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1 Summary 
 
1.1 Abstract 
 

Despite its high prevalence in diverse clinical settings, treatment of alcohol withdrawal 

syndrome (AWS) is mainly based on subjective clinical opinion. Without reliable 

predictors of potential harmful AWS outcomes at the individual patient’s level, 

decisions like provision of pharmacotherapy rely on resource-intensive in-patient 

monitoring. By contrast, an accurate risk prognosis would enable timely preemptive 

treatment, open up possibilities for safe out-patient care and lead to a more efficient 

use of health care resources.  

The aim of this project was to develop such tools using clinical and patient-reported 

information easily attainable at patient’s admission. To this end, a machine learning 

framework incorporating nested cross-validation, ensemble learning, and external 

validation was developed to retrieve accurate, generalizable prediction models for 

three meaningful AWS outcomes: (1) Separating mild and more severe AWS as 

defined by the established AWS scale, and directly identifying patients at risk of (2) 

delirium tremens as well as (3) withdrawal seizures. Based on 121 sociodemographic, 

clinical and laboratory-based variables, that were retrieved retrospectively from the 

patients’ charts, this classification paradigm was used to build predictive models in two 

cohorts of AWS patients at major detoxification wards in Munich (Ludwig-Maximilian-

Universität München, n=389; Technische Universität München, n=805).  

Moderate to severe AWS cases were predicted with significant balanced accuracy 

(BAC) in both cohorts (LMU, BAC = 69.4%; TU, BAC = 55.9%). A post-hoc association 

between the models’ poor outcome predictions and higher clomethiazole doses further 

added to their clinical validity. While delirium tremens cases were accurately identified 

in the TU cohort (BAC = 75%), the framework yielded no significant model for 

withdrawal seizures. Variable importance analyses revealed that predictive patterns 

highly varied between both treatment sites and withdrawal outcomes. Besides several 

previously described variables (most notably, low platelet count and cerebral brain 

lesions), several new predictors were identified (history of blood pressure 

abnormalities, positive urine-based benzodiazepine screening and years of schooling), 

emphasizing the utility of data-driven, hypothesis-free prediction approaches. Due to 

limitations of the datasets as well as site-specific patient characteristics, the models 
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did not generalize across treatment sites, highlighting the need to conduct strict 

validation procedures before implementing prediction tools in clinical care. 

In conclusion, this dissertation provides evidence on the utility of machine learning 

methods to enable personalized risk predictions for AWS severity. More specifically, 

nested-cross validation and ensemble learning could be used to ensure generalizable, 

clinically applicable predictions in future prospective research based on multi-center 

collaboration.  
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1.2 Deutsche Zusammenfassung 
 
Die prädiktive Einschätzung der Ausprägung von Entzugssymptomen bei 

Patient*innen mit Alkoholabhängigkeit beruht trotz jahrzehntelanger 

wissenschaftlicher Bemühungen weiterhin auf subjektiver klinischer Einschätzung. 

Entgiftungsbehandlungen werden daher weltweit vorwiegend im stationären Rahmen 

durchgeführt, um eine engmaschige klinische Überwachung zu gewährleisten. Da 

über 90 % der Entzugssyndrome mit lediglich milder vegetativer Symptomatik 

verlaufen, bindet dieses Vorgehen wertvolle Ressourcen. Datenbasierte 

Prädiktionstools könnten einen wichtigen Beitrag in Richtung einer individualisierten, 

akkuraten und verlässlichen Verlaufsbeurteilung leisten. Diese würde sichere 

ambulante Behandlungskonzepte, prophylaktische medikamentöse Behandlungen 

von Risikopatient*innen, sowie innovative Behandlungsforschung basierend auf 

stratifizierten Risikogruppen ermöglichen. 

 

Das Ziel dieser Arbeit war die Entwicklung solcher prädiktiven Tools für Patient*innen 

mit Alkoholentzugssyndrom (AES). Hierfür wurde ein innovatives Machine Learning 

Paradigma unter Verwendung von strikten Validierungsmethoden (Nested Cross-

Validation und Out-of-Sample External Validation) verwendet, um generalisierbare, 

akkurate Prädiktionsmodelle für drei bedeutsame klinische Endpunkte des AES zu 

entwickeln: (1) die Klassifikation von milden in Abgrenzung zu moderat bis schwer 

ausgeprägten AES Verläufen, definiert nach einer hierfür etablierten klinischen Skala 

(AES Skala), sowie die direkte Identifikation der Komplikationen (2) Delirium tremens 

(DT) sowie von (3) zerebralen Entzugsanfällen (WS). Dieses Paradigma wurde unter 

Verwendung von 121 retrospektiv erfassten klinischen, laborbasierten, sowie 

soziodemographischen Variablen auf 1194 Patient*innen mit Alkoholabhängigkeit an 

zwei großen Entgiftungsstationen in München angewandt (Ludwig-Maximilian-

Universität München, n=389; Technische Universität München, n=805).  

Moderate bis schwere AES Verläufe konnten an beiden Behandlungszentren mit einer 

signifikanten Genauigkeit (balanced accuracy [BAC]) prädiziert werden (LMU, BAC = 

69.4%; TU, BAC = 55.9%). In einer post-hoc Analyse war die Prädiktion moderater bis 

schwerer Verläufe zudem mit höheren kumulativen Clomethiazol-Dosen assoziiert, 

was für die klinische Validität der Modelle spricht. Während DT in der TU Kohorte mit 



 4 

einer hohen Genauigkeit (BAC = 75%) identifiziert werden konnte, war die Prädiktion 

von Entzugsanfällen nicht erfolgreich.  

 

Eine explorative Analyse konnte zeigen, dass die prädiktive Bedeutsamkeit einzelner 

Variable sowohl zwischen den Behandlungszentren als auch den einzelnen 

Endpunkten deutlich variierte. Neben mehreren bereits in früheren wissenschaftlichen 

Arbeiten beschriebenen prädiktiv wertvollen Variablen (insbesondere einer 

durchschnittlich niedrigeren Thrombozytenzahl im Blut sowie von strukturellen 

zerebralen Läsionen) konnten hierbei mehrere neue Prädiktoren identifiziert werden 

(Blutdruckauffälligkeiten in der Vorgeschichte; positives Urinscreening auf 

Benzodiazepine; Anzahl der Schuljahre). Diese Ergebnisse unterstreichen den Wert 

von datenbasierten, hypothesen-freien Prädiktionsansätzen. Aufgrund von 

Limitationen des retrospektiven Datensatzes, wie der fehlenden 

zentrumsübergreifenden Verfügbarkeit einiger Variablen, sowie klinischen 

Besonderheiten der beiden Kohorten, ließen sich die Modelle am jeweils anderen 

Behandlungszentrum nicht validieren. Dieses Ergebnis unterstreicht die 

Notwendigkeit, die Generalisierbarkeit von Prädiktionsergebnissen adäquat zu testen, 

bevor hierauf basierende Tools für die klinische Praxis empfohlen werden. Solche 

Methoden wurden im Rahmen dieser Arbeit erstmalig in einem Forschungsprojekt zum 

AES verwendet.  

 

Zusammenfassend, zeigen die Ergebnisse dieser Dissertation erstmalig einen Nutzen 

von Machine Learning Ansätzen zur individualisierten Risikoprädiktion schwerer AES 

Verläufe an. Das hierbei verwendete cross-validierte Machine Learning Paradigma 

wäre ein mögliches Analyseverfahren, um in künftigen prospektiven Multi-Center-

Studien verlässliche Prädikationsergebnisse mit hohem klinischen 

Anwendungspotential zu erreichen. 
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2 Introduction 
 

Alcohol withdrawal syndrome (AWS) constitutes a common manifestation of physical 

alcohol dependence, encountered in patients across diverse clinical treatment settings 

who stop or reduce their alcohol consumption (Hall & Zador, 1996). While the majority 

of patients with AWS will only develop mild vegetative symptoms, that can nonetheless 

cause significant distress, complications like delirium tremens (DT) and withdrawal 

seizures (WS) require timely recognition and care (Schuckit, 2014; Victor & Adams, 

1953). Despite numerous research efforts to find predictors of such adverse outcomes, 

there are currently no reliable, objective markers that allow risk stratification at an 

individual patient’s admission (Goodson et al., 2014; National Institute for Health and 

Care Excellence (NICE), 2010). As a result, clinicians either rely on close symptom 

assessment to offer post-hoc medication as needed, usually within costly in-patients 

settings, or they preemptively administer high-dose pharmacological treatment without 

means to estimate actual demands (Mayo-Smith, 1997). In order to offer patients more 

efficient treatment alternatives, tailored to their specific needs, tools to accurately 

predict individual AWS trajectories are urgently needed.  

 

In this introduction, I first discuss which clinical questions arise while treating AWS 

patients and how they might benefit from accurate disease course prediction. To this 

end, I outline the development of a unified concept of alcohol withdrawal syndrome 

and describe how clinicians tend to approach AWS patients diagnostically. 

Furthermore, I describe state-of-the-art treatment approaches to AWS and discuss 

their efficiency and safety. Secondly, I summarize the current state of research efforts 

seeking prediction of AWS severity and explore if and how these have been translated 

into clinical practice. This entails a discussion on common methodological difficulties 

and shortfalls of previous research. Thirdly, I discuss Machine Learning (ML) as a 

possible alternative framework to achieve prediction outcomes, meaningful on a single-

patient level. Finally, I describe the aims of this project, namely, using ML approaches 

to predict individual severity estimates of AWS in patients with alcohol dependence. 
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2.1 Why AWS severity prediction matters 
 

2.1.1 Current concept of alcohol withdrawal and diagnostic approaches 

Although physical and psychological symptoms typically seen in heavy drinkers have 

been described in Arabic and Western medical literature for centuries (Pearson, 1813; 

Sutton, 1813), our current understanding of AWS as a spectrum of frequently occurring 

symptoms following cessation or reduction of alcohol consumption in alcohol-

dependent patients was shaped in the middle of the last century (Porcel & Schutta, 

2015). Victor and Adam’s thorough description of symptom trajectories in 226 male 

patients admitted to the Boston city hospital for alcohol-related illness in 1953 revealed 

four “clinical states”—tremulous, hallucinatory, epileptic and delirious—which the 

authors linked “not only upon the effects of prolonged exposure to alcohol, but 

temporarily, on abstinence from the drug” (Victor & Adams, 1953).This etiological 

attribution was later affirmed by an interventional study that induced withdrawal 

symptoms in opioid-dependent patients by applying controlled amounts of alcohol 

(Isbell et al., 1955). Due to the development of effective sedative drugs in the late 

1950s and 1960s (Kaim et al., 1969; Thomas & Freedman, 1964), only few studies on 

medication-naïve patients have been conducted since (Whitfield et al., 1978), mainly 

due to ethical consideration (Hall & Zador, 1996). Therefore, most recent reviews and 

clinical recommendations (Hall & Zador, 1996; Mann et al., 2016; National Institute for 

Health and Care Excellence (NICE), 2011; Schuckit, 2014) describe a “natural history” 

(Foy et al., 1997) of alcohol withdrawal that closely follows the clinical states outlined 

in Victor and Adam’s work conceptually: 

Corresponding to the “tremulous state”, most patients develop somatic (tremors, 

sweating, heart rate and blood pressure increases, increases in body temperature and 

breathing rate, nausea and vomiting) and mental symptoms (anxiety, agitation, sleep 

disturbances), that are partly explained by autonomic hyperactivity revealing 

readjustment to the prolonged effects of alcohol intoxication on the brain (Hall & Zador, 

1996; Littleton, 1998). Typically, these symptoms occur six to eight hours after the 

cessation or reduction of repeated, usually high-dose alcohol consumption, peak in 

severity during day one to three, and subside till day five to seven after the last alcohol 

intake (Mann et al., 2016; National Institute for Health and Care Excellence (NICE), 

2010; Schuckit, 2014; Victor & Adams, 1953). Though potentially distressing 

manifestations, that warrant pharmacological treatment, do frequently occur in hospital 
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settings (Eyer, Schuster, et al., 2011; Foy & Kay, 1995), AWS cases with solely 

autonomic symptoms are mostly classified as mild to moderate withdrawal (Maldonado 

et al., 2014; Mayo-Smith et al., 2004; Schuckit, 2014). In contrast, the “delirious state” 

describes a potentially life-threatening manifestation of alcohol withdrawal: Autonomic 

symptoms of greater intensity that cooccur with fluctuating neurocognitive deficits like 

decreased attention and disorientation, delusions, as well as perceptional 

disturbances, typically starting between 48 to 72 hours after alcohol cessation, are 

usually subsumed under the 19th-century-term “delirium tremens” (Hall & Zador, 1996; 

Schuckit, 2014; Sutton, 1813). DT rates in AWS inpatients have been reported in the 

range of 3 to 20% (Eyer, Schuster, et al., 2011; Ferguson et al., 1996; Salottolo et al., 

2017; Soravia et al., 2018). The generally lower incidence in more recent studies (Eyer, 

Schuster, et al., 2011; Soravia et al., 2018) has been primarily attributed to more 

rigorous pharmacological treatment (Schuckit, 2014). DT can result in increased 

mortality due to hyperthermia, cardiac arrhythmias, worsening of medical diseases or 

complications of physical restraint (Khan et al., 2008; Salottolo et al., 2017). 

Furthermore, DT has been associated with more frequent admissions to intensive care 

units (ICU),  longer ICU treatment duration and longer treatment duration in general 

(Salottolo et al., 2017; Wright et al., 2006). Therefore, it is considered the most severe 

or complicated manifestation of AWS (Mayo-Smith et al., 2004; Schuckit, 2014), which 

frequently requires in-patient treatment and pharmacological intervention (Schmidt et 

al., 2016). Lastly, corresponding to the “epileptic state”, up to 10% of AWS patients 

may experience single or recurrent generalized tonic-clonic seizures that usually occur 

within 48 hours after alcohol cessation (Hillbom et al., 2003; Hughes, 2009; Victor & 

Brausch, 1967). These withdrawal seizures are most likely caused by central nervous 

system hyperexcitability due to adaptive changes in neurotransmitter homeostasis that 

subside during abstinence, often occur before patient admission and show low 

mortality rates (Hughes, 2009). However, more hazardous seizure etiologies that are 

frequently associated with alcohol-use have to be excluded to prevent complications 

like status epilepticus and brain damage (Hillbom et al., 2003). Retrospectively, cases 

which are first considered withdrawal-related can be attributed to other etiologies (e.g. 

head injury, idiopathic, cerebrovascular lesions, toxicity) in over 50% of cases (Rathlev 

et al., 2000). An adequate diagnostic workup via laboratory and imaging-based 

evaluation is therefore necessary, especially in cases of first-time seizure (Hillbom et 

al., 2003). 
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Considering these potential adverse outcomes, efficient diagnostic tools that 

differentiate between uncomplicated and complicated trajectories of AWS are 

mandatory to ensure adequate patient care. Following a categorical approach, the 

International Classification of Diseases and Related Health Problems, 10th Edition 

(World Health Organization, 2004), currently used as a classification system to 

operationalize diagnoses in Germany, allows for separate coding of withdrawal states 

depending on the occurrence of DT and WS (Table 2.1). The validity and clinical utility 

of such broad disease categories has been questioned repeatedly across psychiatry, 

since potentially complex pathophysiological underpinnings and individual disease 

trajectories are disregarded (Jablensky, 2016). Alcohol withdrawal researchers have 

therefore recommended to incorporate standardized clinical assessment scales into 

operationalized classifications of AWS (Sellers et al., 1991). Such assessment scales 

have been developed and used in clinical practice to guide treatment decisions based 

on AWS severity: The Total Severity Assessment (TSA) comprised 32 items correlated 

with clinical judgement and withdrawal severity in an observational cluster analysis of 

100 male alcohol depended patients (Gross et al., 1973). It was later refined to the 15-

item Clinical Institute Withdrawal Assessment for Alcohol (CIWA-A) Scale (Shaw et al., 

1981), by excluding variables that could not be used for half-hourly scoring (e.g. sleep 

disturbances). The scale was applied in non-pharmacological (Naranjo et al., 1983) 

and pharmacological (Sellers et al., 1983) withdrawal treatment studies. Sullivan et. al 

validated a revised 10-item version, the CIWA-Ar (Sullivan et al., 1989) that is still 

widely used to assess withdrawal severity in clinical and research contexts (Sachdeva 

et al., 2014; Schuckit, 2014). Another 10-item derivative of the CIWA-A, the Alcohol 

Withdrawal Scale (AWS scale) (Wetterling et al., 1997), that offers sub-scales for 

somatic and mental symptoms, is more frequently used for severity assessment in 

German-speaking countries (Eyer, Schreckenberg, et al., 2011; Eyer, Schuster, et al., 

2011; Soravia et al., 2018). Several other scales have been reported in single studies, 

but not applied more widely (Mennecier et al., 2008; Williams, 2001). While most 

standardized scales have been tested for interrater-reliability (Williams, 2001) and 

certainly allow a more accurate assessment of individual withdrawal trajectories than 

broad ICD-10 diagnosis, they also require sufficient staff that is trained in its application 

(Sullivan et al., 1989). Moreover, some authors suggest that they do not sufficiently 

capture negative affective symptoms that often occur during AWS and may last up to 

several weeks (Heilig et al., 2010). Nonetheless, since no accurate biomarkers are 
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available in the field, assessment scales are endorsed as the main diagnostic tools to 

guide treatment decision during the withdrawal course (Mann et al., 2016; National 

Institute for Health and Care Excellence (NICE), 2010), as will be described in the 

following section. 

Table 2.1. ICD-10 criteria for Alcohol withdrawal states, based on: (World Health 
Organization, 2004) 

Alcohol withdrawal state (F10.3) 

 Recent termination or reduction of alcohol consumption after repeated, prolonged 
use of high doses.  

At least three of the following symptoms: 

- tremor of the tongue, eyelids, or the outstretched hands  
- sweating 
- nausea, retching, or vomiting  
- tachycardia or hypertension  
- psychomotor agitation  
- headache 
- insomnia 
- malaise or weakness  
- transient visual, tactile, or auditory hallucinations or illusions  
- generalized tonic-clonic seizures 

Symptoms not explained by medical disorder unrelated to alcohol use or other 
mental disorder.  

Further specified: uncomplicated (F13.30) / with convulsions (F13.31) 

Alcohol withdrawal delirium (F10.4) 

 Alcohol withdrawal state (F10.3) and criteria for delirium (F05.-) are fulfilled: 
 

- clouding of consciousness with attentional deficits   

- disturbance of cognition, manifest by memory deficits and disorientation  

- psychomotoric disturbances 

- disturbance of sleep or the sleep-wake cycle  

- rapid onset and fluctuations of these symptoms over the course of the day 

Further specified: without convulsions (F10.40) / with convulsions (F10.41) 
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2.1.2 Challenges of withdrawal treatment 
 

AWS patients may present in various treatment settings like psychiatric wards 

(Wetterling et al., 1994), general medical departments (Jaeger et al., 2001), 

specialized detoxification units (Eyer, Schreckenberg, et al., 2011), surgical wards 

(Maldonado et al., 2015), intensive care units (Lukan et al., 2002), outpatient-clinics 

(Whitfield et al., 1978) or the correctional health care system (Fiscella et al., 2004). 

They may contact health-services for planned withdrawal treatment in context of a 

known AUD (Soravia et al., 2018) or be forced into unplanned withdrawal after 

experiencing trauma (Holt et al., 1980) or severe somatic illness (Wojnar, Bizoń, et al., 

1999). Such treatment settings are characterized by varying access to medical 

resources, different staff training and availability, diverging treatment approaches 

and—crucially—heterogenous patient collectives (National Institute for Health and 

Care Excellence (NICE), 2010, 2011). The development of effective and comparatively 

safe sedative drugs, most notably benzodiazepines, has replaced treatments like 

lumbal punctures, hydrotherapy, insulin coma therapy and paraldehyde sedation since 

the 1960s (T. A. Stern et al., 2010). But while numerous randomized-controlled trials 

(RCTs) on a variety of drugs for different outcomes of AWS have been published, low 

methodological quality pervades as a main impediment to evidence-based treatment 

recommendations (Amato et al., 2011; Moskowitz et al., 1983). Following a survey in 

the United States that revealed heterogenous treatment practices amongst clinicians 

(Saitz et al., 1995), a first evidence-based guideline was published in 1997 that defines 

still valid treatment principles (Mayo-Smith, 1997) that have been incorporated into 

more recent guidelines (Mann et al., 2016; National Institute for Health and Care 

Excellence (NICE), 2011). Goals of AWS treatment are minimization of withdrawal 

symptoms, promotion of patient dignity and comfort, prevention of complications like 

WS and DT, prevention of relapse, as well as the transition to further AUD treatment 

(Mann et al., 2016; Mayo-Smith, 1997; National Institute for Health and Care 

Excellence (NICE), 2010, 2011). To achieve these goals, clinicians have to answer the 

following questions: 

 

a) What treatment setting is best suited for the individual patient? 

 

The only randomized controlled study comparing an inpatient with an outpatient 

treatment setting for AWS patients showed, that while more patients completed the 
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costly and lengthy inpatient program, both treatment safety and follow-up outcomes 

after six months did not differ between groups (Hayashida et al., 1989). Further 

uncontrolled studies suggest that both home-based (Bartu & Saunders, 1994; 

Stockwell et al., 1991) and specialized out-patient (Soyka & Horak, 2004) settings are 

feasible and safe alternatives for patients with mild withdrawal severity. From a public-

health perspective such treatment settings certainly would be desirable to reduce high 

in-patient treatment costs (Hayashida et al., 1989; National Institute for Health and 

Care Excellence (NICE), 2011; Wright et al., 2006). They might even show beneficial 

effects on long-term treatment outcomes (Soyka & Horak, 2004).  Unfortunately, there 

are no studies available that offer clinicians objective eligibility criteria for different 

treatment settings (National Institute for Health and Care Excellence (NICE), 2011). 

While in cases of acute somatic illness or physical trauma in-patient treatment is 

usually warranted, in other cases clinicians have to decide if a patient can be treated 

in an out-patient program, can be referred to a planned detoxification program at a 

later point in time or should be admitted to inpatient treatment right away. Current 

expert opinions state that, with high-quality evidence missing, these decisions should 

be individually based on criteria like patient age, physical and cognitive abilities, and 

available social support (National Institute for Health and Care Excellence (NICE), 

2011).  

 

b) What non-pharmacological treatment should be provided? 

 

As mentioned above, most AWS patients will develop only mild autonomous 

withdrawal symptoms (Victor & Adams, 1953), that can be potentially managed if 

adequate staff attendance, monitoring, hydration and a well-lit environment is ensured 

(Naranjo et al., 1983; Whitfield et al., 1978). Since only one controlled study on non-

pharmacological treatment is available (Naranjo et al., 1983), it seems unclear if this 

approach translates to modern patients’ expectations, if one considers important 

factors like patient dignity and comfort.  
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c) Does an individual patient require pharmacological treatment and if, which 

dosing scheme should be used? 

 

Three dosing approaches are usually proposed for pharmacological withdrawal 

treatment: In fixed-dose regimes a standard dose of a sedative medication is 

administered that is then tapered off during subsequent days (Sachdeva et al., 2014). 

Front-loading refers to a regime where a long-acting sedative medication is 

administered in high dose at the beginning of withdrawal, followed by rescue 

medication if needed (Maldonado et al., 2012). In symptom-triggered therapy 

withdrawal severity is assessed via standardized scales such as the CIWA-Ar or AWS 

scale by attendant nurses or doctors in regular intervals.  If withdrawal severity 

exceeds predefined cut-off ratings, sedative medication is provided to the patient ad-

hoc (Holleck et al., 2019). Several studies compared the efficiency between fixed dose 

and loading dose (Day et al., 2004; Jauhar, 2000; Manikant et al., 1993; Wasilewski et 

al., 1996), symptom-triggered therapy and loading dose (Maldonado et al., 2012), 

symptom-triggered therapy and fixed dose (Daeppen et al., 2002; Elholm et al., 2011; 

Lange-Asschenfeldt et al., 2003; Sachdeva et al., 2014; Saitz et al., 1994; Weaver et 

al., 2006), as well as symptom-triggered therapy and a variably defined “treatment-as-

usual” (Jaeger et al., 2001; J P Reoux & Miller, 2000; Soravia et al., 2018), mainly with 

benzodiazepines or clomethiazole as sedative agents. Symptom-triggered therapy is 

recommended by most treatment guidelines, due to beneficial effects on treatment 

duration and total benzodiazepine doses administered (Mayo-Smith, 1997; National 

Institute for Health and Care Excellence (NICE), 2010). While a recent meta-analysis 

confirmed these advantages, it could not show a decrease in mortality or occurrence 

of DT or WS and observed, that most results were achieved in low-risk patient cohorts, 

therefore might not transfer to many AWS treatment settings (Holleck et al., 2019). 

Indeed, a recent study in ICU patients suggested that front-loading regimes with focus 

on the first 24 hours after admission might be beneficial in preventing adverse 

outcomes of severe AWS (J. A. Lee et al., 2019). Moreover, symptom-triggered 

therapy requires frequent monitoring by specialized staff that is trained in standardized 

assessment, which may limit its transferability to treatment settings without respective 

resources. To this date, no studies have been conducted that compare different 

treatment regimens based on patient characteristics or predictive ratings.  
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d) If pharmacological treatment is required, which medication should be 

administered? 

 

Benzodiazepines are the most widely prescribed pharmacological agents for AWS 

(Mayo-Smith, 1997). Besides having been tested in multiple RCTs (Amato et al., 2010; 

Mayo-Smith, 1997), they offer a treatment rationale based on neurobiological 

underpinnings: Frequent alcohol consumption is hypothesized to cause adaptive 

changes in neurotransmitter homeostasis that lead to a decrease in activity of the 

inhibitory neurotransmitter gamma-aminobutyric acid (GABA) (Littleton, 1998; Petty et 

al., 1993) and increased activity of the excitatory neurotransmitter glutamate (Hermann 

et al., 2012; Tsai et al., 1995) causing withdrawal symptoms. Due to their modulating 

effects on the GABA-receptor, benzodiazepines are hypothesized to counteract these 

acute imbalances and therefore ameliorate withdrawal symptoms (Amato et al., 2010). 

Nonetheless, compared to other possible AWS medications and placebo, 

benzodiazepines did solely perform superior in prevention of withdrawal seizures in a 

more recent meta-analysis, showing no benefits on withdrawal severity, DT 

development or safety (Amato et al., 2010, 2011). Emphasizing the methodological 

heterogeneity of underlying studies, the authors concluded that more studies are 

needed to establish the efficacy and safety of benzodiazepine treatment (Amato et al., 

2010). Others warned, that AWS prophylaxis with benzodiazepines in patients who 

may only develop mild withdrawal symptoms could cause unnecessary side effects 

like sedation, falls, and paradoxical delirium (Maldonado et al., 2014). Several other 

sedative agents like anti-convulsant medication (Eyer, Schreckenberg, et al., 2011; 

Minozzi et al., 2010), clomethiazole (Eyer, Schreckenberg, et al., 2011; Eyer, Schuster, 

et al., 2011) and antipsychotics (National Institute for Health and Care Excellence 

(NICE), 2010) are currently used in clinical care either as main or adjacent treatment. 

In ICU contexts, propofol or dexmedetomidine have been suggested as treatments for 

patients unresponsive to benzodiazepines, although results were unsatisfactory 

(Vanderweide et al., 2016; Wong et al., 2015). Other agents like Baclofen (Cooney et 

al., 2019; Liu & Wang, 2019), gamma-hydroxybutyrate (Leone et al., 2010) and nitrous 

oxid (Gillman et al., 2007)  have been studied, but are currently not recommended by 

clinical guidelines due to insufficient evidence of their efficiency (Mann et al., 2016; 

National Institute for Health and Care Excellence (NICE), 2010). Considering the 

increasing range of possible pharmacological agents for treatment of AWS, an 
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objective selection based on patients’ characteristics and individually expected 

disease courses is urgently needed. 

 

As has been outlined above, AWS treatment currently relies on several decisions that 

require an estimate on how severe an individual patient’s disease course will likely 

unfold. Key decisions—choosing an adequate treatment setting, initiating prophylactic 

pharmacological treatment to prevent DT or WS—have to be made shortly after initial 

contact. Without precise tools to predict further withdrawal development, clinicians are 

dependent on subjective judgement to weigh an overall low prior risk of severe AWS 

development against the potentially hazardous consequences of untreated DT and 

WS. This entails several ethical considerations: A cautious approach with low-

threshold admissions to inpatient care might ensure patient safety, but 

disproportionately binds resources not required for most cases of mild AWS. Moreover, 

this focus on potential withdrawal development might unnecessarily delay referral to 

further addiction treatment. Even if a patient is admitted to inpatient treatment, DT often 

develops before pharmacological treatment is initiated (Foy et al., 1997). Without 

means to identify cases at risk of DT, clinicians either rely on frequent monitoring via 

assessment scales or have to treat all patients preemptively, even when most patients 

do not require pharmacotherapy. To summarize, adequate tools that predict further 

withdrawal trajectories would certainly benefit treatment decision making (Eyer, 

Schuster, et al., 2011; Maldonado et al., 2014; National Institute for Health and Care 

Excellence (NICE), 2011). In the next chapter I will outline previous research efforts to 

develop means to assess patients for risk of adverse AWS outcomes.  

 

2.2 Current state of AWS prediction research 
 

The need to predict AWS severity to optimize treatment decisions has motivated 

research efforts for decades (Shaw et al., 1981). Since then, numerous, mostly 

retrospective studies on AWS prediction have been published in regular intervals (e.g.: 

Benson et al., 2019; Eyer et al., 2011; Kraemer et al., 2003; Mennecier et al., 2008; 

Ramos, 2013; Wetterling et al., 1994; Wright et al., 2006). A 2014 meta-analysis 

identified 226 epidemiological studies on AWS of which 43 studies reported risk factors 

for severe withdrawal (Goodson et al., 2014). With few exceptions (Khan et al., 2008), 

most studies have focused on three outcomes of AWS: severity during the withdrawal 



  15 

course as measured by a standardized assessment scale (Kraemer et al., 2003; 

Mennecier et al., 2008), the occurrence of DT (Berggren et al., 2009; Ferguson et al., 

1996; Monte et al., 2009; Palmstierna, 2001) or the occurrence of WS (Hillemacher et 

al., 2012; Morton et al., 1994). Few studies have considered multiple outcomes like DT 

and WS (Eyer, Schuster, et al., 2011). In the following sections I give an overview on 

frequently reported independent risk factors for all three outcomes. Subsequently, I 

consider studies that introduce predictive tools suggested for clinical use. Finally, I 

investigate how and if these research efforts have been translated into clinical practice 

and which difficulties need to be addressed by further research efforts.   

 

2.2.1 Single risk factors 
 

a)  Previous AWS history 
 

Based on the much cited kindling hypothesis, which suggests that AWS severity 

increases as a function of the number of previous detoxifications due to long term 

adaptions in central nervous system (CNS) excitability (Ballenger & Post, 1978; 

Becker, 1998; Booth & Blow, 1993; Gonzalez et al., 2001; Lechtenberg & Worner, 

1991), several studies have examined if previous withdrawal experiences influence the 

likelihood of severe AWS in the index episode. Considering severity as defined by a 

standardized assessment, Malcolm et al. reported a slower decline in CIWA-Ar score 

ratings in patients with multiple previous detoxifications (Malcolm et al., 2000). 

Kraemer et al. observed an increased risk of severe AWS as defined by the CIWA-Ar 

score for patients with a self-reported history of DT and/or two or more alcohol 

treatments (Kraemer et al., 2003). In contrast, AWS severity was not associated with 

prior detoxifications or self-reported history of DT when assessed by the AWS scale 

(Wetterling, 2001) or Cushman score (Mennecier et al., 2008). Likewise, a greater 

number of detoxification (Booth & Blow, 1993; Lechtenberg & Worner, 1991, 1992) 

and a history of previous seizures (Berggren et al., 2009; Morton et al., 1994) have 

been suggested as risk factors for incident withdrawal seizures, while other studies 

could not find such associations (Eyer, Schuster, et al., 2011; Rathlev et al., 2000; 

Wojnar, Bizon, et al., 1999). For delirium tremens, both a history of DT (Berggren et 

al., 2009; Fiellin et al., 1998; J. H. Lee et al., 2005; Palmstierna, 2001; Wright et al., 

2006) as well as a history of WS (Fiellin et al., 2002; Palmstierna, 2001) were 

correlated with higher risk of incident delirium tremens. Again, several studies could 
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not find an increased risk for prior withdrawal events for the same outcome (Eyer, 

Schuster, et al., 2011; Ferguson et al., 1996). The only meta-analysis in the field—

excluding several studies due to lack of adequate control groups, insufficient statistical 

reporting or lack of standardized AWS definitions (Findley et al., 2010; Hillemacher et 

al., 2012; Lukan et al., 2002; Palmstierna, 2001)—reported that both a history of DT or 

WS increased the risk of a respective event in the incident episode (Goodson et al., 

2014).  

 

b) Degree of intoxication at admission 
 

Blood or breath alcohol concentrations are routinely collected, easily attainable 

measurements in most treatment facilities. Vinson et al. reported a linear increased 

risk of AWS severity, as measured by clinical assessment and total amount of 

withdrawal medication in the first 48 days, for patients in both psychiatric and general 

medicine departments depending on higher breath alcohol concentrations (BrAC) at 

admission (Vinson & Menezes, 1991). Palmstierna et al. reported an increased risk of 

incident DT for blood alcohol concentrations (BlAC) greater than one gram per liter 

body fluid at admission, but only if autonomous withdrawal symptoms were present 

(Palmstierna, 2001). In trauma patients a BlAC of more than 200 mg/dL was suggested 

as a risk factor of DT (Lukan et al., 2002). Negative findings, that did not yield an 

association between alcohol intoxication at admission and withdrawal outcome, were 

reported for severe AWS assessed by the CIWA-Ar scale (Kraemer et al., 2003), for 

DT (Eyer, Schuster, et al., 2011; Fiellin et al., 1998) and WS (Eyer, Schuster, et al., 

2011). Furthermore, Rathlev et al. found lower rates of withdrawal seizures in patients 

with a blood alcohol level greater then 100 mg per deciliter (Rathlev et al., 2000). 

Combining the few available studies in the mentioned meta-analysis did not yield 

significant results (Goodson et al., 2014).  

 

c) Laboratory assessment at admission 
 

Several laboratory parameters have been reported as risk factors of withdrawal 

outcomes: A retrospective study by Berggren et al. first observed thrombocytopenia 

(defined as a platelet count below 150 × 109 cells per liter) as more commonly 

occurring in DT and WS patients (Berggren et al., 2009). Summarizing several studies 

that reported platelet-count at admission (Berggren et al., 2009; Eyer, Schuster, et al., 
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2011; Huang et al., 2011; Monte et al., 2009), a meta-analysis found lower platelet-

values in DT and WS patients (Goodson et al., 2014).  Electrolyte abnormalities, 

especially hypokalemia (Wadstein & Skude, 1978), have been repeatedly proposed as 

predictors of DT development (Berggren et al., 2009; Eyer, Schuster, et al., 2011; 

Wetterling et al., 1994). In meta-analysis lower potassium levels were found as 

predictive of both DT and WS, while sodium and chloride were either non-significant 

or only available in single studies (Goodson et al., 2014). Increases in laboratory 

markers of risky alcohol consumption, like the liver enzymes alanine aminotransferase 

(ALT), aspartate aminotransferase (AST), and gamma glutamyltransferase (GGT) as 

well as mean corpuscular volume (MCV) and carbohydrate-deficient transferrin (CDT) 

have been reported as risk factors of severe AWS development defined by assessment 

scales (Mennecier et al., 2008; Wetterling et al., 1994), incident withdrawal seizures 

(Bråthen et al., 2000) and DT (Berggren et al., 2009). The aforementioned meta-

analysis found higher ALT to be predictive of general severe AWS and higher GGT of 

withdrawal seizures (Goodson et al., 2014). Several small exploratory studies reported 

further laboratory values, that are usually not incorporated in standard laboratory 

panels, like elevated homocysteine levels as predictors of WS (Bleich et al., 2006; 

Hillemacher et al., 2012) and differentiating levels of serum brain derived neurotrophic 

factor (BDNF) between DT patients, AWS patients without DT and healthy controls 

(Huang et al., 2011). 

 

d) Vital parameters at admission 
 

Similar to laboratory testing, vital parameters are routinely taken at a patient’s 

admission and then used to monitor autonomous symptoms during the withdrawal 

course (Sullivan et al., 1989; Wetterling et al., 1997). Palmstierna et al. and Lee et al. 

both reported heart rate greater then respectively 120 and 100 beats per minute as 

predictive of DT (J. H. Lee et al., 2005; Palmstierna, 2001). While Monte et al. and 

Fiellin et al. reported systolic blood pressures greater than 150 mmHg and 145 mmHg 

as risk factors of DT (Fiellin et al., 2002; Monte et al., 2009), Berggren et al. and 

Ferguson et al. found relatively lower systolic blood pressure values in DT patients 

(Berggren et al., 2009; Ferguson et al., 1996). Furthermore, Monte et. al reported a 

body temperature greater than 38 degree Celsius (Monte et al., 2009) and Ferguson 

an average increased respiratory rate as predictive of DT (Ferguson et al., 1996). 
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Collectively, neither systolic or diastolic blood pressure or heart rate were predictive of 

severe withdrawal in meta-analysis (Goodson et al., 2014). 

e) Sociodemographic characteristics and alcohol disorder history  
 

Several sociodemographic risk factors have been discussed in previous research: 

While Lukan et al., Blondell et al., and Salottolo et al. all reported patient age of greater 

then respectively 40, 45 or 55 years as risk factors of DT development in trauma 

patients (Blondell et al., 2004; Lukan et al., 2002; Salottolo et al., 2017), no correlations 

between age and maximum AWS scale ratings (Wetterling, 2001), maximum CIWA-Ar 

ratings (Kraemer et al., 2003) or withdrawal seizures (Eyer, Schuster, et al., 2011) 

could be found. Meta-analysis did not find significant results for DT, WS or assessment 

scale ratings (Goodson et al., 2014). No predictive gender effects have been reported 

in the overall male weighted study populations and male gender did not increase risk 

of severe AWS in a meta-analysis (Goodson et al., 2014). Several studies explicitly 

reported that the duration of life-time alcohol consumption and the daily amount of 

alcohol consumption did not increase the severity of AWS (Kraemer et al., 2003; 

Lechtenberg & Worner, 1991; Wetterling, 2001). Correspondingly, the aforementioned 

meta-analysis did not find significant effects of the duration of alcohol abuse, the age 

of onset of alcohol abuse or the daily intake of alcohol on DT, WS or assessment scale 

ratings (Goodson et al., 2014).  

 

f) Comorbidities 
 

AWS often occurs in patients that are hospitalized for medical diseases other than 

AUD or for alcohol-related diseases (Wojnar, Bizoń, et al., 1999). Also, prevalence of 

medical comorbidities is elevated in patients with psychiatric disorders compared to 

the general population (Walker et al., 2015).  Several studies have examined the 

influence of somatic disease on DT development: Ferguson et al. showed that DT 

development was more likely in internal-medicine patients with acute somatic disease, 

including pneumonia, alcoholic pancreatitis, alcoholic hepatitis, upper gastrointestinal 

bleeding, sepsis, pyelonephritis, dehydration, and renal failure (Ferguson et al., 1996). 

Lee et al. reported higher rates of acute somatic illness (not further specified) for 

internal-medicine DT patients, that did however yield no significant predictive results 

in multivariate analysis (J. H. Lee et al., 2005). Wojnar et al. suggested a longer 

duration and greater severity of DT in patients with pneumonia, coronary heart disease, 
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alcohol liver disease, and anemia (Wojnar, Bizoń, et al., 1999). While several studies 

included both diagnosis of liver and pancreatic diseases as variables in their prediction 

studies, these did not significantly predict withdrawal severity (Eyer, Schuster, et al., 

2011; Mennecier et al., 2008; Monte et al., 2009; Wetterling et al., 1994). This was 

confirmed in meta-analysis (Goodson et al., 2014). Since AWS is frequently 

encountered in physical trauma patients (Holt et al., 1980), several studies explored 

possible risk factors of this specific population (Blondell et al., 2004; Findley et al., 

2010; Lukan et al., 2002; Salottolo et al., 2017). Regarding trauma mechanisms, 

severe head injury (Salottolo et al., 2017) and burns (Lukan et al., 2002) were 

positively, and motor vehicle accidents (Lukan et al., 2002) negatively correlated with 

DT development. Single studies reported further somatic risk factors like ataxia and 

polyneuropathia (Wetterling et al., 1994) and current infectious diseases like 

pneumonia or urinary tract infections (Palmstierna, 2001) as well as diagnostic findings 

like structural CNS lesions (Eyer, Schuster, et al., 2011). Considering psychiatric 

comorbidities, a history of non-medical benzodiazepine use (Kraemer et al., 2003; 

Schuckit et al., 1995) and other sedative psychotropic agents (Morton et al., 1994) 

have been associated with severe AWS. 

 

2.2.2 Prediction tools 
 

Beyond identifying correlations between single variables and outcomes of AWS 

severity, attempts have been made to combine multiple predictors into clinically viable 

rating tools for more accurate risk assessment. Methodologically, three approaches 

can be distinguished and are further discussed below: The use of regression models 

to find multivariate prediction models, the evaluation of preexisting assessment scales 

for risk prediction and the development of rating scales based on findings from 

literature.  

 

A common approach in previous studies has been to develop prediction models by 

identifying possible independent risk factors of severe AWS via univariate testing, 

which are then evaluated in a multivariate regression model: Ferguson et al. applied 

stepwise logistic regression in a retrospective sample of 200 internal-medicine in-

patients to detect risk factors of DT (Ferguson et al., 1996). While the authors reported 

the application of bootstrap validation, they did not further specify how this method was 

used. The combination of two variables, longer duration since last drink and 
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concomitant acute medical illness, yielded a risk of 54% for DT in the study cohort. 

Palmstierna et al. used a similar approach to identify five binary risk factors of DT in a 

cohort of 334 inpatients of whom 23 were discharged with a DSM-IV DT diagnosis 

(Palmstierna, 2001), though they did not report any performance measures of their 

regression model. In a retrospective study on 822 in-patients that developed AWS 

severe enough to require pharmacological treatment, Eyer et al. used a stepwise 

multivariate linear regression framework without prior selection based on univariate 

testing to separately identify 46 DT and 61 WS cases (Eyer, Schuster, et al., 2011). 

The parameters which showed significance in multivariate testing were then used to 

construct nomograms that allow risk calculation for both outcomes, yielding 

probabilities between 5 and 80% for WS and 0.1 and 70% for DT. 

 

Several authors have evaluated if the clinical use of already established assessment 

scales for either alcohol-use disorder diagnosis or AWS severity assessment could be 

further extended to AWS risk prediction: The 10-item Alcohol Use Disorders 

Identification Test (AUDIT), a screening test for potentially harmful alcohol 

consumption (Saunders et al., 1993), has been tested for prediction capabilities in 

three studies: Based on simple t-test group differences, Reoux et al. reported high 

prediction capabilities (sensitivity 0.982%, specificity of 0.28%) for a total AUDIT score 

≥ 27, identifying patients who developed a CIWA-Ar score ≥ 9 and therefore required 

symptom-triggered medication among 118 alcohol dependent patients (Joseph P. 

Reoux et al., 2002). Dolman et al. reported similarly performance measures, especially 

if AUDIT ratings were combined with laboratory parameters such as liver enzymes,  for 

prediction of 17 AWS patients in a sample of 874 medical in-patients of whom 98 were 

labeled as alcohol dependent (Dolman & Hawkes, 2005). Both studies did not report, 

if AUDIT and CIWA-Ar assessments were conducted under blinded conditions 

(Dolman & Hawkes, 2005; Joseph P. Reoux et al., 2002). In a retrospective case-

control study of a non-intensive care surgical and medical ward cohort, Pecoraro et al. 

tested AUDIT-Piccinelli Consumption version’s (AUDIT-PC) ability to differentiate 

between 223 patients with an ICD-9 discharge diagnoses of AWS and 466 randomly 

selected non-AWS patients (Pecoraro et al., 2014). Applying a hierarchical logistic 

regression analysis, they reported a 91.0% sensitivity and 89.7% specificity for an 

AUDIT-PC score of greater than or equal four in identifying AWS patients. Control 

patients showed a mean AUDIT-PC score of 1.1, implying overall low alcohol 



  21 

consumption. Considering the CIWA assessment scale, Foy et al. observed higher 

CIWA ratings before the onset of withdrawal complications like DT and WS in 203 

preselected patients with high daily alcohol consumption and alcohol-related problems 

at a general hospital and therefore attributed a “predictive value” to CIWA assessment, 

though they did not report on analysis intervals (Foy et al., 1988). In a multivariate 

regression analysis on 284 patients admitted to an alcohol detoxification unit, Kramer 

et al. identified a CIWA-Ar rating ≥10 at admission as correlated with subsequent 

severe AWS development (Kraemer et al., 2003).  

 

A further approach has been to construct risk assessment scales based on findings 

from literature: Wetterling et al. compiled 22 variables—including information on 

previous alcohol use, drinking patterns, clinical symptoms at admission and laboratory 

values—which the authors identified as easily attainable risk factors of different AWS 

severity outcomes based on an unsystematic literature review into the Luebeck Alcohol 

Withdrawal Risk Scale (LARS) (Wetterling et al., 2006). The scale was then applied to 

100 psychiatric in-patients treated with a symptom-triggered detoxification scheme 

with the AWS scale as severity assessment. A cut-off value of the LARS that yielded 

optimal performance metrics (100% sensitivity and 88% specificity) in separating 

patients with mild to moderate AWS and patients with severe AWS as defined by the 

maximum AWS scale rating during the withdrawal course was then defined post hoc. 

Based on a test of internal consistency, the scale was further reduced to 11-item 

(LARS11) and, excluding chloride measurement due to clinical reasons, 10 item 

(LARS10) versions. Following a similar approach, Maldonado et al. developed 

the Prediction of Alcohol Withdrawal Severity Scale (PAWSS) for in-patients with 

somatic disease based on prior literature findings (Maldonado et al., 2014). They 

conducted a systematic literature review to identify studies that reported on possible 

risk factors of moderate to severe AWS outcomes and then, without specifying 

objective criteria for their decision, chose 10 clinical variables which are assessed if a 

patient fulfills the threshold criteria of alcohol consumption within 30 days before and/or 

a positive blood alcohol concentration at admission. In a pilot study, 68 general-

medicine in-patients were assessed with the PAWSS, of whom 51 did not fulfill the 

threshold criteria and thus, were not assessed further. After detoxification of the 

remaining 17 patients was completed applying a symptom-triggered treatment regime, 

the authors retrospectively determined the withdrawal course, classifying four cases 
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as moderate to severe AWS, defined as either a respective CIWA-Ar rating or 

unspecified clinical judgement. A cut-off value of four on the PAWSS was then chosen 

post-hoc as optimal separator between the four moderate to severe cases and all 64 

other patients, yielding performance measures of 100%. In a further study, the same 

authors tested the PAWSS in a sample of 403 in-patients on general medicine and 

surgery wards of whom 29 were judged at-risk of severe AWS, defined as a CIWA-Ar 

rating ≥ 15 or a respective DSM-IV diagnosis (Maldonado et al., 2015). This resulted 

in a sensitivity of 93.1% and specificity of 99.5%. Unfortunately, the authors did not 

report how many patients developed AWS in the whole sample, how CIWA-Ar ratings 

were distributed between groups, if there was an overlap between positive CIWA-Ar 

items and symptoms due to medical conditions other than AWS (e.g. nausea, 

headaches, sweating) and if cases of delirium tremens or withdrawal seizures 

occurred. Judging by the reported prevalence of 1.7% for alcohol use disorder, which 

lies far below the general population average (Grant et al., 2015), the study cohort 

seems to consist of low risk patients. 

  

2.2.3 Translation into clinical practice 
 

Despite the research efforts outlined above, tools for AWS prediction have not been 

integrated into clinical routine. Several underlying reasons have been recognized and 

are discussed in the field (Fiellin et al., 1998, 2015; Saitz, 2018): 

Mirroring the contexts in which AWS patients are commonly treated, studies on AWS 

risk factors have been conducted in diverse populations within psychiatric (Wetterling 

et al., 1994), trauma (Lukan et al., 2002), or general medicine facilities (Maldonado et 

al., 2014). Consequently, patient characteristics like medical and psychiatric 

comorbidities, sociodemographic measures, alcohol use history including previous 

withdrawal experiences and incidence of severe withdrawal outcomes greatly vary 

between studies (Eyer, Schuster, et al., 2011; Lukan et al., 2002; Maldonado et al., 

2015; Salottolo et al., 2017; Wetterling et al., 2006). Different treatment settings are 

also likely to differ in AUD-specific knowledge and staff training, assessment routines, 

allocated resources and, importantly, AWS treatment strategies.  Importantly, the 

attended clinicians are intrinsically interested in different predictive questions: 

screening all admissions to a general hospital for possible severe AWS (Maldonado et 

al., 2014, 2015) might require different predictive models than separating more or less 

pronounced AWS cases in patients specifically admitted for detoxification (Eyer, 
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Schuster, et al., 2011; Wetterling et al., 1994). Further impeding comparability, a wide 

range of assessment methods and AWS definitions have been applied across studies. 

Due to their retrospective nature, some studies have retracted ICD diagnosis from 

patient records as their main severity outcome (Ferguson et al., 1996), although their 

accuracy in displaying disease trajectories seems questionable (K. J. O’Malley et al., 

2005). While using standardized severity ratings as outcomes allow more nuanced 

outcome estimates, preference for a specific scale varies between countries 

(Mennecier et al., 2008; Sullivan et al., 1989; Wetterling et al., 1997). Moreover, while 

these scales have been mostly developed in specialized detoxification settings 

excluding severely medical-ill patients (Sullivan et al., 1989; Wetterling et al., 2006), 

they are readily applied to such patients, ignoring overlap between AWS and 

symptoms of concomitant diseases (Maldonado et al., 2015; Salottolo et al., 2017). 

Others have based severity estimation solely on unspecified clinical judgement 

(Wojnar, Bizoń, et al., 1999) or include an option to do so (Maldonado et al., 2015). 

Besides outcome assessment, patients were treated with diverse medication 

strategies and pharmacological agents across studies, including application of various 

benzodiazepines (Kraemer et al., 2003; Mennecier et al., 2008), clomethiazole 

(Berggren et al., 2009; Eyer, Schuster, et al., 2011), or adjacent anticonvulsants (Eyer, 

Schuster, et al., 2011; Hillemacher et al., 2012), that are likely to influence the further 

withdrawal course with varying efficiency (Amato et al., 2011). 

 

The heterogeneity in study populations and study designs has not been addressed by 

adequate methodological approaches: Most studies have applied frequentist 

univariate and multivariate methods, like correlation tests and regression, to identify 

independent or combined risk factors for severe AWS outcomes (Ferguson et al., 

1996; Fiellin et al., 2002; Kraemer et al., 2003; Mennecier et al., 2008; Palmstierna, 

2001). To my knowledge, only one study applied bootstrap techniques to ensure 

internal validity of their results, but does not report how exactly these methods were 

implemented or how these influenced the study results (Ferguson et al., 1996). Studies 

comparing populations at different treatment sites or across medical specialties to 

ensure external validity are missing in the field. Under the term “replication crisis” 

(Ioannidis, 2005) this overreliance on frequentist p-value testing without methods to 

ensure reproducibility of the retrieved results has been discussed as a major reason 

for failing translation of research findings into clinical practice (Munafò et al., 2017). 
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Without validation, predictive models will unlikely generalize to patients outside the 

initial study cohort, since they rely on noise and peculiarities in those datasets (Siontis 

et al., 2015). Expectedly, as has been shown above, previous results in AWS 

prediction have been largely inconsistent. While a recent meta-analysis offers a 

warranted overview of reported findings, the authors emphasize the shortcomings of 

previous studies and encourage further, methodologically more rigorous research 

rather than recommending the use of the retrieved risk factors in clinical practice 

(Goodson et al., 2014). Nonetheless, other guidelines and reviews do not refrain from 

clinical recommendations: The recently updated NICE guideline on alcohol-related 

complications, intended for practitioners in the British health system, emphasizes the 

low-quality evidence of AWS prediction but still suggests to consider several risk 

factors that have been reported in a single study (National Institute for Health and Care 

Excellence (NICE), 2010; Palmstierna, 2001). Both the LARS as well as the PAWSS 

have been endorsed by their respective developers for immediate clinical use 

(Junghanns & Wetterling, 2017; Maldonado et al., 2015). Consequently, a high-impact 

clinical review has recently simulated the application of these tools for treatment of a 

AWS patient (E. Wood et al., 2018). Others have warned against such clinical use and 

stressed the importance of further research efforts applying adequate methods to 

ensure generalizability (Saitz, 2018).  

 

2.3 Machine learning as a framework for prediction  
 

ML is the study of computational methods designed to solve data-based problems 

without explicit programming (T. Mitchell, 1997). It can be situated in the broader 

context of an algorithmic modeling culture questioning the utility of traditional statistics 

that heavily rely on prior assumptions on given datasets (Breiman, 2001). Instead, ML 

algorithms contain parameters that are optimized via instance-based learning to 

directly model optimal input-output relationships based on a given dataset (Hastie et 

al., 2009). Since such processes are assumed to mirror aspects of human learning, 

ML is usually considered to be a subfield of artificial intelligence (Topol, 2019). While 

early applications were restricted by limitations in computing power (Rosenblatt, 1958), 

ML researchers have since developed a vast array of computational feasible 

algorithms that allow accurate modeling of possibly non-linear patterns in 

multidimensional datasets (Kotsiantis, 2007). Since these algorithms can be highly 
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sensitive to noise and idiosyncratic sample characteristics, referred to as overfitting in 

ML terminology, methods to ensure generalizability to previously unseen observations 

are an integral part of  state-of-the-art analysis pipelines (Varoquaux et al., 2017). This 

focus on internal and external validity is considered to be a major advantage to 

classical statistics, thus contributing to innovations across diverse fields like 

manufacturing, financial modeling, education and science (Dwyer, Falkai, et al., 2018; 

Jordan & Mitchell, 2015). Recently, ML approaches yielded promising results for 

various health-care tasks like x-ray evaluation (Rajpurkar et al., 2017), skin cancer 

classification (Esteva et al., 2017) or the development of new antibiotic drugs (Stokes 

et al., 2020). Some diagnostic applications, driven by AI-technology, have recently 

been approved by the U.S. Food and Drug Administration (Abràmoff et al., 2018).  

In psychiatry, ML has been promoted as a crucial tool to translate research efforts into 

precise, clinical-meaningful applications in areas such as diagnosis, prognosis, 

treatment enhancement, as well as biomarker prediction (Dwyer, Falkai, et al., 2018). 

A common framework applied in studies across various psychiatric disorders, including 

addiction research, is to classify future outcomes based on multidomain baseline 

variables: For example, Whelan et al. used a wide range of information on genetics, 

demographics, patient history, cognitive test performance, personality traits as well as 

structural and functional imaging to predict current and future binge drinking behavior 

in a large sample of adolescents (n=692) via a combination of regularized logistic 

regression and elastic net algorithms (Whelan et al., 2014). Importantly, they used 

nested cross-validation as a means to ensure generalizability (see below) and 

externally validated their result in a separate dataset (Whelan et al., 2014). While 

imaging modalities are frequently included in ML prediction studies to possibly detect 

objective biomarkers (Arbabshirani et al., 2017), such models are currently not 

translatable to most clinical settings, where comparable imaging technology is not 

available. Therefore, other researchers have focused on clinical parameters that are 

easier to obtain: Koutsouleris et al. used a battery of sociodemographic variables as 

well as multiple, frequently used clinical assessment scales to predict treatment 

outcomes in a cohort of patients with first-episode psychosis (Koutsouleris et al., 2016). 

Importantly, they then independently tested a further model with the obtained 10 most 

predictive variables to generate a shorter, clinically feasible prediction tool 

(Koutsouleris et al., 2016). Since highly accurate prediction models may be useless if 

they address questions that can be efficiently assessed by clinical judgement (Wiens 
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et al., 2019), several studies directly compared their models’ performance to clinical 

ratings, showing superior estimates for suicide risk prediction (Tran et al., 2014) 

and functional outcome prediction in patients with high-risk for psychosis or recent-

onset depression (Koutsouleris et al., 2018).  

While ML research efforts are increasing across psychiatry (Janssen et al., 2018), a 

recent systematic review could identify only three ML studies on alcohol use disorder 

or alcohol consumption (Mak et al., 2019). Only one study in AWS research has applied 

ML methods—a random forest algorithm with bootstrapping validation—to identify risk 

factors of withdrawal seizures (Hillemacher et al., 2012). Since the authors did not 

observe any seizures in their patient cohort, they instead used prior seizures as the 

outcome, which undermines the very idea of a prediction (Hillemacher et al., 2012). 

This hiatus represents a promising opportunity to address the major limitations in 

previous AWS risk research discussed above: After decades of focus mainly on single 

risk factor identification, a data-driven ML analysis could exploratively determine 

multivariate predictive patterns that increase accuracy for meaningful AWS outcomes 

and generate better understanding about disease trajectories in specific populations. 

Instead of relying on prior research findings, ML feature selection methods could then 

be used to objectively built and test clinically feasible prediction tools. Finally, stringent 

methods to optimize and test generalizability to unseen patients could enable clinical 

implementation.  

 

2.4 Aims 
 

The primary aim (1) of this dissertation was to develop generalizable and accurate 

predictive models within a machine learning framework to identify patients at risk of 

developing severe alcohol withdrawal. To ensure clinical utility, I focused on severity 

outcomes that are both already implemented in clinical care as well as relevant for 

differential clinical decision making. Therefore, specific models were built to predict (a) 

moderate to severe alcohol withdrawal as assessed via the AWS scale, (b) cases of 

delirium tremens, and (c) cases of withdrawal seizures. Following a hypothesis-free, 

data-driven approach, all clinical, sociodemographic and laboratory variables available 

across patients’ admission were included in the analysis pipeline. Using a cross-over 

design, specific models were built in retrospective cohorts of two treatment sites—a 

psychiatric detoxification ward (Department of Psychiatry and Psychotherapy, 
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University Hospital, Ludwig Maximilian University of Munich (LMU)) and a specialized 

toxicology unit (Department of Clinical Toxicology of the Technical University of Munich 

(TU)).  

The secondary aims were to compare differences in predictive accuracy and variable 

importance across (2) different withdrawal outcomes as well as (3) the two treatment 

sites. For latter end, separate models were built in both cohorts utilizing only variables 

available at both treatment sites. These were then tested at the respective other 

treatment site to generate estimates of external validity.   

 

The following hypotheses were formulated: 

(1) Machine learning analysis enables accurate risk predictions for three outcomes 

of AWS severity within a framework ensuring internal validity. 

(2) Predictive performance will vary across withdrawal outcomes with specific 

variable patterns contributing to each model’s performance. 

(3) Predictive performance will decrease across treatment sites due to site-specific 

characteristics in external validation testing, but still yield accurate results. 
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3 Methods 
 

3.1 Study Cohort 
 

Retrospective data was gathered from in-patient cohorts of two major detoxification 

units at two university hospitals in Munich. 

For the first sample, patient charts of 445 admissions for AWS treatment at the 

psychiatric detoxification unit of the LMU between 1995 and 2005 were reviewed. The 

inclusion criteria encompassed an AWS diagnosed defined by ICD-10 criteria (F10.3) 

comprising DT (F10.4), patient age 18 years or older, and a daily disease course 

documentation by the attending hospital staff to ensure sufficient data quality. 

Exclusion was limited to patients with documented multiple drug use in the hospital 

chart. Patients that self-reported concomitant substance use in the Semi-Structured 

Assessment for the Genetics of Alcoholism (SAAGA) questionnaire (Bucholz et al., 

1994), but were not recognized as multiple-drug users by the attendant clinic staff were 

still included in the analysis, since the goal was to predict AWS severity in a naturalistic 

clinical sample. As standard symptom-triggered treatment either clomethiazole or 

benzodiazepines (diazepam or oxazepam) was administered. If delusional or 

hallucinogenic symptoms developed, haloperidol was given as an adjunctive 

treatment. In cases of marked blood pressure increases, clonidine was added. Patients 

who had suffered from known seizures in the past or who developed seizures during 

withdrawal received adjacent treatment with carbamazepine. Prophylaxis for vitamin 

deficiency with thiamin and a multivitamin supplement was provided routinely. Mild 

cases of AWS, that did not receive pharmacological treatment, were included to 

achieve a dataset representative of the clinic’s treatment population. 399 patients 

fulfilled these criteria and entered the analysis. 

For the second sample, retrospective data of 2691 patients admitted to the TU between 

2000 and 2009 was used. This dataset had been already gathered and fully described 

in two papers (Eyer, Schreckenberg, et al., 2011; Eyer, Schuster, et al., 2011). Patients 

with ICD-10 diagnosis of alcohol dependence (F10.2) and either alcohol intoxication 

(F10.0), AWS (F10.3), or DT (F10.4) were included. Exclusion criteria encompassed 

co-dependence of other psychotropic substances (illegal drugs, benzodiazepines, or 

other), mild withdrawal without pharmacological treatment, early discontinued therapy, 
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and treatment protocol deviations, and incomplete patient chart documentation. 

Symptom triggered therapy with clomethiazole was used to manage withdrawal 

symptoms. Similar to the LMU sample, clonidine, haloperidol and thiamin were given 

as adjunctive treatments. As antiepileptic prophylaxis either carbamazepine or 

valproate had been administered. Inclusion criteria were fulfilled by 812 patients whose 

data was then used for further analysis. 

Due to the retrospective anonymous datasets, the analysis of both cohorts was exempt 

from evaluation by the respective institutional ethics committees (LMU and TU).  

 

3.2 Variable battery 
 

3.2.1 Data collection  

Following a data-driven approach, all variables available at the day of patients’ 

admission were extracted from the charts without any statistical or clinical 

preconditions. In the TU sample the selection was limited, since the dataset had been 

already gathered for previous studies. 

In the LMU sample patients’ age and gender were included as sociodemographic 

variables. Self-reported daily alcohol consumption was converted to the pure alcohol 

mass (grams of ethanol) with following equation:  

Pure alcohol mass (g) = volume (ml) x alcohol by volume (%) x volumetric mass 

density (constant of 0.8 g/ml) with g=gram, ml=milliliter 

All available laboratory data collected on the day of admission were included, 

encompassing electrolytes (sodium, potassium, chloride, calcium), liver and bile 

enzymes (AST, ALT, GGT, alkaline phosphatase, bilirubin total, glutamate 

dehydrogenase), creatine kinase, lactate dehydrogenase, full blood count and thyroid-

stimulating hormone. Furthermore, urine screening tests for opiates, benzodiazepines, 

cannabinoids, barbiturates, lysergic acid diethylamide (LSD), methadone, 2-

ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), cocaine, and amphetamines 

were included as dichotomous variables. The creatine concentration in urine was 

included as a measure of urine test compliance. BrAC had been measured at 

admission using a breathalyzer. Since all patients had received 

electroencephalography (EEG) shortly after admission, the respective investigator’s 
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assessment remarks were included categorized in the following groups: excessive 

beta activity, theta-waves, vigilance disruption, slow basic activity, low potential, and 

sign of cerebral excitability.  Furthermore, 90 sociodemographic and alcohol-related 

items of the SAAGA (see above) were included, which patients had completed shortly 

after admission. The questionnaire encompasses self-reported data on education, 

employment status, medical history, family medical history, previous alcohol patterns, 

previous detoxification treatment, history of withdrawal symptoms, complications of 

long-term alcohol use including psychological problems, and utilization of treatment 

offers. It has been previously used to characterize a large population of AWS patients 

(Schuckit et al., 1995). 

In the TU sample age and gender, several laboratory measures (sodium, potassium, 

GGT, white blood cell and platelet count, blood alcohol levels), vital parameters at 

admission, reason for admission, prior withdrawal history (previous withdrawal, history 

of withdrawal seizures, history of DT) and medical comorbidities (structural CNS 

lesions, liver status) were available. Deviating from a previous investigation on the TU 

sample (Eyer, Schuster, et al., 2011), I excluded one variable (day after admission with 

the highest AWS scale rating), since it is not available at admission and would thus 

introduce information on the further withdrawal course into the prediction model. 

All data was gathered in a spreadsheet and then imported into a MATLAB (R2015a) 

data-matrix for further analysis. 

 

3.2.2 Data preparation 

Applying an initial filtering procedure, all features with ≥ 25% missing values, features 

centered in ≥ 95% of cases on one value, and patients with ≥ 25% missing features 

were removed. This heuristic approach has been used previously to remove variables 

that are potentially difficult to obtain, variables that are highly unlikely to inform the ML 

algorithms due to low variance as well as patients that might have received inadequate 

clinical assessment (Koutsouleris et al., 2016). 

In the LMU sample a total of 18 features were excluded due to ≥ 95% of values being 

the same, including certain EEG changes (theta waves, low potential, signs of 

excitability), several urine drug screening measures (opiates, cannabinoids, 

barbiturates, LSD, methadone, EDDP, cocaine, amphetamine), and multiple SAAGA 
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items (history of encephalitis, history of meningitis, history of stroke, history of 

myocardial damage, combining alcohol with opioids, two unspecified alcohol treatment 

items). Eight SSAGA features were excluded due to ≥ 25% missing values across 

participants (age of first episode of seizures/unconsciousness/falling to the 

ground/amnesia after reducing/stopping drinking, age of first time that alcohol was 

combined with medication or drugs, age of first alcohol dependence treatment 

including self-help groups, five unspecified alcohol treatment items). Furthermore, 10 

patients were removed due to ≥ 25% missing values. This resulted in a dataset 

containing 389 patients and 109 variables used for the ML pipeline (LMU discovery). 

In the TU sample, the variable “pancreatitis” was excluded due to ≥ 95% of values 

being the same, three variables were removed because ≥ 25% values were missing 

across participants (positive urine-based benzodiazepine screening, duration of 

alcohol dependence in years, daily alcohol consumption in years), and a total of 7 

subjects were excluded due to ≥ 25% missing values across all variables. Thus, a 

dataset of 805 patients and 21 variables was obtained for further analysis (TU 

discovery).  

Additionally, separate datasets containing the nine variables shared across cohorts 

were built to allow for external validation. Applying the same filtering procedures 

described above, data on 396 LMU patients (LMU validation) and 797 TU patients (TU 

validation) could thus be included.  

 

3.2.3 Baseline analysis 

Independent-sample t-tests were used for continuous variables and Fisher’s chi-

square test for categorical variables to test for group-differences between the LMU and 

TU validation datasets. Significance levels were defined at p = 0.01. 

 

3.3 Prediction outcomes 
 

The 11-item AWS scale, validated in psychiatric in-patients (Wetterling et al., 1997), 

was chosen to assess AWS symptom severity. Following the cut-off values established 

during the scale’s development (Wetterling et al., 1997), withdrawal cases were 

classified as mild (total score ≤ 5) or moderate to severe (total score 6-33) depending 
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on the highest total score during the whole in-patient detoxification. These risk groups 

have been previously used in randomized, controlled AWS treatment studies (Soravia 

et al., 2018) and reflect a degree of clinical decision making. While the maximum AWS 

score was documented for all TU patients, it was retrospectively established in the 

LMU sample from chart information by two investigators (Kristina Adorjan, thesis 

supervisor; Gerrit Burkhardt). WS and DT were defined as separate, binary variables 

and based on explicit diagnosis of the attending medical doctors. 

 

A clinically motivated classification approach was chosen to guide decision-making at 

an individual patient’s admission: a) moderate to severe AWS (MSAWS), including all 

cases of WS and/or DT in addition to maximum AWS scale ratings, was predicted to 

allow for a general risk stratification at admission; b) cases of DT and c) cases of WS 

were separately predicted to identify patients possibly benefiting from more frequent 

monitoring and specific medication (e.g. anticonvulsants for WS, antipsychotics for 

DT). Both DT and WS were only predicted in the TU dataset due to low occurrence in 

the LMU sample.  

 

3.4 ML pipeline 
 

In this chapter, each component of the ML analysis is first described separately, before 

I outline their integration into an automated ML analysis pipeline to build the predictive 

models. The ML setup was first developed in the LMU discovery sample to predict 

MSAWS and then applied to each outcome in the TU discovery sample. For external 

validation, separate MSAWS models were built in both validation samples and then 

tested across cohorts (see below). All ML analysis steps were computed via the open-

source software package NeuroMiner (version 0.992; 

http://www.pronia.eu/neurominer) running with MATLAB (R2015a). An overview of the 

ML pipeline is depicted in Figure 3.1. 

http://www.pronia.eu/neurominer
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Figure 3.1. Machine learning pipeline. In the inner cross-validation cycle (CV1), 
classifier performance, as defined by left-out CV1 test data, was optimized 
via hyperparameter training. In the outer 20-fold cross-validation cycle (CV2), left-out 
CV2 test data was used to estimate the models’ generalizability to yet unseen 
patients.  
 

 
3.4.1 Nested cross-validation setup 

The translation of predictive tools into clinical care requires means to optimize and test 

a predictive model’s generalizability (Stone, 1974). Generalizability is defined as the 

extent to which such a model accurately classifies previously unseen patients 

(Varoquaux et al., 2017). This test mimics the real-world situation in which a clinician 

has to choose optimal treatment approaches or venture a disease prognosis based on 

available patient information (Dwyer, Falkai, et al., 2018). Preferably, resampling 

techniques like cross-validation (CV) are used that separate datasets into instances 

used for training the model and instances used for testing its performance (Varoquaux 

et al., 2017). In k-fold CV the dataset is split into k folds of a predefined size. Leaving 

one fold out, the model is then trained on the remaining k-1 folds, after which its 

performance is evaluated on the left-out data. This process is usually repeated for 

every k-fold to increase both variability in the training data as well as the number of 

test subjects (Hastie et al., 2009). This process can be further enhanced to allow for 

both testing a model’s predictive performance as well as optimizing its generalizability: 

To this end, I used repeated nested CV, currently considered the gold-standard 

technique for generalizability evaluation (Filzmoser et al., 2009; Ruschhaupt et al., 
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2004). In nested CV, an inner CV loop (CV1) is used to adjust the algorithms’ 

hyperparameters towards optimal predictive performance on held-out CV1 test 

subjects. To assess generalizability, the learned model is then applied to test subjects 

in an outer CV loop (CV2), that have not been used in the CV1 training cycle and are 

thus independent of the parameter optimization. To implement the CV setup, a number 

of k-folds has to be chosen. While statistical criteria (Hastie et al., 2009) and commonly 

used sizes (Breiman, 2001) have been proposed, the optimal choice may depend on 

the sample size, number of variables as well as the algorithms and feature selection 

techniques (see below) applied (Dwyer, Falkai, et al., 2018). I therefore chose a setup 

that has been successfully used in a clinical dataset of similar size within a comparable 

ML setup (Koutsouleris et al., 2016): In the CV2 loop, 20 training and validation folds 

were randomly compiled. Each CV2 training fold was then iteratively separated into 

five CV1 training and test sets. These were subsequently permuted four times to 

induce sample variance.  

 

3.4.2 Preprocessing 

A major advantage of nested CV is the possibility to also separate any preprocessing 

steps that are required prior to statistical analysis between the training and test 

subjects: If procedures like imputation are applied before the dataset is divided, 

information about the whole dataset is likely to be included and therefore learned by 

the algorithms in the training phase—a bias usually termed “information leakage” 

(Dwyer, Falkai, et al., 2018). The following preprocessing steps were carried out on 

each of the 20 (5 folds x 4 permutations) subsets in the CV1 loop: First, variables with 

no variance were excluded, since they will likely not benefit classification. Secondly, 

the training data was scaled (0 to 1). Variable scaling is applied in multivariate analysis 

since variables in greater numeric ranges tend to dominate small range variables, 

which may alter the outcome of machine learning algorithms (Keun et al., 2003; 

Koutsouleris et al., 2016). In addition, complex numerical calculations that require 

increased computational capacity are thus avoided (Keun et al., 2003). Thirdly, missing 

values were substituted via nearest neighbour-based imputation (Jönsson & Wohlin, 

2004; Troyanskaya et al., 2001): For each case in the dataset with a missing value, all 

cases that provided a measure for this value were identified. The similarity of these 

cases to the case with a missing value was then determined via a measure of 
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geometrical distance (for continuous variables the Euclidean distance was used, 

applying the “distance2” function from the Large Margins Nearest-Neighbours toolbox 

in MATLAB; for categorical variables the dichotomous Hamming distance was applied 

via the “pdist2” from the Statistics and Machine Learning Toolbox in MATLAB). The 

median of the five most similar—and therefore nearest—neighbours was used to fill 

the missing value. This imputation method was repeatedly applied to all missing values 

in the dataset, always using the primary, non-imputed dataset as a source for 

neighbour identification. Finally, since I was primarily interested in building accurate 

prediction models with all information available at a patient’s admission and without 

any prior hypothesis regarding variable importance, I did not regress out nuisance 

covariates like age and gender.  

 

3.4.3 Choice of Algorithm 

A crucial feature of ML is the deployment of sophisticated algorithms that can be 

modified to optimally perform statistical tasks like regression, classification or 

clustering (Kotsiantis, 2007). In contrast to classical statistical methods like linear or 

logistic regression, which fit simple functions to a given dataset, ML algorithms allow 

the modification of regularization parameters (also called hyperparameters) to optimize 

accuracy and generalizability of learned functions (T. Mitchell, 1997). There is a wide 

range of algorithms available (e.g. random forests, neural networks, regularized 

regression), which differ in their ability to model complex relationships as well as their 

options for modification (Hastie et al., 2009). For the classification tasks at hand I chose 

a linear Support Vector Machine algorithm (SVM; LIBSVM 3.12; 

http://www.csie.ntu.edu.tw/~cjlin/libsvm)(Noble, 2006), which has been shown as 

stable and efficient in datasets with high collinearity and noise (Cortes & Vapnik, 1995). 

Based on early multivariate algorithms, SVMs have been developed to more accurately 

classify subjects to groups while maximizing generalizability (Cortes & Vapnik, 1995): 

This is achieved by only using cases at the outer boundaries of an outcome’s 

distribution—so called support-vectors—to maximize a margin between those cases 

and a hyperplane that optimally separates cases of different outcomes. The size of this 

margin, controlled by the C hyperparameter, determines the degree to which cases 

are allowed to be misclassified. While a so-called hard margin classifier may lead to 

the correct classification of all cases, it will likely overfit the dataset and thus perform 

http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm


 36 

worse when used to classify unseen cases. In comparison, a soft margin may achieve 

a worse performance in the training phase, but possibly generalizes better to new 

cases. Optimal hyperparameter selections for a given dataset can be learned from a 

heuristically range of possible values (in my analysis a sequence from C=2-6 to C=26) 

as described below.  

In a supplementary analysis, the SVM-based models were compared to logistic 

regression (LR), tested in the identical CV framework, since LR has been a frequent 

choice in previous AWS prediction studies (Eyer, Schuster, et al., 2011). The 

performance of both algorithms was compared using the McNemar’s test (McNemar, 

1947). 

 

3.4.4 Feature Selection and Training 

In multivariate analyses of datasets with a high-dimensional variable space, a 

mismatch between the number of variables relative to the number of cases can lead 

to a decrease in accuracy and generalizability—referred to as the “curse of 

dimensionality” (Bellman, 1957). Feature selection encompasses methods to reduce 

the variable space of a given dataset in order to increase predictive performance 

(Guyon, 2003). While this can theoretically be achieved by preselection based on prior 

hypotheses (e.g. an expert opinion or the results of previous studies), ML approaches 

tend to integrate feature selection either as part of the preprocessing pipeline or the 

classifier’s training (Guyon, 2003). 

Following the latter approach, a greedy forward search wrapper (Inza et al., 2004) was 

applied on the preprocessed CV1 training data to identify a subset of variables in the 

variable pool that maximizes prognostic performance. This wrapper followed a simple 

“hill-climbing logic” (Guyon, 2003): In each CV1 training sample, the predictive value 

of each variable was evaluated using the linear SVM. The variable that achieved the 

best performance (defined as the highest balanced accuracy (BAC= sensitivity + 

specificity) / 2 (Brodersen et al., 2010)) on the held out CV1 test subjects was 

extracted. The same procedure was then reiterated over the remaining variable pool 

to select the second-best performing variable, which was also extracted.  This process 

was reiterated until 80% of the original variables were chosen. The subset was then 

used to optimize a hyperplane between most similar good- and poor-outcome cases 
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(=the support vectors). Repeating the whole selection process across the predefined 

sequence of C hyperparameters, optimal parameters for each CV1 fold were 

established. In an additional weighting step, these optimal parameters were multiplied 

with the inverse ration of the training group sizes to adjust for uneven outcome 

distributions and resulting classification bias (Yang et al., 2005). Finally, all CV1 

models in a given partition were retrained using the best weighted hyperparameter 

settings across all models (Koutsouleris et al., 2016). 

 

3.4.5 Model Evaluation 

The separate training in each of the 20 CV1 partitions (5 folds x 4 permutations) 

resulted in 20 predictive models that were then combined into a so-called ensemble 

classifier. Ensemble theory is based on the central limit theory put forward by Galton 

(Galton, 1886) and assumes that a set of diverse classifiers is likely to yield more 

generalizable prediction results, analogous to a team of experts from different domain 

knowledge (Polikar, 2006). Following this approach, the generated SVM ensemble 

predicted each CV2 test subjects group membership by the following decision rule: 

f(xCV2) = sign(∑ fi,j(xCV2)/(kCV1 ∗ nCV1))kCV1=5,nCV1=4
i=1,j=1 , 

where fi,j(xCV2) is the average decision value of a CV1 ensemble for a given CV2 test 

subject and k / n are the numbers of CV folds / permutations at the CV1 level. 

Comparing all resulting CV2 predictions with the actual observed outcome, the 

ensemble performance on yet unseen cases was calculated. This yielded both 

performance metrics commonly reported only in ML research (e.g. BAC) as well as 

several classical statistical estimates (e.g. sensitivity, specificity, area under the curve 

(AUC); Table 4.2). Additionally, the prognostic summary index (PSI = PPV+NPV-1; 

1/PSI measures how many patients need to be assessed to correctly predict a single 

outcome) was provided as an estimate of certainty based on prior knowledge of 

disease prevalence (Linn & Grunau, 2006).  

In order to establish the statistical significance of each model’s predictive performance 

I conducted a permutation analysis (Gaonkar & Davatzikos, 2013; Golland & Fischl, 

2003): Therefore, 100 random permutations of the outcome labels were calculated. 

Retraining all classification models for each permutation, using the same ML setup and 
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feature subsets obtained in the non-permuted analyses, a random ensemble prediction 

for each CV2 test subject was retrieved and thus a null distribution of out-of-training 

classification performance generated. The significance of the non-permuted models 

was then evaluated by calculating the number of predictions where the permuted out-

of-training BAC was higher or equal to the non-permuted BAC divided by the number 

of permutations. Significance was determined at α=0.01. 

In two supplementary analyses I further explored specific aspects of each model: 

Firstly, I calculated the median balanced accuracy and respective standard deviations 

across the 20 CV2 folds for all discovery models to gain insight into performance 

variability. Secondly, to explore possible age and gender effects on the predictive 

performance of all significant models via t-test (age) or chi squared (gender) analysis 

between correctly versus incorrectly classified patients.  

 

3.5 External validation 
 

In order to test the generalizability of the ML classifiers across treatment sites, an 

external validation analysis was conducted. Since no cases of DT and only five cases 

of WS were observed in the LMU sample, I focused on predicting the MSAWS 

outcome. In an out-of-sample cross-validation (OOCV) setup separate models were 

trained based on all shared variables in both datasets (LMU and TU validation 

samples), following the described ML setup. For external validation these learned 

models were then applied without further modification to the CV2 test subjects of the 

respective other dataset. Thus, the performance of a model trained at one treatment 

site was directly tested in an independently collected dataset, excluding any 

information leakage between sites. 
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3.6 Clinical Post-hoc validation 
 

In an additional post-hoc analysis, I explored how each significant model’s outcome 

predictions were related to pharmacological AWS treatment decisions in order to better 

understand their potential clinical relevance. Thus, linear regression models (GLM) 

were calculated with each models’ mean decision scores as independent variable and 

the cumulative clomethiazole dose (defined as the total amount of clomethiazole a 

patient received during detoxification) as dependent variable. Clomethiazole was the 

most common AWS medication used at both treatment sites. Cases that did not follow 

this regimen were thus excluded from the analysis.  
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4 Results 
 

4.1 Baseline characteristics 
 
The baseline characteristics of all discovery and validation datasets are reported in 

Table 4.1.  

148 (38%) LMU discovery patients were rated as MSAWS and 12 (3%) WS were 

documented. No cases of DT were reported. The TU discovery sample consisted of 

674 (84%) MSAWS, 59 (7%) WS, and 45 (6%) DT cases. Due to the data preparation 

criteria, discovery and validation datasets at each site differed in case count, but this 

did not change the proportion of MSAWS cases. Univariate testing of group differences 

between the external validation samples revealed the following significant results 

(Table 4.1, indicated in red): The TU sample included more MSAWS cases, higher 

age, more cases with self-reported previous WS, lower mean measurements for 

sodium and platelets, and higher mean measurements for potassium, GGT, and BrAC. 

Non-significant differences were found for patients’ gender and white blood cell count. 

The MSAWS outcome distributions for both datasets are shown in Figure 4.1. 

 

 

Table 4.1. Prediction targets and full variable battery of the discovery and validation 
samples 

 Discovery samples External validation samples 
 

LMU 
discovery 
(n=389) 

TU 
discovery 
(n=805) 

LMU 
validation 
(n=396) 

TU 
validation 
(n=797) 

t and 
χ²tests, 

(p-
value)1 

OUTCOME 

Mild AWS 241 
(62%) 

131 
(16%) 247 (62%) 129 

(16%) .. 

MSAWS2 148 
(38%) 

674 
(84%) 149 (38%) 668 

(84%) 
261.5 

(<0.001) 

Delirium tremens .. 45 (6%) .. .. .. 

Withdrawal seizures 12 (3%) 59 (7%) .. .. .. 

VARIABLES 

Sociodemographic 

Mean age, years 43.1 (9.7) 45.2 
(10.4) 43.1 (9.8) 45.3 

(10.4) 
3.4 

(<0.001) 

Sex, female 81 (21%) 216 
(27%) 83 (21%) 216 

(27%) 
5.3 

(0.021) 
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Electroencephalogram 

Excessive beta activity 81 (21%) .. .. .. .. 

Vigilance disruption 49 (13%) .. .. .. .. 

Slow basic activity 23 (6%) .. .. .. .. 

Clinical chemistry on admission 

Sodium, mmol/l 141 (3) 139 (5) 141 (3) 139 
(5) 

-6.06 
(<0.001) 

Potassium, mmol/l 4.1 (0.4) 4.2 (0.5) 4.1 (0.4) 4.2 
(0.5) 

3.68 
(<0.001) 

Chloride, mmol/l 103 (5) .. .. .. .. 

Calcium, mmol/l 2.40 
(0.15) .. .. .. .. 

Aspartate Aminotransferase, mU/ml 62 (86) .. .. .. .. 

Alanine Aminotransferase, mU/ml 48 (49) .. .. .. .. 

Gamma Glutamyltransferase, mU/ml 222 (427) 417 (634) 220 (423) 417 
(635) 

5.56 
(<0.001) 

Alkaline Phosphatase, mU/ml 121 (69) .. .. .. .. 

Bilirubin Total, mg/dl 0.82 
(1.17) .. .. .. .. 

Glutamate Dehydrogenase, mU/ml 24 (67) .. .. .. .. 
Creatine Kinase, mU/ml 127 (253) .. .. .. .. 

Lactate Dehydrogenase, mU/ml 214 (82) .. .. .. .. 

White Blood Cell Count, cells/nl 7.6 (2.6) 7.4 (2.9) 7.6 (2.6) 7.4 
(2.9) 

-1.12 
(0.261) 

Neutrophils, % 63.1 
(10.7) .. .. .. .. 

Lymphocytes, % 25.2 (9.1) .. .. .. .. 
Monocytes, % 9.1 (3.3) .. .. .. .. 

Eosinophils, % 1.8 (1.5) .. .. .. .. 
Basophils, % 0.9 (0.6) .. .. .. .. 

Red Blood Cell Count, cells/pl 4.54 
(0.52) .. .. .. .. 

Hemoglobin, g/dl 14.8 (1.7) .. .. .. .. 
Hematocrit, % 44.1 (4.6) .. .. .. .. 

Mean Corpuscular Volume, fl 97.3 (5.3) .. .. .. .. 
Mean Corpuscular Hemoglobin, pg 32.8 (2.1) .. .. .. .. 

Mean Corpuscular Hemoglobin 
Concentration, g/dl 33.8 (1.0) .. .. .. .. 

Platelet count, cells/nl 222 (80) 187 (94) 223 (81) 187 
(94) 

-6.43 
(<0.001) 

Thyroid-Stimulating Hormone, uU/ml 8.74 
(101.50) .. .. .. .. 

Creatinine, mg/dl .. 0.7 (0.4) .. .. .. 
Blood Urea Nitrogen, mg/dl .. 10 (5) .. .. .. 

Creatinine Urine, mg/dl 156 (285) .. .. .. .. 
Benzodiazepines positive in urine 81 (21%) .. .. .. .. 

Ethanol in serum, g/l .. 2.4 (1.7) .. .. .. 

Breath alcohol concentration, ‰ 0.96 
(1.06) .. 0.96 (1.06) 1.93 

(1.36)3 
12.33 

(<0.001) 
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Patient-reported data  
 

Approximated daily alcohol intake, g 
 

244 (130) 
 

.. 
 

.. 
 

.. 
 

.. 
Body height, cm 176 (8) .. .. .. .. 

Body mass, kg 76 (13) .. .. .. .. 
Number of first degree family member 

with alcohol dependency 
102 

(26%) .. .. .. .. 

Number of second degree family member 
with alcohol dependency 63 (16%) .. .. .. .. 

Years in school (not specified), years 13 (4) .. .. .. .. 

Graduation (not specified) 357 
(92%) .. .. .. .. 

Unemployment during the last 12 months 73 (19%) .. .. .. .. 

Employment at the moment 187 
(48%) .. .. .. ..  

History of ... 
     

... high cholesterol 105 
(27%) .. .. .. .. 

... high or low blood pressure 184 
(47%) .. .. .. .. 

... migraine 51 (13%) .. .. .. .. 
... head 

injury/concussion/seizure/unconciousness 
>5min/enzephalitis/meningitis/stroke 

221 
(57%) .. .. .. .. 

... head injury 112 
(29%) .. .. .. .. 

... concussion 139 
(36%) .. .. .. .. 

... withdrawal seizure 71 (18%) 336 
(42%) 70 (18%) 334 

(42%) 
69.4 

(<0.001) 
... unconciousness >5 min 76 (20%) .. .. .. .. 

... vascular disease 33 (8%) .. .. .. .. 
... cardiac disease 47 (12%) .. .. .. .. 
... hepatic disease 167(43%) .. .. .. .. 
... thyroid disease 43 (11%) .. .. .. .. 

... asthma 32 (8%) .. .. .. .. 
Number of treatments in psychiatric 

hospital/ detoxification unit 23 (17) .. .. .. .. 

Age of onset (alcohol dependency), years 30 (9) .. .. .. .. 

Age of first drink, years 15 (5) .. .. .. .. 

First period of drinking regularily (at least 
once/month) for at least 6 months, age, 

years 
21 (8) .. .. .. .. 

First time being drunk (slurred speech, 
unsteady gait), age, years 18 (6) .. .. .. .. 

Drunkeness more than once before age of 
15 years 61 (16%) .. .. .. .. 

Approximated highest daily alcohol intake 
ever, g 536 (341) .. .. .. .. 

Symptoms caused by alcoholic beverage:  
    

… flush 169 
(43%) .. .. .. .. 

… hives 41 (11%) .. .. .. .. 
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… drowsiness 294 
(76%) .. .. .. .. 

… nausea/vomiting 214 
(55%) .. .. .. .. 

… headaches, feeling of 
heaviness/hammering 

127 
(33%) .. .. .. .. 

… rapid heartbeat 113 
(29%) .. .. .. .. 

Longest period of abstinency since 
drinking regularily, months 22 (52) .. .. .. .. 

Ability to stop drinking at any time 106 
(27%) .. .. .. .. 

History of withdrawal symptoms:  
    

… tremor 196 
(50%) .. .. .. .. 

… insomnia 145 
(37%) .. .. .. .. 

… depressions 113 
(29%) .. .. .. .. 

… sweating 190 
(49%) .. .. .. .. 

… heart hurry 85 (22%) .. .. .. .. 

… nausea/vomiting 114 
(29%) .. .. .. .. 

… weakness 119 
(31%) .. .. .. .. 

… headaches 89 (23%) .. .. .. .. 
… optical/acoustic hallucinations 34 (9%) .. .. .. .. 

Age of first occurrence of withdrawal 
symptoms, years 36 (10) .. .. .. .. 

Number of episodes with withdrawal 
symptoms 23 (34) .. .. .. .. 

Alcohol intake to stop withdrawal 
symptoms  

(3 or more times) 

282 
(72%) .. .. .. .. 

Medication/ drug use to stop withdrawal 
symptoms 98 (25%) .. .. .. .. 

Withdrawal related 
seizures/unconsciousness/falling to the 

ground/amnesia 
78 (20%) .. .. .. .. 

Long-term complications of alcohol use:  
    

… liver diseases/jaundice (before) 80 (21%) .. .. .. .. 
… intestinal diseases or blood vomiting 46 (12%) .. .. .. .. 

… pancreatitis 21 (5%) .. .. .. .. 
… tingling sensations or numbness for 

hours 29 (7%) .. .. .. .. 

… memory problems (also not drinking 
related) 64 (16%) .. .. .. .. 

… other problems 23 (6%) .. .. .. .. 

Combination of alcohol with 
medication/drugs (3 or more times) 

although knowing this could be dangerous 

132 
(34%) .. .. .. .. 

Combination of alcohol with... 
     

... cannabis 39 (10%) .. .. .. .. 
... benzodiazepines 44 (11%) .. .. .. .. 
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... antidepressants/ anticonvulsiva/ 
antipsychotics/ z-substances/ 

clomethiazole 
29 (7%) .. .. .. .. 

... cocaine, MDMA, amphetamines, LSD 40 (10%) .. .. .. .. 
Psychological/ emotional problems 
caused by drinking: 

 
 

 
  

… feeling of depression or lacking interest 
in things (≥ 24 h, impairing normal 

behavior) 

213 
(55%) .. .. .. .. 

… restless, impatient, nervous (impairing 
normal behavior) 

205 
(53%) .. .. .. .. 

… unable to think clearly (≥ 24 h, 
impairing normal behavior) 

163 
(42%) .. .. .. .. 

… paranoid, other people appearing 
strange (≥ 24 h, impairing normal 

relationships) 
67 (17%) .. .. .. .. 

… hearing, seeing, smelling non-existing 
things 72 (19%) .. .. .. .. 

Continued drinking despite knowing that 
drinking could cause 

psychological/emotional problems 

282 
(72%) .. .. .. .. 

Consultation of professional therapist 
because of psychological/ emotional 

problems 

204 
(52%) .. .. .. .. 

Previous treatment for drinking behavior 267 
(69%) .. .. .. .. 

Treatment for drinking behavior by...  
    

... AA or other self-help group 161 
(41%) .. .. .. .. 

...out-patient alcohol program 80 (21%) .. .. .. .. 
...other out-patient treatment 46 (12%) .. .. .. .. 

...in-patient alcohol program 213 
(55%) .. .. .. .. 

...in-patient treatment because of medical 
complications 63 (16%) .. .. .. .. 

Previous withdrawal .. 575 
(71%) .. .. .. 

History of delirium .. 111 
(14%) .. .. .. 

Structural cerebral lesions  ..  41 (5%)  ..  ..  ..  
Preexisting comorbid conditions 

Liver cirrhosis .. 99 (12%) .. .. .. 
Liver Cirrhosis: Child-Pugh A/B/C .. 0.15 (0.4) .. .. .. 

Others (at admission) 

Heart rate, bpm .. 97 (18) .. .. .. 

Systolic blood pressure, mmHg .. 140 (20) .. .. .. 

Ventricular extrasystoles (ecg) .. 119 
(15%) .. .. .. 

Cause of admittance: intoxication .. 309 
(38%) .. .. .. 

Cause of admittance: seizure .. 125 
(16%) .. .. .. 

Notes: Values stated as % or mean (SD). 1External validation data was compared between samples using 
T-test and χ². 2MSAWS = Moderate to severe AWS-scores, 3Breath alcohol concentration = Blood alcohol 
concentration multiplied by the inverse blood/breath ratio (2100:1).  



  45 

 
Figure 4.1. AWS score distribution. Maximum score on the Alcohol Withdrawal 
Syndrome scale (AWS) during withdrawal treatment in both study cohorts. Risk 
groups are defined as mild (total score ≤ 5), moderate (total score 6-9), and severe 
(total score ≥ 10) 

 

4.2 Main support vector machine classifiers 
 

Table 4.2. Predictive performance of the main discovery SVM classifiers 
 
 TN TP FP FN Sens Spec BAC PPV NPV PSI AUC 

LMU discovery: 

MSAWS* 170 101 71 47 68.2 70.5 69.4 58.7 78.3 37.1 0.75 

TU discovery: 

MSAWS* 77 358 54 316 53.1 58.8 55.9 86.9 19.6 6.5 0.59 

DT* 515 37 245 8 82.2 67.8 75 13.1 98.5 11.6 0.75 

WS 495 24 251 35 40.7 66.4 53.5 8.7 93.4 2.1 0.54 
 
Notes: * Significance as defined via permutation testing: p<0.01. Sens, Spec, BAC, PPV, NPV, PSI and 
AUC in %. Abbreviations: True negatives (TN), true positives (TP), false positives (FP), false negatives 
(FN), sensitivity (Sens), specificity (Spec), balanced accuracy (BAC), positive predictive value (PPV), 
negative predictive value (NPV), prognostic summary index (PSI), area-under-the-curve (AUC) 
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4.2.1 LMU discovery sample 
 

Trained and tested on the LMU discovery dataset, the SVM classifier predicted 

MSAWS cases with a balanced accuracy of 69.4%. Permutation testing established 

this result as statistically significant (p < 0.01). Considering the prognostic summary 

index, an additional predictive certainty of 37.1% was achieved. Sensitivity and 

specificity were 68.2% and 70.5% respectively (Figure 4.3). Receiver operator 

characteristics are depicted in Figure 4.2. Further statistics are reported in Table 4.2. 

A feature selection probability of more than 50%, indicating high predictive value, was 

observed for 5 poor-outcome predictors (high BrAC, positive urine-based 

benzodiazepine screening, low platelets, history of blood pressure abnormalities, 

years of schooling; Figure 4.4).  

 

 
Figure 4.2. Area under the receiver 
operator curve for the LMU discovery 
MSAWS model 

 
Figure 4.3. Confusion matrix for the 
LMU discovery MSAWS model

 

 
Figure 4.4. Feature selection probability for the LMU discovery MSAWS model 
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4.2.2 TU discovery sample 
 

4.2.2.1 Moderate to severe AWS (MSAWS) 
 

The TU discovery classifier predicted MSAWS with a balanced accuracy of 55.9%, 

corresponding to a prognostic summary index of 6.5%. Permutation testing still showed 

significance (p< 0.01). Sensitivity was 53.1% and specificity was 58.8% (Figure 4.6). 

Additional statistics can be found in Table 4.2. Receiver operator characteristics are 

depicted in Figure 4.5. A feature selection probability of > 50% was observed for three 

variables (history of DT, low platelets, high heart rate at admission; Figure 4.7).  

 

 
Figure 4.5. Area under the receiver 
operator curve for the TU discovery 
MSAWS model 

 
Figure 4.6. Confusion matrix for the TU 
discovery MSAWS model

 

 
Figure 4.7. Feature selection probability for the TU discovery MSAWS model 
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4.2.2.2 Delirium tremens (DT) 
 

Delirium tremens cases were predicted with a balanced accuracy of 75% by the SVM 

classifier, corresponding to a prognostic summary index of 11.6%. The result was 

significant in in permutation testing (p<0.01). Sensitivity was 82.2% and specificity was 

67.8% (Figure 4.9). Receiver operator rates are depicted in Figure 4.8 and further 

statistics are reported in Table 4.2. High feature selection probability (>50%) was 

observed for 3 poor-outcome predictors (low platelets, age, structural CNS lesions; 

Figure 4.10).  

 

 
Figure 4.8. Area under the receiver 
operator curve for the TU discovery DT 
model 

   

 
Figure 4.9. Confusion matrix for the TU 
discovery DT model  

 

 

 
Figure 4.10. Feature selection probability for the TU discovery DT model 
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4.2.2.3 Withdrawal seizures (WS) 
 

The TU WS model showed a balanced accuracy of 53.5%, established as non-

significant in permutation testing (p=0.1). Sensitivity was 40.7% and specificity was 

66.4% (Figure 4.12). Receiver operator rates are depicted in Figure 4.11 and further 

statistics are reported in Table 4.2. Feature selection probability of > 50% was 

observed for 4 bad-outcome predictors (male gender, liver cirrhosis diagnosis, high 

Child-Pugh classification rating, history of withdrawal seizures; Figure 4.13). 

 

 
Figure 4.11. Area under the receiver 
operator curve for TU discovery WS 
model 

 
Figure 4.12. Confusion matrix for the 
TU discovery WS model 

 

 
Figure 4.13. Feature selection probability for the TU discovery WS model 
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4.3 External validation analysis 
 

In out-of-sample validation, the SVM classifiers did not find generalizable solutions: 

Trained and tested on LMU validation, MSAWS was predicted with a significant 

balanced accuracy (BAC = 66.3%, p<0.01), but showed a BAC of only 48.1% when 

presented with the TU validation data. For TU validation, the reduced variable set 

resulted in a SVM model without significant predictions (BAC = 53%, p=0.18) that, 

expectedly, did result in out-of-sample predictions below chance (BAC = 38.5%). 

 
 
Table 4.3. Predictive performance of the external validation SVM classifiers 

 TN TP FP FN Sens  Spec  BAC PPV NPV PSI AUC 

LMU validation: 

MSAWS* 75 203 74 44 82.2 50.3 66.3 73.3 63.0 36.3 0.69 

OOCV 73 265 56 403 39.7 56.6 48.1 82.6 15.3 -2.1 0.47 

TU validation: 

MSAWS 58 408 71 260 61.1 45.0 53.0 85.2 18.2 3.4 0.53 

OOCV 61 89 88 158 36.0 40.9 38.5 50.3 27.9 -21.9 0.34 

 

Notes: * Significance as defined via permutation testing: p<0.01. Sens, Spec, BAC, PPV, NPV, PSI and 
AUC in %. Abbreviations: True negatives (TN), true positives (TP), false positives (FP), false negatives 
(FN), sensitivity (Sens), specificity (Spec), balanced accuracy (BAC), positive predictive value (PPV), 
negative predictive value (NPV), prognostic summary index (PSI), area-under-the-curve (AUC). 
 

4.4 Post-hoc analysis 
 

For treatment of AWS symptoms, 102 patients in the LMU discovery dataset and 800 

patients in the TU discovery dataset had received pharmacotherapy with 

clomethiazole. Entering the significant SVM discovery models’ mean decision scores 

as independent variable and the patients’ cumulative clomethiazole demand as 

dependent variable, significant linear relationships were found for the LMU 

(F(1,100)=15.66, R2=0.135, p<0.001, Figure 4.14) and TU (F(1,798)=13.78, 

R2=0.017, p<0.001; Figure 4.15) MSAWS models. A respective linear association was 

not found for the TU DT classifier (F(1,798)=5.8, R2=0.007, p=0.016; Figure 4.16). 
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Figure 4.14. Post-hoc analysis for the LMU discovery MSAWS model 

 

 
Figure 4.15. Post-hoc analysis for the TU discovery MSAWS model 

 

 
Figure 4.16. Post-hoc analysis for the TU discovery DT model 
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4.5 Supplementary analyses 
 

4.5.1 Logistic regression classifiers 
 
 
Table 4.4. Predictive performance of the logistic regression classifiers 

 TN TP FP FN Sens  Spec  BAC 

LMU discovery:        

MSAWS* 196 77 56 71 52 81.3 66.7 

TU discovery:        

MSAWS 0 674 131 0 100 0 50 

DT 760 0 0 45 0 100 50 

WS 746 0 0 59 0 100 50 

LMU validation: 

MSAWS* 65 200 84 47 81 43.6 62.3 

OOCV 68 292 61 376 43.7 52.7 48.2 

TU validation: 

MSAWS 0 668 129 0 100 0 50 

OOCV 0 274 149 0 100 0 50 

 

Notes: * Significance as defined via permutation testing: p<0.01. Sens, Spec, BAC, PPV, NPV, PSI and 
AUC in %. Abbreviations: True negatives (TN), true positives (TP), false positives (FP), false negatives 
(FN), sensitivity (Sens), specificity (Spec), balanced accuracy (BAC), out-of-sample-cross validation 
(OOCV).  
 
 
 
4.5.1.1 LMU sample 

 
In the LMU sample, cross-validated LR resulted in a non-significant BAC-loss of 3.9% 

for MSAWS prediction, reaching significance in permutation testing (Table 4.4). 

Sensitivity was 52% and specificity was 81.3% (Figure 4.19). Receiver operator rates 

are depicted in Figure 4.18 and further statistics are reported in Table 4.4. In addition 

to BrAC, platelet count, and positive urine-based benzodiazepine screening, that were 

selected by both SVM and LR models, the latter also chose high beta 

electroencephalographic activity, high glutamate dehydrogenase, and tingling 

sensations or numbness as long-term complications of alcohol use with feature 

selection probability of > 50% (Figure 4.18). Similar to the main SVM analysis the LR 
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validation model still reached significance with a BAC-loss of 4.4% but did not 

generalize to the TU cohort (Table 4.4). 

 

 
Figure 4.17. Area under the receiver 
operator curve for the LMU logistic 
regression MSAWS model 

 
 

 
Figure 4.18. Confusion matrix for the 
LMU logistic regression MSAWS model 

 
 

 
Figure 4.19. Feature selection probability for the LMU logistic regression MSAWS 
model

 

4.5.1.2 TU sample 
 
In the TU discovery and validation datasets, the LR classifiers did not yield significant 

predictions, with a BAC at chance level for all outcomes (Table 4.4).  
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4.5.2 BAC variation 
 
Median balanced accuracy across CV2 folds showed considerable standard deviations 

in both LMU and TU discovery models (Table 4.5), indicating that model performance 

was driven via a combination of diverse classifiers. Distribution differences between 

the point estimates of MSAWS, WS, and DT were detected in the TU discovery sample 

(post-hoc t-test between DT and WS as well as DT and MSAWS with p <0.01). 

 
Table 4.5. Balanced accuracy across CV2 folds 

 BAC in % (SD) 

LMU discovery: 

MSAWS 68.5 (12.2) 

TU discovery: 

MSAWS 56.6 (10.5) 

DT 78.9 (12.9)* 

WS 55.4 (12.7) 

 
Notes: Since the BAC for each individual fold is calculated solely based on the models built in the 
respective training partition, the median BAC slightly differs from the overall BAC based on all 
ensemble models.*Distribution differences between DT and WS as well as DT and MSAWS for TU 
discovery significant (t-test, p <0.01). Abbreviations: Balanced accuracy (BAC), standard deviation 
(SD). 
 
 
 
 

 
Figure 4.20. Performance variance across CV2 folds. Balanced accuracy (BAC) 
variance across the 20 folds in the outer cross validation loop (CV2) for all discovery 
models 
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4.5.3 Age and Gender effects on classification performance  
 

Cases who were correctly classified as developing delirium tremens (DT) were 

significantly younger (mean age (SD)=43.6 (10.5)) compared to incorrectly classified 

cases (mean age (SD)=48.7(9.3)). Similar differences were not found for the MSAWS 

predictions at either site. 

 

Table 4.6. Age and gender effects on prediction (true versus false classifications) 
 t/ χ² p value 

LMU discovery - MSAWS 

Age -0.65 0.51 

Sex 0.87 0.35 

TU discovery - MSAWS 

Age 0.68 0.5 

Sex 1.45 0.23 
TU discovery – DT 

Age -6.59 <0.001* 

Sex 2.85 0.09 
TU discovery – WS 

Age 1.35 0.18 

Sex 6.43 0.01* 
 
Notes: Students t-test (t), chi-square test (χ²). 
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5 Discussion 
 

 

Within the scope of this dissertation, I present evidence endorsing state-of-the-art 

machine learning as a promising framework to predict individual severity estimates of 

alcohol withdrawal syndrome in patients with alcohol dependence. A comprehensive 

battery of multidomain variables, routinely collected at patients’ admission, was 

successfully used to predict cases of moderate to severe AWS as well as delirium 

tremens. Furthermore, important insights into how multivariate predictive patterns 

differ for distinct AWS severity estimates and patient populations were obtained, that 

could help to better understand the current state of AWS prediction research, potential 

methodological shortcomings, and promising future directions.  

 

In the following sections I discuss model performance for each withdrawal outcome in 

the context of previous research efforts in the field. Following, I investigate similarities 

and differences in variable selection across different withdrawal outcomes and explore 

possible underlying clinical and neurobiological explanations. Considering the 

implemented external validation analysis, I subsequently highlight model 

generalizability as a main methodological imperative towards clinical translation. After 

discussing possible limitations of this dissertation, I propose future directions aimed at 

translatable risk prediction in AWS prediction research and summarize my results.  

 

5.1 ML as a framework for accurate risk predictions 
 

5.1.1 Predicting moderate to severe AWS 
 

The MSAWS models were built to objectively support a clinically useful stratification 

task: Separating patients who will only develop mild withdrawal symptoms from 

patients who will develop moderate to severe symptoms, the latter potentially requiring 

more intense further monitoring and treatment (Mayo-Smith, 1997). For both study 

cohorts—a psychiatric sample showing mostly mild AWS trajectories (LMU) and a 

toxicology sample including more severe cases (TU)—separate models yielded 

significant predictions with gains in accuracy compared to pre-test outcome 

probabilities in the respective patient population. The predictive accuracy of the LMU 

model was comparable to results in other ML studies using similar analysis frameworks 
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for classification tasks (Chekroud et al., 2016; Koutsouleris et al., 2016). For example, 

Chekroud et al. predicted treatment outcomes (clinical remission) in patients with 

depression using patient-reported variables with accuracy of 64.6%, sensitivity of 

62.8% and specificity of 66.2% (Chekroud et al., 2016). Koutsouleris et al. employed 

nested cross-validation to predict poor Global Assessment of Functioning (GAF) 

ratings in first-episode psychosis with balanced accuracy of 75.0% at week 4 and 

73.8% at week 52 after treatment initiation (Koutsouleris et al., 2016). 

 

In AWS research, two groups have developed tools for risk prediction using symptom 

assessment scales as severity estimates (Maldonado et al., 2014, 2015; Wetterling et 

al., 2006). In a psychiatric sample of 100 alcohol-dependent patients, Wetterling et al. 

predicted severe ratings on the AWS scale using a predefined set of 22 variables 

(LARS) that was later reduced to 11 variables (LARS11) based on a test of internal 

consistency (Wetterling et al., 2006). While the authors reported performance 

measures that markedly exceed the MSAWS models’ results—a sensitivity of 95% and 

a specificity of 92.5% for the LARS11—these have to be scrutinized considering a 

major limitation: The scale’s optimal cut-off value separating mild to moderate and 

severe withdrawal cases was defined post-hoc, but not tested in an independent 

sample. Indeed, the applied label “prospective study” (Wetterling et al., 2006) is 

misleading, since it does not refer to the scale’s evaluation but to the structured 

gathering of the dataset that was later used for its development. A further clinical 

reason could possibly impair the scale’s internal validity: Several input variables—

tremor, sweating, tachycardia, sleep disturbances—coincide with the rating scale used 

as the severity outcome (Wetterling et al., 1997). Therefore, especially since no 

temporal information on individual withdrawal trajectories is provided, these variables 

may function simply as measurements of withdrawal severity limiting the scales’ actual 

predictive power. Considering these limitations, it seems questionable wether the 

reported performance measures, retrieved in this rather small, unbalanced dataset, will 

translate to future patient cohorts. Moreover, the comparability of the LARS and the 

MSAWS models is impeded by a different clinical focus: While the LARS has been 

proposed as a tool to predict severe withdrawal cases, the MSAWS models were built 

including patients with moderate withdrawal symptoms. The latter cut-off was chosen 

since it potentially could indicate the need for pharmacological treatment, as has been 

proposed by the authors of the AWS scale (Wetterling et al., 1997). 
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Similarly, the PAWSS was developed to identify patients at risk of moderate to severe 

withdrawal in a cohort of general medicine and surgery patients (Maldonado et al., 

2014). Analogous to the LARS the authors also constructed the scale based on prior 

literature findings, but prospectively tested it in an independent sample (Maldonado et 

al., 2015). The resulting performance measures a sensitivity of 93.1% and specificity 

of 99.5%, implying high accuracy, although two crucial omissions in the study’s 

reporting impede the assessment of what was actually predicted: Firstly, the authors 

defined moderate to severe alcohol withdrawal as either a respective CIWA-Ar rating 

or a DSM-IV diagnosis, but did not differentiate between these definitions in their 

analysis. Since the DSM-IV diagnosis of alcohol withdrawal does not include a detailed 

severity assessment, it would be necessary to investigate the distribution of diagnoses 

more closely across the sample. However secondly, neither the distribution of CIWA-

Ar ratings, the distribution of PAWSS ratings across the whole sample, nor the 

incidence rate of AWS cases has been reported. Moreover, the CIWA-Ar is not yet 

validated as an assessment scale in general medicine and surgical patients. Since 

AWS highly overlaps with symptoms seen in infectious or cardiovascular diseases and 

more detailed information on symptom trajectories across the whole study sample was 

not regarded, it is impossible to assess if the PAWSS identifies patients at risk of 

severe withdrawal, withdrawal in general, or patients with prior alcohol use that are 

treated for diseases associated with autonomous hyperactivity. In addition, the study 

has been conducted in a setting with a low AUD prevalence of only 1.7% compared to 

the general population (Grant et al., 2015). Hence their findings should not be 

generalized without further validation to treatment settings with high AUD probability, 

like the LMU and TU cohorts. 

 

While these previous efforts rely on group-based analyses that may be useful  for 

exploratory inference, they do not reversely ensure accurate prediction of individual 

subject outcomes, as is the goal of precision medicine (Insel & Cuthbert, 2015; 

Janssen et al., 2018; Walter et al., 2019). In contrast, the MSAWS models were 

developed via a framework that applies strict validation procedures, namely nested-

cross validation, to generate estimates meaningful at the single-subject level (Dwyer, 

Falkai, et al., 2018). In this framework, performance is not driven by a single statistical 

model but a combination of classifiers varying in accuracy across the cross-validation 

folds and hypothetically converging on a more accurate estimate which better 
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represents sample diversity (Polikar, 2006). This expected variation across CV2 folds 

was indeed observed in a supplementary analysis (Figure 4.21). Furthermore, the 

overall performance estimates are generated through testing in subsamples 

independent of the model generation procedure. This approach is expected to yield 

results with lower accuracy that are nonetheless more likely to ensure generalizability 

to yet unseen patients (Varoquaux et al., 2017). While the main LMU SVM model 

outperformed the respective logistic regression model in accuracy, the difference was 

non-significant. Since the latter model was also learned in the same analysis pipeline, 

this further underscores the value of the CV-based ensemble framework, while, at least 

in the LMU sample, the choice of algorithm might have been less relevant.  

Compared to the LMU MSAWS model, reaching a clear increase in prognostic 

certainty, the respective TU model resulted in significant, but clinically not useful 

balanced accuracy. Before I explore potential underlying reasons for this pronounced 

difference, mainly limitations of the available dataset and site-specific characteristics, 

I outline how the models predicting DT and WS performed in the same dataset. 

 

5.1.2 Predicting Delirium tremens 
 

Due to its potentially adverse outcomes, DT is often described as the most severe 

complication of AWS (Schuckit, 2014). Since it usually develops with latency (Mann et 

al., 2016; Victor & Adams, 1953), accurate prediction at admission could potentially 

improve its timely recognition and enable preemptive treatment. The respective TU 

model predicted cases of DT with a significant BAC of 75%. This result is interesting 

as it is comparable to a previously published, non-validated prediction model based on 

the same cohort, that predicted DT with a c-index of 0.81 (Eyer, Schuster, et al., 2011). 

Eyer et al. entered 27 sociodemographic and clinical variables into a stepwise logistic 

regression analysis to detect risk factors of DT, which were then combined into 

nomograms to allow for visually intuitive risk estimation (Eyer, Schuster, et al., 2011). 

Convincingly, such nomograms do not only allow for a binary group prediction, that 

being a patient is at risk of DT or not, but offer a range of certainty. Three risk factors 

contributed to Eyer’s model: low potassium, low platelet count, and documented 

structural CNS lesions. While all three variables were included in the TU model, only 

platelet count and structural CNS lesions were frequently selected by the algorithms 

as predictors of DT. Despite the findings of a recent meta-analysis supporting low 

potassium as a risk factor of DT (Goodson et al., 2014) based on four studies 
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(Berggren et al., 2009; Eyer, Schuster, et al., 2011; Monte et al., 2009; Wetterling et 

al., 1994), this result questions if potassium levels can contribute to generalizable 

predictions. If not, it would lead to a profoundly lower predictive performance of the 

respective nomogram (Eyer, Schuster, et al., 2011). Two comparable studies have 

used stepwise logistic regression frameworks to identify risk factors of DT: Palmstierna 

et al. reported five binary variables associated with DT that they recommend to include 

in risk assessments (Palmstierna, 2001). Since they do not report any diagnostic 

performance measures, like sensitivity and specificity estimates (Palmstierna, 2001), 

the relevance and comparability of these results to the TU DT model cannot be 

assessed. Ferguson et al. propose a combination of two variables that indicate a risk 

of 54% for DT—just above chance (Ferguson et al., 1996).  

 

The comparably strong validated accuracy of the TU DT model may have been 

achieved by the following two methodological decisions: Firstly, since only 6% of 

patients developed DT, I accounted for this imbalance by using a weighted SVM 

algorithm. SVM algorithms are well known for penalizing misclassifications of small 

sized classes in unbalanced datasets, which leads to decreased accuracy (He & 

Garcia, 2009; Yang et al., 2005). Such effects have also been observed for logistic 

regression frameworks (Maalouf et al., 2018). As expected by prevalence rates in 

historic AWS studies prior to benzodiazepine treatment (Victor & Adams, 1953), DT 

rates in prediction studies are only rarely higher than 20% (Ferguson et al., 1996). 

Nonetheless I am not aware of any studies considering potential effects of this 

imbalance or using respective methods to optimize predictive performance. Secondly, 

the SVM algorithms clearly outperformed a logistic regression analysis in the same 

cross-validated framework. Indeed, logistic regression did not result in predictions 

above chance. This discrepancy seems especially noteworthy since LR has been used 

in many DT prediction studies without further validation (Eyer, Schuster, et al., 2011; 

Ferguson et al., 1996; Palmstierna, 2001). Since SVMs are advantageous in highly 

collinear and noisy datasets (Cortes & Vapnik, 1995), this could implicate that DT 

cases are indeed difficult to demarcate from other withdrawal trajectories without 

comparable multivariate methods. Consequently, such methods seem promising in 

complementing clinical judgement that might not be sensitive to complex multivariate 

dependencies.  
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A supplementary finding, specific to the TU DT model, was that cases correctly 

classified as developing delirium tremens (DT) were significantly younger (mean age 

(SD)=43.6 (10.5)) compared to incorrectly classified cases (mean age (SD)=48.7(9.3)). 

As discussed below, prediction was mainly driven by three variables (low platelets, 

older age, history of brain lesions). Thus, while older age predicts DT, there could be 

an upper limit to its maximal contribution to predictive performance. Therefore, patients 

could potentially benefit from models separately built in different age groups in future 

studies. Still, the model’s high sensitivity indicates a strong potential as a screening 

test to identify patients at risk of DT if further validated in independent samples.  

 

5.1.3 Predicting Withdrawal seizures 
 

Unfortunately, the TU model built to predict WS did not yield significant results. This is 

a surprising finding, since a respective model by Eyer et al. in the same dataset was 

reported to enable predictions up to 80% certainty with a c-index of 0.73 (Eyer, 

Schuster, et al., 2011). While this can be seen as further evidence that previous AWS 

research did not adequately consider means to ensure external validity, there is also 

a specific difference between both studies that could help explain this shortfall. The 

variable most strongly contributing to the seizure nomogram is the timepoint in hours 

after admission at which the highest score of the AWS scale was observed, the “apex 

of withdrawal severity” (Eyer, Schuster, et al., 2011). This discovery matches previous 

observations that withdrawal seizures often occur either before patients’ admissions or 

in the first 48 hours of withdrawal treatment (Hillbom et al., 2003; Hughes, 2009). 

Therefore, there might be an early period of increased vulnerability to withdrawal 

seizures in the course of AWS. An early peak in withdrawal symptoms after admission 

could indicate that a patient has already passed this critical phase and thus has only a 

low probability of developing WS. Conversely, patients which have not yet reached the 

peak of withdrawal severity at admission would be at high risk of WS development. 

While this interesting aspect should be further explored to better understand different 

withdrawal trajectories, it also signifies a crucial limitation of the proposed nomogram: 

The climax of the AWS score introduces longitudinal information that is not yet known 

at a patient’s admission into the prediction model. Since my aim was to build a 

predictive model that would potentially benefit clinical decisions shortly after admission, 

I did not include the variable into the TU analyses. Evidently, the expected loss of 

accuracy could not be compensated for by the remaining variable battery.  
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Other previous studies have mainly focused on single variables associated with 

withdrawal seizures which cannot be used to derive risk estimates meaningful to future 

patients (Berggren et al., 2009; Rathlev et al., 2000; Wojnar, Bizon, et al., 1999), with 

few exceptions: Morton et al. reported a discriminant function model of five clinical 

variables (previous number of withdrawal seizures, concurrent use of psychotropic 

substances, history of head injury, low sodium levels during the first 48 hours after 

admission, elevated pulse rates during the first 48 hours of admission) to show 96% 

efficiency in predicting cases without (n=28) and 84% efficiency in predicting cases 

with (n=12) alcohol withdrawal seizures in a small, retrospective dataset (Morton et al., 

1994). Unfortunately, they do not further elaborate on the applied statistical methods 

and do not report any performance measures. Thus, it remains unclear what estimate 

the authors term as efficiency. The withdrawal seizures in the sample occurred with a 

mean 174 hours after admission, which lies surprisingly far off the usually expected 

timeframe of 24 to 48 hours (Hillbom et al., 2003). Two variables retrieved during the 

first 48 hours were included into the model (sodium level and pulse rate). Furthermore, 

the seizure patients were treated with markedly higher mean diazepine-equivalent 

doses (373 mg compared to 68 mg) suggesting considerably different withdrawal 

courses between groups. Whether these results would translate to other psychiatric 

populations remains questionable. 

Hillemacher et al. used a random forest algorithm with bootstrap validation that 

reached an area-under-the-curve estimate of 0.824 based on six variables 

(Hillemacher et al., 2012). Besides number of daily smoked cigarettes, patient age, 

number of previous withdrawals, and BAC on admission, these included two laboratory 

variables—prolactin and homocysteine—that are usually not part of routine admission 

assessments. The analysis was conducted in 200 patients that were prospectively 

followed but did not develop any withdrawal seizures. To compensate for this, the 

authors used variables on index admission as input and previous withdrawal seizures 

as output variables. This approach, not relating to future events, can hardly be referred 

to as prediction. Questionably, the authors still stated their result as “widely 

transferable” findings (Hillemacher et al., 2012).  

 

In summary, the applied ML framework led to accurate results in identifying patients at 

risk of MSAWS in a setting with predominantly mild withdrawal cases, and DT in more 
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severely ill withdrawal patients. Cases of WS could not be predicted based on the 

available variable battery. Furthermore, MSAWS was predicted with only low accuracy 

in the TU dataset. While some variation in predictive accuracy was hypothesized, the 

marked differences between outcomes were not expected. 

Considering my first hypothesis, it can be concluded that accurate risk predictions 

based on the applied ML approaches are feasible but might not be suitable for all 

withdrawal outcomes. I thus further explore reasons for these differences in predictive 

performance in the following sections. 

 

5.2 Exploring underlying variable patterns 
 

Predictive performance largely depends on the available variables’ ability to inform the 

posed learning problem in a given dataset (Hastie et al., 2009). In order to gain further 

insight into the performance differences between models, I therefore explore which 

variables were frequently selected by each model. Previous studies have used the 

feature selection probability, the percentage of times that each variable was selected 

by the ensemble classifiers across all CV training partitions, as a proxy for variable 

importance (Dwyer, Cabral, et al., 2018; Koutsouleris et al., 2016). Variables that are 

selected by >50% of the classifiers are then interpreted to meaningfully contribute to 

the models overall decision (Dwyer, Cabral, et al., 2018; Koutsouleris et al., 2016). 

Since these variables are learned in a multivariate framework, they do not signify and 

cannot be directly compared to classical univariate analysis (Gaonkar & Davatzikos, 

2013). While this impedes direct quantitative comparison to previous research in the 

field, I narratively investigate how single variables match reported risk factors and 

hypothesized pathophysiological underpinnings of AWS nonetheless.  

 

Several variables frequently selected by the MSAWS models, have been previously—

but not consistently—described as risk factors of severe withdrawal development: 

Vinson et al. reported a high breath alcohol concentration as predictor of severe clinical 

AWS ratings and high medication doses in a sample of both psychiatric and medical 

inpatients (Vinson & Menezes, 1991). Although BrAC is routinely assessed at 

admission in clinical settings, this finding has to my knowledge not been replicated in 

further studies. Palmstierna et al. found high blood alcohol concentrations predictive 

of delirium tremens, but only when other withdrawal symptoms were present 
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(Palmstierna, 2001). Such development of withdrawal symptoms during alcohol 

intoxication might indicate higher levels of tolerance seen in heavy drinkers, which 

could hypothetically then increase severe withdrawal risk. However, markers of high-

dosage consumption or long-time AUD have not shown predictive utility in previous 

studies (Goodson et al., 2014; Kraemer et al., 2003; Lechtenberg & Worner, 1992; 

Wetterling, 2001) and similar variables in the LMU variable battery (age of onset 

alcohol dependency, approximated daily alcohol intake) were not frequently selected 

by the model’s algorithms. Furthermore, Palmstierna et al.’s findings could not be 

confirmed by other multivariate analysis (Eyer, Schuster, et al., 2011), meta-analysis 

(Goodson et al., 2014), or my TU DT model. Interestingly, high alcohol concentration 

was selected only by the LMU MSAWS but not the respective TU model. Since patients 

can be expected to stop alcohol consumption at varying timepoints before admission, 

some mild AWS cases might have passed the peak of withdrawal severity before 

admission and therefore shown low prior probability of high AWS scoring. Such cases 

were likely excluded in the TU dataset which did not include any patients without need 

for withdrawal medication. Furthermore, while mild symptoms of withdrawal (e.g. 

increased autonomic activity and agitation) typically develop only a few hours after 

reduced alcohol consumption, DT manifests with latency (Victor & Adams, 1953). Our 

finding therefore potentially indicates that alcohol levels differentiate only between the 

earlier, milder manifestations of AWS.  

 

Two further previously described variables were only available in the TU dataset: 

Firstly, a history of DT as predictor of severe clinical AWS ratings has been previously 

described by Kramer et al. (Kraemer et al., 2003). Such previous withdrawal 

experiences have been hypothesized to induce neuronal changes leading to low-

threshold neuronal excitability which might then increase the risk for subsequent, more 

severe withdrawal episodes (Ballenger & Post, 1978). This much cited kindling 

hypothesis originated in electrophysiological studies and animal research (Becker, 

1998; Gonzalez et al., 2001). As outlined in the introduction, successive clinical studies 

have shown inconsistent and conflicting results regarding the predictive value of 

different variables as indicators of previous withdrawal experience. The 

aforementioned meta-analysis found a previous DT predictive only of subsequent DT 

episodes (Goodson et al., 2014), which could not be confirmed by the TU DT model. 

Other indicators of recurrence available in my dataset, such as previous withdrawal 
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episodes, previous withdrawal treatments, number of episodes with withdrawal 

symptoms, repeated alcohol intake to stop withdrawal symptoms, and previous 

withdrawal seizures showed only low feature selection probability across all models. 

In summary, these negative findings are indicative that the kindling hypothesis might 

not be directly transferable to human withdrawal experience. More specifically, since 

a history of DT was only selected by the MSAWS model with low accuracy, even if 

such neuronal adaptions do occur, related anamnestic variables might offer only 

limited predictive value in specific populations. Such idiosyncratic signatures could 

hardly be expected to generalize across patient cohorts or treatment outcomes. 

Secondly, an increased heart rate at admission has been previously described only as 

a dichotomous predictor of DT with varying cut-off frequencies (J. H. Lee et al., 2005; 

Palmstierna, 2001). Tachycardia is a typical autonomous nervous system reaction in 

alcohol withdrawal and might warrant intensive monitoring and treatment in severe 

cases (Khan et al., 2008). It is included as an item in all established severity 

assessment scales (Sullivan et al., 1989; Wetterling et al., 1997). Patients who are 

admitted with increased heart rates are therefore potentially already experiencing 

acute withdrawal. From an explorative perspective this highlights a major limitation of 

most clinical withdrawal studies: Without exact information about the timeline of 

withdrawal, meaning the development of potential withdrawal symptoms after 

termination or reduction of subject-specific alcohol consumption, as well as reliable 

information on drinking history, causal inferences about withdrawal trajectories are 

impeded. Clinically, such variance in baseline withdrawal manifestations can be 

expected, since patients are often admitted unplanned or stop alcohol consumption at 

different timepoints prior to planned admission (National Institute for Health and Care 

Excellence (NICE), 2011). From a prediction perspective a more relevant question is, 

how much the identification of adverse outcomes in the later disease course can 

benefit from the diagnosis of an increased heart rate. Here, the low selection frequency 

of the variable by the DT model indicates that its predictive value is limited to early 

withdrawal manifestations.  

Besides AWS, tachycardia is a frequently occurring, general symptom seen in various 

conditions like cardiovascular and infectious diseases (Brugada et al., 2019). An 

increased heart rate at admission could therefore also indicate an underlying medical 

condition that might predispose for severe withdrawal development. Correlations 

between somatic diseases and adverse AWS outcomes, like DT development and 
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longer hospital stay, have been proposed by several authors (Ferguson et al., 1996; 

Wojnar, Bizoń, et al., 1999). While the TU dataset only included established liver 

cirrhosis as a disease variable, which did not show predictive value across models, the 

LMU dataset contained more extensive patient-reported information about the 

presence of various comorbid conditions like neurological, cardiovascular, hepatic, 

thyroid, and asthmatic disease. The sole selection of a history of blood pressure 

abnormalities by the LMU MSAWS model narrows the focus on cardiovascular disease 

as a relevant comorbidity, which could especially agree with the TU heart rate 

selection. Due to both variables not being available across datasets, the inclusion of 

more extensive information on cardiovascular status promises an exploration of a 

possible link between a potential predisposition to more pronounced autonomous 

reactions in AWS patients with underlying cardiovascular disease in future studies.  

 

A history of blood pressure abnormalities is one of three newly identified predictors of 

severe withdrawal, that have to my knowledge not been reported in preceding 

research: A positive urine-based benzodiazepine screening was frequently selected 

by the LMU MSAWS model, while not available in the TU dataset. Rates of concomitant 

benzodiazepine addiction in patients with AUD are high (Compton et al., 2007). 

Furthermore, both substances show largely overlapping withdrawal syndroms  (Busto 

et al., 1986). Without including any patients that received a formal ICD-10 diagnosis of 

benzodiazepine addiction in the LMU cohort, a positive urine screening could indicate 

two separate situations: firstly, co-dependency of benzodiazepines might remain 

undetected by the primary care team and said patients then develop both 

benzodiazepine and alcohol withdrawal simultaneously, with possibly more severe 

symptom development. Secondly, though not in line with usual admission routine, 

some patients could have received first benzodiazepine doses even before laboratory 

testing due to severe symptom presentation at admission. In conclusion, a positive 

urine-based benzodiazepine screening might not be specific of AWS but reflects 

common clinical circumstances where accurate information is not always readily 

attainable. Therefore, it should be included as a variable in a prediction tool seeking 

clinical implementation. 

Another novel finding is the selection of years of schooling by the LMU MSAWS model. 

While this variable should be interpreted cautiously as no further detailed information 

on the patients’ education was available, it could lead to a novel hypothesis that could 
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be explored in further longitudinal research: Epidemiological studies in diverse 

conditions like neurodegenerative disease (Y. Stern, 2013), psychotic disorders 

(Barnett et al., 2006), and brain trauma (Kesler et al., 2003) have suggested that 

educational and occupational attainment influences the cognitive reserve of patients, 

thus leading to decreased susceptibility to age- and disease-related brain changes and 

attenuated illness courses. In AWS such adaptions could be hypothesized to guard 

against pronounced symptom development. Importantly, the variable highlights that 

the comprehensive, unbiased inclusion of developmental and other sociodemographic 

information might be leading to the identification of variables with unexpected 

predictive value. Sociodemographic information beyond age, gender, and alcohol 

consumption history is scarcely included in AWS prediction studies (Goodson et al., 

2014). In contrast to prediction approaches strongly relying on prior literature findings 

(Maldonado et al., 2014; Wetterling et al., 2006), the three newly identified MSAWS 

predictor variables encourage and justify the use of techniques such as the applied 

wrapper-based feature selection in high-dimensional datasets. Indeed, these results 

are in line with work promoting theory agnostic (Huys et al., 2016), data-driven models 

for knowledge generation (Breiman, 2001). 

 

Variable importance analyses of the TU DT model showed that only three variables 

were frequently selected by the algorithms. Except low platelet count, they differ from 

the selections of the MSAWS models: The selection of CNS lesions suggests a 

morphologically-based vulnerability for DT. This was first shown in the aforementioned 

study in the same dataset (Eyer, Schuster, et al., 2011), but has not yet been 

replicated. In contrast to Eyer et al.’s study the same variable did not contribute to 

significant predictions of WS. These inconsistent results can be attributed to the cross-

validation setup, which indicates that CNS lesions contribute to generalizable 

predictions specifically for the DT outcome. The variable’s predictive value potentially 

corresponds to the cognitive reserve hypothesis, since education might forestall 

cognitive deficits that can be observed in patients with cerebral white matter lesions 

(Dufouil et al., 2003).  

 

Only a low platelet count was persistently utilized as a poor-outcome predictor by all 

significant models across both treatment outcomes—MSAWS and DT—as well as 

treatment sites. Thrombocytopenia in patients with AUD might result from various 
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pathophysiological mechanisms: While alcohol is assumed to have direct toxic effects 

on the bone marrow, resulting in decreased cell generation (Berggren et al., 2009; 

Latvala et al., 2004), and the induction of platelet apoptosis (Zhao et al., 2017), low 

platelets might also be attributed to chronic liver disease (O. Mitchell et al., 2016). 

Occurrence of liver cirrhosis has been more frequently observed in patients with 

preferred continuous alcohol consumption opposed to binge drinking patterns (Barrio 

et al., 2004). Diagnosis of liver cirrhosis as well as laboratory liver enzyme 

measurements were included in LMU and TU datasets but did not inform the models’ 

predictions. As suggested by prior research (Barrio et al., 2004; Goodson et al., 2014) 

low platelet count could therefore indeed indicate mainly intermittent alcohol 

consumption. 

 

In line with meta-analytic results (Goodson et al., 2014), the finding that MSAWS and 

DT models only share platelet count as a poor-outcome predictor directly indicates that 

both diagnosis categories reflect specific, underlying pathomechanisms, with a history 

of cerebral lesions as a possible specific differentiator. This would give reason for 

treating both outcomes as separate entities in further prediction studies. Since the WS 

model did not yield significant results, I won’t speculate about possible predictive 

variables. 

 

Lastly, with variables being available across multiple domains, it may be helpful to also 

highlight information not benefitting predictions: Besides the limited evidence on prior 

withdrawal experience and somatic comorbidity, no evidence of increased AWS risk in 

patients with a positive family history was found, which could have indicated a genetic 

risk for more severe AWS development. Furthermore, EEG measurements shortly 

after admission did not inform MSAWS prediction. Importantly, this does not reduce its 

value in differential diagnosis of seizure etiologies in the later AWS course (Hillbom et 

al., 2003).   
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5.3 Site specific differences and external validation 
 

A main criticism on previous AWS research and the most likely reason for the absence 

of viable, evidence-based clinical tools beyond symptom assessment scales has been 

the lack of attempts to validate results across treatment settings (Goodson et al., 2014; 

Saitz, 2018). The need for such validation is emphasized by the finding that the 

MSAWS models did not generalize across LMU and TU cohorts. To my knowledge this 

has indeed been the first attempt for an external validation analysis in AWS research, 

hence an exploration of potential underlying reasons for the negative results could 

possibly benefit future research. 

 

As expected, reducing the variable battery to the 9 shared variables led to a decrease 

in classification performance in both datasets. Surprisingly, while out of the variables 

selected most frequently by the respective discovery model only platelet count and 

breath alcohol concentration could be included, the reduced LMU model showed a 

modest BAC loss of 3.1% that still reached statistical significance. Hence, overall 

prediction performance was likely driven by a multivariate pattern with likely complex 

relationships between variables. While such complex relationships might limit the 

interpretability of single contributing variables, a model not reliant on single variables 

could be more easily adjusted to specific treatment settings where the attainment of 

certain variables may not be feasible. Unfortunately, the model’s predictions resulted 

in a balanced accuracy below chance when applied to the TU cohort in the out-of-

sample cross-validation analysis. In the respective TU model only CNS lesions could 

not be included out of the discovery model’s most frequently selected variables. Still, 

based on the already low performance of the discovery model, the BAC loss of 2.9% 

led to a performance not reaching statistical significance in permutation testing. 

Expectedly, the out-of-sample testing did not yield accurate predictions as well.  

 

Several reasons for the lack of generalizability across treatment sites are conceivable: 

Reflecting a limitation of the retrospective data gathering process, several important 

variables that might have contributed to predictive performance (e.g. years in school, 

history of DT, heart rate at admission, urine-based benzodiazepines screening) were 

not available for the external validation analysis. Furthermore, univariate comparison 

of the underlying variables between both datasets revealed significant differences for 

most variables as well as the predicted outcome. The TU dataset consisted of 
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markedly more moderate to severe withdrawal cases (see Figure 4.1). Partly, this 

distinction could be explained by differences in patient referral due to the closer linkage 

of the TU’s toxicology unit to the general medicine department, which provides access 

to better monitoring and care of withdrawal cases suffering from more intense medical 

comorbidity, including acute somatic complications of harmful alcohol use.  

Correspondingly, the univariate baseline differences fit the notion of the TU sample as 

a higher severity cohort, including significantly older patients with higher mean gamma-

GT and potassium measures, higher alcohol concentration at admission, and more 

frequent history of withdrawal seizures. The finding that mean platelet count was 

significantly lower in the LMU sample while low platelet count was selected by all 

models as a bad outcome predictor, can be attributed to its wider distribution in the TU 

sample (reflected in a higher standard deviation).  

Based on these baseline characteristics patients would then have entered procedures 

at two separate hospitals, with potentially different approaches to clinical care. A level 

of standardization between cohorts is certainly provided through the implementation of 

symptom-triggered medication regimes (Mayo-Smith, 1997) with well-established 

pharmacological agents (Amato et al., 2011; Eyer, Schuster, et al., 2011) in both 

clinics—excluding more experimental treatments sometimes used in intensive-care 

and trauma settings (Vanderweide et al., 2016; Wong et al., 2015). However, 

information on other context-specific factors like non-pharmacological treatment 

protocols, AWS specific training of attending staff, and treatment facilities were not 

available. While both treatment settings are located in the same city, decreasing the 

probability of major cultural and sociodemographic divergences, the influence of 

treatment settings has only rarely been studied in previous research (Naranjo et al., 

1983; Whitfield et al., 1978) and might have modulated withdrawal trajectories after 

admission.  

 

In summary, the lack of generalizability of MSAWS models offers direct evidence that 

AWS prediction models built in single-clinic cohorts cannot be easily transferred to 

other treatment settings without prior validation. Importantly, the cross-over design of 

this study adds an important incentive for future AWS research: Prior attempts to find 

more robust predictors of AWS severity focused on summarizing results across diverse 

settings and outcomes via meta-analysis (Goodson et al., 2014) or systematic review 

(Maldonado et al., 2014) to derive generally valid assertions. By contrast, the marked 
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differences of the MSAWS models in both predictive performance as well as variable 

importance across treatment sites could be seen as evidence that a more feasible road 

towards clinically useful prediction tools would be the development of models 

specifically adjusted to circumscribed populations. The external validation’s negative 

results therefore support the appraisal of recent treatment guidelines that do not 

recommend any AWS prediction tools published to date (Department of Defense, 

2017; Mann et al., 2016; National Institute for Health and Care Excellence (NICE), 

2010, 2011), opposed to recently published, high-impact  endorsements of non-

validated predictive models (A. M. Wood et al., 2018). 

 

5.4 Clinical utility 
 

Even a robust computational model, reaching both generalizable as well as highly 

accurate predictions, might not necessarily be clinical useful unless its predictions are 

connected to modifiable treatment decisions that could then improve patient outcomes. 

This requirement is especially relevant considering recent advances in ML algorithm 

development, like deep learning (Esteva et al., 2019), leading to a surge in studies 

reporting highly accurate results but often do not benefit clinical care (Wiens et al., 

2019). To clinically validate the prediction models, I examined how their classification 

decisions relate to the pharmacological treatment received during withdrawal. For the 

MSAWS models, a regression analysis revealed significant linear relationships 

between the decision score (a measure indicating the certainty of a model’s predictive 

appraisal) and the cumulative clomethiazole demand during AWS treatment. In both 

samples symptom-triggered pharmacotherapy was provided (Mayo-Smith, 1997), 

using the AWS scale as measure of AWS severity to guide treatment. Hence, the 

relationship between the classifiers’ decision and provided treatment doses indicate 

that the MSAWS models predict clinically meaningful outcomes. Despite its post-hoc 

nature, this result suggests that assessments based on ML predictions could 

potentially guide treatment decision currently relying on clinical judgement (National 

Institute for Health and Care Excellence (NICE), 2010, 2011).  

 

For the DT model, a comparable post-hoc association between its decision scores and 

clomethiazole demand was not found. This negative result can be attributed to a ceiling 

effect due to generally high dose clomethiazole application in the cohort. Considering 
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a recent meta-analysis on symptom-triggered AWS treatment (Holleck et al., 2019) 

highlighting a shortage of controlled studies in high severity AWS cases as well as 

studies indicating limits in efficacy of both symptom-triggered therapy (J. A. Lee et al., 

2019) as well as benzodiazepine treatment (Vanderweide et al., 2016) in ICU patients, 

this finding agrees with the notion that DT patients should be considered to be a 

subgroup with specific challenges to clinical care (Schuckit, 2014). While innovations 

in AWS pharmacotherapy are thus warranted and clinical studies on various 

pharmacologically agents are regularly published (Cooney et al., 2019; Eyer, 

Schreckenberg, et al., 2011; Gillman et al., 2007; Leone et al., 2010; Wong et al., 

2015), clinical care in general seems to have much improved since the first systematic 

reports on AWS patients (Victor & Adams, 1953): In both LMU and TU cohorts—

totaling 1194 AWS patients including 822 cases of moderate to severe withdrawal, 45 

DT cases, and 71 withdrawal seizures—no fatalities have been reported. Low mortality 

is certainly a primary goal of AWS treatment but should not let other treatment 

outcomes, like patient expectations regarding comfort and autonomy, unrecognized. 

Psychological impact and mental health outcomes following delirium, especially 

symptoms of post-traumatic stress, have recently received increased attention (Bolton 

et al., 2019; G. O’Malley et al., 2008), but have not been studied in AWS patients. 

Furthermore, adverse side effects of generously administered sedative medication 

might outweigh its benefits in cohorts with predominantly mild cases (Amato et al., 

2010, 2011; Maldonado et al., 2014). These issues imply strong imperatives for further 

optimizing clinical care for AWS patients. Besides their promising predictive 

accuracies, the models built within the scope of this study point out two further clinically 

relevant aspects that could help to specify where predictive models could be integrated 

into such endeavors: Firstly, the still significant BAC of the reduced 10 variable 

MSAWS model in the LMU cohort indicates that few easily attainable variables could 

be sufficient for accurate outcome predictions in similar populations, thus considerably 

facilitating the implementation into clinical practice. However, without further validation 

of the reduced models, this result should be evaluated with caution. Secondly, the high 

sensitivity of the TU DT model signifies potential as a screening tool, which could be 

used to stratify patients into low and high-risk groups and then allocate costly clinical 

resources like hospital beds and intensified monitoring capabilities based on 

predictable individual needs. Such proceedings could also enable evidence-based 
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referral to safe out-patient treatment (National Institute for Health and Care Excellence 

(NICE), 2010).  

 

In summary, the ML models’ association with pharmacological treatment decision, their 

predictive power based on a few clinical variables, and their useful screening 

capabilities support the clinical utility of further validated models derived from ML 

methodology. After disclosing several limitations of this project, I discuss how these 

results could function as incentives for future research in the field more specifically.  

 

5.5 Limitations 
 

This project has certain inherent limitations considering its dataset, analysis, and 

results. First, being based on retrospective data, it was not possible to exclude 

systematic biases resulting from inaccurate documentation. Specifically, since AWS-

scores had to be retrospectively derived, individual estimates potentially do not agree 

with nuanced in situ appraisal. Moreover, the AWS scale includes breath rate at 

admission as a time-consuming, non-automated clinical measurement (Wetterling et 

al., 1997),  which in clinical experience is often evaluated diligently only in severe 

cases. Such inconsistencies could potentially have let to underrated AWS scores, 

especially in the less severe LMU sample.  

Secondly, since the available data was limited to psychiatric and internal-medicine in-

patients, latter treated in a specialized detoxification unit, other cohorts with 

considerable AWS incidence like surgical wards, intensive care units, out-patient 

clinics or correctional facilities (Fiscella et al., 2004; Lukan et al., 2002; Maldonado et 

al., 2015; Whitfield et al., 1978) were not considered in this project. As the external 

validation analysis shows, such settings might also require different predictive models 

adjusted to distinct patient characteristics, clinical procedures and other setting-

specific features. Since the LMU and TU datasets were both acquired in German 

hospitals, regional distinctions and differing cultural norms, potentially influencing 

treatment approaches, were not regarded and could further prevent generalizability 

across countries. 

Thirdly, the range of possible predictors as well as further meaningful AWS treatment 

outcomes was restricted by the content of the utilized patient charts. Regarding input 

variables, more nuanced information on prior addictive behavior like number of former 
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withdrawal episodes or drinking patterns would have been desirable. While the 

inclusion of standardized questionnaires and structured interviews to assess potential 

psychiatric co-morbidities would have been interesting from an explanatory viewpoint, 

such assessments are often time consuming (First et al., 2015) and thus not suitable 

for a timely evaluation at admission. This is also true for MR-based imaging techniques 

like spectroscopic measurements of brain metabolites, which have shown promising 

results towards a better understanding of the neurobiological underpinnings of AWS 

(Hermann et al., 2012) but are not available outside of research facilities. Regarding 

output data, long-term outcomes like relapse rates and adherence to subsequent 

addiction treatment would have been informative, both to further validate the LMU and 

TU models as well as being possible predictive targets by itself.  

Fourthly, due to restricted overlap between available variables across the treatment 

sites, an external validation of the full predictor set of the main discovery models was 

not possible. The failed validation attempt in the reduced variable sets certainly is the 

major limitation in regard to clinical translation, but also has been informative in better 

understanding shortfalls of previous research. 

Finally, while the MSAWS models’ association with pharmacological treatment signify 

a degree of clinical validation, a direct comparison to clinical judgement (e.g. the 

appraisal of the attending psychiatrist regarding outcome prediction) would have been 

desirable to further judge their potential to complement decision-making. However, 

31% of patients in this study developed only mild withdrawal symptoms, although all 

patients were treated as in-patients. This observation could be seen as implicit 

evidence for the need to further improve such evaluations. 

 

5.6 Future directions 
 

Despite these limitations the results of this project indicate several promising avenues 

for future research aiming at optimizing clinical care for AWS patients.  

The capability of ML to generate accurate risk predictions in large datasets by utilizing 

a broad spectrum of potential predictors across diverse domains seems especially 

suitable for these purposes. Due to open-source software packages like NeuroMiner 

(https://www.pronia.eu/neurominer), mlr3 (https://github.com/mlr-org/mlr3) or 

tensorflow (https://www.tensorflow.org), the reproducible implementation of even 

complex ML tools no longer demands extensive computational or engineering 

https://www.pronia.eu/neurominer
https://github.com/mlr-org/mlr3
https://www.tensorflow.org/
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knowledge, but can be applied by researchers across diverse scientific disciplines. 

Even so, a main prerequisite is the availability of large datasets to enable both model 

generation and external validation. Fortunately, large AWS datasets have been 

repeatedly compiled across medical specialties and different geographical regions 

(Lukan et al., 2002; Schuckit et al., 1995; Wojnar, Bizoń, et al., 1999) and could be 

shared via open-source databases. This would also allow the application of deep-

learning algorithms that can achieve highly accurate results but require big data (Beam 

& Kohane, 2018; Esteva et al., 2019). Nevertheless, overreliance on previously 

gathered datasets would not solve issues like heterogenous definitions of AWS 

outcomes, non-standardized assessments, or diverse treatment protocols across 

cohorts (Goodson et al., 2014). Indeed, assembling representative, high-quality data 

is a substantial part of ML model development (Rajkomar et al., 2019) and essential in 

forestalling prediction biases, like the amplification of already existing socioeconomic 

disparities in the health-care system (Gianfrancesco et al., 2018).  

Therefore, future collaborations between multiple treatment centers starting at the 

project development phase are highly warranted to address previous limitations of 

single-center studies as well as incorporating modern demands for reproducible 

science (Ioannidis, 2005; Wiens et al., 2019). Considering AWS, this procedure could 

help to harmonize datasets across treatment settings via standardized gathering of 

patient information and treatment endpoints, including meaningful goals developed in 

collaboration with stakeholders, like clinical experts, public-health administrators, and 

patient representatives. Models built on such datasets could be prospectively 

evaluated against clinicians’ ratings in multiple settings and used for randomized-

controlled trials that test their ability to optimize relevant clinical decision, for instance 

choice of treatment setting or pharmacological treatment, henceforth establishing a 

potential for clinical implementation. Finally, as has been recently shown by a large 

clustering study on psychosis patients (Dwyer et al., 2020), data-driven research based 

on multi-center collaboration could function as a promising approach to characterize 

individual disease trajectories, potentially leading to more targeted treatment 

approaches.  
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5.7 Conclusion 
 

The analyses conducted within the scope of this research contribute to moving alcohol 

withdrawal research towards unbiased, data-driven personalized medicine 

approaches that include robust tests of generalizability. 

 

The primary aim was to identify patients at risk of severe AWS, defined by three 

clinically meaningful outcomes, via a machine learning framework incorporating tests 

of internal validity. Based on easily attainable clinical, sociodemographic and 

laboratory variables available at patients’ admission, this approach generated 

significant prediction models for separating cases of mild and moderate to severe AWS 

in a cohort of predominantly mild withdrawal cases as well as for identifying patients at 

risk of DT in a more severely ill sample. Other than hypothesized, it was not successful 

in generating cross-validated predictions for the third outcome, withdrawal seizures. In 

the case of the MSAWS models the prediction results could be connected to 

pharmacological treatment, adding to its clinical validity and potential to inform clinical 

decisions. 

 

Considering the secondary aims, predictive patterns highly varied across withdrawal 

outcomes with a low platelet count as the only variable contributing to adverse outcome 

predictions across models. This expected variation strengthens the notion of DT as a 

specific complication of AWS with unique neurobiological underpinnings—highlighting 

structural CNS lesions as a potential morphological risk-factor. Apart from that, several 

new predictive variables were found (self-reported previous blood pressure 

abnormalities, positive urine-based benzodiazepine screening, and years of 

schooling), emphasizing the value of data-driven, hypothesis-free prediction 

approaches. 

 

Unexpectedly, in an out-of-sample external validation analysis, separate models using 

only variables available in both datasets did not achieve significant predictions across 

samples. While this result impedes the translation of the newly developed ML models 

into clinical use, it also points to important limitations of previous research and offers 

strong incentives guiding future research towards multi-center collaboration. 
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Overall, this dissertation provides evidence promoting ensemble learning within a 

nested cross-validation setup as a potential approach to enable reliable risk prediction 

for AWS severity outcomes in future prospective studies. Such models seem promising 

in enabling further data-driven research on important treatment decisions, like 

pharmacological treatment and choice of setting, that, at the moment, exclusively rely 

on resource-intensive monitoring and clinical judgement.  
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