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1 Introduction and background 
In Germany close to 500,000 new patients are diagnosed with cancer every year [44]. Therapeutic options 
comprise surgery, chemo- and targeted therapy, as well as radiotherapy. In total, more than half of all 
cancer patients undergo radiotherapy as part of their treatment, with the ultimate goal of sterilizing all 
cancer cells by local energy or dose deposition by ionizing radiation. While the dose to the target volume 
should be high enough to achieve this aim, the dose to all relevant organs-at-risk (OAR), should be as low 
as reasonably possible to prevent severe side effects. In most cases, patients follow the workflow 
illustrated in figure 1.  

 
Figure 1. Overview of the typical radiotherapy workflow: Prior to treatment, a planning CT (mandatory for dose calculation 
during treatment planning) is acquired. Besides, MRI is frequently used for accurate tumor and OAR delineation due to its 
superior soft-tissue contrast. The segmented CT is then used for treatment optimization with a dedicated planning system. 
Several days to weeks later, the patient receives the first irradiation fraction. In-room imaging with the patient in treatment 
position (cone-beam CT (CBCT) or, more recently, MRI) is used for accurate patient alignment. In adaptive radiotherapy, the 
acquired in-room imaging data is not only used for patient set-up, but also for daily adaptation of the treatment to the actual 
patient anatomy. For this, the in-room imaging data have to be rendered suitable for accurate dose calculation (CBCT 
correction or synthetic CT (sCT) generation) and all relevant structures for treatment planning have to be segmented (green). 

In modern radiotherapy, image-guidance using various imaging modalities plays an integral role during 
treatment planning, as well as during patient treatment itself (in-room imaging). At treatment planning 
stage, an X-ray computed tomography (CT) image is generally acquired in order to derive electron density 
(photon therapy) or relative stopping power ratio (proton therapy) information, which are required for 
accurate dose calculation during treatment plan optimization. More and more, CT imaging is accompanied 
by magnetic resonance imaging (MRI) and/or positron emission tomography (PET) scans. While MRI is 
typically used to infer more detailed anatomical features for improved tumor and OAR delineation due to 
its superior soft-tissue contrast, it is more recently also applied to determine functional properties of the 
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tumor, e.g., by means of diffusion-weighted imaging (DWI) [48]. Also PET imaging aims at determining 
functional and metabolic properties of tumor tissues, such as glucose uptake rates or oxygenation levels, 
as well as at identifying potential spread to adjacent lymph nodes or even distant metastasis [21]. 
Information derived from functional imaging, using either MRI or PET, can then be used for treatment plan 
personalization, e.g., by defining certain regions in the tumor to receive a higher (boosted) dose level [8]. 
However, tissue properties derived from functional imaging might not only be considered at treatment 
planning stage, but also allow for early response assessment in radiotherapy by monitoring their behavior 
as a function of time during the course of fractionated radiotherapy [22]. 

Besides the previously described imaging taking place outside the treatment room, mostly at treatment 
planning stage, in-room imaging [20], aiming at the exact alignment of the patient with respect to the 
treatment unit, constitutes an indispensable part of image-guided radiotherapy. In combination with 
modern external beam radiotherapy techniques, such as intensity-modulated photon or proton 
radiotherapy (IMRT [52], IMPT [9]), in-room imaging theoretically enables tight adjustment of the 
delivered dose to the target. However, the full potential of these techniques is currently not exploited in 
clinical practice. The reason for this, and generally one of the major challenges in modern radiotherapy, is 
the presence of anatomical changes, occurring on time scales from seconds (lung), to minutes (abdomen 
and pelvis), days or weeks (head and neck [H&N]) [5, 26]. For the vast majority of patients in today’s 
radiotherapy, such anatomical alterations are only considered by introducing safety margins around the 
actual tumor volume during treatment planning [50]. This ensures irradiation of the tumor to the 
prescribed dose, but increases the irradiated volume, the dose burden to OARs, and eventually limits the 
applicable dose and hereby the treatment efficacy. A substantially improved treatment for tumor entities 
affected by anatomical changes during fractionated radiotherapy, such as H&N, prostate or pancreatic 
cancer, can be realized by online adaptive radiotherapy (ART) [54]. Instead of applying the same irradiation 
plan throughout the entire course of treatment (typically several weeks) and assuming the initial planning 
anatomy is still valid, the treatment is optimized at each irradiation session on basis of the daily anatomy 
in treatment position, as inferred directly from in-room imaging (figure 1). This intrinsically accounts for 
anatomical changes and allows for reduced margins and optimal OAR sparing at each fraction, even when 
increasing the target dose at the same time. 

Despite the anticipated benefits, the fraction of patients currently irradiated in online adaptive scenarios 
is still negligible. The main reason is that nearly all patients in photon and proton radiotherapy are treated 
using cone-beam CT (CBCT) for in-room imaging. Although CBCT allows for accurate patient alignment, the 
image quality is hampered by the detection of scattered photons and not sufficient for accurate dose 
calculation, which is indispensable for treatment adaptation. In the last years, various methods have been 
proposed for CBCT image correction, aiming at rendering the data suitable for photon and proton therapy 
dose calculation [12, 30, 39, 41]. Suggested techniques range from simple look-up-table (LUT)-based 
recalibration of the CT numbers, over CT-to-CBCT deformable image registration (DIR) to more 
sophisticated projection-based correction algorithms.  However, most of them either lack accuracy (LUT-
based), robustness (DIR-based) or speed (projection-based) for online application. Only recently, deep 
learning approaches, in particular convolutional neural networks (CNN), which had already shown 
impressive results for a variety of medical image processing tasks [3, 11], have been adopted in the context 



Habilitation Dr. rer. nat. Christopher Kurz 

 
5 

 

of CBCT correction. Several groups have reported promising results in terms of correction speed and 
accuracy utilizing U-shaped CNNs (Unets) [23, 32, 45] or generative adversarial networks (GAN) [13, 17]. 
These networks enable CBCT intensity correction with accuracy similar to previously published methods, 
but with correction times of only few seconds once the network models are trained. In the scope of this 
habilitation, CBCT intensity correction, aiming at yielding images suitable for accurate photon and proton 
dose calculation in the context of adaptive radiotherapy, was a major focus. Various conventional (LUT-, 
DIR-, projection-based) and deep learning-based (Unet, GAN) methods have been investigated in terms of 
their dosimetric accuracy and capability for online application. A detailed description of these works will 
be given in section 2.1. 

Besides the poor image quality, including a comparably low soft-tissue contrast, an important obstacle for 
CBCT-guided online ART is the imaging dose, which can amount to a total of 1-2 Gy (therapeutic doses: 50 
to 70 Gy) if daily imaging is performed for 30 or more fractions [2]. Thus, CBCTs are often acquired less 
frequently, e.g., only once per week, for treatment sites such as the head and neck region, where 
anatomical changes are expected to be gradual and occurring over longer time scales.   

Due to these limitations of CBCT image-guidance, great efforts have been made over the last decades to 
realize the integration of MRI as in-room imaging modality. Substantial technical challenges related to the 
electro-magnetic decoupling and, hereby, interference-free side-by-side operation of the MRI and the 
treatment machine, had to be overcome. Thus, only during the last few years, integrated MR-linear 
accelerators (MR-Linacs) became certified and clinically available at few academic institutions. Ever since, 
this technique has aroused considerable interest in the radiotherapy community [28]. The superior soft-
tissue contrast allows for accurate visualization of targets and OARs at no imaging dose, and the vendors 
of both certified MR-Linacs (ViewRay MRIdian [36] and Elekta Unity [29]) have implemented basic online 
ART workflows for the first time in the history of radiotherapy [1, 6, 43, 53], leading to a paradigm shift in 
patient treatment. Besides pre-treatment adaptation, in-room MRI allows for continuous imaging (in 2D) 
and tracking of the tumor volume itself without requiring any external surrogate [51]. In combination with 
gated beam delivery, i.e., irradiating only when the target is in a pre-defined location, highly accurate 
irradiation of tumors affected by intra-fractional motion is feasible.  Promising clinical results, among 
others for pancreatic cancer, have been reported in initial studies [46]. Worldwide, a large number of 
studies on MRI-guided radiotherapy are still being carried in order to assess the promised clinical benefits 
from these devices and from online ART workflows.  

Due to the substantial personnel, technical and financial outlay of this emerging technique, however, only 
three MR-Linacs will be installed in Germany by the end of 2020, including an MRIdian MR-Linac at the 
LMU Department of Radiation Oncology that went clinically operational in January 2020. Worldwide the 
number of devices is still below one hundred. Additionally, treatments are still limited to entities, such as 
the prostate or the pancreas, which allow for hypo-fractionated schemes (<10 fractions with higher doses) 
due to the time overhead of current clinical online adaptive workflows (30-60 minutes per fraction) with 
respect to conventional radiotherapy (10-20 minutes per fraction). Thus, despite the foreseen potential of 
these new machines in the future, more efficient clinical routines and workflows will have to be developed. 
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Nevertheless, recently also interest in combining the advantages of MRI-guidance and proton therapy, 
currently relying on CBCT as in-room imaging modality, is growing in the radiotherapy community [40]. In 
proton therapy, even larger benefits are anticipated from ART due to the higher sensitivity of proton dose 
distributions to anatomical changes [24], which might be substantially reduced when using MR-guidance. 
Also considering the potentially advantageous proton dose distributions allowing for considerably reduced 
integral dose, MR-guided proton therapy has the potential to further boost treatment efficiency in 
radiotherapy in the future. A first pre-clinical prototype has just lately been installed in Dresden and 
technical feasibility studies are on-going [47]. Similar to photon therapy, a major challenge is to electro-
magnetically decouple the MRI scanner and the beam delivery system. Taking into the consideration that 
up-to-date proton therapy facilities utilize pencil-beam scanning dose delivery with magnetic steering of 
the beam, it can be acknowledged that substantial technical issues will have to be solved to pave the way 
towards clinical implementation. On top, and in contrast to MRI-guided photon therapy, also the impact 
of the MRI scanner B-fields on the treatment beam itself has to be carefully modeled and considered 
during treatment planning. In the scope of this habilitation, the first study on the feasibility of fully inverse 
IMPT optimization in B-fields has been conducted. Moreover, the obtained plans have been investigated 
in depth in terms of their robustness against anatomical and positional uncertainties. The corresponding 
publication will be described in more detail in section 2.2.  

Another main challenge MRI-guided ART with photons, as well as potentially in the future with protons, is 
facing, is the conversion of the in-situ in-room MRIs into synthetic CTs (sCT). These are required for 
accurate dose calculation and adaptation since the MRI signal cannot be directly converted into the 
required electron density or stopping power ratio information [10]. Today, both vendors of clinically 
certified MR-Linacs utilize an initial planning CT and CT-to-MRI DIR for sCT generation [6, 53]. But, DIR 
accuracy is often limited in regions with pronounced inter-fractional anatomical changes, such as the 
abdomen or pelvis, where the largest benefits from ART are actually anticipated. More accurate, fully 
automatic and rapid sCT generation for MRI-guided online ART might in the future be achieved by deep 
learning. Unets, and also GANs [13], have been shown to yield sCTs suitable for accurate photon dose 
calculation [7, 15, 33]. A further advantage of CNNs is that, once trained, no planning CT is required for 
sCT generation, thus allowing an MR-only workflow that could reduce dose burden to the patient, as well 
as the clinical workload. However, CNN-based sCT algorithms have not yet been clinically applied in the 
scope of MRI-guided photon therapy. In proton therapy, even higher CT number accuracy than in photon 
therapy will be required for sCT generation, given the sensitivity of proton dose calculations to the 
underlying stopping power maps. Nevertheless, several studies on sCT generation for MRI-guided proton 
therapy exist and suggest clinically acceptable accuracy for proton dose calculation. The used algorithms 
are based either on bulk-assignment, on LUT-based approaches [14, 25, 34, 42] or on the utilization of 
deep learning techniques [31, 37, 49]. In the scope of this habilitation, methods for sCT generation using 
conventional bulks-assignment techniques, as well as deep CNNs, have been investigated for application 
in proton, but also in photon therapy. More details will be provided in section 2.2. 

Beyond the previously discussed challenges related to CBCT intensity correction and sCT generation for 
accurate dose calculation, image-guided online ART requires accurate target and OAR delineation for 
treatment plan optimization. Until today, this remains a manual task requiring a trained physician for tens 
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of minutes to hours, which is not acceptable for online ART where the patient has to stay on the treatment 
table. In current clinically implemented MRI-guided photon ART workflows, contours are obtained via the 
same DIR as the sCT and suffer from the same limited accuracy. Often extensive and time-consuming 
manual corrections are required, rendering segmentation one of the bottlenecks in MRI-based ART. 
Various deep learning techniques based on CNNs have, however, shown great potential for fast (<1 min) 
accurate and fully automatic delineation of MRI data [35, 38] and are anticipated to further streamline the 
online ART workflow in the future. Similarly, recent studies have demonstrated impressive results for rapid 
automated contouring of the pelvic and the H&N region on CT images using 3D CNN architectures [4, 19]. 
So far, these algorithms were mainly restricted to applications using diagnostic CT images, but translation 
to in-room CBCT images is an active field of research, eventually aiming at clinical implementation of a 
CBCT-guided ART workflow. 

In the scope of this habilitation project, also an alternative to online ART relying on daily re-optimization 
of the irradiation plan from scratch has been addressed: the so-called dose-guided patient positioning. The 
main idea behind this approach is to utilize daily in-room imaging data (CBCT or MRI) and up-to-date 
delineations of all relevant structures to determine the couch shift, which results in the best-possible 
dosimetric outcome (using the original treatment plan) on the day of treatment. This is anticipated 
advantageous in comparison to the routinely used bone- or marker-based patient alignment in scenarios 
with non-rigid anatomical changes, where the initially planned dose distribution cannot be fully restored. 
In comparison to ART, no new treatment plan has to be generated and thus no online quality-assurance 
procedure is required. Moreover, the optimal dose-guided shift could be determined by the radiotherapy 
technicians. Presence of a clinician, who is indispensable for plan approval in ART, is not required. For 
optimal clinical exploitation and efficiency, dose-guided patient positioning has been implemented as a 
multi-criteria optimization (MCO) problem with a subspace of Pareto-optimal solutions (i.e., patient shifts), 
which can be interactively browsed by the user. More details will be given in section 2.3. 

To summarize, the research performed in the scope of this habilitation intents to pave the way towards 
widespread clinical adoption of online adaptive photon and proton radiotherapy. To this aim, the following 
crucial aspects of online ART have been addressed in detail: 

1. CBCT intensity correction to enable accurate photon and proton dose calculation (section 2.1) 

2. Synthetic CT generation and treatment planning for MRI-guided proton therapy (section 2.2) 

3. Dose-guided patient positioning as alternative to full online plan re-optimization (section 2.3) 

An exemplary selection of the correlated peer-reviewed articles will be described in chapter 2, considering 
especially publications as first or last author in the scope of this habilitation. Facsimiles of these 
publications can be found in chapter 8. 
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2 Own scientific contributions 

2.1 CBCT-guided adaptive radiotherapy 
2.1.1 Kurz C, Dedes G, Resch A, Reiner M, Ganswindt U, Nijhuis R, Thieke C, Belka C, Parodi K, Landry G. 
Comparing cone-beam CT intensity correction methods for dose calculation in adaptive intensity 
modulated photon and proton therapy for head and neck cancer. Acta Oncol. 2015;54(9) 

In light of the previously described limitations in CBCT image quality, intensity correction strategies to 
enable accurate dose calculation for plan adaptation in online ART have been investigated in this study.  
More specifically, two different correction methods have been evaluated in terms of their dose calculation 
accuracy for photon and proton radiotherapy of the H&N region. The simpler considered approach was to 
perform correction via a population-based Hounsfield Unit (HU) rescaling [27]. For this, the HU values on 
a reference diagnostic CT and a corresponding CBCT were sampled for air (inside and outside the patient), 
fatty tissue, muscle, brain, soft and hard bone using a cohort of 9 H&N cancer patients. With these pairs 
of values, a LUT was generated and used for CBCT rescaling. The method was compared to a CT-to-CBCT 
DIR-based approach (virtual CT [vCT]), using a Morphon’s algorithm, which had been suggested in a 
previous publication [30]. DIR used a metric based on the local image phase, thus focusing on the 
alignment of edges in moving (CT) and fixed (CBCT) images, which is deemed superior to an intensity-based 
approach when performing cross-modality image registration. To infer the dosimetric accuracy of both 
approaches photon and proton treatment plans were recalculated on the obtained corrected CBCTs and 
compared to a reference dose calculation using a diagnostic quality replanning CT acquired close in time. 
Dose distributions were compared by means of clinically relevant dose-volume-histogram (DVH) 
parameters and a gamma-index analysis. 

While both approaches, LUT and DIR, were found to yield accurate dosimetric results for photon therapy 
of H&N cancer, the vCT clearly outperformed the LUT-based approach for proton therapy, where higher 
HU accuracy is required. In particular, the LUT-based approach failed at correcting the CBCT in the area 
between the shoulders, which is affected by substantial shadowing artifacts. These could not be overcome 
by using a single LUT for CBCT intensity rescaling. 

In a follow-up study, the feasibility of using the more accurate vCT and the corresponding warped 
structures (target and OARs, using the same CT-to-CBCT deformation field) for automated proton therapy 
plan adaptation, mimicking an online ART workflow, was investigated [see section 2.1.4, A1]. For the same 
9 H&N patients, a novel treatment plan using the vCT and the corresponding structures was generated 
automatically by using the same treatment planning settings as in the initial planning scenario. The new 
vCT-based plan was then recalculated on a reference diagnostic replanning CT acquired 30 to 50 days after 
the initial planning CT (but within 1 to 3 days of the considered CBCT). It could be shown that the 
automatically obtained vCT-based adapted plans yielded clinically preferable plans on this replanning CT 
when compared to the initial treatment plan. In particular, hotspots related to patient weight-loss and 
tumor shrinkage could be efficiently diminished, thus demonstrating for the first time the feasibility of 
automated, DIR-based online proton ART for H&N cancer. 
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2.1.2 Kurz C, Kamp F, Park YK, Zöllner C, Rit S, Hansen DC, Podesta M, Sharp GC, Li M, Reiner M, Hofmaier 
J, Neppl S, Thieke C, Nijhuis R, Ganswindt U, Belka C, Winey BA, Parodi K, Landry G. Investigating 
deformable image registration and scatter correction for CBCT-based dose calculation in adaptive IMPT. 
Med Phys. 2016;43(10) 

Since the DIR-based vCT approach could be successfully applied for CBCT correction in photon and proton 
therapy in the H&N region, this follow-up study aimed at extending it to the pelvic region, considering a 
cohort of prostate cancer patients. While the H&N region is mostly affected by gradual anatomical 
changes, e.g., due to patient weight-loss, the pelvis is subject to more pronounced and random inter-
fractional changes, e.g., related to variations in bladder and rectum filling. Under these conditions, the DIR 
approach was found considerably less accurate than observed in the H&N region. In particular, the 
algorithm failed in accurately modeling large volume changes of the rectum or the bladder, which are 
typically accompanied by pronounced sliding motion. 

Because of this, an alternative CBCT correction technique using the vCT only as a prior to perform 
projection-based scatter correction [39, 41] was studied as an alternative. In this approach, a forward 
projection of the vCT using the geometry of the gantry-mounted CBCT scanner is first performed. The 
contribution of scattered photons, and also of other low-frequency perturbations such as beam hardening 
[A2], in the measured CBCT projections is then estimated by subtracting the presumably scatter-free vCT 
forward projections from the measured CBCT projections and applying a generous filter (due to the 
assumed low spatial frequency). This estimated scatter contribution is then subtracted from the measured 
CBCT projections, yielding a set of scatter-corrected projections, which can be reconstructed to obtain an 
intensity corrected CBCT (CBCTcor). 

vCT and CBCTcor were compared for two cohorts of H&N and prostate cancer patients. For the H&N 
cohort, where the vCT had shown to yield dosimetrically accurate results in previous studies, the CBCTcor 
was found equivalent. Also for the prostate cohort, vCT and CBCTcor obtained almost similar proton dose 
distributions. However, when carefully checking the geometric fidelity of both images, CBCTcor was found 
superior for the prostate patients. In particular, as already mentioned above, the vCT yielded incorrectly 
shaped internal structures, which became apparent in a comparison with the original (uncorrected) CBCT 
image. In particular, the geometry of the OARs, i.e., of the rectum and the bladder, was found inconsistent. 
While the impact of these geometric deviations on dose calculation was only minor, they would clearly 
hamper treatment evaluation and treatment plan optimization (DVH calculation). When looking at 
CBCTcor, remaining artifacts from the incorrect vCT prior were still visible, but the impact was substantially 
reduced and accurate delineation of all OARs could be demonstrated.  

Given the superior robustness of the CBCTcor approach, it is supposed to be particularly beneficial in 
regions suffering from pronounced inter-fractional anatomical changes and, thus, reduced DIR accuracy. 
Both approaches, vCT and CBCTcor, were employed in several further studies described in the following 
section and listed in section 2.1.4, A1-A6. 
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2.1.3 Hansen DC, Landry G, Kamp F, Li M, Belka C, Parodi K, Kurz C. ScatterNet: a convolutional neural 
network for cone-beam CT intensity correction. Med Phys. 2018;45(11) 

Although the CBCTcor intensity correction approach proved to allow for accurate photon and proton dose 
calculation for different tumor sites, one main drawback of the method is the long processing time, being 
in the order of 5-7 minutes. Especially when considering its application for online adaptation, with the 
patient on the treatment table, this is not acceptable. Also due to the fact that, e.g., in the prostate region, 
anatomical changes can progress on similar time-scales. In this contribution, a potential solution has been 
investigated: the application of deep CNNs, which have show remarkable performance for many image-
to-image translation tasks in recent years and have extremely short application times once the networks 
are trained.  

To this aim, a deep Unet was trained and evaluated in terms of dosimetric accuracy for projection-based 
intensity correction using clinical CBCT data of 30 prostate cancer patients in this study. The basic idea is 
depicted in figure 2: The network is trained to translate a measured projection into a scatter corrected 
projection, as obtained from the accurate, but slow CBCTcor reference method. The output of the network 
is compared to this reference by means of a loss function (L2 norm in this case) in order to optimize the 
free parameters of the network iteratively. The network used a conventional Unet design with an encoding 
(down-sampling) and decoding (up-sampling) branch, linked via so-called skip connections which enable a 
direct flow of extracted features from the encoding to the decoding branch at each level of the network. 
Down- and up-sampling blocks made use of so-called residual blocks, i.e., skip connections of convolutional 
layers, to ease training of the network [18]. In total, 7323 projections of 15 patients were used for training 
in 2D, using pairs of measured and corrected 2D projections. During training the value of the loss function 
was monitored for 7 validation patients in order to determine the optimal stopping point for training. 
Eventually, photon and proton dose calculation accuracy was evaluated for the remaining 8 independent 
test patients, using CBCTcor as a reference image. 

 
Figure 2. Conceptual design of the Unet investigated for CBCT scatter correction [16]. The network consists of several down- 
and up-sampling building blocks and aims at translating measured projections into corrected projections. For training, the 
network output is compared to a reference corrected projection by means of an L2 loss function. 
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Once the network was trained, which took in the order of 30 to 40 hours, it took only about 0.01 s to 
correct a single CBCT projection. For a whole CBCT data set, correction can thus be achieved within few 
seconds, rendering this method particularly interesting in the scope of CBCT-guided online ART. In 
addition, it was shown that Unet-based CBCT correction is not only fast, but also dosimetrically accurate 
for photon and proton therapy, yielding dose distributions in close agreement to CBCTcor. Due to using 
the CBCTcor projections for training, the method was also found robust in the presence of pronounced 
anatomical changes, e.g., in the bladder. 

In a second study on deep learning-based CBCT correction, the versatility of the proposed Unet design for 
CBCT intensity correction could be demonstrated. The same network was successfully trained to not only 
perform CBCT correction in projection space, but also in image space [A5]. For this, the network was 
trained to translate the raw reconstructed CBCT image without applying any corrections into either a vCT 
or a CBCTcor. For all three training strategies (projections, vCT, CBCTcor), intensity-corrected CBCT images 
were obtained that allowed for accurate photon and proton dose calculation. 

As an alternative network design, a cycle-consistent GAN (cycleGAN) was also investigated for performing 
CBCT intensity correction in a further study [A6]. The cycleGAN was trained to translate CBCTs into CT 
equivalent images. GANs are conceptually different from Unets and consist of a generator and a 
discriminator network, which are trained jointly using an adversarial loss function: while the generator 
network aims at generating as realistic as possible CT images from input raw CBCT images, the 
discriminator aims at distinguishing between fake (generator output) and real CT images. By adding a 
dedicated cycle-consistency loss function for conditioning the generator network outwork on the input, 
the cycleGAN can be trained using unpaired image data. This is a unique feature for deep CNNs and is 
feasible due to the fact that the network output is not compared on a pixel-by-pixel basis to a reference 
image. Unpaired training is deemed of particular interest for applications where matching training data is 
difficult to obtain, e.g., in the prostate region, where pronounced inter-scan anatomical changes between 
diagnostic CT and daily CBCT occur. In the respective study, it could be shown for the first time that 
accurate CBCT correction using a cycleGAN and unpaired training is feasible in the scope of adaptive 
photon and proton therapy. 

2.1.4 Further publications related to CBCT-guided adaptive radiotherapy 

A1. Kurz C, Nijhuis R, Reiner M, Ganswindt U, Thieke C, Belka C, Parodi K, Landry G. Feasibility of 
automated proton therapy plan adaptation for head and neck tumors using cone beam CT images. 
Rad Onc. 2016;11:64 

A2. Zöllner C, Rit S, Kurz C, Vilches-Freixas G, Kamp F, Dedes G, Belka C, Parodi K, Landry G. 
Decomposing a prior-CT-based cone-beam CT projection correction algorithm into scatter and 
beam hardening components. Phys Imag Radiat Oncol (phiRO). 2017;3:49-52 

A3. Hofmaier J, Haehnle J, Kurz C, Landry G, Maihoefer C, Schüttrumpf L, Süss P, Teichert K, Söhn M, 
Spahr N, Brachmann C, Weiler F, Thieke C, Küfer KH, Belka C, Parodi K, Kamp F. Multi-criterial 
patient positioning based on dose recalculation on scatter-corrected CBCT images. Radiother 
Oncol. 2017;125(3):464-9 
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A4. Niepel K, Kamp F, Kurz C, Hansen DC, Rit S, Neppl S, Hofmaier J, Bondesson D, Thieke C, Dinkel J, 
Belka C, Parodi K, Landry G. Feasibility of 4DCBCT-based proton dose calculation: an ex-vivo 
porcine lung phantom study. Z Med Phys. 2019;29(3):249-61 

A5. Landry G, Hansen DC, Kamp F, Li M, Hoyle B, Weller J, Parodi K, Belka C, Kurz C. Comparing Unet 
training with three different datasets to correct CBCT images for prostate radiotherapy dose 
calculations. Phys Med Biol. 2019;64(3):035011 

A6. Kurz C, Maspero M, Savenije MHF, Landry G, Kamp F, Pinto M, Li M, Parodi K, Belka C, van den 
Berg CAT. CBCT correction using a cycle-consistent generative adversarial network and unpaired 
training to enable photon and proton dose calculation. Phys Med Biol. 2019; 64(22):225004 

2.2 MRI-guided adaptive proton therapy 

2.2.1 Kurz C, Landry G, Resch A, Dedes G, Kamp F, Ganswindt U, Belka C, Raaymakers BW, Parodi K. A 
Monte-Carlo study to assess the effect of 1.5T magnetic fields on the overall robustness of pencil-beam 
scanning proton radiotherapy plans for prostate cancer. Phys Med Biol. 2017;62(21) 

Besides CBCT, MRI is playing an increasingly import role for in-room imaging in photon radiotherapy. For 
its application in proton therapy, as described above, considerable technical challenges remain to be 
solved before clinical introduction. Nevertheless, similar to photon therapy, proton therapy could greatly 
benefit from the superior soft-tissue contrast as well as the online real-time imaging capabilities of MRI in 
comparison to CBCT and is thus gaining interest. In the study described in this section, one of the crucial 
ingredients for performing MRI-guided proton ART, namely the treatment plan optimization under 
consideration of the MRI magnetic field, has been addressed. 

In contrast to photon therapy, the MRI B-field not only affects the secondary electrons, but also the 
primary beam particles. In this proof-of-concept study, inverse pencil-beam scanning IMPT planning in the 
presence of a simplified cylindrical 1.5 T magnetic field perpendicular to the proton beam has been 
successfully implemented. For the first time also an accurate modeling of the patient geometry in the 
underlying Monte-Carlo simulations, based on the given patient CT image, was performed. For treatment 
plan optimization, pencil-beams with Bragg peaks in vicinity of the target volume were first selected and 
the individual pencil-beam doses calculated under consideration of the B-field using the GEANT4 Monte-
Carlo code. To obtain the final treatment plan, the weights of the individual pencil beams were then 
optimized using an in-house developed research treatment plan optimization tool (CERR).  

The implemented treatment planning pipeline was also used to infer the robustness of IMPT plans in the 
presence of a perpendicular magnetic field. A cohort of 5 prostate cancer patients with 3 repeated CTs 
each was included in the study. Different orientations of the patients with respect to the magnetic field 
were considered, just as different gantry angles. Robustness against inter-fractional anatomical changes, 
as well as robustness against variations in patient set-up (shifts of ±5 mm in anterior-posterior and left-
right direction) were studied for the different scenarios and compared to standard IMPT without magnetic 
field. Results showed that MRI-guided proton therapy is feasible yielding similar plan quality and 
robustness as found in conventional CT-based proton therapy without magnetic fields. However, to 
achieve comparable robustness, adaptation of the treatment geometry (in this case of the gantry angle) 
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was required. The adaptation had to be performed in such a way that the (due to the magnetic deflection) 
curved proton path within the patient was as close as possible to the proton path in the scenario without 
magnetic field. For this, an optimal gantry angle of 81°, instead of the clinically used 90° for the given 
patient set-up, was determined (see figure 3). The reduced robustness observed without gantry angle 
adaptation (i.e., using an angle of 90°) was related to the fact that the curved proton beam traversed 
regions which were subject to more pronounced inter-fractional changes related to rectum filling and body 
outline variations. Thus, for other anatomical sites, adaptation of the gantry angles might have to be 
performed in a different way, also due to the fact that the curvature of the proton beam will change when 
using different initial beam energies. 

 

Figure 3. Proton dose distributions for an exemplary prostate patient optimized on CT1 and recalculated on CT2/3 to infer 
the robustness against inter-fractional anatomical changes for different scenarios: Treatment without B-field (top row), as 
well as treatment in presence of a 1.5 T B-field perpendicular to the incident beam using gantry angles of 90° (middle row) 
and 81° (bottom row). Robustness for the B-field scenario with 81° gantry angle was similar to the conventional scenario 
without B-field, while reduced robustness was observed for a gantry angle of 90° in presence of the B-field. A substantial 
overshoot on CT 3 is indicated by the yellow circle. 

2.2.2 Maspero M, van den Berg CAT, Landry G, Belka C, Parodi K, Seevinck PR, Raaymakers BW, Kurz C. 
Feasibility of MR-only proton dose calculations for prostate cancer radiotherapy using a commercial 
pseudo-CT generation method. Phys Med Biol. 2017;62(24)  

Another crucial input required for MRI-guided adaptive proton therapy is the generation of synthetic CT 
images from in-room MRI for accurate dose calculation. This topic has been investigated in the context of 
prostate cancer in the study presented in this section. A commercially available and certified photon-
oriented solution, called MRCAT (MR for calculating attenuation) has been adapted for application in 
proton therapy. The method relies on a dual spoiled gradient echo MRI sequence and Dixon 
reconstruction, in combination with a constrained shape bone model and bulk density assignment of 5 
tissue classes (air, fat, muscle, spongy and compact bone) for sCT generation.  
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In this contribution the method was extended to allow also for the identification of internal gas pockets, 
which is crucial for accurate proton dose estimation in the pelvis. Moreover, it was found that the used 
bulk-assigned HU values for spongy and compact bone, which were initially optimized for application in 
photon therapy, had to be adapted to yield optimal proton dose calculation accuracy. The latter was 
inferred from recalculating proton plans optimized using diagnostic planning CTs on the MRCAT images 
and dosimetric comparison. After elimination of inter-scan differences between the planning CT and the 
MRI used for MRCAT generation, clinically acceptable proton dose calculation accuracy was found, despite 
the limited number of tissue classes. However, adaptation of the bulk-assigned HU values for bones with 
respect to the original photon-based solution was found crucial. 

In a more recent co-authored paper also the feasibility of using 2D or 3D Unets for MR-only sCT generation 
in proton therapy was shown for the first time [see section 2.2.3, B1]. The network design was similar to 
the design used for CBCT correction, as described in section 2.1. In comparison to the MRCAT solution, the 
Unet approach yields sCTs with a continuous HU range. Overall, good accuracy was found for proton and 
for photon dose calculation in a cohort of brain tumor patients. In particular, the depp CNN enabled 
accurate separation of bony anatomy and internal air cavities, which is typically found a major challenge 
for sCT generation since both structures show no or very low signal on MRI. 

Further studies in the field of MRI-guided radiotherapy (with photons and protons) that have been pursued 
in the scope of this habilitation are listed in section 2.2.3 [B2-B4]. These include two recent review articles 
on the medical physics challenges of MRI-guided photon therapy and the current status and future 
perspectives of MRI-guided proton therapy. 

2.2.3 Further publications related to MRI-guided adaptive radiotherapy 

B1. Neppl S, Landry G, Kurz C, Hansen DC, Hoyle B, Stöcklein S, Seidensticker M, Weller J, Belka C, 
Parodi K, Kamp F. Evaluation of proton and photon dose distributions recalculated on 2D and 3D 
Unet-generated pseudoCTs from T1-weighted MR head scans. Acta Oncol. 2019;58(10):1429-34 

B2. Rabe M, Thieke C, Düsberg M, Neppl S, Gerum S, Reiner M, Nicolay NH, Schlemmer HP, Debus J, 
Dinkel J, Landry G, Parodi K, Belka C, Kurz C*, Kamp F*. Real-time 4D-MRI-based internal target 
volume definition for moving lung tumors. Med Phys. 2020;47(4):1431-42. 
*Both authors contributed equally 

B3. Kurz C, Buizza G, Landry G, Kamp F, Rabe M, Paganelli C, Baroni G, Reiner M, Keall PJ, van den Berg 
CAT, Riboldi M. Medical physics challenges in clinical MR-guided radiotherapy. Radiat Oncol. 
2020;15:93 

B4. Hoffmann A, Oborn B, Moteabbed M, Yan S, Bortfeld T, Knopf AC, Fuchs H, Georg D, Seco J, Spadea 
MF, Jäkel O, Kurz C, Parodi K. MR-guided proton therapy: a review and a preview. Radiat Oncol. 
2020;15:129 
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2.3 Dose-guided patient positioning 
2.3.1 Haehnle J, Süss P, Landry G, Teichert K, Hille L, Hofmaier J, Nowak D, Kamp F, Reiner M, Thieke C, 
Ganswindt U, Belka C, Parodi K, Küfer KH, Kurz C. A novel method for interactive multi-objective dose-
guided patient positioning. Phys Med Biol. 2017;62(1) 

In this joint project with colleagues at the Fraunhofer Institute for Industrial Mathematics (ITWM) in 
Kaiserslautern, a prototype software for interactive dose-guided positioning has been implemented and 
dosimetrically compared to conventional bony anatomy-based alignment for the first time. Dose-guided 
positioning was technically implemented as an iso-center planning problem (ICPP), which could then be 
solved under consideration of user-defined clinical objectives, such as DVH parameters for target coverage 
or OAR dose limits. Since for more than one clinical objective the ICPP is an MCO problem, trading off, e.g., 
dose to the target against dose to OARs, there is a set of Pareto-optimal solutions. By linear dose-
interpolation between different iso-center shifts, the developed tool allows the user to interactively 
browse through the continuous space of Pareto-optimal patient positions and to straightforwardly 
determine the clinically optimal patient shift under consideration of the dose.  

The efficiency of the approach was demonstrated for 3 H&N and 3 prostate cancer patients using IMRT, 
following careful validation of the dose interpolation accuracy. A delineated replanning CT was considered 
as surrogate for the daily in-room image of each patient. In a more realistic scenario, either an intensity 
corrected CBCT or an MRI-based sCT might be used. In all cases, dose-guided alignment allowed to find a 
clinically preferable position in comparison to bony anatomy-based alignment. The main effects were an 
increased target coverage in combination with a reduced dose to the parotid glands (H&N) or the rectum 
(prostate). However, the study also showed that, in particular for H&N, plan re-optimization, which would 
in practice be feasible with the same input data (in-room image and segmentation), could achieve even 
better daily dose distributions.  

In a follow-up study, also the applicability of the developed dose-guided positioning tools in the scope of 
proton therapy has been investigated [see section 2.3.2, C1]. In total 14 H&N and 8 prostate cancer 
patients with up to 5 repeated CTs were considered. Dose-guided positioning was again compared to the 
clinically used bony anatomy-based alignment. For the H&N cohort, the main effect of dose-based 
positioning was a reduction of the dose to the serial organs (spinal cord and brain stem). For the prostate 
cohort, under-dosage of the target structures could be reduced. Nevertheless, also limitations in the scope 
of proton therapy were identified. For the H&N cohort, it was not possible to diminish target over-dosage 
related to patient weight-loss. To properly account for weight-loss, reduction of the initial proton fluence, 
e.g., in the context of a plan re-optimization, would be necessary.  

Since no labor-intensive online quality assurance and plan approval by a certified radiation oncologist is 
required, dose-guided patient alignment might, nevertheless, still be considered an interesting alternative 
to full online ART. 
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2.3.2 Further publications related to dose-guided patient positioning 

C1. Kurz C, Süss P, Arnsmeyer C, Haehnle J, Teichert K, Landry G, Hofmaier J, Exner F, Hille L, Kamp F, 
Thieke C, Ganswindt U, Valentini C, Hölscher T, Troost E, Krause M, Belka C, Küfer KH, Parodi K, 
Richter C. Dose-guided patient positioning in proton therapy using multicriteria-optimization. Z 
Med Phys. 2019;29(3):216-28 
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3 Conclusions and outlook 
In the scope of this habilitation, studies on various aspects of image-guided adaptive photon and proton 
therapy have been conducted. Focus was on the ability to render in-room imaging data suitable for 
accurate daily dose calculation, as required for treatment plan adaptation in an ART workflow. CBCT, as 
well as MRI, have been considered as the clinically most relevant in-room imaging modalities today. 
Different methods for the required image correction (CBCT) or translation (MRI to CT) have been 
investigated, ranging from conventional techniques (LUT-based rescaling, DIR, projection-based correction 
or bulk assignment) to novel deep learning-based approaches using CNNs (Unet, GAN). In particular, the 
latter allow for accurate image correction with unparalleled speed and are thus of growing interest in the 
scope of ART, where time is a crucial factor. Despite the anticipated benefits from deep leaning-based 
solutions, they are nowadays still restricted to research applications. For future clinical integration, careful 
safety and risk assessment of these algorithms is indispensable. Major challenges will be posed by the 
black-box nature of neural networks and the fact that trained CNN models typically do not generalize well 
on unseen data-sets. Thus, it is likely that models will struggle for patients with non-standard anatomies, 
e.g. due to surgical resection of tissue. How network inaccuracies in such cases can be detected and 
eventually overcome is still a topic of on-going research. 

Beyond image correction for enabling accurate dose calculation, the generation of accurate delineations 
on the daily in-room imaging data to be used during treatment optimization is a major challenge for online 
ART. Here, depending on the treatment site, the currently clinically implemented DIR-based approach for 
MRI-guided photon ART is often facing limitations. Similar observations have been made in the scope of 
this habilitation in the context of CBCT-based ART. While DIR was found sufficiently accurate for intensity 
correction and contour propagation to enable automatic treatment plan adaptation in the H&N region, 
limited accuracy was found in the pelvis. Generally, in the presence of pronounced anatomical changes, 
DIR-based segmentation will often require time-consuming manual correction by an expert. 
Unfortunately, exactly these patients, suffering from substantial inter-fractional alterations, are expected 
to have the largest benefit from online ART. Thus, one important focus of future research is the fast and 
fully automatic segmentation of in-room imaging data. Similar to image correction, deep learning 
strategies, often using 3D CNN architectures and dedicated loss metrics (e.g., based on the Dice-similarity 
coefficient), have shown impressive results for this task, outperforming classical segmentation algorithms, 
based e.g., on atlases and DIR. First certified deep learning solutions for auto-segmentation of various 
body sites have recently been launched by different vendors but are still limited to the initial treatment 
planning stage rather than the online plan adaptation stage using in-room imaging data.  

Following image correction or translation and segmentation, online adaptation of the treatment plan 
becomes feasible. While in photon therapy fast Monte-Carlo dose calculation algorithms taking into 
consideration the magnetic fields (in the case of MRI-guidance) are used in clinical routine, aspects of 
proton treatment planning in magnetic fields, as required for clinically realizing MRI-guided proton 
therapy, have been addressed for the first time in the scope of this habilitation. The feasibility of fully 
inverse pencil-beam scanning treatment optimization in a magnetic field could be shown, together with 
the robustness of the generated plans. Although there are still considerable technical hurdles to be 
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overcome, there is a strongly growing interest in this novel treatment approach. One of the main reasons 
is that considerable benefits from MRI-guidance for proton therapy are anticipated, since it might help to 
overcome issues related to the sensitivity of proton therapy to inter- and intra-fractional anatomical 
changes by providing online treatment adaptation and imaging during beam delivery. 

As an alterative approach to daily re-optimization of the treatment plan, MCO-based dose-guided patient 
positioning has been investigated for photon and for proton therapy in this habilitation. While it requires 
similar input as online ART, i.e., segmented in-room images suitable for accurate dose calculation, it does 
require neither online plan quality assurance, nor clinical approval by an expert radiation oncologist. 
Nevertheless, the daily dose distributions’ quality achieved with dose-guided positioning was found 
inferior to that achieved with plan adaptation from scratch. 

While initial online ART workflows using integrated MR-Linacs become more and more widespread, and 
first certified solutions for CBCT-based ART are lately being introduced by vendors, many challenges 
remain. These encompass further streamlining the established clinical workflows, in particular by 
exploiting novel deep learning techniques, but also the extension of treatment adaptation procedures to 
shorter timescales. More specifically, current workflows only enable adaptation of the treatment with 
respect to inter-fractional anatomical changes, i.e., once prior to the irradiation, while intra-fractional 
changes, e.g., related to respiratory motion, are still mitigated by gating, using fast 2D imaging for target 
tracking in the case of MRI-guidance. In the future, a considerably faster treatment delivery (without 
beam-off times) could be achieved by implementing real-time ART. For this, a continuous stream of 3D 
images would be used for real-time accumulation of the already applied dose, followed by prompt 
adaptation of the remaining treatment. Main challenges to be overcome are the 3D imaging at sufficient 
frame rates (few Hz), as well as performing accumulation and optimization in real-time. Both aspects are 
subject of on-going scientific studies. 

To conclude, image-guided online ART allowing for higher dose levels in the target volume, at similar or 
even reduced dose burden to close-by OARs, is currently entering radiotherapy clinics. Hereby, a 
considerably more efficient patient treatment is expected, especially in the presence of inter-fractional 
anatomical changes. The research performed in the scope of this habilitation addressed various aspects of 
MRI- and CBCT-guided ART with photons and protons paving the way towards clinical adoption of these 
radiotherapy techniques. 
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4 List of abbreviations 
ART   Adaptive radiotherapy 
CBCT    Cone-beam computed tomography 
CNN   Convolutional neural network 
CT   Computed tomography 
DIR   Deformable image registration 
DVH   Dose-volume-histogram 
DWI   Diffusion-weighted imaging 
GAN   Generative adversarial network 
H&N   Head and neck 
HU   Hounsfield units 
ICCP   Iso-center planning problem 
IMPT   Intensity-modulated proton therapy 
IMRT   Intensity-modulated radiotherapy 
ITWM   Fraunhofer Institute for Industrial Mathematics 
Linac   Linear accelerator 
LMU   Ludwig-Maximilians-University 
LUT   Look-up table 
MCO   Multi-criteria optimization 
MRCAT   MR for calculating attenuation 
MRI   Magnetic resonance imaging 
OAR   Organ-at-risk 
PET   Positron emission tomography 
sCT   Synthetic CT 
vCT   Virtual CT 
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 Comparing cone-beam CT intensity correction methods for dose 
recalculation in adaptive intensity-modulated photon and proton 
therapy for head and neck cancer      
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  ABSTRACT 

  Background.  Adaptive intensity-modulated photon and proton radiotherapy (IMRT and IMPT) of head and neck 
(H & N) cancer requires frequent three-dimensional (3D) dose calculation. We compared two approaches for dose recal-
culation on the basis of intensity-corrected cone-beam (CB) x-ray computed tomography (CT) images. 
  Material and methods.  For nine H & N tumor patients, virtual CTs (vCT) were generated by deformable image reg-
istration of the planning CT (pCT) to the CBCT. The second intensity correction approach used population-based lookup 
tables for scaling CBCT intensities to the pCT HU range (CBCTLUT). IMRT and IMPT plans were generated with a 
commercial treatment planning system. Dose recalculations on vCT and CBCTLUT were analyzed using a (3%, 3 mm) 
gamma-index analysis and comparison of normal tissue and tumor dose/volume parameters. A replanning CT (rpCT) 
acquired within three days of the CBCT served as reference. Single fi eld uniform dose (SFUD) proton plans were cre-
ated and recalculated on vCT and CBCTLUT for proton range comparison. 
  Results.  Dose/volume parameters showed minor differences between rpCT, vCT and CBCTLUT in IMRT, but clinically 
relevant deviations between CBCTLUT and rpCT in the spinal cord for IMPT. Gamma-index pass-rates were found 
increased for vCT with respect to CBCTLUT in IMPT (by up to 21 percentage points) and IMRT (by up to 9 percentage 
points) for most cases. The SFUD-based proton range assessment showed improved agreement of vCT and rpCT, with 
88 – 99% of the depth dose profi les in beam ’ s eye view agreeing within 3 mm. For CBCTLUT, only 80 – 94% of the pro-
fi les fulfi lled this criterion. 
  Conclusion.  vCT and CBCTLUT are suitable options for dose recalculation in adaptive IMRT. In the scope of IMPT, 
the vCT approach is preferable.   

  During the course of fractionated radiotherapy of 
head and neck (H & N) cancer, considerable anatom-
ical changes may occur [1] and substantially com-
promise treatment quality. An adaptation of the 
planned treatment might, therefore, be necessary [2]. 
For deciding if and how to adapt, a three-dimen-
sional (3D) dose calculation on the anatomy at the 
time of adaptation is required. 

 In photon intensity-modulated radiation therapy 
(IMRT), the widespread use of repeated cone-beam 
x-ray computed tomography (CBCT) imaging [3] for 
patient positioning yields data sets which can also be 

used to evaluate the daily 3D IMRT dose distribution 
[4]. This was investigated by several groups using vary-
ing degrees of refi nement in the conversion of CBCT 
numbers to electron density [5 – 13]. Approaches range 
from using calibration curves (phantom or patient 
data based) to the application of deformable image 
registration (DIR). Recently, also intensity-modulated 
proton therapy (IMPT) has been applied to the treat-
ment of H & N lesions [14,15]. First comparisons of 
IMPT and IMRT in adaptive treatment scenarios 
have been published [16,17] and IMPT clinics are 
beginning to adopt IMRT-inspired CBCT-based image 
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guidance. This opens the door to IMRT-like strategies 
for treatment adaptation on the basis of dose recalcu-
lations. CBCT intensity correction by deforming the 
planning CT to the CBCT has been shown to enable 
IMPT dose recalculation to an acceptable level of 
accuracy on the basis of clinical CBCT images [18]. 
However, DIR-based methods are relatively compli-
cated and require careful evaluation. To the best of our 
knowledge there is no evidence in the literature that a 
simpler intensity correction method is inadequate for 
IMPT dose recalculation of H & N cases. 

 This work aims at comparing the DIR-based 
intensity correction approach to a simpler CBCT to 
CT intensity rescaling method with population-
based calibration curves for dose recalculation in 
IMPT and IMRT for H & N cancer. For both, IMPT 
and IMRT, recalculated dose distributions on inten-
sity-corrected CBCT images and a reference replan-
ning CT acquired close in time were compared using 
dose/volume parameters and gamma-index evalua-
tion. For IMPT, where the concept of range is criti-
cal, single fi eld uniform dose (SFUD) distributions 
were also compared in terms of proton range.   

 Material and methods  

 Clinical data 

 Dose and imaging data from nine patients previously 
treated with IMRT for H & N cancer, of which six 
patients had caudally (PCA1 – 6) and three cranially 
(PCR1 – 3) located tumors, were used in this study. 
For each subject, a planning CT (pCT), a replanning 
CT (rpCT), and a CBCT was available. The pCT 
and rpCT included all relevant tumor and normal 
tissue structures that had been manually delineated 
by the same physician (high and low dose clinical and 
planning target volumes (CTV, PTV), parotids, brain 
stem, spinal cord, chiasm, optical nerves, eyes and 
eye lenses). CBCT and rpCT were acquired at most 
three days apart (population median: one day), with 
the rpCT being taken between 33 and 51 days after 
the pCT. Details on the patient cases can be found 
in Supplementary Table I (available online at http://
informahealthcare.com/doi/abs/10.3109/0284186X.
2015.1061206), including also the target dose pre-
scriptions. pCT and rpCT images (acquired with a 
Toshiba Aquilion LB scanner) were reconstructed on 
a 1.074 mm    !    1.074 mm    !    3 mm grid, CBCT images 
(acquired with the on-board Elekta Synergy Linac 
imager equipped with XVI R4.5) on a 1 mm    !    1 
mm    !    1 mm grid.   

 CBCT intensity correction 

 The fi rst CBCT intensity correction approach is 
based on DIR of the pCT to the CBCT, yielding a 

so-called virtual CT (vCT). A Morphons algorithm 
[19,20] has been used following the approach 
described and validated in [18,21] with only slight 
modifi cations: the initial alignment of the CBCT and 
pCT not only included a translational registration 
but also allowed for rotations, mimicking patient 
positioning with a modern 6-degrees-of-freedom 
table. This rigid registration was performed on a 
region of interest (ROI) containing the spine from 
the fi rst to the sixth vertebrae for PatCA1 – 6 and the 
skull for PatCR1 – 3. Regions outside the CBCT 
fi eld-of-view (FOV) were stitched with the corre-
sponding pCT data in order to simulate a clinical 
adaptation scenario where a rpCT is not available. 

 The second intensity correction approach uses a 
population-based CBCT intensity rescaling. The 
CBCT image was aligned to the pCT applying the 
same rigid registration as during the vCT generation. 
Regions outside the CBCT FOV were again stitched 
with the pCT data. CT numbers were sampled at 
various points from both, the original pCT and the 
aligned CBCT, in the air outside the patient, the air 
inside the airways, fatty tissue, muscle, brain tissue 
(only PatCR1 – 3), soft and hard bone. These data 
were used to generate a CBCT to pCT Hounsfi eld 
number lookup table (HLUT) that was applied for 
CBCT intensity correction, yielding a so-called 
CBCT LUT . Due to varying CBCT intensities within 
the FOV, it was found necessary to establish separate 
HLUTs for patients with caudally and cranially 
located lesions by sampling HLUT points in muscle, 
fat and bony structures either in the neck (PatCA1 – 6) 
or the skull-base region (PatCR1 – 3). The applied 
HLUTs are shown in Supplementary Figure 1 (avail-
able online at http://informahealthcare.com/doi/abs/
10.3109/0284186X.2015.1061206).   

 Registration: rpCT 

 To enable dose recalculation on the rpCT images, 
considered as reference in our study, they were 
aligned to the corresponding pCT by a rigid registra-
tion including translation and rotation, focusing on 
similar ROIs as used in the pCT to CBCT registra-
tion. Manual tuning of the fi nal rigid registrations 
yielded corrections smaller than 1 mm.   

 Treatment planning and data evaluation 

 A research version of a commercial treatment plan-
ning system (TPS) (RayStation 4.6, RaySearch 
Laboratories, Stockholm, Sweden) was used to gen-
erate IMRT and IMPT plans for each patient on the 
basis of the pCT. The original clinical IMRT 
plans were used as templates and we aimed at repro-
ducing equivalent dose distributions in terms of dose/
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as distances from the patient surface to the 80% dose 
fall-off in beam ’ s eye view (BEV), have been com-
pared to that of the rpCT dose distribution.    

 Results  

 Registration 

 Compared to the reference rpCT, a good agreement 
of bony structures, internal air cavities and outer 
contour was observed for the vCT and the CBCT LUT . 
Differences between the two intensity correction 
methods arise close to the skull base and, in particu-
lar, between the shoulders of the patients. Here, the 
CBCT image is affected by severe artifacts and shad-
owing (see Supplementary Figure 2, available online 
at http://informahealthcare.com/doi/abs/10.3109/
0284186X.2015.1061206). This cannot be recov-
ered by the applied CT number rescaling, which was 
found to be only accurate in the spatially restricted 
region where the population-based CT to CBCT 
HLUT has been retrieved.   

 Dose distribution comparison 

 The dose distributions from IMRT and IMPT were 
found comparable on rpCT, vCT and CBCT LUT  in 
regions where the CBCT is less affected by artifacts 
and the used HLUT-based rescaling accurate (see 
Figure 1, top rows). In the region between the shoul-
ders, however, the formation of hotspots in the IMRT 
recalculation and a severe distortion of the IMPT 
dose pattern are observed (see Figure 1, bottom 
rows). The proton ranges are not correctly preserved, 
resulting in a considerably increased dose to the spi-
nal cord for patients with an anteriorly positioned 
PTV (see Supplementary Figure 3, available online 
at http://informahealthcare.com/doi/abs/10.3109/02
84186X.2015.1061206). 

 The dose/volume parameters of the recalculated 
3D IMRT dose distributions were found close to the 
rpCT values for vCT and CBCT LUT , as illustrated 
in Figure 2. Most parameters were found to agree 
within 1 Gy (considering the total dose of the SIB 
treatment phase), indicating no clinically relevant 
differences between the two intensity correction 
approaches in this respect. In IMPT, larger differ-
ences of the dose/volume parameters with respect to 
the rpCT were found for both intensity correction 
techniques (see Figure 2). Typically, deviations are 
below 4 Gy and similar for vCT and CBCT LUT , 
except for the spinal cord where differences up to 
20 Gy emerge for the CBCT LUT . 

 In terms of the gamma-index analysis, slightly 
enhanced pass-rates for the vCT with respect to the 
CBCT LUT  were observed for the caudal H & N cases 
(91 – 97% against 85 – 93%) in IMRT (Table I). For 

volume parameters. The organ at risk (OAR) dose/
volume constraints used for treatment planning are 
summarized in Supplementary Table II (available 
online at http://informahealthcare.com/doi/abs/10.31
09/0284186X.2015.1061206). The clinical IMRT 
plans consisted of a simultaneous integrated boost 
(SIB) with two dose levels (see Supplementary Table I 
available online at http://informahealthcare.com/
doi/abs/10.3109/0284186X.2015.1061206) in 25 –
 32 fractions, followed by a sequential boost with fi ve 
2 Gy fractions. The boost phase was not considered 
in this work. Between nine (for caudal H & N lesions) 
and 11 (for cranial lesions) beam angles have been 
used in IMRT. The IMPT plans used a four-fi eld 
arrangement for the caudal cases (45 ° , 90 ° , 270 °  and 
315 ° ; 90 °  and 270 °  blocked in shoulder area), and a 
three-fi eld arrangement for the cranial cases (0 ° , 100 °  
and 260 ° ; 0 °  blocked in nasal/buccal cavity). A con-
stant proton RBE (relative biological effectiveness) of 
1.1 was considered throughout the study and results 
will be given in terms of RBE-weighted dose. For 
probing the proton range, SFUD plans have addi-
tionally been generated on the rpCT using a single 
gantry angle (see Supplementary Table I available 
online at http://informahealthcare.com/doi/abs/10.31
09/0284186X.2015.1061206) and aiming at cover-
ing the high dose PTV. By using the rpCT for SFUD 
optimization, dose distributions with sharp gradients 
on the considered CT images could be obtained. For 
the SFUD plans, a dose grid with 1 mm instead of 3 
mm axial spacing was employed to yield higher reso-
lution range probing. 

 For dosimetric comparison of the CBCT inten-
sity correction approaches, IMRT and IMPT plans 
were recalculated on the rpCT, vCT and CBCT LUT  
images using built-in TPS functionalities. The con-
tours from the rpCT were copied to the aligned vCT 
and CBCT LUT  images for dose/volume parameter 
evaluation. Due to the low elapsed time between 
rpCT and CBCT acquisitions, no contour correc-
tion was required except for the patient outline, 
which was updated on the vCT and copied to the 
CBCT LUT  due to differences in the shoulder region 
by stitching the pCT. We recorded high and low dose 
PTV  D  95  and  V  95 , spinal cord and brain stem  D  2 , as 
well as parotid  D  mean  for all recalculated dose distri-
butions. For PatCR1-3, the optical nerve, chiasm and 
eye  D  2 , as well as the eye lens  D  mean  were additionally 
considered. The vCT and CBCT LUT  dose distribu-
tions were also compared to the reference rpCT dose 
distribution by means of a 3D global gamma-index 
analysis using (3%, 3 mm) criteria and considering 
voxels with a single fraction dose above 1 Gy. 

 For proton range evaluation, the rpCT-based 
SFUD plans have been recalculated on the vCT as 
well as the CBCT LUT  and the proton ranges, defi ned 
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the cranial cases, an equal performance was found. 
In IMPT, gamma-index pass-rates were overall 
smaller with respect to IMRT, particularly for 
the caudal H & N cases due to more pronounced 
deviations in the patients shoulder region (cf. 
Supplementary Figure 4, available online at http://
informahealthcare.com/doi/abs/10.3109/0284186X.
2015.1061206). Differences between vCT and 
CBCT LUT  pass-rates (76 – 95% against 74 – 88%) 
were larger than in IMRT. For the cranial cases, how-
ever, comparable performances of both intensity cor-
rection strategies were identifi ed and pass-rates 
similar to IMRT obtained.   

 Proton range comparison 

 The amount of 1D profi les exhibiting a range devia-
tion of less than 3 mm with respect to the rpCT was 
found increased for the vCT (89 – 95%) with respect 
to the CBCT LUT  recalculations (80 – 94%, see Table 
I). Differences between both approaches were mainly 
located close to the skull base and in the shoulder 
region, were the CBCT intensities are typically 
reduced due to artifacts. For patients where the high 
dose PTV was located in regions with reduced arti-
facts in the CBCT and comparably stable CT num-
bers (PatCA2 – 4, see Supplementary Table IV, available 
online at http://informahealthcare.com/doi/abs/10.31
09/0284186X.2015.1061206), only minor differences 
between vCT and CBCT LUT  were identifi ed.    

 Discussion 

 In this work, a DIR-based CBCT intensity correc-
tion approach (vCT) has been compared to a 
population-based calibration approach (CBCT LUT ) 
in the context of dose recalculation for adaptive 
IMRT and IMPT for the fi rst time. The results indi-
cate a comparable performance of both intensity cor-
rection techniques in the scope of IMRT. However, 
although differences in the investigated dose/volume 
parameters with respect to the rpCT were mostly 
below 1 Gy, the gamma-index analysis, being more 
sensitive to local dose changes, pointed out slight 
inaccuracies in the CBCT LUT  recalculation in the 
shoulder region. Here, the severe shadowing in the 
CBCT is not recovered by the applied intensity res-
caling and the DIR-based approach yields improved 
agreement to the rpCT dose distribution as it adapts 
the pCT with its correct CT numbers to the CBCT 
anatomy. For the cranial cases, the PTV does not 
extend to this area and very similar gamma-index 
pass-rates for CBCT LUT  and vCT were found. 

 Due to the steeper dose gradients, the fi nite par-
ticle range and the reduced number of applied beams, 
differences between vCT and CBCT LUT , and between 
these two approaches and the reference rpCT are 
larger in IMPT. While vCT and CBCT LUT  provide 
comparable results for the cranial H & N cases, a nota-
ble benefi t by using the vCT was found for the caudal 
H & N cases. In the dose/volume parameter analysis, 

  Figure 1.     2D IMRT (top part) and IMPT (bottom part) dose distributions (color-wash) on the investigated CT datasets for PatCA6 in 
an upper (top row of each part) and lower (bottom row) axial slice. The low and high dose PTVs (green and blue structures), as well as 
the spinal cord planning organ at risk volume (PRV, red structure) are also shown.  
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  Figure 2.     Comparison of IMRT (A, top) and IMPT (B, bottom) dose/volume parameters for vCT (red, diamonds) and CBCT LUT  (blue, 
circles) dose recalculations. The dosimetric parameters correspond to the left, V 95  to the right axis. For each parameter, the difference to 
the rpCT reference is given for every patient considering the total dose of the SIB treatment phase. For the optical system (only three 
patients) no boxplots were generated. For display purposes, data points below -5Gy difference are indicated by the arrow but not 
shown.  
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this was particularly indicated by an improved agree-
ment of the vCT and rpCT spinal cord  D  2  which 
could be overestimated to a clinically unacceptable 
level of up to 20 Gy in the CBCT LUT  recalculation. 
Moreover, the vCT shows enhanced gamma-index 
pass-rates and improved range agreement, as assessed 
by the recalculated SFUD proton dose distributions. 
Even for the cranially located lesions, where very 
similar gamma-index pass-rates for vCT and 
CBCT LUT  were found, an improved range agreement 
to the reference was identifi ed for the vCT. The results 
suggest decreased differences between the investi-
gated CBCT correction approaches for multiple fi eld 
proton plans, where range deviations are less critical 
due to overlapping beams from different angles. It 
should also be mentioned that no correlation between 
the time elapsed between CBCT and rpCT imaging 
and the gamma-index pass-rate was found. This is 
probably due to the fact that anatomical deviations 
are mainly attributed to positioning uncertainties 
rather than internal anatomical changes which typi-
cally evolve on longer time-scales. 

 The identifi ed shortcomings of the CBCT LUT  
approach are strongly related to intrinsic CBCT arti-
facts, in particular shadowing effects that cannot be 
corrected for by the HLUT-based intensity rescaling. 
Dose recalculation accuracy also suffers from varia-
tion of CT numbers within the FOV, such that the 
CBCT LUT  can only be accurate in a restricted part 
of the FOV, often being smaller than the extended 
target volumes of H & N cancer patients. Separate 
HLUT scaling tables for different locations of the 
high dose PTVs are thus deemed necessary. Eventu-
ally, major improvements of CBCT intensity rescal-
ing approaches can only be expected from more 
advanced CBCT instrumentation (e.g. with larger 
FOV), improved reconstruction techniques with 
reduced artifacts and more accurate image intensities 
[22,23] or potentially by application of compressed 
sensing approaches. Although the CBCT LUT  approach 
is computationally inexpensive, it has to be noted that 
initial generation of the used HLUT table is a time 

consuming manual procedure. In future, this proce-
dure could, however, be automated by applying tech-
niques like scale-invariant feature transform [24] to 
identify matching points in the CBCT and pCT and 
retrieve the corresponding CT numbers for input to 
the HLUT. DIR-based CBCT correction approaches, 
on the other hand, require thorough initial quality 
control of the applied registration algorithm and of 
the obtained deformation fi elds. 

 Beyond the previously discussed advantages, the 
DIR approach enables automatic generation of up-to-
date structures on the generated vCT by warping the 
contours delineated on the pCT to the recent patient 
anatomy of the CBCT [18]. This is a substantial 
advantage over the CBCT intensity rescaling approach 
since segmentation on the low-contrast, artifact-prone 
CBCT images is a challenging, highly time consum-
ing task and since an up-to-date delineation is an 
indispensable prerequisite for adaptive radiotherapy. 

 In summary, we have carefully compared DIR- 
and lookup table-based CBCT intensity correction 
techniques for IMRT and IMPT of H & N cancers. 
In IMPT, thorough investigation of the proton range 
was included in addition to DVH and gamma-index 
analysis. The DIR-based CBCT correction is deemed 
a suitable tool to foster adaptive IMRT and IMPT 
by providing accurate and up-to-date 3D dose recal-
culations and structures. The simpler population-
based scaling approach is considered suffi ciently 
accurate in the context of IMRT, but shows consid-
erable shortcomings in IMPT.     
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  Supplementary Table I. Overview of the investigated patient cohort.  

Patient 
ID Tumor site TNM stage  ∆ t rpCT-CBCT    (days)

Prescription low/high 
dose PTV (Gy)

Number of 
fractions

SFUD gantry 
angle (degree)

PatCA1 Larynx pT2pN0M0 1 50/ ! 25 45
PatCA2 Hypopharynx, esophagus cT4cN2M0 2 50.4/56 28 45
PatCA3 Larynx pT1bN0M0 1 54/60 30 315
PatCA4 Hypopharynx cT2cN2bM0 1 54/60 30 315
PatCA5 Nasopharynx cT2cN2bM0 0 54/60 30 315
PatCA6 Larynx pT2bpN1M0 3 50.4/56 28 45
PatCR1 Paranasal sinus pT2cN0M0 1 50.4/61.6 28 270
PatCR2 Paranasal sinus pT3N2bM0 0 54.4/64 32 0
PatCR3 Nasal cavity cT3N0M0 1 50.4/56 28 90

    For the nine investigated patients of this study, tumor site, TNM stage, dose prescription in the high and low dose PTV for the SIB 
treatment phase, number of SIB treatment fractions and time delay between rpCT and CBCT acquisition  ∆ t rpCT-CBCT  are given. The 
gantry angle of the generated SFUD plans is indicated, as well.   

  Supplementary Table II. OAR dose/volume constraints used 
during treatment planning.  

Dose/volume 
parameter

Tolerance 
dose (Gy)

Spinal cord D max 53
Brain stem D max 53
Parotids D mean 26
Optical nerves D max 54
Chiasm D max 56
Eyes D max 45
Eye lenses D mean 10

    For the spinal cord, brain stem, optical nerves and chiasm, PRVs 
have been considered throughout this study. The optical nerves, 
chiasm, eyes and eye lenses constraints were only used for 
PatCR1 – 3, where these structures were delineated. The tolerance 
dose levels were chosen similar to the clinical values used for 
IMRT plan optimization at our institution.   

  Supplementary Table III. Gamma-index pass-rates for vCT- and 
CBCT LUT -based dose recalculations.  

IMRT IMPT

vCT 
(%)

CBCT LUT  
(%)

vCT 
(%)

CBCT LUT  
(%)

PatCA1 96 93 95 88
PatCA2 91 85 76 74
PatCA3 97 90 95 74
PatCA4 96 87 93 83
PatCA5 95 89 90 83
PatCA6 94 89 88 80
PatCR1 99 99 94 97
PatCR2 99 99 98 97
PatCR3 89 92 93 90

    For each considered patient the vCT- and CBCT LUT -based dose 
recalculation is compared to the rpCT-based recalculation by a 
(3%, 3 mm) 3D global gamma criterion.   

  Supplementary Table IV. BEV range pass-rates for vCT- and 
CBCT LUT -based SFUD dose compared to the rpCT-based 
calculation.  

vCT (%) CBCT LUT  (%)

PatCA1 88 80
PatCA2 95 94
PatCA3 93 88
PatCA4 95 93
PatCA5 94 81
PatCA6 93 83
PatCR1 89 88
PatCR2 96 80
PatCR3 99 86

    For each patient the vCT- and CBCT LUT -based proton SFUD 
dose recalculation is compared to the rpCT-based recalculation in 
terms of the proton range in BEV. The depicted values indicate 
the amount of 1D profi les found within 3 mm of the rpCT.   

  Supplementary Figure 1.     HLUTs applied for intensity rescaling 
of the CBCT to the pCT. The two HLUTs used for patients with 
caudally (solid) and cranially located (dashed) lesions are depicted. 
Each data-point corresponds to a population average over multiple 
corresponding points in the registered pCT and CBCT in a 
narrow Hounsfi eld unit (HU) interval. The standard deviation at 
each point is indicated by error-bars.  
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  Supplementary Figure 3.     DVH comparison of the IMRT (left) and IMPT (right) dose distributions of PatCA6 recalculated on the rpCT 
(solid line), vCT (dashed) and CBCT LUT  (dotted). For improved visibility, only the high (HD) and low dose (LD) PTV (blue and green), 
as well as the left parotid (cyan) and the spinal cord (red) are depicted.  

   

  Supplementary Figure 4.     Signed gamma-index displayed in a central axial (top row, A – D) and coronal slice (bottom row, E – H) for PatCA3. 
IMPT recalculations using the vCT (left column, A, E) and CBCT LUT  (center-left column, B, F), as well as IMRT recalculations using 
the vCT (center-right column, C, G) and CBCT LUT  (right column, D, H) are compared to the corresponding rpCT dose distribution.  

  Supplementary Figure 2.     Checkerboard display of vCT (upper row) and CBCT LUT  (lower row) against the rpCT of PatCA2.  


