large gauge veterinary needle (2.1 mm) and the lower band (~1 ml) was 

transferred to a 15 ml Falcon tube using a syringe (2 ml) and the large gauge veterinary needle. 

The EtBr was removed for 4 times of extraction using 2 ml CsCl-saturated isopropanol until the red 

color was gong. The DNA was concentrated by lyophilization until the volume was approx. 700 µl. 

The DNA was dialyzed in a close membrane (Spectra/por membrane, MWCO: 6 – 8,000) against 

2L TE buffer at 4℃ overnight. The supercoiled BACmid DNA was transferred to an Eppendorf tube 

and stored at 4℃. 

Solution I 10 mM Tris-HCl (pH 8.0), 1 mM EDTA (pH 8.0), 200 µg/ml RNase A 

Solution II 200 mM NaOH, 1% SDS 

Solution III 3.1 M Potassium acetate (KAc) (pH 5.5) 

1.55 g/ml CsCl solution 
240.8 g CsCl dissolved in 259.2 ml ddH2O, filtered (0.22 µm), and 

checked with a refractometer 

TE Buffer 10 mM Tris-HCl (pH 8.0), 1 mM EDTA (pH 8.0) 

 

3.3. DNA related techniques 

3.3.1. Isolation of genomic DNA from mammalian 
cells 

To isolate complete genomic DNA from mammalian cells, 5 × 106 cells were collected and the 

genomic DNA was isolated using a QIAamp DNA Mini Kit according to the manufacturer’s 

instructions. 

3.3.2. Polymerase chain reaction (PCR)  

To amplify a specific DNA sequence, a Phusion High-Fidelity PCR Kit was applied according to the 

manufacturer’s instructions. To amplify the ploy proline region of the EBNA2 gene, a peqGold Taq 

Polymerase was applied according to the manufacturer’s instructions. 
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3.3.3. Restriction endonuclease digestion of DNA 

To check the integrity of Plasmid or BACmid DNA or to digest DNA for molecular cloning, 0.5 – 1 

µg purified DNA or 40 µl mini-prep of a BACmid was subjected to restriction endonuclease digestion 

according to the manufacturer’s instructions of the respective endonuclease. 

3.3.4. 5’-phosphorylation of oligonucleotides 

To phosphorylate 5’ -termini of oligonucleotides, a T4 Polynucleotide Kinase was applied according 

to the manufacturer’s instructions.  

3.3.5. Oligo annealing to form linkers 

To generate a linker, forward and reverse Oligos were diluted in annealing buffer (20 µM each), 

incubated at 95℃ for 5 min, and slowly cool down to RT. 

Annealing buffer 10 mM Tris-base (pH 7.6), 50 mM NaCl, 1 mM EDTA (pH 8) 

 

3.3.6. DNA gel electrophoresis 

DNA fragments were mixed with DNA loading buffer, loaded on 0.7 – 2% agarose gels containing 

0.01% (v/v) EtBr, electrophoresed in 1× TAE buffer applying voltage by 4 – 8 V/cm, and visualized 

under UV light. For BACmid digest, The electrophoresis was done in 1× TBE buffer containing 0.01% 

(v/v) EtBr with circulation. 

TAE buffer (50×) 2 M Tris-base, 1 M Acetic acid, 50 mM EDTA (pH 8) 

TBE buffer (10×) 1 M Tris-base 1 M Boric acid, 20 mM EDTA (pH 8) 

 

3.3.7. Purification of DNA fragments 

To purify DNA from a gel or a reaction, a NucleoSpin Gel and PCR Clean‐up Kit was applied 

according to the manufacturer’s instructions.  

3.3.8. Determining the concentration of DNA  

To determine the concentration of PCR or mini-prep DNA, the measurement was done on an 

Eppendorf photometer according to the manufacturer’s instructions. To determine the concentration 

of supercoiled BACmid or maxi-prep DNA, a Qubit dsDNA BR Assay Kit was applied and the 

measurement was done on a Qubit fluorometer according to the manufacturer’s instructions.  
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3.3.9. Sanger sequencing of DNA 

For plasmid or PCR DNA, Sanger sequencing was conducted at Eurofins Genomics GmbH, 

Germany. For BACmid DNA, Sanger sequencing was conducted at Sequiserve GmbH, Germany. 

The trace files were analyzed using Chromas Lite software.  

3.3.10. EBV diagnosis by PCR  

200 ng genomic DNA isolated from human primary B cells used as a template to amplify 296 bp of 

the EBV BamH I W fragment by PCR with the following forward: BamHI W-F, 5’-

TCGCGTTGCTAGGCCACCTT-3’ and reverse: BamHI W-R, pXZ5’-

CTTGGATGGCGGAGTCAGCG-3’ primers (Wagner et al., 1992). Genomic DNA isolated from 

DG75 and Raji cells used as a negative and positive control, respectively, in the PCR. The amplified 

DNA was analyzed by DNA gel electrophoresis. 

3.4. Protein biochemistry related techniques 

3.4.1. Recombinant protein expression 

3.4.1.1. In E.coli Rosetta 2 (DE3) 

N-terminal GST-fused EBNA2 mutants, 6× His-tagged EBNA2 mutants or 6× His-tagged PLK1 

mutants were expressed in E.coli Rosetta 2 (DE3). In brief, A starter culture of E.coli Rosetta 2 

(DE3) transformed with the corresponding plasmid was inoculated into 400 ml LB medium 

supplemented with appropriate antibiotics and cultured at 37℃ with shaking (200 rpm). Upon the 

OD595 reached 0.5 – 0.7, the bacteria culture was induced with 1 mM isopropyl β- d-1-

thiogalactopyranoside (IPTG) at 37℃ for 3 – 6 h or at 18℃ overnight.  

3.4.1.2. In Sf21 insect cells 

To express 6× His-tagged full-length EBNA2 or PLK1 in Sf21 insect cells, I established a 

collaboration with Prof. Michael Sattler, Helmholtz Zentrum München (HMGU). I constructed all the 

plasmids used for protein expression. Prof. Sattler’s postdoc Dr. André Mourão expressed the 

protein in Sf21 insect cells using a baculovirus expression system. 

3.4.2. Recombinant protein purification 

3.4.2.1. GST-fused protein purification 

For GST-fused protein purification, the bacteria were resuspended in 20 ml fresh ice-cold binding 

buffer, lysed by sonication (10% intensity, 10 sec on and 1 sec off for 1 min) on ice. The bacterial 

lysate was cleared by centrifugation ( 25,000 g, 20 min, 4℃) and then incubated with Glutathione 

Sepharose 4B beads at 4℃ for 1 h with rolling. The beads were pelleted by centrifugation ( 500 g, 
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5 min, 4℃), wash several times with washing buffer, and transferred to a new 1.5 ml Eppendorf 

tube. The beads were eluted by three times incubation (10 min, RT) with elution buffer. The GST-

fused proteins in the eluates were pooled together. 

Binding buffer  
25 mM HEPES (pH 7.6, KOH), 0.1 mM EDTA (pH 8) 12.5 mM MgCl2, 10% 

Glycerol, 0.1% NP-40, 100 mM KCl, 1 mM PMSF, 1 mM DTT 

Washing buffer 25 mM HEPES (pH 7.6, KOH), 10% Glycerol, 1 mM PMSF, 1 mM DTT 

Elution buffer 100 mM Tris-HCl (pH 8), 10 mM L-Glutathione reduced, 1 mM DTT 

 

3.4.2.2. 6× His-tagged protein purification 

For 6× His-tagged proteins purification, the bacteria or insect cells were resuspended in 10 ml fresh 

ice-cold binding buffer, lysed by sonication (10% intensity, 10 sec on and 1 sec off for 1 min) on ice. 

If the lysate was very viscous after sonication then it was incubated with 1.7 U/ml Benzonase 

nuclease for 15 min on ice to break down nucleic acids. The lysate was cleared by centrifugation 

(25,000 g, 20 min, 4℃) and then incubated with PerfectPro Ni-NTA Agarose beads at 4℃ for 1 h 

with rolling. The beads were pelleted by centrifugation (500 g, 5 min, 4℃), wash several times with 

washing buffer, and transferred to a chromatography column. The His-tagged proteins were eluted 

with elution buffer. 

Binding buffer (pH 7.4) 
4.3 mM NaH2PO4, 300 mM NaCl, 1.4 mM KH2PO4, 2.7 mM KCl, 1 mM 

PMSF, 20 mM imidazole 

Washing buffer (pH 7.4) 
4.3 mM NaH2PO4, 300 mM NaCl, 1.4 mM KH2PO4, 2.7 mM KCl, 1 mM 

PMSF, 50 – 100 mM imidazole 

Elution buffer (pH 7.4) 
4.3 mM NaH2PO4, 300 mM NaCl, 1.4 mM KH2PO4, 2.7 mM KCl, 1 mM 

PMSF, 200 – 500 mM imidazole 

 

3.4.3. Generation of whole mammalian cell extracts 

To generate the whole-cell lysates, 1 × 107 cells were harvested by centrifugation (500 g, 5 min), 

washed once with PBS, resuspended in 520 µl fresh NP-40 lysis buffer, and lysed for 1 h (30min 

at 4℃ with rolling and 30min on ice). The cell extract was cleared by centrifugation (16,000 g, 15 

min, 4℃), transferred to a new 1.5 ml Eppendorf tube, and optionally stored at -80℃. 

NP-40 lysis buffer 

1% NP-40, 150 mM NaCl, 10 mM Tris-HCl (pH 7.4), 1 mM EDTA (pH 8), 3% 

Glycerol, supplemental with cOmplete protease inhibitor and PhoStop 

phosphatase inhibitor 
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3.4.4. Bradford assay 

The protein concentration was quantified by Bradford assay using a serial dilution (0 – 12 µg) of 

BSA as reference. In brief, 2 µl protein was diluted in 1 ml Bradford Solution (1×, diluted from 5×) 

in a cuvette and mixed well by inverting the cuvette. The absorbance of OD595 was measured using 

an Eppendorf photometer. The protein concentration was calculated according to the calibration 

curve of BSA. 

Bradford Solution (5×)  
100 mg Coomassie Brilliant Blue G-250, 47% methanol, 42.5% 

phosphoric acid 

3.4.5. Dual-luciferase assay 

To evaluate the transactivation activity of EBNA2, a reporter construct, pGa981-6 which is consist 

of a firefly luciferase gene and its upstream of the hexamerized 50 bp of the EBNA2 responsive 

element of the TP-1 promoter (reviewed in Minoguchi et al., 1997), and an internal control construct, 

pPGK consecutively expressing renilla luciferase, were used, along with a Dual-Luciferase Reporter 

Assay System applied according to the manufacturer’s instruction. In brief, 5 × 106 DG75 cells were 

electroporated with 5 µg pGa981-6, 0.2 µg pPGK, and 1.5 µg EBNA2 construct using a BioRad 

GenePulser II device (2 mm gap cuvette, 250 V, 950 µF). 40 ng PLK1 construct was electroporated 

at the same time if needed. Cells were harvested 24 h post-transfection by centrifugation at 300 g 

for 10 min at 4℃, washed once with ice-cold PBS, and pelleted by centrifugation (300 g, 10 min, 

4℃) again. The cell pellet was resuspended, lysed with 100 μl passive lysis buffer, incubated on 

ice for 15 min, and frozen at -80℃. The cell extract was cleared by centrifugation (15,300 rpm, 15 

min, 4℃) immediately upon thawing. 10 µl cell extract was transferred into a well of a white 96-well-

plate. The dual-luciferase activities of the cell extract were measured by a Berthold Orion Microplate 

Luminometer according to an automatic program: the addition of 50μl Luciferase assay reagent II 

(LARII) followed by the first measurement and then the addition of 50 μl Stop&Glo reagent followed 

by the second measurement. 

3.4.6. Co-immunoprecipitation 

1 × 107 LCL cells, DG75 cells transfected with 5μg plasmids for 48 h, or EBNA2 inducible DG75Dox 

HA-EBNA2 cells induced with doxycycline for 24 h, were harvested by centrifugation (500 g, 5 min). 

The whole-cell extract was generated as described before (see chapter 3.4.3). 450 µl whole-cell 

extract was incubated with an EBNA2-, PLK1-, HA-, or GFP-specific or their isotype control 

antibodies immobilized on Protein G-Sepharose beads at 4℃ overnight. The beads were pelleted 

by centrifugation (2,000 g, 2 min), washed 5 times with 500 µL NP-40 lysis buffer, and boiled at 95℃ 

for 5 min in 60 µl 2× Lämmli buffer. Subsequently, the beads were pelleted by centrifugation (8,000 

g, 2 min). The immunoprecipitate in the supernatant was transferred into a 1.5 ml Eppendorf tube 
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and optionally stored at -80℃. The immunoprecipitate was separated by SDS-PAGE and proteins 

of interest were visualized by WB using specific antibodies. 

3.4.7. GST pull-down assay 

GST-fused EBNA2 mutant was expressed in E.coli Rosetta 2 (DE3) and immobilized on Glutathione 

Sepharose 4B beads as described before (see chapter 3.4.2.1). Optionally, the protein immobilized 

on beads was subjected to kinase assay in vitro (see chapter 3.4.8) before the pull-down assay. 

The beads were incubated at 4℃ for 3 h with 500 µl whole-cell extract from DG75 cells (see chapter 

3.4.3) or 50 pmol 6× His-tagged PLK1 purified from Sf21 insect cells, KD, or PBD both purified from 

E.coli Rosetta 2 (DE3) (see chapter 3.4.2.2). Subsequently, the beads were pelleted by 

centrifugation (8,000 g, 2 min). The proteins in the supernatant were transferred in a 1.5 ml 

Eppendorf tube and optionally stored at -80℃. The proteins were separated by SDS-PAGE and 

proteins of interest were visualized by WB using specific antibodies. 

3.4.8. Kinase assay in vitro 

The purified protein or protein immobilized on Glutathione Sepharose 4B beads was incubated for 

30 min at 37℃ with recombinant Cyclin B1/CDK1 (100 ng) or PLK1 (50 ng) at the presence of 1 

mM nonradioactive ATP or plus 0.5 µl -32P labeled ATP (10 mCi/ml) in PK buffer in a total reaction 

volume of 20 µl.  

3.4.9. Dephosphorylation of protein 

Purified protein was treated with  Protein Phosphatase (200 U) in NEBuffer Pack for Protein 

Metallo Phosphatases (PMP) supplemented with 1mM MnCl2, 30℃ for 30min after PLK1 kinase 

assay. 

3.4.10. Sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) 

Separation gels and stacking gels contained 6 – 15% and 5% polyacrylamide, respectively, and 1% 

SDS as well. 15 – 30 µg protein was mixed with Lämmli buffer (2 × or 5 ×), boiled at 95℃ for 5 min, 

loaded on the gel, and separated by electrophoresis in running buffer for approx. 1 h at 25 mA per 

gel. 

Lämmli buffer (2×) 
4% SDS, 20% Glycerol, 5% β-mercaptoethanol, 120 mM Tris-HCl, pH 

6.8, 1 spatula tip of bromophenol blue 

Lämmli buffer (5×) 
10% SDS, 50% Glycerol, 12.5% β-mercaptoethanol, 300 mM Tris-HCl, 

pH 6.8, 1 spatula tip of bromophenol blue 

Running buffer (1×) 25 mM Tris Base, 0.2 M Glycine, 0.1% SDS 
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3.4.11. Coomassie brilliant blue staining 

SDS-PAGE separated proteins were visualized by Coomassie brilliant blue staining. In brief, the 

gel was incubated in Coomassie staining solution for approx. 1 h with swirling until the entire gel 

was in dark blue and washed three times in ddH2O. The gel was incubated in the decoloring 

solution and the solution was changed occasionally until the band pattern became clear. 

Coomassie staining 

solution  

0.1% Coomassie Brilliant Blue G250, 45% ethanol, 10% Acetic acid 

 

Decoloring solution 20% Ethanol, 10% Acetic acid 

 

3.4.12. Gel drying 

An SDS-PAGE gel (Coomassie-stained optionally) was equilibrated for 15 min in a gel drying 

solution. Two cellophane sheets were soaked in dH2O. The drying sandwich was set up as follows: 

one gel drying frame, one cellophane sheet, the gel, the other cellophane sheet, and the other gel 

frame, without any air bubbles. The gel was dried for one day at RT. 

Gel drying solution 10% Glycerol, 20% Ethanol  

 

3.4.13. Phosphorimaging 

To visualize a dried radioactive (32P) gel, the β radiation emitted from 32P nuclei was detected by a 

Fuji Medical X‐Ray Film and visualized by a developer machine. Alternatively, the β radiation was 

detected by a storage phosphor screen and visualized by a Typhoon FLA 7000 machine. 

3.4.14. Western blotting (WB) 

SDS-PAGE separated proteins were transferred to PVDF or NC membranes for specific protein 

detection by antibodies. In brief, a membrane was activated by incubation in 100% methanol for 2 

min and washed in ddH2O for 30 sec (only for PVDF membranes). Subsequently, the membrane 

was equilibrated, together with Whatman paper, and sponges, in transferring buffer. The blotting 

sandwich was set up, starting on the cathode side, as follows: One sponge, three layers of 

Whatman paper, the running gel, PVDF membrane, three layers of Waterman paper, and another 

sponge. The blotting was conducted at 400 mA for 1 h in transferring buffer with circulation in a cold 

room. The membrane was incubated in blocking buffer for 30 min with rolling and subsequently 

incubated with diluted primary antibodies specific for the protein of interest for 1 h at RT or overnight 

at 4℃. After three times washing steps with PBS/T buffer, the membrane was incubated with the 

appropriate horseradish peroxidase (HRP)-coupled secondary antibodies, specific for the primary 

antibodies, diluted in blocking buffer for 1h at RT. The membrane was washed three times with 
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PBS/T buffer again. Then the secondary antibodies were detected using an Enhanced 

Chemiluminescence (ECL) system according to the manufacturer’s instructions. The emitted light, 

resulting from the HRP mediated oxidation of luminol, was detected by a Fuji Medical X‐Ray Film 

and visualized by a developer machine. Alternatively, the emitted light was detected and visualized 

by a Fusion FX spectra machine. 

Transferring buffer (1×) 25 mM Tris-base, 192 mM Glycine, 0.1% SDS, 20% Methanol  

Blocking buffer 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5% (w/v) non-fat milkpowder 

PBS/T buffer PBS plus 0.05% Tween-20 

 

3.5. Protein biophysics related techniques 

To decipher the interaction of EBNA2 and PLK1, I established a collaboration with Prof. Michael 

Sattler (HMGU). I constructed all the plasmids used for protein expression. Prof. Sattler’s postdoc 

Dr. André Mourão expressed and purified the proteins and characterized their interaction using 

isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR) spectroscopy.  

3.5.1. Isothermal titration calorimetry (ITC) 

Isothermal titration calorimetry (ITC) experiments were performed on an ITC200 instrument in 

triplicates and analyzed with the Malvern software. For the PLK1 PBD interaction with EBNA2 

fragment 342-422aa (PDS1)-derived synthetic heptapeptide (PNTSSPS, wild-type) or phospho-

heptapeptide (PNTSpSPS), 100 µM PBD was provided in the cell and titrated with 1 mM of 

heptapeptide wild-type or phosphor-heptapeptide with 25 times 1.5 µl injections at 25℃. ITC 

experiments for the PLK1 PBD and EBNA2 fragment 423-474aa (PDS2) peptides were performed 

similarly, using 30 µM PLK1 PBD and 300 mM EBNA2 PDS2 peptides. 

3.5.2. Nuclear magnetic resonance (NMR) 
spectroscopy 

EBNA2 fragment 423-474aa (PDS2) was grown in minimal media supplemented with 15NH4Cl and 

13C-glucose. Purification was done as reported previously (Mourão et al., 2016). Backbone 

chemical shift assignments were performed based on HNCA, HNCACB, CBCACONH, HNCO, and 

CCCONH-TOCSY (Sattler et al., 1999) recorded at 600 MHz proton Larmor frequency on a Bruker 

spectrometer equipped with a cryoprobe using a sample at 250µM in aqueous PBS buffer at pH 

6.5 supplemented with 5% D2O. NMR spectra were processed with nmrPipe (Delaglio et al., 1995), 

and analyzed with CCPNMR (Vranken et al., 2005).  
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3.6. Animal study 

To characterize the recombinant EBV in vivo, I collaborated with Prof. Christian Münz, Universität 

Zürich (UZH) for mouse experiments. I produced, concentrated, and titrated the recombinant EBV. 

Prof. Münz’s postdoc Dr. Anita Murer performed the first mouse experiment in 2019 when I helped 

in the generation, infection, and sacrifice of the humanized mice. Prof. Münz’s Ph.D. student Patrick 

Schuhmachers performed the rest two mouse experiments. The respective animal protocol 

ZH008_20 was approved by the veterinary office of the canton of Zurich, Switzerland. 

3.6.1. Generation of humanized mice 

NOD-scid c
null (NSG) mice obtained from the Jackson Laboratories were bred and maintained 

under specific pathogen-free conditions at the Institute of Experimental Immunology, Universität 

Zürich. CD34+ human hematopoietic progenitor cells were isolated from human fetal liver tissue 

(obtained from Advanced Bioscience Resources) using the CD34 MicroBead Kit (Miltenyi Biotec) 

following the protocol provided by the manufacturer. Newborn NSG mice (age: 1 to 5 days) were 

irradiated with 1 Gy by use of an X-ray source. 1 – 3 x 105 CD34+ human hematopoietic progenitor 

cells were injected intra-hepatically 5 to 7 hours after irradiation. Reconstitution of mice with human 

immune system components was investigated 10 – 12 weeks after engraftment by flow cytometry 

for the cell surface expression of huCD45, huCD3, huCD19, huCD4, huCD8, huNKp46, and HLA-

DR on PBMCs.  

3.6.2. Infection of huNSG mice with recombinant EBV 

12 – 16 weeks after engraftment, huNSG mice were infected intraperitoneally with 1x105 GRUs of 

EBV EBNA2 WT, EBV EBNA2 S379A, or EBV EBNA2 S457A/T465V. For each experiment, a 

different cohort of mice reconstituted with CD34+ cells derived from one donor was generated. The 

animals were ascribed to a distinct experimental group ensuring similar ratios of males to females 

and similar reconstitution levels and immune cell activation in the peripheral blood. 5 weeks after 

infection mice were sacrificed, if not necessitated earlier differently by the regulations of our 

experimental animal license as a consequence of general health conditions or weight loss over 

20%. For analysis of the experiments, infected mice that did not present viral loads neither in blood 

nor in spleen were excluded from analysis since we considered them non-infected. 

3.6.3. Liquid chromatography-tandem mass 
spectrometry (LC-MS/MS) 

3.6.3.1. Identification of EBNA2 interactome 

To identify EBNA2 interactome, my former colleague Dr. Sybille Thumann collaborated with Dr. 

Stefanie Hauck, Helmholtz Zentrum München (HMGU). Dr. Thumann overexpressed HA-tagged 
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EBNA2 in DG75 cells and performed immunoprecipitation with an HA-specific antibody. The 

immunoprecipitates were eluted and analyzed by Dr. Hauck using liquid chromatography-tandem 

mass spectrometry (LC-MS/MS). For the detailed method, it can be found in Dr. Sybille Thumann’s 

Ph.D. thesis (Thumann, 2016). 

3.6.3.2. Identification of the PLK1-dependent phosphorylation 
sites of EBNA2 

To identify the PLK1-dependent phosphorylation sites of EBNA2, I established a collaboration with 

Prof. Bernhard Küster, Technische Universität München (TUM). I purified 6× His-tagged EBNA2 

and GST-fused EBNA2 453-474aa from E.coli, performed PLK1 kinase assay (nonradioactive), and 

separated the proteins using SDS-PAGE. The protein of interest was extracted from the gel and 

analyzed by Dr. Piero Giansanti from Prof. Küster’s lab using liquid chromatography-tandem mass 

spectrometry (LC-MS/MS).  

6× His-tagged EBNA2 and GST-fused EBNA2 453-474aa were subjected to PLK1 kinase 

assays. 50 µg 6× His-tagged EBNA2 or 130 µg GST-fused EBNA2 protein were incubated in 1× 

PK buffer, 1.25 mM ATP in presence or absence of 250 ng active PLK1 at 37℃ for 1h. All reactions 

were carried out in a total volume of 20 μL and then were quenched with 5 μl 5× Lämmli sample 

buffer. 

Proteins were separated by SDS-PAGE and stained with Coomassie Brilliant Blue. Bands 

corresponding to EBNA2 full length (86 kDa) or GST-EBNA2 C-terminal fragment (28 kDa) were 

sliced out from the gel lanes, and proteins were then reduced, alkylated, and digested with either 

Trypsin or GluC (Roche), as previously described (Shevchenko et al., 1996). 

Dried peptides were reconstituted in 0.1% FA/2% ACN and subjected to MS analysis using 

a Dionex Ultimate 3000 UHPLC+ system coupled to a Fusion Lumos Tribrid mass spectrometer 

(Thermo Fisher). Peptides were delivered to a trap column (75 μm × 2 cm, packed in-house with 5 

μm Reprosil C18 resin; Dr. Maisch) and washed using 0.1% FA at a flow rate of 5 μL/min for 10 

min. Subsequently, peptides were transferred to an analytical column (75 μm × 45 cm, packed in-

house with 3 μm Reprosil C18 resin, Dr. Maisch) applying a flow rate of 0.3 µl/min. Peptides were 

chromatographically separated using a 50 min linear gradient from 4% to 32% solvent B (0.1% FA, 

5% DMSO in ACN) in solvent A (0.1% FA in 5% DMSO). The mass spectrometer was operated in 

data-dependent mode, automatically switching between MS and MS/MS. Full-scan MS spectra 

(from 360 to 1500 m/z) were acquired in the Orbitrap with a resolution of 60,000 at 200 m/z, using 

an automatic gain control (AGC) target value of 5e5 charges and maximum injection time (maxIT) 

of 10 ms. The 10 most intense ions within the survey scan were selected for HCD fragmentation 

with normalized collision energy set to 28%. 

The isolation window was set to 1.7 Th, and MS/MS spectra were acquired in the Orbitrap 

with a resolution of 15,000 at 200 m/z, using an AGC target value of 2e5, and a maxIT of 75 ms. 

Dynamic exclusion was set to 20 s. 
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Peptide and protein identification was performed using MaxQuant (version 1.5.3.30) with its 

built-in search engine Andromeda (Shevchenko et al., 1996). Spectra were searched against a 

SwissProt database, either the Spodoptera frugiperda (OX 7108 - 26,502 sequences) or 

Escherichia coli (UP000002032 – 4,156 sequences), supplemented with the EBNA2 protein 

sequence. Enzyme specificity was set to Trypsin/P or GluC accordingly, and the search included 

cysteine carbamidomethylation as a fixed modification, protein N-term acetylation, oxidation of 

methionine, and phosphorylation of serine, threonine, tyrosine residue (STY) as variable 

modifications. Up to two and three missed cleavage sites were allowed for trypsin and GluC, 

respectively. The precursor tolerance was set to 4.5 ppm (after MS1 feature re-calibration), and 

fragment ion tolerance to 20 ppm. The match between runs feature was enabled. Peptides 

identification were further filtered for a minimum Andromeda score of 20 or 40, for unmodified and 

modified (phosphorylated) sequences, respectively. A site localization probability of at least 0.75 

was used as the threshold for confident localization. 

3.6.4. The whole blood and spleen preparations for 
immunophenotyping 

The whole blood of mice was collected from the tail vein and prepared for immunophenotyping by 

lysing erythrocytes with NH4Cl. Spleens of mice were mashed, subsequently filtered with a 70 µm 

cell strainer, and afterward, mononuclear cells were separated using Ficoll-Paque gradients. Total 

cell counts were determined from purified mononuclear cell suspensions using a DxH500 

Hematology Analyzer (Beckman Coulter). Purified cell suspensions were stained for 30 – 40 

minutes at 4℃ in the dark with a master mix of the respective antibodies followed by a washing step 

in PBS. The stained cells were analyzed in an LSR Fortessa cytometer (BD Biosciences). Flow 

cytometry data were analyzed using the FlowJo software. 

3.6.5. Viral loads detection in blood and spleen in 
infected humanized mice 

Viral loads in the blood and spleen of mice were determined by TaqMan real-time PCR (Applied 

Biosystems) of EBV BamH I W fragments. For this purpose, DNA was isolated from whole blood 

using a NucliSENS EasyMAG System (bioMérieux) and from the spleen with a DNeasy Blood and 

Tissue kit (Qiagen) following the manufacturers’ instructions. TaqMan real-time PCR assays were 

performed as described previously (Caduff et al., 2020). 

3.7. Statistical analyses 

The statistical analyses in this thesis were performed using the GraphPad Prism 8 software. 
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4. Results 

The results of this thesis are structured into five main parts. In the first part (chapter 4.1), the 

interaction of EBNA2 and PLK is described, and the identification of the residues of EBNA2 

mediated to PLK1 binding and the characterization of their biological function are shown. In the 

second part (chapter 4.2), The identification of PLK1-dependent phosphorylation sites of EBNA2 

and the characterization of their biological function are depicted. In the third part (chapter 4.3), the 

construction of EBV BACmid encoding HA-tagged EBNA2 WT, S379A (PLK1 docking mutant), or 

S457A/T465V (PLK1 phosphorylation mutant) and the production of recombinant EBVs are 

explained. In the fourth (chapter 4.4) and fifth part (chapter 4.5), the characterization of recombinant 

EBVs in vitro and in vivo are shown, respectively. 

4.1. Characterization of the interaction of EBNA2 
and PLK1 

4.1.1. EBNA2 and PLK1 interact with each other in 
EBV-transformed B cells. 

To identify potential EBNA2 interacting cellular proteins, Dr. Sybille Thumann (AG Kempkes) 

transfected EBV negative DG75 B cells with HA-tagged EBNA2 expression constructs or the 

corresponding empty vector and performed immunoprecipitations with HA-specific antibodies. In 

collaboration with Dr. Stefanie Hauck (HMGU), tryptic peptides of these immunoprecipitates were 

analyzed and quantified by label-free based mass spectrometry. Polo-like kinase 1 (PLK1) was one 

of 19 candidate proteins that were significantly enriched in EBNA2 co-immunoprecipitates. As 

expected, the EBNA2 DNA anchor protein CBF1 was one of these proteins, reassuring that the 

experimental approach was valid (Thumann, 2016).  

To further verify the interaction of EBNA2 and PLK1, immunoprecipitation experiments were 

performed for the whole-cell extracts of EBV-transformed B cells in which both proteins are 

expressed at endogenous physiological levels. PLK1 was specifically co-immunoprecipitated with 

EBNA2 and vice versa (Figure 7). In summary, EBNA2 and PLK1 interact with each other in EBV-

transformed B cells. 

 

Figure 7. Endogenous EBNA2 and PLK1 interact with each other in EBV-transformed B cells.  
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Total cell lysates (L) of EBV-immortalized B cells were subjected to reciprocal immunoprecipitations (IP) using 

EBNA2- (left) (-EBNA2), PLK1- (right) (-PLK1) specific, and their isotype-matched control antibodies, visualized 

by western blotting (WB) using EBNA2- and PLK1- specific antibodies, respectively. 

4.1.2. PLK1 binds to two regions of EBNA2 

To identify PLK1 docking sites within EBNA2, serial deletion mutants of HA- or GFP-tagged EBNA2 

fragments were generated using overlap PCR-based mutagenesis (Figure S1) and tested for their 

binding to PLK1 by transfection and co-immunoprecipitation in DG75 cells or by GST-pulldown 

assays using GST-fused EBNA2 fragments. The carboxyl terminus of EBNA2 (342-474aa) was 

required and sufficient for the EBNA2/PLK1 complex formation (Figure 8A and B). Further deletions 

retained binding activities, but the binding was much weaker, indicating that two regions, PLK1 

docking sites 1 and 2 (PDS1 and PDS2), cooperate in PLK1 binding (Figure 8C). Next, GST-fused 

EBNA2 fragments produced in E. coli were used as baits to pull down PLK1 from DG75 B cell 

extracts. Surprisingly, fragment 342-422 (PDS1) bound PLK1 with very low efficiency although it 

was produced well, indicating PDS1 needs a cellular process, e.g. phosphorylation, to activate its 

binding to PLK1. In contrast, the production of fragment 423-487 was not very efficient but the 

pulldown of PLK1 was strong (Figure 8D). An even smaller PDS2 fragment (446-474) retained weak 

but detectable binding capacities (Figure S2). To test if EBNA2 and PLK1 physically interact in vitro, 

purified recombinant PLK1 derived from baculovirus-infected insect cells was mixed with purified 

GST-EBNA2 fragments immobilized on glutathione beads. GST-fragment 423-474 (PDS2) 

efficiently bound to PLK1 while the purified 342-422 (PDS1) fragment did not (Figure 8E). In 

summary, two PLK1 docking sites were identified in EBNA2, PDS1 (342-422) and PDS2 (423-474) 

which cooperate to build a stable EBNA2/PLK1 complex.  
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Figure 8. Two C-terminal regions of EBNA2 serve as PLK1 docking sites (PDS1 and PDS2) to confer 

EBNA2/PLK1 interaction.  

(A) Schematic overview of the EBNA2 fragments used to map the PLK1 docking sites (PDS1 and PDS2). The panel 

on the right summarizes the results shown below. (B) Total cell lysates of DG75 cells exogenously expressing HA-

tagged EBNA2 fragments 1-474 and 1-341 were subject to immunoprecipitations (IP) using an HA- (-HA) specific 

antibody, visualized by western blotting (WB) using HA-, PLK1- (-PLK), and GAPDH- (-GAPDH) specific 

antibodies, respectively. (C) Total cell lysates of DG75 cells exogenously expressing GFP-fused EBNA2 fragments 

327-487, 327-407, 408-487, 342-487, 342-422, and 423-487 were subject to immunoprecipitations using a GFP- 

(-GFP) specific antibody, visualized by western blotting using GFP-, PLK1- (-PLK1), and GAPDH- (-GAPDH) 

specific antibodies, respectively. (D) Total cell lysates of DG75 cells were subjected to GST-pulldown using GST-

fused EBNA2 C-terminal fragments 246-487, 342-487, 342-422, and 423-487, visualized by western blotting using 

GST- (-GST) and PLK1- (-PLK1) specific antibodies, respectively. (E) Purified recombinant PLK1s were 

subjected to GST-pulldown using GST-fused EBNA2 C-terminal fragments 342-487, 342-474, 342-422, and 423-

474, visualized by western blotting using GST- (-GST) and PLK1- (-PLK1) specific antibodies, respectively. 
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4.1.3. Phosphorylated S379 in EBNA2 PDS1 serves 
as a canonical PLK1 docking site primed by CDK1. 

It is well established that PLK1 PBD frequently docks onto substrates that have been primed for 

PLK1 binding by CDK1 phosphorylation. These substrates share a consensus motif of [Pro/Phe]-

[Φ/Pro]-[Φ]-[Thr/Gln/His/Met]-Ser-[pThr/pSer]-[Pro/X] (Φ represents hydrophobic and X represents 

any residue) (Elia et al., 2003a). Crystal structures of the PLK1 PBD in complex with peptides show 

that the positively charged groove of PBD docks in a similar fashion to the negatively charged 

phosphopeptides (Figure S3A). EBNA2 exhibits three potential CDK1 phosphorylation sites located 

at residue T267, S379, and S470 (Figure S3A). Interestingly, S379 and S479 are localized in 

EBNA2 PDS1 and PDS2, respectively. Mutagenesis of S379 located within PDS1 impaired PLK1 

binding dramatically while all other EBNA2 mutants were not affected (Figure S3B). 

Since PDS1 produced in bacteria had not been able to bind to PLK1 (Figure 8D), GST-fused 

PDS1 purified from bacterial extracts was speculated lacking this specific phosphorylation of S379. 

In CDK1 kinase assays, PDS1 WT exhibited ~2-fold stronger phosphorylation by Cyclin B1/CDK1 

compared to the S379A mutant (Figure 9A). PLK1 binding of PDS1 was strongly enhanced by 

CDK1 phosphorylation, while the PDS1 S379A mutant binding was not improved (Figure 9B). To 

quantify the contribution of PDS1 S379 phosphorylation, PDS1-derived synthetic heptapeptide 

(PNTSSPS) and phospho-heptapeptide (PNTSpSPS) were tested for PLK1 PBD (aa 345-603) 

binding by Dr. André Mourão (AG Sattler) using isothermal titration calorimetry (ITC). PNTSpSPS 

bound to PLK1 PBD in a molar ratio of 1:1 while no interaction was detected between PNTSSPS 

and PLK1 PBD. The dissociation constant (KD) for the PNTSpSPS/PLK1 PBD interaction was 8.19 

µM, while the binding of the unphosphorylated peptide was below the threshold and not determined 

(Figure 9C). In summary, S379 within PDS1 is a PLK1 docking site primed by Cyclin B1/CDK1 

phosphorylation. 

 

Figure 9. The phosphorylation of S379 by CDK1 activates PDS1 binding to PLK1.  
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(A) The indicated amounts of PDS1 WT and S379A were kinase assay in vitro in the presence of -32P labeled ATP 

as a phosphate donor before (-) and after (+) recombinant Cyclin B1/CDK1 treatment, visualized by Coomassie 

Brilliant Blue staining (CBB) and autoradiography, respectively. Normalized phosphorylation intensities are listed 

below. (B) Total cell lysates of DG75 cells were GST-pulldown using GST-fused PDS1 WT and S379A before (-) 

and after (+) recombinant Cyclin B1/CDK1 treatment, visualized by western blotting using GST- (-GST) and PLK1- 

(-PLK1) specific antibodies, respectively. Normalized PLK1 binding efficiencies are listed below. (C) ITC 

thermograms of PLK1-PBD titrated with the peptide PNTSSPS and the phosphopeptide PNTSpSPS of EBNA2, 

respectively. KD, dissociation constant. N.D., not determined. Figure 9C was provided by Dr. André Mourão (AG 

Sattler, HMGU). 

4.1.4. PDS2 binding to PLK1 PBD does not require 
priming by cellular kinases  

The PBD of PLK1 preferentially binds to phosphorylated substrates in the majority of reported 

studies. However, bacterially purified PDS2 bound to PBD directly without any phosphorylation by 

PLK1 or other kinases (Figure 8C – E). To investigate residues important for this interaction, NMR 

experiments titrating PLK1 PBD to 15N-labeled PDS2 were performed by Dr. André Mourão (AG 

Sattler). NMR spectral changes were observed upon PLK1 PBD addition (Figure 10A). Significant 

chemical shift perturbations and line broadening (seen by signal intensity reduction) were observed 

for several residues in PDS2. The backbone chemical shifts of PBD2 were assigned to identify the 

residues that are affected by PLK1 PBD binding (Figure 10A). Considering that the final molecular 

weight of the complex is 42 kDa, strong signal intensity reduction is expected for residues involved 

in the binding interface with PLK1 PBD (Figure 10B and C). Based on this analysis, triple block 

mutants for three clusters in PDS2 were designed and tested for their binding to PLK1, KD, or PBD 

in GST-pulldown experiments. Mutagenesis of the individual cluster A or C severely impaired PBD 

binding while mutagenesis of cluster B did not affect the interaction (Figure S4A). When 

mutagenesis of clusters A and C were combined (PDS2 mt), PBD binding was abolished (Figure 

10D). ITC was performed to confirm these results. The KD of PDS2 WT, cluster A mt, cluster C mt, 

or PDS2 mt with PBD is 1.5 µM, 60 µM, 35 µM or not determined, respectively (Figure 10D), 

indicating that PDS2 might provide an extended surface to contact PBD. In line with these findings, 

in immunoprecipitation experiments, EBNA2 PDS2 mt (cluster A/C mt) were severely impaired for 

PLK1 binding, and the combined S379A/PDS2 mt dramatically reduced PLK1 binding (Figure S4B). 

In summary, the binding of PDS2 to PLK1 PBD is mediated by clusters A and C, but not required 

priming by cellular kinases. 
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Figure 10. The PDS2/PLK1 PBD binding is mediated by clusters A and C.  

(A) NMR spectra of 15N-labeled EBNA2 PDS2 before (black) and after (red) addition of unlabeled PLK1-PBD at 1:1 

ratio. (B, C) Bar charts showing (B) chemical shift perturbation and (C) signal intensity ratio of amide signals in the 

free and PBD-bound state of PDS2. Asterisks (*) indicate residues that were mutated to alanines in triple mutants. 

(D) ITC thermograms of PLK1-PBD titrated with PDS2 WT, cluster A mt (F440A/WY444AA), cluster C mt 

(YIF460AAA), and PDS2 mt (cluster A/C mt, F440A/WY444AA/YIF460AAA ), respectively. Figure 10 was provided 

by Dr. André Mourão (AG Sattler, HMGU). 

4.1.5. Impact of PLK1 docking sites on EBNA2 
transactivation activities  

To investigate the biological function of the EBNA2/PLK1 interaction, dual-luciferase assays were 

performed. In the assay, EBNA2 transactivation activity is reflected by the enzymatic activity of 

firefly luciferase whose expression is driven by EBNA2. EBNA2 S379A, PDS2 mt, or S379A/PDS2 

mt were co-transfected with a firefly luciferase reporter plasmid driven by an EBNA2/CBF1 

responsive promoter and a constantly active renilla luciferase plasmid into DG75 cells (Figure 11A). 

EBNA2 with PDS2 mt had lost all transactivation capacity. Since substitutions in PDS2 mt were 

located in the TAD of EBNA2, EBNA2 with PDS2 mt were assumed to not only impair PLK1 binding 

but also directly inactivate the TAD. Surprisingly, the transcriptional activity of the EBNA2 S379A 

was enhanced, indicating that PLK1 binding to the docking site S379 in PDS1 impairs EBNA2 

activity (Figure 11B). 

  

Figure 11. Inhibition of phosphorylation of the docking site S379 promotes EBNA2 transactivation activity.  

(A) Schematic presentation of the dual-luciferase assay to monitor the transactivation of EBNA2. (B) Luciferase 

activities of cell extracts of DG75 cells exogenously expressing firefly luciferase driven by EBNA2 WT, S379A, PDS2 

mt, and S379A/PDS2 mt were measured by dual-luciferase assay and normalized to renilla luciferase, respectively. 

Data were presented as the mean ± S.E.M. of n = 3 biological replicates. Statistical significance was tested by one-

way ANOVA followed by a Tukey’s multiple comparison test (ns: not significant, ****: P < 0.0001). 
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4.2. EBNA2: a novel viral substrate of PLK1. 

4.2.1. EBNA2 is a novel substrate of PLK1. 

To test if EBNA2 is a substrate of PLK1, an EBNA2-inducible cell line, DG75Dox HA-EBNA2 was used 

in immunoprecipitation assays, followed by kinase assays. In the DG75Dox HA-EBNA2 cell, an HA-

tagged EBNA2 is under the control of a tetracycline response element (TRE) in a pRTR vector 

(Bornkamm et al., 2005; Jackstadt et al., 2013), and its expression is induced by the presence of 

doxycycline, a tetracycline analog (Figure 12A) (Glaser et al., 2017). In the immunoprecipitation 

experiments, EBNA2/PLK1 complexes were co-precipitated from the cellular extracts (Figure 12B). 

Parallelly, the immunoprecipitates were submitted to kinase assays in the presence or absence of 

either exogenous recombinant PLK1 or volasertib, a PLK1-specific inhibitor. Phosphorylation of 

EBNA2 was readily detected, and enhanced or inhibited by the addition of exogenous recombinant 

PLK1 or volasertib, respectively, suggesting that the endogenous PLK1 trapped in the precipitate 

is the active kinase (Figure 12C).  

To further specify the finding, an N-terminal 6× His-tagged EBNA2 was expressed and 

purified in E.coli and incubated with recombinant PLK1 or lambda protein phosphatase (PPase) 

in vitro. In line with the previous result, EBNA2 was phosphorylated by PLK1. Interestingly, PLK1-

dependent phosphorylation of EBNA2 could be removed by PPase (Figure 12D). In summary, 

EBNA2 is a novel substrate of PLK1. 

  

Figure 12. PLK1 phosphorylates EBNA2.  

(A) Schematic presentation of an EBNA2-inducible cell line, DG75Dox HA-EBNA2. DG75 cells were stably transfected 

with a pRTR vector encoding an N-terminal HA-tagged EBNA2 (HA-EBNA2) under control of a tetracycline response 
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element (TRE). EBNA2 expression was induced by the presence of doxycycline (Dox). (B) Total cell extracts of 

DG75Dox HA-EBNA2 cells treated with the indicated concentrations of Dox were immunoprecipitation using an HA- (-

HA) specific antibody, visualized by western blotting using EBNA2- (-EBNA2) and PLK1- (-PLK1) specific 

antibodies, respectively. (C) Immunoprecipitates described in B were kinase assay at the presence of -32P labeled 

ATP before (control) and after recombinant PLK1 (upper) and Volasertib (lower) treatments, visualized by 

autoradiography, respectively. (D) Bacterially purified 6× His-tagged EBNA2 was kinase assay in vitro at the 

presence of -32P labeled ATP before (-) and after (+) treatment combination of recombinant PLK1 and PPase, 

visualized by autoradiography. Western blotting showing loading control using an EBNA2- (-EBNA2) specific 

antibody. 

4.2.2. Identification of phosphorylation sites of EBNA2 
by PLK1 using LC-MS/MS 

To identify the amino acid residues phosphorylated by PLK1, bacterially expressed EBNA2 was 

treated with recombinant PLK1 or left untreated, separated using SDS-PAGE, and send to Dr. Piero 

Giansanti (AG Küster, TUM) to perform LC-MS/MS (Figure S5). The protein of interest was 

extracted from the SDS-PAGE gel, digested by trypsin and endoproteinase Glu-C (V8 Protease) in 

parallel. Tryptic- or V8 Protease-digested peptides and phospho-peptides were identified by mass 

spectrometry (Figure S6). Since neither tryptic nor V8 derived peptides covered the C-terminus of 

EBNA2 sufficiently, a GST-fused EBNA2 subfragment 453-474 flanked by arginine residues and 

as protein was expressed in E.coli and used for further tryptic digest and phosphopeptides mapping 

(Figure S5). Eleven candidate phosphorylation sites were found. Of these, 5 phosphorylation sites 

(S184, 258, 457, 479, and T465) were confidently localized (Figure 13A – E) and 6 additional sites 

(T175, 178, 263, 267, 464, and S266) were ambiguously mapped (Figure S6 and Figure S7). 
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Figure 13. Identification of PLK1-dependent phosphorylation sites of EBNA2.  

(A – E) Annotated HCD MS/MS spectra of the phosphopeptides, (A) LVQPHVPPLRPTAPTILSPLSQPR, (B) 

MHLPVLHVPDQSMHPLTHQSTPNDPDSPEPR, (C) DLDESWDYIFETTESPSSDER, (D) 

TTESPSSDEDYVEGPSKRPRPSIQ, and (E) DYVEGPSKRPRPSIQ, bearing 5 confidentially localized 
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phosphorylation sites, S184, 258, 457, T465, and S479, respectively. The “ph” denotes phosphosites localized. The 

a-, b-, and y- ions are in pale blue, dark blue, and red, respectively. Ions with neutral losses are in orange, internal 

fragment ions in purple, ammonium ion in green, and side-chain loss in turquoise. The asterisk (*) denotes loss of 

H3O4P with a delta mass of 97.9768 from the phosphorylated fragment ion. Figure 13 was provided by Dr. Piero 

Giansanti (AG Küster, TUM). 

4.2.3. S457 and T465 are the major phosphorylation 
sites of EBNA2 by PLK1 

To further test, if these 5 phosphorylation sites confidently mapped in vitro were also modified by 

endogenous PLK1 in cells, EBNA2 mutants that inactivated the respective sites as singular or 

combined mutations were generated and expressed in DG75 cells. Immunoprecipitations and 

subsequent kinase assays were performed. Phosphorylation of the EBNA2 mutants S457A and 

T465V was impaired, while the combination of both mutations abolished phosphorylation (Figure 

14A and B). Since phosphorylation of the entire EBNA2 protein was blocked by volasertib, we 

conclude that PLK1 was the major EBNA2 associated kinase that phosphorylates these two 

residues.  

GST-fused EBNA2 fragment 246-487 WT and S457A/T465V were expressed and purified in 

E.coli and further tested for phosphorylation by PLK1 in kinase assays. Consistent with the previous 

result, S457A/T465V abolished the phosphorylation of EBNA2 fragment 246-487 (Figure 14C), 

suggesting that S457 and T465 are the major phosphorylation sites of EBNA2 by PLK1. 

 

Figure 14. S457 and T465 are the major phosphorylation sites of EBNA2 by PLK1.  

(A) Total cell lysates of DG75 cells exogenously expressing HA-tagged EBNA2 single and combination mutant of 

S184, 258, 457, 479A, or T465V were immunoprecipitation (IP) using an HA- (-HA) specific antibody, visualized 

by western blotting using HA-, PLK1- (-PLK1), and GAPDH- (-GAPDH) specific antibodies, respectively. mut3: 

S457/479A/T465V, mut4: S258/457/479A/T465V, and mut5: S184/258/457/479A/T465V. (B) Immunoprecipitates 

described in A were submitted to kinase assay in the presence of -32P labeled ATP before (-) and after (+) treatment 

of volasertib, visualized by autoradiography. (C) Bacterially purified GST-fused EBNA2 246-487aa WT and 
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S457A/T465V were submitted to kinase assay in the presence of -32P labeled ATP before (-) and after (+) 

recombinant PLK1 treatment, visualized by autoradiography and Coomassie Brilliant Blue staining, respectively. 

GST-CRS and GST were used as positive and negative controls.  

4.2.4. Impact of PLK1-dependent phosphorylation on 
EBNA2’s transactivation 

To test the phosphorylation mutants for their biological function, dual-luciferase assays were 

applied to monitor EBNA2 transactivation activities as described in chapter 3.4.5. All mutants that 

carried either S457A, T465V, or both mutations showed enhanced transactivation potential (Figure 

15A), indicating phosphorylation of EBNA2 by PLK1 suppresses its transactivation. Furthermore, 

the EBNA2 S457A/T465V (PLK1 phosphorylation mutant), and the EBNA2 S379A (PLK1 docking 

mutant) were co-expressed with PLK1 WT or the kinase-dead mutant K82M. Kinase active PLK1 

significantly inhibited EBNA2 WT activity as well as the docking site mutant (Figure 15B), thus 

confirming our previous results (Figure 11). The phosphorylation mutant was impaired weakly, 

suggesting that PLK1 phosphorylation suppresses EBNA2 transactivation. The PLK1 kinase-dead 

mutant did not impair the transactivation capacity of any EBNA2 protein, indicating that PLK1 

binding per se is not sufficient but PLK1 kinase activity is required to inhibit EBNA2 activity (Figure 

15B).  

Since the C-terminal transactivation domain of EBNA2 is known to bind the histone acetylase 

and co-activator p300, p300 binding to EBNA2 phosphorylation mutants was tested by GST-

pulldown experiments. While p300 binding of the single EBNA2 phosphorylation mutants was 

strongly enhanced by approximately 2 – 3 fold, binding by the double mutant S457A/T465V was 

increased even 8.7 fold, compared to WT (Figure 15C). Thus, enhanced p300 binding of EBNA2 

phosphorylation mutants correlates well with improved transactivation activity. The finding suggests 

that PLK1 phosphorylation hinders p300 recruitment to EBNA2, thereby inhibiting EBNA2 

transactivation. 

In summary, PLK1 phosphorylates S457 and T465 of the TAD of EBNA2 to attenuate its 

activity. PLK1 uses PDS1 as a phosphorylation-dependent docking site and PDS2 as a 

phosphorylation-independent one. PDS1 phosphorylation of S379 by CDK1 primes the canonical 

docking site. PDS2 provides an extended region that involves multiple residues, like F440, WY444, 

and YIF460 (Figure 15D).  
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Figure 15. The phosphorylation of EBNA2 by PLK1 suppresses its transactivation.  

(A) Luciferase activities of cell extracts of DG75 cells exogenously expressing firefly luciferase driven by EBNA2 

single and combination mutant of S184, 258, 457, 479A, and T465V were measured by dual-luciferase assay and 

normalized to renilla luciferase, respectively. Data were presented as the mean ± S.E.M. of n = 3 biological 

replicates. Statistical significance was tested by one-way ANOVA followed by a Tukey’s multiple comparison test 

(ns: not significant, ****: P < 0.0001, vs WT). mut3: S457/479A/T465V, mut4: S258/457/479A/T465V, and mut5: 

S184/258/457/479A/T465V. (B) Luciferase activities of cell extracts of DG75 cells exogenously expressing firefly 

luciferase driven by EBNA2 WT, S379A, and S457A/T465V, along with PLK1 WT and K82M, were measured by 

dual-luciferase assay and normalized to renilla luciferase, respectively. Data were presented as the mean ± S.E.M. 

of n = 3 biological replicates. Statistical significance was tested by two-way ANOVA followed by a Tukey’s multiple 

comparison test (ns: not significant, *: P < 0.05, **: P < 0.01). (C) Total cell lysates of DG75 cells were GST-pulldown 

using GST-fused EBNA2 C-terminal fragments 446-474 WT, S457A, T465V, and S457A/T465V, visualized by 

western blotting using GST- (-GST) and p300- (-p300) specific antibodies, respectively. Normalized p300 binding 

efficiencies are listed below. (D) Schematic summary of PLK1 docking and phosphorylation sites at the C-terminus 

of EBNA2. 

4.3. BACmid construction and recombinant EBV 
production 

4.3.1. Construction of HA-tagged EBNA2 WT, S379A, 
or S457A/T465V in the EBV genomes 

In the previous studies, PDS1 and PDS2, the two PLK1 docking regions in the C-terminal fragment 

of EBNA2 were identified. PDS1 carries the S379 residue, which is a substrate of Cyclin B1/CDK1 

and activates EBNA2 for PLK1 binding (Figure 9). The S379A mutant is a strong transactivator and 
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thus was expected to immortalize B cells. Since the PDS2 mutant inactivated the TAD of EBNA2, 

recombinant virus carrying this mutation was not expected to immortalize B cells (Cohen et al., 

1991) and were not tested in the context of the viral genome. In contrast, the PLK1 phosphorylation 

site mutant S457A/T468V was a potent transactivator, a gain-of-function mutant (Figure 15A and 

B). Since EBNA2 S457A/T465V is not able to be detected by EBNA2-specific antibodies (1E6 and 

R3) because of epitope changes (data not shown), a HA tag would be necessary for the analysis 

of EBNA2 expression in recombinant EBV transformed B cells. 

To generate a C-terminal HA-tagged EBNA2 WT, S379A (PLK1 docking mutant), or 

S457A/T465V (PLK1 phosphorylation mutant) in the EBV genome, respectively, the EBV BACmid, 

p6008 was used as an original backbone. p6008 comprises of puromycin N-acetyl-transferase (pac) 

gene for selection in eukaryotic cells, enhanced green fluorescent protein (eGFP) gene as a 

reporter, chloramphenicol acetyltransferase (cat) gene for selection in bacteria, and the B95.8 EBV 

genome inserted the 12 kb deletion with the autologous sequences of the M-ABA EBV genome to 

restore right-handed OriLyt and to express all 25 EBV-encoded pre-miRNAs as well as the LF1, 

LF2, and LF3 genes (Pich et al., 2019).  

Recombination-mediated genetic engineering (recombineering) makes it possible to 

substitute, insert, or delete sequences in bacterial artificial chromosomes (BACs) precisely without 

leaving any unwanted sequences (Wang et al., 2009; Warming et al., 2005). In this study, E coli 

strain SW105, a derivative of DH10B carries a mutation in the E. coli ribosomal S12 gene (rpsL) 

gene leading to streptomycin resistance. However, the strain will shift to be streptomycin sensitive 

upon a wild-type rpsL gene introduced, which makes it possible to use wild-type rpsL as either a 

negative or a positive selection marker in a two-step procedure (Figure S8). In addition, SW105 is 

incorporated with a -prophage-based Red recombination system in which the expression of  Red 

encoded recombinase genes (exo, bet, and gam) is controlled by -cI857, a temperature-sensitive 

repressor. At 32℃ the recombination system is inactive because of the active repressor. Upon 

shifting to 42℃ , along with inactivating the repressor, the recombinases are expressed, allowing 

homologous recombination to occur. A selection marker, e.g. kanamycin resistance aminoglycoside 

phosphotransferase gene (aph) would be necessary to select correct E.coli recombinants.  

The two-step BAC recombineering is schematically depicted in Figure 16A and described in 

detail in chapter 3.2.8. In brief, p6012, a prokaryotic plasmid encoding rpsL and aph genes 

(rpsL/aph cassette) both under the control of the rpsL promoter, is used as a template to amplify an 

rpsL/aph cassette flanked by upstream and downstream homology arms of the desired site, 

respectively (Pich et al., 2019). The rpsL/aph cassette is inserted into the desired site by 

homologous recombination in the first recombineering. Synthetic DNA or PCR product of the mutant 

allele flanked by longer homology arms replaces the rpsL/aph cassette in the second 

recombineering to yield the BACmid with the desired mutation.  
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To insert an HA tag at the C-terminus of EBNA2, in the first step, both kanamycin-resistant 

and streptomycin-sensitive clones were ensured with an integrated rpsL/aph cassette via restriction 

endonuclease digestion and agarose gel electrophoresis (Figure 16B). In the second step, both 

streptomycin-resistant and kanamycin-sensitive clones were ensured with an integrated HA tag via 

restriction endonuclease digestion and agarose gel electrophoresis again (Figure 16B). The 

resulting EBV BACmid, pXZ143 was very carefully analyzed with numerous restriction 

endonucleases (e.g. BamH I, Bgl II, and Xho I), and DNA sequencing to confirm the HA tag and its 

flanking regions (Figure 16C). Based on pXZ143, EBV BACmids encoding an N-terminal HA-tagged 

EBNA2 S379A (pXZ203) or S457A/T465V (pXZ146) were constructed with the same protocol 

(Figure 16D and E). When used for  establishing virus producer cells, the supercoiled EBV BACmids 

were isolated by CsCl density gradient ultracentrifugation as depicted in Figure S9. 

 

Figure 16. Construction of EBV genomic BACmids encoding C-terminal HA-tagged EBNA2 WT, S379A, or 

S457A/T465V.  
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(A) Schematic overview of the two-step BAC recombineering for precise mutation. The original EBV BACmid p6008 

comprises the entire EBV genome along with puromycin N-acetyltransferase (pac), eGFP, and chloramphenicol 

acetyltransferase (cat). In the first BAC recombineering, a prokaryotic expression cassette, rpsL/aph flanked by two 

~50 bp homology arms of the desired site were inserted into the backbone of p6008 by homologous recombination 

and positive/negative selection. Subsequently, In the second BAC recombineering, a mutant allele flanked by two 

~300 bp homology arms of the desired site replaced the rpsL/aph cassette to generate the final BACmid. (B) 

Electrophoretic separation of BamH I digest for p6008, p6008 inserted with rpsL/aph cassette (pXZ135), and 

BACmid encoding HA-tagged EBNA2 (pXZ143). The arrows highlight specific fragments of interest since they shift 

in size upon rpsL/aph cassette insertion and deletion (6,005 bp → 7,353 bp → 6,035 bp). (C) Sanger sequencing 

of pXZ143 confirming the insertion of the HA tag into EBNA2 in the backbone of p6008. (D, E) Sanger sequencings 

of (D) pXZ203 and (E) pXZ146 confirming the substitution of S379A or S457A/T465V within HA-tagged EBNA2 in 

the backbone of pXZ143, respectively. 

4.3.2. Recombinant EBV production and titration  

The procedure of recombinant EBV production is schematically depicted in Figure 17 and described 

in detail in chapter 3.1.4. In this study, HEK293 cells were transfected with supercoiled EBV 

BACmids encoding a C-terminal HA-tagged EBNA2 WT, S379A, or S457A/T465V, and outgrowth 

of EBV positive cells was ensured using puromycin selection. Clonal colonies were selected using 

eGFP reporter and expanded individually. Those cell lines would produce infectious virions upon 

transient expression of EBV viral protein BZLF1 and BALF4. BZLF1, the lytic protein induces the 

switch from the latent to lytic cycle to produce large amounts of EBV progenies (Countryman and 

Miller, 1985; Rooney et al., 1989), and BALF4, also known as the viral glycoprotein gp110, 

enhances viral particle packaging and infection efficiency of B cells (Neuhierl et al., 2002). When 

used in mouse experiments, recombinant EBV viral particles released in the culture medium were 

concentrated by ultracentrifugation.  

To determine viral titers, Raji cells were infected with recombinant EBV expressing EBNA2 

WT, S379A, or S457A/T465V, and eGFP expression of the infected cells was analyzed by Flow 

cytometry (Figure S10A). The green Raji units per ml (GRUs/ml) were defined as recombinant EBV 

viral titer and calculated as demonstrated in chapter 3.1.5 (Figure S10B).  
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Figure 17. Schematic workflow of recombinant EBV virus production. 

(A) Schematic workflow of recombinant EBV virus production. HEK293 cells were transfected with the desired EBV 

BACmid and selected by puromycin. Single clonal GFP positive cells were picked under a fluorescence (at least a 

488 nm laser) microscope and expanded. Then, recombinant EBV viruses were produced from the clonal cells with 

the induction of BZLF1 and BALF4.  

4.4. Characterization of human primary B cells 
infected with recombinant EBV 

It is well studied that infection of B cells with EBV leads to immortalization of B cells. The process 

of immortalization or transformation of B cells to establish lymphoblastoid cell lines (LCLs) is 

depicted in Figure 18 (Mrozek-Gorska et al., 2019). In this study, all B cell samples were isolated 

from anonymous adenoids by Ficoll density gradient centrifugation (Figure S11A) and the leukocyte 

composition was analyzed by FACS. The B cell fraction was over 82.3% and the T cell fraction was 

less than 2.16% (Figure S11B). If a fraction of B cells are EBV positive, these cells spontaneously 

undergo proliferation driven by endogenous viruses. Thus, each B cell sample used in this study 

was ensured to be EBV negative by PCR (data not shown). 
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Figure 18. Schematic process of the transformation of primary B cells by EBV.  

Human primary B cells infected with EBV grow in size within 2 days. Cells undergo rapid proliferation following the 

first DNA synthesis in the pre-latent phase. Immortalized lymphoblastoid cell lines (LCLs) are established 14 days 

post-infection (d.p.i.). Figure 18 is adapted from Mrozek-Gorska et al., 2019. 

4.4.1. EBV strains carrying EBNA2 mutants deficient 
for PLK1 docking or phosphorylation transform primary B 
cells in vitro 

To test if the recombinant EBV mutants could still immortalize B cells, human primary B cells were 

infected with recombinant infectious EBV mutants defective for PLK1 binding (S379A) or PLK1 

phosphorylation (S457A/T465V) of EBNA2. EBV EBNA2 S379A or S457A/T465V infected B cells 

grew in size and formed cell clumps, and became cell lines in 2 weeks (Figure 19). Thus, EBV 

strains carrying EBNA2 mutants deficient for PLK1 docking or phosphorylation transformed primary 

B cells efficiently in vitro. 
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Figure 19. EBV strains carrying EBNA2 mutants deficient for PLK1 docking or phosphorylation transform primary B cells in vitro.  

Light microscopic photos of primary B cells infected with EBV strains expressing EBNA2 WT, S379A, S457A/T465V, or left uninfected from 0 to 14 days post-infection (d.p.i.). 

A representative data of n = 3 biological replicates are shown. Scale bar, 100µm. 
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4.4.2. EBV strains expressing EBNA2 mutants 
deficient for PLK1 docking or phosphorylation promote B 
cell proliferation 

To further compare the different EBV strains during the first 6 days post-infection, cell trace violet 

assays were applied to analyze the B cell proliferation. Cells infected with EBV EBNA2 

S457A/T465V or S379A proliferated faster than WT infected counterparts (Figure S12 and Figure 

20A and B). Since long-term cultures could be established as described in chapter 4.4.1, the 

proliferation of these LCLs was characterized by counting the cells daily. The phosphorylation 

mutant S457A/T465V proliferated the fastest, followed by S379A and WT infected cells (Figure 

20C). These findings were in line with our previous results that EBNA2 transactivation was 

suppressed by PLK1 phosphorylation (Figure 11 and Figure 15A and B). 

 

Figure 20. EBV strains expressing EBNA2 mutants deficient for PLK1 docking or phosphorylation promote 

B cell proliferation.  

(A) Histograms showing proliferation profiles of B cells after EBV infection. Primary B cells were stained with cell 

trace violet, infected with EBV mutants as indicated, and then analyzed by flow cytometry 4 and 6 d.p.i. Data of 3 

donors are shown. (B) Line chart showing flow-cytometric analysis of median fluorescence intensities of cell trace 

violet. Data were presented as the mean ± S.E.M. of n = 3 biological replicates. Statistical significance was tested 

by two-way ANOVA followed by a Tukey’s multiple comparison test (*: P < 0.05, ***: P < 0.001, ****: P < 0.0001, vs 

WT). (C) The line chart indicates cell numbers of LCLs established with indicated EBV mutants from 0 to 8 days. 
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Data were presented as the mean ± S.E.M. of n = 4 biological replicates. Statistical significance was tested by two-

way ANOVA followed by a Tukey’s multiple comparison test (*: P < 0.05, **: P < 0.01, ****: P < 0.0001, vs WT).  

4.4.3. Upregulation of LMP1 in LCLs established by 
EBV strains expressing EBNA2 deficient for PLK1 
docking or phosphorylation 

To further analyze the viral and cellular gene expression in the LCLs established by recombinant 

EBV mutants, LCLs were lysed and the gene expression was analyzed by western blotting. The 

result revealed that EBNA2 S457A/T465V was expressed at low levels but strongly induced LMP1 

expression. MYC levels were not affected in any group (Figure 21). 

 

Figure 21. Expression of representative viral and cellular genes.  

The viral (EBNA2 and LMP1) and cellular (PLK1, MYC, and GAPDH) genes were analyzed in LCLs established 

with indicated EBV mutants, visualized by western blotting using HA- (-HA), PLK1- (-PLK1), LMP1- (-LMP1), 

MYC- (-MYC), and GAPDH- (-GAPDH) specific antibodies. Data of three donors are shown. 

4.5. Characterization of humanized mice infected 
with recombinant EBV 

In collaboration with Prof. Christian Münz (UZH, Zürich), humanized mice were used to characterize 

the recombinant EBVs. In this study, a super immunodeficient NSG (NOD-scid c
null) mouse strain 

was used. The NOD background prevents phagocytosis of human cells by murine myeloid cells 

since human CD47 inhibits murine myeloid cells through interaction with the mouse signal 

regulatory protein  (SIRP). The scid mutation abolishes murine adaptive lymphocyte 

development by compromising B and T cell receptor somatic recombination. The γc
 deficiency 

eliminates innate lymphocytes by blocking interleukin (IL) -2, -4, -7, -9, -15, and -21 signaling 

because the development of innate lymphoid cell precursors and the differentiation of the natural 

killer (NK) cells are IL-7 and -15 dependent, respectively (Münz, 2017). Therefore, NSG mice 

engrafted with human CD34+ hematopoietic progenitor cells develop a human immune system. 
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These chimeric humanized mice are used to study EBV-induced tumor formation and anti-viral 

immune mechanisms against EBV in vivo (Strowig et al., 2009).  

I produced recombinant EBV strains expressing EBNA2 WT, S379A, or S457A/465V. The 

recombinant viruses were delivered to Prof. Münz’s lab. Dr. Anita Murer did the first mouse 

experiment with the viruses and Patrick Schuhmachers did the other two experiments. 

4.5.1. EBV strains carrying EBNA2 mutants deficient 
for PLK1 phosphorylation induce more frequently 
lymphomas in humanized mice 

Since EBNA2 mutants S379A and S457A/T465V exhibited an enhanced transactivation capacity 

and LCLs generated with those virus mutants proliferated faster in vitro, these virus mutants were 

hypothesized to promote tumorigenicity in humanized mice. Hence, humanized mice were injected 

i.p. with 105 Green Raji Units (GRUs) of EBV and analyzed the immune cell composition and 

activation in the blood over five weeks. After five weeks of infection, humanized mice were sacrificed 

to analyze tumor development, viral loads, and immune cell composition in blood and spleen 

(Figure 22A). In two out of three experiments infection with EBV EBNA2 S457A/T465V resulted in 

increased mortality compared to EBV WT or S379A infected animals (66% survival in one and 20% 

in the second experiment; Figure 22B). In addition, mice that were infected with either of the two 

EBV EBNA2 mutants presented with higher incidences of tumor development in spleens or the 

peritoneal cavity as compared to mice infected with WT EBV (23% for WT, 36% for S379A, and 44% 

for S457A/T465V; Figure 22C). This is in line with the finding that EBV EBNA2 mutant infected mice 

presented slightly higher viral loads in spleens five weeks post-infection (Figure 22D). When 

comparing blood viral loads similar values across all groups irrespective of EBV mutant or WT 

infection were observed. Notably, the viral loads in mice within the EBNA2 S457A/T465V mutant 

group reached higher levels already two weeks after infection as compared to the WT or the EBNA2 

S379A infected animals and started to decrease already at four weeks p.i. when high viral loads 

were still detected in the WT infected animals (Figure 22E).  

In summary, the EBV EBNA2 mutant impairing phosphorylation of EBNA2 by PLK1 (EBNA2 

S457A/T465V) leads to increased mortality and induces tumors in a higher fraction of infected mice. 
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Figure 22. EBV strains expressing EBNA2 mutants deficient for PLK1 docking or phosphorylation cause 

more frequently lymphomas in humanized mice.  

(A) Experiment set-up. Images of animals, syringes, and blood collection tubes are derived from Servier Medical 

Art. (B) Survival curve of humanized mice infected with EBV EBNA2 WT (n = 13), S379A (n = 11), or S457A/T465V 

(n = 9). Log-rank test. (C) Percentage of mice having macroscopically visible tumors at the day of sacrifice. Numbers 

within bars indicate the total number of mice with or without tumors in the respective groups. Fisher's Exact Test. 

(D) Viral loads in spleens of infected humanized mice at the day of sacrifice. Data were presented as the mean ± 

S.E.M. (E) Development of viral loads in blood of infected mice over five weeks. Data were presented as the mean 

± S.E.M. Mann-Whitney U test. (B – D) Data points are derived from three independently performed experiments. 

(E) The graph depicts the values of two independently performed experiments. Shapes of data points indicate to 

which repetition of the experiments the respective animal belongs. Statistical significance tested using the Mann-

Whitney U Test with Holm-Sidak correction for multiple comparisons. Figure 22 was provided by Patrick 

Schuhmachers (AG Münz, UZH). 

4.5.2. EBV strains carrying EBNA2 mutants deficient 
for PLK1 phosphorylation induce an earlier immune 
response in humanized mice 

Since extensive CD8+ T cell expansion and activation in blood is a common trait marking 

EBV infection in humanized mice and normally follows with a delay of about a week rising viral 

loads (Chatterjee et al., 2019; Strowig et al., 2009) and correlates with these (Caduff et al., 2020; 

Zdimerova et al., 2021), the expansion and activation of both CD8+ and CD4+ T cells in the blood 

of infected animals were further analyzed. As CD8+ T cells expand more strongly than do CD4+ T 
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cells upon EBV infection, a rising CD8+ to CD4+ T cell ratio indicates the extensive proliferation of 

CD8+ T cells. As compared to WT infection, The CD8+ to CD4+ T cell ratios in mice infected with 

the EBV EBNA2 S457A/T465V mutant were significantly increased at three weeks p.i. (mean of 

CD8+ to CD4+ T cell ratios in mice infected with EBV (i) EBNA2 WT: 0.37 and (ii) EBNA2 

S457A/T465V: 0.99; Figure 23A and Figure S13A and B). Notably, the WT infected group did not 

show increased CD8+ to CD4+ T cell ratios before 4 weeks p.i. suggesting that T cells are earlier 

expanded during infection with the EBV EBNA2 S457A/T465V mutant. In line with this, a higher 

percentage of CD8+ T cells was earlier positive for the activation marker HLA-DR, i.e. activated, in 

the mice infected with the same mutant virus starting from 2 weeks p.i. A similar trend could be 

observed for mice infected with the EBNA2 S379A mutant (Figure 23B). Interestingly, the EBV 

EBNA2 S457A/T465V mutant seemed to induce also more strongly induce activation of CD4+ T 

cells in blood of mice within five weeks of infection compared to the WT group (Figure 23C). In 

contrast to blood, the fractions of CD8+ and CD4+ T cells in spleens of infected animals did not differ 

between the groups (Figure 23D) However, we still could determine a higher fraction of CD8+ and 

a significantly increased fraction of CD4+ T cells to be HLA-DR positive when infected with the EBV 

EBNA2 S457A/T465V mutant, i.e. activated (Figure 23E). The development of memory cells, i.e. 

effector memory (Tem), central memory (Tcm), or terminally differentiated subsets that re-express 

CD45RA (Temra), however, was not influenced by EBNA2 mutations (Figure S13C and D). 

In summary, T cells, in particular CD8+ T cells, in mice infected with the EBNA2 S457A/T465V 

mutant virus expanded more rapidly in blood and a higher fraction of those was positive for the 

activation marker HLA-DR earlier after infection when compared with EBV WT. This suggests also 

the more rapid proliferation of EBNA2 S457A/T465V expressing B cells in vivo, resulting in an 

earlier T cell activation and expansion. 

 

Figure 23. EBV strains expressing EBNA2 mutants deficient for PLK1 phosphorylation cause an earlier 

immune response in humanized mice.  
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(A – C) Flow-cytometric analyses of (A) CD8+/CD4+ T cell ratios and (B) CD8+ or (C) CD4+ T cell activation in blood 

of mice infected with WT or mutant EBNA2 EBVs over five weeks. Data were presented as the mean ± SD. (D, E) 

Analyses of (D) CD8+ and CD4+ T cell percentages, and (E) CD8+ and CD4+ T cell activation in spleens of infected 

mice. Data were presented as the mean ± SD. Mann-Whitney U test. (A – E) Data points are derived from three 

independently performed experiments. Shapes of data points indicate to which repetition of the experiments the 

respective animal belongs. Statistical significance tested using the Mann-Whitney U Test with Holm-Sidak correction 

for multiple comparisons. Figure 23 was provided by Patrick Schuhmachers (AG Münz, UZH). 
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5. Discussion 

5.1. The interaction of EBNA2 and PLK1 

The viral transactivator EBNA2 initiates cell cycle entry and maintains the proliferation of infected 

B cells by activating a cascade of primary and secondary cellular and viral target genes. In this 

thesis, it was demonstrated that EBNA2 binds directly to PLK1, a master regulator of multiple stages 

of cell cycle including G2/M transition, M-phase progression, and cytokinesis. It was shown that 

EBNA2 provides two docking sites, PDS1 and PDS2, for the polo-box domain (PBD) of PLK1 

(Figure 8). The binding of PLK1 to PDS1 requires priming by the mitotic kinase CDK1, which 

phosphorylates EBNA2 S379. The KD of a phospho-heptapeptide harboring pS379 in complex with 

PBD is 8.19 nM (Figure 9C). Compared to PLK1 substrates that have been characterized previously, 

this binding affinity is surprisingly high. Through phosphorylation of CDC25C1, MYT1, and WEE1, 

PLK1 promotes the activation of the mitotic driver Cyclin B1/CDK1 in the late G2-phase triggering 

prophase onset (Gheghiani et al., 2017; Nakajima et al., 2003; Watanabe et al., 2005). it remains 

to be tested whether EBNA2 might compete with these cellular substrates of PLK1. 

Surprisingly, the EBNA2 S379A mutant shows elevated transactivation potential compared 

to EBNA2 WT, suggesting that PLK1 antagonizes the biological activity of EBNA2. In contrast to 

PDS1, PDS2 does not require substrate priming by phosphorylation to create a docking site. Indeed, 

PDS2 binding to PLK1 PBD was confirmed by NMR titrations. PDS2 triple mutants were designed 

and analyzed by ITC. The cluster mutant A (F440A and WY444AA) and C (YIF460AAA) impaired 

PLK1 binding individually, and almost abolished binding when combined. Comparison of PDS1 and 

PDS2 mutants by co-immunoprecipitations from cellular extracts confirmed that both docking sites 

contribute to complex formation.  

PDS2 (423-474) widely overlaps with the C-terminal acidic transactivation domain (TAD: 431-

474) of EBNA2. Like many other TADs, this TAD is intrinsically unstructured. In complex with a 

subunit of the TFIIH transcription complex, Tfb1/p62, the EBNA2 TAD forms a 9-residue -helix 

that exposes W458, I461, and F462 to the hydrophobic interface that confers the interaction. 

Mutagenesis of EBNA2 W458, I461, and F462 impaired Tfb1 binding and transactivation of reporter 

genes by EBNA2 (Chabot et al., 2014). Our study shows that residues YIF460 also bind to PLK1. 

Thus PLK1 might also impair EBNA2 by direct interactions with its TAD. Interestingly, recent reports 

describe a second cryptic hydrophobic pocket within the PBD that functions as a second substrate 

recognition site close to the phospho-peptide docking site (Sharma et al., 2019; Śledź et al., 2011). 

This second substrate-binding site can be targeted by small molecules. Future biophysical studies 

will need to test if EBNA2 PDS2 contacts the hydrophobic second pocket of PBD. 

5.2. The phosphorylation of EBNA2 by PLK1 
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Most importantly, it was shown that EBNA2 is a substrate of PLK1. It was reported that EBNA2 

S457 is not phosphorylated by CK1 (Grässer et al., 1992), but here it shows that PLK1 

phosphorylates S457 and T465 within PDS2. S457A/T465V missense mutants can still bind to 

PLK1 but are not phosphorylated. The phosphorylation mutant EBNA2 S457A/T465V exhibits a 

significantly enhanced transactivation potential. This enhanced potential might be caused in part 

by the elevated levels of histone acetyltransferase and co-activator p300 that bind this mutant 

(Figure 15C). To directly test, if PLK1 inhibits EBNA2, both binding partners were co-expressed 

and promoter-reporter studies were performed. Kinase active but not kinase-dead PLK1 (K82M) 

inhibited the transactivation of EBNA2 wild-type and the S379A docking site mutant. Since the 

transactivation of the phosphorylation mutant EBNA2 S457A/T465V was not inhibited by PLK1 co-

expression, it was concluded that PLK1 phosphorylation rather than PLK1 binding inhibits EBNA2 

transactivation potential. PDS2 could confer substrate binding in non-mitotic cells before CDK1 

activity rises. 

During cell cycle progression, PLK1 abundance and activity gradually increase at the G2/M 

transition point and peak during mitosis. In parallel, the global transcription activity is severely 

reduced while the chromatin condensates (Palozola et al., 2019). During mitosis, EBNA2 is hyper-

phosphorylated and considered to be inactive (Yue et al., 2004). The same research group reported 

that phosphorylation of EBNA2 S243 by Cyclin B1/CDK1 or the viral PK encoded by the BGLF4 

gene impairs the transactivation of the LMP1 gene by EBNA2 (Yue et al., 2005, 2006). The viral 

mutant that carries an EBNA2 S243 mutant has not been studied. Thus, though a distinct molecular 

process is postulated in Yue’s studies, the impact on EBNA2 function in mitosis is similar. 

5.3. Characterization of EBV expressing EBNA2 
deficient for PLK1 binding or phosphorylation in 
vitro and in vivo 

EBV mutants were engineered to carry the PLK1 docking site (EBNA2 S379A) or phosphorylation 

(EBNA2 S457A/T465V) mutations. Both EBV mutants were fully immortalization competent and 

initiated long term proliferating B cell cultures. Cell division rates were increased in mutant cell lines 

early after infection as well as in long-term cultures. LMP1 expression was enhanced in both 

mutants but was most pronounced in the phosphorylation mutants. To study the impact of both 

mutations on carcinogenesis, humanized mice were infected with both EBV mutants. Blood 

samples were analyzed weekly for viral loads and immune responses by CD4+ and CD8+ T cell 

populations were characterized. Importantly, the phosphorylation mutant induced high viral loads 

in blood of mice already at early time points of infection which is in line with a higher replicative 

activity of transformed B cells in vitro. Additionally, splenic EBV loads seemed to be slightly elevated 

in both EBNA2 mutants compared to EBNA2 WT infected individuals. Viral loads were reported to 

usually be followed by expansion and activation of EBV-specific CD8+ T cells in EBV infected 
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humanized mice (Shultz et al., 2010; Strowig et al., 2009). Our finding that the S379A and 

S457A/T465V mutants induced early expansion and activation of cytotoxic T cells is therefore 

consistent with earlier publications and can be explained by higher antigen abundance due to higher 

viral loads at already two weeks post-infection. Irrespective of the early adaptive immune response 

to infection more EBV infected mice developed lymphomas with both EBNA2 mutants when 

compared to EBNA2 wildtype virus infections. These findings are consistent with the higher 

replicative activity of both mutants compared to the EBNA2 WT causing accelerated infection and 

more frequent tumor formation. 

In summary, our study shows that PLK1 is an important regulator of EBNA2 activity that limits 

the tumorigenicity of EBV in vitro and in vivo. Since PLK1 activity peaks in mitosis, we speculate 

that PLK1 controls EBNA2 activities during this time window. Unfortunately, since during mitosis 

the global cellular transcription of the condensed chromosomes is silenced, EBNA2 activity cannot 

be tested reliably in this cellular environment. Interestingly, it has been shown before that PLK1 can 

affect the activity of transcription factors. Phosphorylation of the tumor suppressor p53 and the 

related p73 protein impair the transactivation activity of both transcription factors. In p73 the 

substrate site of PLK1 has been mapped to the TAD (Ando et al., 2004; de Cárcer, 2019; Koida et 

al., 2008; Martin and Strebhardt, 2006). Phosphorylation of the transcription factor FOXO1 causes 

its nuclear exclusion and thereby prevents its action (Yuan et al., 2014). However, PLK1-dependent 

phosphorylation of FoxM1 regulates a transcriptional program that mediates cell-cycle progression 

(Fu et al., 2008). It is tempting to speculate that, PLK1 might contribute to focus the transcriptional 

activity on mitosis relevant transcripts and proteins. 

5.4. A proposed model 

In this thesis, I can provide evidence that PLK1 suppresses EBV-associated carcinogenesis 

through the phosphorylation of EBNA2. Initially, Dr. Sybille Thumann found that PLK1 is significantly 

enriched in EBNA2 co-immunoprecipitates from DG75 cells which exogenously overexpress 

EBNA2. I confirmed that PLK1 and EBNA2 interact with each other in EBV-transformed B cells. 

Interestingly, two PLK1 binding sites (PDS1 and PDS2) of EBNA2 were mapped. The 

phosphorylation of S379 in PDS1 by CDK1 dramatically enhanced its PLK1 binding ability. In 

contrast, PDS2 provided an extended region for PLK1 binding that involves multiple residues, like 

F440, WY444, and YIF460. Next, I found that EBNA2 is a viral substrate of PLK1. PLK1 

phosphorylated S457 and T465 of the C-terminal TAD of EBNA2 to attenuate its transactivation 

activity by hindering the recruitment of p300. In addition, EBV strains expressing EBNA2 mutants 

deficient for either PLK1 docking (S379A) or phosphorylation (S457A/465V) promoted B cell 

proliferation in vitro, indicating PLK1 phosphorylation of EBNA2 suppresses EBV-driven B cell 

proliferation. Even though the expression levels of EBNA2 were low in LCLs established by EBV 

strain with PLK1 phosphorylation site, the induction levels of the viral oncogene, LMP1 were high 

in these cells, indicating EBV EBNA2 S457A/465V is more tumorigenic than EBV wild-type. 
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Furthermore, EBV strains expressing EBNA2 mutants deficient for either PLK1 docking or 

phosphorylation induced more frequently lymphomas in humanized mice compared to the wild-type. 

EBV strain expressing EBNA2 mutant deficient for PLK1 phosphorylation induced higher mortality 

and caused an earlier immune response in humanized mice compared to the wild-type. In summary, 

PLK1 restricts the EBV tumorigenicity through the phosphorylation of EBNA2.  

A model based on these findings is proposed (Figure 24). PLK1 phosphorylates EBNA2 in a 

pre-phosphorylation-dependent or -independent manner, which leads to the strong or weak 

phosphorylation of EBNA2, respectively. The phosphorylation of S379 by CDK1 functions as a 

switcher between these two states. The phosphorylation of S457/T465 of TAD by PLK1 suppresses 

the transactivation of EBNA2, which further has an impact on the expression of EBNA2 target genes, 

the proliferation of EBV infected B cells in vitro, and EBV pathogenesis in vivo. 

 

Figure 24. A model explaining how PLK1 prevents EBV-induced tumorigenesis through phosphorylation of 

EBNA2 

(1) EBNA2 is one of the first expressed genes upon EBV infection. (2) EBNA2 transactivates its target gene 

expression. (3) PLK1 binds to EBNA2 through PDS2. Therefore, serine 457 and threonine 465 of EBNA2 was 

phosphorylated weakly. (4) CDK1 phosphorylates serine 379 of EBNA2. (5) The phosphoserine 379 enhances 

EBNA2 binding to PLK1. Therefore, the serine 457 and threonine 465 of EBNA2 was phosphorylated by PLK1 

strongly. (6) The phosphoserine 457 and phosphothreonine 465 suppress EBNA2 transactivation. (7) EBNA2 

transactivates its target genes, like C-MYC and LMP1. (8) The expression of EBNA2 target genes drives the 

proliferation of EBV infected B cells in vitro. (9) The B cell proliferation induces lymphomas in vivo. 
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5.5. The relevance of this study for the use of 
PLK1 inhibitors in cancer treatment 

In healthy immunocompetent hosts, EBNA2 is expressed in a short time window immediately post-

infection before either EBNA2 expression is silenced or the EBNA2 expressing cell is eliminated by 

the immune system. Immunodeficient patients can develop aggressive EBNA2 positive B 

lymphomas and EBNA2 is a driving force for these tumor entities. It is well established that high-

level expression of PLK1 promotes carcinogenesis in multiple tissues (Strebhardt, 2010; Strebhardt 

and Ullrich, 2006). Currently, clinical trials evaluate the safety and efficacy of PLK1 inhibitors for 

patient treatment. However, PLK1 has tumor-suppressive potential in APC-truncated colon cancer 

cells (Raab et al., 2018) and high-level PLK1 induced aneuploidies and chromosome instability can 

suppress cancerogenesis in some mouse models (de Cárcer, 2019). Thus, inhibition of PLK1 

activity might have opposing effects in the context of the specific transformed cell. Here we show 

that PLK1 is an important cellular control factor that restrains the proliferation and transformation of 

latently infected B cells driven by a growth program that depends on EBNA2. Both S379A and 

S457/T465V of EBNA2 mutants are gain-of-function variants of this viral oncogene. Based on our 

results the development and therapeutic use of PLK1 inhibitors should be considered and closely 

monitored for potential adverse effects in the context of the prevalent EBV infections in the 

population. 
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Table S1. Oligos used in plasmid construction.  

Plasmid Usage Oligo Sequence (5' → 3') Annealing (℃) 

pCKR656 
PCR 
primers 

xz54-F ACGACCAACAATTACATCATCTACCCT 57 

xz317-R ATTAGCTAGCGTAATCTGGAACATCGTATGGGTATCCCCGGCTCTGGCCTTG 57 

pCKR657 
PCR 
primers 

xz54-F ACGACCAACAATTACATCATCTACCCT 57 

xz318-R ATTAGCTAGCGTAATCTGGAACATCGTATGGGTAATAATCTTCATCTGAGCTAGGAGATTCTGT 57 

pXZ140 

PCR 
primers 

xz72-F ATATGAATTCCATCATGCCAGAGCCAAACACCTCCAGTCC 57 

xz129-R CAAAAATGTAATCCCAAGCTTCGTCTAAGTCTG 57 

PCR 
primers 

xz129-F CAGACTTAGACGAAGCTTGGGATTACATTTTTG 57 

xz53-R2 ATCTTTAGCTAGCGTAATCTGGAAC 57 

pXZ141 

PCR 
primers 

xz72-F ATATGAATTCCATCATGCCAGAGCCAAACACCTCCAGTCC 57 

xz130-R GAGCTAGGAGATTCTACTGTCTCAAAAATG 57 

PCR 
primers 

xz130-F CATTTTTGAGACAGTAGAATCTCCTAGCTC 57 

xz53-R2 ATCTTTAGCTAGCGTAATCTGGAAC 57 

pXZ142 

PCR 
primers 

xz72-F ATATGAATTCCATCATGCCAGAGCCAAACACCTCCAGTCC 57 

xz130-R GAGCTAGGAGATTCTACTGTCTCAAAAATG 57 

PCR 
primers 

xz129-F CAGACTTAGACGAAGCTTGGGATTACATTTTTG 57 

xz53-R2 ATCTTTAGCTAGCGTAATCTGGAAC 57 

pXZ153 

PCR 
primers 

xz53-F1 AGCCCCTCAGGCCAGGTTGGTCCAG 57 

xz153-R1 CTGGATCATTTGGGACGGCTTGATGAGTAAG 57 

PCR 
primers 

xz153-F2 CTTACTCATCAAGCCGTCCCAAATGATCCAG 57 

xz52-R CTCTGGTCTCCAAGGTCCACCG 57 

pXZ154 

PCR 
primers 

xz54-F ACGACCAACAATTACATCATCTACCCT 57 

xz154-R1 AGGCATGCTAGGAGCGGCGACGTTTGGCTCTGG 57 

PCR 
primers 

xz154-F2 CCAGAGCCAAACGTCGCCGCTCCTAGCATGCCT 57 

xz53-R2 ATCTTTAGCTAGCGTAATCTGGAAC 57 

pXZ155 

PCR 
primers 

xz54-F ACGACCAACAATTACATCATCTACCCT 57 

xz155-R1 CATAATCTTCATCTGCGGCAGGAGCTTCTGTTGTCTC 57 

xz155-F2 GAGACAACAGAAGCTCCTGCCGCAGATGAAGATTATG 57 
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PCR 
primers 

xz53-R2 ATCTTTAGCTAGCGTAATCTGGAAC 57 

pXZ179 

PCR 
primers 

xz54-F ACGACCAACAATTACATCATCTACCCT 57 

xz179-R1 AGGCATGCTAGGAGCGGAGGTGTTTGGCTCTGG 57 

PCR 
primers 

xz179-F2 CCAGAGCCAAACACCTCCGCTCCTAGCATGCCT 57 

xz53-R2 ATCTTTAGCTAGCGTAATCTGGAAC 57 

pCKR675 

PCR 
primers 

xz51-F ATTAGAATTCCATCATGGGGCATGGACCTCTAGCATCTG 57 

xz346-R TAAGCCTCGGTTGTGCCAGAGGTGACAAAATGGTGGG 57 

PCR 
primers 

xz346-F TTGTCACCTCTGGCACAACCGAGGCTTACCCCTC 57 

xz53-
R1.1 

ATTAGGTCTCAGGCATGCGTGGTGGTGATGGT 57 

pCKR676 
PCR 
primers 

xz203-
Fwd Seq 

CTCCTACCCCTCTGCCACCTGCAAC 57 

xz347-R TAAGAGGGTGCATTGCTTGGTCTGGCACATGCAAGACA 57 

PCR 
primers 

xz347-F CATGTGCCAGACCAAGCAATGCACCCTCTTACTCATCAAAG 57 

xz317-R ATTAGCTAGCGTAATCTGGAACATCGTATGGGTATCCCCGGCTCTGGCCTTG 57 

pCKR677 

PCR 
primers 

xz53-
F2.2 

ATTAGGTCTCATGCCAGAGCCAAACACCTCCA 57 

xz348-R GGGCGAGGTCTTTTAGCGGGTCCCTCCACATAATCTTCA 57 

PCR 
primers 

xz348-F TATGTGGAGGGACCCGCTAAAAGACCTCGCCCCT 57 

xz53-R2 ATCTTTAGCTAGCGTAATCTGGAAC 57 

pCKR678 

PCR 
primers 

xz53-
F2.2 

ATTAGGTCTCATGCCAGAGCCAAACACCTCCA 57 

xz348-R GGGCGAGGTCTTTTAGCGGGTCCCTCCACATAATCTTCA 57 

PCR 
primers 

xz348-F TATGTGGAGGGACCCGCTAAAAGACCTCGCCCCT 57 

xz53-R2 ATCTTTAGCTAGCGTAATCTGGAAC 57 

pXZ288 

PCR 
primers 

xz72-F ATATGAATTCCATCATGCCAGAGCCAAACACCTCCAGTCC 57 

xz261-R AGCCGCATCATCGGGGGCGAGAATGGGAGCCTCT 57 

PCR 
primers 

xz261-F GCCCCCGATGATGCGGCTCCTCCATCTATAGACCCC 57 

xz263-R AGCAGCGGCATCCCAACTTTCGTCTAAGTCT 57 

PCR 
primers 

xz263-F GCCGCTGCTGAGACAACAGAATCTC 57 

xz53-R2 ATCTTTAGCTAGCGTAATCTGGAAC 57 
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pXZ229 
PCR 
primers 

xz190-F ATTAGGATCCGGACAGAGCAGG 57 

xz229-R ATTATCTAGACGTTAGGGG 57 

pXZ150 
PCR 
primers 

xz150-F TATA GGATCCATCTGCGACCCCCCGCAAC 57 

xz150-R ATTA TCTAGA TCACTGGATGGAGGGGCGAGGT 57 

pXZ151 
PCR 
primers 

xz150-F TATA GGATCCATCTGCGACCCCCCGCAAC 57 

xz151-R ATTA TCTAGA TCAATTGGATGGGCCAGGAGTTGG 57 

pXZ152 
PCR 
primers 

xz152-F TATA GGATCCAATGCCGCCCCCGTTTGTA 57 

xz150-R ATTA TCTAGA TCACTGGATGGAGGGGCGAGGT 57 

pCKR661 
PCR 
primers 

xz162-F ATTAGGATCCCCAATACATGAACCG 57 

xz331-R AATTTCTAGACTAATAATCTTCATC 57 

pCKR672 
PCR 
primers 

xz190-F ATTAGGATCCGGACAGAGCAGG 57 

xz331-R AATTTCTAGACTAATAATCTTCATC 57 

pXZ92 PCR 
primers 

XZ92-F ATTAGTCGACTGGACAGAGCAGG 57 

XZ92-R ATTAGCGGCCGCTACTGGATGGA 57 

pXZ93 
PCR 
primers 

XZ92-F ATTAGTCGACTGGACAGAGCAGG 57 

XZ93-R ATTAGCGGCCGCTAAACGTTAGG 57 

pXZ94 
PCR 
primers 

XZ94-F ATTAGTCGACTTCACCAATACATGAAC 57 

XZ92-R ATTAGCGGCCGCTACTGGATGGA 57 

pXZ109 
PCR 
primers 

XZ94-F ATTAGTCGACTTCACCAATACATGAAC 57 

xz111-R AATTGCGGCCGCTAATAATCTTCATC 57 

pXZ110 
PCR 
primers 

XZ94-F ATTAGTCGACTTCACCAATACATGAAC 57 

xz110-R AATTGCGGCCGCTAATACCAATCA 57 

pXZ111 
PCR 
primers 

xz111-F ATTAGTCGACTCCTCCATCTATAGACC 57 

xz111-R AATTGCGGCCGCTAATAATCTTCATC 57 

pXZ112 
PCR 
primers 

xz112-F ATTAGTCGACTGTGGAGGGACCCAG 57 

XZ92-R ATTAGCGGCCGCTACTGGATGGA 57 

pXZ113 
PCR 
primers 

xz111-F ATTAGTCGACTCCTCCATCTATAGACC 57 

XZ92-R ATTAGCGGCCGCTACTGGATGGA 57 

pXZ162 
PCR 
primers 

xz162-F ATTAGGATCCCCAATACATGAACCG 57 

xz111-R AATTGCGGCCGCTAATAATCTTCATC 57 
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pXZ190 
PCR 
primers 

xz190-F ATTAGGATCCGGACAGAGCAGG 57 

xz93-R ATTAGCGGCCGCTAAACGTTAGG 57 

pXZ198 
PCR 
primers 

xz198-F ATTAGTCGACTCGCATGCATCTCCCTGTCTTG 57 

XZ92-R ATTAGCGGCCGCTACTGGATGGA 57 

pXZ299 
PCR 
primers 

xz299-F ATTAGGATCCCGTGACTTAGACGAAAGTTGG 57 

xz299-R TATAGCGGCCGCTAATAATCACGTTCATCTGAGCTAGGAG 57 

pXZ191 
PCR 
primers 

xz190-F ATTAGGATCCGGACAGAGCAGG 57 

xz93-R ATTAGCGGCCGCTAAACGTTAGG 57 

pXZ261 PCR 
primers 

xz162-F ATTAGGATCCCCAATACATGAACCG 57 

xz261-R AGCCGCATCATCGGGGGCGAGAATGGGAGCCTCT 57 

PCR 
primers 

xz261-F GCCCCCGATGATGCGGCTCCTCCATCTATAGACCCC 57 

xz111-R AATTGCGGCCGCTAATAATCTTCATC 57 

pXZ262 

PCR 
primers 

xz162-F ATTAGGATCCCCAATACATGAACCG 57 

xz262-R GGCTGCAGCTGGAGGATACCAATCATCG 57 

PCR 
primers 

xz262-F GCTGCAGCCCCCGCAGACTTAGACGA 57 

xz111-R AATTGCGGCCGCTAATAATCTTCATC 57 

pXZ263 

PCR 
primers 

xz162-F ATTAGGATCCCCAATACATGAACCG 57 

xz263-R AGCAGCGGCATCCCAACTTTCGTCTAAGTCT 57 

PCR 
primers 

xz263-F GCCGCTGCTGAGACAACAGAATCTC 57 

xz111-R AATTGCGGCCGCTAATAATCTTCATC 57 

pXZ264 

PCR 
primers 

xz162-F ATTAGGATCCCCAATACATGAACCG 57 

xz264-R GGCTGCAGCTGGAGGAGCCGCATC 57 

PCR 
primers 

xz262-F GCTGCAGCCCCCGCAGACTTAGACGA 57 

xz111-R AATTGCGGCCGCTAATAATCTTCATC 57 

pXZ265 

PCR 
primers 

xz162-F ATTAGGATCCCCAATACATGAACCG 57 

xz263-R AGCAGCGGCATCCCAACTTTCGTCTAAGTCT 57 

PCR 
primers 

xz263-F GCCGCTGCTGAGACAACAGAATCTC 57 

xz111-R AATTGCGGCCGCTAATAATCTTCATC 57 

pXZ266 
PCR 
primers 

xz162-F ATTAGGATCCCCAATACATGAACCG 57 

xz264-R GGCTGCAGCTGGAGGAGCCGCATC 57 



 

 

7
. A

p
p

e
n

d
ic

e
s
 

 

 
1

0
4
 

 

PCR 
primers 

xz262-F GCTGCAGCCCCCGCAGACTTAGACGA 57 

xz111-R AATTGCGGCCGCTAATAATCTTCATC 57 

pXZ304 

PCR 
primers 

xz302-F ATTACGTCTCACATGAGGATGCCTACATTCTATCTTGCG 57 

xz51-R GCAAAATAAGGCCCCGGTCA 57 

PCR 
primers 

xz302-F ATTACGTCTCACATGAGGATGCCTACATTCTATCTTGCG 57 

xz213-R ATTACTCGAGTCACTGGATGGAGGGGCGAG 57 

pXZ161 

PCR 
primers 

xz161-F ATTAGAATTCATGAGTGCTGCAGTGACTGCAGG 57 

xz161-R AATTAAGCTTAGGAGGCCTTGAGACGGTT 57 

Sanger 
sequencing 

xz161-
1456R22 

CCGAATAGTCCACCCACTTGC 63 

pXZ164 
PCR 
primers 

xz164-F ATTAACATGTTAGCACCGGCCGACCCTG 57 

xz164-R AATTAAGCTTATTTATTGAGGACTGTGAGGGGCTTC 57 

pXZ165 
PCR 
primers 

xz165-F ATTACCATGGCGAAAGGCTTGGAGAACCCCCTGCCTG 57 

xz165-R AATTAAGCTTAGGAGGCCTTGAGACGGTTGCTGG 57 

 

Table S2. Oligos used in BAC recombineering. 

BACmid Usage Oligo Sequence (5' → 3') Annealing (℃) 

pXZ135 
PCR 
primers 

xz135-F 
ATGAAGATTATGTGGAGGGACCCAGTAAAAGACCTCGCCCCTCCATCCAGGGCCTG
GTGATGATGGCGGGATCG 

57 

xz135-R 
GTAACATTTATTTGGGATACATTGGTTGCTGGAGAGGGCAAGGGTTTTTATCAGAAG
AACTCGTCAAGAAGGCG 

57 

pXZ143 
PCR 
primers 

xz143-F CCAGGGACAAGCAACGCAAG 57 

xz143-R ACAGGTTTTGGCAACGAGAGC 57 

pXZ201 
PCR 
primers 

xz201-F 
TATAGACCCCGCAGACTTAGACGAAAGTTGGGATTACATTTTTGAGACAGGGCCTG
GTGATGATGGCGGGATCG 

57 

xz201-R 
TCTTTTACTGGGTCCCTCCACATAATCTTCATCTGAGCTAGGAGATTCTATCAGAAG
AACTCGTCAAGAAGGCG 

57 

pXZ146 
PCR 
primers 

xz146-F GGAGACCAGAGCCAAACACC 57 

xz130-R GAGCTAGGAGATTCTACTGTCTCAAAAATG 57 
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PCR 
primers 

xz130-F CATTTTTGAGACAGTAGAATCTCCTAGCTC 57 

xz146-R TTGGGACTGGGGTAAAAGTGG 57 

Sanger 
sequencing 

xz143-F CCAGGGACAAGCAACGCAAG 63 

xz143-R ACAGGTTTTGGCAACGAGAGC 63 

pXZ202 
PCR 
primers 

xz202-F 
CAAGCAACGCAAGCCCGGTGGACCTTGGAGACCAGAGCCAAACACCTCCAGGCCT
GGTGATGATGGCGGGATCG 

57 

xz202-R 
TTGTCCCTGATGAAGACCGAGGACTGGACTTAGTTCAGGCATGCTAGGACTCAGAA
GAACTCGTCAAGAAGGCG 

57 

pXZ203 

PCR 
primers 

xz203-F TGCCAGACCAATCAATGCACCCTC 57 

xz203-R GGGCGAGGTCTTTTACTGGGTCCCT 57 

Sanger 
sequencing 

xz203-Fwd 
Seq 

CTCCTACCCCTCTGCCACCTGCAAC 63 

xz143-R ACAGGTTTTGGCAACGAGAGC 63 

pXZ204 

PCR 
primers 

xz203-F TGCCAGACCAATCAATGCACCCTC 57 

xz203-R GGGCGAGGTCTTTTACTGGGTCCCT 57 

Sanger 
sequencing 

xz203-Fwd 
Seq 

CTCCTACCCCTCTGCCACCTGCAAC 63 

xz143-R ACAGGTTTTGGCAACGAGAGC 63 
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Table S3. Oligos used in pathogen diagnosis. 

Pathogen Usage Oligo Sequence (5' → 3') Annealing (℃) 

EBV PCR primers 
BamHI W-F TCGCGTTGCTAGGCCACCTT 57 

BamHI W-R CTTGGATGGCGGAGTCAGCG 57 

 

 

 

Figure S1. Schematic diagram of overlap PCR-based mutagenesis.  

In the first round of PCR reactions, DNA of interest served as templates, using primer pairs “a” with “b” and “c” with 

“d”, respectively. The resulting amplified short fragment AB and CD worked as a new template when mixed with the 

flanking primer pair “a” and “d” in the second round of PCR, which results in amplification of the final long fragment 

AD with the desired mutation. Red bars annotate a mutation of interest, e.g. a substitution, a deletion, or an insertion. 

The figure is adapted from Francis et al., 2017  
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Figure S2. EBNA2 423-474 (PDS2) is sufficient for its binding to PLK1.  

DG75 cell extracts were GST-pulldown using GST-fused EBNA2 C-terminal fragments 423-487, 423-474, 423-445, 

446-474, 446-487, and 475-487, visualized by western blotting using GST- and PLK1- specific antibodies, 

respectively. 

 

 

 

Figure S3. S379 is a canonical PLK1 docking site.  

(A) Multiple sequence alignment (left) of seven phosphopeptides present in crystal structures of PLK1-PBD. 

Phosphorylated residues are in red. EBNA2 docking site candidates are listed below. Superposition (right) of crystal 

structures of the PLK1-PBD in complex with the seven peptides (MQSpTPL (PDB: 1Q4K) (Cheng et al., 2003), 

PMQSpTPL (PDB: 1UMW) (Elia et al., 2003a), PPPLHSpTA (PDB: 4E9C) (Śledź et al., 2011), PPHSpT (PDB: 

3C5L), PLHSpT (PDB: 3HIK) (Yun et al., 2009), HYPSpTTAL (PDB: 5X3S) (Lee et al., 2018) and PMPPPMSpSM 

(PDB: 3Q11) (Pavlovsky et al., 2012)) show that the positively charged groove of PBD docks in a similar fashion to 

the negatively charged phosphopeptides. (B) Total cell lysates (L) of DG75 cells exogenously expressing HA-tagged 

EBNA2 mutants ST266AV, TSS377VAA, or SPSS467APAA were immunoprecipitation (IP) using an HA-specific 

antibody, visualized by western blotting using HA- and PLK1- specific antibodies, respectively. Figure S3A was 

provided by Dr. André Mourão (AG Sattler, HMGU). 
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Figure S4. S379 and Cluster A/C are involved in PLK1 binding.  

(A) Cluster A and C are essential for PDS2/PBD interaction. 6× His-tagged KD, PBD (both purified from E. coli), or 

PLK1 (purified from insect cells) were GST-pulldown using GST-fused EBNA2 PDS2 mutants cluster A mt 

(F440A/WY444AA), cluster B mt (SID448AAA), cluster C mt (YIF460AAA), cluster A/B mt 

(F440A/WY444AA/SID448AAA), cluster A/C mt (F440A/WY444AA/YIF460AAA ), or cluster A/B/C mt 

(F440A/WY444AA/SID448AAA/YIF460AAA), visualized by western blotting using GST- and His- (-His) specific 

antibodies, respectively. (B) Total cell lysates (L) of DG75 cells exogenously expressing HA-tagged EBNA2 mutants 

S379A, PDS2 mt, or S379A/PDS2 mt were immunoprecipitation (IP) using an HA-specific antibody, visualized by 

western blotting using HA-, PLK1- and GAPDH- specific antibodies, respectively.  

 

Figure S5. Electrophoresis separation of EBNA2 for LC-MS/MS.  

SDS-PAGE separation of 6× His-tagged EBNA2 (left) and GST-fused EBNA2 fragment 453-474 before (-) and after 

(+) PLK1 treatment, visualized by Coomassie Brilliant Blue staining. 
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Figure S6. Identification of phosphorylation sites of EBNA2 treated with PLK1.  

Overview of sequence coverage and phosphorylation sites (larger letters in red or purple) of 6× His-tagged EBNA2 

before (-) and after (+) recombinant PLK1 treatment. Proteins of interest were extracted after SDS-PAGE separation, 

digested by trypsin (green bar) and V8 (blue bar) in parallel, and submitted to LC-MS/MS analysis. The number sign 

(#) denotes Arg (R) inserted to facilitate fragmentation. The asterisk (*) denotes the initial Met (M) of EBNA2. 
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Figure S7. Identification of phosphorylation sites of EBNA2 fragment 453-474aa by PLK1.  

Overview of sequence coverage and phosphorylation sites (larger letters in red) of GST-EBNA2 453-474aa before 

(-) and after (+) recombinant PLK1treatment. Proteins of interest were extracted after SDS-PAGE separation, 

digested by trypsin (green bar), and submitted to LC-MS/MS analysis. The number sign (#) denotes Arg (R) inserted 

to facilitate fragmentation. 

 

Figure S8. Schematic diagram of positive/negative selection used in BAC recombineering.  

In the first recombineering, single E.coli SW105 clone #1, 2, 3, and 4 form plate I (Cam+ and Kan+) were streaked 

on area #1, 2, 3, and 4 of plate II (Cam+/Kan+), respectively, with plate III (Cam+/Strep+) as a replica of plate II. 

Because clone #2 could grow on plate II (positive selection) but not on plate III (negative selection), clones from 

area #2 were further identified. Clone #a, b, c, and d from plate II were streaked on area #a, b, c, and d of plate IV 

and V (Cam+/Kan+), respectively. Mini-prep of BACs were isolated from the bacteria, digested with BamH I, and 

analyzed using agarose electrophoresis. In the second recombineering, a similar protocol was applied. However, 

Cam+/Strep+ plates were used in positive selection and Cam+/Kan+ plates were used in negative selection. 



7. Appendices 

 

 
113  

 

Figure S9. Schematic overview of supercoiled BACmid isolation.  

Maxi-prep of the desired BACmid was separated by CsCl density gradient ultracentrifugation. The band of 

supercoiled BACmid was transferred to a 15 ml Falcon tube, followed by Ethidium bromide (EtBr) exclusion using 

CsCl-saturated isopropanol extraction. Subsequently, the BAC DNA phase was packed in a dialysis membrane and 

desalted with TE buffer to isolate the supercoiled BACmid. 

 

Figure S10. Recombinant EBV virus titration.  

(A) Gating strategy of recombinant EBV-infected Raji cells. Raji cells were included in a “Raji” gate on an FSC-A vs 

SSC-A dot plot and depleted of doublets using a “Single Cells” gate on an FSC-A vs FSC-H dot plot. The single-cell 

fraction was further analyzed for eGFP expression using a “GFP+” gate on a GFP-A histogram. (B) Calculation of 

the titer of recombinant EBV. Graph of the percentages of GFP positive cells versus the volumes (µl) of recombinant 

EBV used to infect Raji cells with a linear regression line (y = 0.2016x, R2 = 0.9977), showing data of 3 technical 
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replicates of EBV EBNA2 S457A/T465V infection. The calculation of the virus titer (GRUs/ml) was presented on the 

right of the graph. 

 

Figure S11. Preparation of human primary B cells.  

(A) Schematic overview of human primary B cell isolation. Cells isolated from an adenoid were separated by Ficoll 

density gradient centrifugation. The lymphocyte phase containing human primary B cells was collected. 

Subsequently, several washing-and-centrifugation steps were applied to purify human primary B cells. (B) Flow-

cytometric analyses of the percentages of CD3+ T (Q1) and CD19+ B (Q3) cells. Data of 5 donors are shown.  
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Figure S12. FACS profiles of cell trace violet proliferation assay of B cells after infection.  

Gating strategy of B cells after EBV infection. Primary B cells were stained with cell trace violet, infected with EBV, 

and then analyzed by flow cytometry. EBV activated cells were included in a “Lymphocytes” gate on an FSC-A vs 

SSC-A dot plot, depleted of doublets using a “Single Cells” gate on an FSC-A vs FSC-H dot plot, and B cells were 

included in a “CD19+” gate on a CD19 APC-A vs SSC-A dot plot. The B cell fraction was further analyzed for cell 

trace violet dilution on a CellTrace Violet histogram. Data of 3 donors 4 d.p.i. are shown. 

 

Figure S13. Infection with EBV strains expressing EBNA2 mutants deficient for PLK1 docking or 

phosphorylation leads to earlier CD8+ T cell expansion.  

(A, B) Total cell numbers of (A) CD8+ T cells and (B) CD4+ T cells in blood of infected individuals over five weeks. 

Data were presented as the mean ± SD. Multiple Mann-Whitney U test. Graphs show data points of two 

independently performed experiments. (C, D) Percentages of (C) CD8+ and (D) CD4+ T cell subsets in spleens of 

infected mice. Graphs show data points of three independently performed experiments. Error bars indicate mean ± 
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SD. Shapes of data points indicate to which repetition of the experiments the individual belongs. Figure S13 was 

provided by Patrick Schuhmachers (AG Münz, UZH). 

7.2. Comments on figures 

Table S4. Collaborators’ contributions to the figures in this thesis 

Figure Collaborator Their contribution 

8E and S4 Dr. André Mourão (AG Sattler, HMGU) PLK1 purification 

9A Dr. André Mourão (AG Sattler, HMGU) PDS1 purification 

15B Cornelia Kuklik-Roos (AG Kempkes, HMGU) Transfection and dual-luciferase assay 

 

Table S5. My contributions to the figures provided by my collaborators 

Figure Provider My contribution 

9C and S3A Dr. André Mourão (AG Sattler, HMGU) Plasmid construction of PLK1 PBD 

10 Dr. André Mourão (AG Sattler, HMGU) 

Plasmid construction of EBNA2 PDS2 

WT, Cluster A mt, Cluster C mt, and 

Cluster A/C mt and PLK1 PBD 

13, S6 and 

S7 
Dr. Piero Giansanti (AG Küster, TUM) 

Plasmid construction, protein purification, 

kinase assay, and protein separation of 

6× His-tagged EBNA2 and GST fused-

EBNA2 fragment 453-474aa 

22, 23 and 

S13 
Patrick Schuhmachers (AG Münz, UZH) 

BACmid recombineering, virus production, 

virus concentration, virus titration of 

recombinant EBV EBNA2 WT, S379A, 

and S457A/465V 

 

 

The results show in all figures which are not listed in Table S4 and Table S5 were generated by me. 

Schematic figures adapted from elsewhere were annotated in the figure legends.  
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