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Zusammenfassung

Die Fragestellung dieser Dissertation ist, ob die Allgemeine Relativitätstheorie ausreichend
ist, um die statistische Mechanik schwarzer Löcher zu erklären. Hierzu zeigen wir auf,
dass sich dies auf die Frage reduziert, wie der Hamilton’sche Phasenraum von reiner Ein-
stein’scher Gravitation in der Nähe desjenigen Zustandes aussieht, der ein Schwarzschild’sches
schwarzes Loch beschreibt.

Aufbauend auf den Eindeutigkeits- und Kein-Haar-Theoremen für schwarze Löcher,
könnten erste Erwartungen hierzu in absolutem Gegensatz dazu stehen, was man aus der
Thermodynamik schwarzer Löcher erwarten würde. Letztere suggerieren gravitatives Haar
für schwarze Löcher, d.h. energetisch weiche Anregungen des Gravitationsfeldes, die im
Phasenraum als Verschiebungen nahe des schwarzen Loch Zustandes sichtbar sein soll-
ten. Unsere Hauptfrage ist daher, ob Einstein’sche Gravitation solches gravitatives Haar
enthält?

Wir entwickeln neue Methoden zur systematischen Analyse des Hamilton’schen Phasen-
raumes einer gegebenen Theorie. Eine erste Anwendung unterstützt dabei die These
der Existenz gravitativen Haars für schwarze Löcher. Wir sind in der Lage einen er-
sten Vorschlag für eine duale Theorie zu geben, die durch ihre Observablen und deren
Algebra gegeben ist, die denjenigen Teil des Phasenraumes beschreiben soll, der für die
Mikrozustände des schwarzen Lochs verantwortlich ist. Bemerkenswerter Weise wird der
Vorschlag durch die Beobachtung unterstützt, dass das gravitative Haar, welches durch
die duale Theorie beschrieben und mittels symplektischer Methoden hergeleitet wurde,
mit demjenigen übereinstimmt, welches man in natürlicher Weise mittels geometrischer
Herangehensweisen vermutet hätte.

Unabhängig von diesem konkreten Vorschlag argumentieren wir, warum zu erwarten
ist, dass der für die Mikrozustände verantwortliche Teil des Phasenraumes eine konforme
Invarianz besitzt. Eine duale Theorie, die diesen Teil im Phasenraum beschreiben soll,
liefert daher eine Schwarzschild/konforme Feldtheorie (CFT)-Korrespondenz.

Ebenso unabhängig von unserem konkreten Schwarzschild/CFT-Vorschlag sind wir auf
Basis allgemeiner Argumente in der Lage die Gestalt der Symmetrie-Generatoren dieser zu
erwartenden konformen Symmetrie anzugeben. Dieses Wissen über die Symmetrie liefert
bereits genug Informationen um die Zustandsentartung zu zählen. Bemerkenswerter Weise
finden wir exakte Übereinstimmung mit der Bekenstein-Hawking Entropie.

Weiterhin zeigen wir, wie diese Resultate genutzt werden, um heraus zu finden, ob das
durch einen gegebenen Schwarzschild/CFT-Vorschlag beschriebene gravitative Haar das
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Korrekte ist, welches für Mikrozustände und Entropie verantwortlich ist. Während eine
solche Analyse immer noch ausstehend ist, damit die Rede von einem standfesten Beweis
unseres Schwarzschild/CFT-Vorschlags sein kann, können wir dennoch schon folgenden
Schluss ziehen, der kurz das Hauptresultat der vorliegenden Dissertation zusammenfasst.

Die Allgemeine Relativitätstheorie scheint die richtigen Mechanismen und Freiheits-
grade bereitzustullen, um die thermodynamischen Eigenschaften schwarzer Löcher mikrokanon-
isch erklären zu können.



Abstract

In this thesis, we ask the question whether general relativity is enough to understand the
statistical mechanical properties of black holes. To this end, we explain that this can be
reduced to the question as to how the Hamiltonian phase space of pure Einstein gravity in
the vicinity of a Schwarzschild black hole state does look like?

Naive expectations coming from black hole uniqueness and no-hair theorems might seem
to be in absolute contrast to expectations based on black hole thermodynamics. The latter
suggest the existence of gravitational black hole hair, i.e. energetically soft excitations of
the gravitational field, that must be visible as shifts in phase space near the black hole state.
Our main question is therefore whether Einstein gravity does provide such gravitational
black hole hair?

We develop new methods to systematically analyze the Hamiltonian phase space of a
given theory. A first application supports the existence of gravitational black hole hair.
We are able to give a first proposal of a dual theory, given in terms of its observables and
their algebra, that is supposed to describe the part of phase space responsible for black
hole microstates. Remarkably, this proposal finds support in the fact that the gravitational
hair described by the dual theory and inferred using symplectic methods coincides with
the most natural guess based on purely geometric reasoning.

Independent of this particular proposal, we argue why the part of phase space respon-
sible for black hole microstates is expected to be conformally invariant. A dual theory sup-
posed to describe this part of phase space is thus giving rise to a Schwarzschild/conformal
field theory (CFT)-correspondence.

Also independent of our concrete Schwarzschild/CFT proposal, we are able to infer
by general arguments the form of the symmetry generators of this expected conformal
symmetry. This knowledge about the symmetry provides already enough information to
count the state degeneracy. Notably, we find precise agreement with the Bekenstein-
Hawking entropy.

Furthermore, we show how these findings are used to check whether the gravitational
black hole hair provided by any Schwarzschild/CFT proposal is the correct one responsible
for microstates and entropy. While such an analysis is still remaining in order to speak of
a rigorous proof of our Schwarzschild/CFT proposal, we can already draw the following
conclusion which shortly summarizes the main finding of this thesis.

General relativity does seem to provide the right mechanisms and degrees of freedom
to microcanonically explain the thermodynamic properties of black holes.
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Chapter 1

Introduction

Our current understanding of theoretical physics is build on two main blocks. Although
both are now over 100 years old and great advances in their understanding have been
achieved, there are still simple questions concerning the interplay between these two blocks
that are still not understood. It is clear that such a fundamental lack of understanding
represents both a problem as well as an opportunity for the further progress in understand-
ing the laws of nature. To use this opportunity is the main motivation and starting point
for this thesis.

What are these two main building blocks? On the one hand, we have general relativity.
It is the theory that governs the dynamics of the gravitational field. On macroscopic scales
its theoretical predictions are in excellent agreement with experiment. In fact, the peri-
helion precession of mercury, deflection of light by the sun, gravitational redshift of light,
existence and recent direct observation of black holes and recent detection of gravitational
waves are among the observed phenomena in the past years that provide strong support
for general relativity.

On the other hand, we have quantum mechanics. It was one of the most important
discoveries in the last century that nature appears at microscopic scales to be quantized.
The classical theory of electromagnetism fails in explaining the spectrum of black body
radiation. Planck observed in 1900 that the spectrum appears as if the electromagnetic
field can only be excited in discrete “jumps” - contrary to what is predicted from the
classical theory. The spacing of these jumps is controlled by Planck’s famous constant ~
and this observation is considered to be the starting point of the quantum theory. Planck’s
idea that the observables of a classical theory appear quantized in microscopic phenomena
was indeed successful in explaining heuristically several further experimental observations.
In the 1920s a set of rules was worked out that determine how the quantization of the
observables of a given classical theory is done in a formal mathematical way. These rules
are what is today called quantum mechanics.

The theoretical predictions of quantum mechanics are in excellent agreement with ex-
perimental observations. Quantizing the system of a charged particle moving in a Coulomb-
potential, quantum mechanics is able to explain the energy levels of the hydrogen atom
- a milestone in the development of quantum mechanics. Quantizing the electromagnetic
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field by the same set of few simple rules, one is able to explain the spectrum of black body
radiation that was derived heuristically by Planck. The list of further success of quantum
mechanics is long and ranges from scattering experiments up to condensed matter physics.

In fact, one gets the impression that this set of few simple quantization rules - if applied
to the proper classical system - can explain all the laws of nature.

There are however some problems with this impression. First, what is the classical
system that one has to quantize in order to capture the laws of our universe? The answer
to this question is unfortunately not completely known. Nevertheless, one has a theory
that describes some amount of the universe’s content. This is the famous standard model
of elementary particle physics. It consists of a set of fields and their interactions that were
worked out in a large series of theoretical and experimental investigations over the last
100 years. Quantization of the standard model leads to a theory that fits the experimental
observations incredibly well. The direct observation of the last missing piece of the standard
model was achieved quite recently with the discovery of the Higgs boson at the LHC.
Despite of its success, the standard model does not take into account gravity and due to
the existence of dark matter and dark energy it is known that there is more content in the
universe than listed in the standard model.

A second problem is that despite the simplicity of the rules for quantizing a theory, it
can be very hard to “solve” the theory in order to obtain predictions. This is of course no
surprise. Already solving a classical theory, which means to solve its equations of motion,
can amount to find solutions of very complicated differential equations. Therefore, it is
clear that solving the equations of motion of a quantum theory can be even harder.

However, in order to get an understanding of the laws of nature, both problems have
to be attacked. In the first problem, a possibility would be to consider the case of pure
gravity first. The gravitational field is not incorporated in the standard model but since
it is the oldest known force, we know for sure that it exists and has to be taken into
account. Indeed, the attempt to quantize general relativity is known to lead to several
puzzles as we will review during the next chapters. Even the most simplest but at the
same time most safe predicted quantum gravitational effects may seem to lead to several
serious consistency problems. It is thus clear that understanding the proper quantization
of gravity is an important outstanding problem whose solution will teach us important
lessons about the laws of nature.

The second problem is more subtle. Focusing as mentioned on pure Einstein gravity, we
have a concrete theory whose quantization we want to study. However, to get predictions
of quantum theories of much simpler field theories is already quite involved. It is thus im-
portant to understand what the phrase “quantization of Einstein gravity” precisely means
and as an overlying goal to develop tools that allow to gain predictions of this quantized
theory.

In order to do so, we will in the next chapter explain, what the quantization of a given
classical theory precisely means. We will see that a misunderstanding of this step can
especially in the case for Einstein gravity be the source of several inconsistencies that seem
overlooked in the literature.



Chapter 2

Quantum Mechanics and Gravity

What does it precisely mean to quantize a given classical theory? Consider a general
system given by generalized coordinates qi and associated generalized momenta pi with a
Hamiltonian function H(q, p). Applying the rules of canonical quantization, in the associ-
ated quantum theory one is in general interested in matrix elements of the time-evolution
operator

〈qb|e−
i
~HT |qa〉 (2.1)

which give the probability amplitude for the system to evolve from the position eigen-
states |qa〉 to |qb〉 in the time T. By q or p without an index we denote the set of all
generalized coordinates q = {qi} or momenta p = {pi}. (For further details see [5].) This
probability amplitude is obtained by solving the Schrödinger equation and the solution is
easily written down (for the discrete version and further explanations see [5])

〈qb|e−
i
~HT |qa〉 =

(∏
i

∫ q(t=T )=qb

q(t=0)=qa

Dqi(t)Dpi(t)
)

exp
[
i

~

∫ T

0
dt

(∑
i

piq̇i −H(q, p)
)]

(2.2)

where in the path integration the endpoints of q(t) are constrained as indicated but the
momentum p(t) is free. For a fixed time t the measure in (2.2) is given by

∏
i

dqidpi
2π~ . (2.3)

(2.2) is the most general starting point to extract all further predictions (partion func-
tion, correlation functions, scattering amplitudes,. . .) from the quantum system under con-
sideration. From this equation, we can infer what it precisely means to quantize a given
classical theory. The quantization procedure basically consists of two steps.

The first step consists in writing down the integral (2.2). The latter integral is build out
of integrals over the Hamiltonian phase space. Thus, one has to identify the Hamiltonian
phase space correctly, that is, what is the set of its coordinates (q, p) = (qi, pi)?

The second step is the actual evaluation of the integral (2.2) (for instance in the form
of computation of quantities that are derived from (2.2)).
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2.1 Hamiltonian Phase Space
As we have seen from equations (2.2) and (2.3), in order to quantize a given classical
system, it is extraordinarily important to correctly identify the Hamiltonian phase space.
After clarification of what the coordinates (q, p) = (qi, pi) of the phase space are, the
integral (2.2) is easily written down. However, if the phase space is identified incorrectly,
the equation (2.2) can of course lead to wrong results. We will argue in this thesis for the
possibility, that it is precisely an improper identification of the Hamiltonian phase space
that leads to the well-known problems that are associated with the quantization of gravity.

Typically, the step of determining the Hamiltonian phase space of a given classical
theory is “simple.” In most of the cases the theory under consideration is given by an
action functional of a set of fields that play the role of the generalized coordinates qi. Using
the standard procedure known from classical mechanics to switch from the Lagrangian
to the Hamiltonian framework, one infers the associated generalized momenta pi together
with the Hamiltonian function H(q, p). With this, one has all ingredients to write down
the path integral (2.2). For instance, in the classical example of ϕ4-theory in a Minkowski-
spacetime, the phase space is parameterized by (q, p) = (qi, pi) = (ϕ(t,x), ∂tϕ(t,x)), i.e.
by the field amplitude and its time-derivative at a fixed moment of time t. These are the
coordinates that uniquely select a state in the phase space. At the same time, this is the
free Cauchy-data that uniquely determines the time-evolution of the system.

However, the things get more involved if the system is constrained, i.e. if the theory
under consideration is a gauge theory. In that case, the coordinates (qi, pi) that are derived
with the above mentioned procedure are subject to gauge constraints. As a consequence,
the physical phase space is only a submanifold of the space that is spanned by these (qi, pi).
This submanifold has to be carefully determined as it is the domain over which is integrated
in (2.2).

What are the implications of this for the case of gravity as given by the Einstein-
Hilbert action? Although the Hamiltonian formulation, the famous ADM-formulation, is
long known [6], a detailed analysis of the Hamiltonian phase space in gravity is still an open
problem. That is, it is not known which set of canonical coordinates (qi, pi) parametrize the
phase space. In order to quantize Einstein-gravity, according to (2.2), this is precisely what
one needs to know. That the structure of complete phase space is not known is already
reflected in the fact that there is still an ongoing debate which gauge transformations in
gravity constitute redundancies and which constitute physical excitations, i.e. shifts in
phase space [7]. It is clear that a wrong identification of the phase space can lead to
over/undercounting in the integral (2.2). As a consequence of such a wrong counting,
it might be that quantities derived from (2.2) (e.g. scattering amplitudes, renormalized
parameters) might appear more UV-divergent or UV-sensitive than they in reality are.

Especially in the case of gravity the correct determination of the Hamiltonian phase
space (and thus the quantization procedure) is quite subtle. The reason for this subtlety
has a clear physical origin: General relativity contains black holes. To illustrate the point,
remember the example of ϕ4-theory on a Minkowski-spacetime. The available Cauchy-data
parametrizing the Hamiltonian phase space enables us to freely choose the field amplitude
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ϕ(t,x) for a fixed moment of time t. In Einstein gravity the analog is not true. Suppose
we were to prepare a wave packet out of gravitational waves at a fixed moment of time
t. Then we are not able to freely choose the size and the amplitude of the wave packet.
Decreasing the wave packet’s size and increasing its amplitude, we will hit the point where
the gravitational radius of the wave packet is larger than its formal size, i.e. we will hit
the point of black hole formation. Mathematically, this is reflected in the fact that the
configuration we were to prepare at fixed time t is still subject to the gauge constraints. As
a consequence, the phase space is smaller than what one may naively expect. The correct
phase space has to be taken into account as the domain of integration in (2.2). It might
be the case that doing so resolves the problems typically associated with the quantization
of Einstein gravity. The idea that Einstein gravity might be “self-complete” was already
mentioned in [8, 9, 10].

Let us summarize what we have learned from our discussion so far. To quantize Einstein
gravity according to (2.2), we have to carefully determine the Hamiltonian phase space as
it constitutes the domain of integration. Therefore, to develop methods to systematically
analyze the structure of the Hamiltonian phase space seems crucial. It would be even
better, if we were able to develop tools for the actual evaluation of integrals like (2.2).
To find such tools will be a central point of this thesis. Furthermore, we have seen that
the structure of Hamiltonian phase space is especially intricate for Einstein gravity due to
the existence of black holes. It appears that understanding the structure of phase space
near a black hole state is absolutely crucial in order to understand the structure of the
complete phase space. The latter problem is an important open problem in the literature.
To address this particular problem will be the main focus of this thesis.

In the next chapter, we will explain how the latter problem is conected to the main
problems of black holes that are discussed in the literature.
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Chapter 3

Black Holes

The most robust predictions of non-perturbative quantum gravity concern the behavior of
black holes. Interestingly, the classical solution of general relativity describing the simplest
black hole - the Schwarzschild solution - is known for approximately 100 years. In fact,
it was the first discovered non-trivial solution of the field equations of general relativity.
Surprisingly, after 100 years, it is still not understood - to the full extent even not in the
classical theory as we will explain in this chapter. It appears even more surprising given
the fact that by now black holes are known to exist. In 2019, the Event Horizon Telescope
even gave the first picture of a black hole. Nevertheless, it is still not known whether
general relativity is enough to understand the object present on this picture. What are the
problems with black holes?

As was observed starting in the 1970s, following the laws of thermodynamics, some
general predictions about the behavior of black holes can be said [11, 12, 13]. By now
there are very many independent derivations and arguments for this behavior such that
it can be considered without doubt as the most robust prediction of what has to happen
in non-perturbative quantum gravity (see [14] for a review also of the statements that
follow in this chapter and references therein). The formation of a black hole is followed
by its subsequent evaporation through thermal radiation. Its temperature is given by the
famous Hawking-temperature. Accordingly, the black hole is assigned an entropy that is
given by the famous Bekenstein-Hawking area-entropy law S = A

4~G with the horizon area
A. In the classical ~ → 0 limit, the entropy gets infinite. According to Boltzmann this
means that there have to be infinitely many points in the Hamiltonian phase space of
pure Einstein gravity that correspond to the microstates of a black hole of fixed mass and
angular momentum parameter.

On the other hand, the black hole uniqueness theorems are well-known in general
relativity: Asymptotically flat and stationary solutions of the field equations in 4d pure
Einstein gravity are diffeomorphic to the Kerr-metric - a solution describing a black hole
of certain mass and angular momentum [15]. This creates the impression of black holes
being completely characterized by few parameters and this missing of features is commonly
phrased as black holes having no hair.

At first glance, this seems to lead to a contradiction. Where are the infinitely many
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microstates in classical Hamiltonian phase space in accordance with Bekenstein-Hawking
entropy, given the fact that due to uniqueness theorems black holes are essentialy feature-
less? This open problem is one aspect of the black hole information paradox.

In the traditional formulation of the black hole information paradox the question is
how to retrieve the information about what has formed a black hole after it has evaporated
through Hawking radiation. In Hawking’s analysis an exactly thermal spectrum for the
Hawking radiation is obtained and one might conclude that it is as a matter of principle
impossible to retrieve the information about the black hole’s formation since the thermal
radiation always looks the same. This information loss is of course in contradiction with
the unitarity of quantum mechanics. However, it was proposed by Dvali and Gomez
[16, 17, 18, 19] that exact thermality of Hawking radiation is an artifact of the semiclassical
limit in which Hawking’s analysis is performed. Going beyond this limit, the Hawking
radiation is expected to obtain corrections to exact thermality which then could contain the
missing information about the black hole’s formation. If so, the black hole has nevertheless
to possess a sufficient number of microstates that evaporate leading to the various different
spectra of Hawking radiation. This brings us again back to the question where these
necessary microstates are which still has to be clarified.

The black hole information paradox is one of the biggest open problems in theoretical
physics. Note that on the one hand, black holes possess a huge number of microstates and
appear to be very complicated - in fact, the Bekenstein bound tells us that they are in this
respect even the most complicated objects in nature. On the other hand, by uniqueness
theorems, there is the impression that black holes are featureless and hence are the most
simplest objects in nature. Which of the two statements is true for the black holes that
are seen in the sky?

As we explained, the statement that black holes possess a huge number of microstates
can be considered as safe. Then, how to explain this state degeneracy and bring it in
accordance with the uniqueness theorems of general relativity? In other words, how to
microcanonically explain the Bekenstein-Hawking entropy using general relativity as the
theory of gravity and the basic rules to quantize a given theory described in the last
chapters?

At this point it might be argued that the source of the mentioned paradox is due to
the need of a modification of either general relativity or quantum mechanics. So maybe
without such a drastic modification it is even not possible to find a resolution for the
mentioned tension. Let us briefly comment on that point.

What about a necessary modification of quantum mechanics (in the presence of grav-
ity)? Such a step seems very radical. The set of few simple rules of quantum mechanics
can be applied to systems as simple as the hydrogen atom up to systems as complicated as
the entire standard model. As we have explained during the last chapters, theoretical pre-
dictions are in excellent agreement with experimental observations giving so far no sign of
doubt on the laws of quantum mechanics. So why should things change with the inclusion
of gravity? Furthermore, with the discovery of the AdS/CFT-correspondence in the end
of the 1990s, it became clear that there are consistent quantum theories containing grav-
ity in accordance with conventional quantum mechanics. So the need to modify quantum
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mechanics seems by now very unlikely and its laws are taken for safe.
What about the need to modify general relativity? To think about this question, we

should clarify once again what we are seeking for and thus what such a possible modification
should provide in order to solve the mentioned problem. As described, we are seeking for
an explanation of the black hole’s Bekenstein-Hawking entropy. According to this entropy,
a black hole of fixed mass and angular momentum parameter possesses a huge number of
microstates. These microstates are then (nearly-)degenerate in energy and hence provide a
huge number of soft excitation modes to a given black hole. Where are these soft modes? At
first glance, the uniqueness theorems seem to provide no space for such soft modes in pure
Einstein gravity. One might think that a modification of general relativity is needed which
then should provide the missed soft modes predicted by Bekenstein-Hawking entropy. At
low-energies general relativity is in perfect agreement with experimental observations and
thus seems to provide space for modification only in the UV. Indeed, one might think that
in the UV (typically expected to be the Planck scale), one has to include additional degrees
of freedom (typically expected to UV-complete Einstein-gravity). These additional degrees
of freedom could then also give rise to the soft modes that are missed in Einstein-gravity.

Although we cannot rule out this possibility, there seem to be nevertheless some prob-
lems associated to this. Naively, the physics of large black holes with a size R� LP much
larger than the Planck length LP should be independent of the UV-completion of Einstein-
gravity. That is, the Bekenstein-Hawking entropy should be explainable solely with the
degrees of freedom that general relativity already provides. But there is also another ar-
gument that stresses the problem associated with the possible need for a modification of
gravity to explain black hole entropy more concretely.

The argument relies on a phenomenon in soft physics observed in [20].1 There, a
general field-theoretical mechanism was conjectured, which provides soft excitation modes
for a special class of field configurations. These field configurations are called critical and
the conditions for criticality were pointed out. Examples of this phenomenon are known
in much simpler field theories, but in the gravity case it explains the physical origin of the
black hole entropy: Black holes satisfy the conditions for criticality. Being critical field
configurations, by the described conjectured mechanism, black holes must possess soft
excitation modes. These soft excitation modes provide the physical origin of black hole
entropy: They provide energetically nearly-degenerate excitations which are responsible
for the black hole microstates and entropy.

With this general phenomenon in mind, the following problem associated with a possible
need to modify gravity (even independently at which energy scale) emerges immediately:
Within pure Einstein-gravity the stationary black hole solutions - i.e. the Kerr-family -
satisfy the criteria of criticality of [20]. According to the phenomenon described in the
last paragraph, the theory, i.e. pure Einstein-gravity alone, is expected to provide these
field configurations with soft modes. These soft modes then have to be visible in the
Hamiltonian phase space of pure Einstein-gravity.

1For a formulation of the phenomenon that is more closely to the one given here and for an explanation
as to why and how it is expected to happen see [21].
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It might be that the latter soft modes do not give rise to the correct degeneracy as
required by the Bekenstein-Hawking entropy. And it could still be that a modification
is needed (for instance, by integrating in new degrees of freedom in the UV) to account
for the Bekenstein-Hawking entropy. Independent of this, by the argument of the last
paragraph, the Kerr-family should possess at least some soft modes that are visible in
the Hamiltonian phase space of pure Einstein-gravity solely. This seems to contradict the
uniqueness theorems of general relativity. Where are these soft modes?

3.1 Statement of the Main Research Question
It seems that we have to take a closer look at the Hamiltonian phase space of pure Einstein-
gravity in the vicinity of the Kerr-family. Are there soft modes? If there should be really
no such modes, then we have to carefully understand why not. If yes, do they account for
the Bekenstein-Hawking entropy? This would then mean that Einstein-gravity is indeed
enough to understand the physics of black holes (and no additonal degrees of freedom that
might come from a possible UV-completion are needed). To simplify the task, we specify
to the simplest solution of the Kerr-family - the Schwarzschild solution.

Let us summarize what we have learned so far. We have arrived at a concrete mathe-
matical question to be posed in Einstein-gravity. To understand its answer is as we have
explained of crucial importance for the further understanding of black holes. This question
will be the main question of this thesis.

How does the Hamiltonian phase space of pure Einstein-gravity look like in the vicinity
of the Schwarzschild solution? Does it contain soft modes?

If there are really such soft modes, it should be clarified whether they account for
the black hole’s Bekenstein-Hawking entropy. Furthermore, the statement of black holes
possessing no hair would need to be reformulated. If such soft modes do exist, they provide
hair for the black hole. Since the hair would originate from pure Einstein-gravity, it would
be entirely of gravitational nature, the black hole would possess gravitational black hole
hair.

Having now formulated the main question of this thesis, we are facing immediately
a problem. As we have seen, the black hole uniqueness theorems in general relativity
suggest that the answer of the upper question seems to be that such soft modes are not
existent. Although a careful analysis of the Hamiltonian phase space might indeed result
in this answer, there are still several subtleties that have to be carefully taken into account.
These subtleties thus provide indeed the possibility of gravitational black hole hair.

What are these subtleties? Since the uniqueness theorems single out the Kerr solutions
up to diffeomorphisms, they already themselves suggest a possible loophole that may pro-
vide space for gravitational black hole hair. It may be that some of the diffeomorphisms are
physical, i.e. shifts in phase space rather than gauge redundancies. This phenomenon is
known to happen in gauge theories typically when the gauge parameters are non-vanishing
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in some asymptotic region. These kind of physical gauge transformations are called asymp-
totic symmetries. Such asymptotic symmetries could in gravity then potentially provide
gravitational hair for the Kerr black hole and thus be responsible for its microstates and
entropy.

To conclude, we hence see that our above mentioned main question about the existence
of gravitational hair of a Schwarzschild black hole is not that simple to answer. As we said,
the remaining part of this thesis is concerned to develop tools to answer this question.
Therefore, we will show how to analyze the Hamiltonian phase space of a theory in a
structured way. Independent of gravity and black holes, the developed tools are of possible
interest for the quantization of any theory as it allows to rewrite (and evaluate) integrals
of the type (2.2) in a systematic way (remember also the explanations given there about
the correct determination of the Hamiltonian phase space).

However, using the developed tools, we will focus on analyzing the phase space of pure
Einstein-gravity in the vicinity of a Schwarzschild black hole. To state the main result
in short, we will see that gravitational black hole hair does indeed exist and that it can
account for the Bekenstein-Hawking entropy. This means that the Hamiltonian phase space
of pure Einstein-gravity seems to provide enough place to accommodate precisely enough
gravitational hair that is required by the Bekenstein-Hawking entropy. In other words, we
will see substantial evidence that general relativity seems to be enough to understand the
quantum gravity properties of black holes!

In the next chapters, we will illustrate the statements of the last paragraph by reviewing
the papers on which this dissertation is built. For more details, we refer to the original
papers.
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Chapter 4

Gravitational Black Hole Hair from
Event Horizon Supertranslations

We provide in this chapter a very brief overview of the main aspects of the paper [1]. For
more details, we refer to the original paper.

To approach the problem stated in 3.1, we have seen that asymptotic symmetries in
gravity might provide place for gravitational black hole hair in the Hamiltonian phase
space in the vicinity of, for instance, a Schwarzschild black hole. In gravity, asymptotic
symmetries appeared already in the study by Bondi-Metzner-Sachs (BMS) of 4d space-
times which are asymptotically flat at null infinity [22, 23]. The asymptotic symmetry
algebra of those spacetimes was proposed to be the bms4-algebra (see [7, 24, 25] for the
various discussed definitions of bms4 in the literature). In its simplest definition, the
bms4-algebra contains in addition to the expected Poincare-transformations an infinite
dimensional algebra of transformations that generalizes spacetime-translations to the bms4-
supertranslations. Although their presence might at first sight appear to be surprising,
their appearance is tied to the fact that the spacetime is asymptotically flat at null infinity
as can be seen, for instance, in a definition that uses only the intrinsic structure at null
infinity (see for instance [26] for a review of these issues).

Do the bms4-supertranslations provide gravitational hair for a Schwarzschild black hole?
The answer is yes, in the sense that it leads to shifts in the Hamiltonian phase space
(rather than being gauge redundancies). However, these shifts reflect the degeneracy of
the gravitational vacuum (see, for instance, [27]). Hence, the states obtained by acting
with bms4-supertranslations on a Schwarzschild black hole are not expected to be the
microstates responsible for the black hole entropy.

The degeneracy of the gravitational vacuum is a feature that is present for any state
independent of whether the state describes a black hole or some other configuration. In
other words, we expect additional gravitational black hole hair that is present precisely if
the state is a black hole. The excitations that would be provided by these new type of hair
were termed A-modes in [1] and - if existent - they would then be expected to reflect the
criticality of the black hole and to be responsible for microstate degeneracy as required by
the Bekenstein-Hawking entropy.
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The question then is whether the Hamiltonian phase space contains such A-modes?
The idea of [1] is that there is a very natural way to quickly guess what the A-modes
might be. Remembering, that the bms4-supertranslations have an interpretation that is
tied to the intrinsic structure of null infinity, the same intrinsic structure is present at the
event horizon of spacetimes containing black holes. Thus, the presence of an event horizon
leads to (potentially) additional (candidates for) asymptotic symmetries: the event horizon
supertranslations.

Using gauge-fixing conditions that can cover the part from past null infinity up to the
future event horizon of a Schwarzschild black hole, the bms4-supertranslations as well as
the event horizon supertranslations were constructed in [1]. The observation is that both
are indeed different. Their difference provides then candidates for the described A-modes
that are supposed to enhance the asymptotic symmetry algebra of the Schwarzschild black
hole due to the presence of an event horizon as compared to spacetimes without black
holes.

Having these candidates for the A-modes, they are then expected to be responsible
for the microstates of a Schwarzschild black hole. Indeed, it was checked in [1], that they
keep the ADM-mass invariant and are hence candidates for the soft modes that we were
searching for in 3.1.

Furthermore, the exact degeneracy of the soft modes associated to a critical system is
typically lifted in the corresponding quantum theory [20]. An estimation of this lifting in
[1] for the A-modes which are supposed to reflect the criticality of the black hole leads to
a state degeneracy that is in qualitative agreement with the expected Bekenstein-Hawking
entropy (see also [2] for a slighty refined and simpler but equivalent argument).

To summarize, in an attempt to address the main problem stated in 3.1, we have given
a first try in [1]. We have seen that asymptotic symmetries might indeed give rise to the
missed soft modes. In fact, in a sense, already the simplest possible guess seems to provide
the gravitational black hole hair that could account for the expected Bekenstein-Hawking
entropy.

That excitations of the gravitational field provided by asymptotic symmetries could
play a role in accounting for black hole microstates was already proposed by Carlip [28]
in an approach to account microcanonically for the Bekenstein-Hawking entropy. Due to
several new insights relating asymptotic symmetries and soft physics (see [27] and citations
thereof) this proposal recently gained new attention as the “soft hair on black holes”
proposal [29] (see also [30, 31] for various other aspects and different proposals). However,
as reviewed here, although bms4-supertranslations provide soft (gravitational) hair, it was
one of the main aspects of [1] to point out that a different type of gravitational hair is needed
that accounts for the microstate degeneracy and black hole entropy. This statement is in
agreement with, and provides the resolution to, the criticism on the soft hair proposal
stated later correctly in [32, 33, 34, 35].

Although the A-modes lead to a promising candidate for the gravitational black hole
hair that might account for the black hole entropy, this candidate was not obtained from
a detailed phase space analysis as we asked for in 3.1. So, following our main problem
stated in 3.1, the motivation for the next chapters is to see whether such an analysis would
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reproduce the result obtained here.
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Chapter 5

Schwarzschild/CFT from soft black
hole hair?

We provide in this chapter a review of the paper [3]. This chapter is a slightly edited
version of [3] and for more details, we refer to the original paper.

We start with a very brief overview of the main aspects and later provide the technical
details.

As we have motivated throughout the last chapters, an analysis of the Hamiltonian
phase space in the vicinity of the Kerr solution in 4d Einstein gravity is still an open
problem. This includes singling out - if existent - the relevant gauge transformations being
both physical and responsible for the microstates and entropy counting. As we have seen
in the last chapter, the phase space in pure Einstein gravity might indeed contain enough
such gravitational hair to account for the expected Bekenstein-Hawking entropy. In [3] we
start with a detailed phase space analysis and review in the following first results.

In particular, we argued in [3] that the conventional Bondi fall-off conditions imposed
on the gravitational field at null infinity are too restrictive in the presence of an event
horizon. Thus, precisely in the presence of a black hole, some would-be redundancies
are supposed to become physical degrees of freedom (which we called A-modes). It is this
effect of enhancement of degrees of freedom in the presence of event horizons that puts new
gravitational hair on the black hole. The new hair provided by the A-modes is expected
to be responsible for black hole microstates and goes beyond the BMS hair provided by
the standard bms4 asymptotic symmetry algebra as discussed e.g. in [36].

Precursors of this statement, as reviwed in the last chapter, we already made in [1],
where it was emphasized that BMS hair cannot be responsible for microstates in agreement
with, and providing a resolution to, the criticism on the soft hair proposal correctly stated
later in [32, 33, 34, 35]. Instead, the A-modes, which are provided by the above described
effect of enhancement, are supposed to be responsible for microstates and can give rise to
correct entropy counting as we explained in [2].

As explained in the last chapter, this effect matches a different phenomenon in soft
physics observed in [20]. There, a general field-theoretical mechanism was conjectured,
which provides soft excitation modes for a special class of field configurations. These field
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configurations are called critical and the conditions for criticality were pointed out. Exam-
ples of this phenomenon are known in much simpler field theories, but in the gravity case
it explains the physical origin of the black hole entropy: Black holes satisfy the conditions
for criticality. Being critical field configurations, by the described conjectured mechanism,
black holes should possess soft excitation modes. These soft excitation modes provide the
physical origin of black hole entropy: They provide energetically nearly-degenerate exci-
tations which are responsible for the black hole microstates and entropy. In [20] there
was furthermore made the proposal that the nearly-soft modes should be described by
some sort of conformal field theory. The latter claim would imply that independently of
what the degrees of freedom responsible for the nearly-soft modes are, they would admit
a description through some type of black hole/conformal field theory correspondence.

As we remarked in [3], the presence of these soft modes, which are induced by criticality,
provides a further argument that they must be visible in a Hamiltonian phase space analysis
and thus they are matched precisely with the A-modes. The scale-invariance even suggests
that part of the phase space containing the black hole and its accompanied soft modes can
be described by a conformally invariant theory (CFT).

Such a Kerr/CFT-correspondence was indeed proposed in [37, 38] being supported by
studies of scattering off a Kerr black hole. However, neither the physical origin of why
such a correspondence should exist was understood nor a concrete formulation of the dual
CFT was given. The former point, as we explained in [3], is due to the criticality of the
Kerr black hole which is reflected in the presence of an event horizon. As described above,
its presence provides the A-modes which are identified with the soft modes necessary by
criticality and for black hole entropy.

The latter point, the explicit construction of the dual CFT, was the main goal of [3].
For the case of a Schwarzschild black hole, using covariant phase space methods [39, 40], we
determined which gauge transformations constitute physical excitations and the algebra
of their Hamiltonian generators under the Poisson bracket. This determines the gauge
degrees of freedom of a Schwarzschild black hole and their algebra giving rise to a 2D dual
theory.

Remarkably, the degrees of freedom obtained by symplectic methods and in particular
the resulting A-modes, which constitute microstates, match precisely the proposal of [1]
(and also the expectations of the last chapter) inferred from geometrical reasoning.

The technical details of the statements made in this chapter will be concretely explained
in the remaining part of this chapter.
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5.1 Introduction to the problem

5.1.1 The information paradox for black holes

One of the most robust predictions of quantum gravity is that black hole formation is
accompanied by its subsequent evaporation via Hawking radiation [12, 13]. Hawking’s
calculation predicts that this radiation has a unique thermal spectrum. This observation
leads to the information paradox: Letting the black hole evaporate and observing its
radiation, it seems as a matter of principle impossible to retrieve information about how
the black hole was formed. Unitarity seems to be violated (see [14] for a review).

Hawking’s calculation is done by treating the background metric as a classical field
(on top of which additional fields are quantized). This approximation receives of course
corrections and it was proposed in [16, 17, 18, 19] that they are sufficient to resolve the
paradox.

In an arbitrary quantum field theory, there can be quantum states, in which the ap-
proximation of working with classical fields and using classical equations of motion is a
good approximation (also known as the mean-field approximation in several contexts).
This approximation receives corrections which are suppressed by a factor of some power
of (size of system)−1. Remembering the analogy of quantum field theory and statistical
mechanics, they are the analog of the statistical fluctuations of an observable around its
expectation value in an ensemble. These fluctuations are also suppressed by some power of
(size of system)−1. In [16, 17, 18, 19] these corrections were termed 1

N
-corrections (N being

a parameter describing the size of the system) and their meaning for the Hawking-effect
was stressed.

The thermal spectrum of emitted quanta gets corrected by these 1
S
-effects (the size

N can be measured by the black hole entropy S). These corrections provide observable
features from which (in principle) the information can be retrieved how the black hole
was formed. After the half-life time of the black hole the 1

S
-corrections accumulate, so

that the spectrum is far from thermality and information recovery starts to get efficient
in accordance with Page’s time [41]. Ignoring 1

S
-corrections (this is the limit in which

Hawking’s calculation is performed), one is left with the information paradox.
However, even if the Hawking spectrum is corrected by 1

S
-effects, the different 1

S
-effects

must be sourced by different black hole microstates in order to be able to contain informa-
tion about black hole formation. In other words, there must be a huge number of states in
the Hilbert space, that correspond to the microstates of a suited black hole in agreement
with the Bekenstein-Hawking entropy [11]. In pure Einstein gravity, the entropy is infi-
nite in the classical (~ → 0) limit. Thus, in the Hamiltonian phase space, there must be
an infinite number of points corresponding to the microstates of a particular black hole.
Where are these points in phase space? This is the question, that will be the subject of
our investigations.
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5.1.2 Kerr/CFT from Criticality
That black hole microstates have to be visible in the Hamiltonian phase space of Einstein
gravity can be motivated also from another direction. In [20] the appearance of microstates
and thus of black hole entropy is explained as to have its physical origin due to the following
general field-theoretic phenomenon:

Suppose a theory with a bosonic field and attractive self-interaction. A field-configuration,
which is right at the point of being self-sustained, that is, to be stationary and localized in
space by its own attractive self-interaction, is accompanied by the appearance of gapless
excitation modes.

The latter point is called a critical point and gapless here is meant with respect to
the classical Hamiltonian (i.e. degeneracy in energy). Examples of this phenomenon are
well-known in much simpler field theories from condensed matter physics (see [20, 42, 43]
and references therein). The excitation modes of such field-configurations are in several
contexts also called Bogoliubov-modes. The critical point described is thus accompanied
with the appearance of gapless Bogoliubov-modes. The degeneracy is in the quantum
theory lifted by 1

N
-effects. This implies that 1

N
-corrections can accumulate over a time-

scale set by the size of the system N and deviate significantly with the predictions of a
mean-field analysis. Therefore, quantum corrections can not be neglected at a critical point
(even if the system is large). The critical point is a quantum critical point.

Now, the case of pure Einstein gravity provides a special case to what we have said.
The stationary, asymptotically flat solutions are given by the Kerr-family [15]. These are
critical field configurations and as such must possess gapless Bogoliubov-modes. These
gapless modes are the physical origin of the black hole entropy. Thus, the Hamiltonian
phase space Γ of Einstein gravity has to contain a region S ⊆ Γ containing the Kerr-family
and its gapless Bogoliubov-excitations.

Due to this scale-invariance, it is tempting to expect that the part S of Hamiltonian
phase space has a conformal invariance. The lifting of the degeneracy of the Bogoliubov-
modes by the 1

S
-effects in the quantum theory is reflected by conformal anomaly of this

invariance.
Indeed, such a Kerr/CFT-correspondence was proposed [38] as an extrapolation of the

extremal Kerr/CFT-correspondence [37]. By analysis of scattering of a non-extremal Kerr
black hole, some data of the dual CFT could be obtained and were shown to be in agreement
with Bekenstein-Hawking entropy. However, neither a formulation of the dual CFT has
so far been obtained nor was it understood why there is a Kerr/CFT-correspondence.
We notice, that the physical origin of a possible Kerr/CFT-correspondence is due to the
criticality of the Kerr solutions.

5.1.3 Kerr/CFT from soft black hole hair
We have argued from various directions that the Hamiltonian phase space of pure Einstein
gravity has to contain an infinite number of gapless excitations of the Kerr-family. But then,
there is a problem. Where are these excitations that are among other things responsible
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for black hole microstates? According to the black hole uniqueness theorems, all solutions
of the field equations that are asymptotically flat and stationary are given by the Kerr-
metric up to diffeomorphisms. The hope is then that not all of these diffeomorphisms are
gauge redundancies. Some of them should be physical excitations, i.e. shifts in the phase
space, providing the necessary gapless excitation modes. This idea goes for the case of
four-dimensional black holes already back to Carlip [28], has later on been one of the main
motivations in the study of asymptotic symmetries [7] and has recently gained attention
as the soft hair on black holes proposal [29]. However, a satisfactory analysis of the phase
space so far has not been given in the literature.

In this chapter, we want to make a first step in this direction. Using mainly covariant
phase space methods, we want to analyze the phase space near a Schwarzschild black hole
solution. More specifically, we look at its gauge excitations and single out its surface degrees
of freedom (chapter 5.3). These are found to violate the conventionally used Bondi fall-off
conditions for the gravitational field. We explain in general, why these fall-off conditions
are too restrictive in the presence of an event horizon (chapter 5.2). Calculating the
surface charge algebra (chapter 5.4), we are able to propose a two-dimensional theory for
the surface degrees of freedom of a Schwarzschild black hole. Remarkable is the appearance
of central terms which supports the conjecture that the dual theory, if indeed being a CFT
(Schwarzschild/CFT-correspondence) as suggested by the above reasoning, has a conformal
anomaly.

We want to warn that the present work is just a first step and there are still a lot
of things to be understood. An analysis of the phase space structure in the region of
the Kerr-family is beyond our present scope. However, we explain which assumptions
entered in the derivation of our dual theory (chapter 5.5) and give an outlook what is
at our current investigation. Especially, Carlip’s approach to entropy counting is in our
approach a Sugawara-construction of a 2D stress-energy tensor for our dual theory. It is
then tempting to expect that this dual theory is a CFT describing the phase space of the
whole Kerr-solutions (Kerr/CFT-correspondence).

In the following, we use units in which we set the speed of light to 1 but we keep
Newton’s constant G and Planck’s constant ~ explicit. Latin letters a, b, . . . = 0, . . . , 3
denote spacetime indices.

5.2 Cauchy-Data for asymptotically flat 4d spacetimes

We start by asking what is a possible set of Cauchy-data (gauge-fixed solution space) to
specify a solution describing a particular state in phase space in Einstein gravity? This
question already appeared in the study of gravitational waves starting with the analysis
by Bondi-Metzner-Sachs [22, 23] and we adopt the answer which is reviewed in [7]. We
denote coordinates by (x0, x1, xA) = (u, r, ϑ, ϕ) with A,B, . . . = 2, 3. The Bondi gauge-
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fixing conditions read

grr = grA = 0
det gAB = r4 sin2 ϑ.

(5.1)

Imposing Bondi fall-off conditions, the metric is written as

ds2 = e2β V

r
du2 − 2e2βdudr + gAB

(
dxA − UAdu

) (
dxB − UBdu

)
(5.2)

with

gABdx
AdxB = r2γABdx

AdxB +O(r), (5.3)

where

γABdx
AdxB = dϑ2 + sin2 ϑdϕ2 (5.4)

is the metric on the unit 2-sphere. The remaining fall-off conditions are

β = O(r−2)
V

r
= −1 +O(r−1)

UA = O(r−2).

(5.5)

The Bondi-gauge with required fall-offs is suited to describe the gravitational field of
asymptotically flat spacetimes near null infinity J. (In this chapter, the required fall-offs
correspond to retarded Bondi-gauge and cover the region near future null infinity J+.)

A metric in Bondi-gauge and with Bondi fall-off conditions that is further satisfying
vacuum Einstein field equations is fully determined by the set of functions

X = {NAB(u, xC);M(u0, x
A);NA(u0, x

B);CAB(u0, x
C);

DAB(xC);EAB(u0, r, x
C)},

(5.6)

for a fixed retarded time u0. That means, to specify a concrete solution, one has to
specify the Bondi-News NAB(u, xC), which characterize the gravitational radiation passing
through null infinity. The remaining part of the Cauchy-data consists of functions on
S2, which we will collectively denote boundary Cauchy-data (BCD). Among these are
the mass and angular momentum aspects M(u0, x

A), NA(u0, x
B) for fixed time, as well

as leading BCD CAB(u0, x
C), DAB(xC) and subleading (in r) BCD summarized in the

function EAB(u0, r, x
C).
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For the conditions on the functions appearing in X and their detailed connections to the
metric (5.2), we refer to [7]. For the purpose of illustration, we give here the conventional
leading large-r expansion near J+ of (5.2) in terms of (5.6)

ds2 =− du2 − 2dudr + r2γABdx
AdxB

+ 2M
r
du2 + rCABdx

AdxB +DBCABdudx
A

+ 1
16r2CABC

ABdudr

+ 1
r

(4
3NA −

4
3DAM + 1

3CABDCC
BC + 1

4C
BCDACBC

+ 4
3uDAM −

1
8DA

(
CBDC

BD
))

dudxA

+ 1
4γABCCDC

CDdxAdxB

+ . . . .

(5.7)

We point out that the Bondi fall-off conditions are also imposed in the determination
of the asymptotic symmetry algebra. That means, the asymptotic symmetries are defined
as the residual gauge transformations preserving the Bondi gauge-fixing (5.1) as well as
Bondi fall-offs (5.2)-(5.5). This results in the bms4-algebra (see [22, 23] [24, 7, 25] for the
various definitions and realization on gauge-fixed solution space (5.6)). However, our point
is that in the presence of an event horizon the Bondi fall-offs (5.2)-(5.5) are too restrictive.
As a consequence, precisely in the presence of a black hole, there is an enhancement in
(5.6) in the required Cauchy-data by additional BCD.

As is already evident from the derivation of the gauge-fixed solution space (5.6) in [7],
after relaxing the Bondi fall-offs, there are solutions with additional terms in (5.2) violating
Bondi fall-offs. However, gravitational radiation passing through J+ as characterized by
the Bondi-News NAB has no effect on them. In other words, there is no associated memory
effect. Any additional Cauchy-data is seen as a redundancy.

The situation is different in the presence of an event horizon. There is a priori the
possibility, that gravitational radiation passing the event horizon can leave an imprint on
the additional terms in (5.2) that violate the Bondi fall-offs. This is the possibility that
we want to advocate here. The additional BCD labels the different black hole microstates.
Choosing different BCD corresponds to exciting different microstates. Imposing Bondi
fall-offs (and thus ignoring the additional BCD), one encounters a sort of black hole infor-
mation paradox: Looking at the solution space (5.6), there is no space for the black hole
microstates.

What is then the additional BCD that has to be included in (5.6) in the presence of
an event horizon? In the next chapter, we try to answer this question for the example of
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a Schwarzschild black hole, in which case the data (5.6) reads

NAB = CAB = DAB = EAB = 0
NA = 0

M = rS
2G,

(5.8)

where rS is the Schwarzschild radius.

5.3 Surface degrees of freedom of a Schwarzschild black
hole

The well-known Schwarzschild metric is in Schwarzschild coordinates given by

ds2 = −
(

1− rS
r

)
dt2 +

(
1− rS

r

)−1
dr2 + r2(dϑ2 + sin2 ϑdϕ2). (5.9)

Defining the tortoise coordinate

r∗ = r + rS ln
∣∣∣∣ rrS − 1

∣∣∣∣ , (5.10)

one has

dr∗

dr
=
(

1− rS
r

)−1
. (5.11)

Choosing ingoing Eddington-Finkelstein coordinates (v, r, ϑ, ϕ) with

v = t+ r∗, (5.12)

the metric reads

ds2 = −
(

1− rS
r

)
dv2 + 2dvdr + r2(dϑ2 + sin2 ϑdϕ2)

= −
(

1− rS
r

)
dv2 + 2dvdr + r2γABdx

AdxB.
(5.13)

In this coordinates, the metric satisfies the Bondi-gauge conditions. However, note
that from now on, we are working in advanced Bondi-gauge, in which the r → ∞ limit,
describes the region near past null infinity J−.

We now fix a Schwarzschild radius rS, then (5.13) provides a concrete reference point gab
in gauge-fixed solution space. Our task in this chapter is to find nearby points in (gauge-
fixed) solution space gab + hab, which are candidates for the microstates of this particular
Schwarzschild black hole with mass parameter rS

2G . As already noted at the end oft the last
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chapter, gab + hab has to satisfy Bondi gauge-fixing conditions, but we expect it to violate
Bondi fall-offs.

How do we then find the relevant excitations hab potentially responsible for black hole
microstates?

Our strategy is that we insist on the existence of a consistent Hamiltonian description
of the phase space at least in the neighboorhood of gab. To analyze the Hamiltonian phase
space near gab, we use covariant phase space methods [39, 40] although at some points the
direct Hamiltonian approach is employed. A review of the covariant phase space approach
(including the relevant references) is given in [44], whereas the Hamiltonian approach is
reviewed in [45].

A helpful observation comes from the black hole uniqueness theorems, which state that
every asymptotically flat and stationary solution of the vacuum field equations in four
dimensions is diffeomorphic to the Kerr-solution. Therefore, there is the possibility that
the black hole microstates could be hidden in the form of excitations hab = Lξgab which take
the form of gauge transformations. Of course, most of these excitations will correspond to
gauge redundancies. However, there could be a subclass corresponding to the excitations
of real physical degrees of freedom, i.e. a shift in the Hamiltonian phase space. This
possibility was recently proposed in [29] and termed “soft hair on black holes.” (See also
the earlier work of Carlip [28].) Nevertheless, a determination of the relevant degrees of
freedom responsible for microstates is still missing. We want to make a proposal in this
direction.

As explained, the candidate excitations hab should preserve Bondi-gauge (5.1) and must
take the form of a gauge transformation hab = Lζgab for a vectorfield ζ. However, we do
not impose any fall-off conditions. These residual gauge transformations are found to be
[7, 36]

ζ = ζ
(
X,XA

)
= X∂v −

1
2
(
rDAX

A +D2X
)
∂r +

(
XA + 1

r
DAX

)
∂A. (5.14)

Here, X = X(v, xA) is an arbitrary scalar and XA = XA(v, xB) an arbitrary vectorfield
on S2. Indices A,B, . . . = 2, 3 labeling coordinates on the sphere are raised and lowered
with γAB. DA denotes the associated covariant derivative andD2 the Laplace-operator. The
corresponding non-zero shifts in the metric components hab = Lζgab are (with V := 1− rS

r
)

hvv = GM

r
DBX

B + GM

r2 D2X − 2V ∂vX − r∂vDBX
B −D2∂vX

hAv = −r2DADBX
B − 1

2DAD
2X − V DAX + r2∂vXA + r∂vDAX

hAB = r2(DAXB +DBXA − γABDCX
C) + r(2DADBX − γABD2X)

hvr = −1
2DBX

B + ∂vX.

(5.15)

To investigate, which of the excitations (5.15) are physical, we inspect the Hamiltonian
generators of these excitations. The relevant formulas of the covariant phase space approach
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are reviewed in [44] on which we refer. We use also some formulas summarized in [36]. The
covariant phase space F̄ is given by the (not gauge-fixed) solution space of the theory (set
of field configurations satisfying equations of motion). After gauge-fixing, we obtain the
gauge-fixed solution space Γ, which can be taken up to residual symplectic zero-modes as
the phase space. Since we are only interested in the gauge excitations of a Schwarzschild
black hole, we will consider the fixed point gab ∈ Γ and gauge excitations in the tangent
space Tgab

Γ. In general, the Hamiltonian generator H of a gauge transformation Lξgab over
a Cauchy-surface Σ is determined by

δH[hab; gab] =
∫

Σ
ω[hab,Lξgab; gab], (5.16)

where δH denotes the variation of H between the points gab and gab + hab. On-shell
(5.16) reduces to a boundary integral

δH[hab; gab] = − 1
16πG

∮
∂Σ
∗F , (5.17)

for a well-known 2-Form F over the spacetime. We will consider the expression (5.17),
where ∂Σ is a cross-section from the event horizon. Thus ∂Σ has fixed v and r = rS and
has the topology of an S2 parametrized by the remaining coordinates xA. In this case, we
have

δH[hab; gab] = − r2
S

16πG

∮
∂Σ
d2x
√
γFrv, (5.18)

where γ = det γAB and

Frv|r=rS
= ξA

(
∂rhAv −

2
rS
hAv

)
+ ξv

(
− 1
r2
S

DAhAv + 1
r2
S

∂vh
A
A −

2
rS
hvv

− 1
2r3

S

hAA

)
+ ∂rξ

vhvv + 1
r2
S

DAξvhvA −
1

2r2
S

∂vξ
vhAA + ξr

( 2
rS
hvr

+ 1
r3
S

hAA

)
+ 1

2r2
S

∂rξ
rhAA.

(5.19)

Here, the vectorfield ξ is the gauge transformation to be implemented by H and hab
satisfies linearized field equations around the fixed gab but for later purposes hab need not to
be gauge fixed in (5.19). (Therefore, (5.19) contains terms which vanish for hab respecting
Bondi-gauge.)

The change of the Hamiltonian generator δH(Y,Y A) implementing a gauge excitation
ζ = ζ(Y, Y A) (see (5.14)) under a gauge excitation hab = hab(X,XA) (see (5.15)) is then
given by

δH(Y,Y A)[hab; gab]

= rS
16πG

∮
∂Σ
d2x
√
γ
(
Y (1−D2)DBX

B +DBY
B(D2 − 1)X

)
.

(5.20)
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From (5.20), we infer that excitations with

X = X(xA)
XA = XA(xB)

(5.21)

with non-vanishing divergence DAX
A change the on-shell values of the Hamiltonian

generators (5.20).1 They are non-zero modes of the presymplectic form and thus constitute
physical excitations of the Schwarzschild black hole. Furthermore, we see that any v-
dependence which would be allowed in the residual gauge transformation (5.14) does not
constitute any new physical excitation other than (5.21).2 At least from the point of view
of the generators (5.20), all physical gauge excitations of gab are given by (5.21). In other
words, the physical gauge excitations (which form a subspace of Tgab

Γ) can be parametrized
(in Bondi-gauge) by the coordinates

X =X(xA)
DAX

A,
(5.22)

where X = X(xA) is a scalar on S2 and XA = XA(xB) is a vectorfield on S2. These
excitations are physical in the sense that they are shifts in the phase space. They form the
gauge or surface degrees of freedom of the Schwarzschild black hole. We will refer to the
coordinates (5.22) as the gauge aspects.

After having identified the gauge degrees of freedom of a Schwarzschild black hole
(5.22), we make some comments on their geometry and physics.

The choice

X = f(xA)
XA = 0

(5.23)

for a function f on S2 in (5.14) corresponds to the usual bms4-supertranslations [7].
These excitations respect Bondi fall-offs and are thus contained in the (gauge-fixed) solution-
space spanned by the Cauchy-data (5.6). As explained in the last chapter, bms4-supertranlations
are thus not expected to be responsible for black hole microstates. Indeed, they just reflect
the degeneracy of the gravitational vacuum [27]. It was already stated in [1] that ordinary
bms4-supertranslations3 are not responsible for the microstates of a Schwarzschild black
hole, but instead it was proposed that there is an enhanced asymptotic symmetry algebra.

1Note that the differential operator D2 − 1 is invertible on S2 as it has no zero eigenvalues.
2Note that all dependence on v-derivatives of X and XA cancels in (5.20). (5.20) depends only on

X = X(v0, x
A) and XA = XA(v0, x

B) with v0 being the retarded time of ∂Σ.
3By the ordinary bms4-supertranslations, we mean the supertranslations that are part of the asymptotic

symmetry algebra bms4 defined in [7]. As explained, for our case of the Schwarzschild spacetime gab, they
take the form (5.14) with the choice (5.23).
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It is the enhancement (which were called A-modes)4, which were proposed to be respon-
sible for the microstates and correct entropy counting [2].5 This reasoning resolves the
criticism on the soft hair proposal correctly stated in [32, 33, 34, 35].

We are therefore left with the question whether (5.22) contains additional excitations
(that are not part of bms4) which then would by definition constitute the A-modes.

What are then the additional excitations contained in (5.22) besides
bms4-supertranslations? For the vectorfield XA on S2 we have a Helmholtz theorem, i.e.
we can decompose

XA = Y A −DAg, (5.24)

where Y A is divergence-free DAY
A = 0 (and thus a gauge redundancy) and g is a scalar

function on S2. A proof of (5.24) is given in the Appendix. The gauge aspects (5.22) are
thus parametrized by two scalars on S2

X = f

XA = −DAg
(5.25)

and this parametrization is unique up to constant shifts in g, which constitute gauge
redundancies. As noted, f describes bms4-supertranslations. What is the meaning of g?
Out of the excitations (5.25), precisely the choice ζ = ζ(X,XA) with

X = f

XA = − 1
rS
DAf

(5.26)

keeps the induced metric on the event horizon invariant for an arbitrary scalar f on S2.
One has ζ|r=rS

= f∂v. Due to these similarities with the ordinary bms4-supertranslations
at null infinity, the excitations (5.26) are identified as event horizon supertranslations. In
the limit rS → ∞ the future event horizon tends to past null infinity and indeed the
event horizon supertranslations (5.26) converge to the bms4-supertranslations at past null-
infinity. We arrive at the conclusion, that the degrees of freedom of a Schwarzschild black
hole are given by bms4-supertranslations and the event horizon supertranslations (5.26).
The latter contain a pure bms4-supertranslation part. As these excitations reflect the

4By the enhancement, we mean any additional physical gauge excitations which are not part of bms4
(as defined in [7]). These additional excitations were previously called A-modes [1]. In the following it is
analyzed whether such excitations (A-modes) exist.

5This statement has to be understood as a proposal. So far, we have not proven that A-modes are
responsible for the microstates. However, in our opinion the proposal is justified by the following reasoning.
If the phase space contains (soft, i.e. degenerate in energy) physical gauge excitations, which are not part
of bms4, then what is their physical meaning? It would in our opinion be strange if the phase space
would contain such excitations which neither reflect the degeneracy of the gravitational vacuum nor the
microstate degeneracy.
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degeneracy of the gravitational vacuum, we subtract them to obtain the candidates for the
black hole microstates

X = 0
XA = −DAg

(5.27)

with a scalar function g on S2. Therefore, the physical gauge excitations (5.22) consist
of the bms4-supertranslations (5.23) and the additional excitations (5.27), which do not
lie in bms4, and therefore constitute the A-modes. Thus, the asymptotic symmetries
of the Schwarzschild solution gab are enhanced by the A-modes (5.27) with respect to the
asymptotic symmetry algebra bms4 present also in the case without event horizon. Already
in [1] the A-modes were by this pure geometric reasoning (although in a different gauge)
proposed as candidates for the microstates. It is nice to see, that a symplectic reasoning
tends to the same answer.6

In addition, the A-modes (5.27) violate the Bondi fall-off conditions as expected in
chapter 5.2 for potential candidates for black hole microstates. That is, the set of data
(5.6) is not enough to specify the excitations of gab given by (5.8). At the point gab in
phase space the gauge aspect g provides additional Cauchy-data as it is a physical degree
of freedom.

To summarize, in this chapter we have analyzed the Hamiltonian phase space near
the point gab (5.8) (5.13) describing a Schwarzschild spacetime. Precisely, we analyze the
tangent space Tgab

Γ of the phase space right at the point gab ∈ Γ. Motivated by black
hole uniqueness theorems/soft hair proposal, we further restricted to tangent vectors hab
that have the form of gauge transformations, i.e. that correspond to gauge excitations
of gab. Gauge-fixing to Bondi-gauge (5.14), we constructed the Hamiltonian generators of
these gauge excitations (5.20). We inferred that all physical gauge excitations of gab (i.e.
those which are not gauge redundancies) are parametrized by the gauge aspects (5.25).
They consist of bms4-supertranslations reflecting the degeneracy of gravitational vacua.
In addition, there are A-modes (5.27) violating Bondi fall-offs and thus giving rise to
additional BCD in (5.6) as expected in chapter 5.2 for excitations describing microstates.
Thus, we propose the A-modes (5.27) to be responsible for black hole microstates of gab.

5.4 Surface Charge Algebra
In the last chapter, we figured out the surface degrees of freedom of a Schwarzschild black
hole. They are elements of the tangent space at gab describing gauge-fixed gauge excitations.
In order to find their surface charge algebra in this chapter, we need first to make some

6In addition, our results are in line with the recent work [46]. There, it was also observed, using
a different gauge, that bms4-supertranslations of a Schwarzschild black hole are superpositions of event
horizon supertranslations and an additional part. Since our approach uses Bondi-gauge, we see that this
additional part (5.27) violates Bondi fall-offs.
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technical considerations about how gauge-fixing takes place in the covariant phase space
formalism.

What does gauge-fixing technically mean? Let hab = Lξgab ∈ Tgab
F̄ be a gauge excita-

tion, which need not be gauge-fixed. That means, the vectorfield ξ has not to be a residual
gauge transformation with respect to Bondi-gauge. By subtracting symplectic zero-modes
from hab, we can construct a gauge-fixed excitation h̃ab ∈ Tgab

Γ. Since the non-gauge-fixed
hab and the gauge-fixed h̃ab differ only by symplectic zero-modes, they are equal excita-
tions in phase space. The mapping hab → h̃ab is a projection operator, which performs
the gauge-fixing of hab. We will construct in (5.32) such a projection operator which maps
hab onto a gauge-fixed excitation of surface degrees of freedom in Tgab

Γ by dividing out
symplectic zero-modes.

This will enable us to finally obtain the surface charge algebra given in (5.48) along
with (5.41), (5.42), (5.49).

To derive (5.32), we consider the Hamiltonian generators δH(X,XA)[hab; gab] of the sur-
face degrees of freedom (X,XA) = (f,−DAg) for scalar functions f, g on S2 as found in
(5.25). These generators are given by (5.18) and (5.19) with the vectorfield ξ being of the
form (5.14) with the given functions (X,XA).

These Hamiltonian generators define linear forms on the tangent space Tgab
F̄ . For an

arbitrary vectorfield ξ on the spacetime, the linear forms have for the gauge excitation
hab = Lξgab the form

δH(X,XA)[hab, gab] = − r2
S

16πG

∮
∂Σ
d2x
√
γ
(
XAr2

SγAB∂r∂vξ
B

+DAX
A
( 1
rS
ξv − 2∂rξr −

1
rS
ξr − ∂vξv −

3
2DBξ

B
)

+X

(
−rS∂r∂vDBξ

B + 1
r2
S

D2ξv − 2
rS
∂rD

2ξr − 2
r2
S

D2ξr

− 1
rS
DBξ

B − 1
rS
∂vD

2ξv − 1
rS
D2DBξ

B
))

.

(5.28)

Performing on the vectorfield ξA on S2 the decomposition (5.62)

ξA = ξ̃A +DAh, (5.29)
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where ξ̃A is divergence-free DAξ̃
A = 0 and h is a scalar on S2, (5.28) is rewritten

δH(X,XA)[hab, gab] = − r2
S

16πG

∮
∂Σ
d2x
√
γ (

DAX
A
(
−r2

S∂r∂vh+ 1
rS
ξv − 2∂rξr −

1
rS
ξr − ∂vξv −

3
2DBξ

B
)

+X

(
−rS∂r∂vDBξ

B + 1
r2
S

D2ξv − 2
rS
∂rD

2ξr − 2
r2
S

D2ξr

− 1
rS
DBξ

B − 1
rS
∂vD

2ξv − 1
rS
D2DBξ

B
))

.

(5.30)

If ξ = ξ(Y, Y A) is itself chosen to be an excitation of the surface degrees of freedom
with gauge aspects Y, Y A (see (5.14) and (5.25)), we get as in (5.20)

δH(X,XA)[hab = hab(Y, Y A); gab]

= − r2
S

16πG

∮
∂Σ
d2x
√
γ
(
DAX

A · 1
rS

(1−D2)Y +X · 1
rS

(D2 − 1)DBY
B
)
.

(5.31)

That means, an arbitrary gauge-excitation ξ (not satisfying Bondi-gauge) excites (up
to zero-modes of the symplectic form) the gauge aspects (Y, Y A) determined by

1
rS

(1−D2)Y

= −r2
S∂r∂vh+ 1

rS
ξv − 2∂rξr −

1
rS
ξr − ∂vξv −

3
2DBξ

B

∣∣∣∣
∂Σ

1
rS

(D2 − 1)DBY
B

= −rS∂r∂vDBξ
B + 1

r2
S

D2ξv − 2
rS
∂rD

2ξr − 2
r2
S

D2ξr

− 1
rS
DBξ

B − 1
rS
∂vD

2ξv − 1
rS
D2DBξ

B

∣∣∣∣
∂Σ
.

(5.32)

The right hand side of (5.32) has to be evaluated at the coordinates (v, r = rS), where
∂Σ is located. Since D2 − 1 is an invertible operator on S2, (5.32) defines uniquely the
gauge aspects (Y,DAY

A) as functions on S2. The gauge excitation ξ can excite additional
degrees of freedom corresponding to shifts of other Cauchy-data in (5.6). For example, ξ
can excite also radiative degrees of freedom describing radiation passing through the event
horizon or null-infinity. To determine the correct shifts in phase space the symplectic form
(5.28) has to be evaluated both also with respect to all others than the surface degrees of
freedom (X,XA) and the location of ∂Σ has to be varied across a whole Cauchy-surface.
However, rather than doing a complete analysis of the phase space, we restrict ourselves
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to the surface degrees of freedom. Their excitations are are given (up to zero-modes of the
linear forms (5.28), i.e. up to gauge redundancies) by (5.32).

In other words, (5.32) defines a projection operator, which maps the subspace of gauge-
excitations hab = Lξgab ∈ Tgab

F̄ in the tangent space Tgab
F̄ to an excitation in Tgab

Γ of the
surface degrees of freedom with gauge aspects (Y,DAY

A).
Let now

ξ1(X1, X
A
1 ) = X1∂v −

1
2
(
rDAX

A
1 +D2X1

)
∂r +

(
XA

1 + 1
r
DAX1

)
∂A

ξ2(X2, X
A
2 ) = X2∂v −

1
2
(
rDAX

A
2 +D2X2

)
∂r +

(
XA

2 + 1
r
DAX2

)
∂A

(5.33)

be two gauge excitations with gauge aspects

X1 = f1

XA
1 = −DAg1

X2 = f2

XA
2 = −DAg2.

(5.34)

What are the gauge aspects (according to the projector (5.32)) of the Lie-bracket [ξ1, ξ2]?
We have

[ξ1, ξ2]v = XA
1 DAX2 − (1←→ 2) (5.35)

as well as

[ξ1, ξ2]r = r
(
−1

2X
A
1 DADBX

B
2

)
+
(1

4D
2X1DBX

B
2 −

1
2X

A
1 DAD

2X2 −
1
2D

AX1DADBX
B
2

)
+ 1
r

(
−1

2D
AX1DAD

2X2

)
− (1←→ 2)

(5.36)

and

[ξ1, ξ2]A =
(
XB

1 DBX
A
2

)
+ 1
r

(1
2DBX

B
1 D

AX2 +XB
1 DBD

AX2 +DBX1DBX
A
2

)
+ 1
r2

(1
2D

2X1D
AX2 +DBX1DBD

AX2

)
− (1←→ 2) .

(5.37)
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From this, we infer for the gauge aspects

(Y,DAY
A) = (f̂ ,−D2ĝ) (5.38)

of the Lie-bracket [ξ1, ξ2] from (5.32)

1
rS

(1−D2)Y

= 1
r2
S

(
−5

4D
AX1DAD

2X2

)

+ 1
rS

(
XA

1 DAX2 −XA
1 DAD

2X2

−1
2DAX

A
1 D

2X2 + 1
4DADBX

B
1 D

AX2

)
− (1←→ 2)

(5.39)

and

1
rS

(D2 − 1)DBY
B

= 1
rS

(D2 − 1)DA

(
XA

1 DBX
B
2

)
+ 1
r2
S

(
−XB

1 DBD
2X2 −

1
2DBX

B
1 D

2X2 + 1
2DADBX

B
1 D

AX2

+D2
(
−1

2D
AX2DADBX

B
1 +XA

1 DAX2

))
+ 1
r3
S

(1
2DAD

2X1D
AX2 +D2

(1
2DAD

2X1D
AX2

))
− (1←→ 2) .

(5.40)

On the surface degrees of freedom (5.34), the conventional spacetime Lie-bracket is
realized through the algebra7

(1−D2)f̂

= 1
rS

(
−5

4D
Af1DAD

2f2

)
+
(
−DAg1DAf2 +DAg1DAD

2f2

+ 1
2D

2g1D
2f2 −

1
4DAD

2g1D
Af2

)
− (1←→ 2)

(5.41)

7Remember that the differential operator D2 − 1 is invertible on S2. Thus, f̂ and ĝ are uniquely
determined by (5.41) and (5.42).
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and

(1−D2)D2ĝ

= (D2 − 1)DA

(
DAg1D

2g2
)

+ 1
rS

(
DBg1DBD

2f2 + 1
2D

2g1D
2f2 −

1
2DAD

2g1D
Af2

+ D2
(1

2D
Af2DAD

2g1 −DAg1DAf2

))
+ 1
r2
S

(1
2DAD

2f1D
Af2 +D2

(1
2DAD

2f1D
Af2

))
− (1←→ 2) .

(5.42)

It is known, that the Hamiltonian generators form a representation (with respect to
the Poisson-bracket) of the Lie-algebra of symplectic symmetries up to central extensions.
That is,

{HX , HY } = H[X,Y ] +KX,Y (5.43)
for symplectic symmetries X, Y and their generators HX , HY . The central extension

KX,Y is a c-number, which is a constant over path-connected parts of the phase space.
[X, Y ] is the Lie-bracket of X and Y as vectorfields on the phase space. If X = δξ1 and
Y = δξ2 are gauge transformations, we assume that (5.43) takes on-shell the form

{Hξ1 , Hξ2} = H[ξ1,ξ2] +Kξ1,ξ2 (5.44)
with [ξ1, ξ2] being the Lie-bracket of vectorfields on the spacetime manifold. That

means, on shell [X, Y ] = δ[ξ1,ξ2] up to gauge redundancies.8
Choosing in (5.44) for the gauge transformations the surface degrees of freedom (5.33),

we get {
H(X1,XA

1 ), H(X2,XA
2 )

}
= H(Y,Y A) +K(X1,XA

1 ),(X2,XA
2 ). (5.45)

Remembering
{
H(X1,XA

1 ), H(X2,XA
2 )

}
= δ(X2,XA

2 )H(X1,XA
1 ) we get the central term from

(5.20)

K(X1,XA
1 ),(X2,XA

2 ) = rS
16πG

∮
∂Σ
d2x
√
γX1(−D2 + 1)DAX

A
2

− rS
16πG

∮
∂Σ
d2x
√
γX2(−D2 + 1)DAX

A
1

−H(Y,Y A)[gab].

(5.46)

8Although (5.43) is often used in the form (5.44) [47, 48, 49], we do not know a proof of that. We
further comment on this assumption in the next chapter. For now, in this chapter we justify the use of
(5.44) by being able to reproduce known results.
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Hamiltonian generators are determined only up to a constant. We use this freedom to
set all surface charges to 0 at the reference solution gab

H(X,XA)[gab] = 0. (5.47)

This choice fixes uniquely all generators and the central terms (5.46).
To summarize, for the surface degrees of freedom (5.25) of a Schwarzschild black hole,

the surface charge algebra is given by

{Hf1,g1 , Hf2,g2} = Hf̂ ,ĝ +K(f1, g1; f2, g2). (5.48)

Here, the gauge aspects f̂ and ĝ are given by the algebra (5.41) (5.42) and the central
term follows from (5.46) (with the choice (5.47))

K(f1, g1; f2, g2) = rS
16πG

∮
∂Σ
d2x
√
γf1(D2 − 1)D2g2

− (1←→ 2) .
(5.49)

We comment on some implications of this algebra. First, we have for the choice f1 =
rS, g1 = 0 and f2 = f, g2 = g the bracket

{HrS ,0, Hf,g} = 0. (5.50)

The charge HrS ,0 is (up to constant shift set by (5.47) and normalization) equal to
the ADM-energy subtracted of by the energy passing through future null infinity and the
portion of the event horizon between the location of ∂Σ and the horizon’s future end point.
Thus, if there is no radiation passing through these regions, HrS ,0 coincides with the ADM-
energy. (5.50) then states that the surface degrees of freedom are gapless excitations, i.e.
they keep the ADM-energy invariant. They provide soft black hole hair. As mentioned, the
bms4-supertranslations f reflect degeneracy of the gravitational vacuum. The A-modes g
are the gapless Bogoliubov-modes associated with the criticality of the Schwarzschild black
hole.

Furthermore, as a consistency check, we find that the Poisson-bracket between event
horizon supertranslations (5.26) (i.e. choosing gi = 1

rS
fi for i = 1, 2 and arbitrary fi in

(5.48)) vanishes. This is in agreement with [50, 51].
We have identified the surface degrees of freedom of a Schwarzschild black hole as

the gauge aspects, which are functions on S2. The algebra with respect to the Poisson-
bracket of the gauge aspects is given by (5.48). We thus arrived at a lower dimensional
theory describing part of the phase space near the Schwarzschild solution gab. This aims
to be a new and concrete realization of the holographic principle [52, 53] for the case of a
Schwarzschild black hole.
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5.5 Assumptions, Limitations and Outlook
After having found the surface degrees of freedom of a Schwarzschild black hole as well
as their algebra under the Poisson-bracket, which aims at providing a dual theory for the
Schwarzschild black hole, it is interesting to analyze its consequences. However, we want
to warn that in our path, we made several assumptions. These assumptions may cause
corrections to our results. In this chapter, we want to list these assumptions and give an
outlook. Further investigation of these issues will be left for future research.

5.5.1 Choice of symplectic form, integrability vs. Gibbons-Hawking-
York term

Given the Lagrangian of a theory, the covariant phase space formalism starts by prescribing
a presymplectic potential. Unfortunately, this prescription is affected by adding a bound-
ary term to the action and has a further ambiguity on its own (see [44]). These ambiguities
affect the definition of the presymplectic form and therefore also the Hamiltonian genera-
tors. As commonly done in the literature, we used in our derivations of formulas like (5.20)
the canonical presymplectic potential as derived from the Einstein-Hilbert action.

On the other hand, in the Hamiltonian approach (see [45]) any ambiguity in the defini-
tion of the Hamiltonian generators is fixed (of course up to a constant) by the requirement
of differentiability in the sense of Regge-Teitelboim [54]. Having found a candidate for
a Hamiltonian generator of a symplectic symmetry, a suited boundary term has to be
added to make the generator a differentiable functional over phase space. This fixes any
ambiguity.

Having a theory with a well-defined action, that means, an action that is added a suited
boundary term to ensure Regge-Teitelboim differentiability in the variational principle,
there is the following version of Noether’s theorem incorporating boundary effects:

For a symmetry of a well-defined action, the canonical Noether-procedure assigns a
charge which is a differentiable Hamiltonian generator of that symmetry (see [45] for the
details).

The derivation of black hole entropy in [55] using Euclidean methods suggests that the
variation of the Gibbons-Hawking-York boundary term SGHY vanishes

δξSGHY |gab
= 0 (5.51)

for the physical gauge excitations ξ of the black hole geometry gab that are responsible
for the microstates. That means first, that for the construction of the Hamiltonian genera-
tors of the ξs, the boundary term in the action does not affect the presymplectic potential.
Second, the above Noether-theorem guarantees the existence of differentiable Hamiltonian
generators constructed by the canonical Noether-procedure.

In summary, the canonical choice of the presymplectic potential (that we used through-
out) is justified for the problem. However, it has to be checked that for our surface degrees



5.5 Assumptions, Limitations and Outlook 37

of freedom (5.51) is indeed satisfied

δf,gSGHY |gab
= 0 (5.52)

for all gauge aspects f, g and the reference metric gab.
Note that the above Noether-theorem also guarantees integrability of the Hamiltonian

generators (5.20) over a suited region in phase space near gab. Note also that over the last
chapter, we assumed integrability, which is in general not guaranteed.

Our physical interpretation of (5.52) is that gauge excitations f, g do not excite grav-
itational radiation passing through boundaries of spacetime. It was already noted in [40]
that integrability of Hamiltonian generators is spoiled by flux terms.

5.5.2 Lie-bracket vs. surface deformation bracket
As noted in the last chapter, the algebra (5.43) was assumed to take the form (5.44) on-
shell. Although (5.44) is often used [47, 49, 48], we are not aware of a general proof. In
the Hamiltonian approach [56] a known result states that for spacetime vectorfield ξ1, ξ2
one has the relation

{Γξ1 ,Γξ2} = Γ{ξ1,ξ2}SD +Kξ1,ξ2 (5.53)

if differentiable Hamiltonian generators Γξ1 ,Γξ2 are existent. Here, {ξ1, ξ2}SD is the
surface deformation bracket which is in general different from the Lie-bracket [ξ1, ξ2]. The
difference is calculated in [56] and it is argued why it often happens (but not has to happen)
that on-shell

Γ{ξ1,ξ2}SD = Γ[ξ1,ξ2]. (5.54)

(5.54) has to be checked and this was the assumption made in the derivation of the
surface charge algebra in the last chapter.

5.5.3 Sugawara-construction of 2D stress-tensor and entropy count-
ing

In the last chapter, we found a lower-dimensional theory on S2 with the gauge aspects as
degrees of freedom and their Poisson-brackets given by (5.48). This theory describes part
of the phase space near the Schwarzschild solution gab. Note that so far, we did not specify
how the word “near” has to be understood.

Strictly speaking, we performed our calculations right at the reference point gab in phase
space and in the tangent space thereof (see formulas like (5.20)). As explained in chapter
5.5.1 the algebra (5.48) is derived under the assumption of integrability. That is, for the
generators of gauge aspects, (5.16) defines a 1-form δHf,g over phase space Γ which can
over a suited region S ⊆ Γ be integrated to obtain generators Hf,g satisfying the algebra
(5.48) over this region S ⊆ Γ. Our analysis in Tgab

F̄ was powerful enough to obtain the
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algebra (5.48). However, only at the point gab, we know how the excitation of the gauge
aspects generated by Hf,g looks like (see (5.15) with (5.25)). The action of Hf,g at other
points in S, we do not know in general. Of course, the residual gauge transformations
at other points in S look different than in (5.14). Neither, we know how large the region
S ⊆ Γ is. We want to argue for a reasonable S by asking what the theory obtained actually
describes?

Since we showed, that the gauge aspects are gapless excitations of a Schwarzschild
black hole, S should contain these points. As already explained in chapter 5.1, this scale
invariance suggests that our two-dimensional theory is a conformal field theory. This
Schwarzschild/CFT-correspondence would then deliver a two-dimensional CFT which de-
scribes the part of the phase space S of the full four-dimensional Einstein-gravity. S at
least contains the gapless excitations of the Schwarzschild black hole.

A conformal anomaly (as suggested by the appearance of central terms in (5.48)) would
then reflect the quantum mechanical lifting of gapless modes by 1

S
-corrections as explained

in the introduction.
If the dual theory of the last chapter is indeed conformally invariant, it has to posess

a 2D stress-tensor with the Virasoro-algebra being compatible with (5.48). Since we know
the algebra (5.48), it is natural to search for the stress-tensor via a Sugawara-construction.
That is, we construct the Virasoro-generators out of the surface degrees of freedom un-
der the requirement of validity of the Virasoro-algebra. As an ansatz for the Virasoro-
generators, we motivate ourselves with the cases of the Brown-Henneaux analysis [57] or
the case of extremal Kerr/CFT [37, 58]. There, the Virasoro-generators themselves are
the generators of suited gauge transformations. Following 5.5.2, we search for spacetime
vectorfields satisfying a Witt-algebra with respect to the Lie-bracket. The associated gen-
erators from the gauge aspects (obtained with the projection operator (5.32)) then satisfy
via (5.48) a Virasoro-algebra and thus are candidates for the Virasoro-generators building
the stress-tensor.

To this end, we define the spacetime vectorfields
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and

ξ̄an =
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for n ∈ Z. The vectorfields are given in infalling Eddington-Finkelstein coordinates
used in chapter 5.2. The constants A,B ∈ R are arbitrary. We then have (ξan)∗ = ξa−n and
(ξ̄an)∗ = ξ̄a−n. They fulfill two copies of the Witt-algebra

[ξm, ξn] = −i(m− n)ξm+n[
ξ̄m, ξ̄n

]
= −i(m− n)ξ̄m+n[

ξm, ξ̄n
]

= 0.
(5.57)

The choice is motivated by similar vectorfields appearing in Carlip’s approach to entropy
counting in [28, 59] but changed in such a way as to satisfy Witt-algebra (5.57) and treat
future and past horizon equally. Similar vectorfields appear in [48]. Let (fn, gn) be the
associated gauge aspects to (5.55). Furthermore, let

Hn := H(fn,gn) (5.58)

be the associated Hamiltonian generators under the choice (5.47) Hn[gab] = 0 for the
fixed reference solution gab. Since Hn has dimension of an action, we can define dimension-
less generators

~Ln := Hn + r2
S

4G
2A2B +B − A

(A+B)2 δn (5.59)

for n ∈ Z and with δn = δn,0 being the Kronecker delta.
Computing the central terms from the algebra (5.48) and under the assumptions of this

chapter, we get the classical Virasoro-algebra

{Lm, Ln} = − i
~

(m− n)Lm+n −
i

~2
r2
S

2G
B − A

(A+B)2m(m2 − 1)δm+n. (5.60)

Canonical quantization yields a Virasoro-algebra with (using standard conventions)

c = 6r2
S

~G
B − A

(A+B)2

L0[gab] = r2
S

4~G
2A2B +B − A

(A+B)2 .

(5.61)

We note that our computation of surface charges in (5.18) and thus of gauge aspects
use ∂Σ to be located on the future event horizon at a particular time v. Whereas the
gauge aspects of (5.55) (fn, gn) depend on the choice of v, the result (5.61) does not.
Unfortunately, the computation of gauge aspects of (5.56) contains divergences. This is
due to the fact, that whereas (5.55) is regular at the future event horizon, (5.56) is at the
past event horizon but are singular vice versa. Performing the computation of the gauge
aspects (f̄n, ḡn) of (5.56) at the past event horizon, the anti-chiral analog of (5.61) c̄, L̄0
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does not depend on the location of ∂Σ and thus the limit of taking ∂Σ to the bifurcation
of the horizons is for the evaluation of the Virasoro-algebras well-defined. Unfortunately,
the projection formulas (5.32) are not suited to determine the anti-chiral gauge aspects
(f̄n, ḡn). This is due to the fact, that their derivation has to be refined in that (working in
the advanced Bondi-gauge) the limit where ∂Σ goes to the past horizon has to be taken
carefully. We note that these issues are under current investigation. The hope then is, that
counting the degeneracy with the Cardy-formula matches Bekenstein-Hawking entropy.
However, there must be a finite result for the anti-chiral analog of (5.61) as we could have
also performed the calculation in retarded Bondi-gauge. The gauge aspects would then
have to be matched by a similar matching condition as the one in [27].

Wheras there are still issues under current investigation, our approach sheds new light
on Carlip’s approach to a microcanonical counting of entropy [28, 47]. In Carlip’s approach,
the choice of vectorfields giving rise to Virasoro-algebra seems ad-hoc. The near-horizon
asymptotic symmetry algebra has to be unnaturally reduced to yield a Virasoro-algebra
with central terms for the generators [49]. In our approach, such a reduction is first
due to dividing out zero-modes by projecting arbitrary gauge excitations onto the surface
degrees of freedom via (5.32). That is, different gauge excitations can correspond to the
same excitations of the gauge aspects. Second, only the very special generators (5.59)
correspond to Virasoro-generators out of the full set of generators of surface degrees of
freedom.

On the other hand, note that in (5.61) rS is the Schwarzschild-radius of the reference
solution gab. It is a fixed parameter for our dual theory. Also note the appearance of the
two arbitrary parameters A,B in (5.61). Such an ambiguity was already present in Carlip’s
approach, although it was canceled in the entropy counting giving consistent result.9 This
ambiguity reflects the fact that Hamiltonian generators are only defined up to constant.
Had we chosen in (5.47) a different reference solution, we would have obtained a different
theory (5.48) with other central terms and this would affect the associated Virasoro-algebra.
This ambiguity is reflected in the presence of the parameters A,B in (5.61).

After all, it is tempting to expect that S ⊆ Γ covers the whole Kerr-family. That is,
we conjecture our dual theory describes part of the phase space containing the Kerr-family
and its gapless excitations. Such a Kerr/CFT-correspondence was already conjectured in
[38] from the study of scattering off a non-extremal Kerr black hole. Comparing with (5.55)
(5.56) the Virasoro-modes L0, L̄0 “measure” the mass and angular momentum parameter
of a particular Kerr black hole.

Whether this is the right way to think about the problem has still to be understood.
We have given an outlook of what is currently at our investigation.

9See the sentence before and after equation (3.5) in [28].
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Appendix: Proof of (5.24)
In this chapter, we want to prove that a vectorfield XA on S2 has a Helmholtz-Hodge
decomposition

XA = Y A +DAf, (5.62)

where Y A is a divergence-free vectorfield on S2 DAY
A = 0 and f is a scalar function

on S2. Proving (5.62), we have proven (5.24).
Let XA be a vectorfield on S2. According to the Hodge-decomposition, we can write

the 1-form XA as

X = df + δβ + γ, (5.63)

where f is a scalar on S2, β is a 2-form on S2 and γ is a harmonic 1-form. d denotes the
exterior derivative and δ the codifferential. On S2, there are no harmonic 1-forms, since
the first de Rham cohomology-group vanishes. Thus, γ = 0. Defining the vectorfield

Y A = (δβ)A (5.64)

(5.62) follows immediately from (5.63)

XA = DAf + Y A,

if we can show DAY
A = 0. For a generic vectorfield V A, we have for the associated

1-form VA

δV = − ∗ d(∗V ) = − ∗ ∗(DAV
A) = −DAV

A. (5.65)

Using this identity, we conclude

−DAY
A = δY = δ2β = 0.

Y A is indeed divergence-free and this shows (5.62).



42 5. Schwarzschild/CFT from soft black hole hair?



Chapter 6

Entropy Counting from
Schwarzschild/CFT and Soft Hair

We provide in this chapter a review of the paper [4]. This chapter is a slightly edited
version of [4] and for more details, we refer to the original paper.

We start with a very brief overview of the main aspects and later provide the technical
details.

After having obtained a candidate theory that is supposed to describe the part of phase
space responsible for the microstates of a Schwarzschild black hole, the next step is clear:
To provide further evidence of the correctness of the 2D dual theory that we obtained in
[3] and explore its consequences.

The work of [3] has to be considered as a first step in analyzing the Hamiltonian phase
space of black holes. There, we applied new tools to analyze the phase space in a systematic
way for the specific case of a Schwarzschild black hole in Einstein-gravity. These general
tools are of possible interest on their own right. We briefly give a first presentation of those
tools themselves for the general case of an arbitrary theory in [4].

In the application of those general tools in [3], the calculations were limited to a min-
imum in order to be feasible but powerful enough to provide first non-trivial results. For
example, we analyzed the phase space restricted to the point right at the Schwarzschild so-
lution and tangent vectors that have the form of gauge transformations in order to obtain a
2D dual theory describing the Schwarzschild black hole. However, the obtained dual theory
is expected to describe the phase space over the whole Kerr-family. In fact, in [3] we gave a
complete list of the assumptions and computational limitations. Furthermore, we provided
an outlook of necessary consistency checks and how a relaxation of the assumptions and
enlargeing computations might possibly affect the obtained 2D dual theory.

Carrying out this program is in essence the main part that would naturally constitute
the next step following the last chapter. The most important guiding principle for this
is the correct reproduction of the Bekenstein-Hawking entropy by the dual 2D theory.
Therefore, the main question of this chapter is whether such a reproduction is possible?

We conjectured in [3] that the obtained 2D dual theory is a CFT (by this we mean,
that it possesses an invariance under the 2D local conformal algebra) as suggested by the
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criticality of the black hole. From this perspective, Carlip’s approach to entropy counting
[28, 47] reemerges as a Sugawara construction of a 2D stress-tensor out of the degrees of
freedom present in the 2D theory. This provides an opportunity for both a substantial
consistency check for the correctness of the 2D theory and support for Carlip’s approach
including a microcanonical explanation of entropy.

The main point of [4] is to revisit Carlip’s approach to entropy counting. There, we first
explain why such a revision is necessary. Although motivated by the Schwarzschild/CFT
proposal of [3], such a revision is also of interest on its own right and can be discussed
independently of the issues in [3]. In the revision [4], for the example of a Schwarzschild
black hole, we show how to single out diffeomorphisms forming in contrast to Carlip’s
analysis the full 2D local conformal algebra. We provide arguments as to why their Hamil-
tonian generators are expected to be the symmetry generators of a possible conformal field
theory describing the part of phase space responsible for black hole microstates. Then, we
can infer central charges and temperatures of this CFT by inspecting the algebra of these
Hamiltonian generators. Using these data in the Cardy formula, precise agreement with
the Bekenstein-Hawking entropy is found.

Hence, we have shown that after all diffeomorphisms do exist whose generators provide
reasonable candidates for the Virasoro-generators of a possible CFT that might describe
the part of phase space responsible for black hole microstates. While the idea itself is not
new, other approaches like Carlip’s original approach [47] or the more recent one by Haco,
Hawking, Perry, Strominger [60] differ in proposing different choices of diffeomorphisms.
However, we comment on other choices and observe that they suffer from various subtleties.
For instance, in the original approach [47] only one chiral half of a Virasoro-algebra of
diffeomorphisms is found whereas two copies are expected for the symmetry algebra of
the anticipated CFT. On the other hand, the choice in [60] is only able to reproduce the
Bekenstein-Hawking entropy after non-canonical corrections of the symplectic structure
that is used to study the algebra of diffeomorphism generators.

Contrary to that, we have shown in [4] that there exists a “preferred” choice of diffeo-
morphisms forming two commuting copies of a Virasoro-algebra and providing reasonable
candidates for the symmetry generators of a possible CFT that is supposed to describe the
microcanonical physics of the black hole. Indeed, we have shown in [4] that this choice ex-
actly reproduces the Bekenstein-Hawking entropy with a canonical choice of the symplectic
structure.

To summarize, if there is a CFT describing the part of phase space of e.g. a Schwarzschild
black hole, then we have shown that reasonable candidates for the associated conformal
generators do exist and can be explicitly found. That is, we know what the conformal gen-
erators should be. However, in this analysis - this is a drawback of all approaches following
Carlip’s idea - it is not known what this CFT explicitly is or whether it even exist.

Nevertheless, this provides the opportunity for a substantial consistency check of any
e.g. Schwarzschild/CFT proposal that one might have under consideration. As we explain
in [3, 4], we have to directly project the above-mentioned conformal generators onto the
observables present in the dual theory given by the Schwarzschild/CFT proposal. If count-
ing the state degeneracy after projection still reproduces the Bekenstein-Hawking entropy,
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this would provide substantial consistency check that the considered Schwarzschild/CFT
proposal contains exactly the right black hole degrees of freedom or otherwise needs refine-
ment.

To carry out the step for the explicit Schwarzschild/CFT propsal of [3] is still under
investigation. The purpose of [4] was to find out what the proper conformal generators are
that have to be projected onto potential black hole degrees of freedom.

The steps to appear in future research are therefore twofold. Using covariant phase
space techniques, we have seen there is a natural way to parametrize the Hamiltonian phase
space of a general theory. These are the tools that we used to obtain the Schwarzschild/CFT
proposal in the last chapter. To understand these general tools further and apply in simpler
theories than gravity is of course necessary to finally understand any Schwarzschild/CFT
proposal and will appear somewhere else. Furthermore, we have to carry out the above-
mentioned consistency procedure to arrive at the proper Schwarzschild/CFT-correspondence
capturing the right gravitational hair responsible for microstates and Bekenstein-Hawking
entropy.

The technical details of the statements made in this chapter will be concretely explained
in the remaining part of this chapter.
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6.1 Introduction to the Problem
It is one of the main problems in quantum gravity to explain the microcanonical origin
of the Bekenstein-Hawking entropy S = A

4~G of black holes [11, 13, 12]. In the classical
~→ 0 limit the entropy becomes infinite. Therefore, the Hamiltonian phase space of pure
Einstein gravity has to contain infinitely many points corresponding to the microstates of
a black hole for fixed mass and angular momentum parameter. On the other hand, the
black hole uniqueness theorems [15] tell that asymptotically flat and stationary solutions
of Einstein’s field equations are given by the Kerr-family up to diffeomorphisms. This
can create the impression of an arising paradox: Due to the uniqueness theorems, it may
naively seem that there is no place in Hamiltonian phase space that can accomodate the
infinitely many microstates as required by the classically infinite entropy. Therefore, one
can ask: How to reconcile the black hole uniqueness theorems with the classically infinite
Bekenstein-Hawking entropy?

Since the uniqueness theorems single out the Kerr solutions up to diffeomorphisms,
they already themselves suggest a possible solution. It may be that some of the diffeo-
morphisms are physical, i.e. shifts in phase space rather than gauge redundancies. This
phenomenon is known to happen in gauge theories typically when the gauge parameters
are non-vanishing in some asymptotic region. Such asymptotic symmetries could in gravity
then be responsible for microstates of a Kerr black hole.

Indeed, the study of asymptotic symmetries in 3D gravity [57] brought some success in
understanding the BTZ black hole. It is found that the asymptotic symmetry algebra con-
tains the 2D local conformal algebra. Conformal field theory techniques can then be used
to count the state degeneracy [61] and agreement with the Bekenstein-Hawking entropy is
found. Carlip raised the idea [28, 47, 62, 63] to mimic this in the higher-dimensional case.
Although it is not clear which gauge transformations are responsible for microstates, Carlip
was able to single out a Witt-algebra of diffeomorphisms in the presence of a black hole
event horizon. The Hamiltonian generators of these diffeomorphisms are then candidates
for the generators of a possible conformal symmetry that may govern the part of phase
space responsible for black hole microstates. Hamiltonian methods can then be used to
study the conformal algebra of the diffeomorphism generators and CFT techniques then
to count the state degeneracy. Indeed, agreement with the expected Bekenstein-Hawking
entropy is found.

Although Carlip’s approach is universal, it tells nothing about what the possible un-
derlying CFT describing the relevant part in phase space really is. To understand this part
in phase space was always one of the main motivations in the study of asymptotic sym-
metries (see for instance [7] and references therein). The idea recently gained new interest
as the proposal of “soft black hole hair” [29].1 To analyze the structure of Hamiltonian

1The most simplest choice, the bms4-supertranslations contained in the asymptotic symmetry algebra
of spacetimes that are asymptotically flat at null infinity [7], does not work. It was already explained in
[1] that they can not be responsible for microstates. Instead, it was proposed there that the presence of
an event horizon enhances the asymptotic symmetry algebra and it is the enhancement that is responsible
for microstates and entropy counting [2]. This provides the resolution to the criticism on the soft hair
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phase space in the vicinity of a black hole state is nevertheless still a necessary and open
problem.

To improve the situation is the overall goal of our investigations and in [3] we described,
how the Hamiltonian phase space can be analyzed in a systematic way. For a Schwarzschild
black hole and assuming in a sense the application of the simplest possible scenario, we
proposed a concrete candidate of a dual theory describing the part of phase space re-
sponsible for microstates. This theory was given in terms of its observables and their
Poisson-bracket algebra. If conformally invariant, as it is expected from several directions,
Carlip’s approach to entropy counting reemerges at this point as a Sugawara-construction
of the conformal generators of this Schwarzschild/CFT correspondence out of its observ-
ables. Accordingly, one has to find a suited choice of Witt-algebra of diffeomorphisms.
Carlip presented a general construction of such an algebra in the presence of a black hole.

Here, we want to revisit Carlip’s approach. In Carlip’s construction only one copy of
a Witt-algebra of diffeomorphisms and associated Hamiltonian generators are found. The
two-dimensional conformal algebra consists however of two commuting copies. Since there
seems to be no reason, why black holes should be described by chiral CFTs, it is natural to
seek for diffeomorphisms building two Witt-algebra copies. Is such a choice possible and
does it lead to something maybe even more appropriate?

That such a choice is possible follows directly from [3]. There, we have provided a
V ir ⊕ V ir-algebra of diffeomorphisms. Using this choice, the entropy counting procedure
in the context of the proposed Schwarzschild/CFT-correspondence was discussed. The
main idea in the construction of this V ir ⊕ V ir-diffeomorphisms was to still follow Car-
lip’s construction [47] closely. But whereas Carlip singles out V ir-diffeomorphisms in the
presence of a local Killing horizon, we insist in treating both the future and past event
horizon of the black hole on the same level. This then leads to two copies of Witt-algebra
diffeomorphisms.

Our purpose here is to report further on our investigations whether this choice of
V ir ⊕ V ir-diffeomorphisms is a proper one. This question is in principle independent of
the issues discussed in [3]. Our V ir ⊕ V ir-diffeomorphisms are of interest as they provide
a novel choice of diffeomorphisms to be used in Carlip’s approach. Inspecting the algebra
of Hamiltonian generators, we will in this work infer central charges and Virasoro zero-
modes (or equivalently CFT temperatures) that reproduce via Cardy-formula the expected
Bekenstein-Hawking entropy. There appears no need to correct the canonically-derived
Hamiltonian generators by any counterterms. Furthermore, the derived CFT temperatures
are in agreement with the temperatures obtained directly from the V ir ⊕ V ir-vectorfields
by thermodynamic considerations.

The recent work by Haco, Hawking, Perry, Strominger [60] also follows Carlip’s ap-
proach to black hole entropy counting. There, an alternative choice of V ir⊕V ir-diffeomorphisms
for the case of a Kerr black hole is proposed. We comment on that choice throughout our
investigations.

This chapter is organized as follows. In chapter 6.2 we briefly review Carlip’s approach

proposal stated later correctly in [32, 33, 34, 35].
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to black hole entropy counting. To inspect the algebra of the Hamiltonian generators of
diffeomorphisms, we derive the relevant formulas. Especially, we explain how the CFT data
needed in the Cardy-formula is derived once a choice of V ir ⊕ V ir-diffeomorphisms has
been made. In chapter 6.3, for the example of a Schwarzschild black hole, we explain how
to single out a “preferred” V ir⊕ V ir-algebra of spacetime diffeomorphisms. Alternatively
to the considerations in chapter 6.2, we fix the associated CFT temperatures by some
thermodynamic considerations. The role of the Casimir-operators of the global conformal
algebra for scattering off a black hole is briefly discussed. In chapter 6.4, we use the derived
V ir⊕V ir-diffeomorphisms in the framework of chapter 6.2 to infer the relevant CFT data
for entropy counting. We find agreement with the Bekenstein-Hawking entropy. In chapter
6.5, we connect these findings with [3].

In the following, we use units in which we set the speed of light to 1 but we keep
Newton’s constant G and Planck’s constant ~ explicit. Latin letters a, b, . . . = 0, . . . , 3
denote spacetime indices.

6.2 General Argument and Realization

6.2.1 General Argument
Here, we give a brief review of Carlip’s approach to explain the statistical mechanical
origin and counting of the black hole entropy especially in dimensions higher than 3. For
a more detailed discussion and references, we refer to the original papers [28, 47, 62, 63].
The interpretation of this approach in light of a recently proposed Schwarzschild/CFT-
correspondence [3] was already given in that reference and will also be discussed in chapter
6.5.

Consider an arbitrary diffeomorphism-invariant theory of gravity given by some action,
which possibly can contain black hole solutions. For a diffeomorphism given by some
vectorfield ξ over the spacetime manifold, we denote by Hξ the associated Hamiltonian
generator. The Hamiltonian generator Hξ - if it exists - is a function over the phase space
Γ of the theory and implements the diffeomorphism ξ. The generator Hξ is given as the
sum of a bulk integral over suited gauge constraints and a suited boundary integral. On-
shell Hξ is therefore given by a boundary integral. If Hξ is non-constant over phase space,
the diffeomorphism ξ constitutes a physical excitation, i.e. Hξ implements a shift in the
Hamiltonian phase space, otherwise a gauge redundancy.

The algebra of the Hamiltonian generators Hξ with respect to the Poisson-bracket
forms on-shell a representation of the algebra of the associated diffeomorphisms with re-
spect to the ordinary Lie-bracket of vectorfields over the spacetime manifold up to central
extensions. That is, for spacetime vectorfields ξ1, ξ2 we have on-shell the relation

{Hξ1 , Hξ2} = H[ξ1,ξ2] +Kξ1,ξ2 (6.1)

where Kξ1,ξ2 are constant c-numbers.
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So far, we have reviewed general statements of the Hamiltonian mechanics for gravity
theories. What happens if we have a black hole solution? In this case the idea is to
treat the event horizon as a boundary of the spacetime manifold. The presence of such
a boundary can render some diffeomorphisms Hξ from would-be gauge redundancies to
physical excitations which could be important for the statistical mechanics of the black
hole. The presence of the boundary can furthermore give rise to non-vanishing central
extensions in the algebra (6.1) of the aforementioned generators Hξ. Carlip’s observation
was that for black hole event horizons there are “natural” ways to find diffeomorphisms ξn
(n ∈ Z) which form a Witt-algebra

[ξm, ξn] = −i(m− n)ξm+n. (6.2)

The subalgebra of (6.1) of the associated generators Hξn then forms a Virasoro-algebra.
Virasoro-algebras constitute the symmetry algebras of two dimensional conformal field

theories. The assumption then is, that there is a 2D CFT which describes the part of the
phase space that is responsible for black hole microstates and whose conformal generators
are provided by the Hξn . At this stage, it is of course not clear whether such a theory exists
or what this theory is. However, accepting this assumption one has fortunately the luxury
that a lot of information about a given 2D CFT can be gained from its Virasoro-algebra -
for our black hole case this would then be the algebra of the generators Hξn .

For instance, the degeneracy of states in a 2D CFT is (often) fixed through the Cardy
formula by the central charge which is read directly from the Virasoro-algebra. Therefore,
it is tempting to perform the following sort of consistency check of the aforementioned
assumption. One can determine the central charge of the Virasoro-algebra formed by the
Hξn by calculating the extensions Kξm,ξn in (6.1). The associated degeneracy of states of
the would-be CFT is then compared with the black hole’s Bekenstein-Hawking entropy.
Carlip’s result was that both of them agree.

As already mentioned, there are still several remaining open questions. For example,
why is it appropriate to treat the event horizon as a boundary in the evaluation of the
boundary integrals that determine the extensions Kξm,ξn? To put it differently, this can be
phrased as what the CFT governing the black hole microstates in phase space is and how
to obtain it. To answer these questions is the overlying goal of our investigations and we
will briefly come back to these issues in chapter 6.5 where we emphasize the connection
with previous work.

However, our point in this work is to revisit Carlip’s approach to entropy counting in
several directions. Why is such a revision necessary?

The symmetry algebra of a 2D CFT contains two mutually commuting copies of
Virasoro-algebras. The associated chiral and anti-chiral central charges are usually equal
(CFTs in curved background with different chiral and anti-chiral central charges are even
known to be inconsistent [64]). In Carlip’s approach [47] instead, the entire contribution
to black hole entropy comes from a chiral half of a would-be CFT.

In this work, we therefore want to present a way to construct diffeomorphisms ξn and
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ξn (n ∈ Z) satisfying two copies of the Witt-algebra

[ξm, ξn] = −i(m− n)ξm+n[
ξm, ξn

]
= −i(m− n)ξm+n[

ξm, ξn
]

= 0.
(6.3)

The choice of diffeomorphisms should be such that the associated Hamiltonian gener-
ators Hξn and Hξn

are reasonable candidates for the symmetry algebra of a possible CFT
governing the statistical mechanics of the black hole under consideration.

6.2.2 Realization
In order to be as simple and as concrete as possible, we consider the case of a Schwarzschild
black hole in pure Einstein gravity. We denote spacetime coordinates by xa = (x0, x1, xA)
with angular coordinates indexed by A,B, . . . = 2, 3. In ingoing Eddington-Finkelstein
coordinates (v, r, xA) = (v, r, ϑ, ϕ) the Schwarzschild-metric reads

ds2 = gabdx
adxb

= −
(

1− rS
r

)
dv2 + 2dvdr + r2

(
dϑ2 + sin2 ϑdϕ2

)
= −

(
1− rS

r

)
dv2 + 2dvdr + r2γABdx

AdxB.

(6.4)

They are related to the ordinary Schwarzschild-coordinates (t, r, ϑ, ϕ) by

v = t+ r∗, (6.5)

where the tortoise coordinate is given by

r∗ = r + rS ln
∣∣∣∣ rrS − 1

∣∣∣∣ . (6.6)

We work here in Eddington-Finkelstein coordinates because then the metric (6.4) sat-
isfies (advanced) Bondi-gauge just to be compatible with our previous conventions in [3].
However, for what follows this choice is arbitrary and we could work in any coordinates
that cover the event horizon. γAB denotes the metric on the unit 2-sphere. In what follows,
we consider the metric (6.4) as a fixed reference point gab ∈ Γ in Hamiltonian phase space
describing a Schwarzschild black hole with mass parameter rS

2G . Our task is then to look
at the behavior of Hamiltonian generators of suited diffeomorphisms in the vicinity of this
point.

To study the behavior of these generators, we have to refer to Hamiltonian mechanics.
In order to do so, several approaches exist. One way would be to use the direct Hamiltonian
approach to general relativity as it was done in [28]. However, we will use the covariant
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phase space formalism [39, 40] which is manifestly covariant as used in [47]. The formalism
is for example reviewed in [44, 36, 65] and we will use some formulas collected there.

In the covariant phase space formalism the Hamiltonian phase space Γ is given by the
solution space of the theory under consideration (i.e. the set of all field configurations
satisfying the equations of motion). In principle, one has to divide out symplectic zero-
modes by appropriately fixing the gauge but in our present context this step is not relevant.
For a diffeomorphism ξ the infinitesimal change of the associated Hamiltonian generator
between points gab + hab ∈ Γ and gab ∈ Γ in phase space is determined by

δHξ [hab; gab] = − 1
16πG

∮
∂Σ
∗F . (6.7)

Here, Σ is a Cauchy-surface in the spacetime manifold and the 2-form Fab is well-known
[44, 36, 65]

Fab = 1
2 (∇aξb −∇bξa)hcc + (∇ah

c
b −∇bh

c
a) ξc

+ (∇cξah
c
b −∇cξbh

c
a)− (∇ch

c
bξa −∇ch

c
aξb)

− (∇ah
c
cξb −∇bh

c
cξa) .

(6.8)

We will take ∂Σ for our case of a Schwarzschild-background to be a cross-section of the
event horizon, so it is given by the coordinates (v = const., r = const., xA) and thus has
topology of S2 parameterized by the angular coordinates xA. In that case, (6.7) takes the
form

δHξ [hab; gab] = − r2

16πG

∮
∂Σ
d2x
√
γFrv. (6.9)



52 6. Entropy Counting from Schwarzschild/CFT and Soft Hair

Evaluating (6.8) for our Schwarzschild-metric gab in (6.4), one obtains for (6.9)

δHξ [hab; gab] = − r2

16πG

∮
∂Σ
d2x
√
γ (

ξv
(
− rS

2r2h
A
A − r−2DAhAv −

2
r
hvv −

4
r

(
1− rS

r

)
hvr + ∂vh

A
A

−
(

1− rS
r

)
r−2DAhAr −

2
r

(
1− rS

r

)2
hrr + 1

r

(
1− rS

r

)
hAA

+
(

1− rS
r

)
∂rh

A
A

)
+ ∂rξ

v

(
1
2

(
1− rS

r

)2
hrr −

1
2

(
1− rS

r

)
hAA + hvv +

(
1− rS

r

)
hvr

)

+ ∂rξ
r
(
−1

2

(
1− rS

r

)
hrr + 1

2h
A
A

)
+ ∂vξ

v
(1

2

(
1− rS

r

)
hrr −

1
2h

A
A

)
+ ξr

(
rS
2r2hrr + r−2DAhAr + 2

r
hvr + 2

r

(
1− rS

r

)
hrr

−1
r
hAA − ∂rhAA

)
+ ξA

(
∂rhAv −

2
r
hAv − ∂vhAr

)
−∂vξrhrr + r−2DAξv

(
hAv +

(
1− rS

r

)
hAr

)
− r−2DAξrhAr

)
.

(6.10)

DA and DA denote the covariant derivative on the unit 2-sphere where the index is
raised and lowered with γAB.

Now we have derived the theoretical ground to accomplish our task. If we can find
“natural” diffeomorphisms satisfying the two copies of Witt-algebra (6.3), we are able to
provide candidates for the Virasoro-generators of the black hole at the point gab ∈ Γ in
phase space.2 Since the Hamiltonian generators Hξ have the dimension of an action, we

2Contrary to Carlip’s approach, we do not impose the constraint of integrability on the diffeomorphisms
ξn and their generators (6.7). This is because we allow the diffeomorphisms generated by the conformal
generators to be field-dependent. Fortunately, the knowledge of those diffeomorphisms at the reference
point gab ∈ Γ given by (6.4) is sufficient to determine their generator algebra at this point. The purpose of
the present analysis is to find out whether after all suited diffeomorphisms ξn exist that could give rise to
the conformal generators at the reference point gab ∈ Γ. Away from gab ∈ Γ, the diffeomorphisms generated
by the conformal generators may look different and we will not determine them here. As a consequence,
we are able to infer information about the conformal symmetry only right at the reference point gab. For
instance, we are not able to determine the temperature dependence in (6.42) away from gab. We will come
back to these issues in chapter 6.5.
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can define dimensionless generators by

Hξn =: ~Ln
Hξn

=: ~Ln
(6.11)

at gab ∈ Γ and for n ∈ Z. Since the generators satisfy according to (6.1) and (6.3) two
centrally extended Witt-algebras

{Hξm , Hξn} = −i(m− n)Hξm+n +Kξm,ξn{
Hξm

, Hξn

}
= −i(m− n)Hξm+n

+Kξm,ξn{
Hξm , Hξn

}
= 0,

(6.12)

we find after canonical quantization {·, ·} → 1
i~ [·, ·] of (6.12) that the Virasoro-generators

Ln and Ln fulfill two copies of the Virasoro-algebra in the standard form

[Lm, Ln] = (m− n)Lm+n + c

12m(m2 − 1)δm+n[
Lm, Ln

]
= (m− n)Lm+n + c

12m(m2 − 1)δm+n[
Lm, Ln

]
= 0.

(6.13)

δm+n = δm+n,0 denotes the Kronecker-delta. Thus, the central charges c, c and Virasoro-
generators L0[gab], L0[gab] can be inferred from

δξ−mHξm

∣∣∣
gab

= −2i~mL0[gab]− i
~c
12m(m2 − 1)

δξ−m
Hξm

∣∣∣
gab

= −2i~mL0[gab]− i
~c
12m(m2 − 1)

(6.14)

for m ∈ Z.
Equation (6.14) already fixes the data needed for the counting of state degeneracy in a

CFT. The computation of the left hand side of (6.14) can be done by (6.10).
To summarize, the task left for the next chapter is to find a “preferred” Witt-algebra

of diffeomorphisms (6.3). We will have to argue in what sense these diffeomorphisms will
be preferred. But if this can be accomplished, the associated Hamiltonian generators will
provide natural Virasoro-generators of a possible CFT describing part of the phase space
responsible for the microstates of the black hole.

Nevertheless, the choice of diffeomorphisms is at this stage only a guess. It might
be that chosen diffeomorphisms have nothing to do with the symmetry generators of the
aforementioned CFT. Within this approach, it is even not clear that such a CFT exists.
However, in this chapter we have shown that the choice of diffeomorphisms (6.3) fixes via
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equations (6.14) and (6.10) the central charges and conformal weights (or equivalently the
temperatures) of a would-be CFT. This is already enough data to determine the degeneracy
of states in this CFT in order to see whether it agrees with the Bekenstein-Hawking entropy
of the black hole.

6.3 Searching for Virasoro-Algebra
The goal of this chapter is to find out, whether the presence of a black hole event horizon
singles out a Witt-algebra of diffeomorphisms (6.3) in a natural way and what natural in
this context might mean. In the last chapter, we have explained how such diffeomorphisms
could be related to the generators of a conformal symmetry governing the black hole’s
phase space and provided formulas to extract information of this CFT directly from the
diffeomorphisms.

6.3.1 Virasoro-Vectorfields
Given the Schwarzschild black hole gab ∈ Γ in (6.4), what diffeomorphisms forming a
Witt-algebra might be singled out? Remember, that a Witt-algebra (6.2) is isomorphic to
the algebra diff S1 of all diffeomorphisms on S1. The question can thus be rephrased as
whether there are preferred directions in a Schwarzschild-spacetime. If so, periodic repa-
rameterizations along these directions provide a Witt-algebra diff S1 and the periodicities
would then fix the temperatures of a possible CFT. In [47] Carlip provided for the general
case of a local Killing horizon a candidate for such a preferred direction. Although the
associated Hamiltonian generators can be shown to generate central extensions and to give
rise to the correct entropy, only one copy of a Virasoro-algebra is found.

Instead, we want to give a somewhat different proposal for constructing diffeomorphisms
forming the algebra (6.3). We will see that the associated Hamiltonian generators will
indeed form two copies of Virasoro-algebra with equal central charges as one would expect
for the symmetry algebra of a CFT. The diffeomorphisms we are going to construct were
already given in [3] up to cosmetic changes. We now explain how they are singled out.

We keep the philosophy of [47] that a local Killing horizon singles out a preferred
direction which provides the basis for the construction of a diff S1 algebra. However, a
Schwarzschild geometry has in its maximal extension two event horizons and we propose
to treat both on the same footing in the search for an algebra (6.3).

In the well-known Kruskal-coordinates (U, V, xA) which cover the entire maximal ex-
tension of the Schwarzschild spacetime, the metric takes the form

ds2 = −4r3
S

r
e
− r

rS dUdV + r2γABdx
AdxB. (6.15)

The future (past) event horizon is located at U = 0 (V = 0). Indeed, the Schwarzschild
geometry (6.15) provides the two preferred lightlike directions ∂U and ∂V .
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However, the Cardy-formula provides the degeneracy of states S = S(L0, L0) in a CFT
at particular values of the Virasoro-generators L0 and L0. Since the black hole entropy gives
the state degeneracy at fixed mass and angular momentum, the candidates for the Virasoro
zero-modes Hξ0 and Hξ0

should therefore “measure” the mass and angular momentum pa-
rameter of the black hole. Therefore, it seems that reparameterizations along the direction
U (V ) are not enough. The diffeomorphisms ξn and ξn to form (6.3) should also contain
components in the direction ∂ϕ which is conjugated to the angular momentum.3

Thus, in Kruskal-coordinates (U, V, ϑ, ϕ), we make the ansatz for the vectorfields (6.3)

ξn = fn∂V + gn∂ϕ

ξn = fn∂U + gn∂ϕ
(6.16)

for n ∈ Z. Here, the functions

fn = fn(V, ϕ)
gn = gn(V, ϕ)
fn = fn(U,ϕ)
gn = gn(U,ϕ)

(6.17)

need to be determined from the requirement (6.3). The first equation in (6.3) yields
two conditions on the functions (6.17), namely

fm∂V fn + gm∂ϕfn − (m←→ n) = −i(m− n)fm+n (6.18)
and

fm∂V gn + gm∂ϕgn − (m←→ n) = −i(m− n)gm+n (6.19)
for m,n ∈ Z. Analogous equations follow from the second equation in (6.3) for the

anti-chiral functions fn, gn. The last equation of (6.3) then yields the conditions

∂ϕfn = 0
∂ϕfn = 0

gm∂ϕgn − gn∂ϕgm = 0.
(6.20)

The last conditions of (6.20) can be fulfilled by choosing the product ansatz

gm(V, ϕ) = Φ(ϕ)Gm(V )
gm(U,ϕ) = Φ(ϕ)Gm(U).

(6.21)

3One can also check that although reparameterizations along U (V ) form the algebra (6.3), the Hamil-
tonian generators do not develop a central charge in (6.14).
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With these restrictions on fn and gn, equation (6.18) becomes

fm∂V fn − (m←→ n) = −i(m− n)fm+n (6.22)

and (6.19) yields

fm∂VGn − (m←→ n) = −i(m− n)Gm+n. (6.23)

Choosing fn = fn(V ) to satisfy (6.22), equation (6.23) is fulfilled with the choice

Gn = ∂V fn. (6.24)

Therefore, the vectorfields

ξn = fn(V )∂V + Φ(ϕ)∂V fn∂ϕ
ξn = fn(U)∂U + Φ(ϕ)∂Ufn∂ϕ

(6.25)

provide an algebra (6.3) if the functions fn = fn(V ) are chosen to satisfy (6.22) and fn
are chosen analogously. Φ = Φ(ϕ) is at this stage arbitrary. A legal choice is then

fn(V ) = 1
A
V 1+inA

fn(U) = 1
B
U1+inB

(6.26)

where A,B ∈ R\{0} are so far arbitrary parameters.
Unfortunately, the constructed vectorfields (6.25) are still not satisfactory. In order to

give rise to independent Virasoro generators Ln, the ξn have to be linearly independent
functions of the angular coordinates. One possibility is that a factor einϕ appears in (6.25)
instead of a fixed function Φ(ϕ). However, this is now easy to achieve. Since (6.25) satisfies
a Witt-algebra (6.3), we can generate such vectorfields out of (6.25) by applying an active
coordinate transformation. The new vectorfields then still satisfy (6.3). We choose the
coordinate transformation4

U ′ = Ue
1
B
ϕ

V ′ = V e−
1
A
ϕ

ϑ = ϑ

ϕ = ϕ.

(6.27)

4The vectorfields of [3] are obtained by putting an additional minus sign in the exponential of the first
equation in (6.27). This was omitted here in order to make the frequencies and temperatures positive that
are going to appear later. In addition, we replaced A,B with their inverse values as compared to [3].
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The procedure yields

ξan =


ξUn
ξVn
ξϑn
ξϕn

 =


1
AB
U(1 + inA)V inAeinϕΦ(ϕ)

1
A
V 1+inAeinϕ − 1

A2 (1 + inA)V 1+inAeinϕΦ(ϕ)
0

1
A

(1 + inA)V inAeinϕΦ(ϕ)

 (6.28)

and

ξ
a

n =


1
B
U1+inBe−inϕ + 1

B2 (1 + inB)U1+inBe−inϕΦ(ϕ)
− 1
AB
V (1 + inB)U inBe−inϕΦ(ϕ)

0
1
B

(1 + inB)U inBe−inϕΦ(ϕ)

 . (6.29)

In order to meet the conventions of the last chapter, we formulate (6.28) and (6.29) in
Eddington-Finkelstein coordinates (v, r, ϑ, ϕ) getting

ξan =


ξvn
ξrn
ξϑn
ξϕn

 =


2rS

(
1
A
− 1

A2 (1 + inA)Φ(ϕ)
)(

1− rS

r

)
rS
(

1
A

+ 1
A

(
− 1
A

+ 1
B

)
(1 + inA)Φ(ϕ)

)
0

1
A

(1 + inA)Φ(ϕ)

×
e
inA v

2rS einϕ

(6.30)

and

ξ
a

n =


−2rS 1

AB
(1 + inB)Φ(ϕ)

rS
(
1− rS

r

) (
1
B

+ 1
B

(
− 1
A

+ 1
B

)
(1 + inB)Φ(ϕ)

)
0

1
B

(1 + inB)Φ(ϕ)

×

(−1)inBeinB
r∗
rS e
−inB v

2rS e−inϕ

(6.31)

for n ∈ Z and with r∗ from (6.6). These vectorfields fulfill (ξan)∗ = ξa−n and
(
ξ
a

n

)∗
= ξ

a

−n
and form two copies of Witt-algebra (6.3) as required. Formulas (6.30) and (6.31) are the
main result of this chapter and will be used in the next chapter for the entropy counting
within the framework developed in chapter 6.2. In what follows, we will try to fix the
remaining arbitrary function Φ(ϕ) and A,B ∈ R\{0}. On the road, we will also comment
on different approaches made to find such Virasoro-vectorfields.

6.3.2 Temperatures
Although our construction of (6.30) and (6.31) is motivated by [47], we note that our
final result is really different. Our vectorfields violate the horizon boundary conditions
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proposed in [47] and thus the construction is genuinely different. This is mainly due to
the appearance of a ∂ϕ-component in our choice of diffeomorphisms. Indeed, we wanted
this component to appear in order for the Virasoro zero-modes to “measure” the black
hole’s mass and angular momentum parameter. The Virasoro zero-modes are according
to chapter 6.2 induced by the u(1)⊕ u(1)-subalgebra of (6.3) spanned by ξ0 and ξ0. These
vectorfields hence should be - in Schwarzschild-coordinates (t, r, ϑ, ϕ) - linear combinations
of ∂t and ∂ϕ. For this to be fulfilled, in (6.30) and (6.31) the r-component has to vanish
for n = 0 which requires the choice

Φ(ϕ) = AB

B − A
. (6.32)

With this choice the u(1)⊕ u(1)-subalgebra is given by

ξ0 = −2rS
1

B − A
∂t + B

B − A
∂ϕ

ξ0 = −2rS
1

B − A
∂t + A

B − A
∂ϕ.

(6.33)

By some thermodynamic considerations, (6.33) provides enough information to fix the
temperatures of the CFT described in chapter 6.2 that would be associated with the full
Witt-algebra (6.3). However, note that these considerations provide rather a consistency
check as the temperatures are already fixed through (6.14) by L0[gab] and L0[gab]: The
temperatures inferred from the algebra (6.14) can be compared to the temperatures that are
thermodynamically obtained from (6.33) by a procedure to be explained in the following.

In [60], a different approach to find Virasoro-vectorfields was made but the latter con-
sistency check was not done. There, the im-terms which would determine the temperature
are neither displayed in equation (5.15) nor in the counterterm-correction (5.16). It would
be interesting to see whether in [60] the temperatures obtained algebraically via (6.14)
agree with the temperatures inferred thermodynamically.

In order to thermodynamically infer the CFT temperatures, we introduce a scalar field
to be put in thermal contact with the black hole. Consider a free massless Klein-Gordon
field on the Schwarzschild-background. Its eigenmodes are of the form F (r, ϑ)e−iωt+imϕ
with frequeny ω and angular momentum m. These are then also eigenfunctions of (6.33)
with eigenvalues

ξ0 = −in = −i
( 2rSω
A−B

−m B

B − A

)
ξ0 = −in = −i

( 2rSω
A−B

−m A

B − A

)
.

(6.34)

If we would allow for backreaction, the scalar field can exchange energy and angular
momentum with the gravitational field under the constraint that both are conserved in
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total. In thermal equilibrium, for the Schwarzschild black hole, the scalar eigenmodes
(ω,m) are thermally distributed weighted by a Boltzmann-factor

e
− ~ω

TH

with the Hawking-temperature TH = ~
4πrS

. This is rewritten in terms of the eigenfre-
quencies (n, n) as e−

n
T
− n

T with the temperatures

T = 1
2π

1
A

T = − 1
2π

1
B
.

(6.35)

Due to the zeroth law of thermodynamics, (6.35) are also the temperatures of the CFT
governing the black hole if associated to the diffeomorphisms (6.30) (6.31).

6.3.3 SL(2;R)-Casimir and Conformal Symmetry in Scattering
In this chapter, we have presented one particular way to single out Virasoro-vectorfields
(6.30),(6.31) which we will use for entropy counting via Carlip’s approach in the next
chapter. The recent work [60] also follows Carlip’s approach but a different philosophy is
used to find a conformal algebra of vectorfields.5

The Witt-algebra (6.3) has a sl(2,R) ⊕ sl(2,R)-subalgebra spanned by ξ−1, ξ0, ξ1 and
its anti-chiral counterpart. Associated to this global conformal algebra are the Casimir-
operators

H2 = −Lξ0Lξ0 + 1
2
(
Lξ1Lξ−1 + Lξ−1Lξ1

)
(6.36)

and an analogous anti-chiral expression. Now, one can try to find a preferred sl(2,R)-
algebra of diffeomorphisms by studying the form of the associated differential operator
(6.36). In [38] vectorfields forming an sl(2,R)⊕ sl(2,R)-algebra were given. It was further
shown there, that for a free massless Klein-Gordon field in a Kerr-background - in a suited
regime - eigenfunctions of (6.36) give rise to eigenmodes of the Klein-Gordon equation.
As a consequence of the sl(2,R)⊕ sl(2,R)-invariance of (6.36), scattering - in a suited in
regime - behaves as being invariant under a “hidden” 2D global conformal symmetry (see
[38] for further details).

The idea of [60] is then to find a full local conformal V ir ⊕ V ir-algebra (6.3) of diffeo-
morphisms which realizes the latter hidden conformal symmetry and then can be used for
entropy counting.

However, to our understanding the V ir ⊕ V ir-vectorfields proposed in [60] form only
an enhancement of the u(1) ⊕ u(1)-algebra given in [38] (spanned by ξ0, ξ0). They seem

5The analysis there is done for a Kerr black hole (Kerr-Newman in [66]) and diverges in the
Schwarzschild-limit but this will be not important here.
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not to contain the global conformal sl(2,R)⊕ sl(2,R)-algebra of [38] (spanned by ξn, ξn for
n = −1, 0, 1).

But then, we do not understand in what way the Kerr-geometry singles out the V ir⊕
V ir-vectorfields of [60] so that their Hamiltonian generators could govern a possible CFT
of the Kerr black hole. Indeed, in [60], the expected central charges are only obtained from
the generator algebra after non-canonical counterterm-corrections.

Nevertheless, it might still be useful to have the sl(2,R)-Casimir (6.36) in mind. What
is its meaning for our V ir⊕V ir choice in (6.30),(6.31)? Inspired by [38] and our construc-
tion of these diffeomorphisms, a natural expectation would be that H2 and H2 possibly
govern the scalar scattering in the vicinity of the bifurcation of the horizons in a suited
regime of parameters. We do not enter an analysis of these questions further at this place.
However, we want to note that a computation reveals that the expression for (6.36) with
the vectorfields (6.30)(6.31) indeed greatly simplyfies for the choice

B = −A. (6.37)

This could be a hint that the V ir-algebra (6.30) and V ir-algebra (6.31) can belong to
the Virasoro-algebra of the same CFT only with the choice (6.37). However, we will leave
the parameters A and B unspecified. We will then see further evidence for this conjecture
from the fact, that the Cardy-entropy will get extremized precisely for the choice (6.37).

Using (6.32) and (6.37), the last unspecified parameter in (6.30) and (6.31) is then A.
We will see that it will cancel out of the entropy counting. Such an ambiguity parameter
was already present in [28]. As explained there, euclidean quantum gravity suggests the
choice A = 1 together with (6.37) since the wavenumber for v is then given by the surface
gravity κ = 1

2rS
. However, we will leave A unspecified since this ambiguity can have a

mathematical meaning as can be seen in chapter 6.5.

6.4 Entropy Counting

With the vectorfields (6.30) and (6.31) of the last chapter we are now ready to apply the
framework of chapter 6.2 for entropy counting.

6.4.1 Schwarzschild-Entropy

Our goal is to determine the data on the right hand side of (6.14). To this end, we
evaluate the left hand side of (6.14) using the vectorfields determined in (6.30) and (6.31).
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A computation yields

δξ−mHξm

∣∣∣
gab

=− im r2

4G

(
r2
S

r2
1
A

Φ
( 2
A
− 2
A

( 1
A

+ 1
B

)
Φ
)

+rS
r

(
1− rS

r

)(
− 4
A
− 4
AB

Φ + 4
A2 Φ + 8

A2B
Φ2
))

− im3 r
2

4G

(
2Φ− 2r

2
S

r2 Φ2
( 1
A

+ 1
B

)
+ rS

r

(
1− rS

r

) 8
B

Φ2
)

+ im3 r
2
S

8G

∫ π

0
dϑ sin−1(ϑ)

(
1− rS

r

) 8
AB

Φ.

(6.38)

In the limit r → rS the expression is well-defined and we get from (6.14)
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(6.39)

Using (6.32) and applying the Cardy-formula6

Schiral = 2π
√
c

6

(
L0 −

c

24

)
= πr2

S

~G
−2AB

(B − A)2 . (6.40)

Consistently, the canonical version of the Cardy-formula with the temperatures (6.35)
yields the same result

Schiral = π2

3 cT = πr2
S

~G
−2AB

(B − A)2 . (6.41)

As conjectured in chapter 6.3.3, these expressions are maximized if (6.37) holds. In
this case, one has

L0[gab]−
c

24 = r2
S

8~G
1
A

c = 3r2
S

~G
A

(6.42)

and

Schiral = 1
2
πr2

S

~G
. (6.43)

6We take the convention A > 0 and B < 0 in the following in order for the temperatures (6.35) to be
positive.
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The anti-chiral contribution is determined in the same way
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In the limit r → rS the expression is well-defined and we get from (6.14)
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Using (6.32) and applying the Cardy-formula

Santi−chiral = 2π
√
c

6

(
L0 −

c

24

)
= πr2
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−2AB
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Consistently, the canonical version of the Cardy-formula with the temperatures (6.35)
yields the same result

Santi−chiral = π2

3 cT = πr2
S

~G
−2AB

(B − A)2 . (6.47)

These expressions coincide with the chiral contribution and are also maximized if (6.37)
is fulfilled. For that case, one has
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8~G
1
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c = 3r2
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(6.48)

and

Santi−chiral = 1
2
πr2

S

~G
. (6.49)
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Thus, the total Cardy-entropy is

S = Schiral + Santi−chiral = πr2
S

~G
. (6.50)

This matches precisely the Bekenstein-Hawking entropy of a Schwarzschild black hole.

6.4.2 Extrapolation to the General Case
The CFT data derived in (6.42), (6.48) and (6.35) can be written in the form

c = c = 3A
4π~GA

T = T = 1
2π

1
A

(6.51)

with the horizon area A. In [62] one copy of a Witt-algebra of vectorfields was pre-
sented to reproduce central charges and temperatures similar to the chiral half of (6.51)
for the general case of a stationary black hole of dimension 3 + 1. However, there are some
differences. In [62] these quantities contain divergences which cancel out in entropy count-
ing and the temperature is derived only by thermodynamic considerations and not from
a computation of Virasoro zero-modes. In addition, the chiral Virasoro-algebra in [62] is
only able to account for half of the expected Bekenstein-Hawking entropy.

For a Schwarzschild black hole, we have managed to provide the missing second copy
of Virasoro-algebra accounting for the second missing half of the entropy. In addition,
our choice of V ir⊕ V ir-vectorfields leads to well-defined quantities (6.51) that contain no
divergences. Furthermore, the temperatures in (6.51) are consistently in agreement with
their derivation from Virasoro zero-modes L0[gab] and L0[gab] using covariant phase space
methods.

We derived (6.51) for the case of a Schwarzschild black hole. However, our methods
employed allow for canonical generalization. The strategy to pick out a V ir⊕ V ir-algebra
of vectorfields can be analogously applied in the general case. Due to the similarities of
(6.51) and the general analysis of [62], we conjecture (6.51) to apply also in this general
case leading to the entropy

SCardy = π2

3 cT + π2

3 cT = A
4~G (6.52)

as required. Note, that we have provided a proof of (6.51) and (6.52) only for the
Schwarzschild case and left the general case as a conjecture. Checking the conjecture
would now require a straightforward computation that we do not enter at this place.

6.5 Discussion and Interpretation
In the preceding chapters, we have revisited Carlip’s approach to entropy counting. We
have provided a V ir ⊕ V ir-algebra of diffeomorphisms and analyzed the algebra of the
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associated Hamiltonian generators. We found that the latter give rise to a Virasoro-
algebra such that counting the state degeneracy of the would-be CFT is in agreement
with Bekenstein-Hawking entropy.

So far, this approach does not tell much about this would-be CFT that possibly governs
the part of phase space responsible for black hole microstates. What is needed, is to analyze
the Hamiltonian phase space in the vicinity of a black hole state in a systematic fashion.
In [3] a systematic way was proposed to analyze the Hamiltonian phase space of general
relativity and to find a dual theory describing the relevant part of phase space responsible
for black hole microstates.

Here, we want to briefly sketch how and why such a systematic treatment works in order
to show how the entropy counting presented here fits into this procedure. An application
of this treatment including the role of Carlip’s entropy counting was already given in [3]. A
more detailed description of the treatment itself including applications to simpler theories
than gravity will be provided somewhere else. Instead, here we will just sketch the main
ideas.

6.5.1 Holography in Covariant Phase Space
Consider an arbitrary field theory over some n-dimensional manifold M given by an action
S = S[Φ]. We denote the fields in the theory collectively by Φ. The goal is to analyze the
Hamiltonian phase space in a structured way. Due to its flexibility, we use the covariant
phase space approach for our explanations [39, 40] (see [44] for a review). The main idea of
the covariant phase space approach is the observation that the Hamiltonian phase space is
isomorphic to the set of all field configurations satisfying the field equations. This solution
space F is equipped with a suited (pre)symplectic form and (after dividing out symplectic
zero-modes through suitable gauge-fixing) then gives rise to the covariant phase space Γ
equivalent to the Hamiltonian phase space.

We denote the coordinates on the covariant phase space by [Φ]A with A,B, . . . being the
indexes. The action S is assigned a differential form ω = ω[δ1Φ, δ2Φ; Φ] of degree n−1 over
M which is in addition a closed 2-form over the space of all field configurations. On shell,
that is for Φ ∈ F and δ1Φ, δ2Φ ∈ TΦF , ω is exact ω = dk for a form k = k[δ1Φ, δ2Φ; Φ] of
degree n− 2 over M.

Let Σ ⊆ M be a hypersurface with the boundary ∂Σ = B1 ∪ B2, where B1 and B2
are disconnected codimension 2 surfaces. The symplectic flow passing through Σ is then
on-shell given by a boundary integral∫

Σ
ω[δ1Φ, δ2Φ; Φ] =

∮
B1
k[δ1Φ, δ2Φ; Φ]−

∮
B2
k[δ1Φ, δ2Φ; Φ]. (6.53)

Each of the boundary integrals in (6.53) can be used to define a symplectic form over
Γ. ∮

B1
k[δ1Φ, δ2Φ; Φ] = ΩAB [δ1Φ]A [δ2Φ]B (6.54)



6.5 Discussion and Interpretation 65

defines the symplectic form ΩAB = Ω(B1)
AB over Γ (relative to B1). This can then be used

to define the Poisson-bracket in the usual way. We denote quantities sometimes with the
superscript (B1) to remember that they are defined with B1 as the chosen reference. For
a vectorfield X over Γ corresponding to field variations δXΦ, the expression

δHX [δΦ; Φ] =
∮
B1
k [δΦ, δXΦ; Φ] (6.55)

defines a 1-form over the phase space. If X is a symplectic symmetry LXΩ(B1)
AB = 0,

the 1-form (6.55) is exact and can be integrated over phase space to provide the scalar
HX = H

(B1)
X [Φ]. The role of this scalar is to generate δXΦ via the Poisson-bracket.

Due to the expression (6.55) the value HX [Φ] contains information about the field
configuration Φ over the surface B1. In fact, for the linearly independent symplectic sym-
metries X, we can think of HX [Φ] as part of the Cauchy-data required to specify Φ ∈ Γ.
These values HX [Φ] can therefore be thought of forming part of the coordinates of a chart
for the phase space Γ. Due to their holographic nature (6.55), we termed them in [3] as
boundary Cauchy-data (BCD).

The BCD is defined with respect to the codimension 2 surface B1. What would have
been if we had wanted to define it with repect to a different surface B2 of codimension 2?
In that case, we have to choose a hypersurface Σ connecting B1 and B2 and correct the
BCD relative to B1 by the symplectic current passing through Σ. Due to (6.53) and (6.55)
the BCD of a symplectic symmetry X are related by

δH
(B1)
X [δΦ; Φ]− δH(B2)

X [δΦ; Φ] =
∫

Σ
ω [δΦ, δXΦ; Φ]. (6.56)

That is, the change of the BCD from a surface B1 to a surface B2 is dictated by the
symplectic current ω[δΦ, δXΦ; Φ] passing through the hypersurface in between. The speci-
fication of these symplectic currents along an entire Cauchy-surface Σ forms the remaining
Cauchy-data (in addition to the BCD for a particular codimension 2 cross-section of Σ)
that uniquely determines a point in phase space Γ.

For the case of 4D Einstein-gravity, one can push Σ towards null infinity. In that case,
the latter currents reduce to the Bondi-news whereas the BCD is essentially given by the
mass-aspect, angular momentum-aspect and additional functions on S2 that provide the
Cauchy-data for the solution space (for a review of the solution space in that case see[7]).
This example is meant to illustrate the way of thinking. As already mentioned, more
detailed explanations and examples in simpler settings will be provided somewhere else.

In summary, so far we have said that the phase space Γ can be parametrized by the
BCD associated to the symplectic symmetries over a codimension 2 surface together with
their associated symplectic currents. While the BCD will be of our main interest in the
following, we want briefly explain that already at this point we are able to learn something.

(6.56) describes the change of the BCD from B1 to B2 caused by the symplectic current
passing through a hypersurface Σ connecting them. In this way, (6.56) reflects a memory
effect. The independence of the particular choice of Σ connecting B1 and B2 in (6.56) is a
consequence of the constraint dω[δΦ, δXΦ; Φ] = 0. In this way, each symplectic symmetry X
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gives rise to a memory effect along an arbitrary hypersurface in M and also to a constraint
which altogether reflect the equations of motion. The relation between the concepts sym-
metry, memory and constraints was recently emphasized in a variety of examples starting
with [27, 67, 68, 69] and references thereof. Here we see, that in the covariant phase space
language the equivalence between these concepts becomes obvious and is just reflecting the
equations of motion.

In the remaining part of the chapter, we will explain that the particular way to
parametrize the phase space Γ can actually be indeed useful to approach various prob-
lems.

Choose a particular point Φ ∈ Γ by specifying its coordinates, i.e. the BCD HX [Φ] =
H

(B1)
X [Φ] for the symplectic symmetries X and their associated symplectic currents. Now,

take the latter fixed and vary the BCD. This spans an entire subspace S ⊆ Γ on which
the BCD then can be seen as coordinates. Thus, S is a submanifold in the phase space
Γ. However, S has an additional structure. The Poisson-bracket algebra of the generators
HX = H

(B1)
X [Φ] forms a representation of the Lie-bracket algebra of symplectic symmetries

up to central extension. That means, for symplectic symmetries X, Y one has

{HX , HY } = H[X,Y ] +KX,Y (6.57)

for c-numbers KX,Y = K
(B1)
X,Y . Therefore, the submanifold S is a symplectic manifold

on its own. Its coordinates are given by the BCD HX and their Poisson-bracket algebra is
given by (6.57). The part S in phase space Γ can therefore be described by a theory on its
own right, a “holographic dual” associated to the chosen codimension 2 surface B1 ⊆M.

To summarize, we see that to a chosen codimension 2 surface B1 ⊆ M, a holographic
dual theory describing a suited part S ⊆ Γ can be associated. Choosing a different surface
B2 ⊆ M or different gauge will in general affect the form of (6.57) describing the same
part S ⊆ Γ. Choosing a different B2 ⊆M can also lead to a different submanifold in phase
space.

The hope is that the construction of these submanifolds is useful to approach some
problems. Usually, the above constructed submanifold S ⊆ Γ is too large. However, subal-
gebras of the algebra of symplectic symmetries will due to (6.57) lead to lower-dimensional
submanifolds S ′ in S. Choosing this S ′ small enough, one is left with a theory that covers
a small part of the phase space that might be of interest for a particular problem under
consideration.

Can this be useful?

6.5.2 A Microscopic Theory for the Schwarzschild Black Hole
To apply the ideas of the last chapter 6.5.1 to a Schwarzschild black hole in Einstein-gravity
was essentially the content of [3]. We recap very briefly the steps. Working in Bondi-gauge,
the Schwarzschild-metric fixes a particular point gab ∈ Γ in covariant phase space. The
goal is to find the part of phase space that is responsible for the microstates. The hope
is, that the submanifolds constructed in the last section are candidates for this. For the
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codimension 2 surface B1, it is natural to take a cross-section of the event horizon in the
hope that the algebra (6.57) will get especially simple.

The next step is then to study closed algebras of symplectic symmetries and their
associated submanifolds in Γ. For the Schwarzschild black hole gab, there is a simplest
choice to start with. Due to the black hole uniqueness theorems, one expects microstate
excitations to have the form of residual gauge transformations δgab = Lξgab ∈ Tgab

Γ for
suited vectorfields ξ. Therefore, one is interested in symplectic symmetries X which at
gab ∈ Γ take the form of a residual gauge transformation X|gab

= δξ ∈ Tgab
Γ. Symplectic

symmetries of such form and their associated BCD HX were called gauge aspects in [3].
Under the assumption, that the symplectic symmetries due to the gauge aspects cover
enough of the phase space relevant for the Schwarzschild black hole microstates, the BCD
parametrizing this submanifold S ⊆ Γ as well as its algebra (6.57) was determined in [3].
As explained in the last section, this symplectic submanifold S ⊆ Γ provides a theory in
its own right and is a candidate for the holographic dual theory of the Schwarzschild black
hole. Since this procedure determines the BCD, one is able to infer the form of the residual
gauge transformations at gab which are the candidates for the black hole microstates.

6.5.3 Counting Degrees of Freedom
In the last section, we have explained the construction of a symplectic submanifold S ⊆
Γ that is a candidate for the part of the phase space relevant for the microstates of a
Schwarzschild black hole. Its coordinates given by the BCD provide observables with the
Poisson-bracket algebra (6.57). In this way, we have an explicit theory that provides a
candidate for the dual theory governing the Schwarzschild black hole. How can we check
whether our candidate theory is correct?

The first check would be to see whether one can deduce the correct black hole entropy
from S ⊆ Γ. As explained in [3], there are arguments from several directions indicating that
the part of phase space responsible for black hole microstates should possess a 2D local
conformal symmetry. Therefore, one is tempted to ask whether S ⊆ Γ is compatible with
this conformal invariance. If so, the observables of S must give rise to a 2D stress-tensor
such that its Virasoro-generators fulfill a Virasoro-algebra. Since we know the algebra of
observables (6.57), we can search for a Sugawara-construction of these Virasoro-generators
out of the BCD over S. This is precisely Carlip’s approach to entropy counting in disguise
as we will explain in the following.

In [3] a projection operator Tgab
F → Tgab

S was given, that maps an arbitrary (possibly
not gauge-fixed) excitation of a Schwarzschild black hole gab onto the relevant microstate
excitation of gab. In this way, an arbitrary gauge-excitation Lξgab (that in general also con-
tains components that are not tangential to S at gab) is mapped to the relevant symplectic
symmetry X tangential to S. It is this mapping ξ 7→ X from spacetime diffeomorphisms
to the vectorfields over S that makes the connection with Carlip’s approach clear. In the
above mentioned Sugawara-construction, we are searching for symplectic symmetries, i.e.
vectorfields Xn, Xn over S such that their generators HXn and HXn

satisfy via (6.57) a
V ir ⊕ V ir-algebra. Instead, we can look for diffeomorphisms ξn and ξn giving rise to a
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V ir⊕V ir-algebra with respect to the spacetime Lie-bracket. This is precisely what we did
in chapter 6.2-6.4. We furthermore inspected the algebra of the Hamiltonian generators
of ξn and ξn to see that the emerged Virasoro-algebra gives indeed rise to the expected
entropy. However, in chapters 6.2-6.4 we did not employ the mapping ξ 7→ X. Therefore,
so far we only know that the Hamiltonian generators of the V ir ⊕ V ir-diffeomorphisms
provide candidates for the Virasoro-generators of a possible would-be CFT governing the
black hole microstates. The approach is not sensitive to the details of what this CFT might
be.

As already proposed in [3], the situation is different once we have figured out our
candidate theory S ⊆ Γ. We can use the projection operator ξn 7→ Xn and ξn 7→ Xn to
obtain with HXn and HXn

candidates for the Virasoro-generators in S. Precisely this step
is sensitive to the choice of S. That means, Xn and Xn and their generators would change
if the space S were different. Since we project on S, we are directly probing the degrees
of freedom covered by S. Up from here, we can proceed the same way as in the indirect
approach. Inspecting the Virasoro-algebra formed byHXn andHXn

via (6.57), we can count
the degeneracy of states and compare it to the expected entropy. If the result were to agree,
this would provide substantial consistency check that the theory given by S ⊆ Γ is correct
and covers all degrees of freedom of the Schwarzschild black hole. Furthermore, it would
support that S is indeed conformally invariant thus providing a concrete realization of a
Schwarzschild/CFT-correspondence. In case that disagreement is found, one has to enlarge
S successively by allowing larger algebras of symplectic symmetries in its construction, up
until the procedure is going to converge.

To summarize, with (6.30) and (6.31) we have given the needed V ir ⊕ V ir-algebra of
diffeomorphisms that is needed in the above procedure of projecting directly onto black hole
degrees of freedom and counting entropy. These vectorfields were already given in [3]. Here,
we have given their systematic construction. Furthermore, we have provided arguments
what singles out the presented V ir⊕V ir-diffeomorphisms. Most importantly, we have seen
that inspection of the Hamiltonian generators (without projecting directly onto degrees of
freedom), we were able to show that the Poisson-bracket algebra consistently leads to the
expected Bekenstein-Hawking entropy. Therefore, the V ir⊕ V ir-diffeomorphisms seem to
be the right candidates for the approach described in [3] and reviewed here. Performing this
approach, we leave for future investigations. The purpose of this work here was to provide
convincing arguments that the V ir⊕V ir-vectorfields are the appropriate diffeomorphisms
to use.



Chapter 7

Summary and Outlook

Concerning our main question in chapter 3.1, what have we learned?
We have seen that it is possible to find candidates for reasonable gravitational black hole

hair of the Schwarzschild black hole that might account for its thermodynamic properties.
In fact, in a sense, already the most simplest guess for the gravitational black hole hair
leads to field excitations that might account for the microstates and black hole entropy.

Indeed, a first application of newly developed methods to analyze the Hamiltonian
phase space supports this guess. Within those tools, we were able to propose a dual
theory, given by its observables and their algebra, that is supposed to describe the part of
Hamiltonian phase space which is responsible for the microstates of the Schwarzschild black
hole. We have provided arguments why such a dual theory is expected to be conformally
invariant, therefore our obtained candidate dual theory provides a first proposal for a
Schwarzschild/CFT-correspondence.

Note that in [16, 17, 18, 19, 20] a quantum N -portrait of black holes was developed
which also leads to a proposal for a microscopic description of microstates and origin of
entropy as well as a black hole/conformal field theory correspondence.

Independent of our particular Schwarzschild/CFT proposal, the part of phase space
responsible for the microstates and entropy is expected to possess a conformal invariance.
On the particular example of the Schwarzschild black hole, we showed how the associated
conformal generators are expected to look like by various arguments. This information
is a already enough to infer the state degeneracy and indeed precise agreement with the
Bekenstein-Hawking entropy is found.

We explained how the conformal generators should manifest themselves in a Schwarzschild/CFT
proposal that one might write down. Moreover, we showed how this leads to a consistency
check to find out whether a given Schwarzschild/CFT proposal precisely contains the right
gravitational hair that is responsible for the microstates. While carrying this out for our
concrete proposal derived during the last chapters is left for future investigations, we can
draw already the following conclusion. We can shortly summarize the main result of this
thesis as follows:

General Relativity seems to provide the right degrees of freedom to account for the sta-
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tistical mechanical properties of black holes.

We want to briefly describe what the next steps are. While it is important to further
check the Schwarzschild/CFT proposal in order to finally give a proof of its correctness
(and the gravitational hair that it provides), we should more properly understand the
mentioned general tools to analyze the Hamiltonian phase space of a given theory. Finally,
this will of course help to fix the right Schwarzschild/CFT-correspondence (and also the
equivalent for more general black holes). As an outlook, we want to draw the emergent
picture that these tools provide. A detailed analysis of those tools with checks on theories
simpler than gravity will appear somewhere else.

Consider a theory given by some action that depends on local fields living on some man-
ifold M . Then, we are suggesting that the Hamiltonian phase space can be parametrized
by a very natural class of coordinate systems. These coordinate systems can be used in
parametrizing functional integrals of the form (2.2) or in the quantum mechanical partition
function Z that is derived thereof.

Note that by switching between these coordinate systems the symplectic form, which
can be derived out of Z by covariant phase space methods, will take different forms and in
some cases can be simplified by singling out a special coordinate system in this class.

Furthermore, these coordinate systems in this class come with a very remarkable prop-
erty. Part of its coordinates parametrize submanifolds of the phase space which have a
symplectic structure on its own. Analogously they have a quantum mechanical partition
function Z ′ on its own which can be derived out of Z by integrating out appropriate paths
in the functional integral. In this way, these parts of coordinates lead to well-defined the-
ories on their own right. The choice of these parts of coordinates is tied to a choice of
closed, connected codimension 2 surface inM. In this sense, the obtained submanifolds (or
equivalently partition functions Z ′) can be called holographic.

What does this has to do with black holes in Einstein-gravity? We propose that the
part of phase space responsible for the statistical mechanical properties of a black hole is
given by a suited submanifold of the above-mentioned type. Conversely, by searching and
studying such submanifolds we can obtain e.g. a Schwarzschild/CFT proposal and this is
how our first application of these methods led to the first Schwarzschild/CFT proposal of
this thesis.

Moreover, within this language, we explain the universal form of the black hole entropy
as follows. If a state in the Hamiltonian phase space describes a black hole, i.e. contains
an event horizon, then there exists a natural coordinate system around this state. In this
coordinate system a conformal symmetry of the symplectic form becomes manifest that
is present over a whole suited ensemble containing the microstate excitations of our black
hole state. The action of the conformal symmetry becomes especially simple at the black
hole state we started with. However, knowing the action at this particular point is due
to CFT techniques sufficient to infer the degeneracy of the entire ensemble. The inferred
degeneracy is in precise agreement with the Bekenstein-Hawking entropy. On the example
of a Schwarzschild black hole, we have in this thesis shown that this proposal works.
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