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In aller Kürze

Wir beschäftigen uns mit der von Hassan und Rosen präsentierten geistfreien bimetrischen Gravita-
tionstheorie, welche eine Erweiterung der Allgemeinen Relativitätstheorie darstellt. Diese Theorie
postuliert zusätzlich zum gewöhnlichen masselosen Spin-2 Teilchen ein weiteres massives Spin-2
Teilchen, welche vollständig nichtlinearen (Selbst-)Interaktionen unterliegen. Wir schlagen ein
neues vereinheitlichendes Rahmenwerk vor, das uns erlaubt, die Theorie konsistent und um-
fassend mithilfe theoretischer und beobachtungsbezogener Überlegungen einzuschränken. Dieses
Rahmenwerk fußt auf den folgenden Parametern, die eine direkte physikalische Interpretation er-
möglichen: die Masse des Spin-2 Teilchens, seine Kopplungsstärke an Standardteilchen, sowie
die effektive kosmologische Konstante. Wir ermitteln theoretische Einschränkungen an diese
Parameter, welche eine konsistente kosmische Expansionsgeschichte garantieren, d.h. reellwer-
tig, nicht-singulär und ohne Higuchi-Geist. Ferner bestimmen wir solche Parameterkombinatio-
nen, die zu wohl-definierten kosmologischen Perturbationen mithilfe des Vainshtein-Mechanismus
führen. Nach diesen formellen Überlegungen, stellen wir unsere Theorie kosmologischen und
lokalen Gravitationstests sorfältig gegenüber. Wir finden heraus, daß die bimetrische Gravitation-
stheorie genauso gut zu diesen beobachteten Daten passt wie das kosmologische Standardmod-
ell. Aus theoretischer Perspektive impliziert das eine Präferenz für die selbst-beschleunigenden
bimetrischen Modelle, welche keine Vakuumenergie beinhalten. Interessanterweise ist die Theorie
mit den Beobachtungen selbst dann vereinbar, wenn das massive Spin-2 Teilchen äußerst schwer
ist. Unsere Untersuchungen liefern die bisher umfassendsten und stringentesten Einschränkungen
an diese Theorie. Zu guter Letzt betrachten wir das frühe Universum und beschäftigen uns mit
Konsequenzen des massiven Spin-2 Teilchens auf die kosmische Inflation. Wir zeigen, daß Unitar-
ität eine obere Schranke an die Steigung des Inflatonpotentials impliziert, welche die aus der de
Sitter-Sumpfland-Vermutung resultierende untere Schranke ergänzt.
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Abstract

We are concerned with ghost-free bimetric theory due to Hassan and Rosen, an extension of
General Relativity. The theory proposes to supplement the usual massless spin-2 field with an
additional massive spin-2 field, which (self-)interact fully nonlinearly. We propose a new unified
framework, which allows to consistently and comprehensively constrain bimetric theory by means
of theoretical and observational considerations. Our framework builds upon the following phys-
ically interpretable parameters: the mass of the spin-2 field, its coupling strength to ordinary
matter, and the effective cosmological constant. We compute theoretical constraints on these pa-
rameters to ensure a viable cosmic expansion history, i.e. real-valued, non-singular, and devoid
of the Higuchi ghost. We then identify those parameter combinations that are a priori consistent
on the level of cosmological perturbations due to the Vainshtein screening mechanism. Building
upon these formal considerations, we perform a thorough confrontation of bimetric theory with
cosmological and local tests of gravity. We find that bimetric theory generally fits the observed
data as good as the cosmological standard model, signalling a theoretical preference for the self-
accelerating models devoid of vacuum energy. Interestingly, even a heavy spin-2 field is perfectly
consistent with the observed data. Our investigations yield the to date most comprehensive and
stringent constraints on bimetric theory. We finally move to the early universe and explore con-
sequences of a massive spin-2 field on cosmic inflation. We show that unitarity leads to an upper
bound in the inflaton potential, which complements the lower swampland de Sitter bound.
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Chapter 1

Introduction

Owing to its all-permeating manifestation in our everyday life experience, we all are familiar with
gravity. Therefore, it is not surprising that gravity was the first force of nature to be uncovered:
Newton established the famous Inverse-Square-Law of the gravitational force in his 1687 published
Principia [1]. Gravity rules the falling of an apple from a tree and the orbiting of planets around
the Sun. Going further, gravity is the dominating force on the largest observable scales and
as such determines the evolution of the Universe as a whole. Nonetheless, even centuries after
its discovery, our comprehension of gravity is challenged precisely on these cosmological scales.
Overwhelming observational evidence suggests that the Universe is primarily filled with exotic
forms of matter and energy, which lack a fundamental description as of yet. It is the purpose
of this thesis to contribute to the ongoing efforts to provide an explanation for these enigmatic
cosmic constituents and to thereby deepen our understanding of gravity itself.

The modern foundation of gravity is Einstein’s theory of General Relativity (GR) [2–4]. GR
proposes to consider gravity as a consequence of spacetime deformations, which in turn result
from the presence of mass/energy. The theory building principles are equivalence (namely, an
observer freely falling in a gravitational field locally measures flat Minkowski spacetime) and
general covariance (that is, the freedom to choose coordinates). GR withstands solar system tests
to remarkable precision. Further, various of the theory’s predictions have been observationally
confirmed. The historical success of correctly describing the precession of Mercury’s orbit [5]
has been complemented by the prediction and subsequent detection of, for example, gravitational
lensing [6, 7], gravitational waves [8–11] and most recently black holes [12,13].

Despite these successes, the theory is severely challenged at both the largest and smallest scales.
Let us begin by briefly revisiting some of the most prominent obstacles at large scales. In order
to account for the apparent enhancement of gravity on (extra)galactic scales, first observed by
Zwicky [14] and more accurately by Rubin et al. [15,16], an exotic matter component dubbed dark
matter is introduced. The measured acceleration of the cosmic expansion at present times [17,18]
suggests that gravity becomes weaker at even larger, cosmological scales. This is accounted for by
the introduction of an exotic energy component with negative pressure baptised dark energy. Even
though dark matter admits a particle interpretation, which has led to the ongoing postulation of
many theoretically consistent models and in turn to multiple efforts for their direct detection, it
hitherto has failed to receive any experimental evidence outside gravity. On the other hand, dark
energy can be modelled by a cosmological constant, but the fine-tuning problem [19,20] and more
recently its claimed quantum inconsistency [21–28] theoretically disfavours or even rules out such
scenario, respectively. Altogether, the dark sector comprises 95% of the universe’s current energy
budget, impugning GR as the ultimate theory of gravity unless particle physics turns out to provide
convincing explanations. It is therefore reasonable to look for alternatives on the gravitational
side.

Coming to the smallest scales, the presence of singularities [29] and the renormalisation prob-
lem [30–35] limit our understanding of quantum gravity. In fact, GR serves as a low-energy
effective field theory that requires an ultraviolet (UV) completion [36, 37]. String Theory (ST)
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represents the arguably most celebrated such completion. At low energies, ST predicts effective
actions that contain higher curvature corrections and couplings to fields with various spins, in
addition to the Einstein–Hilbert term of GR [38]. Explicitly computing these effective actions in
string perturbation theory is cumbersome, to say the least. Instead, we can seek alternatives to
GR in a bottom–up approach and thereby chart the landscape of consistent low-energy effective
theories. The latter is the approach that will be exploited in this thesis.

Modifying gravity at low energies is a rather difficult task as well. Almost any alteration of
the Einstein–Hilbert action leads to formal inconsistencies, such as ghosts [39, 40]. Ghosts are
additional propagating degrees of freedom (beyond the expected physical modes) and they possess
a negative kinetic energy. Consequently, the presence of ghosts makes any theory mathematically
ill-defined and unphysical. As such, ghostful theories must be ruled out. In addition, any mod-
ification must recover GR in its observationally tested limits; for example, in the solar system.
Generically, modified gravity theories contain new degrees of freedom that also couple to matter.
These couplings result in supplementary gravitational-strength fifth forces. Therefore, almost ev-
ery viable modified gravity theory gives rise to a screening mechanism, which suppresses the said
fifth force locally while maintaining its desired strength on cosmological scales. Finding viable al-
ternatives to GR remains an ongoing important research program: it is capable of addressing the
aforementioned open problems of modern cosmology and it contributes to finding a fundamental
understanding of gravity.

From a field theoretic perspective, GR is the unique Lorentz-invariant theory describing a
massless spin-2 field with nonlinear self-interactions [41–45]. Hence, a straightforward modification
of Einstein’s theory amounts to promoting its spin-2 field to be massive. Consistent field theories
for massless and massive fields with spin up to 1 have been known for decades. The quest for finding
a consistent theory for a massive spin-2 field dates back to Fierz and Pauli [46], who postulated
a linearised theory. It was long thought that any nonlinear completion would unavoidably be
plagued by ghost instabilities [47]. This fallacy has been overcome only rather recently, leading
to the postulation of ghost-free nonlinear massive gravity [48–51] and its extension: bimetric
theory (BT) [51,52]. The latter theory describes a massive and a massless spin-2 fields, which are
(self-)interacting fully nonlinearly.

BT is the basis for the analyses carried out in this thesis. By now, BT’s theoretical consistency
has been firmly established and thus we are naturally led to the thorough study of its phenomeno-
logical consequences. In the following, we present substantial progress on deciding whether BT is
capable of addressing one or several of the aforementioned problems of modern cosmology. We are
mostly concerned with the problem of dark energy. As a result, we will find that BT is not only
theoretically consistent, but also withstands a long list of cosmological and local tests of gravity.
Therefore, the self-accelerating bimetric models, which do not inherit any vacuum energy, stand
out as particularly promising alternatives to the standard model.

Organisation of the thesis

In the remainder of this chapter, we provide more details on GR and we introduce the cosmological
standard model. This serves as a basis for studying modified gravity theories and, in particular,
cosmological solutions therein. We present more detailed theoretical and observational arguments
against a cosmological constant, which serves as major motivation for seeking an alternative ex-
planation for dark energy.

Chapter 2 discusses the usual challenges one must face when modifying gravity and provides
an overview of some of their (potential) resolutions explored in the literature. We continue with
a thorough introduction to theories of massive spin-2 fields, following the historical developments
that ultimately led to the postulation of nonlinear ghost-free massive gravity. We finish with
BT, for which we present the action and equations of motion, review its ghost freedom proof and
discuss its coupling to matter.

In Chapter 3, we review the cosmological and the spherically symmetric solutions in the so-
called singly-coupled version of BT. As we shall explain, these solutions are most relevant for
assessing the phenomenological viability of the theory. This finishes the review of existing results.
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In Chapter 4, we propose a new parametrisation for the solutions of BT. Our physical parametri-
sation provides the first unified framework to consistently study the phenomenology of BT. More-
over, it allows for the combination of the various theoretical and observational constraints that
apply on the theory. Our detailed analyses set the basis for subsequent investigations of this
promising theory.

As we will argue in due time, linear cosmological perturbations are unstable during early times
in BT. Equipped with our physical parametrisation, in Chapter 5 we show that the early universe
is screened by the Vainshtein mechanism. Our findings suggest that perturbations are nonlin-
early stabilised. Consequently, we vouch for a substantial enlargement of the a priori consistent
parameter space, compared to previous claims in the literature.

In Chapter 6, we confront the thus enlarged parameter space of BT with cosmological and
local tests of gravity. We show that BT indeed withstands all these tests (just like GR), for large
regions of its parameter space.

Leaving the realm of late-time cosmology, we study the implications of a massive spin-2 field
during inflation in Chapter 7. We show that unitarity implies an upper limit on the derivative of
the inflaton potential, which complements bounds from quantum gravity and the swampland.

Last but not least, in Chapter 8 we summarise our results, put them into context and provide
a future outlook. For instance, we use our results to argue that BT has the potential to provide
a unified explanation for the entire dark sector.

This thesis is based on the following publications:

• Vainshtein Screening in Bimetric Cosmology
M. Lüben, J. Smirnov, A. Schmidt-May
Phys.Rev.D 102 (2020) 123529 [1912.09449]

• Physical parameter space of bimetric theory and SN1a constraints
M. Lüben, A. Schmidt-May, J. Weller
JCAP 09 (2020) 024 [2003.03382]

• Higuchi bound on slow-roll inflation and the swampland
M. Lüben, D. Lüst
JHEP 09 (2020) 055 [2003.10494]

• Combining cosmological and local bounds on bimetric theory
A. Caravano, M. Lüben, J. Weller
— [2101.08791]

During the author’s doctoral studies, also the following publications arose:

• Ghost-Free Completion of An Effective Matter Coupling in Bimetric Theory
M. Lüben, A. Schmidt-May
Fortsch.Phys. 66 (2018) 6, 1800031 [1804.04671]

• Bimetric cosmology is compatible with local tests of gravity
M. Lüben, E. Mörtsell, A. Schmidt-May
Class.Quant.Grav. 37 (2020) 4, 047001 [1812.08686]

• Phase transitions in the early universe
M. B. Hindmarsh, M. Lüben, J. Lumma, M. Pauly
SciPost Phys.Lect.Notes 24 (2021) 1 [2008.09136]

• The Black Hole Entropy Distance Conjecture and Black Hole Evaporation
M. Lüben, D. Lüst, A. Ribes Metidieri
Fortsch.Phys. 69 (2021) 3, 2000130 [2011.12331]

https://doi.org/10.1103/PhysRevD.102.123529
https://arxiv.org/abs/1912.09449
https://doi.org/10.1088/1475-7516/2020/09/024
https://arxiv.org/abs/2003.03382
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Notations and conventions

Throughout this thesis we work in natural units by setting the speed of light c and Planck’s
constant ~ to unity, c = ~ = 1. We denote the reduced Planck mass as MP = (8πGN)−1/2 with
GN ' 6.674 × 10−11 m3 kg−1 s−2 Newton’s gravitational constant. Occasionally we make use of
the solar mass M� ' 2.0× 1030 kg and the mass of the Earth M⊕ ' 6.0× 1024 kg.

For the metric we use the signature (−,+,+,+). The flat Minkowski metric is denoted by
ηµν . Spacetime indices are labeled by Greek letters µ, ν, · · · = 0, 1, 2, 3, while spatial components
are labeled by the Latin letters i, j, · · · = 1, 2, 3. Symmetrisation on a pair of indices is denoted
by parenthesis as 2S(µν) = Sµν + Sνµ for a generic tensor S. We denote the partial derivative by
∂ and the covariant derivative by ∇. Differentiation with respect to cosmic time t is denoted by
a dot.

1.1 General Relativity
We start by providing a succinct overview of the theory that we we will later on modify: General
Relativity. It is a geometrical theory, which relates the motion of matter to the curvature of
spacetime. John A. Wheeler summarises the theory in the following way: “Spacetime tells matter
how to move; matter tells spacetime how to curve” [53]. Here we will present the theoretical
framework for that following standard textbooks [45,54–59].

The first key concept we introduce is that of the line element ds: the infinitesimal distance
between two events in spacetime. Let x := {xµ} be a coordinate system on a Lorentzian manifold.
Then, the line element can be expressed as

ds2 = gµνdxµdxν . (1.1)

The 4-dimensional symmetric metric tensor gµν generically depends on the spacetime coordinates
and encodes the geometry of the Lorentzian manifold.

Another fundamental concept in GR is the principle of general covariance. It states that physics
does not depend on the choice of coordinates x. This is implemented through the requirement
that the physics of GR remains invariant under generic coordinate transformations x → x̃ (or
diffeomorphisms). Since the line interval must be invariant under the transformation, d̃s = ds,
the change of coordinates induces the following transformation on the metric tensor:

gµν(x) −→ g̃µν(x̃) = ∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(x) , (1.2)

where g̃µν is the metric in the new coordinate system. In general, a (p, q)–tensor is defined to
transform under a general coordinate transformations as

T
µ1···µp
ν1···ν1 −→ T̃

µ1···µp
ν1···νq = ∂xα1

∂x̃ν1
· · · ∂x

αq

∂x̃νq
· ∂x

µ1

∂x̃β1
· · · ∂x

µp

∂x̃βp
· T β1···βq

α1···αp . (1.3)

A tensor, which is vanishing in one coordinate system, is vanishing in every coordinate system
(and vice versa). Therefore, tensors play a crucial role in defining physical observables.

Next, let us study derivatives of tensors. It can be shown that the partial derivative, schemat-
ically ∂αTµ1···

ν1··· , does not transform as a tensor. Instead, one introduces the covariant derivative,
denoted by ∇α, such that ∇αTµ1···

ν1··· transforms as a tensor. For the special case of a contravariant
vector vµ, the covariant derivative is explicitly given by

∇αvµ = ∂αv
µ + Γµαβv

β , (1.4)

which generalises to (p, q)–tensors straightforwardly. The object Γµαβ is the Levi–Civita connection,
which is chosen such that∇αgµν = 0. The covariant derivative is then said to be metric compatible.
It follows that

Γµαβ = 1
2g

µν (∂αgνβ + ∂βgαν − ∂νgαβ) . (1.5)
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The covariant derivative allows to quantify the curvature of spacetime by means of the Reimann
curvature tensor

Rαβµν = ∂µΓαβν − ∂νΓαµβ + ΓαµλΓλβν − ΓανλΓλµβ , (1.6)

which measures the relative shift of a vector after being parallelly transported around an infinites-
imal closed curve. An important symmetry property of this tensor is the (differential) Bianchi
identity

∇γRµναβ +∇αRµνβγ +∇βRµνγα = 0 . (1.7)

We now have all the geometrical machinery to define Einstein’s theory of gravitation.
In GR, the metric tensor gµν is a dynamical field. Its dynamics is captured by the renowned

Einstein–Hilbert action [2–4,60]

SEH = −M
2
P

2

∫
d4x
√
−g (R− 2Λ) , (1.8)

where R = gµνRµν denotes the scalar curvature, with Rµν = Rαµαν the Ricci tensor. Notice that
we have already included the cosmological constant Λ, although the theory was first presented
without that term [2–4].

The Einstein–Hilbert action (1.8) encodes the dynamics of the metric tensor gµν in the presence
of a cosmological constant, but without any matter fields yet. To couple the theory to matter,
we introduce a generic matter Lagrangian Lm, which is determined by particle physics. Let us
collectively denote all matter fields by Φ. The total action is then given by

S = −M
2
P

2

∫
d4x
√
−g (R− 2Λ) +

∫
d4x
√
−gLm(gµν ,Φ) . (1.9)

The functional variation of the action (1.9) with respect to gµν leads to the equations of motion

Gµν + Λgµν = 1
M2

P
Tµν , (1.10)

which are referred to as Einstein equations. The first term is the Einstein tensor, defined as
Gµν = Rµν − 1

2gµνR. The term on the right hand side is the stress-energy tensor of matter,

Tµν = − 2√
−g

δ (
√
−gLm)
δgµν

. (1.11)

The Riemann curvature tensor fulfils the Bianchi identity (1.7), which is a geometrical property
and hence independent of the field equations. It implies that the Einstein tensor is covariantly
conserved:

∇µGµν = 0 . (1.12)

Note that here the spacetime indices can be freely raised and lowered with respect to gµν , due
to the metric compatibility of the covariant derivative. Applying the covariant derivative to the
Einstein equations thus leads to

∇µTµν = 0 . (1.13)

This equation means that matter stress-energy is covariantly conserved as well.
After this brief mathematical introduction, let us jump to the phenomenological consequences

of Einstein’s theory of gravity in the context of cosmology.

1.2 The Standard Model of Cosmology
The main motivation for this thesis lies within cosmology, which is the study of the universe as a
whole and as such concerned with the largest observable scales. The cosmological standard model,
which will be introduced below, relies on GR as the gravitational theory and assumes the universe
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to be filled with dark energy, non-relativistic matter, radiation and an inflaton field at very early
times. Broadly speaking, cosmology falls into two categories: background and perturbations.
We will be mostly concerned with the background level and will only briefly comment on the
perturbative level in the context of bimetric theory. Our subsequent discussion closely follows
standard textbooks, see e.g. [61–64].

The cosmological principle states that, on sufficiently large scales, the universe is homoge-
nous and isotropic. This statement reflects that there is neither a preferred location nor a pre-
ferred direction in space. While isotropy is observationally confirmed to high significance [65],
proving homogeneity is more involved [66]. Assuming the cosmological principle, the Friedmann–
Lemaître–Robertson–Walker (FLRW) metric is the unique solution to Einstein’s equations [67–74].
In spherical polar coordinates, the metric is given by

ds2 = −N(t)2dt2 + a(t)2
(

dr2

1− kr2 + r2dΩ2
(2)

)
, (1.14)

where dΩ2
(2) = dθ2 + sin2 θdφ2 is the metric on the unit 2-sphere. The spatial curvature is

parametrised by k, and k > 0, k = 0, k < 0 describes an closed, flat, or open universe, respectively.
The FLRW metric is defined in terms of the lapse function N(t) and the scale factor a(t). It is
convenient to introduce the Hubble parameter H as

H(t) = ȧ(t)
N(t) a(t) , (1.15)

where dot represents derivative with respect to time t.
By construction, GR allows to freely choose the coordinate system. On the level of the FLRW

metric (1.14), this is reflected by the freedom to choose the lapse N(t) to be an arbitrary function
of time t. There are two commonly used choices in cosmology. Firstly, conformal time is defined by
N(t) = a(t) and usually denoted by τ . In this coordinate system, the FLRW metric is conformally
related to the Minkowski metric if spatial curvature vanishes k = 0, i.e. gµν = a(τ)2ηµν . Secondly,
cosmic time t is defined by setting N(t) = 1 and has a direct physical interpretation: an observer
comoving with the cosmic expansion measures cosmic time. In this thesis, we will always choose
to work in cosmic time t unless stated otherwise. From now on, the explicit dependency on time
t will be suppressed.

The scale factor a is the dynamical variable that determines the expansion of the universe. In
our normalisation, it is related to the redshift as a = (1+z)−1. Its time evolution is determined by
Einstein’s equations (1.10). In concordance with the cosmological principle, the matter content is
modelled by a perfect fluid with stress-energy tensor given by

Tµν = (ρ+ p)uµuν + pgµν , (1.16)

where uµ is the velocity 4-vector of the fluid with energy density ρ and pressure p. Conservation
of stress-energy (1.13) results in the continuity equation

ρ̇+ 3H(ρ+ p) = 0 . (1.17)

To close the system of differential equations, one assumes an equation of state relating energy
density and pressure as

ρ = wp . (1.18)
Here, w is a constant and referred to as the equation-of-state parameter. Examples of perfect
fluids that obey such an equation of state include non-relativistic matter (pressureless matter or
dust) with wm = 0, relativistic matter (radiation) with wr = 1/3 and the cosmological constant
with wΛ = −1. Assuming the equation of state (1.18), the continuity equation (1.17) is solved by

ρ = ρ0 a
−3(1+w) . (1.19)

Here, ρ0 is a constant of integration, which corresponds to the energy density when a = 1.
This instant is usually be taken to correspond to today. Note that, if the universe is filled with
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multiple perfect fluids that are non-interacting, the continuity equation (1.17) holds for each fluid
individually.

Upon the FLRW ansatz (1.14) with perfect fluid (1.16), the time-time component of the Ein-
stein equation (1.10) becomes the Friedmann equation,

H2 + k2

a2 = Λ
3 + ρ

3M2
P
. (1.20)

The spatial part, or more precisely the trace, of Einstein’s equation (1.10) gives the acceleration
equation

Ḣ +H2 = Λ
3 −

1
2M2

P
(ρ+ 3p) . (1.21)

This equation can alternatively be obtained by taking the time derivative of Eq. (1.21) and us-
ing Eq. (1.17).

To bring Friedmann’s equation (1.21) in a more compact form, we define effective energy
densities for spatial curvature and the cosmological constant as

ρk

M2
P

= − k

a2 ,
ρΛ

M2
P

= Λ , (1.22)

The effect of spatial curvature can be interpreted as the one of a perfect fluid with equation-of-state
parameter wk = −1/3. The first Friedmann equation (1.21) can then be written in the convenient
form

H2 = 1
3M2

P
(ρΛ + ρk + ρm + ρr) . (1.23)

Let us discuss approximate solutions to this equation by assuming that only one of the cosmic
fluids dominates. Then, the scale factor evolves with cosmic time as (w 6= −1)

a ∼ t
2

3(1+w) , (1.24)

where w denotes the equation-of-state parameter of the dominating energy component. For the
special case of w = −1, we have instead

a ∼ eHt , (1.25)

where H =
√

Λ/3 is constant.
It is common to measure the the energy densities as ratios of the critical energy density ρcrit =

3M2
PH

2 by defining the density parameters

Ωi = ρi
3M2

PH
2 , (1.26)

where i stands for either radiation, non-relativistic matter, spatial curvature or the cosmological
constant. In terms of these parameters, the Friedmann equation (1.21) becomes

1 = Ωr + Ωm + Ωk + ΩΛ . (1.27)

Latest observational data suggests the following approximate values for the energy density param-
eters [75],

Ωr0 ∼ 10−4 , Ωm0 ∼ 0.3 , |Ωk0| . 10−3 , ΩΛ0 ∼ 0.7 , (1.28)
where the subscript 0 means that the values correspond to present times. In particular that means
that the universe is basically spatially flat. Further, the cosmological constant is dominating the
energy budget of the universe at current times. Equipped with these parameter values, we can
trace back the history of the Universe.

The time evolution of the scale factor is summarised in Table 1.1 for different types of domi-
nating energy components. We first observe that, irrespective of which cosmic fluid is dominating,
the scale factor increases with time. This allows to identify the following epochs of the cosmic
expansion history:
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dominating energy component w ρ(a) a(t)
cosmological constant −1 const eHt

spatial curvature −1/3 a−2 t

dust 0 a−3 t2/3

radiation 1/3 a−4 t1/2

Table 1.1: Summary of the time evolution of the scale factor during different possible epochs in
the cosmic expansion history.

• Radiation domination. Looking back in time, the energy density of radiation grows with
ρr ∼ a−4. Radiation is thus dominating the early stage of the universe.

• Matter domination. As the universe expands, the energy density of radiation drops faster
than the one of dust. Therefore, after some time non-relativistic matter becomes the domi-
nating energy component in the universe. The moment when the energy density of radiation
equals the one of dust is referred to as matter-radiation-equality. Given the measured val-
ues (1.28), the equality corresponds to a redshift of z ∼ 3× 103.

• Dark energy domination. Radiation, dust and spatial curvature dilute as time goes on and
their energy densities decrease as ρ ∼ t−2. Contrarily, the energy density corresponding
to the cosmological constant is non-evolving. Hence, given Eq. (1.28), at some point the
cosmological constant will dominate the energy budget of the universe and cause the universe
to expand exponentially. At present times, our universe transitions from the matter to the
dark energy dominated era. The moment of equality occurred at redshift z ∼ 0.3. Hence,
the Universe currently enters a phase of accelerated expansion.

These different epochs of the cosmic expansion history are visualised in Fig. 1.1. To produce
the figure, we used Eq. (1.26) along with the approximate values (1.28). The blue line corresponds
to ΩΛ, the yellow line to Ωm, and the red line to Ωr. As described above, the universe starts
radiation dominated. It transitions into a matter dominated era at a redshift z ∼ 3 × 10−3. At
present times, the universe becomes dominated by dark energy.

Let us discuss a bit further what makes up the individual types of energy. The current acceler-
ated expansion of the universe is modelled by the cosmological constant Λ, which will be discussed
in more detail in the next Section 1.3.

Radiation mostly consists of photons, which were produced at the surface of last scattering
and are observable as the CMB radiation. We denote the corresponding energy density parameter
as Ωγ . In addition, the neutrinos behave as radiation in the early universe, which contribute to
the observed radiation density with Ων .

Dark Matter

The components that enter Ωm deserve some more detail. Standard matter, such as electrons
and atoms, are referred to as baryonic matter in cosmology. We denote the corresponding energy
density parameter as Ωb. Observations of various different physical systems show that there must
be an additional type of non-relativistic matter, which is referred to as dark matter. Denoting the
corresponding density parameter as Ωc so that Ωm = Ωb + Ωc, observations suggest that [75]

Ωb0h
2 ∼ 0.022 , Ωc0h

2 ∼ 0.12 , (1.29)

where h = H0/ 100km s−1 Mpc−1. So approximately 85% of non-relativistic matter is composed
out of dark matter.

The first indications for dark matter on astrophysical scales were found by Zwicky [14,76], who
measured the velocities of galaxies in clusters. Similar conclusions were inferred from astrophysical
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Figure 1.1: Visualisation of the radiation-, matter- and dark energy-dominated epochs of the
universe. Spatial curvature is not included because it is always subdominant.

observations such as galaxy rotation curves [15, 16] and stellar velocity dispersions [77]. All these
observations found that velocities were substantially higher than expected from estimates of the
visible matter. Assuming GR, these high velocities can only be explained if a huge amount of
unobservable gravitating matter is added, which forms a halo much larger in size than the cluster
and galaxy, respectively.

The postulation of a dark matter component finds further support from measurements of the
deflection of light due to a mass concentration. Remarkably, observations of the bullet cluster [78]
show a relative spatial displacement of dark and baryonic matter.

Also measurements on cosmological scales require the aforementioned amount of dark matter
such as Big Bang Nucleosynthesis (BBN) [79] and the anisotropies in the Cosmic Microwave
Background (CMB) [75]. Going further, cosmic structure formation only works if there is a large
amount of dark matter [80].

The nature of dark matter remains to be a major open puzzle in modern cosmology. If its
origin lies within particle physics, we know that it interacts —if at all— with baryonic matter and
photons only very weakly. Its motion is presumably non-relativistic, which is referred to as cold
dark matter (CDM). This leaves a lot of room for theoretical models and the list of particle dark
matter candidates is continually growing [81]

To date, all efforts to directly detect postulated dark matter particles produced experimental
null results. This motivates the alternative interpretation that the phenomena attributed to dark
matter are a manifestation of gravity itself. Within this point of view, Einstein’s theory of gravity
would not be appropriate to describe scales, on which a dark matter component needs to be
introduced to match observations (see, e.g. [82]). This idea seeded the postulation of a plethora of
proposals such as Modified Newtonian Dynamics (MOND) [83] (see [84] for a review and relativistic
extensions). While these kind of theories require some sort of dark matter on cosmological scales,
further investigations in the context of modified gravity are continuing. At the end of this thesis,
we will come back to this point and discuss the problem of dark matter within bimetric theory.
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1.3 The trouble with Λ
As anticipated, we discuss the presently dominating type of energy in some more detail. Within
GR, the accelerated expansion of the universe at late times is modelled by a cosmological constant
Λ or more generally by dark energy. Together with cold dark matter, these two dark components
make up the Standard Model of Cosmology, the ΛCDM model.

As in the case of dark matter, the origin of dark energy is another major open problem in
modern cosmology and the source of many ongoing investigations. In the remainder of this section,
we will discuss some theoretical and observational shortcomings of a positive cosmological constant
Λ > 0. Before doing so, we emphasise that these arguments do not strictly rule out a cosmological
constant. Instead, we take these arguments as motivation to seek an alternative mechanism that
accelerates the cosmic expansion at late times.

Cosmological constant problem

Previously, we noticed the lack of a fundamental description for a non-vanishing cosmological
constant. In fact, Quantum Field Theory predicts a cosmological constant, to be understood
as the energy density of the quantum vacuum. We move on to review this cornerstone idea,
following [85].

The non-zero vacuum energy originates from the creation and subsequent annihilation of virtual
particles. Let us denote the vacuum state in Quantum Field Theory by |0〉. The energy density
of this state is given by

〈0|Tµν |0〉 = −ρvac gµν . (1.30)

This term leads to an overall cosmological constant in Einstein’s equation. Such observable cos-
mological constant Λobs is the sum of vacuum energy ρvac and the bare cosmological constant
parameter Λ of GR,

Λobs = Λ + 1
M2

P
ρvac . (1.31)

In principle, we can set Λ = 0 and interpret the observed cosmological constant as pure vacuum
energy.

Before doing so, let us approximate the value of the vacuum energy. It suffices to take a
canonical scalar field with mass m and integrate over all modes, which leads to

ρvac ∝
∫

d3k
√
k2 +m2 , (1.32)

which is obviously divergent in the UV. Regularising the integral leads to

ρvac '
m4

64π2 log
(
m2

µ2

)
, (1.33)

with µ the renormalisation scale. Taking the mass to correspond to the heaviest particle in the
Standard Model of particle physics results in a vacuum energy that is 55 orders of magnitude larger
than the observed value [85]. This constitutes “the worst theoretical prediction in the history of
physics” [57]. So, to match Λobs to the observed value, the parameter Λ needs to be tuned to a
non-zero number that almost cancels the large value of ρvac, but not exactly.

This, however, is not the end of the story. The dominant contribution to vacuum energy comes
from the heaviest field in the theory. When going to higher energies, i.e. when raising the cutoff of
the theory, the bare cosmological constant has to be tuned against every new particle that enters
the effective field theory. Due to the high sensitivity of ρvac to the cutoff as in Eq. (1.33), this
represents a dramatic change. This represents a fine-tuning that renders the cosmological constant
technically unnatural in the sense of ’t Hooft [86] (see [87] for a recent review on naturalness in
the context of cosmology). When we take the cutoff of the theory to be given by the Planck scale,
the mismatch between the theoretically predicted and observed value increases to 120 orders of
magnitude. This fine-tuning constitutes the cosmological constant problem [20, 85,88–99].
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Quantum inconsistency of de Sitter

Beyond the observation that the cosmological constant is highly sensitive to the cutoff of the
effective field theory employed for the matter Lagrangian, it has been argued that any Λ > 0 is
quantum inconsistent.

We first present an argument from the swampland program [100], which aims at distinguishing
those low-energy effective field theories that can be completed into quantum gravity from those
that cannot (see [101, 102] for nice reviews). In String Theory, de Sitter is usually sourced by a
scalar field φ, which sits at the extremum of a potential V = V (φ). In this case, the cosmological
constant is given by the potential energy of the scalar field. However, it is conjectured that any
such potential V must satisfy [24,26,27]

|V ′|
V
≥ c

MP
, or V ′′

V
≤ − c′

M2
P
, (1.34)

where c, c′ ∼ O(1) are universal constants (see [103] for some criticism). This combined bound
forbids minima of scalar potentials with V > 0, but allows for metastable de Sitter vacua (extrema),
which however are too short-lived in order to be relevant for our Universe. The bound clearly rules
out a cosmological constant.

The de Sitter bound (1.34) can be related to more general arguments [25, 28, 104, 105]. The
problem circles around the question of whether de Sitter, which represents a vacuum solution to
Einstein’s gravity with a positive cosmological constant, is a consistent vacuum state in a quantum
field theoretical sense. The presence of an event horizon and the absence of a globally defined time
in de Sitter spacetime make it impossible to define asymptotic in- and out-states and therefore
the concept of a S-matrix is not well-defined [106]. To circumvent this issue, instead of a vacuum
state, de Sitter could be viewed as a coherent state of N soft graviton quanta [21–23]. The soft
gravitons are interacting with each other, such that the coherent state, which macroscopically
admits a classical description, is destroyed after a finite amount of time. On time scales larger
than this quantum break time, de Sitter dissolves into some quantum state, which cannot be
described classically. The limit that makes the quantum break time infinite decouples gravity
from matter. Therefore, the finite quantum break time of de Sitter in gravity signals a quantum
inconsistency of any Λ > 0. As a consequence, a positive cosmological constant should be rejected
already at the classical level.

Tension in the Hubble constant

Apart from theoretical arguments, observational data signal a slight disfavouring of a cosmological
constant – under certain assumptions. A major source of discussion in recent times has been the
apparent inconsistency between early-time and late-time observations in cosmology [107]. Local
determinations of the Hubble constant H0 lead to a value that is significantly larger than that
inferred from early-universe physics. See [108] for a brief summary and [109] for a recent and
thorough review including possible resolutions.

Local determinations of the Hubble constant do not depend on an assumed cosmological model
(only assuming homogeneity and isotropy). Therefore, these allow to put model-independent con-
straints on the valueH0. The SH0ES collaboration estimates a value ofH0 = (73.5±1.4) km/s

Mpc [110]
using Cepheid variables and the H0LiCOW collaboration finds H0 = (73.3+1.7

−1.8) km/s
Mpc [111] using

strong gravitational lensing of quasars. These values are consistent with a long list of other local
determinations of the Hubble constant, see [108] and references therein.

Contrarily, constraints on H0 inferred from early-universe physics heavily depend on the cos-
mological model. Assuming ΛCDM as base model, the Planck collaboration reports a value of
H0 = (67.27± 0.60) km/s

Mpc [75] from CMB data alone, which is consistent with ACT+WMAP [112]
and other results. Averaging the late-Universe determinations of H0, these are in conflict with
the Planck result at 4.5σ to 6.3σ, depending on the details of the statistical method and averag-
ing procedure employed [113]. This tension might hint towards an inconsistency in the Standard
Model of Cosmology.
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The inferred value by Planck depends on the entire cosmic expansion history and therefore on
the assumed cosmological model. A plethora of alternatives to the ΛCDM-model has been pro-
posed to solve, or at least alleviate, the H0-tension. These can be divided into proposals modifying
the early or the late universe. Here, we focus only on late-time modifications. For instance, dark
energy with a phantom equation of state leads to an increased value of H0. To see this, a common
phenomenological ansatz is to promote the corresponding equation-of-state parameter to depend
on redshift according to the Chevallier–Polarski–Linder (CPL) approximation [114,115]:

wde = w0 + wa
z

1 + z
. (1.35)

The base ΛCDM-model corresponds to the point w0 = −1 and wa = 0. We emphasise that this is
a purely phenomenological model without theoretical foundation.

A global analysis including the Planck results an local determinations leads to w0 = −0.83+0.29
−0.17

and wa < −1.05 at 68% c.l. [116]. Such phantom dark energy removes the Hubble tension with
a globally inferred value of H0 = (72.94 ± 0.74) km/s

Mpc . In particular, this excludes the ΛCDM
scenario by more than 3σ. However, this analysis does not take into account measurements of
Baryon Acoustic Oscillations (BAOs). Including these into the global analysis instead leads to
w0 = −0.957 ± 0.080 and wa = −0.29+0.32

−0.26 at 68% c.l. and brings back the Hubble tension with
H0 = 68.31± 0.82 km/s

Mpc [75].
The aforementioned results indicate that observations have a marginal preference for a time-

dependent dark energy component instead of (only) a cosmological constant. In addition, data
slightly favours a phantom equation-of-state parameter wde < −1. We take a mild point of view
and regard the described mismatch as clear motivation to search for dark energy that does not
arise from a cosmological constant. In Section 3.1.3 we will see that bimetric theory automatically
leads to such phantom dark energy.



Chapter 2

Theory of massive and interacting
spin-2 fields

The idea to give a mass to the graviton goes back to Fierz and Pauli, who presented a linear
ghost-free theory of a massive graviton propagating in flat spacetime in 1939 [46]. However,
their theory fails to pass even simple solar system tests due to the so-called van Dam–Veltman–
Zakharov (vDVZ) discontinuity [117,118]: the helicity-0 mode of the massive graviton couples to
matter even in the massless limit. In 1972, Vainshtein argued that nonlinear self-interactions of the
massive graviton remove the discontinuity rendering the nonlinear theory phenomenologically con-
sistent [119]. Shortly after, Boulware and Deser presented a no-go theorem stating that nonlinear
terms introduce a ghost mode, which is commonly referred to as the Boulware–Deser ghost [47].
This argument terminated with efforts to construct a consistent theory for a massive graviton for
almost 30 years. The major breakthrough came in 2010/11, when de Rham, Gabadadze and Tolley
identified a loophole in the argument of Boulware and Deser. This allowed the construction of the
fully non-linear theory of massive gravity [48,49,120], which is indeed ghost-free [50]. Hassan and
Rosen generalised massive gravity to ghost-free bimetric theory, which describes two nonlinearly
interacting spin-2 fields, one massless and one massive [51,52]. The latter theory is at the core of
the present thesis.

In this chapter, we review the fundamental aspects of modified gravity theories. We first dis-
cuss some theoretical challenges that are related to Lovelock’s [121, 122] and Ostrogradsky’s [39]
theorems and give a brief overview about modified gravity theories. We then revisit the afore-
mentioned developments in the context of massive and interacting spin-2 fields and provide some
technical details in the construction of the said theories. Reviews on massive gravity and bimetric
theory can be found in [123–126], which we heavily use in the forthcoming discussion.

2.1 Modifying gravity
Einstein’s General Relativity is the well accepted theory of gravity, not only due to its success to
describe physical phenomena over a large range of scales, but also due its uniqueness. The latter
property is a direct consequence of the following famous theorem.

Lovelock’s theorem [121,122]: In four dimensions, every rank-2 and divergence-free
tensor, which depends only on the metric tensor and its first two derivatives, is a
linear superposition of the Einstein and metric tensors.

In particular, every such tensor is symmetric and is linear in the second derivatives of the metric
tensor. In other words, the Einstein–Hilbert action (with a cosmological constant) is the only
local diffeomorphism invariant action, which depends only on a metric and leads to second order
equations of motion.
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This last property is crucial for the theoretical consistency of General Relativity and also
needs to be maintained by any theory of modified gravity. The reason lies within Ostrogradsky’s
theorem [39], which we briefly discuss following [127]. Consider a general Lagrangian density
L(q, q(1), . . . , q (N)), which contains derivatives up to order N of the a priori independent variables:
q(n) , with n = 1 . . . , N . The Lagrangian is said to be non-degenerate iff the determinant of the
Hessian is non-vanishing, i.e.

det
(

∂L
∂q (N)∂q (N)

)
6= 0 . (2.1)

Such Lagrangian always leads to equations of motion of order 2N . Their full solution hence
requires the specification of 4N initial conditions.

Ostrogradsky proved that for N ≥ 2, the corresponding Hamiltonian is not bounded from
below. The theory then propagates modes with negative energy in addition to the physically
expected degrees of freedom, which are referred to as (Ostrogradsky) ghosts. In general, the
theorem can be stated as:

Ostrogradsky’s theorem [39,40]: Any theory described by a non-degenerate Lagrangian
that depends on the second or higher order derivatives of its variables necessarily prop-
agates at least one ghost mode.

The presence of a ghost mode has fatal consequences. If the theory is interacting1, any state can
decay into modes with positive and negative energy while respecting energy conservation. Since a
highly excited state is entropically favoured, this leads to an almost instantaneous decay of, e.g.
the vacuum state. Going further, it is not possible to define any stable state. A theory containing
a ghost is therefore ill-defined and must be rejected.

The Einstein–Hilbert action (1.8) contains second derivatives of the metric tensor, which in
principle would lead to fourth order equations of motion. One may then wonder why GR is not
plagued by an Ostrogradsky ghost. It is Lovelock’s theorem that tells us that all equations of
motion are second order. This implies that GR admits reformulations that are manifestly first order
in the derivatives of the a priori independent variables. A renowned first-order reformulation of GR
is that of Palatini [128], where the metric and the connection are treated as a priori independent
fields. These get related in the usual manner on-shell, by means of the equations of motion.

In fact, this is just a particular example of a more fundamental idea. Einstein’s gravity vio-
lates Ostrogradsky’s assumption of a non-degenerate Lagrangian density. A degenerate Lagrangian
density is an intrinsic property of theories with (gauge-)symmetries2. The vanishing of the deter-
minant of the Hessian signals that the theory is subject to constraints, i.e. field equations that
contain only up to (2N − 1)th order derivatives of its variables. The consistency condition that
the constraints be preserved under time evolution is the starting point of the Dirac–Bergmann
algorithm [129–131], which applies to theories with a manifestly first-order Lagrangian density and
sets the ground for more involved algorithms capable of handling higher order Lagrangians. The
question of ghosts is more involved and deeply connected to counting the number of propagat-
ing degrees of freedom, which necessitates the counting of (functionally independent) constraints,
gauge identities and effective gauge parameters [132]. If this analysis unveils that a theory propa-
gates more degrees of freedom than expected, these additional degrees of freedom are necessarily
ghosts and the theory is ill-defined in the aforementioned sense. We refer to [133] for a review on
the Hamiltonian constraint analysis in the context of GR, to [134] for a pedagogical introduction
to the Lagrangian constraint analysis and to [127,135] for more details on the problem of classical
ghosts.

Since any meaningful theory must be devoid of (Ostrogradsky) ghosts, Lovelock’s theorem
severely restricts possible theories of gravitation. However, the theorem also provides a recipe
on how to construct gravitational theories beyond GR. We can increase the number of spacetime
dimensions, introduce non-local terms, change the number of degrees of freedom and/or add higher

1Every theory of the universe interacts at least gravitationally.
2The converse is not true. Namely, theories with no local symmetry can also be degenerate. The most well-known

example is that of Proca electrodynamics.
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derivative terms. When breaking any of these Lovelock’s theorem entering assumptions to generate
new gravitational theories, the absence of ghosts must be carefully inspected.

All the different possible directions to extend GR that are paved by Lovelock’s theorem have
been explored in the literature, as nicely reviewed in, e.g. [97,136–139]. The latter option of adding
new degrees of freedom has become very popular and can be classified according to whether the new
degrees of freedom are scalar, vectorial or tensorial. The addition of a new scalar degree of freedom
while allowing for its nonminimal coupling to the metric tensor leads to the so-called Scalar–
Tensor theories of gravity, which are most generally described by the Horndeski action [140,141].
Horndeski’s is the most general ghost-free action constructed from the metric and a scalar field such
that the Lagrangian is second order and leads to second order equation of motions. Going further,
it is claimed that even theories with higher-than-second order equations of motion are ghost-free,
which led to the postulation of beyond Horndeski [142] and ultimately of the so-called degenerate
higher order scalar-tensor (DHOST) theories [143,144]. Employing an analogous building principle
as for Horndeski theory in the context of vector fields leads to the postulation of Generalised Proca
or Vector Galileons theory [145–147], whose ghost-freedom and multi-vector extensions3 are still
under debate [148–154]. For a review on these class of theories, we recommend [155]. Coming to
tensorial modifications, one can add a mass term for the graviton, which leads to dRGT massive
gravity [48–50,120]. The extension of that theory to Hassan–Rosen bimetric theory [51,52] contains
a massive tensor field in addition to the usual massless tensor field. For completeness, we also
mention that the setup has been extended to multi-metric theories [156–165].

From a particle physics perspective, the Einstein field equations (1.10) are the unique Lorentz-
invariant and nonlinear equations of motion for a massless spin-2 field [41–45]. This will be briefly
demonstrated in the next section. Promoting the spin-2 field to be massive hence appears as a
natural modification of GR.

Scalar–Tensor and Vector–Tensor theories generically modify the propagation speed cgw of
gravitational waves. However, the observation of gravitational wave signals together with their
electromagnetic counterpart show that gravitational waves travel at the speed of light c, with the
allowed deviations as small as |cgw/c − 1| < 5 × 10−16 [166]. This observational bound forces
the Scalar–Tensor and Vector–Tensor theories of gravity into their simplest forms [167–170]. The
finite graviton mass within massive gravity leads to a subluminal propagation speed and hence
gravitational wave observations provide a strict upper limit on the graviton mass. This restriction,
however, does not apply to bimetric theory, due to the presence of the massless spin-2 field in
addition to the massive spin-2 field.

Summarising, the theoretical motivation and natural building principle together with the ob-
servational viability make bimetric theory a particularly appealing modified theory of gravitation.
In the subsequent sections, we review the historical developments and theoretical challenges that
ultimately led to the postulation of ghost-free bimetric theory.

2.2 Fierz-Pauli theory
Having outlined the technical challenges and possible courses to consistently extend GR, we focus
on the theory that is at the core of the present thesis: bimetric theory. We begin with a historical
recollection of the essential developments underlying bimetric theory, starting with the linear
theory due to Fierz and Pauli. We discuss some of the technical issues as well as attempts for
nonlinearly completing the Fierz–Pauli theory. This section closely follows [125].

2.2.1 Linearised gravity
General Relativity is the theory of a massless spin-2 field [41–45]. To see this, we go to flat space-
time4, where there exist well-defined notions of mass and spin. We consider small perturbations

3The most general, ghost-free and first-order theory for an arbitrary number of vector fields has been constructed
only in flat spacetime [148,149].

4Mass and spin are intimately related to the Lorentz group, which describes the symmetries of Minkowski
spacetime. The only other spacetimes to which the concept of mass and spin can be generalised are those with the
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about the flat Minkowski background ηµν of the form

gµν = ηµν + hµν . (2.2)

with hµν � 1. The linearisation of the Einstein-Hilbert action (1.8) leads to the Lagrangian of
linearised gravity (here, we will always work in terms of Lagrangian densities instead of actions)

L = −1
4h

µν Êαβµν hαβ , (2.3)

up to second order in hµν . Here, we have introduced the Lichnerowicz operator

Êαβµν hαβ = −1
2

(
2hµν − 2∂(µ∂αh

α
ν) + ∂µ∂νh− ηµν(2h− ∂α∂βhαβ)

)
, (2.4)

where h = ηµνhµν denotes the trace of the perturbation. The functional variation of the above
with respect to hµν yields the following equations of motion:

Êαβµν hαβ = 0. (2.5)

The Lichnerowicz operator is dictated by requiring invariance of the theory under the following
gauge transformation:

hµν −→ hµν + ∂(µξν) , (2.6)

which correspond to linear diffeomorphisms. A deviation from the Lichnerowicz operator breaks
linear diffeomorphism invariance and hence introduces additional, ghost degrees of freedom. The
tensor field hµν has 10 a priori independent components. The gauge symmetry (2.6) removes
2× 4 = 8 components. So in total, the theory propagates 10− 8 = 2 degrees of freedom. This is
just the correct number for a massless spin-2 field.

The linear theory of gravity (2.3) is the basis for formulating the linear massive theory.

2.2.2 Fierz–Pauli Mass term
Next, we want to explore the implications of adding a mass term for the tensor field hµν . The
only Lorentz-invariant terms that can be constructed out of the fields at hand are hµνhµν and h2

at quadratic order. Both these terms can be used to give a mass to hµν . So, in general, the kinetic
term is to be supplemented by both these terms as

L = −1
4h

µνEαβµν hαβ −
1
8m

2 (hµνhµν − ah2) , (2.7)

where m and a are free parameters of the theory. For convenience, we define the Lagrangian
density only containing the mass term as

Lmass = −1
8m

2 (hµνhµν − ah2) . (2.8)

This theory explicitly breaks linear diffeomorphism. To restore invariance under Eq. (2.6),
we use the Stückelberg trick and split the tensor into a transverse h⊥µν mode, which carries six
components, and a vector field χµ, which carries four components, as

hµν = h⊥µν + 2∂(µχν) . (2.9)

In terms of these variables, the mass term explicitly reads

Lmass = −1
8m

2 ((h⊥µν + 2∂(µχν))2 − a(h⊥ + 2∂αχα)2) , (2.10)

same amount of symmetry. These are de Sitter and Anti-De Sitter. To keep the discussion as simple as possible,
we stick to Minkowski backgrounds here. When studying the mass spectrum of bimetric theory later, we will also
allow for a non-vanishing cosmological constant.
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which is invariant under the simultaneous transformations:

h⊥µν −→ h⊥µν + ∂(µξν) , χµ −→ χµ −
1
2ξµ .

(2.11)

Therefore, introducing the Stückelberg field χµ as in Eq. (2.9) restores linear diffeomorphism
invariance.

The theory is stable only for a specific value of a, if it is to avoid Ostrogradsky instabilities.
To see this, we note that the mass term includes a kinetic term for the Stückelberg field of the
form

Lmass ⊃ Lχkin = −1
4m

2 ((∂µχν)2 − a(∂αχα)2) , (2.12)

after integration by parts. To restore the residual gauge freedom of the spin-1 field χµ, we introduce
another Stückelberg field χ0 as

χµ = χ⊥µ + ∂µχ
0 . (2.13)

Then, the kinetic term for χµ explicitly reads

Lχkin = −1
4m

2 ((∂µχ⊥ν + ∂µ∂νχ
0)2 − a(∂αχ⊥α +2χ0)2) , (2.14)

which is now invariant under the following simultaneous transformations:

χ⊥µ −→ χ⊥µ + ∂µξ
0 , χ0 −→ χ0 − ξ0 (2.15)

with ξ0 a gauge parameter. The term Lχkin now contains a kinetic term for the scalar Stückelberg
field χ0 of the following form:

Lmass ⊃ Lχ
0

kin = −1
4m

2 ((∂µ∂νχ0)2 − a(2χ0)2) = −1
4m

2(1− a)(2χ0)2 , (2.16)

where we integrated by parts for the second step. The kinetic term for χ0 contains higher orders
in time and space derivatives. To bring this kinetic term to a canonical form, we first introduce a
Lagrange multiplier χ̃0 as

Lχ
0

kin = −1
4m

2(1− a)(χ̃02χ0 − 1
4(χ0)2) . (2.17)

The functional variation of the above with respect to χ̃0 yields the equation of motion χ̃0 = 22χ0.
Plugging this back into the Lagrangian returns Eq. (2.16). The field redefinition φ1 = χ0 + χ̃0

and φ2 = χ0 − χ̃0 canonicalises the kinetic term as

Lπkin = −1
4m

2(1− a)
(
φ12φ1 − φ22φ2 −

1
4(φ1 − φ2)2

)
, (2.18)

after integration by parts. These simple manipulations reveal that one of the scalar modes con-
tained in the tensor field necessarily comes with a kinetic term with the wrong sign. Therefore, one
of the scalar modes is a ghost. Only for the specific parameter choice a = 1, the higher derivative
terms of the scalar mode are absent, which removes the Ostrogradsky instability we just spotted.
This yields the stable theory for a massive graviton propagating on flat spacetime by Fierz and
Pauli [46],

LFP = −1
4h

µνEαβµν hαβ −
1
8m

2 (hµνhµν − h2) (2.19)

to which we refer to as Fierz–Pauli theory.
As we will see now, the theory propagates 5 degrees of freedom as desired, with m the mass of

the graviton. Functionally varying the Fierz-Pauli action in Eq. (2.19) with respect to hµν yields
the equations of motion

2hµν − 2∂α∂(µh
α
ν) + ηµν(∂α∂βhαβ −2h) + ∂µ∂νh−m2(hµν − ηµνh) = 0 . (2.20)
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Acting with ∂µ on Eq. (2.20) yields ∂µhµν = ∂νh if m 6= 0. Upon using this constraint, Eq. (2.20)
reduces to 2hµν−∂µ∂νh−m2(hµν−ηµνh) = 0. Tracing this equation results in h = 0. Therefore,
the equation of motion further simplifies to (2 − m2)hµν = 0. Summarising, the equations of
motion Eq. (2.20) are equivalent to the following set of equations:

(2−m2)hµν = 0 ,
∂µhµν = 0 , h = 0 .

(2.21)

The first line represents the equations of motion, which are subject to the constraint equations
stated in the second line. The tensor field hµν is symmetric and therefore has a priori 10 indepen-
dent components. The constraint equations fix five components algebraically, thereby leaving 5
independent components in total. The theory therefore propagates 5 dynamical degrees of freedom
as it is appropriate for a massive spin-2 field in 4 dimensions. The parameter m is the common
mass of all modes of the massive field.

2.2.3 van Dam–Veltman–Zakharov discontinuity
Subsequently, we turn to the elucidation of the following key point: external sources not only
excite the helicity-2 modes of the massive graviton, but also the helicity-0 mode. To make this
apparent, we study the exchange amplitude of massive gravitons between two external sources Tµν
and T ′µν . The Fierz–Pauli Lagrangian in the presence of an external source Tµν is given by

LFP = −1
4h

µν Êαβµν hαβ −
1
8m

2 (hµνhµν − h2)+ 1
2M2

P
hµνT

µν . (2.22)

The corresponding equations of motion are

Êαβµν hαβ + m2

2 (hµν − ηµνh) = 1
2M2

P
Tµν . (2.23)

As in the case without external sources, we can bring these equations into a more compact form.
Taking the divergence of and tracing Eq. (2.23) yields the following constraints, respectively:

∂µhµν − ∂νh = 1
m2M2

P
∂µTµν ,

h = − 1
3m2M2

P

(
T + 2

m2 ∂µ∂νT
µν

)
,

(2.24)

where we have used the divergence of the first line to arrive at the second line.
To extract the vDVZ discontinuity, we insert the constraint (2.24) into Eq. (2.23) to obtain

(2−m2)hµν = 1
M2

P

(
η̃µ(αη̃β)ν −

1
3 η̃µν η̃αβ

)
Tαβ , (2.25)

where we introduced the tensor
η̃µν = ηµν −

1
m2 ∂µ∂ν . (2.26)

From here, we can read off the propagator of a massive graviton as

∆(m 6=0)
µναβ (x− x′) =

f
(m 6=0)
αβµν

2−m2 (2.27)

with the polarisation tensor f (m6=0)
µναβ given as

f
(m 6=0)
µναβ = η̃µ(αη̃β)ν −

1
3 η̃µν η̃αβ . (2.28)
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Therefore, the amplitude of exchanging massive gravitons between two external sources Tµν and
T ′µν is given by

A(m 6=0) =
∫

d4xhµνT
′µν =

∫
d4xT ′µν

f
(m 6=0)
αβµν

2−m2T
αβ . (2.29)

In the massless limit m → 0, the external sources are conserved due to linear diffeomorphism
invariance, ∂µTµν = 0. Hence, in the massless limit the amplitude simplifies to

lim
m→0

A(m 6=0) =
∫

d4xT ′µν
1
2

(
Tµν −

1
3ηµνT

)
. (2.30)

This amplitude needs to be compared to the amplitude due to the exchange of purely massless
gravitons.

To compute the amplitude of massless gravitons, we first notice that the equations of motion
are simply given by

Êαβµν hαβ = 1
2M2

P
Tµν . (2.31)

Since the massless theory is invariant under linear diffeomorphisms (2.6), we can pick a gauge. In
the de Donder gauge ∂µhµν − 1

2∂νh = 0, the equations of motion assume the simple form

2hµν −
1
2ηµν2h = 1

M2
P
Tµν . (2.32)

The trace implies 2h = − 1
MP

T , which can be plugged back into the equations of motion to yield

2hµν = 1
M2

P

(
Tµν −

1
2ηµνT

)
= 1
M2

P

(
ηµ(αηβ)ν −

1
2ηµνηαβ

)
Tαβ . (2.33)

Now we can read off the massless propagator as

∆(m=0)
αβµν (x− x′) =

f
(m=0)
αβµν

2
, (2.34)

with the polarisation tensor f (m=0)
αβµν given by

f
(m=0)
αβµν = ηµ(αηβ)ν −

1
2ηµνηαβ . (2.35)

To compare with the massless limit of the massive case, we can compute the exchange amplitude
of massless gravitons between two external sources Tµν and T ′µν as

A(m=0) =
∫

d4xhµνT
′µν =

∫
d4xT ′µν

1
2

(
Tµν −

1
2ηµνT

)
. (2.36)

Comparing the massless amplitude (2.36) to the massive amplitude in the massless limit (2.30),
we find a mismatch of O(1). This discontinuity was independently discovered by van Dam and
Veltman [117] and Zakharov [118] and henceforth referred to as vDVZ discontinuity (see also [171]).
As a consequence, Fierz–Pauli theory is already ruled out by observations of the precession of
Mercury’s orbit.

Before moving on to the resolution of this (apparent) problem, we first demonstrate that it is
the helicity-0 mode of the massive graviton that is responsible for the vDVZ discontinuity. We
perform a flat space helicity decomposition of the tensor field hµν as

hµν −→ h⊥µν + 2
m
∂(µAν) + 1

m2 ∂µ∂νπ , (2.37)
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where the negative powers of m have been introduced for convenience. For better visibility, we
simply write hµν in place of h⊥µν in the following. The Fierz–Pauli action then takes the form

LFP =− 1
4h

µν Êαβµν hαβ −
1
2h

µν (Πµν − ηµνΠ)− 1
8FµνF

µν

− 1
8m

2(hµνhµν − h2)− 1
2m(hµν − ηµνh)∂(µAν) ,

(2.38)

where Fµν = ∂µAν − ∂νAµ and Πµν = ∂µ∂νχ. The kinetic term for the helicity-0 mode π is
not manifest yet, due to the mixing with hµν . To diagonalise the action, we perform the field
redefinition hµν = h̃µν + ηµνπ, after which

LFP =− 1
4 h̃

µν Êαβµν h̃αβ −
3
4(∂π)2 − 1

8FµνF
µν

− 1
8m

2(h̃µν h̃µν − h̃2) + 3
2m

2π2 + 3
2m

2πh̃

− 1
2m(h̃µν − ηµν h̃)∂(µAν) + 3mπ∂αAα .

(2.39)

The first line contains the canonical kinetic terms for the fields, while the second and third lines
contain the mass terms and interactions among the fields, respectively.

The field h̃µν is the pure helicity-2 mode, while π is the pure helicity-0 mode. External sources,
however, couple to the combined mode hµν in the following way: hµνTµν = h̃µνT

µν + πT . This
unveils that the helicity-0 mode couples to the trace of the energy momentum tensor even in the
massless limit, which in turn causes the vDVZ discontinuity. To render a theory of a single massive
graviton observationally viable, we need a mechanism that unmixes the helicity-0 and helicity-2
mode within hµν in the massless limit.

2.2.4 Vainshtein mechanism

In 1972, Vainshtein conjectured that the vDVZ discontinuity is absent when equipping the theory
with certain nonlinear terms [119]. Utilising an ad hoc ansatz for a nonlinearly completed Fierz–
Pauli theory [172], he questioned the validity of perturbation theory in the massless limit. By
solving the field equations in a power series in inverse powers of the mass m, he demonstrated
for a static and spherically symmetric configuration that the theory indeed reduces to GR in the
massless limit. This feature is commonly known as Vainshtein screening mechanism.

Here we discuss Vainshtein screening from a slightly different perspective, following [124]. For
our purpose it suffices to assume that Fierz–Pauli theory admits a nonlinear completion. As we
have seen before, the vDVZ discontinuity emerges from the interaction between the helicity-0 mode
of the graviton and matter. To isolate the self-interactions of this helicity-0 mode, one usually
studies the theory in the so-called decoupling limit, which is defined by the double-scaling limit

MP →∞ , m→ 0 , Λn = (MPm
n−1) 1

n = const. , Tµν
MP

= const. . (2.40)

This decoupling limit isolates the interactions of the helicity-0 mode π at the scale Λn. Therefore,
it turns the fields h̃µν and Aµ free, while π is subject to nonlinear self-interacting by construction.
As a result, the equations of motion can be recast as

Êαβµν h̃αβ = 1
2MP

Tµν , 32π + Fnl
π = 1

MP
T , (2.41)

where Fnl
π captures the nonlinearities in π. For instance, within the proposals of nonlinear massive
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gravity5 of [47,174], the derivative self-interactions of the helicity-0 mode are given by [124]

Fnl
χ ∼

1
(Λ5)5

(
32(2π)2 −2(∂µ∂νπ)2 − 2∂µ∂ν(2π∂µ∂νπ)

)
, (2.42)

up to an overall theory-dependent constant.
The above suffices to understand the Vainshtein mechanism. Away from the massless limit,

schematically given by k � m from a Fourier perspective, the nonlinear terms are suppressed
by powers of (k/Λn). This implies that 2χ � Fnl

π and the dynamical evolution of the helicity-0
mode is captured by the linear terms. Therefore, π is of the same order as h̃µν and the physical
metric hµν receives O(1) corrections from the helicity-0 mode, hµν = h̃µν + ηµνπ as before. In
the massless limit, i.e. when the mass is much smaller than all scales involved in the problem
under consideration, schematically k � m, the nonlinear terms dominate in the scalar equation of
motion, 2π � Fnl

π . This implies that the scalar mode is subdominant, π � h̃µν , and the physical
metric fluctuation is composed solely out of the helicity-2 mode, hµν ∼ h̃µν .

Summarising, the nonlinear self-interactions suppress the helicity-0 mode in the limit of small
graviton mass, compared to the helicity-2 mode. This renders the metric fluctuations effectively
massless so as to restore GR in that limit. Note that the Vainshtein mechanism kicks in at a finite
graviton mass and hence at a finite scale. For spherically symmetric systems, this scale is referred
to as Vainshtein radius rV to be determined later.

An additional important requirement for the Vainshtein mechanism to work is that the close-to
GR solution can be matched to an asymptotically flat solution [47, 175, 176]. This is indeed the
case, as has been shown for certain massive gravity potentials [177–180]. In Section 3.2, we will
demonstrate the concrete realisation of Vainshtein screening within bimetric theory and study the
matching of solutions therein.

2.2.5 Towards a nonlinear massive theory
Given the metric gµν , there are two Lorentz-invariant quantities that we can construct. The first
quantity is the trace [g] = 4, which cannot be used to construct a mass term for gµν . The second
quantity is the determinant g = det(gµν) and functions thereof. As shown in [47], the only viable
function of g is the one that gives a cosmological constant term. Hence, also the determinant
cannot give rise to a mass term for gµν .

The construction of a mass term at the nonlinear level necessitates the introduction of a
reference metric, which we denote by fµν . So far, we have taken the reference metric to be flat,
fµν = ηµν , and built the mass term at the linearised level out of the perturbation hµν = gµν−fµν .

The Stückelberg trick has proven itself to be a powerful tool to make explicit the field content
of the theory and thereby to address the ghost issue. The introduction of the reference metric
allows for a nonlinear version of the Stückelberg trick. Instead of rewriting the perturbation field,
we can rewrite the background as [174]

fµν −→ f̃µν = ∂µφ
a∂νφ

bfab . (2.43)

Here, φa stands for four Stückelberg fields for a = 0, . . . 3. In the unitary gauge φa = δaµx
µ, we get

f̃µν = fµν . When performing the Stückelberg trick, the field hµν gets promoted to the covariant
tensor Hµν as

hµν = gµν − fµν −→ Hµν = gµν − f̃µν . (2.44)
Performing a helicity decomposition of the Stückelberg fields amounts to writing

φa = δaµx
µ − 1

m
ηaµAµ −

1
m2 η

aµ∂µπ , (2.45)

5Note that these proposals contain an Ostrogradsky instability or Boulware–Deser ghost, which invalidates them
as sensible physical theories. This point will be discussed in more detail in the next section. However, the same
argument holds for ghost-free theories, as will be discussed in Section 2.3. For instance, in ghost-free massive gravity,
the Λ3 decoupling limit corresponds to the cubic Galileon [48,49,173]. There, the nonlinear self-interactions of the
helicity-0 mode are given by Fnl

χ ∼ Λ−3
3
(
(2π)2 − (∂µ∂νπ)

)2
[125].
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where we associated the index a with a Lorentz index as suggested by the unitary gauge. Therefore,
our new tensor field can be written as [125]

Hµν = hµν + 2
m
∂(µAν) −

1
m2 ∂µAα∂νA

α + 2
m2 Πµν −

1
m4 ΠµαΠα

ν −
2
m3 ∂µAαΠα

ν . (2.46)

This new framework serves as the basis for constructing a nonlinear mass term. We first
observe that in the unitary gauge with a flat reference metric fµν = ηµν , linearisation leads to
Hµν = hµν . Hence, the following ansatz for a nonlinear mass term [174]

Lnl FP = −m2M2
P
√
−g
(
[H2]− [H]2

)
(2.47)

reduces to the Fierz–Pauli mass term (2.19) upon linearising in the above described sense. Here,
[·] denotes the trace and indices are raised and lowered with respect to gµν . However, this choice
is not unique and other proposals have been presented in the literature, e.g. [47]. Expressing Hµν

in terms of the two metric tensors, all proposals can be collectively written as [124,181]

Lnl FP = −m2M2
P
√
−g U

(
g−1f̃

)
, (2.48)

with U suitable scalar functions such that the theory is general covariant under diffeomorphisms,
gives rise to flat solutions for gµν and reduces to the Fierz–Pauli mass term (2.19) upon linearising
about flat spacetime fµν = ηµν in the unitary gauge.

2.2.6 Boulware–Deser ghost

Having proposals for nonlinear mass terms, Boulware and Deser argued that the Ostrogradsky
instability, which at the linear level was avoided by choosing a = 1 in Eq. (2.8), generically
reappears at the nonlinear level [47]. Their analysis relies on an ADM analysis (Arnowitt–Deser–
Misner [182]) of a generic nonlinear theory as in Eq. (2.48). A thorough discussion of their proof
is beyond the scope of the present review. Here, we will limit ourselves to simply demonstrating
the occurrence of the nonlinear ghost mode, following [125].

We use the proposal Eq. (2.47) as a concrete example. Neglecting the helicity-2 and helicity-1
modes in the helicity decomposition of Hµν (2.46) leads to

Hµν = 2
m2 Πµν −

1
m4 ΠµαΠα

ν . (2.49)

Plugging this decomposition into Eq. (2.47) unveils that the nonlinear mass term contains the
following derivative terms of the helicity-0 mode [125],

Lnl FP ⊃ −M2
P

(
([Π2]− [Π]2) + 4

m2 ([Π3]− [Π][Π2]) + 1
m6 ([Π4]− [Π2]2)

)
. (2.50)

The quadratic term turns out to be a total derivative after integrating by parts. This signals the
special Fierz–Pauli tuning so as to remove the ghost mode. The cubic and quartic interaction
terms, however, contain higher time derivatives of π, which do not combine into total deriva-
tives. Therefore, the theory unavoidably propagates additional unphysical degrees of freedom, by
Ostrogradsky’s theorem.

Although our discussion focussed only on a particular example, the argument by Boulware
and Deser applies to all nonlinear mass terms that are of the form Eq. (2.48) [47, 125]. It was
therefore believed that any nonlinear completion of the Fierz–Pauli theory propagates a ghost
mode, dubbed Boulware–Deser ghost. This conclusion was (erroneously) confirmed much later
in [183], which used the framework of [174] as a starting point.
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2.3 Ghost-free massive gravity
The question of a massive graviton became relevant again when brane-world scenarios were studied
to explain the weakness of gravity and/or to solve the cosmological constant problem [184–192]. In
particular, the Dvali–Gabadadze–Porrati (DGP) model [187,188] played a crucial role. Such brane
induced gravity models gave rise to the appearance of massive spin-2 resonances on the brane,
on which our Universe lives [193]. In particular, the method of imposing boundary conditions
on an auxiliary extra dimension to generate mass terms [194–197] paved the road towards the
construction of a ghost-free nonlinear theory of massive gravity.

Building upon the intuition developed over the last sections, we take the tensor Hµν defined
in Eq. (2.43) as a promising starting point. Keeping only the helicity-2 and helicity-0 modes while
neglecting the helicity-1 mode in Eq. (2.46), the tensor is given by [48,49]:

Hµν = hµν + 2
m2 Πµν −

1
m4 η

αβΠµαΠβν . (2.51)

This suggests the definition of the following tensor [49]

Kµν = δµν −
√
δµν −Hµ

ν , (2.52)

whose indices are raised and lowered with respect to gµν . Defined in that way, the tensor reduces
to Kµν = Πµν when hµν = 0.

The definition of K allows to covariantly extend the total derivative ([Π]2 − [Π2]), which we
encountered in Eq. (2.50), in the following way [49]:

U(g,H) = −
(
(gµνKµν)2 − gµνgαβKµαKβν

)
. (2.53)

Expressing the potential as an expansion in H, there exists a total derivative contribution at each
order, wich is covariantised to [49]

U(g,H;αn) = −
∑
n≥2

αnL(n)
der(K), (2.54)

with L(n)
der recursively defined as

L(n)
der(K) = −

n∑
m=1

(−1)m (n− 1)!
(m− 1)! [K

m]L(n−m)
der (K) . (2.55)

This is the de Rham–Gabadadze–Tolley mass term, which appears in the action of nonlinear
massive gravity [48,49],

SdRGT = M2
P

2

∫
d4x
√
−g
(
R−m2 U(g,H;αn)

)
. (2.56)

The above action has been shown to be free of the Boulware–Deser ghost to all orders in nonlin-
earities in the decoupling limit, and up to quartic order away from the decoupling limit in [49].

Hassan and Rosen found that the infinite series in Eq. (2.54) actually terminates [120]. In
addition, using the definition (2.43) of Hµν , from Eq. (2.52) we see that Kµν can be rewritten as
Kµν = δµν − [

√
g−1f ]µν . The potential (2.54) admits the physically equivalent rewriting [120]

U(g, f ;βn) =
4∑

n=0
βne(n)

(√
g−1f

)
, (2.57)
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upon specialising to fµν = ηµν . The potential is formulated in terms of the elementary symmetric
polynomials e(n), which in four dimensions are given by

e(0)(S) = 1 , e(1)(S) = [S] , e(2)(S) = 1
2!
(
[S]2 − [S2]

)
,

e(3)(S) = 1
3!
(
[S]3 − 3[S][S2] + 2[S3]

)
,

e(4)(S) = 1
4!
(
[S]4 − 6[S]2[S2] + 3[S2]2 + 8[S][S3]− 6[S4]

)
= det(S) .

(2.58)

All higher polynomials vanish in four dimensions: e(n>4) = 0.
Further, Hassan and Rosen extended the ghost-free proof to the fully non-linear level, away from

the decoupling limit in [50,51]. The ghost-proof was generalised to the case of an arbitrary reference
metric fµν in [198] and confirmed in a series of studies utilising different approaches [199–209].

The modified Einstein equations stemming from SdRGT are [120]

Gµν + Vµν = 0 . (2.59)

Here, Gµν is the usual Einstein tensor of gµν and Vµν arises from varying the potential (2.57) and
is explicitly shown in Eq. (2.68). The Einstein tensor satisfies the Bianchi identity ∇µGµν = 0.
The equation of motion (2.59) therefore implies the Bianchi constraint

∇µVµν = 0 . (2.60)

Let us recap. More than 60 years after the first attempt by Fierz and Pauli, we finally arrived at
a Lorentz-invariant, fully nonlinear and ghost-free theory of massive gravity. The construction of a
consistent mass term for the metric gµν requires the introduction of a reference metric fµν , which
in dRGT massive gravity was fixed to fµν = ηµν , together with a specific square-root structure
to remove the Boulware–Deser ghost. The formulation by Hassan and Rosen makes manifest that
the potential treats both metrics on an equal footing. In fact, the potential satisfies the identity

√
−g U(g, f ;βn) =

√
−f U(f, g;β4−n) . (2.61)

This identity results from the following property of the elementary symmetric polynomials:

e(n)(S) =
e(4−n)(S)
e4(S) . (2.62)

The potential is thus invariant under the simultaneous transformations gµν ↔ fµν and βn ↔ β4−n.
The full action for massive gravity, however, does not reflect this symmetry because only gµν has
a kinetic term. Consequently, a natural extension of massive gravity is obtained upon promoting
fµν to a dynamical metric. In the following, we provide further arguments in favour of promoting
the reference metric to a dynamical field, as will be done in Section 2.4.

The lowest order term (n = 0) in the potential (2.57) gives just the determinant of the dy-
namical metric gµν . Therefore, the parameter β0 represents a cosmological constant for the met-
ric gµν , just like the parameter Λ of GR. The highest order term (n = 4) can be written as√
−g e(4)(

√
g−1f) =

√
−f and is therefore not contributing to the dynamics, but would yield a

cosmological constant, parametrised by β4, for the metric fµν . The remaining parameters β1, β2,
and β3 parametrise the nonlinear self-interactions of the massive spin-2 field.

We will not go into the phenomenological details of massive gravity, which are nicely reviewed
in [125,210], but comment on one important aspect of cosmological solutions. On the flat FLRW
ansatz (1.14) with scale factor a the Bianchi constraint (2.60) implies

ȧ (β1 + 2aβ2 + a2β3) = 0, (2.63)

with the only solution being ȧ = 0. Therefore, massive gravity does not give rise to flat FLRW
solutions. In fact, the result even extends to closed FLRW solutions [211]. On the other hand,
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open FLRW solutions do exist [212]. However, these are problematic at the perturbative level,
due to strong coupling issues or instabilities [213–215].

The absence of physically relevant FLRW solutions motivates to generalise massive gravity. As
mentioned before, a natural extension is to make the whole action invariant under the exchange
symmetry of the potential (2.61) by giving dynamics to fµν . This procedure leads us to ghost-free
bimetric theory.

2.4 Ghost-free bimetric theory
After all previous preliminaries, we are finally in the position to introduce the bimetric theory of
Hassan and Rosen. Here, the reference metric fµν , which is fixed to a flat Minkowski metric in
massive gravity, is promoted to a dynamical field. The following discussion closely follows [126].

2.4.1 Action and equations of motion
Ghost-free bimetric theory [52] considers the reference metric fµν to be a dynamical field. In
practice, this means that the massive gravity action (2.56) with potential (2.57) is supplemented
with an Einstein–Hilbert kinetic term for fµν :

SHR = −
M2

g

2

∫
d4x

(√
−gRg + α2

√
−fRf −m2√−g U(g, f ;βn)

)
. (2.64)

Here, Rg,f are the scalar curvatures of gµν and fµν , respectively. Each Einstein–Hilbert term
comes with its own Planck mass, Mg and Mf , in terms of which we introduced the Planck mass
ratio

α = Mf

Mg
. (2.65)

The potential U(g, f ;βn) is the same as in massive gravity and given by Eq. (2.57). Now that fµν
is dynamical, the action (2.64) is invariant under the simultaneous transformations

gµν ←→ fµν , Mg ←→ Mf , βn ←→ β4−n . (2.66)

A natural question arises at this point: which metric, gµν or fµν is to be interpreted as the physical
one? This issue will be addressed shortly, when discussing the couplings to matter.

The functional variation of the action (2.64) with respect to gµν and fµν leads to two sets of
modified Einstein equations. These are given by [120,216]

Gg
µν + V g

µν = 0 , α2Gf
µν + V f

µν = 0 , (2.67)

where Gg,f
µν are the Einstein tensors of gµν and fµν , respectively. The explicit form of the terms

stemming from the potential are

V g
µν = gµλ

3∑
n=0

(−1)nβnY λ(n)ν

(√
g−1f

)
, V f

µν = fµλ

3∑
n=0

(−1)nβ4−nY
λ
(n)ν

(√
f−1g

)
. (2.68)

The matrix functions Y λ(n)ν are of the form

Y λ(n)ν(S) =
n∑
k=0

(−1)ke(k)(S) (Sn−k)λν , (2.69)

with S =
√
g−1f and the elementary symmetric polynomials e(n) as defined in Eq. (2.58). The

spacetime indices in the g-sector are raised and lowered with respect to gµν and in the f -sector
with respect to fµν .
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Of course, each metric can be used to define a covariant derivative. Let us denote (g)∇µ
the covariant derivative compatible with gµν , i.e. (g)∇µgµν = 0, and likewise (f)∇µ for fµν , i.e.
(f)∇µfµν = 0. Quite obviously, the corresponding Einstein tensors satisfy the appropriate Bianchi
identities:

(g)∇µGg
µν = 0 , (f)∇µGf

µν = 0 . (2.70)
By virtue of the modified Einstein equations (2.67), the Bianchi identities imply the following
Bianchi constraints on the potential terms:

(g)∇µV g
µν = 0 , (f)∇µV f

µν = 0 . (2.71)

The interaction potential is covariant under simultaneous diffeomorphisms of both metrics, which
implies that the Bianchi constraints are not independent, but related as [181]

√
−ggµλ (g)∇λV g

µν = −
√
−ffµλ (f)∇λV f

µν . (2.72)

Note that this on-shell identity follows from covariance alone and is independent of the precise
form of the potential U .

2.4.2 Absence of Boulware–Deser ghost
Before moving on, we comment on the absence of the Boulware–Deser ghost instability. The full
proof is technical and beyond the scope of the present review. For a pedagogical presentation of
the proof, we refer to [126].

To understand how the ghost problem is avoided in bimetric theory, let us count the num-
ber of degrees of freedom we would naively expect [126]. We start with 2 × 10 = 20 a priori
independent components in the two symmetric tensors. The interaction potential breaks the two
diffeomorphism invariances of gµν and fµν down to the diagonal subgroup, under which both met-
rics are transformed simultaneously. This shared symmetry is to be gauge fixed, which determines
2× 4 = 8 components of the 20 we started with. Next we notice that the previously obtained the
Bianchi constraint (2.71) removes another 4 components. Thus, we are left with 20 − 8 − 4 = 8
propagating degrees of freedom: two corresponding to the massless spin-2 field, five corresponding
the the massive spin-2 field and one additional scalar mode. This latter mode is precisely the
Boulware–Deser ghost. In order to remove that ghost and arrive at the desired 7 propagating
degrees of freedom, one additional constraint is needed.

In fact, this additional constraint is present for the special form of the interaction poten-
tial (2.57). The original proof was performed in the ADM (Arnowitt–Deser–Misner [182]) lan-
guage by Hassan and Rosen in [52] subsequently confirmed also in other approaches [202,206,209,
217–221]. Bimetric theory due to Hassan and Rosen is thus free of the Boulware–Deser ghost
instability.

For completeness, we briefly mention that other types of inconsistencies can arise beyond the
Bouldware–Deser ghost instability. A potential source of such inconsistency is that the definition
of the square-root matrix S =

√
g−1f is not unique [222]. This renders the definition of bimetric

theory ambiguous. Only if both metrics share a common time direction, the square-root matrix
S is real-valued and bimetric theory can be defined unambiguously [222].

2.4.3 Linear mass spectrum
After having clarified the absence of the Boulware–Deser ghost instability, let us identify the
propagating degrees of freedom of bimetric theory. As previously noted, the concept of mass (and
also that of spin) is related to representations of the Lorentz group, which is the isometry group
of Minkowski (M) spacetime. The notions can be meaningfully generalised to spacetimes with the
same amount of symmetry, i.e. Anti-de Sitter (AdS) and de Sitter (dS) spacetimes. All M, AdS
and dS are maximally symmetric spacetimes. Hence, in order to identify its linear mass spectrum,
we need to study bimetric theory on a maximally symmetric background. This is the case when
both metrics are proportional: gµν ∝ fµν .



2.4 Ghost-free bimetric theory 29

The class of proportional background solutions where both metric tensors are related by a
conformal factor c(x) as ḡµν = c(x)2f̄µν was studied in [52, 223]. Upon employing the conformal
ansatz, the Bianchi constraint (2.71) reduces to ∂µc = 0, which forces c to be a constant. The
most general proportional ansatz thus simplifies to

ḡµν = c2f̄µν with c = const. (2.73)

The modified Einstein equations (2.67) become

Gµν(ḡ) + Λg ḡµν = 0 , Gµν(ḡ) + Λf ḡµν = 0. (2.74)

(Note that the Einstein tensor is conformally invariant, Gµν(f̄) = Gµν(ḡ).) The effective cosmo-
logical constants are given by

Λg = m2 (β0 + 3cβ1 + 3c2β2 + c3β3
)
, (2.75a)

Λf = m2

α2c2
(
cβ1 + 3c2β2 + 3c3β3 + c4β4

)
. (2.75b)

These are composed of both vacuum energy (as parametrised by β0 and β4) and interaction energy
(as parametrised by β1, β2 and β3). Combining both equations in (2.74) implies that Λ ≡ Λg = Λf ,
i.e. both metrics share the same effective cosmological constant. Proportional backgrounds are
thus maximally symmetric and, depending on Λ, describe M or (A)dS spacetime.

Combining both Eq. (2.74) and using Eq. (2.75) leads to [223]

α2β3c
4 + (3α2β2 − β4)c3 + 3(α2β1 − β3)c2 + (α2β0 − 3β2)c− β1 = 0 , (2.76)

which is a quartic polynomial in c and as such has up to four real-valued solutions. Each corre-
sponds to a vacuum solution of bimetric theory, i.e. there is no source of stress-energy apart from
the (self-)interactions of the spin-2 fields. Note already that these solutions are invariant under

c −→ −c βn −→ (−1)nβn . (2.77)

We will discuss proportional solutions in more detail in Chapter 4.
After having identified the maximally symmetric spacetimes in bimetric theory, let us turn to

the mass spectrum on such backgrounds. We introduce small perturbations about the proportional
background and write the metrics as [52,223]

gµν = ḡµν + 1
Mg

δgµν , fµν = c2ḡµν + c

Mf
δfµν , (2.78)

where δgµν �Mg and δfµν � c−1Mf . Here, the fluctuations are already canonically normalised.
Linearising the Einstein equations (2.67) leads to [223]

Eαβµν δgαβ + Λgδgµν −
Mgβ̄

2 ḡµα (δSαν − δανδS) = 0 , (2.79a)

Eαβµν δfαβ + Λfδfµν + Mgβ̄

2αc ḡµα (δSαν − δανδS) = 0 . (2.79b)

Here, we have introduced the short-hand notation β̄ = cβ1 + 2c2β2 + c3β3. The variation of the
square-root matrix is given by [223]

ḡµαδS
α
ν = c

2Mf
(δfµν − αc δgµν), (2.80)

to linear order in fluctuations. To decouple the above system of equations, we introduce the new
variables [223]

δGµν = 1√
1 + α2c2

(δgµν − αc δfµν) , δMµν = 1√
1 + α2c2

(δfµν + αc δgµν) , (2.81)
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where the prefactors have been chosen for canonical normalisation. The equations of motion then
assume the following form [223]:

0 = Eαβµν δGαβ + ΛδGµν ,

0 = Eαβµν δMαβ + ΛδMµν + 1
2m

2
FP (δMµν − ḡµνδM) .

(2.82)

Written in this manner, it is obvious that the field δGµν satisfies the equations of a massless spin-2
field, as in linearised GR (2.5), with a non-vanishing cosmological constant. Further, it is also
clear that the field δMµν satisfies the equations of a massive spin-2 field with a Fierz–Pauli mass
term (2.20). The mass is given by [223]

m2
FP =

(
1 + 1

α2c2

)(
cβ1 + 2c2β2 + c3β3

)
. (2.83)

In contrast to the effective cosmological constant, the Fierz–Pauli mass only depends on the
interaction parameters β1,2,3. Summarising, this analysis reveals that bimetric theory describes a
massless and a massive spin-2 fields at the linearised level.

Bimetric theory thus propagates the correct number of degrees of freedom, avoiding the fatal
Boulware–Deser ghost. This however does not imply that the propagating modes are well-defined
on any background. One important example is the Higuchi ghost [224, 225]. For a non-vanishing
cosmological constant, the mass must not be arbitrarily small, but satisfy the Higuchi bound

3m2
FP > 2Λ . (2.84)

If this bound is violated, the helicity-0 mode π of the massive spin-2 field has a kinetic term with
the wrong sign. This mode is therefore tachyonic and commonly classified as a ghost. Therefore,
solutions that give rise to violations of the Higuchi bound must be discarded as unphysical.

The original metric fluctuations in terms of the mass eigenstates are given by [223]

δgµν = 1√
1 + α2c2

(δGµν + αc δMµν) , δfµν = 1√
1 + α2c2

(δMµν − αc δGµν) , (2.85)

as follows directly from Eq. (2.81). This allows to identify two important parametric limits of
bimetric theory [52, 223, 226, 227]. In the limit αc � 1 or αc � 1, the mixing of the mass
eigenstates in the metric fluctuations disappears and the metric fluctuations precisely match the
mass eigenstates. The phenomenological consequences of this unmixing will be discussed after
having coupled the theory to matter.

2.4.4 Coupling to matter
We have not included matter fields yet. Since bimetric theory describes two dynamical metrics,
the question arises, to which of them matter fields should couple. This question received a lot
of attention in the literature and here we briefly summarise the possibilities that have been put
forward.

Let us write the action of bimetric theory coupled to matter schematically as

S = SHR + Sm , (2.86)

where SHR is the bimetric action (2.64) and Sm denotes a general matter action. In the following,
we discuss the form of Sm that preserves the fundamental ghost-freedom feature of bimetric theory.

It was shown in [228, 229] that the Boulware–Deser ghost is excited whenever matter fields
couple to both metrics at the same time6. In contrast, if two independent matter sectors Φg and
Φf couple minimally to gµν and fµν respectively, the constraint structure of bimetric theory is

6Despite being plagued by Boulware–Deser ghosts, some phenomenological aspects of such setups were studied
in [230,231].
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preserved and the Boulware–Deser ghost is absent [229]. The corresponding consistent matter
action can be written as

Sm =
∫

d4x
(√
−gLg

m(g,Φg) +
√
−fLf

m(f,Φf)
)
. (2.87)

Notice that the two independent matter sectors are coupled to each other indirectly only, via the
interactions between the two metric tensors. Therefore, the g-matter Φg lives in the geometry
defined by gµν , which in turn defines its geodesics (and likewise for the f -sector). So from the
perspective of an observer composed out of Φg-matter, the metric gµν plays the role of the physical
metric.

Since in the present thesis we are interested in minimally coupled matter, we present the
equations of motion for this restrictive setup only. The functional variation of Eqs. (2.86) and (2.87)
with respect to gµν and fµν leads to two sets of modified Einstein equations:

Gg
µν + V g

µν = 1
M2

g
T g
µν , α2Gf

µν + V f
µν = 1

M2
g
T f
µν . (2.88)

As before, Gg,f
µν denote the Einstein tensors and V g,f

µν the potential terms of gµν and fµν , respec-
tively. In addition, the energy-momentum tensors of the two matter sectors are given by

T g
µν = − 2√

−g
∂(
√
−gLg

m)
∂gµν

, (2.89)

and similarly for fµν . For matter actions that are invariant under the relevant diffeomorphisms,
the stress-energy tensors are covariantly conserved: (g)∇µT g

µν = (f)∇µT f
µν = 0. Hence, the Bianchi

constraint (2.71) applies also in the presence of matter fields. In this thesis, we will assume that
there is no matter in the f -sector, T f

µν = 0, which leads to the so-called singly-coupled bimetric
theory.

Alternatively, matter fields can couple minimally to an effective metric geff
µν , which is composed

out of both gµν and fµν in the following way [229]

geff
µν = a2gµν + 2ab gµλSλν + b2fµν . (2.90)

Here, a and b are arbitrary constants. The matter action is then given by

Sm =
∫

d4x
√
−geffLm(geff ,Φ) . (2.91)

It has been claimed that this is the unique non-minimal matter coupling possible within bimetric
theory [232,233], although further ambiguities arise in the vielbein formulation [234]. An appealing
feature of the above proposal is that the fluctuations of geff

µν are massless. Unfortunately, the
Boulware–Deser ghost is found to reappear on nontrivial backgrounds, which lowers the cutoff
of the theory. However, the effective matter coupling can be embedded into a trimetric setup
with a single matter sector coupled to only one metric, which thereby serves as a ghost-free
completion [235]. We will not further discuss the effective matter coupling in this thesis. For
further information in this regard, the interested reader is referred to [236–252].
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Chapter 3

Classical solutions in bimetric
theory

The previous discussion set the theoretical foundations of Hassan–Rosen bimetric theory. In this
chapter, we review two important classes of solutions to the bimetric field equations, which are
relevant for confronting the theory with observations. These are cosmological solutions, which
describe the dynamics of the universe, and spherically symmetric solutions, which are relevant to
describe systems such as galaxies, stars, and planets as well as the solar system. Reviews on these
classes of solutions can be found in, e.g. [126,253,254]

We focus on singly-coupled bimetric theory with only a single matter sector, which minimally
couples to the metric gµν . This singles out gµν as the physical metric, which defines the geometry
in which matter fields, collectively denoted as Φ, live. Combining Eqs. (2.64) and (2.87), the
action of singly-coupled bimetric theory explicitly reads

S = −
M2

g

2

∫
d4x

(√
−gRg + α2

√
−fRf −m2√−g U(

√
g−1f ;βn)

)
+
∫

d4x
√
−gL(g,Φ) .

(3.1)

Consequently, the modified Einstein equations (2.88) in this case are given by

Gg
µν + V g

µν = 1
M2

g
T g
µν , α2Gf

µν + V f
µν = 0 . (3.2)

These serve as basis for the remainder of this thesis.
In the case of singly-coupled bimetric theory, it is possible to interpret the metric, to which

matter minimally couples, as physical metric in the above-mentioned sense. It is therefore possible,
to identify the parameter limits, in which bimetric theory approaches General Relativity (GR) or
Massive Gravity (MG), by studying the dynamics of the physical metric. We denote the physical
metric by gµν in Eq. (3.1). We denote the other metric by fµν .

The GR- and MG-limits are most easily assessed from the mixing of the mass eigenstates in the
metric fluctuations (2.85). In the limit ᾱ� 1, the massive mode is suppressed in the fluctuations
of the physical metric and δgµν coincides with the massless mode. This limit hence brings bimetric
theory arbitrarily close to GR [52, 226, 227, 255]. In the opposite limit characterised by ᾱ � 1,
the physical metric fluctuations are aligned with the massive mode while the massless mode is
suppressed. Therefore, bimetric theory is arbitrarily close to MG in this limit. To be precise, to
arrive at the MG limit also some of the interaction parameters βn as well as the matter sectors
need to scale with ᾱ in certain ways as discussed in [216,223,226,256–259]. In addition, there are
further parameter regions, where solutions of bimetric theory resemble GR solutions [227,255,260].
As a summary, bimetric theory extrapolates between the GR- and MG-limits controlled by the
parameter ᾱ.
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3.1 Cosmological solutions
One of the key motivations for bimetric theory lies within the context of cosmology. We are
seeking a mechanism, which accelerates the cosmic expansion at late times without a cosmological
constant. Such cosmologies are referred to as self-accelerating.

Within bimetric theory, the nonlinear interactions between the massive and massless spin-2
field give rise to dynamical dark energy, which can mimic the effect of a cosmological constant at
late times. The bimetric potential explicitly breaks one set of diffeomoprhism invariance, which
is restored in the limit1 mFP → 0. Therefore, the spin-2 mass and hence also the effective
cosmological constant is protected against quantum corrections. A small value of the cosmological
constant is thus technical natural in the sense of ’t Hooft [86].

We will first discuss homogeneous and isotropic solutions in bimetric theory and derive the
modified Friedmann equations. These give rise to several solutions, out of which only the so-
called finite or expanding branch solution is physically meaningful. Next, we will discuss the
phenomenological features of this solution in the context of the cosmic expansion history, phantom
dark energy and technical naturalness. We finish with a brief summary of linear cosmological
perturbations. Cosmological backgrounds in bimetric theory have first been studied in [216, 256,
257, 261–266]. Good reviews of bimetric cosmology can be found in [126, 254], of which we make
substantial use in the following discussion.

3.1.1 Modified Friedmann equations and classification of solutions
According to the cosmological principle the Universe is homogenous and isotropic on sufficiently
large scales. Within bimetric theory, both metrics can simultaneously be written in bidiagonal
FLRW form as [216,256,257]2

ds2
g = −X2

g dt2 + a2
(

dr2

1− kr2 + r2dΩ2
(2)

)
, (3.3)

ds2
f = −X2

f dt2 + b2
(

dr2

1− kr2 + r2dΩ2
(2)

)
. (3.4)

Here, dΩ2
(2) = dθ2 + sin2 θdφ2 denotes the surface element of the two-sphere. In this section, we

will fix the gauge as Xg = 1 and work in cosmic time t. The remaining metric functions a, b
and Xf depend on cosmic time t only. Finally, the spatial curvature is denoted by k, and k > 0,
k = 0, k < 0 describes an closed, flat, or open universe, respectively. The spatial curvature must
be common to both metrics [216,256,268].

The functions a and b are the scale factors of gµν and fµν , while X is the lapse function of
fµν . To ease notation, let us introduce the Hubble parameters for both metrics

H = ȧ

a
, Hf = ḃ

Xfb
, (3.5)

as well as the scale factor ratio
y = b

a
. (3.6)

As we will see, the latter quantity captures the dynamics of the background cosmology. In terms
of these quantities, the square-root matrix assumes the simple form S = diag(X, y, y, y).

Upon this ansatz, the Bianchi constraint (2.71) simplifies to(
Xȧ− ḃ

) (
β1 + 2yβ2 + y2β3

)
= 0 . (3.7)

1If the effective cosmological constant Λ is non-zero, we also need to take the appropriate limit Λ → 0 to not
hit the Higuchi bound.

2In fact, homogenous and isotropic solutions in bimetric theory do not have to be bidiagonal [256]. However, these
solutions decouple the two metric sectors and the effect of the bimetric potential reduces to the one of a cosmological
constant for gµν . Other cosmological solutions without the assumption of isotropy and/or homogeneity were studied
in [267–269].
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This equation gives rise to two branches of solutions. The first one, referred to as algebraic branch,
is obtained by requiring the term in the second parenthesis to vanish. This forces the scale factor
ratio y to be a constant, determined by the interaction parameters3 β1,2,3. The effect of the
bimetric potential reduces to an effective cosmological constant, such that the equations for gµν
exactly coincide with GR [216]. On the perturbative level, however, the scalar and vector modes
appear without kinetic term, which signals strong coupling [213, 270–272]. The tensor modes
exhibit a late-time instability [273]. In addition, it was found that a non-perturbative ghost mode
is excited on this branch [214]. Due to these pathologies, we will not take the algebraic branch
into account as in most of the literature.

The other solution to Eq. (3.7) is obtained by setting the terms in the first parenthesis to zero,
leading to the dynamical branch. The lapse Xf can be expressed as a function of the scale factors
as Xf = ḃ/ȧ, or written in terms of the Hubble functions

H = yHf . (3.8)

This branch has a rich and viable phenomenology as will be explained in the remainder of this
section.

We assume the matter sector to be composed out of a perfect fluid compatible with the cosmo-
logical principle. As for the cosmological standard model discussed in Section 1.2, the stress-energy
tensor is given by Eq. (1.16). Energy density ρ and pressure p are related by the linear equation
of state w = p/ρ as in Eq. (1.18). The continuity equation is solved by ρ = ρ0a

−3(1+w).
The tt-component of the modified Einstein equations (2.88) reduce to the following set of

modified Friedmann equations:

3H2 = 1
M2

g
(ρde + ρ+ ρk) , (3.9)

3y2H2
f = 1

α2M2
g

(ρpot + ρk) . (3.10)

Beyond the usual energy densities that contribute to the Hubble rate, here we introduced the dark
energy component induced by the bimetric potential as

ρde

M2
g

= m2 (β0 + 3yβ1 + 3y2β2 + y3β3
)
. (3.11)

The modified Einstein equation of fµν is sourced solely by the bimetric interaction potential, which
gives rise to the following energy density

ρpot

M2
g

= m2
(
β1

y
+ 3β2 + 3yβ3 + y2β4

)
. (3.12)

The modified Friedmann equations (3.9) together with the continuity equation (1.17) close the sys-
tem of differential equations. For completeness, we also present the rr-component of the modified
Einstein equations (2.88), which are given by

2Ḣ + 3H2 + k

a2 = − pde

M2
g
− pm

M2
g
, (3.13)

2 y
2

Xf
Ḣf + 3y2H2

f + k

a2 = −ppot

M2
g
. (3.14)

Here, we defined the pressure contribution arising from the bimetric potential as

− pde

M2
g

= β0 + 2yβ1 + y2β2 +Xf
(
β1 + 2yβ2 + y2β3

)
, (3.15)

−ppot

M2
g

= β2 + 2yβ3 + y2β3 + 1
Xf

(
β1 + 2yβ2 + y2β3

)
. (3.16)

3Note that at least two of these interaction parameters must be non-vanishing in order to give rise to a solution
with y 6= 0.
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The lapse function Xf can be expressed in terms of the scale factor ratio as Xf = y+ y′ using the
Bianchi constraint in Eq. (3.8), where prime denotes derivative with respect to e-folds N = ln a,
i.e. y′ = ẏ/H. We can define a time-dependent equation-of-state parameter wde for the dynamical
dark energy component as

wde = pde

ρde
= −1− β1 + 2yβ2 + y2β3

β0 + 3yβ1 + 3y2β2 + y3β3
y′ . (3.17)

As we will see below, we can express y′ in terms of y. The quantity wde will be useful to discuss
the phenomenological features of bimetric cosmology.

Combining both modified Friedmann equations (3.9) with the Bianchi constraint (3.8) results
in

α2y4β3 + (3α2β2 − β4)y3 + 3(α2β1 − β3)y2 −
(
α2β0 − β2 + α2 ρ

M2
g

)
y − β1 = 0 . (3.18)

This equation represents a quartic polynomial in y and as such has up to four real-valued solutions.
The solutions can be thought of as determining the time evolution of y in terms of ρ. Taking the
time derivative of Eq. (3.18) yields [263]

y′ =
3α2y2(1 + w)ρ/M2

g

β1 − 3y2β3 − 2y3β4 + 3α2y2(β1 + 2yβ2 + y2β3) . (3.19)

Since Eq. (3.18) can be used to eliminate ρ in terms of y, the phase space of bimetric theory is
one-dimensional: y′ depends only on y.

In Section 2.4.3 we noted that proportional solutions are invariant under Eq. (2.77). Similarly,
the FLRW solutions are invariant under

y −→ −y , βn −→ (−1)nβn . (3.20)

This implies that we can restrict ourselves to y ≥ 0 without loss of generality as we will do from
now on.

Another useful relation can be obtained for the energy density parameter of matter, which is
defined as

Ω = ρ

3H2M2
g
. (3.21)

Solving the gµν–Friedmann equation (3.9) for Ω and replacing H by means of the fµν–Friedmann
equation (3.9) yields [265]

Ω = 1− ρde

ρpot
= 1− β0 + 3yβ1 + 3y2β2 + y3β3

β1 + 3yβ2 + 3y2β3 + y3β4
y . (3.22)

Let us discuss the different branches of solutions to Eq. (3.18) following [265]. These can be
visualised easily in terms of the phase space as in Fig. 3.1, which is inspired by analogous figures
given in [265, 274, 275]. From Eq. (3.19) we observe that y′ = 0 iff ρ = 0 or y = 0. Therefore, the
de Sitter points cannot be crossed dynamically and separate different branches from another as
these necessarily have y′ = 0. The point y = 0 is not a de Sitter point, but is characterised by a
divergent matter energy density as can be seen from Eq. (3.18) (assuming β1 6= 0). The different
branches can be identified by studying the early universe behaviour of y, i.e. when the matter
energy density classically diverges:

• Finite branch. The first possibility is that y is small so as to cancel large values of ρ
in Eq. (3.18). At early times, y can be approximated by

y ∼ β1

α2

(
ρ

M2
g

)−1
. (3.23)
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Figure 3.1: Phase space of the scale factor ratio y demonstrating the different branches of solutions.
The grey dots represent the late-time de Sitter attractors. To produce the plot, the β0β1β4-model
with ᾱ = 1 and m2

FP = Λ is used as a concrete representative example.

The scale factor ratio monotonically increases with time, y′ > 0, until the matter energy
density vanishes in the asymptotic future and y approaches a constant value. This is the
finite branch solution as depicted in the left part of Fig. 3.1. Existence of the finite branch
imposes some restrictions on the bimetric parameters. To see this, we note that the fµν–
Friedmann equation (3.9) yields a real-valued and divergent Hubble parameter at early times
only if β1 > 0 [265]. In addition, this automatically leads to Ω = 1 at early times as can be
seen from Eq. (3.22) [265].

• Infinite branch. Alternatively, also the scale factor ratio diverges as ρ diverges, i.e. y � 1.
The polynomial is then dominated by the highest order term and y can be approximated as

y ∼
(
− 1
β3

ρ

M2
g

)1/3
. (3.24)

The scale factor ratio evolves from y =∞ at early times to a constant value in the asymptotic
future, when the matter energy density vanishes. This is depicted in the right part of Fig. 3.1.
The dark energy contribution to the Hubble parameter does not necessarily vanish during
early times, which could in principle lead to substantial deviations from the standard model,
such as early dark energy. From Eq. (3.22) we see that Ω = 1 as y →∞ only if β4 > 0 and
β2 = β3 = 0 [265].

• Exotic branches. Eq. (3.18) represents a quartic polynomial in y, such that there are up to
two more real-valued solutions for y in terms of ρ. These branches necessarily contain a pole
in y′ and usually describe bouncing cosmologies or a universe that is static in the asymptotic
future or past [265,275].

There are specific parameter values for which the exotic branches do not exist such that the finite
and infinite branch have the same late-time de Sitter attractor. The discussion of the next section
will reveal that the finite branch is physical, while the infinite branch is pathological.
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3.1.2 Dynamical Higuchi bound
The Higuchi bound represents a lower limit on the allowed spin-2 mass in the presence of a non-
vanishing cosmological constant Λ = 3H2 of the form m2

FP ≥ 2H2 [224, 225]. If the bound is
violated, the helicity-0 mode of the massive spin-2 field has a kinetic term with the wrong sign
rendering any vacuum unstable and the Hamiltonian to be unbounded from below. A sensible
solution must therefore respect this bound to by physically meaningful. Despite the group-theoretic
origin of the Higuchi bound, it can be generalised to FLRW space as done in [276]. By studying the
minisuperspace action, the authors identified the kinetic term of the scalar mode of the massive
graviton. The kinetic term has the correct sign only if the dynamical bound

m2
eff − 2H2 ≥ 0 (3.25)

in terms of the effective time-dependent mass parameter

m2
eff =

(
1 + 1

α2y2

)
y
(
β1 + 2yβ2 + y2β3

)
(3.26)

is satisfied. We will refer to this bound as dynamical Higuchi bound. The bound must be satisfied
during the entire cosmic expansion history, otherwise the solution is not meaningful. In the limit
of vanishing matter energy density, FLRW approaches dS and y approaches a constant, such that
the usual Higuchi bound is recovered.

In terms of the variables appearing in the dynamical Higuchi bound, we can write Eq. (3.19)
in the following compact form [277]:

y′

y
=

(1 + w)ρ/M2
g

m2
eff − 2H2 (3.27)

(see also [266,275,278]). This equation immediately allows to rule out the aforementioned infinite
branch solution. For positive energy densities of matter, ρ > 0, a decreasing scale factor ratio, i.e.
y′ < 0, implies the violation of the dynamical Higuchi bound. Contrarily, the scale factor ratio is
increasing on the finite branch, y′ > 0, and the dynamical Higuchi bound is consequently satisfied
at all times for ρ > 0. This establishes that the finite branch solution is the unique FLRW solution
in bimetric theory [275]. In the next section we will discuss the phenomenological features of the
finite branch.

3.1.3 Features of bimetric cosmology
After having identified the finite branch as the unique FLRW solution in bimetric theory, let us
now discuss its phenomenological features. In the expanding universe, the scale factor ratio y
monotonically increases with time from zero in the asymptotic past, to a constant value in the
asymptotic future. This is depicted in Fig. 3.2 for the β0β1β4-model as representative concrete
example, which is inspired by analogous figures from [260,265].

The time evolution of the scale factor ratio y yields a dark energy component that evolves in
time. The effect of the bimetric interaction potential is thus the one of dynamical dark energy,
as in the sense of quintessence [279, 280]. Furthermore, the dynamical dark energy is growing as
the universe expands. At late times, when y approaches a constant value, also the dark energy
component approaches a constant value thus mimicking a cosmological constant. At early times,
however, the dynamical dark energy component approaches the constant value ρde/M

2
g = β0,

see Eq. (3.11). If β0 = 0, there is no dark energy in the early universe. Going further, for β0 < 0
the energy density of dark energy is negative during early times.

Such scenario is referred to as self-accelerating. For β0 = 0, the accelerated expansion of the
universe at late times is driven by the interaction between the two metric tensors. In the zero-mass
limit mFP → 0 the full diffeomorphism symmetry is recovered, which transforms both metrics sep-
arately. This symmetry protects the spin-2 mass scale and hence the interaction parameters β1,2,3
from receiving large contributions from quantum corrections. This renders a small cosmological
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Figure 3.2: Evolution of the scale factor ratio ȳ = αy on the finite branch as a function of redshift
z. To produce the figure, the β0β1β4-model with ᾱ = 0.5 and ΩΛ = 0.7 is used for three different
values of the spin-2 mass mFP.

constant Λ technically natural in the sense of ’t Hooft [86], even if m2
FP � Λ. The calculations

performed in [242,281–283] provide explicit confirmation of that last statement.
To demonstrate the dynamical growing of the dark energy component as the universe expands,

we depict ρde as a function of redshift in Fig. 3.3. The left panel shows the evolution of ρde in the
β0β1β4-model for three different parameter values. The blue line has β0 > 0, while the yellow and
red lines have β0 < 0. In the right panel the evolution of ρde for the β1β2β3-model is depicted, i.e.
we have β0 = 0. Therefore, ρde vanishes at early times.

We see that the dynamical dark energy component ρde is monotonically increasing as the
universe expands independent of the value β0. This feature is usually referred to as phantom for
positive energy densities [284]. Hence, if β0 ≥ 0 the interaction energy of the spin-2 fields yields
phantom dark energy. For models with β0 < 0, the dark energy density changes its sign at some
redshift z∗. While dark energy is then negative at early times z > z∗, it is phantom at later times
z < z∗. This feature can also be seen from the equation of state parameter wde. In terms of the
effective mass parameter as defined in Eq. (3.26), we can write Eq. (3.17) as

wde = −1− α2y2

1 + α2y2
m2

eff
m2

eff − 2H2
(1 + w)ρ
ρde

, (3.28)

where we used Eq. (3.27) to eliminate y′. All quantities except ρde are manifestly positive on the
finite branch. This implies that wde < −1 for ρde > 0. Further, wde diverges when ρde changes its
sign and is larger than −1 for negative dark energy. Expanding the equation for early times, i.e.
around y = 0, yields

lim
z→∞

wde = −1− (1 + w) 3yβ1

β0 + 3yβ1
. (3.29)

Therefore, the equation-of-state parameter assumes the value wde = −2 − wm if β0 = 0 and
wde = −1 if β0 6= 0.

In Fig. 3.4 we depict the time evolution of wde for the same models and parameter values as
in Fig. 3.3. Analogous figures can be found in [260]. To produce the plot we set w = 0 so as to
describe non-relativistic matter. In the left panel, the β0β1β4-model is presented. As described
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Figure 3.3: The time evolution on the finite branch of ρm normalised to 3H2
0M

2
g as function of

redshift z for the β0β1β4- (left) and β1β2β3-model (right). All cases have ΩΛ = 0.7, which is
approached in the asymptotic future. The past asymptotic value is set by β0.

before, wde approaches the value of −1 in the asymptotic past and future and exhibits a singularity
if β0 < 0. The right panel shows the β1β2β3-model, for which wde assumes the value of −2 in
the asymptotic past. We have chosen these models as representative examples for the cases with
β0 6= 0 and β0 = 0, respectively. To summarise, for ρde > 0 the dynamical dark energy is always
phantom, wde < −1, with a time-evolving equation-of-state parameter.

Interestingly, cosmological observations allow and even seem to slightly favor dark energy to
be phantom as we discussed in Section 1.3. Models of phantom dark energy that are based
on scalar fields [284, 285] are plagued by inconsistencies such as ghosts or tachyons [286], but
possible resolutions exist also in this context [287–289]. Contrarily, bimetric theory represents a
theoretically derived and consistent model of phantom dark energy devoid of the aforementioned
pathologies and without fine tuning4. In addition, models with a constant phantom equation of
state yield a Big Rip, where the physical scale factor diverges after a finite time [284]. Since
wde dynamically evolves towards −1 as the universe expands, the Big Rip is avoided in bimetric
theory [292]. It would be interesting to investigate, whether a little rip [293], pseudo-rip [294], or
other types of future singularities [295] occur in bimetric cosmology.

To finish, we briefly comment on the observational status of bimetric cosmology on the back-
ground level. We already discussed that bimetric theory leads to self-accelerating solutions with
a small Hubble scale being technically natural. Indeed, it was found that several models of bi-
metric theory fit measurements of the cosmic expansion such as Supernovae type 1a (SN1a),
Baryon Acoustic Oscillations (BAOs) and the fluctuations in the Cosmic Microwave Background
(CMB) as good as GR [216,263,265,296–299]. We will discuss the observational viability in detail
in Chapter 6.

3.1.4 On linear cosmological perturbations

The previous discussion concerned background cosmology. The real Universe, however, deviates
from exact isotropy and homogeneity as our very existence indicates. One should thus study small
deviations from the exact FLRW background. On the linear level, the tensor-, vector- and scalar
modes are decoupled.

The scalar sector was studied in [226,266,270,272,274,275,300–305]. Instead of going through
the technical and computationally lengthy steps, here we summarise the results inferred in these
references. The two metric tensors up to linear order in fluctuations in the scalar sector can be

4Phantom dark energy violates the Null Energy Condition (NEC). This is true also in bimetric theory, where the
energy-momentum arising from the bimetric potential violates the NEC [290]. This has interesting consequences
in the context of wormhole solutions [291].
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Figure 3.4: The equation-of-state parameter wde as function of redshift z for the β0β1β4- (left) and
the β1β2β3-model (right). This demonstrates the different early-time behavior and the phantom
nature of the dynamical dark energy.

written as

ds2
g = −(1 + 2φg) dt2 + 2a∂iBg dxidt+ a2

[
(1− 2ψg)δij + 2∂i∂jEg

]
dxidxj ,

ds2
f = −X2(1 + 2φf) dt2 + 2Xb∂iBf dxidt+ b2

[
(1− 2ψf)δij + 2∂i∂jEf

]
dxidxj .

(3.30)

As before, the functions a, b and X depend on cosmic time t. The perturbation fields φg,f , ψg,f ,
Bg,f and Eg,f depend on time t and space xi. To ease the presentation, we will suppress the explicit
dependency in the following.

Matter is composed out of a perfect fluid with equation of state p = wρ. We describe the
perturbations in the matter sector by a single scalar field χ. The perturbed stress energy tensor
coupled to the scalar perturbations in the metrics can be written as [305,306]

δT 0
0 = −(ρ+ p)(3ψg − ∂2Eg − ∂2χ) ,

δT i0 = −(ρ+ p)a∂iχ̇ ,
δT 0

i = (ρ+ p)(∂iBg + a∂iχ̇) ,
δT ij = w(ρ+ p)(3ψg − 2∂2Eg − ∂2χ)δij ,

(3.31)

where ∂2 = ∂i∂i.
The theory is invariant under simultaneous diffeomorphisms of the two metrics. The perturba-

tion variables are thus gauge-dependent. This problem is usually addressed by defining a new set
of gauge-invariant scalar fields. Alternatively, one can fix the gauge such that the remaining fields
coincide with the gauge-invariant variables. It is particularly convenient to identify those variables
with redundant equation of motion [307]. In our context, we can use the gauge to fix two pertur-
bation variables. The appropriate candidates in our case are one of (ψg, ψf) and (Eg, Ef , χ) [305].
Fixing the gauge as ψf = χ = 0 yields that the fields Eg and Ef coincide with gauge-invariant
variables in this gauge.

After fixing the gauge as above, the fields Bg, Bf , φg and φf appear without time derivatives
in the linearised Einstein equations. Therefore, these are auxiliary variables that can be expressed
in terms of Eg, Ef and ψg algebraically. Replacing the auxiliary variables, all time derivatives of
the variable ψg drop out of the equations of motion. Hence, also ψg is an auxiliary variable that
can be expressed algebraically in terms of Eg and Ef . Hence, there are only two scalar degrees of
freedom present as it is appropriate in our case: one from the massive spin-2 field and one from
the matter sector.

The final step is to solve the equations of motion and extract the time-evolution of the per-
turbation fields. In [305] it is found that both fields are decaying towards the same constant
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value at late times (i.e. de Sitter) and also during early times on super-horizon scales, k � aH.
On sub-horizon scales k � aH, however, the field Eg is oscillating, while Ef has an exponential
instability. This is referred to as a gradient instability, as also identified in [274, 303]. Since Ef is
exponentially growing in time, the perturbative assumption Ef � 1 is violated at early times.

In [274] it was shown that in the subhorizon regime k � aH the linearised Einstein equations
admit a Wentzel–Kramers–Brillouin (WKB) solution (i.e. with |ω′/ω2| � 1), which allows to write
the perturbations as Eg,f ∼ eiωN . Here, N = ln a describes e-folds and ω is the eigenfrequency.
The eigenfrequencies can be solved for in terms of the bimetric parameters βn and α as well as
the scale-factor ratio y as [226](

aH

k

)2
ω2 = 1 + (β1 + 4yβ2 + 3y2β3)y′

3y(β1 + 2yβ2 + y2β3) −
(1 + α2y2)(β1 − y2β3)y′2

3α2y3(1 + wm)ρm/M2
g

(3.32)

If ω2 < 0, the gradient instability occurs rendering perturbation theory invalid.
A gradient instability, however, does not signal an inconsistency of the theory, but the break-

down of perturbation theory. Within bimetric theory, there are three ways to circumvent the
gradient instability:

1. Fine-tuned initial conditions. The initial conditions can be finely tuned, schematically Ef �
Eg initially, such that Ef remains small during the entire observed cosmic expansion history.
This scenario appears unfavored as it would remove the very motivation for introducing a
massive spin-2 field in the first place. A mechanism to explain the initial fine-tuning would
be required.

2. GR-limit. In [226] it was shown that the instance in time, before which the gradient insta-
bility is present, can be pushed to arbitrary early times by sending ᾱ→ 0. As an example,
for ᾱ ∼ 10−55 the instability would occur before GUT-scale inflation [226]. This parametric
limit brings bimetric theory arbitrarily close to GR, such that deviations are suppressed at
all scales.

3. Nonlinearities. If Ef & O(1), nonlinear terms are as important as linear terms. Taking all
nonlinearities into account might stabilise the perturbations in analogy to the Vainshtein
mechanism [277,308–310]. We will discuss this possibility in greater detail in Chapter 5.

Despite these possible resolutions, inferring phenomenological consequences on the perturbative
level (such as cosmic structure formation) remains a difficult and yet unsolved task.

Going further, the vector sector was studied in [266, 305]. It was found that the vector per-
turbations are decaying and that their propagation speed is subluminal on the finite branch. The
vector sector is thus not plagued by a gradient instability unlike the scalar sector. Since the vector
modes are decaying, it is expected that these do not contribute to observable effects, just like in
GR.

Finally let us summarise the tensor sector, i.e. gravitational waves. On the infinite branch
solution, the tensor modes exhibit a power-law instability induced by violation of the Higuchi
bound [266, 305, 311–314]. In addition, the tensor modes are plagued by instabilities on the alge-
braic branch [273]. As discussed before, these branches are not physical. Contrarily, on the finite
branch the tensor modes are linearly stable with a decaying massive mode, with interesting conse-
quences for the primordial gravitational wave power spectra and the CMB [266,305,313,315–321].
Finally, the generation and propagation of gravitational waves were studied in [322–327], which
found e.g. oscillations.

3.2 Spherically symmetric solutions
Gravitational interactions manifest themselves not only on cosmological scales, but also on smaller
scales. On galaxy cluster and galactic scales, observations are in stark conflict with GR unless one
introduces large portions of dark matter. On solar system scales and below, GR is confirmed with
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remarkable precision. We should thus study deviations from GR implied by modified gravity to
assess the observational viability of modified gravity.

To model the gravitational potential, in which a test body moves, one usually assumes staticity
and spherical symmetry. In bimetric theory, solutions compatible with these assumptions were
studied in [328–333]. We present the technical details of the derivation in Appendix A and discuss
here the features of local solutions.

The most general, bidiagonal ansatz for spherically symmetric and static solutions is [331]

ds2
g = −e−φgdt2 + eψgdr2 + r2dΩ2

(2) , (3.33)

ds2
f = c2(−e−φf dt2 + eψf (r + rµ)′2dr2 + (r + rµ)2dΩ2

(2)) (3.34)

All field φg,f , ψg,f and µ depend on the radial coordinate r. The field µ parametrises the relative
twist between the two coordinate systems and can thus be thought of as Stückelberg field that
gets shifted by diffeomorphisms. For φg = φf , ψg = ψf , and µ = 0 both metrics are proportional.

The equations of motion cannot be solved in general. Instead, we will consider to different
regimes.

3.2.1 Linear regime
Let us assume that all metric fields as well as their derivatives are small, i.e. {φg,f , ψg,f , µ} � 1
and {rφ′g,f , rψ′g,f , rµ′} � 1. As we present in Appendix A, the linearised Einstein equations are
solved by [331,332,334]

µ = −rS(1 +mFPr +m2
FPr

2)e−mFPr

3(1 + ᾱ2)m2
FPr

3 , (3.35a)

φg = −Λr2

3 − rS

1 + ᾱ2

(
1
r

+ 4ᾱ2

3
e−mFPr

r

)
, (3.35b)

φf = −Λr2

3 − rS

1 + ᾱ2

(
1
r
− 4ᾱ2

3
e−mFPr

r

)
, (3.35c)

ψg = Λr2

3 + rS

1 + ᾱ2

(
1
r

+ 2ᾱ2(1 +mFPr)e−mFPr

3r

)
, (3.35d)

ψf = Λr2

3 + rS

1 + ᾱ2

(
1
r
− 2ᾱ2(1 +mFPr)e−mFPr

3r

)
. (3.35e)

In here, we have defined the Schwarzschild radius rS = M/(4πM2
g ) of a compact source of mass

M . From here we can read off the effective Planck mass M2
P = (1 + ᾱ2)M2

g . In the GR-limit
ᾱ� 1, both Planck masses coincide.

Let us discuss these solutions. The function φg describes the gravitational field as felt by a
massive test body. It consists of a part due to a non-vanishing cosmological constant Λ, which
grows with distance as r2 just like in GR. The gravitational potential induced by the compact
object of mass M is composed out of two parts. Firstly, a term proportional to 1/r as in GR and
secondly a Yukawa-like term, which receives an additional exponential suppression.

The additional Yukawa term represents a substantial deviation form GR. In the limit ᾱ → 0
the deviations are suppressed on all length scales. This is expected because this parametric limit
brings bimetric theory arbitrarily close to GR. On the other hand, on scales much larger than
the Compton wavelength of the massive spin-2 field, r � m−1

FP, deviations are suppressed by the
exponential term. Therefore, on these scales GR is approached even for finite ᾱ. On the other
hand, deviations from GR are most important on length scales r . m−1

FP.
Let us discuss the validity of the linear approximation. In the presence of a non-vanishing

cosmological constant, the assumption is valid inside the Hubble horizon, r �
√

3/Λ. Next, the
fields φg,f and ψg,f are small outside the Schwarzschild radius, i.e. for r � rS. This is analogous
to GR. The Stückelberg field µ, however, becomes order unity at a different length scale already.
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This is the Vainshtein radius rV, which can be read off from Eq. (3.35a) as

rV =
(

rS

m2
FP

)1/3
, (3.36)

where we have omitted an O(1) factor to follow standard notation [331]. The linear approximation
is valid on scales r � rV. We thus need to seek an alternative set of solutions taking into account
nonlinearities, which are valid inside the Vainshtein radius.

3.2.2 Nonlinear regime

As we have seen before, the fields φg,f and ψg,f are linear also inside the Vainshtein radius. However,
we now keep all nonlinearities in the Stückelberg field µ. Instead, we assume that we are far inside
the Compton regime, i.e. r � m−1

FP.
To ease the presentation, we first define the parameters

β = c2β2 + c3β3

cβ1 + 2c2β2 + c3β3
, γ = c3β3

cβ1 + 2c2β2 + c3β3
. (3.37)

As we demonstrate in Appendix A, we can solve for all fields in terms of µ. Plugging the result into
the Bianchi constraint results in a seventh order polynomial, which can schematically be written
as

P (µ) = 3
(rV

r

)3
(1 + ᾱ2)(1 + µ)2(1− γµ2) , (3.38)

Here, P (µ) is a polynomial in µ of seventh degree, which satisfies P (0) = 0 and is independent of
r. The explicit expression can be found in Eq. (A.18). Let us classify the solutions, following [331].
In general, the polynomial has seven solutions, which can be real- or complex-valued. For γ > 0,
there are three real and two complex conjugate solutions for all values of r. The remaining two
solutions are real for small r and join together in a complex conjugate pair at some critical radius,
which depends on the parameters ᾱ, β and γ. It is worth studying the two asymptotic limits of
the three real solutions:

• Large distance. In the limit r � rV, the right hand side is small and Eq. (3.38) simplifies
to P (µ) � 1 asymptotically. The simplest solution is µ � 1, which map to the linearised
solution presented before. In the two remaining solutions, µ approaches constant values
asymptotically, which depend on ᾱ, β and γ.

• Small distance. In the limit r � rV, there are three possibilities to cancel the large value of
(rV/r)3 on the right hand side. Either µ = −1 or µ = ±1/√γ. Alternatively, µ diverges as
r → 0, which does not correspond to one of the everywhere-real solutions.

See [331] for more details on the case γ ≤ 0 and [329] for caveats regarding the case γ = 0.
In Fig. 3.5 we present the three everywhere real solutions for µ as a function of r. This figure

is taken from [298] as inspired by [331]. From the figure we can easily assess the aforementioned
asymptotic behavior of the real solutions. The green-dashed and red-dotted solutions have a
asymptotically non-zero constant value for µ and connect to the solution µ = −1 and µ = 1/√γ,
respectively. The solution represented by the black solid line realises the linear regime for large
radii, µ� 1, and connects to the solution µ = −1/√γ inside the Vainshtein radius.

The latter solution is referred to as Vainshtein-Yukawa solution. Since µ � 1 outside the
Vainshtein radius, the linear regime is described and the gravitational potential induced by a com-
pact object is composed out of the standard 1/r-term and the additional Yukawa-type potential.
Plugging the result µ = −1/√γ into Eqs. (A.14) to (A.17), which are the expressions for the
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Figure 3.5: The three real solutions of µ as a function of r/rV for the representative parameter
choice ᾱ = 1, β = 1 and γ = 16. The black line corresponds to the Vainshtein-Yukawa solution,
which realises the linear regime at large radii. This figure is taken from [298].

gravitational potentials valid inside the Vainshtein radius, yields

φg = −rS

r
+ ᾱ2m2

FP
3(1 + ᾱ2)√γ r

2 (3.39)

φf =
m2

FP(1 + β − 3√γ + γ)
3(1 + ᾱ2)γ(1−√γ) r2 , (3.40)

ψg = rS

r
−
ᾱ2m2

FP(4√γ − 3β)
3(1 + ᾱ2)γ , (3.41)

ψf = −
m2

FP(4γ + (1 + β)(1− 3√γ))
3(1 + ᾱ2)γ(1−√γ) r2 . (3.42)

In the limit r → 0, the f -fields vanish identically, φf , ψf → 0. On the other hand, the g-fields are
given by

lim
r→0

φg = − lim
r→0

ψg = −rS

r
, (3.43)

in the limit. That means, inside the Vainshtein radius, the gravitational potentials are as in
GR and solely composed out of the 1/r-term. This explicitly demonstrates that the Vainshtein
mechanism restores GR in spherically symmetric and static systems for r � rV.

For the Vainshtein mechanism to work, the Vainshtein-Yukawa solution must exist for every
value of r without branch cuts. This is the case only if the bimetric parameters satisfy the following
set of conditions [260,331,332]

γ > 1 , (3.44a)
β <
√
γ , (3.44b)

β > d1/d2 if d2 < 0 , (3.44c)

with

d1 = −1 + 6(1 + ᾱ2)√γ(1 + γ)− (13 + 12ᾱ2)γ ,
d2 = 1 + 3ᾱ2 − 6(1 + ᾱ2)√γ + 3(1 + ᾱ2)γ .
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The denominator in the definition (3.37) of the parameters β and γ also enters the expression for
the Fierz–Pauli mass (2.83). Hence, the denominator is required to be positive to yield a positive
value of the Fierz–Pauli mass. The first requirement (3.44a) then implies β3 > 0. Next, defining
the short-hand notation β̃ = c2β2/β̄, we can write the bound (3.44b) as

β̃ <
√
γ − γ = √γ(1−√γ) < 0 (3.45)

due to Eq. (3.44a). This implies β2 < 0. Summarising, a well-defined Yukawa–Vainshtein solution
exists only for bimetric models that have β2 < 0 and β3 > 0.

These conditions will be useful when comparing bimetric theory to local tests of gravity in Sec-
tion 6.2.

3.2.3 Comments on Vainshtein screening
The linear solutions are appropriate to describe scales r � rV. Below the Vainshtein scale,
r � rV, the Stückelberg field is not small, µ ∼ O(1), rendering the linear approximation invalid.
The nonlinearities are such that deviations from GR are suppressed. The resulting gravitational
potential Φ = φg/rS, valid far inside and outside the Vainshtein sphere can be written as

Φ(r) =


1
M2

P

(
1
r + 4ᾱ2

3
e−mFPr

r

)
, r � rV

1
M2

g

1
r , r � rV

, (3.46)

where we neglected the contribution from a non-vanishing cosmological constant. Both regimes are
characterised by different effective Planck masses, which are related as M2

P = (1 + ᾱ2)M2
g . In the

GR limit, ᾱ � 1, both Planck masses coincide. In this case, deviations form GR are suppressed
on all scales.

This discussion demonstrates that the mechanism conjectured by Vainshtein [119] is indeed
realised in bimetric theory. The screening works if the bimetric parameters satisfy the condi-
tions (3.44). However, we point out that a working Vainshtein mechanism is not necessary for the
observational viability of bimetric theory. The reason is that the free parameter ᾱ can be adjusted
to sufficiently suppress deviations from GR on all scales. In the limit ᾱ � 1, the Yukawa mod-
ification to the gravitational potential vanishes. On the other hand, the Vainshtein mechanism
enlarges the parameter space of bimetric theory that is compatible with observations. This point
will be discussed in more detail in Section 6.2.
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Chapter 4

Physical parametrisation

In the previous chapter we discussed some of the phenomenological features of BT Among its
virtues are phantom dark energy, which can cause the universe to exponentially expand at late
times without vacuum energy, and the Vainshtein mechanism, which restores GR in the vicinity
of massive objects. These qualitative considerations demonstrate that BT has the potential to
overcome some of the shortcomings of the cosmological standard model. With this as a basis we
need to take the next step and quantitatively confront BT with observations. We are particularly
interested in those parameter combinations that are favoured by observational data. Importantly,
we need to decide whether there are certain theoretically allowed parameter combinations that
are compatible with all observational constraints.

Of course, the observational status of BT has sourced many investigations, which are sum-
marised in, e.g. [335]. However, the inferred constraints on BT are plagued by some shortcomings
as we elucidate now. In the context of cosmology, the theory has been confronted with observa-
tional data in [216, 263, 265, 274, 296, 297, 303, 309, 336, 337]. These studies consistently find that
BT is indeed compatible with background cosmology for a large class of parameter combinations.
However, some papers also included the infinite branch solution, which was later found to be
plagued by the Higuchi ghost. In addition, explicit observational constraints were computed in
terms of the interaction parameters βn, which were a priori assumed to be of the order βn ∼ H2

0 .
In contrast, observational constraints from spherically symmetric systems [330, 332, 338, 339]

and gravitational waves [324] were obtained in terms of the following parameters: the mass of
the spin-2 field mFP (or its Compton wavelength m−1

FP) and either the Planck mass ratio α or the
conformal factor c. At the same time, either c or α was set to unity, respectively. In fact, these
are the parameters that define the spherical gravitational potentials in Eqs. (3.35) and (3.39). We
will come back to the explicit observational results in Chapter 6.

The different underlying assumptions and parametrisations, which enter the aforementioned
investigations, prevent to consistently combine the various observational constraints. In addition,
the parameters βn get shifted by a rescaling transformation, which leaves the bimetric action (3.1)
invariant [223, 301]. This point will be discussed in detail below. Hence, also the associated
constraints depend on the rescaling. In summary, these earlier studies do not allow to assess
whether BT is consistent with the various observational data simultaneously.

In this section, we present a unified framework to overcome the aforementioned drawbacks,
which was developed in [340]. We propose a new parametrisation to bimetric solutions in terms
of quantities, which are invariant under rescalings and have a direct physical meaning. Our
commensurately baptised physical parametrisation is formulated in terms of the coupling ᾱ of the
massive spin-2 field to matter, its mass mFP, and the effective cosmological constant Λ. Our new
parametrisation forms the basis for the remainder of this thesis.

In the following, we will first provide further details on the aforementioned rescaling transfor-
mation and define the physical parameters. As we will see, their unambiguous definition relies
on the identification of the unique physical vacuum solution. We will proceed by explicitly work-
ing out the physical parametrisation for all bimetric models that fit into our framework; these
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are models with up to three free interaction parameters βn. At the same time, we will identify
those regions of the physical parameter space that can consistently be described in terms of each
corresponding model.

This chapter is based on our publication [340].

4.1 Rescaling invariance
A priori, the action of BT (2.86) is parametrised in terms of the seven independent parameters
{Mg, α, βn}. However, the action is invariant under the simultaneous transformation [223,301]

fµν −→ f̃µν = λ−2fµν , α −→ α̃ = λα , βn −→ β̃n = αnβn , (4.1)

while keeping the physical metric gµν fixed. This implies that one parameter is redundant and
can be removed by fixing the redundancy. Going further, on the level of proportional background
solutions gµν = c2fµν , the transformation of the metric fµν translates into a transformation of the
conformal factor as

c −→ c̃ = λ−1c . (4.2)
Therefore, out of the eight parameters {Mg, α, c, βn} of proportional background solutions, one
parameter is redundant.

We focus on singly-coupled BT, where the physical metric gµν couples to matter. For this
reason, we keep gµν fixed in Eq. (4.1) and hence alsoMg. This implies thatMg is not a redundant
parameter and hence cannot be removed by choosing an appropriate λ. Instead, Mg is fixed by
Newton’s constant GN as M2

g = (8πGN)−1. For this reason, we remove the parameter Mg from
the list of free parameters. This leaves us with seven free parameters {α, c, βn} on the level of
proportional solutions, out of which one parameter is redundant.

In the literature, the rescaling invariance (4.1) and (4.2) has often been used to fix one pa-
rameter by choosing an appropriate λ to address the redundancy. The most common choices are
either λ = α−1 leading to α̃ = 1 or λ = c leading to c̃ = 1. The transformed parameters, which
we indicate here with a tilde, are usually henceforth used, and the redundancy is fixed. Let us
denote the aforementioned way to remove the redundancy rescaled parametrisation. Choosing λ
is ambiguous and so is the rescaled parametrisation.

The aforementioned procedure to remove the redundancy is perfectly consistent. However,
naturalness arguments within the rescaled parametrisation might be misleading. To see that,
let us identify the parameter regions where BT closely resembles GR. First, we assume that the
interaction parameters are all of the same order as βn ∼ O(m2) with m some mass scale. The GR-
limit is arrived at by taking α� 1 and keeping the βn fixed [226,227,255]. That means that we need
to adjust one parameter to arrive at the GR-limit. Next, we consider the rescaled parametrisation
with λ = α−1. Therefore, the rescaled interaction parameters are given by β̃n ∼ α−nO(m2).
Hence, the parameters admit a huge hierarchy as β̃n � β̃n+1 among themselves within the GR-
limit. Starting from the rescaled parametrisation, we need to tune all interaction parameters
against each other in order to arrive in the GR-limit. Such tuned hierarchy among the parameters
of the theory is usually perceived as unnatural. This apparent problem led to confusion in the
past about the observational viability of BT [226].

In addition to the aforementioned limit, also the parametric limit m2
FP � Λ brings BT ar-

bitrarily close to GR [227]. To be more precise, GR is recovered on energy scales much smaller
than mFP (or equivalently on length scales much larger than the Compton wavelength m−1

FP). To
achieve a spin-2 mass that is much larger than the cosmological constant requires a large amount
of tuning among the rescaled interaction parameters β̃n. As before, this tuning appears unnatu-
ral, but is another artefact of the rescaled parametrisation. To see this in greater detail, let us
discuss how to achieve a large spin-2 mass in terms of the original parametrisation. The spin-2
mass and the cosmological constant are defined in terms of the conformal factor c, which is a root
of the quartic polynomial in (2.76). The polynomial has up to four real-valued roots, which we
can classify according to their scaling with α in the limit α � 1 when keeping the interaction
parameters βn fixed:
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• singular root: c ∼ α−1

• constant root: c ∼ const.

On both roots, α � 1 automatically leads to a large spin-2 mass (unless one of the interaction
parameters βn are tuned accordingly), cf. Eq. (2.83). On a singular root also the cosmological
constant is large, cf. Eq. (2.75a). That means that on a singular root the GR-limit is reached only
if the interaction parameters βn are tuned. Next, also on a constant root the limit α� 1 leads to
a large spin-2 mass, but the cosmological constant remains small. Therefore, α� 1 automatically
leads to m2

FP � Λ on a constant root without further tuning of the interaction parameter. Of
course, the hierarchy can be spoiled by appropriate tuning of the interaction parameters. Below,
we explicitly demonstrate the above discussion for a representative example.

In fact, we will see that the parameters αc, mFP and Λ are completely independent if one
accepts tuning among the interaction parameters. To be precise, m2

FP � Λ can be achieved even
for finite α and, vice versa, α� 1 can be achieved although m2

FP ∼ Λ.

Example: Tuning of the interaction parameters

In the previous discussion we distinguished between singular and constant roots of the polyno-
mial (2.76) and stated that the limit α � 1 implies m2

FP � Λ in the latter case, but not the
former. Here, we demonstrate this explicitly for the β1β2-model as representative example, which
is defined by setting β0 = β3 = β4 = 0. The quartic polynomial (2.76) simplifies to

3α2c3β2 + 3α2c2β1 − 3cβ2 − β1 = 0 . (4.3)

This is a polynomial in c of degree three and as such has up to three real-valued roots. Since the
full expressions for the roots are lengthy, we here present the expressions only in the limit α� 1.
In that limit, the constant root is given by

cc = − β1

3β2
+O(α2) . (4.4)

The root is positive valued for β2 < 0. The Fierz-Pauli mass (2.83) and the cosmological con-
stant (2.75a) on the constant root are therefore given by

m2
FP = −β2

α2 +O(α0) , Λ = −2
3
β2

1
β2

+O(α2) . (4.5)

Both quantities are positive for β2 < 0. This explicitly demonstrates that on a constant root,
α � 1 yields m2

FP � Λ without further tuning. In particular, the hierarchy is controlled by α as
m2

FP/Λ ∼ α−2.
The other two roots of (4.3) are the singular roots given by

cs± = ± 1
α
− β1

3β2
+O(α2) (4.6)

in the limit α� 1. The Fierz-Pauli mass (2.83) and cosmological constant (2.75a) are given by

m2
FP = 4β2

α2 +O(α0) , Λ = 3β2

α2 +O(α0) (4.7)

on the singular root cs±. Both quantities are positive valued only for β2 > 0. Note that α� 1 does
not imply that the Fierz-Pauli mass is much larger than the cosmological constant. Instead, they
are of the same order of magnitude with m2

FP/Λ ∼ 4/3, but still satisfy the Higuchi bound (2.84).
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4.2 Definition of physical parameters
The discussion of the previous section unveils that the parameters {α, c, βn} are no observables
because they get shifted by the rescaling transformation in Eqs. (4.1) and (4.2), which leave the
bimetric action (3.1) invariant. We further argued that the rescaled parametrisation, commonly
used in the literature, is ambiguous and potentially misleading. In this section, we propose a new
parametrisation that overcomes these aforementioned drawbacks.

We propose to parametrise the solutions of BT in terms of variables that are manifestly in-
variant under the rescaling (4.1). We further seek parameters, which enjoy a direct physical
interpretation and make the relevant parametric limits manifest. The following set of parameters
satisfies these criteria:

• coupling constant ᾱ = αc,

• Fierz–Pauli mass mFP,

• cosmological constant Λ.

We refer to these variables as physical parameters.
The physical meaning of these parameters is straightforward. As we have seen in Section 3.2,

the physical parameters define the gravitational potentials in spherically symmetric and static sys-
tems, both in the linear and nonlinear regime (to lowest order in r). The parameter ᾱ paramtrises
the coupling of the massive spin-2 field to matter and as such controls the Yukawa term in the
gravitational potential (3.46). In addition, it parametrises the mixing of the massive and the
massless mode within the fluctuation of the physical metric as in Eq. (2.85).

The physical parameters are defined on vacuum solutions c. However, since the c determining
polynomial (2.76) is of degree four and as such has four roots, the definition of the physical
parameters is a priori ambiguous. The ambiguity will be removed by identifying one of the vacuum
solutions as the unique physical vacuum.

The identification of the unique physical vacuum is analytically possible only for models with
up to three free interaction parameters. Therefore, our framework is suitable for all bimetric
models with three interaction parameters βn, or less. Recently, our framework was generalised
in [260,299] to more general models by utilising the rescaling invariant parameters β and γ defined
in Eq. (3.37) in addition to the physical parameters defined here.

After identifying the physical vacuum, we will provide a recipe, which yields the unambiguous
relation between the parameters {α, c, βn} and the physical parameters. To ease the notation, we
also introduce the following parameters:

• rescaling invariant interaction parameters: β̄n = α−nβn

• rescaling invariant scale factor ratio: ȳ = αy.

These parameters will be used later to present some equations in a more compact way.

4.2.1 Unique vacuum solution
The physical parameters do not parameters the theory (the bimetric action depends on the param-
eters {α, βn}), but solutions to the bimetric field equations. In particular, the physical parameters
are defined in terms of c. The conformal factor is determined by the quartic polynomial (2.76),
which has up to four real-valued roots. Each root describes a vacuum solution of BT. In other
words, there are up to four vacuum solutions ci = ci(α, βn) for i = 1, . . . , 4. Since the physical
parameters are defined on top of vacuum solutions, there are up to four different sets of physical
parameters {ᾱ,mFP,Λ} for a given set of theory parameters {α, βn}. Therefore, defining physical
parameters is ambiguous. To yield an unique set of physical parameters (for a given set of theory
parameters {α, βn}), we need to identify the unique physical vacuum solution ci. In this section,
we define such unique physical vacuum solution.
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The definition of the unique vacuum solution relies on consistency criteria. These allow to
eliminate some of the roots ci as consistent vacuum solution. In the following, we will discuss
those criteria.

First, let us recall that proportional background solutions are invariant under1 Eq. (2.77):

c −→ −c , βn −→ (−1)nβn . (4.8)

Therefore, we can restrict ourselves to vacuum solutions with c > 0 for arbitrary interaction
parameters βn without loss of generality.

Next, the Fierz–Pauli mass must be positive mFP > 0 to avoid tachyonic instabilities. We
further restrict ourselves to de Sitter vacua, Λ > 0. Then, the Fierz–Pauli mass and cosmological
constant must satisfy the aforementioned Higuchi bound (2.84) [224,225].

These requirements single out consistent vacuum solutions, but not an unique vacuum solution.
For this we need to take into account the cosmic expansion history. As we explained in Section 3.1,
out of the up to four solutions to Eq. (3.18) only the finite branch is physical. On the finite
branch, the scale factor ratio y evolves from zero in the asymptotic past to a constant value in
the asymptotic future. The constant corresponds to the lowest-lying strictly positive root of the
vacuum polynomial (2.76). The consistent vacuum solution must correspond to the asymptotic
future of the consistent cosmic expansion history. Hence, the lowest-lying, strictly positive root
of Eq. (2.76) describes the consistent vacuum solution, which is unique. Recall, that the finite
branch is well-defined iff β1 > 0. Consequently, the consistent vacuum solution can only exist iff
β1 is positive.

The aforementioned requirements amount to define the physical vacuum solution of BT in the
following way:

Definition (Physical vacuum solution): The physical vacuum solution c of BT

1. satisfies
c > 0 , mFP > 0 , Λ > 0 , 3m2

FP > 2Λ , (4.9)

2. corresponds to the lowest-lying, strictly positive root of Eq. (2.76),
3. corresponds to the asymptotic future of the cosmic expansion history along the

finite branch and thus exists iff β1 > 0.

By construction, the physical vacuum is unique. It therefore allows to define an unique set of
physical parameters.

4.2.2 Recipe
In the previous section we discussed that an unique physical vacuum solution can be defined for a
given set of theory parameters {α, βn}. In this section, we provide a recipe to identify the unique
physical vacuum out of the four vacuum solutions and to express the interaction parameters in
terms of physical parameters. The recipe goes as follows:

1. Replace two of the interaction parameters βn in terms of the Fierz–Pauli mass and the
cosmological constant using Eqs. (2.75) and (2.83).

2. Use step 1 to replace the two interaction parameters βn in terms of the physical parameters
mFP and Λ in the quartic polynomial (2.76). Then solve the quartic polynomial (2.76) for
the quantity ᾱ = αc in terms of the physical parameters and the remaining interaction
parameter β̄n.

3. From the solutions of step 2 select those vacua ᾱ that satisfy the criteria in Eq. (4.9). Pick
the lowest-lying, strictly positive root for each set of parameters {mFP,Λ, β̄n}.

1Going further, also FLRW solutions admit the same symmetry. Here, the simultaneous transformation, under
which FLRW solutions are invariant, is given by y → −y and βn → (−1)nβn.
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4. For each lowest-lying, strictly positive root of the previous step solve the relation ᾱ =
ᾱ(mFP,Λ, β̄n) for the remaining interaction parameter β̄n. Eliminate that interaction pa-
rameter β̄n in terms of the physical parameters ᾱ, mFP, and Λ in the other expressions.

5. Solve the requirement β1 > 0 in terms of the physical parameters.

6. To ensure that the finite branch is non-singular, solve Eq. (3.18) for ρ(y). Identify the
parameter region in which limȳ→ᾱ(ρ(y))→ 0 is guaranteed.

For the one- and two-parameter models the recipe is correspondingly shorter.
This procedure replaces the interaction parameters βn in terms of physical parameters. In

addition, it yields theoretical constraints on the physical parameters, which ensure a consistent
physical vacuum and cosmic expansion history.

For bimetric models with more than three free interaction parameters βn, it is not possible to
analytically solve the quartic polynomial (2.76) for ᾱ. Therefore, our framework is applicable to
all bimetric models with three free interaction parameters, or less.

4.3 Parameter relations
In the previous sections we exposed our strategy on ow to identify the unique physical vacuum
solution and how to define the physical parameters on top of that vacuum. In this section, we
explicitly work out the physical parameterisation for all relevant bimetric models with up to three
free interaction parameters. Since models with β1 = 0 do not give rise to a viable finite branch
solution, we focus on models with β1 being among the free parameters. Therefore, our subsequent
analysis builds up a dictionary between the {α, c, βn} and the physical parameters. In addition, we
identify regions of the physical parameter space that are consistent in the aforementioned sense.

4.3.1 One–parameter model
Let us start with the simplest case. There is only a single one-parameter model that can possibly
give rise to a consistent cosmic expansion history: the β1-model. It is defined by β0 = β2 = β3 =
β4 = 0. The quartic polynomial (2.76) reduces to

ᾱ2 = 1
3 , (4.10)

out of which ᾱ = +1/
√

3 is the unique vacuum solution. This immediately implies that the β1–
model does not admit a GR-limit or MG-limit because ᾱ is fixed by the equations of motion.
The Eqs. (2.75) and (2.83) further imply that the Fierz–Pauli mass and the cosmological constant
are related as

m2
FP = 4

3Λ , (4.11)

which is not in conflict with the Higuchi bound.
There is only one independent physical parameter in the β1–model. The model thus describes

one point in the physical parameter space spanned by ᾱ and m2
FP/Λ, as indicated by the grey dot

in Fig. 4.1.
For the dictionary, the interaction parameter is given by

α−1β1 =
√

3
4 m2

FP = 1√
3

Λ (4.12)

in terms of the physical parameters. Therefore, the requirement β1 > 0 is always satisfied for
mFP > 0 or equivalently Λ > 0.

The other one-parameter models are characterised by β1 = 0 and therefore do not give rise to
a viable finite branch.
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Figure 4.1: The relation between ᾱ and m2
FP/Λ for

the two-parameter models on the consistent vac-
uum point. The grey dot corresponds to the β1–
model. The grey-shaded region violates the Higuchi
bound. Figure taken from [340].

Table 4.1: Summary of the GR-limit and the
MG-limit for one- and two-parameter mod-
els. The “–” indicates that the limit is not
consistent.

4.3.2 Two–parameter models
After this warm-up, we move to those two-parameter models with β1 being one of the free inter-
action parameters. In contrast to the one-parameter model, now two out of the three physical
parameters are independent. For all models, we can express the coupling ᾱ as function of m2

FP/Λ.
This relation is visualised for all one- and two-parameter models in Fig. 4.1. The two-parameter
models describe a line in the ᾱ–m2

FP/Λ–plane. The point, at which all the lines corresponding to
two-parameter models cross, represents the β1–model, as indicated by the grey dot.

In the following, we discuss all two-parameter models with β1 as one of the free parameters
individually.

β0β1–model

The β0β1–model is defined by setting β2 = β3 = β4 = 0. Solving the background equations (2.75),
(2.76), and (2.83) following our recipe leads to

ᾱ± = ±
√
m2

FP
Λ − 1 , (4.13a)

β0 = −3m2
FP + 4Λ , (4.13b)

α−1β1 = ±
√

(m2
FP − Λ)Λ . (4.13c)

The vacuum point and the interaction parameter are real-valued only in the parameter range

m2
FP > Λ , (4.14)

which is more restrictive than the Higuchi bound. Further, only the vacuum point ᾱ+ is positive
and we have to dismiss ᾱ−. Therefore, ᾱ+ is the unique de Sitter vacuum of the β0β1–model. On
that root and for (4.14) we have β1 > 0 as required.

At the point 4m2
FP = 3Λ we have β0 = 0 and the model reduces to the β1–model as expected.

For 4m2
FP < 3Λ we have β0 > 0 (i.e. the vacuum energy density is positive-valued) and for

4m2
FP > 3Λ the vacuum energy density is negative-valued with β0 < 0.
From Eq. (4.13a) we see that the GR-limit ᾱ� 1 corresponds to the region wherem2

FP ' Λ. On
the other hand, the MG-limit ᾱ� 1 is arrived at by m2

FP � Λ. This is summarised in Table 4.1.
The relation between the physical parameters defined on the consistent vacuum is depicted as the
green line in Fig. 4.1
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β1β2–model

Next, we set β0 = β3 = β4 = 0 to arrive at the β1β2–model. Following our recipe by solving (2.75),
(2.76), and (2.83) leads to the parameter relations:

ᾱ± =

√
3m2

FP − 2Λ±
√

9m4
FP − 12m2

FPΛ + Λ2

3Λ , (4.15a)

α−1β1± = ᾱ±
2

(
3m2

FP − 3Λ∓
√

9m4
FP − 12m2

FPΛ + Λ2
)
, (4.15b)

α−2β2± = −1
6

(
3m2

FP − 5Λ∓
√

9m4
FP − 12m2

FPΛ + Λ2
)
. (4.15c)

There are two more roots, which are given by −α± and hence do not correspond to physical vacua.
The vacuum points ᾱ± and the interaction parameters are real-valued only in the parameter region

m2
FP >

2 +
√

3
3 Λ , (4.16)

which is more restrictive than the Higuchi bound. In that same region, both vacuum points
are positive valued, ᾱ± > 0, and they satisfy ᾱ− < ᾱ+. That means that ᾱ− corresponds to the
lowest-lying strictly positive root of Eq. (2.76) and hence to the physical vacuum. In the parameter
region (4.16) we automatically have β1− > 0.

The relation between the physical parameters on the physical vacuum is shown as blue line
in Fig. 4.1. We also present the relation between the physical parameters on the highest-lying,
strictly positive root as a dashed line. The physical vacuum does not admit a MG-limit, i.e. ᾱ� 1
is inconsistent. Contrarily, the GR-limit ᾱ� 1 corresponds to the limit m2

FP � Λ, as summarised
in Table 4.1. In the GR-limit, the relation between the physical parameters can be approximated
as

ᾱ2 ' 1
6

Λ
m2

FP
. (4.17)

This relation follows from expanding Eq. (4.15a) for m2
FP � Λ.

β1β3–model

We continue with the β1β3–model, which is defined by setting β0 = β2 = β4 = 0. Following our
recipe, Eqs. (2.75), (2.76) and (2.83) lead to

ᾱ± =

√
2m2

FP − Λ± 2mFP
√
m2

FP − Λ
Λ , (4.18a)

α−1β1± = ᾱ±
4

√
3m2

FP − 2Λ∓ 3mFP

√
m2

FP − Λ , (4.18b)

α−3β3± = −ᾱ±
(

4m4
FP − 7m2

FPΛ + 2Λ2 ∓
√
m2

FP − Λ(4m2
FP − 5Λ)mFP

)
. (4.18c)

The two other vacuum points are given by −ᾱ±, which do not correspond to physical vacua. The
vacuum points are real-valued in the parameter region

m2
FP > Λ . (4.19)

In that same region, also the interaction parameters β1− and β2± are real-valued, while β1+ is
real-valued only in the smaller region Λ < m2

FP < 4Λ/3. In the region (4.19) both vacuum points
are positive and satisfy ᾱ− < ᾱ+. This identifies ᾱ− as the unique physical vacuum of the β1β3–
model, on which the interaction parameters are related to the physical parameters as given by β1−
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and β3−. Hence, (4.19) describes the consistent parameter space. In that parameter region also
β1− > 0 is guaranteed.

The relation between the physical parameters, as defined by Eq. (4.18a), is visualised in Fig. 4.1.
The black solid line corresponds to the relation on the physical vacuum. For completeness, we
also show the parameter relation in the highest-lying root as dashed line. As for the previous case,
the physical vacuum does not admit a MG-limit. The GR-limit ᾱ � 1 is arrived at by taking
m2

FP � Λ. In that limit, Eq. (4.18a) simplifies to

ᾱ2 ' 1
4

Λ
m2

FP
. (4.20)

The limit is summarised in Table 4.1.

β1β4–model

Finally, we set β0 = β2 = β3 = 0 to arrive at the β1β4–model. Solving Eqs. (2.75), (2.76) and (2.83)
as described in Section 4.2.2 leads to the following parameter relations:

ᾱ± = ±

√
Λ

3m2
FP − Λ , (4.21a)

α−1β1± = 1
3

√
(3m2

FP − Λ)Λ , (4.21b)

α−4β4± = −9m4
FP − 15m2

FPΛ + 4Λ2

3Λ . (4.21c)

The vacuum points and interaction parameters are real valued in the parameter region 3m2
FP > Λ,

which is less-restrictive than the Higuchi bound. The physical parameter region of the β1β4–model
is therefore given by

m2
FP >

2
3Λ . (4.22)

In this parameter regime we have α− < 0 and α+ > 0. Therefore, α+ is the unique physical
vacuum of the β1β4–model. On this root and within the parameter region (4.22) we also have
β1 > 0 as required.

Form Eq. (4.21a) it follows that the GR-limit ᾱ � 1 corresponds to the parameter region
m2

FP � Λ. In that limit, Eq. (4.21a) can be approximated by

ᾱ2 ' 1
3

Λ
m2

FP
. (4.23)

The MG-limit ᾱ � 1 can in principle be arrived at by taking m2
FP = Λ/3. This limit, however,

violates the Higuchi bound and thus is inconsistent. The limits are summarised in Table 4.1. In
addition, we visualise the relation between the physical parameters as red line in Fig. 4.1.

4.3.3 Three–parameter models
Let us move to models with three free interaction parameters βn, one of which being β1. Therefore,
all physical parameters ᾱ, mFP, and Λ are independent. Compared to the previous model, the
parameter space, which can be consistently described by these models, enlarges to regions in the
ᾱ–m2

FP/Λ–plane. We first discuss those models including β0, i.e. with vacuum in the physical
sector, and continue with models with β0 = 0.

β0β1β2–model

The β0β1β2–model is defined by setting β3 = β4 = 0. Following our recipe, we trade β0 and β1
for the physical parameters. Then Eq. (2.76) has the following roots

ᾱ± = ±

√
m2

FP − Λ + β̄2

Λ− β̄2
. (4.24)
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Figure 4.2: Exclusion plots taken from [340] obtained from theoretical consistency bounds for
the β0β1β2– (left) and the β0β1β3–model (right). The red-shaded region yields β1 < 0 and in
the blue-shaded region the vacuum point is not well-defined. The grey-shaded region violates the
Higuchi bound.

The roots are real-valued for Λ −m2
FP < β̄2 < Λ. In that parameter region we have ᾱ+ > 0 and

ᾱ− < 0, such that ᾱ+ corresponds to the unique physical vacuum solution in the β0β1β2–model.
Inverting Eq. (4.24) for β̄2 using on the root ᾱ+ leads to the following relation between interaction
and physical parameters:

β0 = 1
1 + ᾱ2

(
−6ᾱ2m2

FP + (1 + 4ᾱ2 + 3ᾱ4)Λ
)
, (4.25a)

α−1β1 = ᾱ

(
3m2

FP
1 + ᾱ2 − 2Λ

)
, (4.25b)

α−2β2 = − m2
FP

1 + ᾱ2 + Λ . (4.25c)

From the parameter relations we can determine the viable physical parameter space. The
condition on β̄2 is trivially satisfied for ᾱ > 0 and mFP > 0. The requirement β1 > 0 translates
into

3m2
FP > 2(1 + ᾱ2)Λ . (4.26)

The resulting exclusion plot is given in the left panel of Fig. 4.2. The red-shaded region violates
the bound in (4.26). The grey-shaded region violates the Higuchi bound. The remaining unshaded
region is not excluded by our theoretical consistency requirements and might give rise to a viable
cosmic expansion history.

β0β1β3–model

Setting β2 = β4 = 0 leads to the β0β1β3–model. Replacing β1 and β3 in terms of the physical
parameters using Eqs. (2.75) and (2.83), the quartic polynomial (2.76) has the following roots:

ᾱ± =

√
4m2

FP − 2Λ + β0 ±
√

(4m2
FP + β0)2 − 16m2

FPΛ
2Λ . (4.27)

There are two more roots given by −ᾱ±, which are always non-positive. The roots ᾱ± are real-
valued if β0 > 4mFP(

√
Λ − mFP). In addition, ᾱ+ is real-valued only for β0 < Λ. In that

parameter region, the roots satisfy ᾱ− < ᾱ+. Therefore, ᾱ− corresponds to the physical vacuum
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point. Solving Eq. (4.27) for β0 using ᾱ− results in the following parameter relations:

β0 = 1
1 + ᾱ2

(
−4ᾱ2m2

FP + (1 + 2ᾱ2 + ᾱ4)Λ
)
, (4.28a)

α−1β1 = − ᾱ2

(
3m2

FP
1 + ᾱ2 − Λ

)
, (4.28b)

α−3β3 = − 1
2ᾱ

(
m2

FP
1 + ᾱ2 − Λ

)
. (4.28c)

Let us identify the theoretically consistent region of the physical parameter space as presented
in the right panel of Fig. 4.2. The conditions on β0 can be written in terms of physical parameters
as

4m2
FP > (1 + ᾱ2)Λ . (4.29)

The boundary of this condition is represented by the blue dashed line and less constraining than
the following bounds. The requirement β1 > 0 translates into

3m2
FP > (1 + ᾱ2)Λ , (4.30)

which is violated within the red-shaded region. Finally, expanding ρ(y) around ȳ = ᾱ we find that
the finite branch is non-singular only for

4m2
FP > (1 + ᾱ2)2Λ . (4.31)

This bound corresponds to the most-stringent one in the region that satisfies the Higuchi bound,
which in turn is indicated by the grey-shaded region. In the blue-shaded region, the bound (4.31)
is violated. Summarising, the β0β1β3–model is theoretically viable in the unshaded region of the
right panel of Fig. 4.2.

β0β1β4–model

The β0β1β4–model is defined by setting β2 = β3 = 0 and contains vacuum energy in both sectors.
Following our recipe, we use Eqs. (2.75) and (2.83) to replace β1 and β4 in terms of physical
parameters. The roots of the quartic polynomial (2.76) are then given by

ᾱ± = ±

√
Λ− β0

3m2
FP − Λ + β0

. (4.32)

The roots are real-valued in the parameter regime Λ− 3m2
FP < β0 < Λ. In that parameter region

we have ᾱ− < 0 and ᾱ+ > 0, identifying ᾱ+ as the unique physical vacuum of the β0β1β4–model.
Solving Eq. (4.32) for β0 results in the the following parameter relations:

β0 =− 3ᾱ2m2
FP

1 + ᾱ2 + Λ , (4.33a)

α−1β1 = ᾱm2
FP

1 + ᾱ2 , (4.33b)

α−4β4 =− 1
ᾱ2

(
m2

FP
1 + ᾱ2 − Λ

)
. (4.33c)

The restriction on β0 and the condition β1 > 0 are automatically satisfied and the finite
branch is non-singular in the entire parameter region that satisfies the Higuchi bound. The viable
physical parameter region of the β0β1β4–model therefore corresponds to 3m2

FP > 2Λ without
further restrictions.
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β1β2β3–model

Next, we move to the opposite model without vacuum energy by setting β0 = β4 = 0 resulting in
the β1β2β3–model. Replacing β1 and β3 by physical parameters using Eqs. (2.75) and (2.83), the
roots of Eq. (2.76) are given by

ᾱ± =

√√√√2m2
FP − Λ− β̄2 ±

√
(2m2

FP − β̄2)2 − 4m2
FPΛ

2β̄2 + Λ
. (4.34)

The two other roots are given by −ᾱ± and always non-positive. These roots are real-valued in
the parameter region

β̄2 < 2mFP(mFP −
√

Λ) . (4.35)

The root ᾱ+ is real-valued only in the smaller parameter region that also satisfied β̄2 > −Λ/2. In
the parameter region, where both roots are real-valued, we find that 0 < ᾱ− < ᾱ+. Therefore,
ᾱ− is the unique physical vacuum of the β1β2β3–model. Solving Eq. (4.34) for β̄2 on the root ᾱ−
results in the following relations between interaction and physical parameters:

α−1β1 = −6ᾱ2m2
FP + (3 + 4ᾱ2 + ᾱ4)Λ

4ᾱ(1 + ᾱ2) , (4.36a)

α−2β2 = 4ᾱ2m2
FP − (1 + ᾱ2)2Λ

2ᾱ2(1 + ᾱ2) , (4.36b)

α−3β3 = −6ᾱ2m2
FP + (1 + 4ᾱ2 + 3ᾱ4)Λ

4ᾱ3(1 + ᾱ2) . (4.36c)

For brevity, we already simplified the expression for β1 and β3 assuming that the physical param-
eters satisfy Eq. (4.37).

Let us identify the viable region of the physical parameter space, which we present in Fig. 4.3.
The bound (4.35) on β̄2 in terms of physical parameters reads

4ᾱ4m2
FP < (1 + ᾱ2)2Λ . (4.37)

This bound is violated in the blue-shaded region of Fig. 4.3. Next, the condition β1 > 0 translates
into

6ᾱ2m2
FP < (3 + 4ᾱ2 + ᾱ4)Λ . (4.38)

In the red-shaded region of Fig. 4.3, this bound is not satisfied. The grey-shaded region violates
the Higuchi bound. Summarising, the β1β2β3–model is theoretically viable in the unshaded region
of Fig. 4.3.

β1β2β4–model

The β1β2β4–model is defined by setting β0 = β3 = 0. Following our recipe, we express the
interaction parameters β1 and β4 in terms of physical parameters using Eqs. (2.75) and (2.83).
The roots of Eq. (2.76) are then given by

ᾱ± =

√√√√3m2
FP − Λ + 3β̄2 ±

√
(3m2

FP − Λ− 3β̄2)2 − 12β̄2Λ

6β̄2
. (4.39)

The two remaining roots are given by −ᾱ± and hence do not correspond to physical vacua. The
roots are real-valued if the parameters satisfy

3β̄2 < 3m2
FP − 2

√
3mFP

√
Λ + Λ . (4.40)
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Figure 4.3: Exclusion plot taken from [340] obtained from theoretical consistency bounds for the
β1β2β3–model. The red-shaded region yields β1 < 0 and in the blue-shaded region the vacuum
point is not well-defined. The grey-shaded region violates the Higuchi bound.

The root ᾱ+ is real-valued if additionally β̄2 > 0. The roots satisfy ᾱ− < ᾱ+ in the region, where
both are real-valued, which identifies ᾱ− as the unique physical vacuum. Solving Eq. (4.39) for
β̄2 on the root ᾱ− results in the following parameter relations:

α−1β1 = −3ᾱ2m2
FP + 2(1 + ᾱ2)Λ

2ᾱ(1 + ᾱ2) , (4.41a)

α−2β2 = 3ᾱ2m2
FP − (1 + ᾱ2)Λ

3ᾱ2(1 + ᾱ2) , (4.41b)

α−4β4 = −6ᾱ2m2
FP + (1 + 4ᾱ2 + 3ᾱ4)Λ

3ᾱ4(1 + ᾱ2) . (4.41c)

Here, we already simplified the expressions assuming Eq. (4.43) to hold.
The viable region of the physical parameter space is presented in the left panel of Fig. 4.4 The

bound on β̄2 is automatically satisfied. Requiring β1 > 0 translates into

3ᾱ2m2
FP < 2(1 + ᾱ2)Λ . (4.42)

The bound is violated in the red-shaded region. Expanding ρ(y) around ȳ = ᾱ unveils that the
finite branch is non-singular only for

3ᾱ4m2
FP < (1 + ᾱ2)2Λ . (4.43)

This bound is violated in the blue-shaded region of the left panel of Fig. 4.4. As before, the
grey-shaded region violates the Higuchi bound.

β1β3β4–model

To complete the dictionary, we set β0 = β2 = 0 to arrive at the β1β3β4–model. We use Eqs. (2.75)
and (2.83) to replace β3 and β4 in terms of physical parameters. The polynomial (2.76) gives rise
to three roots, out of which only

ᾱ = 1
6β̄1

(
−m2

FP + Λ + −12β̄2
1 + (m2

FP − Λ)2

B1/3 + B1/3
)
, (4.44)

is possibly real-valued. Here we defined the short-hand notation

B = (Λ−m2
FP)3 + 18β̄2

1(m2
FP + 2Λ) + 6

√
3β̄1

√
16β̄4

1 − (m2
FP − Λ)3Λ− β̄2

1(m4
FP − 20m2

FPΛ− 8Λ2) .
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Figure 4.4: Exclusion plots taken from [340] obtained from theoretical consistency bounds for
the β1β2β4– (left) and the β1β3β4–model (right). The red-shaded region yields β1 < 0 and in
the blue-shaded region the vacuum point is not well-defined. The grey-shaded region violates the
Higuchi bound.

Employing analytical and numerical methods, we find that the root is real-valued if the parameters
satisfy

β̄1 >

√
m4

FP − 8Λ2 +mFP(m2
FP + 8Λ)3/2

4
√

2
, (4.45)

which is non-trivial form2
FP > Λ. Solving Eq. (4.44) for β̄1 results in the following relation between

the parameters:

α−1β1 = −ᾱ
2m2

FP + (1 + ᾱ2)Λ
2ᾱ(1 + ᾱ2) , (4.46a)

α−3β3 = 3ᾱ2m2
FP − (1 + ᾱ2)Λ

2ᾱ3(1 + ᾱ2) , (4.46b)

α−4β4 = −4ᾱ2m2
FP + (1 + ᾱ2)2Λ
ᾱ4(1 + ᾱ2) . (4.46c)

The bound (4.45) in terms of physical parameters reads

4(1 + ᾱ2)3Λ2 > ᾱ2(m2
FP + 2(1 + ᾱ2)Λ)2 . (4.47)

This condition is violated in the blue shaded region of the right panel of Fig. 4.4. The requirement
β1 > 0 translates onto the physical parameters as

ᾱ2m2
FP < (1 + ᾱ2)Λ . (4.48)

The red-shaded region of the right panel of Fig. 4.4 violates this bound. Note that Eq. (4.47)
represents the most-stringent bound. The Higuchi bound is violated in the gray-shaded region.
Summarising, the β1β3β4–model is viable in the unshaded region of Fig. 4.2. Note that the
coupling ᾱ is allowed to take arbitrary large values for 2Λ/3 < m2

FP < Λ.

4.4 Discussion
On the one hand, cosmological solutions of BT are commonly parametrised in terms of the inter-
action parameters βn or in terms of the rescaled parameters β̃n. As we have argued, the former are
not invariant under the rescaling (4.1) rendering these parameters unphysical and the latter are
ambiguous and have possibly misleading implications. On the other hand, spherically symmetric
solutions are parametrised in terms of mFP as well as either α or c, while the other constant is set
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Model Viable parameter space
β1 3ᾱ2 = 1 and 3m2

FP = 4Λ
β0β1 m2

FP = (1 + ᾱ2)Λ
β1β2 6ᾱ2m2

FP ' Λ
β1β3 4ᾱ2m2

FP ' Λ
β1β4 3ᾱ2m2

FP = (1 + ᾱ2)Λ
β0β1β2 3m2

FP > 2(1 + ᾱ2)Λ
β0β1β3 4m2

FP > 2(1 + ᾱ2)2Λ
β0β1β4

β1β2β3 4ᾱ4m2
FP < (1 + ᾱ2)2Λ and 6ᾱ2m2

FP < (3 + 4ᾱ2 + ᾱ4)Λ
β1β2β4 3ᾱ2m2

FP < 2(1 + ᾱ2)Λ and 3ᾱ4m2
FP < (1 + ᾱ2)2Λ

β1β3β4 ᾱ2m2
FP < (1 + ᾱ2)Λ

Table 4.2: Summary of the parameter space regions that are consistently described by the one-,
two- and three-parameter models. Note that we only give the approximate parameter relations
for the β1β2– and β1β3–models for brevity. In addition, the parameters must satisfy the Higuchi
bound (2.84) in all cases.

to unity. This limits the comparability and interpretability of the hitherto obtained observational
constraints on these parameters.

To circumvent the associated drawbacks, we proposed a new parametrisation of bimetric solu-
tions. Our strategy is to formulate solutions in terms of the following rescaling-invariant physical
parameters: the coupling strength of the massive spin-2 field to ordinary matter ᾱ, its mass mFP,
and the effective cosmological constant Λ. Their unambiguous definition requires the identification
of the unique vacuum solution.

In this chapter, we worked out the unique relations between the theory parameters {α, βn}
and the physical parameters {ᾱ,mFP,Λ} for all models that fit into our framework. These are
the models with three free interaction parameters being free, or less. Recently, our setup was
generalised to four- and five-parameter models in [260,299].

Our method of identifying the unique physical vacuum also yields theoretical consistency con-
ditions on the physical parameters, which ensure a viable (i.e. real-valued, non-singular and devoid
of the Higuchi ghost) cosmic expansion history. We explicitly worked out these conditions for all
bimetric models with up to three free interaction parameters as summarised in Table 4.2. In
addition, all models are subject to the Higuchi bound (2.84) of de Sitter.

Our results unveil that the bimetric models are able to consistently describe only certain
subregions of the parameter space spanned by the physical parameters. The one-parameter model
corresponds to a point in the plane spanned by ᾱ and m2

FP/Λ. The two-parameter models describe
lines and the three-parameter models entire regions in that plane.

Having thoroughly established the physical parametrisation, we are now in the position to
overcome the aforementioned shortcomings of prior investigations and to consistently revisit the
phenomenological consequences of BT. Our new parametrisation forms the basis for the remainder
of this thesis.
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Chapter 5

Vainshtein screening in bimetric
cosmology

The previously proposed physical parametrisation enables us to consistently explore the entire
parameter space of BT. At the same time, the required identification of the unique vacuum solution
as well as consistency of the cosmic expansion history yielded theoretical constraints on the physical
parameters. Going beyond, the consistency of the perturbative level of bimetric cosmology might
impose further restrictions on the parameters. In fact, the gradient instability [226, 266, 270, 272,
274,275,300–305] discussed in Section 3.1.4 generally questioned the viability of bimetric cosmology
on the perturbative level.

However, this is not the end of the story. As we have argued in Section 3.1.4, there are
three ways to circumvent the instability: fine-tuning the initial conditions, going to the GR-limit
ᾱ � 1 [226], or taking nonlinearities into account [277]. The first option is less appealing due to
the lack of a mechanism that would generate such tuning. The second option excludes most of
the phenomenologically interesting regions of the parameter space. Instead, this chapter explores
the third option and as such demonstrates the validity of BT also away from the GR-limit.

It is a challenging task to study nonlinear perturbations on top of a FLRW background. To
make progress nonetheless, we take inspiration from static systems with spherical symmetry [119,
124, 331, 332], which we reviewed in Section 3.2. The gravitational potentials can be viewed as
perturbations about flat spacetime1. When approaching the source, or equivalently in the massless
limit of the theory, nonlinear effects in the perturbations become relevant and render the linear
approximation invalid. This is the well-known Vainshtein screening mechanism [119] that restores
GR in spacetime regions where the energy density is large (compared to the spin-2 mass). In this
chapter, we apply this logic to the FLRW solutions.

We will give a physical argument for the cosmological version of the Vainshtein mechanism.
We will show that the spin-2 mass sets the energy scale at which Vainshtein screening sets in.
In the context of background cosmology, the will see that the energy density due to the bimetric
interactions is screened away precisely above this energy scale. This can be understood from the
decoupling of the nonlinear massless and massive modes in this regime. We therefore expect linear
perturbation theory to break down at this energy scale. As we will demonstrate that this is indeed
the case.

Our results agree with similar arguments within Galileon cosmology [341, 342]. Here, the
dynamics in the early universe are governed by nonlinear self-interactions of the Galileon field.
These render the Galileon strongly coupled and suppress its energy density compared to matter
and radiation.

This chapter is based on our publication [277].

1In case of a non-vanishing effective cosmological constant Λ > 0, the gravitational potentials can be viewed as
perturbations about de Sitter spacetime.
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5.1 Vainshtein screening
We discussed Vainshtein screening [119, 124] in detail in Section 3.2 and Appendix A. In this
section, we first briefly summarise and rephrase the standard Vainshtein mechanism in a manner
suitable for our discussion in the context of cosmology. We proceed by applying our insights to a
spatially extended matter distribution.

5.1.1 The standard Vainshtein mechanism
The Vainshtein mechanism introduces a new scale into the system. For a spherically symmetric
and static configuration, this scale is given as the Vainshtein radius, which we defined in Eq. (3.36)
and is given by [331,332],

rV =
(

rS

m2
FP

)1/3
, (5.1)

where rS = M/(4πM2
g ) denotes the Schwarzschild radius of the source of mass M . On length

scales larger than the Vainshtein radius, r � rV, the gravitational fields are small and can be
treated perturbatively. This means that the field equations can be linearised in this regime. As a
result, the gravitational potential is modified compared to GR due to an additional Yukawa-like
contribution, which arises from the propagating massive degrees of freedom. On length scales
larger than the Compton wavelength, r � m−1

FP, the Yukawa-like modification is exponentially
suppressed, which recovers GR with effective Planck mass MP =

√
1 + ᾱ2Mg.

On smaller length scales, r � rV, the perturbative ansatz is not applicable and the linear
approximation breaks down. That means that all nonlinearities need to be taken into account.
The nonlinearities suppress deviations from and thus restore on these length scales. In this case,
the parameter Mg serves as effective Planck mass. Therefore, spherical configurations give rise to
two different GR-regimes, both characterised by different effective Planck masses. In the GR-limit
of the theory ᾱ� 1, both Planck masses coincide.

On the technical level, the Stückelberg field µ(r) leads to the breakdown of the linear approxi-
mation. Inside the Vainshtein sphere, the function is of order unity, and quickly drops off outside
the Vainshtein sphere. A visual depiction can be found in Fig. 3.5. Taking all nonlinearities in µ(r)
into account restores GR. In the following we will see, that the Stückelberg field in the context of
FLRW backgrounds gives rise to a similar behaviour.

For a source of finite size, the radius, in which the matter is concentrated, must be smaller
than its own Vainshtein radius for the screening mechanism to work. Therefore, the Vainshtein
mechanism restores GR only if the energy density of the source is above a certain minimal density.
In the next section, we will elaborate on this observation and apply its logic to cosmology.

5.1.2 The Vainshtein mechanism in cosmology
As anticipated, we will now study the Vainshtein mechanism in the case of an extended and
constant matter distribution in more detail. This setup is appropriate to describe our homoge-
neous and isotropic universe. In particular, we want to find the critical energy density ρcr of a
homogeneous mass distribution, for which the entire mass lies inside its own Vainshtein radius.

We start with a spherical and constant energy distribution of size R, such that the energy
density is given by

ρ(r) =
{
ρ̄ , r ≤ R ,
0 , r > R

. (5.2)

The size of the energy distribution is not relevant for the following discussion and can be infinitely
extended to R =∞. The mass M(r), which is enclosed within a radius r < R, is given by

M(r) = 4π
∫ r

0
dr′ r′2ρ(r′) = 4π

3 r3ρ̄ . (5.3)
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The Schwarzschild radius corresponding to this enclosed mass is

rS = M(r)
4πM2

g
= r3ρ̄

3M2
g
. (5.4)

The Vainshtein radius (5.1) corresponding to the mass M(r) enclosed within a sphere of radius r
is

rV =
(

ρ̄

3M2
gm

2
FP

)1/3
r . (5.5)

So for a source with constant density, the Vainshtein radius linearly increases with the radius r
defining the enclosed mass M(r).

The enclosed mass fits precisely inside its own Vainshtein radius if r = rV. The critical density
is therefore given by

ρ̄V = 3M2
gm

2
FP . (5.6)

If the density of the matter distribution is smaller, ρ̄ < ρ̄V, the Vainshtein radius is always smaller
than the radius that encloses its corresponding mass. In this case, the Vainshtein mechanism does
not restore GR on small scales. On the other hand, if the density is higher, ρ̄ > ρ̄V, the mass
enclosed by a radius r lies entirely inside its own Vainshtein radius. Since ρ̄V is independent of r,
the entire spacetime region enclosed by R is screened in that case.

Next, we apply this result to cosmology, assuming that the arguments are not invalidated by
the time evolution. Let ρ̄(t) denote the total energy density of the universe. At the background
level, the energy density is homogeneous and isotropic and decreases with time t. Therefore, at a
critical moment during the cosmic expansion, the energy density passes the value ρ̄V. From the
modified Friedmann equation (3.9), we find that the corresponding critical Hubble rate is given
by HV = ρ̄V/3M2

g . Plugging this into Eq. (5.6) leads to the following expression for the critical
Hubble rate:

HV = mFP . (5.7)

If H > HV, i.e. at early times, the energy density of the universe is larger than the critical value
implying that the universe is screened. At later times, H < HV, the energy density is below the
critical value and hence unscreened.

The Vainshtein radius for a constant, homogeneous matter distribution scales linearly with
radius, rV ∼ r. If the energy density is below the critical value, i.e. if the Hubble parameter is
smallH < mFP, each Hubble patch is larger than its own Vainshtein radius. On the other hand, for
energy densities above the critical value, i.e. for H > mFP, each Hubble patch is smaller than its
Vainshtein radius and hence entirely screened. Although we started from a spherically symmetric
setup, which we applied to cosmology, our result does not single out a preferred direction or point
in space. Our analogy does not spoil the cosmological principle.

Our analogy instead allows for a different, rather curious interpretation. Let us treat the
Big Bang singularity as central source, from where the distance r is measured by the inverse
Hubble scale, r ∼ H−1. The modified Friedmann equation (3.9) leads to a density profile of the
form ρ ∼ H2 ∼ r−2. The corresponding Schwarzschild radius is rS = H−1, which leads to the
Vainshtein radius (5.1)

rV =
(
m2

FPH
)−1/3

. (5.8)

The critical time is defined as the moment, when the size of the Hubble patch equals its own
Vainshtein sphere, i.e. rV = H−1

V . This leads to the same expression for the critical Hubble rate
HV is in Eq. (5.7).

In Fig. 5.1, we compare the time evolution of the size of a Hubble patch with the cosmological
Vainshtein radius. To produce the figure, we choose a spin-2 mass of mFP = 1 GeV. We use the
Hubble scale H as time parameter. The blue line represents the size of the Hubble patch, which is
scales as ∼ H−1. The yellow line shows the cosmological Vainshtein radius corresponding to each
Hubble patch, which scales as H−1/3 according to Eq. (5.8). Hence, each Hubble patch grows
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Figure 5.1: Time evolution of the size of each Hubble patch (blue) and the corresponding Vain-
shtein radius (yellow). The dashed vertical line indicates the critical time when H = mFP. To
produce the figure, we set mFP = 1 GeV.

faster than the corresponding Vainshtein sphere. At the critical scale H = mFP, the Hubble patch
becomes larger than its Vainshtein sphere and the universe leaves the screened regime.

Our analogy with spherically symmetric systems shows that the universe is smaller than its
own vainshtein sphere for H > mFP and larger otherwise. This suggests that the early universe
is screened such that GR is restored by means of nonlinearities. In particular, we expect that
linearisation is applicable only as long as H < mFP. We emphasise that our results only give a
rough estimate for the critical Hubble rate due to our simplifying assumptions. However, we will
see in the next sections that our expectation is indeed quantitatively confirmed on the level of
both cosmological background and perturbative level.

5.2 The spin-2 mass in cosmology
In the previous section we have identified the critical Hubble rateHV = mFP, at which the universe
transitions from a Vainshtein screened to an unscreened phase. In this section, we analyse how
cosmological solutions to bimetric theory behave in the two regimes. We will remain completely
general, but occasionally specialise to the β0β1β4–model to provide explicit examples. This model
is particularly simple on a mathematical level and still captures all the relevant features discussed
here.

We discussed cosmological solutions in bimetric theory in Section 3.1. This serves as basis for
the present discussion. Previously, we have worked in cosmic time t by setting the lapse of gµν
to Xg = 1. For convenience, here we will work in conformal time τ by setting the lapse of gµν
to Xg = a. In addition, we write the fµν lapse function as Xf = b(1 + µ). We will discuss the
meaning of the function µ in greater detail later. Further specialising to spatial flatness k = 0,
the metrics assume the conformal FLRW form,

ds2
g = a2

(
−dτ2 + dr2 + r2dΩ2

(2)

)
(5.9a)

ds2
f = b2

(
−(1 + µ)2dτ2 + dr2 + r2dΩ2

(2)

)
. (5.9b)

All metric functions a, b, and µ depend on conformal time τ . On the dynamical branch solution
of the Bianchi constraint (3.7), the field µ is related to the scale factor ratio as

µ = y′

y
. (5.10)

Recall that a prime denotes derivative with respect to e-folds N = ln a.
For µ = 0, both metrics are conformally related, gµν = y2fµν . Therefore, the field µ measures

the deviation from proportionality and hence the relative twist between the coordinate systems of
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the two metrics. In this sense, the field is similar to a Stückelberg field since it would be shifted
by time reparametrisations of the metric fµν . As such, the field µ(τ) in our FLRW ansatz is
analogous to the field µ(r) of the static, spherically symmetric solutions of Section 3.2. Hence,
we would expect that for |µ| � 1 linear perturbation theory is valid and the universe is governed
by the bimetric equations of motion. In the opposite case, |µ| ∼ O(1), nonlinearities have to be
taken into account, activating the Vainshtein screening. In the following, we make this intuition
quantitatively robust.

5.2.1 Vainshtein screening of background cosmology
We start with a discussion at the level of background cosmology, using the modified Friedmann
equations (3.9). The scale factor ratio ȳ evolves on the finite branch from zero at early times to a
constant value in the asymptotic future, which is determined by the vacuum polynomial Eq. (2.76).
A detailed discussion is given in Section 3.1.

Focussing on early times, the energy density of matter is large, ρ/M2
g � βn, which allows to

expand the quartic polynomial (3.18) and solve for ȳ. This results in

ȳ = β̄1

(
ρ

M2
g

)−1
+O

(
ρ

M2
g

)−2
. (5.11)

Plugging this into (3.11) yields the energy density of dark energy during early times as

ρde

M2
g

= β0 +
3β̄2

1M
2
g

ρ
+O

(
ρ

M2
g

)−2
. (5.12)

The parameter β0 is a constant. Since ρde linearly scales with ρ−1 to first order, we find that
ρde � ρ during early times. That means that the bimetric interaction energy density does not
contribute to the cosmic expansion during early times. This effect was first pointed out in [216].

The energy density arising from the bimetric potential is suppressed during early times. This
represents a screening in close analogy to Galileon cosmology [341] on the level of background
cosmology and implies that the expansion history resembles the one of GR during early times.
Next, we are interested in the time scale at which this cosmological screening sets in.

The screening sets in when the scale factor ratio transitions from its late time value ȳ ' ᾱ to
its early-time value ȳ ' 0. For this, we use the time when ȳ changes most quickly, i.e. when ȳ′ is
at its maximum value, as a bookkeeper. We therefore have to solve for ȳ′′ = 0. Taking the time
derivative of Eq. (3.19) and using Eq. (1.17) together with Eq. (3.18) yields ȳ′′ as a function of ȳ
as

ȳ′′ = 3(1 + w)
D(1)

D2
(2)

(5.13)

with

D(1) =(1− 12ȳ2 − 9ȳ4)β̄2
1 + 2ȳβ̄1

[
ȳ2(4 + 3ȳ2)β̄4 + 2ȳ(3 + ȳ2)β̄3 + 3(1− 4ȳ2 − 3ȳ3)β̄2 − β0

]
− ȳ4

[
18(1 + ȳ2)β̄2

2 + 3(3 + ȳ4)β̄2
3 + 2(β0 + ȳ2β̄4)β̄4 − 6(β0 + (1 + 2ȳ2)β̄4 − 2ȳ3β̄3)β̄2

+ 2ȳ((3− 2ȳ2)β̄4 − 3β0)β̄3

]
,

D(2) =β̄1(1 + 3ȳ2) + ȳ2(6ȳβ̄2 + 3(ȳ2 − 1)β̄3 − 2ȳβ̄4) .

In general, the equation ȳ′′ = 0 represents a polynomial in ȳ of degree eight, which in general
cannot be solved analytically for ȳ. Let us denote the roots as ȳ∗ and the resulting critical Hubble
rate as H∗ = H(ȳ∗). Next, we estimate the value of H∗ in two different simplifying ways.

As anticipated, we specialise to the β0β1β4–model by setting β2 = β3 = 0 and solve for H∗
numerically. In the left panel of Fig. 5.2 we plot the numerically determined H∗ in units of mFP as
function of m2

FP/Λ for different values of ᾱ. We see that H∗/mFP is approximately independent
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Figure 5.2: The critical Hubble rate H∗ in units of the spin-2 mass mFP for the β0β1β4-model
(left) and the two-parameter models (right) for different parameter values.

of m2
FP/Λ and becomes independent of ᾱ in the limit ᾱ� 1. Remarkably, in that parameter limit

the critical Hubble rate is given by
H∗ ' mFP (5.14)

up to an O(1) constant. For parameter values ᾱ & O(1), the critical Hubble rate H∗ is suppressed
by inverse powers of ᾱ compared to the scale mFP. Note that this parameter region is inconsistent
for models with β0 = 0.

To gain further intuition, we specialise to the two-parameter models β0β1 and β1β4 (the remain-
ing two-parameter models will be discussed in the next section). Now we can solve the polynomial
ȳ′′ = 0 analytically and compute the resulting critical Hubble rate H∗. The results in both cases
are lengthy, but in the limit ᾱ � 1 we again get the remarkably simple result H∗ ' mFP. Since
the physical parameters are related within the two-parameter models, the limit ᾱ� 1 corresponds
to m2

FP ∼ Λ in the case of the β0β1–model, and to m2
FP � Λ in the case of the β1β4–model. On

the other hand, the limit m2
FP � Λ corresponds to ᾱ � 1 in the case of the β0β1–model. In this

limit, the critical Hubble rate is given by H∗ ∼ (mFPΛ)1/3.
This asymptotic behaviour can also be inferred from the right panel of Fig. 5.2. Here, H∗ in

units of mFP is plotted as a function of m2
FP/Λ for all two-parameter models. For the β1β4-model,

the critical Hubble rate is of the order of the spin-2 mass for any value of mFP or equivalently ᾱ.
In the case of the β0β1-model, the critical Hubble rate is suppressed by inverse powers of ᾱ in the
limit ᾱ & O(1).

Our previous results show that cosmological screening sets in when ȳ . ȳ∗. Let us provide some
further physical interpretation for the parameter ȳ. We make use of the mass eigenstates, which
we discussed at the linearised level in Section 2.4.3. The mass eigenstates are well-defined only for
proportional backgrounds, i.e. in vacuum. The FLRW background, however, significantly differs
form proportionality as measured by µ. Nonetheless, nonlinear massless and massive fields can be
designed by requiring that these reduce to the linear mass eigenstates upon linearising [223]. The
resulting candidate nonlinear massless Gµν and massive Mµν fields are not unique, but can be
selected by employing simplicity arguments. The simplest nonlinear massless field is given by [223]

Gµν = gµν + α2fµν . (5.15)

We now specialise to the FLRW background (5.9). The spatial components are given by
Gij = a2(1 + ȳ2)δij . In the limit ȳ � 1 the nonlinear massless mode is aligned with the physical
metric (5.9a) as Gij ' gij and independent of the reference metric fµν . This implies that the
nonlinear massless and massive modes are decoupled. This observation is consistent with the
decoupling of the linear massless and massive mode in the limit ᾱ� 1 [226,335]. The decoupling
renders the physical metric massless so as to restore GR. We conclude that ȳ parametrises the
mixing of the nonlinear massless and massive field on top of an FLRW background and that these
decouple exactly when ȳ ' ȳ∗.
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Figure 5.3: Time evolution of the Stückelberg field µ for different parameter values in the β0β1β4-
model. In each case, the parameters Ωm0 = 0.3 and ΩΛ = 0.7 are chosen. Figure taken from [277].

The temporal component of the nonlinear massless mode is given by G00 = −a2(1+ ȳ2(1+µ)2),
which is not only controlled by ȳ, but also by the Stückelberg field µ. In the following, we study
the time evolution of µ in more detail. At late times, the Stückelberg field vanishes because ȳ′
vanishes, see Eq. (3.27). During early times, µ approaches a constant value, because both ȳ and
ȳ′ vanish. To be precise and to summarise, the Stückelberg field assumes the following asymptotic
values:

lim
τ→+∞

µ(τ) = 0 , lim
τ→−∞

µ(τ) = 3(1 + w) . (5.16)

Note that these asymptotic values are common to all bimetric models. We see that the Stückelberg
field transitions from an O(1) value during early times to zero at late times. This behaviour does
not spoil the decoupling of the nonlinear massless and massive modes. Instead, the evolution
is analogous to the spherically symmetric configuration as reviewed in Section 5.1.1, where µ
approaches a constant O(1) value close to the source [331].

To see the time scale at which the Stückelberg field transitions from the early-time to the
late-time constant values, we plot µ as a function of redshift z in Fig. 5.3. To produce the figure,
we use the β0β1β4–model for different couplings ᾱ and spin-2 masses mFP. The vertical lines
indicate the redshift, at which the Hubble rate equals the critical Hubble rate, i.e. H = mFP.
Qualitatively, the plot unveils that the Stückelberg field starts to deviate from the early-time O(1)
value when H ' mFP. We confirmed this observation quantitatively for various examples2. We
conclude that the Stückelberg field µ transitions from the nonlinear to the linear regime at the
critical time scale H ' mFP, as identified in Eq. (5.14).

Let us summarise. Our analysis on the level of background cosmology confirms our expectation
that the early universe is screened and GR is restored. Remarkably, in the limit ᾱ� 1 we identified
the same critical Hubble value as before, above which the universe is screened. Away from the
limit, the ratio H∗ is of the order of mFP, but also depends on ᾱ.

5.2.2 Linear perturbations
Our previous results show that the universe is screened for H > mFP, while at the same time the
nonlinear mass eigenstates decouple and the Stückelberg field µ assumes a value of order unity. We
therefore expect that linear perturbation theory breaks down exactly at the previously identified
critical scale H ' mFP.

Indeed, the scalar sector of the cosmological perturbations are plagued by a gradient instability
during early times on the linearised level, as discussed in Section 3.1.4. Here, we want to identify
the time at which the gradient instability sets in.

2The yellow line indicates that µ has a maximum for certain parameter values. Indeed, the peak occurs only if
β0 < 0. That means that for self-accelerating models, µ does not develop a peak, for which the red and blue lines
serve as representative examples.



72 5. Vainshtein screening in bimetric cosmology

The time evolution of the perturbation fields can be parametrised in term of the eigenfrequen-
cies ω given by Eq. (3.32) as Eg,f ∼ eiωN . For ω2 > 0, the perturbation fields are oscillating. For
ω2 < 0, there is one mode that exponentially decays and one mode that exponentially grows. The
exponential growth signals a gradient instability and invalidates linear perturbation theory. The
stability requirement ω2 > 0 is equivalent to the following dynamical bound [275]:

y′′ <
y′

2y
2Hy′(y′ − 3wy)− 3(1 + 2)(1 + 2w)ρy2

(1 + w)ρy +H2y′
. (5.17)

For the special models with β2 = β3 = 0, the bound reduces to the simple relation y′′ < 0 [275].
This equation serves as basis to infer the energy scale at which the gradient instability sets in. We
denote the critical scale factor ratio, at which the bound is violated, as y∗ and the corresponding
Hubble rate as H∗ = H(y∗).

Estimating H∗ for the β0β1β4–model and its two-parameter submodels β0β1 and β1β4 is par-
ticularly simple. In fact, we already solved y′′ = 0 and inferred H∗ for these models in the previous
section.

For completeness, we compute the critical time at which linear perturbations become unstable
also for the remaining two-parameter models. So for the case of the β1β2– and the β1β3–model,
we determine the critical Hubble rate at which the dynamical bound (5.17) is violated3. Since the
explicit results are too lengthy, we visualise them in the right panel of Fig. 5.2. The yellow line
corresponds to the β1β2- and red lines to the β1β3–model. As for the other models, the critical
Hubble rate at which linear perturbation theory breaks down is given by H∗ ' mFP up to O(1)
constants. The figure unveils that H∗/mFP is indeed approximately independent of ᾱ and m2

FP/Λ.
Summarising, the gradient instability of linear cosmological perturbations sets in precisely at

the energy scale when we expect nonlinear terms to become dominant. Our Vainshtein analogy
suggests that GR is restores also on the perturbative level when all nonlinearities are taken into
account.

This conclusion is supported by earlier results as we discuss now. The consequences of the
gradient instability on structure formation were studied in [309] under the assumption that the
onset of the local Vainshtein mechanisms restores GR and terminates the instability. This analy-
sis constrains the redshift below which the instability is observationally ruled out. If the gradient
instability is unobservable if it occurs above that redshift. Next, spherically symmetric scalar
perturbations including all nonlinearities in the Stückelberg field were studied in [308]. Their
analysis is based on BT with two independent matter sectors, which allows for FLRW solutions
with proportional metrics, vastly simplifying computations. They indeed find that the perturba-
tions are dominated by nonlinearities during early times, which restores GR. However, it remains
to identify whether a nonlinear solution exists, which smoothly connects to the usual perturba-
tive solution without branch cuts. Finally, the bimetric field equations were analytically for a
homogenous overdensity in [310]. Depending on the bimetric parameters, the density contrast is
indeed enhanced with respect to GR, but the solutions are well-behaved and devoid of physical
instabilities.

5.3 Discussion
Equipped with the physical parametrisation, we revisited the problem of linear scalar perturbations
in bimetric cosmology. We approached the problem in three ways.

Firstly, we established an analogy between the Vainshtein mechanism in spherically symmetric
systems and in the universe by identifying the minimal density required such that the entire
mass distribution lies within its own Vainshtein radius. This established HV = mFP as the critical
Hubble rate. During earlier times, i.e. forH > mFP, the universe is smaller than its own Vainshtein
sphere. We therefore expect the early universe to be screened by the Vainshtein mechanism, such

3The critical Hubble rate H∗ for the β1β2–model was previously computed in [226]. Due to the lack of the
physical parameterisation, the authors did not interpret their result as the spin-2 mass.
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that GR is restored by means of nonlinearities. In particular, we expect that linear perturbation
theory breaks down during such early times.

Secondly, we demonstrated that the early universe is screened and GR is restored on the level
of background cosmology. This can be understood from the decoupling of the nonlinear massless
and massive mode as controlled by ȳ, which happens for H > mFP. At the same time, the
Stückelberg field µ assumes a value of order unity. When the Hubble rate falls below the critical
value mFP, the value of the Stückelberg field quickly drops to |µ| � 1, the mixing of the nonlinear
mass eigenstates becomes ȳ ' ᾱ and the metrics become proportional fµν ∼ y2gµν .

Thirdly, we addressed the stability of linear cosmological perturbations. We indeed find that
the gradient instability occurs exactly when the Hubble rat exceeds the critical value, i.e. for
H > mFP. This invalidates linear perturbation theory during these early times and necessitates
taking into account all nonlinearities. Combined with our Vainshtein analogy and with the results
obtained in [308–310], we expect that the nonlinearities remove the instability and restore GR also
on the perturbative level.

For the remainder of this thesis we will use our here discussed results as clear indication that
the early universe is screened by the Vainshtein mechanism. Our working assumption is that GR
is restored during early times also on the perturbative level. This assumption enables us to use
early universe observables such as the CMB to constrain BT.

Most importantly, our results indicate that the finite branch solution of bimetric cosmology
is a priori viable both on the background and perturbative level despite the gradient instability.
In particular, we are not forced to push the onset of the instability to arbitrary early times as
in [226], which would forbid a small spin-2 mass. For instance, pushing the instability to times
before BBN requires a large spin-2 mass of mFP > 10−16 eV. Instead, the cosmological Vainshtein
mechanism enlarges the viable parameter space to arbitrarily small spin-2 masses (only limited by
the Higuchi bound).

Next, we will confront the entire thus consistent parameter space of BT with observations.
In the context of cosmology we have to limit ourselves to background observables because the
nonlinearities prevent the usage of standard perturbative techniques. It remains an important
task to constrain BT also on the perturbative level.
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Chapter 6

Constraining bimetric theory

The previous chapters set the basis for thoroughly testing BT with observed data. In particular,
our proposed physical parametrisation enables us to confront BT with various observational and
theoretical constraints simultaneously within a unified framework. Moreover, it straightforwardly
allows us to study the entire theoretically consistent parameter space of BT.

Previous studies in the context of background cosmology were limited to the parameter regime
where mFP ∼ H0 [216,263,265,296,297,337], which was found to give a good fit to observational
data. Contrarily, the gradient instability at the perturbative level was believed to rule out bimetric
cosmology. It was argued that the perturbative level is consistent if the gradient instability is
pushed to arbitrary early times [226]. The discussion of our previous discussion elucidates that
this requires mFP � H0

1. Comparing these parameter regimes with each other, it follows that
bimetric cosmology cannot be consistent on the background and perturbative level simultaneously.

This conclusion is overcome by our discussion in the previous chapter. The Vainshtein mecha-
nism removes the requirement to push the gradient instability to arbitrary early times [277, 308–
310]. Hence, also the parameter regime mFP ∼ H0 is a priori consistent at the perturbative level.
Since standard perturbative techniques are not applicable in the context of BT due to Vainshtein
screening, we are still lacking observational constraints from the perturbative level.

In this chapter we will first revisit the background level of bimetric cosmology. In particular, we
will show that the parameter regime mFP � H0 gives an equally good fit to data as the previously
studied region of the parameter space as well. We therefore overcome the aforementioned erroneous
conclusion twice: firstly, the small mass region is a priori consistent at the perturbative level,
and secondly, the large mass region is in fact consistent at the cosmological background level.
This explicitly demonstrates for the first time that the entire parameter space of BT leads to an
interesting and viable phenomenology2.

To be more precise, we test BT with observations of Supernovae type 1a (SNe 1a), Baryon
Acoustic Oscillations (BAOs), and the Cosmic Microwave Background (CMB) in a statistical
analysis using Markov Chain Monte Carlo (MCMC) sampling. In addition to the aforementioned
considerations regarding the bimetric parameters, we also analyse the usual cosmological param-
eters. For example, since we study the enlarged bimetric parameter space, we revisit the question
of spatial curvature within BT. In agreement with earlier results, we find that the cosmological
parameters take values very close to the standard values [216, 263, 265, 296, 337], including the
preference for a spatially flat universe [297]

We go another step further in the second part of this chapter and confront BT with local tests of
gravity. By this we mean tests of the gravitational potential and tests of the scalar curvature, which
probe scales from laboratory to extragalactic scales. These tests have a long history and provide

1The physical parametrisation unveils that this parametric limit corresponds to ᾱ � 1 in the context of two-
parameter models with β0 = 0 [340]. In fact, [226] argued that the gradient instability is pushed to arbitrary early
times for ᾱ� 1.

2The theoretically consistent parameter space is further subjected by cosmological constraints. In particular, the
coupling ᾱ must be sufficiently small if the spin-2 field is heavy, as will become clear from the subsequent analysis.



76 6. Constraining bimetric theory

stringent constraints on modifications of the gravitational interactions [343–348]. Here we apply
the existing results as obtained within the Yukawa parametrisation to the bimetric parameters ᾱ
and mFP. In particular, we consistently implement the Vainshtein screening mechanism. Building
upon some earlier work [330,332,338,339], we provide the first thorough confrontation of BT with
a plethora of local tests of gravity.

We finally compare the local and cosmological constraints to each other. Our combined analysis
explicitly demonstrates that large regions of the bimetric parameter space withstand both classes
of tests. In addition, our herein obtained constraints are to date the most stringent ones.

This chapter is based on our publications [298,340].

6.1 Cosmological tests
We constrain bimetric theory with cosmological background observations. In particular, we use
measurements of SN1a, BAOs, and the CMB. Of course, bimetric theory has been confronted
with these observations before [216, 263, 265, 296, 297, 337], which we will review at the end of
this section. However, these earlier papers constrained the βn–parameters, studied only a specific
region of the parameter space3, or did not distinguish between the finite and the infinite branch.

In our analysis, we use the physical parametrisation to overcome the aforementioned problems.
We directly constrain the physical parameters, which allows to unambiguously study the entire
parameter space and implement the theoretical consistency conditions. Constraints on the physical
parameters from SN1a observations were computed in [340]. In the present section, we present
our more general work [298], where we in addition included constraints from BAOs and the CMB.

6.1.1 Parametrisation
As in standard cosmology, we introduce the energy density parameters Ωi as in Eq. (1.26), explicitly

Ωi = ρi
3M2

gH
2 , (6.1)

where the index i stands for radiation (i = r), matter (i = m), spatial curvature (i = k), and
dynamical dark energy (i = de). To ease the notation, we also introduce the following constant
parameters

Bn = α−nβn
3M2

gH
2
0
, ΩFP = m2

FP
3M2

gH
2
0
, ΩΛ = Λ

3M2
gH

2
0
, (6.2)

inspired by the energy density parameters. The modified Friedmann equation of gµν reads

1 = Ωde + Ωk + Ωm + Ωr . (6.3)

Note the difference between the parameter ΩΛ and the energy density parameter of dynamical
dark energy, Ωde. The energy density parameter associated to dynamical dark energy depends on
the bimetric parameters as

E2Ωde = B0 + 3ȳB1 + 3ȳ2B2 + ȳ2B3 , (6.4)

according to Eq. (3.11), where we defined the dimensionless Hubble parameter

E = H/H0 , (6.5)

which at present times is given by E = 1.
3In some papers, the rescaling invariance is used to set α = 1, which brings the theory into a very specific region

of the parameter space. Other papers assumed that βn ∼ H2
0 , which again represents only a certain region of the

parameter space.
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Evaluating the modified Friedmann equation (6.3) today yields a relation among the energy
density parameters as

1 = Ωde0 + Ωk0 + Ωm0 + Ωr0 , (6.6)

where the subscript 0 refers to the corresponding value of the energy density today, i.e. at redshift
z = 0. This allows to eliminate one of the energy density parameters in terms of the others. In
our analysis, we choose to eliminate Ωm0.

To fix the values of the energy density parameters at present times, we need to determine
Ωde0. To do this, we use the Friedmann equation of fµν (3.10) evaluated at present times, which
explicitly reads

0 = B1 + (3B2 + Ωk0 − 1)ȳ0 + 3ȳ2
0B3 + ȳ3

0B4 . (6.7)

This equation represents a cubic polynomial for ȳ0. Here, ȳ0 stands for the rescaled scale factor
ratio ȳ at present times. From Eq. (6.7), we pick the lowest-lying, strictly positive solution and
impose ȳ0 < ᾱ to ensure that we are on the finite branch. With this result, we can compute Ωde0
via evaluating Eq. (6.4) today.

Next, we need to determine Ωde as a function of redshift z to determine H(z), which requires
determining ȳ as a function of z. One possibility is to solve the differential equation (3.19) [263].
However, we found that this strategy leads to numerical instabilities, in particular in the parametric
limits ᾱ � 1 or m2

FP � Λ. To avoid these numerical instabilities, we instead solve the quartic
polynomial (3.18), explicitly given by

B3ȳ
4 + (3B2 −B4)ȳ3 + 3(B1 −B3)ȳ2 + (B0 − 3B2 + E2Ωm + E2Ωr)ȳ −B1 = 0 , (6.8)

for each redshift z. Picking the lowest-lying, strictly positive root and ensuring ȳ < ᾱ yields a
cosmic expansion on the finite branch.

6.1.2 Statistical analysis
We want to confront our cosmological model with observational data to identify those param-
eter combinations, which best fit the cosmological observations. For this purpose, we take the
Bayesian perspective, which has become standard in cosmology for parameter estimation (for re-
views, see [349–353]). Let x be a vector containing the data, and θ containing the parameters of
the cosmological model. We need to compute the probability that the set of parameters θ given the
observational data x are the true parameters. This probability is denoted by p(θ|x) and referred to
as posterior distribution function (PDF). By Bayes’ theorem, the posterior distribution function
can be computed as [354]

p(θ|x) = p(x|θ)p(θ)
p(x) , (6.9)

with p ∈ [0, 1] denoting probability. Let us discuss the terms appearing on the right hand side.
The term p(x) is the probability for the observational data to occur, which in cosmology is

referred to as the evidence. The evidence is independent of the parameters of the cosmological
model and hence appears as overall normalisation. Therefore, we can ignore the evidence in our
analysis.

The likelihood, denoted by L(θ) = p(x|θ), describes the probability that the observational data
x occurs given the parameters of the model θ. The likelihood can be computed by a χ2-analysis
as

L(θ) = e−χ
2/2 . (6.10)

Let X = x − xth(θ) the vector describing the difference between the observed data x and the
theoretical prediction xth of the model given the parameters θ. Then, the χ2 is given by

χ2 = XTC−1X , (6.11)

with C the covariance matrix of the data set.
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To compute the likelihood, one would need to compute the χ2 for every set of model parameters
θ. In practice, the simplest possibility to estimate the likelihood is to discretise the parameter
space of the cosmological model and to compute the likelihood on every point of the grid. This
method however, is computationally demanding, in particular if the dimension of the parameter
space is large. In our analysis we instead utilise the Monte Carlo Markov Chain (MCMC) sampling
method with the Metropolis–Hastings algorithm [355,356], whose usage for cosmology is described
in [357,358]. This method explores those regions of the parameter space in great detail, where the
likelihood is large. The likelihood function is approximated by the point frequencies of the chains.
Therefore, the accuracy of the approximation increases with the length of the chains.

As final step, we need to choose priors p(θ), which describe the probability distributions of the
model parameters. Here we use our previous knowledge about the parameters from theoretical
considerations or earlier statistical analyses. In the following we detail our choice of priors.

In our case, we scan over the following set of model parameters4:(
log10(ᾱ), log10(ΩFP),ΩΛ,Ωk0,Ωb0h

2, H0
)
. (6.12)

Let us first discuss priors on the standard cosmological parameters. We choose the following flat
priors

p(θ) =


1 if


45 km/s

Mpc ≤ H0 ≤ 85 km/s
Mpc ,

0 ≤ Ωb0h
2 ≤ 1 ,

−1 ≤ Ωk0 ≤ 1 ,
0 ≤ ΩΛ ≤ 1 ,

,

0 else

(6.13)

to ensure that the bimetric cosmological models do not differ substantially from the standard
cosmological model.

The two remaining parameters, ᾱ and mFP, are subject to theoretical constraints. The spin-2
mass mFP mus satisfy the Higuchi bound (2.84). In addition, the spin-2 mass is limited by the
cutoff of the effective theory. Otherwise, the low-energy effective theory is not meaningful. The
cutoff depends on the spin-2 mass, but is limited from above by the Planck mass Mg. Therefore,
we choose the following flat prior on the spin-2 mass:

p(θ) =
{

1 , if 2Λ/3 < m2
FP < M2

g
0 , else

. (6.14)

In terms of the energy density parameter, the upper limit reads ΩFP . 10122. The coupling ᾱ is
not restricted by theoretical bound, but can take values from 0 ≤ ᾱ ≤ ∞. To ensure numerical
stability, we choose the following flat priors:

p(θ) =
{

1 , if − 100 < log10(ᾱ) < 100
0 , else

. (6.15)

The upper limit is justified because we do not expect the massive gravity limit to be cosmologically
consistent [210]. In the parameter region ᾱ � 1, bimetric theory is arbitrarily close to GR.
Therefore, at the lower limit on ᾱ our cosmological model is indistinguishable from the standard
model in any practical sense.

In addition to these limiting values, the physical parameters are subject to the theoretical
consistency conditions, which we computed in Chapter 4 and summarised in Table 4.2. We set
the priors such that p(θ) = 0 if the physical parameters in θ violate the consistency conditions
and p(θ) = 1 if the conditions are satisfied.

4For some bimetric models and data sets, the parameter vector is shorter. The β1–model does not contain
the parameters log10(ᾱ) and log10(ΩFP). The two–parameter models do not contain the parameter log10(ᾱ). In
addition, the parameters Ωb0h

2 and H0 are irrelevant in the context of SN1a.
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From these parameters, we can obtain the value of Ωm0 following the procedure outlined in
the previous section. We implement the required positivity of this quantity as additional prior in
the following way

p(θ) =
{

1 , if Ωm0 > 0
0 , else

. (6.16)

This completes our list of priors.
As a final step, we discuss a possibility to compare the different cosmological models. We use

the Bayesian Information Criterion (BIC) [359]

BIC = χ2 + k lnN , (6.17)

where χ2 = −2 lnL is evaluated at maximum likelihood. The parameter k describes the number
of independent model parameters and N the number of data points. The combined data set
SN+BAO+CMB has N = 740+3+10 = 753 data points, as will be explained in the next section.
From Eq. (6.12) it follows that the number of independent model parameters is given by k = 3+ k̂,
where k̂ describes the number of free physical parameters. So the one-parameter model has k̂ = 1,
the two-parameter models have k̂ = 2, and the three-parameter models have k̂ = 3. For model
comparison, we use the ΛCDM model as reference. The difference in the BIC, which we denote as
∆BIC, allows to assess wether a model is statistically preferred over the ΛCDM model according
to [297, 360]: strong support (∆BIC < −12), favourable (∆BIC < −6), inconclusive (∆BIC < 6),
disfavoured (∆BIC < 12), strongly disfavoured (∆BIC ≥ 12).

6.1.3 Data sets
Due to the gradient instability, we are limited to probes of the cosmic expansion history. These
rely on measuring certain distance scales and redshifts in the universe. In the following, we provide
a succinct summary required for implementing the data sets. More details can be found in the
standard textbooks on cosmology such as [61–64].

The co-moving distance as a function of redshift is given by

dc(z) =
∫ z

0

dz′

H(z′) . (6.18)

For convenience, we also define the dimensionless co-moving distance as

Dc(z) = H0dc(z) =
∫ z

0

dz′

E(z′) . (6.19)

Taking into account spatial curvature k amounts to define the following quantity:

Ik(Dc(z)) =


√

Ωk0
−1 sinh

(√
Ωk0Dc(z)

)
, k < 0

Dc(z) , k = 0
√

Ωk0
−1 sin

(√
Ωk0Dc(z)

)
, k > 0

(6.20)

From these quantities we can define various distance indicators, which are relevant in cosmology.
The luminosity distance dL and the angular diameter distance dA are given by

dL(z) = 1
H0

(1 + z) Ik(Dc(z)) , dA(z) = 1
H0

(1 + z)−1Ik(Dc(z)) . (6.21)

We can define the corresponding dimensionless distances as DL = H0dL and DA = H0dA. These
distance indicators are the basis for the cosmological data sets, which we introduce in the following.

As will be detailed later, these measured distances are to be compared to the co-moving sound
horizon rs(z) at different redshifts z. It is given by the formula

rs(z) = 1√
3

∫ ∞
z

dz′

H(z′)
√

1 + (3Ωb0/4Ωγ0)/(1 + z′)
, (6.22)
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where Ωb0 and Ωγ0 are the current energy densities of baryons and photons, respectively. We treat
Ωb0h

2 as fitting parameter in our statistical analysis. The energy density of photons is fixed by
the CMB temperature TCMB = 2.7255 K [361] as

3
4Ωγ0h2 = 3.15× 104 × (TCMB/2.7 K)−4 . (6.23)

Going further, determining the sound horizon rs(z) relies on H(z), which in turn depends on the
energy density of all radiation Ωr. Since neutrinos are relativistic during these early times, they
contribute to radiation. The relation between the photon and radiation energy densities can be
written as

Ωr0 = (1 + 0.2271Neff)Ωγ0 . (6.24)

The numerical prefactor captures the relative temperatures of the neutrino and photon back-
grounds as well as the relative amount of free energy per fermionic and bosonic degree of freedom.
The parameter Neff denotes the effective number of relativistic neutrino species [362,363]. In our
analysis we use the standard value of Neff = 3.046 obtained from particle physics [364–366]. Note
that this value is slightly larger than 3 due to radiative corrections.

Supernovae type 1a

It is believed that the (properly calibrated) luminosities of Supernovae type 1a (SNe 1a) are
independent of redshift, which allows to calibrate cosmological distances. In 1998, their observation
showed that our Universe currently enters a phase of accelerated expansion and therefore provided
the first robust evidence for dark energy [17,18].

The apparent magnitude m and the absolute magnitude M of a SN1a are related to the
luminosity distance as

m =M+ 5 log10DL , (6.25)

withM = 25 +M − 5 log10(H0). The parameters M and H0 are degenerate because both appear
as additive parameters in the above equation.

In our analysis, we use the catalogue of the Joint–Lightcurve–Analysis (JLA) containing 740
SN1a events [367]. As mentioned before, we need to calibrate the observed apparent magnitude
mobs in the following way:

m = mobs −∆M + αX1 − βC , (6.26)

where X1 and C are measured light-curve parameters of each SN1a. For the fiiting parameters α,
β and ∆M we use the best-fit values of α = 0.140± .006 and β = 3.139±0.072 as obtained in [367].
The parameter ∆M is a correction to the absolute magnitude, which depends on the stellar mass
M∗ of the host galaxy of the supernova. Using a simple step-function, the best fit-value is given
by

∆M =
{
−0.060± 0.012 , if M∗ < 1010M�

0 , else
, (6.27)

with M� the solar mass.
With these ingredients we can construct the likelihood LSN1a. The parameterM appears as a

nuisance parameter. Analytically marginalising overM yields

− 2 logLSN1a(θ) = S2 −
S2

1
S0

(6.28)

where
S0 =

∑
ij

(C−1
SN1a)ij , S1 =

∑
ij

(C−1
SN1a)ijXi , S2 =

∑
ij

(C−1
SN1a)ijXiXj (6.29)

in terms of the vector X = m − 5 log10DL. The components of the covariance matrix CSN1a are
given in [367], to which we add the errors on α, β, and ∆M in quadrature.
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Cosmic Microwave Background

Despite the importance of SN1a data, they are not very restrictive for cosmological models that
allow for non-zero spatial curvature and that include dark energy with a time-varying equation-of-
state parameter wde. Including the distance scale from the Cosmic Microwave Background (CMB)
as additional information strengthens the constraints. Instead of analysing the full CMB power
spectrum, it is a common approach to cast this information in the form of two distance scale
ratios [368–374]. For an introduction to CMB physics, see [375].

The first ratio is related to the first peak in the CMB power spectrum and given by [368]

`A = (1 + z∗)
πdA(z∗)
rs(z∗)

. (6.30)

It measures the ratio between the angular diameter distance of the first peak dA(z∗) and the sound
horizon rs(z∗), both evaluated at photon decoupling z∗.

The second parameter measures the ratio between the angular diameter distance and the
Hubble horizon at decoupling and is implemented by the shift-parameter5 [369]

R = dA(z∗)H(z∗)√
1 + z∗

' H0
√

Ωm0(1 + z∗)dA(z∗) . (6.31)

It is assumed that the universe is dominated by matter during photon decoupling.
At the epoch of recombination, the ionised material in the cosmic plasma combines into neutral

atoms. During this epoch, the photons decouple and the universe becomes transparent for photons.
The redshift of photon decoupling z∗ can be obtained from the fitting function [368]:

z∗ = 1048
[
1 + 0.00124 (Ωb0h

2)−0.738][1 + g1(Ωm0h
2)g2

]
, (6.32)

g1 = 0.0783 (Ωb0h
2)−0.238

1 + 39.5 (Ωb0h2)0.763 , g2 = 0.560
1 + 21.1 (Ωb0h2)1.81 . (6.33)

For our analysis, we assume that the early-universe is not modified as compared to the standard
model. This assumption is justified because the dark energy density is subdominant compared
to the other energy densities on the finite branch, as we discussed in Section 3.1. In addition,
we expect the Vainshtein screening mechanism to be active in the early universe as discussed
in Chapter 5. We also assume inflation to work as in the standard model. For a critical discussion
of the usage of the shift parameters in the context of non-standard cosmological models, see
e.g. [299,373].

We follow the procedure of [374] and implement the CMB information in the three variables
(`A, R, Ωb0h

2). From the Planck 2018 data release [75], the best-fit values for these parameters
are [376]

`A = 301.471+0.089
−0.090 , R = 1.7502± 0.0046 , Ωb0h

2 = 0.02236± 0.00015 . (6.34)

In our analysis, we use the full covariance matrix CCMB, which can be found in [376]. Defining
the vector

XCMB =

 `A − 301.471
R− 1.7502

Ωb0h
2 − 0.02236

 (6.35)

amounts to writing the likelihood as

− 2 logLCMB = XT
CMBC

−1
CMBXCMB . (6.36)

5The here defined shift-parameter R is not to be confused with the scalar curvature, which appears in the
Einstein–Hilbert term of the actions.
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Data set zeff Distance measure
6dFGS [377] 0.106 dV/rd = 2.976± 0.133
SDSS MGS [378] 0.15 dV/rd = 4.466± 0.168

0.38 dM/rd = 0.27± 0.15
BOSS DR12 [379] 0.51 dM/rd = 13.38± 0.18

0.61 dM/rd = 15.45± 0.22
BOSS DR14 [380] 0.72 dV/rd = 16.08± 0.41

0.978 dA/rd = 10.7± 1.9
eBOSS QSO [381] 1.23 dA/rd = 12.0± 1.1

1.526 dA/rd = 11.97± 0.65
1.944 dA/rd = 12.23± 0.99

Table 6.1: The BAO data sets that we used in our analysis. Here rd = rs(zd). The covariance
matrices can be found in the original references.

Baryonic Acoustic Oscillations

The CMB anisotropies are imprinted in the distribution of matter at low redshifts. The Baryonic
Acoustic Oscillations (BAOs) measure the ratio between certain angular diameter distances (the
precise relation to dA depends on the data set) to the sound horizon rs(zd) at the drag epoch zd.
BAOs serve as standard rulers, which have become a powerful tool for constraining cosmological
models.

Before the epoch of recombination, the radiation pressure drives baryonic material away from
potential wells. At recombination, the ionised material combines such that baryons and photons
decouple. After recombination, the motion of the baryonic material still continues for a short
while due to its momentum, until the so-called drag epoch, at which time the acoustic oscillations
of the baryonic material are frozen in. The scale of BAOs is hence related to the sound horizon
rs(zd) at the drag epoch zd. The redshift of the drag epoch zd can be obtained from the fitting
formula [368]

zd = 1351 (Ωm0h
2)0.251

1 + 0.659 (Ωm0h2)0.828

[
1 + b1(Ωb0h

2)b2
]
,

b1 = 0.313 (Ωm0h
2)−0.419[1 + 0.607 (Ωm0h

2)0.674] , b2 = 0.238 (Ωm0h
2)0.223 .

(6.37)

As in the case of the CMB anisotropies, also in the context of BAOs distances related to
the angular diameter at a given redshift are measured. Depending on the data set, the volume
averaged distance dV or the redshift-weighted co-moving distance dM are constrained, which are
related to the angular diameter distance dA as

dV(z) =
[ z

H(z) (1 + z)2d2
A(z)

]1/3
, dM(z) = (1 + z)dA(z) , (6.38)

respectively. As before, we also define the dimensionless analogues DV = H0dV and DM = H0dM.
We use several data sets in the context of BAOs with 10 data points in total, which we

summarise in Table 6.1. The likelihood associated to BAO measurements is the product of the
likelihoods obtained from the individual data sets, i.e.

− 2 logLBAO =
∑
a

χ2
a , (6.39)
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Model β0 (ΛCDM) β1 β0β1 β1β2,3,4

ᾱ – 3−1/2 < 0.2 < 0.016
mFP [10−32eV] – 1.82± 0.02 1.33± 0.02 > 42.4
Λ [10−64eV2] 1.76± 0.05 2.5± 0.1 1.8± 0.1 1.76+0.1

−0.09

H0 [km/s
Mpc ] 68.8+1.4

−1.2 73.1+1.6
−1.4 68.8± 0.2 69.0± 1.0

ΩΛ 0.69± 0.01 0.86± 0.01 0.69+0.03
−0.02 0.69± 0.01

Ωm0 0.31± 0.01 0.27± 0.01 0.31± 0.02 0.31± 0.01
Ωde0 0.69± 0.01 0.73± 0.01 0.69± 0.02 0.69± 0.01
Ωk0 0.002+0.004

−0.003 −0.007+0.004
−0.003 0.002+0.005

−0.001 0.002± 0.004
Ωb0h

2 0.0224± 0.0001 0.0223± 0.0003 0.0224± 0.0004 0.0224± 0.0003
χ2 694.7 726.0 694.7 694.7
∆BIC (721) +31 +6.6 +6.6

Table 6.2: The best-fit values and errors at 68% c.l. from SN+CMB+BAO for the one- and
two-parameter models.

where the index a runs over the individual data sets: 6dFGS [377], SDSS MGS [378], BOSS
DR12 [379], BOSS DR14 [380], and eBOSS QSO [381]. The individual χ2

a are computed in the
usual way as in Eq. (6.11), with errors and covariance matrices given in the original references.

6.1.4 Numerical implementation
To perform the statistical analysis, we wrote a new computer code in Python, which we plan to
make publicly available soon. For a given set of parameters the code computes the prior probability.
If the prior probability is non-zero, the code numerically constructs the Hubble rate upon a list of
redshifts as described in Section 6.1.1, from where the various distance indicators are computed.
The result together with the aforementioned observational data is used to compute the value of
χ2 for the given set of parameters.

The resulting value of χ2 is used to construct the Monte Carlo Markov Chains. To initialise
the chains, we randomly choose a set of fitting parameters. For each data set, we run several
chains in parallel, each with a length of O(104 . . . 105), depending on the model and data set.

Before analysing the results, we assess the compatibility of the individual chains and remove
O(103) steps as burn-in. For the analysis we acknowledge the intensive use of the Getdist pack-
age [382], which we also used to produce most of the subsequent figures.

6.1.5 Results
Let us present and discuss the results of the statistical analysis separately for each bimetric model.
The standard ΛCDM model serves as a reference, to which we compare the bimetric models and
from which we assess the robustness of our statistical analysis.

The best-fit values for all models are summarised in Tables 6.2 to 6.4. The parameters mFP
and Λ are derived from ΩFP and ΩΛ using the values of H0 in the chains.

ΛCDM reference model

Let us start with the ΛCDM model as reference, which corresponds to the β0–model from the bi-
metric perspective. The one- and two-dimensional posterior distributions are presented in Fig. 6.1a.
For this model, dark energy is solely composed out of vacuum energy, i.e. Ωde0 = ΩΛ.
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Figure 6.1: The one- and two-dimensional posterior distributions with contours corresponding to
68% and 95% c.l. for the one-parameter models taken from [298].

The Fig. 6.1a suggests that the data sets do not constrain the cosmological parameters individ-
ually. While SN1a do not constrain the Hubble parameter H0 as explained earlier, also CMB and
BAO data alone are not constraining when allowing for non-zero spatial curvature. The degen-
eracy is broken when combining all three data sets. We then get a spatially flat universe within
68% c.l. in agreement with earlier results [75]. The Hubble parameter is stabilised to a value of
H0 = (68.9+1.4

−1.2) km/s
Mpc . This value is slightly but not significantly larger than the reported value

in [75], which can be understood as an artefact of using the distance scale ratios instead of the
full CMB likelihood [376]. Since our analysis reproduces the standard results without significant
deviations, we conclude that our analysis is robust.

As mentioned in Table 6.2, the maximum likelihood leads to BIC = 721 given the number of
data points and free parameters. This value serves as reference, to which we compare the bimetric
models.

β1–model

The only bimetric one-parameter model with a possibly viable cosmic expansion history is the
β1–model. The marginalised one- and two-dimensional distributions are presented in Fig. 6.1b
and the best-fit values are summarised in Table 6.2.

As in the case of the standard model, CMB and BAO data alone are not able to stabilise the
values of H0 and Ωk0. In addition, the data sets appear to be incompatible in the following sense.
The best-fit values with respect to one data set are in conflict with the other data sets by several
standard deviations. Quantitatively, this is reflected by the rather small likelihood with χ2 ' 726,
when combining all three data sets, which leads to a substantially larger BIC with ∆BIC ' +31.
Therefore, the β1–model is statistically strongly disfavoured by cosmological data.

Despite this inconsistency, we combine all three data sets to compute the global constraints on
the parameters within this model. Data then prefers positive spatial curvature, with a spatially
flat universe included at 95% c.l.

The Hubble parameter is stabilised at the remarkably high value of H0 = (73.1+1.6
−1.4)km/s

Mpc ,
which is in agreement within 68% c.l. with local determinations of H0 as reviewed in Section 1.3.
In other words, the Hubble-tension is absent in the β1–model. Note that we did not use any
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local prior in our analysis. Nonetheless, the β1–model does not solve the H0–tension because the
cosmological data sets are in disagreement.

The β1–model does not have a smooth GR-limit because the coupling constant is fixed by
the equations of motion as ᾱ = 1/

√
3. This is also reflected in the cosmological parameters.

The current dark energy fraction Ωde0 = 0.73 ± 0.01 is significantly smaller than the effective
cosmological constant ΩΛ = 0.86 ± 0.01. Note that the β1–model is self-accelerating. This leads
to a smaller matter fraction Ωm0 = 0.27± 0.01 as compared to the standard model value.

Finally, the combined data sets lead to a preferred spin-2 mass ofmFP = (1.82±0.02)×10−32 eV,
which lies close to the Higuchi bound. Since the value of the coupling is theoretically predicted to
be ᾱ = 1/

√
3, we can easily compare these results to constraints from local tests of gravity.

β0β1–model

Moving to two-parameter models, we start with the β0β1–model, which allows for non-zero vacuum
energy. The GR-limit ᾱ � 1 corresponds to m2

FP ' Λ in contrast to the other two-parameter
models, which leads to substantially different observational constraints on the parameters. The
best-fit values obtained from the combined data sets SN+BAO+CMB are summarised in Table 6.2.
Selected one- and two-dimensional posterior distributions are presented in Fig. 6.2.

In contrast to the previous model, the data sets are compatible because the contour regions are
overlapping. Quantitatively, this is reflected by a likelihood with χ2 ' 694.7 that coincides with
the value in the ΛCDM model. That means that the model fits the cosmological data as good
as the standard model. However, the higher number of free parameters is penalised by a higher
BIC with ∆BIC = +6.6 statistically disfavouring the β0β1–model. Nonetheless in the following
we discuss the results on the cosmological parameters.

While the individual data sets are not constraining, the combined data sets stabilise the pa-
rameter values. The universe is spatially flat within 95% c.l. and the Hubble parameter is favoured
to be H0 = (68.8± 0.2)km/s

Mpc . The current dark energy fraction coincides with the effective cosmo-
logical constant, Ωde0 ' ΩΛ, such that the model is already in its de Sitter phase at present times.
Summarising, all parameter values agree with the standard values implying that the β0β1–model
is close to its GR-limit.

In the case of the β0β1–model, only two out of the three physical parameters are independent.
The value of the effective cosmological constant is stabilised as described above, such that only
one parameter remains. The spin-2 mass is constrained to be mFP = (1.33 ± 0.02) × 10−32 eV,
which implies a value for the coupling of ᾱ . 0.2 given the value of Λ.

β1βn–models

The remaining two-parameter models share the property that the GR-limit ᾱ� 1 corresponds to
the parametric limit m2

FP � Λ. This allows to discuss the β1βn–models with n = 2, 3, 4 together.
The constraints on the parameters are very similar as summarised in Table 6.2. Selected one- and
two-dimensional posteriors are presented in Fig. 6.2b.

The models fit the cosmological data as well as the standard model because all models have the
same maximal likelihood with χ2 = 694.7. The β1βn–model have one additional free parameter as
compared to the standard model, which is reflected by the higher BIC value with ∆BIC ' +6.6.
Hence, these models are statistically disfavoured. This, however, is not the end of the story because
these models are self–accelerating and hence theoretically favoured over the standard model.

The combined data sets constrain the values of the cosmological parameters to be very close
to the standard model values as is summarised in Table 6.2.

As before these models have two free physical parameters. The effective cosmological constant
is stabilised to ΩΛ = 0.69±0.1 such that only one parameter remains. The spin-2 mass is bounded
only from below withmFP & 4.24×10−32 eV, which corresponds to an upper bound on the coupling
of ᾱ . 0.016. Apart from these limiting values, the physical parameters are approximately related
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Figure 6.2: The one- and two-dimensional posterior distributions with contours corresponding to
68% and 95% c.l. for the two-parameter models taken from [298].

according to

ᾱ2 ' 12
n

Λ
m2

FP
, (6.40)

in the limit m2
FP � Λ for the β1βn–models, which follows from combining Eqs. (4.15a), (4.18a)

and (4.21a). All these models are therefore approaching their GR-limits.

β0β1βn–models

We move on to the three-parameter models and start with those models that allow for non-
vanishing vacuum energy, i.e. models that include the parameter β0. Since the resulting con-
straints are very similar, we discuss all three models together. The best-fit values are summarised
in Table 6.3.

The data sets are compatible for all the β0β1βn–models with n = 2, 3, 4 as can be seen
from Figs. 6.3a, 6.3b and 6.4a. The maximum likelihood is the same as for the standard model
with χ2 = 694.7. That means that these models fit the cosmological data as good as the standard
model. The two additional free parameters of these models are penalised by a higher BIC with
∆BIC ' +11.6. These models are therefore statistically disfavoured compared to the standard
model.

At the point of maximum likelihood, the cosmological parameters assume the same values as
for the standard model. In particular we have Ωde0 ' ΩΛ at the level of the errors. Therefore, the
effect of dynamical dark energy reduces to a cosmological constant at present times.

In contrast to the previous models, all three physical parameters are independent. In the first
three panels of Fig. 6.6 the two-dimensional posterior distributions at 95% c.l. are presented for
the physical parameters ᾱ and mFP. The figures indicate that a large portion of the physical
parameter space is consistent with cosmological observations. In particular, for small values of the
coupling ᾱ, the spin-2 mass mFP is allowed to take large values.

The upper right region is excluded by our statistical analysis. To understand the reason, we
study the value of β0 in that region. The relations between the physical parameters and β0, as
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Model β0β1β4 β0β1β3 β0β1β2

ᾱ < 0.14 < 0.03 < 0.06
mFP [eV] > 1.01× 10−32 > 1.17× 10−32 > 1.08× 10−32

Λ [10−64eV2] 1.77+0.10
−0.09 1.77± 0.09 1.77+0.10

−0.09

H0 [km/s
Mpc ] 68.8+1.5

−1.3 68.9+1.4
−1.3 68.9+1.4

−1.3

ΩΛ 0.69+0.02
−0.01 0.69+0.02

−0.01 0.69+0.03
−0.01

Ωm0 0.31± 0.01 0.30± 0.01 0.31± 0.01
Ωde0 0.69± 0.01 0.69± 0.01 0.69± 0.01
Ωk0 0.002± 0.004 0.002+0.004

−0.003 0.002+0.006
−0.001

Ωb0h
2 0.0224± 0.0003 0.0224± 0.0003 0.0224± 0.0003

χ2 694.7 694.7 694.7
∆BIC +11.6 +11.6 +11.6

Table 6.3: The best-fit values and errors at 68% c.l. from SN+CMB+BAO for the three-parameter
models that allow for non-zero vacuum energy in the physical sector.

Model β1β2β3 β1β2β4 β1β3β4

ᾱ < 0.004 < 0.01 < 0.002
mFP [eV] > 1.10× 10−32 > 1.15× 10−32 > 1.10× 10−32

Λ [10−64eV2] 1.78+0.09
−0.1 1.77± 0.09 1.77+0.10

−0.09

H0 [km/s
Mpc ] 68.9+1.4

−1.3 69.0+1.3
−1.2 68.9+1.4

−1.3

ΩΛ 0.69± 0.01 0.69± 0.01 0.69± 0.01
Ωm0 0.31± 0.01 0.30± 0.01 0.31± 0.01
Ωde0 0.69± 0.01 0.69± 0.01 0.69± 0.01
Ωk0 0.002± 0.004 0.0023+0.0003

−0.004 0.002± 0.003
Ωb0h

2 0.0224± 0.0003 0.0224± 0.0003 0.0224± 0.0003
χ2 694.7 694.7 694.7
∆BIC +11.6 +11.6 +11.6

Table 6.4: The best-fit values and errors at 68% c.l. from SN+CMB+BAO for the self-accelerating
three-parameter models.
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Figure 6.3: Selected one- and two-dimensional posteriors corresponding to 68% and 95% c.l. for
the three-parameter models taken from [298].

presented in Section 4.3.3, can be summarised as

β0 = −12
n

ᾱ2

1 + ᾱ2m
2
FP +

[
1 + (24−n − 1)ᾱ2]Λ (6.41)

for the β0β1βn–model. So for a spin-2 mass sufficiently larger than the cosmological constant, we
have that β0 < 0. That means, data does not accept large negative values of β0. In other words,
ρde is allowed to change its sign only at sufficiently large redshifts. For a large spin-2 mass this
can be achieved by a correspondingly small value of ᾱ.

The shape of the contour corresponding to 95% c.l. can be cast into two regimes. For small
spin-2 masses, the constraint on the coupling becomes independent of the spin-2 mass. Here, the
coupling is constrained to be ᾱ . O(0.01− 0.1), see Table 6.3 for the exact values for each model.
For larger spin-2 masses, the coupling ᾱ must be sufficiently small. To quantify the relation, we
perform a polynomial fit to the contour line of the form

ᾱc1mFP = 10−c2 eV . (6.42)

The results on the constants c1 and c2 for the three-parameter models can be found in Table 6.5.

β1β2β3– and β1βnβ4–models

We finish with the results for the self-accelerating three-parameter models. The constraints on
the parameters are very similar among these models and summarised in Table 6.4.

From Figs. 6.4b, 6.5a and 6.5b we can infer that the cosmological data sets are compatible for all
three models. The maximum likelihoods with a value of χ2 = 694.7 indicate that these models fit
the data as good as the standard model. Nonetheless, these models are statistically disfavoured due
to the additional free parameters, as reflected by the higher BIC with ∆BIC ' +11.6. However,
these models are theoretically preferred because these accomodate late-time acceleration without
vacuum energy.

The cosmological parameters are preferred to take values very close to the standard values
as summarised in Table 6.4. In particular we have Ωde0 ' ΩΛ. This implies that the effect of
dynamical dark energy reduces to a cosmological constant at present times.
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Figure 6.4: Selected one- and two-dimensional posteriors corresponding to 68% and 95% c.l. for
the three-parameter models taken from [298].
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Figure 6.5: Selected one- and two-dimensional posteriors corresponding to 68% and 95% c.l. for
the three-parameter models taken from [298].
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Model c1 c2

β0β1β2 0.964± 0.006 24.6± 0.2
β0β1β3 1.117± 0.006 32.9± 0.2
β0β1β4 0.97± 0.01 23.6± 0.4
β1β2β3 1.047± 0.007 35.5± 0.2
β1β2β4 1.021± 0.006 32.7± 0.2
β1β3β4 0.959± 0.008 32.7± 0.3

Table 6.5: The best-fit values and errors corresponding to 68% c.l. of the coefficients appearing
in the fitting formula (6.42).

The constraints at 95% c.l. on the physical parameters ᾱ and mFP are visualised in the last
three panels of Fig. 6.6, which unveil that a large portion of the physical parameter space is
compatible with cosmological observations. In particular, even a large spin-2 mass is consistent
with data, if the coupling ᾱ is sufficiently small. As before, the upper right region is excluded.
The reason in the case of the self-accelerating models are the theoretical consistency conditions,
which we discussed in Section 4.3.3 and used as theoretical priors in our statistical analysis.

The contour lines corresponding to 95% c.l. in the ᾱ −mFP-plane has a similar shape as for
the previous three-parameter models. To quantify the constraints on the physical parameters, we
perform a polynomial fit as in Eq. (6.42). The results on the parameters are presented in Table 6.5.

Summary

We confronted all submodels of bimetric theory with up to three free interaction parameters
βn with cosmological observations. Utilising the physical parametrisation, which we introduced
in Chapter 4, we computed constraints on the physical parameters ᾱ and mFP from cosmological
data for the first time.

All models (except the β1–model) fit the data as good as the standard ΛCDM model. The
cosmological parameters are preferred to take values that coincide with the standard model values
given the current precision. In particular, data favours a spatially flat universe also within bimetric
cosmology. In contrast to the two- and three-parameter models, the data sets appear to be
inconsistent for the β1–model, which is reflected by a larger value of χ2 at the best-fit point when
combining the data sets. This statistically rules out the β1–model.

The constraints on the physical parameters ᾱ and mFP depend on the bimetric model. As
a summary, the coupling is forced to be sufficiently small, ᾱ � O(0.1), which means that data
pushes the models towards their GR limits, but not entirely. The spin-2 mass mFP is allowed to
take arbitrarily large values, if the coupling is sufficiently small. Only for the β0β1–model, the
spin-2 mass is constrained to be of the order of H0.

As we review now, our results are in agreement with earlier results, whenever comparable.
In [216] two classes of bimetric models were tested against cosmological observations: a model
with β1 = 0 for ᾱ = 1 and for ᾱ = 3 as well as a general model with c = 1 and the additional a
priori assumption ΩΛ = 0. The former model does not give rise to a viable finite branch and is
hence excluded from our analysis. The latter model is devoid of an effective cosmological constant
and hence excluded by our analysis by many standard deviations. Unfortunately, the goodness of
fit is not discussed in [216], so a comparison to our results and to the ΛCDM model is not possible.

Next, all bimetric models were tested with cosmological data in [263] in the parameter region
where βn ∼ H2

0 and assuming Ωk0 = 0. The resulting preferred values for the cosmological
parameters are close the standard values given the level of accuracy. Since this reference took into
account both the finite and infinite branch solution, it is not clear to which branch the best-fit
point corresponds.
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Figure 6.6: 95% c.l. inclusion plots for the three-parameter models from SN+CMB+BAO.
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One- and two-parameter models, rescaled so that α = 1, were tested against SN1a data in [265],
distinguishing between the finite and infinite branch solution. On the finite branch solutions the
statistically favoured values of the energy density parameters are close to the standard values given
the accuracy, while the interaction parameters are of the order βn ∼ H2

0 .
Next, [337] tested the β1– and the β1β2–models. They also find that the β1–model fits the

cosmological data poorly, while the β1β2–model is driven into its GR-limit, resulting in statisti-
cally favoured values of the cosmological parameters close to the standard value. The β0β1– and
again the β1β2–model were tested in [296] with an emphasise on the Hubble tension. They find
that both models are driven into their GR-limits. Both these studies allow for arbitrary values
of the interaction parameters, but the resulting constraints on the physical parameters are not
straightforward.

Finally, [297] tested the β1β2β3–model against cosmological data6 under the assumption of
βn ∼ H2

0 . They allowed for non-zero spatial curvature for the first time in the context of bimetric
cosmology. In agreement with our results, they find a clear preference for a spatially flat universe.
Also the other cosmological parameters are favoured to take standard values on the level of present
accuracy. Under the aforementioned assumption, also the corresponding observational constraints
on the spin-2 mass are inferred.

While the aforementioned investigations and results are certainly consistent and interesting,
the constraints on the bimetric parameters lack comparability. Our analysis does not only provide
such comparability, but also represents the hitherto most comprehensive observational test of
bimetric background cosmology of models with up to three parameters because we test the entire
parameter space. In particular, our results represent the first thorough cosmological constraints
on the spin-2 mass mFP and its coupling constant ᾱ. This explicitly demonstrates that the entire
theoretically consistent physical parameter space yields a good fit to the observed data, even if
the spin-2 field is very heavy.

As next step, we derive constraints from local tests of gravity on these physical parameters.
In Section 6.3 we will combine the various observational and theoretical constraints on the physical
parameters.

6.2 Local tests
Modifications of the gravitational interactions are also manifest on other than cosmological scales.
In this section, we put the observational limits inferred from local tests of gravity in the framework
of bimetric theory. By local tests of gravity we mean tests of the gravitational interactions from
laboratory and solar system scales to galactic and galaxy cluster scales. In our analysis, we
use constraints from tests of the gravitational potential and from tests of the scalar curvature,
which we discuss individually in the following. Reviews on current constraints and experimental
methodologies can be found in [343–348], which form the basis of the following review.

6.2.1 Tests of the gravitational potential
We start with tests of the gravitational potential as felt by massive test bodies. Modifications are
easiest understood for a spherically symmetric potential, as induced by the Sun or the Earth as
central object. We provide some detail on how to obtain the constraint lines for the individual
tests later.

In GR, the gravitational force is mediated by massless gravitons. This leads to the following
gravitational potential

ΦGR(r) = − 1
M2

P

1
r

(6.43)

induced by a point-like source and felt by a massive test body.
Modified gravity generically gives rise to a fifth force, which modifies the gravitational poten-

tial. These lead to an additional Yukawa-type contribution to the gravitational potential, if the
6In addition to SN1a, BAOs, and CMB they also included quasar data.
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Figure 6.7: Exclusion plot at 95% c.l. from local tests of gravity as reviewed in the current section
taken from [298]. Tests of the gravitational potential lead to the black lines and tests of the scalar
curvature lead to the blue lines.

additional gravitational degrees of freedom are massive. The effect of the fifth force can then be
parametrised as

ΦY(r) = − 1
M2

P

(
1
r

+ ξ
e−r/λ

r

)
, (6.44)

which is known as Yukawa parametrisation. Here, ξ parametrises the coupling of the fifth force
mediator to matter with Compton wavelength λ. Since bimetric theory gives rise to additional
massive degrees of freedom, this parametrisation is appropriate here. Comparing the modified
gravitational potential in the Yukawa parametrisation (6.44) to the linearised gravitational poten-
tial in bimetric theory (3.46) unveils the following parameter relation:

ξ = 4ᾱ2/3 , λ = 1/mFP . (6.45)

Current constraints on the Yukawa parameters, or equivalently on ᾱ and mFP are summarised
in Fig. 6.7. In the following, we discuss how to obtain the individual constraint lines. Note that
the constraints are valid only without Vainshtein screening. In Section 6.2.3 we will implement
the Vainshtein mechanism.

Planetary constraints

The most stringent planetary constraints are derived from measurements of the precession of the
orbit of the planets moving around the Sun. The contribution to the precession induced by the
Yukawa potential is given by [343]

δφP ' πξ (aP /λ)2
e−aP /λ , (6.46)

where aP is the semi-major axis of the orbit of planet P . In Fig. 6.7, the limits on ᾱ are present
for Mercury P = ' and Mars P = ♂, where the observational data is [383]

δφ' = (−80± 210)× 10−9 , a' = 5.79× 1012 cm ,

δφ♂ = (−130± 180)× 10−9 , a♂ = 2.28× 1013 cm ,
(6.47)

respectively.
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Constraints from Lunar-Laser-Ranging

The most stringent constraint comes from measurements of the anomalous precession δφL of the
Moon’s orbit about the Earth. So we can use the same formula (6.46) for the parameters of the
Moon’s orbit [344]

δφL < 1.6× 1011 , aL = 3.844× 1010 cm . (6.48)

This observational data leads to the LLR curve in Fig. 6.7.

Constraints from the LAGEOS satellite

Another important class of constraints comes form measurements of the gravitational potential at
the hight of the LAGEOS satellite, which orbits the Earth [384]. Let gterr(r) and gsat(r) denote the
gravitational acceleration induced by the Earth at the distance r, extrapolated from measurements
at the surface of the Earth and at the hight of the LAGEOS satellite, respectively. We introduce
the quantity

η⊕ = gterr(R⊕)− gsat(R⊕)
gterr(R⊕) , (6.49)

which measures the mismatch between both extrapolations when evaluated at the Earth’s radius
R⊕. The observational data is [384]

η⊕ = (−2± 5)× 10−7 ,

R⊕ = (6.3781362± 0.0000001)× 108 cm ,

rsat = 1.2271× 109 cm ,

R2
⊕gsat(R⊕) = (3.98600436± 0.00000002)× 1014 m3 s−2

(6.50)

where rsat is the averaged distance between the Earth and the satellite.
Assuming the Yukawa parametrisation for the gravitational potential, the theoretical prediction

for η⊕ can be computed to be [343]

η⊕ = ξ
R2
⊕F⊕(R⊕, λ)− r2

satF⊕(rsat, λ)
R2
⊕gsat(R⊕) , (6.51)

The gravitational force is given by [343]

F⊕(r, λ) = M⊕
8πM2

P
(1 + r/λ)e

−r/λ

r2 Φs(R⊕/λ) , (6.52)

where the form factor
Φs(x) = 3[(x cosh(x)− sinh(x)]/x3 , (6.53)

takes into account that the Earth is an extended, approximately spherical object.
Another constraint can be obtained by comparing the gravitational potential as measured at

the location of the LAGEOS satellite with the gravitational potential as measured at the location
of the Moon. In this case, we introduce the quantity

ηL =
R2
⊕gsat(R⊕)− r2

Lgmoon(rL)
[R2
⊕gsat(R⊕) + r2

Lgmoon(rL)]/2 , (6.54)

which turns out to be independent of the Earth’s mass. Here, r2
Lgmoon(rL) is related to the

gravitational acceleration measured at the distance of the Moon’s orbit rL. Note that the quantity
r2g(r) is independent of radius r in GR. The measured data is given by [384,385]

ηL = (−1.8± 1.6)× 10−8 , rL ' (3.88401± 0.0001)× 1010 cm . (6.55)
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Starting from the Yukawa parametrisation of the gravitational potential, the theoretical prediction
can be obtained to be [343]

ηL = ξ
(1 + rsat

λ )Φs(R⊕
λ )e−

rsat
λ − (1 + rL

λ )Φs(R⊕
λ )Φs(RL

λ )e−
rL
λ

1− ξ
[
(1 + rsat

λ )Φs(R⊕
λ )e−

rsat
λ + (1 + rL

λ )Φs(R⊕
λ )Φs(RL

λ )e−
rL
λ

] , (6.56)

where RL ' 1.738 × 108 cm denotes the Moon’s averaged radius and the form factor Φs(RL/λ)
takes into account that the Moon has finite size.

Confronting the theoretical predictions Eqs. (6.51) and (6.56) with the observational data Eqs. (6.50)
and (6.55) defines the two LAGEOS constraint lines in Fig. 6.7.

Geophysical constraints

Putting precise geophysical constraints is more involved because the composition of the Earth
and the shape of the surface play substantial roles. Here, we use the constraints implied by two
different experiments at geophysical scales.

Tower gravity experiments measure the gravitational acceleration g(z) as a function of height
z up a tall tower. One measures the gravitational acceleration g0 around the bottom of the tower,
which allows to extrapolate to the gravitational potential at the height z. This result is to be
compared with the gravitational acceleration measured at the top of the tower gt, which can be
extrapolated to the height z. Given the Yukawa parametrisation, the difference between both
accelerations evaluated at height z is given by [343]

δg(z) ≡ g0(z)− gt(z) = 2πρGξλ(e−z/λ − 1) (6.57)

for a spherical, non-rotating Earth. Here, ρ = 2670 kg m−3 is the mean terrain density and
G = 6.67408× 10−11 m3 kg−1 s−2 the measured gravitational constant at the Earth’s surface. The
most-stringent constraint was obtained at the BREN tower at Jackass Flats, Nevada [386, 387].
At the maximum height of z = 454.86 m the anomalous acceleration was constrained as δg(z) =
(−60± 95)× 10−8 m s−2.

The next constraint that we use comes from lake experiments, where the change in gravity
due to the changing water levels is measured. Given, the Yukawa parametrisation, the effective
gravitational constant at distance r can be written as

G(r) = G∞
[
1 + ξ(1 + r/λ)e−r/λ

]
, (6.58)

Here, G∞ is the effective gravitational constant at infinite distance, i.e. in the context of bimetric
theory G∞ = 1/(8πM2

P). Let β = G(r2)/G(r1) the ratio between the measured gravitational
constant at the two effective interaction distances r2 and r1. The associated constraint line can
be written as [388]

ξ(λ) = β − 1
(1 + r2/λ)e−r2/λ − β(1 + r1/λ)e−r1/λ

. (6.59)

We use the result from the experiment at the Gigerwald lake [389,390]. At an effective interaction
distance of r2 = 88 m, the value G(r2) = (6.678± 0.007)× 10−11 m3 kg−1 s−2 was obtained. This
result is compared to the laboratory value G(r1) = (6.6726± 0.0005)× 10−11 m3 kg−1 s−2, which
was obtained at an effective distance of r1 = 5 cm [391].

The resulting constraints on the parameters ᾱ and mFP are depicted in Fig. 6.7, as indicated
by the geophysical lines.

Laboratory constraints

Finally, we present constraints from experiments in the laboratory. Here, the experimental setups
are much more involved as compared to the previous tests and beyond the scope of the present
discussion. Therefore, we limit our presentation to quoting the constraints defining functions.
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λ (µm) upper limit on ξ
4 1.5× 108

6 2.0× 106

10 5.1× 104

18 3.7× 103

34 8.4× 102

66 4.4× 102

130 3.6× 102

258 3.3× 102

Table 6.6: Upper limit on the Yukawa parameter ξ corresponding to 95% c.l. for different inter-
action scales λ from the Stanford experiment.

We start with the torsion balance experiment of Hoskins et al. [392]. The limit on the Yukawa
parameter ξ is given by

ξ(λ) = δHoskins

β(r5/λ)(1 + δHoskins)− β(r105/λ) , (6.60)

where δHoskins = (1.2± 7× 10−4) is determined experimentally and the distances r5 = (4.7901±
0.0004) cm and r105 = (105.016 ± 0.008) cm are characteristic to the experimental setup. The
function appearing in the constraint equation is given by β(x) = (1 + x)e−x.

Next, we mention the constraints from the Stanford experiment [393], which provides the most
stringent constraints on the Yukawa parameters at the O(µm) scale. The experimental bounds
are presented in Table 6.6 as reported in [393]. We extrapolate between the individual data points
to produce the constraint line in Fig. 6.7.

For laboratory experiments on even smaller length scales, the constraint lines can be obtained
using an approximate framework, which suffices for our purposes. The upper limit on the Yukawa
coupling can approximately be written as [348]

ξ(λ) = ξexp e
rexp/λ , (6.61)

where ξexp is the measured upper limit on the Yukawa coupling at the experimental length scale
rexp. In Table 6.7, we present the approximate experimental data for several torsion balance and
Casimir experiments at O(nm−mm) scales as summarised in [348].

All these laboratory constraints are visualised in Fig. 6.7, for which we transformed from the
Yukawa parameters ξ and λ to the physical parameters ᾱ and mFP according to Eq. (6.45).

Let us point towards the recently obtained limits on the Yukawa parameters obtained by the
MICROSCOPE experiment [404]. The most stringent bound on the Yukawa coupling is of the
order ξ . 104 · 106 for a mass range 10−6 eV . mFP . 10−2 eV. While this constraint is many
orders of magnitude weaker than the aforementioned ones, it demonstrates the ongoing efforts to
test gravity on laboratory scales.

6.2.2 Tests of the scalar curvature
The aforementioned bounds on the gravitational potential are not restrictive in the region of small
spin-2 mass mFP. However, deviations from Newtonian gravity are strongly constrained also in
this parameter region by tests of the scalar curvature. Since the scalar curvature dictates the
motion of massless test bodies, it can be tested by measurements of the deflection and time delay
of light rays passing by a massive object.
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Experiment rexp ξexp

Eöt–Wash [394] 0.5 mm 2× 10−3

Lamoreaux [395] 5µm 2× 108

Sushkov [396] 1µm 2× 109

Decca [397,398] 100 nm 1013

Ederth [399,400] 20 nm 5× 1017

Mohideen [401] 10 nm 1019

van der Waals [402,403] 1 nm 1030

Table 6.7: Approximate constraints on Yukawa parameters from torsion balance and Casimir
experiments at O(10−4 . . . 10−9) m scales.

It is common to introduce the gravitational slip parameter γ, which measures the ratio between
the gravitational potentials as felt by massive and massless particles. In GR, the parameter is
exactly unity. In bimetric theory, the gravitational slip parameter is given by [338]

γ = 3 + 2ᾱ2e−mFP r

3 + 4ᾱ2e−mFP r
(6.62)

obtained utilising the Parameterised–Post–Newtonian (PPN) formalism [405] such that the ex-
pression is valid outside the Vainshtein radius. A review on experimental bounds on γ can be
found, e.g. in [406].

The gravitational slip parameter can obtained from the deflection of light rays passing by
a massive object. Here, we use a constraint obtained on galactic scales. Gravitational lensing
data due to elliptical galaxies as presented by the Sloan Lens ACS (SLACS) [407–409] allows to
constrain the gravitational slip parameter as γ−1 = −0.02±0.07 at 68% c.l. [410]. To compute an
approximate constraint line, we use that the deflected light rays effectively probe scales similar to
the galactic radii of r ' 5 kpc ' 1.54× 1020 m. These values lead to the blue line labeled SLACS
in Fig. 6.7, which is in agreement with the more detailed results of [330], which were obtained in
the context of BT.

The most stringent bound is obtained from measurements of the time delay of light signals,
which were sent by the Cassini spacecraft to the Earth and closely passed by the Sun. The
gravitational slip parameter was constrained to be γ − 1 = (2.1 ± 2.3) × 10−5 [411]. The light
rays passed by the Sun at a distance of ∼ 1.6 solar radii, so the effective interaction distance is
r ' 1.11× 109 m. With these values, we obtain the blue Cassini constraint line in Fig. 6.7.

6.2.3 Implementing Vainshtein screening
All the previously discussed observational constraints apply to the gravitational potential in the
Yukawa parametrisation, which in terms of the bimetric parameters is given by

Φ(r) = − 1
M2

P

(
1
r

+ 4ᾱ2

3
e−mFP r

r

)
, (6.63)

see also Eq. (3.35). In bimetric theory, this expression describes the gravitational potential induced
by a compact object outside the Vainshtein radius, where the linear approximation is well-defined.
Therefore, the aforementioned observational constraints are not applicable in regimes where the
Vainshtein screening is active. In this section, we take into account the Vainshtein mechanism.

We discussed the Vainshtein mechanism in detail in Section 3.2. We found that the linear
approximation is valid on scales larger than the Vainshtein radius given by rV = (rS/m

2
FP)1/3. On

smaller scales r � rV, deviations from GR are suppressed, such that the observational constraints



98 6. Constraining bimetric theory

�������

�����

���������

���

������

��������

����

-�� -�� -�� -�� -�� -�

-�

-�

-�

�

�

Figure 6.8: Exclusion plot from tests of the gravitational potential and scalar curvature at 95% c.l.
phenomenologically taking into account the Vainshtein mechanism. It is assumed that screening
is active in the entire parameter space.

on the parameters ᾱ and mFP are weaker. To quantify the effect of Vainshtein screening on the
observational constraints, we make a phenomenological ansatz inspired by [339] and replace the
coupling ᾱ by the distance-dependent function

ᾱeff(r) = ᾱ

2

[
1 + tanh

(
r − rV

∆r

)]
. (6.64)

The function is chosen such that ᾱeff(r � rV) ' ᾱ and ᾱeff(r � rV) ' 0. The parameter
∆r quantifies the length scale of transition from the linear to the nonlinear regime. Using this
phenomenological ansatz, we can write the gravitational potential (3.46) valid inside and outside
the Vainshtein sphere in the following approximative way

Φ(r) = − 1
(1 + ᾱ2

eff)M2
g

(
1
r

+ 4ᾱ2
eff

3
e−mFP r

r

)
. (6.65)

The gravitational slip parameter (6.62) valid inside and outside the Vainshtein sphere can be
approximated as

γ = 3 + 2ᾱ2
effe
−mFP r

3 + 4ᾱ2
effe
−mFP r

(6.66)

We emphasise that this parametrisation is a vast simplification compared to solving the full non-
linear equations of motion. However, this approximation is sufficient for our current discussion.

In Fig. 6.8, we present the constraints on the parameter ᾱ andmFP using the phenomenological
ansätze in Eqs. (6.65) and (6.66) to implement Vainshtein screening and assuming that Vainshtein
screening is active in the entire parameter space. To compute the Vainshtein radii corresponding
to each experiment, we use the mass of the central object inducing the gravitational potential and
scalar curvature. For the SLACS constraint, we use that the typical mass of an elliptical galaxy is
∼ 1011M�. For the Cassini and planetary constraints, the Sun is the central object with massM�.
The Earth with mass M⊕ serves as central object in case of the LLR, LAGEOS and geophysical
constrains. In all cases, we assume ∆r = 0.1rV for the transition length scale.

The Vainshtein mechanism is most important for small spin-2 masses, which is also reflected
in Fig. 6.8. The constraints on ᾱ are substantially weaker or even absent for small spin-2 masses.
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Figure 6.9: Exclusion plot from the theoretical conditions ensuring a working Vainshtein mecha-
nism in the β1β2β3–model taken from [298]. The conditions are violated in the shaded regions.
Vainshtein screening is active in the region left white.

Further, the Vainshtein mechanism is most efficient if the mass of the central object is large. On
the other hand, the constraints coming from experiments, where the Earth is the central object,
are unaffected by Vainshtein screening. To provide a numerical example, we compute the critical
spin-2 mass at which the Earth’s Vainshtein radius equals the Earth’s radius, i.e. rV = R⊕. Using
the expression for the Vainshtein radius (3.36), we obtain the critical value of

mFP =
(

M

M2
gR

2
⊕

)1/2
' 1.28× 10−17 eV . (6.67)

So for larger spin-2 masses mFP & 1.28× 10−17 eV, the Earth’s Vainshtein radius is smaller than
its own radius. Therefore, the LAGEOS and geophysical constraints are not affected by Vainshtein
screening, as can be seen in Fig. 6.8.

In addition, we did not take into account Vainshtein screening for laboratory constraints
in Fig. 6.8 for the following reason. The experimental setups are not spherically symmetric,
but have less amount of symmetry. In the context of Galileons, it has been found that Vainshtein
screening is weaker around cylindrical objects and completely absent for planar sources [412]. We
expect a similar shape dependence also within bimetric theory, although the explicit demonstration
is still pending.

As we discussed in Section 3.2, Vainshtein screening is active only if the conditions (3.44)
are satisfied. In particular, these conditions require the interaction parameters to satisfy β2 < 0
and β3 > 0. Therefore, the β1β2β3–model is the only bimetric model with three or less free
interaction parameters βn that can support Vainshtein screening and gives rise to a viable finite
branch solution. The other three-parameter models and all one- and two-parameter models do
not give rise to Vainshtein screening. That means that the observational constraints presented
in Fig. 6.7 apply to these models.

In case of the β1β2β3–model, we need to identify the region of the physical parameter space,
which satisfies the conditions (3.44). In order to do so, we use our physical parametrisation (4.36)
to express the interaction parameters βn in terms of the physical parameters ᾱ and mFP. This
procedure results in lengthy analytic expressions, which are not very illuminating.

Instead of presenting the analytic expressions, we visualise the corresponding constraints
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Figure 6.10: Exclusion plot from local constraints for the β1β2β3-model including the Vainshtein
mechanism. The grey shaded region is excluded at 95% c.l. The region below the yellow dashed
line supports Vainshtein screening, weakening the Cassini constraint.

in Fig. 6.9. The coloured regions violate the bounds presented in Eq. (3.44). In particular,
the bound (3.44a) is violated in the purple shaded region, the bound (3.44b) is violated in the
green shaded region, and the bound (3.44c) is violated in the yellow shaded region. The grey
shaded region violates the Higuchi bound. Summarising, only the region of the parameter space
that is left unshaded supports Vainshtein screening.

The most stringent constraint is represented by the yellow shaded region. Its lower boundary
can be well approximated by

ᾱ2 <
Λ

16m2
FP

, (6.68)

except close to the Higuchi bound.

We have identified the region of the physical parameter space of the β1β2β3–model that gives
rise to a working Vainshtein mechanism. As next step, we compare the theoretical conditions
ensuring Vainshtein screening with with the observational constraints from local tests of gravity.
To do so, we use the phenomenological ansatz (6.64) to compute the constraints on ᾱ andmFP from
the observational data in those regions of the physical parameter space, which support Vainshtein
screening. In the regions without Vainshtein screening, the observational constraints are obtained
as before.

This procedure leads to the exclusion plot presented in Fig. 6.10, where the grey shaded region
is excluded at 95% c.l. The boundary of the region, which gives rise to a working Vainshtein
mechanism, is indicated by the yellow dashed line. The Vainshtein mechanism is active in the
entire region below that line. The region above that line does not give rise to Vainshtein screening.
So compared to the constraints on the other models, the Vainshtein mechanism enlarges the
observationally consistent parameters space. In particular for spin-2 masses close to the Higuchi
bound, the coupling is allowed to take values as large as O(0.1).
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Figure 6.11: Exclusion plot for the two-parameter models combining the 95% c.l. constraints from
local tests of gravity (grey shaded region) and cosmological observations (region not enclosed by
blue line) taken from [298].

6.3 Combining cosmological and local constraints
In the previous sections, we identified the regions of the parameter space in terms of ᾱ and
mFP that are either compatible with cosmological observations or compatible with local tests
of gravity, also taking into account Vainshtein screening. Now we identify those regions of the
parameter space that are compatible with both local and cosmological bounds. Note that in
contrast to Section 6.1.5, in this section we present the constraints on the physical parameters as
exclusion plots. In addition, we zoom into a subregion of the full physical parameter space for
better visibility.

We start with the β1–model as the simplest example, although this model is statistically
strongly disfavoured by cosmological observations alone. Cosmological data constrains the spin-2
mass to mFP = (1.82 ± 0.02) × 10−32 eV. The coupling is not a free parameter, but fixed by the
equations of motion (4.10) as ᾱ = 1/

√
3 ' 0.58. In this parameter region, the most stringent

local bound comes from the Cassini satellite, which constrains the coupling as ᾱ < 1.73 × 10−3

at 95% c.l., as follows from Eq. (6.62). This bound is in conflict with the theoretical prediction
by many standard deviations. So combining local and cosmological bounds statistically disfavours
the β1–model even further.

In the context of the β0β1–model, the spin-2 mass is constrained as mFP = (1.33 ± 0.02) ×
10−32 eV by cosmological data. This leads to an upper limit on the coupling of ᾱ < 0.2 at 68% c.l.
In the same parameter region, the most stringent local bound comes from the Cassini spacecraft,
which constrains the coupling to ᾱ < 1.73 × 10−3 at 95% c.l., which is a stronger bound than
the one inferred from cosmological data. The combined constraints are presented in the left panel
of Fig. 6.11. The grey shaded region is excluded by local tests of gravity and the region not enclosed
by the blue contour line is excluded by cosmological observations, both at 95% c.l. Summarising,
the bound on mFP is unaltered, while local tests strengthen the bound on ᾱ as compared to
cosmological tests.

Moving on to the β1βn–models with n = 2, 3, 4, we present the local and cosmological con-
straints on the physical parameters in the right panel of Fig. 6.11 for the representative β1β3–
model. As before, the grey shaded region is excluded by local tests of gravity and the region not
enclosed by the blue contour line is excluded by cosmological data. The constraints are exactly
the same for the other two-parameter models β1β2 and β1β4 at the level of current accuracy. For
most parts of the parameter space, the cosmological constraints are the most stringent ones. For
small spin-2 masses mFP, the aforementioned constraint from the Cassini spacecraft is relevant,
which forces the coupling to be ᾱ < 1.73× 10−3 at 95% c.l. This bound translates into a stronger
lower limit on the spin-2 mass due to the parameter relations Eqs. (4.15a), (4.18a) and (4.21a)
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of mFP > 1.85 × 10−30 eV at 95% c.l. With these limiting values and given the best-fit value
for the cosmological constant Λ, the parameters are approximately related as ᾱ2m2

FP ' (12/n)Λ,
see Eq. (6.40).

Coming to three-parameter models, we first discuss those models which allow for non-vanishing
vacuum energy as parametrised by β0. The combined exclusion plots are presented in the first
three panels of Fig. 6.12. The grey shaded region is excluded due to local tests of gravity and
the red shaded region is excluded due to the theoretical consistency conditions. In addition, the
region above the blue contour line is excluded by cosmological observations.

First, we observe that local tests of gravity have more constraining power than the theoret-
ical consistency conditions for all three models. For small spin-2 masses, the constraint due to
Cassini is stronger than the cosmological constraints on ᾱ. For larger spin-2 masses, i.e. where
the cosmological constraints on ᾱ and mFP can be approximated as in Eq. (6.42), the cosmological
constraints are stronger than the local ones. Summarising, large regions of the physical parameter
space are consistent with both local and cosmological tests of gravity. In particular, the cosmolog-
ically relevant parameter region automatically passes the most stringent local constraints, which
comes from LLR. The coupling is bounded from above as ᾱ < 1.73 × 10−3 at 95% c.l due to the
Cassini experiment.

We move to the self-accelerating three-parameter models, which have β0 = 0. The exclusion
plots according to the combined constraints are presented in the last three panels of Fig. 6.12.
As before, the grey shaded region is excluded by local tests of gravity. The red shaded region
is theoretically inconsistent. The region above the blue contour line is excluded by cosmological
observations. For the β1β2β3–model, the region that gives rise to Vainshtein screening is indicated
by the hatching.

Compared to the previous three-parameter models, the constraints from theoretical consistency
are much stronger than constrains from local tests in the case of self-accelerating models. Except
for a small region when the spin-2 mass is small, the parameter region excluded by local tests is
excluded by the much stronger theoretical consistency conditions. Except for a few wiggles, the
contour lines corresponding to 95% c.l. from cosmological tests coincide with the theoretical lines.
We used the theoretical consistency conditions as priors in our cosmological data analysis. So the
prior and posterior distributions are almost the same. This means that the cosmological data does
not substantially constrain the parameter ᾱ and mFP beyond the prior knowledge. Only for small
spin-2 masses, the bound on ᾱ from the statistical analysis is significantly stronger than the priors.
Here, the cosmological and local constraints on ᾱ are of the same order. For the β1β2β3–model,
the Vainshtein mechanism weakens the local constraints on ᾱ for small spin-2 masses. In this case,
the cosmological constraint is significantly stronger.

6.4 Discussion
Our proposed physical parametrisation enabled us to consistently confront BT with various theo-
retical and observational constraints for the first time in a unified framework. We surpassed both
prior fallacies that a viable background cosmology would requiremFP ∼ H0 and a viable perturba-
tive level would require mFP � H0. As such, we tested the entire theoretically consistent param-
eter space against observed data, generalising the previous analyses [216, 263, 265, 296, 297, 337],
but limiting to models with up to three free parameters. As we will summarise now, our obtained
constraints are the to date most stringent ones.

On the cosmological side, we tested BT against observed data from SN1a, BAOs, and the
CMB. The simple β1–model gives a poor fit to the observed data such that our statistical analysis
strongly disfavours this model. Contrarily, all two- and three-parameter models fit the observed
data as good as the standard cosmological model. The additional free parameter leads to a slight
disfavouring of the bimetric models compared to the cosmological standard model. However, the
self-accelerating models, which are characterised by β0 = 0 and are devoid of vacuum energy, have
a clear preference from a theoretical perspective. Therefore, the self-accelerating models of BT
are promising alternatives to the cosmological standard model.
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Figure 6.12: Exclusion plots for the three-parameter models combining the 95% c.l. constraints
from local tests of gravity (grey shaded region), theoretical conditions (red shaded region), and
cosmological observations (region above blue line) taken from [298]. The hatched region for the
β1β2β3–model indicates where Vainshtein screening is active.
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We identified the cosmologically relevant parameter space in terms of ᾱ and mFP. We demon-
strated that also a heavy spin-2 field is cosmologically consistent. In this case the coupling ᾱ must
be sufficiently small.

On the local side, we confronted BT with measurements of the gravitational potential and
the scalar curvature. These range from laboratory to extragalactic scales. Importantly, we also
implemented Vainshtein screening, which is relevant for the β1β2β3–model.

Without Vainshtein screening, the Yukawa parameters ᾱ and mFP are already tightly con-
strained. Assuming Vainshtein screening to be active within the entire bimetric parameter space
substantially enlarges the observationally consistent parameter space in the region of small spin-2
mass. However, the Vainshtein mechanism works only within a subregion of the parameter space
of the β1β2β3–model.

The most stringent bounds come from cosmological tests for a large region of the parameter
space. Only for small spin-2 mass the local constraint on ᾱ from Cassini is more restrictive than
the cosmological constraints. In summary we conclude that all these models are pushed towards
their GR-limits because the maximum allowed value for the coupling is ᾱ < 1.73 × 10−3 at 95%
c.l. Nonetheless, large regions of the physical parameter space pass both cosmological and local
tests of gravity. In addition, even the region of small coupling is phenomenologically interesting,
as we will discuss in Chapter 8.

There is but one exception from this conclusion: the β1β2β3–model. The Vainshtein mechanism
partly removes the Cassini constraint on ᾱ for small spin-2 mass. As we would like to argue now,
also the significantly stronger cosmological constraint might in fact be weakened. The reason is
that we expect this region to be fairly prior dominated. In fact, this region of the parameter space
was studied in greater detail in [299], where ᾱ . 0.4 at 90% c.l. was found as the upper limit
on the coupling. Therefore, we expect that the β1β2β3–model is not forced into its GR-limit, but
that the coupling can be as large as ᾱ ∼ O(0.1) if the mass is of the order mFP ∼ H0.

In fact, this is exactly the region of the parameter space, where the effect of phantom dark
energy on background cosmology is most prominent. As shown in [277], the Hubble tension is
alleviated for such parameter combinations.

Finally, let us review other existing constraints on the bimetric parameters. In the context
of gravitational waves, the aforementioned oscillations allow to constrain the parameters of the
massive spin-2 mode. Analysing the observed data from the two gravitational wave events [166]
leads to an upper limit on the coupling of ᾱ . 0.4 in the mass rangemFP ∼ 10−22 . . . 10−21 eV [324].
Outside this range, the coupling is not constrained at all.

Also observed data from galaxy rotation curves have been analysed in the context of BT
implementing in [339]. For a mass of the order mFP ∼ 10−30 . . . 10−20 eV, their analysis excludes
values for the coupling ᾱ much larger than unity

In summary, our combined analysis using observed data from cosmological and local tests of
gravity provides the to date most stringent constraints. Only the β1β2β3–model is not pushed into
its GR-limit and as such stands out as the most promising alternative to the standard cosmological
model. Next, we will leave the realm of late-time cosmology and study the effect of a massive
spin-2 field during early times.



Chapter 7

Higuchi bound on slow-roll
inflation and the swampland

The precedent analysis demonstrates that ghost-free bimetric theory provides a model of dark
energy and is observationally consistent for large parameter ranges. In particular, the spin-2 mass
is allowed to take values within the range only confined by the Higuchi bound and the cutoff of
the effective theory. In other words, the mass can range from the Hubble all the way up to the
Planck scale as long as the coupling ᾱ is sufficiently small for the theory to be observationally and
theoretically viable. We should therefore study implications of the presence of a massive spin-2
field, e.g. also during inflation.

More generally, higher spin states both massless and massive are a genuine prediction of String
Theory and Quantum Gravity [38]. From this perspective we generally expect that such states
are present on, e.g. inflationary spacetimes. Hence, these higher spin states and their interactions
should be included in the effective field theory description. This will be done in the present chapter
for the simplest non-trivial case of spin s = 2, for which BT serves as the consistent low-energy
effective field theory.

Theoretical consistency highly constrains the effective field theory of higher spin fields. For
instance, the Higuchi bound [224, 225] forbids the mass m to be arbitrarily small in de Sitter
spacetime. For a massive bosonic field with spin s, the bound is given by

m2 ≥ s(s− 1)H2 , (7.1)

where 1/H is the de Sitter radius. If the bound is violated, the higher spin field contains helicity
modes with negative norm, which spoils unitarity. The simplest nontrivial example of the bound
is for a massive spin-2 field, i.e. for s = 2. As we encountered in Eq. (2.84), in that case the bound
becomes

m2
FP ≥ 2H2 (7.2)

with mFP the Fierz-Pauli.
To model inflation, one usually uses a scalar field φ moving in an effective potential V [413].

The potential energy of the scalar field acts as a cosmological constant, which drives the accelerated
expansion of the universe. For the expansion to be exponential, the scalar field has to slowly roll
down the potential. On the level of Friedmann’s equation that means that the condition Ḣ � H2

must be maintained. In the presence of a massive spin-2 field of mass mFP, the usual Higuchi
bound (7.2) immediately implies the following restriction on the scalar potential:

V ≤ 3
2m

2
FP (7.3)

In the present chapter, we will go one step further by considering slight deviations from exact
de Sitter spacetime to derive a bound on the derivative of the scalar potential. We therefore use the
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generalisation of the Higuchi bound to FLRW spacetime [276], which we reviewed in Section 3.1.2.
Let us recall that unitarity requires the dynamical bound (3.25)

m2
eff ≥ 2H2 (7.4)

to be satisfied. Here, meff is the effective, time-varying mass parameter as defined in (3.26).
Our present discussion should be viewed within the larger context of the swampland pro-

gram [100], which we already mentioned in Section 1.3. The effective potential of scalar fields in
effective gravitational theories is severely constrained by quantum gravity considerations [21–28].
These constraints have profound implications on the evolution of the universe, in particular on
inflationary scenarios and on dark energy models [26, 103, 414, 415]. In addition, recently some
implications from the Higuchi bound on massive higher spin states in String Theory and on the
scale of inflation were discussed in [416–418]. Furthermore, for some work about BT in relation
to the swampland and String Theory realisations see [419–424].

This chapter is based on our publication [425].

7.1 Setup
We use BT to describe inflationary spacetime in the presence of massive spin-2 fields. We reviewed
cosmological solutions in Section 3.1. Here, we specialise to a spatially flat universe with k = 0
consistent with the inflationary paradigm [426, 427]. In this section, we rephrase some aspects of
bimetric cosmology necessary for the current purpose.

In our setup, we assume that the accelerated expansion is driven by potential energy V of a
slowly rolling scalar field φ (instead of the interaction energy of the massless and massive spin-2
field). Inflationary spacetime corresponds to a de Sitter background, which implies that both
metrics are (approximately) proportional, fµν = c2gµν . We discussed proportional background
solutions already in Section 2.4.3. In that previous discussion, we assumed an empty matter sector.
In our case, the matter sector consists of a slowly rolling scalar field. The pure cosmological
constant β0 is hence shifted by potential energy V . To account for the potential energy, we make
the following replacement: β0 → β0 + V . The effective cosmological constant during inflation is
therefore given by

Λ = V + β0 + 3cβ1 + 3c2β2 + c3β3

= 1
α2c2

(cβ1 + 3c2β2 + 3c3β3 + c4β4) , (7.5)

cf. Eq. (2.75). As before, equality of the first and second line determines the conformal factor c.
Let us denote the contribution to the overall cosmological constant, which does not originate from
the scalar potential, as Λg = β0 + 3cβ1 + 3c2β2 + c3β3. Later we will assume that V � Λg

1.
In Section 3.1 we did not further specify the constituents of the matter sector. Since in this

context we are now interested in the effective scalar potential, let us specify the matter Lagrangian.
We assume that the matter sector consists of a real scalar field φ with Lagrangian

Lm = −1
2g

µν∂µφ∂νφ− V (φ) (7.6)

and scalar potential V (φ). According to the cosmological principle, the scalar field can only depend
on time t. From Eqs. (1.11) and (1.16), it follows that the energy density and pressure are given
by

ρφ
M2

g
= 1

2 φ̇
2 + V ,

pφ
M2

g
= 1

2 φ̇
2 − V (7.7)

1In fact, vacuum energy parameter β0 is degenerate with an unspecified potential V . In our setup, however, the
parameter V serves as an input parameter breaking the degeneracy. In other words, we will express the interaction
parameters βn (including β0) as functions of the physical parameters of our setup. These are V , mFP, and ᾱ. For
these reasons we treat V and β0 as independent parameters.
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Varying the full bimetric action (2.86) with matter sector (7.6) with respect to the scalar field φ
leads to the equation of motion

φ̈+ 3Hφ̇+ V ′ = 0 . (7.8)
As last ingredient, we write the modified Friedmann equation in a more compact way, adopting

the notation of [318]. The physical Friedmann equation, i.e. the equation of motion of gµν , can
be written as

3H2 = ρφ
M2

eff
(7.9)

in terms of the time-varying effective Planck mass

M2
eff = 1 + α2y2

1 + U/ρφ
M2

g . (7.10)

The function U depends on the parameters of the bimetric potential as

U = M2
g
(
β0 + 4yβ1 + 6y2β2 + 4y3β3 + y4β4

)
. (7.11)

The scale factor ratio is determined by the quartic polynomial (3.18), which in terms of U can be
written as

ρφ = 1 + α2y2

4α2y
U ′ − U (7.12)

where U ′ = dU/dy.

7.2 Constraint on the derivative of the scalar potential
After these preliminaries, we study the generalised Higuchi bound (3.25) in the context of slow-roll
inflation. We assume that the scale of inflation is set by the potential energy of the scalar field,
Λ ' V . In other words, we assume that vacuum energy and interaction energy of the spin-2 fields
is subdominant, V � Λg. We further assume that the Higuchi bound is not saturated, i.e. we
exclude the partially-massless case [428,429], in order to avoid devision by zero.

We aim at expressing the quantities appearing in the dynamical Higuchi bound in terms of
the scalar potential V and its derivative V ′ = dV/dφ. It is convenient to work in terms of the
slow-roll parameter

ε = M2
eff
2

(
V ′

V

)2
. (7.13)

We assume slow-roll, i.e. ε � 1 and φ̈ � Hφ̇. Then, the equation of motion (7.8) for φ can be
rearranged to

φ̇ = − V
′

3H = −
√

2ε V
3MeffH

. (7.14)

Using this expression to eliminate H from Friedmann’s equation (7.9) and replacing the scalar
energy density with (7.7) yields (

1
2 φ̇

2 + V

)
φ̇2 = 2ε

3 V
2 . (7.15)

Solving this expression for φ̇ yields the two solutions φ̇2 = −V (1 ±
√

1 + 4ε/3). We pick the
branch with the lower sign, which leads to φ̇ = 0 for ε = 0 as desired. With this solution, we can
express the energy density (7.7) in terms of the potential and its derivative as

ρφ
M2

g
= V

(
1 + ε

3

)
(7.16)

up to first order in slow-roll. This result allows to write the Friedmann equation (7.9) as

3H2 = ρφ
M2

eff
= V

(
1 + ε

3

)
, (7.17)
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where we used that Meff/Mg ∼ O(1) during slow-roll. This expression determined the Hubble
rate H in terms of the scalar potential and its derivative.

The second quantity, which we need to relate to the slow-roll parameter ε, is the generalised
spin-2 mass meff as defined in Eq. (3.26). To do so, we plug Eq. (7.16) into the quartic polyno-
mial (7.12) and perturbatively solve for y, which leads to

y = c

(
1− V

3m2
FP − 2V

ε

3

)
(7.18)

up to first order in slow-roll. The parameter c is the conformal factor determined by Eq. (7.5), i.e.
for ε = 0, with Fierz–Pauli mass mFP as defined in Eq. (2.83). With this solution, we can write
the dynamical mass parameter (3.26) as

m2
eff = m2

FP +M ε

3 (7.19)

up to first order in slow-roll. We defined the quantityM as short–hand notation, which depends
on the bimetric parameters and scalar potential as

M = − c V

3m2
FP − 2V

(
c2β3 − β1

α2c2
+ β1 + 4cβ2 + 3c2β3

)
.

We now have all the ingredients to write the generalised Higuchi bound to first order in slow-
roll. Plugging Eqs. (7.17) and (7.19) into Eq. (3.26) leads to

0 ≤ 3m2
FP − 2V +

(
M− 2

3V
)
ε . (7.20)

This expression reduces to the usual Higuchi bound of de Sitter if ε = 0, as expected. For ε > 0
we can distinguish two cases depending on the sign of its prefactor. For M ≥ 2V/3 the bound
on ε is trivial because the slow-roll parameter is a genuinely positive quantity. However, in the
opposite caseM < 2V/3, we find the following non-trivial bound on ε:

ε ≤ 33m2
FP − 2V

2V − 3M . (7.21)

Note that this bound is well-defined only if the de Sitter Higuchi bound (7.3) is satisfied. In Sec-
tion 7.2.1 we evaluate the right hand side of Eq. (7.21) for various simplified models and different
regions of the parameter space.

To be explicit, let us rewrite the bound (7.21) in terms of the scalar potential and its derivative
by using the definition (7.13) as

|V ′|
V

.

√
6

Mg

√
3m2

FP − 2V
2V − 3F , (7.22)

where we used that Meff/Mg ∼ O(1) during slow-roll. This bound represents an upper limit on
the absolute value of the derivative of the scalar potential. Close to the Higuchi bound, this bound
is most restrictive. In our derivation we assumed that the Higuchi bound is not saturated, which
excludes the case that the right hand side vanishes.

7.2.1 Model-specific considerations
In this section, we study the typical values of the right hand side of Eq. (7.21). To do so, we use
the physical parametrisation developed in Chapter 4 to replace the interaction parameters βn in
terms of the physical parameters ᾱ, mFP and V , where we assume that the effective cosmological
constant is dominated by scalar potential energy, V � Λg. Compared to the parameter relations
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presented in Chapter 4, we make the replacement β0 → β0+V . We will study several representative
bimetric models and regions of the parameter space. To ease notation, we define

εmax = 3(3m2
FP − 2V )

2V − 3M , (7.23)

which is the maximum value of ε, see Eq. (7.21). The generalised Higuchi bound thus reads
ε < εmax to first order in slow-roll.

First, we compute εmax for the two-parameter models. For the β0β1–model, Eq. (7.23) is given
in terms of physical parameters by

ε01
max = 3(3m2

FP − 2V )2

(3m2
FP − 4V )V . (7.24)

This model is well-defined only if m2
FP > V is satisfied, which is more restrictive than the Higuchi

bound. Small spin-2 masses in the range V < m2
FP < 4V/3 lead to a negative upper value,

ε01
max < 0, such that the bound trivialises. For large spin-2 masses m2

FP � V , the upper limit can
be approximated by ε01

max ' 9m2
FP/V . For the β1β4–model, the expression for the upper limit is

the same as in the β0β1–model, i.e. ε14
max = ε01

max. Moving to the β1β2-model, the upper limit is
given by

ε12
max = 3(3m2

FP − V )2

(15m2
FP − 7V )V . (7.25)

Expanding this expression for m2
FP � V leads to ε12

max ' 9m2
FP/(5V ). In case of the β1β3–

model, Eq. (7.23) in terms of physical parameters is given by

ε13
max = 3(3m2

FP − 2V )2

16(3m2
FP − V )m2

FP
. (7.26)

For large spin-2 mass m2
FP � V , this expression can be approximated by ε13

max ' 9/16, which is
independent of m2

FP/V in contrast to the previous models.
Summarising the two-parameter models, the upper limit on the slow-roll parameter can be

approximated by εmax ' m2
FP/V up to O(1) constants. The β1β3–model is an exception with the

upper limit approximately given by εmax ≤ 9/16.
Let us move on to selected three-parameter models. We study the β1β2β3-model without

vacuum energy and the β0β1β4-model with vacuum energy in both metric sectors. In case of the
β0β1β4–model, setting β2 = β3 = 0, solving Eqs. (2.83) and (7.5) for β0, β1 and β4 and plugging
the result into Eq. (7.23), leads to the same expression as in the case of the β0β1– and β1β4–models,
i.e. ε014

max = ε01
max. We already discussed the typical values of this quantity. Setting β0 = β4 = 0

leads to the β1β2β3–model, for which the upper limit on ε is given by

ε123
max = 6(3m2

FP − 2V )2

(12m2
FP − (5− 3ᾱ2)V )V . (7.27)

This expression not only depends on mFP and V , but also on the coupling ᾱ.
We plot ε123

max normalised to m2
FP/V as a function of m2

FP/V for different values of ᾱ in Fig. 7.1.
If the coupling is small, ᾱ . 1, ε123

max becomes independent of ᾱ and can be approximated by
9m2

FP/(2V ) for sufficiently large spin-2 mass. This also follows from expanding Eq. (7.27) for
m2

FP � V and ᾱ � 1. For large couplings ᾱ & O(1), the upper limit on ε is suppressed by
inverse powers of ᾱ. Expanding Eq. (7.27) for ᾱ � 1 leads to ε123

max ' 2(9m4
FP/V

2 − 12m2
FP/V +

4)/ᾱ2. However, this parameter region of large coupling is theoretically inconsistent as discussed
in Section 4.3.3.

Summarising, within the theoretically consistent regions of the parameter space, the upper
limit on ε is of the order of m2

FP/V up to O(1) factors. We thus identified the same scale as for
the two-parameter models. Instead of discussing also the other three-parameter models, we next
study the full bimetric model with five free interaction parameters βn.
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Figure 7.1: The upper limit on ε normalised to m2
FP/V as a function of m2

FP/V for the β1β2β3-
model for different values of ᾱ.

We solve the background Eqs. (2.83) and (7.5) without specifying to a restricted model for the
rescaling invariant interaction parameters β̄1, β̄2, and β̄3 in terms of the physical parameters ᾱ,
mFP, and V . Plugging the results into Eq. (7.23) yields

εmax = 6ᾱ2(3m2
FP − 2V )2

(3β0 + ᾱ2(12m2
FP − 5V + 3β0) + 3ᾱ4(V − β̄4)− 3ᾱ6β̄4)V

, (7.28)

as upper limit on ε. To assess the order of magnitude, we expand this expression for large spin-2
mass m2

FP � V , which results in

εmax '
9
2
m2

FP
V

. (7.29)

The expression is independent of ᾱ and the order of magnitude is set by m2
FP/V up to an O(1)

factor.
Let us summarise. The bound on ε is trivial in some regions of the parameter space because

either εmax � 1 or εmax < 0. In the remaining regions of the parameter space we found that
the order of magnitude of the upper limit is given by εmax = O(m2

FP/V ). That means that the
dynamical Higuchi bound is guaranteed to be satisfied if ε . m2

FP/V .

7.3 Summary and discussion
Ghost-free bimetric theory serves as the low-energy effective field theory to describe FLRW space-
time in the presence of interacting massless and massive spin-2 fields. These fields are subject to
the Higuchi bound, which can be generalised to FLRW spacetime by demanding unitarity. Special-
ising to inflationary spacetime, we assumed that the matter sector consists of a slowly rolling scalar
field with effective potential V . In the presence of a massive spin-2 field, the generalised Higuchi
bound leads to Eq. (7.21) as upper bound on the slow-roll parameter, which can be summarised
as

ε ≤ c2 m
2
FP
V

, (7.30)

where c ∼ O(1) a constant2. This implies an upper bound on the derivative of the scalar potential
upon using Eq. (7.13) of the form

|V ′|
V
≤ c

Mg

√
m2

FP
V

. (7.31)

2This constant is not to be confused with the conformal factor, which relates the two metrics on proportional
backgrounds.
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To arrive at this bound, we assumed that the potential energy of the scalar field dominates the
effective cosmological constant, V � Λg.

The derivation relies on the slow-roll approximation, for which ε � 1 serves as perturbative
parameter. In the parameter regime where ε � 1, our bound should be treated with caution
because the derivation is strictly speaking not trustworthy. This parameter regime corresponds to
large spin-2 masses m2

FP � V . If the mass of the spin-2 field is close to the Higuchi bound, the
bound is trustworthy and most stringent. In addition, there are certain regions of the parameter
space, where the generalised Higuchi bound does not imply (7.31). On the other hand, if the scalar
potential satisfies the bound (7.31), the generalised Higuchi bound is guaranteed to be satisfied.
The various O(1) factors, which we encountered in the previous section, are collectively captured
by the O(1) parameter c.

The de Sitter swampland conjectures [24, 26, 27] also lead to a bound on the scalar potential,
to which we compare our Higuchi bound (7.31). As anticipated in Section 1.3, it is conjectured
that the scalar potential must satisfy

|V ′|
V
≥ c′

Mg
or V ′′ ≤ − c′′

M2
g
V , (7.32)

with c′, c′′ ∼ O(1) universal constants, for the effective theory to not lie on the swampland.
Combining the lower bound from the de Sitter swampland conjecture (7.32) with the upper

bound from the generalised Higuchi bound (7.31) in BT restricts the derivative of the scalar
potential into the parametric window

c′

Mg
≤ |V

′|
V
≤ c

Mg

√
m2

FP
V

. (7.33)

If the spin-2 mass is close to the de Sitter Higuchi bound, the parametric window is small and in
the derivative has to be of the order |V ′|/V ' 1/Mg. The window does not close completely due
to the de Sitter Higuchi bound (7.3).

Since we discuss our bound in the context of the swampland, let us connect our setup to String
Theory. It is natural to assume that the spin-2 mass mFP is related to higher spin string excita-
tions [420]. This allows to identify the spin-2 mass with the string scale mFP ∼ Ms. Assuming
that our bound holds generally, Eq. (7.31) becomes

|V ′|
V
≤ cMs

Mg

√
1
V
. (7.34)

As derived in [416], the string scale must satisfy the lower bound Ms >
√
HMg, which follows

from requiring that the entire string Regge trajectory satisfies the Higuchi bound. Trading the
Hubble parameter for the scalar potential at ε = 0 leads to

M2
s ≥

√
V

3 Mg . (7.35)

Therefore, our condition (7.34) is always satisfied if the stronger bound

|V ′|
V
≤ c

Mg

√
Mg

(V/3)1/2 (7.36)

is satisfied.
To summarise, we utilised the physical parametrisation of Chapter 4 to single out the following

implication of the presence of a massive spin-2 field during slow-roll inflation. From the generalised
Higuchi bound, we derived an upper bound on the derivative of the scalar potential, which is
complementary to the lower bound obtained from string theoretic considerations [24–28]. The
derivative is therefore forced to lie in the parametric window (7.33) for quantum consistency.
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It would be interesting to study whether the upper bound on V ′ is a generic implication of
unitarity when massive spin-2 fields propagate on FLRW spacetime. This requires a treatment
beyond slow-roll. Further, it would be interesting to check, whether this combined bound is
satisfied, e.g. in concrete String Theory settings. Finally, inflationary spacetimes in the presence
of spin-2 fields were studied in [313–316,318–321]. It would be interesting to confront our formal
bound with the phenomenological constraints of these references.



Chapter 8

Summary and outlook

Einstein’s General Relativity (GR) is the widely celebrated theory of gravity. However, while it
describes laboratory to solar system scales to very high precision, its viability on larger scales
has been challenged in recent times. For the cosmological standard model to be compatible with
observations and simulations, the universe is required to be filled with dark energy and dark
matter, which together comprise 95% of the current energy budget of the universe, but for which
we lack a fundamental description. This thesis is part of the ongoing efforts to furtherance our
understanding of the dark sector.

Dark energy is modelled by a cosmological constant within GR, which is added to the Einstein–
Hilbert term as in Eq. (1.8). Nevertheless, the validity of a positive cosmological constant per se
has been questioned. The huge mismatch between its observed value and the value predicted by
robust theories of particle physics represents a fine-tuning problem in the sense of ’t Hooft [86]. The
noted discrepancy theoretically disfavours the observed tiny value of the cosmological constant.
Besides, very general results from the swampland program [24, 26, 27] and the quantum breaking
of de Sitter [21–23, 25, 28] strongly hint at a true theoretical inconsistency for any value larger
than zero of the cosmological constant at the fundamental level. Moreover, the latest available
observational data has a slight preference for dark energy that dynamically evolves in time, as
opposed to (only) a cosmological constant [75,109,430,431]; a conclusion that is drawn utilising a
purely phenomenological model.

All the above motivates us to seek for alternatives to a cosmological constant when it comes
to a fundamental explanation for dark energy. Indeed, the given considerations suggest that GR
with a cosmological constant might not be the appropriate gravitational theory on cosmological
scales. Therefore, we are naturally drawn to the study of modifications of the said gravitational
theory on large scales and/or to replacements of its cosmological constant by some other form of
dark energy, both directions being related [432].

The ongoing pursuit for novel mechanisms that lead to an accelerated expansion of the universe
at late times has resulted in the postulation of a plethora of modified gravity theories. Here, we
focus on the particular subset of such theories that entertain the simple and appealing idea of
giving a mass to the graviton. The implementation of this idea turned out to be mathematically
challenging, due to the appearance of ghost instabilities [39,40,47]. The postulation of ghost-free
massive gravity and bimetric theory (BT) [48–52,209] not only solved this longstanding problem,
but also filled the gap in the list of effective theories for massless and massive fields with spin up
to 21

By now, the theoretical viability of BT has been firmly established and its potential to address
the aforementioned problems in modern cosmology has been convincingly argued for. Among
the virtues of BT are self-accelerating cosmological models with a technically natural effective
cosmological constant [216,256,257,262–265,329], its ability to alleviate the Hubble tension [277,

1The consideration of higher than 2 spin fields requires an infinite tower of higher spin fields for the internal
consistency of the theory. We do not consider such scenarios in this thesis.
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296], the Vainshtein screening mechanism, which restores GR on small scales [329, 331, 332], and
the massive spin-2 field as a dark matter candidate [227, 255, 433]. However, these features have
been analysed within different parametrisations and under different assumptions. Such variety
prevents the comparison between related constraints. For this reason, it is not yet clear which of
these features can be realised simultaneously while being consistent with all observational data.

This thesis overcomes the aforementioned shortcomings of the previous analyses. To do so, we
first developed a new unified framework, which allows to consistently study the phenomenology of
BT and compare the relevant constraints among themselves. Building upon our new framework,
we thoroughly revisited the phenomenological consequences of BT on length scales ranging from
the laboratory to cosmology. In the following, we elaborate on our said results.

Summary of original results and contextualisation

This thesis is concerned with the phenomenological consequences of nonlinear ghost-free bimetric
theory (BT) [51, 52, 209]. The bimetric action (3.1) has a priori six independent free parameters
{α, βn} with n = 0, . . . , 4. One of these parameters is redundant due to the theory’s invariance
under the rescaling transformation (4.1) [223, 301]. The final five independent free parameters of
BT span a huge parameter space, which is challenging to handle2.

To deal with the large free parameter space, the aforementioned rescaling invariance has been
commonly used to set α = 1 in the literature. However, such choices to fix the rescaling are
ambiguous. To avoid this ambiguity, we require a parametrisation of the bimetric solutions, which
are invariant under the said rescaling.

In addition, cosmological data has been used to compute constraints on the remaining interac-
tion parameters {βn}. However, these parameters are not observables themselves, because they get
shifted under the rescaling transformation (4.1). Hence, also their associated constraints depend
on the chosen rescaling. We thus need an alternative parametrisation to consistently constrain
BT with cosmological observations.

The first main goal of this thesis has been to overcome the shortcomings of the previous
analyses, with an emphasis on the bimetric phenomenology. To begin with, in Chapter 4 we
proposed a new parametrisation of solutions of BT in terms of quantities that are manifestly
invariant under the aforementioned rescaling and that enjoy a direct physical interpretation. We
chose the following three apposite physical parameters: the coupling strength ᾱ of the massive
spin-2 field to standard matter, its mass mFP and the effective cosmological constant Λ [340]. Our
framework is suited for all bimetric models with up to three free interaction parameters. The
value and potential of our proposed parametrisation has been acknowledged by the community
and recently it has been extended to even more general bimetric models [260].

Our unoriginally baptised physical parametrisation has several advantages. Firstly, the param-
eters are rescaling invariant and hence observable by construction. Secondly, it provides the unified
framework to comprehensively study the phenomenological implications of BT. As such, it forms
the basis to combine the various existing and future theoretical and observational constraints on
BT and thus identify the consistent regions of its parameter space. Thirdly, the parameter values
are very intuitive, due to their direct physical meaning. For instance, our parametrisation vastly
simplifies choosing priors in a statistical analysis.

We explicitly worked out the physical parametrisation for all models with up to three free inter-
action parameters [340]. We built up a dictionary between the parameters {α, βn} and {ᾱ,mFP,Λ}
for all such models, which can immediately be used for future investigations. Further, we com-
puted the theoretical consistency constraints on the physical parameters to ensure a viable cosmic
expansion history, i.e. real-valued, non-singular, and devoid of the Higuchi ghost. These can
directly be used as theoretical priors and be compared to other constraints coming from other
theoretical and observational considerations. Our results set the basis to thoroughly study the
phenomenological consequences of BT.

2Note that GR has only a single free parameter, the cosmological constant Λ. In general, also the Planck mass
is a free parameter of both GR and BT, which however is already tightly constrained by observations. Therefore,
we exclude it from our discussion on the free parameters.



115

Equipped with the physical parametrisation, we reinvestigated the problem of cosmological
perturbations in Chapter 5. As we reviewed, the gradient instability challenges the viability of
bimetric cosmology at the perturbative level [226, 266, 270, 272, 274, 275, 300–305]. The problem
can be avoided by pushing the gradient instability to arbitrarily early times. This is achieved in
the parametric limit mFP � H0 [226, 277]. However, in the context of background cosmology, it
is usually assumed that mFP ∼ H0. Put together, these considerations would naively imply that
bimetric cosmology cannot be viable at the background and perturbative levels simultaneously.
We invalidated this hasty conclusion in two distinct ways.

In Chapter 5, we investigated the Vainshtein screening in the context of cosmology. Drawing
inspiration from spherically symmetric systems, we showed that the universe is smaller than its own
corresponding Vainshtein radius during early times, precisely whenH > mFP. We therefore expect
linear perturbation theory to break down during such early times. We verified that deviations
form GR are indeed screened away on the level of background cosmology and that the gradient
instability occurs precisely when the Hubble rate exceeds the spin-2 mass. Combined with the
results of [308–310], our results indicate that perturbations are nonlinearly stabilised by means of
the Vainshtein mechanism. This implies that also the parameter region with mFP ∼ H0 is a priori
viable on the perturbative level, thus reviving bimetric cosmology.

These considerations show that the entire theoretically allowed parameter space is a priori con-
sistent. However, many of the previous studies assumed mFP ∼ H0 in the context of background
cosmology. As a first step, we demonstrated that this region is potentially consistent also on the
level of cosmological perturbations. As the next step, we explicitly demonstrated that mFP � H0
is consistent at the level of background cosmology. Our physical parametrisation serves as the
basis to straightforwardly study the thus enlarged parameter space.

In Chapter 6, we compared the entire bimetric parameter space to cosmological observations.
Specifically, we performed a statistical analysis using data from measurements of Supernovae
type 1a, Baryon Acoustic Oscillations and the Cosmic Microwave Background, as it has become
standard in parameter estimation for cosmological models. As expected, all our bimetric models
fit the observed data as good as the standard cosmological model, which is in agreement with
earlier results in the appropriate limits [216, 263, 265, 296, 297, 337]. The preferred values of the
cosmological parameters are indistinguishable from the standard values at the level of current
precision. For instance, we find that a spatially flat universe is always preferred, consenting
with [297]. Therefore, the self-accelerating bimetric models, which are characterised by β0 = 0
and thus devoid of a cosmological constant, stand out as promising competitors to the standard
cosmological model.

There is but one exception from the previous conclusion. The special β1–model of BT leads to a
cosmic expansion history significantly different from the standard one. Nonetheless, our statistical
analysis strongly disfavours this model. Combining the cosmological with the later discussed local
constraints further disfavours this model by many standard deviations. Therefore, we concluded
that this model is statistically ruled out and we will exclude it from our subsequent discussions.

Moreover, our results constitute the first ever cosmological constraining of the physical param-
eters of BT theory [298,340]. We showed that the coupling is constrained to be small ᾱ . O(0.1)
for all models. This means that deviations from GR must be sufficiently suppressed, but not
entirely. The spin-2 mass is constrained to be rather small mFP ∼ H0 only for the special β0β1–
model. For the remaining models, the spin-2 mass is limited only by the Higuchi bound (2.84)
and the cutoff of the effective theory, i.e. 2Λ/3 . m2

FP . M2
g . Notwithstanding, our results

show that large spin-2 masses require the coupling ᾱ to be sufficiently small at the same time for
consistency. We explicitly quantified the combined restriction on the physical parameters. The
constraints are depicted in Fig. 6.6 for the three-parameter models. In summary, our results are
the first demonstration that BT provides a good fit to the observed cosmological data even if the
spin-2 field is heavy.

Moving beyond cosmology, modifications of the gravitational interactions are tightly con-
strained by local tests of gravity. We are here referring to the gravitational potential and the
scalar curvature as felt by massive and massless test bodies, respectively. These probe scales
mostly within the solar system, but also galactic and extragalactic scales. In Chapter 6, we re-
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lated the existing constraints [343, 344, 346–348] on modifications of the gravitational interaction
within the Yukawa parametrisation to the physical parameters ᾱ and mFP of BT [298]. The
results are graphically summarised in Fig. 6.7. The most stringent bound comes from Lunar-
Laser-Ranging, which leads to ᾱ . 8.9 × 10−6 at the mass scale mFP ∼ 6.5 × 10−15 eV. For
small spin-2 masses, Cassini provides the most stringent bound ᾱ . 1.7 × 10−3. The coupling is
essentially unconstrained for large masses mFP & 10−2 eV. Thanks to our physical parametrisa-
tion, these constraints can be straightforwardly compared to our previously obtained cosmological
constraints.

Our said conclusions are valid only without the Vainshtein screening. In fact, the Vainshtein
mechanism suppresses modifications from GR in spacetime regions close to massive sources, which
potentially removes the associated observational constraints. We also took this effect into account,
which turned out to be relevant only for the β1β2β3–model. For this model, the Vainshtein
screening alleviates the Cassini constraint on the coupling for small spin-2 mass as ᾱ ≤ O(0.1).
The constraints, when taking the Vainshtein screening into account, are portrayed in Fig. 6.10.
Building upon some earlier work [330,332,338], our results conform the first thorough constraining
of BT from local tests of gravity [298].

As mentioned before, one of the key motivations for our proposed physical parametrisation is
to confront the various observational and theoretical bounds with each other, in order to assess
the ultimate phenomenological viability of BT. In this thesis, we have also accomplished this
final step [298]. Indeed, we identified those parameter combinations that are consistent with all
aforementioned constraints. For most of the bimetric parameter space, the cosmological constraints
are more stringent than the local constraints. Although we found that all models are perfectly
consistent, models that do not give rise to Vainshtein screening are essentially driven into their GR-
limits, since the coupling is bounded from above as ᾱ . 1.3 × 10−3. The Vainshtein mechanism
alleviates this bound for the β1β2β3–model to ᾱ ≤ O(0.1). In short, this thesis comprises the
hitherto most thorough and stringent constraining of BT because we consistently studied the
entire available parameter space, we imposed our derived theoretical consistency constraints, we
utilised a plethora of cosmological and local tests of gravity and we implemented the Vainshtein
screening.

Last but not least, we went beyond observational considerations and utilised the physical
parametrisation in the context of slow-roll inflation. Since higher spin states, both massless and
massive, are a generic prediction of quantum gravity, these should be included in the effective
field theory describing, e.g. inflation. However, these states are subject to severe consistency
restrictions, such as the Higuchi bound. In Chapter 7, we analysed the simplest non-trivial case of a
massive spin-2 field in addition to the usual massless spin-2 field. We showed that the generalisation
of the Higuchi bound implies an upper limit on the derivative of the inflaton potential, which is
complementary to the de Sitter swampland [24,26,27] and quantum breaking [28] bounds. Future
investigations in the context of inflation and the CMB within BT should certainly take our unveiled
bound into account.

Further contextualisation and outlook

Our comprehensive study simultaneously confronted BT with theoretical constraints ensuring a
viable cosmic expansion history and with observational constraints from cosmological and local
tests of gravity. In this manner, we have placed the most stringent constraints on BT to date.
In particular, our results are more constraining than galactic [339] and gravitational waves [324]
measurements. Our analysis shows that large regions of the bimetric parameter space remain
consistent.

The obvious next step based on our physical parameterisation is to confront BT with further
constraints. On the observational side, we want to highlight the next generation of surveys such
as DES [434], DESI [435], Euclid [436], SKA [437] and VRO [438], which will provide data at
various redshifts and to high precision, already relevant for background cosmology. For instance,
these surveys will yield new BAO data, which in turn will allow to accurately trace back the dark
energy equation-of-state. A null detection of phantom dark energy would imply a stricter upper
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limit on ᾱ or a stricter lower limit on mFP. If these surveys instead provide further evidence
supporting phantom dark energy, BT will be statistically favoured over GR. As we have discussed,
such slight preference already exists, but it is statistically insignificant at the level of current
uncertainties. Hence, once these new data are available, bimetric background cosmology will need
to be revisited. The methodology presented in this thesis provides a solid basis for such essential
future investigations.

Staying in the realm of cosmology, the surveys aiming at mapping out the anisotropies and in
particular the polarisation patterns in the CMB such as CMB-S4 [439] and LiteBIRD [440] are
very promising for testing BT. A main reason is that the Vainshtein screening is active in the scalar
sector, but not in the tensor sector. Therefore, primordial gravitational waves are an excellent
playground for further constraining BT. In particular, since ᾱ quantifies the mixing between the
massless and massive mode in the original metric fluctuation, and since the massive mode quickly
decays [313, 315, 318], these measurements will provide an upper limit on ᾱ. Hence, expected
constraints implied by these future surveys should be compared to the results presented in this
thesis, once the new data are available.

As already mentioned, the Vainshtein screening mechanism —if active— makes it extremely
difficult to find distinct signatures of BT, for example, in the solar system. A possible way around
this is to study systems with less than spherical symmetry. In the context of Galileons, it was found
that the Vainshtein screening is weaker or even completely absent in systems with cylindrical or
planar symmetry, respectively [412]. Although the explicit confirmation is still pending, we expect
a similar behaviour also for BT. To make use of this effect, one possible direction are laboratory
tests of gravity [441,442]. However, due to the involved scales, we expect that these would mostly
be able to probe the mass range mFP & 10−5 eV, where it will be extremely challenging for
laboratory constraints on ᾱ to compete with our stringent cosmological constraints.

Alternatively, astrophysical objects and the cosmic web might help to constrain screened mod-
ified gravity, because of the reduced amount of symmetry or as a result of the multiple scales
involved. See [443–456] for work regarding the Vainshtein screening, among others, and [457,458]
for reviews. However, all these studies are based on modified gravity theories other than BT (e.g.
Galileons or DGP), which incorporate the Vainshtein screening as well. It would be an interesting
task to carry out similar investigations and compare the resulting constraints to the ones presented
in this thesis.

Leaving aside the observational realm, BT can also be subjected to further theoretical con-
straints. Just like GR, BT serves as a low-energy effective theory. Requiring a local, unitary, ana-
lytic and Lorentz-invariant UV-completion imposes so-called positivity bounds on the parameters
of the low-energy effective theory [459]. These have already been studied in the context of spin-2
fields [460–466]. For instance, positivity bounds turned out to have strong constraining power in
the context of Scalar–Tensor theories [467]. It would be interesting to apply this methodology to
BT and elucidate the obtained positivity bounds by means of our physical parametrisation.

The question of a consistent UV-completion is also closely related to the swampland pro-
gram [421, 422]. The ultimate goal is arguably to explicitly embed BT into String Theory.
See [419, 420, 423, 424] for first studies into this promising direction. This program would also
identify the quantum consistent parameter combinations, which would then need to be comple-
mented by our observational constraints.

Probably the most pressing next step regards cosmological perturbations. As we discussed
in Section 3.1.4 and Chapter 5, the scalar sector is plagued by an early-time gradient instability
rendering linear perturbation theory invalid. Our results the cosmological perturbations are non-
linearly stabilised due to the Vainshtein screening. First results into this direction exist [308–310],
but there is clearly more work required to fully understand the perturbative level in BT. This will
open up the possibility to apply the plethora of perturbative constraints on BT. In particular, it
will allow to understand the formation of structure in the universe. Interestingly, this might shed
new light on the required dark matter abundance within BT, due to the enhanced gravitational
strength on scales between Vainshtein and Compton.

One way to tackle cosmic structure formation is via simulations. This problem has been
solved in the context of Galileons, which also exhibit the Vainshtein screening [468–472]. There
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is progress regarding simulations also within BT, mostly in the context of spherical collapse [473–
480]. However, technical difficulties related to finding stable (well-posed) equations of motion still
prevent long-termed simulations. Clearly, being able to handle numerical simulations will open up
many new possibilities to assess the viability of BT.

At last, let us direct our attention to the second constituent of the dark sector. In fact, BT
contains the massive spin-2 particle as an ideal dark matter candidate. It interacts with matter
exclusively gravitationally with universal coupling ᾱ [227, 255, 433]. Depending on the produc-
tion mechanism, the mass must be of the order mFP ∼ 1 . . . 100 TeV [227] or below, down to
mFP ∼ 10 MeV [481]. Within BT, the phenomena ascribed to dark matter are but a manifestation
of gravity itself. Since our previous discussions explicitly showed that this mass region is obser-
vationally consistent in the context of dark energy as well, BT has the potential to provide an
unified explanation for the whole dark sector.

This appealing idea requires further investigation. In more detail, computational control over
the aforementioned dark matter scenario requires the perturbative bound ᾱMP ≥ mFP to be
satisfied [227], which implies a lower limit on the coupling. The weakest bound is realised for the
lowest spin-2 mass possible, leading to ᾱ & 10−21 [481]. Unfortunately, this bound is in conflict
with our upper bound from cosmology by many standard deviations (see Eq. (6.42) and Fig. 6.6).
The conflict seems to persist even in more general bimetric models [299].

One possible, but presumably rather challenging, way out is to study the dark matter phe-
nomenology by means of non-perturbative techniques to avoid the aforementioned perturbative
bound. Alternatively, the implied strong constraints can be alleviated by considering smaller spin-
2 masses, as in the context of ultra light dark matter [482]. Some phenomenological consequences
of this scenario have been explored in [483–489]. It remains an open question whether BT can in-
corporate both phenomena ascribed to the dark sector in this mass region. Our proposed physical
parametrisation and the herein obtained parameter constraints serve as excellent basis to make
substantial progress into this exciting direction.

Finally, these previous studies implicitly assume that the dark matter abundance required to
match observations is the same as in standard cosmology. This might not be the case within BT,
due to the fifth force and the Vainshtein screening. Such interesting direction has been pursued
in [339], in the context of galaxy cluster lensing and galaxy rotation curves. Indeed, it is found
that the required dark matter abundance on these scales is lowered with respect to GR for certain
values of the spin-2 mass. More generally, the effect of a Yukawa-type fifth force on galaxy rota-
tion curves in the presence of dark matter has been explored in [490, 491], which indeed shows a
preference for a non-zero Yukawa modification to the Newtonian potential. In addition, less dark
matter might be required for cosmic structure formation to work for the same reasons mentioned
above. These considerations might affect the spin-2 dark matter scenario notably. Although their
quantification is a topic beyond this thesis, we here set the basis for consistently constraining such
spin-2 dark matter scenario and, going even further, such unified dark sector scenario.

* * * * *

Within the ongoing pursuit to give a fundamental explanation for the Universe’s dark sector,
BT is a particularly appealing and promising alternative to GR. The theory proposes to supplement
the usual massless spin-2 field with an additional massive spin-2 field, both of which (self-)interact
fully nonlinearly. The interaction energy can cause the Universe to exponentially expand at late
cosmic times. The massive spin-2 field serves as a dark matter candidate. In this thesis, we
proposed a new unified framework to assess the phenomenological consequences of BT. With this
as a basis, we thoroughly constrained the properties of such massive spin-2 field by means of
various cosmological and local tests of gravity for the first time. Our results indicate that BT has
the potential to provide an unified explanation for the entire dark sector, which calls for additional
research efforts building on that idea. Going beyond, our methodology and results set the basis
for further constraining BT by means of theoretical and observational considerations. Such future
investigations will help addressing the aforementioned open and pressing problems of our current
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understanding of the Universe. Exciting years lie ahead for modern cosmology, as exemplified
by the many ongoing and pending research directions here mentioned. This thesis constitutes an
important step forward in their consecution.
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Appendix A

Details on static, spherically
symmetric solutions

In this appendix, we present the derivation of static and spherically symmetric solutions as pre-
sented in [298] and as summarised in Section 3.2. These solutions were first studied in [328–333].
We follow the derivation of [331, 332], but allow for a non-vanishing effective cosmological con-
stant [334]. This allows to match the local solutions to cosmological solutions asymptotically
and compare the corresponding observational constraints. In the limit of vanishing cosmological
constant, our results reduce straightforwardly to the ones obtained in [331,332].

As starting point, we assume spacetime to be static and spherically symmetric. The appropriate
ansatz for the the metrics gµν and fµν in the bidiagonal case is [331]

ds2
g = −e−φgdt2 + eψgdr2 + r2dΩ2 ,

ds2
f = c2

(
−e−φf dt2 + eψf (r + rµ)′2dr2 + (r + rµ)2dΩ2) , (A.1)

where all functions φg,f , ψg,f , and µ depend only on the radius r. The field µ can be associated
with a Stückelberg field, which restores diffeomorphisms in the r-dimension [177]. In the limit
where φg = φf and ψg = ψf , as well as µ = 0, both metrics are proportional fµν = c2gµν .

We want to compute the gravitational potentials outside a compact object like a star or planet.
In this case, we can write the matter energy-momentum tensor as Tµν = diag(M, 0, 0, 0). The
Schwarzschild radius rS of a compact object of mass M is given by

rS = M

4πM2
g
. (A.2)

Following [331], we linearise the equations of motion in the gravitational fields φg,f and ψg,f , but
we keep all nonlinearities in µ. Technically, we assume {|ψg,f |, |φg,f |} � 1 and {|rψ′g,f |, |rφ′g,f |} � 1.
Under these approximations, the tt-, rr, and θθ-components of the gµν–Einstein equation (3.2)
simplify to

(rψg)′

r2 = Λ + ρ(r)
m2

g
+ ᾱ2m2

FP
1 + ᾱ2

(
1
2(ψf − ψg) + 1

r2

[
r3
(
µ+ βµ2 + γ

3µ
3
) ]′)

ψg

r2 −
φ′g
r

= Λ + ᾱ2m2
FP

1 + ᾱ2

(
1
2(φf − φg) + 2µ+ βµ2

)
,

−
ψ′g
2r +

(rφ′g)′

2r = Λ + ᾱ2m2
FP

1 + ᾱ2

(
1
2(ψf − ψg + φf − φg) + 1

r

[
r2
(
µ+ β

2µ
2
)]′)

,

(A.3)

respectively. The parameters β and γ are defined in Eq. (3.37). The same components of the
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fµν–Einstein equations (3.2) can be brought into the form

((r + rµ)ψf)′

r2 = Λ− m2
FP

1 + ᾱ2

(
1
2(ψf − ψg) + 1

r2

[
r3
(
µ+ (1 + β)µ2 + 1 + β + γ

3 µ3
)]′)

,

(r + rµ)′ψf

r2 − (1 + µ)φ
′
f
r

= Λ− m2
FP

1 + ᾱ2

(1
2(φf − φg) + 2µ+ (1 + β)µ2

)
(r + rµ)′ ,

ψf

2r −
1
2r

(
(r + rµ)φ′f
(r + rµ)′

)′
= Λ− m2

FP
1 + ᾱ2

(
1
2(ψf − ψg − φf − φg) + +1

r

[
r2
(
µ+ 1 + β

2 µ2
)]′)

,

(A.4)

respectively. The φφ-components coincide with the θθ-components in both cases due to the as-
sumed spherical symmetry. Finally, the Bianchi constraint (2.71) is given by

(r + rµ)′

r
(1 + βµ)(ψf − ψg)− 1

2(1 + 2βµ+ γµ2)(φ′f − (r + rµ)′φ′g) = 0 . (A.5)

The equations do not admit an analytic solution. Instead of solving the equations numerically,
we go to two different regimes that lead to further simplifications, which give rise to analytical
solutions. We focus on scales much smaller than the de Sitter horizon, i.e. r � 3/

√
Λ. Firstly, we

assume that also µ is a small, which allows further linearisation. Secondly, we take into account all
nonlinearities in µ, but assume that we are on scales much smaller than the Compton wavelength
of the massive spin-2 field, r � m−1

FP. Thirdly, we match both solutions to each other on scales,
where both are well-defined.

Linear regime

As mentioned above, we first assume that all functions are small, including µ. In the technical
level, we expand Eqs. (A.3) to (A.5) also for |µ| � 1 and |rµ′| � 1. To ease the notation, we
define the auxiliary fields

ψ± = ψf ± ψg , φ± = φf ± φg . (A.6)
The fully linearised Bianchi constraint (A.5) becomes independent of the +-fields and is given

by
2ψ− = rφ′− . (A.7)

The fully linearised Einstein equations for gµν and fµν can be combined so that the +-fields drop
out of the expressions. This results in

0 = 2rψ′− +
(
2 +m2

FPr
2)ψ− + 2m2

FPr
2(3µ+ rµ′) , (A.8a)

0 = −2ψ− +m2
FPr

2(φ− + 4µ) , (A.8b)
0 = rψ′− −m2

FPr
2(ψ− + φ− + 4µ+ 2rµ′) , (A.8c)

upon using the Bianchi constraint (A.7) to eliminate φ′− and φ′′− in terms of ψ− and ψ′−. Using
the algebraic equation (A.8b) to eliminate φ− from Eq. (A.8c), and solving Eqs. (A.8a) and (A.8c)
for ψ− and µ leads to

ψ′− = −2m2
FP rµ , µ′ = − (2 +m2

FP r
2)ψ− + 2m2

FP r
2µ

2m2
FP r

3 . (A.9)

These represent two coupled first-order differential equations, which are solved by

φ− = C1e
−mFP r

r
,

ψ− = −C1(1 +mFP r)e−mFP r

2r ,

µ = −
C1
(
1 +m2

FP r +m2
FPr

2) e−mFP r

4m2
FPr

3 ,

(A.10)
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where the solution for φ− is determined by Eq. (A.8b). Here, C1 is a constant of integration,
which we will determine later. We already fixed the other constant of integration by requiring
that the fields r →∞ to ensure asymptotical proportionality.

It remains to solve for the fields φ+ and ψ+. The second set of linearly independent Einstein
equations can be arranged to

0 = (ᾱ2 − 1)(ψ− + rψ′−) + (1 + ᾱ2)(ψ+ + rψ′+)− 2(1 + ᾱ2)Λr2 ,

0 = (ᾱ2 − 1)ψ− − (1 + ᾱ2)(ψ+ − rφ′+) + 2(1 + ᾱ2)Λr2 ,

0 = (ᾱ2 − 1)ψ′− − (1 + ᾱ2)(ψ′+ − φ′+ − rφ′′+ − 4Λr)
(A.11)

Using the solutions Eq. (A.10) to eliminate ψ+, these equations admit the following solutions:

φ+ = −2Λr2

3 − 2C2

r
− C1e

−mFP r

(1 + ᾱ2)r ,

ψ+ = 2Λr2

3 + 2C2

r
+ C1(1 +mFP r)e−mFP r

2(1 + ᾱ2)r ,

(A.12)

where C2 is another constant of integration. The other constant of integration has be fixed to
ensure regularity in the limit r →∞.

We solved the set of differential equations in terms of φ±, ψ±, and µ. Solving (A.6) for the
original metric functions, we arrive at

µ = −C1(1 +mFP r +m2
FPr

2)e−mFP r

4m2
FPr

3 ,

φg = −Λr2

3 − C2

r
− C1ᾱ

2e−mFP r

(1 + ᾱ2)r ,

φf = −Λr2

3 − C2

r
+ C1e

−mFP r

(1 + ᾱ2)r ,

ψg = Λr2

3 + C2

r
+ C1ᾱ

2(1 +mFP r)e−mFP r

2(1 + ᾱ2)r ,

ψf = Λr2

3 + C2

r
− C1(1 +mFP r)e−mFP r

2(1 + ᾱ2)r .

(A.13)

These linearised solutions coincide with the result of [331,332] for Λ = 0, as expected. After having
derived solutions valid inside the Vainshtein radius, we specify the constants of integration. The
final results are presented in Eq. (3.35).

Compton regime

In Section 3.2, we discussed that the linearised solutions do not describe scales smaller than the
Vainshtein radius, r � rV. To find solutions valid in this regime, we keep all nonlinearities in
µ and consider scales smaller than the Compton wavelength, r � m−1

FP. That means we assume
m2

FPr
2 × {|ψg,f |, |φg,f |} � 1 in the modified Einstein equations (A.3) and (A.4). In the following,

we seek solutions that are valid outside the compact object.
Let us start with the metric functions in gµν . With the aforementioned approximations, the

tt-component of Eq. (A.3) is integrated to

ψg = rS

r
+ ᾱ2m2

FP
1 + ᾱ2 r

2
(
µ+ βµ2 + γ

3µ
3
)
. (A.14)

We fixed the other constants of integration by requiring regularity at the surface of the compact
object and at the origin r = 0. The rr-component of Eq. (A.3) simplifies with this solution to

rφ′g = rS

r
− ᾱ2mFP

1 + ᾱ2 r
2
(
µ− γ

3µ
3
)
. (A.15)
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Coming to the functions defining fµν , the tt-component of Eq. (A.4) is integrated to

ψf = − m2
FP

1 + ᾱ2
r2

1 + µ

(
µ+ (1 + β)µ2 + 1 + β + γ

3 µ3
)
. (A.16)

One constant of integration has already been fixed by demanding regularity at the origin r = 0.
The rr-component of Eq. (A.4) simplifies with the above result to

rφ′f = m2
FP

1 + ᾱ2
r2(r + rµ)′

(1 + µ)2

(
µ+ 2µ2 + 2 + 2β − γ

3 µ3
)
. (A.17)

We found solutions for all quantities that appear in the Bianchi constraint (A.5) except µ and
µ′. Plugging our solutions in Eqs. (A.14) to (A.17) into Eq. (A.5), µ′ drops out and what remains
is the following algebraic polynomial for µ [331,332]:

−9(1 + ᾱ2)µ
−2
(
9(1 + ᾱ2)(1 + β)

)
µ2

−
(
10 + 9ᾱ2 + 2(17 + 18ᾱ2)β + 6(1 + ᾱ2)β2 + 4(1 + ᾱ2)γ

)
µ3

−2
(
1 + (7 + 9ᾱ2)β + 6(1 + ᾱ2)β2 + 4(1 + ᾱ2)γ

)
µ4

−
(
2(1 + 2γ)β + 2(1 + 3ᾱ2)β2 + 2(1 + 2ᾱ2)γ − (1 + ᾱ2)γ2)µ5

+2ᾱ2γ2µ6 + ᾱ2γ2µ7

= 3
(rV

r

)3
(1 + ᾱ2)(1 + µ)2(1− γµ2) .

(A.18)

As before, rV = (rS/m
2
FP)1/3 denotes the Vainshtein radius. The left hand side of this equa-

tion defines the polynomial P (µ) in Eq. (3.38). In total, this is a 7th order polynomial in µ,
which gives rise to seven real- or complex-valued roots, which we already discussed in Section 3.2
following [331].

Matching the analytic solutions

As last step, we have to match the linear and nonlinear solutions on scales, where both are valid.
This is the case for rV � r � m−1

FP. This allows to determine the constants of integration C1 and
C2.

First, we linearise the nonlinear solutions Eqs. (A.14), (A.16) and (A.18) for |µ| � 1. Keeping
only the lowest-order term in Eq. (A.18) leads to 3µ = −(rV/r)3, which we plug into Eqs. (A.14)
and (A.16). Summarising, this leads to

µ = − rS

3m2
FPr

3 , ψg = (3 + 2ᾱ2)rS

3(1 + ᾱ2)r , ψf = rS

3(1 + ᾱ2)r . (A.19)

Next, we expand the linear solutions Eq. (A.13) for r � m−1
FP, which leads to

µ = − C1

4m2
FPr

3 , ψg = ᾱ2C1 + 2(1 + ᾱ2)C2

2(1 + ᾱ2)r , ψf = −C1 − 2(1 + ᾱ2)C2

2(1 + ᾱ2)r . (A.20)

Comparing Eq. (A.19) to Eq. (A.19) unveils that the constants of integration must be given by

C1 = 4rS

3 , C2 = rS

1 + ᾱ2 . (A.21)

Plugged into the full linearised solutions in Eq. (A.13) yields the explicit expressions presented
in Eq. (3.35).
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