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Zusammenfassung

Die Wettervorhersage ist eine grundlegende wissenschaftliche Herausforderung und für die
Gesellschaft von großer Bedeutung. Die Vorhersage von Extremwetterereignissen ist eine
der herausragenden Leistungen der Wissenschaft. Trotz des enormen Gesamtfortschritts
der modernen Meteorologie kann die präzise Vorhersage bestimmter kritischer Phänomene,
wie z. B. extremer Niederschläge, auch bei kürzeren Vorhersagezeiträumen noch un-
sicher sein. Diese Forschung zielt darauf ab, die relevanten atmosphärischen Prozesse für
die Bildung von Extremniederschlägen zu identifizieren. Wir untersuchen die Beziehung
zwischen vorhersagbarer großskaliger Dynamik, die die richtigen Bedingungen für die Bil-
dung von Extremereignissen schafft, und schnellen kleinskaligen Prozessen, wie Konvek-
tion, die die Vorhersagbarkeit schnell zerstören und eine Herausforderung für eine korrekte
Vorhersage darstellen. Mit dem Ziel, gemeinsame dynamische Zustände zu identifizieren,
haben wir eine systematische Untersuchung vieler (> 800) extremer Niederschlagsereignisse
(EPEs) entworfen, die zwischen 1979 und 2015 in Nord- und Mittelitalien. Durch die opti-
male Kombination von ECMWF-Reanalysen meteorologischer Felder und hochaufgelöstem,
gerastertem Tagesniederschlag (ARCIS) klassifizieren wir mit einem maschinellen Ler-
nansatz extreme Niederschlagsereignisse in drei Kategorien (Cat1, Cat2, Cat3). Die Kate-
gorien unterscheiden sich nicht nur lokal und spiegeln erfolgreich die Niederschlagsprozesse
in der Region wider (frontaler und orographischer Niederschlag, frontaler Niederschlag und
eingebettete tiefe Konvektion, tageszeitliche oder schwach erzwungene Konvektion), son-
dern auch in der dynamischen Entwicklung ihres Vorläufers: der atmosphärische Rossby-
Welle und des zugehörigen Wellenpakets. Bislang ist dies der erste Versuch, EPEs nach
physikalischen Prozessen zu klassifizieren und mit der Vorhersagbarkeit in Verbindung zu
bringen. Wir zeigen, dass EPEs, die in Cat1 und Cat2 fallen, mit Wellenpaketen aus der
oberen Atmosphäre, assoziiert sind, die sich aus entfernten Regionen ausbreiten, während
bei EPEs in Cat3 lokale Instabilität dominiert. Die stärksten EPEs, die meist in Cat2
fallen, sind durch eine wiederkehrende dynamische Entwicklung gekennzeichnet, die aus
einer erheblichen stromaufwärts gerichteten Wellenverstärkung im Nordatlantik besteht,
die vermutlich auf diabatische Heizquellen zurückzuführen ist. Cat2-Ereignisse sind in der
untersuchten Region besser vorhersagbar als gemäßigte Ereignisse, die in die beiden an-
deren Kategorien fallen. Dieses Ergebnis hat wichtige praktische Implikationen. Es zeigt,
dass nicht alle extremen Niederschlagsereignisse den gleichen Grad an Vorhersagbarkeit
haben. Die Unsicherheit hängt nicht von der Intensität des Phänomens ab, sondern von
der jeweiligen dynamischen Entwicklung.
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Abstract

Weather prediction is a fundamental scientific challenge and crucial to society. Predicting
extreme weather events is one of the outstanding achievements of science. Despite the
enormous progress made by modern meteorology, the precise prediction of certain crit-
ical phenomena, like extreme precipitation, can still be uncertain even at shorter time
ranges. This research aims to identify the relevant atmospheric processes for the formation
of extreme precipitation. We investigate the relationship between the predictable large-
scale dynamics that create the right conditions for the genesis of extreme events, and fast
small-scale processes, such as convection, which rapidly destroy predictability and pose
a challenge for a correct forecast. In the aim to identify common dynamical states, we
designed a systematic investigation on extreme precipitation events (EPEs), based on a
very large number of episodes (> 800), which occurred between 1979 and 2015 in northern-
central Italy, used as a test region. Through the optimal blending of ECMWF reanalysis
of meteorological fields and high resolution gridded daily precipitation (ARCIS), we clas-
sify, with a machine learning approach, extreme precipitation events into three categories
(Cat1, Cat2, Cat3). The categories do not only differ locally, successfully reflecting the
precipitation processes on the region (frontal and orographic precipitation, frontal precip-
itation and embedded deep convection, diurnal or weakly forced convection), but also in
the dynamical evolution of their precursor: the upper-level wave, and the associated wave
packet. So far, this is the first attempt to classify EPEs on physical processes and make
connections with predictability. We show that EPEs falling in Cat1 and Cat2 are associ-
ated with upper-level wave packets propagating from remote regions, while for EPEs in
Cat3 local instability is dominating. The strongest EPEs, mostly populating Cat2, are
characterised by a recurrent dynamic evolution consisting of a substantial upstream wave
amplification in the N. Atlantic, arguably due to diabatic heating sources. Cat2 events are
more predictable than moderate events falling into the other two categories in the region
under investigation. This original result has important practical implications. It shows
that not all extreme precipitation events have the same level of predictability. The uncer-
tainty does not depend on the intensity of the phenomenon but on the particular dynamic
evolution.
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Chapter 1

Introduction

Just as water is fundamental to life, precipitation amount and distribution are largely driv-
ing society and ecosystems developments. Precipitation is a key component of the water
cycle, and is main factor of recharge of the fresh water reserves of the planet. Human
practices have evolved to fit the expected patterns of precipitation intensity, amount, and
timing. Besides, runoff from heavy precipitation events shapes the landscape, as floods
and flash floods modify the morphology of the land carving valleys and depositing sedi-
ment on floodplains. As human activities have continued to expand, more infrastructures
has been built, especially in flat areas and flood plains, raising the risk exposure to ex-
treme events. Accurate and timely prediction of high impact weather, and in particular,
extreme precipitation events, is essential therefore to limit losses of life and property as
well as a proper water resource management. Although predictability is fundamentally
limited by the chaotic nature of the atmosphere, recent research in atmospheric dynamics
has provided new insights into the processes the limit the accuracy of forecasts, still open
questions remain how to improve the forecast of these critical events. This research aims
to characterise different atmospheric processes which influence extreme precipitation elu-
cidating the balance between large-scale and more predictable motions and fast processes
acting at the local scale, which pose a challenge for a correct forecast.

1.1 Societal relevance of extreme precipitation events

(EPEs)

The prediction of extreme precipitation is a fundamental scientific challenge and of key
importance to society, not only for civil protection purposes but also for water management
optimisation. Extreme weather events have become a leading research topic in many
academic fields due to their significant impacts on populations and ecosystems as well as
projections of their frequency increase in a changing climate (IPCC (2014), Chapter 14).
Extreme precipitation presents a great concern because it can generate life-threatening
floods and secondary hazards, including soil erosion, landslides, infrastructural damages,
and urban flash flooding. In the European countries, the total reported economic losses
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caused by weather extremes, over the period 1980-2017, amounted to approximately EUR
453 billion (in 2017 Euro values). The most expensive weather extremes in the EU Member
States include the 2002 flood in Central Europe (over EUR 21 billion), the 2003 drought
and heatwave (almost EUR 15 billion), and the 1999 winter storm Lothar and October 2000
flood in Italy and France, both EUR 13 billion (European Environment Agency, 2017). A
comprehensive reconstruction of European floods carried out by Paprotny et al. (2018) from
a database covering the period 1870-2016, encompassing 37 European countries, shows that
more than half of the events occurred in only three countries, namely Italy (36%), Spain
(15%) and France (10%) (Fig. 1.1). Floods characteristics are different across Europe.
The same authors show that in southern Europe, flash floods constituted the majority
of flood events, and were most prevalent between September and November. In central
and western Europe, river floods were more frequent than flash floods, with flood losses
concentrated between June and August. In northern Europe, floods were mostly caused
by snow melt and rarely resulted in significant losses.

Figure 1.1: Total number of floods recorded in the HANZE database between (1870-2016).
From Paprotny et al. 2018

We recall that a flash flood is caused by heavy rainfall in a short time, generally less
than 6 hours, while river floods are caused by rising water on an existent watercourse due
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to persistent rainfall over a large proportion of the river basin. The critical aspect for the
former is intensity, while the latter is persistence and large spatial extent. The typology
and seasonality of floods in Europe are hinting therefore to a different meteorological
forcing. Different precipitation distribution is producing different hydrological response;
fast, unpredictable and localised in case of heavy rain and flash floods typical of summer
months, more predictable and slowly evolving, in for winter cases associated with fronts
and mid latitude cyclones . Forecasting strategies have to correctly handle this different
typology of phenomena, and the related uncertainties, to be effective. The main challenge
of this work is to investigate a statistically significant number of extreme precipitation
events (EPEs), defined as the highest percentile of daily precipitation (see section 2.2 for
an exact definition), to gain insights on the dynamical reasons and consequences of their
differences. For this purpose, we decided to focus our study on northern and central Italy
which is one of the areas of Europe with the highest frequency of EPEs (Isotta et al.,
2014) and with a good mixture of events typology. As a reflection of different precipitation
regimes, Paprotny et al. (2018) show that Italy as a whole has 75% of floods which includes
flash flood and the remaining 25% as river floods only. The choice of northern central Italy
as study area permits therefore to assemble a significant large dataset of heterogeneous
cases which allow a robust subdivision of cases in different categories.

1.2 Atmospheric processes generating clouds and pre-

cipitation

In this section, we briefly recall the main processes of cloud and precipitation formation.
Cloud forms in the air which become saturated respect to liquid water or ice. Water vapour
condensate (or brine) forming liquid droplets (or ice crystals) in suspension. Precipitation
forms as smaller droplets coalesce with other rain drops or ice crystals within a cloud.
Condensation is generally due to adiabatic expansion and cooling of air parcels during
ascent.

Air parcels ascent can be obtained in different ways and each of them produces distinc-
tive clouds forms and precipitation which can be grouped in three types :

• In the ascending branch of mid-latitude cyclones, as stable air masses are forced to
rise along slantwise surfaces in association with synoptic fronts. Stratiform clouds
are produced. Gentle vertical motions (order cm/s) responsible for condensation are
related to large spatial (and temporal scales) and precipitation is usually widespread
and continuous (several hours) of moderate to weak intensity

• Forced lifting of air as it passes over hills or mountains produces orographic clouds.
Vertical velocities are tightly dependent upon the speed and direction of the horizon-
tal flow impinging on the barrier and they can reach several m/s. Precipitation can
be intense but typically restricted to the upwind side of the mountain barrier and up
to the crest. Precipitation can last several hours or days according to the persistence
of the flow.
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• Strong local ascent occurs when warm air parcel becomes buoyant respect the sur-
rounding atmospheric environment, that is when the atmosphere presents a vertically
unstable stratification. In these conditions convective clouds are forming with up-
draft velocities in the order of 10m/s. Such clouds extend throughout the depth of
the troposphere and coincide with vigorous condensation often leading to heavy pre-
cipitation. The strength of convection is proportional to the positive buoyant energy,
usually defined as convective available potential energy (CAPE). However very often
a stable layer close to the surface is present preventing convection. A convective
inhibition (CIN) energy should be then overcome (by mechanical lifting or surface
heating for example) to start convection. The lifetime of precipitation from a single
convective cloud is generally less than 1 hour, however, in very unstable environment
convective clouds tend to form clusters and organize in mesoscale convective systems
(MCS) which can last longer and produce heavy precipitation for several hours.

An extreme precipitation event could be due to one or a mixture of the three types of
processes, according to the different meteorological conditions. In all conditions necessary
ingredients are upward vertical motions and steady moisture convergence able to sustain the
condensation process for a sufficient period. In addition, also the microphysical properties
which control the precipitation production efficiency ε are important. Following Loriaux
et al. (2017), these components are conceptualized in the following approximation of the
precipitation rate:

P ≈ −ε
∫ zb

zt

wc
∂qs,c
∂z

ρdz

This equation states that the precipitation rate P is determined by precipitation effi-
ciency ε, times the vertically integrated condensation rate in the cloud. The condensation
rate consists of a dynamic and thermodynamic contribution through the updraft velocity
wc and the vertical derivative of the saturation specific humidity qs,c following the parcel.
Faster vertical velocities associated with convective systems will produce higher precipita-
tion rates in thunderstorms, although more localized than in frontal structure. Forecasting
experience shows that the maximum intensity of precipitation originating from stratiform
precipitating systems, such as passing fronts, can reach 10 mm/h. In the case of intense in-
teraction with orography, very rarely get to 30 mm/h (at our latitudes) for pure orographic
mechanical uplift without the presence of convection. However, stratiform precipitation is
more persistent and therefore can still generate significant event cumulative values. In the
case of deep convection, instantaneous intensity of precipitation can reach higher values,
order of few hundred mm/h, with hourly accumulations of more than 100 mm/h. The
highest hourly rainfall ever recorded in Italy (and probably in Europe) is 181 mm/h, mea-
sured in the Genoa area during the devastating flash-flood of the 9 October 2014 (Poletti
et al., 2017).

Since the interplay between the dynamic and thermodynamic component could generate
events with very different properties, one of the main goal of this study is to design a method
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to separate events with different precipitation characteristics and to evaluate the respective
contribution of large-scale dynamics and local processes.

1.3 The Mediterranean: an extreme precipitation hot

spot. Why?

The distinctive geographical location and the morphology of the Mediterranean basin make
the region prone to heavy precipitation and flash floods. The Mediterranean Sea acts as a
reservoir of the intense summer heat and as a moisture source from which convective and
baroclinic atmospheric systems could draw their energy. The steep orography surrounding
the sea favours the lifting of low-level moist airflow, enhancing precipitation. Typical of
the Mediterranean climate is the very irregular distribution of precipitation through the
year. Long periods of droughts (summer months) followed intense burst of precipitation,
more frequent in autumn and winter. Accumulations of several hundred mm in 24h are
possible as well as hourly values exceeding 100mm/h. The occurrence of these heavy
precipitation amounts on small and steep river catchments often causes devastating flash
floods, especially in the densely urbanised areas, as testify the example of Genoa, a city
heavily exposed to this kind of events as documented in Fig. 1.2.

Figure 1.2: The Fereggiano stream rushing through streets of Genoa on the 4th of November
2011 after the precipitation on the nearby hills locally exceed 300mm/3h (Arpal Liguria,
2012)
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In Autumn, the lowering in latitude of the Atlantic storm-track allows cold air to move
on the warm Mediterranean Sea surface where usually an unstable stratification is still
present. This is the perfect setting which trigger wide spread and intense precipitation due
to the presence of both deep convection and stratiform precipitation falling from frontal
systems. The highest peaks in precipitation are undoubtedly originated by quasi-stationary
mesoscale convective systems (MCSs) which can occur in summer as isolated precipitation
systems over land. Still, they become a more regular feature over sea and coastal regions at
the end of summer and in Autumn, in association with an increase in frequency of synoptic
upper-level waves . Convection can develop, in the ascending branch of an incoming trough,
when a moist conditionally unstable marine boundary layer is advected inland and forced
to ascend over the orography (Duffourg et al., 2018).

As examples of these situation characterised by persistent MCSs developing in a pre-
frontal synoptic environment there are many cases reported in the literature: the dramatic
flash-flood events in Vaison-la-Romaine in September 1992 (300 mm in 4 h; Sénési et al.
(1996)), Piedmont in November 1994; (Buzzi et al. (1998)), Liguria in October and Novem-
ber 2011 (450–500 mm in 6–12 h; Rebora et al. (2013)), Gard in September 2002 (about
700 mm in 24 h; Delrieu et al. (2005)), and Valencia in November 1987 (more than 800 mm
in 24 h; Romero et al. (2000)). These amounts are very significant if compared with the
respective precipitation climatology. Each of these events alone correspond to one third
up to half of all the rain that is falling in these location in an entire year.

A distinctive feature of Mediterranean convective systems, unlike in more continental
areas, is their tendency to organise in quasi-stationary MCSs (Bluestein and Jain, 1985),
with a characteristic V-shaped anvil signature in the infrared satellite images (Fig. 1.3a).
These systems results from renewed convective development, or back-building, at the vertex
of the V, which faces the low-level marine flow (Ducrocq et al., 2014).

The dynamical equilibrium between the slowly varying upper-level wave and MSCs is
producing the ideal conditions which ensure continuous moisture convergence at the vertex
of the convective system, where fast upward motions are located. The interaction between
the upper-level flow and the local circulation in the storm with a constant renewal of
convective cells at the same location, as illustrated in the schema of Figure 1.3b, could
produce impressive precipitation amount for a prolonged time, even several hours. This
interactions only occurs in specific dynamic conditions and it is extremely important to
anticipate this dangerous phenomena recognizing those situations.

Water vapour flux convergence is also a crucial ingredient to attain extreme precipita-
tion. The Mediterranean region is peculiar in this respect with the convergence of different
sources of humidity. In the Autumn, the Mediterranean Sea is still warm with high evap-
oration rates which accounts for 40% to 60% of the water vapour feeding the convective
systems Duffourg and Ducrocq (2013), Sodemann and Zubler (2010). The remaining mois-
ture originates from the Northern Atlantic or transported from the subtropical Atlantic
across North Africa (Turato et al., 2004). Winschall et al. (2014) have shown a great case to
case variability in moisture supply for Mediterranean EPE. They show that water vapour
coming from the North and subtropical Atlantic is a major contributor for stratiform pre-
cipitation, while Mediterranean moisture sources are more important for pure convective
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(a) (b)

Figure 1.3: Panel (a) example of back-building quasi-stationary MCS developing in the
warm air-mass ahead a large amplitude upper-level wave. Cyan isolines are geopotential
heights at 500 hPa, while Meteosat-10 RGB composite is displayed in colours (reddish-
purple indicating polar air, greenish colours showing subtropical air masses). The picture
(courtesy of Eumetrain ePort-viewer), refers to 22-10-2019 00UTC when severe flash floods
were reported between Liguria and Piedmont regions (N-Italy) due the MCS inside the red
circle. More than 400mm in 12h were recorded at two observing stations of the regional
networks. Panel (b) Schema of the genesis and maintenance of V-shape back building
convective systems respect to the upper-level driving flow. The figure has been adapted
by Grazzini F. and Selvini A. from MeteoFrance publication on Mediterranean convective
systems (Rivrain, J.C. 1997)

events. The export of tropical moisture from subtropical Atlantic is reported to be relevant
for extreme cases, as noted by Krichak et al. (2015).

Aiming at exploring the physical mechanisms beyond the formation of the extreme pre-
cipitation events in the Mediterranean area, among the most intense in the mid-latitudes, a
number of international research projects and field campaign has been conducted over the
years: the Mesoscale Alpine Program (MAP; Bougeault et al. (2001)) the Mediterranean
Experiment (MEDEX, Jansa et al. (2014)) and Hydrological cycle in the Mediterranean
Experiment (HyMEX), with a specific field campaign designed to improve the present state
of knowledge of Mediterranean HPEs and flash-flooding events (Ducrocq et al., 2014).

Despite continuous improvements in the forecasts for such severe events the accuracy of
the forecast is still partly insufficient compared to the actions required for effective warning
procedures. Our ability to predict them remain limited because of the influence of processes
occurring on fine scales or evolving fast, like convection, turbulence or microphysics. Non-
linear interactions of these processes with the large-scale dynamics could play an important
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role. Advances in the identification of the predominant mechanisms, and particularly of
their interactions across scales, are desirable and could be obtained with the analysis of
a large sample of cases. In that respect, the Mediterranean region, and in particular the
Alpine area, with such high frequency of extremes offers a unique opportunity to build a
very large dataset of EPEs which could be fundamental for understanding and improve
our capabilities to predict these high-impact weather events.

1.4 Rossby waves

In the previous section, we discussed the characteristics of EPEs as local phenomena, often
concentrated over small areas. However in many cases, they exhibit a tight connection
with the state of the mid-latitude hemispheric flow, and in particular with its undulations
or upper-level waves. Tropospheric upper-level waves are of paramount importance since
they transfer energy, moisture and momentum across long distances, so they are also
very relevant for EPE formation. Carl Gustav Rossby (1898-1957) derived its kinematic
description for a barotropic fluid (density is function of pressure only) and therefore they are
also named Rossby waves. We can discuss their property through its most straightforward
formulation for a two dimensional inviscid flow of costant depth. Linearising the equation
of motion (vortiticy equation) around a basic state with a purely zonal flow of constant
speed U , and assuming as a perturbation a comparably small plain wave, we can derive
the dispersion relation for Rossby waves:

ω = Uk − kβ

k2 + l2

where ω is the frequency of the oscillation, β represents the northward gradient of the
planetary vorticity ∂f/∂y (f = 2Ωsinϕ is the Coriolis parameter , Ω is the angular speed
of rotation of the Earth, and ϕ is the latitude), k and l are the zonal and meridional
wavenumbers (Vallis, 2017).

From the dispersion relation we compute the phase speed cxp and the group velocity cxg

cxp =
ω

k
= U − β

k2 + l2
cxg =

∂ω

∂k
= U +

β(k2 + l2)

(k2 + l2)2
(1.1)

Assuming a wave propagating only along the x-axis (zonal direction, l = 0) cxp reduce
to :

cxp = U–
βL2

4π2

where we substitute k with the wavelenght L = 2π/k . From this equation we can easily
see that Rossby waves moves eastward with the zonal flow, retarded by a combination of the
rotation of the earth and the wavelength, more so the lower the latitude and the longer the
wave. They tend therefore to move against the basic flow, which at upper-level in the mid-
latitude is predominantly westerly. The larger is the advection of planetary vorticity (long
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waves), the stronger is the tendency of the wave to retrogress respect the mean flow.Very
long waves (planetary waves) in fact can remain stationary or even move westward, while
smaller waves (transient synoptic waves, L ≈ 1000km ) usually move eastward.

The phase speed depends on of the horizontal wave number, meaning that Rossby
waves are dispersive. In particular, from (1.1), we notice a very important property :
cxg > cxp , the group velocity is higher than phase speed. This means that the envelope
of Rossby waves moves eastward faster than individual troughs and ridges. Wave group
energy flows faster than single waves along the tropospheric jet streams, giving rise to
a very important concept in synoptic meteorology: the downstream development of new
disturbances (Holton and Hakim, 2012) . Due to downstream development, Rossby waves
are often zonally confined (Chang, 1993), and they move in groups formed by a finite
number of trough and ridges, which are often referred to as Rossby wave packets (RWPs).
Although there is not a consistent terminology regarding different groups of atmospheric
travelling waves, after Wirth et al. (2018), we will call Rossby wave trains the very low-
frequency variety, composed by planetary waves with zonal wave numbers s=1,2,3, while
we call RWPs the transient synoptic-scale variety, more relevant for our study.

In a more realistic description of 3D atmosphere, and with density which depends
also on temperature and not only on pressure (baroclinic atmosphere), Rossby waves are
potential vorticity conserving motion. The Rossby- Ertel Potential vorticity (PV) is a very
relevant quantity in meteorology that essentially measures the ratio of the absolute vorticity
ζa = ζθ + f ( where ζθ is the vertical component of the relative vorticity on atmospheric
parcel) to the effective depth of the vortex delimited by two isentropic (θ) surfaces, which
can also be tilted, due to the horizontal gradient of the isontropes. It can be computed as:

PV = −g∂θ
∂p
ζa

where g is the gravity acceleration, p is pressure, and θ is potential temperature. PV
is a function of the absolute vorticity and the static stability (−g ∂θ

∂p
) term. For adiabatic

frictionless flow PV is invariant and can only be changed by diabatic processes. Rossby
waves, in a baroclinic atmosphere, amplifies along a potential vorticity gradient.

1.5 Rossby wave packets and severe weather

Extreme weather and EPE are very often occurring in connection with Rossby waves (Boers
et al., 2019), and the wave is often part of an RWP during its decay stage, as shown in
the example displayed in Fig. 1.4. The significance of RWPs for weather forecasting is
well recognised, and special attention is given to the role of these wave packets in the
formation of high-impact weather events. Such interest arises from the hypothesis that
weather events inherit predictability from large-scale dynamics, so understanding RWP
could improve the prediction of severe weather and EPEs.

RWPs can be interpreted, in fact, as the large-scale carrier of meteorological activity,
accounting, with their propagation, for a large part of the observed synoptic-scale and



10 1. Introduction

lower-frequency variability of mid-latitude atmospheric circulation. It is still debatable if
RWPs have to be treated as a physical entity or simply as a compact and idealised way
to describe a succession of waves. Indeed, their identification and characterisation is a
practical way to trace the transport of energy that connects successive weather systems
(Persson, 2017). This implies that the RWP can be seen as a long-range precursor to the
local extreme weather event. A link between transient RWPs and extreme weather, like
surface cyclones, extreme temperatures; up to floods, precipitation and heavy snowfall has
been documented by many authors and a full review of this dynamical linkage is described
in Wirth et al. (2018). The specific connection between RWPs and EPEs over the Alpine
area is also known and it has been investigated by several works e.g Grazzini (2007);
Martius et al. (2008); Nuissier et al. (2011).

Figure 1.4: Wind streamlines at upper level (250 hPa) depicting the Rossby wave on the
western Mediterranean on 22 October 2019 00UTC, the same date shown in figure 1.2.2.
As can be seen, the wave, which is positioned almost at the end of a band of very high
winds (which marks the polar jet), is relatively narrow and highly amplified, and it will
soon break leading to a cut-off low of the Mediterranean. Courtesy of earth.nullschool.net

There are different types of RWPs associated with different spatio-temporal scales, a
different type of forcing and properties of background flow. Sometimes RWPs are very
short-lived and composed only by a wave couplet, or in other conditions, RWPs may last
several days, propagating along great circles or channelled in the zonal direction in case of a
strong jet. Wavelike disturbances are always present in the midlatitude atmosphere, but it
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is only under particular and favourable atmospheric conditions that the RWPs can remain
coherent for several days and connect remote regions of the atmosphere. The propagation
and extension of RWPs are mostly controlled by the intensity and localisation of the large-
scale background PV gradient, which acts as a waveguide (Wirth et al., 2018). Orlanski and
Sheldon (1995) showed that ultimately the propagation of RWPs is maintained by energy
extracted, through baroclinic conversion, from the mean flow available potential energy.
In particular, strong baroclinic growth is observed in the centre of the wave packet where
waves are mature. This energy is irradiated downstream through ageostrophic geopotential
fluxes which are responsible for the downstream development of a new wave at the leading
edge of the wave packet, as illustrated in Fig. 1.5. The propagation continues until the
RWPs encounter a region of weakening background PV gradient which tends to produce a
wave breaking and a termination of the storm track. Continental Europe and the Mediter-
ranean are at the end of the storm track, and they are characterised by weaker baroclinicity
compared with the Atlantic. However downstream development can force wave develop-
ment in less baroclinic areas as often occur over the Mediterranean sea where cyclones
development are part of the final stage of the Atlantic storm-track (Trigo et al. (1999),
Rezaeian et al. (2016)). Finally, RWPs can be initiated by a variety of processes involving
diabatic heating in the mid–lower troposphere, due, for example, to pre-existing synoptic
disturbances such as extratropical cyclones, bursts of organised tropical convective systems
associated with Madden–Julian Oscillation (MJO) propagation, flow distortion from orog-
raphy, or recycling from previous waves in the jet-stream waveguide (Grazzini and Vitart,
2015).

1.6 The EPE breakdown into its main atmospheric

components

The scientific challenge of weather forecast comes from the complex interactions of different
physical processes and different scales of atmospheric motion that combine over thousands
of kilometres and many days to produce a highly localised event such as an EPE. Forecast-
ing the weather is like a tug of war between processes that are predictable against those
which are unpredictable Bauer et al. (2015). Large-scale slowly evolving flow, anomalies
in the ocean or in the soil state, can be predictable over many days and force the atmo-
sphere towards a certain state, while on the opposite, convective situations dominated by
fast processes, or turbulence can inject chaotic noise which propagate upscale and it can
severely reduce predictability. For example Hohenegger et al. (2006) shows that the pre-
dictability of the three alpine heavy precipitation cases differs tremendously, ranging from
highly predictable to virtually unpredictable.

This ’battle’ has been schematized in Fig. 1.6 with the green arrow that represent the
flow of energy propagating from the large-scales (say 1 day and and with a length-scale
greater than 1000km) to smaller scales, and upscale energy propagation, visualised by the
orange arrow, with fast growing instabilities which reduce predictability. The position
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Figure 1.5: Schematic illustrating the processes that influence the propagation and dis-
persion of an RWP. The leading edge is dominated by the convergence of ageostrophic
geopotential flux (grey arrow) from upstream mature system (downstream development).
In the centre, the downstream ageostrophic flow is balanced by baroclinic growth and con-
vergence of the ageostrophic geopotential flux from the upstream part. In the upstream
part, there is a decay since the ageostrophic flux is not balanced anymore by the weaker
baroclinic conversion. Courtesy of Wirth et al. 2018 (fig.9)

predictability barrier (indicated by the grey box), which is moving back of forward in
every event, is the results of these opposite forces. A common approach to investigate the
predictability of this complex phenomena, as EPEs are, is to separate scales and try to
identify recurring large-scale patterns for extreme event class, assuming that the large-scale
controls the probability of occurrence of given extreme event (Messori et al., 2018).

The control of the large-scale on EPEs appear evident in many circumstances, and
an association between a Rossby wave and heavy precipitation in the Alpine area have
been previously identified by several authors (Massacand et al. (1998), Plaut and Simon-
net (2001), Grazzini and Van der Grijn (2003)). In addition, Grazzini (2007) has shown
that large-scale alpine precipitation events tend to be more predictable than average con-
ditions, and the highest predictability is obtained when wave packets can propagate from
far upstream, from the Pacific Ocean. In a recent paper, Vries (2020) shows that mois-
ture availability (often analyzed in isolation) is strictly connected with the dynamics of
Rossby waves in their breaking phase. Rossby wave breaking can initiate extreme pre-
cipitation events through steering intense moisture transport towards a given region in
which the presence of orographic barriers or coastal boundaries could further enhance the
response to the dynamic anomaly. The described interplay between upper-level wave,
wave breaking and moisture transport is as nicely depicted in the schematic of Fig. 1.7,
adapted from Vries (2020). The upper-level wave is defined by the 2 PV units (PVU)
(1PV U = 10−6Kkg−1m2s−1) isoline, in blue. The circulation associated with the wave
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Figure 1.6: Schematic illustrating the main contrasting factors regulating predictability.
Large-scale predictability forcing could be modulated by the presence of RWPs. Upscale
error growth could be detected using the convective time scale.

produce a strong water vapour inflow in the ascending branch of the wave structure (green
area), where typically are located rising motions due to upper-level divergence. The su-
perposition of a strong water vapour flow in a dynamically active area creates the ideal
conditions for the development of EPE, and even more is high orography is present. Vries
(2020) shows infact that Rossby wave breaking is associated with > 90 % of EPEs near
high topography and over the Mediterranean, whereas intense moisture transport is linked
to > 95 % of EPEs over many coastal zones. Combined Rossby wave breaking and intense
moisture transport contributes up to 70 % of EPEs.

This reinforces the hypothesis that EPEs are very tied to large scale dynamical ”slow”
evolution and a good prediction of Rossby waves and RWPs could lead to pre-warnings days
ahead. However, detailed precipitation prediction, at a local scale, could remain uncertain
even in the short-term due to intrinsic limitations introduced by upscale error growth
from convective instability for example. Atmospheric flows are in fact characterised by
both chaotic dynamics and recurrent large-scale patterns, or in other terms, this indicates
the presence of atmospheric states close to an attractor. This may result in a reliable
prediction of the severe weather synoptic pattern but in a still very uncertain precipitation
localisation. For examples studies have shown the fast error growth due to the incorrect
representation of Mesoscale Convective Systems (MCS) in the numerical weather prediction
model, typically occurring over the US, could propagate along the waveguide to disrupt the
forecast over Europe a few days later (Grazzini and Isaksen (2002),Rodwell et al. (2013),
Parsons et al. (2019)).
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Figure 1.7: Schematic representation of Rossby wave breaking (upper tropospheric PV
streamer in blue) and intense moisture transport (vertically integrated water vapour trans-
port (IVT) in green) in a idealised synoptic-scale processes leading to EPE (read area).
Adapted from De Vries, 2020

1.7 Atmospheric predictability

The predictability of weather is fundamentally limited by the chaotic nature of atmospheric
motions (Lorenz, 1963) which are ranging across very different spatio-temporal scales. In
addition to the accuracy of model representation, predictability depends on the precise
knowledge of initial conditions on all scale of motions. Since it is not possible to determine
the current state of the atmosphere exactly, small errors in unresolved motions con grow
fast and contaminate the resolved scales after a finite amount of time (Lorenz, 1969a). That
implies that there is an upper limit to the forecast skill, a limit beyond which the forecast
error cannot get any smaller by improving the forecast system in all his components (data
assimilation + model formulation). The limit of predictability will occur at a time when the
error growth saturates and the predicted state deviates as much from the verifying state
as a randomly selected, but dynamically and statistically possible state (Froude et al.,
2013). For middle-atmosphere quantities like geopotential heigh of 500 hPa isosurface , in
which most of the signal resides in the synoptic scale of motions, the upper limit of potential
predictability has been estimated to be in the order of 15 days, as first proposed by Edward
Lorenz in 1969. Research in this field has been consolidated since then, and yet it suggests
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that the predictability limit for mid-latitude weather exist and is intrinsic to the underlying
dynamical system, even if the forecast model and the initial conditions are nearly perfect.
Currently, a skillful forecast lead time of mid-latitude instantaneous weather hardly goes
beyond 10 days; a forecast time or skill horizon which can be considered as the practical
predictability limit (Zhang et al., 2019).

However, predictability is highly regime dependent and different atmospheric variables
have different forecast skill or practical predictability since they could be more or less
sensible to instabilities in atmospheric processes. The prediction of precipitation amounts
is influenced by many atmospheric processes ranging from the large scale, to the meso and
convective scale, and including micro-physic and cloud dynamics. Precipitation reflects
highly localized processes exhibiting large spatial variability. Its predictability is also highly
sensitive to the nature dominant process involved, with weakly forced convective cases being
very difficult to predict even at short range (Keil et al., 2020).

The prediction of precipitation is therefore still challenging with a practical predictabil-
ity well below the 10 day limit. This sensitivity of predictability is even more critical in case
of EPE. For example the probabilistic skill of direct grid-point precipitation, is about 2 day
(global average) for high precipitation thresholds indicative of extreme events (Hewson and
Pillosu, 2020) while the average skill over Europe computed over all precipitation events is
about 4.5 days (ECMWF operational verification page, SEEPS score Rodwell et al. (2010).
For Italy a detailed verification of precipitation forecasts in the ECMWF high resolution
run and COSMO local area model is carried out every season by ARPAE, using the dense
network of precipitation observation as a reference. These routine verification also reveal
that a useful skill in precipitation (Threat Score greater than 0.5) can be achieved only 1 to
2 days in advance for high thresholds representative of EPEs (e.g. greater than 20mm/24
for an area average) and limited to winter and autumn. However, in spring and especially
in summer the skill horizon of the aggregated precipitation forecast is even shorter due to
the prevailing convective nature.

1.8 Summary and research goals

A deeper understanding of how the large-scale predictable atmospheric motions regulates
local dynamics and precipitation processes is fundamental to make significant progress in
extreme precipitation and flood forecasting. An association between a Rossby wave and
heavy precipitation in the Alpine area have been previously identified by several authors,
assuming that EPEs are very tied to large-scale dynamical evolution. However in pre-
vious studies no difference was made on the type of extreme precipitation assuming the
same linkage between the large-scale and precipitation occurred in each event. In reality,
forecasting experience and analysis of cases studies shows that there is a large case to
case variability and this linkage may change dramatically, according for example with the
presence of convection and local forcing.

With this study we want to fill this gap, carrying out a more systematic investigation,
on many heterogeneous cases. In particular we focus on the relationship between the pre-
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dictable large-scale dynamics that create the right conditions for the genesis of extreme
events, and fast small-scale processes, such as convection, which rapidly destroy predictabil-
ity and pose a challenge for a correct forecast. In doing so we want also to take in account
for different kind EPEs which may be characterized by different dynamical evolution and
linkage with local scale processes. This effort to break down a complex sequence of events
in a few defined processes could improve our understanding of the main drivers, and it
pose the basis for a predictability estimate based on the processes. This would represent
a major step forward in the practice of weather forecasting since the current estimate of
uncertainty, based on a numerical approach (running many slightly perturbed simulations),
it not conveying to the forecast user the reason (dynamical process) of the uncertainty.

To achieve this goal, we rely on a large data set of heavy precipitation events, more
than 800 between 1979 and 2015. A target region of Northern-Central Italy has been
chosen due to the relative high frequency of EPEs and the availability of high-resolution
gridded observational dataset. The first step was to design an original and objective
method to classify EPEs according to the different atmospheric setting and processes in
which they originate. This classification, which will be addressed in the first scientific
paper included in this dissertation will serve as the backbone for the rest of project and
it is instrumental to the hypothesis that different categories of extremes exhibit different
predictability according to the driving processes. The second scientific papers will describe
a case study as an exemplary case of one of the three categories of EPE found. The detailed
analysis of different large-scale evolution leading to EPEs is discussed in the third paper.
Finally, the predictability dependencies on the EPE category and the relative large-scale
patterns are discussed in Chapter 4.



Chapter 2

Data and Methods

In this chapter we describe the datasets and the analysis methods used through the en-
tire research project and in the scientific papers. We introduce the target domain and
the homogeneous areas used to aggregate precipitation. Then we move on the reanalysis
datasets, discussing the choice of the of atmospheric predictors for the characterization
and classification of EPE. Moving on the description of the methods, we describe the ma-
chine learning algorithms used for EPE classification. Later we present the diagnostic of
Rossby wave packets and the potential vorticity tendency framework used to study the
dynamical precursors of EPE. Finally we define the predictability measures used to asses
predictability and other statistical methods.

2.1 Target domain

As we discussed in the introduction, we focus our analysis to northern–central Italy, an
area very prone to these phenomena with numerous cases documented and described in
the literature. Isotta et al. (2014) show that this region is one of the areas in Europe with
the highest fraction of high-intensity precipitation days compared to the total number of
wet days. Fig. 2.1 describes the geographical features of the area under investigation as
long as the areas used for precipitation averages. We choose to work with climatologically
homogenous areas rather than regular boxes of fix dimension. This choice is physically
motivated by a different response of precipitation processes respect to orography and region
exposition to the dominant flow. The areas used for precipitation averaging are the warning
areas defined by Italian Civil Protection (see next section for a definition) for northern and
central Italy. Labels indicate the name of each warning area which is composed of an
abbreviation of the administrative region followed by an alphanumeric code. The use of
these areas, as units for precipitation averages, is also motivated by potentially easier
transfer of outcomes of this research into operational forecast practices for warnings.

The blue rectangular box represents the target domain used for averaging upper-level
atmospheric variables derived from atmospheric reanalyses. The target domain is larger
compared with individual warning areas. The averaging of this larger domain is done to
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Figure 2.1: The figure shows the 94 warning areas of north-central Italy (as defined by Ital-
ian Civil Protection) used for precipitation averaging. Labels indicate the name of each
warning area which is composed of an abbreviation of the administrative region followed
by an alphanumeric code. Underlined names indicate areas characterised by significant
orography (see the elevation legend). The blue rectangular box represents the target do-
main used for averaging atmospheric variables. Latitudes and longitudes for reference are
included along the inner border of the figure
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capture the synoptic scale component associated with EPEs, which we assume to present
a smoother variation on that area on the timescale of one day. Our final goal in fact, is to
study how the upper-level flow forcing could induce different precipitation characteristics
at the surface, conditional on the dynamics and the thermodynamic stratification.

2.2 Warning areas and EPE definition

Since EPEs are at the core of our research project, it is essential to base our analysis on
a high-density and reliable observational dataset covering a sufficient number of years to
infer statistics of rare events. In that respect, the recently compiled ARCIS (Archivo Cli-
matologico per l’Italia centro-Settentrionale, Climatological Archive for Central–Northern
Italy) dataset appear the optimal choice. This is a gridded precipitation dataset (with a
resolution of 5km) derived from 1,762 rain-gauges that belong to different networks of 11
Italian regions plus several stations of adjacent Alpine regions, recently assembled by the
regional services (Pavan et al., 2019). The area covered is north-central Italy, at a daily
temporal resolution for the period 1961–2015. Input data are checked for quality, time con-
sistency, synchronicity, and statistical homogeneity. Data are spatially interpolated using
a modified Shepard scheme. The 24h accumulation period follows the best practice of the
Italian Hydrological Service reporting between 8 and 8 UTC of the following day.

Precipitation is aggregated over warning-area units (WA) provided by the Italian De-
partment of Civil Protection, where they are used operationally for the national warning
system. WAs are defined by a suitable aggregation of subregional hydrological basins.
The goal is to obtain homogeneous areas with respect to the type and intensity of meteo-
hydrological phenomena within a given territory. North-central Italy is subdivided into 94.
WAs (see Fig. 2.1) with the naming convention being an abbreviation of the administrative
region followed by an alphanumeric code. Their area extension ranges from the smallest
domain in Tuscany of 192 km2 (Tosc-S3) to the largest domain in Trentino Alto-Adige
Alpine region of 7,398 km2 (Tren-A). The mean area extension is 1,750 km2. First, we
compute the daily spatially average precipitation and spatial standard deviation for each
WA for the period 1979–2015. Secondly, we compute precipitation percentiles considering
wet days only (daily accumulation greater than or equal to 1 mm). EPEs are subsequently
defined as days with daily precipitation greater than or equal to the 99th percentile across
one or more WAs. A description of each area, including their precipitation percentiles
value, is provided in Table S1 in the Appendix. Note that with this upscaling approach,
we are implicitly disregarding localised events smaller than roughly 300 km2.

2.3 Datasets for atmospheric variables

Above we have described the gridded precipitation dataset, here we introduce the datasets
for the free atmosphere. Required atmospheric variables are obtained from reanalyses
and reforecasts of the European Centre for Medium-range Weather Forecasts (ECMWF).
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ECMWF uses its state of the art Integrated Forecast System (IFS), not only to provide
member states with timely operational forecasting products, but also to reanalyse past
observations. This complex data-assimilation procedure allow to create a global and ho-
mogeneous 3D description of the recent history of the atmosphere, land surface, and oceans.
The IFS is a comprehensive and complex Earth-system model that includes a mathemat-
ical formulation of the atmospheric motions (momentum, thermodynamic and continuity
equations) plus many parametrized physical processes like cloud microphysics, but also its
chemical composition, the marine environment and land processes. Another fundamental
part of the IFS is the data assimilation procedure. It is a sophisticated global variational
procedure which is used to produce, using all available observations and previous short
range forecast valid at a given time, the best possible estimate of the atmospheric state
(initial conditions) to start the new forecast simulations. The combination of state of the
art modelling and optimal use of historical observations make the reanalysed fields a very
powerful tool for diagnostic and process studies, and key elements also to produce global
climatologies. In the following sections, we are going to describe briefly the main dataset
used.

2.3.1 ECMWF Era-Interim

ERA-Interim is a global atmospheric reanalysis that is available from 1 January 1979 to
31 August 2019. The data assimilation system used to produce ERA-Interim is based
on a 2006 release of the IFS (Cy31r2). The system includes a 4-dimensional variational
analysis (4D-Var) with a 12-hour analysis window. The spatial resolution of the data set
is approximately 80 km (T255 spectral) on 60 levels in the vertical from the surface up
to 0.1 hPa (Dee et al., 2011). We retrieved field at 6 h intervals, temporally accumulated
to daily resolution and spatially averaged over a box covering north-central Italy (blu box
in Fig. 2.1). ARCIS and ECMWF reanalysis datasets are used for the common period
1979–2015 ERA-Interim reanalysis was initially used in the first part of the work (Part
I), in the classification algorithm, described in Chapter 3. Later an upgraded reanalysis
was released by ECMWF, ERA5 (see next section for a description). We recomputed
the classification with the new reanalysis. The EPE list and classification is essentially
unchanged since it is based on area-averaged values and it is not sensitive to small local
changes. ERA5 fields were used trough for all the rest of the study.

2.3.2 ECMWF Era5

ERA5 is the new global ECMWF reanalysis covering the period 1979- to within 5 days
of realtime. The period will be further expanded in the past, starting from 1950 to real
time. ERA5 provides hourly estimates of a large number of atmospheric, land and oceanic
climate variables. The data cover the Earth on a 30km grid and resolve the atmosphere
using 137 levels from the surface up to a height of 80km. ERA5 includes information about
uncertainties for all variables at reduced spatial and temporal resolutions. It combines
increased amounts of historical observations into global estimates using advanced modelling
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and data assimilation systems. It was produced using 4D-Var data assimilation with IFS
cycle CY41R2 the one introduced in operation in 2016. Vertical resolution is also increased
to 137 hybrid sigma/pressure (model) levels in the vertical, with the top level at 0.01 hPa.
The IFS is coupled to a soil model and an ocean wave model (Hersbach et al., 2020).

2.3.3 ECMWF EPS reforecast

For the evaluation of predictability we use a reduced version of the operation ensemble
forecast, the so-called reforecast suite, designed to compute the model climatologies for
the medium and long-range operational forecast. The ECMWF reforecast suite is based
an 11-member ensemble running biweekly for 46-day, with the latest IFS cycle (Vitart
et al., 2019). Every Monday and Thursday the system is run on the same day and months
of the past 20 years. For instance, if the starting date of the real-time forecast is 29 March
2021, the corresponding climatology is a 11-member ensemble starting on 29 March 2020,
29 March 2019, ..., 29 March 2002. The 11-member ensemble is thus integrated with 20
different starting dates (same day and month, but different years) producing about 220
runs for each given date. The re-forecast, being run operationally and archived since 2018,
allows to cover EPE dates going back to year 2000. The combination of the availability of
the re-forecast, which is bi-weekly, and the distribution of EPE from 2015 to 2000, gives a
sample of between 30 and 40 cases, which is a just sufficient to base our statistic. Despite
the limitation of not being available on a daily basis, which reduce the number of forecasts
validating on a given date, this dataset allows comparing the predictability of past dates
with an up to date and homogeneous forecasting system. If we had used the archived full
operational ensemble we wouldn’t be able to compare events belonging to different years
since the average skill of the model has increased steadily from the early days of numerical
weather prediction, roughly 1 day per decade (Bauer et al., 2015).

2.3.4 Choice of the atmospheric predictors

Since we propose an categorization method based on dynamic upper-air fields and the
thermodynamic state, the choice of predictors representing these processes is critical. We
select eight possible predictors which describe the EPE environment, including variables
sensitive to flow conditions and variables representative of thermodynamic conditions. The
choice has been made through a combination of established variables described in the
literature or previous case-studies with predictors typically used by forecasters in their
operational experience. Their names and abbreviations are listed and fully described in
Table 1 below. In particular, the use of CAPE, the convective adjustment timescale Tau
(see section 2.4.1) and vertically integrated water vapour transport (IVT), accounting for
water vapour fluxes (Lavers and Villarini, 2015), are already well establish in literature.
In addition, Θe850 and the total column water vapour (TCWV) are used for describing air-
mass types. ∆Θe500−850 and BS500-925 (Bulk Shear) are also included, providing further
information on the convective environment.
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For each day in the 37-year period, spatial averages across the target domain are com-
puted for these variables. Initial tests showed that maximum/minimum values for fields
describing the convective environment have better discriminatory power than their mean
daily values. Thus, maximum values of spatial averages of Tau, CAPE, BS500-925 and
minimum values of ∆Θe500−850 , all available at 6-hourly temporal resolution, are used
instead of daily means.

2.3.5 Convective adjustment timescale computation

The convective adjustment timescale (Tau ) is used to discriminate between atmospheric
states that differ by the rate of removal of conditional instability: equilibrium and non-
equilibrium regimes (Done et al., 2006). In the equilibrium regime, the generation of CAPE
is balanced by widespread convective heating associated with synoptic forcing, while in the
non-equilibrium regime CAPE can rise to larger values since convection is limited by high
convection inhibition (CIN) and its initiation is associated with local circulations in the
boundary layer (weak large-scale forcing). Values between 3 and 12h can be used as a
threshold to discriminate between these regimes with a value of 6 h mostly used (Molini
et al. (2011);Keil et al. (2014);Kober et al. (2014)). Following Zimmer et al. (2011), Tau
is computed as

Tau =
1

2

CpρT0
Lvg

CAPE

P

at 3 h intervals and averaged over the target domain.The first part of the equation is
constant: Lv is the latent heat of vaporization, ρ is the air density, Cp the specific heat at
constant pressure, g the acceleration of gravity and T0 a reference temperature. CAPE
and precipitation P are time dependent and are extracted from short-term forecasts of
ERA-Interim at 3 h intervals since these are not analysed fields. P is divided accordingly
to obtain hourly precipitation rates needed for the computation. We omit grid-points with
hourly rain rates lower than 0.2 mm/h. This empirically determined threshold allows a
good balance between avoiding very low intensities that would produce spurious high values
of Tau, and providing enough data points for a robust estimate. The domain-averaged Tau
is set to zero if there are less than 10% precipitating grid points.
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2.4 Machine Learning algorithm description

The machine-learning classification is performed using modules of the Scikit-Learn library
written in Python (Pedregosa et al., 2011). In particular, based on the set of eight predic-
tors, we use the Kmeans method of the sklearn.cluster module to classify EPEs in three
categories. Kmeans clustering is an unsupervised machine learning algorithm. In contrast
to traditional supervised machine learning algorithms, Kmeans attempts to classify data
without having first been trained with labeled data. The algorithm assigns every data
point to one of the K predefined groups (3 in our case) following a minimization, in mul-
tidimensional space, between cluster centroid and points. To check whether it is possible
to reduce the number of predictors, we use the RandomForestClassifier (sklearn.ensemble
module) to simulate the classification obtained by Kmeans. This ensemble learning method
fits a number of decision trees (in our case 100 estimators or trees) to various sub-samples
of the dataset and uses averaging to improve the accuracy. In this way, through the feature
importance, we can estimate the sensitivity of Kmean classification with respect to chosen
predictors and then re run the Kmean without the unnecessary predictors (those with a
low feature importance). Essentially these two algorithm are applied in a two step method
with the RandomForestClassifier which help to refine the Kmeans classification.

2.5 Statistical method and scores

2.5.1 Silhouette score (SIL)

As an objective metric to judge the cluster separation into three categories, we used the
Silhouette score (SIL), implemented in the silhouette score method part of the Sklearn
metrics module. This score measures, along each dimension (i.e. each predictor in a nor-
malised space), how tightly the events are grouped inside each cluster (cohesion) compared
to the remaining clusters (separation). It ranges from 1 (wrong clustering) to 1 (fully
separated clusters) with values equal to 0 indicating that a given element has the same
distance from the other cluster centroids (overlapping). The Silhouette score is computed
for all classification methods and averaged over all elements falling in each category.

2.5.2 Homogeneous sample selection

Given that the EPE sample size in the three categories is not equal (361, 344, and 182
cases in category 1, 2, and 3, respectively), for the purpose of comparison, a sample of 100
events in each category is selected. The selection of the 100 representative cases is slightly
different trough the study. In the classification part (Part I) the selection is based on the
top 100 ranking events in each category based on the Silhouette score. While in the study
of the dynamic precursors, before ranking according to SIL, we selected only independent
events. For events that lasted for more than one day, we only consider the first day. In
addition, if two events are not at least 3 days apart, we discard the second one so that
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the events we consider are to some extent meteorologically independent. From the filtered
samples, we then select the 100 most representative ones of each EPE category based on a
SIL ranking. This modified selection removes approximately 10% of the EPEs that were
identified in Part I.

2.5.3 Statistical significance assessment

Statistical significance in the composite maps and Hovmöller diagrams is assessed using a
Monte Carlo approach (Martius et al., 2008). In particular, the value at a grid point is
statistically significant at the =0.10 level, if it belongs to the highest or lowest 5% tail of
a distribution created by reconstructing the mean 300 times using random selections of an
equal number of dates.

2.5.4 Normalised Precipitation Spread (NPS)

It is computed from the ECMWF EPs reforecast of daily precipitation averaged over each
warning area only for areas containing at least 3 grid points, discarding smaller areas. NPS
is the ratio of the the interquartile (IQR) of daily ensemble members average precipitation
over each area and the median. This spread normalised measure is commonly used to asses
the spread of precipitation in a ensemble systems.

2.5.5 Potential Predictability Index (PPI)

Following the method described by Lavers et al. (2014), potential predictability is com-
puted as the coefficient of determination r2, or the square of the linear Pearson correlation
coefficient, between the two series containing, for each forecasts steps (+ 24h to +168h,
every 24h ), the forecast fc and the ”truth” t precipitation averaged each warning area
WAi. For example ensemble member 1 is considered ”truth” while ensemble mean of
members 2-11 is taken as a forecast. The process is repeated eleven times for all ensemble
members. For each area and time steps we obtain 11 pairs of time series containing t and
fc for all EPE cases of the last 20 years (about 30 cases for each forecast step). Final PPI
is computed as average of r2 of all ensemble members and over the areas, separating those
being flat or being prominently mountainous. A third kind of average is done computing
precipitation averages not on single warning areas but over the whole northern-central Italy
domain (all).

2.6 Diagnosis of Rossby wave packet amplitude

The diagnosis of RWP amplitude (E) follows the approach of Zimin et al. (2003), with a
few distinctions in the input variable and filtering steps. First, the 300hPa meridional wind
anomaly at every latitude is zonally filtered to wavelengths 2,000–10,000km using a Tukey
window in spectral space as in Fragkoulidis et al. (2018). Using the anomaly field excludes
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the effect of stationary waves from the analysis and the zonal filtering restricts to the more
relevant scales of a transient RWP evolution, that is, the typically small contribution from
transient planetary waves and small-scale features is effectively discarded. Subsequently, a
meridional convolution with a Hann window (Harris, 1978) of 7° length at half maximum
is applied in order to account for possible nonphysical discontinuities from the latitude-
wise application of the zonal filtering. Discarding the negative frequencies and applying
an inverse Fourier transform to the meridional wind signal at every latitude results in
a complex representation of this signal. The modulus of this so-called “analytic signal”
corresponds to the envelope, E, of meridional wind, that is, the RWP amplitude. Finally,
a weak smoothing is applied to the E field by discarding zonal wavelengths below 4,000km.

2.7 PV tendency framework

The spatio-temporal evolution of the upper-tropospheric flow preceding EPEs is investi-
gated by analysing the potential vorticity (PV) tendencies, as introduced by Teubler and
Riemer (2016). This framework was previously applied, among other studies, to investi-
gate the amplification of a North Atlantic ridge–trough couplet, associated with a severe
precipitation event on the northern side of the Alps (Piaget et al., 2015).

The framework is based on the hydrostatic form of PV on isentropic surfaces. Anoma-
lies in PV, PV ′, are calculated as deviations from a 30 day mean background state PV .
Following the concept of baroclinically coupled Rossby waves (Hoskins et al., 1985) the PV
anomalies are separated into upper-level and low-level PV anomalies. The associated wind
field perturbation is derived by piecewise PV inversion under nonlinear balance (Charney
(1955); Davis (1992)). From that we calculate PV tendencies due to the advection of the
PV background by (a) the upper-level wind field perturbation, which physically represents
downstream development and by (b) the low-level wind field perturbation, which represents
baroclinic interaction. We add the (negligible) advection term by the background flow to
(a) and refer to this, in the following, as quasi-barotropic propagation. Additionally we
derive the divergent flow by Helmholtz-partitioning. Similar to the advective tendencies
from piecewise PV inversion we calculate the advection of the PV background by the diver-
gent flow and additionally the PV tendency accounting for an area change of the anomalies
due to divergent flow (compare tendencies from equation 6 in Teubler and Riemer (2020).
In the following, a vertical average of the PV tendencies between 315 and 350K (every 5
K) is considered to account for the seasonal cycle. A more detailed description of the PV
tendency framework and a comparison to the more commonly used eddy kinetic energy
framework can be found in Wirth et al. (2018).
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Chapter 3

Scientific publications

The core of this dissertation is composed by three scientific publications which are in-
cluded here in chronological order after a short description, the main goal and authors
contribution.

1) Grazzini, F, Craig, GC, Keil, C, Antolini, G, Pavan, V. (2020a): Extreme precipita-
tion events over northern Italy. Part I: A systematic classification with machine-learning
techniques. Q J R Meteorol Soc. 2020; 146: 69– 85. https://doi.org/10.1002/qj.3635.

This publication explains the original method for classifying extreme precipitation
events in three categories. The classified events are used as a basis for composites in
all the successive steps of the research.Author contribution: FG and GC designed the re-
search. FG designed and wrote the scripts (including machine-learning code). GA and VA
handled the ARCIS archive and provided pre-processed data. CK provided a contribution
on the interpretation and use of convective time scale concept. All authors discussed re-
sults and manuscript draft.

2) Grazzini, F., Fragkoulidis, G., Pavan, V. et al. (2020b): The 1994 Piedmont flood:
an archetype of extreme precipitation events in Northern Italy. Bull. of Atmos. Sci. and
Technol. 1, 283–295. https://doi.org/10.1007/s42865-020-00018-1

In this article we revisit an extreme event (which caused enormous losses in Northern
Italy) in the context of our new classification methodology, showing that is falling in the
most severe category. Through the analysis of this case we try to identify possible strategies
for the use of real-time classification. Author contribution: FG outlined the research. FG
and GF run scripts and produced Fig. 2-6, GA and VP took care of Fig.1 and handling of
the observational database. FG and GF discussed the results and contributed mainly in
the writing although all authors contributed to the manuscript draft.

3) Grazzini, F, Fragkoulidis, G, Teubler, F, Wirth, V, Craig, GC. (2021): Extreme pre-
cipitation events over northern Italy. Part II: Dynamical precursors. Q J R Meteorol Soc.
; 1– 21. https://doi.org/10.1002/qj.3969
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Through composite analysis, we did a systematic investigation of the dynamical pre-
cursors and drivers of the EPE in the different categories. For the fist time we apply an
advanced PV tendencies framework on a large number of cases. We obtained e detailed
insights on the dynamical evolution prior different EPE categories. These information pro-
vide an interpretative framework for the predictability differences in presented in Chapter
4. Author contribution: FG outlined the research. GF and GC and VW contributed to the
refinement of the study. FG and GF run scripts and produced figures, with the exception
of Fig. 12-14, which were made by FT which also implement and handled the PV tendency
diagnostic. FG , GF and FT discussed the results and contributed mainly in the writing
although all authors contributed to the manuscript draft.
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Abstract
Extreme precipitation events (EPEs) are meteorological phenomena of major con-

cern for society. They can have different characteristics depending on the physical

mechanisms responsible for their generation, which in turn depend on the large and

mesoscale conditions. This work provides a systematic classification of EPEs over

northern–central Italy, one of the regions in Europe with the highest frequency of

these events. The EPE statistics have been deduced using the new high-resolution

precipitation dataset ArCIS (Climatological Archive for Central–Northern Italy),

that gathers together a very high number of daily, quality-controlled and homoge-

nized observations from different networks of 11 Italian regions. Gridded precip-

itation is aggregated over Italian operational warning-area units (WA). EPEs are

defined as events in which daily average precipitation in at least one of the 94 WAs

exceeds the 99th percentile with respect to the climate reference 1979–2015. A list of

887 events is compiled, significantly enlarging the database compared to any previ-

ous study of EPEs. EPEs are separated into three different dynamical classes: Cat1,

events mainly attributable to frontal/orographic uplift; Cat2, events due to frontal

uplift with (equilibrium) deep convection embedded; Cat3, events mainly generated

by non-equilibrium deep convection. A preliminary version of this classification

is based on fixed thresholds of environmental parameters, but the final version is

obtained using a more robust machine-learning unsupervised K-means clustering

and random forest algorithm. All events are characterized by anomalously high inte-

grated water vapour transport (IVT). This confirms IVT as an important large-scale

predictor, especially for Cat2 events, which is shown to be the most important cat-

egory in terms of impacts and EPE area extension. Large IVT values are caused by

upper-level waves associated with remotely triggered Rossby wave packets, as shown

for two example Cat2 events.

K E Y W O R D S
ArCIS, atmospheric rivers, extreme precipitation, large-scale precursors, machine learning, precipitation

classification, Rossby wave packets, waves to weather
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1 INTRODUCTION

Prediction of extreme precipitation events (EPEs) is a funda-
mental scientific challenge and of key importance to society,
not only for civil protection purposes but also for water man-
agement optimization. EPEs result from interactions of differ-
ent physical processes on a wide range of spatial and temporal
scales and this complexity poses challenges for their skilful
forecast. Large-scale slowly evolving flow can be predictable
over many days, but convective situations, dominated by fast
processes, can be characterized by upscale error growth that
can severely reduce predictability (Hohenegger et al., 2006).
A deeper understanding of how the large-scale atmospheric
flow interacts (especially in terms of error propagation) with
local dynamical and precipitation processes is fundamental to
make significant progress in extreme precipitation and flood
forecasting. This interaction has been shown to change on a
case-to-case basis (Craig and Selz, 2018).

Several atmospheric and geographical factors can con-
tribute to the development of EPEs. A key element is
moisture availability and its transport, a necessary condition
to achieve extreme daily accumulations (Lavers and Villar-
ini, 2015). Others factors include presence and organization
of convection, thermal and moisture stratification, precipita-
tion efficiency, air-stream ascent mechanism and interaction
with orography, proximity to the sea and vertical wind shear.
The Mediterranean area is located at the end of the Atlantic
storm track and, with the combination of a warm sea (espe-
cially in autumn) surrounded by high orography, presents a
perfect laboratory to study the relative contribution of the
different factors (Khodayar et al., 2018). A number of studies
have already identified large-scale precursors of Mediter-
ranean EPEs. Several authors highlighted the presence of an
upper-level trough (Rossby wave) that enables, on its eastward
movement, a warm-moist southerly airflow over the western
Mediterranean basin (Massacand et al., 1998; Grazzini, 2007;
Martius et al., 2008; Nuissier et al., 2011; Pinto et al., 2013).
In addition, Pfahl et al. (2014) and Raveh-Rubin and Wernli
(2015) have shown that more than 50% of these moist airflows
are classifiable as a Warm Conveyor Belt (WCB), pointing
to the importance of baroclinic instability and large-scale
lifting for extreme precipitation in this region. The analysis
of moisture supply for EPEs confirms a prominent role of
large-scale transport with important contributions, especially
in convective cases, from local sources. For example, Win-
schall (2013) and Winschall et al. (2014) have shown a high
event-to-event variability in moisture supply. They identify
water vapour coming from remote origins such as the North
and subtropical Atlantic as a major contributor for stratiform
precipitation, while a greater contribution comes from local
moisture sources, like evaporation from the Mediterranean
Sea, when Mesoscale Convective Systems (MCS) pro-
duce heavy precipitation. Within the WCB of extratropical

cyclones, strong moisture advection usually occurs in narrow
filaments of high integrated water vapour, called atmospheric
rivers. Studies have indicated that atmospheric rivers can be
a precursor of heavy precipitation in mountainous areas, also
in Europe as shown by Lavers and Villarini (2013).

Given this large body of previous studies highlighting both
large-scale components and significant contributions of local
convective processes leading to EPEs (Ducrocq et al., 2014),
it is desirable to condense this knowledge by developing a
systematic classification of EPE. Inevitably, such a classifi-
cation will introduce simplifications with respect to physical
processes acting in nature, but it may prove useful to gain
a deeper understanding. In an operational context, this may
help forecasters to build conceptual models for different kinds
of EPEs, while in research it will allow us to study pre-
dictability for each specific category separately. Some authors
have already dealt with precipitation classification methods,
first looking only at precipitation data (Llasat, 2001; Pinto
et al., 2013), or combining two-dimensional (2D) radar data
and neural network classification algorithms to discriminate
between frontal and convective precipitation (Walther and
Bennartz, 2006). Molini et al. (2011) classified severe rainfall
events based on hydro-meteorological and dynamical criteria
over a period of 3 years.

Expanding the Molini et al. (2011) approach we propose
a categorization method which considers dynamic upper-air
variables and the thermodynamic state, in addition to pre-
cipitation data. Our goal is to discriminate between three
categories of EPE: those of frontal origin, those generated
by deep convection, and an intermediate category. In this
respect, a machine-learning approach provides an innovative
framework to achieve this classification. Among its advan-
tages are easy-to-generalize methods, efficient handling of
a large number of predictors, integration of physical under-
standing into statistical models and exploration of additional
information from the data, as shown in a series of applications
related to high-impact weather recognition by McGovern
et al. (2017). K-means clustering has been widely used
for clustering weather patterns (see e.g. a similar approach
applied to precipitation over Greece by Houssos et al.
(2008)). However, the combination of K-means, plus random
forest refinement (see sections 2.1 and 4.2 for a brief descrip-
tion of the two algorithms) used here, is novel. The result of
this combination is to produce a better separation of EPEs
into three different categories, outperforming the subjective
classification.

We restrict our analysis to northern–central Italy, an area
very prone to these phenomena with numerous cases doc-
umented and described in the literature. Isotta et al. (2014)
shows that this region is one of the areas in Europe with the
highest fraction of high-intensity precipitation days compared
to the total number of wet days. Our EPE database con-
tains 887 events spanning a period of 37 years (1979–2015),
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thus significantly increasing the number of cases compared
to previous studies. For instance, this is a 10-fold increase
compared to Molini et al. (2011).

After having described in detail the datasets used and the
choice of the predictors in section 2, we present the EPEs clas-
sification focusing on the seasonal distribution of the events
and commenting on its connection with seasonality of the
large-scale forcing in section 3. In section 4 we show the clus-
tering criteria. In section 5 we discuss the results, illustrate
the characteristics of the different EPE categories, and focus
in particular on events classified in category 2 for which we
show two example cases. We conclude in section 6.

2 DATA AND METHODS

This study is based upon three complementary data sources:

1. ECMWF ERA-Interim reanalyses for atmospheric fields
(Dee et al., 2011)

2. Northern–central Italy daily precipitation dataset ArCIS
3. Italian warning-area shape data (provided by Italian

Department of Civil Protection) used to compute precipi-
tation area averages

ArCIS (Archivo Climatologico per l'Italia
centro-Settentrionale, Climatological Archive for Central–
Northern Italy) is a gridded precipitation dataset
(5 km× 5 km) derived from 1,762 rain-gauges that belong
to different networks of 11 Italian regions plus a number
of stations of adjacent Alpine nations. The area covered
is north-central Italy, at daily temporal resolution for the
period 1961–2015. Input data are checked for quality, time
consistency, synchronicity and statistical homogeneity. Data
are interpolated using a modified Shepard scheme. A full
description of the dataset can be found in Pavan et al. (2019).
The 24 h accumulation period follows the best practice of
the Italian Hydrological Service reporting between 0800 and
0800 UTC. That means that the nominal time of precipitation
records is shifted by plus one day with respect to most of the
hours in which rain has potentially been accumulated. This
is taken into account, subtracting one day when comparing
with daily mean reanalysis data. Precipitation is aggregated
over warning-area units (WA) provided by the Italian Depart-
ment of Civil Protection, where they are used operationally
for the national warning system. WAs are defined1 by a suit-
able aggregation of subregional hydrological basins. The
goal is to obtain homogeneous areas with respect to the
type and intensity of meteo-hydrological phenomena within
a given territory. North-central Italy is subdivided into 94

1WAs definition can be found here (in Italian): http://www.protezionecivile.
gov.it/attivita-rischi/schede-tecniche/dettaglio/-/asset_publisher/default/
content/zone-di-aller-3.

WAs (displayed in Figure 1) with the naming convention
being an abbreviation of the administrative region followed
by an alphanumeric code. Their area extension ranges from
the smallest domain in Tuscany of 192 km2 (Tosc-S3) to
the largest domain in Trentino Alto-Adige Alpine region of
7,398 km2 (Tren-A). The mean area extension is 1,750 km2.
First, we compute the daily spatially average precipitation
and spatial standard deviation for each WA for the period
1979–2015. Secondly, we compute precipitation percentiles
considering wet days only (daily accumulation greater than
or equal to 1 mm). EPEs are subsequently defined as days
with daily precipitation greater than or equal to the 99th per-
centile across one or more WAs. A description of each area,
including their precipitation percentiles value, is provided in
Table S1 in File S1. Note that with this upscaling approach
we are implicitly disregarding localized events smaller than
roughly 300 km2.

Fields from European Centre for Medium-range Weather
Forecasts (ECMWF) ERA-Interim reanalyses are retrieved
at 6 h intervals, temporally accumulated to daily resolution
and spatially averaged over a box covering north-central Italy
(indicated by the blue rectangle in Figure 1 and hereafter
called target domain). Upper-air fields are averaged over the
target domain, rather than on single warning areas, since our
final goal is to study how a given upper-level flow forcing
produces different precipitation characteristics at the surface
conditional on the dynamics and the thermodynamic stratifi-
cation. ArCIS and ECMWF ERA-Interim datasets are used
for the common period 1979–2015.

2.1 Choice of atmospheric predictors
The choice of predictors was obtained through a combination
of established variables described in the literature or previous
case-studies with predictors typically used by forecasters in
their operational experience. We select eight possible predic-
tors which describe the EPE environment, including variables
sensitive to flow conditions and variables representative of
thermodynamic conditions. Their names and abbreviations
are listed and fully described in Table 1. In particular, the
use of CAPE, the convective adjustment time-scale Tau (see
section 2.2) and IVT accounting for water vapour fluxes
(Lavers and Villarini, 2015) are well documented. In addi-
tion, 𝜃e850 and TCWV are used for describing air-mass types.
Δ𝜃e and BS500-925 (Bulk Shear) are also included, provid-
ing further information on the convective environment. For
each day in the 37-year period, spatial averages across the
target domain are computed for these variables. Initial tests
showed that maximum/minimum values for fields describing
the convective environment have better discriminatory power
than their mean daily values. Thus, maximum values of spa-
tial averages of Tau, CAPE, BS500-925 and minimum values
of Δ𝜃e500-850, all available at 6-hourly temporal resolution,
are used instead of daily means.
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F I G U R E 1 The figure shows the 94 warning areas of north-central Italy (as defined by Italian Civil Protection) used for precipitation averaging.
Labels indicate the name of each warning area which is composed of an abbreviation of the administrative region followed by an alphanumeric code.
Underlined names indicate areas characterized by significant orography (see the elevation legend). The blue rectangular box represents the target
domain used for averaging atmospheric variables. Latitudes and longitudes for reference are included along the inner border of the figure

T A B L E 1 ERA-Interim variables chosen as predictors to represent the large-scale flow associated with EPEs. For each EPE day,
variables are spatially averaged over the Target Domain and aggregated daily as reported in the table

Variable Description Units

Taudmax Daily maximum of convective adjustment time-scale h

CAPEdmax Daily maximum of CAPE J/kg

IVTe Daily mean of zonal component of integrated water vapour transport (surface up to 300 hPa) kg m−1 s−1

IVTn Daly mean of meridional component of integrated water vapour transport (surface up to 300 hPa) kg m−1 s−1

𝜃e850 Daily mean of equivalent potential temperature at 850 hPa K

Δ𝜃e500-850_dmin Daily minimum of delta 𝜃e (500–850)hPa K

TCWV Daily mean of total column water vapour kg/m2

BS500_925_dmax Daily maximum of wind bulk shear 500–925 hPa m/s

2.2 Convective adjustment time-scale
computation (Tau)

The convective adjustment time-scale is used to discriminate
between atmospheric states that differ by the rate of removal

of conditional instability: equilibrium and non-equilibrium
regimes (Done et al., 2006). In the equilibrium regime the
generation of CAPE is balanced by widespread convec-
tive heating associated with synoptic forcing, while in the
non-equilibrium regime CAPE can rise to larger values since
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convection is limited by high convection inhibition (CIN) and
its initiation is associated with local circulations in the bound-
ary layer (weak large-scale forcing). Values between 3 and
12 h can be used as a threshold to discriminate between these
regimes with a value of 6 h mostly used (Molini et al., 2011;
Keil et al., 2014; Kober et al., 2014). Following Zimmer et al.
(2011), Tau is computed as

𝑇 𝑎𝑢 = 1∕2 ∗
(
𝐶𝑝𝜌0𝑇0

𝐿𝑣𝑔

)
∗
(CAPE

𝑃

)

at 3 h intervals and averaged over the target domain. CAPE
and precipitation P are extracted from short-term forecasts
of ERA-Interim at 3 h intervals since these are not analysed
fields. P is divided accordingly to obtain hourly precipitation
rates needed for the computation. We omit grid-points with
hourly rain rates lower than 0.2 mm/h. This empirically deter-
mined threshold allows a good balance between avoiding very
low intensities that would produce spurious high values of
Tau, and providing enough data points for a robust estimate.
The domain-averaged Tau is set to zero if there are less than
10% precipitating grid points.

2.3 Machine-learning algorithm
description and Silhouette score
The machine-learning classification is performed using mod-
ules of the Scikit-Learn library written in Python (Pedregosa
et al., 2011). In particular, for clustering we use the Kmeans
method of the sklearn.cluster module, and for removing
the unnecessary predictors (or reducing impurity in the
machine-learning language) we used the RandomForestClas-
sifier method, and its attribute feature_importances, which
are part of the sklearn.ensemble module. As an objective met-
ric to judge the cluster separation into three categories we
used the Silhouette score (Rousseeuw, 1987), implemented
in the silhouette score method part of the sklearn.metrics
module. This score measures, along each dimension (i.e.
each predictor in a normalized space), how tightly the events
are grouped inside each cluster (cohesion) compared to the
remaining clusters (separation). It ranges from −1 (wrong
clustering) to 1 (fully separated clusters) with values equal to
0 indicating that a given element has the same distance from
the other cluster centroids (overlapping). The Silhouette score
is computed for all classification methods and averaged over
all elements falling in each category.

3 EPE SEASONAL DISTRIBUTION

The seasonal distribution of all 887 EPE days is displayed in
weekly bins in Figure 2. One bin contains 7 days, each count-
ing from the first day of the year. Grouping in weeks instead
of months, as done in previous studies, provides a more

detailed temporal evolution and facilitates deeper insights
into the large-scale triggering of the events. All EPE days
are attributable to 633 independent events (separated at least
by one day) with a mean duration of 1.4 (± 0.7) days. A
marked seasonal cycle is visible in Figure 2 with a main
peak in the autumn season. From the beginning of Septem-
ber to the beginning of December the relative frequency of
EPEs is very high, reaching a maximum in weeks 45 and 46,
where values are larger than one. Relative frequencies greater
than one implies more than one EPE day per week. This
is caused by the higher frequency of events persisting over
consecutive days in this period of the year (the mean dura-
tion in weeks 45 and 46 increases to 1.8 days). This autumn
peak of heavy precipitation events over the Mediterranean
is well documented (Khodayar et al., 2018; Pavan et al.,
2019) and is explained by the large thermal gradient between
the warm sea and the atmosphere, favouring strong mois-
ture and heat exchange. Winter and mid-summer are periods
with a low EPE frequency, while from April to mid-June a
secondary peak emerges that is less discussed in the litera-
ture. The observed frequency in spring is almost half of that
observed in autumn and the interannual variability is much
higher, as indicated by the wider confidence interval. The
entire seasonal cycle of EPEs shows remarkable correlation
with mean IVTn fluxes (Figure 2). This has important impli-
cations since it indicates that EPEs are statistically associated
with large-scale precursors which are ultimately responsible
for triggering strong meridional water flux transport towards
the target area. On EPE days, the mean IVTn anomaly over
the target domain is in fact +1.3 standard deviations over its
climatological (weekly) value.

4 EPE CLUSTERING AND
CLASSIFICATION

In the previous section we have shown that periods with
high EPE frequency are associated with anomalously high
IVTn. However, the resulting precipitation pattern can vary
substantially depending on details of the mesoscale and ther-
modynamic state. Given a similar large-scale setting, an
EPE can be generated by different processes, including or
excluding convection for example. In winter for example,
when colder air masses hold less water vapour, EPEs can
be achieved only by a strong moisture transport from remote
areas (e.g. in the form of atmospheric rivers) in associa-
tion with additional uplift forced by steep topography. Lavers
and Villarini (2013) have shown in fact that this association
is stronger in winter months. On the other end, in sum-
mer, characterized by high moisture availability and high
thermodynamic instability, a weaker thermal circulation can
be sufficient to trigger convection, even on modest relief
(Khodayar et al., 2018). The details of the different precip-
itation mechanisms of moist flow impinging on orography
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F I G U R E 2 Seasonal distribution of EPEs in the period 1979–2015. Bars show the mean frequency of EPEs in bins of 7 days. The thin solid
blue curve and corresponding shaded area depict moving averages over 21 days and 95% confidence intervals, respectively, estimated with the
adjusted Wald method assuming a binomial distribution inside each bin. The thick red curve shows the climatological frequency of days with IVTn
averaged over the target domain greater than 150 (kg m−1 s−1), a threshold corresponding to the 95th percentile of the area-averaged IVTn
distribution for all days in the period 1979–2015. The IVTn curve is also based on a 21-day moving average

have been extensively investigated in the Hydrological cycle
in Mediterranean eXperiment (HyMeX) project, and in par-
ticular during the special observing period SOP1 dedicated
to studying heavy precipitation across the Mediterranean
(Ducrocq et al., 2014). Davolio et al. (2016) have shown,
for example, two case-studies with similar large-scale flows
that result in two very different precipitation patterns. The
difference was attributable to the type of interaction of the
impinging flow with orography; in one case producing con-
vection upstream due to persistent blocked-flow conditions,
while in the other case heavy rain was limited to the main
Alpine crest as the flow went over the orography. This char-
acterization is based on a detailed analysis of how the flow
interacts in space and time with the orographic barrier, and
would be difficult to repeat for our large EPE dataset. For
this reason, we propose a more practical approach based on
a categorization of EPEs according to mean values of typ-
ical predictors averaged over the target domain. Based on
these arguments, we subdivide EPEs into three categories
differentiated by the main processes involved:

• Category 1 (main process: frontal/orographic uplift)
EPEs in this category originate from intense and persis-

tent frontal structures, including slantwise ascent in warm

sectors, often classifiable as Warm Conveyor Belt (WCB),
initiated by an upper-level Rossby wave in the western
Mediterranean. Mechanical orographic uplift of low-level
marine, moist air is the key factor to attain extreme pre-
cipitation over steep topography. Remotely transported
moisture via atmospheric rivers may also play a role. Rare
presence of convection, mostly associated with cold-front
passages, accounts only for a small fraction of total precip-
itation of the event.

• Category 2 (main process: frontal uplift with equilibrium
deep convection embedded)

This category shares with the first a prominent
large-scale signature, with an amplified upper-level pre-
cursor (Rossby wave) in the western Mediterranean but
a stronger southerly flow component. However, reduced
moist static stability might lead to the occurrence of deep
convection, often in the form of back-building MCS (Lee
et al., 2016) embedded in WCB ascent or more gen-
erally in the warm sector of the frontal system associ-
ated with Rossby waves. Persistent convergence lines over
sea or close to orography, as in the case of presence of
barrier-flow close to the orography, are the main factors
triggering convection.

• Category 3 (main process: non-equilibrium convection)
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Even in this category a synoptic-scale wave can often
be recognized, but of smaller amplitude. EPEs are gener-
ated mostly by convective events in a high conditionally
unstable thermodynamic environment (very high CAPE).
Triggering is controlled by local factors in a complicated
interplay with orography: thermal boundaries induced by
direct circulations (including sea and mountain breezes),
soil wetness gradients, or outflow of previous mature sys-
tems. Triggering is typically limited by persistent capping
inversions. Precipitating structures tend to assume the form
of single cells or MCS of different kinds depending on
the steering wind, local thermodynamic characteristics and
environmental wind shear.

4.1 Subjective threshold-based
classification
We investigate several ways to populate these three predefined
categories. As a first approach we make a selection, based on
experience and previous literature, using the list of predictors
to obtain a reduced set for which we establish characteris-
tic thresholds. We call this method the subjective threshold
approach (STA). The convective time-scale Tau represents
our first choice due to its ability to discriminate between equi-
librium and non-equilibrium convective cases, as described
in section 2.2. For Mediterranean cases spanning a 3-year
period, Molini et al. (2011) apply a threshold of 6 h for Tau
to classify heavy precipitation events over Italy and propose
two categories: Tau <6 h type I events (equilibrium con-
vection events, larger than 2,500 km2), and Tau >6 h type
II events (non-equilibrium, smaller than 2,500 km2). How-
ever, this predictor alone is not able to discriminate between
frontal precipitation with no convection embedded and cases
of frontal precipitation with embedded convection. Both cases
are characterized by very small values of Tau. Kober et al.
(2014) introduced CAPE as an additional predictor to account
for stratiform cases over Germany. Similarly, we introduce
CAPE to discriminate between events falling in category 1
(from now on indicated as Cat1), while for events above a
certain CAPE threshold Tau is used to distinguish between
category 2 (Cat2) and category 3 (Cat3).

Figure 3 shows a scatter plot of Taudmax against day of the
year with colour coding according to the value of CAPEdmax.
In addition, a smaller panel displays the mean orographic
fraction for 6 bins of Taudmax. The orographic fraction is the
ratio between the number of mountainous WAs (underlined
WAs in Figure 1) and flat WAs affected by the EPE. Winter
events (up to beginning of March) are characterized by low
values of Taudmax and high orographic fraction, meaning that
winter events mostly occur in regions with high orography.
Values of CAPEdmax are small, although not exactly zero
since there is always some residual CAPE over sea, even in
winter.

A selection of 15 benchmark cases (5 for each cate-
gory) is used to determine a characteristic threshold value of
CAPEdmax. Since the event type is a priori known for these
events (see Table S2 in File S1) we can assign CAPEdmax

to specific weather regimes. The EPE benchmark cases that
represent orographic precipitation events (Cat1) suggest a
threshold value of 150 J/kg for CAPEdmax. Together with the
discrimination between Cat2 and Cat3 based on Taudmax we
obtain the following STA classification:

Cat1 CAPEdmax < 150 J∕kg,

Cat2 CAPEdmax >= 150 J∕kg and 𝑇 𝑎𝑢dmax < 6h,

Cat3 CAPEdmax >= 150 J∕kg and 𝑇 𝑎𝑢dmax >= 6h.

4.2 Objective K-means classification
Although the classification proposed above provides a suf-
ficient separation between the three categories, it is inher-
ently subjective and requires a priori knowledge for a proper
definition of the thresholds. In addition, only a small part of
the information available in the complete list of predictors is
used. We therefore apply an objective clustering method to
exploit the full potential of the entire set of eight available
predictors (see Table 1). We use a K-means method, one of
the simplest and most-used unsupervised learning tools for
unlabelled data. The algorithm assigns every data point to one
of the K predefined groups (3 in our case) following a min-
imization of the inertia function or, in other words, the sum
of squared distances within any cluster, between cluster cen-
troid and points. Through a series of iterations, the algorithm
creates groups of data points that have similar variance and
that minimize the distances within the groups, in a multidi-
mensional space defined by the number of predictors. Before
applying any machine-learning algorithm (see section 2.3 for
a description of the software modules used), all features (pre-
dictors) are normalized to the same scale (subtracting the
mean and dividing by the standard deviation) to avoid distor-
tion of the norm. Initially, we start clustering with all eight
variables, being aware that some information is redundant due
to cross-correlations between variables. The K-means method
is applied in the default configuration. To check whether it
is possible to reduce the number of predictors, we use a ran-
dom forest method (RandomForestClassifier) to simulate the
classification obtained by K-means. This ensemble learning
method fits a number of decision trees (in our case 100 esti-
mators or trees) to various subsamples of the dataset and uses
averaging to improve the accuracy of the classification and
control over-fitting (Breiman, 2001). In this way, we esti-
mate the sensitivity of K-mean classification with respect to
each predictor through the feature_importances attribute of
the RandomForestClassifier method. In Figure 4, the ranking



76 GRAZZINI ET AL.

F I G U R E 3 Distribution of EPEs in terms of Taudmax (on the y-axes), day of the year (x-axis on the larger plot), CAPEdmax (coloured) and
orographic fraction (small plot on the left). The median orographic fraction has been computed using six equally populated bins. Dots on the left
graph mark the centroid of the bins

of the eight predictors is displayed according to their impor-
tance in assigning a given EPE to one of the three categories.
𝜃e850 and TCWV show the greatest importance, probably act-
ing as air mass tracers, followed by Taudmax, CAPEdmax and
Δ𝜃e, all important for describing the potential and type of
the convective environment. The surprisingly low ranking of
IVTn can be explained by the fact that the IVTn component
plays an important role in all three categories so its ability
to discriminate is low, however not negligible. Finally, IVTe
and BS500_925_dmax are well below 0.05. Therefore, we consid-
ered the latter two descriptors not important and consequently
dropped. The final configuration of K-means clustering is
based on the six remaining predictors.

4.3 Comparison between K-means
and subjective method
Different approaches are employed to comparatively evalu-
ate both methods. First, we focus on key properties such as
a visual separation of the clusters in pairs of two selected
dimensions. In Figure 5 a scatter plot comparing Taudmax and

TCWV is presented. While the STA approach guarantees a
sharp separation in terms of the selected variables (Taudmax

and CAPEdmax), it does not guarantee a sufficient separation
in the remaining variables, as can be seen along the TCWV
axis with Cat1 and Cat2 almost completely overlapping and
with less separated centroids compared with K-means clas-
sification. An interesting property emerging from K-means
clustering is that the value of Taudmax that separates Cat2
from Cat3 decreases as the value of TCWV increases, indi-
cating that a transition towards non-equilibrium convection
is becoming more likely even with low Tau values as total
water vapour increases in the column. This can be seen in the
right panel of Figure 5 where the separation between orange
dots (Cat2) and green dots (Cat3) follows a diagonal line.
To the authors' knowledge, this dependence has not been
highlighted in previous literature. Another important metric
is the seasonal distribution of the three different categories.
According to its definition, we expect that Cat1 events are
more frequent during the cold season, while Cat3 should peak
in summer months. Cat2, being an intermediate category,
is expected to be most frequent during transition seasons.
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F I G U R E 4 Feature importance ranking computed with the
homonymous attribute of the RandomForestClassifier algorithm. The
algorithm was run using the output of the K-means prediction with all
eight predictors as target data (see text for further explanation). The last
two predictors, IVTe and BS_500_925_dmax (abbreviated in the label
figure to BS) are dropped since they rank well below 0.05

Indeed, comparison of the two methods shows a clear advan-
tage of the K-means clustering method in producing more
separated categories over the seasons (Figure 6). K-means
produces, as expected, a prominence of Cat1 events in winter.
On the contrary, the STA approach gives a more mixed situa-
tion in winter, with a frequent overlapping between Cat1 and

Cat2, indicated by the brown colour. Moreover, Cat2 is more
prominent in transition seasons using the K-means clustering.

A third classification method simply based on the week of
the year (seasonal classification) is used as an additional inde-
pendent dataset to be compared against the other two. As can
be seen in Table 2, the Silhouette score (an objective mea-
sure of cluster separation) is highest for K-means clustering
indicating a better separation than the other methods (STA
and seasonal). Thus, the classification based on the K-means
method is used in the remainder of the study.

5 CLASSIFICATION RESULTS

A discussion of the characteristics of the three categories
resulting from the K-means classification is now presented.
The characteristics of each category are highlighted, starting
with Cat1 events, followed by Cat3 and finally Cat2 events.
The order reflects the fact that Cat1 and Cat3 events rep-
resent opposing extrema of the categorization, while Cat2
shows intermediate characteristics. Cat2 includes many of the
most important EPE cases. The discussion is mainly based
on three figures: Figure 7 displays the size distributions of
the EPEs and the mean area of EPEs in each category (in the
inset). Figure 8 shows a summary panel of nine key variables
that can be thematically grouped: (a,b,c) present EPEs area

F I G U R E 5 TCWV and Taudmax scatter plots for the two different types of classification. Subjective classification (left) and K-means based
clustering (right) with six predictors. Black squares represent the centroids of the three different clusters. The respective population of each category
is reported in the legend
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F I G U R E 6 Distribution of EPE counts (y-axis) in the three different categories according to the week of the year (x-axis), obtained with
K-means clustering with six predictors (Kmeans6, panel b), and subjective method (STA, panel a). In addition to the colours in the legend,
overlapping colours are: brown (Cat1+Cat2), olive green (Cat2+Cat3)

T A B L E 2 Silhouette score computed on the 6-dimensional
predictor space used for K-means clustering. For comparison, the
subjective classification (STA) and an alternative classification based
on the week of the year are also scored. The score provides a measure
of the efficiency of the algorithm in producing well-separated clusters.
It ranges from −1 (wrong clusters) to 1 (fully separated clusters) with 0
meaning overlapping clusters. K-means with six predictors proved to
be superior to other tested configurations

Score
K-means
(6 predictors)

STA
classification

Classification
by week

Silhouette 0.31 0.13 0.12

characteristics, (d,e,f) thermodynamic instability indices, and
(g,h,i) total column water vapour TCWV and vertical inte-
grated transport IVT. Figures 9 and 10 depict respectively
composite maps of geopotential height at 500 hPa (Z500),
mean sea level pressure (MSLP), 𝜃e850, and daily precipitation
averaged over 100 events with the highest Silhouette score for
each category.

5.1 Category 1
On average, EPEs in Cat1 have the smallest area extension
with a mean value close to 5,000 km2 corresponding to 3.5
WAs involved (Figure 7 and Figure 8a). They are more fre-
quent close to orography (orographic fraction 0.6, Figure 8c)
and they have the smallest spatial variability inside the WA
(Figure 8b). They are predominant in winter up to mid-May,
when their frequency decays, and they start to appear again
from December (Figure 6). They are characterized by strong
moist static stability (Figure 8d,e,f) and show a comparable
transport of water vapour from the zonal and the meridional

component (Figure 8h,i). The mean flow pattern (Figure 9,
upper panel) shows a broad upper-level wave in Z500 centred
over central Europe. A surface cyclone is present over the
Tyrrhenian Sea, embedded in a weak 𝜃e850 gradient, aligned
with the main trough axis. Peak values of precipitation are
lower and more confined than Cat2 and Cat3. The highest val-
ues are found along the Apennine crest, and to a lesser extent
also over the Adriatic area in response to low-level easterly
(bora) winds (Figure 10, left panel). This is highlighting the
fact that Cat1 EPEs are associated with stable low-level flow,
blocked by the upstream orography, and circulating around
the surface cyclone. This flow configuration is a distinctive
feature of cyclogenesis in the lee of the Alps (or Genoa Low),
mainly occurring in winter/spring (Trigo et al., 2002). This is
confirming the expectation that Cat1 are mainly attributable
to winter-type events, where in addition to the direct uplift on
the windward side of the orographic barriers, baroclinic insta-
bility is locally increased by differential flow deformation at
different levels (Buzzi and Tibaldi, 1978).

5.2 Category 3
Events in Cat3 are comparable in size with Cat1 events, espe-
cially in terms of area extension. The size distributions in both
peak strongly at 1,700 km2 (Figure 7). Cat3 events occur from
mid-May to the end of October with the highest frequency
from mid-August to mid-September (Figure 6). This sea-
sonal distribution is similar to the climatology of MCS over
Europe (Morel and Senesi, 2002). Cat3 events show the low-
est orographic fraction, where a value of 0.5 in orographic
fraction indicates that EPEs in Cat3 occur with same fre-
quency whether orography is present or absent in the WA,
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F I G U R E 7 Density distribution of EPE area extension for the three different categories: Cat1 (blue dash-dotted line), Cat2 (orange dashed
line) and Cat3 (green solid line). The inset shows the corresponding mean area and the 95% confidence interval

especially over central Italy (Figures 8c and 10 right panel).
They also show the largest spatial standard deviation variabil-
ity inside the WA (Figure 8b) indicating greater variability
in the precipitation field typical for spotty convective events.
Thermodynamic indices are significantly higher than for other
categories as indicated by the highest values of CAPEdmax,
Taudmax, and conditional instability (negative value of Δ𝜃e),
respectively in Figure 8d,e,f. Finally, Cat3 shows the highest
TCWV, reflecting warmer and moister air masses present in
summer. Interestingly the highest moisture transport towards
the target domain is attributable to the IVT zonal component
(Figure 8g,h,i). The flow composite still shows an upper-level
wave, but of smaller amplitude with a shallow and broad
surface cyclone over the central Mediterranean, implying a
weaker surface circulation. 𝜃e850 values are also the highest
(Figure 9). The precipitation composite shows a reduced lock-
ing of the precipitation along the orography of central Italy
while a maximum emerges over the western–central Alps
linked with summer convection which tend to be localized
more on the Alpine range (Figure 10, right panel).

Based on the characteristics discussed above, we attribute
Cat3 events to a predominance of non-equilibrium convec-
tion, clearly highlighted by mean values of Taudmax larger than
12 h. Non-equilibrium convective environment is character-
ized by weak large-scale forcing with the most relevant phe-
nomena being thermally forced convection, that is notoriously

difficult to predict, as it responds to details in the spatial
distribution of CAPE and convective inhibition (CIN) (Done
et al., 2006). Strong CIN constitutes a limiting factor that
prevents the development of diffuse widespread convective
activity but allows outbreaks of violent convection leading to
extreme precipitation over limited areas. We hypothesize that
the main features responsible for EPEs in this category are
MCS affecting one or more WAs during their lifetime.

5.3 Category 2
Cat2 events exhibit by far the largest spatial scale, both in
terms of number of WA and affected area. The mean area
for Cat2 is about 104 km2, peaking (Substitute median with
mode) at 3,000 km2 (Figure 7). The different peaks in EPE
area size of Cat1, Cat3 and Cat2 are consistent with Molini
et al. (2011) who found a separation in scale between equi-
librium (here Cat2) and non-equilibrium convection (here
Cat3) at 2,500 km2. Events in Cat2 are even more likely to
affect WAs with orography. Interestingly, the seasonal distri-
bution of the events in this category shows two peaks: one
in spring around week 20 (mid-May), and a larger one in
autumn, between weeks 40 and 45 (October–mid-November)
(Figure 6). EPEs in this category are less thermodynamically
stable than in Cat1, exhibiting a nearly neutral stratification
with Δ𝜃e500-850 close to zero (Figure 8f). The Cat2 upper-level
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F I G U R E 8 Nine key mean characteristics of the EPEs for the three categories. The first column shows statistics derived from observations
aggregated over warning areas, respectively: (a) the mean number (n) of WA per event, (b) the relative spatial standard deviation (RSD, areal standard
deviation of precipitation divided by the precipitation mean for each WA), (c) the orographic fraction (1 if all areas with EPE have orography; 0 EPE
only on flat warning areas). Second column: (d) CAPEdmax, (e) Taudmax, (f) Δ𝜃e500-850_dmin. Third column: (g) TCWV, (h) IVTe/zonal component of
IVT, (i) IVTn/meridional component. Confidence intervals are computed with a bootstrapping method as part of the Seaborn Python library

flow is characterized by the presence of a sharper trough com-
pared with Cat1 (Figure 9). In addition, the trough axis is
centred 5◦ in longitude more to the west, close to the Green-
wich meridian, and has the main axis meridionally aligned,
while in Cat1 it is more cyclonically tilted. The surface cir-
culation and thermal gradients are stronger, with a deeper
surface cyclone positioned over the western Mediterranean, in
a forward position with respect to the upper-level main trough
axis. All these characteristics indicate a more active baro-
clinic structure compared to both other categories, producing
stronger meridional flow. Such a favourable positioning pro-
duces the highest moisture fluxes in the meridional direction
(IVTn, Figure 8i).

Many favourable ingredients for generating strong EPEs
are present for Cat2. In particular, there is a clear synergy
between strong large-scale forcing, denoted by high values of
IVTn, which in turn imply large-scale upward vertical motion
induced by horizontal advection of moist/warm air masses,
and boundary-layer conditions still supporting deep convec-
tion. Synoptically driven low-level jets over the warm waters
of the Mediterranean Sea further destabilize (in potential

terms) the onshore flow, increasing low-level 𝜃e. This creates
the ideal ingredient for the development of deep convection
bursts embedded in the synoptic flow, typically localized at
the interface between sea and coast or on the windward side of
the orography close to the sea (Buzzi et al., 1998; Kirshbaum
et al., 2018). The particular combination of stratiform pre-
cipitation and embedded deep convection explains why this
category of EPE exhibits the highest precipitation intensity
and the largest spatial extent as clearly evident in Figure 10,
central panel.

To this category belongs the largest EPE in the period
1979–2015 which occurred on 1 November 2010, with an
area extension of 70,000 km2. If we extend the statistics of
EPEs back to 1961 (the first available year of the ArCIS
dataset), the November 2010 EPE is surpassed only by what
is known as the “century” flood in Italy. This event, which
occurred between 3 and 5 November 1966, badly impacted
Florence, where 101 people died and millions of rare books
and art masterpieces were inundated. Beyond Florence, 54
WAs (out of 94) were affected with a total area extension that
reached 98,760 km2 on 4 November, by far the largest size
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F I G U R E 9 (a–c) Composite maps of the 100 events attaining
the highest Silhouette score for each category. The average value of the
Silhouette score for the three subsamples is reported at the top of each
map. The fields shown are geopotential height at 500 hPa (contours
every 6 dam in thick dark blue), MSLP (contours every 3 hPa in white)
and 𝜃e850 shaded according to the legend

in our dataset. Although not included in our list, since the
ERA-Interim data are not available for this date, the K-means
algorithm correctly classifies this EPE as Cat2 date (based
on ECMWF ERA40 reanalysis data). A detailed meteorolog-
ical description of that episode including a modelling study
indicate that indeed the record precipitation was achieved by
slowly moving stratiform rain preceding the cold front com-
bined with an extensive line of deep convection, particularly
active over the Apennines (Malguzzi et al., 2006). Finally, it
is also worth mentioning a recent event occurring on 27–30
October 2018, called storm “Vaia,” which affected north and
central Italy with an amplitude similar to both cases above.
Using ECMWF operational analysis as input, the objective
classification classifies this EPE also in Cat2. A preliminary

analysis shows that this EPE is likely to become one of the
strongest on record in terms of rain accumulation and inte-
grated water vapour transport over the target domain. Further
analyses are planned to study this event in detail.

The seasonal distribution of Cat2 shows a consistent cor-
relation with the climatological monthly precipitation distri-
bution, in particular concerning the monthly distribution of
extreme daily rainfall on the southern side of the Alps (Isotta
et al., 2014). Consequently, the Cat2 distribution also fits well
with the seasonality of the discharge of major rivers, like the
Po river, showing two peaks, one in mid-May (due to melt-
ing snow plus peaks of rain) and the second in mid-November
(due to wide and extreme rainfall only: Montanari, 2012).

We hypothesize that Cat2 events are closely linked
with pulses of particularly long-lived Rossby Wave Pack-
ets (RWP), coherently maintained by a strong wave guiding
effect. This long chain of downstream cyclone development
is likely to open ideal pathways for long-range moisture trans-
port towards the target domain (as documented by Piaget et al.
(2014)). In the next section we show an example of this. This
hypothesis has some important implication for predictability.
Grazzini and Vitart (2015) have shown that if long and coher-
ent RWPs (lasting more than 8 days) are present in the initial
conditions, the resulting forecast shows higher skill than aver-
age conditions over Europe. An analysis of such an event is
documented in the next section.

5.4 Genesis of Cat2 events: An example
In this section, we show an example of a typical large-scale
evolution leading to Cat2 EPEs. We focus on a period embrac-
ing two Cat2 events, both included in the list of benchmark
cases reported in Table S2 in File S1. Both occurred within a
10-day period in autumn 2011: on 25 October 2011 (Cinque
Terre flood, Figure 11b) and 4 November 2011 (Genova
(Genoa) flood, Figure 11c). In both cases, localized convec-
tion stayed quasi-stationary within slow moving large-scale
patterns, and precipitation accumulated in an area already
affected by widespread heavy rain causing devastating floods
at different spatial scales.

The main panel of Figure 11 illustrates the RWP propaga-
tion (and IVT transport) that ultimately led to the positioning
of the upper-level waves associated with those EPEs. In the
Hovmüller diagram we can see that the flow was character-
ized by an almost stationary wave pattern until 15 October,
with main waves located over eastern USA and the Atlantic.
A small-scale EPE event (less than 1,000 km2) occurred on
the 19th associated with weak wave activity. On the 15th a
large-amplitude RWP started off the west Pacific coast, reach-
ing Europe on the 23rd. A second RWP pulse, apparently
less coherent and split into two branches, started in the west
Pacific on 26th and reached Europe on 3 November. In both
cases RWP propagation ended when reaching Europe, leading
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F I G U R E 10 As in Figure 9 but displaying the EPEs precipitation composites for each category, overlaid on WA. (a) Cat1, (b) Cat2, (c) Cat3.
Units are mm/day. EPEs in Cat2 are clearly the strongest

to a deep trough positioned slightly west of 0◦ longitude.
These upper-level waves channelled very warm moist air from
the Atlantic towards the central Mediterranean and the target
domain. IVT values higher than 250 kg m−1 s−1, the threshold
defining an atmospheric river (AMS meteorology glossary)
are evident in both cases. The second RWP produced an even
greater and more persistent water vapour transport from the
central Atlantic, setting up favourable conditions not only for
the EPE on 4 November, but also for three subsequent days
(sequence of triangles in Figure 11). This extremely high
IVT appears to be related to the convergence of anomalously
high water-vapour amounts associated with the remnants of
Atlantic tropical storm Rina (23–28 October), as discussed by
Rebora et al. (2013).

6 CONCLUSIONS

In this article, we describe a methodology for identifica-
tion and systematic classification of extreme precipitation
events (EPEs) over northern–central Italy. EPEs are defined
as days when at least in one of the Italian Civil Protection
warning-area units the spatially average daily precipitation
is greater than the 99th percentile of the daily climatologi-
cal distribution (1979–2015). The computation is based on
the ArCIS gridded database, which is built from more than
1,700 quality-controlled stations. This database, in combina-
tion with ERA-Interim reanalysis data for upper-level atmo-
spheric fields, allows a 10-fold increase in the number of
EPEs compared to previous studies.

A set of 887 EPEs is found and a subdivision in three
predefined categories is proposed. First a subjective classi-
fication based on CAPEdmax and Taudmax is developed, then
a combination of machine-learning methods (K-means and
Random Forest) is applied to group EPEs into the three
categories. Random Forest Classifier and feature impor-
tances methods turn out to be decisive in finding an optimal
classification and for neglecting non-useful predictors. The
resulting upper-level composites agree with the subjectively
chosen categories in which we wanted to map our events.

From the analysis of the upper-level composites, different
processes generating EPEs are recognized: frontal or mechan-
ical orographic uplift of moist statically stable flow for
Cat1, stronger frontal and mechanical uplift of a neutrally
moister/warmer stable flow for Cat2, and finally thermally
forced deep convective ascent for Cat3.

A common characteristic for all three categories is that
IVT is anomalously high. EPEs are largely controlled by the
intensity of the meridional component of integrated vapour
transport IVTn that in turn depends not only on moisture
availability but also on a favourable phasing of the upper-level
wave with respect to the target area. This confirms IVT as
an important large-scale predictor, especially for Cat2 events,
shown to be the most relevant category in terms of effects and
EPE area extension. The importance of IVT as a predictor
has been shown by Lavers et al. (2014; 2016), who demon-
strated that it is possible to extend the range of predictability
of extreme hydro-geological events if the integrated water
vapour transport is directly employed instead of considering
the precipitation from direct model output.

The proposed classification, based on widely used
machine-learning methods, has the advantage that it can be
easily applied elsewhere, since no subjective choice of fixed
thresholds is necessary. The categorization of precipitation
may introduce some simplifications compared to nature, but
it is very useful for gaining a clearer picture of the basic
processes. This approach can raise forecaster awareness of
the origins of high impact weather phenomena and of dif-
ferent kind of EPEs, fostering a more critical interpretation
of numerical model output. In addition, moving to research
aspects, the study sets the stage to investigate the relation
between EPEs and Rossby wave packets. This analysis will be
conducted in Part II of this work with the intention of gain-
ing insight into flow-dependent predictability for these three
different categories. The value of the forecast is measured by
its ability to predict critical situations and the skill of modern
numerical weather prediction is highly flow-dependent, espe-
cially when convection is involved (Keil et al., 2014; Nuissier
et al., 2016; Rodwell et al., 2018). It is therefore important
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F I G U R E 11 (a) Hovmüller diagram of RWP propagation during the period 9 October–10 November 2011, characterized by a significant
EPE sequence. Red (continuous)/blue (dashed) lines show the meridional wind speed at 250 hPa (every 6 m/s, starting from 16 m/s). The green
shaded areas represent the magnitude of IVT, starting from a threshold value of 250 kg m−1 s−1 which marks the atmospheric river lower limit.
Fields are averaged over a band of latitude between 30◦N and 60◦N. EPE events in the target domain are marked by green triangles. The larger ones
filled with orange colour are indicating Cat2 events. The two smaller triangles, respectively on the 20 October and 8 November are representing two
smaller events of Cat3 and Cat1. Black dashed arrows mark RWPs associated with EPE. The brown shading, just above the longitude axis, provides
a graphical impression of the distribution of the orography (white/sea, cream to dark brown/altitude) along the longitude. (b,c) Instantaneous Z500
and IVT for the two benchmark EPEs, 25 October and 4 November 2011, at 1200 UTC, respectively

to provide the meteorological operational community with a
more process-based assessment of predictability as a founda-
tion for a new forecasting methodology specifically designed
for extreme precipitation events.
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Abstract
Extreme precipitation events (EPEs) are meteorological phenomena of major concern for
the densely populated regions of northern and central Italy. Although statistically rare,
they tend to be recurrent in autumn and share common characteristics in the large-scale
dynamical evolution responsible for their generation. Past studies on EPEs have reported,
as the main triggering factor, a meridionally elongated upper-level trough embedded in an
incoming Rossby wave packet. In this respect, we show how the meteorological condi-
tions leading to the devastating 1994 Piedmont flood represent a typical flow evolution
for this type of extreme events. Exploiting the systematic classification of EPEs recently
published by the authors and taking advantage of a new observational dataset, this article
revisits the role of the large-scale flow on this and similar cases of past EPEs.

Keywords Extreme precipitation . Floods . Po river . Atmospheric rivers . Rossbywave packets .

Downstream development

1 Introduction

The extreme precipitation that affected the Piedmont region, in Northern Italy, in November
1994 led to a destructive flood with significant socioeconomic impacts. Seventy people died,
and more than two thousand had to be evacuated. Damage to public and private property was
extensive, 150 bridges collapsed or were severely damaged, and more than 5000 head of
livestock were lost (Buzzi et al. 1998).

The heaviest precipitation occurred between 4 and 6 of November when several rain gauges
in mountainous regions recorded accumulated values above 300 mm/36 h (Buzzi and
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Tartaglione, 1995). Forty percent of the Piedmont territory received more than 200 mm of rain
during the event (Arpa Piemonte 1998). The large-scale circulation was characterized by a
Rossby wave with meridional extension from the British Isles to the Iberian Peninsula
featuring an elongated trough over Western Europe and a blocking anticyclone over Central
Europe. Extreme precipitation events (EPEs), like this one, are typically associated with a
strongly confluent flow ahead of a polar cold front concentrating water vapour into a narrow
plume, which then interacts with the orography (Krichak et al. 2015). Such a flow can be
triggered by a breaking Rossby wave over Western Europe that takes the form of a PV
streamer, an elongated filament of high potential vorticity (PV) air (Grazzini, 2007, Martius
et al. 2008). Since most of the intense orographic precipitation falls in the prefrontal sector, it is
essential to study the characteristics of the flow and the associated water vapour transport.

Based on the EPE categorization presented in Grazzini et al., 2020a; (hereafter, G2020), in
which the authors classify EPEs into three categories, in the present paper, we discuss the
large-scale circulation characteristics leading to the 1994 Piedmont flood and evaluate its
similarities with other cases. Following a statistical approach, Grazzini et al. (2020b) investi-
gated the upstream large-scale precursors which influence the frequency and intensity of EPEs.
Revisiting the dynamics of the 1994 event might be useful to reveal the processes leading to
such an extreme. Highlighting them is essential in the quest for better predictability and impact
assessment of future events.

In this article, we will retrace the evolution of the event starting from the description of the
regional precipitation pattern and the corresponding synoptic situation and then investigating
the spatiotemporal evolution of the associated wave packet at larger scales. The paper is
organized as follows. In Section 2, we describe the dataset and the key variables used to
analyse the event. In Section 3, we comment on the observed daily precipitation and classi-
fication of the event. In Section 4, we discuss the genesis and characteristics of the synoptic
pattern associated with the event, while in Section 5, we highlight the key role of the moisture
transport and we contrast this case with more recent analogues. Conclusions follow in
Section 6.

2 Data and methods

The atmospheric fields used in this study are retrieved from the ERA5 reanalysis (Hersbach
et al. 2020), while precipitation data, upon which the EPE definition is based, are retrieved
from the new observational dataset ARCIS (Archivio Climatologico per l’Italia Centro
Settentrionale). ARCIS is a recently assembled gridded precipitation dataset (with a resolution
of 5 km) derived from 1762 rain gauges from 11 regional networks in Northern-Central Italy
and several stations of adjacent Alpine regions (Pavan et al. 2019). The dataset has a daily
temporal resolution and covers the period 1961–2015. The input data are checked for quality,
time consistency, synchronicity, and statistical homogeneity and then spatially interpolated
using a modified Shepard’s scheme. The 24-h accumulation period corresponds to the best
practice of the Italian Hydrological Service, i.e. from 08 to 08 UTC of the following day.

Based on this dataset, EPEs are defined and classified as follows. Precipitation is aggre-
gated over the official warning areas (WAs) provided by the Italian Department of Civil
Protection. This choice, preferable to regular boxes, allows averaging precipitation on subre-
gional hydrological basins which are considered climatologically homogenous. Northern-
Central Italy is subdivided into 94 WAs, shown in Fig. 1. EPEs are defined as days with
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daily precipitation greater than or equal to the 99th percentile across one or more WAs.
Subsequently, the meteorological variables listed in Table 1 are used as predictors for the EPE
classification as described in G2020. Among these variables, central in the following consid-
erations is the magnitude of the integrated water vapour transport (IVT), as well as its zonal
(IVTe) and meridional (IVTn) components. Their instantaneous fields in ERA5 are computed
as the integral (over model levels, from the surface to the top of the atmosphere) of the wind
component multiplied by the specific humidity at each level. Positive values of IVTe indicate
an eastward flux, and positive IVTn values indicate a northward flux.

3 Observed precipitation and event classification

Figure 1 shows the daily accumulated precipitation patterns that led to the Piedmont flood as
analysed with the ARCIS dataset which, compared with the raw data of the dense regional
networks, has the advantages of being gridded, spatially homogeneous, and not limited to
single administrative regions. The precipitation event is prolonged, with very high intensity,
especially during the 24-h period from 5 November 08 UTC to 6 November 08 UTC. In this
period, daily values above 300 mm were recorded on the northern and western borders of the
Piedmont region associated with persistent orographic uplift, while on the southern side of the
region, on the border with Liguria, hourly rates in excess of 30 mm/h were reported in a few
stations, due to strong convective activity (Arpa Piemonte, 1998).

Fig. 1 Gridded daily total precipitation from the ARCIS dataset of high-resolution regional observational
networks (mm/24 h). Note that the dates on the panels refer to the end of the 24 h accumulation period 08-08
UTC. The areas in the foregrounds are the Italian Civil Protection Warning Areas used for operational warnings
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Compared with the 887 EPEs found in G2020, we notice that the 1994 Piedmont event,
although not characterized by an extreme spatial extension (ranked only 32nd in this respect),
presents one of the highest area average precipitation intensities. In Table 2 we show
precipitation data and the values of atmospheric variables used for the classification of this
event. A very similar event, which caused the historical Po river flood in October 2000, is also
included in Table 2. The intensity on 5 November 1994 (see the column mmkm2 in Table 2) is
just slightly lower and comparable with the one on 14/10/2000, which is the maximum
precipitation average intensity recorded among all EPEs.

The next question to address is in which category this event is classified. Here we briefly
recall the definition of the three categories in which subdivide EPEs following G2020.
Category 1 (Cat1) events originate from intense frontal structures, including slantwise ascent
in the warm sector of the associated cyclones (warm conveyor belt). Mechanical (orographic)
uplift of low-level marine, statically stable air is the key factor to attain extreme precipitation
that is mostly confined over upwind steep topography. Category 2 (Cat2) events originate from

Table 1 Predictors used in the EPE classification algorithm of G2020

Variable Description Units

Taudmax Daily maximum convective adjustment time scale h
CAPEdmax Daily maximum convective available potential energy J kg−1

IVTe Daily mean zonal component of integrated water vapour
transport (from the surface up to the top of atmosphere)

kg m−1 s−1

IVTn Daly mean meridional component of integrated water
vapour transport (from the surface up to the top of the atmosphere)

kg m−1 s−1

θe850 Daily mean equivalent potential temperature at 850 hPa K
Δθe500-850_dmin Daily minimum θe difference between 500 and 850 hPa K
TCWV Daily mean total column water vapour kg m−2

BS500_925_dmax Daily maximum wind bulk shear between 500 and 925 hPa m s−1

For each EPE day, the instantaneous values of the variables are spatially averaged over Northern-Central Italy
and aggregated daily, as reported in the table. See G2020 for further details on variable definitions and averaging
methods

Table 2 Relevant data for two recent historical Po river floods, 4–6 November 1994 and 11–16 October 2000

Day #WA Area mmkm2 IVTe IVTn Taudmax CAPEdmax TCWV θe850 Dtmin Cat

04/11/1994 7 15.8 68.0 − 23.4 148.1 2.2 66.2 23.2 315.5 2.3 2
05/11/1994 20 33.3 97.7 − 66.7 234.5 4.7 97.2 21.6 314.2 3.7 2
06/11/1994 9 12.7 66.6 − 24.6 150.5 1.3 77.6 19.8 309.8 5.1 2
11/10/2000 8 11.3 77.1 198.4 208.7 1.3 63.2 19.5 311.3 8.8 2
12/10/2000 3 3.0 61.0 148.9 281.1 4.5 220.0 21.5 317.4 1.0 2
13/10/2000 7 9.3 94.8 − 20.0 306.3 6.7 319.5 23.0 320.3 − 1.9 2
14/10/2000 17 32.4 103.4 − 120.8 296.1 5.1 184.9 25.7 321.2 0.5 2
15/10/2000 12 23.9 69.9 − 153.8 254.2 2.5 114.6 23.3 316.8 3.2 2

#WA number of warning areas with spatial daily average precipitation exceeding the 99th percentile of the
respective climatological distribution, Area total area exceeding the 99th percentile of daily precipitation
[103 km2 ], mmkm2 mean area daily precipitation intensity [mm/24 h km2 ], IVTe mean zonal component of
IVT [kg s−1 m−1 ], IVTn mean meridional component of IVT [kg s−1 m−1 ], Taudmax, maximum daily value of
Tau [hours], CAPEdmax daily maximum value of CAPE [J/kg], TCWV daily mean of total column water vapour
[kg/m2 ], θe850 daily mean of equivalent potential temperature at 850 hPa [K] , Dtmin daily minimum of Δθe [K]
(Δθe = θe500–θe850), Cat the EPE category. Atmospheric variables are spatially averaged over Northern-Central
Italy (roughly corresponding to the area covered by ARCIS dataset) and aggregated daily. The maximum
intensity days of the two events are in italics
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a synergic combination of frontal uplift and embedded deep convection. They are character-
ized by a stronger southerly flow component and a reduced moist static stability (almost
neutral conditions). Category 3 (Cat3) events are associated with weakly forced convection
(non-equilibrium convective events) in a potentially unstable environment (i.e. with very high
CAPE). According to the classification method, which is based on the dynamic and thermo-
dynamic predictors listed in Table 1, all the days of the 1994 Piedmont flood episode, as well
as the days of the October 2000 event, qualify as Cat2 EPE days, as indicated in Table 2.

In order to provide further evidence for the classification of the event and describe in more
detail the relevant processes, Fig. 2 displays the patterns of the ERA5 reanalysis low-level
wind at 18 UTC on 5 November 1994 (panel b) and the 06–24 UTC accumulated precipitation
from the ERA5 forecast initiated at 06 UTC of the same day (panel a). The precipitation
pattern shows two main precipitation areas, on the northern side of the Piedmont region,
indicated by the grey arrow, and on the southern side, on the border with Liguria, indicated by
the yellow arrow (also evident in Fig. 1b). The partition of precipitation to convective and
large scale (or “stratiform”) is based on the corresponding definitions and numerical schemes
used in ECMWF forecasts and ERA5 (Owens and Hewson, 2018). The red-dashed contours,
which indicate the convective fraction, suggest that these two peaks are attributable to two
distinct processes. The precipitation peak indicated by the grey arrow is mainly due to
orographically enhanced stratiform precipitation which may have had some isolated convec-
tive element in it, while the other peak indicated by the yellow arrow lies just on the border of a
region where deep convection is predominant (up to 80% of the precipitation amount resulted
from the convection scheme of the model).

Figure 2 b provides further information on the observed differences in precipitation type.
The red isoline, representing the values of 2 potential vorticity units (PVU) at 330 K, marks the
position of the forward side of the upper-level trough (see also Fig. 3). Ahead of it, the cold

Fig. 2 a 18-h accumulated precipitation from 06 UTC to 24 UTC 5 November 1994 in the ERA5 short-term
forecast initialized at 06 UTC. The shaded field depicts the total precipitation (mm), while the red dashed
contours indicate the convective fraction estimated as the ratio of the convective over the total precipitation in
ERA5. Isolines are drawn every 20%, starting from 40%. b Synoptic situation derived from the ERA5 hourly
reanalysis and valid at 18 UTC of the same day, at about the time of maximum convergence of the southerly and
easterly branch of the low level jets. The shaded field is CAPE [J kg−1], the arrows indicate the wind vectors at
925 hPa, the green contours are θe at 850 hPa (every 2 K), and the red contours mark the 2PVU contour at 330 K
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front is evident and represented by the tight zonal gradient in θe at 850 hPa, indicated by the
green contours. A key feature is the very intense low-level flow (blue arrows) at 925 hPa,
which blows northward in the warm sector. This intensifies and splits in two low-level jet
(LLJ) branches during the day. The first one, flowing from the Tyrrhenian sea towards the
Ligurian coast, is channelling warm moist (high θe values around or above 320 K) maritime air
masses in a narrow band ahead of the cold front. This air mass is also relatively unstable with
values of CAPE in the order of 500 Jkg−1 and has relatively low-convective inhibition. In this
airstream, convection is triggered over the sea, by forced uplift over the Ligurian Apennines
and later by the approach of the cold front. A second low-level jet blowing from south-east
forms on the Po valley due to the blocking action of the orography on more stable air masses, a
typical example of barrier wind (Buzzi et al. 2020). The mass convergence of these two
branches in the western Po valley triggered high vertical velocities on the upwind side of the
orography, generating intense and persistent orographic precipitation. A comparison with the
radio sounding data from Ajaccio (Corsica) and San Pietro Capofiume (Emilia-Romagna
region, Po valley), Milano Linate (Lombardy region, Po valley) confirms the different
characteristics of the two airstreams with the Po valley LLJ being very shallow and stable
although very intense, in the order of 20 m s−1 (not shown).

The 1994 Piedmont event was also characterized by a strong IVT band at the eastern flank
of the upper-level trough (Fig. 3) with a magnitude constantly higher than the atmospheric
river (AR) definition threshold of 250 kg s−1 m−1. In addition, the total column water content

Fig. 3 Synoptic view of the 1994 Piedmont flood on 5 November 1994 00 UTC by the ERA5 reanalysis.
Contours show geopotential height at 500 hPa (every 6 dam), the colour shading refers to the IVT magnitude
[kg s−1 m−1], and the cyan arrows indicate IVT vectors, drawn where the IVT magnitude exceeds the AR
threshold of 250 kg s−1 m−1
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(TCWV) was greater than 20 kg m−2. This allows us to affirm that the strong southerly moist
flow ahead of the cold front can be classified as an AR, a circumstance also confirmed by
Krichak et al. 2015.

As we have seen through the examination of the reanalysis fields, this event presents the
key features that are typical of category 2 events, i.e., the abnormally strong flow from the
south and the presence of both large-scale and deep convection precipitation peaks. The
dynamic and thermodynamic characteristics of this event described herein agree with previous
studies obtained with limited area model simulations (Ferretti et al. 2000, Cassardo et al.
2002). In particular, Cassardo et al. (2002) reported that the persistence of deep convection
further contributed to the severity of the event over the Ligurian range.

4 Synoptic evolution and large-scale precursors

As stated above, the presence of a strong southerly airstream, classifiable as AR, is a crucial
feature which characterizes this event as well as many other EPEs in the Alpine region. In this
section, we discuss the origin and dynamical evolution responsible for its occurrence. For this
purpose, we present two figures. Figure 4 shows the synoptic wave and the associated IVT on
4 November at 12 UTC, at the initial phase of the event. Figure 5 displays, in a compact way,
the dynamical evolution of the upper-tropospheric flow and the associated Rossby wave
packets (RWPs) which set the stage for the smaller-scale processes that eventually lead to
the event. Figure 5 depicts the meridional wind component at 300 hPa, the corresponding
envelope E, as well as the 2 PVU contour at 330 K on selected days leading to the event. The
envelope field, diagnosed following Fragkoulidis et al. (2018), highlights the regions where
the RWP amplitude is strong, i.e. the upper-tropospheric jet exhibits pronounced undulations.

Fig. 4 Synoptic configuration on 4 November 1994 12UTC over the Atlantic basin. Contours show geopotential
height at 500 hPa, every 6 dam, the colour shading refers to the IVT magnitude [kg s−1 m−1] (see colour bar
above), and the cyan arrows are IVT vectors, drawn only when the IVT magnitude exceeds the AR threshold of
250 [kg s−1 m−1]
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This is also reflected in the large meridional wind anomaly (v’) values and the associated
succession of troughs and ridges that result in a wavy 2 PVU contour.

The moist airstream that was crucial for the extreme precipitation event grew ahead and in
response to a developing trough over the eastern Atlantic on 2 November (Fig. 5b). The
narrow band of strong IVT associated with the trough can be identified in Fig. 3, where values
exceeding the AR thresholds become evident already from 4 November (Fig. 4). Overall, the

Fig. 5 Evolution of the upper-tropospheric flow leading to the November 1994 Piedmont flood. The panels
depict mean daily values of meridional wind at 300 hPa (colour fill), the corresponding E at 300 hPa (black
contours every 10 m/s starting from 25 m/s) and the 2 PVU isoline at 330 K (orange contour) at a 31 October
1994 (D-5), b 02 November 1994 (D-3), c 04 November 1994 (D-1), d 05 November 1994 (D0), and e 06
November 1994 (D+1). All maps show instantaneous values at 12 UTC
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AR stretches from the Azores to the North Sea. In Fig. 4, the presence of hurricane Florence in
the central Atlantic is also evident. A closer inspection of a sequence of snapshots around 4
November reveals that the circulation and moisture fluxes induced by Florence have interacted
with the trough to the north and the associated upper-level jet. This may have indirectly
influenced the evolution of the N. Atlantic wave packet propagating towards the Mediterra-
nean. As can be seen from Fig. 4, there seems to be a connection in the IVT fluxes from the
tropical cyclone to the trough in the central Atlantic, later visible in the wind field at 250 hPa
(not shown). In this respect, as documented in several other occasions (Grams and
Archambault 2016, Pohorsky et al. 2019), the low-PV air injection into the mid-latitude jet
can cause a jet acceleration and a ridge building, thus strengthening the development of the
trough downstream (in our case over the Mediterranean). A strong downstream development,
possibly connected with anomalous water vapour fluxes in the upstream trough, is frequently
observed in Cat2 events and this evolution is extensively investigated in Grazzini et al.
(2020b).

In the following hours, the slow eastward movement and amplification of the synoptic
wave pattern over Western Europe modulated a strong moisture transport and convergence
towards the western Alpine region. This situation further intensified on 5 November, when the
trough axis advanced slightly eastward, while the downstream ridge centred over the Adriatic
Sea almost kept its position and amplified (Figs. 3, 5). Also note that at that time, a channelling
of the AR between the largest Mediterranean islands (Sardinia and Corsica) and the continent
is evident. This channelling may be responsible for the prefrontal precipitation during the night
between 4 and 5 November. In Fig. 5 we note the northward expansion of the ridge in the
orange PV contour on the Mediterranean, from 4 (panel c) to 5 November (panel d),
presumably also affected by the low-PV outflow associated with the deep convection over
northern Italy.

The synergic interaction between convection and the large-scale environment described
above is typical of Cat2 events as discussed in G2020. It may arise from temporary positive
feedback from the synoptic flow that, through mass convergence, favours local convection to
grow into mesoscale systems, which in turn enhance low-PV air export into the upper levels,
contributing to ridge amplification and further strengthening of mass convergence. However,
the interaction of the large-scale flow and local mesoscale deep convective systems is not yet
fully understood and deserves further investigation.

Finally, we briefly discuss the dynamical evolution of the RWP associated with the trough
over the Mediterranean. The time reference (day 0, D0) is set on the day of maximum
intensity, i.e. on 5 November at 12 UTC. On D-5, a RWP of large amplitude is located over
the central Pacific, highlighted by the black contours (E) in Fig. 5a centred on a narrow PV
streamer east of the dateline. On D-3 (2 November, panel b), the disturbance is growing and
propagating rapidly over North America, inducing a new couplet (ridge-trough) development
over the western North Atlantic, with the latter subsequently approaching western Europe. On
D-1, the amplified trough remains over Western Europe and constitutes the stronger part of the
RWP and the dominant flow feature associated with the EPE synoptic pattern. An apparent
overturning and wave breaking between D0 and D+1 over eastern North Atlantic are well
depicted by the 2 PVU contour. At the same time, v’ and E get fragmented and imply an
incoherent RWP at its decay stage.

This short analysis points to the remote origin of the RWP associated with the trough,
which could be traced back to western-central Pacific 6 to 5 days before. The long lifetime and
coherence of the wave packet may have played a role in determining the good predictability of
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the large-scale flow in the medium-range forecasts, experienced even in the not so advanced
operational systems of that time (Ferrero and Balsamo 2020). The statistical relation between
long spatial and temporal coherence of RWPs and increased forecast skill was already reported
by Grazzini and Vitart (2015).

5 Comparison with other similar EPEs

In this section, we compare this event to others that have recently affected the southern part of the
Alpine area to identify analogies and threshold values for key features of the large-scale flow. As
mentioned in several works (Ralph and Dettinger, 2011, Lavers and Villarini 2013, Krichak et al.
2015, Froidevaux and Martius, 2016), IVT represents an optimal integral variable to account for
the large-scale contribution to the severity of a precipitation event. EPEs require extreme water
vapour convergence to sustain high intensities for an extended period of time, which is why the
association between precipitation and water vapour transport is particularly strong (Lavers et al.
2014). A first comparison of IVTe and IVTn in Table 2 shows that although moisture transport
was significant in the 1994 event, it was inferior to the one registered during the Po flood of 11–15
October 2000. Precipitation in the 2000 event was, in fact, more intense, also due to the presence
of higher convective instability (higher CAPE, lower DTmin, and higher column-integrated water
vapour) associated with a warm air mass (see θe at 850 hPa in Table 2).

Aiming at comparing the contribution of the large-scale circulation, we display the distri-
bution of IVTn as a tracer of the intensity of the upper-level wave and the availability of
moisture. The distribution of IVTn, averaged over the target domain of northern-central Italy
defined in G2020, is shown in Fig. 6 for the different EPE categories. Non-EPE days are
shown in black, while Cat1, Cat2, and Cat3 events are coloured according to the legend. In
addition, recent significant events are marked by the red bars on the x-axis. We notice that the

Fig. 6 Distribution of daily IVTn [kg m−1 s−1] averaged over the target domain of Northern-Central Italy for non
EPEs days (black curve), Cat1 days (blue curve), Cat2 days (orange curve), and Cat3 days (green curve).
Numbers refer to analogue cases of the 1994 Piedmont event in chronological order. Recent cases are also
considered not included in the former classification. (1) 5 November 1994, (2) 13 October 2000, (3) 14 October
2014, (4) 21 November 2016, (5) 20 October 2018 storm “Vaia”, and (6) 21 October 2019
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IVTn values associated with all the marked events lie around and mostly to the right of the
Cat2 distribution mode, which is just slightly below 200 kg m−1 s−1. All these events produced
extensive and damaging floods over the western Po valley and the Piedmont region (see Arpa
Piemonte 2019, for an intercomparison and description of these cases). Standing out from the
Cat2 IVTn distribution is storm Vaia, one of the strongest ever recorded over Central and
Northern Italy (Cavaleri et al. 2019). The Cat2 distribution is clearly separated from the non-
EPE days distribution (black curve), so we can empirically assume that IVTn daily mean
values beyond 200 kg m−1 s−1 are very likely for Cat2 events.

6 Discussion and conclusions

In this study, we have revisited the dynamical evolution of the 1994 Piedmont flood event with
new reanalysis and high-resolution precipitation datasets and in the light of a recent EPE
classification approach. We have shown that this event may be considered an archetype for
southern Alpine Cat2 EPEs which are able to produce very high river discharges and
widespread flooding on small and large river basins due to the combined presence of stratiform
precipitation and deep convection. The main triggering factor was a meridionally elongated
upper-level trough, embedded in an incoming Rossby wave packet that originated in the
Pacific. The wave packet propagation modulated the transport of a large moisture quantity
from the central Atlantic towards the Mediterranean, with a formation of an AR over the
central Mediterranean Sea. We also documented the presence of hurricane Florence in the
central Atlantic in the days before the events, which interacted with the upstream trough and
arguably contributed to strengthen the downstream development of the synoptic wave respon-
sible for the precipitation. Finally, we have highlighted the value of the integrated water vapour
transport as a key variable for detecting large-scale conditions favourable to the realization of
these events, proposing a threshold based on the meridional component IVTn.

There is a growing interest by forecasters to complement direct model precipitation output
(including probability) with other variables/methods which could give a physical insight into
the type of precipitation event to be expected. Lavers et al. (2016) pointed out that IVT is very
useful to detect extreme events in the medium range or even later, while for the shorter forecast
ranges, considering only water vapour fluxes may lead to higher false alarm rate than using
precipitation. Therefore, we conclude that the increased predictability of water vapour trans-
port could be used as the basis for a classification method, including other variables, e.g.
related to RWP properties, to be applied to real-time forecast fields. This could provide a more
robust approach to increase preparedness regarding EPEs, especially at longer forecast ranges.
This is becoming even more substantial in view of the increasing likelihood of extreme
precipitation events in a warming climate.
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Abstract
The connection between weather extremes and Rossby wave packets (RWP) has
been increasingly documented in recent years. RWP propagation and character-
istics can modulate the midlatitude weather, setting the scene for temperature
and precipitation extremes and controlling the geographical area affected. Sev-
eral studies on extreme precipitation events (EPEs) in the Alpine area reported,
as themain triggering factor, ameridionally elongated upper-level trough as part
of an incoming Rossby wave packet. In this work, we investigate a wide number
of EPEs occurring between 1979 and 2015 in northern-central Italy. The EPEs
are subdivided into three categories (Cat1, Cat2, Cat3) according to thermody-
namic conditions over the affected region. It is found that the three categories
differ not only in terms of the local meteorological conditions, but also in terms
of the evolution and properties of precursor RWPs. These differences cannot be
solely explained by the apparent seasonality of the flow; therefore, the relevant
physical processes in the RWP propagation of each case are further investigated.
In particular, we show that RWPs associatedwith the strongest EPEs, namely the
ones falling in Cat2, undergo a substantial amplification over the western North
Atlantic due to anomalous ridge-building 2 days before the event; arguably due
to diabatic heating sources. This type of development induces a downstream
trough which is highly effective in focusing water vapour transport toward the
main orographic barriers of northern-central Italy and favouring the occurrence
of EPEs.

KEYWORD S
atmospheric rivers, extreme precipitation, integrated water vapour transport, large-scale forcing,
potential vorticity, Rossby wave packets

1 INTRODUCTION

Extreme precipitation events (EPEs) in the south-Alpine
area are often followed by destructive flooding with severe

socio-economic impacts. This constitutes a recurring
threat for the exposed population, and research efforts
need to focus on a better understanding of the physical pro-
cesses leading to such events. Moreover, positive trends in
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extreme precipitation in this area emerge, particularly in
autumn (Isotta et al., 2014; Brönnimann et al., 2018; Pavan
et al., 2019), and EPE-related fatalities increase, specifi-
cally in the subalpine regions of southern France and Italy
(Petrucci et al., 2019).

Many studies have investigated the dynamics of such
individual events, while fewer tried to find an association
between the evolution of large-scale dynamical features
and EPEs on the Alpine area based on a large sample of
dates (say>100 cases, see for exampleMartius et al., 2006a;
Grazzini, 2007; Pinto et al., 2013; Pohorsky et al., 2019).
Nevertheless, the linkage between extremeprecipitation in
theAlpine area and the presence of a large-amplitudewave
or potential vorticity (PV) streamer over western Europe
is well established. For example, Martius et al. (2008) have
indicated that 73% of days with extreme precipitation over
the Swiss Alps are associated with a PV streamer.

The connection between extreme weather events
and Rossby wave packets (RWPs) has been documented
by many studies that examined the physical linkage
between the upper-tropospheric circulation and anoma-
lous weather at the surface. In particular, these events
are often associated with pronounced undulations in the
upper-tropospheric jet that typically take the form of an
eastward-propagating RWP. A comprehensive list of stud-
ies investigating the role of RWPs for a variety of meteo-
rological extremes can be found in section 7 of the recent
review by Wirth et al. (2018). Previous studies have also
suggested that EPEs are modulated by large-scale wavi-
ness associated with eastward-propagating wave packets.
High RWP amplitudes over the North Atlantic and Europe
imply that a succession of high-amplitude troughs and
ridges may be associated with heat and moisture fluxes
that create favourable conditions for the occurrence of
EPEs (Piaget et al., 2015; Liu et al., 2020). In addition, Boers
et al. (2019) have recently suggested that EPEs occurring
at distant places (>2,500 km) are not entirely independent,
since they are typically associated with the same Rossby
wave packet.

Based on the above, a better understanding of the
dynamical linkage between RWPs and EPEs is extremely
important in evaluating, among other things, the vari-
ability of these events at climate time-scales and their
predictability at weather time-scales. However, the evo-
lution of individual RWPs may differ in several aspects,
including the processes that dominate their evolution and
the kind of wave breaking at their leading edge, which
can eventually determine the precipitation amount and
impact. Moore et al. (2019) point out that different types of
wave breaking produce different responses in the intensity
and area extension of EPEs over the USA. More relevant
for the present study, they also note that cyclonic wave
breaking over the eastern USA produces stronger ridge

amplification downstream, over the Atlantic, due to strong
PV gradient tilting and strong ascent.

Apart from the presence of a large-scale dynamical
forcing factor, Sodemann and Zubler (2010) showed that
moisture sources for EPEs in the Alpine area can be dis-
tant and pointed to the fact that moisture uptake in the
Mediterranean is not the only source. They also high-
lighted the case-to-case variability in this respect. Very
often large amounts of moisture come from different sec-
tors of theAtlantic basin, with a different partition for each
precipitation type, that is, stratiform or deeply convective
(Winschall et al., 2014). Therefore, it is important to appro-
priately consider the variability in dynamical forcing and
moisture transport between the events in order to identify
the driving factors.

According to Pohorsky et al. (2019), strong ridge
amplification over the Atlantic appears to be a necessary
prerequisite for EPEs over Europe. They show that ridge
building could be further enhanced by strong diabatic
heating disturbances, like those induced by recurving
tropical cyclones (TCs) or associated with strong warm
conveyor belts (WCBs). They recognized two main evolu-
tion patterns: in the first one, which they call “atmospheric
river-like”, the building of the Atlantic ridge occurs more
in the zonal direction and there is a direct transport
of water vapour from west to east Atlantic along the
northern side of the ridge. In the second one, called the
“downstream development” pathway, the water vapour
flux is more meridional, associated with a greater merid-
ional amplification of the Atlantic ridge and downstream
trough. The water vapour fluxes over Europe are coming
more from the southerly direction and from the northerly
flow on the back of the trough. Large-scale dynamics
evolution thus influences atmospheric river landfall loca-
tion and subsequent precipitation extremes in Europe
(Pasquier et al., 2019).

The above considerations suggest that large-scale
dynamical features influence the frequency and intensity
of EPEs and a deeper investigation of their dynamical path-
ways will be essential in improving our understanding of
such events. Based on the EPE categorization presented in
Part I of this study (Grazzini et al., 2020a), we will address
the question of whether EPEs of different categories are
associated with distinct large-scale dynamical evolutions.

The article is organized as follows. In Section 2, we
describe the data used and the methods employed in this
study. In Section 3, we present the main characteristics
and synoptic conditions of the three EPE categories and
examine their linkage to upper-tropospheric waviness. In
Section 4, we investigate the spatio-temporal evolution
of the upper-tropospheric flow and associated moisture
transport prior to the EPEs and examine the dynamical
processes involved based on a PV tendency framework.
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Finally, the conclusions of the study are presented in
Section 5.

2 DATA AND METHODS

The atmospheric fields used in this study are retrieved
from the ERA5 reanalysis (Hersbach et al., 2020) over the
period 1979–2015, while precipitation data, upon which
the EPE definition is based, are retrieved from the grid-
ded dataset (5 × 5 km) of the Archivo Climatologico per
l’Italia centro-Settentrionale (climatological archive for
central-northern Italy, ArCIS) archive (Pavan et al., 2019).
With the exception of the analysis in Section 4.4 (see
Section 2.4), deviations from climatology (i.e. anomalies)
are computed following Fragkoulidis et al. (2018). In par-
ticular, the mean annual cycle at a given grid point is
smoothed by a Fourier decomposition and restriction to
the first four harmonics. A separate smooth annual cycle
is produced for the four available times of the day (i.e.
0000, 0600, 1200, 1800 UTC) so that the diurnal cycle is
taken into account. The anomalies are then computed by
subtracting the respective smoothed annual cycle from the
6-hourly full field.

2.1 EPE definition and classification

The selection of EPEs, which will form the basis for our
investigations, follows the methodology that has been
described in Part I (Grazzini et al., 2020a). Precipitation
measurements in a dense network of 1,762 rain-gauges are
first aggregated over the 94warning areas (WAs) of the Ital-
ian Department of Civil Protection (Figure 1). This choice
is preferable to regular boxes, since precipitation averages
are computed on subregional hydrological basins which
are climatologically homogenous. EPEs are then defined
as days with daily precipitation greater than or equal to the
99th percentile across one or more WAs, occurring in the
period 1979–2015. As in Part I, EPEs are subdivided into
three categories based on an unsupervised K-means clus-
tering approach that considers area-averaged values of six
thermodynamic and dynamical fields (convective adjust-
ment time-scale Tau, convective available potential energy
CAPE, meridional component of integrated water vapour
transport IVTn, �e850,Δ�e500-850, total columnwater vapour
TCWV) described in table 1 of Part I. In contrast to Part
I, which is based on ERA-Interim data (Dee et al., 2011),
the subdivision of EPEs here is actualized on the new
ERA5 dataset. The catalogue of EPE days is very simi-
lar to the one of Part I, since the classification is based
on area-averaged values and it is not sensitive to small
local changes. Next, we compose the lists of independent

F IGURE 1 Precipitation composites [mm⋅(24 hr)−1] during
the 100 representative Cat1 (top), Cat2 (middle), and Cat3 (bottom)
EPEs. Warning area boundaries are shown along with the number
of exceedances of the 99◦ of daily precipitation in each warning area

events in each category. For episodes that lasted for more
than one consecutive day, we identify the first day of this
sequence as the onset of the extreme precipitation event.
The next event has to be at least 3 days later. This way, the
EPEs we investigate can be considered as distinct events.
Given that the resulting lists of independent events in
the three EPE categories are not equal in size (287, 248
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and 133 events in category 1, 2 and 3, respectively), for
the purpose of comparison, a subsample of the 100 most
representative cases of each category is selected based on
ranking of the Silhouette score (SIL: Rousseeuw, 1987).
SIL measures, along each dimension (i.e. each normal-
ized predictor), how tightly the events are grouped inside
each cluster (cohesion) compared to the remaining clus-
ters (separation). It ranges from −1 (wrong clustering) to
1 (fully separated and compact clusters) with values equal
to 0 indicating that a given element has the same dis-
tance from the other cluster centroids (overlapping). Con-
sequently, the 100 cases of each category with the highest
SIL score are the cases that are most separated from the
other categories and best characterize their cluster.

2.2 Diagnosis of Rossby wave packet
amplitude

The diagnosis of RWP amplitude follows the approach of
Zimin et al. (2003), with a few distinctions in the input
variable and filtering steps. First, the 300 hPa meridional
wind anomaly at every latitude is zonally filtered to wave-
lengths 2,000–10,000 kmusing a Tukeywindow in spectral
space as in Fragkoulidis et al. (2018). Using the anomaly
field excludes the effect of stationary waves from the anal-
ysis and the zonal filtering restricts to the more relevant
scales of a transient RWP evolution, that is, the typically
small contribution from transient planetary waves and
small-scale features is effectively discarded. Subsequently,
a meridional convolution with a Hann window (Har-
ris, 1978) of 7◦ length at half maximum is applied in order
to account for possible unphysical discontinuities from the
latitude-wise application of the zonal filtering. Discarding
the negative frequencies and applying an inverse Fourier
transform to the meridional wind signal at every latitude
results in a complex representation of this signal. Themod-
ulus of this so-called “analytic signal” corresponds to the
envelope, E, of meridional wind, that is, the RWP ampli-
tude. Finally, a weak smoothing is applied to the E field
by discarding zonal wavelengths below 4,000 km (see also
Fragkoulidis and Wirth, 2020).

2.3 Statistical significance assessment

Statistical significance in the composite maps and Hov-
möller diagrams is assessed using aMonte Carlo approach
(e.g. Martius et al., 2008). In particular, the value at a grid
point is statistically significant at the α = 0.10 level, if it
belongs to the highest or lowest 5% tail of a distribution
created by reconstructing the composite 300 times using

random selections of an equal number of dates. The assess-
ment of statistical significance in a given field takes the
seasonality of EPEs into account by properly restricting
the pool the random dates are selected from. In partic-
ular, this pool includes the months when more than 10
EPEs of a given category have occurred (Figure 3). ForCat1
EPE compositeswe drawdates fromNovember,December,
January, February, March and April. For Cat2 EPE com-
posites,we drawdates fromMay, June, September,October
and November. Finally, for Cat3 EPE composites, we draw
dates from June, July, August and September.

2.4 PV tendency framework

We investigate the spatio-temporal evolution of the
upper-tropospheric flow preceding EPEs by analysing
the PV tendencies, as introduced by Teubler and
Riemer (2016). This framework was previously applied,
among other studies, to investigate the amplification of
a North Atlantic ridge–trough couplet, associated with a
severe precipitation event on the northern side of the Alps
(Piaget et al., 2015).

The framework is based on the hydrostatic form of
Ertel’s potential vorticity PV on an isentropic surface.
Anomalies in PV, PV ′, are calculated (in contrast to
Teubler and Riemer, 2016) as deviations from a back-
ground PV, similar to the one described at the begin-
ning of Section 2. Only for smoothing, a 30-day run-
ning mean is used instead of Fourier decomposition.
Following the concept of baroclinically coupled Rossby
waves (Eady, 1949; Hoskins et al., 1985) the PV anomalies
are separated into upper-level and low-level PV anoma-
lies. The associated wind field perturbation is derived by
piecewise PV inversion under nonlinear balance (Char-
ney, 1955; Davis, 1992). From that we calculate PV ten-
dencies due to the advection of the PV background by
(a) the upper-level wind field perturbation, which physi-
cally represents downstream development and by (b) the
low-level wind field perturbation, which represents baro-
clinic interaction. We add the (negligible) advection term
by the background flow to (a) and refer to this, in the
following, as quasi-barotropic propagation. Additionally
we derive the divergent flow by Helmholtz-partitioning.
Similar to the advective tendencies from piecewise PV
inversion we calculate the advection of the PV background
by the divergent flow and additionally the PV tendency
accounting for an area change of the anomalies due to
divergent flow (compare tendencies from equation 6 in
Teubler and Riemer (2020). In the following, a vertical
average of the PV tendencies between 315 and 350K
(every 5 K) is considered to account for the seasonal
cycle. A more detailed description of the PV tendency
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F IGURE 2 Direction and intensity of 850 hPa wind associated with the 100 representative Cat1 (left), Cat2 (middle) and Cat3 (right)
EPEs. Spokes indicate the distribution of prevailing wind direction during the EPEs, with their length pointing to the greatest frequency
(frequency is shown on the radial contours every 5%). Colour bands are showing mean wind speed in each direction ([m⋅s−1], see legend).
Wind direction and speed are computed as the daily average over the target area which includes the whole of north and central Italy

framework and a comparison to the more commonly
used eddy kinetic energy framework can be found in
Wirth et al. (2018).

3 EPE CHARACTERISTICS AND
UPPER-TROPOSPHERIC WAVINESS

In this section, we discuss the synoptic conditions and
monthly distribution associated with the three EPE cat-
egories. Furthermore, we examine the linkage between
extreme precipitation over northern-central Italy and
upper-tropospheric waviness.

3.1 Precipitation distribution
and synoptic analysis

In Figure 1, we show the precipitation composites for
the 100 representative cases of each EPE category. The
precipitation patterns in the three categories appear con-
sistent with the expected subdivisions and the associated
meteorological conditions which are briefly recalled here.
Category 1 (Cat1) events originate from frontal structures,
with slantwise ascent in warm sectors and warm conveyor
belts of Mediterranean cyclones. The associated mechan-
ical orographic uplift of low-level marine, statically stable
air typically produces extreme precipitation mostly con-
fined to upwind steep topography. The distinctive feature
of Category 2 (Cat2) events is a synergetic combination
of frontal uplift and embedded deep convection which
produces the most intense and spatially extended EPEs
(as shown in Part I by the mean area extension which
is double compared to Cat1 events). They are charac-
terized by a stronger southerly flow component and a
reduced moist static stability (almost neutral conditions).

Category 3 (Cat3) events are typically not associated with
fronts, and precipitation is due to weakly-forced convec-
tion (non-equilibrium convective events) in a potentially
unstable thermodynamic environment (i.e. with very high
CAPE). To facilitate the interpretation of the composites,
the number of the 99th percentile threshold exceedances
in each warning area is also shown. Since an EPE is
defined as a day in which one or more WAs exceed the
99th percentile threshold of daily rain accumulation, those
numbers indicate which areas contributed most in the
EPEs selection. As can be seen for example in the Cat1
case, most of the EPEs are associated with extreme rain-
fall amounts in central Italy and specifically in the Adri-
atic WAs, presumably due to the easterly low-level winds.
Regarding Cat2 events, the situation is different with a
higher frequency of extreme rainfall found in Tuscany and
south-facing regions on the Apennines and the Alps. The
precipitation composite (Figure 1, middle panel), shows
higher intensities over the southern part of the Alpine
region and the Apennines. Cat2 events are known to pro-
duce the stronger impact in terms of floods and damages
(see Part I and Grazzini et al. (2020b)). For Cat3, the
exceedance frequency is rather homogeneouswith relative
maxima over the central Alps and northern Apennines.
The mean direction and intensity of the 850 hPa wind are
shown in Figure 2 in the form of wind roses. The low-level
wind associated with Cat1 (left panel) shows an almost
even distribution of prevailing direction spanning the two
southern quadrants, from easterly to westerly direction,
with frequency and intensity maxima in the southwest
direction. However, easterly winds seem to be as frequent
as westerly winds, which can explain the high frequency
exceedance of the precipitation threshold in the Adriatic
regions. As shown in Figure 3d, Cat1 events typically occur
during the colder months (November to April). Precipi-
tation and wind distribution in this category are in fact
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in agreement with typical winter surface cyclone devel-
opment in the area with minima moving east, from the
Tyrrhenian sea toward theAdriatic sea, preceded by south-
westerly winds and followed by easterly winds.

In contrast, Cat2 events occur mostly in May, June and
autumn, and a predominant southerly direction is clearly
visible in the middle panel of Figure 2. Cat3 events are
concentrated in the period from June to September with
a prevailing southwesterly direction. Cat2 and Cat3 events
are characterized by a neutrally stable or unstable environ-
ment (see Part I, figure 8), respectively, so the flow is less
confined at low levels.

Composites of Z at 500 hPa (Figure 3(a–c)), show that
a trough over western Europe is present in all three cat-
egories. However, the trough in Cat2 events is sharper
and more to the west (centred at the prime meridian)
than Cat1. The associated surface cyclone over the cen-
tral Mediterranean in Cat2 is weaker than Cat1, but
shifted more to the east relative to the trough axis, point-
ing therefore to a stronger baroclinicity. A pronounced
anomaly of integrated water vapour transport toward
the target domain (northern-central Italy) is evident in
all three categories, but more pronounced in Cat2. The
IVT magnitude is mostly associated with its meridional
component, IVTn, which is much higher than normal,
especially in Cat2 where it exceeds the mean values for
non-EPE days by more than two standard deviations (not
shown). The presence of such IVT anomalies at the syn-
optic scale points to the pivotal role of upper-level wave
amplitude in achieving the strong meridional moisture
transport observed. High moisture convergence is a nec-
essary requirement to achieve intense and widespread
precipitation (as in Cat2) since the area extension is crit-
ically dependent on large-scale convergence of moisture
(Loriaux et al., 2017).

3.2 Linkage between EPE occurrence
and RWPs

In this section we aim to quantify the linkage between
EPEs in northern-central Italy and RWPs by first assess-
ing the association of heavy precipitation probability with
waviness in the upper-tropospheric flow. In this regard,
we use two upper-tropospheric waviness indicators: (a)
the envelope, E, of meridional wind at 300 hPa, and (b)
the absolute value of PV anomaly, |PV′|, at 330K. The
first one constitutes a phase-independent measure of the
meridional wind amplitude, while the second is ameasure
of waviness in the upper-troposphere as reflected in the
deviations of the PV field from climatology.

In order to introduce the concept of the aforemen-
tioned indicators and the statistical analysis that follows,

in Figure 4 we show the dynamical evolution leading to
the Piedmont flood ofNovember 1994, a typical example of
Cat2 events, described in detail in Grazzini et al. (2020b).
Depicted are the meridional wind at 300 hPa, the corre-
sponding E, and the 2PVU (PV units) contour at 330K on
the days leading to the event. The evolution of E highlights
the regions where the RWP amplitude is large, which is
also reflected in the large meridional wind anomaly (v′)
values and the associated succession of troughs and ridges
that result in a wavy 4PVU contour. Days D-4 and D-3 are
characterized by isolated and incoherent disturbances over
the North Pacific and a weaker disturbance over North
America that slowly propagates eastward and appears to
strengthen. On D-2, an apparent rapid intensification of
the latter results in the formation of a large-amplitude
wave packet over the North Atlantic, the leading edge
of which is already approaching the British Isles. Mean-
while, the North Pacific disturbances appear to form a
more coherent wave packet that reaches North America
but does not directly affect the centre of action of the
North Atlantic. On D-1, the North Atlantic wave packet
has progressed further downstream and is characterized
by a strong trough that dominates the flow over western
Europe. From D-1 to D0 (onset of the EPE), this trough
elongates further, appears to remain quasi-stationary, and
obtains a north–south orientation while the leading edge
of thewave packet approaches Siberia. Aswill be discussed
later, such a PV streamer structure modulates effectively
the regional flow andmoisture transport and can thus play
an important role in determining the onset and intensity
of the EPE. Finally, an apparent wave breaking between
D0 and D+1 over western Europe is clearly depicted in the
4PVU contour and marks the decay of the wave packet.

The statistical analysis that follows takes into account
that the envelope, E, of meridional wind at 300 hPa is
well-suited for RWPs in their almost-plane stage (Fragk-
oulidis and Wirth, 2020), whereas PV anomaly consti-
tutes a better indicator of upper-level forcing in the later
stages of wave overturning and breaking (see also Ghi-
nassi et al., 2018). Therefore, in order to assess the rela-
tion between upper-tropospheric waviness and EPE occur-
rence, we perform two separate regression analyses that
involve E on D-2 and |PV′| on D0 averaged over two differ-
ent areas as shown in Figure 5. The absolute value of PV
anomalies is used in order to avoid cancellations between
positive and negative anomalies in the area-averaging. The
two analyseswill involve the daily aggregated precipitation
in northern-central Italy as well as the EPE occurrence of
a specific category.

For each day in the 1979–2015 period, the daily-mean
E is averaged over the 38◦–62◦N, 22◦W–2◦E area (dashed
rectangle in Figure 5) and the resulting sample is split
into 10 equally-sized bins based on the nine deciles of
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F IGURE 3 Composite maps during the 100 representative (a) Cat1, (b) Cat2 and (c) Cat3 EPEs of geopotential height at 500 hPa
(green solid contours, every 6 gpdam), mean-sea-level pressure (white solid contours, every 2 hPa), integrated water vapour transport (IVT)
anomaly (colour fill, kg m−1 s−1), and wind speed at 850 hPa (blue arrows, m s−1). (d–f) Monthly distributions of the three EPE categories
(number of occurrencies)

area-averaged E. The first bin contains the days when
E is between the minimum and the 10th percentile, the
second bin contains the days with E between the 10th
and the 20th percentile, etc. Subsequently, the total pre-
cipitation, with a lag of +2 days, is averaged over the 94
availablewarning areas in northern-central Italy. Figure 6a
shows in black dots the percentage of days in each E-bin
that surpass the 90th percentile of average precipitation
over northern-central Italy, or else, the probability for
heavy precipitation over the domain. Note that this is
different from EPEs which are defined as days with local
extremes on warning areas. The heavy precipitation fre-
quency increases with increasing E and approximately
40% of heavy precipitation events occur at the upper two
E-bins. In the same way, the probability for heavy pre-
cipitation is evaluated against the contemporary |PV′| at
330Kaveraged over the 38◦–50◦N, 4◦–16◦Earea (solid rect-
angle in Figure 5) and displayed in Figure 6b. A clear
connection is also found in this case with approximately
36% of heavy precipitation events occurring at the upper
two |PV′|-bins. Repeating the analysis in this area for E
instead of |PV′| results in a worse connection, with only

about 25% of heavy precipitation events at the upper two
E-bins (not shown). The fact that the connection between
E and northern-central Italy heavy precipitation is better
for the dashed rectangle on Day −2 than the solid rect-
angle in Day 0, suggests that heavy precipitation events
in northern-central Italy are typically associated with an
upstream RWP that amplifies over the North Atlantic and
subsequently breaks over western Europe, as illustrated in
the Piedmont flood case.

Next, it is worth investigating whether this relation
holds for all three types of EPEs. The blue, orange and
green dots in Figure 6 correspond to the percentage of days
in each E-bin that is associated with a Cat 1, 2 and 3 EPE,
respectively. The probability for Cat 1 and 2 EPEs increases
with a rate that is only slightly higher for Cat 1 in the case
of E and similar in the case of |PV′|. Although there is some
waviness in the flow during Cat 3 EPEs (Figure 3c), their
occurrence is not increasing with E. The poor correlation
in this category is consistent with the fact that Cat 3 events
aremostly associatedwith high thermodynamic instability
and non-equilibrium convection (or weakly forced con-
vection), in which the interaction between the synoptic
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F IGURE 4 Evolution of the upper-tropospheric flow leading to the November 1994 Piedmont flood. The panels depict mean daily
values of meridional wind at 300 hPa (colour fill, m⋅s-1), E at 300 hPa (black contours every 10 m⋅s−1 starting from 25m⋅s−1), and the 4PVU
isoline at 330K (orange contour) at (a) 31 October 1994 (day −4), (b) 1 November 1994 (day −3), (c) 2 November 1994 (day −2), (d) 3
November 1994 (day −1), (e) 4 November 1994 (day 0), and (f) 5 November 1994 (day +1)

flow and convection is weaker (Done et al., 2006; Zimmer
et al., 2011). The weak relation also suggests that these
events are less predictable, since severe convection can be
triggered, in a very unstable environment, even with small
amplitude waves or due to local thermal circulations. It
should be noted that, generally, the probabilities of Cat 1,
2 and 3 EPE occurrence in each E-bin do not sum up to

the heavy precipitation probability (black dots), since the
former are defined with stricter criteria (days with at least
one warning area with daily precipitation above the 99th
percentile). Finally, we notice that the probability of EPEs
grows slightly more rapidly with E for mountainous as
opposed to low elevation warning areas (not shown). This
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F IGURE 5 Areas used for averaging E at D-2 (dashed
rectangle; 38◦–62◦N, 22◦W–2◦E) and |PV′| at D0 (solid rectangle;
38◦–50◦N, 4◦–16◦E)

implies that, due to the stronger interaction with orogra-
phy, the mountainous regions are more sensitive to RWP
amplitude.

The above results do not change substantially for slight
variations in the size and location of the two areas in
Figure 5. Using a single vertical level, as is done here
for simplicity, may constitute a limitation in cases when
the wave packet evolution is characterized by pronounced
variability in the vertical direction. However, the results
of the regression analyses in Figure 6 remain quanti-
tatively similar when using the maximum E between
the 200, 300 and 400 hPa levels and the maximum |PV′|
between the 315 and 350K levels (with 5 K increment) at
every grid point. Finally, it has to be noted that although
many times these wavinessmetrics attain large values over
Europe, heavy precipitation or EPEs in northern-central
Italy are not observed simply because the phasing of the
trough–ridge sequence is not the right one (Figure 3).
Therefore, higher probabilities are to be expected whenwe
restrict to cases with a trough over western Europe.

4 DYNAMICAL EVOLUTION

4.1 RWP composites

In the previous section, we have shown that there is a
statistical relation between large-scale upper-tropospheric
waves and the probability of EPEs. In this section, we
investigate in more detail the dynamics, and in particu-
lar the RWP characteristics leading to the three different
categories of EPEs. We want to test the hypothesis that
the three different categories exhibit specific propagation
patterns of the precursor RWPs. In this respect, Hov-
möller diagrams of the upper-tropospheric meridional

wind are well-suited to depict the main properties of
the spatio-temporal RWP evolution (Martius et al., 2006b;
Persson, 2017). Unlike the amplitude measure used in
the previous section, they provide an indication for the
preferred phase during the RWP evolution, which is crit-
ical for the occurrence of EPEs. To this end, compos-
ite Hovmöller diagrams of v′ at 300 hPa are constructed
for the 100 representative cases of each EPE category
(see Section 2.1) and the emerging patterns are shown
in Figure 7. Evidently, a large-scale wave feature is
recognizable in all categories at Day 0, but the charac-
teristics of the spatio-temporal evolution of the RWPs are
different. In the following, T0 (Trough at Day 0) will refer
to the trough overwestern Europe, directly associatedwith
EPEs (Figure 3), and TU (Trough Upstream) will refer to
the upstream trough forming off the eastern coast of North
America.

In Cat1 events, there is a statistically significant
far-upstream RWP signal that is first detected over the
eastern Pacific 5–6 days before the event and propagates
toward Europe at a zonal group velocity of approximately
30◦⋅day-1 (Figure 7; group velocity can be roughly esti-
mated as the slope of a hypothetical line that connects
the areas of positive and negative v′ in the Hovmöller dia-
gram). On days −1 to +1 of the events, the composite
RWP spans approximately 150◦ in longitude with strong
northerlies over the eastern North Atlantic and souther-
lies over Europe signifying the pronounced trough seen
in Figure 3. A few days prior to the emergence of this
RWP, a secondary RWP of weaker magnitude and lower
group velocity but with the same phase as the primary
RWP is also evident in the composite Hovmöller diagram.
The two wave packets merge over the target region form-
ing the trough T0. This suggests that the amplification
and quasi-stationarity of T0 may sometimes be associ-
ated with a sequence of RWPs of the same phasing, that
induces a recurrent amplification of troughs and ridges
at the same longitudes. The mechanism of RWPs recur-
rence, as a factor explaining the stationarity and ampli-
fication of a particular element of a wave pattern, has
been shown by Barton et al. (2016) and Röthlisberger
et al. (2019). Individual troughs and ridges are charac-
terized by high phase speed (7◦⋅day-1), extending almost
uniformly from the North Pacific to Europe. However, the
situation over Europe is characterized by a substantially
reduced phase speed (waves slow down, becoming almost
stationary) in conjunction with wave amplification and
possible wave breaking. Although this sequence of events
arises from the analysis of the composite Hovmöller dia-
gram, it appears consistentwith the evolution of individual
cases.

The composite RWP signal in Cat2 events is more
confined in longitude (Figure 7b) compared to Cat1, and
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F IGURE 6 (a) Probability of heavy precipitation events in northern-central Italy as a function of the area-averaged E (m⋅s-1) (dashed
rectangle in Figure 5) at a lag of 2 days. The black dots correspond to the percentage of days next within each E-bin of size N that exceeds the
90th percentile in the average precipitation over the 94 warning areas. The dots in the x-axis are placed at the median of E in each bin.
Assuming that next corresponds to the sample mean of a Poisson distribution, and that many measurements have been done resulting in a
Poisson distribution of sample means, the associated uncertainty (shaded range) is based on the standard error of this distribution: the blue,
orange and green dots correspond to the percentage of days within each E-bin that are characterized as a category 1, 2 and 3 EPE respectively.
(b) Same as (a) but now the probability of heavy precipitation events is evaluated against the contemporary area-averaged |PV′| at 330K (solid
rectangle in Figure 5)

F IGURE 7 Composite Hovmöller plots of v′ at 300 hPa (colour fill, m⋅s-1; positive meridional wind corresponds to northward
direction) during the 100 representative cases of (a) Cat1, (b) Cat2 and (c) Cat3 EPEs. For every longitude, v′ is meridionally averaged over
the 30◦–60◦ latitude band. The hatches indicate statistical significance at the 0.10 level (see Section 2.3)

extends from the North American east coast to Europe.
This implies that in Cat2 events there is either no in-phase
wave propagation west of 90◦W (so the signal in the com-
posite is reduced through destructive interference), or
there is rapid amplification over the North Atlantic with-
out a significant far-upstreamprecursor. The amplification
starts in Tu just west of 60◦W, followed by the development
of T0 around the Greenwichmeridian, in the correct phase

to produce strong water vapour convergence and precip-
itation to the south of the Alps. Therefore, the processes
driving the amplification of the North Atlantic ridge may
play a key role in determining the evolution and specific
positioning of the downstream trough T0.

Themagnitude of themeridionalwind anomaly associ-
ated with T0 and TU is larger in Cat2 events than the other
two categories. Notably, the meridional wind anomaly
couplet over Europe is not stationary as in Cat1 events but
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F IGURE 8 Composites of wind speed (m⋅s−1) at 250 hPa (colour fill) and 2PVU contour at 325K isosurface (red contour). Panels on
the left depict the seasonal composites (all days of the season labelled on the top left of each map), while the panels on the right show
composites centred 4 days prior to (i.e. on D-4) the 100 representative EPEs of each category

has a phase speed of 5–7◦⋅day-1. Furthermore, the prox-
imity between the northerly and southerly bands in Cat2
events implies that the typical wavelength of T0 is smaller
than in Cat1 events. Group velocity is generally lower than
in Cat1 while the phase speed is not uniform in time and
longitude.

Despite the visual impression of the composite, indi-
vidual Cat2 events do show a connection between the
North Pacific and North Atlantic storm tracks, as visible in
the example case of the Piedmont flood. We suggest there-
fore that prior to someCat2EPEs,waviness over the Pacific
may be out of phase but still enhanced and capable of seed-
ing the North Atlantic storm track. Once the composite
RWP signal inCat2 has reached theNorthAtlantic a strong
coherent amplification is noticeable.

Although largely associated with in situ
non-equilibrium convection (Grazzini et al., 2020a), Cat3
events show a similar composite RWP signal over the
North Atlantic and Europe as in Cat2 (Figure 7c), but with
lower amplitude. Relative to the other two categories, the
RWP for Cat3 is characterized by a higher phase speed
and smaller zonal wavelength.

4.2 Category composites versus
seasonal composites

After a first account on the RWP properties associated
with the three EPE categories, it is worth investigating the
role of the background flow seasonality in this respect.
The natural tendency of the upper troposphere to form

waveguides for the propagation of RWPs has been investi-
gated before. The emergence and efficiency of thesewaveg-
uides essentially depend on the strength and shape of the
jet stream (e.g. Manola et al., 2013; Wirth et al., 2018;
Wirth, 2020). Idealized studies of Rossby wave propaga-
tion (Hoskins and Ambrizzi, 1993; Branstator, 2002) show
that weak jets (associated with weak PV gradients) are
typically associated with RWP propagation along great cir-
cles, whereas strong zonal jets lead to zonal ducting and
longer propagation of the RWPs. The seasonal variability
of the jet is associated with a corresponding variability in
the mean RWP properties (Fragkoulidis and Wirth, 2020).

Previous studies have shown that the properties of the
RWP precursor signal of EPEs in the Alpine area have a
seasonal variability (Grazzini, 2007; Martius et al., 2008).
In the Martius et al. (2008) study in particular, composites
of autumn and winter reveal a long and coherent RWP sig-
nal that is detectable over the North Pacific up to 7 days
prior to the precipitation event. During spring, however,
these studies report a short-lived equatorward propaga-
tion initiated in the western North Atlantic about 4 days
prior to the event. It is therefore interesting to investi-
gate whether the characteristic RWP properties of each
EPE category are purely dependent on the period of the
year they occur in. To this end, we first compare the jet
composites of the three EPE categories with the respective
seasonal climatologies, which reflect the annual cycle of
the climatological waveguides.

We compare seasonal jet speed composites (all days)
to jet speed composites 4 days prior to the occurrence
of EPEs (Figure 8). The lag of 4 days allows us to focus
on the jet properties prior to the direct influence by the
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F IGURE 9 Composite Hovmöller plots of v′ at 300 hPa, as in Figure 7, but for the (a) 59 Cat1 and (b) 35 Cat2 EPEs that occurred in
November

wave associated with the EPE. Nevertheless, the follow-
ing results do not change substantially for slightly different
lags. The composite prior to Cat1 cases, which mostly
occur in winter and late autumn (Figure 3d), is similar
to the December–February (DJF) composite. An exception
is that the Cat1 jet extends more towards Europe and is
more intense and continuous over the continental USA, a
characteristic which is common to the composites of all
EPE categories. The fact that the Cat1 jet composite is sim-
ilar to the DJF seasonal composite, and that the RWP Cat1
composite (Figure 7a) is similar to theMartius et al. (2008)
winter composite, suggests that EPEs of this category are
not too distinct from the typical winter circulation proper-
ties. In contrast, the Cat2 jet composite (Figure 8, middle
right panel), instead, differs from the March–May (MAM)
and September–November (SON) climatologies, while the
Cat3 jet composite is similar to Cat2 but slightly weaker.
Finally, we also note the prominent presence of the sub-
tropical jet over the Mediterranean and North Africa in
Cat1 events, while this is not the case in either the Cat2 or
Cat3 composites.

The above might imply that in the transition seasons
the large-scale flow associated with EPEs can vary sub-
stantially from the mean, sustaining different types of
propagation according to the strength of the meridional
PV gradient. To further investigate this point, we produce
RWP composites based on all EPE cases (not just the 100
representative ones) that occurred in November, a month
when both Cat1 and Cat2 EPEs are frequent. In particu-
lar, out of the 95 November EPEs, 59 are Cat1, 35 are Cat2,
and 1 is Cat3. Therefore we can test whether in the same
month there can be differences in the RWP propagation

associated with the two EPE categories. Indeed, Figure 9
shows distinct propagation patterns for November Cat1
andCat2 EPEs, with amarked difference in the Pacific pre-
cursor part and the amplification over the North Atlantic.
As in the full composite (Figure 7), Cat2 composite RWPs
are still more confined in longitude. As a side note, June
and September are also months when EPEs are not char-
acterized by a distinctly preferable category (Figure 3).

4.3 Water vapour transport and wave
amplification over the Atlantic sector

In this section, we investigate the factors behind the strong
amplification observed over the North Atlantic, that is evi-
dent in all categories and especially pronounced during
Cat2 events, as seen in Figure 7. A strong amplification of
the North Atlantic ridge is in fact a necessary condition for
the evolution of the trough over western Europe into an
elongated structure, able to drive significant water vapour
transport toward Europe (Piaget et al., 2015; Scoccimarro
et al., 2018). Although ridges are typically wider in lon-
gitude than troughs, as expected from the nonlinear dry
primitive equations (Hoskins, 1975; Snyder et al., 1991),
Teubler and Riemer (2020) have shown that divergent out-
flow tends to increase ridge amplitude and to decrease
trough amplitude systematically. Here we aim to address
factors that further influence this asymmetry and thatmay
vary between the EPE categories.

Many studies have shown the effect of diabatic heat-
ing in modifying the intensity of PV streamers and Rossby
wave evolution downstream (Wernli and Davies, 1997;



GRAZZINI et al. 13

F IGURE 10 Composite Hovmöller plots of IVTn anomaly (colour fill, kg⋅m-1⋅s-1) during the 100 representative cases of (a) Cat1, (b)
Cat2 and (c) Cat3 EPEs. For every longitude, IVTn anomaly is meridionally averaged over the 30◦–60◦ latitude band. The hatches indicate
statistical significance at the 0.10 level

Grams and Archambault, 2016; Grams et al., 2018). This
occurs via the injection of low-PV air into the upper tro-
posphere in a deep ascent of moist air streams which can
originate from WCBs within extratropical cyclones and
their embedded convection, or extratropical transition of
tropical cyclones. The resulting upper-level negative PV
anomaly can intensify the ridge downstream of the trough,
strengthen the PV gradient and in general amplify the
meridional elongation of the pre-existing streamer down-
stream of the ridge (Martius et al., 2008). Numerical exper-
iments with reduced meridional moisture transport and
latent heat release lead to waves of substantially weaker
amplitude (e.g. Grams and Archambault, 2016). Strong
IVT convergence is, therefore, a typical precondition to
achieve strong ridge amplification downstream on the tar-
get region; a feature that is characteristic of Cat2 events
as will be shown later. Following this hypothesis, in this
sectionwe investigate the environment of the TU system in
the different categories, in search of mechanisms explain-
ing the differences in the North Atlantic ridge amplifi-
cation and the associated downstream development. In
the next Section (4.4) we evaluate the contribution of dif-
ferent physical processes by adopting the PV tendency
framework introduced in Section 2.4.

In Figure 10, we display composite Hovmöller dia-
grams of the meridional IVT (IVTn) anomaly. The first
striking difference between the categories is the strong
meridional water vapour fluxes occurring on the North
Atlantic basin in Cat 2, beginning about 4 days before
EPEs. Cat 1 EPEs are instead characterized by tran-
sient meridional IVT associated with a coherent and
long-lastingwave packet that appears to form in the Pacific
(180◦W) at D-6. Cat 3 EPEs are similar to Cat 2, but with

weaker – although still statistically significant – water
vapour transport.

In order to complement the information of Figure 10,
in Figure 11 we display the North Atlantic 500 hPa geopo-
tential height (full field and anomaly) and IVT anomaly
composites at D-4, D-2 and D0. As a reference, the posi-
tion of Tu is marked on Figure 11, whenever a close
negative anomaly isoline (dashed) is evident. At D-4
in the Cat1 composite (Figure 11g) we note a stronger
meridional height gradient compared to Cat2 and Cat3
(Figure 11h,i), which is consistent with the higher jet
speed observed in Figure 8. An upstream trough (Tu) is
located over Hudson Bay, and there is no apparent IVT
anomaly or ridging over the North Atlantic associated
with it. It is only at D-2 (Figure 11d), when it reaches the
North Atlantic, that Tu starts to intensify, in association
with a moderate positive IVT anomaly on its ascending
branch and the strengthening of the wave downstream,
as reflected in the geopotential height anomaly contours.
The wave amplification continues until D0 when a partic-
ularly strong trough (T0) dominates the flow over Europe
(Figure 11a).

At D-4 for Cat2 EPEs, the Tu over North America
is too weak to produce a closed contour in Figure 11h
(weaker than −2gpdam), but positive IVT and geopoten-
tial height anomalies are apparent over the North Atlantic.
A stronger amplification of the associated North Atlantic
ridge is apparent on D-2 of Cat2 (Figure 11e) compared
to Cat1, as indicated by the stronger positive geopoten-
tial anomaly. Furthermore, the Cat2 composite height
anomalies over the North Atlantic imply waves of smaller
wavelength than those of Cat1 events (as also suggested
by the Hovmöller diagrams in Figure 7) and appear to be
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F IGURE 11 Composite maps of the IVT magnitude anomaly (colour fill, kg⋅m-1⋅s-1), geopotential height at 500 hPa (black contours
every 10 gpdam), and geopotential height anomaly at 500 hPa (green contours at ±[2, 4, 6, … ] gpdam; solid: positive anomalies, dashed:
negative anomalies) at day 0 of the 100 representative (a) Cat1, (b) Cat2 and (c) Cat3 EPEs. Panels (d–f) correspond to day −2 and panels (g–i)
correspond to day −4 of the three EPE categories respectively. The approximate position of the Tu trough is marked in blue

less influenced by upstream waves coming from North
America. The latter hints at a more local forcing over the
northern edge of the western boundary ocean current,
as opposed to the Cat1 flow evolution described before.
Finally, the large-scale flow prior to Cat3 EPEs is charac-
terized by an overall weaker wave packet that amplifies
slowly and has a shorter wavelength than the other
two categories (see also Figure 7). In the next section,
we investigate which processes are responsible for the
more vigorous North Atlantic ridge amplification prior
to Cat2 EPEs.

4.4 PV tendency analysis of the
precursor wave

In this section we investigate, in a composite sense, the
contribution of individual processes, including latent heat
release, to the spatio-temporal evolution of Tu and the
respective downstream ridge. Since latent heating is not
directly available in the ERA5 reanalysis, we employ
a proxy based on the Lagrangian change in column
water vapour: LHRproxy = −L*()IWV/)t+ ∇ ⋅ IVT) (see
equation [3] from Trenberth and Solomon (1994)). L
denotes the latent heat of vaporization of water, IWV the

vertically integrated water vapour content, and IVT the
vertically integrated water vapour transport as described
before.

We will consider PV tendencies showing the contri-
bution of quasi-barotropic propagation, baroclinic interac-
tion, and divergent outflow to PV amplitude and neglect
contributions to deformation and wave breaking. The
role of these processes can be understood conceptually
in terms of downstream baroclinic development in the
PV framework (e.g. Wirth et al., 2018). Downstream of
an existing trough, a new ridge is created at the leading
edge of an RWP due to quasi-barotropic (negative) PV
advection. Subsequently, baroclinic interaction with the
low-level temperature gradient is established, which rein-
forces the upper-level ridge by PV advection associated
with low-level temperature anomalies. Baroclinic interac-
tion is also associated with rising motions which will pro-
duce upper-tropospheric divergent outflow. Teubler and
Riemer (2020) argued that such a ridge evolution is more
precisely described as a downstream moist-baroclinic
development, so as to include the contribution frommoist
processes. They showed that the impact of latent heat
release on the PV amplitude is most effectively commu-
nicated by the enhancement of vertical motion and hence
the divergent outflow.
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F IGURE 12 (a–e) Composite maps of
PV anomalies (blue-grey shading) and
tendencies of the 100 representative Cat1
EPEs on days 0, −1, −2, −3 and −4.
LHRproxy is shown by green coloured dots
(only positive values shown). PV tendencies
due to quasi-barotropic propagation (blue
contours at ±[0.5, 1, 1.5, 2] PVU⋅day−1),
baroclinic interaction (orange contours at
±[0.04, 0.06, 0.08, 0.12] PVU⋅day−1), and
divergent outflow (red-purple shading). Solid
contours refer to positive tendencies and
dashed contours refer to negative tendencies.
Grey lines refer to temperature at 850 hPa
(every 10 K). The PV field and its tendencies
correspond to the mean values between the
315–350K isentropic levels

In Figures 12–14 we show composite maps of PV
anomaly, LHRproxy, and PV tendencies at time lags from
D0 to D-4 prior to Cat1, Cat2 and Cat3 EPEs. Start-
ing with Cat1 events at D-4 (Figure 12e), the incom-
ing baroclinic RWP (Figure 7a) can be identified over
North America by the positive quasi-barotropic PV ten-
dencies (solid blue contours) and negative baroclinic PV
tendencies (dashed orange contour). However, the collo-
cation of these tendencies is not favourable for mutual
growth by baroclinic interaction. We also note the positive

PV anomaly (grey shading) and baroclinic PV tenden-
cies over Europe, as a remnant of a previous wave over
Europe (also evident in Figures 7a and 11g). The ini-
tially weak divergent outflow tendencies (red shading)
and latent heating (LHRproxy indicated by coloured dots)
at the North American east coast increase from D-4 to
D-3 but do not have an apparent contribution to the
North Atlantic ridge evolution. At D-2, however, the ridge
development around 45◦W is subject to moist-baroclinic
development as indicated by the combination of enhanced
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F IGURE 13 (a–e) The same as
Figure 12 but for the composite of the 100
representative Cat2 EPEs

LHRproxy values, strong divergent outflow directly above,
and negative baroclinic PV tendencies downstream. On
the other hand, the pre-existing positive PV anomaly over
Europe is amplified by in situ positive baroclinic PV ten-
dencies and moves westward. Both the moist-baroclinic
development and the amplification and westward shift
of the positive PV anomaly over Europe contribute to
the fast downstream propagation of the leading edge of
the RWP from D-3 to D-2 (negative quasi-barotropic PV
tendencies at D-3 around 75◦W and positive tendencies at
D-2 around 20◦W). The peculiar merging of a developing

RWP with remnants of previous RWPs farther down-
stream could also be identified in the case considered by
Teubler and Riemer (2016), which led to a high-impact
weather event over Europe. Finally, from D-2 onwards the
RWP amplifies further and propagates eastward subject
to baroclinic downstream development that is indicated
by the phase-shifted quasi-barotropic (blue contours) and
baroclinic (orange contours) PV tendencies amplifying
both troughs and ridges.

In contrast to the above evolution, the development
of Tu and, even more so, the downstream North Atlantic
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F IGURE 14 (a–e) The same as
Figure 12 but for the composite of the 100
representative Cat3 EPEs

ridge for Cat2 and Cat3 events (Figures 13 and 14) is not
triggered by an incoming RWP but appears to be forced
locally at the North American east coast. As was also evi-
dent in the composite Hovmöller plots (Figure 7), neither
Cat2 nor Cat3 events are associated with a precursor RWP
signal over the North Pacific. At D-4 (Figure 13e), negative
divergent PV tendencies and latent heating (LHRproxy is
even stronger at D-5; not shown) are present in an area
of negative PV anomaly over Newfoundland that falls
in between regions with baroclinic and quasi-barotropic

PV tendencies. At D-3, the negative PV anomaly, the PV
tendencies, and latent heating have all increased dramat-
ically in magnitude, such that a large-amplitude RWP
starts to develop downstream. On this day, the location of
pronounced divergent PV tendency and LHRproxy values
relative to the negative PVanomaly is conducive to a strong
amplification of the ridge. The subsequent RWP propaga-
tion constitutes an archetypical example of downstream
baroclinic development as described above with the ridge
over the North American east coast being the source:
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positive quasi-barotropic PV tendencies at the leading
edge (around−35◦W) form and intensify the trough down-
stream, while the ridge amplification is maintained by
negative baroclinic and divergent PV tendencies. At D-2, a
new positive PV anomaly develops at around 15◦E reflect-
ing the downstream propagation of the RWP. It is worth
noting, that from D-3 onward a consistent and noticeable
phase difference between baroclinic and quasi-barotropic
tendencies is evident; a configuration that is particularly
favourable to strong baroclinic downstream development.

The evolution of Cat3 events is similar to Cat2, but
starts earlier and the PV anomaly and tendency fields
have a weaker magnitude. The overall slower RWP prop-
agation is associated with the weaker baroclinicity (grey
lines) and jets associated with this category (Figures 8 and
11). Concerning the stronger North Atlantic ridge ampli-
fication in Cat2 and Cat3 compared to the corresponding
Cat1 evolution, it is worth noting that the simultaneous
presence of baroclinic interaction and substantial latent
heating induces a particularly intense divergent outflow,
leading to strong ridge amplification and high-amplitude
RWPs. These findings are supported by the Teubler and
Riemer (2020) study which showed, in a statistical sense,
that both processes are similarly important for ridge build-
ing, and that high latent heat release is on average accom-
panied by strong baroclinic interaction (and vice versa).
The strong IVT anomalies observed in the western North
Atlantic in the days preceding Cat2 (Figure 11h) and,
slightly less so, Cat3 (Figure 11i) events, along with the
weaker jet conditions of the corresponding months, may
therefore constitute perfect environmental conditions for
strong ridge building and further downstream propaga-
tion.

5 CONCLUSIONS

In this studywe analysed the linkage between extremepre-
cipitation events (EPEs) over northern-central Italy and
the hemispheric evolution leading to the synoptic-scale
wave that provides the dynamical forcing and water
vapour transport convergence that are necessary for
extreme precipitation over this area. We investigated a
large number of EPEs that occurred between 1979 and
2015, subdivided into three categories identified in Part I
of this study (Cat1, Cat2, Cat3) according to the thermody-
namic and dynamic conditions over the target region. The
three categories differ not only locally but also in the evo-
lution of the upstreamRWPprecursor signal. In particular,
the key results of this study can be summarized as follows:

• The three EPE categories have a different monthly
distribution and are characterized by distinct spatial

patterns in precipitation, low-level wind, and moisture
transport. These analyses add to the results of Part I and
provide further insight into the characteristics of the
three categories.

• The probability of heavy precipitation events in
northern-central Italy increases with increasing
waviness in the upper-tropospheric flow. This clear
dependence is found for both Cat1 and Cat2 EPEs.
In contrast, the probability of Cat 3 EPEs, which are
mostly associated with thermodynamic instability and
weakly-forced convection, does not increase with the
magnitude of waviness.

• Differences in the evolution and characteristic proper-
ties of RWPs for the three EPE categories are evident.
These differences are not purely explained by differ-
ences in the monthly distribution of the three cate-
gories, since they are still evident when restricting the
analysis to November cases only.

• A comprehensive PV tendency analysis reveals pro-
nounced differences in the dynamical processes lead-
ing to the RWP amplification over the North Atlantic
that are crucial for the occurrence of Cat1 and Cat2
EPEs. Cat1 EPEs are characterized by (a) an incom-
ing precursor wave signal from the North Pacific, (b)
moist-baroclinic development over the North Atlantic,
and (c) an interaction with a pre-existing upper-level
positive PV anomaly over Europe. This combina-
tion leads to rapid downstream propagation of the
leading edge of the RWP. In contrast, Cat2 EPEs
arise from RWP amplification along the North Amer-
ican east coast, which is strongly invigorated by
divergent outflow associated with latent heat release
below. The subsequent downstream propagation is
characterized by moist-baroclinic development and
favoured by the phase difference betweenbaroclinic and
quasi-barotropic tendencies, so that a high-amplitude
trough develops over western Europe.

These outcomes suggest that the occurrence of
northern-central Italy EPEs depends not only on the local
conditions, but also on the large-scale upper-tropospheric
flow evolution in the days leading to the events. The
particular severity of Cat2 EPEs appears to be the result
of favourable conditions in both of these respects, that
is, a warmer Mediterranean Sea in autumn and a more
vigorous RWP amplification over the North Atlantic.

These results improve our understanding of the
synoptic-scale dynamical and thermodynamical pro-
cesses, providing further evidence on the role and
properties of the upstream upper-tropospheric flow lead-
ing to EPEs. The processes and mechanisms involved in
this regard are not only relevant for a better assessment of
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the predictability and impact of these events, but also for
their long-term trends. For example, all else being equal, a
further increase in water vapour transport in the western
North Atlantic, induced by global warming, could induce
more frequent or stronger ridge building and downstream
development of the kind observed in Cat2 EPEs. Conse-
quently, further studies in this direction appear essential
for advancing our knowledge on the occurrence of heavy
precipitation events at weather and climate time-scales.
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Chapter 4

EPE predictability

Predictability is intimately linked to the particular type of dynamical evolution. The accu-
racy of the forecast depends on how rapidly separate solutions of the equations of motion
diverge (Lorenz, 1969b), a property which it tightly related to the processes. Therefore
it is important to study the intrinsic or potential predictability of EPEs conditioned to
the processes, in our study represented by the different categories. As we have seen in
in Section 3.3 (in paper Part II, Fig.6) Cat1 and Cat2 show a closer dependency on the
large-scale dynamics so we expect them to be more predictable than Cat3 events domi-
nated by weakly forced convective events. In this chapter we are presenting unpublished
results based on the analysis of two potential predictability indexes. The aim is to verify
the hypothesis that different EPEs posses different intrinsic predictability.

4.1 Potential predictability

In order to test the hypothesis of different EPE predictability, it is necessary to analyse
a sufficiently large number of EPEs to be able to construct a reliable statistic. To do so
we made use of a re-forecast of past cases, the ECMWF ensemble reforecast suite, fully
described in section 2.3.3. It is a reduced ensemble (only 11 members), compared with
51 members of the operational version, but it has the advantage to be consistently run
with the latest IFS model cycle and therefore allows comparing forecasts for EPE over
the last 20 years with an up to date and homogeneous forecasting system. This choice
allowed to have a statistics based on more than 30 EPE cases for each category and
for each forecast-step considered. We have selected two indices for measuring potential
predictability: the Normalised Precipitation Spread (NPS) and the Potential Predictability
Index (PPI) described in section 2.5 .

With complementary characteristics, both indexes are measuring the dispersion of the
ensemble in predicting precipitation for a given case: the NPS provides the average spread
computed independently over each case, while for the PPI r2 refers to the correlation
computed over series including all cases and then averaging over ensemble members. The
latter therefore is more influenced by outliers and it is a less robust measure than the former.
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The stratification of the results per EPE category allows to asses the degree of potential
predictability conditioned to the process responsible for a given class of events. Figure 4.1
shows the value of NPS as a function of forecast time step every 24h for Cat1, Cat2 and
Cat3. We show three curves: for the whole Northern Central Italy (see the blue box in
Fig. 2.1) -all-, for flat and mountain WA respectively. Potential predictability decreases
when NPS is increasing. NPS below 1 means good potential predictability since the spread
(noise) is much smaller that the median (signal) while values significantly above 1 (beyond
1.5 or greater) are pointing to almost a total loss of predictability. On the contrary PPI
values equal to one are indicating a perfect predictability while 0 means no predictability.
Lavers et al. (2014) propose to use the threshold 0.5 to separate predictable forecasts.

The first general consideration is that NPS increase rapidly with time but less where
significant orography is present. Higher predictability for mountain warning areas is par-
ticularly true for Cat3 cases, but also Cat2 which contains deep convection embedded. The
prominent role of local direct thermal circulation in maintaining weakly-forced convective
precipitation close to the mountains increase the predictability over these regions. This
result backs up what has already been found by Bachmann et al. (2020) about convection
in Germany. Through a series of idealised perfect model setup experiments and realistic
simulations, they find an increased predictability of precipitation close to the orography.

In Cat1, in which the precipitation is tightly related with the position of the front,
the difference between flat areas and mountains is very small. Surprisingly we note in
Cat1 a faster loss of predictability in the shorter forecast ranges which we think could be
attributed to the interaction of the moist airflow associated with a frontal structure or a
surface cyclone with the orography, highly dependent on the phase of the incoming wave.
In Cat2 the presence of prefrontal deep convection produces events with longer duration
and larger area extensions (10.000km2 on average against 5000km2 for Cat1, see Fig.7 in
Part I) in which phase error might intrinsically reduced. The fast error growth in Cat1 is
an unexpected result which contradicts the initial hypothesis that Cat1 and Cat2 should
have higher predictability due to their higher linkage with the large-scale dynamics.

A similar behaviour emerge also from the analysis of the PPI index, displayed in Fig.
4.2 although differences amongst categories are smaller. In this metric the difference in
predictability between flat and mountain areas is reduced in Cat3 in the medium-range,
but still significant up to D+4. While in Cat2 the behaviour is comparable with that
observed in NPS. In Cat1 we also observed a vanishing difference between mountain and
flat areas and more rapid loss of predictability despite starting from higher absolute levels
at D+1. For Cat1 events the limit of potential predictability seems to be reached at D+4
when PPI drops below 0.5. At the same time NPS is about 1.6 for mountains areas and
1.75 for flat areas for Cat1, so already above 1.5 which is the threshold we consider for
NPS. The 1.5 value of NPS is reached at about 3.5 days in Cat1. In Cat3 the predictability
horizon is about D+3 on the NPS (mountain areas, even shorter for flat areas) and D+4
with PPI index.

Very interestingly in Cat2 we observe, in both metrics, a longer predictability horizon
with a gain of almost one day of predictability. In Cat2 PPI drops below 0.5 between D+4
and D+5 while NPS value above 1.5 are reached almost ad D+5.
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Figure 4.1: Area average Normalised Precipitation Spread (IQR/media) with associated
confidence interval. In All the score is computed over the whole Northern Central Italy;
Flat and Mountain are respectively the average of the score over all flat and mountain
warning areas.

While the flat and mountains curves NPS and PPI are computed over single WA and
then averaged, so measuring average potential predictability over single WAs, the green
curve (all) show indexes computed averaging precipitation over the whole Northern Central
Italy domain. As expected predictability is considerably higher over a such larger domain,
indicating that most of the uncertainty regards the correct positioning of the precipitation
in each WA, rather then the presence or not of the EPE inside the whole domain. In Fig.
4.1, if we fix for example NPS at 1, we obtain this level of predictability at D+2 for WAs
in Cat1 while over the whole domain this is achieved at D+6, and even larger for Cat2.
We can interpret the curve -all- as the potential predictability of having an EPE (yes/no)
somewhere in the domain, which, according to this index, stays predictable up to the end
of the medium range, while less dramatic difference amongst the two groups of curves is
evident in the PPI index.

Finally we try to asses the predictability over each single WA to highlight other geo-
graphical dependencies in addition to flat versus mountain areas, like the direction of the
flow respect to the orography which is changing with the category (see Fig. 2 of Part II:
Dynamical precursors ). In Fig. 4.3 we display a heatmap of NPS for each WA against
forecast time step. The localisation of the WA can be visualised in 2.1. Yellowish colours
are marking areas/forecast times in which potential predictability is still good, while dark
blue colors are showing an almost total loss of predictability. In Cat2 yellowish colours
reach longer forecast steps indicating again, as we have seen in the aggregated plot above,
higher predictability for this EPE category compared to Cat1 and Cat3. This is particu-
larly true on the left side of the plot which is showing western northern Italy WAs, while on
the potential predictability is general shorter on the eastern areas (right part of the plot).
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Figure 4.2: Potential Predictability Index (square of pearson corr , between single ens
members and ens mean removing the member). In All the score is computed over the
whole Northern Central Italy; Flat and mountain are respectively are the average of the
score over all flat and mountain warning areas

The longitudinal dependency is also visible in Cat3 while in Cat1 this is not evident. This
is confirmed also by the PPI index on a different aggregation on administrative regions
(not shown) which confirms substantially higher predictability in the western and eastern
Alps and Ligurian Apennines, more exposed to straight meridional flow associated with
meridional configurations. Higher predictability in these regions is then attributable to the
type of synoptic configuration of Cat2 events characterized by a stronger meridional flow,
and even small phase errors in the forecast are not so detrimental due the structure of the
orographic barrier which impose particularly strict boundary to the flow coming from the
southerly direction.

4.2 Summary

An assessment of potential predictability of Cat1, Cat2 and Cat3 has been conducted
analysing the re-forecast of a subsamples of EPEs in the last 20 years. Two indexes
were used to evaluate the EPE potential predictability on different area aggregations. As
expected Cat3 exhibit a faster loss of predictability in the medium-range, and especially
over flat areas, due to the presence of weakly forced convection. If the result above was
expected, it came as surprise to observe Cat1, starting from higher potential predictability,
rapidly loose this advantage, becoming less or equally predictable than Cat2, already after
three days. The predictability horizon of Cat2 events is in fact about one longer than
Cat1 and Cat3 events, reaching almost two days difference in the NPS score for mountain
areas. Being Cat1 characterized by more coherent RWPs, and hence thought to have
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Figure 4.3: Heat map of NPS value for each WA and forecast step

a more predictable precursor, the faster loss of predictability in the shorter comes as a
contradiction. One possible explanation is that Cat1 events are associated with a frontal
structure or a surface cyclone and the interaction with the orography is highly dependent
on the phase of the incoming wave. On the contrary Cat2, which distinguish itself to
be more severe due to higher precipitation intensity and longer duration are probably less
affected by small phase errors in the positioning of the wave. In that respect, the anchoring
of deep convection in the prefrontal part of the system to the orography, can act as more
predictable and slowly moving feature. However better predictability in Cat2 may also
be linked to their peculiar dynamics and large anomalies of the water vapour transport in
the upstream trough described in the third paper. The presence of significant orography,
specifically investigated stratifying the results in two categories (flat and mountain areas)
it is also important. Orography has a beneficial impact on predictability especially in
Cat2 and Cat3 (characterized by the presence of convection) while it is rather marginal
for Cat1. In a more detailed investigation of predictability over each area we noted that
over western areas, more prone to prefrontal activity, predictability is significantly higher.
This west-east difference in predictability is less visible in Cat1. As this anchoring effect is
missing in Cat1, since the waves are travelling faster, the rapid growth growth in Cat1 is
likely to be attributed to the uncertainty of phase of the frontal (and upper-wave) passage,
which is dominating on other factors.
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Chapter 5

Conclusions

This research presented in this dissertation contributed to the knowledge of the dynamics
and the predictability of extreme precipitation events (EPEs), one of the natural hazards
with high impact on human society. The research was specifically designed to provide
insights and additional information to forecasters and the scientific community on the
physical and dynamical drivers associated with extreme precipitation. To test the ratio-
nale behind our approach, we focus on Northern-Central Italy. The choice is motivated
by the high frequency of these events on the area and the availability of high-resolution
gridded observational dataset. The development of the research led to the publication of
three scientific papers which are at the heart of this dissertation which address three differ-
ent questions. The first important goal was to design an original and objective method to
classify EPEs according to the different atmospheric setting and processes in which they
originate. This classification is addressed in the first scientific paper (EPE classification)
but is is also used in the rest of project. In the second paper (The 1994 Piedmont flood)
we revisit a well-known extreme event, which caused enormous losses in Northern Italy,
in the context of our new classification methodology, showing that is falling in the most
severe category. Through the analysis of this case we try to identify also possible strategies
for the use of real-time classification. The second research question is concerns the detailed
analysis of different large-scale evolution pathways leading to EPEs. It is explored through
the use of composites and PV diagnostic in the third paper (Dynamical precursors).
This investigation help to breakdown a complex phenomenon in their main components,
in the aim to identify recurring large-scale patterns. Finally, the third research question,
is addressed in an unpublished part and us about the identification of predictability de-
pendencies on the EPE category and associated and large-scale patterns. It is presented
in Chapter 4.

In this closing section, the key results of the papers and from the predictability chapter
will be summarised and put in the wider context of current research and challenges of
operational weather forecasting.
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5.1 EPE classification

Summary: In this article, we describe a methodology for identification and systematic
classification of extreme precipitation events (EPEs) over northern–central Italy. EPEs
are defined as days when at least in one of the Italian Civil Protection warning-area units
the spatially average daily precipitation is greater than the 99th percentile of the daily
climatological distribution (1979–2015). The computation is based on a gridded archive
built from quality controlled high-resolution regional observation networks. This archive, in
combination with ERA-Interim reanalysis data for upper-level atmospheric fields, allows
a 10-fold increase in the number of EPEs compared to previous studies; 887 EPEs are
found and a subdivision in three predefined categories, with machine-learning, is proposed.
According to upper-level predictors, three main scenario generating EPEs are recognized:
frontal or mechanical orographic uplift of moist statically stable flow for Cat1, stronger
frontal and mechanical uplift of a neutrally moister/warmer stable flow for Cat2, and finally
thermally forced deep convective ascent for Cat3. In all categories IVT is anomalously
high. EPEs are largely controlled by the intensity of the meridional component of verically
integrated vapour transport (IVTn) that in turn depends not only on moisture availability
but also on a favourable phasing of the upper-level wave with respect to the target area.
This confirms IVT as an important large-scale predictor, especially for Cat2 events, shown
to be the most relevant category in terms of effects and EPE area extension.

Applications: The proposed classification, based on widely used machine-learning
methods, has the advantage that it can be easily applied elsewhere, since no subjective
choice of fixed thresholds is necessary. The categorization of precipitation introduce sim-
plifications compared to full complexity of nature, but it is very useful for gaining a clearer
picture of the basic processes. This approach can raise forecaster awareness of the origins
of high impact weather phenomena and of different kind of EPEs, fostering a more critical
interpretation of numerical model output. In addition, moving to research aspects, the
study sets the stage to investigate the relation between EPEs and Rossby wave packets.
The importance of IVT is here confirmed and open the way to methods which could exploit
the longer predictability of this variable. Focussing on the predictable scales of motion and
processes could be a way to push the range of prediction of EPE to longer time scales, while
nowadays being limited to maximum a few days due to the intrinsic lower predictability of
precipitation.

5.2 The 1994 Piedmont flood

Summary: In this study, we have revisited the dynamical evolution of the 1994 Pied-
mont flood event with new reanalysis and high-resolution precipitation datasets and in the
light of EPE classification approach. We have shown that this event may be considered
an archetype for southern Alpine Cat2 EPEs which are able to produce very high river
discharges and widespread flooding on small and large river basins due to the combined
presence of stratiform precipitation and deep convection. The main triggering factor was a
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meridionally elongated upper-level trough, embedded in an incoming Rossby wave packet
that originated in the Pacific. The wave packet propagation modulated the transport of
a large moisture quantity from the central Atlantic towards the Mediterranean, with a
formation of an AR over the central Mediterranean Sea. We also documented the presence
of hurricane Florence in the central Atlantic in the days before the events, which inter-
acted with the upstream trough and arguably contributed to strengthen the downstream
development of the synoptic wave responsible for the precipitation.

Applications: The detailed reanalysis of this case study was also useful to test a
possible practical approach toward an operational classification algorithm of EPE. A com-
parison of IVT distribution amongst EPEs and noEPE cases, show that EPE have a fairly
separate distribution amongst Cat1, Cat2 and Cat3 and all of them are shifted towards
large values compared to non EPE cases. This confirm IVT, and in particular of IVTn,
as one of the most important precursors although is to be considered not isolation but
in combination of other variables, since considering only water vapour fluxes may lead to
higher false alarm rate than using precipitation in the shorter forecast ranges. The anal-
ysis of this case showed also the added value of comparing single cases (as the one which
could be identified in the forecast applying the classification method) with a catalogue
of previous events in which effect, like the mean precipitation intensity, area above EPE
thresholds, flooding area are known. Having the possibility of ranking a new forecast event
is important for operational practice in order to enrich forecaster knowledge of possible
scenarios based on real data.

5.3 Dynamical precursors

Summary: In this final paper we analysed the linkage between EPEs and the hemispheric
evolution leading to the synoptic-scale wave that provides the dynamical forcing and water
vapour transport convergence needed for these extreme events. We investigated a large
number of EPEs that occurred between 1979 and 2015, subdivided into three categories
identified in the first paper (Part I), and actualized with ERA5 reanalysis. The three
categories differ not only locally but also in the evolution of the Rossby wave packet
leading (RWP) to the event. The key results of this study can be summarized as follows:

1) The three EPE categories have a different monthly distribution and are characterized
by distinct spatial patterns in precipitation, low-level wind, and moisture transport.

2) The probability of heavy precipitation events in northern-central Italy increases
with increasing waviness in the upper-tropospheric flow. This clear dependence is found
for both Cat1 and Cat2 EPEs. In contrast, the probability of Cat 3 EPEs, which are
mostly associated with thermodynamic instability and weakly-forced convection, does not
increase with the magnitude of waviness.

3) Differences in the evolution and characteristic properties of RWPs for the three EPE
categories are evident. These differences are not purely explained by differences in the
monthly distribution of the three categories, since they are still evident when restricting
the analysis to November cases only.



92 5. Conclusions

4) A comprehensive PV tendency analysis reveals pronounced differences in the dynam-
ical processes leading to the RWP amplification over the North Atlantic that are crucial
for the occurrence of Cat1 and Cat2 EPEs. Cat1 EPEs are characterized by (a) an in-
coming precursor wave signal from the North Pacific, (b) moist-baroclinic development
over the North Atlantic, and (c) an interaction with a pre-existing upper-level positive PV
anomaly over Europe. This combination leads to rapid downstream propagation of the
leading edge of the RWP. In contrast, Cat2 EPEs arise from RWP amplification along the
North American east coast, which is strongly invigorated by divergent outflow associated
with latent heat release below. The subsequent downstream propagation is characterized
by moist-baroclinic development and favoured by the phase difference between baroclinic
and quasi-barotropic tendencies, so that a high-amplitude trough develops over western
Europe.

These outcomes suggest that the occurrence of northern-central Italy EPEs depends not
only on the local conditions, but also on the large-scale upper-tropospheric flow evolution
in the days leading to the events. The particular severity of Cat2 EPEs appears to be the
result of favourable conditions in both of these respects, that is, a warmer Mediterranean
Sea in autumn and a more vigorous RWP amplification over the North Atlantic.

Applications:These results improve our understanding of the synoptic-scale dynamical
and thermodynamical processes, providing further evidence on the role and properties of
the upstream upper-tropospheric flow leading to EPEs. The processes and mechanisms
involved in this regard are not only relevant for a better assessment of the predictability
and impact of these events, but also for their long-term trends. For example, all else
being equal, a further increase in water vapour transport in the western North Atlantic,
induced by global warming, could induce more frequent or stronger ridge building and
downstream development of the kind observed in Cat2 EPEs. This subdivision in different
large-scale evolution, open the way to investigate the trends, not only of the EPE but also
of their dynamical precursors in the effort to disentangle the contribution coming from
the dynamical changes, from the ones due to thermodynamic effect associated with the
increase of global temperature.

5.4 Predictability

Summary: An assessment of potential predictability of Cat1, Cat2 and Cat3 has been
conducted analysing the ECMWF EPS reforecast on a sample of EPEs in the last 20 years;
two indexes are used to evaluate potential predictability on different area aggregations. As
expected Cat3 exhibit a faster loss of predictability in the medium-range, and especially
over flat areas, due to the presence of weakly forced convection. If the result above was
expected, it came as surprise to observe Cat1, starting from higher potential predictability,
rapidly loose this advantage already in the short range, becoming less or equally predictable
than Cat2, a category in which deep convection is also present, already at D+3. Being Cat1
characterized by more coherent RWPs (as shown in Paper 2), and hence thought to have a
more predictable precursor, the faster loss of predictability in the shorter forecast ranges it
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is seemingly in contradiction. One possible explanation is that Cat1 events are associated
with a frontal structure or a surface cyclone and the interaction with the orography is highly
dependent on the phase of the incoming wave. On the contrary Cat2, which distinguish
itself to be more severe due to higher precipitation intensity, longer duration, and affecting
a large area the 24h accumulated precipitation is less sensible to small phase errors. In this
could play a role also the presence of deep convection in the prefrontal part of the system
which act as constant feature largely dependent by the interaction of the slowly varying
(compared with Cat1) impinging flow and the orography. However better predictability in
Cat2 may also be linked to their peculiar dynamics and large anomalies of the water vapour
transport in the upstream trough described in the third paper. The presence of orography
is investigated stratifying the results in two categories, flat and mountain areas. Orography
has a beneficial impact on predictability especially in Cat2 and Cat3 (characterized by the
presence of convection) while it is rather marginal for Cat1. For Cat2 is also noticeable a
large spread in predictability from western areas more prone to prefrontal activity, where
predictability is significantly higher, and eastern areas where is lower. This west-east
difference in predictability is not visible in Cat1. This is also suggesting that in Cat1 the
uncertainty in the phase of the frontal (and upper-wave) passage is dominating on other
factors.

Applications: The concept of different predictability of EPEs can be useful in the
field of operational forecasting and for weather warning procedures. Relying on the reanal-
ysis as a training dataset, it is possible to compute the probability of four EPE categories
(NoEPE days, EPE days of Cat1, Cat2, Cat3), for each day in real-time forecast, with
a random forest classifier algorithm. Once a day is classified, additional information on
the deterministic limit over each area and for each category (measured by threshold on se-
lected indexes like the equitable treat score of fractional skill score) obtained from the past
verification statistics, can be provided. In this way it possible to contrast the computed
EPE probability (event yes/no) against the probability of precipitation exceeding the EPE
threshold, while EPE categories probability are confronted against their respective clima-
tological value. This effort towards a greater contextualization of the information allows
forecaster a much-informed assessment than simply evaluating the rainfall model output.
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A.1 Table of Warning Areas thresholds



 
 

Cod_DPC OrogFlag 
Area 
[km2] 

99° 
[mm] 

90° 
[mm] 

70° 
[mm] 

Emil-A 1 2027 46.2 19.5 10.9 

Emil-B 0 2409 45.4 18.2 9.4 

Emil-C 1 2145 47.5 20.3 11.2 

Emil-D 0 4757 36.7 15.8 9 

Emil-E 1 3085 45.6 19.6 10.7 

Emil-F 0 2384 34.7 16 8.9 

Emil-G 1 2672 55.5 23.2 11.9 

Emil-H 0 2974 42.4 19.7 10.5 

Friu-A 1 2121 84.1 30.9 16 

Friu-B 1 2989 87.1 36.4 17 

Friu-C 0 2513 58.8 28.2 15.4 

Friu-D 0 240 52.2 24 14 

Ligu-A 1 1685 70.5 23.4 10.9 

Ligu-B 1 796 79.5 31.2 14.9 

Ligu-C 1 1459 79.9 31.3 15.9 

Ligu-D 1 857 79.3 28.2 13.4 

Ligu-E 1 619 88.6 32.3 15.8 

Lomb-01 1 464 71.8 26.3 13.2 

Lomb-02 1 1594 54.9 22.6 11.5 

Lomb-03 1 1137 42.8 16.2 8.5 

Lomb-04 1 773 68.6 31.4 16 

Lomb-05 1 1743 63.7 28.7 15.3 

Lomb-06 1 1405 61.1 26.2 13.9 

Lomb-07 1 1429 49.7 20.9 11.3 

Lomb-08 1 2284 48 21.8 12 

Lomb-09 0 2305 52 24.1 13.1 

Lomb-10 0 1608 44.1 20.7 11.5 

Lomb-11 0 3191 39.5 17.5 10 

Lomb-12 0 3083 40.1 19.6 10.8 

Lomb-13 0 2059 36.2 16.4 9 

Lomb-14 0 788 44.4 18.9 10.6 

Mar-01 1 1221 47.9 19.8 11.1 

Mar-02 0 1441 41.7 17.7 9.8 

Mar-03 1 1216 43.2 18.4 10.4 

Mar-04 0 1909 43.1 17.3 9.6 

Mar-05 1 1562 43.7 17.9 10.2 

Mar-06 0 2052 41.6 16.5 9.1 

Piem-A 1 2383 80 28 12.3 

Piem-B 1 1528 79.3 29.4 13.4 

Piem-C 1 2081 60.6 21.8 10.2 

Piem-D 1 1819 49 17.4 8.6 

Piem-E 1 2303 50.7 19.8 9.9 

Piem-F 1 2026 55.1 21.1 10.6 

Piem-G 0 3078 47.2 20.5 10.7 

Piem-H 0 995 53.3 21.5 11.4 

Piem-I 0 4252 52 22.8 12.1 

Piem-L 0 3198 50.6 22.3 11.3 

Piem-M 0 1725 51.9 21.5 11 

Tosc-A1 1 826 52.4 21.1 12 

Tosc-A2 1 869 43 18.9 11 

Tosc-A3 0 770 42.1 18.9 10.7 

Tosc-A4 0 1429 45.8 21 12.3 

Tosc-A5 0 1418 40.6 18.5 10.7 

Tosc-A6 0 410 47 21.4 12.5 

Tosc-B 1 816 52.9 24.9 13.7 

Tosc-C 0 1536 35.2 16.1 9.6 

Tosc-E1 0 2089 43.7 19.5 11.2 

Tosc-E2 0 297 43.8 19.3 10.9 

Tosc-E3 0 469 43.8 19.6 10.8 

Tosc-F1 0 1460 49.6 20.2 11.1 

Tosc-F2 0 749 50.4 19.3 10.4 

Tosc-I 1 264 51 20.5 11.4 

Tosc-L 1 973 76.3 32.1 16.3 

Tosc-M 1 961 48.1 21.9 12.5 

Tosc-O1 0 1962 41.1 17.5 10.3 

Tosc-O2 0 1551 41.3 17.8 10.4 

Tosc-O3 0 474 48.3 18.5 10.1 

Tosc-R1 1 193 84.9 32.8 16.9 

Tosc-R2 1 535 52.5 22.4 12.8 

Tosc-S1 1 1355 77.4 33.2 16.3 

Tosc-S2 1 397 64.6 29.4 16.3 

Tosc-S3 0 192 57 23.6 13.6 

Tosc-T 1 673 47.7 20.3 11.5 

Tosc-V 1 318 73.5 31.4 16.7 

Tren-A 1 7398 36.6 15.5 8.5 

Tren-B 1 6207 54.2 21.4 11.2 

Umbr-A 1 1909 38.7 17.1 10.1 

Umbr-B 0 1186 42.2 18.2 10.9 

Umbr-C 1 2044 38.3 17.4 10.2 

Umbr-D 1 1467 40.1 18.6 10.6 

Umbr-E 0 1054 36.6 16.2 9.5 

Umbr-F 0 805 44.4 17.7 10.1 

VDAo-A 1 798 39 14.8 8 

VDAo-B 1 838 64.5 21.5 10.1 

VDAo-C 1 546 44.3 16 8.3 

VDAo-D 1 1078 41.2 18 10.2 

Vene-A 1 2313 62.5 23.2 11.7 

Vene-B 1 2674 64.4 26.3 13.9 

Vene-C 1 1728 44.6 21.8 12.1 

Vene-D 0 2761 34.9 16.7 9.3 

Vene-E 0 3484 42.5 19.5 10.9 

Vene-F 0 2279 49.3 21.6 11.8 

Vene-G 0 1075 53.8 24 12.9 

Vene-H 1 2092 71 27.4 14 

 
 

 
Table S1: Table containing warning area 

codes, presence of significant orography 

(orogflag), areal extension and high percentile 

[mm in 24h] daily precipitation calculated 

only on wet days (average precipitation over 

warning areas >= 1mm ) in the period 1979-

2015. 

 
 
 

 



A.2 List of benchmark cases 97

A.2 List of benchmark cases



ref EPE date Main Process Taudmax Capedmax Ivte Ivtn Ɵ
e850

 TCWV Cat_STA Cat_Kmeans6 
1 19821108 WCB /orog 1.1 67.0 57.4 261.0 306.1 20.1 1 2 
2 20091223 WCB /orog 2.1 114.8 250.0 208.3 302.6 17.5 1 1 
3 20140118 WCB /orog 1.6 80.7 163.5 187.3 302.0 15.9 1 1 
4 20150205 WCB/orog 2.6 180.6 -97.5 59.6 296.0 11.7 2 1 

5 20171211 WCB /orog 1.8 79.0 269.0 302.0 305.0 18.3 1 1 
6 19941105 WCB/orog/MCS 3.3 312.1 -56.1 244.2 313.9 21.1 2 2 
7 20111025 WCB/orog/MCS 2.4 261.8 94.1 248.8 309.8 21.8 2 2 
8 20111104 WCB/orog/MCS 4.2 289.7 69.4 241.9 314.3 23.2 2 2 
9 20121110 WCB/orog/MCS 4.5 284.7 160.6 221.3 309.4 21.8 2 2 

10 20121026 WCB/orog/MCS 3.8 474.6 100.8 162.6 315.1 22.4 2 2 
11 19870825 Cyclone/MCS 15.8 1320.6 95.5 338.9 329.1 30.9 3 3 
12 19960619 Isolated MCS 19.8 558.5 127.3 -3.4 321.1 21.0 3 3 
13 20140614 MCS 26.3 1787.9 11.2 -46.3 326.6 26.8 3 3 
14 20140920 MCS 19.0 1539.7 158.4 151.7 328.4 30.4 3 3 
15 20150914 MCS 16.4 1330.7 121.1 203.6 323.2 27.4 3 3 

 
Table S2: List of benchmark extreme precipitation events. Columns indicate a subjective 

description of the main processes involved, representative predictor values, and categorizations 

obtained with the two methods. Each of these selected events have been described either in a peer 

reviewed article (indicated when available), or in technical reports from Italian meteo-hydrological 

administrations (in Italian). The separation indicated with the background colour reflects the 

different categories deduced by the description of the events in the literature cited below. The red 

numbers in the objective categorization columns indicate cases wrongly assigned by STA and K-

means methods.  Note that the scientific literature has focused on cases with embedded convection 

while fewer winter EPEs have been investigated. Case n.5 is outside the 1979-2015 period of the 

present study. However, it is included as a Cat1 benchmark case since it is a clear and documented 

recent example of EPE attributable to orographically enhanced precipitation.  
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2Centro Funzionale Regione Toscana, Report sull’evento alluvionale del 24-25 Dicembre 2009. Available at 
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10Nuissier, O., Marsigli, C., Vincendon, B., Hally, A., Bouttier, F., Montani, A. and Paccagnella, T., 2016: Evaluation 

of two convection-permitting ensemble systems in the HyMeX Special Observation Period (SOP1) framework. Q.J.R. 

Meteorol. Soc., 142: 404–418. doi:10.1002/qj.2859 

 
11Isotta, F. A., Frei, C., Weilguni, V., Perčec Tadić, M., Lassègues, P., Rudolf, B., Pavan, V., Cacciamani, C.,Antolini, 

G., Ratto, S. M., Munari, M., Micheletti, S., Bonati, V., Lussana, C., Ronchi, C., Panettieri,E., Marigo, G. and 

Vertačnik, G. 2014: The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid 
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A.3 List of Abbreviations



Acronyms

ARCIS Archivo Climatologico per l’Italia centro-Settentrionale, Climatological Archive
for Central–Northern Italy.

CAPE Convective Available Potential Energy.

CIN Convection Inhibition.

E Rossby wave packet amplitude.

ECMWF European Centre for Medium-Range Weather Forecasts.

EPE Extreme Precipitation Events.

IFS ECMWF Integrated Forecast System.

IVT Integrated water Vapour Transport.

IVTn Integrated water Vapour Transport Meridional component.

MCS Mesoscale Convective System.

NPS Normalised Precipitation Spread.

PPI Potential Predictability Index.

PV Potential Vorticity.

RWPs Rossby Wave Packets.

SIL Silhouette score.

Tau Convective adjustment timescale.

TCWV Total Column Water Vapour.

WA Warning Areas used by the Italian Department of Civil Protection.
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M. Nuret, K. Ramage, W. Rison, O. Roussot, F. Said, A. Schwarzenboeck, P. Testor,
J. Van Baelen, B. Vincendon, M. Aran, and J. Tamayo, 2014: HyMeX-SOP1: The
field campaign dedicated to heavy precipitation and flash flooding in the northwest-
ern mediterranean. Bulletin of the American Meteorological Society, 95 (7), 1083–1100,
doi:10.1175/BAMS-D-12-00244.1.

Duffourg, F. and V. Ducrocq, 2013: Assessment of the water supply to Mediterranean
heavy precipitation: A method based on finely designed water budgets. Atmospheric
Science Letters, 14 (3), 133–138, doi:10.1002/asl2.429, URL http://doi.wiley.com/

10.1002/asl2.429.

Duffourg, F., K.-O. Lee, V. Ducrocq, C. Flamant, P. Chazette, and P. Di Girolamo, 2018:
Role of moisture patterns in the backbuilding formation of HyMeX IOP13 heavy pre-
cipitation systems. Quarterly Journal of the Royal Meteorological Society, 144 (710),
291–303, doi:10.1002/qj.3201, URL http://doi.wiley.com/10.1002/qj.3201.

http://doi.wiley.com/10.1256/qj.04.84
http://doi.wiley.com/10.1002/asl2.429
http://doi.wiley.com/10.1002/asl2.429
http://doi.wiley.com/10.1002/qj.3201


BIBLIOGRAPHY 105

European Environment Agency, 2017: Economic Losses from climate-related extremes in
Europe. Tech. rep. URL https://www.eea.europa.eu/data-and-maps/indicators/

direct-losses-from-weather-disasters-3/assessment-2.

Fragkoulidis, G., V. Wirth, P. Bossmann, and A. Fink, 2018: Linking Northern Hemi-
sphere temperature extremes to Rossby wave packets. Quarterly Journal of the Royal
Meteorological Society, 144 (711), doi:10.1002/qj.3228.

Froude, L. S. R., L. Bengtsson, and K. I. Hodges, 2013: Atmospheric predictabil-
ity revisited. Tellus A: Dynamic Meteorology and Oceanography, 65 (1), 19 022,
doi:10.3402/tellusa.v65i0.19022, URL https://www.tandfonline.com/doi/full/10.

3402/tellusa.v65i0.19022.

Grazzini, F., 2007: Predictability of a large-scale flow conducive to extreme pre-
cipitation over the western Alps. Meteorology and Atmospheric Physics, 95 (3-4),
123–138, doi:10.1007/s00703-006-0205-8, URL http://link.springer.com/10.1007/

s00703-006-0205-8.

Grazzini, F. and L. Isaksen, 2002: North America Increments. OD/RD Memo. Tech. rep.,
ECMWF, 40 pp., Reading.

Grazzini, F. and G. Van der Grijn, 2003: Central European floods during summer 2002.
ECMWF Newsletter, 96 (Winter 2002/2003), URL https://www.ecmwf.int/sites/

default/files/elibrary/2002/14628-newsletter-no96-winter-200203.pdf.

Grazzini, F. and F. Vitart, 2015: Atmospheric predictability and Rossby wave packets.
Quarterly Journal of the Royal Meteorological Society, 141 (692), doi:10.1002/qj.2564.

Harris, F. J., 1978: On the use of windows for harmonic analysis with the discrete Fourier
transform. Proceedings of the Institute of Electrical and Electronic Engineers.

Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nico-
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