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ABSTRACT

Al-infused systems support or automate decision-making in many sensitive contexts of society, such as
medicine, education, criminal justice, loan approval, or recruiting. To accomplish this, these systems
often leverage machine learning (ML) methods. The risk of unintended consequences caused by the
black-box problem of these systems drove social, ethical, and legal calls for more interpretable and
explainable systems for stakeholders beyond the systems’ developers. This field is often referred
to as Explainable Artificial Intelligence (XAI). XAl researchers face the accusation of putting their
emphasis on generating explanatory models for like-minded ML experts instead of tailoring them to
the actual users, who often lack the technical background about ML.

This human-centric view on non-expert users of XAl is the focus of this thesis. By non-experts, we
refer to users of XAl systems who have not been trained or educated in ML concepts, but who use the
system’s predictions to support or perform their tasks. The work presented in this thesis (i) examines
human factors that may be encountered by end users when interpreting explanations from ML-based
XAl systems, and (ii) explores the interaction space of XAl explanation facilities to foster a pragmatic
understanding of the underlying ML model.

To this end, this thesis makes three contributions: (i) it empirically explores unknown human fac-
tors and cognitive biases that influence the end user understanding gained through XAI explanations,
(ii) it conceptually structures inconsistencies within the involved research communities on how ex-
planations are evaluated with human subjects in empirical XAl studies and how user interaction
with explanation interfaces in XAl can be described, and (iii) it presents case studies of construc-
tive explanation facility artifacts that fulfill the requirements of naturalness (use natural language
explanations), responsiveness (allow follow-up interactions), and sensitivity (elicit end user beliefs to
calibrate their expectations). In summary, this thesis raises XAl designers’ awareness of the human
aspects of interpretability in XAl






ZUSAMMENFASSUNG

Mit Kiinstlicher Intelligenz (KI) angereicherte Systeme unterstiitzen oder automatisieren Entschei-
dungen in vielen sensiblen Bereichen der Gesellschaft, beispielsweise in der Medizin, im Bildungs-
wesen, im Strafrecht, der Kreditvergabe oder der Personalrekrutierung. Dafiir nutzen diese Systeme
oftmals Methoden des Maschinellem Lernens (ML). Das Risiko unbeabsichtigter Konsequenzen, das
vom Blackbox-Problem des Maschinellen Lernens ausgehen kann, fiihrte zu sozialen, ethischen und
rechtlichen Forderungen nach besser interpretierbaren und erklérbaren Systemen fiir Nutzergruppen,
die iiber die Entwickler dieser Systeme hinausgehen. Dieses Feld wird oft als Erkldrbare Kiinstli-
che Intelligenz (engl. Explainable Artificial Intelligence, XAI) bezeichnet. XAl-Forscher sehen sich
dem Vorwurf ausgesetzt, dass sie viel Wert darauf legen, Erkldrungsmodelle fiir gleichgesinnte ML-
Experten zu generieren, anstatt sie auf die eigentlichen Endnutzer, die oftmals keine technischen
Experten sind, auszurichten.

Diese menschenzentrierte Sichtweise auf nicht-technische Endnutzer von XAI ist der Fokus dieser
Arbeit. Mit nicht-technischen Endnutzern bezeichnen wir Nutzer von XAI-Systemen, die wenig mit
den Konzepten des maschinellen Lernens vertraut sind, aber dessen Vorhersagen zur Unterstiitzung
oder Erfiillung ihrer Aufgaben nutzen. Die in dieser Thesis vorgestellten Arbeiten (i) untersuchen
menschliche Faktoren, die bei Endnutzern auftreten konnen, wenn sie Erkldrungen von ML-basierten
XAI-Systemen interpretieren und (ii) erforschen den Interaktionsraum von XAI-Nutzerschnittstellen
(engl. XAl Explanation Facilities), um das pragmatische Verstidndnis des zugrunde liegenden ML-
Modells zu fordern.

Hierbei leistet diese Arbeit drei Beitrige: (i) sie erforscht empirisch unbekannte menschliche Fakto-
ren und kognitive Verzerrungen, die das durch XAI-Erkldarungen gewonnene Verstindnis von nicht-
technischen Endnutzern beeinflussen, (ii) sie strukturiert konzeptionell die Inkonsistenzen innerhalb
der Forschungsgemeinden dariiber, wie Erkldrungen mit menschlichen Probanden in empirischen
XAlI-Studien evaluiert werden und wie die Interaktion mit XAI-Nutzerschnittstellen beschrieben wer-
den kann, sowie (iii) sie prisentiert konstruktive Fallstudien von XAI-Nutzerschnittstellen, die den
Anforderungen der Natiirlichkeit (verwendet natiirlichsprachliche Erkldrungen), Ansprechbarkeit (er-
moglicht Folgeinteraktionen) und Einfiihlsamkeit (ermittelt die Uberzeugungen der Nutzer, um deren
Erwartungen zu kalibrieren). Zusammenfassend schirft diese Arbeit das Bewusstsein von XAl Desi-
gnern fiir die menschlichen Aspekte der Interpretierbarkeit in XAl
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Introduction

1.1 Motivation

"Our human, social, and civic dilemmas are becoming technical.
And our technical dilemmas are becoming human, social, and civic."

B. Christian, The Alignment Problem, 2020

Unintended Consequences of Al in Sensitive Areas of Society Modern intelligent systems often
leverage methods of artificial intelligence (AI) and directly expose them to end users. These so-called
Al-infused systems [3] navigate us to our next destination and protect us from unwanted emails.
They recommend us movies, music, or products, and serve tailored advertisements. Often, they
build on non-linear machine learning (ML) methods that enable accurate predictions. Al-infused
systems based on ML outperformed human performance in complex tasks such as speech recognition,
language translation, and games [80, 108]. They find patterns in large volumes of data in reasonably
little time and, thus, hold the promise to augment human decision-making.

This promise led to a controversially discussed proliferation of Al-infused systems into sensitive
areas of our societies, such as credit scoring [21], algorithmic trading [44], education [61], recruit-
ing [113], predictive policing [45], and criminal justice [18]. There were multiple cases of unintended
consequences [98] that revealed a "mismatch between human-intended and model-learned solutions"
of Al-infused systems [35]. For example, a decision support system for dermatologists has "inadver-
tently learned that rulers are malignant" instead of melanomas [87]. Further, search engines were
shown to display “fewer instances of an ad related to high paying jobs” to women than to men [22],
recruiting systems downgraded resumes that included words such as “women’s” [28], and systems
for the risk assessment or reoffenders were claimed to show disproportionately higher classification
errors for people of color [33]. These unintended behaviors often result from the black-box problem
of AI [102] and their tendency to learn shortcuts.

The Black-Box Problem of Al In traditional software development, engineers crafted a deductive
model based on explicit rules and turned them into code. In such a context, it is possible to in-
spect which parts of the code are executed. Such systems are explainable by definition. A different
approach is taken with machine learning (ML) systems. From the origins of the perceptron [99] to to-
day’s deep neural networks, ML-based Al systems are programmed "o learn from experience” [105].
Those systems do not establish rules in advance. Instead, ML-based systems are probabilistic, non-
deterministic and often non-linear. For any input fed into a ML model, the output depends on the un-
derlying training data and training parameters. From this training data, the algorithms autonomously
infer implicit rules. This implicit inference comes at the expense of interpretability regarding the
prediction process and effectively turns the model into a black-box (i.e., a situation in which it is
possible to observe the inputs and outputs, but where the internal operations are not disclosed nor
interpretable to humans) [102].
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To assess the utility of a non-linear ML model, engineers mostly rely on performance metrics that
compare the outcomes of the prediction process, such as the number or ratio of true and false pre-
dictions (e.g., accuracy, AUC, or F1) [86]. However, these performance metrics do not say anything
about the ML model being “right for the right reasons” [100]. A model may learn shortcuts that do
not generalize outside the training data or that are considered as unfair or discriminating [35]. For
instance, Ribeiro et al. [97] trained an ML model with the goal of distinguishing dogs from wolves in
images. While the metrics indicated promising performance, their explainability method showed that
the model achieved its performance by distinguishing images with areas that did or did not contain
snow in the background. ML models rely on correlation instead of causation. Bias and unfairness
may creep into the prediction behavior if a discriminatory confounding factor is not included in the
ML model. Thus, achieving high accuracy scores on a held-out test set may not always result in
understandable and trustworthy systems that serve the underlying domain problem.

Democratizing Al Supervision through Explainability Explainability is considered as one way
to prevent or monitor the emergence of undesired consequences of Al-infused systems. As these sys-
tems are introduced into more sensitive contexts of society, there is a growing acceptance that they
must be capable of explaining their behavior in human-understandable terms to stakeholders beyond
the developers. Regulatory, organizational, and societal stakeholders partake in the discussion and
emphasize the importance of explainability for trustworthy systems. For example, the EU General
Data Protection Regulation (GDPR) grants individuals affected by automated decisions the right for
"meaningful information about the logic involved" [39]. The EU Al HLEG' considers explainability
as a key element of trustworthy Al systems [32]. More concretely, the NIST? defined four fundamen-
tal principles of explanation supply, meaningful explanation, explanation accuracy, and knowledge
limits for explainable Al systems [88]. Following these calls, companies aim at adopting explain-
ability to manage their algorithmic risks. According to a survey by IBM, 68% of business executives
believe that their customers will demand more Al explainability in the upcoming three years [54].

This surge for explainable Al (XAI) shows that Al-infused systems are no longer the sole matter of
developers. Understanding Al-infused systems at least on a simplified level is a key to participating
in these discussions. However, most works in XAl focus on the computational aspects of generat-
ing explanations for black-box ML models. Limited research concerns the human-centered design
of XAlI, for example, providing non-technical users with some intuition why certain predictions are
made, the system’s underlying assumptions or constraints, or means to calibrate their trust. If ques-
tions of reflexive skepticism from non-technical users are left unanswered by an Al-infused system,
this will have a direct impact on trust, decision-making and eventually their adoption [123]. As the
human use of computing is the subject of inquiry in the problem solving field of HCI [92], the HCI
community "should take a leading role [...] by providing explainable and comprehensible Al, and
useful and usable AI” [123].

! High-Level Expert Group on Artificial Intelligence

2 National Institute of Standards and Technology of the U.S. Department of Commerce
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1.2 Thesis Statement

Al-infused systems based on machine learning (ML) support or automate decision-making in many
sensitive contexts of society. The risk of unintended consequences caused by the black-box problem
of these systems drove social, ethical, and legal calls for more interpretable and explainable systems
for stakeholders beyond the systems’ developers. Research in this field is often referred to as Ex-
plainable Artificial Intelligence (XAI). This dissertation centers around the human-centric challenges
of making XAl systems comprehensible and usable for non-expert users from an HCI perspective.
Making decisions of intelligent systems comprehensible to non-experts has been an active research
field since the era of rule-based expert systems in the 1970s and 1980s. In my work, I build around the
concept of explanation facilities that dates back to this time. It centers around the idea that an explana-
tion interface that targets non-experts should include multiple modes of explanation and interaction.
A usable explanation facility should fulfill the requirements of fidelity, naturalness, responsiveness,
flexibility, sensitivity, extensibility, portability, and adaptivity [81]. Although the term has been used
less often in the context of ML-based intelligent systems, the underlying human-centric principles re-
main valid and have the potential to address the call for “usable, practical, and effective transparency
that works for and benefits people” [1]. Recently, XAl researchers have been accused of putting too
much emphasis on generating explanatory models for like-minded ML experts ( “inmates running the
asylum” [77]) instead of tailoring them to the actual users who are often non-experts.

The work presented in this thesis (i) examines human factors that XAl designers must account for
when exposing non-expert users to XAl explanations, (ii) conceptually analyzes the design space of
involving them into the XAl explanation process through interaction or evaluation, and (iii) construc-
tively explores different designs of interactive XAl explanation facilities for non-expert users. With
non-expert users, I refer to end users of XAl systems who have not been trained or skilled with ma-
chine learning concepts but use its predictions to perform their tasks. Due to the diverse use cases of
XAI explanations and contexts of its users, it is unlikely that one explanation will result in equally
effective understanding for all. Thus, designing for understanding requires taking into account cog-
nitive and pragmatic aspects of explanation [76, 93, 31].

To this end, this thesis makes three contributions: (i) It empirically explores unknown human factors
that influence the process of understanding XAI explanations. I show that a cognitive bias of illu-
sory understanding can emerge when non-expert users are consuming explanations [P4]. Further, I
discuss the risks of deception through placebic explanations by providers of XAl explanations [P5].
(i1) It conceptually categorizes inconsistencies within the involved research communities on how
explanations have been evaluated with human subjects in empirical XAI studies [P8]. Further, it
conceptually outlines different types of user interaction with explanation interfaces in XAl [P3] and
proposes design principles for the human-centric design of explanation interfaces. (iii) Building on
these insights, it presents evaluated prototypes of an XAl explanation facilities that fulfill the re-
quirements of sensitivity (elicit user beliefs to calibrate expectations) [P6], naturalness (use natural
language explanations) [P1], and responsiveness (allowing follow-up interactions) [P1, P2].

This chapter motivated and grounded the context of this dissertation. Chapter 2 introduces central
concepts relevant for the research goal. Chapter 3 presents the addressed research questions and the
contribution(s) towards them. Chapter 4 reflects on the gained insights and outlines an agenda for
future research.
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Background and Definitions

Explanation in Social Sciences
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Figure 2.1: The explanation process through the lens of the social sciences.

2.1 Explanation in Social Sciences

I base my work on research on explanation in the social and cognitive sciences. First, I introduce the
explanation process and different notions of the word "explanation”. Second, I outline how humans
consume explanations to build their understanding. Finally, I describe how humans evaluate the
quality of explanations during an explanation process.

Explanation Process The Oxford English dictionary defines explanation as "a statement or piece
of writing that tells you how something works or makes something easier to understand."". Miller de-
fines explanation as either a process or a product. On the one hand, an explanation describes the cog-
nitive process of identifying the cause(s) of a particular event. At the same time, it is a social process
between an explainer (sender of an explanation) and the explainee (receiver of an explanation) with
the goal of transferring knowledge about the cognitive process. Lastly, an explanation can describe
the product that results from the cognitive process and which aims to answer a why-question [76].
The social sciences primarily consider the transactional nature of explanations between individu-
als. Explanation is seen as an attempt to communicate understanding between social and interacting
agents. The motivation of an explainee to seek an explanation can be diverse. Keil distinguishes five
explanation needs [58]: (i) prediction to anticipate similar events more effectively in the future; (ii)
diagnosis to understand why a system failed and restore it; (iii) justification as an act of persuasion;

I https://www.oxfordlearnersdictionaries.com/us/definition/english/explanation ?q=explanation
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(iv) accusation to determine a guilty party; (v) aesthetic pleasure to increase the appreciation of an
explanandum in others, e.g., explaining mysteries or poems.

Explanations and Mental Models The causal complexity of the real world makes the process of
explanation incomplete or flawed. Thus, people develop heuristics to deal with the missing details
and recognize flawed explanations [58]. According to Norman, people form theories for any system
they interact with to reason about what they observe [90]. A mental model refers to a person’s mental
understanding of how a system works and how their behavior affects it. They can resemble logical
patterns or image-like representations of a system’s inner working [58]. They are formed for all
kinds of systems including objects, people, and services. A respective mental model is adjusted with
every interaction and helps the person to reflect their belief about the value they can expect from the
system. Thus, people may use explanations provided by an explainer to adjust their mental model of
the explained concept. In contrast, explainers use their mental model to formulate explanations.

Explanation Evaluation Psychologists and social scientists investigated how humans evaluate ex-
planations for decades. Within their disciplines, explanation evaluation refers to the process ap-
plied by an explainee for determining if an explanation is satisfactory given the current explanation
need [76]. Explanations are evaluated based on their source, process, and content:

Evaluating the Explanation Source: Explanation is evaluated based on the explainer conveying the
explanation. The explainee assesses the motivational states and the competence of the explainer,
i.e., explainees assess if the explainer speaks from an area of expertise or is bluffing or posturing
in any way [58]. An explanation may be discounted due to motivational states when a conflict of
interest becomes salient to the explainee [75]. The explainee may also discount the explanation if the
explainer is perceived as incompetent because of intoxication, a lack of education, or excessive use
of emotions [58].

Evaluating the Explanation Process: Explanations form an interactive conversation [48]. During
this conversation people typically expect the explainer to follow general rules of conversation. The
conversational statements are supposed to be linked together and form a cooperative effort to achieve
the goal of information exchange. A widely accepted set of rules of conversation are Grice’s max-
ims [41]. They consist of four aspects that are expected from an explainer: (i) quality: say only to
true statements that you believe in; (ii) quantity: say only as much as necessary but not more; (iii)
relation: say only to statements that are relevant for the respective context; (iv) manner: say it in
a comprehensible way, i.e., avoid ambiguities. Even if explanations are presented in a visual way,
instead of text or verbal, they should be assessed according to these properties [77].

Evaluating the Explanation Content: Most of explanations in everyday contexts follow some notion
of cause and effect. The primary criterion of evaluating the content of an explanation is whether
the explanation helps them to understand the underlying cause [76]. Even when an explanation con-
tains causal and non-causal elements (e.g., correlations), the former ones dominate the explainee’s
judgement [85]. This is also reflected in counterfactual thinking. People often sense the meaning of
casual relations through "would have" relationships. This means, with other conditions remaining the
same, a particular event B would not have happened if an event A would not have happened first [68].
Scholars conducted experiments where they presented participants with different types of explana-
tions as treatments. In practice, choosing one explanation over another is often an arbitrary choice
heavily influenced by cognitive biases and heuristics [58]. For instance, humans are more likely to
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accept explanations that are consistent with their prior beliefs due to illusory correlations. Chapman
and Chapman demonstrated that humans discount strong correlations that do not match their mental
model while overestimating weak correlations that do match with it [16]. According to the inference
to the best explanation process, explainees may prefer explanations with less predictive power but
a simpler internal structure (i.e., with fewer causes) over explanations with higher predictive power
but seemingly unrelated elements [46]. Further, the illusion of explanatory depth (IOED) has been
demonstrated in many contexts [101, 66, 78]. According to IOED, humans have a robust bias of
overconfidence regarding their understanding of how complex systems work. After being asked to
explain their understanding, people significantly reduce their estimation of their own knowledge.

Summary: Explanation is an Iterative and Heuristic Process

Explaining must be distinguished from understanding. Explaining depends on what and how
something is explained by whom, while understanding also depends to whom it is explained. It
is highly unlikely that a given cause can be explained in a way that satisfies every explainee. A
suitable explanation for one purpose may be irrelevant for another. For an explanation process to
be effective, it is essential to know the intended context of use and account for potential cognitive
biases throughout the conversation.

2.2 Explainable Al

This work is based in the interdisciplinary research field of explainable Al. First, I define my notion
of Al-infused systems as well as explainability and interpretability. Second, I categorize the types
of methods for explainability as well as the different stakeholders of Al-infused systems. Finally, I
isolate my focus from related research fields.

Al-infused Systems I build on the notion of Al-infused systems by Amershi et al. [3]. They de-
fine them as "systems that have features harnessing Al capabilities that are directly exposed to the
end user”. Al capabilities in this context refer to "activities that we associate with human thinking,
activities such as decision-making, problem solving, learning” [7]. Al-infused systems resemble the
notion of an intelligent system which "embodies one or more capabilities that have traditionally been
associated more strongly with humans than with computers, such as the abilities to perceive, inter-
pret, learn, use language, reason, plan, and decide” [55]. As part of this thesis, I focus on systems
where the intelligent behavior results from a black-box machine learning (ML) component. ML is a
subset of methods to achieve Al It refers to "a set of methods that can automatically detect patterns
in data, and then use the uncovered patterns to predict future data, or to perform other kinds of de-
cision making under uncertainty [86]. More formally, Mitchell defines ML as "a computer program
[that] is said to learn from experience E with respect to some class of tasks T and performance mea-
sure P, if its performance at tasks in T, as measured by P, improves with experience E" [79]. From
a technical perspective, ML is typically split into supervised learning methods, which focus on pre-
dictions based on labeled training data, unsupervised learning methods, which find relationships in
unlabeled data, and reinforcement learning, which optimizes some notion of reward by interacting
with an environment. Furthermore, multiple nuances of learning methods exist along the spectrum
between supervised and unsupervised. As part of this thesis, I focus on supervised learning.
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Interpretability of Al-infused Systems The field of explainable artificial intelligence (XAI) deals
with methods and techniques that make the predictions and processes of ML-based systems under-
standable to human users. The term XAI was first used by van Lent et al. [67] in 2004 as part of their
work on explanations of military simulations. It is closely related to the notion of interpretable ma-
chine learning (IML). IML often refers to research on models and algorithms that are considered as
inherently interpretable while X Al often refers to the generation of (post-hoc) explanations or means
of introspection for black-box models [103, 124]. However, the lines between IML and XAl are often
seamless and the terms are often used interchangeably. To date, there is no agreement on standard
definitions for XAl and IML [2, 76, 42]. For instance, DARPA’s XAl program subsumes both terms
under the objective of "[enabling] human users to understand, appropriately trust, and effectively
manage the emerging generation of artificially intelligent partners" [43].

Similarly, the terms explainability and interpretability are often used interchangeably. Kulesza et
al. [63] define explainability as the capability of an ML system to accurately explain the reasons
for its predictions to an end user. Similarly, Doshi-Velez and Kim [24] describe interpretability as
a model’s "ability to explain or to present in understandable terms to a human.” As such, these
definitions are rather system-centric and focus on a system’s functionality to provide explanations. In
contrast, Miller [76] takes a more outcome-oriented human-centered perspective calling it "the degree
to which an observer can understand the cause of a decision”. Similarly, Biran and Cotton consider
systems as interpretable "if their operations can be understood by a human" [10]. Going even further,
Kim et al. [59] consider a method as interpretable if a human can not only understand, but consistently
predict a model’s predictions. These examples illustrate the different poles of the discussion. Lipton
points out that interpretability is not a monolithic concept but encompasses distinctive ideas like
model transparency, trust, and fairness [71]. In this thesis, I build on the definitions by Tomsett et
al. [117] as following: Transparency is the degree to which the system provides information about its
inner workings or structure. Explanation refers to "the information provided by a system to outline
the cause and reason for a decision or output”. Similarly, I define an XAl system as an Al-infused
system that offers some form of explanation. Explainability is the degree to which as system can
provide explanations for the underlying causes. In contrast, interpretation is the understanding of a
user about the underlying cause and thus closely related to their mental model of the XAI system.
Based on this, interpretability is the degree of understanding that a user gains by using explanation
and transparency.

Categorization of Explainability Methods Lipton [71] distinguishes two categories of methods
for interpretability: transparency and post-hoc interpretability. Transparency (sometimes referred to
as ante-hoc interpretability [111]) refers to exposing the mechanisms by which the model works in an
understandable way. It aims to incorporate explainability directly into a ML model. For this, often the
complexity of the model is restricted (e.g., limiting the number of non-zero features [97] or enforcing
monotonic constraints [37, 89]). As a result, the model is assumed to be inherently interpretable and
thus the opposite of a black-box. In contrast, post-hoc interpretability is applied when the model is
not inherently transparent. It adds explainability after the training of the ML model by analyzing its
input and output relationship. Typically, post-hoc interpretability does not claim to precisely explain
the mechanisms and algorithms at work. Instead, it is about conveying "useful information of any
kind" [71] to help users building an accurate understanding of the model behavior.

In this thesis, I focus on primarily on post-hoc explanation methods. A large variety of post-hoc meth-
ods exists [42, 4]. On a technical level, they can be distinguished by their ML model requirements and
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their scope of interpretability. Model-specific methods leverage characteristics of a ML model type,
i.e., to accelerate the computation, but are limited to this specific type. In contrast, model-agnostic
approaches do not pose any model requirements and treat every ML model as a black-box, even if it
is not. For instance, KernelSHAP is a computation-intense model-agnostic method to calculate the
contribution of individual feature values. In contrast, TreeSHAP is an optimized version limited to
tree-based models, such as random forests [72]. Further, the scope of post-hoc methods can be local
or global. Local methods aim to justify the ML prediction of an individual instance. In contrast,
global methods aim to describe the prediction behavior on a more holistic level for a set of instances.
Further, different categorizations of post-hoc explanation styles have been proposed [9, 23, 42, 4].
For instance, Arrieta et al. [4] distinguish between fextual explanations (generate symbols that rep-
resent the model behavior), visual explanations (visualize model behavior graphically), explanations
by example (explain through representative instances), explanations by simplification (approximate
behavior through a simplified inherently interpretable model), and explanation by feature relevance
(quantify the contribution of individual features towards a prediction).

Stakeholders in XAl Focusing only on the generation of explanations ignores that explainability
and interpretability are two different goals. The former depends on what is explained and how it is
explained, while the latter also depends on to whom it is explained. In its basic form interpretability in
XAl involves two roles: the XAl system as the explainer and a human user as the explainee. However,
this form is often not sufficient to describe the diverse stakeholders of an Al-infused system deployed
in the real world. To comply with demands and regulations, organizations provide explanation facili-
ties to wider non-technical audiences [8]. Different role-based models for interpretability have been
proposed [49, 117, 121, 74, 6, 8]. An important role in a real-world setting is the deployer [121]
(also referred to as business owner [6]) who owns the system, releases it, and is accountable for po-
tentially undesired consequences caused by the system. From a supervision perspective, Belle and
Papantonis [6] add the roles of (internal) model risk assessors (also referred as Al managers [74]),
who challenge and approve the model on behalf of the business owner, and (external) regulators, who
inspect the impact of the model on its users and individuals affected by it. Further, Hind et al. [49]
distinguish two types of end users that consume the explanations provided by an Al-infused system:
end user decision makers (also referred to as operators or executors [117]), who are often subject-
matter experts that leverage the explanations to inform their decisions (e.g., physicians, loan officers,
or judges), and affected end users (also referred to as decision subjects [117]), who are affected by an
individual decision (e.g., patients, loan applicants, defendants). While developers are mainly inter-
ested in technical details on how an underlying ML model works, the other roles often have limited
ML knowledge and focus more on understanding what input parameters drive the model’s predictions
and when the predictions can be trusted [6]. As a result, an effective XAl system needs to model the
user’s context and background and provide personalized explainability.

This thesis focuses on the two types of end users. End user decision makers may be accountable for
their prediction-informed decisions. Thus, they utilize explanations to assure the underlying model
is trustworthy (i.e., "they can reasonably trust a model’s outputs" [8]). As such, they require inter-
pretability on a local (i.e., to argue for individual predictions) as well as global level (i.e., to under-
stand capabilities and limitations of the Al-infused decision support). Following [117], I refer to this
as operator-interpretability. In contrast, affected end users may seek local explanations to challenge
their individual decision or understand how they need to change their parameters to influence the
decision. Following [117], I refer to this as contestability.



Background and Definitions

Related Concepts There are other concepts that are closely related to interpretability in Al. Based
on my definition of interpretability, I describe common ground and distinctions.

Scrutability: This concept is about "allowing users to tell the system if it is wrong" [115]. It is
widespread in the context of social recommender systems [5, 62]. These provide users with indi-
vidualized recommendations based on an estimated model of a user’s preferences. Some notions of
scrutability are limited to the aspect of explainability [13]. For instance, Cheverst [17] refers to "the
ability of a user to interrogate her user model in order to understand the system’s behavior". How-
ever, typically scrutability it is not limited to receiving explanations but also allows users to debug or
correct system assumptions [120]. As such, scrutability extends interpretability through some feed
forward or control interaction that provides end users "with a direct and meaningful way to revise
their [user] model" [5, 110].

Interactive Machine Learning (IML): This concept describes "an interaction paradigm in which
a user [...] iteratively builds and refines a mathematical model to describe a concept through it-
erative cycles of input and review". The paradigm is centered around the back-and-forth dialogue
between a user and a system. Unlike scrutability, IML is not about the individual user model but
about any problem domain where the objective may be unclear and data labels unavailable a priori.
It aims to combine the complementary strengths of both: Users can train a ML model without ex-
plicit programming knowledge by demonstrating or labelling samples while the model benefits from
users’ domain expertise. In each iteration both sides are directly influencing each other’s behavior
(co-adaptive) [27]. In contrast to interpretability, IML largely treats ML as a black-box. Users may
change inputs or parameters of the model and observe its changes in the output, however, explaining
why certain changes occur (explainability) is often not the primary concern [63].

Study of Machine Behavior: This concept describes the empirical analysis of the behavior of intelli-
gent machines and their effects on humans in the wild. For this, it draws analogies from the empirical
study of animal behavior and involves not only the Al design and engineering disciplines but those
that study biological agents. The concept distinguishes a proximate view that investigates how the
machine functions and an evolutionary view that investigates why a certain type of behavior evolved
and how it adapts to human stakeholders over time [95]. Aspects of the proximate view center on
the causal mechanisms of a machine and how they shape human behavior (e.g. as decision aids) and
thus overlap with the focus of this thesis. Unlike interpretability, which often focuses on the current
behavior of a single static system, this concept also inquires the mutual influences between multiple
systems and multiple users over time. As such, it takes a macro perspective on human-Al interaction.

Summary: Interpretability for End Users of XAI Systems

I center this thesis in the context of Al-infused intelligent systems that have a black-box com-
ponent and that are exposed to end users with limited Al knowledge. I focus on the process
and degree of understanding that end users, such as decision-makers or decision-subjects, obtain
when exposed to post-hoc explanations (i.e., the interpretability). Unlike research on scrutability
and interactive ML, I focus on situations where the end users have no means to influence the ML
behavior. Unlike the study on machine behavior, I focus mainly on the micro perspective of the
interaction between a single XAl system and a single end user.
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Figure 3.1: In this thesis, I analyze the XAI development approach through the lens of the social
sciences [76]. I contribute to research on cognitive human factors in XAl (RQ1), concepts of human
involvement in XAI (RQ2), and constructive designs for human-centric XAI (RQ3).

3.1 Research Problems and Questions

When humans are questioned about their actions, they provide arguments to the questioning party and
thus convey an underlying reasoning. Similarly, Al-infused systems should be capable of justifying
their behavior by providing some notion of explanation. XAl research approaches this challenge from
multiple perspectives. The algorithm-centric perspective focuses on technical methods and solutions
that can explain the behavior of the underlying ML model. Many formal and mathematical methods
have been developed that explain the inner workings of ML models. However, despite their formal
rigor, they often lack usability and practical efficacy for real users [1].

There is a growing acceptance that building XAl systems requires a multidisciplinary effort involving
technical, HCI, cognitive, and domain-specific perspectives. This is also reflected in the applied re-
search methods by some parts of the XAl research community. The focus shifted from evaluating the
algorithmic performance of an Al system to evaluating the human performance and satisfaction with
an Al-infused system [107]. System developers put human users at the center and apply user-centered
participatory design methods that include all stakeholders into the development and evaluation pro-
cess - not just system engineers [31]. Evaluations with human subjects verify the system fits the
users’ needs, goals, and beliefs. In this chapter, I present HCI research problems which emerge from

11
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a human-centric perspective on XAl systems. I structure them based on the categorization of HCI
research problems by Oulasvirta and Hornbak [92] into (i) empirical (describing real-world phe-
nomena related to the human use of computing), (ii) conceptual (explaining unconnected phenomena
in the human use of computing), and (iii) constructive (understanding the construction of artefacts
related to the human use of computing). These serve as guiding questions for this thesis.

Empirical: Human Factors in XAl The algorithm-centric perspective focuses primarily on what
about the Al can accurately be explained. This approach, while it may yield factually correct expla-
nations, may not be sufficient to generate trust with the user [93]. It neglects how an explanation is
evaluated by the human recipient in practice. Following a human-centric perspective, Paez [93] ar-
gues to instead make the pragmatic understanding of users, that results from any form of explanation,
the unit of analysis. Similarly, Eiband et al. propose a pragmatic perspective on understanding that
balances the cognitive load of an explanation, their seamless integration into a user workflow, and
a sufficient understanding instead of a comprehensive one [31]. The path from explanation to un-
derstanding is not straight forward but influenced by cognitive biases and reasoning fallacies [120].
Further, non-technical end users may not be aware of the "forms of uncertainty that are baked into
ML predictions" [127]. Still, the amount of research that empirically explores the role of such human
factors in the context of XAl is limited (e.g., [127, 106, 119, 91, 60, 14]). For example, Schaffer et
al. [106] show that people with low competence at a given task tend to overestimate their task under-
standing and thus ignore XAl explanations. Nourani et al. [91] show that a positive first impression
by end users of an XAl system may lead to automation bias. More research has been conducted in
the older field of decision support systems investigating automation [15, 109, 73], anchoring [36, 65],
and confirmation biases [53, 112]. Building on the insights from the field of decision support systems
and cognitive sciences may yield strategies on how to identify and mitigate cognitive biases. Thus,
this thesis is guided by the following research question:

RQ1: How is end users’ understanding of XAl explanations impacted by human factors?

Conceptual: Human Involvement in XAl Beyond their interest as a stakeholder of an XAl system,
humans may serve different roles in a human-centric XAl development process. Most naturally,
they are the consumer of the deployed XAI artifact that results from the development process. As
such, prior research frames XAl as a human-agent interaction problem [76] between a human user
and an Al agent towards an explanatory goal that is mediated through an explanation user interface
(XUI). However, there are conceptual inconsistencies about the role of user interaction on end users’
understanding of XAI systems. XAl research often implicitly assumes that there is a single message
to be conveyed through an explanation [1, 76]. However, in decision-making situations that demand
interpretability, it is unlikely that a single static explanation can address all concerns and questions
of a user. This resonates with the social science perspective that considers explanation as a social
process. Further, humans may serve the role of the evaluator who informs, guides, or assesses the
XAl development process. Prior surveys identified a need for more rigid empirical evaluations of XAI
explanations [2, 77, 25]. Yet, since there is no consensus on evaluation methods, the comparison and
validation of diverse explanation techniques is an open challenge [2, 24]. Thus, there are conceptual
inconsistencies within the involved research communities on how human understanding should be
evaluated in empirical XAI studies. Reflecting on the involvement of humans as consumers and
evaluators, this thesis addresses the following research questions:

12
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RQ2a: How is user understanding of XAl evaluated in empirical studies?

RQ2b: How is interactivity used in XAl to promote user understanding ?

Constructive: Human-centric Design of XAl for Non-Expert Users The call for explainability
in Al systems is not new. In the 1970s and 1980s explanation facilities were incorporated into so
called expert systems. XAl researchers pointed out the importance of building on these "insights
from more than four decades of human-centered research on explanation in Al systems" [83]. In this
thesis, I explore the notion of so called explanation facilities that dates back to this time. It centers
around the idea that an explanation interface targeting non-experts should include multiple modes
of explanation that fulfill the requirements of fidelity (generate accurate explanations), naturalness
(explanations in natural language following a dialogue), responsiveness (allow follow-up questions
and alternative explanations), flexibility (make use of multiple explanation methods to allow differ-
ent explanations for different contexts), sensitivity (provided explanations should be informed by the
user’s knowledge, goal, context, and prior interaction), extensibility (allow to include novel explana-
tion methods), portability (allow to be tailored to a specific domain), and adaptivity (automatically
learn from interaction over time) [81]. The DARPA XAI program illustrates the XAI process as a
two-staged approach. It distinguishes between the explainable model, which taps into the ML model
to generate explanations, and the explanation interface, which the user directly interacts with [43].
Such a two-staged approach disentangles the XAl process into analyzing the ML model behavior and
communicating it to the user. Thus, in the last part of this thesis, I explore how the requirements by
Moore and Paris [81] may be leveraged for the design of usable XAl explanation interfaces.

RQ3: How can interactive explanation facilities be designed to promote end users’
understanding, taking human factors into account?

Table 3.1 summarizes the identified research problems and guiding research questions.

Research Problem Description Research Question

Empirical There are unknown phenomena and unknown factors  RQ1: How is end users’ understanding of XAI ex-
that influence the interpretability of XAI explanations  planations impacted by human factors?
due to heuristics in users’ explanation evaluation.

Conceptual There are conceptual inconsistencies within the in- RQ2a: How is user understanding of XAI evalu-
volved research communities on how human under-  ated in empirical studies?
standing should be evaluated in XAI

Furthermore, there are conceptual inconsistencies RQ2b: How is interactivity used in XAI to pro-
about the role of user interaction on end users’ under-  mote user understanding?
standing of XAI systems.

Constructive There are partial and ineffective solutions that focus ~ RQ3: How can interactive explanation facilities be
on end users’ understanding and that account for human  designed to promote end users’ understanding, tak-
factors in XAIL ing human factors into account?

Table 3.1: The HCI research problems [92] addressed in this thesis take a human-centric perspective on
XAI systems. In particular, we focus on the interaction between end users and XAl systems from an HCI
perspective.
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3.2
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The dissertation is cumulative, i.e., it consists of multiple peer-reviewed publications. All contribut-
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Empirical: Human Factors in XAl

3.3 Empirical: Human Factors in XAl

RQ1: How is end users’ understanding of XAl explanations impacted by human factors?

3.3.1 [P4] The lllusion of Explanatory Depth in XAl

Summary: Research in cognitive sciences indicates that humans often form an inaccurate under-
standing of complex systems and overrate the depth of the understanding they gain from explana-
tions [82]. Rozenblit and Keil named this type of overconfidence bias the illusion of explanatory
depth (IOED) [101]. No empirical has been published on the potential of an IOED in XAI although
some researchers speculated that it may be at play when users deal with explanations from XAI
systems [19, 111, 82, 57].

Perceived Understanding
N w S w o ~
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In this conference publication, we investigated the robust-

ness of the perceived understanding that end users gain )

from local XAl explanations. For this, we exposed partic-

ipants to a widely used local explanation method, namely 1

Shapley based feature attributions, and examined their un- /‘\*—_\

derstanding. We measured participants’ subjective and ob-

jective understanding at multiple stages of the study pro-

cedure through self-ratings and different tests of under-

standing (e.g., self-explanation and mental simulation of ! " iage of mocedure T5

the XAI system behavior). We applied a mixed-method

approach consisting of a moderated think-aloud study (40  Figure 3.2: The means of perceived un-

participants) and an unmoderated crowd sourcing study ~derstanding in the moderated and unmod-
.. . . erated studies after different tests of un-

(107 participants) to account for analytical and heuristic derstanding.

modes of reasoning. Our results show that, on average,

participants in both studies decreased their perceived un-

derstanding over time, indicating an IOED effect. Participants who were guided by heuristic thinking

spent significantly less time and had a significantly lower objective understanding. Still, they reported

higher perceived understanding and were more confident in their predictions of the XAl system be-

havior than their analytical counterparts. With our work, we highlight the need of XAI systems to

capture wrong or incomplete mental models of end users to support interpretability, e.g., by adjusting

the form or phrasing of an explanation. Further, we describe the observed reasoning and interaction

strategies that participants applied during their exploration of local XAl explanations. Our approach

and insights inform future work on the design of interactive explanation facilities that elicit user’s

mental model of the underlying ML model and account for human factors in the interpretation of

XAI explanations.

Author Contributions: I came up with the research idea, concept, study design, and technical im-

plementation of the apparatus. Further, I was the leading author of this publication. Malin Eiband

provided feedback throughout this process. Felicitas Buchner conducted and analyzed the moder-

ated user study. Adrian Kriiger conducted and analyzed the unmoderated user study. Andreas Butz
provided feedback and revised the publication for clarity and conciseness.
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3.3.2 [P5] Dark Patterns of Explainability in XAl

Summary: Humans take the producer of the explanation, their intentions, and integrity into ac-
count. The evaluation of non-experts may differ if the explanation has been provided by external
parties compared to trusted internal parties [75, 58]. Prior work in XAl raised concerns that the call
for explainability may result in explanations that pursue other goals than promoting user understand-
ing due to misaligned interests [121].

In this workshop publication, we present a set of dark de- _
sign patterns of explainability as a thought-provoking dis-

cussion paper. We build on the concept of dark design pat- o

terns in UX by Brignull [11] and Gray et al. [40]. These
describe "a user interface that has been carefully crafted
to trick users [...] and do[es] not have the user’s interests
in mind" [12]. We transfer this concept to the design of ex-
planation facilities. We provide examples of dark patterns
in the phrasing of explanations and in the interaction with
explanation interfaces. We discuss situations of opposing Figure 3.3: Example of the information
interests between the explainer and explainee in XAl that  yyerjoad dark pattern. The given expla-
could be argued as questionable or unethical. For example, nation is lengthy and uses technical lan-
the dark pattern of obstruction makes it intentionally hard ~ guage not suitable for non-experts.

to get (useful) explanation about the Al decision-making

and thus result in users shunning from the additional effort to question the system. With our work,
we reflect on the practical challenges and human complexities of a mandatory call for explainability,
such as the right to explanation as part of the General Data Protection Regulation (GDPR) [114],
when the interests of the explainer and explainee are not aligned. Further, we discuss the role of
HCI design practitioners in the ethical design of explanation facilities and propose dark patterns as a
baseline for human-subject evaluations in XAl

PAGE 2

Author Contributions: Daniel Buscheck and Malin Eiband came up with the initial idea and con-
cept of this work. Daniel Buscheck and Sarah Volkel contributed substantially to the description
and visualization of the dark patterns. I was the leading author and contributed substantially to the
motivation, background, dark pattern examples, discussion, and overall alignment of this publication.

3.3.3 [P7] The Potentials of (X)Al for User Experience Research

Summary: An active field of HCI research explores how UX designers and UX researchers can
enhance the user experience of Al-infused systems through effective human-Al interaction [64, 38,
3, 125]. However, little research has been conducted on how UX practitioners could leverage ML
methods to enhance the UX activities themselves [26, 126].

In this conference publication, we empirically investigated the potential synergies between empathy-
focused user experience research (UXR) and data-driven ML techniques. UXR activities rely on
generating insights about the targeted users’ perspectives to inform the design process of prod-
ucts and services. Thus, we speculated that explainability would be an important aspect for the
acceptance of ML for UXR. To understand the current practices in the field, we surveyed 49
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practitioners from the fields of UX and ML. Further, we complemented our learnings through
13 semi-structured interviews with UX practitioners who were educated or experienced in ML.

Our results indicate that the disciplines of ML and UX
are increasingly overlapping and that UX practitioners
envision opportunities to automate their mundane tasks,
complement their decisions with data-driven insights from
multiple sources, and enrich UXR with insights from
users’ emotional worlds. Challenges were perceived to re-
sult from an increasing obligation to utilize quantitative
data over qualitative insights, ensuring the effectiveness of
ML-based UXR after deployment, and a more restrictive
access to user data. Explainability was a minor concern.
With our work, we provide insights about the impact of
ML on current UX practices, its technological potentials
as well as its social and organizational challenges. Fur-
ther, we identify the real-time UX evaluation of products

- User's Perspective

|

Machine User
Learning Experience
(ML) (UX)

|

UX Practitioner’s Perspective

Figure 3.4: We investigated UX practi-
tioners’ perspective on ML for UX activi-
ties.

and services through ML as a promising use case for future research.

Author Contributions: Florian Lachner contributed substantially to this research. He came up with
the initial idea and methodology of this work. He also conducted the qualitative expert interviews and
designed the survey. I contributed substantially to the analysis of the qualitative and qualitative study
data and I was the leading author of the publication. Andreas Butz provided feedback and revised the

publication over multiple iterations.

Summary: RQ1: Human Factors May Have an Impact on Interpretability

My work shows that the path from explainability to interpretability of XAl systems is not straight
forward and cannot be taken for granted. It requires attention and careful consideration by XAI
developers and should take the individual mental models of end users into account. Regarding the
impact of human factors on end user understanding of XAl explanations, this thesis contributes
(1) two user studies that show that users may form an illusory perception of the interpretability
they gain from local XAI explanations [P4], (ii) a set of dark patterns in XAI, which show
that explainability and interpretability can deceptively be decoupled, and which may inform the
ethical design of XAI [P5], and (iii) two user studies that elicit the technical potentials and social

challenges of ML methods for UX activities [P7].
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3.4 Conceptual: Human Involvement in XAl

RQ2a: How is user understanding of XAl evaluated in empirical studies?

3.4.1 [P8] A Categorization of Human-Subject Evaluation of XAl

Summary: Prior surveys identified a need for more rigid
empirical evaluation of XAl explanations [2, 77, 25]. Yet,
since there is no consensus on evaluation methods, the
comparison and validation of diverse explanation tech-
niques is an open challenge [2, 24]. There are two ap-
proaches to explainability evaluation. Functional eval-
uation through mathematically quantifiable metrics and
human-subject evaluation through user studies.

In this workshop publication, we analyzed the latter. To

show an explanation method’s utility for practical use  Figure 3.5: Categorization of human sub-
cases [94], each promising functional evaluation should ject evaluation in XAI based on fask-
be succeeded by human-subject evaluations at some point ~ related, participant-related, and study
in time. We conducted a literature review based on 653  design-related dimensions.

search results and analyzed a sample of 34 publications

that either report or discuss study design decisions in evaluations of XAl explanations with human
subjects. We consolidate our insights into a categorization based on fask-related, participant-related,
and study design-related characteristics. For example, the dimensions fype of user task presents seven
strategies which have been proposed to elicit the quality of explanations. We categorize them by the
information provided to the participant and the information inquired in return. With our work, we
inform researchers and practitioners about the design and reporting of user studies that assess the
utility of XAl explanations.

Author Contributions: 1 came up with the research idea, concept, methodology, and were the
leading author of this publication. Martin Schuessler contributed significantly to the development of
the categorization and revised the publication for clarity and conciseness.

RQ2b: How is interactivity used in XAl to promote user understanding?

3.4.2 [P3] A Categorization and Design Principles for Human-XAl Interaction

Summary: Prior research frames XAI as a human-agent interaction problem [76]. As such, it
is about the interplay between a human user and an Al agent towards an explanatory goal that is
mediated through an explanation user interface (XUI). Tintarev and Masthoff [116] distinguish seven
explanatory goals, such as satisfaction, effectiveness, or efficiency. These goals are often in conflict
with each other. Thus, designers of XUl “need to make trade-offs while choosing or designing the
form of interface” [118].
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Conceptual: Human Involvement in XAl

In thlS Conference publlcatlon, we tOOk an HCI peI‘SpCC- ............................ e

tive on how prior XAI research approached these trade- : Q?Exp.

offs and how it designed the interplay between the user and Q?Exp. ‘
the XAI system. We conducted a structured literature re- : @ .’
view based on 146 search results and analyzed 91 publica- 5 —

tions that either present constructive research involving an : Human & Al

XUTI or conceptual research addressing interaction in XAl
From there, we built on the conceptualization of human- ~ Figure 3.6: The concept of human-XAl
computer interaction by Hornbaek and Oulasvirta [52] and ~ /eractionas a dialogue aims to facilitate
. . a natural and iterative conversation about

narrowed it down to seven concepts of human-XAlI inter- S

) ) ) .. Al behavior with the goal of transparency
action. Further, we describe four observed design princi- ¢ crutability
ples for interactive XUI, discuss why each is relevant, and
how it could be implemented. With our work, we organize the current literature that involves an XUI
and contribute a categorization for the HCI community to describe existing and new works in XAl
based on the form of user involvement. Further, we describe design principles that serve researchers
and practitioners as a starting point for planning and designing human-centric XAl systems.

Author Contributions: 1 came up with the research concept and was the leading author of this
publication. Andreas Butz provided feedback and revised the publication for clarity and conciseness.

Summary: RQ2: Human Involvement in XAI

My work highlights that the human explainee should not be considered a passive receiver of
an XAI explanation. The HCI community perceives human involvement as a vital part for the
success of the XAl development process. Regarding the type of human involvement in XAl,
this thesis contributes (i) a categorization of human-subject evaluation approaches taken in prior
literature [P8] and (ii) a categorization based on prior literature of the type of interplay between
an explainee and an XAI system that is mediated through an explanation interface [P3].
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Human-centric Explanation Facilities

3.5 Constructive: Human-centric XAl for Non-Expert Users

RQ3: How can interactive explanation facilities be designed to promote end users’
understanding, taking human factors into account?

3.5.1 [P2] A Proposal for a Responsive Explanation Facility Framework

Summary: In this poster publication, I build on the notion that usable explanation facilities should
be responsive (allow follow-up questions and alternative explanations) [81]. I propose and outline a
web-based Ul framework for interactive explanations based on the explainability framework SHAP. It
aims to enable end users to interactively explore the ML model behavior and verify their hypotheses
about it. Furthermore, from the trail of the user interactions, the XAl system may derive information
about the user’s mental model and preferences to personalize the provided explanations.

Author Contributions: I came up with the proposal and was the leading author of this publication.

3.5.2 [P6] A Sensitive Explanation Facility Based on User Belief Elicitation

Summary: Prior research shows that a lack of interpretability can lead to users mistrusting, mis-
using, or rejecting a system [70, 84]. Often these result from a perceived mismatch between users’
expectations and the actual behavior of a system [29]. The requirement of sensitivity calls for expla-
nations that are informed by the user’s knowledge, goal, context, and prior interaction [81].

In this conference publication, we explored how multi-
criteria decision-making may be used as a basis for sen-
sitive explanation facilities. In a real-world case study, |
we investigated the interpretability needs of decision mak-

dicts
ML Model 2

d

Target

. .. . IDSS Voo e gg .
ers of an Al-infused decision support system in the con- Goene ™ RBE | Domain
ontrasting %
struction industry. We followed a human-centered design and 5
process to derive requirements and user needs. Based on _ =
. o Domain has‘ == assu‘med v
these, we explored design opportunities for usable expla- Expert | criteria  |== [ beliefs v
nations using prototypes and user studies. We used the Criteria Pairwise
multi-criteria decision-making technique Analytic Hierar- Selection Comparison

chy Process (AHP) [104, 34] to elicit a user’s belief about . . . .

o ) ] ) ) i Figure 3.7: Contrasting user beliefs
the decision-making situation and contrasted their belief (elicited through AHP) and ML predic-
Wlth the ML predlctlon ThlS approach allOWS ldentlfylng tions to ldentlfy persuasion gaps
persuasion gaps, i.e., situations in which the XAI system
and the user base their decision on different criteria. Further, we report insights from a formative
evaluation with 7 domain experts.

Author Contributions: I came up with the research idea and was the leading author of this pub-
lication. Florian Fincke contributed significantly to the methodology, apparatus, and analysis of the
user studies. Andreas Butz provided feedback and revised the publication for clarity and conciseness.
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Constructive: Human-centric XAl for Non-Expert Users

3.5.3 [P1] Bridging Local and Global Insights through Interaction

Summary: Shapley explanations are widely used in N ©
practice. However, they are often presented as visualiza- S )
tion and thus leave their interpretation to the user. As such, ;
even ML experts have difficulties interpreting them [57].
On the other hand, combining visual cues with textual ra-
tionales has been shown to facilitate understanding and
communicative effectiveness [30, 20].

In this conference submission, we pursued to improve
the accessibility of Shapley explanations for end users.
We build around the requirements of naturalness, which
calls for explanations in natural language, and responsive-  Figure 3.8: We use the distribution of lo-
ness, which calls for multiple complementary explanations  cal Shapley explanations for each feature
methods [81]. We present an interactive explanation facil-  value to provide insights about the global
ity artifact that provides local Shapley explanations and ML model behavior.

complement them with global explanations about prior

predictions. Since Shapley values are additive and consistent, the explanations of individual instances
can be aggregated over multiple instances to approximate the global prediction behavior of the ML
model. Further, we provide reassuring rationales in natural language to support user understanding.

Influence on Prediction
|

Author Contributions: 1 came up with the research proposal and was the leading author.

Summary: RQ3: Human-centric Explanation Facilities

The ultimate purpose of XAl is to foster human understanding. Therefore, it is not sufficient to
limit the boundaries of the XAl system to generating an accurate explanation of the Al behavior
(explanation as a product). In my work, I took the approach that an XAI system designed to
foster human understanding needs an explanation facility that moderates the social process of
explanation between the user and the XAl system. The goal of the explanation facility is to close
the gap between the real Al behavior and the explainee’s mental model of it.

In [P2] and [P1], we propose a reactive approach. The social process of explanation is driven
by the explainee until the explainee reaches a satisficing level. The explanation facility is not
aware of the gap and does not keep track of it. The explanation facility in [P2] offers different
explanation requests and follows the requirement of responsiveness [81]. In [P1], we present an
explanation facility that provides local as well as global explanations and complements them with
textual explanations in natural language. As such, it follows the requirements of responsiveness
and naturalness [81]. In [P6], we propose an active approach. Here, the explanation facility
guides the explainee through an onboarding process at the beginning of the interaction to elicit
the user’s beliefs about a target domain. In this way, the explanation facility becomes aware of
potential gaps and can keep track of them. Further, explainee and XAI system can drive the
social process of explanation (e.g., by proactively highlighting predictions that violate the user’s
mental model). This approach follows the requirement of sensitivity by Moore and Paris [81].
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Human-centric Explanation Facilities

3.6 Contribution

This thesis strives to advance the body of knowledge about the human use of XAI systems. In
Table 3.2, I summarize the research contribution of the contributing publications. I categorize them
based on the seven types of knowledge in HCI proposed by Wobbrock and Kientz [122].

Research Question Knowledge Type Contribution

RQ1: How is end users’ understanding ~ Empirical We present results from an empirical examination with two user
of XAl explanations impacted by human studies indicating that end users of XAl systems may form an
factors? illusory understanding of the Al prediction behavior if their ex-

planation evaluation is unguided. [P4]. Further, we present re-
sults from an online survey and semi-structured interviews with
UX and ML practitioners. We derive an inventory of the techno-
logical potentials and social challenges of applying ML to UX
activities [P7].

Opinion We present a thought-provoking essay about potential dark pat-
terns that may result from deceptive explanation facilities when
the interests of explainee and explainer are not aligned. [P5].

RQ2a: How is user understanding of  Survey & Theoretical =~ We organize a sample of prior literature that evaluated XAI ex-

XAl evaluated in empirical studies? planations through user studies. From this, we derive a cate-
gorization based on task-related, participant-related and study-
design related characteristics that guide the evaluation of XAI
artifacts [P8].

RQ2b: How is interactivity used in XAI ~ Survey & Theoretical =~ We organize prior literature on explanation user interfaces based
to promote user understanding? on a systematic meta-analysis. From this, we derive a categoriza-
tion of the type of interplay between a user and an XAI system.
Further, we propose guiding design principles for the design of
human-centric explanation facilities to promote user understand-

ing [P3].
RQ3: How can interactive explanation  Artifact We present a prototype of an explanation facility targeting non-
facilities be designed to promote end expert users of XAl systems that embeds local Shapley expla-
users’ understanding, taking human fac- nations in an accessible spreadsheet-like user interface [P8].
tors into account? In [P1], we extend this explanation facility with global expla-

nations and complement them with textual explanations to im-
prove accessibility. Further, we present a prototype of a sensi-
tive explanation facility that is aware of their users’ beliefs about
the target domain [P6]. The prototype resulted from a human-
centric design process with financial decision makers in the con-
struction industry. Lastly, we outline and propose the develop-
ment of a framework for a responsive explanation facility that
allows various follow-up explanations based on the explainabil-
ity framework SHAP [P2].

Table 3.2: Summary of types of knowledge in HCI [122] presented in this thesis.
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Discussion

4.1 A Research Agenda for Human-centric XAl

This thesis presents aspects and approaches relevant to the design of human-centric XAl systems.
It highlights the importance of guiding users to achieve interpretability. However, further work is
required along the lines of user modeling, user adaptation, and performance-based XAl evaluation to
achieve truly effective XAl systems that foster human understanding.

Constructing User Models Mental models are the blueprints of a person’s understanding about
a complex system. Our research indicates that for causally complex systems, such as XAl sys-
tems, users may form an inaccurate understanding when explanations are merely presented following
a human-XAl interaction as information transmission concept [P4, P3]. Similarly, Hoffman and
Muller [50] consider a single explanation artifact, such as a statement, image, or alike, as not suf-
ficient to qualify as "being an explanation". Instead, "being an explanation"” needs to characterize
a bi-directional interactive activity in which even the explainer may sometimes ask questions to the
explainee to better facilitate the explanation process. As such, a human-centric explanation facil-
ity "must possess (or create) a model of the learner’s mental model” [50]. Building on research on
intelligent tutoring systems has been proposed as promising pathway for further research.

Accounting for Dynamic Explanation Needs Further, the explanation needs of users are not
static. They evolve “as one builds understanding and trust during the interaction process” [69].
Previous research describes a differential impact of explanations on novice users compared to expe-
rienced users. Novice users are more likely to adhere to predictions as they are lacking the domain
knowledge. In contrast, experts require strong domain-oriented arguments to be convinced to ad-
here to a prediction [106]. A user’s experience with the target domain is represented by the cognitive
chunks they can effectively process and understand [24]. Making these chunks the unit of explanation
and adjusting it over time may be a promising pathway to explore.

Protocol for XAl Evaluation Our work in [P4] and [P5] highlights the importance of human-subject
evaluation to account for human factors in their explanation evaluation. In [P8], we outline how XAI
systems may be evaluated through user studies. However, there are further pitfalls in interpreting XAl
user studies that researchers should be aware of. A common assumption in XAl is that good mea-
sure of performance during an XAl evaluation is simultaneously an indicator for a complete mental
model [51]. However, research indicates that subjective evaluation with measures such as trust and
preference may not correspond to the ultimate performance with the system [14]. Also, think-aloud
studies may not convey how people make decisions with XAl in realistic setting. Some researchers
argue that human subject evaluations imply a strong bias towards simpler but more inaccurate expla-
nations due to implicit human biases. This poses the risk to create persuasive explanations instead
of accurate ones [47]. Thus, human subject evaluation can only be one part of the evaluation chain
in XAl Looking forward, Jesus et al. [56] outline an application-grounded evaluation protocol that
relies on users’ performance metrics. This allows them to statistically compare explanation methods
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Discussion

in terms of their efficiency and accuracy. Research aiming to integrate functional evaluations and
human-subject evaluations while accounting for human biases in evaluation may help the interdisci-
plinary research communities to develop an end-to-end evaluation protocol for XAl

4.2 Concluding Remarks
"Given enough eyeballs, all bugs are shallow.” Linus’s Law, 1999 [96]

Explainability and interpretability may not be demanded for predictions with limited consequences,
such as music or movie recommendations on Spotify or Netflix. However, if citizens’ freedom is
rated by Al-infused systems that are not understood by the judges nor audited by independent parties
it causes societal protests and discussions'. More recently, massive protests by students, teachers, and
other civic bodies against automated A-levels grading predictions during the COVID-19 pandemic in
the United Kingdom showed that understanding the behavior of predictions is no longer a matter of

engineers”.

As such, Al-infused systems deployed into contexts with high-stakes decisions need to be inclusive to
audiences beyond their developers and foster a pragmatic level of understanding. More information
workers will be confronted with predictions by Al-infused systems in the future. Allowing non-
expert end users, who may be affected or held accountable for predictions of an Al-infused systems,
to engage with its prediction behavior in an accessible way is increasingly demanded. Building on the
idea of Linus’s Law [96], I believe that given a large enough base of users with a satisficing level of
interpretability, almost every Al problem will be characterized quickly and the fix obvious to someone.
Equipping Al-infused systems with means of transparency and explainability is a prerequisite for this.
However, it does not necessarily lead to interpretability. They must take users’ mental models into
account, offer the right kind of user interaction, and be evaluated with human subjects to ensure their
effectiveness. I hope that my work raises the awareness of XAl system designers to the human aspects
in their quest for pragmatic interpretability.

U https://www.wired.com/story/crime-predicting-algorithms-may-not-outperform-untrained-humans/

2 https://www.wired.co.uk/article/alevel-exam-algorithm
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Making SHAP Rap: Bridging Local and Global
Insights through Interaction and Narratives

Michael Chromik

LMU Munich, Munich, Germany
michael.chromik@ifi.lmu.de

Abstract. The interdisciplinary field of explainable artificial intelligence
(XAI) aims to foster human understanding of black-box machine learn-
ing models through explanation-generating methods. In practice, Shap-
ley explanations are widely used. However, they are often presented as
visualizations and thus leave their interpretation to the user. As such,
even ML experts have difficulties interpreting them appropriately. On the
other hand, combining visual cues with textual rationales has been shown
to facilitate understanding and communicative effectiveness. Further, the
social sciences suggest that explanations are a social and iterative pro-
cess between the explainer and the explainee. Thus, interactivity should
be a guiding principle in the design of explanation facilities. Therefore,
we (i) briefly review prior research on interactivity and naturalness in
XAI, (ii) designed and implemented the interactive explanation inter-
face SHAPRap that provides local and global Shapley explanations in
an accessible format, and (iii) evaluated our prototype in a formative
user study with 16 participants in a loan application scenario. We be-
lieve that interactive explanation facilities that provide multiple levels
of explanations offer a promising approach for empowering humans to
better understand a model’s behavior and its limitations on a local as
well as global level. With our work, we inform designers of XAl systems
about human-centric ways to tailor explanation interfaces to end users.

Keywords: explainable Al - explanation interface - interactivity.

1 Introduction

Many decisions in our lives are influenced or taken by intelligent systems that
leverage machine learning (ML). Whenever their predictions may have undesired
or consequential impacts, providing only the output of the black box may not
be satisfying to their users. Even if the prediction is accurate in regard to the
underlying training data, users may distrust the system, have different beliefs
regarding the prediction, or want to learn from individual predictions about a
given problem domain. Thus, a need for understanding the ML model behav-
ior arises [2]. The field of ezplainable artificial intelligence (XAI) develops novel
methods and techniques to make black-box ML models more interpretable. Cur-
rent XAI research mostly focuses on the cognitive process of explanation, i.e.,
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identifying likely root causes of a particular event [21]. As a result, some notion
of explanation is generated that approximates the model’s underlying predic-
tion process. Explanations may be textual, visual, example-based, or obtained
by simplifying the underlying prediction model [3]. An approach widely used in
practice is explanation by feature attribution [3]. Especially local explanations
based on Shapley values [27] are widespread [4]. Feature attribution frameworks,
such as SHAP!, merely provide visual explanations and leave their interpreta-
tion entirely to the user. As such, they are targeting mostly ML experts, such as
developers and data scientists. However, Kaur et al. [17] observed in their stud-
ies that even experts have an inaccurate understanding of how to interpret the
visualizations provided by SHAP. Even if they are correctly interpreted by ML
experts, they may still remain opaque to end users of XAl due to their techni-
cal illiteracy [6]. This applies especially to end users and subject-matter experts,
who often have little technical expertise in ML. Thus, their interpretability needs
require even more guidance and attention.

The main idea of this paper is to explore how to improve the accessibility of
Shapley explanations to foster a pragmatic understanding [23, 11] for end users
in XAI. We believe that an important aspect required to address the call for “us-
able, practical and effective transparency that works for and benefits people” [1]
is currently not sufficiently studied: providing end users of XAI with means of in-
teraction that go beyond a single static explanation and that are complemented
by explicit interpretations in natural language. As the human use of computing
is the subject of inquiry in HCI [22], our discipline “should take a leading role by
providing explainable and comprehensible AI, and useful and usable AI” [34]. In
particular, our community is well suited to “provide effective design for explana-
tion Uls” [34]. Our work contributes to the HCI community in two ways: First,
we present and describe the interactive explanation interface artifact SHAPRap
that targets non-technical users of XAI. Second, we report promising results
from a formative evaluation that indicates that our approach can foster under-
standing. With this work, we put our design rationales up for discussion with
our fellow researchers.

2 Related Work

We base our work in the interdisciplinary research field of XAl It aims to make
black-box ML models interpretable by generating some notion of explanation
that can be used by humans to interpret the behavior of an ML model [31].
An ML model is considered a black-box if humans can observe the inputs and
outputs of the model but have difficulties understanding the mapping between
them. However, most works focus on computational aspects of generating expla-
nations while limited research is reported concerning the human-centered design
of the explanation interface. The social sciences suggest that the explanation
process should resemble a social process between the explaining XAI system
(sender of an explanation) and the human explainee (receiver of an explanation)

! github.com/slundberg/shap
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forming a multi-step interaction between both parties, ideally leveraging natural
language [21]. Especially, in situations where people may be held accountable
for a prediction-informed decision, they may have multiple follow-up questions
before feeling comfortable to trust a system prediction. Abdul et al. emphasize
that interactivity and learnability are crucial for the effective design of explana-
tions and their visualization [1]. Widely used explainability frameworks, such as
SHAP, present their explanations in the form of information-dense visualizations,
however, they do not provide any interactivity nor guidance to support users in
their interpretation process. As a consequence, even experienced ML engineers
struggle to correctly interpret their output and often take them at face value [17].
Humans mostly explain their decisions with words [19]. Thus, it is intuitive to
provide end users of XAI with explanations in natural language. We found first
work that takes a human-centric perspective on XAI and encompasses interactiv-
ity and naturalness. Weld and Bansal [32] propose seven different follow-up and
drill-down operations to guide the interaction. Liao et al. [18] compile a catalog
of natural language questions that can technically be answered by current XAI
methods. Covering multiple of them under a “holistic approach” allows users
to triangulate insights. Reiter [24] discusses the challenges of natural language
generation for XAI Further, users have been shown to understand technical ex-
planations better if they are complemented by narratives in natural language [9,
10, 13]. For instance, Gkatzia et al. improved users’ decision-making by 44% by
combining visualizations with statements in natural language [13]. Sokol and
Flach [29] present Glass-Boz an interactive XAl system that provides personal-
ized explanations in natural language. Similarly, Werner [33] presents ERIC an
interactive system that gives explanations in a conversational manner through
a chat-bot like interface. Forrest et al. [12] generate textual explanations from
feature contributions based on LIME [25].

3 SHAPRap

3.1 Scenario, ML Model, and XAI Method

Scenario. Our XAI system is centered in a decision-support situation in which
the human decision-maker is accompanied by an intelligent and interpretable
system. We put our study participants in the shoes of a private lender on a
fictional crowd lending platform. We centered our study in a crowd lending do-
main because we assumed that the participants can relate to decisions about
lending or investing personal money. Participants can see demographic informa-
tion, loan details, and credit history of individuals that request a loan on the
platform. Each request is accompanied by an ” Al-based intelligent prediction”
of the default risk, i.e., the probability that the borrower fails to service a loan
installment some time during the loan period. The prediction is introduced as
an ” Al-based” feature that is based on machine learning from historic cases. We
build on a tabular data set as many ML models deployed in practice build on
this type of data [4,20]. We used the Loan Prediction? data set which consists

2 datahack.analyticsvidhya.com/contest /practice-problem-loan-prediction-iii/
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of 614 loan requests with 13 columns. We relabeled two columns of the data set

to be consistent with our scenario®.

ML Model. We calculated the default risk prediction using a XGBoost classifier.
Tree-based ensembles, such as XGBoost, are widely used in many real-world
contexts because of their practicability [20]. However, they are considered black-
box ML models. To limit the cognitive load for participants we chose to train
our model on a subset of columns. We used only the seven categorical columns
(5 binary, 1 ternary, and 1 with four possible values). We trained a binary XGB
classifier with 100 decision trees and class probabilities as outputs. Other than
that, we used the default hyperparameters of the zgboost package. The accuracy
of the predicted default risk on our stratified validation set was 0.83.

XAI Method. In this work, we use the SHAP (SHapley Additive exPlanations) [20]
framework to compute the model’s feature contributions on a local and global
level. SHAP belongs to the class of additive feature attribution methods where the
explanation is represented as a linear function of feature contributions towards
an ML prediction. The contributions are approximated by slightly changing the
inputs and testing the impact on the model outputs. The framework unifies the
ideas of other feature attribution methods (such as LIME [25]) with Shapley val-
ues, which originate from game theory [27]. Shapley explanations quantify the
contribution of individual features values towards a prediction. For a single ob-
servation, they uniquely distribute the difference between the average prediction
and the actual prediction between its features [20]. For example, if the average
prediction over all instances in a dataset is 50% and the actual prediction for a
single instance is 75%, SHAP uniquely distributes the difference of 25 percentage
points across the features that contributed to the instance’s prediction. Despite
their vulnerability to adversarial attacks [28] and potential inaccuracies [14], we
consider Shapley explanations as relevant to end users for two reasons: (i) they
can yield local and global insights because Shapley values are the atomic units
of each explanation. As these units are additive, they may be aggregated over
multiple predictions or features to learn about the model’s global behavior, and
(ii) the consistent and model-agnostic nature of Shapley values allows XAI de-
signers to offer a uniform explanation interface to users even if the underlying
data or ML model changes.

3.2 Explanation Interface

Local Explanation View. The local explanation view resembles a spreadsheet-like
user interface that is overlaid with a heat map of Shapley values for each feature
of an instance. We support users’ rapid visual estimation of feature contributions
through preattentive processing based on a cell’s hue [15]. Each cell is shaded
depending on their direction and magnitude of contribution towards the predic-
tion (red increases the loan request’s risk of defaulting, while green decreases it).

3 we re-framed the Loan_Status column to represent the default risk and the
Crredit_History column to represent a negative item on a credit report.
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Fig. 1. The components of the SHAPRap explanation interface

The local explanation view is contrastive [21] as it allows comparing variances
between feature contributions for individual instances (horizontal azis). Further,
as we show multiple local explanations next to each other, users can compare
variances or regularities within feature values across multiple instances (vertical
azis). To support this, users can sort each column by value to contrast instances
with identical feature values.

Global Explanations View. Local explanations yield how an ML model derives its
prediction for a single data instance. In contrast, global explanations help users
to get an intuition how a model derives its predictions over multiple instances or
an entire dataset (global sample). For each feature value, we provide a box-plot
of how it contributed to the prediction for all instances in the global sample. A
narrow box-plot indicates a more consistent prediction behavior, while a wider
box-plot indicates that the contributions vary for the same feature value. These
variances result from interactions with other features and may require additional
judgment (see next paragraph). The distribution of Shapley values in the global
view depends on the chosen global sample. If the sample is representative for the
population that the ML model will be confronted with in a particular domain,
the global view helps users understanding when its predictions are consistent
and therefore predictable and when they are not. In practice, the global sample
may be the entirety of predictions of an ML model after its deployment across
all users, or (if data sparsity requirements apply) a sample of predictions that an
individual user has previously been exposed to. Further, it would be possible to
let users customize the global sample (e.g., only instances above a certain pre-
diction threshold or instances with a particular feature value). In our prototype,
we displayed the distributions of the training and validation sets.

Highlighting Outliers. A post-hoc ezplanation by feature attribution approach,
such as SHAP, is always an approximation of the actual prediction behavior of
an ML model. Identifying inconsistent contributions and communicating them
to the user can improve their interpretation by making it easier to identify ex-
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planations that are more representative for the global model behavior. We built
around the concept of role-based explanations [5]. We classify each instance’s
feature value contribution into the roles normal (within the inter quartile range
(IQR) of the global sample), unusual (beyond IQR but within whiskers as defined
by £1.5 x IQR), and very unusual (outliers beyond the whiskers). We highlight
very unusual contributions in the global and local views as orange warning cir-
cles prompting the users to not generalize from these instances to the typical
prediction behavior of the model. Further, these outliers may serve as starting
points for analyzing feature value interactions. When hovering over an outlier,
we highlight features of this instance that are unusual and thus provide hints
which feature values may be interacting with each other.

Complementing Narratives: It is not easy to understand the concepts of additive
Shapley explanations just by looking at plots [17]. It might take some time to
interpret a plot, and the user is likely to be overwhelmed at first. Thus, we au-
tomatically created textual explanations from Shapley values using a template-
based approach and to support their interpretation of the local and global views.
We provide users with on-demand textual explanations in form of tooltips on
mouseovers for each feature box-plot, instance cell, outlier highlight, and column
header. Further, we provided background information about the local and global

[ (@ What do the box plots show? H (@ What does the table show? ]
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Fig. 2. The explanation interface that participants were exploring.
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views during onboarding and accessible through help buttons during interaction.
This way, information redundancy can be avoided following the progressive dis-
closure paradigm [30].

4 Formative Evaluation

Method. We conducted a formative evaluation with 16 participants recruited
through the online platform Prolific. We recruited participants with at least a
graduate degree, English fluency, and an approval rate of 100%. 8 participants
self-identified as female, 8 as male and were in the age groups 18-24 (3), 24-35
(9), and 35-54 (4). 11 participants agreed to use spreadsheets at least weekly,
6 knew how to read box-plots, and 4 had practical experience with ML. Af-
ter introducing their role in the crowd lending scenario and the explanation
views, users were asked to freely explore SHAPRap for 10 to 15 minutes. Then,
they rated their level of understanding on a 7-point scale* [8]. Afterwards, they
completed a forward prediction quiz [7]. Participants had to simulate the AI pre-
diction for 6 pre-selected loan requests with the help of the global explanation
view. We randomly chose 6 instances with unique feature value combinations
and at most two unusual contributions to assess participants’ understanding of
the typical prediction behavior. In the end, they rated the ezplanation satisfac-
tion scale [16] and answered three open questions. On average, participants took
28.1 minutes (SD=10.4 minutes) to complete the study and were compensated
£5 per completion (=£10.67/hour).

6  mEee Quiz: Random Guess Satisfaction ———
@ Quiz: Mean Error
5 B # of Participants 2 sufficient Details e
@
4 S Completeness ——
B
3 g How to Use ——
1)
©
Useful ——— .
2 g SR : :
S
L & Accurate N -
Trust I
[
1 2 3 4 5 6 7 Strongly Disagree Neutral Strongly Agree
7-Point Level of Understanding 5-Point Likert Scale

Fig. 3. (left) 11 participants perceived they understood at least which features were
important for the prediction. 6 of them objectively proved their understanding via a
lower than random mean error in a forward prediction quiz. (right) Results from the
ezplanation satisfaction scale. The orange dots indicate the respective mean.

4 Level 1: I understand which features the AI has access to and what the AI predicts as
an output., Level 4: I understand which features are more important than others for
the Al prediction., Level 7: I understand how much individual feature values influence
the AI prediction and which feature values depend on others.
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Results. Overall, our results indicate mixed reactions but show effective gains
of pragmatic understanding for some participants. The explanation facility felt
overwhelming at first, but the complementary elements of global, local, and
textual explanations were considered as somewhat useful and sufficiently de-
tailed to get a general idea about the typical prediction behavior. After ex-
ploring SHAPRap, participants on average rated their understanding as "I un-
derstand which features are more important than others for the Al prediction”
(mean=4.07, SD=1.67). However, applying this understanding in the quiz turn
out to be challenging for 6 participants as they scored worse than random guess
(expected error for a random guess was 1.8). For example, P5 "understood what
the box representations meant but found it hard to actually apply this data to the
applicants. It might just require practice.” On a positive end, 6 participants rated
their gained understanding as at least level 4 and proved this with low mean er-
rors in the quiz (cf. Fig. 3). Participant P6 (no ML experience, mean error of
0.8) "found the explanations quite complicated to follow but after studying the
table and explanations it became clearer as to which factors were being used to
measure the likelihood of defaulting on the loan.” P3 (extensive ML experience,
mean error of 0.33) found “the explanations were detailed, and it was interest-
ing to see that credit history was the leading variable for default risk.” Multiple
participants appreciated the complementary nature of the natural language ex-
planations. Without them ”the graph was quite difficult to understand on its
own” (P6). P13 liked "that the [textual] explanations are written simply, every-
one would understand it” and P9 appreciated that the “language was simple”.
However, it seemed that narratives on a more aggregated or abstract level were
missing to understand the bigger picture. P4 found “this kind of explanations
useful just to people who already have studied this but for people with different
educational background this kind of explanations are not enough.” P5 suggested
adding an executive summary for each loan request and the overall global view.
Further, some participants were overwhelmed by the non-linear behavior and in-
teractions of the ML model and seemed to expect to figure them out. P5 found
“the green and red increase/decrease for risk seemed simple and helpful at first,
but there seemed to be very random correlations between different aspects.” Sim-
ilarly, P10 stated: "I am guessing there are so many intersecting correlations it’s
hard to read for a mnon-numbers person.”. This resonates with Rudin [26] that
the term explanation is misleading as it suggests a full understanding can be
reached even if we merely provide pragmatic approximations.

5 Summary

This paper presents the explanation interface SHAPRap, which supports end
users in interpreting local Shapley explanations in the global context of normal
and wnusual model behavior. Further, it provides narratives using a template-
based approach. With our work, we contribute to the development of accessible
XALI interfaces that enable non-expert users to get an intuition about the prob-
abilistic decision behavior of black-box ML models.
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Abstract. The interdisciplinary field of explainable artificial intelligence
(XAI) aims to foster human understanding of black-box machine learn-
ing models through explanation-generating methods. Although the social
sciences suggest that explanation is a social and iterative process between
an explainer and an explainee, explanation user interfaces and their user
interactions have not been systematically explored in XAI research yet.
Therefore, we review prior XAl research containing explanation user in-
terfaces for ML-based intelligent systems and describe different concepts
of interaction. Further, we present observed design principles for interac-
tive explanation user interfaces. With our work, we inform designers of
XALI systems about human-centric ways to tailor their explanation user
interfaces to different target audiences and use cases.

Keywords: explainable AI - explanation user interfaces - interaction
design - literature review.

1 Introduction

Intelligent systems based on machine learning (ML) are widespread in many
contexts of our lives. Often, their accurate predictions come at the expense of
interpretability due to their black-box nature. As consequential predictions of
these systems may raise questions by those who are affected or held account-
able, there is a call for “explanations that enable people to understand the de-
cisions” [85]. Hence, much research is conducted within the emerging domain
of explainable artificial intelligence (XAI) and interpretable machine learning
(IML) on developing methods and interfaces that human users can interpret —
often through some sort of explanation. Often there is not a single explanation
to be conveyed [1]. Therefore, the DARPA XAI program describes the XAI pro-
cess as a two-staged approach. It distinguishes between the explainable model
and the explanation user interface [37] and, thus, disentangles analyzing the ML
model behavior from communicating it to the user. We define an explanation
user interface (XUI) as the sum of outputs of an XAI system that the user
can directly interact with. An XUI may tap into the ML model or may use
one or more explanation generating algorithms to provide relevant insights for
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a particular audience. The design of interfaces that “allow users to better un-
derstand underlying computational processes” is considered a grand challenge
of HCI research [86]. Shneiderman considers XUls as a building block towards
human-centered AI which aims “to amplify, augment and enhance human per-
formance” instead of automating it [85].

However, most XAI research focuses on computational aspects of generating
explanations while limited research is reported concerning the human-centered
design of the XUI [89, 85, 102]. Similarly, resources targeting practitioners, such
as UK’s Information Commissioner’s Office! , who aim to provide practitioners
with “guidance [that] is practically applicable in the real world”, do not touch
on explanation user interfaces nor how to present them to users and instead
propose “..to draw on the expertise of user experience and user interface de-
signers”. A notable exception is Google’s People+AI Guidebook? which presents
case studies of explanations integrated into mobile apps. As the human use of
computing is the subject of inquiry in HCI [73], our discipline “should take a
leading role by providing explainable and comprehensible Al, and useful and us-
able AI” [105]. In particular, our community is well suited to “provide effective
design for explanation Uls” [105].

To follow this call and to understand the current practices in the field, we
took an HCI perspective and conducted a systematic literature review. The over-
arching research question (ORQ) of our work is to survey how researchers
designed XUlIs in prior XAI work. From there, we analyze the user inter-
actions offered by the XAI systems and describe observed design patterns. Our
work is guided by the following more specific research questions:

— RQ1: How can the different concepts of interaction in XAl be characterized?
— RQ2: What design principles for interactive XUIs can be observed?

The increasing demand for interpretable systems also raises the question how
to present this interpretability to users. The contribution of this paper is two-
fold: First, we provide a structured literature overview of how user interaction
has been designed in XAI. Second, we outline design principles for human in-
teraction with XUlIs. Our work guides researchers and practitioners through the
interdisciplinary design space of XAl from an HCI perspective.

2 Background and Related Work

2.1 Interaction in Surveys of Explainable AI

XAT is an umbrella term for algorithms and methods that extend the output of
ML-based systems with some sort of explanation. The goal is “to explain or to
present [the ML-based system] in understandable terms to a human” [27].

! ico.org.uk/about-the-ico/ico-and-stakeholder-consultations/ico-and-the-turing-

consultation-on-explaining-ai-decisions-guidance/
2 pair.withgoogle.com/chapter/explainability-trust/
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Multiple reviews of the growing field of XAl exist. They formalize and ground
the concept of XAI [1, 3], relate it to adjacent concepts and disciplines [1,62],
categorize methods [36,57], analyze the user perspective [33], review evaluation
practices [65], or outline future research directions [1,3]. Most of these reviews
acknowledge the importance of interaction for XAI only as a side note. For in-
stance, Mueller et al. [65] consider an effective explanation to be “an interaction”
and “not a property of statements”. Adadi et al. [3] state that “explainability can
only happen through interaction between human and machine”. Abdul et al. [1]
present research on interactive explanation interfaces as an important trajectory
to advance the XAl research field. However, none of these reviews elaborates how
this interaction could be described nor designed to inform researchers and prac-
titioners. To our knowledge, none of the review look at XAI from an interaction
design perspective.

On a broader level, there is a line of research on how to design the over-
all human interaction with Al-infused systems. For instance, Amershi et al.
present guidelines for Al-infused systems [5]. While not explicitly addressing
interpretability nor explanations, they point out the importance of making clear
why the system did what it did in case of errors. However, their guidelines do
not outline what this interaction could look like.

2.2 The XAI Pipeline and Explanation User Interfaces

The XAI process can be broken down into different steps. Murdoch et al. dis-
tinguish between the predictive accuracy, the descriptive accuracy, and the rele-
vancy of an XAl system. Predictive accuracy is the degree to which the learned
ML model correctly extracts the underlying data relationships. Descriptive ac-
curacy (also referred to as fidelity) is the degree to which an explanation gener-
ation method accurately describes the behavior of the learned ML model. Both
accuracies can be objectively measured. In contrast, the subjective relevancy de-
scribes if the outputs are communicated in a way that they provide insights for
a particular audience into a chosen domain problem [67].

The DARPA XAI program illustrates the XAI process as a two-staged ap-
proach. It distinguishes between the explainable model and the explanation user
interface [37]. The former addresses the predictive and descriptive accuracies,
while the latter aims for relevancy. Such a two-staged approach disentangles
the XAI process into analyzing the ML model behavior and communicating it
to the user. Similarly, Danilevsky et al. [21] differentiate between explainability
techniques and explainability visualizations. The former generates “raw ezpla-
nations” typically proposed by Al researchers while the latter is concerned with
the presentation of these “raw explanations” to users typically guided by HCI
researchers. Most open-source methods for XAI provide a single explanation gen-
eration method. However, there is a growing number of explanation generation
toolkits (e.g., AIX 3603, Alibi*, DALEX5) that combine multiple state-of-the-art

3 https://aix360.mybluemix.net/
4 https://docs.seldon.io/projects/alibi/en/latest/
5 https://uc-r.github.io/dalex
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methods in a uniform programming interface and thus enable rapid prototyping
of XUI.

In this work, we define an explanation user interface (XUI) as the
sum of outputs of an XAI process that the user can directly interact
with. Shneiderman [85] outlines two modes of XUL. Ezplanatory XUls aim to
convey a single explanation (e.g., a visualization or a text explanation). In con-
trast, exploratory XUls let users freely explore the ML model behavior. They
are most effective when users have the power to change or influence the inputs.
Arya et al. [7] distinguish between static and interactive explanations. A static
explanation “does not change in response to feedback from the consumer”. In
contrast, interactive explanations allow “to drill down or ask for different types
of explanations [...] until [...] satisfied”.

3 Methodology

In line with our ORQ, our method for characterizing interaction in XAI was
to collect a corpus of publications using the structured search approaches by
Kitchenham and Charters [47]. We then analyzed the corpus regarding the in-
teraction concepts followed by the authors as well as the design and interaction
functionalities offered to users.

To collect a corpus of candidate publications, we conducted a systematic
search in the ACM Digital Library. We limited our search to work that has
been published at venues relevant to HCI (Sponsor SIGCHI). Through initial
exploratory search, we obtained an initial understanding of relevant keywords,
synonyms, and related concepts that helped us to construct the search query.
Different terms are used to describe the field of XAI and XUI [1]. We focused on
publications that include user-centered artefacts with explicit forms of explana-
tion for the underlying intelligent behavior. Our primary focus was on research
that builds on the potentials of current algorithmic explanation-generating XAI
methods and thus often self-identifies as "XAI” or "explainable AI”. To account
for the historic perspectives, we included "explanation interface” and ”explana-
tion facility”. These terms emerged in the 2000s from the recommender systems
community and have often been used as a umbrella term for user interfaces cover-
ing different explanatory goals [92]. Further, we were interested in research that
has a user focus and mentions some form of “user interaction”, “user interface”,
or aspects of “usability” or “interactive”. We prepended the terms interaction
and interface with “user” to distinguish them from feature interactions and sys-
tem interfaces. While not covering the entire dynamic of this interdisciplinary
field, this scoping resulted in a diverse set of works from multiple decades that
put a focus on the user interface artefact. This resulted in the following search

query:

[[All: ”xai”] OR [All: "explainable ai”] OR [All: ”explanation facility”]
OR [All: "explanation interface”]] AND [[All: "user interaction”] OR
[All: ”user interface”] OR [All: usability] OR [All: interactive]]
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We conducted the search procedure in December 2020, which returned a total
of 146 results. We then analyzed the full-text of all results. We excluded 13
results without a contribution (i.e., proceedings, keynotes, workshop summaries).
Publications included in our analysis had to present results from constructive [73]
research that involved an XUI artefact (n=57) or conceptual [73] research that
addresses interaction in XAI (n=34). Consequently, we excluded 28 results that
were not related to XAl and 14 results that were related to XAI but did not
present an XUI nor describe interaction. The review was conducted by the first
author. The second author was consulted for feedback. Our final set for analysis
consisted of 91 publications. We analyzed the selected publications and coded
information about the reported XUI and user interactions in a database.

4 Concepts of Interaction in XAI

Following Hornbaek and Oulasvirta [42], interaction describes the interplay be-
tween two or more constructs. They analyzed the interplay between the con-
structs human and computer that were discussed in HCI research. From this,
they derived seven concepts of interaction: interaction as information transmis-
sion, as dialogue, as control, as experience, as optimal behavior, as tool use, and
interaction as embodied action. More narrowly, Miller frames XAI as one kind
of a human-agent interaction problem where an "ezplanatory agent [is] revealing
underlying causes to its or another agent’s decision making” [62]. As such, it
is about the interplay between a human user and an Al agent that is mediated
through an XUI Tintarev and Masthoff [92] distinguish seven explanatory goals:
transparency (answer how the system works), scrutability (allow to question and
correct the system), trustworthiness (increase user confidence), persuasiveness
(convince user), effectiveness (help user making good decisions), efficiency (help
user making decisions faster), and satisfaction (increase usability). As these may
be conflicting with one another, designers of XUI “need to make trade-offs while
choosing or designing the form of interface” [93].

We build on the interaction concepts of Dubin and Hornbaek [42] and apply
them to human-XAT interaction. To answer RQ1 (How can the different concepts
of interaction in XAI be characterized?), we analyzed the primary interaction
concept that authors (implicitly) applied as part of their work. In particular,
we focus on the interplay between a user and an Al system that is facilitated
through a UI that leverages some kind of explanation to reach an explanatory
goal. We abstracted from the purpose that the researchers used the XUI for and
instead looked at how a user could interact with it. As such, we approached the
concepts of interaction with an artefactist approach [90]. Below, we introduce
each concept and relate them to surveyed publications. Table 1 summarizes our
analysis.

4.1 Interaction as (Information) Transmission

This concept centers around maximizing the throughput of information via a
noisy channel. The interaction is about selecting the best message for transmis-
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sion from a set of possible messages [42]. It follows the Shannon- Weaver [84]
model of communication according to which the sender transmits information
to the receiver but in between noise is added to the original message.

. Static XUI:

. example [14],

. visual [4,25,56,106],
. textual

1 [9,23,26,48,68]

Interactive XUI:
visual & textual [30]

Explanation

Fig. 1. XAl-interaction as (information) transmission is about presenting an
accurate and complete explanation about the AI behavior.

Transfer to XAI: The goal of this interaction centers around presenting users
with one complete explanation. Surveyed publications following this concept are
mostly driven by the explanatory goal of transparency and acknowledge that
“algorithms should not be studied in isolation, but rather in conjunction with in-
terfaces, since both play a significant role in the perception of explainability” [25].
They emphasize either (i) the descriptive accuracy of an explanation to describe
the underlying AI behavior [26, 30,48, 56, 68] or (ii) the capacity of a single ex-
planation style [4] or differences between explanation styles [9, 14, 23, 25, 106, 83|
to convey information about the behavior to the human. The message is noisy
because it may be difficult or even impossible to fully describe the complexity
of the Al in a human understandable way, such as with deep neural networks.
Unlike interaction as a dialogue, this interaction is mainly about unidirectional
communication by presenting a single and static explanation. The XUI is mainly
used as a medium for transmitting this explanation.

Ezamples: Ehsan et al. [30] present real-time explanations about the actions
taken by an autonomous gaming agent in the form of natural language rationales.
Alqaraawi et al. [4] study whether saliency maps convey enough information to
enable users to anticipate the behavior of an image classifier. Cai et al. [14]
compared how well two example-based explanation styles could promote user
understanding of a sketch recognition AL Dodge et al. [23] and Binns et al. [9]
study how much different textual explanation styles convey about underlying
fairness issues of an ML system. Yang et al. [106] study the differences in spatial
layout and visual representation of example-based explanations.

4.2 Interaction as Dialogue

This concept describes a cycle of communication of inputs/outputs by the com-
puter and perception/action by a human. The interaction happens in stages or
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turns [42]. It tries to ensure a correct mapping between UI functions and the

user’s intentions and feedback by the UI to bridge the gulf of ezecution [69].

‘ . Interactive XUI:
Al

chat-based [46],
visual [10, 18, 28]

Fig. 2. X Al-interaction as dialogue is about facilitating an iterative communication
cycle about the AI behavior.

Transfer to XAI: This concept acknowledges that a single explanation rarely
results in a desired level of understanding [1]. Instead, it emphasizes the natu-
ralness and accessibility of (often implicit or simplified) explanations. In contrast
to interaction as embodied action, this concept is driven by the user, with the
AT responding. Unlike interaction as control, this concept does not change the
AT behavior. The goal of the interaction is to provide users with functionalities
to gradually build a mental model of the AI behavior. We distinguish between
inspection dialogues [10, 18, 28] and natural dialogues [46].

Inspection Examples: Exploratory dialogues allow the user to explore how (pos-
sibly hypothetical) changes in inputs lead to changes in the Al prediction or let
the user inspect internals of the AI. The XUI is mostly about offering function-
alities to iteratively request explanations of the same kind. Explanations have
a high fidelity but are implicit. For instance, Cheng et al. [18] present an XUI
that allows users to observe how the predictions of a university admission clas-
sifier change by freely adjusting the values of input features of applicants. Their
exploratory approach was shown to improve users’ comprehension although it
required more of their time. Bock and Schreiber [10] present an XUI to inspect
layers and parameters of deep neural networks in virtual reality. Similarly, Dou-
glas et al. [28] visualize an Al agent’s behavior in form of interactive saliency
maps in virtual reality.

Natural Examples: Natural dialogues aim to “lower the threshold of ability re-
quired to analyze data” and thus make XUIs more accessible to end users of XAl
The XUI is about presenting functionalities to request different natural language
explanations. The interaction is mostly driven by the human through questions.
Explanations are explicit but simplified in the form of textual answers. Kim et
al. [46] present an XUI that enables users to ask factoid questions about charts
in natural language (e.g., “What age had the lowest population of males?”). The
XUI provides the answer and an explanation how it was derived from the chart
(e.g., “I looked up ‘age’ of the shortest blue bar).
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4.3 Interaction as Control

This concept supports a rapid and stable convergence of the human-computer
system towards a target state. Building on control theory, the interaction is
aiming “to change a control signal to a desired level and updating its behavior
according to feedback” [42].

PR
7R
— 255
< e Static XUI:
< visual [34, 45]
Interactive XUI:
visual [41, 52, 75],
| 3 visual & textual
2 (44, 108]
== £
w S

Fig. 3. XAl-interaction as control is about supporting a rapid convergence towards
the desired AI behavior.

Transfer to XAI: This concept aligns with the ideas of interactive ML [29]
and ML model tweaking. The XUI feeds control signals from the ML model
to the human controller (feedback). These inform the controller how to change
parameters of the ML model or its data so that the model adjusts its behavior
(feedforward). The goal of the interaction is to reach the AI behavior desired
by the controller. We found two streams of research that follow this paradigm.
They can be distinguished by their targeted users: AT experts [41,45,52,75, 78]
or Al novices 44,34, 108].

Al Ezpert Examples: Explanations are provided mainly on an abstract level as
numbers and visualizations. The cycle of exploration and verification drives the
process of understanding. The XUI is a standalone application facilitating this
interaction while the actual model adjustments are performed in a separate Ul
(e.g., the development environment). For instance, [78] present an early XUI
to debug rule-based expert systems by explaining why a rule was fired. Krause
et al. [52] present the interactive visual analytics systems Prospector, that sup-
ports data scientists in understanding local predictions and deriving actionable
insights on how to improve the ML model. They can (i) explore local predictions
and simulate counterfactual changes by different ML models to support the for-
mulation of tweaking hypotheses or (ii) verify how their implemented tweaking
hypotheses change the prediction behaviour of the ML model. Hohman et al. [41]
present Gamut, an XUI were “interactivity was the primary mechanism for ex-
ploring, comparing, and explaining”. User can link local and global explanations,
ask counterfactual and compute similar instances. In contrast, Kaur et al. [45]
show that the non-interactive XUIs of widely used explainability tools, such as
InterpretML or SHAP, hinder experts to effectively control ML models.
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Al Novice Examples: These XUl strive “to effectively communicate relevant tech-
nical features of the [ML] model to a non-technical audience” [108]. These XUIs
provide explicit explanations to support the exploration. They also integrate
controls for adjusting underlying the ML models without the need of a separate
UL Yu et al. [108] present an XUI for ML classification in the sensitive context
of criminal justice. Their XUI enables designers and end-users to explore and
understand algorithmic trade-offs based on an interactive confusion matrix and
textual explanations. Further, it allows them to adjust model thresholds in a way
that reflects their fairness beliefs (feedforward). Ishibashi et al. [44] present an
XUI that synergetically combines low-level spectrograms with semantic thumb-
nails to interactively train a sound recognition AI. Fulton et al. [34] showcase
how an XUI can be integrated into games for Al novices to generate usable data
for AI experts.

4.4 Interaction as Experience

This concept considers human expectations towards a computer. It is closely
related to user experience (UX) encompassing a person’s emotions, feelings, and
thoughts that may be formed before, during, or after interaction [53].

Manage
Expectations

& Feelings Static XUI:

textual [31,79,107]

Interactive XUI:
visual [49],
visual & textual [93]

X

Fig.4. XAl-interaction as experience is about managing expectations about the
Al behavior.

Transfer to XAI: Applied to XAl, this interaction concept emphasizes manag-
ing the expectations and preferences of users about the Al. It centers around
the explanatory goals of trust [49,77,79,107], satisfaction [93], and persuasive-
ness [31].

Ezxamples: Knijnenburg et al. show that letting users inspect a recommendation
process through an interactive XUI increased their perceived understanding and
satisfaction. Tsai et al. [93] investigate the relation of user preferences about ex-
planation styles and user performance. Their results suggest that XUIs preferred
by users “may not guarantee the same level of performance”. Yin et al. [107] show
that a user’s trust is impacted by upfront information on the AI’s predictive ac-
curacy even after repeated interactions. Pushing this interaction concept, Eiband
et al. [31] show with their XUI that even empty (so-called placebic) explanations
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can result in a soothing perceived understanding of users. As an intervention,
Pilling et al. [77] outline a design fiction of an Al certification body that pro-
vides users with standardized Al quality marks (e.g., "level 4: product is able to
explain itself to users on request.”).

4.5 Interaction as Optimal Behavior

This concept centers around adapting the user behavior to better support their
tasks and goals. It acknowledges that the interaction with the system is often
constrained, and thus suboptimal. Users are trading off rewards and costs of
an interaction. It builds around the idea of bounded rationality [87] according to
which humans act as “satisficers” who strive for satisfying and sufficient solutions
(instead of optimal ones) due to cognitive limitations.

Static XUI:
textual [60, 98],

. visual [2,59],
I . example & textual [12]

£ . Interactive XUI:

&, 5 ‘ © textual [16,99],
: visual [19, 61, 70],
visual & textual

— .
= + [81,97]
< .

Fig. 5. XAl-interaction as optimal behavior is about adjusting the human behav-
ior despite the cognitive or technical limitations of fully understanding the AI behavior.

Transfer to XAI: Applied to XAl research, the goal of the interaction is to guide
users to reach a “satisficing” level of Al understanding for some downstream
task. It focuses on providing explanations for “training humans to have better
interactions with AI”, for example, when they face erroneous Al systems [99] or
exhibit misconceptions caused by cognitive biases [97]. We distinguish between
research that (i) examines limitations that occur during the interaction with
an XAI [12,13,24,60,61,70,97] and (ii) designs interactions to better moderate
these limitations [2, 16, 19, 59, 81, 98, 99].

Ezamples that Examine Limitations: Millecamp et al. [61] studied the impact
of personal characteristics on the interaction and perception of XAI in a music
recommender setting. They show that the perception and interaction with XUIs
is influenced by a user’s need for cognition (NFC) (i.e., their tendency to engage
in and enjoy effortful cognitive activities). Nourani et al. [70] show that a user’s
first impression of an Al system influences their overall perception of the system.
While a positive first impression may lead to automation bias, a negative first
impression may result in a less accurate mental model. They call for XUIs that
control a user’s first impression and “continually direct user attention to sys-
tem strengths and weaknesses throughout user-system interactions”. Similarly,
Bucinca et al. [12] highlight that the effectiveness of XAI is impacted by the
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design of the interaction itself. Thus, it is important to take “into account the
cognitive effort and cognitive processes that are employed [by the user]” during
their interpretation of explanations.

Examples that Moderate Limitations: Several of the works designed interactions
that “optimize the performance of the sociotechnical (human+AI) system as a
whole” [12]. For example, Wang et al. [98] provide confidence explanations to
help users to gauge when or when not to trust an AI. Similarly, Schaekermann
et al. [81] show that highlighting and textually explaining ambiguous predictions
helps physicians to "allocate cognitive resources and reassess their level of trust
appropriately for each specific case”. Abdul et al. [2] propose a visual explanation
style that balances cognitive load and descriptive accuracy by limiting the visual
chunks to be processed by the user. Further, they present a method to estimate
users’ cognitive load of explanations. Weisz et al. [99] teach users strategies to
effectively interact with a limited capability chatbot in a banking and shopping
context. Their interaction aims to explain to users why a chatbot may be un-
able to provide meaningful responses. For instance, explaining that the chatbot
mapped the user’s utterance to multiple low confidence intents because the ut-
terance was poorly worded or ambiguous. Mai et al. [59] guide users through
a military-inspired structured reflection process, called after-action review to
understand the behavior of an Al agent. Accompanied by a visual explanation
of AI decisions, the reflection process helped users to organize their cognitive
process of understanding and kept them engaged.

4.6 Interaction as Tool Use

This concept centers around using computers to augment the user’s capabili-
ties beyond the tool itself. Following activity theory, the system influences the
“mental functioning of individuals”. As such, Al can also be used as a tool for
learning. For example, the social sciences use word embeddings as a diagnostic
tool to quantify changes in society [35].

Static XUI:
Domain textual [58, 63,66, 109],
visual [40, 82, 94]

Interactive XUI:
textual (17,76, 92],
visual & textual [8,22],
visual

(11,71, 32,103, 104]

Fig. 6. XAl-interaction as tool use is about facilitating learning from the AI be-
havior about a given domain.
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Transfer to XAI: Applied to XAl, this interaction concept helps humans to find
hidden patterns and insights in domain-specific data. To facilitate this learning,
some form of explanation is required. The XUI serves as a lens on a domain
(beyond the AI behavior) that would otherwise be difficult to understand. In
this way, the interaction contributes to augment human thinking.

Ezamples: Xie et al. [104] assist physicians analyzing chest x-rays of patients
through an interactive mixed-modality XUIL Paudyal et al. [76] presents an in-
teractive XUI for a computer-vision based sign language AI. The textual ex-
planations provide learners with feedback on the location, shapes, and move-
ments of their hands. Similarly, Schneeberger et al. [82] use an XUI to let users
practice emotionally difficult social situations with a social Al agent. Das et
al. [22] present an XUI which provides feedback on a chess player’s intended
moves. Their visual highlighting and textual explanations significantly improved
the performance of chess players in a multi-day user study. They point out the
importance of accompanying textual explanations for the Al reasoning. Only
showing the visual explanation did not improve performance. Similarly, Feng et
al. [32] support players by visually explaining evidences for each uncovered word
of a quiz question. Xie et al. [103] use an interactive XUI with visual explana-
tions to give game designers live-feedback on how challenging their created level
designs are. Misztal-Radecka and Indurkhya [63] generate textual user stories for
personas from large datasets to inform interaction designers about potentially
relevant user groups.

Explainable Recommender Systems: In addition, most works on explainable rec-
ommender systems follow this interaction concept as their recommendations aim
to give users insights about the recommender domain [40]. Some XUIs allow
personalization by steering the recommendation behavior and thus, include as-
pects of the interaction as control concept. These user-initiated manipulations
dynamically influence the recommendations and serve as a feedforward mech-
anism. However, users’ focus is not about reaching an envisioned end state of
AT behavior, but generating useful insights about the domain (or themselves).
For example, O’Donovan et al. [71] present PeerChooser, an interactive movie
recommender that enables users to provide “hints” about their current mood
and needs by dragging movie genres closer or further away from their avatar.
Bostandjiev et al. [11] use the XUI to explain a music recommendation process
and to elicit preferences from users. Users can interactively adjust weights on
the input and model level to explore the recommender. Chen et al. [17] present
a preference-based recommender to increase users’ product knowledge of high-
investment products, such as digital cameras and laptops. Their XUI textually
explains trade-offs within a set of recommended items.

4.7 Interaction as Embodied Action

This concept centers around collaboration and joint action with a computer.
In 1960, Licklider formulated the vision of man-computer symbiosis in which
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“men and computers [are] to cooperate in making decisions and controlling com-
plex situations” [55]. Humans may be amplified through collaboration with AL
However, effective collaboration goes beyond interaction. In this way, this con-
cept builds on theories from the computer-supported cooperative work (CSCW)
community, such as mutual goal understanding, preemptive task co-management
and shared progress tracking [96].

Interactive XUI:
q chat-based [39, 88],
Domain verbal [91],
visual [15],
visual & textual [101]

Fig.7. XAl-interaction as embodied action is about establishing a joint under-
standing with the AI for an effective collaboration in a given domain.

Transfer to XAI: Applied to XAI, explanations are a crucial component for
effective cooperation. A lack of explanatory communication resulted in dissat-
isfaction [38,72]. In this way, XUIs contribute to the augmentation of human
actions. A symbiotic relationship for which this is especially important involves
autonomous systems. Autonomous systems in high-risk scenarios have a high de-
gree of autonomy and thus “need to explain what they are doing and why” [39)].
In such a setting, it is crucial for humans and agents alike to communicate each
other’s capabilities and intended next steps with respect to a common goal, of-
ten in real-time. We identified XUIs which are not only about understanding AT
agents (interaction as transmission), but which enabled them to also influence
the agents’ actions — and vice versa [15, 39, 80]. Unlike interaction as control the
interaction is not only driven by the human controller, but by both parties [6,
91,101].

FEzamples: Tabrez et al. [91] present an Al agent that analyzes the game de-
cisions of a human collaborator in a collaborative game setting and verbally
interrupts the human in case the common goal becomes unattainable because
of a wrong move. The Al agent dynamically constructs a theory of mind of the
human collaborator and provides tailored explanations that aim to correct their
understanding of the game situation. Chakraborti et al. [15] present an XUI
that coordinates mission plans between a semi-autonomous search and rescue
robot and a human commander who has an incomplete and possibly outdated
map of the robot’s environment. Visual explanations are embedded as changes
in the commander map. The commander can either request (i) an optimal plan
by the robot and explanations for this plan, or (ii) a potentially suboptimal
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plan that is aligned with the commander’s expectations. As such, the XUI rec-
onciles potential mismatches about the plans between robot and commander.
Hastie et al. [39] and Robb et al. [80] present an XUI that provides operators
of autonomous underwater vehicles with why and why not explanations in real-
time via a chat interface. Further, users can influence actions of the autonomous
system through the XUI (e.g. setting reminders). Their XUI was reported to
increase the situation awareness of operators and adjusted their mental model
of system capabilities.

Table 1. Surveyed XAI publications categorized according to the different concepts of

interaction by Hornbeek and Oulasvirta [42].

Interaction
Concept

Interaction Goal
applied to XAI

References

Transmission

Dialogue

Control

Experience

Optimal

Behavior

Tool Use

Embodied
Action

Present users with accurate or complete
explanation about AI behavior. Ezplana-
tory goal: transparency

Facilitate natural and iterative conver-
sation about Al behavior. Ezplanatory
goals: transparency, scrutability

Support rapid convergence towards de-
sired Al behavior. Explanatory goal: ef-
fectiveness

Manage expectations about Al behavior.
Explanatory goals: satisfaction, trust, per-
suasiveness

Adjust human behavior despite limita-
tions of fully understanding the Al behav-
ior. Ezplanatory goal: efficiency

Facilitate learning from AI behavior
about a given domain. Ezplanatory goals:
effectiveness

Establish a joint understanding with the
Al for an effective collaboration in a given
domain. Fzplanatory goal: effectiveness

[4,9,14,23,25,26,
30,48, 56, 68, 106]

10,18, 28, 46

[34,41, 44, 45,51,
52,75,78,108]

[31,49,77,79,93
107)

[2,12,13,16,19, 24,
50,59, 61, 60, 70,
81,97-99

8,11,17,22,71, 32,
40,58, 63,66, 76,
82,92,94, 103, 104,
109]

[15,39, 80, 88, 91,
101]
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5 Design Principles for Interactive XUI

In the last section, we described the general interplay between the XAI system
and the user. Below, we will focus on the interactive qualities of the XUI itself.
Vilone et al. define interactivity as “the capacity of an explanation system to
reason about previous utterances both to interpret and answer users’ follow-up
questions” [95]. We expand this definition by building on the concept of expla-
nation facilities that dates to the era of rule-based expert systems. Moore and
Paris [64] proposed that a good explanation facility should, among others, ful-
fill the requirements of naturalness (explanations in natural language following
a dialogue), responsiveness (allow follow-up questions), flexibility (make use of
multiple explanation methods), and sensitivity (provided explanations should be
informed by the user’s knowledge, goal, context, and previous interaction). We
analyzed our sample of XAI publications through the lens of these requirements
to answer RQ2 (What design principles for interactive XUIs can be observed?).
We found common interaction strategies and design recommendations [17,45,
80,104] that address aspects of these requirements. We unify and present them
as design principles. In interaction design, design principles are “guidelines for
design of useful and desirable products” [20].

5.1 Complementary Naturalness

Consider complementing implicit explanations with rationales in natural
language.

Why: Implicit visual explanations can accurately depict the inner workings of
an Al but are often inaccessible to non-experts. In contrast, rationales in natural
language are post-hoc explanations “that are meant to sound like what a human
[explainer] would say in the same situation” [30]. Relaying facts through text
may “reassure users when system status might be uncertain or [...] obscure” [80].
Combining visual cues with textual rationales can facilitate understanding and
communicative effectiveness [30].

How: Kim et al. [46] outline a method that automatically generates explana-
tions from visualizations through a template-based approach. Robb et al. [80]
elaborate design recommendations on how to incorporate chat-based XUI for
autonomous vehicle operators. For example, Yu et al. [108] provide users with a
switch to change a visual explanation into verbose explicit sentences. Schaeker-
mann et al. [81] complement quantitative low-confidence predictions with argu-
ments in natural language to attract the attention of physicians. Sklar et al. [88]
explain the reasoning behind an Al agent’s actions through a chat-interface.

5.2 Responsiveness through Progressive Disclosure

Consider offering hierarchical or iterative functionalities that allow follow-
ups on initial explanations.
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Why: Prior research indicated that there is a fine line between no explanation
and too much explanation [61]. A user’s individual need for cognition influences
this threshold. Providing overly detailed explanations overwhelms users who may
operate on a simpler mental model of the underlying Al.

How: Springer and Whittaker [89] recommend applying the interaction design
pattern of progressive disclosure. It is about providing users only with high-
level information and offering follow-up operations in case they are interested
in further details® It resembles the “progressive-step-by-step process” demanded
by [85]. As such, an XUI should (i) provide information on demand, (ii) hierar-
chically organize explanatory information, and (iii) keep track of the interaction
with a user. For example, Millecamp et al. [61] provide a Why? button next to
a recommendation. Clicking it provides a one-dimensional visual explanation in
the form of a bar chart. If users are interested in additional details, they can
click another button to receive a multi-dimensional visual explanation that com-
pares multiple attributes of multiple recommendations in the form of a scatter
plot. Krause et al. [52] use tooltips to summarize the most influential features
and their sensitivity. If interested, users can drill down and freely explore these
with partial dependence plots. Bock et al. [10] visualize a convolutional neural
network in virtual reality. Progressive disclosure is realized through spatial dis-
tance. As the user approaches the network, more layers with finer granularity
become visible. This design principle can also be implicitly implemented by en-
abling users to repeatedly adjust controls of the ML model [11,108] or input
parameters [18, 76] to progressively disclose local insights step-by-step.

5.3 Flexibility through Multiple Ways to Explain

Consider offering multiple explanation methods and modalities to enable
explainees to triangulate insights.

Why: Humans gain understanding in many ways. Paez [74] outlines them along
a spectrum between understanding why (gained through observations and ex-
emplifications) and objectual understanding (gained through idealizations and
simplified models). In practice, there is often no best way to explain. For instance,
a physician’s "differential diagnosis seldom relies on a single type of data” [103].
In this way, explanation methods and modalities can complement each other.

How: This principle builds around the interaction design pattern of multiple
ways” , which is about “providing an opportunity to navigate [...] in more than
one manner”. Multiple publications recommend addressing local and global ex-
planation paradigms within one XUI [24,41,104]. This enables users to get an
overview of the overall Al behavior and scrutiny of individual cases at the same
time. To facilitate this navigation, Liao et al. [54] present a catalog of natural

5 nngroup.com/articles/progressive-disclosure/
7 w3.org/tr/understanding-wcag20 /navigation-mechanisms-mult-loc.html
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language questions that can technically be answered by current XAI methods.
Covering multiple of them under a ”holistic approach” [54] allows users to trian-
gulate insights. For example, Xie et al. [103] present a three-stage explanation
workflow that supports physicians in top-down or bottom-up reasoning. Their
XUI can “connects the dots” and highlight how explanations at each stage relate
to one another. Wang et al. [97] present a XUI that provides feature attribu-
tions and counterfactual rules in parallel to support multiple ways of reasoning.
Hohman et al. [41] provide highly interconnected visual model-level and instance-
level explanations side by side to ”flexibly support people’s differing processes”.
Chen et al. [17] provide different explanatory views that allow users to examine
recommended products from different angles.

5.4 Sensitivity to the Mind and Context

Consider offering functionalities to adjust explanations to explainees’
mental models and contexts.

Why: Explanation needs of user evolve “as one builds understanding and trust
during the interaction process” [54]. Further, prior beliefs and biases of users
influence how they respond to different styles of explanations. This calls for ”a
personalized approach to explaining ML systems” [23].

How: This principle builds around the concept of mized-initiative interaction [43],
which emphasizes an interaction in which the human and the computer work to-
wards the shared goal — fostering human understanding in the case of XAI. The
timing of actions along the stages of grounding, listening, and interrupting is
important for a successful interaction. To adapt its operations, an XUI needs
to construct a computer model (or theory of mind [91]) of the user’s mental
model [65]. Despite its complexity, we found first examples. Tabrez et al. [91]
estimate a human collaborator’s beliefs in a collaborative game to identify ex-
planation points. Other works [15, 19, 17], elicit preferences or beliefs to estimate
a user’s expected Al predictions (so called foils), e.g., so that counterfactual ex-
planations can argument only regarding these. Wenskovitch et al. [100] present
a method to infer user intent from interactions with visual explanations. Xie et
al. [104] implement an "urgent” mode that can be toggled by physicians in a
hurry to only see high confidence explanations with little system complexity.

6 Limitations and Outlook

Our review excluded publications outside the ACM Digital Library and the
SIGCHI community. We are confident that our review covers many publica-
tions that emphasize the interaction design perspective of XAI. However, we
probably have missed relevant applied research from adjacent XAI communi-
ties inside (e.g., FAccT) and outside (e.g., AIS) of ACM. Future work could
extend our work with their learnings. Another promising direction for future re-
search is constructive research that encompasses all presented design principles.

A29



A 30

18 M. Chromik and A. Butz

None of the survey publications considered all design principles in one XUI. This
makes sense as researchers try to limit and control variables for a rigorous eval-
uation of their research questions. However, with the emergence of open-source
explanation-generating toolkits it would be a logical next step to explore reusable
and customizable XUI frameworks. These could integrate multiple explanation
methods under a human-centric interaction concept.

7 Summary

Interaction design has been discussed as an important aspect for effective ex-
plainability in XAI. Yet, so far, it has not been systematically analyzed. Starting
from a systematically obtained set of XAl publications that mention user inter-
faces or user interaction, we derived seven concepts of human-XAT interaction.
Further, we analyzed the presented XUI and consolidated proposed recommen-
dations as design principles encompassing four recurring themes: naturalness,
responsiveness, flexibility, and sensitivity. We contribute a categorization to de-
scribe XAI work not only by the intended target audience or domain of appli-
cation, but also through the pursued interaction concept. Our survey provides a
starting point for researchers and practitioners planning and designing human-
centric XAI systems.
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ABSTRACT

Unintended consequences of deployed Al systems fueled the call
for more interpretability in Al systems. Often explainable AI (XAI)
systems provide users with simplifying local explanations for in-
dividual predictions but leave it up to them to construct a global
understanding of the model behavior. In this work, we examine
if non-technical users of XAI fall for an illusion of explanatory
depth when interpreting additive local explanations. We applied a
mixed methods approach consisting of a moderated study with 40
participants and an unmoderated study with 107 crowd workers
using a spreadsheet-like explanation interface based on the SHAP
framework. We observed what non-technical users do to form their
mental models of global Al model behavior from local explanations
and how their perception of understanding decreases when it is
examined.
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1 INTRODUCTION

There is a growing awareness that machine learning-based intelli-
gent systems (IS) need to be capable of explaining their behavior in
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human-understandable terms to prevent unintended consequences
in sensitive contexts of society (e.g., credit scoring, recruiting, pre-
dictive policing, or criminal justice) [18]. Driven by this concern,
the field of explainable artificial intelligence (XAI) develops models,
methods, and explainable interfaces that are interpretable to human
users by providing some notion of explanation [16]. Organizations
aspire to deploy explainability techniques to wider non-technical
audiences to comply with demands and regulations [5]. Such users
of XAlI, also referred to as operators or executers [56], consume
machine learning (ML) predictions to inform their decisions. They
are centered between the developers and the individuals affected
by the predictions [56]. Because they may be accountable for their
decisions, they utilize explanations to assure the underlying models
is trustworthy (i.e., "they can reasonably trust a model’s outputs” [5])
(operator-interpretability [56]).

Many empirical XAI studies limit their explanation approaches
to outcome explanations [21] for individual ML predictions (local
explainability) without examining if users build an accurate mental
model of the overall ML model behavior (global explainability). Lo-
cal explanations based on Shapley values [51] are widely used in
practice [5]. For a single observation, they perfectly distribute the
difference between the average prediction and the actual prediction
between its features [30]. Thus, much of the inherent ML model
complexity (e.g., feature interactions) is simplified into accessible
Shapley values [20]. Relying on them alone might leave users with
a false sense of understanding that is merely illusive. Further, the
explainability of explanations is often assessed through subjective
user ratings [41]. In this type of evaluation, users are asked to re-
port their perceived understanding, trust, or other relevant mental
factors through one-shot ratings with little to no incentives for self-
reflection or self-calibration [34, 35]. It has been shown, however,
that people are "often miscalibrated about their own judgments” [35].
Psychological research has demonstrated in many contexts that
humans have a robust bias of overconfidence regarding their un-
derstanding of how complex concepts work [46]. After being asked
to explicate and actively reflect on their understanding, people
significantly reduce their estimation of their own knowledge.

In this paper, we argue that because of this illusion of explana-
tory depth (IOED) [46], XAI explanations (especially in the form
of additive local explanations for individual predictions) may be
misleading for non-technical XAI users. Rather than stipulating
effective gains in human understanding, they might cause them
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to form false or incomplete beliefs about the explained ML model.
Some researchers already speculated that an IOED could be at play
when users are confronted with XAI explanations [14, 35, 54]. To
our knowledge, however, this has not yet been systematically inves-
tigated. We examine if end users fall for an IOED when consuming
XAl explanations in a decision-support scenario. In particular, we fo-
cus on the effect of local post-hoc explanations using Shapley values.
We conducted human-grounded evaluations [16] in a crowd lending
scenario using a tabular real-world data set. The scenario leverages
a functional black-box ML model (a random forest classifier) and
functional Shapley explanations generated by the widely-used ex-
plainability framework SHAP [30]!. We followed a mixed methods
approach. First, we moderated 40 participants through the study
and observed their interactions. Second, we verified our hypotheses
in an unmoderated study with 107 crowd workers. The studies has
been approved by our internal IRB.

With our work, we follow the call to improve the user experience
of XAl for a wider range of stakeholders [6]. The majority of current
XAl research targets ML experts (e.g., data scientists) [25] or spe-
cific domain experts (e.g., physicians) [2, 15]. In contrast, we focus
on the understanding of users with low expertise in Al. Our work
contributes to the HCI community in three ways: First, we present
SHAPTable an explanation interfaces targeting end non-technical
users of XAI systems that embeds Shapley explanations in an ac-
cessible spreadsheet-like user interface (section 4). Second, based
on an empirical examination we show that non-technical users fall
for an IOED when relying on Shapley explanations (section 6).

2 BACKGROUND AND RELATED WORK

2.1 Explanations from Intelligent Systems

The research field of XAI aims to make black-box ML models in-
terpretable by generating some notion of explanation that can be
used by humans to interpret the behavior of an ML model [58]. An
ML model is considered as a black-box if humans can observe the
inputs and outputs of the model but have difficulties understand-
ing the mapping between them. This may result from the model
either being too complex, such as many deep neural networks, or
being proprietary, such as with the COMPAS system [47]. Black-box
models are often reported to yield a high predictive accuracy with
less effort [47]. There are two broad categories of explainability
approaches: transparency-based and post-hoc explainability [29].
Transparency-based approaches focus on how the model works
and leverage model characteristics to explain it. This may involve
using simpler models with intrinsic explainability that may yield a
lower predictive accuracy. In contrast, post-hoc approaches ignore
model characteristics. Instead, they observe the inputs and outputs
of the ML model and try to detect regularities in its behavior in
an inductive manner. Thus, post-hoc approaches have no impact
on the predictive accuracy of a model but may oversimplify the
true model behavior. The ability of an explanation method to ac-
curately describe the behavior of an ML model is referred to as
descriptive accuracy [36] or fidelity [47]. Human understanding
in XAlI can be fostered either by offering means of introspection
or through explanations [7]. A large variety of methods exist for

Thttps://github.com/slundberg/shap

A 36

Chromik et al.

both approaches [21]. XAl research distinguishes two types of ex-
planations - local and global [2, 21]. Local explanations of an ML
model explain why an individual model prediction was made. In
contrast, global explanations aim to convey the overall structure
of the model by looking at model predictions on an aggregated
level. Some definitions of explainability are rather system-centric.
Doshi-Velez and Kim [16] describe it as a model’s "ability to explain
or to present in understandable terms to a human." Miller [32] takes a
more human-centered perspective calling it "the degree to which an
observer can understand the cause of a decision". For an explanation
to be effective, it does not only need to have a sufficient level of
fidelity but must "provide insight for a particular audience into a
chosen domain problem" [36].

2.2 Illusion of Explanatory Depth

Insights emerge when humans gain “a clear, deep [...] understand-
ing of a complicated problem or situation"®. Human understanding,
however, is often impacted by various cognitive biases. Research
in cognitive sciences showed that people often form an inaccurate
understanding of complex systems and often overrate the depth
of their knowledge [35]. Rozenblit and Keil coined this type of
overconfidence bias as the illusion of explanatory depth (IOED) [46].
They observed that laypeople consistently reduced the estimation
of their own knowledge of different phenomena or devices after
they were inquired to provide explanations about them or apply
their understanding. Furthermore, people are often surprised by
their limited explanations [4]. The IOED is more pronounced for
explanatory knowledge, i.e., knowledge that involves complex causal
patterns, than it is for descriptive knowledge, i.e., knowledge about
facts (names of capitals), procedures (baking), or narratives (movie
plots) [28, 46]. The IOED has first been demonstrated for people’s
understanding of causally complex systems in mechanical (bicycles,
crossbows) [28, 33, 46] and natural (tides, rainbows) [46] domains.
Subsequent work reproduced the IOED for social and policy do-
mains (voting, mental disorder) [4, 60].

The illusion is believed to be caused by the way humans build
their conceptual knowledge. Conceptual knowledge refers to the
entirety of a person’s concepts that are causally related to each other.
According to the theory-based approach, people form theories about
all their concepts, not just for those that they use regularly [46]. For
instance, people form their own theories of what causes volcanic
eruptions or how Al-based systems derive their predictions even
though they were never confronted with one. These theories often
consist of vague explanations that are not necessarily accurate nor
coherent with each other [37]. When inquired to explicate parts
of our conceptual knowledge to ourselves or others, we fall for
the illusion to think we know more about a system than we actu-
ally do. Four factors are believed to influence the emergence of an
IOED [46]: (i) Representation/recovery confusion: We overestimate
our abilities to remember what we have observed. People tend to
store observations as mental images. If the stored mental images
do not correspond to the original facts, the IOED occurs. (ii) La-
bel/mechanism confusion: Most complex systems are hierarchical
with various levels of sub components. If we can name and describe
individual parts on the first level of the hierarchy, we often assume

Zhttps://dictionary.cambridge.org/dictionary/english/insight
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to understand how the overall system works, even though we have
little insight into the levels further down the hierarchy. (iii) Unde-
fined end states: Because of the hierarchical and related structure of
complex topics, we have difficulties to imagine what constitutes a
good and complete understanding or explanation. The end states for
descriptive knowledge about facts or procedures are much clearer
(e.g., naming the capital of a country or reverse engineering how
to book a flight). (iv) Lack of practice: in everyday life most people
regularly retrieve facts or reconstruct procedures. However, many
people lack the practice of giving an explanation of complex topics.
Just because we consume or make up explanations does not mean
that we can produce effective explanations when needed.

2.3 IOED and Cognitive Biases in XAI and IS

Building on the IOED theories, it can be assumed that users of
XAl systems form their own theories about the global behavior of
the underlying ML model during interaction with the explanation
facility. These also overlap with the widespread HCI concept of
mental models. According to Norman, people form theories about
how objects and systems work to explain what they observe [39].
A mental model refers to a person’s understanding of how a sys-
tem works and how the person’s behavior affects it. People form
mental models for all kinds of systems including objects, people,
and services. The respective mental model is adjusted with every
interaction (e.g., exposure to an XAl explanation) and helps the
person to reflect on their belief about the system (e.g., the ML model
behavior) [39].

Little research has been published on a potential IOED in the
context of XAI or IS. Some researchers speculated that an IOED
may be at play when users deal with explanations from XAI sys-
tems [14, 35, 54]. Collaris et al. observed during their XAl evaluation
that their users did not question the validity of local explanations,
even when provoked to do so [14]. Sokol and Flach call for an
XAl validation protocol that addresses the IOED [54]. Kaur et al.
observed that even data scientists and ML engineers took visual
explanations of interpretability tools at face value and missed to
effectively use them to uncover data or model issues. The provided
XALI explanations encouraged the users to apply their heuristic
thinking instead of activating their analytical thinking [25]. Even
though the IOED itself received little attention in the context of
intelligent systems and XAlI, there is prior research on cognitive
biases of explanations from intelligent systems investigating au-
tomation [9, 31, 40, 49, 52], anchoring [19, 27, 57], framing [26], and
confirmation biases [23, 55]. A cognitive bias related to the IOED is
the Dunning-Kruger effect of illusory overconfidence, which states
that people with low competence at a given task tend to overesti-
mate their task performance [49]. It occurs only with individuals
with low competence while the IOED affects almost everyone.

3 RESEARCH QUESTIONS AND HYPOTHESES

Our work investigates the formation and the accuracy of operators’
understanding of the ML model behavior from Shapley based local
explanations. The overarching research question (ORQ) of our
work is to examine whether non-technical users of such XAI
systems are prone to an IOED. It is driven by the following
research questions:
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e RQ1: How robust is a self-reported global understanding
gained from local explanations when examined?

— H1: When participants are exposed to local explanations,
this leads to an increased perception of understanding
how the XAI system works (compared to no explanations)

— H2: The participants’ perception of understanding de-
creases after they have been examined for their under-
standing (IOED applies)

e RQ2: What do non-technical XAI users do to construct a
global understanding from local explanations?

We focus on Shapley based explanations because, despite their
vulnerability to adversarial attacks [53] and potential infidelity [20],
we consider them as relevant for end users for two reasons: (i) en-
abled by the mathematical properties of accuracy and consistency,
multiple local explanations can be combined to be contrastive and
counterfactual [43] as well as interactive [13], (ii) the SHAP frame-
work is widely used by XAI practitioners® and thus end users will
likely come across Shapley based explanations, (iii) model agnostic
approaches allow system designers to offer uniform explanation
interfaces even when the underlying ML models differ.

However, human cognition is biased towards simple explana-
tion [11]. Thus, if users’ expectations are not properly calibrated, we
hypothesize they may be prone to an IOED for two reasons: (i) Rep-
resentation/recovery confusion through abstraction of local insights:
User that are provided with local justifications of an XAI system
may perceive to understand why those explanations were chosen
by the system. However, under the influence of prior beliefs and
misconceptions about Al they may abstract their local insights into
higher-level anecdotal evidence that may not be consistent with
the predictions of other observations. End users may only become
aware of these inconsistencies when they recall their abstractions
to self-explain their understanding of the global ML model behav-
ior [22]. (ii) Label/mechanism confusion through subtle interactions:
Shapley explanations hide much of the model’s complex behavior
behind accessible feature value attributions [20]. Knowing what
features a model has access to and the effect of feature values for
some observations might results in the impression that the user
understands how the model comes to its predictions for all observa-
tions. However, especially in state-of-the-art black box ML models,
feature values may interact with one another in non-linear ways
and significantly influence the predictions for some observations
while having little effect on others.

4 SHAPTABLE

We outline the exemplary XAI system SHAPTable that serves as
the apparatus for our user studies. First, we describe the setting
and implementation details. Second, we provide details on the used
explanation-generation method and the rationale for our explana-
tion interface.

4.1 Scenario, Data Set, and ML Model

Scenario. Our scenario resembles a decision-support situation in
which the human decision-maker is accompanied by an intelligent

3compared with other open-source XAI frameworks (such as LIME, AIX360, or DALEX),
SHAP has the most engagements on GitHub
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'— Features that the Al has no access to —| I— Features that the Al has access to —‘ I— Al Prediction —‘

Loan Amount Loan Period Gender Married ¢ Depend. © Education Resident. Area * Default Risk
1504 17,500 § 180 Male Indicates how many dependents the Yes No Semiurban 1%
1635 7,300 § 180 | applicant provides for. No  Semiurban 1%
1225 25,800 % 360 Yes 0 No Semiurban 1%
1028 20,000 § 360 Male Yes 2 No Urban 16%
1656 16,400 § 360 No No No Semiurban 23%
1953 20,000 § 360 Male Yes. 1 Yes. No No Semiurban 27%
2422 15200 ¢ 360 No 1 No No Semiurban 39%
1925 9,900 300 Female No 0 Yes Yes No Semiurban 44%
1870 15,500 $ 36 Female No Semiurban 46%
For this loan request, Depend.=3+
1536 60,000 § 180 Yes 3+ decreases the average prediction by Semiurban 73%
2440 9,000% 180 Male 7 percentage pointss). Rural 3%
2068 13,000 $ 360 No Yes - Rural 78%
2500 7,000 $ 180 3+ - - Urban 90%
2288 4,500 $ 180 2 - Urban 94%
2113 14,600 § 360 Female No 3+ No - Urban 97%
1050 11,200 § 360 Yes 2 No - Rural 99%

# Loan Amount Loan Period Gender Married

Fem = No #

Depend.

Education SelfEmpl. Credit Hist. Resident. Area Default Risk
No % No % Yes : Urban s 97% E]

Figure 1: Overview of the explanation interface. Participants were presented a representative sample of 16 loan requests and
their respective default risk prediction. Feature values of our ML model were shaded depending on their their Shapley values.

and interpretable system. Following [56], we take an XAI operator
perspective in a loan application scenario. In such a scenario, the
operating user of the XAI system is centered between the developer
of the system and a decision-subject individual affected by the deci-
sion. We put our study participants in the shoes of a private lender
on a fictional crowd lending platform?. Participants can see demo-
graphic information, loan details, and credit history of individuals
that request a loan on the platform. Each request is accompanied
by an "Al-based intelligent prediction" of the default risk, i.e., the
probability that the borrower fails to service a loan installment
some time during the loan period. The prediction is introduced
as an "Al-based" feature that is based on machine learning from
historic cases. As part of the scenario, participant evaluated a novel
feature that explains the default risk prediction for each lending
request through Shapley explanations. People utilize explanations
for learning [32]. Thus, participants were instructed to give feed-
back to the platform if the provided explanation facility supports
them in learning about the behavior of the default risk prediction
feature (operator interpretability [56]).

4a platform that facilitates the matchmaking between private lenders and borrowers
over the internet
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Dataset. We chose a tabular data set for our user studies as many
ML models deployed in practice build on this type of data. This
applies especially to regulated domains such as healthcare, finance,
and public services [5, 30]. Tabular data is often characterized by
individually meaningful features and, unlike images or time series,
lacks strong temporal or spatial structures [30]. Thus, each feature
represents a distinct concept of a person’s conceptual knowledge
(e.g., gender, education, credit history). We built on the Loan Pre-
diction® data set that is widely used for educational purposes. It
consists of 614 loan requests with 13 columns. We relabeled two
columns of the data set to be consistent with our scenario®.

ML Model. We calculated the default risk prediction via a random
forest classifier (RFC). RFCs are widely used in many real-world con-
texts because of their practicability. They often yield competitive
performances even without extensive ML engineering efforts. Es-
pecially for tabular data, tree-based models often outperform other
black-box models [30]. However, random forests are considered
black-box ML models. They consist of many decision trees. Each
tree is trained on a random selection of features. The classifications

Shttps://datahack.analyticsvidhya.com/contest/practice-problem-loan-prediction-iii/
or https://www.kaggle.com/altruistdelhite04/loan-prediction-problem-dataset

Owe re-framed the Loan_Status column to represent the default risk and the
Credit_History column to represent a negative item on a credit report.
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of individual trees are then combined into a final classification by a
majority vote. Although individual decision trees are interpretable,
it is unfeasible to understand the prediction behavior of their ensem-
ble. To limit the cognitive load for participants we chose to train our
model on a subset of columns. We used only the seven categorical
columns (5 binary, 1 ternary, and 1 with four possible values). We
trained a binary RFC with 100 decision trees using a 80:20 split for
the training and validation sets. The split was stratified to have the
same distribution of binary predictions between training and test
sets. Other than that, we used the default hyperparameters of the
scikit-learn package. The accuracy of the predicted default risk on
the validation set was 0.83.

4.2 Explanation Facility

Explanation-generating Method. To algorithmically generate ex-
planations for the default risk predictions, we build on the widely
used post-hoc explanation framework SHAP (SHapley Additive ex-
Planations) [30]. SHAP belongs to the class of additive feature at-
tribution methods where the explanation is represented as a linear
function of feature contributions towards an ML prediction. It trains
a surrogate model by slightly changing the inputs and testing the
impact on the model outputs. The SHAP framework unifies the
ideas of other feature attribution methods (such as LIME [44]) with
Shapley values, which originate from game theory [51]. Applying
Shapley values to XAI, an ML prediction can be modelled as a coop-
erative game between the features to produce a prediction. As the
features may influence one another through interactions, the game
is a cooperative one. With Shapley values we can assign a unique
and fair contribution to each feature over all possible coalitions of
features despite the presence of interactions. SHAP assigns a num-
ber for each input feature (the Shapley value) that is guaranteed
to be consistent under mathematical guarantees: (i) local accuracy
ensures that the sum of the feature contributions matches the ML
prediction of an instance, (ii) missingness ensures that feature val-
ues that have no effect on the model prediction (e.g., because they
are constant) have a Shapley value of zero, (iii) consistency ensures
that changes in the contribution of an individual feature value in
the black-box model result in a consistent change of the respective
Shapley value. Consistency is interesting because it allows users
to compare contributions between multiple observations, groups
of observations, or even models. All contributions are relative to
the expected value. The expected value equals the percentage of de-
faulted loan requests in the data set (32% for our data set). As such,
it serves as a base value for all requests. The Shapley value for a fea-
ture value describes the direction and strength of the contribution
relative to the expected value.

Explanation Interface. The SHAP framework provides information-
dense visualizations of local and global feature attributions out-
of-the-box. However, prior research showed that even ML experts
face challenges to interpret them correctly without assistance [25].
Thus, for our explanation facility, we borrowed ideas from these
visualizations but worked with the raw Shapley values. We assumed
that most explanation-seeking end users in the decision-support
context are familiar with spreadsheets. Thus, our explanation inter-
face resembles a spreadsheet-like user interface that is overlaid with
a heat map of Shapley values. We show 16 loan requests from the
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data set with their respective default risk prediction in percentage
(i.e., 0%=no risk and 100%=highest risk of defaulting). The initial
loan requests were sampled according to the confusion matrix to
represent a representative range of default risk probabilities.” Each
loan request is depicted as a table row. For each request, we show its
column values in a separate cell. For columns that were used for the
default risk prediction, the corresponding cell is shaded depending
on their effect on the prediction. We chose a heatmap-like represen-
tation as it supports counterfactual reasoning through comparison
of loan requests [58]. The direction and strength of the effect is
given by the Shapley value. A red shading indicates a positive effect
(increases the expected value) while a blue one a negative effect
(decreases the expected value) on the ML prediction. The opacity
of the shading indicates the strength of the effect. Details about the
strength are provided in a tooltip when the user hovers the cell. For
example in Figure 1, the fact that request #1536 has 3+ dependents
decreases the expected value of 32% by 7 percentage points. We
reviewed research on explanation design approaches that foster
user understanding. In general, the design of explanation facilities
should follow the guidelines of contrastive, selective, and interactive
explanations [32]. Our explanation style is similar to the input influ-
ence explanations in [6] where each feature value is accompanied by
the direction and strength of its effect on the prediction. Prior work
reported that providing users with interactive explanation facilities
improved their subjective and objective model understanding [12].
These mechanisms informed the designs of our explanation facili-
ties as follows: (i) contrastive: we show multiple instances and their
respective explanations at once so that users can contrast a local
explanation with local explanations of other instances. Further,
users can sort the data by columns to contrast instances with equal
values to spot regularities; (ii) selective: we excluded neglectable
feature values with absolute effects of less than one percentage
point from the explanation; (iii) interactivity: following the call for
more interactive explanation interfaces that "allow users to explore
the system’s behavior freely” [1], we provided participants with two
basic interactive functionalities: (a) to resample a different set of 16
loan requests to get a more holistic understanding of the ML model
behavior® and (b) to simulate a prediction for a hypothetical loan
request with user-defined features values [12]. Figure 1 shows the
final explanation interface from a participant’s perspective.

5 METHODS

We pre-tested and iterated our scenario, apparatus, and procedure
with 10 people to ensure they are comprehensible from a partici-
pant perspective. We applied a mixed methods approach. First, we
moderated 40 participants through the study (6 of them followed a
think aloud protocol to not bind cognitive capacities). Second, we
conducted an unmoderated study with 107 crowd workers. Follow-
ing [45], we describe our participants as educated lay users of XAIL
We used a combination of moderated and unmoderated studies
to account for dual process model of human reasoning [24, 58].
For the moderated study, the presence of a moderator motivated

74 requests for the 4 different combinations of predicted and actual values, i.e., true
positives, false positives, true negatives, and false negatives
8again sampled according to the confusion matrix
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participants to invest more resources and apply high-effort ratio-
nal thinking throughout the procedure (system 2 thinking). There,
we used a slightly shorter procedure to qualitatively investigate
what users do to form their mental model of the global ML model
behavior. In contrast in the unmoderated study, we assumed partic-
ipants to be guided more by low-effort heuristic thinking (system 1
thinking).

5.1 Participants

5.1.1 Moderated Study (N=40). We recruited 40 participants via
our internal university mailing list. All participants were supervised
by a moderator during the study to ensure participants understand
and follow the instructions. We randomly selected a subset of 6
participants to additionally follow a think aloud protocol. We used
a subset as the think aloud puts additional cognitive load on the
participants and might "impact how people perform on cognitively-
demanding tasks" [8]. 17 participants self-identified themselves as
female and 23 as male. Of these, at the time of the study 65% aged
18-24 years, 32.5% aged 25-34 years and 2.5% in the age of 35-44
years. Among the participants, 20 (50%) hold a high school degree,
10 (25%) an undergraduate degree, 8 (20%) a graduate degree, while
2 had other educational backgrounds. On average, participants took
37.8 minutes (SD=10.1 minutes) to complete the study and were
compensated 10 EUR per completion. 29 (72.5%) participants dis-
agreed and rather disagreed to have practical knowledge of Al (e.g.
application of statistical learning methods or training of machine
learning models), 8 agreed or rather agreed, while 3 were undecided.
29 (72.5%) agreed to or rather agreed to frequently explain complex
things to other people (e.g. seminar contents to fellow students or
smartphone features to friends), 11 were undecided. 19 (47.5%) par-
ticipants stated they use spreadsheet applications at least weekly,
while 21 used them once a month or less.

5.1.2  Unmoderated Study (N=107). We recruited participants via
the crowd sourcing platform Prolific. The posting included a short
description about the study, the expected duration, and the compen-
sation. We only recruited workers with a 100% approval rate and at
least 10 previous submissions. Further, we required all participants
to hold at least an undergraduate degree. 116 participants started the
study of which 8 only partly finished it. We screened the answers of
all completed sessions and excluded 1 participant due to low quality
verbalization that was most likely generated by a bot. Participants’
demographics were quite diverse. 48 participants self-identified
themselves as female and 59 as male. Participants were located in
the United Kingdom (42), Portugal (13), the United States (10), and
other countries (42). At the time of the study, 22.5% of participants
were aged 18-24 years, 49.5% aged 25-34 years, 18.4% aged 35-44
years, and 9.6% 45+ years. Among the participants, 57.2% stated
they hold an undergraduate degree, 35.9% a graduate degree, 2.9% a
PhD, and 3.8% stated other as highest educational level. On average,
participants took 28.5 minutes (SD=15.8 minutes) to complete the
study and were compensated £3.75 per completion (=£7.09/hour). 68
(63.5%) participants disagreed and rather disagreed to have practical
knowledge of Al, 25 agreed or rather agreed, while 14 were unde-
cided. 81 (75.6%) agreed to or rather agreed to frequently explain
complex things to other people, 12 (11.2%) were undecided, and 14
disagreed or rather disagreed (13.2%). 65 (60.7%) participants stated
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they use spreadsheet applications at least weekly, while 42 used
them once a month or less.

5.2 Procedure

The goal of our user studies is to investigate if an IOED can be
observed when end users are exposed to Shapley explanations of
an ML model. For this purpose, we query the participants’ model
comprehension through different tasks and repeatedly measure
their self-assessment of perceived understanding using a uniform
scale. Our procedure was inspired by the study designs of the initial
IOED studies [46] but adjusted to the XAI context. Participants
used the apparatus described in section 4 to complete the five tasks
illustrated in Figure 2. The moderated user studies were conducted
via video conferencing to observe how users interact with the
apparatus. We describe the stages below:

Introduction. After consenting with the participation and data
processing information, participants reported their demographics
(i.e., age, gender, and educational background), their frequency of
use of spreadsheet applications, their frequency of giving explana-
tions about complex topics to others, and their level of practical
experience in the field of Al (the last three questions were illus-
trated with example statements and rated on 5-point Likert scales).
Next, we explained in multiple steps the crowdlending scenario, the
"Al-enabled prediction” of the default risk, the explanation facility,
and the scale self-rating scales. In the moderated study, participants
were encouraged to ask clarifying questions to the moderator.

Task 1: Exploration of Black Box (only used in unmoderated study).
Participants were presented with a table of 16 observations. For
each observation the ML prediction was presented without any
explanation. Participants were asked to spend 5 minutes and "try to
understand how the Al forms its default risk predictions”. Afterwards,
they were asked to rate their perceived understanding. To give
them an indication, a timer showed how much time they already
spent on this task. We used this task in the unmoderated study to
ensure that our explanation interface was perceived to improve
understanding of participants.

Task 2: Exploration of Explanation Facility. Next, we provided
participants with the explanation facility presented in section 4.2.
We asked them to freely explore the decision-making behavior of
the prediction model for no longer than 10 minutes and re-rate
their gained understanding. To give them an indication, a timer
showed how much time they already spend on this task.

Task 3: Verbalization of Understanding. According to psychologi-
cal research deliberate self-explanation results in a more realistic as-
sessment of a user’s own understanding and may potentially refine
it [22, 35]. It does not matter whether the self-explanation is self-
motivated or prompted by an instructor [22]. Further, retrospection
techniques such as (self)-explanation, can provide rich information
about a user’s mental model [22]. Thus, as a next step, participants
had to write a detailed explanation of their global understanding of
the ML model’s prediction behavior. Their explanation was to be
between 50 and 100 words long and address three guiding questions.
After the participants verbalized their understanding, they re-rated
their perceived understanding.
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Figure 2: Stages of the procedure in the moderated and unmoderated study. First, we observe in task 1 (only in unmoderated
study) and task 2 what end users do to form their mental models of the global ML model behavior. Second, we assess in tasks
3 to 5 what end users think they know about the behavior of an ML model in relation to what they actually know. Through
multiple tests of comprehension, we assess how stable their self-reported understanding is if users need to put it into action.

Task 4: Test of Understanding. For the diagnostic questions, we
based our questions on prediction tasks, where the participants had
to simulate the prediction of the ML model for given sets of features.
Afterwards, participants re-rated their perceived understanding.

Task 5: Presentation of Test Results. Rozenblit and Keil confronted
their participants after the diagnostic questions with an expert
statement [46]. In our case, we showed the participant’s answers
and contrasted them with the default risks predicted by the ML
model. Further, we showed the Shapley explanations for each ob-
servation. We summarized their results as "You predicted <n> out
of 8 loan requests like the AI". This allowed the participants with
incorrect predictions to re-examine the ML model behavior. After-
wards, participants re-rated their perceived understanding. Each
session ended with a short questionnaire.

5.3 Dependent Variables

Self-Rating of Perceived Understanding. We used a uniform 7-
point Likert scale that measures each participants’ perceived under-
standing at multiple points throughout the study. We adopted the
scale from the original IOED experiments and fitted it to the XAI
context. To calibrate participants’ usage of the scale, we demon-
strated the scale during the introduction and provided explanations
for levels 1, 4, and 7. On level 1, respondents think they can name
features that the ML model has access to and what it predicts.
On level 4, they think they understand the relative importance of
individual features. At the highest level, level 7, they think they
understand the absolute importance of individual feature values as
well as possible interactions between them.

Objective Understanding. Following [12] and [59], a user "under-
stands" an ML model "if the human can see what attributes cause
the algorithm’s actions and can predict how changes in the situation
can lead to alternative algorithm decisions". We built upon two ques-
tion types from the explanation evaluation framework proposed
by [12] to measure participants’ objective model understanding.
In total, we asked 8 questions (6x forward simulation, 2x relative
simulation). For the first question type, we presented them with
an observation and asked "What do you think will the ML predict?"
(forward simulation task). We selected the observations according
to the default risk predicted by the ML model: two at the extremes
(0%, 100%), two with low risks (11%, 29%) and two with high risks
(68%, 69%). We provided participant with five answer options of pre-
diction ranges (from 0-20% to 81-100%). Following [22], participants
had to rate their confidence for each prediction on a 5-point Likert

scale (1=very unconfident to 5=very confident). As a second question
type, we asked them to select the loan request with the highest
(lowest in the second question) predicted default risk from a set
of three given requests (relative simulation task). We offered three
loan applications that differed in three (five in the second question)
of the seven features that had on average a medium to low effect.
The ML prediction of the correct option differed by at least 30 (66
in the second question) percentage points from the other options.
Again, they had to rate their confidence in their simulation. We
counted the number of correct answers and the mean deviation
from the correct answer.

Demographics, Literacy, and Interaction. We asked participants
on their age, gender, and level of education. Subject to participants’
approval, we screen recorded their interactions in the moderated
study. Further, we measured how much time participants spent
at each step and logged their interactions with the explanation
facilities (e.g., number of resamples and simulations). We used those
measures as additional levels of control for analysis.

5.4 Design and Analysis

Both studies used a within-subjects design. Following the analysis
in the original IOED experiments, we analyzed the differences in
self-ratings through a repeated measures ANOVA [46]. None of the
self-ratings of understanding were normally distributed. As a paired
Student’s t-test is not valid in such a case, we used a Wilcoxon
signed-rank (WSR) test to analyze the planned linear contrasts for
T1<T2, T3<T2, T4<T3, T5<T4 and T5<T2. If not stated otherwise,
we based our significance at @=.05.

6 RESULTS
6.1 Robustness of Perceived Understanding

To answer RQ1, we present the distribution of participants’ self-
ratings throughout the moderated and unmoderated studies (see
Figure 3). For comparison with the original IOED studies, the dif-
ferences in the reported understandings were significant across the
stages (repeated measures ANOVA: F(4,424)=28.260, p<.001, r]f,:.Zl)

Shapley Explanations Increased Self-Ratings (T1<T2). In the un-
moderated online study, participants reported on average rather
high understanding levels even without explanations of the ML
model (median=4, mean=4.33). 53 participants increased their un-
derstanding by at least one level after being exposed to Shapley
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Figure 3: (left) The means of self-ratings throughout the procedure for the moderated and unmoderated studies. In the moder-
ated setting, we observed two large drops, one after the verbalization in T3 and another after the presentation of test results in
T5. In the unmoderated setting, the drops remained insignificant until the last stage. (right) The average change in self-ratings
between T4 and T5. After the participants saw their test results, most of them downgraded their perceived understandings.

Table 1: The left side shows the mean and standard deviation of participants’ self-ratings of understanding in the moderated
and unmoderated studies. The right side presents the number of participants that decreased (increased for T1<T2) their self-
rating by at least one level (#) and the results of our hypotheses tests using non-parametric Wilcoxon signed-rank test (w). The
significance levels are reported as following: * p<.05; ** p<.01; *** p<.001

| TI T2 T3 T4 T5 | T1<T2 T3<T2 T4<T3 T5<T4 T5<T2
Moderated Study | Mean 4.60 395 410 373 | # 19 7 18 25
(N = 40) SD 1.06 121 1.03 128 | w 6.5"* 150.5 66.0** 76.0"**
Unmoderated Study | Mean 433 475 4.61 4.63 3.64 | # 53 27 20 72 77
(N = 107) SD 130 133 125 112 138 | w 20555 408.5 384.0 358.0"**  564.0"**

explanations. Across all participants, the average reported under-
standing increased significantly (median=5, mean=4.75, w=2055.5,
p<.01). Thus, H1 was supported and our explanation interfaces was
at first perceived as valuable to participants.

Examination Decreased Participants’ Self-Ratings (T5<T2). Most
participants in both studies significantly (p<.001) decreased their
perception of understanding over the course of the procedure: 63%
of participants in the moderated study and 72% in the unmoderated.
Thus, H2 stating that participants fell for an IOED was supported.
Below, we report the changes in the self-ratings at individual stages
of the procedure. Verbalization (T3<T2): In the original IOED studies,
deliberate self-explanations decreased the perceived understand-
ing. In our moderated studies, 48% of participants decreased their
rating at this stage. The drop was significant. In the unmoderated
online study, we observed a drop for only 25%. The drop was not
significant. Test of Understanding (T4<T3): Participants remained
confident in their understanding during the prediction tasks. Only,
19% decreased their rating in the unmoderated setting, compared
to 18% in the moderated study. The drops were not significant. Con-
trary to our expectations, the prediction tasks increased the per-
ceived understanding in the moderated study. Test Results (T5<T4):
Confronting participants with their results of the prediction tasks
caused a significant drop in understanding in both studies. In the
unmoderated study, 67% decrease their understanding compared to
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the previous stage. In the moderated study, 45% did so. The drops
in both studies were significant.

Moderated Participants Devoted More Resources. Participants in
the moderated setting spent significantly more time on the study
tasks than in the unmoderated setting. In the moderated study, par-
ticipants spent on average 9.8 minutes (SD=4.9) exploring SHAP-
Table, 10.9 minutes verbalizing their understanding (SD=4.2), and
7.1 minutes solving the prediction tasks (SD=3.0). In contrast in
the unmoderated study, they spent only 3.8 minutes (SD=2.6), 6.7
minutes (SD=4.9), and 3.3 minutes (SD=1.9).

Moderated Participants Performed Better in Test of Understanding.
We analyzed the number of correct predictions and the mean error
of participants’ predictions. The mean error describes the average
number of bins between the participant prediction and the Al pre-
diction over all questions (e.g., error between "0-20%" and "41-60%"
is 2). On average, participants answered 2.85 (SD=1.05) questions
correctly in the moderated and 2.66 (SD=1.20) questions in the un-
moderated study. Both are significantly better than a random guess
(expected mean) that would result in 1.86 correct questions. Further,
on average, the mean error of participants in the moderated study
(1.07, SD=0.29) was significantly lower compared to participants
in the unmoderated study (1.22, SD=0.37). Both are significantly
better than a random guess (expected mean) that would result in a
mean error of 1.7 (see Figure 4).
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Figure 4: (left) The proportion of participants by their average distance to the correct answer (mean error). Participants in the
moderated study were significantly closer to the correct answers than their unmoderated counterparts. The average confidence
(top right) and share of correct answers (bottom right) for each prediction question in T4. On average, participants in the
unmoderated study were more confident throughout the procedure.

6.2 How Users Formed Their Understanding

To answer RQ2, we report observations gained from the 6 think
aloud protocols. We revisited the screen and audio recordings and
openly coded recurrent themes during participants’ interaction
with SHAPTable. Orientation: Participants used the coloring in
SHAPTable to gain a first overview. They visually looked for in-
consistencies in the heatmap. To calibrate their understanding of
the coloring and the associated feature contributions, participant
TA1 studied multiple tooltips. TA2 looked for "global heuristics that
always apply" by shifting the attention from one feature to another
(column-wise comparison). TA4 used a combination of sorting and
rapidly resampling "to look for [visual] patterns". Soon he stated
that “credit history correlates with the prediction without dependen-
cies". After some resamples, the participant spotted an outlier that
violated this hypothesis. TA1 identified an outlier in the heatmap
where an effect was unusually strong. By this the participant real-
ized that there are interactions in place. This discovery served as a
starting point for deeper analysis. Analysis: Single outliers guided
the reasoning process of most participants. After they visually spot-
ted one in the heatmap, they often replicated an observation in the
simulation feature to "live edit" single feature values to understand
their contributions. Further, participants often performed pairwise
comparisons between two observations to understand differences.
Abstraction: All participants realized that interactions are present,
but often over- or underestimated their impact. If they stumbled
upon effects that violated their prior beliefs (e.g., that fewer de-
pendents decrease the default risk), they searched for anecdotal
memory aids for what they saw. Sometimes these were built from
fragmented insights consisting of few features (e.g. "self-employed in
rural areas are high risk. That does not make sense.") and missed that
another feature (e.g. gender) had an impact too. Some participants
stated it was difficult for them to assess when they should general-
ize from outliers and when not. Also, some participants assumed
monotonic features effects (e.g., the effects of 0 vs. 2 dependents).
If they found cases that violated this assumption, they judged the
Al behavior "as illogical". During verbalization, some participants
recovered the effects of feature values from their memory aids

and from the colors they remembered. Additional functionali-
ties: Some participants wished for aggregated "scenarios” consisting
of similar observations (e.g. combinations of feature values that
have consistent effects) and examples that illustrate interactions
between features for easier orientation. TA1 and TA2 wished for
an improved sorting feature that allows sorting by SHAP values to
group observations with similar effects close to each other to iden-
tify regularities. TA1 wished for multiple rows in the simulation
feature to simultaneously explore multiple combinations at once.
Further, he wished to duplicate one observation into the simulation
feature for improved usability. Reflection: Participants perceived
the study procedure as valuable. For example, participant TA1 con-
sidered the study procedure as a feedback loop that helped "to learn
from mistakes and expose my misconceptions [about the ML model
behavior]". TA4 would have liked to complete the cycle multiple
times to refine their insights: "If I were to do this task again, I would
gain a much better understanding."

7 DISCUSSION

With a moderated and unmoderated study, we examined if and
why an illusion of explanatory depth (IOED) emerges when non-
technical users of XAl are exposed to local Shapley explanations.
Our results indicate that participants overrated their understanding
of the ML model behavior after freely exploring it with SHAPTable.
On average, participants in both studies significantly decreased
their perceived understanding throughout the procedure. What dif-
fered were the stages at which the drops occurred. In the moderated
setting, we observed two large drops. One after the self-explanation
stage (48% decreased their self-rating by at least one level) and an-
other after the presentation of test results (45%). In the unmoderated
setting, the self-ratings of participants remained mostly unchanged
until the last stage. After they had seen and analyzed their test
results, 67% decreased their self-rating. The IOED was more pro-
nounced for participants in the unmoderated study. They spend
significantly less time at each stage and had a significantly nar-
rower objective understanding according to our prediction tasks.
Still, on average they were more confident about the correctness
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of their prediction questions. The magnitude in the decrease in
self-ratings in the last stage depended on the number of correct
predictions and was stronger in the unmoderated setting. It seems
that participants in the unmoderated study expected more correct
answers of themselves. While moderated participants with 4 out of
8 correct answers refrained from downgrades, unmoderated partic-
ipants downgraded it even with 5 out of 8 correct questions. We
interpret that participants in the unmoderated setting were guided
by heuristic thinking and did not realize the incompleteness of their
understandings until they saw their test results. We believe, they
were less aware of irregularities of feature values effects and feature
interactions than participants in the moderated setting. Overall, 85%
of participants in the moderated and 69% in the unmoderated study
agreed or agreed completely that the study procedure "helped me
to better assess my own understanding of the Al prediction behavior".

Humans will most likely never be able to correctly predict the
behavior of complex non-linear ML models. Our results highlight
the importance of XAI systems to not only provide non-technical
users with static justifications, but also guiding user interactions
that support them in building an accurate mental model - even
if this means exposing complexities and irregularities of the ML
model behavior. Otherwise, providing them with seemingly simple
local justifications of complex ML behavior (as with Shapley values)
may leave them with an "easiness effect” [50]. Below we discuss
implications for the design of XAl systems derived from our findings
and outline its limitations.

Calibrating Understanding as Part of XAI Interaction: An effec-
tive XAI system need to capture a wrong or incomplete mental
model of the user and adjust its explanations accordingly [48]. An
implication for XAI designers is that calibrating user perception
of understanding through a structured procedure, as outlined in
our studies, might expose that the system is more complex than it
seems at first. For example, Cai et al. [10] described the onboarding
phase to an XAI system as a key phase that forms users’ initial
impressions of an XAI system. It is during the onboarding that
users form their mental model of the capabilities and limitations
of the XAI system. Deliberate self-explanation has been proposed
as being an effective way to calibrate XAl understanding [22, 35].
However, our results indicate this is only the case if users are will-
ing to devote the required cognitive capacities. Buccinca et al. [8]
describe cognitive forcing strategies, such as forcing users to form
an own prediction before being confronted with the Al prediction.
Our multi-stage procedure extends this idea in a playful way. Future
work could explore how to leverage the individual results of such
procedures to automatically learn about the mental model of the
user and personalize explanations during the interaction with the
XAL

Forming (Global) Rationales from Local Explanations: Like [3],
our results indicate that participants had difficulties in abstracting
their local insights to a global understanding. They understood the
justifications provided for individual observations but struggled to
assess how representative they were for the average model behavior.
The properties of SHAP enable novel ways for interactivity [13, 43]
to provide selective, contrastive, and interactive explanations [32]
that might bridge the gap between local and global understand-
ing [42]. Future research could explore how to condense multiple
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local explanations into accessible higher order explanations to con-
textualize them. Such novel ways of interactivity could support
the interpretation strategies applied by participants in our studies.
This resonates with the concept of rationales [15, 17]. These aim to
provide end users with contextually appropriate reasons for an ML
prediction in natural language.

Limitations. There are several limitations to our studies. First,
we examined a simplified extrinsic [38] scenario around a tabular
data set. Thus, the external validity beyond this scenario (i.e., dif-
ferent decision-making situation) and type of data (i.e., visual data
or natural language data) is uncertain. Second, the emergence and
strength of an IOED might highly depend on the target audience.
Physicians and risk managers may have very different reasoning
strategies than the educated lay users in our studies. Future work
could investigate different extrinsic as well as intrinsic [38] scenar-
ios with varying ML model complexities or XAI methods. Still, we
are confident that our insights highlight the importance of keeping
cognitive biases in mind when designing and deploying XAI

8 CONCLUSION

With XAI systems expected to be deployed deeper into organiza-
tions and society, it is important to understand how non-technical
users of XAI consume explanations. In this work, we examined
how non-technical XAI users form their mental model of the global
ML behavior. Our results indicate that users overestimate the un-
derstanding they gain because of the illusion of explanatory depth.
Further, we describe reasoning and interaction strategies that users
applied. Future work could investigate how these strategies can be
included into interactive explanation facilities to make them aware
of potential fallacies and to support their reasoning. We offer start-
ing points for XAI designers on how to support non-technical users
to form a more appropriate mental model of ML model behaviors.
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ABSTRACT

Machine learning (ML) techniques have successfully been applied
to many complex domains. Yet, applying it to UX research (UXR) re-
ceived little academic attention so far. To better understand how UX
practitioners envision the synergies between empathy-focused UX
work and data-driven ML techniques, we surveyed 49 practitioners
experienced in UX, ML, or both and conducted 13 semi-structured
interviews with UX experts. We derived an inventory of ML’s im-
pact on current UXR activities and practitioners’ predictions about
its potentials. We learned that ML methods may help to automate
mundane tasks, complement decisions with data-driven insights,
and enrich UXR with insights from users’ emotional worlds. Chal-
lenges may arise from a potential obligation to utilize data and a
more restrictive access to user data. We embed our insights into
recent academic work on ML for UXR and discuss automated UX
evaluation as a promising use case for future research.
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1 INTRODUCTION

In recent years, many enterprises shifted their priorities from purely
focusing on efficient production and distribution to creating memo-
rable customer experiences. In this way, they hope to differentiate
themselves from competitors and establish a competitive edge. This
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shift towards an "experience economy” [33] made the user experience
(UX) a primary design goal. The term UX refers to "a person’s per-
ceptions and responses that result from the use or anticipated use of a
product, system, or service" [4]. UX provides a holistic perspective
and encompasses a person’s emotions, feelings, and thoughts that
may be formed before, during, or after the interaction [25, 35].

Building on this notion, the discipline of UX research (UXR) aims
to understand and design people’s experiences from end to end.
UXR has emerged as an interdisciplinary field with influences from
various disciplines such as cognitive science, psychology, and engi-
neering. Each discipline contributes different terminologies, meth-
ods, and technologies to it. UX researchers frequently utilize qualita-
tive methods, such as semi-structured interviews or surveys, while
data-driven quantitative approaches are currently still less com-
mon [32]. The rare use of data-driven approaches by UX researchers
is surprising, given the increasing data volumes in many contexts.
Especially bigger enterprises increasingly compete in a data-driven
environment and try to embrace the "age of analytics" [15].

Fueled by the availability of large data sets and affordable com-
puting resources, machine learning (ML) methods have successfully
been applied to complex problems in various domains. Historically,
most academic research on ML within the HCI community had a
technical focus on how to improve the interaction with systems (e.g.,
through adaptive interfaces) or develop new modes of interaction
(e.g., gesture and voice interfaces) [6]. In the opposite sense, HCI
academics have started to investigate how designers can enhance
the user experience of ML-powered intelligent systems ("human-
centered machine learning”) [11, 24] and how to address the distinct
challenges of human-AI interaction [1, 46] from a user-centric per-
spective. However, there is little academic discourse that takes a
UX practitioner-centric perspective and examines how ML methods
could be leveraged to enhance the UX activities themselves. This
lack of discourse may result from ML not yet being a standard
part of the UX design practice as no relevant design patterns or
prototyping tools have emerged yet [6]. Even if UX practitioners
had previous exposure to ML, they often miss opportunities to use
it in their design practice [45]. A review of HCI literature that em-
ploys ML observed that academics frequently resort to convenient
interaction and design choices [44]. Thus, there may be a lack of
awareness that the actual UX research and design processes may
also benefit from ML.

To better understand the perception in the field, we have focused
on practitioners to identify promising directions for the application
of ML to UXR. We followed a two-pronged approach consisting of
two independent studies to complement our insights from multiple
angles. We surveyed 49 practitioners from the fields of ML and UX.
Furthermore, we conducted 13 semi-structured interviews with
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UX practitioners who were educated or had experiences at the
intersection between UX and ML. Our work contributes to the HCI
research community in two ways: (1) We provide insights from
two studies on ML’s impact on current UX practices and ML’s
potentials for UXR. (2) We present data-driven UX evaluation using
ML as a promising direction for future research and link it to recent
academic work.

2 RELATED WORK
2.1 Terminology When using ML for UX

In the so-called "experience economy" [33] people use technology
not only to accomplish a given task (i.e., for its pragmatic quality),
but also to enjoy doing so (hedonic quality) [12]. The combination
of both qualities constitutes the user experience (UX), i.e., the overall
quality of a human’s interaction with an interactive system. The
field of UX covers an entire spectrum between the investigation to
find user problems worth being addressed (UX research) and the
creation of relevant interactions that provide a specific experience
(UX design) [20].

ML refers to "a set of methods that can automatically detect pat-
terns in data [...] to predict future data, or to perform other kinds of
decision making under uncertainty” [34]. ML methods have success-
fully been applied to complex problems in a variety of domains
such as spam detection, speech recognition, autonomous systems,
and games. From a technical perspective, ML is typically split into
supervised learning methods, which focus on predictions based on
labeled training data, unsupervised learning methods, which find
relationships in unlabeled data, and reinforcement learning, which
optimizes some notion of reward by interacting with an environ-
ment. Generative learning methods create new contents such as
texts or images. Approaching ML from a user-centered perspective,
Yang et al. distinguish four channels of how it might generate value
for users: inferring insights about an individual user, inferring in-
sights about the context and external world (e.g., time, place, or
social connections), inferring knowledge about how to optimize
some arbitrary metric, and enabling entirely new user capabilities
(utility) [44].

Combining the practices of UX and ML may yield positive effects
in both directions: On one hand, knowledge in many domains is
not only encapsulated in data, but also in the implicit expertise of
human domain-experts. UX practice plays a key role in designing
interfaces for those experts to effectively teach an ML model. In this
way, UX decisions may have an impact on the model performance
and robustness in the field (interactive machine learning) [7, 28]. On
the other side, conversational UI and other forms of intelligent user
interfaces offer new possibilities for UX design. Some observers
claim that ML might become the most important design element to
enhance user experiences by automatically personalizing systems
to users and contexts ("ML is the new UX") [47]. However, it has been
observed that UX practitioners face challenges in understanding the
data dependencies of ML and lack the tools to properly prototype
with it [6, 43, 47].

2.2 Using ML for UX Research

Our work focuses primarily on UX research side of the spectrum.
The goal of UXR is to systematically gather and analyze user data
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to understand a problem space and guide the entire design process.
It is primarily applied at the generative and evaluative stages of
the design process [9]. In the context of this paper, we subsume all
empirical activities conducted by practitioners along the UX design
spectrum as UXR. Building on the user-centered value channels of
ML, using ML for UXR broadly falls under the utility channel [44].
ML indirectly benefits users through an improved UX if UXR prac-
titioners can more effectively identify and validate user needs. A
structured literature review by Yang et al. revealed that there is
only little academic work at the intersection of UX and ML [44].
We found even less research that explicitly addresses ML for UXR.
However, we noticed that the number of relevant publications has
been increasing since 2015 and we expect that it will most likely
continue to do so as ML is gaining popularity in many contexts.
Below, we present some notable exceptions without claiming to be
exhaustive.

Unlike conventional UXR approaches, that primarily generate
new study data (e.g., through surveys or interviews), ML-based
approaches were primarily used to enrich already collected user
data. Most of this work analyzes textual user data. ML and natu-
ral language processing (NLP) methods have been used to semi-
automate the coding of interview transcripts [29] and to extract
UX-related problems from online review narratives through clas-
sification [13, 30, 40]. Data-driven learning approaches have also
been used to construct behavioral personas derived from user click-
streams [48] and social media [19], and automatic real-time evalua-
tion of usability and user experience via emotional logging systems
using video-captured facial expressions in lab contexts [37] and on
mobile devices [8], using acoustic data [36], and skin conductance
signals [27]. Furthermore, ML was used for selecting participants
for usability tests [10] and A/B tests [22].

2.3 Opposing Mindsets in UX and ML

Research on UX and ML originates from different academic com-
munities. The relationship between the academic communities of
HCI and AI has been discussed for decades. They tend to differ in
their views of how humans and computers should interact with
one another. These views can be roughly depicted along a spec-
trum of decreasing autonomy. While the HCI community values
simplicity and user control, the sub symbolic fraction of the AI com-
munity favors the power of data-driven inference and convenience
for the user. Winograd [42] argues that these views result from an
opposing understanding of people and how technology is created
for their benefit. He distinguishes two opposing approaches that
exist in both communities. The rationalistic approach tries to depict
the world through a quantitative or formal logic and tries to opti-
mize the interaction accordingly. In contrast, the design approach
acknowledges the complexities of the human world and tries to
account for the limitations of modeling it. Instead, this approach
focuses on the pragmatic interaction between a human and her or
his environment.

Similarly, the UX mindset emphasizes the exploration of the
desired future to be designed (design approach) while the ML
mindset settles to accurately predict the future given data from
the past (rationalistic approach) [43]. Opposing mindsets are also
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prevalent on the UX practitioners’ side. UX has become increas-
ingly cross-functional. Nowadays, many enterprises consider UX
an organization-wide priority. This blurs the disciplinary bound-
aries between designers, developers, and marketers. UX teams often
consist of experts from different disciplines [18]. UXR activities are
seldom bundled in one role but often shared across the UX team. In
practice, these teams must often cater to the needs of stakeholders
with different mindsets: Colleagues with a design focus appreciate
deep qualitative insights generated through user involvement. Ad-
ditionally, business counterparts request aggregated quantitative
insights to confirm their strategic decisions [26].

3 ONLINE SURVEY
3.1 Participants, Data Collection, and Analysis

With our survey, we intended to illuminate the impact of oppos-
ing mindsets on product development with a broader audience of
ML and UX professionals. We were specifically interested in the
differences between UX practitioners with and without experience
in ML. In the last part of the survey, we examined if and how UX
practitioners envision ML can be leveraged specifically for UXR
activities. We designed a non-probabilistic self-selected survey that
targets practitioners who have at least experience in either UX
or ML, ideally both (inclusion criteria). Because the boundaries
of UXR are fluid along the UX spectrum, we addressed a broader
audience of UX professionals. We also assumed that ML developers
are often involved at some stages of the UX process and could thus
contribute valuable perspectives. The questionnaire consisted of 6
closed questions with ordered response options, 16 closed questions
with unordered options and 4 open-ended questions. To understand
the practitioners’ contexts, we inquired about their demographics,
educational background, working position and experience, and
the qualitative and quantitative methods they apply regularly. Fur-
thermore, we asked them to express their interpretation of the
intersection between ML and UX and potential use cases for it. This
way, we implicitly examined whether they could imagine potentials
for UXR use cases. In the last part, we explicitly asked how they
assessed the applicability, feasibility, and value of applying ML to
different UXR use cases. The survey was designed according to the
guidelines of the local institutional review board (IRB).

We pre-tested the survey with a few subjects to eliminate po-
tential ambiguities and design flaws. We evaluated and incorpo-
rated their feedback into the final survey design. The survey was
distributed through UX- and ML-related mailing lists of academic
institutions in the United States and Germany as well as practitioner-
oriented social media groups. Survey participants were self-selected
and submitted their responses anonymously. As a reward for their
participation, all respondents had the chance to take part in a lottery
of three e-commerce vouchers worth 150 USD and two vouchers
worth 60 USD. The survey was open for 4 weeks. 124 participants
started the survey during this period. 19 participants did not meet
the inclusion criteria. 56 participants did not finish the survey. After
cleaning the data, we obtained 49 complete responses that met the
inclusion criteria.

Respondents’ demographics were quite diverse. 14 respondents
self-identified themselves as female and 35 as male. Respondents

A48

NordiCHI ’20, October 25-29, 2020, Tallinn, Estonia

are located in Germany (28), the United States (12) and other coun-
tries (9). 36 are working in the industry, 4 in academia, and 9 at
the intersection of both. Their average work experience was 5.8
years (min=1, max=23 years). 17 respondents self-reported they
have working experience only in UX (UX-only), 23 in UX and ML
(UX+ML), and 9 respondents only in ML (ML-only). Most of UX-only
respondents described their primary role as UX designer or UX con-
sultant, UX+ML respondents as product manager, UX designer or
UX researcher, and ML-only respondents as ML engineer/developer.
13 of the 17 UX-only respondents assessed their knowledge of ML as
basic (familiar with the term and basic concepts) while 16 of the 23
UX+ML respondents consider their knowledge of ML as advanced
(basic practical experiences) or expert-level (applied experience in
the field of ML). All ML-only respondents assessed their knowledge
as advanced or expert-level. In total, 3 respondents stated they are
unfamiliar with ML (all in UX-only).

3.2 Findings

Our analysis of responses indicates that UX practitioners with ML
experience have a different take on UX and more often leverage
quantitative methods as part of their daily work. Most of the re-
spondents believe that ML and UX will increasingly overlap in the
future. Lastly, respondents consider the data-driven evaluation of
UX as a promising use case for applying ML to UX research.

3.2.1 Current Project Involvement and Research Methods. Most
of the respondents are involved in the pre-deployment stages of
product development. There, the respondents work mainly on the
initial development (e.g., wireframing, low-fidelity prototyping) and
final development (e.g., high-fidelity prototyping, final product) of a
product. In our sample, we see a trend that UX-only respondents are
more often responsible for the conceptual stages such as product
vision development or needs research (88% for UX-only compared to
43% for UX+ML ). In contrast, UX respondents with ML experience
are slightly more often involved in the final development stages
(87% compared to 71%). Only half of the respondents (27 out of
49) are regularly involved in the evaluation of a product after its
launch.

Overall, 30 out of 49 (61%) respondents apply qualitative and
quantitative methods equally often as part of their daily work. How-
ever, this is only the case for 8 out of 17 (47%) UX-only respondents.
7 of them are mainly qualitative researchers. In contrast, 16 out of
23 UX+ML respondents (70%) apply both types of methods equally
often. This trend is also reflected in different opinions on how UX
should be approached. We asked participants about their agreement
using a 6-point Likert-scale (1=disagree very strongly, 6=agree very
strongly). 76% of UX-only respondents agree or agree strongly
that UX must be approached qualitatively (compared to 57% of
UX+ML respondents). Furthermore, 65% of UX-only respondents
agree or agree strongly that UX can be quantified (compared to 87%
of UX+ML respondents).

Respondents mostly agree on when to use qualitative meth-
ods. For qualitative methods, we observe large differences between
UX-only and UX+ML respondents. When talking to their project
stakeholders, half of the respondents argue with qualitative insights.
However, 61% of UX+ML respondents leverage quantitative data
to back their arguments while only 29% of UX-only respondents
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Figure 1: Respondents’ involvements in the product develop-
ment stages per group based on 49 respondents (17 UX-only,
23 UX+ML, and 9 ML-only). Each cell represents the percent-
age of respondents in the group that stated to be involved in
the respective stage.

do so. Similarly, we observe differences when choosing between
design options. Proportionally twice as many UX+ML respondents
leverage quantitative methods to back their decisions in addition to
qualitative methods (18% UX-only vs. 43% UX+ML). When it comes
to individual research methods, such as semi-structured interviews
or questionnaires, we see roughly equally often usage. Yet, we see a
difference in leveraging user log data and online feedback. 35% and
41% of UX-only respondents apply these methods in at least half of
their projects, respectively (compared to 74% and 74% of UX+ML
respondents, respectively).

3.22 ML and UX Are Expected to Overlap in the Future. Respon-
dents were asked to assess their current perception of the interplay
between ML and UX, and how they predict it will evolve in the
future. Assessing the status quo, only 9 respondents perceive ML
and UX to overlap to some or great extent. However, 23 expect ML
and UX to overlap at least to some extent in the future. In total,
35 out of 49 respondents think that the interplay between both
disciplines will increase in the future. None of the respondents are
expecting that the disciplines will drift apart (see Figure 2).

Next, we asked respondents to describe the perceived interplay
in their words. We asked them to illustrate it based on a promising
scenario from their daily work. We aimed to examine their percep-
tion of applying ML to UXR without directly asking them about
it. We grouped the mentioned scenarios by use case: 19 respon-
dents mentioned use cases that aim to improve the UX of products
for users through ML features, 17 mentioned use cases that en-
hance UX research and design activities, 11 mentioned use cases
about improving the UX of developing ML models, and 8 mentioned
miscellaneous use cases (some respondents described multiple use
cases). The UX research and design use cases included the use of
ML to reveal user insights (6 mentions; e.g., trends in user behavior,
analysis of user reactions, identifying plots in user study results),
to evaluate the UX of products (6 mentions; e.g., automated mea-
surement of UX, predicting the UX of new users, continuous UX

Chromik et al.

monitoring) and to augment the creation of UX artifacts (5 mentions;
e.g., producing variations of interaction flows, automating standard
design tasks, informing design with historical data).

3.2.3 Leveraging ML for UX Research. Since we were interested in
the opportunities for applying ML to UXR, we subsequently asked
all participants about activities and use cases that are specifically
related to UXR. We asked them to assess the potential per use case
taking applicability, feasibility, and value into account. Respondents
consider applying ML to yield insights from log and time series
data, to remotely track user behavior over time, and user modeling
as promising fields for future exploration (see Figure 3).

Furthermore, we asked which types of ML they had in mind
when assessing the use cases: (1) prediction of an outcome based
on the analysis of given data, (2) detection of patterns within struc-
tured or unstructured data, (3) generation of new outcomes or data,
or (4) other. Most respondents think of scenarios for pattern de-
tection and outcome prediction. UX-only respondents are more
optimistic about the potentials of generative learning approaches.
41% of UX-only respondents consider them feasible and valuable. In
contrast, UX+ML (13%) and ML-only (11%) respondents are much
more conservative.

Next, we questioned for which stages of the product develop-
ment process they perceive ML to be well-suited. We provided them
with typical example activities for each stage. Respondents think
that ML is especially applicable to later stages of the development
process. 41 out of 49 believe ML can be applied to some or to a
great extent to evaluate and test products after their development
(e.g., UX evaluation of products on the market). On the other hand,
few respondents can envision how ML can support the concep-
tual stage of product development (e.g., product vision or strategy
development). The opinions tend to be divided for the stages of
research (e.g., user research) and initial development (e.g., wire-
framing or prototyping) (see Figure 2). When comparing the results
between the three groups, we observe that UX-only respondents
have almost equal assessments for the first four stages. In contrast,
UX+ML respondents have a more distinguished opinion. They see
more potential in the initial as well as final development stages.
The assessment of the UX+ML respondents is very much in unison
to the assessment of the ML-only respondents.

4 EXPERT INTERVIEWS
4.1 Participants, Data Collection, and Analysis

We conducted semi-structured interviews with 13 UX experts from
industry and academia to understand how they envision ML meth-
ods to enhance or influence their UX processes. We recruited experts
from the fields of Human-Computer Interaction (HCI) and UX who
are experienced with the concepts and applications of ML (either by
professional collaboration with ML engineers or by education). As
the intersection of UX and ML is a young field, we aimed for a mix
of experienced senior professionals as well as young professionals
(who were trained in both fields as part of their study program).
Starting the recruiting through our academic network, we asked
each participant to recommend experts who potentially meet our
criteria for further interviews (snowball sampling). Our panel com-
prised mostly UX professionals from leading digital companies as
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Figure 2: (Left) Perceived overlap of ML and UX aggregated by the number of responses (N=49). Entries on the diagonal mean
that no change is expected. Entries towards the upper right corner mean that the overlap is expected to increase (e.g., of the 13
respondents that currently see very little overlap, 8 respondents expect the overlap to increase in future). (Right) Respondents’
assessment of how well ML techniques can be applied to the respective stages of the product development process (N=49 for

each development stage).

well as graduates from a relevant interdisciplinary study program
at a renowned academic institution. Table 1 presents a summary
of the participants’ characteristics. The interviews were conducted
in person or via video calls and lasted roughly forty-five minutes
each. The sessions were recorded and transcribed to analyze them
further (total recording time of 12 hours).

To understand the contexts of the participants, we asked them
about their backgrounds, work routines as well as the importance of
UX within their institution. We inquired about previous projects in
which they had applied data logging to get a sense of their exposure
to quantitative research methods and ML. Furthermore, we asked
them to ideate how ML might enhance their UX method toolbox or
enable novel ways of UX research. We asked them to ideate around
a hypothetical ML system that automatically evaluates the UX of a
user during interaction with a product based on usage data. Lastly,
we asked them what challenges they thought stakeholders in the
UX research process might face when applying ML-based methods,
especially in terms of privacy and ethics.

For data analysis purposes, we transcribed the audio recordings
from the expert interviews. Then we followed a Grounded Theory-
inspired emergent coding approach, i.e., we analyzed without a
guiding theory in mind. In a first step, one author extracted 120
UX and ML-related trains of thought from the interviews (each
consisting of one to many sentences) and gave each observed phe-
nomenon a distinctive name using mostly in-vivo codes. The author
also identified connections between the codes and grouped them
in multiple iterations into higher-level themes. Those themes are
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represented by the derived opportunities and challenges. In a sec-
ond step, two authors independently coded the extracted trains of
thoughts given the codebook of higher-level themes from step one.
The inter-rater reliability was a = .8710 with 95% confidence in a
CI of (0.8015, 0.9305). According to Krippendorff [23], values for o
greater than .8 can be considered satisfactory. Typically, Grounded
Theory (GT) starts from a set of empirical observations and aims
to reverse-engineer a hypothesis from the observations in multiple
iterations [38]. Our approach follows the GT approach in terms of
open and axial coding. However, we are not formulating a (well-
grounded) theory from our observations as we primarily aim to
describe and group practitioners’ opinions in terms of perceived
challenges and opportunities.

4.2 Findings: Opportunities

Our analysis revealed 3 areas of opportunity along the dimensions
of automating, complementing, and enriching the insight generation
practices of UX researchers.

4.2.1 Automate the Mundane Part. ML is often perceived as a tool
to free people from time-consuming and repetitive tasks of limited
value. In this sense, our participants saw opportunities for ML to
(semi)-automate parts of their current work routines. Furthermore,
designing survey studies as a more engaging and personalized
experience could result in richer user data and higher response
rates.

Automated Transcription: ML-based speech-to-text services
were hoped to significantly shorten the time between data collection
and data analysis. This was considered particularly interesting for
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Figure 3: The distribution of respondents’ assessments re-
garding the potentials for applying ML to UXR use cases tak-
ing applicability, feasibility, and value into account (N=49
for each use case).

the post-processing of contextual inquiries or interviews since "you
don’t need to transcribe or code all the information” (P11). Instead,
"you can give them [the ML systems] your audio file and they’ll send
you a typed-up version of it." (P6). "Instead of trying to scribble notes
or record the conversation and then transcribe it, it’s just doing it
while you’re in the field." (P10). When ML takes over mundane tasks,
UX researchers are enabled to focus on higher-value activities. "AI
can do things to make us faster at producing the kind of work that we
want to do versus the kind of work we have to do" (P1).

Engaging Surveys: Participants felt that ML can simplify survey
studies for researchers and survey participants alike by leveraging
the idea of adaptive user interfaces. Questionnaires might automat-
ically be tailored in real-time to the individual survey participant
based on their previous answers as well as answers of similar partici-
pants. The intend is "to not give everybody 100 questions, but just give
the 25 most important ones” (P5). Also, advances in conversational
and voice user interfaces were considered an opportunity for more
empathetic survey studies. A questionnaire might be turned into
engaging conversational experiences by "acting like it’s a person,
giving it a personality” (P10). Thereby researchers would receive "a
response based on a conversation rather than just filling out a sur-
vey question” (P10). One participant described an industry project
where the questionnaire mimicked a TV personality to better en-
gage with teenagers. Voice user interfaces could furthermore enrich
the responses with affective signals derived from speech.

Chromik et al.

4.2.2  Complement With Undrawn Data. ML methods excel at quickly
analyzing vast amounts of existing data. Leveraging this capability,
participants see opportunities for ML to identify subtle patterns
in dispersed data silos as well as to inform UX decisions with data
insights.

Linking Insights Across Data Silos: Participants believed that
ML can augment UX researchers to "understand the links between
data sources" (P13) and see "if there are any behavioral patterns,
[or] pain points that we overlooked during the quantitative analysis."
(P5). Participants envisioned that with the help of ML tools they
could "map people to other data sets that we have" (P13), such as
clickstreams, social media, similar interviews, or survey responses.
Doing such analyses manually is often time-consuming and slows
down the line of thought, thus their potentials remain currently
untapped. Participants perceived that ML methods might broaden
their scope while leaving the interpretation with the human. "When-
ever you look at information just from one data set - it’s like shining
the flashlight only in one corner. [...] ML can help us to illuminate
more." (P7). "It’s going to be helpful to understand the bigger picture.
[...] It’s going to be quicker. [...] At the moment I don’t see much use
of Al to help us to understand the why" (P11).

Data-Driven Personas: Furthermore, many participants saw
potential for unsupervised ML in supporting user segmentation.
Clustering methods may automatically identify unique user groups
from data logs. "Don’t make me do all the work to figure out what
kind of user segments I have" (P1). Instead, tools might provide
analytical insights on how many clusters can be observed in the
data and let the UX researcher fill in the details. This could also
help to "keep the user researcher unbiased" (P1). Unsupervised ML
methods often identify patterns for which “there is not really a
human word" (P4) and challenge researchers’ potentially biased
assumptions. Additionally, a data-driven persona approach could
enable UX researchers to monitor user shifts more closely over
the product life cycle. Currently, personas are often created once
in the beginning "and maybe you do it again in a couple of years"
(P4). UX researcher might be notified when significant changes are
observable in transaction data that require adaptation of personas.

Data-Driven Design: Supporting design decisions by evaluat-
ing and recommending UI options based on historical data of user
behavior or user preferences was considered another field of inter-
est. "We can use ML and its potential to help make good decisions
in design” (P7). P3 would like to see data-driven design tools that
back the UX design process with actual numbers, e.g., "with this
particular design this is the problem [...] because 50% of the users
failed at this particular step."

4.2.3 Novel Insights into Users’ Affect. In addition to improving
current practices and connecting existing data, participants envi-
sioned ML to yield novel information about users’ feelings and
emotions. This would enable UX researchers to better "understand
the affective component” (P9). "The one thing I still don’t have access
to is sentiment. I don’t know their emotional state. Often a system can
figure out the emotional state [of a user] faster [than humans]" (P1).

Generalizing Beyond the Lab: Intrusive methods, such as elec-
troencephalography (EEG) sensors, could be used during real-time
usability tests in lab contexts to record typical flows of interaction
and their corresponding emotional responses. P4 states that their
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behavioral and emotional responses could be used as labels for an
ML model that could then be applied to “other users in mass".

Non-intrusive and Remote: Affective signals could also be de-
rived from remote test settings to provide UX researchers with
richer context when studying product use in the field. Specifically
trained ML models could provide "a better window into the emotional
state that people are actually feeling” (P9) through "non-intrusive
measures of sentiment” (P1). For example, P1 envisioned ML to con-
tinuously classify users’ facial expressions from an "accompanying
web camera feed" and reveal that a user "was actually looking over
here and was chatting with his wife".

Identifying User Inconsistencies: People are sometimes ob-
served to provide inconsistent feedback, i.e., users may "say one
thing but do another" (P9). Affective signals may be compared to the
actual behavior and thus help UX researchers to identify inconsis-
tencies. "These mechanisms could help uncover some of the usability
flaws that are very difficult to extract with manual methods" (P2).

Virtual User Testing: Further down the road, P9 saw potential
in conducting UX studies entirely in a virtual setting with the help
of virtual reality (VR). A virtual world could resemble the physical
world but enable researchers to stimulate responses that are hard
to simulate in the physical world. In such a virtual environment,
ML methods could be used to evaluate eye gaze, motion, and neu-
rological activity when people are experiencing those situations.

4.3 Findings: Challenges

Furthermore, we identified 2 emergent areas of challenges. First,
participants foresee changing expectations towards the UX profes-
sion and a shift in future responsibilities. Second, ML was seen to
make it more difficult to recruit human subjects for UXR activities.

4.3.1 Changing Expectations and Responsibilities. Participants felt
that the availability of data might oblige them to report quantified
insights while not feeling entirely prepared for it. Furthermore,
some participants perceived that ML changes how UX researchers
will be involved in projects.

Peers Demand Numbers: Driven by the promises of ML, our
participants felt that leveraging large-scale data for UXR might be
increasingly demanded by their peers. The potential availability
of data might make expressing insights through aggregated num-
bers mandatory. P5 described cases where it was necessary to use
quantified insights "to convince product managers or management
because without numbers it’s oftentimes very hard to get somebody
to understand what is happening. We already have this but need
numbers." P7 explained that "having numbers makes it feel more
scientific, even though that’s not necessarily the case. [...] It’s kind of
a pervasive problem in [the] industry that people think only numbers
are true." A key challenge in our participants’ view was "how to
balance [those] different analytical needs” (P3). While most people
in an organization require an aggregated view to understand the
bigger picture, UX researchers cherish to "look at individual flows"
(P3) to address underlying problems. "Any good [UX] researcher or
good [UX] designer would start with a user need" (P1). Data alone
leaves many interpretations. So, it is mandatory "to enrich it with
qualitative insights" (P1). Convincing internal peers of the need for
resource-intensive low-number qualitative insights might become
more challenging as ML is successfully applied to other parts of
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an organization. "Qualitative data is only as powerful to those who
participate in it and can see the actual results. [...] Most people aren’t
trained to understand this thing I call qualitative validity" (P7). To
advocate the validity of qualitative insights might become more
challenging for UX practitioners when not supported by numbers.

Developing Confidence and Literacy in ML: Figuring out what
to do in a world of data streams was perceived as a complex chal-
lenge for UX teams. "The problem with data is that there is so much
of it. The world [...] becomes even more complex because all those
data streams don’t go away" (P1). Participants perceived that UX
researchers "are not completely educated about ML [...] and do not
understand that the two can work together” (P5). Participants ad-
mitted that a cultural change is needed among UX practitioners to
foster a data-driven spirit in organizations. "A lot of user researchers
are essentially traditional qualitative researchers. There is a little bit
of resistance [...], but that’s becoming lesser and lesser given that
management wants it to be both [qualitative and quantitative]" (P5).
On the technological side, participants observed that ML remains
an inaccessible design material as the usability of ML tools is often a
hurdle for UX practitioners. UX teams must blindly trust the default
settings of tools as they do not understand the technical foundations.
"ML is totally inaccessible to anyone who has never coded. People just
trust these out of the box models and try to get it to work. It’s not
[going to]." (P4). P4 would appreciate less technical terms in ML
tools. Instead, the participant would like to "call it what it is, like
tell what problem it is solving". In-browser ML environments and
interactive ML approaches have been named as examples. Often
there seems to be a common belief within organizations that people
could simply run ML on a problem and would obtain a meaningful
solution. "A lot of problems aren’t scoped in a way that ML can help"
(P4). Interpreting the potentials of ML and having the vocabulary
and confidence to argue about it with stakeholders was perceived
as an obstacle for current UX practitioners.

Changing Project Involvement: Overall, participants expressed
little concern that applying ML methods to UXR would reduce the
demand for human researchers. "Qualitative methods [...] result in
rich data, that is only truly understandable by [...] a human being.
There is so much information [...] that a machine would have a very
hard time truly understanding it. It requires actual empathy and cul-
tural appreciations” (P7). "I don’t think any machine will ever get to
the point where we trust the AI more than we trust the [UX] person”
(P1). However, there was some disagreement among participants
about how the skill set of UX researchers might change in the future
due to ML. On one hand, some participants believed that the role
of UX will likely stay the same. "I don’t think the skill set would
change. You still need to do all the things [...] to understand human
behavior" (P11). In contrast, P4 believed that ML and data-driven
methods are not only changing the mindset of UX researchers
but "how people are currently doing their jobs" (P4). Working on
ML-enabled products was considered an ongoing process that will
involve researchers over longer periods before becoming effective
for users. This contrasts with currently established design thinking
approaches, where UX researchers tend to move on to the next
project after few prototype iterations (P4). Some participants be-
lieved that UXR will become even more interdisciplinary. Other
disciplines, such as anthropology and sociology, might increasingly
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Table 1: Participants in the expert interviews including their role, country, institution size, and work experience in the field
of UX. Participants P11 and P13 asked us to omit their work-related information.

Participant Current Role Country of Residence Size of Institution ~Work Experience in UX
P1 UX Researcher USA <50 20+ years
P2 Student India did not disclose 4 years
P3 Data Analyst/Scientist ~ USA 1,000+ 1 year
P4 UX Designer USA 1,000+ 4 years
P5 UX Designer USA 100+ 1 year
P6 UX Designer USA 100+ 1 year
P7 UX Executive USA <50 25+ year
P8 UX Researcher Germany 250+ 3 year
P9 Academic Researcher USA 1,000+ 13 years
P10 UX Researcher USA 50+ 1 year
P11 did not disclose did not disclose did not disclose did not disclose
P12 Academic Researcher =~ USA did not disclose 4 years
P13 did not disclose did not disclose did not disclose did not disclose

contribute to the study of complex human phenomena in collabo-
ration with current disciplines. "It’s not one single skill set anymore
that you apply to understand the users” (P1). Instead, participant P1
envisioned UX researchers to "become a translator” between the
stakeholders involved.

4.3.2  Access to Users and Their Data. To effectively leverage ML
methods, access to large amounts of user data is necessary. How-
ever, ML’s reliance on data resulted in an increasing number of
regulations and increased sensitivity regarding user data usage.
Participants saw challenges in interpreting these regulations, bal-
ancing data economy, and finding alternative means to incentify
users to participate in UXR activities.

Interpreting Privacy Regulations: Getting access to users was
considered a major constraint for UX researchers as it imposes le-
gal, confidential, and financial requirements. "Recruiting [users] will
always be the golden key" (P1). New privacy regulations, such as the
European Union General Data Protection Regulation (GDPR) [39],
aim to improve the control for users over their data. Interpreting
those regulations and finding the right balance between advocat-
ing in favor of users versus pursuing organizational interests was
considered a major challenge for the time ahead. Some participants
believed that UX researchers "need to err on the side of [data] protec-
tion" (P1) while others felt that "any data can be used for analysis as
long as PII [personal identifiable information] data is not used" (P5).

Dealing with the Principle of Data Economy: We observed
different opinions on the importance of individual data in user
behavior tracking. Some participants think that the principle of
data economy may limit their access to user data. Others feel that
having access to aggregated data might be enough for most use
cases. To understand the big picture, P8 perceived it to be more
important "to see the behavior of one average user than to watch
individual cases". "I want to know when it fails. That does not need to
be tied to [...] username" (P4). Instead of tracking everyone by default,
UX researchers could also turn to selectively ask individual users
for feedback, e.g., via pop-up surveys on a website (P5). Excluding
demographic data from individual cases may even have positive
effects in terms of bias avoidance. "I had to keep telling myself that

I can’t be biased over some person’s background since that kind of
information is not available when we generalize" (P5).
Incentivizing Users to Contribute: As an alternative way for-
ward, some participants felt that UX researchers and companies
should rethink their relationship with user data. "We need to give a
lot more credit to the producers of the data" (P1). They envisioned
ways to encourage users to contribute their data to UXR. P1 sug-
gested some form of "privacy currency” that offers benefits, such
s "reduced number of ads" or "5% off the purchase price". Compa-
nies should be more honest about their need for usage data. "Don’t
automatically opt everybody in. Give them the option. Make it easy.
People appreciate that more than having to dig through layers and
layers of UI to uncheck a box" (P6). None of the participants reported
practical experiences in this direction. While participants seemed
positive about such alternatives to compensate for potentially fewer
user data, these approaches also entail challenges in promoting and
implementing them internally and externally.

5 DISCUSSION

The notion of the fourth wave of HCI [2, 3] speculates that HCI
is converging towards a trans-disciplinary paradigm as new disci-
plines enter the stage. Each discipline adds new dimensions, such as
ethics or creativity, to the interdisciplinary discourse. Our findings
from the survey and the interviews suggest that the discipline of ML
entered the UXR discipline even though it may not be effectively
applied to UX practices yet. Furthermore, it shifts the mindsets and
work practices of practitioners towards a more quantitative inter-
pretation of UX. Our identified opportunities overlap with findings
from prior research. [45] report how UX practitioners enrich their
UXR toolkit through telemetry and data stories. Further, some of
our themes resemble the user-centric perspective of ML by [44].
Their perspective describes how ML can provide direct value to
the user by enabling them to understand themselves (e.g., through
insights into their affect) or their surrounding (e.g., through insights
across data silos). This assumes that this is done dynamically by the
system without a UX researcher in the loop. Our findings suggest
that ML may also be used to indirectly provide value to the user by
informing UXR activities. Our identified challenges indicate that
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Table 2: Summary of themes observed in the expert inter-
views.

Higher-level Theme Emergent Theme

Opportunities

Automate the Mundane Part Automated Transcription

Engaging Surveys

Complement With Undrawn Data  Linking Insights Across Data Silos
Data-Driven Personas
Data-Driven Design

Novel Insights Into Users’ Affect ~ Generalizing Beyond the Lab
Non-intrusive and Remote
Identifying User Inconsistencies

Virtual Testing

Challenges

Peers Demand Numbers
Confidence and Literacy in ML
Changing Project Involvement

Changing Expectations and Roles

Interpreting Privacy Regulations
Dealing with Data Economy
Incentivizing Users to Contribute

Access to Users and Their Data

UX researchers’ core skills of interpersonal communication are
expected to advance beyond the focus on users. Instead, they trans-
late between multiple stakeholders as well as privacy requirements.
Weaving in insights derived from data-trails and ML techniques
may be required to persuade stakeholders that their conclusions are
valid and will solve a relevant problem. Based on the interpretation
of our findings, we see three promising directions for further HCI
research that have not yet been adequately addressed.

5.1 Data-driven UX Evaluation With ML

Our findings indicate that using ML for the evaluation of a prod-
uct’s UX may be a promising field for future research. Most of
the respondents believe that ML can provide the biggest value
at the evaluation stage. Traditional UX evaluation methods are
often resource-intensive and not scalable. Often standardized ques-
tionnaires such as the user experience questionnaire (UEQ) or the
AttrakDiff questionnaire (AD) are used [32]. ML techniques may
offer a more resource-effective alternative. Connecting question-
naire results with log and time series data about user behavior may
be used as labeled data for supervised ML. Furthermore, such ap-
proaches may allow to continuously monitor changes in users’ UX
and inform UX researchers when it might be worth to revisit parts
of the product experience. We observed that fewer UX practitioners
are involved in the evaluation of a product’s UX after its launch.
Thus, respondents’ assessment’ may be positively biased because
they may not have a complete picture of potential obstacles in
this field. However, we found recent academic work that explores
the challenges of evaluating UX using multiple data sources and
proposes ML-based approaches [17, 31]. We propose to explore
sensitizing concepts for ML-supported continuous UX evaluation
and UX monitoring in future work.
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5.2 Ensuring Effectiveness of ML-based UXR

Insights from data-driven ML techniques have the potential for
effective triangulation to ultimately yield a more complete pic-
ture [32]. This matches the opportunities identified by our study
participants. However, they should be carefully evaluated in prac-
tice. Critical voices have been raised about the practical applicability
of automated systems in the field. Previous works compared auto-
mated ML approaches for UX research with traditional (manual)
methods [14]. Results indicated that issues extracted by algorithms
might differ after deployment to the field — even though they looked
precise during training. UX researchers need to be able to spot ques-
tionable predictions and develop an understanding of when to rely
on automated methods and when to carefully supervise them. Build-
ing ML tools for UX activities around the guidelines for interactive
ML (IML) [7] and explainable artificial intelligence (XAI) [41] may
be promising directions to enable UX researchers to validate and
maintain the effectiveness of such tools in the field.

5.3 Calibrating Expectations Regarding ML

UX practitioners have been confronted with many novel forms of
technology and interaction. Multi-device experiences, voice inter-
faces, and unpredictable intelligent systems pose new challenges
and opportunities in terms of UX research and design [6, 43, 47].
The HCI community already raised the question of whether current
methods are keeping up with the technological advancements and
user expectations [16]. In line with prior work, almost all our in-
quired UX practitioners experimented with the new design material
ML at least on a basic level — even when their work practices may
primarily be qualitative. However, we observed opposing mindsets
between UX practitioners with and without ML work experience.
The assessments of UX+ML respondents have often been in uni-
son with ML-only respondents. We interpret this in a way that UX
practitioners with work experience in ML have a sufficient under-
standing to realistically assess capabilities but also limitations of ML
- even though they are no technical experts. In contrast, UX-only
practitioners may envision more creative use cases, e.g., regarding
generative approaches, because their knowledge about difficulties
in practice is limited. This might imply that UX researchers would
benefit from more distinguished educational material that also ad-
dresses ML’s limitations. Recent academic work lets UX practition-
ers refine their mental models with tools for playful exploration [21]
and metaphors [5]. We suggest that such educational materials also
include case studies on how to apply ML to UXR use cases.

5.4 Limitations

We acknowledge that our findings are indications that can only
be generalized to a limited extent. Our participants were not se-
lected for demographically representative proportions. The studies
recruited mainly participants from the United States and Germany
and were limited in time. Further, we asked our participants to re-
flect on the potential of ML in the future. As 13 out of 49 participants
(especially in the UX-only group) had only a basic understanding
of ML, some future predictions might turn out to be too optimistic.
Additional experts from adjacent disciplines should be interviewed
and the derived insights should be related to our analysis. Still, we
are confident that our studies capture up-to-date insights about
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practitioners’ understanding and serve as an informative first step
for future work in the emerging research field of ML for UXR. We
welcome other researchers to extend or amend our insights and
interpretations. Eventually, we will only be able to draw a complete
picture of the applicability and acceptance of ML for UX when we
conceptualize, develop, and evaluate respective tools and methods
in case studies and prototypes.

6 CONCLUSION

The disciplines of ML and UX are contesting each other’s borders.
There is ongoing research within the HCI and UX communities
on how to improve the performance of ML models through UX
as well as research on how to use ML to improve a product’s UX.
With our work, we add the intersection of ML for UX research to
the discussion. We found promising academic work that already
experimented at the intersection of ML for UXR. Based on these, we
surveyed and interviewed UX and ML practitioners. We presented
practitioners’ experiences and visions derived from a snapshot of
49 survey responses from UX and ML practitioners as well as 13 in-
terviews with UX experts. Our survey indicated that the disciplines
of ML and UX are expected to overlap and that UX practitioners
see promising use cases of applying ML to UXR. Further, they are
anticipating these developments as they are experimenting with ML
even though their work routines may primarily be qualitative. We
learned from the interviews that ML methods may help to automate
mundane tasks, complement decisions with data-driven insights,
and enrich UXR with insights from users’ emotional worlds. We
link our interpretations to recent academic work on ML for UXR
and discuss data-driven UX evaluation based on ML as a promising
use case for future research.
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ABSTRACT

Decision support systems (DSS) help users to make more informed
and more effective decisions. In recent years, many intelligent DSS
(IDSS) in business contexts involve machine learning (ML) meth-
ods, which make them inherently hard to explain and comprehend
logically. Incomprehensible predictions, however, might violate
the users’ expectations. While explanations can help with this,
prior research also shows that providing explanations in all situ-
ations may negatively impact trust and adherence, especially for
users experienced in the decision task at hand. We used a human-
centered design approach with domain experts to design a DSS for
funds management in the construction industry and identified a
strong need for control, personal involvement, and adequate data.
To create an adequate level of trust and reliance, we contrasted the
system’s predictions with the values derived from an analytic hier-
archical process (AHP), which makes the relative importance of our
users’ decision-making criteria explicit. We developed a prototype
and evaluated its acceptance with 7 construction industry experts.
By identifying situations in which the ML prediction and the do-
main expert potentially disagree, the DSS can identify a persuasion
gap and use explanations more selectively. Our evaluation showed
promising results and we plan to generalize our approach to a wider
range of explainable artificial intelligence (XAI) problems, e.g., to
provide explanations with arguments tailored to the user.
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1 INTRODUCTION

The rapidly growing volume of data in many parts of the enterprise
makes it necessary to structure and manage it in information sys-
tems. Those systems which help in decision-making are referred
to as decision support systems (DSS) [30]. With the recent improve-
ments in machine learning (ML) methods, DSS are becoming more
and more intelligent. So-called intelligent decision support system
(IDSS) augment the collected data with predictions that guide and
(semi-) automate parts of the decision-making process [30]. How-
ever, these intelligent DSS also introduced new challenges because
their rationale is often not interpretable and hence perceived as
non-deterministic by their users.

The effectiveness of an intelligent DSS depends not only on the
accuracy of its underlying ML model or algorithm. Instead, it is only
effective if it serves the information needs of decision-makers and
is also accepted and trusted by them. Jarvis describes DSS as the
general idea of "combining the computer’s computational power with
the decision maker’s intuition and judgment in an interactive manner,
[so that] better decisions will result than by either the computer or
human taken separately" [11]. To achieve such a symbiosis, we need
to design user interfaces (UI) that communicate the rationale behind
algorithmic predictions in human-understandable terms. The UI
should help to calibrate the user’s understanding of the system’s
capabilities and limitations to prevent both over-reliance (when
users blindly trust system recommendations) and under-reliance
(when users simply ignore system recommendations) [5].

We conducted a design study in the construction industry and
asked decision-makers about their requirements regarding inter-
pretability of a novel intelligent DSS module on addenda approval.
We use the term interpretability to refer to measures provided by a
DSS with the aim of enabling users to understand its inner workings.
Interpretability is a broad concept that may imply other distinct
ideas such as transparency, trust, and fairness [17]. It is often used
to indirectly evaluate whether important requirements, such as
reliability, trust, or control are met in a particular context [8]. Bi-
ran and Cotton consider intelligent systems interpretable "if their
operations can be understood by a human" [3]. We followed a human-
centered design process to understand how project managers and
executives make decisions regarding validation and approval of
budget addenda. Budget management in the construction industry
is an interesting context to study for two reasons: First, the con-
struction industry itself is one of the least digitized industries but
digitization efforts (e.g., building information modeling (BIM)) are
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gaining adoption despite decision makers skepticism [1, 4]. Sec-
ondly, the addenda approval process is a complex decision situation
that requires decision makers to retrieve and interpret data from
distributed sources and also consider their dependencies. To date
this is a highly manual and subjective process

This paper investigates interpretability needs of human decision-
makers in the field regarding an intelligent DSS. In particular, we
propose an approach to align the level of trust and reliance by
contrasting ML predictions with user beliefs. User beliefs can be
extracted through multi-attribute decision making approaches such
as the analytic hierarchical process (AHP). Making the user beliefs
explicit allows the system to better identify persuasion gaps [6],
i.e., situations in which the system and user base their decision on
different criteria. We think that this approach might be a valuable
starting point for providing selective and personalized explanations
to the field of explainable artificial intelligence (XAI). With this
work, we put our suggested approach and formative evaluation up
for discussion with our fellow researchers.

2 RELATED WORK
2.1 Intelligent Decision-Support Systems

Decision-making refers to the cognitive process of selecting a logical
choice from many available alternatives. Decision-making prob-
lems are often structured into three phases: problem identification,
model development and use, and action plan development [21].
In our work, we focus on the second phase that deals with elicit-
ing user preferences and comparing alternatives in a consistent
way. If a decision is rational it is typically based on facts instead
of arbitrary choices. Multi-attribute decision making (MADM) de-
scribes approaches that leverage (potentially conflicting) attributes
to select, compare, and rank a limited number of discrete alterna-
tives [31]. The rationality of decision-making, however, is bounded
as individuals are often not able to make optimal decisions in an
economically rational way due to cognitive limitations and resource
constraints [28]. Simon suggests that instead of maximizing (search
for the best possible option), decision makers in the field are rather
satisficing (stick to an option that is considered good enough) [28].

In many business-related contexts, decision support systems (DSS)
organize relevant facts to assist users in decision-making and im-
prove effectiveness of the decision outcome [30]. DSS can range
from simple spreadsheets to complex data warehouse systems [30].
They are typically distinguished by their underlying technology,
theory foundations, target users, and decision tasks [2]. So called,
intelligent decision support systems (IDSS) use artificial intelligence
methods to support the decision-making and exhibit some notion
of "intelligent behavior" [30]. Such intelligent behavior may either
by applied to the system’s underlying data base (e.g., identifying
relevant attributes), knowledge base (e.g., suggesting decision alter-
natives), or model base (e.g., choosing applicable formal decision-
making methods) [22].

In our work, we focus on IDSS that recommend decision alter-
natives to the user (model development and use at the knowledge
base). The first generation of IDSS (also called knowledge-driven
DSS) leveraged domain knowledge encoded in rule-based reasoning
modules [30]. Examples include MYCIN [27] for bacterial infection
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diagnosis or DENDRAL [16] for chemical analysis. In contrast, mod-
ern IDSS leverage machine learning (ML) methods that implicitly
infer rules from observations and thus learn from experience. This
implicit inference of rules may result in the black-box problem for
decision-makers. A black box refers to a situation in which it is
possible to observe the input and outputs of a model, but the in-
ternals remain disclosed or uninterpretable to humans. In ML, the
black box behavior may arise either from complex algorithms (as
with deep neural networks) or from proprietary models that may
otherwise be interpretable (such as with the COMPAS recidivism
model) [24]. As decision-makers were always considered an integral
part of the DSS [22], special attention must be paid to the design of
the user interaction. With ML-enabled DSS this interaction must
include explanation facilities that result in usable interpretability
for decision makers.

2.2 Interpretability and Task Expertise

Prior research shows that a lack of interpretability can lead to users
that mistrust, misuse, or reject a system [15, 19]. Often these result
from a perceived mismatch between users’ expectations and the
actual behavior of a system [9]. Chander et al. describe two reasons
for the mismatch to occur in a business-related decision-making
context [6]: (i) the system’s underlying data lacks decision criteria
relevant for this situation (awareness gap). For instance, the user
might have relevant contextual information from a phone call with a
client that the system has no access to; (ii) the system’s prediction is
not in line with the user’s beliefs and the system fails to persuade the
user to adjust their beliefs (persuasion gap). In such a situation, the
user and the system have access to the same information but weight
decision criteria differently. The gaps are even more pronounced in
a business-related context, where domain experts often can draw
upon rich prior knowledge and beliefs about the decision situation
when assessing the system (extrinsic setting) [20]. Explanations
about the factors that contributed to the system’s prediction, e.g., in
natural language or in the form of visualizations, are considered one
way of addressing those gaps. However, in prior research, rational
explanations were shown to be only effective for participants that
are not familiar with a given task [26]. The effects of explanation
drop as users’ confidence with the task increases over time. As
user get confident with the task and the system’s prediction, they
become less situation aware. Most explanation approaches assume
that explanations are displayed with every system prediction.

3 USE CASE AND METHODOLOGY

In our work, we outline and probe an approach that provides sys-
tem explanations only when a mismatch with the user’s beliefs
occurs (persuasion gap). Such an approach may increase the situ-
ation awareness of decision-makers. We focused on the use case
of addenda approval and risk assessment in the construction in-
dustry. We cooperated with Alasco! and their clients. Alasco pro-
vides a web-based cost controlling system for the construction
industry that connects stakeholders and digitizes processes around
budgeting, reporting, addenda management, and payment. We fol-
lowed a human-centered design process that consisted of three

Thttp://www.alasco.de
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phases: (i) we interviewed executives about their current addenda-
related decision-making and derived intelligibility needs for an
(semi-)automated addenda approval process; (ii) we designed and
developed an interactive prototype that reflects those intelligibility
needs; (iii) we evaluated our prototype in a formative user study to
understand the acceptance of the prototype workflow.

Use Case: Addenda Approval. Our use case targets project man-
agement (PM) executives in the construction industry. The PM
is responsible for the fulfillment of the construction project and
acts as a coordinator between contractors on behalf of the building
owner [13]. During the initial budget planning, the overall budget
is split into a hierarchy of cost groups (e.g., property or financ-
ing). Each cost group consists of one to many contract units. Each
contract unit represents the budget planned for commissioning a
contractor for a task. As a construction project advances, contract
units might require budget addenda due to unforeseen incidents or
flaws in the initial budget planning. After ensuring the plausibil-
ity of the addendum, PM executives need to redistribute budgets
from other contract units to accommodate the addendum. While
doing this, decision-makers need to take the addendum risk and
cost forecast of the other contract units into account.

Phase I: Need-Finding. The goal of the first phase, was to identify
decision criteria and interpretability needs for an intelligent DSS
for the addenda approval process. To understand domain experts’
current decision-making processes around addenda approval, we
conducted semi-structured interviews with 3 project managers and
2 project controllers who are proficient users of the Alasco software.
Their average industry experience were 2.8 years (min=1, max=6).
The interviews were held in the regular work environments and
took between 30 and 45 minutes. The interviews were recorded and
transcribed. To enrich our qualitative insights, participants were
surveyed after each interview with the decision-making question-
naire (DMQ). The DMQ is a validated psychological questionnaire
that aims to examine factors important to a decision-maker in the
moment of decision-making in a specific context [7]. It consists of
14 questions which correspond to 3 factors (and 10 subfactors) that
characterize a decision-making situation: (i) the nature of the deci-
sion or task, (ii) the cognitive and affective abilities of the decision
maker, and (iii) the environment of the decision.

Phase II: Prototyping. We integrated our prototype as a sepa-
rate module on top of the Alasco software. We reused the general
structure and user interface of the software as participants were
already familiar with it. The prototyping process was informed by
the results of the need analysis as well as prior work on DSS and
interpretability. Financial data has strict privacy regulations. Also,
the production data of the participant’s organizations varied greatly
and was often incomplete. Thus, we centered our prototype around
an addenda approval scenario based on a synthetically created data
set so that all participants could be evaluated on the same scenario.
The scenario consisted of an onboarding phase and an addenda ap-
proval phase. We developed a functional front-end prototype while
the back-end was mostly static around the evaluation scenario.

Phase III: Formative Evaluation. After the design phase, we con-
ducted a formative user study to evaluate the prototype’s acceptance
regarding participant’s sense of control and sense of information.
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As the use case and required domain expertise limited the number
of potential study participants, we adopted a qualitative evalua-
tion approach. We recruited 5 project managers and 2 project con-
trollers with an average industry experience of 3.7 years (min=0.5,
max=15). The user study included 3 participants from phase I as
well as 4 new participants. This reduced the risk of receiving biased
feedback from participants who had already thought about (semi-
)automating addenda approvals. The participants were presented
with the scenario and asked to complete an addenda approval task
including the onboarding task. While doing so, participants were
encouraged to think aloud. Completing the task took approximately
10 minutes. After the tasks, participants were interviewed using
open-ended questions about their experience. The user study was
audio-recorded, transcribed. The results were qualitatively analyzed
according to Kuckartz [14] by two coders (with a Kappa coefficient
of 0.86). We used the driving factors resulting from the DMQ as
categories and, following Kuckartz, their gradual levels as subcat-
egories. Table 1 presents our final coding system after multiple
iterations.

predicts
ML Model Y
=
. . Q @ Target
IDSS || T e S8 |Domain
Contrasting g :
and
Domain has == | assumed +
Expert | criteria -— beliefs v
Criteria Pairwise
Selection Comparison

Figure 1: Explanations are triggered if there is a mismatch
between the user’s assumed beliefs (elicited through AHP)
and the system’s predictions. Blue parts relate to screens
of our prototype. Muted parts relate to our proposed future
work.

4 RESULTS
4.1 Interpretability Needs

The process for addendum validation was uniform for all partici-
pants. However, all participants agreed that there is no documented
or formal way of deciding how to redistribute budgets. Instead,
they base decisions on their personal experience and data derived
from reporting features of the Alasco software. However, this ap-
proach has limitations. P2 asked for more structured workflow for
addendum approval so that every stakeholder accomplishes the
task in a predefined order to improve reporting. P1 would like have
feedback on how well the initial budget distribution worked in
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comparison to the final stage of a project. P1 and P5 asked for deci-
sion support that guides the user and recommends possible sources
(e.g., based on the forecasted costs). P3 and P4 even suggested to
(semi-)automate the allocation. The analysis of the DMQ indicated
that control and personal involvement are important requirements
for the participants. The most important subfactors were the need
for information and goals (5 participants), self-regulation (4 partic-
ipants), and time/money pressure (4 participants). It is important
for the participants to have adequate and transparent data avail-
able that help them to plan, monitor, and evaluate results [7]. We
leveraged these insights as guidelines for our prototype.

4.2 Prototype

We developed an IDSS interface with which participants could inter-
act. The prototype consisted of two user flows. The first flow elicits
the user’s beliefs during the user onboarding through a widely ac-
cepted MADM approach. The second flow guides the user through
the approval process once an addendum is requested and suggests
options for budget transfer.

4.2.1 Belief Elicitation Flow. MADM approaches were used to
make subjective user preferences explicit and, thus, make decision-
making more transparent [21]. We leverage such an approach to
elicit user beliefs about our target domain. A widely accepted
and accessible MADM approach is the analytic hierarchy process
(AHP) [10, 25]. AHP builds on a hierarchical representation of the
decision problem. It leverages a user’s judgments of the relative
attribute importance to choose an alternative. The judgments and
beliefs are elicited through pairwise comparisons of attributes. The
decision criteria may be split into multiple hierarchy levels depend-
ing on the complexity. However, we limited our prototype to five
decision criteria that are on the same level. We applied the wizard
pattern to guide the decision maker through the steps of the AHP
setup as part of a mandatory module onboarding [29]. First, users
were introduced to the purpose of the flow and each step. Second,
user had to select at least three criteria that they believe are impor-
tant when withdrawing budget from a contract unit. Afterwards,
they had to express the relative importance of each criteria through
pairwise comparisons. We used the original AHP space consisting
of a bidirectional Likert scale ranging from 9 (absolutely more im-
portant) to 1 (equally important) to 9. In a last step, we checked
the judgments for inconsistencies and asked users to revise them if
necessary. After the onboarding, users can revise their preferences
anytime.

4.2.2 Intelligent Addenda Approval Flow. We enriched the manual
approval flow with an intelligent overview that suggests contract
units to withdraw budget from. First, the user is notified via email
if a new addendum is to be reviewed. After confirming that the
addendum is valid, the user sees an overview of possible contract
units that may be used to accommodate the addendum. Each con-
tract unit alternative is enriched with two types of information: (i)
a score that reflects the user’s beliefs. The score is calculated by
AHP based on the user’s relative importance of attributes as elicited
during the onboarding; (ii) an intelligent suggestion that was said
to take historical data into account. The suggestion may be derived
through a machine learning model. Contrasting both information
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Figure 2: User’s beliefs about the decision situation are
elicited through AHP. In the first step, the user indicates
which decision criteria are important for her. Afterwards,
she compares those criteria pairwise express the relative im-
portance.

User Belief

__ Intelligent Suggestion
(based on AHP Score)

(based on ML model)

Figure 3: After an addendum is validated by the user, the
IDSS gives an overview of contract units to transfer budget
from. The alternatives are scored based on elicited user be-
liefs and contrasted with the system recommendation.

enables the user to grasp when their beliefs diverge from the sys-
tem suggestion. Furthermore, it enables the system to identify and
address a persuasion gap. Each column and the prediction have a
tooltip that explains where the information is coming from. In our
formative evaluation, the system suggestion and explanation were
non-functional but based on static information. As participants
were not provided with information about the underlying system
logic, it resembles from a user perspective an IDSS.

4.3 Formative Evaluation

All participants were able to complete the given approval task. The
results of the qualitative analysis show that all participants made
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Table 1: (Left) Categories and subcategories derived from the
results of the DMQ. (Right) Number of participants’ state-
ments during formative evaluation coded according to those
(sub)categories.

Categories # of Statements
Sense of Control 36
Full sense of control (no doubts) 12
Reinforced control (feeling of guidance) 8
Foreseeable behavior of the system (no surprises) 7
Expressed doubt/questioned system 8
Unclear statements regarding sense of control 1
Sense of Information 23
Improved experience due to information displayed 8
Satisfied with the amount of information 7
Desired additional information 7
Unclear statements regarding sense of information 1
Usability 31
Perceived increase in efficiency 7
User was hesitating/unclear 18
Expressed high mental effort 6

positive statements regarding their sense of control (relates to DMQ’s
self-regulation subfactor). 5 participants stated that their sense of
information (relates to DMQ’s information and goals subfactor)
improved due to the information provided. However, 4 participants
questioned the system at some point. 3 participants wished for
additional information (e.g., emails or contract correspondences)
or more detailed explanations (e.g., how their input affects the out-
come). 4 participants perceived high mental efforts when choosing
and comparing their relevant decision criteria during the onboard-
ing. We attributed this to the fact, that they rarely had to articu-
late how they make addendum-related decisions before this study.
However, these efforts paid off later on. 4 participants perceived
increased efficiency during the addenda approval flow as they did
not need to assess each alternative individually but instead could
rely on the score and suggestion. Overall, we found that our pro-
totype left the participants with an increased sense of control and
information. However, the usability of the belief elicitation flow
should be revised to reduce users’ mental efforts. Table 1 presents
a categorized summary of participants’ statements.

5 LIMITATION AND FUTURE WORK

While our formative evaluation shows promising results, we ac-
knowledge multiple limitations. Our work focuses on the limited
use case of addenda approval in the construction industry. Our user
studies were conducted under supervision in a controlled environ-
ment. Thus, actual user behavior and usage may be different in the
field. Furthermore, our evaluation focused on the general accep-
tance of the approach by domain experts with a non-functional
prototype. In future, we plan to conduct an experimental study
that focuses on whether such an approach improves a user’s un-
derstanding of an intelligent system. For this, we plan to transfer
the approach to a human-grounded [8] evaluation scenario with
lay users.
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We believe that eliciting user beliefs and comparing them with
intelligent predictions offers a promising basis for personalized
explanations in XAI systems. ML algorithms take features and
calculate their respective weights while optimizing a utility func-
tion. Post-hoc feature attribution methods, such as LIME [23] or
SHAP [18], elicit the relative importance of a black box model’s
decision criteria. Similarly, decision-makers try to, explicitly or
implicitly, optimize a utility function that is used to quantify their
preferences regarding decision alternatives [12]. The difference is
that decision-makers often do not know their utility function in
advance and sometimes construct it ad-hoc during the decision-
making situation. MADM methods, such as AHP, can make the
user’s beliefs explicit and accessible to explanation generating XAI
systems. As part of our future work, we want to examine ways
to relate the weights of post-hoc feature attribution methods to
AHP’s relative attribute importance. By this, XAI systems could
adapt their explanation vocabulary (e.g., add or remove features
to an explanation) or argumentation (e.g., argue with the user’s
expected outcome as the foil) based on the user’s beliefs.
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Abstract. The interdisciplinary field of explainable artificial intelligence (XAl) aims to foster
human understanding of black-box machine learning models through explanation-
generating methods. In this paper, we describe the need for interactive explanation
facilities for end-users in XAl. We believe that interactive explanation facilities that provide
multiple layers of customizable explanations offer promising directions for empowering
humans to practically understand model behavior and limitations. We outline a web-based
Ul framework for developing interactive explanations based on SHAP.

Introduction

We have witnessed the widespread adoption of intelligent systems into many
contexts of our lives. The perception of intelligence often results from their black-
box behavior, which may manifest itself in two ways: either from complex machine
learning (ML) architectures, as with deep neural networks, or from proprietary
models that may intrinsically be white-boxes, but are out of the user's control
(Rudin, 2019). As such black-box systems are introduced into more sensitive
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contexts, there is a growing call by society that they need to be capable of
explaining their behavior in human-understandable terms.

Much research is conducted in the growing fields of interpretable machine
learning (IML) and explainable artificial intelligence (XAI) to foster human
understanding. IML often refers to research on models and algorithms that are
considered as inherently interpretable while XAl typically refers to the generation
of (post-hoc) explanations for black-box models to make those systems
comprehensible (Rudin, 2019; Biran and Cotton, 2017). Current XAI research
mostly focuses on the cognitive process of explanation, i.e., identifying likely root
causes of a particular event (Miller, 2018). As a result of this cognitive process,
some notions of explanation, such as texts, annotations, or super-pixels, are
generated that approximate the model’s underlying prediction process.

We believe that an important aspect required to address the call for “usable,
practical and effective transparency that works for and benefits people” (Abdul et
al., 2018) is currently not sufficiently studied: providing users of XAl methods and
systems with means of interaction that go beyond a single explanation.

Explanation as an Interactive Dialogue

XAl research often implicitly assumes that there is a single message to be conveyed
through an explanation (Abdul et al., 2018). However, in decision-making
situations that demand explainability, it is unlikely that a single explanation can
address all concerns and questions of a user. This resonates with the social science
perspective that considers explanation to be a social process between the explainer
(sender of an explanation) and the explainee (receiver of an explanation) forming
a multi-step dialogue between both parties (Miller, 2018). Especially, in situations
where people may be held accountable for a particular decision, a user may have
multiple follow-up questions before feeling comfortable to trust a system
prediction. To model the notion of social explanation between an explanation-
generating XAI system and a human decision-maker, we need means of
interactivity. Related machine learning approaches, such as explanatory debugging
(Kulesza et al., 2015) or interactive machine learning (Dudley and Kristensson,
2018), leverage explanations, interactivity, and human inputs to correct bugs or to
improve model performance, respectively.

In our opinion, the social perspective of explanation is currently not sufficiently
reflected in current XAl research that addresses decision-making situations. Weld
et al. propose seven different follow-up and drill-down operations (Weld and
Bansal, 2019). Olah et al. (2018) explore the design space of interpretability
interfaces for neural networks and describe possible interaction operations. Recent
tools, such as Google’s What-If, focus primarily on developers and enable them to
interactively inspect a ML model with minimal coding. However, they do not
provide interactive explanations to end-users of XAl systems.



reSHAPe: Interactive SHAP Explanations

Applicant #1 Applicant #42 Applicant #23
Gender Male { Male { Male 4 2 Restrict Subspace
Married = Yes » Yes » Yes »
Dependents 1 | 0 - 1 -
Education Graduate |4 Graduate | Graduate 4
Income 5849 L | 5900 L | 2 wnatitoooz 9000 »
Approval = Yes B 2 wnynotno?  No 4 Yes 4

Figure 1. Schematic Ul prototype of interactive explanation trail in reSHAPe: The outcome of each
observation is explained through SHAP’s feature attribution method (red=negative influence on
outcome, blue=positive influence). Starting from an initial observation of interest, the user can select
one follow-up question from a set of interaction options to validate their hypotheses. Each query
returns an illustrative observation and adds it to the explanation trail.

We propose a web-based Ul framework that enables developers to provide
interactive explanations for end-users. We leverage existing model-agnostic post-
hoc explanation-generating methods and integrate them into an interaction concept
for navigating between the methods from a human-centered perspective. We build
upon the methods provided by the SHAP framework (Lundberg and Lee, 2017).
SHAP (SHapley Additive exPlanations) is a promising starting point as it unifies
existing feature attribution methods (such as LIME and DeepLIFT) and connects
them to additive Shapley values. Furthermore, it allows the generation of /ocal and
global explanations that are consistent with each other as they both use Shapley
values as atomic units. This makes them suitable for guiding users through multi-
stepped explanations following one line of thought.

However, prior research indicates that even experienced ML engineers have
difficulties to use current visualizations of SHAP to effectively verify their
hypotheses about an examined ML model (Kaur et al., 2020). Thus, with our
framework we address the need for interactive exploration and verification of
hypotheses. In a first step, we implement the follow-up operations proposed by
Weld and Bansal (2019) for tabular data. From an initial triple of (input, prediction,
explanation) provided by an XAl system the user can either:

* Change the foil: Contrast the triple with nearest-neighbour triples that
resulted in a particularly different prediction to understand “Why not
prediction B?”.
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* Restrict the subspace: Request other triples that share the same value for
one or more input features to understand “How were similar inputs

handled?”.

 Sensitivity analysis: Request the minimal changes required to one or more
input features that result in a different prediction and explanation to
understand “How stable is the prediction?”.

* Explorative perturbation: Change the values of one or more input features
of an observation to explore the effects on the prediction and its explanation
and to understand “What if?”.

* Global roll-up: Contrast the triple’s local explanation with the global
explanation of the entire model to understand “How representative is the
observation?”.

An XAI system with interactive explanations may derive additional information
about the user’s mental model and preferences from the trail of follow-up
interactions. This additional information may be used to establish common ground
and potentially improve the overall human-Al system performance. With our
framework we aim to support developers with the front-end development of XAl
systems for domain experts. We consider domain experts as end-users with a high
level of expertise in a particular domain but typically limited expertise in ML, such
as lawyers or accountants. We focus on decision-making situations where the
domain expert may have concrete or vague hypotheses about the decision problem
that guides their explanation needs and interaction.

Future Work

Upcoming research will investigate the potentials of interactive explanations and
their evaluation with users in an application context. We collaborate with German
chancelleries, lawyers, and a leading software vendor in the sensitive legal domain.
We follow a human-centered design process to derive requirements and user needs.
Based on these, we iteratively explore design opportunities for usable interactive
explanations using prototypes and user studies. We plan to integrate our insights
and artifacts in a modular toolkit for creating interactive explanation interfaces for
tabular and textual data.
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ABSTRACT

The interdisciplinary field of explainable artificial intelligence (XAI)
aims to foster human understanding of black-box machine learning
models through explanation methods. However, there is no consen-
sus among the involved disciplines regarding the evaluation of their
effectiveness - especially concerning the involvement of human
subjects. For our community, such involvement is a prerequisite for
rigorous evaluation. To better understand how researchers across
the disciplines approach human subject XAl evaluation, we propose
developing a taxonomy that is iterated with a systematic literature
review. Approaching them from an HCI perspective, we analyze
which study designs scholar chose for different explanation goals.
Based on our preliminary analysis, we present a taxonomy that
provides guidance for researchers and practitioners on the design
and execution of XAI evaluations. With this position paper, we put
our survey approach and preliminary results up for discussion with
our fellow researchers.
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1 INTRODUCTION

We have witnessed the widespread adoption of intelligent systems
into many contexts of our lives. Such systems are often built on
advanced machine learning (ML) algorithms that enable powerful
predictions — often at the expense of interpretability. As these sys-
tems are introduced into more sensitive contexts of society, there is a
growing acceptance that they need to be capable of explaining their
behavior in human-understandable terms. Hence, much research
is conducted within the emerging domain of explainable artificial
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intelligence (XAI) and interpretable machine learning (IML) on de-
veloping models, methods, and interfaces that are interpretable to
human users - often through some notion of explanation.

However, most works focus on computational problems while
limited research effort is reported concerning their user evaluation.
Previous surveys identified the need for more rigid empirical evalu-
ation of explanations [2, 5, 17]. The Al and ML communities often
strive for functional evaluation of their approaches with bench-
mark data to demonstrate generalizability. While this is suitable to
demonstrate technical feasibility, it is also problematic since often
"there is no formal definition of a correct or best explanation” [24].
Even if a formal foundation exists, it does not necessarily result in
practical utility for humans as the utility of an explanation is highly
dependent on the context and capabilities of human users. With-
out proper human behavior evaluations, it is difficult to assess an
explanation method’s utility for practical use cases [26]. We argue
that functional and behavioral evaluation approaches have their
legitimacy. Yet, since there is no consensus on evaluation methods,
the comparison and validation of diverse explanation techniques is
an open challenge [2, 4].

In this work, we take an HCI perspective and focus on evalu-
ations with human subjects. We believe that the HCI community
should be the driving force for establishing rigorous evaluation
procedures that investigate how XAI can benefit users. Our work
is guided by three research questions:

e RQ-1: Which evaluation approaches have been proposed
and discussed across disciplines in the field of XAI?

o RQ-2: Which study design decisions have researchers made
in previous evaluations with human subjects?

e RQ-3: How can the proposed approaches and study designs
be integrated into a guiding taxonomy for human-centered
XAI evaluation?

The contribution of this workshop paper is two-fold: First, we in-
troduce our methodology for taxonomy development and literature
review guided by RQ-1 and RQ-2. The review aims to provide an
overview of how evaluations are currently conducted and help iden-
tify suitable best practices. As a second contribution, we present
a preliminary taxonomy of human evaluation approaches in XAI
and describe its dimensions. Taxonomies have been used in many
disciplines to help researchers and practitioners to understand and
analyze complex domains [23]. Our overarching goal is to syn-
thesize a human subject evaluation guideline for researchers and
practitioners of different disciplines in the field of XAI With this
work, we put our review methodology and preliminary taxonomy
up for discussion with our fellow researchers.
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2 FOUNDATIONS AND RELATED WORK

2.1 Evaluating Explanations in Social Sciences

Miller defines explanation as either a process or a product [16].
On the one hand, an explanation describes the cognitive process
of identifying the cause(s) of a particular event. At the same time,
it is a social process between an explainer (sender of an explana-
tion) and an explainee (receiver of an explanation) with the goal
to transfer knowledge about the cognitive process. Lastly, an ex-
planation can describe the product that results from the cognitive
process and aims to answer a why-question. In our paper, we refer
to explanations from the product perspective. Psychologists and
social scientists investigated how humans evaluate explanations
for decades. Within their disciplines, explanation evaluation refers
to the process applied by an explainee for determining if an expla-
nation is satisfactory [16]. Scholars conducted experiments where
they presented participants with different types of explanations as
treatments. These experiments indicate that choosing one explana-
tion over another is often an arbitrary choice heavily influenced
by cognitive biases and heuristics [12]. The primary criteria of ex-
plainees are whether the explanation helps them to understand
the underlying cause [16]. For instance, humans are more likely to
accept explanations that are consistent with their prior beliefs. Fur-
thermore, they prefer explanations that are simpler (i.e., with fewer
causes), and more generalizable (i.e., that apply to more events).
Also, the effectiveness of an explanation depends on the current
information needs of the explainee. A suitable explanation for one
purpose may be irrelevant for another. Thus, for an explanation to
be effective, it is essential to know the intended context of use.

2.2 Explainable Artificial Intelligence (XAI)

Interpretability in machine learning is not a monolithic concept [15].
Instead, it is used to indirectly evaluate whether important desider-
ata, such as fairness, reliability, causality, or trust, are met in a par-
ticular context [4]. Some definitions of interpretability are rather
system-centric. Doshi-Velez and Kim [4] describe it as a model’s
"ability to explain or to present in understandable terms to a human."
Miller [16] takes a more human-centered perspective calling it "the
degree to which an observer can understand the cause of a decision”.
Human understanding can be fostered either by offering means of
introspection or through explanations [3]. A large variety of meth-
ods exist for both approaches [9]. The term interpretable machine
learning (IML) often refers to research on models and algorithms
that are considered as inherently interpretable while explainable
AI (XAI) often refers to the generation of (post-hoc) explanations
or means of introspection for black-box models [27, 33]. A model’s
black-box behavior may manifest itself in two ways: either from
complex architectures, as with deep neural networks, or from pro-
prietary models (that may otherwise be interpretable), as with the
COMPAS recidivism model [27]. The lines between IML and XAI
are often seamless and the terms are often used interchangeably.
For instance, DARPA’s XAI program subsumes both terms with
the objective to "enable human users to understand, appropriately
trust, and effectively manage the emerging generation of artificially
intelligent partners” [10].
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2.3 Evaluating Explanations in XAI

Multiple surveys of the ever-growing field of XAI exist. They for-
malize and ground the concept of XAl [1, 2], relate it to adjacent
concepts and disciplines [1, 16], categorize methods [9], or discuss
future research directions [1, 2]. All these surveys report a lack of
rigid evaluations. Adadi et al. found that only 5% of surveyed papers
evaluate XAl methods and quantify their relevance [2]. Similarly,
Nunes and Jannach found that 78% of the analyzed papers on expla-
nations in decision support systems lacked structured evaluations
that go beyond anecdotal "toy examples" [24].

Some works have addressed the design and conduction of expla-
nation evaluations in XAl Gilpin et al. survey explainable methods
for deep neural networks and describe a categorization of evaluation
approaches at different stages of the ML development process [8].
Yang et al. provide a framework consisting of multiple levels of
explanation evaluation [33]. Their definition of persuasibility (mea-
suring the degree of human comprehension) focuses on the human
and resonates with our notion of human subject evaluation. Our
work aims to elaborate on their generic strategy of "employing
users for human studies". Nunes and Jannach reviewed 217 publica-
tions spanning multiple decades and briefly report findings from
applied evaluation approaches [24]. Based on their survey they
derive a comprehensive taxonomy that guides the design of ex-
planations. However, their taxonomy omits aspects of evaluation.
Mueller identified 39 XAI papers that reported empirical evalu-
ations and qualitatively described chosen evaluation approaches
along 9 dimensions [20].

While these works offer valuable ideas, they are limited in their
scope and, thus, offer little guidance for XAI user evaluations. Of
course, "there is no standard design for user studies that evaluate
forms of explanations” [24]. However, we believe that a unified
taxonomy is needed that integrates the most common ideas related
to human subject evaluation and extends them with best practice
examples. Such an actionable format can provide great benefit for
researchers and practitioners by guiding them through the design
and reporting of structured XAI evaluations.

3 METHODOLOGY

In this section, we outline our method of taxonomy development
as well as the planned literature review. Our goal is to develop a
comprehensive taxonomy for human subject evaluations in XAIL
We seek to validate and iterate it through a structured literature
review (SLR). Figure 2 illustrates our proposed methodology and
the interplay between taxonomy and SLR.

3.1 Taxonomy Development

There are two approaches to constructing a taxonomy. Following
the conceptual-to-empirical approach, the researcher proposes a
classification based on a theory or model (deductive). In contrast,
the empirical-to-conceptual approach derives the taxonomy from
empirical cases (inductive). We follow the iterative process for
taxonomy development proposed by Nickerson et al. [23]. Their
method unifies both approaches in an iterative process under a
shared meta-characteristic and defined ending conditions.

In line with RQ-3, we defined our meta-characteristic as the de-
velopment of a taxonomy for human subject evaluation of black-box
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Taxonomy Development
(Nickerson et al.)

Meta-Characteristic:

Taxonomy for human-subject evaluation of black-box
explanations that guides researchers and practitioners
with the design and reporting of future studies

Ending condition according to Nickerson et al.

Determine
meta-characteristic
and ending conditions

—_—

A 4 —

Conceptual-to-empirical
approach

Empirical-to-conceptual
approach

v—l

Preliminary
taxonomy

v

Taxonomy
meeting
ending conditions

| v

Structured Literature Review
(Kitchenham and Charters)

Exclusion Criteria:

EC-1: Not written in English; EC-2: Not related to black-
box explanations; EC-3: Not reporting human subject
evaluation; EC-4: Full-text could not be retrieved; EC-5:
Not a scientific full- or short paper; EC-6: Is a duplicate

Inclusion Criterion IC-1: Reports setup and results of a
human subject evaluation in the XAl

Publications identified
through Scopus
(n=653)

v

Publications screened Publications excluded

based on abstract and 9 after screening
full-text (n=653) (n=507)

Publications analyzed Publications excluded

based on abstractand [ after detailed analysis

full-text (n=146)

v

Publications meeting
inclusion criteria
(n=133)

(n=13)

Figure 1: The proposed methodology for taxonomy development with an integrated structured literature review (SLR). Steps
highlighted in green describe the preliminary results presented in this workshop paper.

explanations that guides researchers and practitioners with the design
and reporting of future studies. We start by applying the conceptual-
to-empirical approach. To follow this approach, one needs to pro-
pose a classification based on a theory or model. We do this by
consolidating proposed categories for XAI evaluation in prior work
and connecting them with foundational literature on empirical
studies. The resulting taxonomy describes an ideal type, which
allows us to examine empirically how much current human subject
evaluations deviate from an ideal type.

3.2 Structured Literature Review

As part of the empirical-to-conceptual iteration, we aim to vali-
date and iterate the taxonomy using a structured literature review
(SLR). In line with RQ-2, the review’s objective is to capture how
researchers currently evaluate XAI methods and systems with hu-
man subjects. Through this, we seek to find out how structured
and precise we can describe the field using our taxonomy. During
this process, we also aim to iterate the taxonomy. The planned
SLR follows established approaches proposed by Kitchenham and
Charters [13]. In the following, we outline the proposed search
strategy.
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Source Selection: An exploratory search for XAI on Google Scholar
indicated that relevant work is dispersed across multiple publishers,
conferences, and journals. Thus, we use the Scopus database as a
source as it integrates publications from relevant publishers such
as ACM, IEEE, and AAAL

Search Query: Through our exploratory search, we obtained an
initial understanding of relevant keywords, synonyms, and related
concepts that helped us to construct a search query. We found that
different terms are used between the disciplines to describe the field
of XAI and human subject evaluation approaches. Early research
does not explicitly state the expressions XAI nor explainable artifi-
cial intelligence. Thus, our search queries are composed of groups
and terms. Groups refer to a specific aspect of the research question
and limit the search scope. Terms have a similar semantic meaning
within the group domain or are often used interchangeably. We are
interested in the intersection of 3 groups that can be phrased using
different terms. Table 1 shows our used groups and terms.

Study Selection Criteria: We filtered the search results by six exclu-
sion criteria (EC) and one inclusion criterion (IC). We are interested
in primary studies that report the setup and result of human subject



ExSS-ATEC’20, March 2020, Cagliari, Italy

Table 1: Groups and terms used for search query

Group Terms

1 - Explainable explainability, explainable, explana-
tion, explanatory, interpretability, in-
terpretable, intelligibility, intelligible,

scrutability, scrutable, justification

2-Al XAL Al artificial intelligence, machine
learning, black-box, recommender sys-
tem, intelligent system, expert system,
intelligent agent, decision support sys-
tem

3 - Human Subject Evaluation  user study, lab study, empirical study,
online experiment, human experiment,
human evaluation, user evaluation,
participant, within-subject, between-
subject, probe, crowdsourcing, Me-
chanical Turk

evaluations in the XAI context (IC-1). We limit the survey to publi-
cations addressing the black-box explanation problem, according to
Guidotti et al. [9] (EC-2). Furthermore, we exclude publications that
do not report human-grounded or application-grounded evaluations
according to Doshi-Velez and Kim [4] (EC-3). We applied the ex-
clusion criteria in cascading order, i.e., if we excluded publications
due to one EC, we did not assess any following criteria.

Study Analysis: So far, we conducted the search procedure for
Scopus in September 2019, which returned a total of 653 potentially
relevant publications. Both authors filtered the returned publica-
tions by the inclusions and exclusion criteria to control for inter-
rater effects. We discussed differing assessments until we reached
consensus. We are currently in the process of analyzing the publi-
cations that met the inclusion criterion.

4 TAXONOMY OF HUMAN SUBJECT
EVALUATION IN XAI

In the following section, we describe relevant dimensions of black-
box explanation evaluation with human subjects. We group identi-
fied characteristics into task-related, participant-related, and study
design-related dimensions. The outlined taxonomy is a prelimi-
nary result after the first iterations of the conceptual-to-empirical
approach based on propositions in prior work. Furthermore, the tax-
onomy was validated and refined based on a small subset consisting
of 34 publications from the structured literature review following
the empirical-to-conceptual approach.

4.1 Task Dimensions

Mohseni and Ragan distinguish two types of human involve-
ment in the evaluation of explanations [18]. In the feedback set-
ting, participants provide feedback on actual explanations. Exper-
imenters determine the quality of the explanations through this
feedback. In contrast, in the feed-forward setting no explanations are
provided. Instead, humans are generating examples of reasonable
explanations serving as a benchmark for algorithmic explanations.
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Doshi-Velez and Kim distinguish two types of human subject
evaluations that differ in their level of task abstraction [4]: App-
lication-grounded evaluations conduct experiments within a real ap-
plication context. Typically, this requires a high level of participant
expertise. The quality of the explanation is assessed in measures
of the application context, typically with a test of performance.
Human-grounded evaluations conduct simplified or abstracted ex-
periments that aim to maintain the essence of the target application.

Multiple types of user tasks have been proposed to elicit the
quality of explanations [4, 18, 33]. We suggest distinguishing them
by the information provided to the participant and the information
inquired in return. In verification tasks, participants are provided
with input, explanation, and output and asked for their satisfac-
tion with the explanation. Forced choice tasks extend this setting.
Here, participants are asked to choose from multiple competing
explanations. In the case of forward simulation tasks, participants
are presented with inputs as well as explanations and need to pre-
dict the system’s output. Counterfactual simulation tasks, present
participants with an input, an explanation, an output, and an al-
ternative output (the counterfactual). Based on these, they predict
what input changes are necessary to obtain the alternative output.
In "Clever Hans" detection tasks, participants need to identify and
possibly debug flawed models, e.g., a naive or short-sighted pre-
dictor [14]. System usage tasks are characterized by participants
using the system and its explanations for its primary purpose, e.g.,
a decision-making situation. The quality of the explanation is as-
sessed in terms of decision quality. In annotation tasks, participants
provide a suitable explanation given input and output of a model.

Explanations are provided to users with very different goals in
mind. For their effective evaluation, researchers need to ensure that
the intended explanation goal(s) are aligned with their intended
evaluation goal(s), and vice versa. Also, calibration of the indi-
vidual goals of participants with the intended explanation goal(s)
might be necessary (e.g., through a briefing before the task) [31].
We distinguish 9 common explanation goals, which are derived
from [24, 30, 32]: transparency aims to explain how the system
works, scrutability aims to allow users to tell the system it is wrong,
trust aims to increase the user’s confidence in the system, persua-
siveness aims to convince the user to perform an action, satisfaction
aim to increase the ease of use or enjoyment, effectiveness aims to
help users make good decisions, efficiency aims to make decisions
faster, education aims to enable users to generalize and learn, de-
bugging aims to enable users to identify defects in the system. In
the case of multiple intended explanation goals, their dependencies
may be complementary, contradictory, or even unknown (e.g., the
impact of transparency on trust).

Hoffman et al. describe multiple levels of task evaluation to as-
sess a participant’s understanding of and XAI system. Furthermore,
they discuss suitable metrics for each level [11]. Tests of satisfaction
measure participants’ self-reported satisfaction with an explana-
tion and their perception of system understanding. On this level,
researchers can rarely be sure whether participants understand
the system to the degree that participants claim. Tests of compre-
hension assess the participants’ mental models of the system and
tests their understanding, for example, through prediction tests and
generative exercises. Tests of performance measure the resulting
human-XAI system performance.
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Study Design Dimensions

Study Approach Treat. Assignment Treat. Combination [24]
Qualitative Within-subjects Single Explanation
Quantitative Between-subjects With and Without Explanation
Mixed Altern. Explanation

Altern. Explanation Interface

Human Involvement [18] Information given to Participant Participant Incentivation
X [28, 29, 25]

Feedback Task Type [4, 18, 33, 14] Input Explanation Output
Feedforward Verification v v v Monetary

Forced Choice v VoV v Non-Monetary
T —— Forward Simulation v v ?

valuation Level
(t Counterfactual Simulation v,? v v,V
ies: o: zatisfactr:on ) "Clever Hans" Detection v v v Number of Participants
est of Comprehension System Usage v v v

Test of Performance v

Annotation v ? v g

v = information provided to participant ¢

? = information inquired of participant
Abstraction Level [4] Participant Foresight [21] Level of Expertise Participant Recruiting
Human-grounded Intrinsic RarticipanGlypei[19] Al Domain Field Study
Application-grounded Extrinsic (Al) Novice User low low Lab Study

Domain Expert low high Online Study
- Crowd-sourcing
Al Expert high low

Participant Dimensions

Figure 2: Preliminary taxonomy of human subject evaluation in XAI based on the conceptual-to-empirical approach.

4.2 Participant Dimensions

Mohseni et al. distinguish between several participant types: Al
novices who are usually end-users, data experts (including domain
experts), and Al experts [19]. This distinction is important as user
expertise strongly influences other participant-related dimensions.
For example, Doshi-Velez and Kim [4], referencing the work of
Neath and Surprenant [22], point out that user expertise determines
what kind of cognitive chunks participants apply to a situation. The
expertise of participants may determine the recruiting method
and number of participants. Recruiting difficulty is likely to in-
crease with the required level of participants’ expertise [4]. One can
recruit novices in large numbers via crowd-sourcing. In contrast, do-
main or Al experts are usually harder to identify and recruit. They
are often invited to a targeted online study, a lab study, or a field
study. According to Narayana et al., the user study task may have
dependencies with the level of participant foresight [21]. In an
intrinsic setting, the participant’s understanding of the context is
solely based on the provided information. Thus, all participants are
assumed to have equal knowledge about the context. Such types of
experiments are usually suitable for novices. In an extrinsic setting,
participants can additionally draw upon external facts, such as prior
experience, that may be relevant for assessing the quality of an
explanation, e.g., for spotting model flaws. Such a setting may be
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more suitable for data experts. However, it also makes controlling
for participants’ knowledge more difficult.

Incentivization of participants is another relevant dimension.
According to Sova and Nielsen, it should be chosen considering
study length, task demand, and participant expertise [28]. Stadt-
miiller and Porst advise us to use a monetary incentive for partici-
pants [29]. However, several non-monetary incentives are known to
be effective as well (e.g., gifts for already paid employees) [25, 28].
Prost and Briel found that participants may take part in a study
because of study-related incentives (e.g., curiosity, sympathy, or
entertainment), personal-incentive (e.g., professional interest or a
promise made), or altruistic reasons (e.g., to benefit science, society,
or others) [25]. Esser argues that researchers should consider in-
centives in their combination such that the benefits of participating
out-weigh the perceived cost [6].

4.3 Study Design Dimensions

The study design of evaluations may follow a qualitative, quanti-
tative, or mixed study approach. In experimental studies, experi-
menters assign treatments to groups of participants. Applied to the
context of explanation evaluations, we can distinguish four com-
mon types of treatments combinations in line with Nunes and
Jannach [24]: single treatment (i.e., no alternative treatment), with
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and without explanation (i.e., no explanation is alternative treat-
ment), alternative explanation (i.e., varying information provided
in explanations between treatments with other aspects of user in-
terface fixed), alternative explanation interface (i.e., varying user
interfaces between treatments). Furthermore, we can distinguish
study designs by the treatment assignment: Between-subjects de-
signs study the differences in understanding between groups of
participants, each usually assigned to one treatment. In contrast,
within-subject designs study differences within individual partici-
pants who are assigned to multiple treatments.

5 LIMITATION AND FUTURE WORK

Our preliminary taxonomy has limitations. The taxonomy is neither
collectively exhaustive nor mutually exclusive. Thus, it does not
meet the ending conditions of taxonomy development [23]. We
aim to refine and iterate the taxonomy with the results from the
proposed structured literature review.

Furthermore, human subject evaluations in XAI are typically
embedded in a broader context, which may create dependencies
and limit applicable evaluation approaches. Dependencies may
arise from the explanation design context, such as the form of
an explanation, its contents, or its underlying generation method.
Multiple taxonomies have been developed for guiding the design
of explanations [7, 24]. Nunes and Jannach proposed an elaborate
explanation design taxonomy [24]. However, their taxonomy omits
aspects of evaluation. For now, we have abstained from relating our
preliminary human subject evaluation taxonomy with this prior
work, but plan to integrate them in later iterations.

6 CONCLUSION

In this work, we gave a brief overview of recent efforts on explana-
tion evaluation with human subjects in the growing field of XAL
We proposed a methodology for developing a comprehensive tax-
onomy for human subject evaluation that integrates the knowledge
from multiple disciplines involved in XAI Based on ideas from
prior work, we presented a preliminary taxonomy following the
conceptual-to-empirical approach. Despite its limitations, we be-
lieve our work is a starting point for rigorously evaluating the
utility of explanations for human understanding of XAI systems.
Researchers and practitioners developing XAl explanation facilities
and systems have been asked to "respect the time and effort involved
to do such evaluations" [4]. We aim to spark a discussion at the
workshop on how to support them along the way.
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ABSTRACT

The rise of interactive intelligent systems has surfaced the need
to make system reasoning and decision-making understandable
to users through means such as explanation facilities. Apart from
bringing significant technical challenges, the call to make such
systems explainable, transparent and controllable may conflict with
stakeholders’ interests. For example, intelligent algorithms are often
an inherent part of business models so that companies might be
reluctant to disclose details on their inner workings. In this paper,
we argue that as a consequence, this conflict might result in means
for explanation, transparency and control that do not necessarily
benefit users. Indeed, we even see a risk that the actual virtues
of such means might be turned into dark patterns: user interfaces
that purposefully deceive users for the benefit of other parties. We
present and discuss such possible dark patterns of explainability,
transparency and control building on dark UX design patterns by
Grey et al. The resulting dark patterns serve as a thought-provoking
addition to the greater discussion in this field.
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1 INTRODUCTION

Intelligent systems that are empowered by advanced machine learn-
ing models have successfully been applied in closed contexts to
well-structured tasks (e.g., object recognition, translations, board
games) and often outperform humans in those. These advancements
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fostered the introduction of intelligent systems into more sensitive
contexts of human life, like courts, personal finance or recruiting,
with the promise to augment human decision-making in those.

However, the effectiveness of intelligent systems in sensitive
contexts cannot always be measured in objective terms. Often they
need to take soft factors, like safety, ethics and non-discrimination,
into account. Their acceptance will greatly depend on their ability
to make decisions and actions interpretable to its users and those
affected by them. Introducing interpretability through explanation
facilities [15] is widely discussed as an effective measure to sup-
port users in understanding intelligent systems [9, 24]. Yet, these
measures are located at the intersection of potentially conflicting
interests between decision-subjects, users, developers and company
stakeholders [36].

First, companies may not see the benefit to invest in potentially
costly processes to include explanations and control options for
users unless they improve their expected revenues in some way.
Second, creating suitable explanations of algorithmic reasoning
presents a major technical challenges in itself that often requires
abstraction from the algorithmic complexity [28, 29]. Furthermore,
those systems are often integrated with critical business processes.
Companies might be reluctant to disclose explanations that honestly
describe their reasoning to the public as it might have an impact
on their reputation or competitive advantage. Forcing companies
to do so by law, like the right to explanation as part of the European
Union General Data Protection Regulation (GDPR) [32], will most
likely not result in meaningful explanations for users.

Therefore, we see a danger that means for algorithmic explana-
tion, transparency and control might not always be designed by
practitioners to benefit users. We even see a risk that users might
consciously be deceived for the benefit of other parties. Such care-
fully crafted deceptive design solutions have gained notoriety in
the UI design community as dark patterns [3].

In this paper, we extend the notion of prominent dark UX pat-
terns [13] to algorithmic explanation, transparency and control. We
discuss situations of opposing interests between the creator and re-
ceiver of algorithmic explanation, transparency and control means
that could be potentially argued as questionable or unethical and
contribute to the discussion about the role of design practitioners
in this process.

A75



1Ul Workshops’19, March 20, 2019, Los Angeles, USA

2 BACKGROUND

2.1 Explanations in Intelligent Systems

Haynes et al. define intelligent systems as “software programs de-
signed to act autonomously and adaptively to achieve goals defined
by their human developer or user” [15]. Intelligent systems typically
utilize a large knowledge data base and decision-making algorithms.
Following Singh [31], a system is intelligent if users need to “at-
tribute cognitive concepts such as intentions and beliefs to it in order
to characterize, understand, analyze, or predict its behavior”.

Many of the intelligent systems developed today are based on in-
creasingly complex and non-transparent machine learning models,
which are difficult to understand for humans. However, sensitive
contexts with potentially significant consequences often require
some kind of human oversight and intervention. Yet, even intel-
ligent systems in everyday contexts often confuse users [11]. For
example, social network users are not aware that the news feed
is algorithmically curated [6]. These insights result in ongoing re-
search activities to improve the interpretability of those systems.
Interpretability is the degree to which a human can understand
the cause of a decision [26]. Interpretability can be achieved ei-
ther by transparency of the model’s inner workings and data, or
post-hoc explanations that convey information about a (potentially)
approximated cause — just like a human would explain [24].

Different stakeholders (e.g., creator, owner, operator, decision-
subjects, examiner) of an intelligent system may require different
means of interpretability [35]. Creators may demand transparency
about the system’s algorithms, while operators might be more
interested how well the system’s conceptual model fits their mental
model (global explanation). Decision-subjects, on the other hand,
may be interested in the factors influencing their individual decision
(local explanation). This paper focuses on the interplay between
owners of intelligent systems and decision-subjects using it.

Explanation facilities [15] are an important feature of usable intel-
ligent systems. They may produce explanations in forms of textual
representations, visualizations or references to similar cases [24].
The explanations provided may enable users to better understand
why the system showed a certain behaviour and allow them to
refine their mental models of the system. Following Tomsett [35]
we define explainability as the level to which a system can provide
clarification for the cause of its decision to its users.

Previous research work suggests that explanation facilities in-
crease users’ trust towards a system [23, 28] and user understand-
ing [10, 18, 20]. However, how to present effective and usable ex-
planations in intelligent systems is still a challenge that lacks best
practices [22]. Due to the complexity of intelligent systems, expla-
nations can easily overwhelm users or clutter the interface [18].
Studies by Bunt et al. [7] indicate that the costs of reading explana-
tions may outweigh the perceived benefits of users. Moreover, some
researchers warn that it may also be possible to gain users’ trust
with the provision of meaningless or misleading explanations [36].
This might leave users prone to manipulation and give rise to the
emergence of dark patterns.

2.2 Dark Patterns

In general, a design pattern is defined as a proven and generalizing
solution to a recurring design problem. It captures design insights
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Would you like to let the
system choose the best
route for you?

Not Now OK

Figure 1: Exemplary interface for the Restricted Dialogue
dark pattern. Users are not given a “No” option.

in a formal and structured way and is intended to be reused by
other practitioners [12]. Design patterns originate from architec-
ture [1], but have been adopted in other fields such as software
engineering [12], proxemic interaction [14], interface design [33],
game design [37], and user experience design [13]. In contrast, an
anti pattern refers to a solution that is commonly used although
being considered ineffective and although another reusable and
proven solution exists [17].

In 2010, Harry Brignull coined the term dark pattern [3] to de-
scribe “a user interface that has been carefully crafted to trick users
into doing things [...] with a solid understanding of human psychology,
and they do not have the user’s interests in mind” [5]. He contrasts
dark patterns to “honest” interfaces in terms of trading-off busi-
ness revenue and user benefit [4]: while the latter put users first,
the former deliberately deceive users to increase profit within the
limits of law. Brignull [3] identified twelve different types of dark
patterns and collects examples in his "hall of shame". Gray et al. [13]
further clustered these dark patterns into five categories: Nagging,
Obstruction, Sneaking, Interface Interference and Forced Action.

3 DARK PATTERNS OF EXPLAINABILITY,
TRANSPARENCY AND CONTROL

What makes a pattern dark in the context of explainability, trans-
parency and control? We see two general ways: the phrasing (of
an explanation), and the way it is integrated and depicted in the
interface (of explanation facilities). We build on the five categories
of dark UX design patterns by Gray et al. [13] and apply them to
the context of explainability, transparency, and user control, along
with concrete examples (Table 1).

3.1 Nagging

Nagging is defined as a “redirection of expected functionality that
may persist over one or more interactions” [13]. Transferred to the
context of this paper, Nagging interweaves explanation and control
with other, possibly hidden, functionality and thus forces users to
do things they did not intend to do or interrupts them during their
“actual” interaction.

3.1.1  Example 1: Restricted Dialogue. One example that Gray et
al. present in their paper are pop-up dialogues that do not allow
permanent dismissal. This could be easily transferred to our context:
for example, an intelligent routing system could take control away
from users with the tempting offer “Would you like to let the system
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Dark Pattern
by Gray et. al. [13]

Transfer
to Explainability and Control

Example Phrasings
of Explanation

Example Interfaces
of Explanation Facilities

Nagging: “redirection of expected func-
tionality that may persist over one or
more interactions”

Obstruction: “making a process more
difficult than it needs to be, with the in-
tent of dissuading certain action(s)”

Sneaking: “attempting to hide, disguise,
or delay the divulging of information
that is relevant to the user”

Interface Interference: “manipula-
tion of the user interface that privileges
certain actions over others.”

Forced Action ‘Requiring the user to
perform a certain action to access [...]
certain functionality”

Interrupt users’ desire for explanation
and control

Make users shun the effort to find and
understand an explanation while inter-
acting with explanation or control fa-
cilities

Gain from user’s interaction with expla-
nation/control facilities through hidden
functions

Encourage explainability or control set-
tings that are preferred by the system
provider

Force users to perform an action be-
fore providing them with useful expla-
nations or control options

Restricted Dialogue

Information Overload,
Nebulous Prioritization

Explanation Marketing

Unfavorable Default

Forced Data Exposure,
Tit for Tat

Hidden Interaction

Hidden Access,
Nested Details,
Hampered Selection

Explanation Surveys

Competing Elements,
Limited View

Forced Dismissal

Table 1: Examples of dark patterns in the phrasing of explanations and the interface of explanation facilities. The examples

are built upon the categorization by Gray et al. [13].

choose the best route for you?”, where users can only select “Not
now” or “OK”, but have no “No” option (see Figure 1).

3.1.2  Example 2: Hidden Interaction. Nagging might include link-
ing on-demand explanations with hidden advertisements: A click
on “Why was this recommended to me?” on an ad could indeed
open the explanation, but also the ad link (e.g., in two browser tabs).

3.2 Obstruction

Gray et al. define Obstruction in UX design as “making a process
more difficult than it needs to be, with the intent of dissuading certain
action(s)”. In the context of this paper, Obstruction makes it hard to
get (useful) explanations about the system’s decision-making and
to control the algorithmic settings. Users thus might shun from the
additional effort this takes and rather accept the system as is.

3.2.1 Example 1: Information Overload. Moreover, the use of very
technical language to explain system behaviour and decision-making,
or very lengthy explanations would most probably discourage users
from reading the given information at all (see Figure 3. This might be
comparable to what we currently see in end user licence agreements:
the use of very technical language and a very lengthy presentation
format results in users skipping the system prompt [2].

3.2.2  Example 2: Nebulous Prioritization. When explaining a deci-
sion or recommendation with a large number of influencing factors,
the system might limit those factors by some notion of “importance”
to not overwhelm the user. However, limiting factors requires a
(potentially arbitrary) prioritization, which might be used to ob-
fuscate sensitive factors, like family or relationship statuses. The

explanation could be framed vaguely (e.g., “This recommendation is
based on factors such as..” - i.e. not claiming to present all factors).

3.2.3 Example 3: Hidden Access. One way to obstruct the path to
information could be to avoid “in-situ” links to explanations (e.g.,
offer no direct explanation button near a system recommendation).
Instead, the option for explanation and control could be deeply
hidden in the user profile and thus difficult to access.

3.2.4 Example 4: Nested Details. Similarly, the information detail
could be distributed, for example nested in many links: When users
want to have more than a superficial “This was shown in your feed,
because you seem to be interested in fashion”, they would have
to take many steps to reach the level of detail that satisfies their
information need.

3.25 Example 5: Hampered Selection. The system could also make
activating explanations tedious for users by forcing them to do this
for, say, every single category of product recommendation with-
out giving a “select all” option. This could resemble the difficult
cookie management practices seen today on many ad-financed
websites. In another example setting, the information in an intelli-
gent routing system could be spread along different sections of the
recommended route and thus would have to be activated for each
section separately.

3.3 Sneaking

The dark pattern of Sneaking is defined as “attempting to hide,
disguise, or delay the divulging of information that is relevant to
the user” [13]. Following this dark pattern, systems could use UI
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Interesting Content

Lorem ipsum dolor sit amet, consetetur
sadipscing elitcsed.diamnonumveicmadiemnor.. l

widuntul  Explanation OQ
sed diam
justo duo

We thought you might like this product because: /p

t psi
Stet clita
sanctus e
ipsum dol ) ' o
diam
labore et
voluptua

Dismiss explanations

At vero et accusam et justo duo dolores et ea
rebum. Stet clita kasd gubergren, no sea takimata
sanctus est Lorem ipsum c rsit amet

Figure 2: Exemplary interface for the Limited View dark pat-
tern. Users are encouraged to dismiss explanations since
they are layouted in a way that annoyingly covers the main
content of the website.

We use a naive Bayes classifier for our recommendations.

Probabilistic model

Abstractly, naive Bayes is a conditional probability model: given a
problem instance to be classified, represented by a vector

x ) representing some  fealures (independent
variables), it assigns to this instance probabilfies

PG [21100122)
for each of K possible outcomes or classes Ci.

The problem with the above formulation is that if the number of
features s large or i a feature can take on a large number of
values, then basing such a model on probability tables is infeasibe.
We therefore reformulate the model to make it more tractable.
Using Bayes' theorem, the conditional probabilty can be
decomposed as

Figure 3: Exemplary interface for the Information Overload
dark pattern. The given explanation is lengthy and uses
technical language not suitable for non-experts (example ar-
ticle copied from Wikipedia).

elements for explainability and control, to sneak in information
motivated by different intentions than interpretability.

3.3.1 Example 1: Explanation Marketing. For example, a web adver-
tisement service could explain a particular ad by showing previously
seen ads which the user had seemed to be interested in. Thus, the
user’s interest in an explanation is utilized to present multiple (po-
tentially paid) advertisements. In a similar fashion, an online shop
could use the opportunity of explaining product recommendations
to promote further products. Also, ads might be directly integrated
into the phrasing of explanations. For instance, an intelligent maps
application might explain its routing decisions along the lines of
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“This route is recommended because it passes by the following
stores you’ve visited in the past..”.

3.3.2  Example 2: Explanation Surveys. Another approach might
present an explanation and ask users for feedback in order to im-
prove future explanations. This way, a company might enrich its
user data and utilize it apart from explanation.

3.4 Interface Interference

Gray et al. [13] define this dark pattern as “manipulation of the user
interface that privileges certain actions over others.” In our context,
this dark pattern privileges Ul settings and user states that do not
contribute to - or actively suppress - explainability, transparency,
and user control.

3.4.1 Example 1: Unfavorable Default. For example, a dark pattern
in this category could preselect a “hide explanations” option during
the user onboarding in a financial robo-advisor system. This could
be motivated to the user as “uncluttering” the dashboard or UI
layout in general.

3.4.2  Example 2: Limited View. Explanations and control elements
could also be layouted in a way that significantly reduces the space
for the actual content or interferes with viewing it. This could
encourage users to dismiss explanations to increase usability. Even
simpler, links to an explanation might be presented in a barely
visible manner. Figure 2 shows an example.

3.4.3 Example 3: Competing Elements. Further integration of ex-
planations with the system’s business model might involve, for
instance, starting a count down timer upon opening an explanation
for a booking recommendation to compete for the user’s attention.
This timer could indicate a guaranteed price or availability, thus
putting pressure on the user to abandon the explanation view in
order to continue with the booking process.

3.5 Forced Action

This dark pattern is defined as “requiring the user to perform a certain
action to access (or continue to access) certain functionality” [13]. In
our context, the user could be forced to perform an action that (also)
dismisses functionality or information related to explainability,
transparency and control.

3.5.1 Example 1: Forced Data Exposure. This dark pattern could be
used to collect valuable user data under the pretext of explanation.
The user might be forced to provide further personal information
(e.g., social connections) before receiving personalized explanations.
Otherwise, the user would be left off with a generic high-level
explanation.

3.5.2  Example 2: Forced Dismissal. A user could be forced to dis-
miss an explanation pop-up in order to see the results of a request
displayed underneath (e.g., during the investment process of a robo-
advisor system). This dismissal might be interpreted as a permanent
decision to no longer display any explanations.

3.5.3 Example 3: Tit for Tat. Regarding transparency, an e-commerce
recommender system might force the user to first confirm an action
(e.g., place an order) before it displays the factors that influenced
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the recommendation. For instance, the system might proclaim that
so far not enough data is available to explain its recommendation.

4 SUMMARY AND DISCUSSION

In this paper, we presented possible dark patterns of explanation,
transparency and control of intelligent systems based on the cat-
egorization of dark UX design patters by Gray et al. [13]. We see
the possibility that simple legal obligations for explanation might
result in dark patterns rather than user benefits (e.g., similar to
cookies settings on many ad-financed websites). Instead, with our
work we intend to promote the on-going research on explainability
as well as the discussion on explanation standards and their effects
on users.

4.1 What Are the Consequences of Dark
Patterns?

We see several possibly negative consequences of dark patterns in
this context: Users might be annoyed and irritated by explanations,
developing a negative attitude towards them. Examples include
explanations presented in the Nagging patterns, which automat-
ically open an advertisement along with the explanation; Forced
Action patterns, which hinder the user to access desired results; or
Sneaking patterns, which disguise advertisements as explanations.
Similarly, users might lose interest in explanations when Interface
Interference or Obstruction patterns are applied, which e.g., show
long and tedious to read explanations. As a consequence, users
might dismiss or disable explanations entirely.

On the other hand, users might not recognize explanations when
they are hidden in profile settings. When users know that intel-
ligent systems must provide explanations by law, the absence of
explanations might mistakenly make users believe that the system
does not use algorithmic decision-making. Hence, users might de-
velop an incorrect understanding of algorithmic decision-making
in general.

Furthermore, Obstruction patterns might lead to explanations
which promote socially acceptable factors for algorithmic decision-
making and withhold more critical or unethical ones. As a result,
this might hinder the formation of correct mental models of the
system’s inner workings. Hence, users might not be able to criti-
cally reflect on the system’s correctness and potential biases. As
previous work in psychology suggests, users might accept placebo
explanations without conscious attention as long as no additional
effort is required from them [21]. When explanations use very tech-
nical language and are difficult to understand, users might simply
skip them. This lack of knowledge and uncertainty about the under-
lying factors influencing the algorithm might lead to algorithmic
anxiety [16].

4.2 Which Further Dark Patterns May Appear
in this Context?

In this paper, we transferred the dark pattern categories by Gray et
al. [13] to explainability and control of intelligent systems. However,
there might be further patterns in this context. For example, we
propose a pattern based on Social Pressure that uses information
about other people — who are relevant to the user - in a way that is
likely to be unknown or not endorsed by those people. For example,
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when Bob is shown an advertisement for diet products, explained
by “Ask Alice about this”, he might be annoyed with Alice without
her knowledge. Similarly, Alice’s boss might be recommended a
lingerie shop that also “Alice might be interested in”.

4.3 How Do Dark Patterns Affect Complex
Ecosystems?

In this paper, we examined dark patterns which deceive decision-
subjects who have means of directly interacting with the intelligent
system. However, the ecosystem model of an intelligent system
might be more complex and involve multiple stakeholders [35].
For example, in a financial decision-support context the system
could ascertain the creditworthiness of a person (decision-subject),
but only present an incontestable subset of reasons to the bank
employee (operator) to not impact the reputation of the company
(owner).

4.4 Can All Aspects of Dark Patterns Be
Avoided?

Intelligent systems often use machine learning algorithms, which
have hundreds of input variables. If all of these variables are ex-
plained, the explanation consists of a long list of text, which we
identified as a dark pattern above. On the other hand, if they only
show a subset of input variables for an explanation, this might
bias the user’s mental model, which is another dark pattern. Some
explanations might be easier to understand for users than others.
Hence, future studies have to evaluate which explanations are most
helpful for users to understand the system.

4.5 How Can Dark Patterns Inform Research
and Design?

In general, reflecting on dark patterns can be useful for HCI re-
searchers and practitioners to learn how to do things properly by
considering how not to do them. As a concrete use case, dark pat-
terns can serve as a baseline for empirical studies to evaluate new
design approaches: For example, a new explanation design could
be compared against a placebo explanation - and not (only) against
a version of the system with no explanation at all. Finally, dark pat-
terns raise awareness that having any explanations is not sufficient.
Instead, they motivate the HCI community to work on specific
guidelines and standards for explanations to make sure that these
actually support users in gaining awareness and understanding of
algorithmic decision-making.

5 CONCLUSION

The prevalence of intelligent systems poses several challenges for
HClI researchers and practitioners to support users to successfully
interact with these systems. Explanations of how an intelligent
system works can offer positive benefits for user satisfaction and
control [19, 34], awareness of algorithmic decision making [27], as
well as trust in the system [8, 25, 30]. Since 2018, companies are
legally obliged to offer users a right to explanation, enshrined in the
General Data Protection Regulation [32].

However, providers of intelligent systems might be reluctant to
integrate explanations that disclose system reasoning to the public
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in fear of a negative impact on their reputation or competitive
advantage. Hence, legal obligations alone might not result in useful
facilities for explanation and control for the end user.

In this paper, we have drawn on the notion of dark UX pat-
terns [3] to outline questionable designs for explanation and con-
trol. These arise from explanation facilities that are not primarily
designed with the users’ benefits in mind, but purposely deceive
users for the benefit of other parties.

In conclusion, we argue that while a legal right to explanation
might be an acknowledgement of the necessity to support users
in interacting with intelligent system, it is not sufficient for users
nor our research community. By pointing to potential negative
design outcomes in this paper, we hope to encourage researchers
and practitioners in HCI and IUI communities to work towards spe-
cific guidelines and standards for “good” facilities for explanation,
transparency and user control.
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