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1 Introduction 
 

1.1 The functional role of platelets in hemostasis and atherothrombosis  

	
In a complex fashion of events platelets derive from the cytoplasm of megakaryocytes in the 

bone marrow and are released into the circulation. (Italiano, Lecine et al. 1999) (Junt, 

Schulze et al. 2007) Platelets measure a size of 2 – 4 µm and adapt a discoid shape in the 

resting state – upon activation, they undergo actin-dependent morphological shape changes. 

(Hartwig 2013) Approximately one trillion platelets circulate in the human blood with a 

lifespan of about seven to ten days and constantly scan the vasculature for tissue injury. 

(Varga-Szabo, Pleines et al. 2008) Besides the fact that platelets are anucleate cellular 

fragments they reveal a sophisticated cytoskeleton, a variety of different surface receptors 

and multiple secretory granules. (Jackson 2011) (Hartwig 2013) 

For the past few decades platelet function was assumed to be limited to the formation of 

physiological blood clots in hemostasis and leading to pathological conditions such as in 

atherothrombosis. (Italiano, Lecine et al. 1999) (Ruggeri 2002) (Nieswandt, Aktas et al. 

2005) (Jackson 2011) However, platelets exert a more diverse role such as in immunological 

processes and antimicrobial host defence. Platelets are among the first cells to be encountered 

at sites of endothelial injury or inflammation and seem to follow a similar recruiting cascade 

of events as well understood as in arterial thrombosis. (Brass, Zhu et al. 2005) (Jackson 2011) 

(Semple, Italiano et al. 2011) (Wong, Jenne et al. 2013) (Yeaman 2014) (Gaertner, Ahmad et 

al. 2017) Although previous works described a position change of platelets at sites of injury 

or inflammation, platelet migration has only recently been identified by Gärtner et al. to be an 

autonomous process in vivo. (Pitchford, Momi et al. 2008) (Kraemer, Borst et al. 2010) 

(Gaertner, Ahmad et al. 2017) 

During the initial steps of clot formation platelets interact with several adhesive proteins and  

agonists and are exposed to a highly dynamic microenvironment all of which trigger 

activation and adhesion. (Offermanns 2006) (Ruggeri 2007) (Qiu, Brown et al. 2014) The 

synergy of biochemical – as well as biophysical stimuli allow platelets to precisely probe the 

mechanical properties of the vessel wall. (Kroll, Hellums et al. 1996) (Offermanns 2006) 

(Sheriff, Bluestein et al. 2010) (Brass, Wannemacher et al. 2011) The initial capture of a 
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circulating, resting platelet at the site of tissue injury is referred to as “tethering” and 

mediated through the two membrane glycoproteins GPVI and GPIb. The GPIb-V-IX 

complex predominantly interacts with von Willebrand factor and indirectly with collagen. 

(Ruggeri 1997) (Savage, Almus-Jacobs et al. 1998) (Varga-Szabo, Pleines et al. 2008) This 

highly abundant surface receptor complex works independent of platelet activation and is 

unique to platelets and megakaryocytes. (Sakariassen, Nievelstein et al. 1986) Besides the 

broad range of macromolecular components such as laminin, fibronectin or vWF, collagen is 

considered to be the most potent thrombogenic substrate to be encountered at sites of 

vascular injury. (Baumgartner 1977) (Clemetson and Clemetson 2001) The transmembrane 

glycoprotein GPVI was identified to be the central platelet collagen receptor, thus playing the 

main role for the initiation of platelet attachment. (Moroi, Jung et al. 1989) (Gibbins, Okuma 

et al. 1997) (Clemetson and Clemetson 2001) (Nieswandt, Bergmeier et al. 2000) (Massberg, 

Gawaz et al. 2003) (Dubois, Panicot-Dubois et al. 2006) The “tethering” is characterised by a 

relatively short-lived – and weak interaction that is unable to support permanent attachment. 

(Savage, Almus-Jacobs et al. 1998) (Varga-Szabo, Pleines et al. 2008) However, the 

underlying function of this mechanism is to recruit platelets from the bloodstream by 

reducing their speed. This initial interaction with the vessel wall enables additional surface 

receptors to bind. (Savage, Saldivar et al. 1996) (Varga-Szabo, Pleines et al. 2008) The initial 

“tethering” is followed by platelet “rolling” on the vascular wall that will support permanent 

attachment (see figure 1.1A)). (Savage, Saldivar et al. 1996)  
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Figure 1.1: Cascade of events showing platelet recruitment to sites of vascular injury  
A:  Simplified scheme showing the events leading to thrombus formation. B: Interplay of surface receptors and 
downstream signaling cascades. The different steps will be described in detail throughout the text (Jackson 
2011) 
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A prerequisite of firm platelet adhesion is the activation of integrins acting as bidirectional 

surface receptors linking cytoplasmic regulators to extracellular stimuli. A quiescent platelet 

expresses multiple copies of integrins on the plasma membrane that remain in an inactive, 

low affinity conformational configuration (see figure 1.1B)). (Beglova, Blacklow et al. 2002) 

(Xiong, Stehle et al. 2001) (Nishida, Xie et al. 2006) The receptor-specific platelet activation 

through the exposed ligands of the ECM drives further downstream signaling cascades that 

lead to “outside-in” signaling. Simultaneously the two main intracellular activators talin and 

kindlin bind to the cytoplasmic domain of the β subunit of the integrin. This process termed 

“inside-out” signaling induces conformational changes of the extracellular domain of the 

integrin resulting in a switch to the high affinity state. (Carman and Springer 2003) (Li, 

Delaney et al. 2010) (Shattil, Kim et al. 2010) This leads to the additional surface expression 

from intracellular granules of the major integrin αIIbβ3 mainly binding to fibrinogen, but also 

von Willebrand factor and fibronectin and the integrin α2β1 binding to collagen. (Hynes 2002) 

(Qiu, Brown et al. 2014) These two crosslinking processes mediate firm adhesion, 

aggregation as well as thrombus formation – additionally they induce the release of 

intracellular granules and morphological shape changes. (Clark and Brugge 1995) 

The induced heterogeneous downstream signaling pathways that promote initial adhesion and 

activation via several positive feedback loops, also trigger the release of a variety of different 

meditators that act in an autocrine - and paracrine fashion. (Kroll and Schafer 1989) (Davi 

and Patrono 2007) The complex mechanism orchestrating platelet activation combines the 

translation of biochemical – and biophysical stimuli at the site of tissue injury with the main 

effector serine protease – thrombin – of the coagulation cascade. The generation of thrombin 

from prothrombin in a tissue-factor dependent manner is spatially concentrated on the platelet 

membrane favouring the interaction with the two protease-activated receptors PAR 1 and 

PAR 4 in humans (see figure 1.1B)). (Kahn, Nakanishi-Matsui et al. 1999) (Weiss, Hamilton 

et al. 2002) (Coughlin 2005) (Cornelissen, Palmer et al. 2010) Thrombin as a multifunctional 

agonist is considered to be the most potent platelet activator inducing a broad range of 

cellular actions including shape change, exocytosis of alpha-, dense- and lysosomal granules 

and an additional affinity change of the integrin αIIbβ3. (Davey and LÜScher 1967) (Stenberg, 

McEver et al. 1985) (Hughes and Pfaff 1998) (McNicol and Israels 1999) The “alpha 

granules” are the most abundant granules and release a variety of high molecular 

polypeptides that contribute to primary – and secondary hemostasis. (Blair and Flaumenhaft 

2009) Upon platelet activation the alpha granules coalesce with the platelet membrane 
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thereby increasing the surface area approximately two to four fold. The alpha granule 

membrane largely mirrors the platelet membrane boosting the expression of additional “(GP) 

IIb-IIIa; fibrinogen receptor; CD 36; the thrombospondin and collagen receptor; CD9; 

PECAM1; and Rap1b, a guanosine triphosphate (GTP)-binding protein.” (Berger, Masse et 

al. 1996) The “dense granules” mainly contain Adenosindiphosphat (ADP), 

Adenosindiphosphat (ATP), Serotonin and Calcium that accounts for approximately 60-70% 

of the total platelet calcium. (Holmsen and Weiss 1979) (McNicol and Israels 1999)  

The release of the “secondary mediators” such as Thromboxane (TXA2) and ADP will lead to 

an increase of intracellular Ca2+ thereby amplifying and sustaining the platelet response. 

(Davi and Patrono 2007) The cyclooxygenase I (COX I) catalyses the reaction, where TXA2 

is produced from arachidonic acid that originates from phospholipids of the plasma 

membrane and is then actively transported and secreted by the multidrug resistance protein 4 

(MRP4). (Reid, Wielinga et al. 2003) (Rius, Thon et al. 2005) (Jedlitschky, Greinacher et al. 

2012) ADP in turn binds to the P2Y1 receptor that mainly leads to the mobilization of 

calcium, whereas the P2Y12 receptor represents the final common path to complete platelet 

aggregation initiated by all known platelet agonists. (Boarder and Hourani 1998) (Kunapuli 

1998) (Gachet 2006) (Gachet 2008) TXA2 and ADP exert their function through “G-Protein-

Coupled-Receptors” (GPCRs) and play a central role for platelet aggregation and recruitment 

of additional platelets to the site of injury. (Offermanns 2006) 

Serotonin accumulates in dense granules by passively diffusing from the blood plasma. Its 

role as a weak agonist for platelet activation and aggregation is considered to be secondary to 

the vasoactive effects on endothelium and vascular smooth muscle causing increased 

permeability and reduced blood flow. (Vanhoutte and Cohen 1983) (De Clerck, Xhonneux et 

al. 1984) (De Clerck 1986) (Li, Wallen et al. 1997)  

Similar to the paracrine reactions induced by serotonin, platelets also secrete a number 

chemotactic cytokines that act on monocytes as well as endothelial – and smooth muscle 

cells.  (Gleissner, von Hundelshausen et al. 2008) This is of particular interest considering the 

involvement of platelets in inflammation, antimicrobial host defence and angiogenesis. 

(Klinger and Jelkmann 2002) (May, Seizer et al. 2008) (Blair and Flaumenhaft 2009)  

The synergising mechanism triggering platelet activation via the initial adhesion of GPIb to 

von VWF followed by aggregation mainly mediated by αIIbβ3 integrin, not only coats the 

endothelium with a platelet monolayer, but also amplifies the recruitment of additional 

platelets to sites of vascular injury. (Smyth, Reis et al. 2001) (Bergmeier, Piffath et al. 2006) 

The locally high concentrations of soluble proteins such as VWF, fibrinogen and fibronectin 
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are the main mediators promoting clot maturation by firm platelet-platelet cohesion. (Ni, 

Denis et al. 2000) (Ni, Yuen et al. 2003) (Jackson 2007) The interaction of a firm fibrin 

network and the active process of clot retraction create a robust architectural scaffold that 

resists shear forces by the blood flow. (Chou, Mackman et al. 2004) (Ono, Westein et al. 

2008) 

  

1.2  The structure and function of the αIIbβ3 integrin  

	
Integrins constitute a large family of membrane receptors transmitting signals bidirectionally 

across the membrane and can be identified on a variety of cell lines mainly mediating cell–

matrix and cell-cell adhesion. (Hynes 1992) The term “integrin” derives from its action by 

integrating the extracellular compartment to the innards of the platelet’s cytoskeletal 

architecture and signaling pathways. (Luo, Carman et al. 2007)  

The αIIbβ3 integrin is restricted to the megakaryocyte cell line and with approximately 40,000-

80,000 copies the most abundant platelet integrin in the resting state. (Duperray 1987) 

(Wagner, Mascelli et al. 1996) (Adair and Yeager 2002) It is expressed on the platelet’s 

plasma membrane and upon activation additional integrins are translocated from the 

membranes of platelet α granules. (Niiya, Hodson et al. 1987) (Vorchheimer, Badimon et al. 

1999) (Bennett 2005) In a Ca2+- dependent manner the heterodimeric transmembrane protein 

is formed by the noncovalent association of an α – and β subunit, both consisting of a large 

extracellular headpiece, a transmembrane helix and a short cytoplasmic tail. (Phillips and 

Baughan 1983) (Fitzgerald and Phillips 1985) (Kieffer and Phillips 1990) (Weisel, 

Nagaswami et al. 1992) (Bennett 1996) (Beglova, Blacklow et al. 2002) (Springer and Wang 

2004) (Kononova, Litvinov et al. 2017) The extracellular portion carries binding sites for 

fibrinogen, fibronectin and vWF as well as divalent cations required to complete the ligand-

binding pocket. (Smith, Piotrowicz et al. 1994)  

In the past few decades advances in the understanding of the complex crystal structure gave 

detailed insights into the extracellular portion of the αIIbβ3 integrin. The headpiece of the αIIb 

subunit is formed by the β-propeller - and thigh domains followed by the tailpiece consisting 

of the Calf-1 – and Calf-2 domains. The structure of the β subunit is more complex where the 

β3 βA (I-like) domain loops out from a hybrid domain which in turn is inserted into the PSI 

domain (plexin, semaphoring, integrin) while the tailpiece consists of four tandem epidermal-

growth-factor (EGF) like repeats connected to an unique βTD domain (see figure 1.2A)). 
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(Xiong, Stehle et al. 2001) (Xiong, Stehle et al. 2002) (Xiao, Takagi et al. 2004) (Bennett 

2005) The flexibility of both subunits that enables the conformational relocation upon 

activation, is constituted by segments that are termed the α-genu between the thigh and calf-1 

of the α-subunit and β-genu between the EGF-1 and EGF-2 of the β subunit. (Arnaout, 

Mahalingam et al. 2005) (Bennett 2005) (Bennett, Berger et al. 2009) The ligand-binding 

pocket located in the head domain is formed by the interface between the β-propeller of the 

α-subunit with the β3 βA domain and hybrid domain of the β-subunit. (Craig, Gao et al. 

2004) (Bennett, Berger et al. 2009) Additionally three divalent cation binding sites on the β3 

βA-domain seem to be involved in ligand-binding: a centrally located metal-ion-dependent 

adhesion site (MIDAS) and two allosteric sites, termed synergistic metal ion-binding site 

(SyMBS) and adjacent to the metal ion–dependent adhesion site (ADMIDAS). (Lee, Rieu et 

al. 1995) (Tozer, Liddington et al. 1996) (Shimaoka, Takagi et al. 2002) (Xiong, Stehle et al. 

2002) (Xiong, Stehle et al. 2003) (Chen, Salas et al. 2003) (Mould, Barton et al. 2003) (Craig, 

Gao et al. 2004) (Xiao, Takagi et al. 2004) (Arnaout, Mahalingam et al. 2005) (Zhu, Luo et 

al. 2008) (Coller 2015) The MIDAS mainly coordinate a Mg2+ ion and is indispensible for 

ligand binding. (Xiong, Stehle et al. 2002) (Chen, Salas et al. 2003) (Mould, Barton et al. 

2003) (Shimaoka, Xiao et al. 2003) Previous literature proved the pivotal role of the MIDAS 

by mutations that lead to an abolished ligand binding. (Tozer, Liddington et al. 1996) (Chen, 

Salas et al. 2003) (Valdramidou, Humphries et al. 2008) The SyMDS instead is occupied by 

Ca2+ that acts as an allosteric activator stabilizing the MIDAS, important but expandable for 

ligand binding. The ADMIDAS coordinate both Ca2+ and Mn2+, where Mn2+ activates 

integrins by competing with Ca2+.  While Ca2+ seems to stabilize different conformational 

configurations, Mn2+leads to large conformational changes between the unliganded-closed 

and liganded-open conformations thereby promoting ligand binding (see figure 1.2.B)). 

(Xiong, Stehle et al. 2002) (Chen, Salas et al. 2003) (Mould, Barton et al. 2003) (Xiao, 

Takagi et al. 2004) (Valdramidou, Humphries et al. 2008) In the unliganded-closed state only 

the ADMIDAS was occupied, while all three β3 A-domain contained a cation in the 

liganded-open state. (Zhu, Zhu et al. 2010) The ion at the MIDAS was in direct contact with 

the ligand, thus playing a pivotal role in ligand binding. In contrast, the ion did not interact 

with the ligand at either the ADMIDAS or SyMDS suggesting a regulatory role of these two 

sites. (Xiong, Stehle et al. 2001) (Xiong, Stehle et al. 2002) (Mould, Barton et al. 2003) 

(Springer, Zhu et al. 2008) The collaborate interaction of the divalent cation binding sites 

play a pivotal role in mediating ligand binding and still remains a matter of research.  
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A             B 

 
Figure 1.2: Structure of αVβ3-Mn complexed with cyclo(RGDf-{Me}V) 
A) Ribbon diagram showing unliganded extracellular αVβ3 integrin in the bent and the extended configuration. 
The ADMIDAS ion visible at the top oft the βA domain (Xiong, Stehle et al. 2003). 
B) Ribbon drawing oft the αVβ3-Mn complexed with cyclo(RGDf-N{Me}V). ADMIDAS with the Manganese 
ion (magenta) and the metal ions at the MIDAS (cyan) and LIMBS (gray) (Xiong, Stehle et al. 2002).  
 
 

In a quiescent platelet, the αIIbβ3 integrin resides in a low-affinity state, where the ligand-

binding pocket faces the cell membrane to avoid platelet aggregation under physiological 

conditions that shifts to a high-affinity state upon activation. (Savage, Almus-Jacobs et al. 

1998) (Hynes 2002) (Shimaoka, Takagi et al. 2002) (Nishida, Xie et al. 2006) Although often 

conceptually separated, the complex events leading to integrin activation may influence one 

another and thereby amplify signaling. The mechanism termed “outside-in” signaling 

involves ECM substrates, antibodies and ligands directly targeting the αIIbβ3 integrin that 

initiate several downstream signaling cascades. (Schwartz, Schaller et al. 1995) (Ma, Qin et 

al. 2007) This in turn will trigger “inside-out” signaling, in which binding to the cytoplasmic 

segment of the β3 subunit by the two major regulatory proteins talin and kindlins induce 

intramolecular rearrangements. (Tadokoro, Shattil et al. 2003) (Coller and Shattil 2008) 

(Moser, Nieswandt et al. 2008) (Shattil, Kim et al. 2010) Despite the broad range of 

extracellular activators in the microenvironment and intracellular regulatory proteins, the 

external force applied on the substrate via the integrin induces allosteric signaling pathways.  

This stabilizes bonds by decreasing the dissociation time. (Puklin-Faucher, Gao et al. 2006) 

(Puklin-Faucher and Sheetz 2009) (Kee, Myers et al. 2015) The resulting conformational 

changes expose the ligand binding sites leading to the high affinity-state of the integrin. (Li, 
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Delaney et al. 2010) (Ye, Kim et al. 2011) Up to date, the conformational changes may be 

explained by two mechanistic models:  the favoured mechanism for the αIIbβ3 integrin - the 

“switchblade model” - describes a shift from the bent to the extended conformation, in which 

large conformational rearrangement of the entire heterodimer induce straightening of the 

knees and separation of the α – and β subunits. A swing out movement will expose the ligand-

binding pocket thereby switching to a high affinity state. (Hantgan, Paumi et al. 1999) 

(Beglova, Blacklow et al. 2002) (Hynes 2002) (Shimaoka, Takagi et al. 2002) (Takagi, Petre 

et al. 2002) (Askari, Buckley et al. 2009) (Bennett, Berger et al. 2009) (Zhu, Zhu et al. 2010) 

Takagi et al. showed that integrins in the presence of the superagonist Mn2+ or the ligand 

cyclic Arg-Gly-Asp (RGD) peptides adapted the extended conformation. (Takagi, Petre et al. 

2002) The “deadbolt” model describes the allosteric rearrangements in the β subunit thereby 

exposing the ligand binding sites in the bent conformation without extending the opening of 

the headpiece. (Xiong, Stehle et al. 2003) (Arnaout, Goodman et al. 2007) (Mehrbod, Trisno 

et al. 2013) 

The cytoplasmic domain of the integrin lacks enzymatic activity and thus relies on the 

recruitment of adapter molecules and signaling proteins. (Geiger, Bershadsky et al. 2001) 

(Arnaout, Goodman et al. 2007) Talin mechanically links the integrin’s cytoplasmic β tail to 

the cytoskeleton and despite carrying binding sites for the β subunit also contains multiple 

binding sites for actin and vinculin. (Calderwood, Zent et al. 1999) (Calderwood, Yan et al. 

2002) (Tadokoro, Shattil et al. 2003) (Wegener, Partridge et al. 2007) (Gingras, Bate et al. 

2008) (Critchley 2009) (Gingras, Bate et al. 2010) Its indispensible role was revealed in talin-

null platelets that showed impaired integrin activation and platelet aggregation with otherwise 

normal configuration. (Nieswandt, Moser et al. 2007) (Kim, Ye et al. 2011) It seems to be the 

final regulatory checkpoint for integrin activation. (Tadokoro, Shattil et al. 2003) (Nieswandt, 

Moser et al. 2007)  

The other regulatory proteins, the Kindlins play an equally important role in integrin 

activation. They also bind to the cytoplasmic part of the β subunit and may be further 

subdivided into three different members (Kindlin-1, Kindlin-2, Kindlin-3). (Ussar, Wang et 

al. 2006) (Mory, Feigelson et al. 2008) Kindlin-3 is particularly abundant in megakaryocytes 

and platelets and Moser et al. identified that kindlin-3-deficient platelets showed impaired 

integrin activation and defective aggregation. (Ussar, Wang et al. 2006) (Moser, Nieswandt et 

al. 2008)  

The activated αIIbβ3 integrin predominantly binds the trinodular fibrinogen molecule and 

selectively targets two peptide motifs: firstly the two RGD sequences at positions 95-97 and 
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572–574 on the Aα chain and secondly a C-terminal AGDV-containing dodecapeptide (γC-

12) sequence at position 400–411 of the γ chain.  (Ruoslahti and Pierschbacher 1986) 

(D'Souza, Ginsberg et al. 1990) (Beer, Springer et al. 1992) (Farrell, Thiagarajan et al. 1992) 

(Ruoslahti 1996) (Hantgan, Paumi et al. 1999) (Sanchez-Cortes and Mrksich 2009) 

(Kononova, Litvinov et al. 2017) While the γ chain of fibrinogen predominately binds the α 

subunit, the RGD and RGD-like peptides bind to both the α and β subunits of integrin αIIbβ3. 

Cierniewski et al. even reported different binding sites among RGD and RGD-derivatives. 

(Santoro and Lawing 1987) (Cierniewski, Byzova et al. 1999) Hu et. al described that the 

binding sites are spatially separated from one another, which was confirmed by Xiao et al. in 

crystal structures who located the cross-linking of the gamma chain to be distally to the RGD 

binding sites. (Hu, White et al. 1999) (Xiao, Takagi et al. 2004)  

The ligand behaviour of these two sequences still remains a controversial topic particularly 

because several other studies showed that there was considerable competition at the ligand 

binding sites. (Santoro and Lawing 1987) (Bennett 2001) The binding properties of the 

fibrinogen molecule in a soluble – or immobilized condition are considerably different. The γ 

chain mediates the binding to soluble fibrinogen required for platelet aggregation, while 

binding to the RGD sequence is only favoured to immobilized fibrinogen or as polymerized 

fibrin in a maturing blood clot. (Litvinov, Farrell et al. 2016) (Kononova, Litvinov et al. 

2017) The hypothesis that fibrinogen immobilization undergoes conformational changes 

cannot fully be supported since activated platelets bind soluble fibrinogen; however, Qiu et 

al. suggested that platelets sense the mechanical differences between soluble – and 

immobilized fibrinogen. (Balasubramanian and Slack 2002) (Jiroušková, Jaiswal et al. 2007) 

(Qiu, Ciciliano et al. 2015) 

 

1.3  Principles of platelet migration 

	
Generally, cell locomotion is the functional ability for a position change by precisely 

regulating cellular processes involved in spatio-temporal (re-) organisation. The prerequisites 

are congruent between cell lines and predominantly dependent on the interplay of 

extracellular surface receptors, the cytoskeletal network as well as intracellular trafficking. 

(Fukata, Nakagawa et al. 2003) (Keren, Pincus et al. 2008) (Barnhart, Lee et al. 2011) 

Despite these complex mechanisms accounting for cell migration, Lauffenburger et al. 

described a sequence of events trailing in four sequential steps: 1) membrane extensions as 
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lamelli- and filopodia at the leading edge 2) ligand adhesion 3) actomyosin mediated 

contraction 4) substrate release at the rear (see figure 1.3). (Lauffenburger and Horwitz 1996) 

When adhering to a given substrate platelets generate isotropic traction forces pointing 

towards the cell centre thereby probing the mechanical resistance. (Schwarz Henriques, 

Sandmann et al. 2012) However, in order to be able to migrate platelets have to reorganise 

the cytoskeleton in such a way that a polarised phenotype is adapted and asymmetry 

achieved. (Ridley et al., 2003) (Lombardi et al., 2007) A quiescent platelet changes form the 

resting into an asymmetric, migrating phenotype by generating high traction forces at the 

rear, with low traction at the front leading to protrusions (see figure 1.3). (Lombardi et al., 

2007)  

The spatio-temporal reorganisation at the leading edge is primarily dependent on the 

interplay of actin polymerization with cell-matrix-assembly. The morphological cell shape 

changes at the rear, however, are driven by myosin IIa-mediated contraction and adhesion-

disassembly. (Gaertner, Ahmad et al. 2017) These mechanisms influencing the complex 

intracellular processes leading to differing migratory behaviours, largely dependent on the 

biochemical – as well as biophysical microenvironment. (Palecek, Loftus et al. 1997) 

(Gupton and Waterman-Storer 2006) (Yam, Wilson et al. 2007) (Lämmermann, Bader et al. 

2008) Based on the principles of cell locomotion by Lauffenberger et al., Gaertner et al. only 

recently identified autonomous platelet migration in vitro and in vivo by dynamic 

visualization. (Lauffenburger and Horwitz 1996) (Gaertner, Ahmad et al. 2017)    
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 Figure 1.3: Basic principle of platelet migration  
(modified from (Lauffenburger and Horwitz 1996), (Gaertner, Ahmad et al. 2017)) 
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1.4  Platelet mechanosensing 

	
Platelets are ideal candidates to study the complex mechanisms accounting for 

mechanobiology due to their high integrin density and relatively basic cytoskeletal 

constitution. (Doggett, Girdhar et al. 2002) (Mody and King 2008) (Ciciliano, Tran et al. 

2014) The integrins act as mechanosensitive surface receptors and are directly linked to the 

contractile machinery. The mechanosensitive forces are bidirectionally transduced via the 

integrin and seem to be a critical step in reaching a specific tension threshold to induce 

platelet activation, spreading and migration. (Wang and Ha 2013) (Qiu, Brown et al. 2014) 

Platelet force is determined by the contractile apparatus composed of actomyosin and 

believed to be able to generate a maximum force of up to ~ 30 nN per platelet. (Pollard, 

Fujiwara et al. 1977) (Jen and McIntire 1982) (Léon, Eckly et al. 2007) (Schwarz Henriques, 

Sandmann et al. 2012) (Zhang, Qiu et al. 2018) Individual platelets are considered to carry ~ 

12,000 myosin II heads, each producing a force of ~ 1,3 pN in vivo. (Finer 1994, Michelson 

2007) Earlier studies by Carr et. al and Jen et al. intended to study single platelet forces in 

large aggregates, however the experimental conditions using blood plasma and external 

forces applied to the maturing clot were difficult to control. (Jen and McIntire 1982) (Carr 

and Zekert 1991) However, Liang et al. combined platelet contractile forces with microclot 

volume and estimated the force per platelet to be ~ 2.1 nN after 60 min of clotting. (Liang, 

Han et al. 2010) These experimental setups up to this point were not able to accurately 

determine quantitative measures due to technological hindrance.  

In an approach to investigate single cell forces Lam et al. conducted experiments with an 

atomic force microscope (AFM) and reported a maximum contractile force of ~ 29 nN after 

15 min and adhesions stronger than ~ 70 nN. However, the generated force was only 

measured in an uniaxial contraction. (Lam, Chaudhuri et al. 2011) Myers et al. implanted 

microchips into hydrogels thereby measuring contractile forces of individual platelets by 

precisely controlling the mechanical-, chemical- and shear microenvironment. (Myers, Qiu et 

al. 2017)  

Furthermore Jirouskova et al. examined the effect of low- and high-density fibrinogen on 

platelet function and revealed that ligand density fundamentally determines αIIbβ3 mediated 

outside-in signalling mechanisms. (Jirouskova, Jaiswal et al. 2007) Consistent with this study 

Qui et al. outlined the significance of substrate stiffness of the mechanical microenvironment 
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during clot formation, where high substrate stiffness maximized αIIbβ3 affinity and outside-in 

signaling. (Qiu, Brown et al. 2014) Additionally Kee et al. identified that αIIbβ3 integrin 

activity regulated by GP-VI-collagen interaction is not mediated by substrate stiffness. (Kee, 

Myers et al. 2015) 

However, as to this date the mechanosensitive effects on platelet migration has not been 

investigated and will give insight in how platelets mechanically probe their 

microenvironment during clot formation. (Zhang, Qiu et al. 2018) 
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1.5  Thesis aim  

 

Based on the current introductory evidence, platelets play a fundamental role in vascular 

injury and are among the first cells to be encountered at sites of inflammation. True 

autonomous migration of platelets in vitro and in vivo has only recently been shown by 

Gärtner et al. and previously been seen with scepticism. As to this date, little is known about 

how platelets probe the mechanical microenvironment and the processes accounting for 

mechanobiology.  

Here, we aim to establish a novel migration assay that allows to quantify molecular forces 

and to study platelet mechanobiology using dynamic visualization. Furthermore, we aim to 

study the alteration of platelet function by pharmacological blocking the contractile apparatus 

as well as mechanosensitive ion channels. 
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2 Material and Methods 

 

2.1 Technical setup for optimal image acquisition 

2.1.1 The inverted fluorescence microscope 

All live cell imaging experiments were performed by using the Olympus IX83 microscope 

(see figure 2.1). The characteristic feature of this inverted microscope is that the specimen is 

placed above the objective – the space in between the objective and the specimen spans a 

specific oil immersion. The stage contains a water basin, a critical feature for live cell 

imaging and may be heated to 37°C. The objective with the maximal resolution of 100x was 

used in the phase contrast - and fluorescence channels. 

 

 
Figure 2.1: The inverted microscope Olympus IX83 and its technical constitution  
(adapted from Abramowitz and Davidson (2020))  

 

2.1.2 The camera 

Images may either be depicted by the ocular or detected by a camera, where the vast majority 

of modern fluorescence microscopes contain charge-coupled devices (CCD-camera). The 

underlying principle of the CCDs is the conversion of light energy transmitted by a photon 
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into an electrical charge. (see figure 2.2) The CCD sensor is composed of a photosensitive 

silicon body with a matrix of photodiodes. The shape of the diodes and the area covered by a 

pixel strongly affect image resolution. The bigger the area covered by a pixel, the higher the 

photosensitivity, but with a decrease in overall resolution. (Abramowitz and Davidson 2020) 

The physical process where a photon interacts with the silicon body releasing negatively 

charged electrons is described as the photoelectric effect. (Janesick, 2001) (Abramowitz and 

Davidson 2020) This will excite an electron into a potential well of the diode in which the 

charge is proportional to the amount of photons. (Janesick, Elliott et al. 1987) (Abramowitz 

and Davidson 2020) The silicon diode photosensors (pixel) are arranged in vertical columns 

and horizontal rows. Each individual row is read out one after the other. The charge will pass 

down the vertical columns until reaching the final horizontal row (the readout register) that 

will measure a value for each individual pixel (see figure 2.2). Finally, a video signal is 

generated by reading the amount of electrons per pixel. (Janesick, Elliott et al. 1987) 

(Janesick, 2001) (Pawley, 2006) (Abramowitz and Davidson 2020) Images were acquired by 

a CCD-Camera of the company Olympus. (XM10, Olympus, Shinjuku, prefecture Tokio, 

Japan)  

 

   
Figure 2.2: Architecture and basic working principle of a charge-coupled device  
(adapted from Abramowitz and Davidson (2020))  
 

2.1.3 The lens 

The objective constitutes a critical component for optimal image acquisition – it influences 

magnification, light gathering ability as well as transmitted wavelength and differs in the 

immersion medium required.  
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The resolution of a microscope is defined as the smallest distance between two objects that 

still can be optically discriminated as two separate points. (Herman 1998) The larger the 

numerical aperture (NA), the more emitted fluorescence may be collected, thus resulting in a 

higher resolution. The NA is defined as the product of the refractive index = n (medium 

between specimen and objective) and the sinus of the aperture angle α. (Herman 1998) 

The NA is proportional to the refractive index of the immersion medium – air has a refractive 

index = 1, water of around 1,3 and immersion oil of around 1,5. (Zhou, Chan et al. 2013) 

 
Figure 2.3: The numerical aperture and the collection of emitted fluorescence with different immersion 
media (Herman 1998) 
 
Figure 2.3 evidences that immersion oil results in a shorter working distance and larger 

emission angle thereby increasing the collection of emitted fluorescence. (Herman 1998) 

(Stephens and Allan 2003) (Lichtman and Conchello 2005) 

 

2.1.4 The filter cubes 

The key why epifluorescence microscopy is so powerful, is due to specific filter cubes 

consisting of three fundamental elements: the excitation filter, dichromatic beamsplitters 

(dichroic mirrors) and the barrier filter (see figure 2.4). A full-spectrum light beam generated 

by the light source of the microscope encountering the excitation filter will be filtered in the 

way that only the exciting wavelength (blue light of wavelength ≈ 450 – 500 nm for FITC 

and green light of wavelength ≈ 500 – 570 nm for Cy3) of the particular fluorophore of 

interest will pass through (see figure 2.4). (Reichmann 2017) The maximum of the absorption 

spectrum may not overlap with the maximum of the emission spectrum of that particular 

fluorophore. The dichroic mirror angled at 45° reflects the exciting short-wavelength light. 
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The exciting light will now reach the object of interest. In epifluorescence the objective not 

only magnifies and images the specimen, but also works as a condenser illuminating it. 

(Lichtman and Conchello 2005) The now emitted longer-wavelength light passes through the 

dichroic mirror, while the remaining exciting light of shorter wavelength yet again will be 

reflected. The shift from the peak of the absorption – to the peak of the emission spectrum is 

called the Stoke’s shift. The emitted light now encounters the barrier filter which selectively 

only allows the targeted spectral wavelength of the fluorophore (FITC ≈ 518 nm and Cy3 ≈ 

563) to pass through. (see figure 2.4) (Wiederschain 2011) The targeted wavelength will 

either reach the eyepiece or be detected by the camera. 
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Figure 2.4: The filter cube 
Technical setup of a filter cube in an epifluorescence microscope and the effect of individual components of the 
filter cube on absorption - and emission wavelength (detailed explanation throughout the text) (Reichmann, 
2017)  
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2.1.5 Definition of fluorescence 

A fluorophore is defined as a molecule with fluorescent properties that emits light within 

nanoseconds after the absorption of light that is mainly of shorter wavelength. (Lichtman and 

Conchello 2005) The key to fluorescence microscopy lies in the fact that the exciting light is 

filtered out, while only the emitted longer wavelength fluorescence will be detected by the 

camera. This difference between the exciting - and emitted wavelengths is described as the 

Stoke’s shift. (Lichtman and Conchello 2005) 

 

A quiescent fluorophore is in the “ground-state” S0 that is considered to be the lowest 

vibrational state. When a photon of a certain wavelength (light energy) is absorbed by a 

fluorophore it will transfer all its energy to that molecule causing transition of an electron to a 

higher energy level (higher orbital). The transition from S0 to the lowest energetic level of S1 

is the minimum energy required for fluorescence. The excess energy triggers alterations of 

the electronic -, vibrational- and rotational states of the electron or boosts it into a different 

orbital of the excited singlet states S2 - where S0 < S1 < S2. (Lichtman and Conchello 2005) 

The singlet states are short-lived and defined as an electron pair with opposite spins in which 

the magnetic moment is mutually cancelled out. The spin represents an internal motion of an 

atomic electron, in which the “magnetic moment will be oriented parallel or antiparallel, with 

respect to the magnetic field.” (Lichtman and Conchello 2005) 

The fluorophore at any excited state has several different ways to return to the S0 state: firstly 

by radiationless transition – such as internal conversion, vibrational relaxation or intersystem 

crossing; secondly by radiative transition – such as fluorescence and phosphoresence. Both 

transition modi are best described by the Jablonski diagram. (Lichtman and Conchello 2005) 

The preferred energy path is from S2 to S1 by internal transition followed by vibrational 

relaxation to the lowest energy level of S1. A photon is thereby expulsed – causing 

fluorescence – in the gap between the lowest energy level of S1 and any of the 

vibrational/rotational levels of the ground state (see figure 2.5). The internal transition and 

vibrational relaxation do not cause any emission of light. It may also occur that a molecule 

may transition from the excited state all the way to the ground state by internal transition - 

however, this is not a preferred energetic path. (Lichtman and Conchello 2005)  
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Figure 2.5: The Jablonski diagram: the correlation between ground state S0 and excited states: singlet - and 
triplet states (Lichtman and Conchello 2005) 
 
Via a forbidden transition an electron may pass from the singlet to the triplet state – a 

phenomenon termed intersystem crossing. It transfers from the lowest energy level of S1 to 

the triplet state in which an electron is not only boosted to a new orbital, but also underwent a 

reversal in spin. This event where the electrons are now parallel has a low probability and is 

forbidden in quantum theory. (Lichtman and Conchello 2005) 

Individual molecules may pass to the ground state without light emission. A more often 

observed event is the light emission in the form of phosphorescence in which the electron yet 

again undergoes intersystem crossing in order to reach the ground state. The time interval 

taken up by the phosphorescence photon to undergo the forbidden transition is too long, 

making it impossible to be detected by a laser scanning microscope. The triplet state as such 

weakens the fluorescence signal due to the fact that photons are unable to rapidly cycle 

through the different energy levels. (Lichtman and Conchello 2005) 

An ubiquitous issue of fluorophores in the triplet state are photochemical reactions. One such 

reaction is the phenomenon of bleaching that causes irreversible fading of the fluorescent 

signal. Due to the long-lasting triplet state the excited electrons favour the interaction with 

other molecules. Oxygen, which itself is in the triplet state, may receive that excess energy 

exciting it into its singlet excited state. The resulting oxygen radical is highly active towards 

reaction with organic molecules causing phototoxicity of living cells or covalently binding to 

fluorophores thereby causing it to bleach. (Lichtman and Conchello 2005) (Boudreau, Wee et 

al. 2016) (Icha, Weber et al. 2017) 

 

2.1.6 The fluoroscein-5-isothiocyanate (FITC) 

The fluorescence dye fluoroscein-5-isothiocyanate is one of the most commonly used dyes 

and may be applied to a broad range of applications in biology and medicine.  It has a 
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molecular formula of C21H11NO5S and belongs to the chemical class of xanthene. (see figure 

2.6 A)) (Sabnis 2015) Fluorescein isocyanate was introduced by Coons et al. as a labelling 

antibody for tissue staining and further improved by Coons and Kaplan by conjugation to 

other proteins. (Coons 1942) (Coons and Kaplan 1950) Due to its complex synthesis, Riggs 

et al. then introduced the more stable fluorescein isothiocyanate which uses thiophosgene 

instead of the highly toxic phosgene. (Riggs, Seiwald et al. 1958)  

 

A      B 

 
Figure 2.6: Fluoroscein-5-isothiocyanate  
A) Fluorescein and its derivate fluoroscein-5-isothiocyanate (Maeda, Ishida et al. 1969) B) Absorption and 
emission spectrum (Biosciences 2018) 
 
The fluorescence properties of FITC are largely influenced by pH, time and temperature and 

are believed to be due to its carboxyl – and one of the phenol groups. (Klugerman 1965) 

While an acidic solution inhibits fluorescence by favouring the formation of a cyclic ring of 

the carboxyl group, in an alkaline environment (optimal pH ≈ 10.5) the carboxyl group 

remains in its open position, thus intensifying fluorescence. (Klugerman 1965) The maximum 

wavelength of the absorption spectrum of the dye is 490 nm that of the emission spectrum is 

525 nm. (see figure 2.6 B)) We performed experiments using PLL(20)-g[3.5]- PEG(2)/FITC 

(1mg/ml in PBS, SuSoS AG, Dübendorf, Switzerland) where approximately 4% of the PLL-

g-PEG was labelled with FITC and NeutrAvidin FITC (200ug/ml in PBS, Invitrogen, 

Carlsbad, USA). 

 

2.1.7 The sulfoindocyanine Cy3  

The sulfoindocyanine Cy3 with a molecular formula of C34H40N3BF4O4 (for the Cy3 NHS 

ester) is one of the most commonly used fluorophores in the investigation of oligonucleotides 
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due to its stability against photobleaching and the commercial availability (see figure 2.7 A)). 

As described by Harvey et al. the fluorescence behaviour and lifetime significantly depend on 

the DNA sequence. (Harvey, Perez et al. 2009) Transition of the fluorophore to the first 

exited state may result in a trans-cis isomerization and the formation of a photoisomer, thus 

decreasing fluorescence quantum yields. Remarkable is the fact that Cy3-DNA interactions 

result in an enhancement of the fluorescence efficiency and lifetime, where ssDNA 

interactions were stronger than dsDNA. (Sanborn, Connolly et al. 2007, Harvey, Perez et al. 

2009) The maximum wavelength of the absorption spectrum of the dye is 554 nm that of the 

emission spectrum is 568 nm (see figure 2.7 B)). 

 

A     B 

 
Figure 2.7: Cyanine3  
a) Cy3-5’DNA (Sanborn, Connolly et al. 2007) b) Absorption and emission spectrum (Biosciences 2018) 
 

The experiments involving Cy3 were performed with the TGTs where the fluorophore 

remained unchanged at the 5’ end of the 21 base pair oligonucleotide among the different 

tethers. TGTs were purchased from Wang et al. and are not commercially available. (Wang 

and Ha 2013)  

 

2.1.8 Image acquisition and live cell imaging 

The Olympus IX 83 inverted epifluorescence microscope and the corresponding computer 

controlled software cellSense imaging were used for the majority of the experiments. In order 

to create a physiological environment at 37°C a stage – and objective heater was required for 

live cell imaging. For epifluorescence images the microscope is equipped with a fluorescence 

lamp and specific filter cubes. Images were acquired with a 100x objective in the phase 

contrast channel or fluorescence channels (red and green). Standard exposure times were: PH 
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= 120 ms and GFP/RFP = 600 ms. For live cell imaging time intervals of 20 or 30 seconds 

were chosen in the PH channel and/or GFP/RFP channels, respectively.  

 

2.2 Preparation of washed platelets 

2.2.1 Preparation of modified Tyrode buffer 

In order to ensure a physiological setting for platelet isolation and further processing a 

modified Tyrode buffer on the basis of HEPES (Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Deutschland) was produced. HEPES is characterised by membrane impermeability, its 

stability and limited effects on biochemical reactions.  It has an acid dissociation constant of 

pKa =7,55 at 20°C with an optimal buffering capacity of pH=6,8 - 8,2. (Good, Winget et al. 

1966) 

A stock solution of Tyrode buffer 10x (1000ml Aqua bidest, 80g NaCl (Fa. VWR 

International GmbH, Darmstadt), 10,15g NaHCO3 (Fa. VWR International GmbH, 

Darmstadt) und 1,95g KCl (Fa. VWR International GmbH, Darmstadt) was prepared. Prior to 

each individual experiment the stock solution of the modified Tyrode buffer was diluted 1:10 

in distilled water. D(+)-Glucose [0,1%] (Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Deutschland) and HEPES [10mM] were added and the buffer solution titrated with 2M 

HCL(aq) to pH=6,5 and pH=7,4, respectively.  

 

2.2.2 Isolation of human and murine platelets  

Blood donors were healthy voluntary individuals at the age of 25-35 years with informed 

consent obtained priorly. All subjects did not take any medication for at least two weeks, due 

to their influential effects on platelet function. (Mustard, Kinlough-Rathbone et al. 1989) 

(Konkle 2011) (Gaertner, Ahmad et al. 2017) Both gender were equally represented and 

experimental outcome was not influenced by gender-specific differences. Blood was drawn 

from the cubital vein, after discarding 1ml, into a 5ml syringe with 1/7 Acid-Citrate-Dextrose 

(ACD). ACD has a pH=4.5 and is sodium-citrate [75mM] (Sigma-Aldrich Chemie GmbH, 

Taufkirchen), Dextrose [135mM] (Sigma-Aldrich Chemie GmbH, Taufkirchen) and citric 

acid [39mM] (Sigma-Aldrich Chemie GmbH, Taufkirchen) diluted in distilled water. Thus 

platelet aggregation is prevented firstly by the lowered pH≈6.5 of the anticoagulated blood 

and secondly by the Ca2+ chelating properties of citrate. The blood was then gently 

transferred into a 15ml Falcon, 1:1 diluted with modified Tyrode buffer pH=6,5 and finally 
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centrifuged (Eppendorf Centrifuge 5804 R Kühlzentrifuge) at 22°C, 70 x g for 35 min 

without brake to prevent platelet activation through shear forces. The resulting platelet-rich-

plasma (PRP) as a supernatant was gently pipetted into a second 15ml falcon and diluted 1/3 

with modified Tyrode buffer pH=6,5 containing 0,1% human serum albumin (HSA) (Sigma-

Aldrich Chemie GmbH, Taufkirchen) and Prostaglandin I2 (PGI2, 0,1ug/ml, Abcam). The 

second centrifugation step was performed at 22°C, 1200 x g, with brake for 10 min. 

Conclusively the platelet pellet was re-suspended in 1ml modified Tyrode’s buffer pH=6,5.  

Murine platelets were obtained from the C57BL/6 mice. Anaesthesia was initiated by placing 

the mice within a chamber to which isoflurane (Isofluran DeltaSelect,	DeltaSelect GmbH, 

Dreieich) and oxygen were feed. Due to the limited analgetic properties of isoflurane, 

fentanyl was injected intraperitoneally. (0.05 mg/kg body weight; Fentanyl-Curamed, 

CuraMED Pharma GmbH, Karlsruhe). The platelets were isolated using the protocol above 

after blood was drawn intracardially from the anesthetized mice.  

Platelets were kept at room temperature and used within 1 hour after isolation, while counts 

were obtained by an automated cell counter: final cell counts measured between 150.000 – 

200.000/µl (ABX Micros ES60, Horiba Medical) (Massberg, Brand et al. 2002) (Gaertner, 

Ahmad et al. 2017).  

 

2.3 Setup of the biomechanical microenvironment to study platelet 

function 

In order to investigate the mechanosensitive effects on platelet function in-vitro, human – and 

murine platelets, plasma cleaned glass cover slips, a specific channel systems and different 

coatings at varying piconewton values were used. The individual steps will be described in 

more detail in the following chapters. 

 

2.3.1 Surface synthesis and – properties  

2.3.1.1 Acid treatment of glass cover slips 

Prior to the plasma cleaning treatment, the glass cover slips (No. 1.5, D263T, Nexterion, 

Schott) were washed in HCO3 (20%) at RT for 1h while slowly rocking with 100 rpm/min 

(Benchmark scientific Orbi-Shaker™ JR.); subsequently rinsed with distilled water for 

another hour at RT slowly rocking 100/min and finally dried on air under a chemical bench to 

avoid contamination. This procedure ensured the removal of contaminating particles. 
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2.3.1.2  The channel system 
The channel system consists of an Ibidi sticky-Slide VI 0.4 (Ibidi Gmbh, Martinsried, 

Germany) and the plasma treated glass cover slip that are commercially purchasable. The 

sticky slide is delivered as a sterilely packed six channel bottomless slide that was manually 

cut into six individual channels and then assembled with the pre-treated glass cover slip. The 

channels are for single use only, take up a volume of 30 µL and measures a size of height x 

length x width = 0,4 mm (+0,13 mm adhesive tape) x 17mm x 3,8 mm. The 130 µm thick 

biocompatible double– faced adhesive tape seals the interface of the channel with the glass 

cover slip. The slides were immediately used for experiments after assembly, so that channel 

leakage did not represent a problem.  

The channel consists of plastic, which after assembly with the glass cover slip allows 

fluorescence - and live imaging with highest optical features.  

 

2.3.1.3 Low-pressure oxygen plasma treated glass cover slips 

The surface activation by oxygen plasma provides a homogenous and reliable electrostatic 

negative charge to which the positively charged amine groups of the PLL-g-PEG bind. 

(Kenausis, Vörös et al. 2000) The plasma is generated by continuously applying energy 

through the high frequency generator to the low-flow oxygen gas in the vacuum. Reaching a 

certain threshold negatively charged electrons will break out of the atomic structure and 

move to the anode, while positively charged ions and radicals will move to the cathode. The 

chemically reactive species will thereby react and activate the surface generating a net 

negative, homogenously distributed charge. (Liston, Martinu et al. 1993) 

The low-pressure plasma system Zepto (Diener electronic GmbH + Co. KG, Ebhausen, 

Germany) was used, consisting of a vacuum chamber with a diameter of 105 mm, a length of 

300 mm and a portable metal tray. Additional relevant components are the vacuum pump 

(rotary vane pump 3,5 m2/h), the high-frequency generator (40 kHz/100W) and the 

processing gas (oxygen). A 4 mm inlet tube supplies the O2, while the processed gas is 

sucked off via a 10 mm exhauster tube.  

The glass cover slips were placed on the tray inside the vacuum chamber (see figure 2.8 

No.1) and the vacuum generated by the rotary vane pump (see figure 2.8 No.2) until a 

pressure of 0,3 mbar was reached. The oxygen gas under low flow (see figure 2.8 No.3) was 

fed into the chamber until a working pressure of 0,35 mbar was achieved, when the generator 
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(see figure 2.8 No.4) was switched on with a power of 90 W and a time frame of 20 seconds. 

Once the time was up the generator was switched off and the processed gas sucked off via the 

exhauster tube (see figure 2.8 No.5). The slides were immediately assembled with the 

channel under the chemical bench and coating procedure succeeded. 

 
Figure 2.8: Low-pressure plasma system Zepto from Diener  
(adapted from Diener Plasma-surface-technology 2020) 

 

2.3.2 Coating Substrates 

2.3.2.1 Poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and conjugated 
biofunctional units  

The PLL-g-PEG copolymer can be purchased from SuSoS AG (SuSoS AG, Dübendorf, 

Switzerland) and consists of a PLL backbone (mol wt 20 kDa), a graft ratio (3.5 lysine-

mer/PEG side chain) and protein resistant PEG side chains (mol wt 2 kDa). The net 

negatively charged surface enables the adsorption of the cationic PLL backbone, thereby 

generating a dense aligned brush, which establishes a repellent layer for soluble particles - a 

phenomenon termed polymeric steric stabilisation. The water soluble poly non-ionic PEG 

side chains block cell-cell- and cell-surface interactions (Elbert and Hubbell 1998) (Kenausis, 

Vörös et al. 2000) 
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Different biofunctional peptides were covalently conjugated to the grafted PEG, specifically 

inducing cell-surface interactions (PLL(20)-g[3.5]- PEG(2)/PEG(3.4) - RGD (1mg/ml in 

PBS, SuSoS AG, Dübendorf, Switzerland) and PLL(20)-g[3.5]- PEG(2)/PEG(3.4) – 

LGGAKQAGDV (1mg/ml in PBS, custom peptide, SuSoS AG, Dübendorf, Switzerland)) or 

enabling further coating procedures (PLL(20)-g[3.5]- PEG(2)/PEG(3.4)- biotin (50%) 

(1mg/ml in PBS, SuSoS AG, Dübendorf, Switzerland)). (Pierschbacher et al., 1984a) 

(VandeVondele et al., 2003) The desired surface density of the biofunctional peptides was 

given as a percentage 5%, 10%, 15%, 25%, 50%, 75% or 100% with the remaining fraction 

being PLL-g-PEG. The surfaces were incubated for 30 min at RT, while slowly rocking with 

60 rpm/min and then thoroughly rinsed with PBS for three times. While the PLL-g-PEG-

RGD or PLL-g-PEG-LGGAKQAGDV were then seeded with cells, the PLL-g-PEG-Biotin 

was incubated with either NeutrAvidin (200ug/ml in PBS, Invitrogen, Carlsbad, USA) or 

NeutrAvidin-FITC (200ug/ml in PBS, Invitrogen, Carlsbad, USA) for 30 min at RT while 

slowly rocking 60 rpm/min and rinsed with PBS for three times.  

The last coating step includes different substrates specifically binding certain integrin classes. 

All substrates contain a biotin tag that binds the NeutrAvidin and were incubated for 30 min 

at RT, while slowly rocking with 60 rpm/min. The cyclo RGDfk  [Arg-Gly-Asp-D-Phe-

Lys(Biotin-PEG-PEG)] (0,1µM in ddH2O, Peptides International, Louisville, USA) contains 

two PEG spacer between the biotin tag in order to avoid unspecific binding and selectively 

targets the αIIbβ3 Integrin. A more sophisticated system consists of the biotin tag, the 

covalently bound cRGDfK and a 21bp double stranded DNA in between generating a model 

with differing rupture forces determined through DNA geometrics – this will be described in 

more detail below. The linear RGD (H-RGDfk(PEG-PEG-Biotin)-OH) (1mM in ddH2O, 

Custom Peptide, ENZO life sciences GMBH, Lörrach, Germany) specifically bind the αvβIII 

as well as the αIIbβ3. (Ruoslahti 1996) 

 

2.3.2.2 The 21 base pair DNA-based Tension Gauge Tether (TGT) 

In order to investigate the mechanosensitive effects of molecular forces on integrin signalling 

a DNA based tethering system initially described by Wang et al. was used. (Wang and Ha 

2013) The base pair sequence of the upper single-stranded DNA consists of: 5- /5Cy3/CAC 

AGC ACG GAG GCA CGA CAC /3ThioMC3-D/ -3 in which Cy3 is the fluorophore, the 

cRGDfK is the substrate targeting αIIbβ3 and is covalently conjugated to the 3’ end of the 
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DNA strand. The spatial distribution of all compounds remained unchanged in the upper 

ssDNA strand between different tethers.  

The complementary ssDNA is 5-GTG TCG TGC CTC CGT GCT GTG-3 contains a biotin 

tag at varying positions determining the tension tolerance=Ttol. (see figure 2.9) 

 

 A           B 

 
 C           D 

 
 E 

 
Figure 2.9: Architecture of the tension gauge tether 
The position of the biotin tag in the lower DNA strand is responsible for the tuneable tension tolerance, while 
the upper DNA strand remains unchanged among the different tethers. (adapted from (Wang, Sun et al. 2015)) 
 

This tension force was measured via a constant force applied by magnetic tweezers and 

defined as “the lowest force that ruptures the DNA within 2 seconds if the force is applied at 

a constant level.” (Wang and Ha 2013) 

The force applied to the varying positions of the biotin tag determines the DNA geometrical 

behaviour and results in three different modi: an unzipping-, an intermediate- and a shear 

mode. (see figure 2.10) 
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Figure 2.10: DNA geometry - determining different modi depending on the force applied 
The coloured base pairs contribute to the Ttol, while the remaining base pairs are independent of rupture force. 
(adapted from (Wang and Ha 2013)) 
 

In our experiments we used five different TGTs with Ttol values of 12-, 23-, 33-, 43- and 

55pN in which the DNA length, base pair sequence and thermal stability remained 

unchanged among the different tethers. The force that has to be overcome to rupture the 

tether is much smaller than the NeutrAvidin bond (~ 160pN). (Moy, Florin et al. 1994) 

The tension applied through the ligand-receptor engagement is the fundamental step for the 

tethering system. While a tension exceeding Ttol, ruptures the tether and abolishes signal 

activation, a molecular tension smaller than Ttol will endure and activate down stream 

signalling. Ligand and receptor density do not influence cell adhesion behaviour since each 

ligand is conjugated to an individual tether.  

The surfaces were incubated with the TGTs (0,1 µM in PBS – custom synthesis provided by 

Wang et al.) for 30 min while slowly rocking with 60 rpm/min, thoroughly rinsed with PBS 

for three times and the cells plated on.  

 

2.4 Flow cytometry 

Plasma activators and divalent cations induce variable intracellular trafficking pathways 

leading to degranulation and the expression of surface receptors on the plasma membrane. 

These effects on platelet function can be detected using flow cytometry. This technology 

measures and analyses how cells scatter incident laser light and emit fluorescence as they 

flow in a fluid stream. The side scatter detector gives information about the granularity of a 

cell, while the forward scatter detector measures cell size. (see figure 2.11) (Herzenberg, 

Sweet et al. 1976) (Perfetto, Chattopadhyay et al. 2004) (O'Neill, Aghaeepour et al. 2013)  

  Tension	
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Figure 2.11: Basic principle of flow cytometry (O'Neill, Aghaeepour et al. 2013) 
 

The experiments were performed to identify platelets (CD 42b-APC (BioLegend, San Diego, 

USA)) and measure the percentage of integrin αIIbβ3 activation (FITC Mouse Anti-Human 

PAC-1 (BD Biosciences, San Jose, USA)) as well as p-selectin (PE anti-human CD62P 

(BioLegend, San Diego, USA)) expression after degranulation.  

Washed platelets were activated either with ADP and TXA2 or Thrombin for 2 min. 

Following PAC-1 FITC as well as CD62P PE were added for 20 min at room temperature. 

Cells were then fixated with 4% PFA and CD 42b-APC added for 20 min at room 

temperature.  The experiments were immediately performed.  

The Beckman Coulter Gallios 3 Laser/10 colours bench-top flow cytometer was used to carry 

out the above mentioned experiments.  

 

2.5 Pharmacological inhibition  

The Myosin IIa inhibition was performed by incubating washed platelets with 50 µM 

Blebbistatin (-) (Cayman chemicals, Michigan, USA) in modified Tyrode buffer pH=7,4 for 

30 min at RT. Platelets were then activated in solution and immediately plated onto the 

different coatings. Blebbistatin (+) (Cayman chemicals, Michigan, USA) acted as a negative 

control.  
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The Piezo I inhibition was performed by activating washed platelets and instantly adding 10 

µM of GsMTx-4 (244 µM in H2O, Bio-Techne GmbH, Wiesbaden-Nordenstadt, Germany) 

before the cells were plated onto the different coatings.  

 

2.6 Data analysis 

Platelet morphology, cell counts and function (adherence, spreading and migration) were 

manually evaluated and obtained by the advanced image processing program FIJI. 

(Schindelin, Arganda-Carreras et al. 2012) (Meijering, Dzyubachyk et al. 2012) Cell counts 

were obtained as absolute numbers, while spreading and migrating platelets were calculated 

as a percentage of adherent cells. Platelets with a solid lamellipodia were considered spread, 

while cells traveling a distance ≥ 1 cell diameter were considered as migrating. The migration 

distance was measured in µm using the FIJI software plugin “Manual tracking” in phase 

contrast videos, where the pseudonucleus served as a morphological landmark; each 

individual platelet was tracked manually. Alternatively phase contrast/fluorescent images 

were combined and the distance drawn by a segmented line. The FIJI software creates a value 

for each individual line/track that can then be used for further analysis.  

In order to be able to analyse the impact of substrate architecture on cell morphology we 

performed the shape analysis of adherent platelets (spread and non-spread) by using the 

“celltool” software package. (Pincus and Theriot 2007) All cells from phase contrast images 

at magnification 100x were taken into consideration without prior shape preselection. 

Individual cells were manually masked and the image then converted into a 8-bit binary 

image using the FIJI software, in which all pixels of the cell had the intensity value=0, 

whereas all other pixels were set at intensity value = 255. The absolute numerical values of 

the binary image play a subordinate role, while the importance lies in the difference between 

the in- and outside the cell. (Schindelin, Arganda-Carreras et al. 2012) Contours were 

extracted from the binary mask. To ensure a more precise alignment, the pseudonucleus of 

each individual platelet was set as a well recognisable landmark – using the FIJI software, the 

pseudonucleus was manually marked and subsequently extracted to another set of binary 

images. By overlaying the extracted contour with the landmark to which an algorithm based 

on Procrustes analysis was applied, cells were optimally aligned using corresponding points. 

The alignment of each analysed set was manually verified. The aligned cells were further 

processed and principal component analysis, scaled by the standard deviation was performed 
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through which principal shape modes of shape variation could be measured. The different 

measured shape modes from the PCA included: (1) Area in mm2 (mode 1) and (2) Aspect 

Ratio = long axis/short axis (mode 2). (Pincus and Theriot 2007) (Gaertner, Ahmad et al. 

2017) 

  

2.7 Statistics 

The statistical analysis and the graphical illustrations were created using the statistic software 

“GraphPad Prism, Version 6.0c”. Throughout all experiments two statistical tests were used, 

depending on normal distribution: the Wilcoxon-Mann-Whitney-Test or an unpaired t-test. 

The Wilcoxon-Mann-Whitney-Test was used to test two independent variables – for example 

migration with and without an external integrin activation. This non-parametric test only 

requires an ordinal data set and can be applied if the requirements for a t-test are not given 

(for example normal distribution). However the Wilcoxon-Mann-Whitney-Test requires 

observations > 4 to receive a p-value <0.05. (Bland and Altman 2009)  

An unpaired t-test was applied to compare velocities of individual cells. This statistical test 

investigates the mean values of two independent variables assuming normal distribution even 

in small sample sizes. A p-value of < 0,05 of the statistical test was considered significant 

revealing a difference between the groups.   

The null hypothesis stating that there was no significant difference between the groups could 

be rejected with a probability of ≥ 0,95.  
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3  Results 
 
In an approach to investigate single molecular forces promoting mechanical signalling via 

integrins, Wang et. al introduced a DNA-based tethering system with tuneable tension 

tolerances and described that Chinese hamster ovary cells (CHO-K1) applied an universal 

peak tension of ~ 40 pN to single integrin-ligand bonds during initial adhesion. (Wang and 

Ha 2013) Based on this model we interrogated human – and murine platelets to investigate 

the influence of the biophysical microenvironment on platelet function.  

 

3.1 A precise assay to investigate platelet mechanobiology 

 

By using variable protein constructs, the experimental setup allowed to selectively control 

ligand densities and ligand mechanical resistance. In order to determine the accuracy of 

ligand densities at varying concentrations the fluorescence intensity of various ratios of 

unlabelled PLL-g-PEG and PLL-g-PEG-FITC/NeutrAvidin-FITC were investigated (see 

figure 3.1.1A) and B))  

 

A        B 

  
Figure 3.1.1: The effect of ligand density on fluorescence intensity 
A) PLL-g-PEG-FITC at concentrations 1%, 10% and 99% with PLL-g-PEG. The results follow a typical log 
based exponential increase with increasing ligand density. B) PLL-g-PEG-Biotin-NeutrAvidin-FITC with PLL-
g-PEG at varying concentrations (in per cent). Depicted is the effect on fluorescence intensity at fine tuneable 
ligand densities. Results from three and four independent experiments, respectively and their mean. * = p < 
0.05. 
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The results clearly elucidate that ligand density can be precisely tuned and even small 

variances have a large effect on fluorescence intensity. This fundamental finding is an 

important tool to probe the effects of ligand density on platelet behaviour.   

In order to outline the blocking properties of the water-soluble poly non-ionic PEG side 

chains, platelets were then seeded on untreated glass cover slips and PLL-g-PEG coated 

surfaces with a ligand density of 100%. The platelets readily adhered and more than 90 % 

spread on the untreated glass cover slips, while only a small percentage of platelets adhered 

on the PLL-g-PEG coated surfaces and none of them spread. Since spreading and consecutive 

polarization is required in order to promote migration the small percentage of adherent cells 

on the PLL-g-PEG coated surfaces were considered neglectable for further migration 

experiments (see figure 3.1.2).  

 

A           B 

  
Figure 3.1.2: The effect of platelet function on untreated glass surfaces and PLL-g-PEG coated surfaces 
A) The adherence of platelets assessed by absolute cell counts was reduced on PLL-g-PEG coated surfaces. B) 
Considerable difference in the spreading behaviour, where no platelets spread on the PLL-g-PEG coated 
surfaces. Depicted are three independent experiments and their mean. * = p < 0.05.  
 

As to this point our assay allowed to precisely control ligand density and excluded that 

platelets would migrate on PLL-g-PEG coated surfaces. Platelet activation levels differ 

among activators and the encountered substrate – the following experiments gave insights of 

differing activation levels and its effects on substrate-coated surfaces.  
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3.2 The effect of plasma activators and divalent cations on platelet 

function 

 
At sites of vascular injury or inflammation, platelets are exposed to a myriad of plasma 

activators and divalent cations essential for platelet activation. These induce variable 

intracellular trafficking pathways and consecutive expression of surface receptors. The 

following experiments were performed to subdivide and quantify these effects via 

fluorescence-activated cell sorting.  

 
Figure 3.2.1: The effect of activators and divalent cations on the integrin activation and P-Selectin 
expression 
Platelets were activated with ADP and TXA2 excluding the unactivated - and thrombin group. Mn2+ significantly 
induced the strongest integrin activation while thrombin triggered the strongest P-Selectin expression. Depicted 
are five independent experiments and their mean. * = p < 0.05.  
 
The data in figure 3.2.1 show that integrin activation was strongest with Manganese – this is 

due to the fact that Manganese directly binds the extracellular domain of the integrin thereby 

inducing a conformational change into the active state. (Xiong, 2002) Thrombin in turn 

induces the strongest degranulation of intracellular alpha – and dense granules – the 

coalescence of granules with the plasma membrane leads to the expression of P-Selectin. 

Although degranulation leads to an increase of integrin receptors on the plasma membrane, 
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the overall integrin activation only merely differs among the different groups (excluding 

external integrin activation by Manganese).  

 

Based on the above-mentioned results, further experiments were performed by using 

physiological conditions of Ca2+ and Mg2 with platelet activation through ADP and TXA2. In 

order to investigate the ligand integrin interaction platelets were firstly seeded onto varying 

concentrations of PLL-g-PEG-Biotin - NA-FITC - Biotin-cRGD (see figure 3.2.2).  

Platelets have to overcome a force of ~ 160 pN to break the bond between the NeutrAvidin-

FITC and the Biotin-cRGD in order to promote spreading and consecutive migration. (Moy, 

Florin et al. 1994) As evidenced by these experiments a ligand density of 10% was most 

favourable in promoting migration with physiological concentrations of 1mM Ca2+ and 1mM 

Mg2+.  

 
Figure 3.2.2: The effect of varying concentrations of PLL-g-PEG-Biotin-NA-FITC-Biotin-cRGD with 
physiological concentrations of Ca2+ and Mg2+ 1 mM on platelet migration. 
Depicted are three independent experiments and their mean. * = p < 0.05.  
 

The results also show that a ligand density of 5% Biotin-cRGD is too low to trigger migration 

and might be explained by the fact that a certain mechanosensitive threshold was not reached. 

However, a ligand density of 100% Biotin-cRGD is too high, where the platelets are unable 

to remove the substrate from the surface and firmly attach to the ligand. Thus platelet 

migration is only observed, if the ligand can be removed by the platelet which is consistent 

with the data published by Gärtner et al.. (Gaertner, Ahmad et al. 2017) 

 

In order to translate the FACS experiment onto the PLL-g-PEG-Biotin -NA-FITC - Biotin-

cRGD 10% surfaces, the influence of activators and different divalent cations was then 
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investigated (see figure 3.2.3). Ca2+ is required for many intra - and extracellular processes 

and links the integrins to the cytoskeletal machinery (particularly myosin activation) – in its 

absence there is only little migration observed.  

The results underline the essential role of Ca2+ for platelet migration and also show that even 

thrombin, as the most potent platelet activator, did not enhance migration. Thus, the 

activation level of the platelet can be excluded as a limiting factor for migration in our assay; 

emphasis may be stressed on the ligand-integrin interaction and the central role of Ca2+ 

participating in a broad range of processes.  

 
Figure 3.2.3:The effect of activators and divalent cations on migration on PLL-g-PEG-Biotin-NA-FITC-
Biotin-cRGD 10% 
The Ca2+ cation plays an important role for platelet migration. Thrombin as the most potent platelet activator did 
not enhance migration in relation to the other groups. Depicted are five independent experiments and their 
mean. * = p < 0.05. 
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3.3 Platelet function on low ligand densities 

By identifying PLL-g-PEG-Biotin - NA-FITC - Biotin-cRGD 10% as the ideal concentration 

to promote migration, the effect whether external integrin stimulation with Mn2+ would alter 

platelet force was investigated. While Mn2+ did not alter the spreading behaviour, migration 

was significantly reduced (see figure 3.3.1).  

One possible approach to explain this phenomenon would be the percentage of activated 

integrins by physiological activators versus the external integrin stimulation with Mn2+. This 

would lead to the condition in which the majority of integrins on the platelet membrane with 

an external integrin activation remain in the ligand-integrin interaction. Consequently, the 

threshold and the required force to remove the ligand from the surface would increase. (Oria, 

Wiegand et al. 2017) Another approach is the spatial distribution of force on the plasma 

membrane – the peripheral zone seems to exert greater traction force than the central zone, 

where the pseudonucleus resides. (Wang, Sun et al. 2015) 

 
A       B 

 
Figure 3.3.1: Platelet function on PLL-g-PEG-Biotin-NA-FITC-Biotin-cRGD 10% with physiological 
concentrations of Ca2+ and Mg2+ 1 mM and exogenous integrin activation with Mn2+ 200 µM.  
A) Spreading is not influenced by externally activating the integrins B) The external integrin activation 
significantly diminishes platelet migration. Depicted are five independent experiments and their mean. * = p < 
0.05. 
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Figure 3.3.2: Representative images of platelet migration on PLL-g-PEG-Biotin-NA-FITC-Biotin-cRGD 
10% with physiological concentrations of Ca2+ and Mg2+ 1 mM and external integrin activation with Mn2+ 

200 µM.  
Two images taken by the Olympus IX 83 with a 100x objective in the green fluorescence protein (GFP) channel 
(exposure time: 600 ms), after 60 min incubation at 37°C. Visible is the significantly reduced migration. 
Scalebar = 10 µm 
 
This led to the question of whether the external integrin activation would alter platelet 

function on ligand densities ≤ 5%. Platelets that were physiologically stimulated neither 

spread nor migrated. Interestingly the percentage of spreading - and migrating platelets was 

considerably increased on PLL-g-PEG-Biotin - NA-FITC - Biotin-cRGD 5% with Mn2+. This 

supports our hypothesis that the mechanosensitive forces transmitted via the integrin play a 

fundamental role in influencing spreading – and migration behaviour (see figure 3.3.3).  

An approach to explain this phenomenon would be that under physiological conditions, the 

reduced spatial ligand distribution is not sufficient to trigger spreading and consecutive 

migration. With an external integrin activation the majority of integrins is in contact with a 

ligand, thereby increasing the cumulative force on the substrate – platelets are able to 

overcome ligand resistance, thereby leading to migration.   
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Ca2+	+	Mg2+	1mM	
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Figure 3.3.3: Human platelet function on PLL-g-PEG-Biotin - NA-FITC - Biotin-cRGD 5% with 
physiological concentrations of Ca2+ and Mg2+ 1 mM and external integrin activation with Mn2+  200 µM.  
The external integrin activation considerably alters platelet function. Depicted are three independent 
experiments and their mean. * = p < 0.05. 
 

Next the murine platelet function on theses coatings was investigated, considering the 

migratory behaviour of human platelets. When comparing platelets from these two species, 

migration is considerably different. On PLL-g-PEG-Biotin - NA-FITC - Biotin-cRGD 5% 

human platelets do not spread nor migrate - murine platelets however, spread and migrate 

under physiological conditions. This may be explained by the phenomenon that murine 

platelets have less force, thus resulting in a lower tension threshold to trigger migration. This 

is consolidated by the fact that the addition of Mn2+ to murine platelets on PLL-g-PEG-Biotin 

- NA-FITC - Biotin-cRGD 5% leads to the abolishment of migration due to the firm 

attachment of the ligand-integrin interaction.  
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A          B  

 
Figure 3.3.4: Murine platelet function on PLL-g-PEG-Biotin - NA-FITC - Biotin-cRGD 5% with 
physiological concentrations of Ca2+ 1 mM and external integrin activation with Mn2+ 200 µM, 
respectively.  
Murine platelet function is considerably different from human platelet function. A) Murine platelets readily 
spread and migrate under physiological conditions. B) An external integrin activation completely ceases 
migration. A) Depicted are three independent experiments and their mean. B) Individual platelets and their 
migration distance in µm from two independent experiments * = p < 0.05. 
 

3.4 Platelet function on high-tension tolerance - PLL-g-PEG-RGD  

To investigate if human platelet function would be altered when the substrate is firmly 

attached to the surface, platelets were seeded onto PLL-g-PEG-RGD 10%. The attachment of 

the ligand to the surface exceeds the highest possible force generated by a single molecular 

force of a platelet. While platelets were able to fully spread under both conditions, there was 

no migration observed, due to the fact that the platelets were not able to remove the ligand 

from the surface.  
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Figure 3.4.1: Human platelet function on PLL-g-PEG-RGD 10% with physiological concentrations of 
Ca2+ and Mg2+ 1 mM and external integrin stimulation with Mn2+ 200 µM.  
While platelets spread under both conditions, migration is completely abolished due to the fact that platelets 
cannot remove the substrate from the surface. Depicted are five independent experiments and their mean. * = p 
< 0.05. 
 
This led to the approach of whether the platelets would be able to migrate upon encountering 

removable PLL-g-PEG-Biotin - NA-FITC - Biotin-RGD 10 % on the surface. Spreading 

under physiological conditions was reduced in - Biotin-RGD 10 % and the platelets were not 

able to migrate. However, platelets were able to remove the - Biotin-RGD 10 % from the 

surface with an external integrin activation.  

 

 
Figure 3.4.2: Comparison of  human platelet function on PLL-g-PEG-Biotin - NA-FITC - Biotin-cRGD 10 
% and PLL-g-PEG-Biotin - NA-FITC - Biotin-RGD 10%.  
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Interestingly ligand entity considerably alters mechanosensitive signalling among two ligands with the same 
tension threshold. While platelets are able to migrate on PLL-g-PEG-Biotin - NA-FITC - Biotin-cRGD 10 % 
under physiological conditions, an external integrin activation is required on PLL-g-PEG-Biotin - NA-FITC - 
Biotin-RGD 10%. Depicted are three independent experiments and their mean. * = p < 0.05. 
 
The results suggest that although the force among these two experiments depicted in figure 

3.4.2 remained the same, the mechanosensitive response by the ligand-integrin interaction 

considerably alters platelet function. Furthermore, it is evident that the – Biotin - cRGD 

specifically targeting the αIIbβ3 integrin induces a stronger integrin activation.  

 

3.5 Platelet function on the tension gauge tether 

3.5.1 Human platelet mechanobiology on the tension gauge tethering system – a 

tension threshold ≥ 55pN is required to alter platelet function 

 
Human - and murine platelets were investigated on PLL-g-PEG-Biotin – NeutrAvidin – 

Biotin-TGT-cRGD 10 % with tension tolerances of 12pN, 23pN, 33pN, 43pN and 55pN. The 

PLL-g-PEG-Biotin – NA-FITC – Biotin-cRGD 10 % with the tension tolerance of 160pN was 

identified as an ideal ligand to promote spreading and migration under physiological 

conditions and acted as a control in all experiments.  

Gaertner et al. outlined the mechanism in which platelets adhere to a substrate, spread by 

forming filopodia and lamellipodia, polarize by adapting a half-moon shape and 

unidirectionally migrated by removing the ligand from the surface. (Gaertner, Ahmad et al. 

2017) The results depicted in figure 3.5.1.1 show that under physiological conditions platelets 

require a tension tolerance > 55pN in order to spread and promote migration. This 

phenomenon can be overcome by externally activating the integrin by which platelet function 

can be significantly altered. While the spreading behaviour was only considerably increased 

for ≥ 55pN, migration showed a significantly gradually increasing trend from 12pN to 55pN 

and was completely abolished at 160pN.  

These results also underline the fine tuneable differences in force and the considerable impact 

on platelet function.   
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Figure 3.5.1.1 Human platelet mechanobiology on PLL-g-PEG-Biotin - NA - Biotin-TGT-cRGD 10 % and 
the control PLL-g-PEG-Biotin - NA-FITC - Biotin-cRGD 10 %.  
Spreading behaviour was significantly increased by external integrin activation at a tension threshold of ≥ 55pN. 
Interestingly physiological conditions are only able to promote migration at a force ≥160pN while the 
mechanosensitive stimulus regulating intracellular downstream signaling is shifted to lower tension thresholds 
with an external integrin activation. Depicted are seven independent experiments and their mean. * = p < 0.05. 
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Figure 3.5.1.2:Human platelet mechanobiology on PLL-g-PEG-Biotin - NA - Biotin-TGT-cRGD 10 % and 
the control PLL-g-PEG-Biotin - NA-FITC - Biotin-cRGD 10 % under physiological conditions of Ca2+ 1mM 
and Mg2+ 1mM.  
Clearly evident is the reduced percentage of adherent cells on lower TGTs and the fact that a tension threshold 
of > 55pN is required for platelet spreading. Visible are scattered lamellipodia from ≥ 43pN. Although the 
ligand is removed from the surface the tension threshold to preserve permanent spreading is not reached. By 
visibly comparing the area of removed substrate it seems that the platelets spread at an early time point on 55pN 
which is revealed when live imaging these cells. Images taken by the Olympus IX 83 with a 100x objective in 
the RFP/GFP channel after 60 min incubation at 37°C. A) PLL-g-PEG-Biotin - NA - Biotin-12pN-cRGD 10 % 
B) PLL-g-PEG-Biotin - NA - Biotin-23pN-cRGD 10 % C) PLL-g-PEG-Biotin - NA - Biotin-33pN-cRGD 10 % 
D) PLL-g-PEG-Biotin - NA - Biotin-43pN-cRGD 10 % E) PLL-g-PEG-Biotin - NA - Biotin-55pN-cRGD 10 % 
F) PLL-g-PEG-Biotin – NA-FITC - Biotin-cRGD 10 %. Scale bar = 10 µm 
 
PH – 1min       PH – 3min           PH – 5min 
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RFP – 1min       RFP – 3min           RFP – 5min 

 
PH – 10min       PH – 20min           PH – 40min 

 
RFP – 10min       RFP – 20min           RFP – 40min 

 
 
Figure 3.5.1.3: Live imaging of human platelets and investigating mechanobiology on PLL-g-PEG-Biotin - 
NA - Biotin-55pN-cRGD 10 % under physiological conditions of Ca2+ 1mM and Mg2+ 1mM.  
Time lapse depicting six individual images taken at 1,3,5,10,20 and 40 min in the phase contrast (PH) and red 
fluorescence channel (Fluorophore Cy3) simultaneously while incubated at 37°C. Spreading is clearly evident 
during the first five minutes, where platelets remove the ligand from the surface, the force however is not 
sufficient to trigger integrin-mediated downstream signaling. Thus the tension threshold to preserve permanent 
spreading – and promote migratory behaviour is > 55pN. The yellow arrow indicates an individual platelet with 
the temporary formation of protrusions/lamellipodia. Scale bar = 10 µm. 
 
As depicted by figure 3.5.1.3 platelets gradually remove more ligand from the surface with 

increasing tension tolerance under physiological conditions. There seems to be a close 

correlation between the mechanical probing of the ligand-integrin interaction and the removal 

of substrate from the surface. Hypothetically there might be an additional recruitment of 

integrins to evolving filo- and lamellipodia. While platelets removed the ligand from the 

surface and initially even fully spread on 55pN, the threshold to preserve the lamellipodia 

failed to be reached.  
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It is evident from the results that spreading is observed at an early time point after platelet 

adherence and platelets mechanically probe their microenvironment – however further 

downstream signaling is required in order preserve permanent filo- and lamellipodia.  

This is an interesting finding by which platelets are initially able to fully spread on 55pN and 

nonetheless require an additional fine tuneable mechanical trigger in order to be able migrate.  

This phenomenon can be actively overcome by an external integrin activation. 
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Figure 3.5.1.4: Human platelet mechanobiology on PLL-g-PEG-Biotin - NA - Biotin-TGT-cRGD 10 % and 
the control PLL-g-PEG-Biotin - NA-FITC - Biotin-cRGD 10 % with integrin activation by Mn2+ 200 µM.  
Clearly evident is the fact that a tension threshold of > 55pN is required for permanent platelet spreading. 
Interestingly locomotion can already be observed at 12pN although up until a tension threshold of 43pN the 
platelets follow are random migratory pattern. Due to the fact that platelets on low tension tolerances only form 
temporary protrusions and fail to polarize in the direction of migration, the ligand is only unequally removed 
from the surface. At 55pN the majority of platelets spread, polarized and significantly migrated by fully 
removing the substrate from the surface. Noticeable is that migration length increases up until 55pN where 
platelets apply enough mechanical force to remove the ligand from the surface, whereas at 160pN the ligand-
integrin interaction and platelets remain in a sessile condition. Images taken by the Olympus IX 83 with a 100x 
objective in the PH/RFP/GFP channel after 60 min incubation at 37°C. A) PLL-g-PEG-Biotin - NA - Biotin-
12pN-cRGD 10 % B) PLL-g-PEG-Biotin - NA - Biotin-23pN-cRGD 10 % C) PLL-g-PEG-Biotin - NA - Biotin-
33pN-cRGD 10 % D) PLL-g-PEG-Biotin - NA - Biotin-43pN-cRGD 10 % E) PLL-g-PEG-Biotin - NA - Biotin-
55pN-cRGD 10 % F) PLL-g-PEG-Biotin – NA-FITC - Biotin-cRGD 10 %. Scale bar = 10 µm 
 
Clearly evident from these results is the fact that platelet mechanobiology significantly 

depends on the force transmitted via the ligand-integrin interaction and that the percentage of 

integrins in the high affinity state may play a central role for the downstream response. The 

results in figure 3.5.1.4 D suggest however that a fully spread platelet is not necessarily 

needed for migration. By analysing the migratory pattern on low tension tolerances ≤ 43pN it 

seems that platelets form temporary filopodia and lamellipodia when migrating. However, 

migration is only observed in the presences of these protrusions thus playing a fundamental 

role in promoting migration. While Gaertner et al. observed polarization in the direction of 

locomotion, platelets followed a rather random migratory pattern on the low tension 

tolerances ≤ 43pN in which the protrusion pointed in the direction of migration. (Gaertner, 

Ahmad et al. 2017) This might be explained by the mechanosensitive force transmitted 

through the ligand-integrin interaction resulting in decreased intracellular signalling in which 

the threshold for permanent spreading and unidirectional locomotion is not reached.  
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To summarize the findings of platelet function on the tension gauge tethering system it is 

important to stress that platelet spreading requires a force greater ≥ 55pN under physiological 

conditions, while the activated integrins can significantly enhance lamellipodia formation. 

Under physiological conditions platelets bind to the substrate probing their mechanical 

environment via the integrin and platelet migration fundamentally depends on mechanical or 

external integrin activation. Even a fully spread platelet that is already able to remove ligand 

from the surface needs an additional trigger to induce downstream signalling that will result 

in the formation of permanent lamellipodia, polarization and unidirectional migration. 

However, platelet migration was also observed in the presence of temporary protrusion, yet 

following a different migratory pattern. Thus, these results outline that platelet migration is a 

condition in which platelets interact with their microenvironment, but an additional 

mechanical stimulus initiates downstream signalling.  

 

 

3.5.2 Murine platelet mechanobiology on the tension gauge tethering system  

Following murine platelets were seeded on the tension gauge tether and their 

mechanobiology investigated. The data show a gradually increasing trend of adherent 

platelets from 33pN - 160pN that can further be enhanced by external integrin activation. The 

migratory behaviour of murine platelets almost mirrors that of human platelets. The most 

evident difference in promoting migration is at 43pN for murine platelets. Less force and the 

smaller size of the murine platelets might explain this phenomenon.   
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A       B 
 

 
Figure 3.5.2.1: Murine platelet function on PLL-g-PEG-Biotin - NA - Biotin-TGT-cRGD 10 % and PLL-g-
PEG-Biotin - NA-FITC - Biotin-cRGD 10%.  
A) Platelet cell counts B) Migration in per cent of adherent cells. A considerable difference to human platelets is 
that the optimal tension tolerance is at 43pN. Depicted are three independent experiments and their mean. * = p 
< 0.05. 
 
 

3.6 The influence of pharmacologically inhibiting the contractile 

machinery of human platelets  

The synergy of the mechanosensitive probing via the integrin and the formation of protrusion 

through the cytoskeletal machinery led to the question of how platelets would react when 

pharmacologically inhibiting the contractile component: myosin IIa. 

Due to the close collaboration of the integrin as a mechanical membrane receptor and the 

contractile apparatus, platelet function was investigated by pharmacologically inhibiting the 

mysion IIa with Blebbistatin. The two main cytoskeletal proteins, actin and myosin, not only 

preserve the cells surface tension, but also fundamentally influence the formation of 

protrusions. The leading edge of a migrating platelet is mainly depended on actin-

polymerization linked to cell-matrix-adhesion-assembly, while the trailing edge is 

characterised by myosin IIa-mediated contraction and adhesion-disassembly. (Gaertner, 

Ahmad et al. 2017) The precise coordination of both processes allows the platelet to generate 

traction force and unidirectional locomotion, while the intracellular repetitive sequences 

where shown to determine migration speed. (Palecek, Loftus et al. 1997) (Gupton and 

Waterman-Storer 2006) (Yam, Wilson et al. 2007) (Lämmermann, Bader et al. 2008)  
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Hypothetically platelets with a myosin IIa inhibition have reduced force and adapt a flatter 

cell shape, due to reduced overall surface tension. The results show that spreading was only 

significantly altered on 43pN while the rest of the groups only showed a minor shape change. 

This is clearly evident by the increased area shown in figure 3.6 D) on intermediate – and 

low-tension tolerances.  Migration was significantly abolished on high-tension surfaces. This 

is due to the fact that platelets lack the force that is normally applied via the interplay of 

integrin with the actomyosin network. Alternate intracellular signalling pathways and the 

predominant role of actin as driving force of locomotion – when silencing myosin – promote 

migration at a tension threshold of 43pN. On low-tension tolerances, even the different shape 

configuration does not significantly alter platelet migration behaviour. Of particular interest 

is the migration velocity – while clearly evident that the inhibition of the myosin machinery 

results in slower locomotion on intermediate – and high-tension tolerances, the migration on 

low-tension tolerance (23pN, but not 12pN) takes place in a myosin IIa independent manner.  
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Figure 3.6: Pharmacological inhibition of myosin IIa by Blebbistatin.  
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A) Spreading in per cent of adherent cells, depicting a significant difference on intermediate tension tolerances. 
B) Migration in per cent of adherent cells. Migration was significantly abolished on high tension tolerances, 
indicating that the force generated is dependent on myosin IIa contraction. Interestingly at a tension threshold of 
43pN the generated force is myosin IIa independent. Depicted are five independent experiments and their mean. 
* = p < 0.05 ** p = < 0.01  
C) Migration velocity. With decreasing tension tolerance for intermediate - and high tension tolerances, the 
migration velocity increases among both groups. On low tension tolerances, migration occurs in a myosin IIa 
independent manner. Depicted are individual cells and their mean. (12pN-B(+) n=0, B(-) n=0; 23pN-B(+) n=0, 
B(-) n=19; 43pN-B(+) n=36, B(-) n=33; 55pN-B(+) n=39, B(-) n=4; 160pN-B(+) n=175, B(-) n=0) **** = p < 
0.0001 
D) Depicted is the influence of myosin IIa inhibition on the area  
E) Depicted is the influence of myosin IIa inhibition on the aspect ratio 
 
 
 

3.7 Pharmacological blockage of the mechanosensitive channels Piezo1 of 

human platelets  

Platelet mechanotransduction depends on mechanosensitive transmembrane ion channels 

regulating rapid cationic fluxes. (Coste, Xiao et al. 2012) One such mechanosensitive channel 

found in platelets is Piezo1 and predominantly regulates Ca2+ permeability. As priorly 

described Ca2+ influx plays a pivotal role for platelet function and spreading; in its absence 

however, migration completely abolishes.  

A principle approach to study channel activity is the use of inhibitors - the peptide GsMTx4 

(Grammostola spatulata mechanotoxin 4) selectively inhibits Piezo1. (Bae, Sachs et al. 2011) 

Therefore we investigated human platelets on PLL-g-PEG-Biotin - NA - Biotin-TGT-cRGD 

10 % and PLL-g-PEG-Biotin - NA-FITC - Biotin-cRGD 10% and its effects on the selective 

blockage of the Pieszo I channel. 

As evident from figure 3.7A) spreading is merely influenced, however migration is 

significantly reduced among all groups (see figure 3.7 B)). Apart from the mechanosensitive 

cation channel Piezo1, platelets also carry ATP-gated P2X1, the transient receptor potential 

ion channel 6 (TRPC6) as well as the store-operated calcium entry via Stim1-Orai1. 

(Hassock, Zhu et al. 2002) (Varga-Szabo, Braun et al. 2008) (Mahaut-Smith, Jones et al. 

2011) (Nakamura, Sandrock-Lang et al. 2013) (Jones, Evans et al. 2014) (Mahaut-Smith, M. 

P. (2012) Interestingly migration velocity depicted in figure 3.7.1c was significantly reduced, 

however did not cease – this may be explained by the fact that the calcium influx is 

compensated by alternative routes when silencing Piezo1 by GsMTx4. In conclusion it is 

important to outline the importance of the MSCs for platelet migration, in particular the 
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migration velocity and further in vivo experiments are needed to study the effects of the 

alternative cationic channels. 

 
A      B  

 
C 
 

 
Figure 3.7: Pharmacological inhibition of Piezo1 by GsMTx-4 for human platelets.  
A) Spreading in per cent of adherent cells - depicting no significant difference between the tension tolerances.  
B) Migration in per cent of adherent cells. Migration was significantly abolished on high-tension tolerances, 
indicating that the mechanosensitive machinery works in a Ca2+-dependant manner. Depicted are five 
independent experiments and their mean. * = p < 0.05 ** p = < 0.01  
C) Migration velocity in µm/min. With decreasing tension tolerance for intermediate and high tension 
tolerances, the migration velocity increases among both groups. This shows that Piezo I seem to play a key role 
for Ca2+ influx, and thus plays a fundamental role for platelet migration. Depicted are individual cells and their 
mean. 43pN-Ctrl n=36, GsMTx-4 n=33; 55pN-Ctrl n=39, GsMTx-4 n=4; 160pN-Ctrl n=175, GsMTx-4 n=0) * 
= p < 0.015 *** = p = 0.0001 **** = p < 0.0001 
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4 Discussion 
   

The established assay allows to study the complex mechanosensitive effects on platelet 

function by dynamic visualisation. It specifically focuses on their impact on platelet 

migration and allows to quantify single molecular forces at the pN scale. Platelet 

mechanobiology through integrin mediated outside-in signaling plays a pivotal role in 

triggering a specific tension threshold that significantly alters platelet behaviour.  

It is tempting to speculate that platelets in vivo constantly scan the vasculature for potential 

lesions might adhere and spread on the ECM or a maturing blood clot and the mechanical 

microenvironment determines platelet activation in the presence of adhesive proteins and 

soluble agonists. 

Investigating the diverse mechanisms orchestrating platelet function is fundamental when 

considering their central role in physiological haemostasis and pathological conditions such 

as vascular injury, inflammation and atherothrombosis. Platelet mechanobiology consists of a 

complex bidirectional interaction between the integrins acting as mechanosensitive 

membrane receptors with the innards of the platelet’s contractile machinery. The biophysical 

constitution of the microenvironment precisely regulates downstream signalling, thereby 

inducing multiple intra - and extracellular processes.  

Over the past few decades several groups intended to elucidate platelet forces using a broad 

range of approaches: 1) force measurements in maturing blood clots for individual platelets in 

the order of nanonewton (Jen and McIntire 1982) (Carr and Zekert 1991) (Carr 2003) (Liang, 

Han et al. 2010) and 2) single molecular forces transmitted via the integrin in the order of 

piconewton (Stabley, Jurchenko et al. 2011) (Morimatsu, Mekhdjian et al. 2013) (Wang and 

Ha 2013) (Blakely, Dumelin et al. 2014). Wang et al. introduced the tension gauge tether that 

is an innovative approach to investigate single molecular forces transmitted via the integrin 

that was chosen due to its physical – and ligand properties. (Wang and Ha 2013) Two distinct 

levels of integrin tension were identified using a genetically modified CHO-K1 cell-line: an 

integrin tension of ~40 pN before focal adhesions (FA) formation in an actomyosin 

independent manner, whereas through integrin clustering FAs were able to generate a force > 

55pN. (Wang, Sun et al. 2015) (Wang, LeVine et al. 2018) 
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Although previous groups described platelet locomotion (Lowenhaupt, Miller et al. 1973) at 

sites of inflammation (Feng, Nagy et al. 1998) (Czapiga, Gao et al. 2005) (Pitchford, Momi et 

al. 2008) and intracellular Ca2+ and actin polymerization as two pivotal components, 

(Kraemer, Borst et al. 2010) (Schmidt, Münzer et al. 2011) (Schmidt, Kraemer et al. 2012) 

platelet migration has only recently been identified by Gärtner et al. to be an autonomous 

process in vivo. (Gaertner, Ahmad et al. 2017)  

Earlier, Lauffenburger et al. characterized a well-defined sequence of events for migrating 

cells that follows four repetitive steps: 1) membrane extensions as lamelli- and filopodia at 

the front (leading edge) 2) ligand adhesion 3) actomyosin mediated contraction 4) substrate 

release at the rear. (Lauffenburger and Horwitz 1996) Platelets adapt a similar migrating 

phenotype as seen by other mesenchymal cells – a prerequisite of platelet migration is 

however that the ligand needs to be removable from the substrate. Gaertner et al. identified 

the initial platelet spreading morphology to adapt a target like shape with an aspect ratio ≈ 1. 

The cells polarized in which the leading edge emerged at one side of a lamellipodia by actin 

polymerization and – rearrangement, while the rear contracted in a myosin – dependent 

manner. Due to the platelet’s shape change and cytoskeletal rearrangement, the 

pseudonucleus was now located at the rear of the platelet with an aspect ratio ≈ 2. A 

persistently migrating platelet adapted this half-moon like phenotype. Conclusively platelet 

function strongly depends on the biophysical constitution of the microenvironment, since 

platelet actomyosin dependent contractile forces have to overcome ligand resistance in order 

to promote migration in this manner. (Gaertner, Ahmad et al. 2017) 

This phenotype of target-like spreading and unidirectional migration was only initially 

observed on ligand resistances > 55pN, while the threshold was lowered to ≥ 55pN with an 

external integrin activation. The initial adhesion of platelets with the capability to fully 

spread and remove the substrate from the surface requires a specific substrate resistance in 

order to preserve permanent spreading (see figure 4.1). This is consistent with the findings of 

Zhang et al. who proposed that the ligand-integrin interaction controls a mechanical 

checkpoint central to platelet activation. This study also used the tension gauge tether, 

however focusing on the discrimination of soluble – versus platelet bound fibrinogen and its 

effects on platelet aggregation. (Zhang, Qiu et al. 2018)  
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Figure 4.1: Mechanobiology of platelets on varying substrate resistances under physiological conditions 
(Ca2+, Mg2+, ADP and TXA2) 
Scenario on the left: Platelets adhere and remove the substrate from the surface – the mechanosensitive channel 
remains inactive with the formation of temporary protrusions; platelets detach from the surface. 
Scenario in the middle: Platelets adhere, spread and migrate, by removing the substrate from the surface – 
activation of the mechanosensitive channel with formation of permanent protrusions. 
Scenario on the right: Platelets adhere and spread, however unable to remove the substrate from the surface – 
activation of the mechanosensitive channel; platelets remain static.  
 

In accordance with Qiu et al. who outlined the pivotal role of substrate stiffness on platelet 

function, platelet behaviour under physiological conditions was considerably different on low 

tension tolerances. High resistance force will stabilize the open, high affinity confirmation of 

the αIIbβ3 integrin, however this mechanosensitive checkpoint was not reached on tension 

tolerances ≤ 55pN. (Qiu, Brown et al. 2014) Interestingly the quantity of substrate removed 

from the surface evidenced by the surface-fluorescence-loss of the substrate, followed an 

increasing trend from 12pN – 55pN. These findings support the hypothesis that the additional 

recruitment of integrins in FAs and an increase of force over time are determined by a 

mechanosensitive threshold leading to permanent spreading.  

Platelet function was significantly different when the outside-in signalling was circumvented 

by external integrin activation. The migrating phenotype described by Gaertner et al. was 

only observed on tension thresholds > 55 pN with an external integrin activation (see figure 
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4.2). On low ligand resistance, the platelets formed temporary lamellipodia in the direction of 

locomotion, while following a rather random migratory pattern.  

This finding that an activated platelet yet requires an additional mechanosensitive trigger and 

the fact that platelets may adapt two distinct migratory patterns, may highlight its importance 

in vivo, where a circulating platelet adheres, partially spreads and migrates on a substrate 

surface. This phenomenon may be explained by the following: on the one hand the platelet 

force may overcome ligand resistance and the platelet detaches from the vessel wall, but on 

the other hand the mechanical microenvironment and maturing blood clot may constitute a 

resistant network, mechanically and biochemically activating the platelet.  

 

 
Figure 4.2: Mechanobiology of platelets on varying substrate resistances with an external integrin 
activation by Manganese  
Scenario on the left: Platelets adhere, spread and migrate, by removing the substrate from the surface – 
activation of the mechanosensitive channel with formation of permanent protrusions. 
Scenario in the middle/right: Platelets adhere and spread, however unable to remove the substrate from the 
surface – activation of the mechanosensitive channel with formation of permanent protrusions; platelets remain 
static. 
 

Remarkable is the fact that Gaertner et al. only observed migration in the presence of anti-

adhesive proteins such as albumin or casein that may modulate the conformational 

presentation of fibrinogen molecule in vitro. (Gaertner, Ahmad et al. 2017) The presence of 
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soluble proteins was neither required for migration on cRGDs under physiological 

conditions, nor on TGTs with an external integrin activation.  Interestingly the findings by 

Qiu et al. and Jirouskova et al. revealed that fibrinogen concentration significantly alters 

platelet function. Paradoxically high fibrinogen concentrations (100 ug/mL) significantly 

diminish platelet adhesion that is most likely caused by the spatial organisation of the 

fibrinogen molecules on the surface altering exposure of substrate binding sites. Our assay 

guaranteed the single molecular interaction with the integrin by electrostatically aligning the 

substrate on the surface, thereby explicitly exposing its binding site. In concordance with Qiu 

et al. but unlike the findings by Jirouskova et al. substrate stiffness and increasing ligand 

concentrations maximised platelet spreading.  

Furthermore, platelet mechanical forces are spatially differently distributed on the plasma 

membrane. Unlike the findings by Wang et. al who identified the centre of the CHO-K1 cells 

to be the strongest force across single integrins within motile FAs, in platelets the least force 

is generated in the middle where the cytoplasm rich pseudonucleus resides. (Wang, Sun et al. 

2015) This is clearly evident on the PLL-g-PEG-Biotin – NA-FITC - Biotin-cRGD 10 % with 

a ligand resistance of 160pN under physiological conditions. Migrating platelets revealed the 

equal removal of substrates at the periphery, while the central part speared a line of substrate. 

A considerable difference was noticeable on the 55pN with Mn2+. The majority of platelets 

removed all the substrate from the surface, however initial central substrate lines were also 

visible. This phenomenon might be explained through the additional recruitment of integrins 

to the central region with increasing force over time. This hypothesis is supported by the 

findings of Wang et al. who identified integrin clustering in FAs to exert forces >55 pN in an 

actomyosin dependent manner. (Wang, Sun et al. 2015)  

Additionally, the pharmacological blockage of myosin IIa had no effect on spreading, but 

migration was significantly reduced. (Gaertner, Ahmad et al. 2017) While platelet migration 

was considerably reduced on high tension thresholds ≥ 55pN, ligand resistance was overcome 

at 43pN with an active myosin IIa inhibition. This confirms that platelet migration on high 

tension tolerances is mediated in a myosin IIa dependent fashion, but migration on 

intermediate – and low tension tolerances is mediated via alternative forces. 

There exists a considerable body of evidence identifying Ca2+ as a central regulatory 

component of cell migration, mediating actomyosin dependent rearrangements and migratory 

behaviour. Extracellular Ca2+ influx is mediated by the P2X1-receptor, the transient receptor 

potential ion channel 6 (TRPC6) and store-operated calcium entry via Stim1-Orai1 and plays 

a fundamental role for MLC-phosphorylation (Ser19) and myosin IIa-activation. (Hassock, 



	 	 4 Discussion   

	 64	

Zhu et al. 2002) (Varga-Szabo, Braun et al. 2008) (Mahaut-Smith, Jones et al. 2011) 

(Nakamura, Sandrock-Lang et al. 2013) (Jones, Evans et al. 2014) Gaertner et al. described 

the switch from spreading to migration to be regulated by a Ca2+ - mediated myosin IIa 

dependent rear contraction. Unlike the findings by Gaertner et. al where platelet spreading 

was retrained, but migration significantly reduced in the absence of extracellular calcium, 

platelet adherence was completely impaired on PLL-g-PEG-Biotin – NA-FITC - Biotin-cRGD 

10 % surfaces. This phenomenon might be explained by the fact that our assay was reduced 

to the core of the fibrinogen molecule, i.e. the RGD sequences exclusively binding to the 

αIIbβ3 integrin. The integrin activation is the key regulatory step for platelet spreading that 

itself depends on sufficient levels of extracellular Ca2+ concentration. In summary this 

suggests that not only platelet polarization and migration, but also spreading requires 

extracellular Ca2+.  

However, the mechanisms of how mechanosensing via the integrin mediates Ca2+ influx in 

platelets, still remains uninvestigated. The channel modulator GsMTx-4 effectively 

diminishes platelet migration by blocking the mechanosensitive channel Piezo1. The exact 

mechanism is not known, however Piezo1 is involved in mechanically mediated extracellular 

Ca2+ influx. (Bowman, Gottlieb et al. 2007) (Bae, Sachs et al. 2011) While human as well as 

murine platelets revealed a normal spreading behaviour, migration was only abolished on 

160pN under physiological conditions. On tension tolerances < 160pN platelets were able to 

migrate even in the presence of GsMTx-4, however the percentage and velocity of migrating 

cells were considerably reduced. These findings suggest that platelet spreading and migration 

might be considered as two different processes. However, due to the fact that the underlying 

mechanism of how GsMTx-4 inhibits Piezo I is still not known, these findings need to further 

be investigated by using knockout mice.   

By reducing the experimental setup to a minimum, where the integrin αIIbβ3 binds a single 

ligand, our findings confirmed the hypothesis of Gaertner et al. that platelet migration is 

mediated by four key regulatory mechanisms: 1) Activation with: TXA2 and ADP or 

thrombin 2) αIIbβ3 integrin as bidirectional mechanosensitive membrane receptor 3) 

extracellular Ca2+ influx 4) actin polymerization and myosin contraction.  

 

In conclusion it is important to emphasize the fact that platelet migration has only recently 

been identified as an autonomous process in vivo. (Gaertner, Ahmad et al. 2017) Platelet 

recruitment to sites of injury or inflammation has been described in detail in the literature 

over the past few decades - however little is known of how platelets perceive their 
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mechanical microenvironment. The present study identified for the first time how single 

molecular forces alter platelet function, specifically investigating the effect on platelet 

migration. By controlling ligand density and tension tolerance the developed assay allows to 

precisely investigate platelet mechanobiology. Additional experiments will be required to 

perceive insights in how the mechanosensing influences the behaviour of the contractile 

apparatus.  

It is tempting to picture the clinical benefits these selective modulations of platelet function 

would imply – clinical catheters and medical implants could be modified in such a way that 

platelet interaction may be reduced to a minimum.    
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5 Summary  
Background: Platelets play a crucial role in primary hemostasis besides an increasing 

body of evidence suggesting an active participation in the first line of host defence. Platelets 

are among the first cells to be encountered at sites of vascular injury or inflammation. These 

microenvironments expose a myriad of biochemical – as well as biophysical stimuli, 

activating and directing platelet migration. Autonomous platelet migration has previously 

been seen with great scepticism and only recently been described by Gärtner et al.. (Gaertner, 

Ahmad et al. 2017) 

The transmembrane protein αIIbβ3 is the most abundant integrin on the platelet plasma 

membrane, linking extracellular stimuli to the platelet’s innards. It plays a fundamental role 

for mechanotransduction and thus allows platelets to physically probe their 

microenvironment. When actomyosin dependent traction forces overcome substrate 

resistance, platelets start to migrate.  

Here we aim to establish a novel imaging based tool to analyse platelet migration and to 

quantify molecular forces involved in this process. 

 

Results: We established a novel platelet migration assay allowing us to adjust substrate 

resistance and to measure single integrin-mediated forces at the pN scale. Substrate resistance 

as well as levels of integrin activation are crucial components for autonomous platelet 

migration. Following physiological activation (Ca2+, Mg2+, ADP and TXA2) platelets migrate 

on surfaces with a substrate resistance of ≈ 160 pN, while a substrate resistance too low (≤ 

55pN) or too high (> 160pN) abandons the vast majority of migrating platelets. In contrast, 

when integrins were stabilized in their active conformation, platelet function as well as 

migratory behaviour were significantly altered.  
Besides the central role of the integrin as a surface receptor, pharmacological inhibition of the 

contractile apparatus as well as the mechanosensitive channels on the platelet plasma 

membrane have significant effects on platelet function. By inhibiting myosin IIa, migration is 

abolished on high-tension tolerances (55pN; 160 pN), while platelets migrate in a myosin IIa 

independent manner on intermediate (43pN) – and low-tension tolerances (23pN). An 

essential component for actomyosin dependent contraction is the Ca2+ flux into the cell via 

the mechanosensitive channel Pieszo1. Inhibition of Piezo1 by GsMTx4 significantly reduced 
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migration, indicating an important role of mechanosensitive ion channels in platelet 

migration.  

 

Conclusion: This study identified substrate resistance, the transmembrane integrin αIIbβ3 

and the contractile apparatus as essential components for platelet mechanobiology. When 

traction forces overcome substrate resistance, platelets form permanent lamellipodia, polarize 

and migrate. 
Thus, this work outlines that platelets mechanically probe their microenvironment by 

applying traction forces on the encountered substrate. The physical resistance of that 

substrate is the key component for platelet migration that induces further downstream 

signalling
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Zusammenfassung  

Hintergrund: Neben der entscheidenden Rolle in der primären Hämostase, gibt es 

zunehmend mehr Hinweise, dass Thrombozyten eine Schlüsselrolle in der Immunabwehr 

spielen. Thrombozyten gehören mit zu den ersten Zellen, die in der Entzündung oder bei 

Gefäßverletzungen aufzufinden sind. Diese Mikroumgebungen setzen eine Vielzahl von 

biochemischen – sowie biophysikalischen Stimuli frei, die die Thrombozytenmigration 

aktivieren und dirigieren. Autonome Thrombozytenmigration wurde zuvor mit großer 

Skepsis betrachtet und erst kürzlich von Gärtner et al. beschrieben. (Gaertner, Ahmad et al. 

2017) 

Das Transmembranprotein αIIbβ3 ist das am häufigsten vorkommende Integrin auf der 

Plasmamembran der Thrombozyten und verbindet extrazelluläre Stimuli mit dem Innenleben 

der Thrombozyten. Es spielt eine grundlegende Rolle für die Mechanotransduktion und 

ermöglicht es den Thrombozyten, ihre Mikroumgebung physikalisch zu prüfen. Wenn 

Aktomyosin abhängige Zugkräfte den Substratwiderstand überwinden, beginnen 

Thrombozyten zu wandern.   

Durch diese Studie soll eine neuartige, bildbasierte Methode zur Analyse der 

Thrombozytenmigration etabliert werden, die es uns ermöglicht, die an diesem Prozess 

involvierten molekularen Kräfte zu quantifizieren.  

 

Ergebnisse: Wir konnten eine neuartige Methode zur Analyse der Thrombozytenmigration 

entwickeln, bei der wir den Substratwiderstand kontrollieren und individuelle Integrin-

vermittelte Kräfte in pN messen. Der Substratwiderstand sowie der Grad der 

Integrinaktivierung sind entscheidende Komponenten für die autonome 

Thrombozytenmigration. Unter physiologischen Bedingungen (Ca2+, Mg2+, ADP und TXA2) 

wandern Thrombozyten auf Oberflächen mit einem Substratwiderstand von ≈ 160 pN, 

während ein zu niedriger (≤ 55 pN) oder zu hoher Substratwiderstand (> 160 pN) zur 

Verminderung des Großteils wandernder Thrombozyten führt. Die extrazelluläre 

Integrinaktivierung bedingt jedoch eine signifikante Veränderung der  Thrombozytenfunktion 

und insbesondere des Migrationsverhaltens.    
Neben der zentralen Rolle der Integrine als Oberflächenrezeptoren, haben die 

pharmakologische Blockade des kontraktilen Apparates sowie der mechanosensitiven Kanäle 

in der Plasmamembran einen signifikanten Effekt auf die Thrombozytenfunktion. Durch die 
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Hemmung des Myosin IIa kommt es zur Verminderung der Thrombozytenmigration auf 

Oberflächen mit hohem Substratwiderstand (55pN; 160 pN), während Thrombozyten auf 

niedrigen (23pN) - und intermediären (43pN) Substratwiderständen in einer Myosin 

unabhängigen Art und Weise migrieren. Ein wesentlicher Bestandteil Aktomyosin 

abhängiger Kontraktion ist der Ca2+ Einstrom in die Zelle, bedingt durch den 

mechanosensitiven Pieszo1 Kanal. Eine Blockade durch GsMTx4 bedingt eine signifikante 

Reduktion der Migration und liefert Hinweise darauf, dass diese mechanosensitiven 

Ionenkanäle eine entscheidende Rolle für die Thrombozytenmigration spielen.  

 

Schlussfolgerung: Durch die vorliegende Arbeit konnten der Substratwiderstand, das 

Transmembranintegrin αIIbβ3 sowie der kontraktilen Apparat als wesentliche Bestandteile der 

Thrombozyten - Mechanobiologie identifiziert werden. Wenn die Zugkräfte den 

Substratwiderstand überwinden, bilden Thrombozyten permanente Lamellipodien, 

polarisieren und wandern. 
Folglich zeigt diese Arbeit, dass Thrombozyten Zugkräfte auf das vorgefundene Substrat 

ausüben und ihre Mikroumgebung dadurch mechanisch prüfen. Der physikalische 

Widerstand des Substrats ist die Schlüsselkomponente für die Thrombozytenmigration, die 

eine nachgeschaltete Signalweitergabe induziert. 



   
	  

	 70 

 

6 Bibliography 
 

Abramowitz, M. and Davidson, M.W. (2020): Microscopy resource center, Website. 
URL: http://www.olympus-lifescience.com/en/microscope-resource/primer/flash/ 

 
Adair, B. D. and M. Yeager (2002). "Three-dimensional model of the human platelet integrin 

alpha IIbbeta 3 based on electron cryomicroscopy and x-ray crystallography." Proc Natl 
Acad Sci U S A 99(22): 14059-14064. 

Arnaout, M. A., S. L. Goodman and J.-P. Xiong (2007). "Structure and mechanics of 
integrin-based cell adhesion." Current Opinion in Cell Biology 19(5): 495-507. 

Arnaout, M. A., B. Mahalingam and J. P. Xiong (2005). "Integrin structure, allostery, and 
bidirectional signaling." Annu Rev Cell Dev Biol 21: 381-410. 

Askari, J. A., P. A. Buckley, A. P. Mould and M. J. Humphries (2009). "Linking integrin 
conformation to function." Journal of Cell Science 122(2): 165. 

Bae, C., F. Sachs and P. A. Gottlieb (2011). "The mechanosensitive ion channel Piezo1 is 
inhibited by the peptide GsMTx4." Biochemistry 50(29): 6295-6300. 

Balasubramanian, V. and S. M. Slack (2002). "The effect of fluid shear and co-adsorbed 
proteins on the stability of immobilized fibrinogen and subsequent platelet interactions." 
Journal of Biomaterials Science, Polymer Edition 13(5): 543-561. 

Barnhart, E. L., K.-C. Lee, K. Keren, A. Mogilner and J. A. Theriot (2011). "An Adhesion-
Dependent Switch between Mechanisms That Determine Motile Cell Shape." PLOS 
Biology 9(5): e1001059. 

Baumgartner, H. R. (1977). "Platelet interaction with collagen fibrils in flowing blood. I. 
Reaction of human platelets with alpha chymotrypsin-digested subendothelium." Thromb 
Haemost 37(1): 1-16. 

Beer, J. H., K. T. Springer and B. S. Coller (1992). "Immobilized Arg-Gly-Asp (RGD) 
peptides of varying lengths as structural probes of the platelet glycoprotein IIb/IIIa 
receptor." Blood 79(1): 117-128. 

Beglova, N., S. C. Blacklow, J. Takagi and T. A. Springer (2002). "Cysteine-rich module 
structure reveals a fulcrum for integrin rearrangement upon activation." Nat Struct Biol 
9(4): 282-287. 

Bennett, J. S. (1996). "Structural biology of glycoprotein IIb-IIIa." Trends Cardiovasc Med 
6(1): 31-36. 



	 	 6 Bibliography 
   

	 71	

Bennett, J. S. (2001). "Platelet-fibrinogen interactions." Ann N Y Acad Sci 936: 340-354. 

Bennett, J. S. (2005). "Structure and function of the platelet integrin αIIbβ3." The Journal of 
Clinical Investigation 115(12): 3363-3369. 

Bennett, J. S., B. W. Berger and P. C. Billings (2009). "The structure and function of platelet 
integrins." J Thromb Haemost 7 Suppl 1: 200-205. 

Berger, G., J. M. Masse and E. M. Cramer (1996). "Alpha-granule membrane mirrors the 
platelet plasma membrane and contains the glycoproteins Ib, IX, and V." Blood 87(4): 
1385-1395. 

Bergmeier, W., C. L. Piffath, T. Goerge, S. M. Cifuni, Z. M. Ruggeri, J. Ware and D. D. 
Wagner (2006). "The role of platelet adhesion receptor GPIbalpha far exceeds that of its 
main ligand, von Willebrand factor, in arterial thrombosis." Proc Natl Acad Sci U S A 
103(45): 16900-16905. 

Biosciences, B. (2018). "Fluorecence spectral viewer: FITC.", Website  
URL: https://www.bdbiosciences.com/en-us/applications/research-applications/multicolor-
flow-cytometry/product-selection-tools/spectrum-viewer 

 
Biosciences, B. (2018). "Fluorescence spectral viewer: Cy3.", Website 

URL: https://www.bdbiosciences.com/en-us/applications/research-applications/multicolor-
flow-cytometry/product-selection-tools/spectrum-viewer 

 

Blair, P. and R. Flaumenhaft (2009). "Platelet alpha-granules: basic biology and clinical 
correlates." Blood Rev 23(4): 177-189. 

Blakely, B. L., C. E. Dumelin, B. Trappmann, L. M. McGregor, C. K. Choi, P. C. Anthony, 
V. K. Duesterberg, B. M. Baker, S. M. Block, D. R. Liu and C. S. Chen (2014). "A DNA-
based molecular probe for optically reporting cellular traction forces." Nature Methods 11: 
1229. 

Bland, J. M. and D. G. Altman (2009). "Analysis of continuous data from small samples." 
BMJ 338: a3166. 

Boarder, M. R. and S. M. O. Hourani (1998). "The regulation of vascular function by P2 
receptors: multiple sites and multiple receptors." Trends in Pharmacological Sciences 19(3): 
99-107. 

Bowman, C. L., P. A. Gottlieb, T. M. Suchyna, Y. K. Murphy and F. Sachs (2007). 
"Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, 
mechanisms and pharmacology." Toxicon 49(2): 249-270. 

Brass, L. F., K. M. Wannemacher, P. Ma and T. J. Stalker (2011). "Regulating thrombus 
growth and stability to achieve an optimal response to injury." Journal of Thrombosis and 
Haemostasis 9(s1): 66-75. 



	 	 6 Bibliography 
   

	 72	

Brass, L. F., L. Zhu and T. J. Stalker (2005). "Minding the gaps to promote thrombus growth 
and stability." Journal of Clinical Investigation 115(12): 3385-3392. 

Calderwood, D. A., B. Yan, J. M. de Pereda, B. G. Alvarez, Y. Fujioka, R. C. Liddington and 
M. H. Ginsberg (2002). "The phosphotyrosine binding-like domain of talin activates 
integrins." J Biol Chem 277(24): 21749-21758. 

Calderwood, D. A., R. Zent, R. Grant, D. J. Rees, R. O. Hynes and M. H. Ginsberg (1999). 
"The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates 
integrin activation." J Biol Chem 274(40): 28071-28074. 

Carman, C. V. and T. A. Springer (2003). "Integrin avidity regulation: are changes in affinity 
and conformation underemphasized?" Current Opinion in Cell Biology 15(5): 547-556. 

Carr, M. E., Jr. (2003). "Development of platelet contractile force as a research and clinical 
measure of platelet function." Cell Biochem Biophys 38(1): 55-78. 

Carr, M. E., Jr. and S. L. Zekert (1991). "Measurement of platelet-mediated force 
development during plasma clot formation." Am J Med Sci 302(1): 13-18. 

Chen, J., A. Salas and T. A. Springer (2003). "Bistable regulation of integrin adhesiveness by 
a bipolar metal ion cluster." Nat Struct Biol 10(12): 995-1001. 

Chou, J., N. Mackman, G. Merrill-Skoloff, B. Pedersen, B. C. Furie and B. Furie (2004). 
"Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation 
during thrombus propagation." Blood 104(10): 3190-3197. 

Ciciliano, J. C., R. Tran, Y. Sakurai and W. A. Lam (2014). "The Platelet and the Biophysical 
Microenvironment: Lessons from Cellular Mechanics." Thrombosis Research 133(4): 532-
537. 

Cierniewski, C. S., T. Byzova, M. Papierak, T. A. Haas, J. Niewiarowska, L. Zhang, M. 
Cieslak and E. F. Plow (1999). "Peptide Ligands Can Bind to Distinct Sites in Integrin 
αIIbβ3 and Elicit Different Functional Responses." Journal of Biological Chemistry 
274(24): 16923-16932. 

Clark, E. A. and J. S. Brugge (1995). "Integrins and signal transduction pathways: the road 
taken." Science 268(5208): 233-239. 

Clemetson, K. J. and J. M. Clemetson (2001). "Platelet collagen receptors." Thromb Haemost 
86(1): 189-197. 

Coller, B. S. (2015). "αIIbβ3: structure and function." Journal of Thrombosis and 
Haemostasis 13(S1): S17-S25. 



	 	 6 Bibliography 
   

	 73	

Coller, B. S. and S. J. Shattil (2008). "The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a 
technology-driven saga of a receptor with twists, turns, and even a bend." Blood 112(8): 
3011-3025. 

Coons, A. H., Creech, H.J., Jones R.N., Berliner, E. (1942). "The Demonstration of 
Pneumococcal Antigen in Tissues by the Use of Fluorescent Antibody." The Journal of 
Immunology 45(3): 159. 

Coons, A. H. and M. H. Kaplan (1950). "Localization of antigen in tissue cells; 
improvements in a method for the detection of antigen by means of fluorescent antibody." J 
Exp Med 91(1): 1-13. 

Cornelissen, I., D. Palmer, T. David, L. Wilsbacher, C. Concengco, P. Conley, A. Pandey and 
S. R. Coughlin (2010). "Roles and interactions among protease-activated receptors and 
P2ry12 in hemostasis and thrombosis." Proc Natl Acad Sci U S A 107(43): 18605-18610. 

Coste, B., B. Xiao, J. S. Santos, R. Syeda, J. Grandl, K. S. Spencer, S. E. Kim, M. Schmidt, J. 
Mathur, A. E. Dubin, M. Montal and A. Patapoutian (2012). "Piezo proteins are pore-
forming subunits of mechanically activated channels." Nature 483(7388): 176-181. 

Coughlin, S. R. (2005). "Protease-activated receptors in hemostasis, thrombosis and vascular 
biology." J Thromb Haemost 3(8): 1800-1814. 

Craig, D., M. Gao, K. Schulten and V. Vogel (2004). "Structural Insights into How the 
MIDAS Ion Stabilizes Integrin Binding to an RGD Peptide under Force." Structure 12(11): 
2049-2058. 

Critchley, D. R. (2009). "Biochemical and structural properties of the integrin-associated 
cytoskeletal protein talin." Annu Rev Biophys 38: 235-254. 

Czapiga, M., J. L. Gao, A. Kirk and J. Lekstrom-Himes (2005). "Human platelets exhibit 
chemotaxis using functional N-formyl peptide receptors." Exp Hematol 33(1): 73-84. 

D'Souza, S. E., M. H. Ginsberg, T. A. Burke and E. F. Plow (1990). "The ligand binding site 
of the platelet integrin receptor GPIIb-IIIa is proximal to the second calcium binding 
domain of its alpha subunit." J Biol Chem 265(6): 3440-3446. 

Davey, M. G. and E. F. LÜScher (1967). "Actions of Thrombin and Other Coagulant and 
Proteolytic Enzymes on Blood Platelets." Nature 216: 857. 

Davi, G. and C. Patrono (2007). "Platelet activation and atherothrombosis." N Engl J Med 
357(24): 2482-2494. 

De Clerck, F. (1986). "Blood platelets in human essential hypertension." Agents Actions 
18(5-6): 563-580. 



	 	 6 Bibliography 
   

	 74	

De Clerck, F., B. Xhonneux, J. Leysen and P. A. Janssen (1984). "Evidence for functional 5-
HT2 receptor sites on human blood platelets." Biochem Pharmacol 33(17): 2807-2811. 

Diener Plasma-surface-technology (2020): Zepto Flyer, Website 
  URL: https://d3krux2s64mzgx.cloudfront.net/fileadmin/user_upload/Downloads/ 

Niederdruckplasma/Zepto.pdf 
 
Doggett, T. A., G. Girdhar, A. Lawshe, D. W. Schmidtke, I. J. Laurenzi, S. L. Diamond and 

T. G. Diacovo (2002). "Selectin-like kinetics and biomechanics promote rapid platelet 
adhesion in flow: the GPIb(alpha)-vWF tether bond." Biophys J 83(1): 194-205. 

Dubois, C., L. Panicot-Dubois, G. Merrill-Skoloff, B. Furie and B. C. Furie (2006). 
"Glycoprotein VI–dependent and –independent pathways of thrombus formation in vivo." 
Blood 107(10): 3902. 

Duperray, A., R. Berthier, E. Chagnon, J. Ryckewaert, M. Ginsberg, E. Plow, and G. 
Marguerie (1987). "Biosynthesis and processing of platelet GPIIb-IIIa in human 
megakaryocytes." The Journal of Cell Biology 104(6): 1665-1673. 

Elbert, D. L. and J. A. Hubbell (1998). "Self-assembly and steric stabilization at 
heterogeneous, biological surfaces using adsorbing block copolymers." Chem Biol 5(3): 
177-183. 

Farrell, D. H., P. Thiagarajan, D. W. Chung and E. W. Davie (1992). "Role of fibrinogen 
alpha and gamma chain sites in platelet aggregation." Proceedings of the National Academy 
of Sciences 89(22): 10729. 

Feng, D., J. A. Nagy, K. Pyne, H. F. Dvorak and A. M. Dvorak (1998). "Platelets Exit 
Venules by a Transcellular Pathway at Sites of F–Met Peptide–Induced Acute Inflammation 
in Guinea Pigs." International Archives of Allergy and Immunology 116(3): 188-195. 

Fitzgerald, L. A. and D. R. Phillips (1985). "Calcium regulation of the platelet membrane 
glycoprotein IIb-IIIa complex." J Biol Chem 260(20): 11366-11374. 

Fukata, M., M. Nakagawa and K. Kaibuchi (2003). "Roles of Rho-family GTPases in cell 
polarisation and directional migration." Current Opinion in Cell Biology 15(5): 590-597. 

Gachet, C. (2006). "Regulation of platelet functions by P2 receptors." Annu Rev Pharmacol 
Toxicol 46: 277-300. 

Gachet, C. (2008). "P2 receptors, platelet function and pharmacological implications." 
Thromb Haemost 99(3): 466-472. 

Gaertner, F., Z. Ahmad, G. Rosenberger, S. Fan, L. Nicolai, B. Busch, G. Yavuz, M. 
Luckner, H. Ishikawa-Ankerhold, R. Hennel, A. Benechet, M. Lorenz, S. Chandraratne, I. 
Schubert, S. Helmer, B. Striednig, K. Stark, M. Janko, R. T. Bottcher, A. Verschoor, C. 
Leon, C. Gachet, T. Gudermann, Y. S. M. Mederos, Z. Pincus, M. Iannacone, R. Haas, G. 



	 	 6 Bibliography 
   

	 75	

Wanner, K. Lauber, M. Sixt and S. Massberg (2017). "Migrating Platelets Are Mechano-
scavengers that Collect and Bundle Bacteria." Cell 171(6): 1368-1382 e1323. 

Geiger, B., A. Bershadsky, R. Pankov and K. M. Yamada (2001). "Transmembrane crosstalk 
between the extracellular matrix--cytoskeleton crosstalk." Nat Rev Mol Cell Biol 2(11): 
793-805. 

Gibbins, J. M., M. Okuma, R. Farndale, M. Barnes and S. P. Watson (1997). "Glycoprotein 
VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc 
receptor gamma-chain." FEBS Lett 413(2): 255-259. 

Gingras, A. R., N. Bate, B. T. Goult, L. Hazelwood, I. Canestrelli, J. G. Grossmann, H. Liu, 
N. S. Putz, G. C. Roberts, N. Volkmann, D. Hanein, I. L. Barsukov and D. R. Critchley 
(2008). "The structure of the C-terminal actin-binding domain of talin." Embo j 27(2): 458-
469. 

Gingras, A. R., N. Bate, B. T. Goult, B. Patel, P. M. Kopp, J. Emsley, I. L. Barsukov, G. C. 
K. Roberts and D. R. Critchley (2010). "Central Region of Talin Has a Unique Fold That 
Binds Vinculin and Actin." The Journal of Biological Chemistry 285(38): 29577-29587. 

Gleissner, C. A., P. von Hundelshausen and K. Ley (2008). "Platelet chemokines in vascular 
disease." Arterioscler Thromb Vasc Biol 28(11): 1920-1927. 

Good, N. E., G. D. Winget, W. Winter, T. N. Connolly, S. Izawa and R. M. Singh (1966). 
"Hydrogen ion buffers for biological research." Biochemistry 5(2): 467-477. 

Gupton, S. L. and C. M. Waterman-Storer (2006). "Spatiotemporal Feedback between 
Actomyosin and Focal-Adhesion Systems Optimizes Rapid Cell Migration." Cell 125(7): 
1361-1374. 

Hantgan, R. R., C. Paumi, M. Rocco and J. W. Weisel (1999). "Effects of ligand-mimetic 
peptides Arg-Gly-Asp-X (X = Phe, Trp, Ser) on alphaIIbbeta3 integrin conformation and 
oligomerization." Biochemistry 38(44): 14461-14474. 

Hartwig, J. H. (2013). Chapter 8 - The Platelet Cytoskeleton. Platelets (Third Edition). A. D. 
Michelson, Academic Press: 145-168. 

Harvey, B. J., C. Perez and M. Levitus (2009). "DNA sequence-dependent enhancement of 
Cy3 fluorescence." Photochem Photobiol Sci 8(8): 1105-1110. 

Hassock, S. R., M. X. Zhu, C. Trost, V. Flockerzi and K. S. Authi (2002). "Expression and 
role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-
independent calcium entry channel." Blood 100(8): 2801. 

Herman, B. (1998). "Fluorescence Microscopy." Current Protocols in Cell Biology 00(1): 
4.2.1-4.2.10. 



	 	 6 Bibliography 
   

	 76	

Herzenberg, L. A., R. G. Sweet and L. A. Herzenberg (1976). "Fluorescence-activated Cell 
Sorting." Scientific American 234(3): 108-118. 

Holmsen, H. and H. J. Weiss (1979). "Secretable storage pools in platelets." Annu Rev Med 
30: 119-134. 

Hu, D. D., C. A. White, S. Panzer-Knodle, J. D. Page, N. Nicholson and J. W. Smith (1999). 
"A new model of dual interacting ligand binding sites on integrin alphaIIbbeta3." J Biol 
Chem 274(8): 4633-4639. 

Hughes, P. E. and M. Pfaff (1998). "Integrin affinity modulation." Trends Cell Biol 8(9): 
359-364. 

Hynes, R. O. (1992). "Integrins: Versatility, modulation, and signaling in cell adhesion." Cell 
69(1): 11-25. 

Hynes, R. O. (2002). "Integrins: bidirectional, allosteric signaling machines." Cell 110(6): 
673-687. 

Italiano, J. E., P. Lecine, R. A. Shivdasani and J. H. Hartwig (1999). "Blood Platelets Are 
Assembled Principally at the Ends of Proplatelet Processes Produced by Differentiated 
Megakaryocytes." The Journal of Cell Biology 147(6): 1299-1312. 

Jackson, S. P. (2007). "The growing complexity of platelet aggregation." Blood 109(12): 
5087-5095. 

Jackson, S. P. (2011). "Arterial thrombosis--insidious, unpredictable and deadly." Nat Med 
17(11): 1423-1436. 

Janesick, J. R., T. Elliott, S. Collins, M. M. Blouke and J. Freeman (1987). Scientific Charge-
Coupled Devices, Optical Engineering 26(8), 268692. 

 
Janesick, J.R., (2001). Scientific Charge-Coupled Devices, J.R. Janesick, SPIE-The 

International Society for Optical Engineering, pp. 22-42. 
 
Jedlitschky, G., A. Greinacher and H. K. Kroemer (2012). "Transporters in human platelets: 

physiologic function and impact for pharmacotherapy." Blood 119(15): 3394-3402. 

Jen, C. J. and L. V. McIntire (1982). "The structural properties and contractile force of a 
clot." Cell Motil 2(5): 445-455. 

Jirouskova, M., J. K. Jaiswal and B. S. Coller (2007). "Ligand density dramatically affects 
integrin alpha IIb beta 3-mediated platelet signaling and spreading." Blood 109(12): 5260-
5269. 



	 	 6 Bibliography 
   

	 77	

Jiroušková, M., J. K. Jaiswal and B. S. Coller (2007). "Ligand density dramatically affects 
integrin αIIbβ3-mediated platelet signaling and spreading." Blood 109(12): 5260. 

Jones, S., R. J. Evans and M. P. Mahaut-Smith (2014). "Ca&lt;sup&gt;2+&lt;/sup&gt; Influx 
through P2X1 Receptors Amplifies P2Y1 Receptor-Evoked Ca&lt;sup&gt;2+&lt;/sup&gt; 
Signaling and ADP-Evoked Platelet Aggregation." Molecular Pharmacology 86(3): 243. 

Junt, T., H. Schulze, Z. Chen, S. Massberg, T. Goerge, A. Krueger, D. D. Wagner, T. Graf, J. 
E. Italiano, Jr., R. A. Shivdasani and U. H. von Andrian (2007). "Dynamic visualization of 
thrombopoiesis within bone marrow." Science 317(5845): 1767-1770. 

Kahn, M. L., M. Nakanishi-Matsui, M. J. Shapiro, H. Ishihara and S. R. Coughlin (1999). 
"Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin." J 
Clin Invest 103(6): 879-887. 

Kee, M. F., D. R. Myers, Y. Sakurai, W. A. Lam and Y. Qiu (2015). "Platelet 
mechanosensing of collagen matrices." PLoS One 10(4): e0126624. 

Kenausis, G. L., J. Vörös, D. L. Elbert, N. Huang, R. Hofer, L. Ruiz-Taylor, M. Textor, J. A. 
Hubbell and N. D. Spencer (2000). "Poly(l-lysine)-g-Poly(ethylene glycol) Layers on Metal 
Oxide Surfaces:  Attachment Mechanism and Effects of Polymer Architecture on Resistance 
to Protein Adsorption." The Journal of Physical Chemistry B 104(14): 3298-3309. 

Keren, K., Z. Pincus, G. M. Allen, E. L. Barnhart, G. Marriott, A. Mogilner and J. A. Theriot 
(2008). "Mechanism of shape determination in motile cells." Nature 453(7194): 475-480. 

Kieffer, N. and D. R. Phillips (1990). "Platelet Membrane Glycoproteins: Functions in 
Cellular Interactions." Annual Review of Cell Biology 6(1): 329-357. 

Kim, C., F. Ye and M. H. Ginsberg (2011). "Regulation of Integrin Activation." Annual 
Review of Cell and Developmental Biology 27(1): 321-345. 

Klinger, M. H. and W. Jelkmann (2002). "Role of blood platelets in infection and 
inflammation." J Interferon Cytokine Res 22(9): 913-922. 

Klugerman, M. R. (1965). "Chemical and Physical Variables Affecting the Properties of 
Fluorescein Isothiocyanate and Its Protein Conjugates." The Journal of Immunology 95(6): 
1165. 

Konkle, B. A. (2011). "Acquired disorders of platelet function." Hematology Am Soc 
Hematol Educ Program 2011: 391-396. 

Kononova, O., R. I. Litvinov, D. S. Blokhin, V. V. Klochkov, J. W. Weisel, J. S. Bennett and 
V. Barsegov (2017). "Mechanistic Basis for the Binding of RGD- and AGDV-Peptides to 
the Platelet Integrin alphaIIbbeta3." Biochemistry 56(13): 1932-1942. 



	 	 6 Bibliography 
   

	 78	

Kraemer, B. F., O. Borst, E. M. Gehring, T. Schoenberger, B. Urban, E. Ninci, P. Seizer, C. 
Schmidt, B. Bigalke, M. Koch, I. Martinovic, K. Daub, T. Merz, L. Schwanitz, K. Stellos, 
F. Fiesel, M. Schaller, F. Lang, M. Gawaz and S. Lindemann (2010). "PI3 kinase-dependent 
stimulation of platelet migration by stromal cell-derived factor 1 (SDF-1)." J Mol Med 
(Berl) 88(12): 1277-1288. 

Kroll, M. H., J. D. Hellums, L. V. McIntire, A. I. Schafer and J. L. Moake (1996). "Platelets 
and shear stress." Blood 88(5): 1525. 

Kroll, M. H. and A. I. Schafer (1989). "Biochemical mechanisms of platelet activation." 
Blood 74(4): 1181-1195. 

Kunapuli, S. P. (1998). "Multiple P2 receptor subtypes on platelets: a new interpretation of 
their function." Trends Pharmacol Sci 19(10): 391-394. 

Lam, W. A., O. Chaudhuri, A. Crow, K. D. Webster, T.-D. Li, A. Kita, J. Huang and D. A. 
Fletcher (2011). "Mechanics and contraction dynamics of single platelets and implications 
for clot stiffening." Nature materials 10(1): 61-66. 

Lämmermann, T., B. L. Bader, S. J. Monkley, T. Worbs, R. Wedlich-Söldner, K. Hirsch, M. 
Keller, R. Förster, D. R. Critchley, R. Fässler and M. Sixt (2008). "Rapid leukocyte 
migration by integrin-independent flowing and squeezing." Nature 453(7191): 51-55. 

Lauffenburger, D. A. and A. F. Horwitz (1996). "Cell migration: a physically integrated 
molecular process." Cell 84(3): 359-369. 

Lee, J. O., P. Rieu, M. A. Arnaout and R. Liddington (1995). "Crystal structure of the A 
domain from the alpha subunit of integrin CR3 (CD11b/CD18)." Cell 80(4): 631-638. 

Léon, C., A. Eckly, B. Hechler, B. Aleil, M. Freund, C. Ravanat, M. Jourdain, C. Nonne, J. 
Weber, R. Tiedt, M.-P. Gratacap, S. Severin, J.-P. Cazenave, F. Lanza, R. Skoda and C. 
Gachet (2007). "Megakaryocyte-restricted &lt;em&gt;MYH9&lt;/em&gt; inactivation 
dramatically affects hemostasis while preserving platelet aggregation and secretion." Blood 
110(9): 3183. 

Li, N., N. H. Wallen, M. Ladjevardi and P. Hjemdahl (1997). "Effects of serotonin on platelet 
activation in whole blood." Blood Coagul Fibrinolysis 8(8): 517-523. 

Li, Z., M. K. Delaney, K. A. O'Brien and X. Du (2010). "Signaling during platelet adhesion 
and activation." Arterioscler Thromb Vasc Biol 30(12): 2341-2349. 

Liang, X. M., S. J. Han, J.-A. Reems, D. Gao and N. J. Sniadecki (2010). "Platelet retraction 
force measurements using flexible post force sensors." Lab on a Chip 10(8): 991-998. 

Lichtman, J. W. and J. A. Conchello (2005). "Fluorescence microscopy." Nat Methods 2(12): 
910-919. 



	 	 6 Bibliography 
   

	 79	

Liston, E. M., L. Martinu and M. R. Wertheimer (1993). "Plasma surface modification of 
polymers for improved adhesion: a critical review." Journal of Adhesion Science and 
Technology 7(10): 1091-1127. 

Litvinov, R. I., D. H. Farrell, J. W. Weisel and J. S. Bennett (2016). "The Platelet Integrin 
alphaIIbbeta3 Differentially Interacts with Fibrin Versus Fibrinogen." J Biol Chem 291(15): 
7858-7867. 

Lowenhaupt, R. W., M. A. Miller and H. I. Glueck (1973). "Platelet migration and 
chemotaxis demonstrated in vitro." Thrombosis Research 3(5): 477-487. 

Luo, B. H., C. V. Carman and T. A. Springer (2007). "Structural basis of integrin regulation 
and signaling." Annu Rev Immunol 25: 619-647. 

Ma, Y. Q., J. Qin and E. F. Plow (2007). "Platelet integrin αIIbβ3: activation mechanisms." 
Journal of Thrombosis and Haemostasis 5(7): 1345-1352. 

Maeda, H., N. Ishida, H. Kawauchi and K. Tsujimura (1969). "Reaction of fluorescein-
isothiocyanate with proteins and amino acids. I. Covalent and non-covalent binding of 
fluorescein-isothiocyanate and fluorescein to proteins." J Biochem 65(5): 777-783. 

Mahaut-Smith, M. P., S. Jones and R. J. Evans (2011). "The P2X1 receptor and platelet 
function." Purinergic Signalling 7(3): 341-356. 

Massberg, S., S. Eisenmenger, G. Enders, F. Krombach and K. Messmer (1998). 
"Quantitative analysis of small intestinal microcirculation in the mouse." Res Exp Med 
(Berl) 198(1): 23-35. 

Massberg, S., M. Gawaz, S. Gruner, V. Schulte, I. Konrad, D. Zohlnhofer, U. Heinzmann and 
B. Nieswandt (2003). "A crucial role of glycoprotein VI for platelet recruitment to the 
injured arterial wall in vivo." J Exp Med 197(1): 41-49. 

May, A. E., P. Seizer and M. Gawaz (2008). "Platelets: inflammatory firebugs of vascular 
walls." Arterioscler Thromb Vasc Biol 28(3): s5-10. 

McNicol, A. and S. J. Israels (1999). "Platelet dense granules: structure, function and 
implications for haemostasis." Thromb Res 95(1): 1-18. 

Mehrbod, M., S. Trisno and Mohammad R. K. Mofrad (2013). "On the Activation of Integrin 
αIIbβ3: Outside-in and Inside-out Pathways." Biophysical Journal 105(6): 1304-1315. 

Meijering, E., O. Dzyubachyk and I. Smal (2012). "Methods for cell and particle tracking." 
Methods Enzymol 504: 183-200. 



	 	 6 Bibliography 
   

	 80	

Mody, N. A. and M. R. King (2008). "Platelet Adhesive Dynamics. Part II: High Shear-
Induced Transient Aggregation via GPIbα-vWF-GPIbα Bridging." Biophysical Journal 
95(5): 2556-2574. 

Morimatsu, M., A. H. Mekhdjian, A. S. Adhikari and A. R. Dunn (2013). "Molecular 
Tension Sensors Report Forces Generated by Single Integrin Molecules in Living Cells." 
Nano Letters 13(9): 3985-3989. 

Moroi, M., S. M. Jung, M. Okuma and K. Shinmyozu (1989). "A patient with platelets 
deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion." 
Journal of Clinical Investigation 84(5): 1440-1445. 

Mory, A., S. W. Feigelson, N. Yarali, S. S. Kilic, G. I. Bayhan, R. Gershoni-Baruch, A. 
Etzioni and R. Alon (2008). "Kindlin-3: a new gene involved in the pathogenesis of LAD-
III." Blood 112(6): 2591. 

Moser, M., B. Nieswandt, S. Ussar, M. Pozgajova and R. Fassler (2008). "Kindlin-3 is 
essential for integrin activation and platelet aggregation." Nat Med 14(3): 325-330. 

Mould, A. P., S. J. Barton, J. A. Askari, S. E. Craig and M. J. Humphries (2003). "Role of 
ADMIDAS cation-binding site in ligand recognition by integrin alpha 5 beta 1." J Biol 
Chem 278(51): 51622-51629. 

Moy, V. T., E. L. Florin and H. E. Gaub (1994). "Intermolecular forces and energies between 
ligands and receptors." Science 266(5183): 257-259. 

Mustard, J. F., R. L. Kinlough-Rathbone and M. A. Packham (1989). "Isolation of human 
platelets from plasma by centrifugation and washing." Methods Enzymol 169: 3-11. 

Myers, D. R., Y. Qiu, M. E. Fay, M. Tennenbaum, D. Chester, J. Cuadrado, Y. Sakurai, J. 
Baek, R. Tran, J. C. Ciciliano, B. Ahn, R. G. Mannino, S. T. Bunting, C. Bennett, M. 
Briones, A. Fernandez-Nieves, M. L. Smith, A. C. Brown, T. Sulchek and W. A. Lam 
(2017). "Single-platelet nanomechanics measured by high-throughput cytometry." Nat 
Mater 16(2): 230-235. 

Nakamura, L., K. Sandrock-Lang, C. Speckmann, T. Vraetz, M. Bührlen, S. Ehl, J. W. M. 
Heemskerk and B. Zieger (2013). "Platelet secretion defect in a patient with stromal 
interaction molecule 1 deficiency." Blood 122(22): 3696. 

Ni, H., C. V. Denis, S. Subbarao, J. L. Degen, T. N. Sato, R. O. Hynes and D. D. Wagner 
(2000). "Persistence of platelet thrombus formation in arterioles of mice lacking both von 
Willebrand factor and fibrinogen." J Clin Invest 106(3): 385-392. 

Ni, H., P. S. Yuen, J. M. Papalia, J. E. Trevithick, T. Sakai, R. Fassler, R. O. Hynes and D. D. 
Wagner (2003). "Plasma fibronectin promotes thrombus growth and stability in injured 
arterioles." Proc Natl Acad Sci U S A 100(5): 2415-2419. 



	 	 6 Bibliography 
   

	 81	

Nieswandt, B., B. Aktas, A. Moers and U. J. Sachs (2005). "Platelets in atherothrombosis: 
lessons from mouse models." J Thromb Haemost 3(8): 1725-1736. 

Nieswandt, B., W. Bergmeier, V. Schulte, K. Rackebrandt, J. E. Gessner and H. Zirngibl 
(2000). "Expression and function of the mouse collagen receptor glycoprotein VI is strictly 
dependent on its association with the FcRgamma chain." J Biol Chem 275(31): 23998-
24002. 

Nieswandt, B., M. Moser, I. Pleines, D. Varga-Szabo, S. Monkley, D. Critchley and R. 
Fassler (2007). "Loss of talin1 in platelets abrogates integrin activation, platelet 
aggregation, and thrombus formation in vitro and in vivo." J Exp Med 204(13): 3113-3118. 

Niiya, K., E. Hodson, R. Bader, V. Byers-Ward, J. A. Koziol, E. F. Plow and Z. M. Ruggeri 
(1987). "Increased surface expression of the membrane glycoprotein IIb/IIIa complex 
induced by platelet activation. Relationship to the binding of fibrinogen and platelet 
aggregation." Blood 70(2): 475-483. 

Nishida, N., C. Xie, M. Shimaoka, Y. Cheng, T. Walz and T. A. Springer (2006). "Activation 
of leukocyte beta2 integrins by conversion from bent to extended conformations." Immunity 
25(4): 583-594. 

O'Neill, K., N. Aghaeepour, J. Spidlen and R. Brinkman (2013). "Flow cytometry 
bioinformatics." PLoS computational biology 9(12): e1003365-e1003365. 

Offermanns, S. (2006). "Activation of platelet function through G protein-coupled receptors." 
Circ Res 99(12): 1293-1304. 

Ono, A., E. Westein, S. Hsiao, W. S. Nesbitt, J. R. Hamilton, S. M. Schoenwaelder and S. P. 
Jackson (2008). "Identification of a fibrin-independent platelet contractile mechanism 
regulating primary hemostasis and thrombus growth." Blood 112(1): 90-99. 

Oria, R., T. Wiegand, J. Escribano, A. Elosegui-Artola, J. J. Uriarte, C. Moreno-Pulido, I. 
Platzman, P. Delcanale, L. Albertazzi, D. Navajas, X. Trepat, J. M. García-Aznar, E. A. 
Cavalcanti-Adam and P. Roca-Cusachs (2017). "Force loading explains spatial sensing of 
ligands by cells." Nature 552(7684): 219-224. 

Palecek, S. P., J. C. Loftus, M. H. Ginsberg, D. A. Lauffenburger and A. F. Horwitz (1997). 
"Integrin-ligand binding properties govern cell migration speed through cell-substratum 
adhesiveness." Nature 385(6616): 537-540. 

Pawley, J.B. (2006): Handbook of biological confocal microscopy, J.B. Pawley(Ed.), 3 Aufl., 
Springer Science+Buisness Media, LCC pp.918-931.  

 
Perfetto, S. P., P. K. Chattopadhyay and M. Roederer (2004). "Seventeen-colour flow 

cytometry: unravelling the immune system." Nature Reviews Immunology 4(8): 648-655. 



	 	 6 Bibliography 
   

	 82	

Phillips, D. R. and A. K. Baughan (1983). "Fibrinogen binding to human platelet plasma 
membranes. Identification of two steps requiring divalent cations." J Biol Chem 258(17): 
10240-10246. 

Pincus, Z. and J. A. Theriot (2007). "Comparison of quantitative methods for cell-shape 
analysis." J Microsc 227(Pt 2): 140-156. 

Pitchford, S. C., S. Momi, S. Baglioni, L. Casali, S. Giannini, R. Rossi, C. P. Page and P. 
Gresele (2008). "Allergen induces the migration of platelets to lung tissue in allergic 
asthma." Am J Respir Crit Care Med 177(6): 604-612. 

Pollard, T. D., K. Fujiwara, R. Handin and G. Weiss (1977). "CONTRACTILE PROTEINS 
IN PLATELET ACTIVATION AND CONTRACTION*." Annals of the New York 
Academy of Sciences 283(1): 218-236. 

Puklin-Faucher, E., M. Gao, K. Schulten and V. Vogel (2006). "How the headpiece hinge 
angle is opened: New insights into the dynamics of integrin activation." J Cell Biol 175(2): 
349-360. 

Puklin-Faucher, E. and M. P. Sheetz (2009). "The mechanical integrin cycle." J Cell Sci 
122(Pt 2): 179-186. 

Qiu, Y., A. C. Brown, D. R. Myers, Y. Sakurai, R. G. Mannino, R. Tran, B. Ahn, E. T. 
Hardy, M. F. Kee, S. Kumar, G. Bao, T. H. Barker and W. A. Lam (2014). "Platelet 
mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, 
and activation." Proceedings of the National Academy of Sciences of the United States of 
America 111(40): 14430-14435. 

Qiu, Y., J. Ciciliano, D. R. Myers, R. Tran and W. A. Lam (2015). "Platelets and physics: 
How platelets “feel” and respond to their mechanical microenvironment." Blood Reviews 
29(6): 377-386. 

Reichmann, J. (2017). "Handbook of optical filters for fluorescence microscopy." Website,     
 URL: http://www.chroma.com/resources-support/downloads/filter-handbook  

Reid, G., P. Wielinga, N. Zelcer, I. van der Heijden, A. Kuil, M. de Haas, J. Wijnholds and P. 
Borst (2003). "The human multidrug resistance protein MRP4 functions as a prostaglandin 
efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs." Proc Natl Acad 
Sci U S A 100(16): 9244-9249. 

Riggs, J. L., R. J. Seiwald, J. H. Burckhalter, C. M. Downs and T. G. Metcalf (1958). 
"Isothiocyanate Compounds as Fluorescent Labeling Agents for Immune Serum." The 
American Journal of Pathology 34(6): 1081-1097. 

Rius, M., W. F. Thon, D. Keppler and A. T. Nies (2005). "Prostanoid transport by multidrug 
resistance protein 4 (MRP4/ABCC4) localized in tissues of the human urogenital tract." J 
Urol 174(6): 2409-2414. 



	 	 6 Bibliography 
   

	 83	

Ruggeri, Z. M. (1997). "Mechanisms initiating platelet thrombus formation." Thromb 
Haemost 78(1): 611-616. 

Ruggeri, Z. M. (2002). "Platelets in atherothrombosis." Nat Med 8(11): 1227-1234. 

Ruggeri, Z. M. (2007). "The role of von Willebrand factor in thrombus formation." Thromb 
Res 120 Suppl 1: S5-9. 

Ruoslahti, E. (1996). "RGD and other recognition sequences for integrins." Annu Rev Cell 
Dev Biol 12: 697-715. 

Ruoslahti, E. and M. D. Pierschbacher (1986). "Arg-Gly-Asp: a versatile cell recognition 
signal." Cell 44(4): 517-518. 

Sabnis, R. W. (2015). Fluoroscein-5-isothiocyanate (FITC). Handbook of Fluorescent Dyes 
and Probes: 219-223. 

Sakariassen, K. S., P. F. Nievelstein, B. S. Coller and J. J. Sixma (1986). "The role of platelet 
membrane glycoproteins Ib and IIb-IIIa in platelet adherence to human artery 
subendothelium." Br J Haematol 63(4): 681-691. 

Sanborn, M. E., B. K. Connolly, K. Gurunathan and M. Levitus (2007). "Fluorescence 
properties and photophysics of the sulfoindocyanine Cy3 linked covalently to DNA." J Phys 
Chem B 111(37): 11064-11074. 

Sanchez-Cortes, J. and M. Mrksich (2009). "The platelet integrin alphaIIbbeta3 binds to the 
RGD and AGD motifs in fibrinogen." Chem Biol 16(9): 990-1000. 

Santoro, S. A. and W. J. Lawing, Jr. (1987). "Competition for related but nonidentical 
binding sites on the glycoprotein IIb-IIIa complex by peptides derived from platelet 
adhesive proteins." Cell 48(5): 867-873. 

Savage, B., F. Almus-Jacobs and Z. M. Ruggeri (1998). "Specific synergy of multiple 
substrate-receptor interactions in platelet thrombus formation under flow." Cell 94(5): 657-
666. 

Savage, B., E. Saldivar and Z. M. Ruggeri (1996). "Initiation of platelet adhesion by arrest 
onto fibrinogen or translocation on von Willebrand factor." Cell 84(2): 289-297. 

Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. 
Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. 
Eliceiri, P. Tomancak and A. Cardona (2012). "Fiji: an open-source platform for biological-
image analysis." Nat Methods 9(7): 676-682. 



	 	 6 Bibliography 
   

	 84	

Schmidt, E.-M., P. Münzer, O. Borst, B. F. Kraemer, E. Schmid, B. Urban, S. Lindemann, P. 
Ruth, M. Gawaz and F. Lang (2011). "Ion channels in the regulation of platelet migration." 
Biochemical and Biophysical Research Communications 415(1): 54-60. 

Schmidt, E. M., B. F. Kraemer, O. Borst, P. Münzer, T. Schönberger, C. Schmidt, C. 
Leibrock, S. T. Towhid, P. Seizer, D. Kuhl, C. Stournaras, S. Lindemann, M. Gawaz and F. 
Lang (2012). "SGK1 Sensitivity of Platelet Migration." Cellular Physiology and 
Biochemistry 30(1): 259-268. 

Schwartz, M. A., M. D. Schaller and M. H. Ginsberg (1995). "Integrins: Emerging Paradigms 
of Signal Transduction." Annual Review of Cell and Developmental Biology 11(1): 549-
599. 

Schwarz Henriques, S., R. Sandmann, A. Strate and S. Koster (2012). "Force field evolution 
during human blood platelet activation." J Cell Sci 125(Pt 16): 3914-3920. 

Semple, J. W., J. E. Italiano, Jr. and J. Freedman (2011). "Platelets and the immune 
continuum." Nat Rev Immunol 11(4): 264-274. 

Shattil, S. J., C. Kim and M. H. Ginsberg (2010). "The final steps of integrin activation: the 
end game." Nat Rev Mol Cell Biol 11(4): 288-300. 

Sheriff, J., D. Bluestein, G. Girdhar and J. Jesty (2010). "High-shear stress sensitizes platelets 
to subsequent low-shear conditions." Ann Biomed Eng 38(4): 1442-1450. 

Shimaoka, M., J. Takagi and T. A. Springer (2002). "Conformational regulation of integrin 
structure and function." Annu Rev Biophys Biomol Struct 31: 485-516. 

Shimaoka, M., T. Xiao, J. H. Liu, Y. Yang, Y. Dong, C. D. Jun, A. McCormack, R. Zhang, 
A. Joachimiak, J. Takagi, J. H. Wang and T. A. Springer (2003). "Structures of the alpha L I 
domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin 
regulation." Cell 112(1): 99-111. 

Smith, J. W., R. S. Piotrowicz and D. Mathis (1994). "A mechanism for divalent cation 
regulation of beta 3-integrins." J Biol Chem 269(2): 960-967. 

Smyth, S. S., E. D. Reis, H. Väänänen, W. Zhang and B. S. Coller (2001). "Variable 
protection of β3-integrin–deficient mice from thrombosis initiated by different 
mechanisms." Blood 98(4): 1055. 

Springer, T. A. and J. H. Wang (2004). "The three-dimensional structure of integrins and 
their ligands, and conformational regulation of cell adhesion." Adv Protein Chem 68: 29-63. 

Springer, T. A., J. Zhu and T. Xiao (2008). "Structural basis for distinctive recognition of 
fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3." J Cell Biol 182(4): 791-
800. 



	 	 6 Bibliography 
   

	 85	

Stabley, D. R., C. Jurchenko, S. S. Marshall and K. S. Salaita (2011). "Visualizing 
mechanical tension across membrane receptors with a fluorescent sensor." Nat Methods 
9(1): 64-67. 

Stenberg, P. E., R. P. McEver, M. A. Shuman, Y. V. Jacques and D. F. Bainton (1985). "A 
platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane 
after activation." J Cell Biol 101(3): 880-886. 

Stephens, D. J. and V. J. Allan (2003). "Light Microscopy Techniques for Live Cell 
Imaging." Science 300(5616): 82. 

Tadokoro, S., S. J. Shattil, K. Eto, V. Tai, R. C. Liddington, J. M. de Pereda, M. H. Ginsberg 
and D. A. Calderwood (2003). "Talin Binding to Integrin ß Tails: A Final Common Step in 
Integrin Activation." Science 302(5642): 103. 

Takagi, J., B. M. Petre, T. Walz and T. A. Springer (2002). "Global conformational 
rearrangements in integrin extracellular domains in outside-in and inside-out signaling." 
Cell 110(5): 599-511. 

Tozer, E. C., R. C. Liddington, M. J. Sutcliffe, A. H. Smeeton and J. C. Loftus (1996). 
"Ligand Binding to Integrin αIIbβ3 Is Dependent on a MIDAS-like Domain in the β3 
Subunit." Journal of Biological Chemistry 271(36): 21978-21984. 

Ussar, S., H. V. Wang, S. Linder, R. Fassler and M. Moser (2006). "The Kindlins: subcellular 
localization and expression during murine development." Exp Cell Res 312(16): 3142-3151. 

Valdramidou, D., M. J. Humphries and A. P. Mould (2008). "Distinct roles of beta1 metal 
ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-
associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin 
alpha2beta1." J Biol Chem 283(47): 32704-32714. 

Vanhoutte, P. M. and R. A. Cohen (1983). "The elusory role of serotonin in vascular function 
and disease." Biochem Pharmacol 32(24): 3671-3674. 

Varga-Szabo, D., A. Braun, C. Kleinschnitz, M. Bender, I. Pleines, M. Pham, T. Renné, G. 
Stoll and B. Nieswandt (2008). "The calcium sensor STIM1 is an essential mediator of 
arterial thrombosis and ischemic brain infarction." The Journal of Experimental Medicine 
205(7): 1583. 

Varga-Szabo, D., I. Pleines and B. Nieswandt (2008). "Cell adhesion mechanisms in 
platelets." Arterioscler Thromb Vasc Biol 28(3): 403-412. 

Vorchheimer, D. A., J. J. Badimon and V. Fuster (1999). "Platelet glycoprotein IIb/IIIa 
receptor antagonists in cardiovascular disease." Jama 281(15): 1407-1414. 



	 	 6 Bibliography 
   

	 86	

Wagner, C. L., M. A. Mascelli, D. S. Neblock, H. F. Weisman, B. S. Coller and R. E. Jordan 
(1996). "Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human 
platelets." Blood 88(3): 907-914. 

Wang, X. and T. Ha (2013). "Defining single molecular forces required to activate integrin 
and notch signaling." Science 340(6135): 991-994. 

Wang, X., J. Sun, Q. Xu, F. Chowdhury, M. Roein-Peikar, Y. Wang and T. Ha (2015). 
"Integrin Molecular Tension within Motile Focal Adhesions." Biophys J 109(11): 2259-
2267. 

Wang, Y., D. N. LeVine, M. Gannon, Y. Zhao, A. Sarkar, B. Hoch and X. Wang (2018). 
"Force-activatable biosensor enables single platelet force mapping directly by fluorescence 
imaging." Biosensors & bioelectronics 100: 192-200. 

Wegener, K. L., A. W. Partridge, J. Han, A. R. Pickford, R. C. Liddington, M. H. Ginsberg 
and I. D. Campbell (2007). "Structural basis of integrin activation by talin." Cell 128(1): 
171-182. 

Weisel, J. W., C. Nagaswami, G. Vilaire and J. S. Bennett (1992). "Examination of the 
platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and 
other ligands by electron microscopy." J Biol Chem 267(23): 16637-16643. 

Weiss, E. J., J. R. Hamilton, K. E. Lease and S. R. Coughlin (2002). "Protection against 
thrombosis in mice lacking PAR3." Blood 100(9): 3240-3244. 

Wiederschain, G. Y. (2011). "The Molecular Probes handbook. A guide to fluorescent probes 
and labeling technologies." Biochemistry (Moscow) 76(11): 10-97. 

Wong, C. H., C. N. Jenne, B. Petri, N. L. Chrobok and P. Kubes (2013). "Nucleation of 
platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and 
contributes to bacterial clearance." Nat Immunol 14(8): 785-792. 

Xiao, T., J. Takagi, B. S. Coller, J. H. Wang and T. A. Springer (2004). "Structural basis for 
allostery in integrins and binding to fibrinogen-mimetic therapeutics." Nature 432(7013): 
59-67. 

Xiong, J.-P., T. Stehle, B. Diefenbach, R. Zhang, R. Dunker, D. L. Scott, A. Joachimiak, S. 
L. Goodman and M. A. Arnaout (2001). "Crystal Structure of the Extracellular Segment of 
Integrin αVβ3." Science (New York, N.Y.) 294(5541): 339-345. 

Xiong, J. P., T. Stehle, S. L. Goodman and M. A. Arnaout (2003). "New insights into the 
structural basis of integrin activation." Blood 102(4): 1155-1159. 



	 	 6 Bibliography 
   

	 87	

Xiong, J. P., T. Stehle, R. Zhang, A. Joachimiak, M. Frech, S. L. Goodman and M. A. 
Arnaout (2002). "Crystal structure of the extracellular segment of integrin alpha Vbeta3 in 
complex with an Arg-Gly-Asp ligand." Science 296(5565): 151-155. 

Yam, P. T., C. A. Wilson, L. Ji, B. Hebert, E. L. Barnhart, N. A. Dye, P. W. Wiseman, G. 
Danuser and J. A. Theriot (2007). "Actin–myosin network reorganization breaks symmetry 
at the cell rear to spontaneously initiate polarized cell motility." The Journal of Cell Biology 
178(7): 1207-1221. 

Ye, F., C. Kim and M. H. Ginsberg (2011). "Molecular mechanism of inside-out integrin 
regulation." J Thromb Haemost 9 Suppl 1: 20-25. 

Yeaman, M. R. (2014). "Platelets: at the nexus of antimicrobial defence." Nat Rev Microbiol 
12(6): 426-437. 

Zhang, Y., Y. Qiu, A. T. Blanchard, Y. Chang, J. M. Brockman, V. P. Ma, W. A. Lam and K. 
Salaita (2018). "Platelet integrins exhibit anisotropic mechanosensing and harness 
piconewton forces to mediate platelet aggregation." Proc Natl Acad Sci U S A 115(2): 325-
330. 

Zhang, Y., Y. Qiu, A. T. Blanchard, Y. Chang, J. M. Brockman, V. P.-Y. Ma, W. A. Lam and 
K. Salaita (2018). "Platelet integrins exhibit anisotropic mechanosensing and harness 
piconewton forces to mediate platelet aggregation." Proceedings of the National Academy 
of Sciences 115(2): 325. 

Zhou, Y., K. K. Chan, T. Lai and S. Tang (2013). "Characterizing refractive index and 
thickness of biological tissues using combined multiphoton microscopy and optical 
coherence tomography." Biomedical optics express 4(1): 38-50. 

Zhu, J., B. H. Luo, T. Xiao, C. Zhang, N. Nishida and T. A. Springer (2008). "Structure of a 
complete integrin ectodomain in a physiologic resting state and activation and deactivation 
by applied forces." Mol Cell 32(6): 849-861. 

Zhu, J., J. Zhu, A. Negri, D. Provasi, M. Filizola, B. S. Coller and T. A. Springer (2010). 
"Closed headpiece of integrin alphaIIbbeta3 and its complex with an alphaIIbbeta3-specific 
antagonist that does not induce opening." Blood 116(23): 5050-5059.



   
	  

	 88 

7 Eidesstaatliche Erklärung   
 
 
Ich erkläre hiermit an Eides statt, dass ich die an der Medizinischen Fakultät der Ludwig-
Maximilians-Universität München eingereichte Arbeit mit dem Titel: 
  

The role of mechanosensing in platelet function 

 

am Klinikum der Ludwig-Maximilians-Universität München 
Medizinische Klinik und Poliklinik I 

 

selbst verfasst, alle Teile eigenständig formuliert und keine fremden Textteile übernommen 
habe, die nicht als solche gekennzeichnet sind. Kein Abschnitt der Doktorarbeit wurde von 
einer anderen Person formuliert und bei der Abfassung wurden keine anderen als die in der 
Abhandlung aufgeführten Hilfsmittel benutzt. 

Ich habe an keiner anderen Stelle einen Antrag auf Zulassung zur Promotion gestellt oder 
bereits einen Doktortitel auf der Grundlage des vorgelegten Studienabschlusses erworben und 
mich auch nicht einer Doktorprüfung erfolglos unterzogen. 

Die Arbeit habe ich bislang an keiner Hochschule als Bestandteil einer Prüfungs- oder 
Qualifikationsleistung vorgelegt.  

Die Dissertation wurde ohne Hinzuziehung einer kommerziellen Promotionsberatung erstellt.  

Die Promotionsordnung der Medizinischen Fakultät der Ludwig-Maximilians-Universität 
München ist mir bekannt. Die Bedeutung der eidesstattlichen Erklärung und die 
strafrechtlichen Folgen einer unrichtigen oder unvollständigen eidesstattlichen Erklärung sind 
mir bekannt.  

 

 

Ben Raude              Berlin, den 12.07.2021 

                       


