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ABSTRACT 
 
The work presented in this dissertation was aimed towards furthering our understanding of the 

chemical processes that gave rise to the emergence of life on Earth. Specifically, we provide new 

evidence to support the RNA World Hypothesis, which suggests that the first organisms were 

preceded by an era in which RNA molecules catalysed their own autonomous replication. To this end, 

the syntheses of certain prebiotically plausible pseudo-RNA nucleosides derived from Biuret and 

Triuret are reported. Remarkably, in addition to being hydrolytically stable, these planar H-bonded 

pseudobases exhibit unique base-pairing properties that mirror that of a UG wobble-base pair when 

coupled with guanine or inosine within an RNA duplex. Possible mechanisms for an evolutionary 

transition from such pseudobases to the canonical pyrimidines are discussed. In pursuit of further 

proto-RNA structures, prebiotically plausible routes to a number of extant methylated nucleobases, 

as well as the carbamoylated adenosine nucleosides N6-threonylcarbamoyl adenosine (t6A) and N6-

glycinylcarbamoyl adenosine (g6A) are described. These nucleosides are universally conserved and 

present within the genome of the last universal common ancestor (LUCA), which together with their 

ease of synthesis, suggests that they might endure today as molecular fossils from our RNA-based 

progenitors. Preparation of the first nucleoside phosphoramidites for g6A and related structures were 

also established, thus allowing their incorporation into RNA strands and investigation of their 

theorised role in the origin of translation. Finally, a novel prebiotically plausible route to pyrimidine 

nucleosides is reported, as well as encouraging preliminary results towards the synthesis of a 

phosphoramidite building block of the 1-(isoxazol-3-yl)-3-ribosylurea precursor from that pathway. 
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1 INTRODUCTION 

 
1.1 MINIMAL LIFE ON EARTH 

The origin of life remains undoubtedly one of the greatest unsolved mysteries of our time.[1] Extant 

life is observable in nearly every conceivable niche, from deep sea vent-dwelling chemotropes[2] and 

simple cells buried as deep as 11km beneath the central west Pacific,[3] to hyperthermophiles capable 

of withstanding extreme acidities, temperatures, and pressures.[4] Though it may be impossible to 

delineate exactly when or how life began, putative fossilised microorganisms have been described 

that could be as old as 3.8 billion years.[5] Trapped inside these deposits are the tiniest specks of 

carbon bearing the unmistakable atomic and isotopic footprint of life. If this evidence were to be true, 

then life has surely HQGXUHG IRU PRVW RI EDUWK¶V JHRORJLFDO KLVWRU\ (Figure 1).[6] The Earth itself is 

thought to have formed approximately 4.56 Gya (billion years ago) through a process known as 

runaway accretion, in which tiny particles slowly accumulated until they eventually formed a 

terrestrial body.[7] During its first, and appropriately-named Hadean Eon (4.54 ± 4.00 Gya), the Earth 

appeared uninhabitable, blanketed by molten rock[8] and likely also disturbed by an enormous impact 

giving rise to the Moon.[9] Based upon what we currently know of the requirements needed to sustain 

life, factors such as a suitable atmosphere to retain heat, availability of liquid water, and moderate 

surface temperatures would first need to be met.[10] One may therefore ask, what exactly was it about 

the early Earth that breathed life into inorganic matter?[11]  

 
Figure 1 A simplified timeline of the evolutionary history of life on Earth, outlining certain major 

developmental events that occurred in the last 4.5 billion years.[12±14] 

If life indeed formed on the Archean earth (4.03 - 2.40 billion years ago), we can assume that it did 

so in a chemically active, magmatic environment, with the frequent exhalations of water vapour, 

methane, carbon dioxide, and sulphur.[10] Though it is hotly debated, current evidence suggests that 
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WKH HDUO\ EDUWK¶V DWPRVSKHUH ZDV QRW R[LGLVLQJ, EXW UDWKHU, ZHDNO\ UHGXFLQJ.[15] It is through this 

turbulent geochemical lens that the organic chemist must envisage plausible origin-of-life scenarios. 

One should note that we can never really discern exactly how life began on our planet. The goal of 

the prebiotic chemist is therefore not to delineate the exact pathway through which natural life 

emerged, but instead to more broadly demonstrate that OLIH¶V IXQGDPHQWDO DVSHFWV can arise through 

the organisation of organic matter.[16] Thanks to decades of such advances, we now know of simple 

chemical reactions that make PDQ\ RI OLIH¶V µLQJUHGLHQWV¶.[1] The conditions may have needed to be 

just right, but as I hope to convince the reader of this dissertation, the early Earth was the perfect 

stage for diverse chemistry to happen. In the words of Nick Lane, ³if the probability of life in the 

universe is one in a million billion, then in a million billion planets there is a chance approaching 

µRQe¶ that life should ePeUge´.[6] Evidently, we live on such a planet. 

 

1.2 GIVING µLIFE¶ A DEFINITION 

The immense challenge in addressing OLIH¶V RULJLQ is compounded by the fact that there is currently 

no clear consensus on what is RU LVQ¶W µliving¶.[17,18] In 1994, an expert panel organised by NASA 

proposed a consensus definition for life: a ³self-sustaining chemical system capable of Darwinian 

EYROXWiRQ´.[19] While this definition has become increasingly accepted among origins-of-life 

scientists, it has received ample criticism towards the usage RI µDaUZiQiaQ eYROXWiRQ¶. There are, for 

example, sterile living organisms that are incapable of reproducing (nor of Darwinian evolution) and 

would not fulfil the criteria of NA6A¶V GHILQLWLRQ.[18] It is nonetheless evident that a grey area exists 

EHWZHHQ µGHDG¶ FKHPLFDOV DQG µOLYLQJ¶ ELRORJ\. Some experts, such as Nobel Laureate Jack Szostak, 

have argued that we should not give life a definition, as it distracts us from more pressing questions 

such as how organic matter transitioned to give biology.[20] Albert Eschenmoser noted that researchers 

have tended to fall into one of three groups: those who emphasise genetics and heritability; cellular 

compartmentalisation; or metabolism, depending on which aspect they consider to be most important 

in their definition of life.[16] Were a researcher to take up the challenge of designing an experimental 

PRGHO IRU OLIH¶V RULJLQ, WKHQ FOHDUO\ DOO WKUHH DVSHFWV ZRXOG QHHG WR EH WDNHQ LQWR FRQVLGHUDWLRQ. For 

WKH VDNH RI XQDPELJXLW\, DOO UHIHUHQFHV WR µOLIH¶ WKURXJKRXt this dissertation will correspond 

specifically to the definition given by NASA in 1994. 

 

1.3 THE µRNA :ORLD¶ H<POTHESIS 

If we accept µOLIH¶ to be capable of replication and evolution, then the first lifeforms must have had 

some means of encoding information. In modern cells, the storage, function and proliferation of 

genetic information is orchestrated through a web of highly coordinated and optimised chemistry 
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performed by DNA, RNA, and protein molecules (Figure 2a).  This concept has become embedded 

in modern science as the µcentral dogma of molecular biology¶, and was characterised by Francis 

Crick in response to the discovery that RNA can be reverse-transcribed.[21] After half a century of 

progress, the assumption that information flows irreversibly from RNA to proteins still holds up.[22] 

When it comes to studying the origins of life, however, we begin to encounter certain complications. 

DNA functions to store our genetic information, a job that it does exceptionally well. That is, however, 

about all that DNA can do. Proteins, on the other hand are needed to keep cells alive by acting as 

enzymes and catalysing chemical reactions. Without the genetic code, proteins would not exist, and 

without proteins, DNA could not survive. This poses a chicken/egg problem of what came first, 

proteins or DNA? The solution is perhaps very simple: That early life used RNA as both genetic 

material and as a catalyst (Figure 2b). As it turns out, RNA can catalyse a plethora of chemical 

reactions by varying mechanisms.[23] One can therefore imagine that if RNA molecules were once 

able to self-replicate, they could have even undergone (upon exposure to a section pressure) 

Darwinian evolution. This concept, now referred to as the µRNA WRUOd H\SRWheViV¶,[24] was first 

explored in 1968 by Crick & Orgel[25,26] and is at present the most widely accepted hypothesis for the 

origins of biological evolution. The RNA World Hypothesis became further cemented in the early 

1980s when Altman & Cech independently discovered the first catalytic RNA molecules, otherwise 

known as ribozymes.[27,28] 

  

 

 

 

 

 

 

 

 

 

 

Figure 2 (a) Schematic UeSUeVeQWaWiRQ Rf Whe µcentral dogma of molecular biRORg\¶, deVcUibiQg Whe 

three-step process (replication, transcription, and translation) through which information is copied 

flows from genes to proteins. (b) DeSicWiRQ Rf Whe µRNA WRUOd H\SRWheViV¶, a h\Sothetical stage of 

evolutionary history in which RNA molecules proliferated before genetic information came to be 

stored as DNA. Image created using existing artwork[29] with adaptations (CC BY-SA 3.0). 
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The best evidence for the RNA World can be observed in the various roles of RNA in modern cells. 

The ribosome, the large molecular machine that drives protein synthesis, is for example, in fact a 

ribozyme. Although no ancient ribozyme with intact RNA copying machinery has yet been 

discovered, evidence for such machinery can be found within the small ribosomal subunit.[30] The 

23S component of ribosomal RNA appears to be directly involved in peptidyl transferase activity, 

strongly implying primitive peptide-bond catalysis by RNA during the earliest stages of evolution.[31] 

It has also been long-speculated that the cyclic nitrogenous bases found in modern-day enzyme-

coenzyme complexes might be vestiges of an early genetic system.[32±36] Despite this and other strong 

evidence, many aspects of the RNA World remain uncertain. It is also unclear exactly how RNA 

itself could have spontaneously arisen on the early Earth. For this to be possible, a transition must 

have occurred from small inorganic molecules, to complex and highly-ordered organic scaffolds. The 

main body of work in this dissertation aims to experimentally demonstrate how certain aspects of 

such a transition could have occurred. 

 
1.4 ORGANIC FROM INORGANIC 

As recently as 250 years ago, chemists held the somewhat paradoxical view that the discipline ought 

to be strictly divided into segments that involved either living organisms or lifeless-matter. Along 

this line of thinking, Jacob Berzelius combined plant- and animal chemistry and named the joint 

discipline ³RUJDQLF FKHPLVWU\´, ZKLFK KH GLVWLQJXLVKHG IURP ³inRUJDQLF FKHPLVWU\´.[37] Berzelius then 

formulated what became known as his Central Dogma of Chemistry, where he stated that the 

generation of organic compounds from inorganic ones was physically impossible. Louis Pasteur 

meanwhile provided GHILQLWLYH SURRI WKDW ³OLIH FRPHV RQO\ IURP OLIH´ - at least based upon the 

prevailing biological conditions on Earth. As is often the case however, dogmatic views tend to be 

superseded. Thus, the idea that life could be built out of something inorganic first became widely 

accepted in 1828, when chemist Friedrich Wöhler presented his synthesis of urea 1 from silver 

cyanate 2 in the presence of ammonium chloride (Scheme 1).[38] 7R :|KOHU¶V DVWonishment, the 

mixture gave rise to crystalline urea 1 rather than the expected ionic compound 3. Although the 

mechanistic details of this synthesis are not fully understood, the observed reactivity suggests an 

initial rearrangement of ammonium cyanate 3 via proton transfer, followed by nucleophilic attack at 

the alpha-carbon and subsequent tautomerisation.[39]  

   

 

 

Scheme 1 W|hOeU¶V revolutionary synthesis of urea 1 from the elements of ammonia and cyanate. 

2  
3  

1  
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For the first time ever, a product of animal metabolism (urea 1) had been synthesised in a lab entirely 

without the help of biology. :|KOHU¶V legacy was immense and kindled the birth of modern organic 

FKHPLVWU\. 7KH GLVFRYHU\ ZDV DOVR D VWDUN FRQWUDGLFWLRQ WR WKH µYLWDOLVW¶ GRFWULQH DW WKH WLPH, ZKLFK 

VWDWHG WKDW µSURGXFWV RI OLIH¶ FRXOG RQO\ EH PDGH E\ OLYLQJ RUJDQLVPV. IQ DQ LQVWDQW, WKHVH GRFWULQHV 

were shattered. The feat of mimicking nature was truly exciting, as Wöhler expressed in a letter to 

Berzelius: ³I can no longer, so to speak, hold my chemical water and must tell you that I can make 

urea without needing a kidney, whether of man or dog; the ammonium salt of cyanic acid is urea´.[40] 

The field of prebiotic chemistry was partly birthed from the pioneering viewpoints of Alexander 

Oparin, who in 1924, QRWHG WKDW µthere is no fundamental difference between a living organism and 

lifeless matter¶.[41] Oparin asserted that Earth likely possessed a reducing atmosphere composed of 

water, methane, ammonia, and hydrogen, a combination which he argued were the raw materials 

needed to kick-start life. 2SDULQ DOVR HPSKDVLVHG WKDW DDUZLQ¶V WKHRU\ RI QDWXUDO VHOHFWLRQ VKRXOG 

apply equally to inanimate molecules as it does to living things. Together with the ideas of John 

Haldane, these concepts became known as the Oparin-Haldane hypothesis for chemical evolution.[42]   

 

Perhaps the best-known example of prebiotic chemistry DQG D GLUHFW WHVW RI 2SDULQ¶V K\SRWKHVLV, came 

in the form of the Stanley Miller and HDUROG 8UH\¶V SLRQHHULQJ HOHFWULFDO GLVFKDUJH H[SHULPHQWV, 

which demonstrated the synthesis of amino acids from a crude mixture of gases.[43] Although chemists 

had certainly explored prebiotic syntheses before, what distinguished the Miller-Urey experiments, 

were that they were designed to test a specific hypothesis about the origins of life. In the experimental 

design, Miller and Urey gave careful consideration to what would constitute prebiotically-plausible 

atmospheric conditions and temperatures. The experiment itself consisted of a glass apparatus with 

two connected flasks ± one containing a mixture of gases representing the primordial atmosphere, 

and another containing an aqueous solution representing the primitive ocean (Figure 3). Electrodes 

supplying a high-energy electrical input were applied to the mixture of gasses, which were circulated 

through the system via the refluxing solution. After several days, Miller observed the formation of a 

yellow organic residue, which was extracted and subjected to paper chromatography, revealing the 

presence of 5-different amino acids. Recent re-analyses (in 2008) of the mixtures obtained by Miller 

revealed the formation of many more compounds, including almost all of the proteinogenic amino 

acids.[44,45] The Miller-Urey experiment was also momentous given how it inspired the next 

generation of prebiotic chemists. Encouraged by Miller and Urey, others have since carried out 

similar experiments demonstrating, for example, that hydrogen cyanide 4,[46] cyanoacetylene 5,[47] 

and cyanogen[48] can be produced from an atmosphere composed of methane, nitrogen and carbon 

monoxide.  
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Figure 3 The spark-discharge apparatus used in the 1952 Miller-Urey experiment (or Miller 

experiment), which aimed to produce organic molecules by replicating primitive atmospheric 

conditions of the early Earth.[43] Compounds labelled in red were determined by Miller and those 

labelled in blue were discovered or inferred later. 

 

Beyond the synthesis of small molecules like urea 1 or amino aFLGV, µ5NA :RUOG¶ K\SRWKHVLV SRVHV 

a greater challenge for chemists to elucidate plausible abiotic pathways to the components that make 

up RNA. Among the most daunting aspects of such an endeavour would be the synthesis of the sugar 

D-ribose 6. Aside from the apparent regiochemical issues associated with synthesis of carbohydrates, 

ribose 6 is pentose sugar with four linear-, open-chain configurational isomers, each with their own 

set of two enantiomers. This fact alone suggests that the probability of neat-ribose emerging 

spontaneously on the early earth must have been incredibly low. Extraordinarily, Aleksandr Butlerov 

had already begun to address these obstacles as early as the mid-19th century with his discovery of 

the formose reaction (Scheme 2).[49] In its original version, the formose reaction involved the 

polymerisation of formaldehyde in the presence of calcium hydroxide to give a complex mixture of 

different carbohydrates. Major by-products from this process include formic acid and methanol, 

which are produced via the Cannizaro reaction.[50] 
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Scheme 2 The formose reaction (discovered in 1861 by Aleksandr Butlerov) generates 

glycolaldehyde 8 via the coupling of two molecules of formaldehyde 7, which can subsequently 

provide sugars through a series of intermediary Aldol, reverse Aldol, and Lobry de Bruyn±Alberda±

van Ekenstein reactions.[49,51] 

The exact mechanism of the first step of the formose reaction is still not fully understood.[52] The 

most widely accepted model involves an initial mechanistically unknown slow dimerization of 

formaldehyde 7 to afford glycolaldehyde 8, which can subsequently undergo successive Aldol 

reactions to give carbohydrates such as glyceraldehyde 9.[53] Glyceraldehyde 9 can then isomerise to 

give dihydroxyacetone 10 and subsequently, different tetroses. Larger, linear and branched sugars 

including ribose are then produced via further Aldol reactions and rearrangements involving 7, 8 and 

9. After nearly two centuries, the formose reaction is remarkably still considered to be the main 

prebiotically plausible route to ribose 6 and other significant carbohydrates on the early earth.[53] Very 

recently, for example, Trapp and co-workers were able to show that pentose monosaccharides can be 

generated under dry, mechanochemical conditions in the presence of a multitude of different mineral 

catalysts.[54] The group even demonstrated that when coupled with canonical nucleobases as 

nucleophilic catalysts, the reaction of acetaldehyde with glyceraldehyde 9 can selectively provide the 

full set of DNA nucleosides at very mild temperatures, thus further exhibiting the synthetic utility of 

the formose process.[55] The challenge of ribonucleoside synthesis is, however, twofold; abiotic routes 

are required not only for ribose 6, but also for sufficiently nucleophilic nucleobases or their precursors. 

In this work, I will focus mainly on the second point, as well as the roles that nucleosides could have 

played in the RNA World. 
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1.5 PREBIOTIC AND DE NOVO SYNTHESES OF RIBONUCLEOSIDES 

Ribonucleosides are the key building blocks used by all organisms to make the essential biopolymers 

UHVSRQVLEOH IRU OLIH¶V ELRFKHPLVWU\, DNA DQG 5NA. 7Kanks to their association with the RNA world, 

ribonucleosides now occupy a central focus in the endeavours of scientists to understand the origins 

of life. When considering the de novo origins of such molecules from a prebiotic perspective, however, 

we are confronted by several contradictions. Why, for example, does extant biology require so many 

discrete steps to synthesise ribonucleotides LI WKH\ ZHUH LQGHHG DPRQJ OLIH¶V earliest ingredients?[53] 

In the de novo synthesis of purines (Scheme 3), the nucleobases are assembled nearly one atom at-a-

time on the pre-attached ribose moiety. This pathway firstly involves amination of 5¶-phosphoribosyl-

1¶-pyrophosphate 11 in the presence of glutamine to give a ribosyl amine, which is then elaborated 

in five-steps to give 12. Further oxidation, amination, and formylation of 12 gives 13, which finally 

undergoes cyclisation to give the purine inosine-5¶-monophosphate 14. Even more steps are then 

required to afford 5¶-AMP 15 DQG 5¶-GMP 16. At first glance, such a lengthy and complex process 

seems outwardly impossible without the aid of enzymatic catalysis, or otherwise complex multistep 

synthesis in a laboratory.  

 
Scheme 3 Biosynthetic pathways leading to the canonical purine RNA ribonucleotides. The 

construction of purines involves the stepwise assembly of a heterocyclic moiety already attached to 

the sugar (ribose-5¶-monophosphate).[53] 

Further puzzling is the stark contrast between the lengthy de novo purine biosynthesis and the 

convergent pyrimidine biosynthetic pathway. For the synthesis of the pyrimidine nucleoside uridine 

17 (Scheme 4a), the nucleobase orotate 18 is first assembled from the elements of aspartate 19 and 
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interconversions. Recovered nucleobases (from the catabolic degradation of nucleotides) can later be 

recycled for nucleotide biosynthesis via the salvage pathway, which involves their direct reaction 

with PRPP 11.[53] Finally, the conversion of ribonucleotides into deoxyribonucleotides is catalysed 

by the ribonucleotide reductase (RNR) enzyme, further suggesting that RNA predates DNA from a 

chemical perspective (Scheme 4b).[56] 

 
Scheme 4 Biosynthetic pathways leading to the canonical RNA ribonucleotides and DNA 

deoxyribonucleotides. (a) Nature makes pyrimidine ribonucleotides via the direct glycosylation of 

orotic acid 18, followed by decarboxylation.[53] (b) Deoxyribonucleotides are biosynthesised via the 

RNR-caWaO\Ved UedXcWiRQ Rf Whe 2¶-hydroxyl group of an RNA ribonucleotide.[56] 

Given the inherently complex biosynthetic pathways leading to the pyrimidine and purine 

ribonucleosides, one may ponder how such chemistry could have possibly occurred on the early earth 

without the aid of enzymes? Many have argued that the only way to address such questions is by 
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glycolaldehyde 8. Subsequent reaction of the pentose adduct 26 with cyanoacetylene 5 gave the 

anhydroarabinonucleoside 27 (as was originally shown by Orgel),[66] which upon nucleophilic ring-

RSHQLQJ ZLWK SKRVSKDWH JDYH F\WLGLQH 2¶,3¶-cyclic phosphate 28. Conversion into the uridine 

derivative 29 was also possible by photochemical irradiation (254 nm) in buffered solution (pH 6.5).  

 
Scheme 5 The synthesis of pyrimidine nucleotides from the elements of cyanamide and 

glycolaldehyde as demonstrated by Powner and Sutherland.[67] 

Although the Powner/Sutherland synthesis was the first of its kind to provide the pyrimidine 

ribonucleotides in high yields, certain issues were raised about the plausibility of the processes 

involved.[53] The condensation of 9 with 24 for example, provided a complex isomeric mixture similar 

to that of the formose reaction, where 9 is condensed with 8. Although selective crystallisation of the 

ribose amino-oxazoline 26 gave a partially enriched mixture, chromatographic separation of 26 was 

still necessary to obtain the purified product for reaction with cyanoacetylene, thus bringing into 

question the SDWKZD\¶V true advantages over an independent prebiotic synthesis of ribose. The 

pathway was also curiously dependant on the presence of phosphate buffer. Preparation of the critical 

2-amino-oxazole intermediate 24 for example, required a 1M solution of phosphate buffer at pH 7, 

whereas only a small amount of 24 was formed in unbuffered solution. The Sutherland pathway also 

did not account for how the purine nucleosides could have been generated on the early earth. Although 

Powner and co-workers have recently demonstrated the formation of 8-oxo purine nucleosides via a 

related but divergent synthetic approach,[68] it remained unclear how such a strategy should provide 

the canonical set purine ribonucleosides. Through pioneering experiments by Orgel in 1970, it had 

already been shown that when ribose 6 is heated in the presence of hypoxanthine 30 and either 

magnesium chloride or certain other inorganic salts, the beta-isomer of furanosylinosine 31 (the 

hydrolysis product of adenosine) can be formed in up to 8% yield (Scheme 6).[69] When the same 
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reaction was attempted with adenine 32, however, the major reaction product was not adenosine 33, 

but instead, the undesirable exocyclic (N-6) amine-conjugated isomer 34. 

 
Scheme 6 OUgeO¶V V\QWheViV Rf SXUiQe QXcOeRVideV fURP UibRVe 6 regioselectively provides inosine 31, 

but instead gives the non-natural N-6 regioisomer of adenosine 34 in the case where adenine 32 is 

employed as the nucleophile.[69] 

It was not until 2016 that the Carell lab published a complete a complete- and high-yielding synthesis 

of the purine nucleosides (Scheme 7).[70] The Carell synthesis, in comparison to previous work from 

Orgel and others, exploited the enhanced nucleophilicity of formamidopyrimidines (FaPys) compared 

with fully constructed purine nucleobases. The synthesis also drew inspiration from the seminal work 

from Trinks and Eschenmoser, who in 1987 showed that purine nucleobases can be assembled from 

FaPys.[71]  

 
Scheme 7 The synthesis of purine nucleosides from formamidopyrimidines (FaPys) 35/36 and ribose 

6, as demonstrated by Carell and co-workers.[70] Ribose 6 can be, among other ways, generated by 

the condensation of glyceraldehyde 9 with glycolaldehyde 8 in the presence of inorganic catalysts.[72]  
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The FaPys 35 and 36, which were themselves derived from the pyrimidines 37 and 38, reacted with 

ribose 6 regioselectively due to the presence of their two relatively nucleophilic 4- (or 6-) amino 

groups, as well as their C2V symmetrical nature, to give either guanosine 39 or adenosine 33 as well 

as the expected alpha-furanoside and pyranoside isomers (not pictured). The Carell synthesis also 

exploited the use of borates, which have been known to stabilise ribofuranosides such as 40 (Scheme 

8) as well as enhancing the yields of pentoses in the formose reaction, as was first shown by Prieur[73] 

and later investigated further by Benner and co-workers.[74] Borate may also enhance the E�selectivity 

in glycosylation reactions due to the D�complexation as in 41, although this has yet to be thoroughly 

investigated from a mechanistic perspective.[70] 

 
Scheme 8 The proposed stabilising effects of borate on ribofuranose 40 and its proposed influence 

on substitution reactions.  

As noted throughout this section, there has been a continued effort among prebiotic chemists to 

discover plausible syntheses of ribonucleotides from small molecules that could have plausibly 

emerged the early earth. It should also be apparent that prebiotic synthesis pathways need not 

necessarily mirror de novo biochemistry. One may in fact argue that a certain level of deviation should 

be expected, given that modern biochemistry is the product of millions of years of evolution. Along 

those lines, it could perhaps be possible that the molecules which currently make up our genetic 

systems are distantly removed from those of our ancient progenitors. In the following sections, this 

topic is further discussed as well as existing evidence for how certain non-canonical nucleosides 

might be relics of a more ancient, alternative genetic system. 
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thioalkylations; and even aminoacylations. Even more remarkably, an enormous number of non-

canonical RNA nucleosides have been identified in  all three kingdoms of life.[76] This raises the 

question of whether it is a coincidence that non-canonical ribonucleosides are so particularly common 

in rRNA and tRNA, which are themselves thought to be rudimental to the ancient machinery of 

translation in the RNA world.[30,77] Instead perhaps, life emerged from a more chemically-diverse set 

of nucleobases that was eventually restricted as a result of chemical evolution.  

 
Figure 4 Selected structures of modified nucleosides found in the tRNA and rRNA of archaea and 

bacteria. Modifications are indicated in bold and with colour (red = methyl; yellow = sulfur; brown 

= selenium; purple = other). All of the above structures have been associated with the genome of 

LUCA through phylogenetic analyses.[76] 

 

If this were to be the case, then the modified nucleosides found in tRNA and rRNA might in fact be 
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Martin group in 2016, where phylogenetic analyses identified that a plethora of extant tRNA and 

rRNA modifications were present in the genome of the last universal common ancestor (LUCA).[76] 

Furthermore, many of the non-canonical nucleosides studied by Martin and co-workers are 

observable all three kingdoms of life. The modifications m5U (ribo-T) 42 and Ȍ (Psi) 43 for example 
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interest to us, are the tRNA modifications whose nucleobases are charged with amino acid moieties, 

such as in the case of t6A 44. Covalent adducts of nucleotides with amino acids such as tRNA esters 

or aminoacyl adenylates, are indispensable in biochemistry and constitute the biochemical tools upon 

which translation is built.[77]  

 
Figure 5 (a) The structure of an example tRNA with various modifications occurring at position 34 

and 37 of the anti-codon stem loop.[78] (b) A possible mechanism by which information-encoded 

polypeptides could have originally been generated in the RNA World. Image created using existing 

artwork[79] with adaptations (CC BY-SA 3.0). 

tRNAs are naturally aminoacylated through a cardinal process that occurs in all forms of life ± a 

process that dictates faithful protein synthesis since mischarging leads to sequence errors. In tRGD\¶V 

cells, however, protein synthesis is carried out using tRNAs charged with amino acids at WKH 3¶-

hydroxyl group of the terminal nXFOHRVLGH ORFDWHG DW WKH 3¶- end of the acceptor stem. If translation 

was once mediated on the prebiotic earth via the same type of process, there would be little to protect 

the resultant ester-bond from hydrolysis (aminoacyl-tRNA esters are readily hydrolysed under either 

pos 37

positions 34
and 37 are
often highly
modified

amino acid
binding site

3’

5’

Lys

A

pos 34 X

aceptor
stem

D loop

anti-codon

D stem

Tψ stem

Tψ loop

N

HN

S

O

mnm5s2U

NH

CH3

anti-codon
stem

variable
loop

N

N N

N

HN

ms2t6A

O

N
H CO2H

OH

S

N

N N

N

HN
O

N
H

R

O

O

activation

N

N N

N

HN
O

N
H

R

O

OX

X = leaving group

N

N N

N

N

NH

O
O

±OX

R

N

N N

N

HN
O

N
H

R

O

H
N

O

O

H2N

OH

O

R

R

R = side chains

peptide 
elongation

Could amino-
acylated nucleosides
have served as
ancient translation
machinery?

(a) (b)
A

A

C

C

G C

G G

G G

U G

C C

G C

U U

U

A

G

C

C

G

U

A

C

G

A
GU

U

G

G U
A

A
G C

G C

G A

G C

A U

U A

U

X
X

C
U

G
U

G

G
A

G
C

C

U
U A

G

C

U
UG

G
U

U
C 45 

46 

47 

48 

49 

https://creativecommons.org/licenses/by-sa/3.0/


 

 15 

acidic or alkaline conditions).[80,81] The emergence of translation may therefore instead lie in the 

primitive chemistry of RNA containing modifications such as 44, to which amino acids are covalently 

linked via stable urea functional groups. Many such modifications are found at tRNA-positions 34 

and 37, directly adjacent to the anti-codon stem loop, further suggesting that the natural ancient 

progenitor to tRNAs relied on non-canonical nucleosides to facilitate translation. One possible 

alternative mechanism that could account for the emergence and development of primordial 

translation was therefore proposed by the Carell group (Figure 5b). First, upon activation of the C-

terminus, a urea-linked amino acid 45 could cyclise to give a semi-stable hydantoin 46. Next, the 

hydantoin ring is reopened via the nucleophilic attack of a donor amino acid 47, thus elongating the 

peptide chain and giving structures of the form 48. Further propagation and elongation of 

polypeptides could be facilitated by cleavage of the N-linked urea in 48. Successive further additions 

of amino acids might then be possible if the growing peptide chain was anchored to another RNA at 

the C-terminus. This could in principle be facilitated by an amine-bearing nucleotide modification 

such as mnm5s2U 49, often which are appropriately found at position 34 of the anti-codon stem loop. 

Importantly, tRNA modifications containing hydantoin moieties such as 46 have previously been 

identified and characterised in bacterial tRNA.[82] With these points in mind, a mechanistic 

exploration into whether translation could occur via alternative aminoacylation sites within proto-

RNAs is currently lacking. It would also be valuable to demonstrate that modifications such as t6A 

44 could plausibly have arisen on the early earth, thus prompting the need for prebiotic syntheses. 

Beyond the genome of LUCA, life presumably underwent many stages of chemical evolution before 

we arrived at the genetic system found in biology today. This begs the questions of how RNA might 

have looked even before LUCA. In the next chapter, I discuss plausible alternative genetic systems 

and recognition units based on chemistry that can no longer be observed in extant life. 

 

1.7 PLAUSIBLE ALTERNATIVE ANCESTRAL RNAS 

Among prebiotic chemists, two distinct views have prevailed regarding the prebiotic origins of 

RNA.[83] In the first instance, RNA is thought to have emerged as a direct result of geochemical 

processes that specifically favoured its formation on the early earth.[66,67,84] One shortcoming in this 

model, is that the accumulation of sufficient quantities of complex RNA mononucleotides on the 

early earth would surely have been a very rare occurrence, even if stemming from highly-favourable 

synthesis conditions.[85] In the second view, RNA is instead thought to be a product of chemical 

evolution, and therefore a molecular descendent of DQRWKHU µSURWR-RNA¶[85,86] In this thesis, I aim to 

explore both possibilities ± that RNA could have itself existed on the early earth, and that it may 

alternatively have been the product of a multistage evolutionary process.  
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The first type of adaptation that may have been present in ancestral proto-RNA involves 

simplification of the ribose moiety and phosphodiester backbone. Joyce and Orgel proposed for 

example, that RNA might have been SUHFHGHG E\ D SRO\PHU RI ³VLPSOH, IOH[LEOH, SRVVLEO\ SURFKLUDO 

QXFOHRWLGH DQDORJXHV´ WKDW were more accessible through prebiotic synthesis on the early earth.[85] 

The two chemists further suggested that the prochiral propylene glycol-based polymer GNA (Figure 

6) could have arisen, given the expected presence of glycerol on the early earth. Meggers and co-

workers further validated this claim by showing that chemically-synthesised GNA can in fact base-

pair with itself and complementary RNA.[87] Inspired by this work, Eschenmoser later demonstrated 

an Į-threofuranosyl-based system (TNA), FRQWDLQLQJ YLFLQDOO\ FRQQHFWHG (3¶ĺ2¶) phosphodiester 

bridges.[88] The advantage of TNA was that while being constructed from a sugar with only four 

carbon atoms, the polymer would maintain the same poly-furanosyl backbone repeat unit found in 

other natural nucleic acids. Despite their prebiotic potential, the proto-RNAs GNA and TNA have 

still sometimes been met with doubt.[89] An arguably grander proposal for a proto-RNA involves the 

potential existence of peptide nucleic acid PNA, where a peptide constructed from repeating 

glutamic- and aspartic acid residues would serve as the nucleic acid backbone, rather than 

phosphodiester linkages.[90] Unlike RNA, PNA might have been accessible under mild non-

enzymatic conditions, given that amino acids can be activated in a variety of ways. 

 
Figure 6 Examples of non-canonical genetic polymers with hypothesised roles in chemical evolution 

and the origin of life.  

 

A second class of modifications that may have been present in proto-RNA involves the simplification 

or derivatisation of the base-pairing recognition units. Crick and Orgel were among the first to suggest 

that primitive biology might have taken advantage of a reduced set of heterocyclic bases.[25] They 

proposed that nucleic acids might have evolved from a purine-only base pairing system. Such systems 

were later demonstrated experimentally by Eschenmoser and others.[91,92] Numerous studies have 

since also confirmed the propensity of various heterocyclic systems to form stable base-pairs, each 
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with their own merits and advantages in origins of life scenarios (Figure 7).[93±97] We argue, however, 

that while many of these alternative base-pairing systems may indeed be prebiotically plausible, their 

constituents are in most cases barely simpler than those that make up canonical Watson-Crick RNA. 

We therefore became interested in whether an information biopolymer could possibly have arisen, 

containing nucleobases constructed from linear, acyclic, repeating units. 

 
Figure 7 Examples of alternative base-pairing systems that have been implicated with the chemical 

origins of life.[91±97] 

 

Inspired by the pioneering work of Wöhler,[38] we asked whether it would be possible to generate a 

base-pairing system entirely from polycarbamoylureas with the general repeating structure H2N-CO-

(NH-CO)n-NH2. In general, such molecules are known to adopt reversible planar-, hydrogen-bonded 

confirmations, thus potentially allowing them to participate in base-pairing.[98] We were also inspired 

by recent work from Lagoja, who demonstrated that guanine 50 can be synthesised from the acyclic 

precursors diformyl biuret 51 and glycinamide 52 under thermally-promoted conditions (Scheme 

9).[99]  

 
Scheme 9 Synthesis of guanine 50 from diformyl biuret 51 and glycinamide 52, shown by Lagoja.[99] 

Based upon these results, we anticipated certain conditions similar to those used by Lagoja and co-

workers (for example with activation of a carbonyl moiety, or by formylation of the N-1 amino group) 

might even allow us to convert an acyclic proto-base such as that shown in Figure 7 into one that 

more closely resembles the canonical pyrimidines. Another goal of this thesis was thus, to investigate 
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whether acyclic systems containing polycarbamoylureas are capable of base-pairing, and whether 

they could have plausibly existed on the early earth. 

 

1.8 AIMS OF THIS THESIS 

As depicted, the primary goal of this thesis was to investigate whether a proto-RNA recognition 

system based upon acyclic polycarbamoylureas could have plausibly preceded canonical RNA on the 

early earth (Figure 8). To such an end, prebiotic syntheses of ribonucleosides containing compounds 

such as biuret 53 and triuret 54 as the nucleobase moiety would need to be developed. The nucleosides 

would then be synthetically incorporated into RNA and their physicochemical and base-pairing 

properties thus investigated. The secondary goal of the work presented here was to investigate the 

speculated role of aminoacylcarbomoyl adenosine nucleosides in the origin of translation and 

polypetides. Specifically, we aimed to verify whether compounds with the general structure 55 are 

accessible under prebiotically plausible conditions, and to experimentally demonstrate their 

propensity to facilitate polypeptide synthesis under early-earth conditions. Finally, harnessing the 

information gained through our other developing goals, we aimed to investigate whether certain 

hypothesised proto-RNA nucleosides could have plausibly acted as precursors to the canonical 

Watson-Crick pyrimidines uridine 17 and cytidine 23. This goal would be achieved by their 

incorporation into RNA strands, followed by an assessment of their physicochemical properties. More 

broadly, we aimed consolidate this knowledge to develop a broader picture for how the first life might 

have emerged from RNA on the early earth. 

 
Figure 8 Aims of this PhD thesis.  
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SUMMARY: 

It has been proposed that the RNA-world was preceded by an era in which genetic information was 

encoded by proto-RNAs constructed from molecules that were more likely to have been present on 

the early Earth. Here, we demonstrate that the prebiotically plausible starting materials biuret and 

triuret react with ribose to generate (among other products), stable nucleosides capable of base pairing. 

Synthesis of phosphoramidite building blocks allowed us to incorporate the nucleosides into RNA, 

and thus determine their base-pairing properties, namely that triuret forms a pair with G, which 

closely resembles the U:G wobble base pair. 

 

PERSONAL CONTRIBUTIONS: 

- Prepared compounds 1-15, as depicted in the publication (syntheses were originally designed 

and carried out by H. Okamura), and characterised their chemical properties. 

- Incorporated nucleoside phosphoramidites into RNA and synthesised homo-oligomers. 

- Prepared RNA samples for high-resolution NMR spectroscopy experiments under supervision 

from H. Okamura. 

- Prepared synthetic standards and designed calibration curves in order to quantify prebiotic 

reactions. 

- Conducted prebiotic synthesis experiments (with design and supervision from H. Okamura) and 

collected/presented the data associated with their results. 

- Measured melting curves for inosine-X (X=Bi/Tri/AUCG) pairs, and for certain mismatch pairs. 

- Composed and prepared the figures (with the exception of figure 6) together with H. Okamura 
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article was reprinted with permission from John Wiley and Sons. (CC BY-NC 4.0)  
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German Edition: DOI: 10.1002/ange.201911746Prebiotic Chemistry Hot Paper
International Edition: DOI: 10.1002/anie.201911746

Proto-Urea-RNA (Wçhler RNA) Containing Unusually Stable Urea
Nucleosides
Hidenori Okamura+, Antony Crisp+, Sarah H¸bner, Sidney Becker, Petra RovÛ,* and
Thomas Carell*

Abstract: The RNA world hypothesis assumes that life on
Earth began with nucleotides that formed information-carry-
ing RNA oligomers able to self-replicate. Prebiotic reactions
leading to the contemporary nucleosides are now known, but
their execution often requires specific starting materials and
lengthy reaction sequences. It was therefore proposed that the
RNA world was likely proceeded by a proto-RNA world
constructed from molecules that were likely present on the
early Earth in greater abundance. Herein, we show that the
prebiotic starting molecules bis-urea (biuret) and tris-urea
(triuret) are able to directly react with ribose. The urea-
ribosides are remarkably stable because they are held together
by a network of intramolecular, bifurcated hydrogen bonds.
This even allowed the synthesis of phosphoramidite building
blocks and incorporation of the units into RNA. Investigations
of the nucleotides� base-pairing potential showed that triuret:G
RNA base pairs closely resemble U:G wobble base pairs.
Based on the probable abundance of urea on the early Earth,
we postulate that urea-containing RNA bases are good
candidates for a proto-RNA world.

Introduction

Urea, the bisamide of carbonic acid, is widely distributed
in the biosphere and plays a fundamentally important role in
the biosynthesis of proteins and the entire N-cycle of
organisms in general.[1,2] It is also believed to have formed
early on the prebiotic Earth and before the process of
chemical evolution that gave the centrally important mole-
cules of life.[3] Urea is a key starting molecule for many
prebiotic chemical reactions,[4–11] and was the first organic

compound synthesized from inorganic matter (ammonium
cyanate) by the chemist Friedrich Wçhler in 1828.[12] Wçhler�s
synthesis was the starting point of the field of organic
chemistry and was, among others, essential to defeating the
mainstream ideology of “vitalism”, which stated that organic
matter contained a special vital force.[13] Current theories
about the origin of life are built upon the RNA world
hypothesis, which predicts the early formation of information-
encoding RNA that was able to self-replicate and that
featured properties leading to their survival under early
Earth conditions.[14–17] It is assumed that based on the
processes of chemical evolution, more and more complex
RNA and RNA–peptide structures were created that finally
led to the emergence of life.[18, 19] RNA and the constituting
nucleosides that are needed to establish faithful replication of
“genetic” information are, however, rather complex chemical
structures. The problem of finding prebiotically plausible
pathways to the canonical nucleosides (Figure 1a; known as
the nucleoside problem)[20] led to the idea that RNA was
potentially proceeded by a proto-RNA that could more easily
arise from prebiotically privileged starting materials.[21] As
a result, emerging discussions about the origin of life have
often emphasized the significance of informational polymers
that are simpler than RNA. A revolutionary study from
Eschenmoser�s group, for example, demonstrated that
a-threofuranosyl nucleic acid (TNA) is capable of forming
antiparallel duplexes and can even pair with cDNA or
RNA.[22] TNA was later simplified to an acyclic polymer
known as glycol nucleic acid (GNA),[23–25] and various other
XNA backbones have since been investigated.[26] We know
that formaldehyde and Ca(OH)2 can give sugars by the

Figure 1. a) The chemical structures of the canonical RNA nucleosides.
b) The chemical structures of biuret and triuret. c) Depiction of the
urea-based nucleosides with potentially stabilizing hydrogen bonds.
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formose reaction,[27–29] as first described by Butlerov.[30]

Although it remains unclear how exactly such a process could
lead to the substantial accumulation of ribose on the early
Earth, recent developments have led to significant improve-
ments in the prebiotic synthesis of ribose from simpler
aldoses.[31–33] We also know that urea was one of the most
likely nitrogen-containing molecules present on the early
Earth and that it can activate mineral phosphate to achieve
phosphorylations.[4,5] As urea itself has even been shown to
react directly with ribose under mildly acidic conditions,[34] we
asked whether the construction of informational base-pairing
systems based on the pyrolysis products of urea, biuret and
triuret (Figure 1 b),[35] would be possible.

The fundamental chemical problem associated with this
notion is that such nucleosides (Figure 1c) should be highly
prone to hydrolysis in an aqueous environment. Investigating
the structures of potential urea bases, however, led us to
discover that those containing biuret (b-1) and triuret (b-2)
are highly stabile even in water, probably because of the
intramolecular H-bonds (Figure 1c). The question of the
possible prebiotic existence of urea (Wçhler) RNA is there-
fore directly associated with the question as to which extent
these non-covalent interactions protect from hydrolysis.

Results and Discussion

To investigate the formation of urea nucleosides under
plausible prebiotic conditions, we mixed aqueous solutions of
ribose with either biuret or triuret in the presence of boric
acid and heated the mixture at 95 88C for 18 h, allowing the
mixture to slowly dry down. Boric acid, which forms
complexes with vicinal 1,2-diols because of its high electron
deficiency, was included for its known stabilizing[36–38] and
directing[39–41] effects on ribose. The resulting solid was then
taken up in dilute (100 mm) sodium carbonate buffer (pH 9.5)
and heated again at 95 88C for 1 h (Figure 2).

The mixture was subsequently analyzed by reverse-phase
HPLC-MS. Gratifyingly, we noted significant formation of the
corresponding nucleosides with both biuret and triuret. These
wet–dry conditions mimic the intermittently concentrating
environments that might be found on drying beaches or
lagoons (or even today in Death Valley),[42] as was recently
discussed in relation to the prebiotic synthesis of canonical
and non-canonical purine nucleosides.[39] For the biuret
reaction, we detected formation of four major nucleoside
products. Of those, two are the a- and b-anomers of the
ribofuranosides (a-1 and b-1). These structures were con-
firmed by independent synthesis of the a- and b-anomers (see
below) followed by co-injection studies. The absolute stereo-
chemical configurations of the a- and b-anomers were
confirmed by NOESY-NMR spectroscopy (see the Support-
ing Information). The other two compounds detected in the
HPLC-MS experiment are likely the pyranosidic species (not
further investigated). Similar but not identical data were
obtained for triuret. Here too, we detected four reaction
products of which two are the a- and b-anomers of the
ribofuranosides (a-2 and b-2), with the remaining compounds
likely being the pyranosides again. We focused our initial

studies on the ribofuranosides and noted to our surprise that
both the biuret and the triuret species are quite stable. Both
compounds can be kept for prolonged periods of time in an
aqueous solution at neutral pH without signs of anomeriza-
tion. This unusual stability of the biuret and triuret nucleo-
sides prompted us to study if one could generate phosphor-
amidites and insert them into RNA. This would require the
Wçhler nucleosides to survive even the nucleophilic reaction
and deprotection conditions needed for solid-phase RNA
synthesis.

The synthesis of the phosphoramidite building blocks is
shown in Scheme 1. We began with the 3’,5’-silyl protection of
1-azidoribose 3 to obtain 4, followed by TOM protection of
the 2’-OH group to give 5. Desilylation of the 3’,5’-positions
(affording compound 6) and subsequent DMTr protection of
the 5’-OH group furnished compound 7. We then protected
the 3’-OH group with an acetyl group to give 8 and reduced
the azide by catalytic hydrogenation followed by reaction of
the amine with trimethylsilylisocyanate. This provides the
urea riboside 9. A second reaction with trichloroacetyliso-
cyanate in pyridine followed by cleavage of the trichloroace-
tate group with basic alumina in methanol gave the biuret
riboside 10 as a mixture of the a- and b-isomers (b-10 and

Figure 2. Reaction of a) biuret and b) triuret with ribose and analysis
of the reaction mixture by HPLC-MS, showing the successful formation
of urea-based nucleosides.
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a-10), which we separated by column chromatography (SiO2,
CH2Cl2/CH3OH 100:0!98:2). The unwanted a-isomer (a-10)
isomerized upon heating in the presence of DBU, which gave
a mixture of b-10 and a-10. Iterative anomerization allowed
us to increase the total isolated yield of the b-anomer (b-10)
for subsequent reactions. To obtain the triuret nucleoside 11,
we repeated the trichloroacetylisocyanate reaction followed
by basic alumina treatment using the pure b-anomer of the
biuret nucleoside (b-10). Interestingly, we observed very little
anomerization during these reactions (as monitored by TLC).
The b-triuret nucleoside 11 was therefore obtained in

anomerically pure form and in 58 % yield. Both the b-biuret
(b-10) and the b-triuret (11) nucleosides were next converted
into the corresponding phosphoramidites. To this end, we
cleaved the 3’-acetyl group with ammonia (even these
conditions do not lead to hydrolysis of the glycosidic bond),
and then treated the ensuing compounds 12 and 13 with bis(2-
cyanoethyl)-N,N-diisopropylphosphoramidite in the presence
of diisopropylamine and tetrazole. This final step provided
the phosphoramidite building blocks 14 and 15 in good yields
of 70 % and 54%, respectively.

For the solid-phase oligonucleotide synthesis, we used
a standard ultra-mild RNA synthesis protocol. The urea bases
were coupled once for 20 min. After full assembly of the RNA
strands using Pac chemistry conditions, we deprotected the
RNA strands and cleaved them from the solid support with
NH3 in methanol at room temperature. The silyl protecting
groups were finally removed using HF-TEA in DMSO at
65 88C. Figure 3 shows the crude HPLC chromatogram of the
triuret-containing RNA strand as an example, as well as the
MALDI-TOF mass spectrum obtained from purification of
the major species. It is clearly evident that the RNA strands
are efficiently produced and can be cleanly purified. Similar
data were obtained for the biuret-containing strands (Fig-
ure S7). It is remarkable that the urea bases survive the RNA
synthesis conditions to give RNA strands in excellent purity.

This stability allowed us to next investigate the pairing
properties of the biuret and triuret bases using thermal
melting curve studies (10 mm sodium phosphate, 150 mm
NaCl, pH 7.0). If a candidate proto-RNA were to have
existed before the emergence of modern RNA, then it stands
to reason that its bases needed to pair with the canonical
nucleosides to allow a smooth evolutionary transition from
proto-RNA to RNA. For the measurements we prepared
RNA strands with a C:G or a U:A base pair in a central
position. We then exchanged the pyrimidine base C or U with
the biuret (Bi) or triuret (Tri) base. The data are compiled in
Figure 4b. The unmodified RNA duplexes feature, as ex-
pected, rather high melting temperatures of 55 88C (C:G) and

Scheme 1. Phosphoramidite building block synthesis of the biuret and
triuret nucleosides. Reagents and conditions: a) t-Bu2Si(OTf)2, DMF,
0 88C, 1 h; b) i-PrSiO(CH2)Cl, NaH, THF, 0 88C, overnight, 55 % over
2 steps; c) HF-pyridine, pyridine, CH2Cl2, room temperature, 1 h, 61%;
d) DMTrCl, pyridine, room temperature, overnight, 77%; e) Ac2O,
DMAP, pyridine, room temperature, 2 h, 91 %; f) 10 % Pd/C, H2, THF,
room temperature, 2 h, then g) TMS-isocyanate, THF, room temper-
ature, overnight, 76% (mixture of diastereomers); h) trichloroacetyliso-
cyanate, pyridine, THF, room temperature, 1 h, then i) Al2O3, MeOH,
room temperature, 1 h, 90% (d.r. a/b =1.6:1); j) DBU, THF, 50 88C,
overnight, 28% (96% based on recovered starting material); k) tri-
chloroacetylisocyanate, pyridine, THF, room temperature, 1 h, then
l) Al2O3, MeOH, room temperature, 1 h, 58%; m) NH3, MeOH, room
temperature, 4 h, 74 %; n) NH3, MeOH, room temperature, 4 h, 76%;
o) bis(2-cyanoethyl)-N,N-diisopropylphosphoramidite, diisopropyla-
mine-tetrazole, CH3CN, room temperature, overnight, 70%; p) bis(2-
cyanoethyl)-N,N-diisopropylphosphoramidite, diisopropylamine-tetra-
zole, CH3CN, room temperature, overnight, 54%.

Figure 3. Preparatory HPLC and MALDI-TOF mass data for an exem-
plary Tri-containing RNA strand with the sequence 5’-CUUACTriCUGA-
3’.
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49 88C (U:A). For all Bi:A/G/U/C base pairs, we measured
much lower melting temperatures, which were in addition
quite similar irrespective of the counterbase (between 28 88C
and 31 88C). This shows that the biuret base does not prefer
a particular counterbase and that base pairing is in general
weak, if it occurs at all. For the larger triuret base, we noted
significantly higher melting temperatures between 35 88C and
45 88C. In addition, we observed a clear base-pairing prefer-
ence with G. The melting temperature for the Tri:G base pair
is around 5 88C higher than those for the others, which clearly
points to a significant pairing selectivity. Analysis of the base
pairing potential of the triuret base shows that it is in principle
possible to form a wobble-type base pair with G. We therefore
tested an RNA duplex with a central U:G wobble base pair
and observed indeed the same melting temperature (45 88C).
Our hypothesis was further validated by the observation that
triuret also forms a stable base pair with the structurally
related base inosine (I), giving an almost identical melting
temperature of 44 88C. To exclude that this is pure chance, we
next prepared RNA strands with either two or even three
consecutive triuret bases and paired this strand with a counter-
strand containing either two or three central G bases.
Comparative melting point studies showed exactly the same
behavior between the U:G wobble and the Tri:G base pairs.

To gain deeper insight into the origin of the stability of the
Tri:G base pairing, we prepared 8 mer palindromic RNA
strands that were designed to form canonical C:G, wobble
U:G, or Tri:G pairs at the central position (GGUXGACC,
where X = C, U, or Tri) and analyzed their 2D 1H–1H NOESY
spectra.[43] The high chemical shift similarity in the fingerprint

region of the spectra (Figure S17) confirms the same overall
structure for the three oligonucleotides, namely formation of
an A-form double-stranded RNA (Figure 5c).

The imino region of the NOESY spectra provides direct
information on the hydrogen bond interactions between base
pairs (Figure 5a and Figure S16). The Tri base has five amide
protons (H1, H3, H5, H71, and H72) and three carbonyl
oxygen atoms that could potentially be involved in base
pairing. Out of the five protons, H3 and H5 are partially or
fully solvent-exposed and thus they show strong exchange

Figure 4. a) Chemical structure and base-pairing properties of triuret
and similarity between the triuret-G base pair and a U-G wobble base
pair. b) Summary of Tm analyses for oligonucleotides containing biuret
and triuret. c) Summary of Tm analyses for oligonucleotides containing
more than one modified base or U-G wobble base pair. Solutions were
buffered with 10 mm sodium phosphate (pH 7) and 150 mm NaCl.

Figure 5. NMR analysis of the triuret:G base pairing. a) Excerpt from
the 1H–1H NOESY spectrum (tmix = 40 ms) of the dsRNA (GGUXGACC,
where X= Tri) showing the inter-strand cross-peaks between the H1
imino proton of G5 and the H3 amide proton of Tri4. The inset shows
a model for the triuret:G base paring. b) NOE contacts of the triuret
base amide protons. Essential structure-defining NOE contacts are
highlighted for Tri4H1–U3H2’ (yellow), Tri4H71/H72–U3H2’ (green),
G5H1–Tri4H3 (red), and Tri4H3–Tri4H5 (purple). Other observed NOE
contacts are shown as black lines. c) Structural model of the GGUX-
GACC oligonucleotide showing the non-canonical base pairing be-
tween G5 (blue) and Tri4 (green) bases.
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cross-peaks at the water resonance (Figure S19). The number
and intensity of cross-peaks between the H1 proton of Tri and
the sugar/base protons of the previous uridine base (U3)
indicate that the H1 proton is located in a similar arrangement
to the H5 proton of a U or a C or as the H8 proton of an A and
a G base in canonical dsRNA structures; for example, we
observed a strong NOE cross-peak between Tri4H1 and
U3H2’ (yellow line in Figure 5b). Similarly, the terminal NH2

group of Tri shows strong cross-peaks with the H2’ and H5
protons of U3 (green lines in Figure 5c). Thus, the NOESY
spectra suggest that both H1 and the NH2 group point towards
the phosphate backbone. Direct evidence for Tri:G base
pairing was obtained from a NOESY spectrum recorded with
a relatively short (40 ms) mixing time (Figure 5a). This
experiment provides a clear cross-peak between the H1
imino proton of G5 and the H3 amide proton of Tri of the
opposite strand (red line in Figure 5b). In addition, the TriH3
proton shows an intrabase cross-peak with H5 (purple line in
Figure 5c). These, as well as a handful of other NOE cross-
peaks between the triuret base protons and the surrounding
protons, support the structural model depicted in Figure 4a
(all other NOE distance restraints are depicted with black
lines in Figure 5b), with the triuret moiety clearly forming
bifurcated hydrogen bonds.

To obtain a three-dimensional model for the Tri:G base
pair, we performed molecular modeling using the online
software ROSIE[44, 45] followed by NOE-based structure
calculations using the software CNSsolve.[46, 47] During the
structure calculations, only the conformation of the triuret
base was altered while the phosphate backbone and all other
bases were kept at their fixed position. Figure 5c displays the
obtained low-energy structure model for the double-stranded
8 mer RNA. It is clearly evident that the two Tri:G base pairs
are well accommodated in the structure and that the extended
network of hydrogen bonds within the Tri structure and
between Tri and the opposite G establish the measured
stability.

All of these results confirm that triuret, which is itself
a condensation product of urea, is able to form a folded
pseudobase that pairs with guanine. Finally, in order to further
demonstrate the prebiotic plausibility of Wçhler RNA, we
synthesized a homo-RNA oligomer containing exclusively
triuret bases (Figure 6 a). The only additional structural
modification was the inclusion of a dye at the 5’-end (Cy3),
which was necessary to allow UV detection at 548 nm and
therefore purification by HPLC. Remarkably, despite having
five, in principle hydrolysable triuret bases in a row, the
homo-strand was bench-stable both at room temperature as
well as when subjected to the harsh conditions necessary for
RNA deprotection and cleavage from the solid support.
Figure 6 shows the crude HPLC chromatogram obtained
from the material directly after its synthesis and the correct
MALDI-TOF mass spectrum, confirming the integrity of the
material.

Conclusion

In summary, we have shown that biuret and triuret are
able to condense directly with sugars (here ribose) to form
stable bis- and tris-urea nucleosides. Within an RNA strand,
triuret is able to form stable wobble-type base pairs with G as
well as with the prebiotically relevant base inosine.[48] As
discussed, biuret and triuret are obtained upon pyrolysis of
urea, one of the most likely building blocks available on the
early Earth. Given that various tri-, tetra-, and pentose sugars
are prebiotically accessible from glycoaldehyde,[31, 32] which is
itself accessible from either formaldehyde[30] or HCN by
ultraviolet irradiation,[49] our discovery creates the prebioti-
cally attractive possibility of generating information-encoding
oligomers whose key building blocks are derived of simple
one-carbon units. The chemistry described here now needs to
be explored with sugars simpler than ribose. Discussed
examples are threose-[22, 50] and glycol-based[23, 25] backbones.
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Amino Acid Modified RNA Bases as Building Blocks of an Early
Earth RNA-Peptide World
Milda Nainytė,[a] Felix M¸ller,[a] Giacomo Ganazzoli,[a] Chun-Yin Chan,[a] Antony Crisp,[a]

Daniel Globisch,[b] and Thomas Carell*[a]

Abstract: Fossils of extinct species allow us to reconstruct
the process of Darwinian evolution that led to the species
diversity we see on Earth today. The origin of the first
functional molecules able to undergo molecular evolution
and thus eventually able to create life, are largely un-
known. The most prominent idea in the field posits that
biology was preceded by an era of molecular evolution, in
which RNA molecules encoded information and catalysed
their own replication. This RNA world concept stands
against other hypotheses, that argue for example that life
may have begun with catalytic peptides and primitive
metabolic cycles. The question whether RNA or peptides
were first is addressed by the RNA-peptide world concept,
which postulates a parallel existence of both molecular
species. A plausible experimental model of how such an
RNA-peptide world may have looked like, however, is
absent. Here we report the synthesis and physicochemical
evaluation of amino acid containing adenosine bases,
which are closely related to molecules that are found
today in the anticodon stem-loop of tRNAs from all three
kingdoms of life. We show that these adenosines lose
their base pairing properties, which allow them to equip
RNA with amino acids independent of the sequence con-
text. As such we may consider them to be living molecular
fossils of an extinct molecular RNA-peptide world.

The RNA-peptide co-evolution hypothesis describes the emer-
gence of self-replicating molecules that contained amino acids
and RNA.[1] At the macromolecular level, this tight coexistence
of peptides and RNA is established in the ribosome, where en-
coding and catalytic RNA is supported by proteins.[2] Although

we cannot delineate how such an early RNA-peptide world
may have looked like, it seems not too implausible to assume
that some of the molecular components may have survived
until today as vestiges of this extinct world.[3] tRNAs derived
from all three kingdoms of life contain a large number of
modified bases,[4] and some of them are indeed modified with
amino acids.[3] The most wide spread amino acid modified
bases are adenosine nucleosides, in which the amino acid is
linked via urea connector to the N6-amino group of the hetero-
cycle as depicted in Figure 1 a. Particularly ubiquitous are ade-
nosine modifications containing the amino acids threonine
(t6A)[5–7] and glycine (g6A),[8] together with hn6A.[9, 10] Based
upon recent phylogenetic analyses and the fact that t6A is
found in all three kingdoms of life, it has been suggested that
such amino acid modified bases were already present in the
last universal common ancestor (LUCA), from which all life

Figure 1. (a) Depiction of the amino acid modified A-bases (aa6A) together
with computer visualizations that show how such bases may reside in an
(b) A-form RNA duplex and a (c) B-form DNA duplex. The sequence used for
the visualization is : 5’-CAUAUAUAUAUG-3’ with A = g6A.
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forms descended.[11–14] t6A is for example today found in nearly
all ANN decoding tRNAs.[15] We recently reported a plausible
prebiotic route to some of these amino acid modified A-bases,
which strengthens the idea that they could indeed be living
chemical fossils of the extinct RNA-peptide world.[16] Despite
the interesting philosophical genotype-phenotype dualism
that characterizes these structures and their contemporary im-
portance for the faithful decoding of genetic information, a
general synthesis of aa6A modified bases (Figure 1 a) and a sys-
tematic study of their properties is lacking.

Here we report the synthesis of a variety of aa6A nucleosides
with canonical amino acids (aa = Asp, Gly, His, Phe, Thr,[17] Ser,
Val), their incorporation into DNA and RNA and an investiga-
tion of how they influence the physicochemical properties of
oligonucleotides. We were particularly interested to study how
they might affect the stability of RNA and DNA. The computer
visualization shows that in A-form RNA (Figure 1 b), the amino
acid part of the aa6A base would need to reside inside the
helix, shielded from the outside. In the B-form DNA one could
imagine a decoration of the major groove with the amino acid
side chains as depicted in Figure 1 c.

In the Schemes 1 and 2 we show the synthesis of the differ-
ent urea linked amino acid A-derivatives (aa6A). We first pre-
pared the amino acid components for the coupling to the A-
nucleoside (Scheme 1). Our starting points for Thr6A, Ser6A and
Asp6A were the free amino acids 1–3, in which we first trans-
formed all carboxylic acids into the p-nitrophenylethyl esters
(npe, 4–6).[17] The hydroxy groups of the Thr and Ser com-
pounds were finally protected as TBS-ethers to give the final
products 7 and 8 (Scheme 1 a). For Val, Gly and Phe we started
with the Boc-protected amino acids 9–11, which we also con-
verted into the npe-esters 12–14 using Mitsunobu type

chemistry[18] followed by acidic (4 m HCl in dioxane) Boc-depro-
tection to give the amino acid products 15–17 (Scheme 1 b).[19]

For His6A, we again started with the Boc-protected amino
acid 18 (Scheme 1 c) and used HBTU activation to generate the
npe ester 19. Protection of the imidazole Nt with POM-chloride
followed again by Boc-deprotection furnished the ready to
couple amino acid 21.

The connection of the amino acid with the A-nucleoside via
the urea moiety was next carried out as depicted in Scheme 2.
We first treated phenyl chloroformate with N-methylimidazole
to obtain the 1-N-methyl-3-phenoxycarbonyl-imidazolium chlo-
ride (22).[20] Adenosine was converted in parallel into the cyclic
3’,5’-silyl protected nucleoside, followed by conversion of the
2’-OH group into the TBS-ether.[21] The reaction of compound
24 with the activated carbonate and the corresponding amino
acid, provided in all cases the amino acid coupled products
25–31 in good to excellent yields. Subsequent cleavage of the

Scheme 1. Synthesis of the amino acid building blocks as needed for the
coupling to the nucleoside A to give Thr6A, Ser6A, Asp6A, Val6A, Gly6A, Phe6A
and His6A.

Scheme 2. Synthesis of phosphoramidite building blocks of Thr6A, Ser6A,
Asp6A, Val6A, Gly6A, Phe6A and His6A and their incorporation into RNA.
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cyclic silylether with HF·pyridine complex,[22, 23] protection of
the 5’-OH group with dimethoxytritylchloride (DMTCl)[24] al-
lowed the final conversion of the compounds into the corre-
sponding phosphoramidites 46–52. Standard solid phase RNA
chemistry[25–31] was subsequently employed to prepare RNA
strands containing the individual aa6A nucleosides stably em-
bedded. The standard RNA synthesis protocol did not require
any adjustment. In all cases we observed fair coupling of the
aa6A phosphoramidites and no decomposition during depro-
tection. Deprotection required three steps. First, with DBU in
THF at r.t. for 2 h we cleaved the npe-protecting group.
Second, we deprotected the bases and cleaved from the solid
support with aqueous NH3/MeNH2. Finally, we removed the 2’-
silyl group with HF in NEt3.

In order to investigate how aa6A bases would affect the sta-
bility of DNA duplexes we also prepared as a representative
molecule t6dA as depicted in Scheme 3. To this end we first
acetyl-protected dA 53,[32] performed the coupling of the pro-
tected threonine with the activated carbonate 22, cleaved the
acetyl groups and converted the nucleoside subsequently into
the 5’-DMT protected phosphoramidite 57. The purification of
compound 57 was quite difficult due to its high polarity. We
needed to use rather polar mixture of EtOAc/Hex (2/1) as the
mobile phase for the chromatographic separation. This provid-
ed the phosphoramidite 57, however the material had a lower
purity in comparison to the RNA phosphoramidites. Neverthe-
less, solid phase DNA synthesis and deprotection of the DNA
strand ODN1 proceeded again smoothly and in high yields.

Figure 2 a shows as an example the raw HPL-chromatograms
of ON1 (RNA strand with embedded t6A) and the correspond-
ing chromatogram after purification (inset) together with the
obtained MALDI-TOF mass spectrum (Figure 2 b). The chroma-
tograms of the raw material show a good quality of the ob-
tained RNA material. The analytical chromatogram after purifi-
cation and the MALDI-TOF data prove the purity of the finally
obtained RNA oligonucleotide and the integrity of the t6A-con-
taining RNA strand.

Figure 2 c and 2 d show the same data set for the t6dA con-
taining DNA oligonucleotide (ODN1), proving again the suc-
cessful synthesis of t6dA containing oligonucleotide. The
aa6(d)A nucleosides can exist in two different conformations.[33]

The first, s-trans, maintains the Watson–Crick hydrogen bond-
ing capabilities with the urea amino acid oriented towards the
imidazole ring system (Figure 3 a). This allows formation of a
Hoogsteen type 7-membered ring H-bond with the N7. In the
corresponding s-cis-conformation, the urea amino acid orients
towards the Watson–Crick side thereby establishing a typically
strong intramolecular 6-membered H-bond with N1 (Figure 3 b).
In order to investigate if the embedding of the amino acid
would enforce s-trans-conformation and hence Watson–Crick
H-bonding, we measured melting points of all aa6A containing
RNA strands and of the t6dA containing DNA strand hybridized
to the corresponding counter strands (Figure 3). In the
RNA:RNA situation we noted for all aa6A strands that we inves-
tigated, a single clear melting point, showing that only one
conformer of the aa6A base likely exists in the RNA:RNA du-
plexes. In situation where the aa6A base exists in two different
stable conformations, one would expect a more complex melt-
ing behaviour. In all cases we saw that the melting point is
strongly reduced by 10–15 8C. When we embedded two aa6A
building blocks into a short RNA strand no duplex formation

Scheme 3. Synthesis of t6dA phosphoramidite and its incorporation into
DNA.

Figure 2. (a) Raw-HPL chromatogram of ON1, with the inset showing the
HPL-chromatogram of purified ON1; (b) MALDI-TOF mass spectrum of ON1
after purification; (c) raw-HPL chromatogram of ODN1, with the inset show-
ing the HPL chromatogram of purified ODN1; (d) MALDI-TOF mass spectrum
of ODN1 after purification.
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was obtained. Even stronger reduction of the melting point
was observed for the DNA duplex containing one t6dA. Here,
we also saw just one sharp melting point and a reduction of
the Tm by over 20 8C. These data show that the aa6A bases and
among them t6A and g6A are unable to base pair. Although we
have no direct proof of the structure the data argue for a pre-
ferred s-cis-conformation (Figure 3 b) in agreement with the lit-
erature.[34]

This conclusion is also supported by the observation that ir-
respective of the chirality of the attached amino acid (l- versus
d-Phe6A), we measured the same melting temperature. This
would not be expected if the s-trans-conformation and base
pairing would be possible. These data suggest that aa6A nu-
cleosides within RNA position a given amino acid outside the
A-form helix in an unpaired situation and hence independent
from the counterbase. As such, multiple aa6A containing RNA
strands would be structures in which the RNA part is decorat-
ed by the amino acid side chains. In order to show that RNA-
structures containing multiple amino acids as representatives
of an RNA-peptide world can stably form, we prepared two
RNA duplexes (Figure 4). In the first (D5), we placed three t6A
bases as extra bases in an otherwise undisturbed RNA duplex.
Indeed, now the stability of this duplex was indistinguishable
from the same construct containing just canonical bases (D6).
Finally, we prepared an RNA duplex D7, in which we placed
the amino acids Ser-Asp-His directly next to each other to sim-
ulate what is known in the peptide world as the catalytic triad

present in serine peptidases.[35] Again in this case a stable
duplex structure forms with the three aa6A bases creating a
loop. Although we do not show any catalytic activity here, we
believe that it is easily imaginable that if these amino acids are
properly positioned in a stably folded RNA the structure could
gain catalytic properties.

The melting data show, that aa6A bases alone are unable to
establish base pairing, which hinder them to encode sequence
information. On the other side, these bases allow the incorpo-
ration of amino acids into RNA structures irrespective of the
counterbase. Because RNAs are mostly stably folded structures
in which many bases are not involved in any base pairing or
establish no Watson–Crick interactions the amino acid adeno-
sine nucleosides allow the stable incorporation of amino acid
functionality into RNA.

In summary, here we investigated the synthesis and proper-
ties of aa6A nucleoside-amino acid conjugates, some of which
(t6A, g6A, hn6A) are today found as key components in the
tRNAs of many species. In these tRNAs the aa6A nucleosides
reside at the general purine position 37 adjacent to the antico-
don loop. They are not involved in base pairing but fine tune
the codon-anticodon interaction to enable faithful translation
of information into a peptide sequence.[36] Here we show that
these bases are indeed unable to base pair. They have to be
placed outside the pairing regime that is needed for RNA fold-
ing. As such they function as anchors that allow the connec-
tion of amino acid to RNA structures independent of the coun-
terbase. The side chains are then available to equip RNA with
additional functions that might have been beneficial in an
early RNA-peptide world. The fact that aa6A nucleosides are
stable structures and until today broadly found in today’s RNA
make them prime candidates to develop idea about the chem-
ical constitution of the vanished RNA-peptide world.

Figure 3. (a, b) Possible conformation, base pairing and intramolecular H-
bond of aa6A; (c, d) melting curves measured for t6A containing RNA:RNA
duplexes and of a t6dA containing DNA:DNA duplex in comparison with the
duplexes containing canonical (d)A:(d)T base pairs ; (e) table of the deter-
mined melting points.

Figure 4. (a) Depiction of the RNA structures containing aa6A nucleobases in
extrahelical positions forming either three little bulges or assembling a Ser-
Asp-His triad known as the catalytic triad in serine proteases; (b, c) depiction
of melting curves of duplexes D5, D6, D7; S : serine, D: aspartate, H: histi-
dine.
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Abstract: The RNA-world hypothesis assumes that life on
Earth started with small RNA molecules that catalyzed their
own formation. Vital to this hypothesis is the need for prebiotic
routes towards RNA. Contemporary RNA, however, is not
only constructed from the four canonical nucleobases (A, C, G,
and U), it also contains many chemically modified (non-
canonical) bases. A still open question is whether these
noncanonical bases were formed in parallel to the canonical
bases (chemical origin) or later, when life demanded higher
functional diversity (biological origin). Here we show that
isocyanates in combination with sodium nitrite establish
methylating and carbamoylating reactivity compatible with
early Earth conditions. These reactions lead to the formation of
methylated and amino acid modified nucleosides that are still
extant. Our data provide a plausible scenario for the chemical
origin of certain noncanonical bases, which suggests that they
are fossils of an early Earth.

More than 120 modified bases have been identified in RNA
that are important for correct folding into complex three-
dimensional structures and for fine-tuning RNA/RNA and
RNA/protein interactions.[1–3] Modified nucleosides are, for
example, found in proximity to the anticodon stem loop in
tRNA, where they are involved in translation of the genetic
code.[4, 5] Methylated nucleosides such as m6A are involved in
regulating mRNA stability,[6] splicing,[7, 8] translation,[9–11] and
X-chromosome inactivation.[12] Another methylated nucleo-
side, m7G, is part of the 5’-cap structure of eukaryotic
mRNA.[13]

The RNA-world hypothesis postulates that life started
with self-replicating RNA molecules that were amenable to
the processing of chemical evolution through replication,
randomization, and selection.[14] Since RNA is able to store
genetic information and perform catalytic processes, the
hypothesis further posits that an early replicating cell could
proliferate and maintain a primitive metabolism in the
absence of coded proteins. Noncoded polypeptides[15, 16] and
simple anabolic pathways[17, 18] may have supported an early
RNA-based metabolism.

This hypothesis requires the presence of the key building
blocks of life, such as nucleosides and amino acids, or of
primitive anabolic processes that led to their formation.[19]

This raises the question of whether life began with only the
four canonical bases (A, C, G, and U)[20,21] or if an early pre-
RNA was chemically more diverse[22] and contained non-
canonical nucleosides.[22] Those noncanonical bases that are
still found in RNA might be considered fossils of this early
phase of chemical evolution.[23–25] Finding evidence for this
idea requires simple chemical synthetic routes compatible
with geochemical models of early Earth that generate these
noncanonical bases. Here we show that the majority of
methylated nucleosides, which play important roles in RNAs
of all three domains of life, can be prebiotically generated by
the reaction of canonical nucleosides with nitrosylated
N-methylurea (1; Scheme 1).[26]

NO2
ˇ was potentially available on the early Earth from

NO and NO2,[27] which are formed during lightning in an N2

atmosphere.[28] Alternatively, NO can form by the reaction of
N2 with CO2 in hot impact plumes.[29]

Besides the methylated RNA bases, we also find nucleo-
sides modified with amino acids among the many contempo-
rary noncanonical RNA bases.[30,31] They are directly involved
in decoding the genetic information.[32, 33] We show that our
NO2

ˇ-based reactions also provide these modified bases,
which suggests an early intimate contact between nucleobases
and amino acids that might have formed the basis for the co-
evolution of RNA and proteins and the establishment of
primitive protometabolic pathways.

The synthetic route starts with methylurea (1), which is
one of the molecules that was likely present on the early
Earth.[34] Methylurea (1) is, for example, formed by the
reaction of ammonia with methyl isocyanate, which was
detected on comet 67P/Churyumov-Gerasimenko.[35, 36]

Methylurea (1) was also shown to form directly in the

Scheme 1. Reactions that lead to the formation of methylated deriva-
tives of canonical nucleobases that are today found in RNA in all three
domains of life. Methylurea functions as a storage molecule for
reactive isocyanic acid.
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Urey–Miller experiment[37] and it is available in high yields
from the reaction of methylamine (2) with HNCO (3) in water
(90 %).[38] HNCO in turn was detected in interstellar gases[39]

and, likewise, on comet 67P/Churyumov-Gerasimenko.[35,40]

Urea itself is also known to decompose into ammonium
isocyanate.[41,42] Despite the potential formation of 3, how-
ever, it is difficult to conceive the accumulation of HNCO (3)
because of its high reactivity. If, however, a small amount of
methylurea (1) is present, it can readily react with NO+

(Scheme 1). Methylurea (3) is easily nitrosylated, which
gives N-methyl-N-nitrosourea (4)[26] in a yield of 62 %. This
compound physically separates as a foam from the aqueous
phase, which could potentially allow 4 to accumulate, so that it
may have been locally available at high concentrations. Under
slightly basic conditions, for example in the presence of borax
(reported to be important for ribose-forming reactions),[43] 4
quickly decomposes to furnish 1-hydroxy-2-methyldiazene
(5) under liberation of HNCO (3). As such, only small
amounts of HNCO are required to help convert MeNH2 and
NaNO2 into 1-hydroxy-2-methyldiazene (5). 1-Hydroxy-2-
methyldiazene (5) in turn eliminates water and decomposes
to diazomethane (6), which is a common methylating agent.[44]

Since all starting materials are likely components of the
organic matter on the early Earth, it is, therefore, plausible
that diazomethane was an accessible component. The con-
trolled release of 6 from the stable precursor methylurea (1)
could have made it available for chemical transformations,
despite its high reactivity and consequently short half-life
time on the early Earth.

When we performed this base-catalyzed formation of
diazomethane (6) in the presence of the canonical nucleo-
bases, we obtained a large set of methylated compounds
(Figure 1). For the experiment we dissolved the nucleosides in
a 1:1 mixture of borate buffer and formamide. Formamide is
accessible under early Earth conditions through the reaction
of HCN with H2O.[45] N-Methyl-N-nitrosourea (4) was then
added to the nucleoside mixture in one portion. After one
hour at 70 88C, samples were taken and analyzed by LC-MS
and tandem mass spectrometry (Figure 1). To correctly assign
the resulting methylated nucleosides, co-injections with
synthetic reference compounds were performed (see the
Supporting Information). The products were further eluci-
dated by analysis of the fragmentation patterns in LC-MS2

experiments. When we performed the reaction in the
presence of adenosine, we obtained m1A, Am, and m6A,
together with the 3’- and 5’-methylated derivatives (marked as
mxA; see the Supporting Information). When guanosine was
methylated under the same conditions, we detected m7G
(7%) as well as Gm, m1G, and m2G, all of which are known
noncanonical bases. In the presence of cytidine, the bases
m3C and Cm were generated. Furthermore, the reaction of
uridine furnished the methylated compounds Um and m3U.
m3U was formed in a high yield of 11 %. We also investigated
the methylation reaction with inosine (I), the hydrolysis
product of A.[46,47] When inosine was subjected to the same
conditions, we detected the formation of Im and m1I (see the
Supporting Information). Importantly, nearly all the methy-
lated nucleosides that we observed are today found in RNAs
of all three domains of life.[2, 48]

We next asked the question of whether the simple
reactions could be used to enable the attachment of larger
chemical moieties, such as amino acids, to the canonical
nucleobases to give RNA modifications such as t6A and g6A.

Figure 1. HPLC traces of the reaction mixtures obtained in the reaction
of N-methyl-N-nitrosourea (4) in the presence of the canonical
nucleobases A, G, C, and U. The modified nucleosides are shown in
blue, the canonical ones in red. Peaks labeled with “mx” were identified
as sugar-modified nucleosides based on data from fragmentation
studies (see the Supporting Information).
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This was indeed possible (Figure 2) when we replaced HNCO
by methyl isocyanate (CH3NCO, 7). CH3NCO (7) can be
generated under prebiotic conditions by UV irradiation of
CH4 and HNCO. In an aqueous environment, we observed
that 7 reacts rapidly with amino acids such as glycine (8a) and
threonine (8b) to give the corresponding methylurea deriv-
atives 9 (Figure 2) in nearly quantitative yields. Compounds
9a and b can be nitrosylated[49] under the same conditions as
1 to form the nitroso compounds 10a and 10b in high yields of
82–95%. A pH change to slightly basic conditions through the
use of either phosphate or borate buffer converts the
intermediate nitroso compounds 10a,b into the isocyanates
of the corresponding amino acids 11a,b. Upon treatment with
adenosine, these intermediates react to give the correspond-
ing N6-derivatives g6A and t6A. Since the reaction takes place
under basic conditions, not only N6 but also the 2’-, 3’-, and 5’-
hydroxy groups can react with the isocyanate derivative of the
amino acids (Figure 2). Interestingly, the selectivity of the
reaction can be controlled to favor the N6 position by the
addition of a Ni2+ salt, which is generated during prebiotic
formation of nucleoside.[22] At the same time, CH2N2 (6) is
formed, which can facilitate subsequent methylations (see the
Supporting Information). Interestingly, the amino acid modi-
fied nucleosides that are formed as described here, are
present today in all three domains of life.[2, 48]

Recently, a comparative phylogenetic analysis[50] has
suggested that noncanonical bases were likely already present
in the ancient parent of all life on Earth, known convention-
ally as LUCA (the last universal common ancestor). An
overlay of the nucleosides accessed in this study with those
derived from the genetic analysis shows surprising consensus

(Figure 3). Most of the simple modifications that were present
in LUCA could also be formed by the reactions presented
here.

In summary, we report a simple cascade reaction that
starts from isocyanic acid, methylisocyanate, methylamine,
ammonia, and sodium nitrite. In this cascade the unstable
molecule isocyanic acid (3) is captured by methylamine and
stored in the form of methylurea. It can be released under
basic conditions from N-methyl-N-nitrosourea (4), which is
produced by nitrosylation of methylurea (1). These reactions
allow us to convert the canonical pyrimidine and purine bases,
for which prebiotically plausible formation processes were
recently described,[20,21, 51, 52] into noncanonical nucleosides. As
such, our results provide chemical evidence that the canonical
and many noncanonical ribonucleosides can form spontane-
ously under plausible prebiotic conditions. The here described
reactions can be linked to the nitrosylation reactions that
were recently reported to enable the parallel formation of
canonical and noncanonical bases.[22] The noncanonical bases,
particularly the amino acid modified purines, potentially
increase the chemical diversity of RNA to broaden its folding
and catalytic capabilities. This complements ideas that non-
canonical base pairs might have existed in pre-RNA.[22,53]
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The molecules of life were created by a continuous physicochemical process on an early

Earth. In this hadean environment, chemical transformations were driven by fluctuations of

the naturally given physical parameters established for example by wet–dry cycles. These

conditions might have allowed for the formation of (self)-replicating RNA as the fundamental

biopolymer during chemical evolution. The question of how a complex multistep chemical

synthesis of RNA building blocks was possible in such an environment remains unanswered.

Here we report that geothermal fields could provide the right setup for establishing wet–dry

cycles that allow for the synthesis of RNA nucleosides by continuous synthesis. Our model

provides both the canonical and many ubiquitous non-canonical purine nucleosides in parallel

by simple changes of physical parameters such as temperature, pH and concentration. The

data show that modified nucleosides were potentially formed as competitor molecules. They

could in this sense be considered as molecular fossils.
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The molecules of life originated around 4 billion years ago
under conditions governed by the composition of the
Earth’s crust and atmosphere at that time1, 2. Molecules

such as nucleic acids and amino acids must have formed by a
continuous physicochemical process, in which greater structural
complexity was generated based on fluctuations of the naturally
given physical parameters3. Geothermal fields, for example, could
have established such fluctuations by wet–dry cycles that may
have driven chemical transformations, which ultimately allowed
the emergence of life4–8. The appearance of (self)-replicating
RNA was certainly of central importance for the transition from
an abiotic world to biology9–11. We need to consider, however,
that an early genetic polymer might have been structurally dif-
ferent from contemporary RNA. This involves differences
regarding the sugar configuration (e.g., pyranosyl RNA) or the
presence of other nucleobases12, 13. Selection pressure led in this
scenario to the chemical evolution of RNA. Contemporary RNA
molecules contain four canonical nucleosides (A, G, C, U), which
establish the sequence information. In addition, >120 non-
canonical nucleosides are present, which govern a diverse set of
properties such as correct folding, e.g., to enable catalysis14. In
fact, the genetic system of all known life is dependent on modified
nucleosides. Many of these non-canonical nucleosides are found
today in all three domains of life, which indicates that they were
present early on during the development of life. For the ubiqui-
tous non-canonical nucleosides we may assume that they were
already formed as competitors in parallel with the canonical ones
on the early Earth15. So far, however, a geochemical scenario that
would allow for the parallel formation of canonical and non-
canonical RNA building blocks by a continuous process is not
known. All reported multistep chemical models so far rely on
tightly controlled laboratory conditions and the isolation and
purification of central reaction intermediates by sophisticated
methods1, 16–19.

Herein, we report a robust synthetic pathway, which is purely
based on fluctuations of physicochemical parameters such as pH,
concentration, and temperature, driven by wet–dry cycles. These
fluctuations enable the direct enrichment or purification of all
reaction intermediates that are directly used for the next synthetic
steps. As such, a continuous synthesis is established. Our results
show that RNA building blocks can indeed be formed in a pre-
biotically plausible geochemical environment without sophisti-
cated isolation and purification procedures. The chemical
scenario presented here supports the hypothesis that life may
have originated in a hydrothermal milieu on land rather than in a
deep sea environment. The key assembly step in our pathway is
the formation of variously substituted 5-nitroso-pyrimidines
(nitrosoPys) that can be converted into formamidopyrimidines
(FaPys) in the presence of formic acid and elementary metals (Ni
or Fe). When combined with ribose, the FaPy compounds react to
give a set of purine nucleosides. This chemical pathway delivers
not only the canonical purine nucleosides but concomitantly
many of the ubiquitously present non-canonical relatives, sug-
gesting their origin as prebiotic competitor nucleosides (A, ms2A,
m2A, DA, G, m2G, m2

2G, m1G). Since chemical evolution
depended on those molecules that were available on early Earth,
these non-canonical nucleosides may be considered to be mole-
cular fossils, which maintained their essential life-supporting
character until the present day.

Results
Selective crystallization of an organic salt. The chemical sce-
nario that leads to a continuous synthesis of RNA building blocks
by just fluctuations of physical parameters is shown in Figs. 1 and
2a. The scenario starts with an aqueous solution of malononitrile
1 and different amidinium salts 2a-d (HCl or H2SO4 salts, 400
mM), both recognized prebiotic compounds18. In addition,
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sodium nitrite and acetic acid are present to establish a slightly
acidic pH of around 4. Under these conditions the amidine
molecules (2a-d) are protonated, which leads to their chemical
deactivation. This allows selective nitrosation of malononitrile 1
to give (hydroxyimino)malononitrile 3 in situ. Slow evaporation
of water under ambient conditions, followed by gentle cooling to
8–10 °C resulted in crystallization of a salt from the ca. 1 M
amidinium solution. This crystallization is very robust and
resembles naturally occurring concentration processes. The
resultant crystals had excellent quality for X-ray analysis, which
showed that the salts are formed from the amidinium cations 2a-
d and the (hydroxyimino)malononitrile anion of 3 (Fig. 2b).
Interesting is the distance between the negatively charged oxygen
in 3 and the positively charged H-bond donor centre of the
amidininium units 2a-d. We determined distances between
1.85–1.95 Å, which is long for a salt bridge but right in the regime
for a typical hydrogen bond. This is important because it is
supposedly the reason for the comparably low melting tempera-
tures of the salts, which we determined between 110 and 160 °C.

The robustness and ease of crystallization establishes a first
physical enrichment step that finishes the initial wet–dry phase
with the deposition of these salt materials (Fig. 2b).

Nitroso-pyrimidine formation. When the obtained salts con-
taining 2a-d and 3 are subsequently heated to their respective
melting temperatures, transformation into the corresponding
nitroso-pyrimidines (4a-d, Fig. 3a) occurs. The required tem-
peratures between 110 and 160 °C could have been readily
accessible under early Earth conditions, due to, for example,
volcanic activity in geothermal fields or sunlight shining on dark
surfaces. In order to investigate whether the nitroso-compounds
4a-d would form in parallel despite their varying structures and
different melting points, the different salts were combined in a
reaction flask and a temperature gradient (1 °C/5 min, from
100–160 °C) was applied to simulate soil that would slowly heat
up. Subsequent 1H-NMR analysis indicated successful formation
of the anticipated nitroso-pyrimidines 4a-d (Supplementary
Fig. 1).
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The resultant nitroso-pyrimidines are stable compounds with
melting points typically >250 °C without decomposition. In
addition we noted that the nitroso-pyrimidines are rather
insoluble in water, which offers the possibility for a second
physical enrichment step. Addition of water to the reaction
mixture dissolves unreacted starting materials, leaving the

nitroso-pyrimidines in basically NMR-pure form behind (Sup-
plementary Fig. 2). In this model, one wet–dry cycle and two
physical enrichment steps with a final rain shower or flooding
would be sufficient to deposit a mixture of stable nitroso-
pyrimidines (4a-d) in excellent purities and good chemical yields
between 60 and 85% (Fig. 3a).
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Diversification by hydrolysis and aminolysis. Depending on the
composition and pH of the aqueous environment, which may or
may not contain different amines, the nitroso-pyrimidines could
undergo further hydrolysis and aminolysis reactions (Fig. 3a).
Because these reactions are very slow under neutral conditions,
we used dilute HCl to accelerate the processes for investigation.
Importantly, we noted a high regioselectivity. Upon treatment
overnight at room temperature with 0.5 M HCl, compounds 4a
and 4c for example are hydrolyzed to afford the oxo-nitroso-
pyrimidines 4f and 4i in near quantitative yields. Hydrolysis of 4b
to product 4e was comparitively slower, and under our acceler-
ated conditions a mixture of 4b and 4e was obtained. This inef-
ficient conversion would be advantageous in a prebiotic context
given that from 4b the canonical nucleoside adenosine (A) and its
2-thiomethyl derivative (ms2A) are derived later, whereas 4e gives
rise to guanosine derivatives (G, m2G, m2

2G, Fig. 3a). This allows
for the simultaneous formation of canonical and non-canonical
bases from the same precursor. In contrast to the 2-amino (4a,c)
or 2-methyl (4d) substituted nitroso-pyrimidines, we noted that
the 2-thiomethyl functionality in 4b and 4e was prone to undergo
selective nucleophilic substitution. Reaction of 4e with different
amines leads to efficient formation of the nitroso-pyrimidines 4g-
i with the concomitant release of methanethiol. Due to its inso-
lubility under basic conditions, nucleophilic substitutions of 4b
are very inefficient. To confirm this, we partially hydrolyzed 4b to
4e in the presence of methylamine (300 mM) and dimethylamine
(100 mM). The pH was carefully adjusted with Na2CO3 to about
pH 10. Compound 4b precipitated, while 4e stayed in solution,
consequently protecting 4b from further reactions. It is in this
context interesting that nucleosides that would form via amino-
lysis of 4b have not yet been found in nature. In contrast, 4e
reacts efficiently and after 3–4 days at room temperature 4e is
almost completely converted into 4g and 4h, which are direct
precursors to the ubiquitous non-canonical RNA bases m2G and
m2

2G (Fig. 3a, Supplementary Fig. 3).
Thus, a few simple chemoselective and regioselective hydrolysis

and aminolysis reactions affords a diverse mixture of differently
substituted nitroso-pyrimidines (4b-d, f-i), all of which possess
the right substitution pattern for the synthesis of naturally
occuring canonical and non-canonical RNA nucleosides. Because
all the formed nitroso-pyrimidines are poorly soluble in water at
neutral pH, neutralizing the solutions leads to their efficient
precipitation, providing a naturally occurring purification step
(Fig. 3b). Importantly, all nitroso-pyrimidines that later give
adenosine-derived nucleosides (4b-d) are soluble in water under
acidic conditions, while the nitroso-compounds that are con-
verted into guanosine-derived nucleosides (4g-i, except for 4f) are
soluble under basic pH conditions. These properties allow for
potentially divergent chemical pathways leading to A-derived and
G-derived nucleosides (Fig. 3b, Supplementary Fig. 4).

Formamidopyrimidine formation as nucleobase precursor. The
next wet–dry cycles allow for the formation and isolation of
formamidopyrimidines (FaPys) 5a-h, from nitroso-pyrimidines 4
that are after their precipitation exposed to acidic conditions like
dilute formic acid in the presence of elementary Fe or Ni, which
are components of the Earth’s crust. This leads to reduction of the
nitroso-pyrimidines 4 to aminopyrimidines as non-isolated
reaction intermediates (Fig. 3a, in square brackets), which are
immediately formylated to give the water soluble for-
mamidopyrimidines (FaPys) 5a-h in a one-pot reaction. During
the wet phase, Ni0 and Fe0 are converted into the biologically
relevant Ni2+/Fe2+ ions, while formic acid decomposes into CO2
and H2 (Fig. 3c). In the reaction formic acid has a dual function.
It provides the H-atoms needed for the reduction and it

subsequently reacts with the formed aminopyrimidines to give
FaPy compounds that were already shown to be prebiotically
valid precursors to purine nucleosides18. The Ni/Fe/formic acid
environment converts quantitatively all nitroso-compounds 4b-d,
f-i into the corresponding FaPy compounds 5a-h (Fig. 3a). The
water soluble FaPy compounds (under dilute basic conditions)
can now be separated from unreacted Ni0/Fe0 and from the
formed Ni2+/Fe2+ byproducts. Under slightly basic conditions
(pH ≈ 9–10) the latter compounds precipitate as insoluble car-
bonate or hydroxide salts. The FaPys 5a-h are thus washed away,
while the transition metal compounds sediment out. Final eva-
poration of water concentrates the reaction mixture, leading to
the crystallization of the FaPy molecules. This third physical
enrichment step, involving a wet–dry cycle, leads to the NMR-
clean formation of FaPy-derivatives 5a-h (Fig. 3c).

The 2-(methylthio)-5-nitrosopyrimidine-4,6-diamine (4b)
gives after treatment with formic acid and elementary Ni two
different FaPy products depending on the reaction conditions.
One of the products (5b) contains a thiomethyl group, while the
other (5c) is desulfurated. The desulfurization reaction is simply
controlled by time and can be promoted when H2 is bubbled
through the solution prior to reaction. Compound 5c is always
generated in a stepwise reaction cascade via compound 5b which
was confirmed by reacting 4b for 2 h and isolating the only
product formed (5b, Fig. 3c). The isolated product was
immediately subjected to the same conditions, which provided
5c after 7 days in pure form. This pathway via nitroso-
pyrimidines thus affords 5c, the precursor for the canonical base
A under plausible prebiotic conditions20. These conditions also
lead to the parallel formation of the precursor to the ubiquitous 2-
thiomethyl modification (ms2A), which is today found in all three
domains of life.

Formation of canonical and non-canonical nucleosides. All of
the prepared FaPy compounds undergo rapid and regioselective
condensations with ribose when they are present in the same dry-
state environment (Fig. 4). We do not assume that ribose was
formed at the same location together with the FaPy compounds
since the required carbohydrate chemistry may be incompatible.
Several models are available, however, that show ribose formation
in different physical environments21–24. Even though ribose and
FaPys might have formed separately, the water solubility of the
FaPys and of ribose allows them to be washed into the same
environment by rain or flooding. Evaporation of water in the last
wet–dry cycle would enable a condensation reaction under dry-
state conditions. Indeed, the physically enriched FaPy compounds
(5a-h) engage in a rapid reaction with ribose to give the corre-
sponding FaPy-ribosides. Upon dissolution in water and sub-
sequent heating under basic conditions, all four expected purine
α/β-ribofuranosides (α/β−f) and α/β-pyranosides (α/β−p) are
obtained (6a-h, Fig. 4a), completing the last wet–dry cycle. The
LC-MS traces of the reactions using both UV- and MS-detection
are shown in Fig. 4b. To ensure correct structural assignment we
chemically synthesized some of the expected products and per-
formed co-injection studies (Supplementary Methods). These
experiments show that the major isomers are the naturally
occurring β-configured pyranosides and furanosides. Pyranosides
are building blocks for pyranosyl-RNA, which was suggested to
be a potential RNA predecessor12. Therefore, our scenario deli-
vers the building blocks for this pre-RNA and for RNA. As such it
provides the basis for the chemical transition from one genetic
polymer to the other directed by selection pressure. Importantly,
our continuous synthetic pathway provides next to the canonical
bases A and G also the non-canonical β-furanosyl-nucleosides (β
−f) m2G, m2

2G, m1G, ms2A and m2A (in red, Fig. 4b), arguing
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that the early RNA polymer was structurally already more com-
plex regarding the nucleobases. The ribosylation of the FaPys
leading to non-canonical nucleosides is equally efficient to the
formation of A and G, with yields between 15 and 60%. Inter-
estingly, we noted that for some A derivatives (m2A, DA and A)
other regioisomers were found as well. These isomers were not
formed when pure FaPy starting materials were used that were
not derived from our continuous synthesis. We believe that these
isomers might be the N3-connected nucleosides, previously
proposed by Wächtershäuser for homo-purine RNA25. Despite
the presence of these side products, we observe efficient N9-
nucleoside formation with remarkable yields of up to 60% for the
canonical and the non-canonical nucleosides. This work
demonstrates that the non-canonical compounds could plausibly
have formed as companion and potential competitor compounds
in parallel to the canonical nucleosides.

Discussion
Life on earth certainly did not start in a chemists’ laboratory,
where the relevant compounds are assembled in a step-by-step
process from pure starting materials under tightly controlled
conditions. Even if the individual reaction steps are performed
under plausibly prebiotic conditions, the controlled assembly over
many steps with sophisticated isolation and purification proce-
dures of reaction intermediates is an unlikely scenario for che-
mical synthesis under early Earth conditions. For the process of
chemical evolution on the early Earth, we may rather envision a

more continuous synthesis, in which small organic molecules,
initially formed by volcanic action or lightning, reacted to give
increasingly more complex structures (Fig. 1). Here, chemical
transformations may have been driven by physical fluctuations,
established for example by day-night, seasonal or wet–dry cycles.
Such fluctuating parameters might include temperature, con-
centration, and pH, which have triggered selective precipitation
and crystallization to purify and concentrate reaction inter-
mediates (Fig. 2a).

Regarding the central nucleoside building blocks of life, we
believe that the four canonical nucleosides were finally selected
from a more diverse prebiotic nucleoside pool. These canonical
bases today establish the sequence information. The synthesis of
the canonical purine (A, G)18 and pyrimidine (U, C)16 RNA
building blocks has been previously demonstrated in aqueous
environments. It is questionable, however, if these multistep
synthesis pathways are able to provide all four canonical bases at
the same time, which fuels the development of new prebiotically
plausible nucleoside formation reactions17, 26, 27. Recently, all four
canonical nucleosides (A, G, U, C) were accessed in low yields via
a one-pot procedure from pure formamide28. However, in order
to establish a functional genetic system a number of non-
canonical nucleosides is required as well that provide other
functions related to folding and catalysis29–34. Since many of
these non-canonical bases are present in all three domains of life,
it is likely that they have been early on part of the abiotic chemical
selection process15. We report here the discovery of a continuous
synthesis pathway that enables the efficient production of
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canonical and non-canonical purine bases in parallel. Our data
show that formation of the many nucleosides needed to establish
a functional genetic system is in fact an unavoidable event if we
assume the presence of simple starting materials such as formic
acid, acetic acid, sodium nitrite, malononitrile (1), amidinium
compounds (2a-d), as well as transition metals like Ni or Fe.
These simple compounds react in several successive wet–dry
phases, leading to physical enrichment (I, II, and III) of reaction
intermediates to finally give RNA building blocks. Wet–dry cycles
have already been shown to be a plausible geological scenario
especially for polymerization reactions35, 36. Our reported che-
mical scenario shows now that such a geological setup can also
result in a diverse set of purine nucleosides by continuous
synthesis (6a-h, Fig. 4). These nucleosides can be converted into
the phosphorylated nucleotides based on recent advances in
prebiotic phosphorylation reactions37, 38. So far, however, we are
not yet able to include this step into our continuous synthesis.

Importantly, all here-reported non-canonical bases are known
to exist in the three domains of life. Many are postulated com-
ponents of the early genetic system of the last universal common
ancestor (LUCA), suggesting that they were indeed present
already at the onset of biological evolution39, 40. Based on the
continuous synthesis pathway reported here, we hypothesize that
the canonical and at least these non-canonical nucleosides could
have formed side by side, dating the formation of the first non-
canonical nucleosides back to the origin of chemical evolution
around 4 billion years ago. As such, they could have been part of
the chemical evolution process that established the putative RNA
world41. Our chemistry invokes that methylated and thiomethy-
lated nucleosides could particularly have been integral compo-
nents of the first instructional (pre)-RNA molecules, likely to
stabilize folded structures in order to accelerate catalytic pro-
cesses29–34. We therefore propose that these nucleosides could be
vestiges and molecular fossils of an early Earth, as it was sug-
gested for cofactors42.

Methods
1-methylguanidine (2a) salt of (hydroxyimino)malononitrile (3). 1-
methylguanidine (2a) hydrochloride salt (10.95 g, 100 mmol, 1 eq.) and mal-
ononitrile (1) (6.65 g, 100 mmol, 1 eq.) was dissolved in H2O (230 mL, containing
6 mL of AcOH) in a 500 mL beaker. A solution of NaNO2 (7.00 g, 101 mmol, 1.01
eq., in 20 mL of H2O) was slowly added at room temperature. After stirring at
room temperature for 2 h the reaction mixture was kept at 45 °C in an oil bath for
3–4 days open to the air until the mixture was concentrated to about 100 mL. The
reaction mixture was placed in a fridge overnight at 8–10 °C. The formed yellow
crystals were filtered off to give the desired product (6.70 g, 40 mmol, 40%).

Mp.: 108 °C. 1H-NMR (400MHz, DMSO-d6) δ = 7.23 (br m, 5H), 2.72 (s, 3H).
13C-NMR (101 MHz, DMSO-d6) δ = 157.85, 119.50, 113.31, 107.18, 28.23. IR (cm
−1): 3405 (m), 3351 (br, m), 3197 (m), 2977 (br, m), 2229 (s), 2218 (s) 1675 (s),
1635 (s), 1465 (w) 1428 (m), 1344 (s), 1269 (s) 1226 (s), 1172 (w), 1098 (m), 915
(m), 765 (m).

Methylthioamidine (2b) salt of (hydroxyimino)malononitrile (3). S-Methyli-
sothiourea (2b) hemisulfate salt (27.8 g, 200 mmol, 1 eq.) and malononitrile (1)
(13.3 g, 200 mmol, 1 eq.) was dissolved in H2O (460 mL, containing 12 mL of
AcOH) in a 600 mL beaker. A solution of NaNO2 (14.0 g, 202 mmol, 1.01 eq., in 40
mL of H2O) was slowly added at room temperature. After stirring at room tem-
perature for 2 h the reaction mixture was kept at 45 °C in an oil bath for 3–4 days
open to the air until the mixture was concentrated to about 200 mL. The reaction
mixture was placed in a fridge overnight at 8–10 °C. The formed yellow crystals
were filtered off to give the desired product (16.7 g, 90 mmol, 45%).

Mp.: 126 °C. 1H-NMR (400 MHz, DMSO-d6) δ 8.90 (s, 4H), 2.56 (s, 3H). 13C-
NMR (101MHz, DMSO-d6) δ 171.62, 119.46, 113.29, 107.17, 13.71. IR (cm−1):
3282(m), 3146 (br, m), 2742 (br, w), 2530 (w), 2222 (s), 2213 (s) 1698 (m), 1663 (s),
1643 (s) 1549 (m), 1450 (m), 1424 (s) 1375 (w), 1335 (s), 1269 (s), 1223 (s), 1180
(w), 1099 (m), 1076 (w), 982 (m), 970 (w), 960 (w), 897 (br, m), 801 (m), 736 (m).

Guanidine (2c) salt of (hydroxyimino)malononitrile (3). Guanidine (2c)
hydrochloride salt (9.55 g, 100 mmol, 1 eq.) and malononitrile (1) (6.65 g, 100
mmol, 1 eq.) was dissolved in H2O (230 mL, containing 6 mL of AcOH) in a 500
mL beaker. A solution of NaNO2 (7.00 g, 101 mmol, 1.01 eq., in 20 mL of H2O) was

slowly added at room temperature. After stirring at room temperature for 2 h the
reaction mixture was kept at 45 °C in an oil bath for 3–4 days open to the air until
the mixture was concentrated to about 100 mL. The reaction mixture was placed in
a fridge overnight at 8–10 °C. The formed yellow crystals were filtered off to give
the desired product (8.20 g, 53 mmol, 53%).

Mp.: 159 °C. 1H-NMR (400MHz, DMSO-d6) δ = 6.91 (s, 6H). 13C-NMR (101
MHz, DMSO-d6) δ = 158.32, 119.52, 113.32, 107.18. IR (cm−1): 3473 (m), 3373
(m), 3172 (w), 3087 (w), 2815 (br, w), 2223 (s), 2217 (s), 1668 (m), 1641 (s), 1578
(w), 1552 (w), 1369 (w), 1343 (s), 1294 (w), 1264 (s), 1220 (s), 1140 (w), 975 (w),
792 (w), 757 (w).

Acetamidine (2d) salt of (hydroxyimino)malononitrile (3). Acetamidine (2d)
hydrochloride salt (9.45 g, 100 mmol, 1 eq.) and malononitrile (1) (6.65 g, 100
mmol, 1 eq.) was dissolved in H2O (230 mL, containing 6 mL of AcOH) in a 500
mL beaker. A solution of NaNO2 (7.00 g, 101 mmol, 1.01 eq., in 20 mL of H2O) was
slowly added at room temperature. After stirring at room temperature for 2 h the
reaction mixture was kept at 45 °C in an oil bath for 3–4 days open to the air until
the mixture was concentrated to about 100 mL. The reaction mixture was placed in
a fridge overnight at 8–10 °C. The formed yellow crystals were filtered off to give
the desired product (8.80 g, 60 mmol, 60%).

Mp.: 142 °C. 1H-NMR (400MHz, DMSO-d6) δ = 8.60 (s, 4H), 2.11 (s, 3H). 13C-
NMR (101MHz, DMSO-d6) δ = 168.11, 119.50, 113.31, 107.18, 18.72. IR (cm−1):
3282 (m), 3140 (br, m), 2781 (m), 2395 (w), 2236 (s), 2217 (s) 1708 (s), 1661 (s),
1592 (br, w) 1513 (m), 1373 (s), 1351 (s) 1259 (s), 1200 (s), 1191 (s), 1160 (w), 1125
(m), 969 (w), 907 (w), 883 (w), 857 (w), 790 (s), 691 (s), 684 (s).

Synthesis of nitrosopyrimidine 4a-d from salts containing 2a-d and 3. The
reaction time of the following procedures for the formation of 4a-d depend on the
crystal size of the organic salts and the heating source. Usually conversions were
done in a beaker open to the air in an oil bath to simulate hot soil. Large crystals
sometimes already convert into nitroso-pyrimidines by a solid-state reaction
without melting. Then much longer reaction times of up to 7 days are required
because of unequally distributed temperature. Alternatively, the organic salt can be
converted by heating in an oven where temperature is equally distributed within
the sample.

6-imino-1-methyl-5-nitroso-1,6-dihydropyrimidine-2,4-diamine (4a). 1-
methylguanidine (2a) salt of (hydroxyimino)malononitrile (3) (5.00 g, 29.5 mmol,
1 eq.) was heated slowly to its melting temperature of 108 °C and kept overnight.
The compound melts suddenly but becomes a dark red solid again after leaving it
overnight. The quantitative reaction mixture can be directly used for the next step
without purification.

For analytical reasons a small batch of 1-methylguanidine (2a) salt of
(hydroxyimino)malononitrile (3) (100 mg, 0.59 mmol, 1 eq.) was reacted as
described above. The reaction mixture was suspended well in water (2–3 mL) and
the dark red solid was filtered off to give 6-imino-1-methyl-5-nitroso-1,6-
dihydropyrimidine-2,4-diamine (59 mg, 0.35 mmol, 59%).

1H-NMR (400MHz, DMSO-d6) δ = 11.44 (s, 1H), 8.41 (s, 1H), 8.08 (br, 1H),
7.67 (br, 1H), 7.49 (s, 1H), 3.26 (s, 3H). 13C-NMR (101 MHz, DMSO-d6) δ =
165.44, 157.64, 146.95, 137.22, 27.64. HRMS (ESI + ): calc. for [C5H9N6O]+

169.0832, found: 169.0832 [M +H]+

2-(methylthio)-5-nitrosopyrimidine-4,6-diamine (4b). Methylthioamidine (2b)
salt of (hydroxyimino)malononitrile (3) (5.00 g, 27 mmol, 1 eq.) was heated slowly
to its melting temperature of 126 °C and kept overnight. Caution: if the product is
heated too quickly above the melting temperature it decomposes with the release of
MeSH! The compound melts suddenly but becomes a dark green solid again. The
quantitative reaction mixture can be directly used for the next step without
purification.

For analytical reasons a small batch of methylthioamidine (2b) salt of
(hydroxyimino)malononitrile (3) (100 mg, 0.54 mmol, 1 eq.) was reacted as
described above. The reaction mixture was suspended in water (2–3 mL) and the
dark green solid was filtered off to give 2-(methylthio)-5-nitrosopyrimidine-4,6-
diamine (64 mg, 0.35 mmol, 64%).

1H-NMR (400MHz, DMSO-d6) δ 10.18 (d, J = 4.2 Hz, 1H), 9.00 (s, 1H), 8.42
(d, J = 4.2 Hz, 1H), 8.02 (s, 1H), 2.46 (s, 3H). 13C-NMR (101MHz, DMSO-d6) δ
179.05, 164.73, 146.22, 139.43, 14.08. HRMS (ESI+): calc. for [C5H8N5OS]+

186.0444, found: 186.0444 [M +H]+

5-nitrosopyrimidine-2,4,6-triamine (4c). Guanidine (2c) salt of (hydroxyimino)
malononitrile (3) (5.00 g, 32 mmol, 1 eq.) was heated slowly to its melting tem-
perature of 159 °C and kept overnight. The compound melts suddenly but becomes
a red/pinkish solid again after leaving it overnight. The quantitative reaction
mixture can be directly used for the next step without purification.

For analytical reasons a small batch of guanidine (2c) salt of (hydroxyimino)
malononitrile (3) (100 mg, 0.65 mmol, 1 eq.) was reacted as described above. The
reaction mixture was suspended in water (2–3 mL) and the solid was filtered off to
give NMR clean 5-nitrosopyrimidine-2,4,6-triamine (85 mg, 0.55 mmol, 85%).
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1H-NMR (400MHz, DMSO-d6) δ = 10.26 (d, J = 5.1 Hz, 1H), 8.15 (s, 1H), 7.75
(d, J = 5.1 Hz, 1H), 7.35 (s, 1H), 7.19 (s, 2H). 13C-NMR (101 MHz, DMSO-d6) δ =
166.52, 165.32, 151.43, 138.04. HRMS (ESI+): calc. for [C4H7N6O]+ 155.0676,
found: 155.0676 [M +H]+

2-methyl-5-nitrosopyrimidine-4,6-diamine (4d). Acetamidine (2d) salt of
(hydroxyimino)malononitrile (3) (5.00 g, 32.5 mmol, 1 eq.) was heated slowly to its
melting temperature of 142 °C and kept overnight. The compound melts suddenly
but becomes a red/pinkish solid again after leaving it overnight. The quantitative
reaction mixture can be directly used for the next step without purification.

For analytical reasons a small batch of acetamidine (2d) salt of (hydroxyimino)
malononitrile (3) (100 mg, 0.65 mmol, 1 eq.) was reacted as described above. After
suspension in H2O (2–3 mL) the solid is filtered off to give NMR clean 2-methyl-5-
nitrosopyrimidine-4,6-diamine (71 mg, 0.46 mmol, 71%).

1H-NMR (400MHz, DMSO-d6) δ = 10.04 (d, J = 3.2 Hz, 1H), 8.97 (s, 1H), 8.36
(d, J = 3.2 Hz, 1H), 7.96 (s, 1H), 2.20 (s, 3H). 13C-NMR (101 MHz, DMSO-d6) δ =
175.20, 166.38, 146.76, 139.94, 26.83. HRMS (ESI-): calc. for [C5H6N5O]−

152.0578, found: 152.0578 [M-H]−

Data availability. All data generated or analyzed during this study are presented in
this article and its Supplementary Information File, or are available from the
corresponding author upon reasonable request. X-ray crystallographic data were
also deposited at the Cambridge Crystallographic Data Centre (CCDC) under the
following CCDC deposition numbers: 1574226 for 1-methylguanidine (2a) salt of
(hydroxyimino)malononitrile (3); 1574223 for methylthioamidine (2b) salt of
(hydroxyimino)malononitrile (3); 1574225 for guanidine (2c) salt of (hydro-
xyimino)malononitrile (3); 1574224 for acetamidine (2d) salt of (hydroxyimino)
malononitrile (3). These can be obtained free of charge from CCDC via www.ccdc.
cam.ac.uk/data_request/cif.
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Abstract 

Theories about the origin of life require chemical pathways that allow formation of life͛Ɛ key building blocks 
under prebiotically plausible conditions. Complex molecules like RNA must have originated from small 
molecules whose reactivity was guided by physico-chemical processes. RNA is constructed from purine and 
pyrimidine nucleosides, both of which are required for accurate information transfer. This is the 
prerequisite for Darwinian evolution. While separate pathways to purines and pyrimidines have been 
reported, their concurrent syntheses remain a challenge. We report the synthesis of the pyrimidine 
nucleosides from small molecules and ribose, driven solely by wet-dry cycles. In the presence of phosphate-
containing minerals, ϱ͛-mono- and di-phosphates also form selectively in one-pot. The pathway is 
compatible with purine synthesis, allowing the concurrent formation of all Watson-Crick bases. 

 

Introduction 

The discovery of catalytic RNA(1) and the development of replicating RNA systems(2, 3) have lent strong 
support to the concept of an RNA world(4). The RNA world hypothesis predicts that life started with RNAs 
that were able to (self)-recognize and replicate. Through a process of chemical evolution, a complex RNA 
and later RNA-peptide/protein world supposedly evolved, from which life ultimately emerged(4). A 
prerequisite for the RNA world is the ability to create RNA under prebiotic conditions. This requires as the 
first elementary step the concurrent formation of pyrimidine and purine nucleosides in the same 
environment. Here, they must have condensed to form information carrying polymers able to undergo 
Darwinian evolution. The question of how the pyrimidine and purine nucleosides could have formed 
together is an unsolved chemical problem, under intensive chemical investigation(5-9). Starting from an 
early atmosphere mainly composed of N2 and CO2,(10) the abiotic synthesis of life͛Ɛ building blocks must 
have occurred on the early Earth in aqueous environments, whose characteristics were determined by the 
minerals and chemical elements from which the early Earth͛Ɛ cƌƵƐƚ ǁaƐ made.(11, 12) Atmospheric 
chemistry, impact events and vulcanic activities must have provided the first reactive small molecules. 
These reacted in surface or deep-sea hydrothermal vents,(13-15) on mineral surfaces(16) or in shallow 
ponds.(17) Within these environments, volcanic activity, seasonal- or day-night cycles caused fluctuations 
of pH and temperature. Such fluctuating conditions provided wet-dry conditions allowing precipitation or 
crystallization of chemicals.(18) Mixing of micro-environments may have opened up new reaction pathways 
that led to increasing chemical complexity. 

Along these geophysical boundaries, two main reaction pathways have been proposed for the formation of 
purine and pyrimidine nucleosides. The synthesis of the purines is possible along a continuous pathway 
based on the reaction of formamidopyrimidine (FaPy) precursors with ribose.(6, 18) For the pyrimidines a 
more stepwise reaction sequence involving aminooxazoles has been discovered.(5) These pathways provide 
the corresponding nucleosides under very different and partially incompatible conditions, leaving the 
question of how purines and pyrimidines could have formed in the same environment unanswered. Here, 
we report a prebiotically plausible pathway to pyrimidine nucleosides, which selectively ƉƌoǀideƐ ƚhe ϱ͛-
mono- and ϱ͛-di-phosphorylated nucleosides as needed for RNA strand formation. By connecting the 
pathway with the reported purine route,(6, 18) we establish a unifying reaction network that allows for the 
simultanueous formation of both types of nucleosides in the same environment, driven by wet-dry cycles. 
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Results 

Abiotic synthesis of pyrimidine nucleosides  

The chemistry leading to pyrimidines starts from cyanoacetylene 1 as the key building block (Fig. 1A). 
Compound 1 is observed in interstellar clouds and in the atmosphere of Titan.(19) It has been shown to 
form in large quantities by electric discharge through an CH4 / N2 atmosphere(20) and is also a product of 
the Cu(II)-mediated reaction of HCN and acetylene in water (Fig. 1B2).(21) A recent report suggests that 
molecules such as 1 are plausible prebiotic starting materials, which could have formed in surface 
hydrothermal vents in significant concentrations.(13) We found that 1 reacts fast and cleanly with 
hydroxylamine 2 or hydroxylurea 3 to give 3-aminoisoxazole 4. The reaction of 1 with 3 proceeds under 

slightly basic conditions (pH a 10) in 80 ʹ  90% yield within 2 h. 3 is formed in almost quantitative yields from 
the reaction of 2 with cyanate.(22) Compound 4 formed robustly even if we varied the temperature (10 - 
95 °C), the reactant concentrations (10 - 100 mM) or added additional compounds such as urea 5 and/or 
different metal ions (see below). Reaction of cyanoacetylene 1 with hydroxylamine 2 gives 4 with 17% yield 
after 2 h at pH 10. 

While hydroxylamine 2 is an accepted building block for prebiotic amino acid syntheses,(23) its potential 
formation on the early Earth is unclear. We therefore aimed to demonstrate its prebiotic availability. 2 is 
ultimately produced by reduction from NO, which is formed in large quantities when lightning passes 
through moist atmospheres containing N2 and CO2 (Fig. 1B).(10) NO forms as the main product under these 
conditions and spontaneously reacts in the presence of water to nitrite (NO2

-) and nitrate (NO3
-), which 

leads to the assumption that both anions were quite abundant on the early Earth.(24-26). With Fe(II) as a 
plausible prebiotic reductant, NO2

- is converted to NH3 but not to NH2OH 2.(26) Formation of the latter 
requires a partial reduction. We now found that this can be achieved with HSO3

-, which forms from volcanic 
SO2 and water.(27) NO2

- and HSO3
- react to 2 with up to 85% yield (Fig 1B, Fig. S1).(28) We confirmed, that 

this reaction gives first the hydroxylamine disulfonate 6 (Fig. 1B), which hydrolyses to hydroxylamine 2 and 
HSO4

-. We find that intermediate 6 reacts with cyanoacetylene 1 as well (88% yield, Fig. 1B, FigS2) to give 
the stable olefin 7, which upon hydrolysis provides again the key intermediate 4. The overall yield of 4 via 
compound 7 is 63% over these two steps. The suggested pyrimidine intermediate 4 is therefore readily 
available from cyanoacetylene 1 upon reaction with either 2, 3 or 6 under prebiotic conditions (Fig 1B). 

When we added urea 5 to a solution of 4, warming (70°C - 95°C) and dry-down resulted in formation of N-
isoxazolyl-urea 8 (Fig. 1A and 2A) in a spot-to-spot reaction that is catalysed by Zn2+ or Co2+. These metal 
ions were likely present on the early Earth.(11, 12) In the presence of Zn2+, compound 8 is formed in 88% 
yield after 2 d at 95 °C (at 70 °C the same yield is obtained after a2-3 w). With Co2+, 68% yield is achieved 
after 2 d at 95 °C. The reaction of 4 to 8 is in all cases a clean process, with the only impurity being unreacted 
4 (Fig. 2A). The product 8 can be subsequently physically enriched. Addition of carbonated water to the 
dried down reaction mixture solubilizes 4, 5 and 8, leaving the metal ions as hydroxides or carbonates 
behind. Subsequent concentration of the supernatant leads to spontaneous crystallization of 8 (55%). This 
allowed us to obtain a crystal structure of 8 (Fig. S3). In order to simulate early Earth chemistry, we 
performed a one-pot experiment. We mixed 1 with 3, 5, and Zn2+ or Co2+ in a carbonate solution (pH a10) 
and indeed obtained compound 4 at 95°C (80-90%). Neutralizing the solution to pH a6-7, which may have 
occurred on the early Earth due to acidic rain, followed by dry-down at the same temperature provided 
compound 8 with yields between 56% (Zn2+) and 40% (Co2+). The continuous synthesis of the key building 
block 8 was consequently achieved in a plausible prebiotic setting that could have existed in hydrothermal 
vents or near volcanic activity, both of which are able to provide elevated temperatures (Fig. S3). The 
synthesis is also possible at lower temperatures, but with extended reaction times. 

For the final step towards nucleosides, we need to assume that, due to flooding or a mixing of 
environments, 8 came into contact with ribose 9 (Fig. 1A and 2B) or any other sugar unit such as threose 
(for TNA) or glyceraldehyde (for GNA) able to form a backbone for a pairing system.(29, 30) When we mixed 
8 with ribose 9 and warmed up the mixture to 95 °C in the presence of boric acid, we observed a fast and 
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high-yielding reaction to provide the ribosylated products 10a-d in 95% yield (Fig. S4a). Other borate 
minerals such as synthetic lüneburgite (Mg3[(PO4)2|B2(OH)6]·6H2O)(31) or borax (Na2[B4O5(OH)4]·10H2O) 
were also able to catalyze this reaction,(32) giving high-yields (>70%, Fig. S5). The major products are 

initially the D/E-pyranosides (10c and 10d), which dominate over the D/E-furanosides (10a and 10b, Fig. 
S4a). After heating the mixture under slightly basic conditions at 95°C in the presence of borates, the 
furanosides (54%, 10a and 10b, Fig. 2A) gradually became the dominant products (Fig. S4b). Under these 
conditions we also observed hydrolysis of 10a-d to 8 and 9. The accumulation of the furanosides 10a and 
10b is best explained by complexation of their cis-diols with borate.(32) 

The final step towards pyrimidine nucleosides requires reductive opening of the isoxazole N-O bond, 
followed by tautomerisation, intramolecular cyclization and water elimination in a cascade-like fashion (Fig. 
2C and 2D). We found that this reaction occurs rapidly with Fe2+ in the presence of thiols (Fig. 2D).(33) LC-
MS analysis indicated that cytidine nucleosides 11a-d formed efficiently under these conditions, with the 
furanosidic uridine nucleosides 12a,b being the corresponding deamination products formed by hydrolysis 
(Fig. 2C). Reductive pyrimidine formation can be performed with FeS or the mineral pyrite (FeS2), and both 
have been discussed in the context of early metabolic pathways.(15, 34) Just 0.0001 eq. of soluble Fe2+ in 
water is sufficient for the reaction. In the absence of Fe2+, pyrimidine formation was not observed. The 
reduction also appears to be independent of the thiol source, as the products 11a-d and 12a,b are obtained 
regardless of whether we used dithiothreitol (DTT), propanedithiol, mercaptoethanol or cysteine (Fig. S6). 

 

Selective one-pot formation of 5’-nucleoside mono- and di-phosphates 

The addition of naturally occurring minerals such as hydroxyapatite, colemanite or (synthetic) lüneburgite 
to the reductive pyrimidine-forming reaction had a strong influence on the distribution of the four cytidine 

isomers. Synthetic lüneburgite gave a combined high yield of 85% (Fig. 2C). The natural furanosidic E-
cytidine (11b) and its D-anomer (11a) are formed under these conditions with about the same yields 
together with small amounts of D- and E-uridine (12a,b). Importantly, we found only small amounts of the 

D- and E-cytidine pyranosides (11c and 11d), together with the cytosine base. Since synthetic lüneburgite 
is known to enable nucleotide formation in the presence of urea (Fig. 3A),(31) we simply added urea to the 
one-pot reaction mixture after pyrimidine formation and allowed the mixture to evaporate to dryness at 
85°C over a period of about 20 h. LC-MS analysis of the reaction now showed formation of phosphorylated 
nucleosides (Fig. 3A) in remarkable 19% yield relative to cytidine (Fig. 3B and Fig. S7). We assumed that the 

reaction generated the D- and E-cytidine-ϱ͛-mono-phosphates 13a/b and the ϱ͛-di-phosphorylated 
cytidines 14a/b. Due to hydrolysis we also expected some D- and E-uridine-ϱ͛-mono- and ϱ͛-di-phosphates 
15a/b and 16a/b. We isolated the corresponding HPLC peaks and removed the phosphate groups 
enzymatically (Fig. 3B). LC-MS analysis showed now the dephosphorylated furanosides 11a/b and 12a/b 
with over 94% in the nucleoside pool, which corresponds to a change of the furanoside/pyranoside ratio 
from initially 4:1 to now 17:1 (Fig. 3B). The formation of phosphorylated pyranosides 17 are only a minor 
side reaction. We found no discrimination between D- and E-anomers during the phosphorylation. The 
furanoside enrichment is best explained by the presence of a primary hydroxyl group in the furanosides, 
which is absent in the pyranosides. The enrichment of 5͛-nucleoside-(mono and di)-phosphates under these 
one-pot conditions consequently establishes a further chemical selection step that favors the furanosides 
as the components of RNA. We further characterized the structures of the phosphorylated nucleosides and 
confirmed the formation of ƚhe ϱ͛-D- and ϱ͛-E-cytidine-mono- and di-phosphates (13/14a and b, D-/E-CMP 
and D-/E-CDP, Fig. S8). Additional analysis allowed identification of D,E-UDP 16a/b (Fig. S9). Interestingly, 
ϱ͛-pyrophosphates are the dominating specie within the di-phophorylated nucleoside mixture (Fig S8a). 
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Compatible formation of pyrimidine and purine RNA nucleosides 

We next investigated if the prebiotically plausible pyrimidine and purine nucleoside pathways are 
compatible with each other so that they can be connected with the goal to form all Watson-Crick building 
blocks in the same environment solely driven by wet-dry cycles. The purine synthesis(18) requires as the 
initial step reaction of malononitrile 18 with sodium nitrite to give (hydroxyimino)malononitrile 19. Because 
malononitrile 18 can be also generated from cyanoacetylene 1, as shown by Eschenmoser,(35) pyrimidines 
and purines can be traced back to the same chemical root (Fig. 4). Compound 19 forms an organic salt with 
amidines 20 to give nitroso-pyrimidines 21, and upon reduction and formylation, formamidopyrimidines 
(FaPys, 22-25). The latter can react with ribose 9 to give ribosylated FaPys 26 and then purine nucleosides 
27-29 (Fig. 1A).(18) To investigate how the chemical conditions needed for pyrimidine formation from the 
urea-isoxazole 8 would affect purine formation, we reacted 8 and the FaPy-compounds 22 and 23 with 
ribose 9 under dry-down conditions. We performed the reaction under identical conditions but in separate 
reaction vials (Fig. 4). Under these conditions formation of all four Watson-Crick nucleosides cytidine 11, 
uridine 12, adenosine 27 and guanosine 28, were detected.  

We next investigated if pyrimidines and purines can form simultaneously in the same environment (Fig. 5A). 
For this experiment, we mixed the starting materials cyanoacetylene 1, hydroxylurea 3, (hydroxyimino) 
malononitrile 19 and amidine 20 under slightly basic conditions (pH a10). Analysis of the mixture showed 
indeed formation of 4 in 86% yield, despite the presence of 19 and 20. It is surprising that the N-OH 
functionality of compound 19 does not interfere with the formation of 4. Compound 4 is a liquid that can 
enrich from a water solution by dry-down due to its high boiling point (228°C). Interestingly, 4 can act as a 
solvent to facilitate the formation of 21 from the reaction of 19 with 20 under milder conditions (50 °C ʹ 
100 °C instead of 126 °C) compared to a previous procedure.(18) The next step requires reduction and 
formylation of 21 to the FaPy intermediate, which, however, cannot be performed in the presence of the 
isoxazole. Addition of water, eventually containing urea 5, led to spontaneous precipitation of 21. The 
supernatant containing 4 and 5 can flow away. The water insoluble 21 if brought into contact with dilute 
formic acid and Zn ;foƵnd in Eaƌƚh͛Ɛ cƌƵƐƚͿ ƌeacƚƐ immediaƚely to the compounds 22 and 24 and Zn2+ as a 
side product (Fig. 5A, Fig. S10a). The reaction products are now water soluble and can potentially recombine 
with 4 and 5. The side product Zn2+ is now catalyzing the reaction of 4 in the presence of 5 to give the N-
isoxazolyl-urea 8 in the presence of 22 and 24 (Fig. 5A, Fig S10b). This leads to the formation of the 
pyrimidine and purine precursors 8, 22 and 24, which can be transformed into the purine and pyrimidine 
nucleosides. In this scenario, the intermediate 4 of the pyrimidine pathway helps formation of the purine 
precursor 21 while Zn2+ as a side product of the purine pathway mediates formation of the pyrimidine 
precursor 8 in a mutually synergistic way, driven by wet-dry cycles.  

We combined 8 with different FaPy-intermediates and investigated if they could react in a one-pot scenario 
with ribose 9 to finally give the purine and pyrimidine nucleosides. To examine this, we dissolved a mixture 
of 8, 22, 25, ribose 9 and boric acid and warmed the mixture up to 95 °C for 14 h allowing for slow 
evaporation of water. The solid material was then taken up with a slightly basic solution containing Fe2+ 
(0.0005 eq.) and DTT (1.5 eq.), and we allowed the mixture to warm up to 95 °C. HPLC-MS analysis proved 
that these conditions simultaneously provided the purine and pyrimidine nucleosides with cytidine (11a-d) 
and adenosine (27) as the main products. Interestingly, diaminopurine nucleosides (DA, 29), which 
hydrolyse to guanosine 28, form in this one-pot reaction as well (Fig. 5A, chromatogram). We noted 
additional formation of double ribosylated adenine (rib2-A). Furthermore,  the nucleoside 28 can be created 
in this scenario if we use 23 (R1 = OH, R2 = NH2) as the starting material but the yields were lower.  

 

Discussion 

Ribose based RNA and the four canonical nucleosides A, G, C and U are central to modern life and to 
prebiotic hypotheses such as the "RNA world", in which RNA strands replicated and evolved to give 
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increasingly complex chemical systems.(4) Whether such RNAs were directly assembled from the canonical 
nucleotides (A, C, G and U bases) or if it evolved from a simpler proto-RNA system is unclear.(36)  

Here we show that a reaction network towards the purine and pyrimdine RNA building blocks can be 
established, starting from simple atmospheric or volcanic molecules. Molecular complexity is generated by 
wet-dry cycles that can drive the chemical transformations. Therefore any environment that was able to 
provide wet-dry phases might have been a suitable place for the origin of RNA building blocks. Our 
geochemical model assumes that chemistry took place within in several basins that were needed to locally 
separate intermediates. We also need one or two streams of water to allow exchange of soluble molecules 
(Fig. 5B). Intermediates might precipitate upon fluctuations of physico-chemical parameters allowing for 
the separation of soluble and insoluble materials (e.g. 4 and 21). After further reactions, which re-establish 
solubility, the compounds can be recombined (Fig 5B). For our scenario we need to assume that the early 
Earth provided environmental conditions that fluctuated between slightly acidic (pH 3), potentially caused 
by acidic rain (SO2, NOx), or basic (pH = 10) caused by carbonates. Even though most of the chemistry 
described here is performed at elavated temperatures, the reactions also occur at lower temperatures, but 
with substantially longer reaction times. We can assume that temperatures fluctuated on the early earth 
just like today due to day-night or seasonal cycles. Such fluctuations would certainly have brought about 
wet-dry cycles, akin to our modern climate of drought and rain. All the geophysical requirements needed 
for the reported chemistry including elevated temperatures could have existed in geothermal fields or at 
surface hydrothermal vents, which are plausible geological environments on early Earth. 

Our proposed chemical pathways towards pyrimidines and purines begin with cyanoacetylene 1, which 
could have formed in surface hydrothermal vents.(13) Reaction of 2, 3 and 6 with 1 is the starting point for 
the pyrimidines, but if 1 reacts instead with ammonia, a pathway to malononitrile 18 as the precursor for 
purine synthesis is possible (Fig. 4).(35) Another key molecule for the synthesis of purines and pyrimdines 
is NO2

-, which is needed to nitrosate malonitrile 18 to 19.(18) NO2
- is also crucial for the formation of 

hydroxylamine in the presence of HSO3
-, which is formed from volcanic SO2.(27) The concentration of NO2

- 
that is reachable in a prebiotic setting is under debate, but it is speculated that the most likely place for its 
accumulation are shallow ponds, as needed for our scenario.(17) In general, the limited stability of NO2

- 
would not be an issue, provided that it is rapidly captured by HSO3

- upon its formation. Our model assumes 
a surface environment, where molecules, such as NO2

-, HSO3
- or urea 5, could have been delivered by rain 

after their formation in the atmosphere (Fig. 5B).(25, 37) Importantly, our chemistry shows that robust 
reaction networks can be established that allow all key intermediates to be generated efficiently from 
relatively complex mixtures, followed by their physical enrichment or separation on the basis of their 
solubility in water. Wet-dry cycles govern the formation of purine and pyrimidine RNA building blocks in a 
scenario depicted in Fig. 5B. Of course, we will be unable to definitively prove that the described scenario 
took indeed place on early Earth, but the reported chemistry shows that, under plausible prebiotic 
conditions, mutually synergistic reaction pathways can be established in which the intermediates along one 
pathway help the chemistry of the other. In such a scenario, we show that the key building blocks of life 
can be created without the need for sophisticated isolation and purification procedures of reaction 
intermediates, which is common in traditional organic chemistry. 

Importantly, the concurrent formation of pyrimidine and purine nucleosides in the network can be traced 
back to just a handful of key starting molecules such as cyanoacetylene 1, NH3, NH2OH 2 (or the disulfonate 
6), HCN, urea 5, formic acid and isocyanate plus salts such as nitrites, carbonates and borates. Metals such 
as Zn or Fe and their ions play an important role in our chemistry, consistent with their proposed 
involvement in early metabolic cycles.(23, 38) In particular, iron-sulfur surfaces needed for pyrimidine 
formation are discussed as platforms for early prebiotic chemistry.(15, 34, 39) The ϱ͛-(di)phosphorylation 
is integrated into our pathway if phosphate minerals such as lüneburgite or struvite (Fig. S11) are present. 
It remains unclear, however, how ribose or any other carbohydrate, such as glycerol or threose, needed to 
form the backbone of RNA or pre-RNA could have formed selectively.(29, 40) Sugars such as ribose can be 
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produced non-selectively in a formose-like reaction, which is possible in a variety of different physico-
chemical environments.(32, 41-43)  
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Figures 

 

 

Fig. 1. Unified synthesis of pyrimidine and purine RNA building blocks. (A) Starting from plausible prebiotic 
molecules the reaction scheme depicts the route towards the pyrimdines via isoxazolylurea 8 (blue 
background) and the purines via formamidopyrimdines 22-25 (red background).(18) (B) Fundamental 
chemistry that produces the molecules needed for the pyrimidine pathway. Reactions performed in this 
work are shown with green arrows, while black arrows represent well known literature reactions. 
Formation of 4 requires reaction of 1 with hydroxylamine 2, hydroxylurea 3 or the disulfonate 6 (dark grey 
box). 6 is formed from NO2

- and SO2/HSO3
-. 
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Fig. 2. Formation of pyrimidine nucleosides (11 and 12) from N-isoxazolylurea-ribosides 10a/b. The different 
isomers are labelled according to: a = D-furanosyl, b = E-furanosyl, c = D-pyranosyl, and d = E-pyranosyl. (A) 
Formation of 4 and its conversion with urea 5 to N-isoxazolylurea 8. (B) Ribosylation of 8 with ribose 9 and 
equilibration of the reaction mixture in the presence of borates gives the furanosidic isomers 10a and 10b 
(54%). (C) Pyrimidine nucleoside formation by reductive N-O cleavage from the compound mixture 10a/b 

in the presence of ammonium iron(II) sulfate hexahydrate (0.0005 eq.). The HPL-chromatogram with 
detection at 260 nm shows formation of cytidine (C, 11a-d) and uridine (U, 12a/b). (D) Proposed catalytic 
cycle for the Fe2+ catalysed reduction of the N-O bond of the isoxazole moiety.   
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Fig. 3. One-pot nucleotide formation reaction. (A) One-pot synthesis of cytidine and uridine ϱ͛-mono- and 
ϱ͛-di-phosphates (13a/b-16a/b) after urea addition to the reaction mixture and allowing the mixture to dry-
down at 85°C for 20 h. a/b represents the D- and E- anomers, respectively. (B) LC-MS analysis of the 
corresponding nucleotide peaks with UV- and MS-detection and isolation of the formed nucleotides from 
the prebiotic reaction, followed by an enzymatic removal of the phosphate groups. (C) HPLC analysis of the 
dephosphorylated product mixture showing predominant formation of D- and E-cytidine 11a and 11b.  
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Fig. 4. Formation of all four Watson-Crick RNA building blocks in identical but parallel reactions. C (11b), U 
(12b), A (27b), and G (28b) are formed under the same conditions separately from 8, 22 and 23. HPL-
chromatograms are shown with a detection at 260 nm. The nucleosides are labelled according to: a = D-
furanosyl, b = E-furanosyl, c = D-pyranosyl, and d = E-pyranosyl. Canonical pyrimidine and purine RNA 
building blocks are labeled in blue or red, respectively.  
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Fig. 5. Unified chemical scenario for the formation of purine and pyrimidine nucleosides. (A) Depiction of 
the connected reaction pathways to pyrimidine and purine nucleosides together with the HPLC analysis 
(260 nm) of the final reaction mixtures. (B) Proposed geochemical scenario for the simultaneous synthesis 
of purine and pyrimidine nucleosides, driven by wet-dry cycles. In yellow, the solvent is 3-aminoisoxazole 
(4), which can be enriched from an aqueous solution due to its high boiling point (228 °C). 2-(Methylthio)-
5-nitrosopyrimidine-4,6-diamine (21) is a general precursor for adenosine and guanosine.(18) Compounds 
8, 22 and 24 are accessible in the same pot and they can react with ribose to the RNA nucleosides in a one-
pot reaction. Nucleosides are labeled according to: a = D-furanosyl, b = E-furanosyl, c = D-pyranosyl, and d 
= E-pyranosyl. 
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3 UNPUBLISHED WORKS 

3.1 AN ALTERNATIVE PREBIOTICALLY PLAUSIBLE PATHWAY TO CERTAIN N-6 

CARBAMOYLATED RNA NUCLEOSIDES 

3.1.1 Prologue 

Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA) constitute the fundamental molecules of 

life that encode genetic information and act as the blueprint of all organisms. It has become 

increasingly clear, however, that the chemical diversity established by the four canonical 

Watson/Crick bases (adenine; guanine; cytosine; thymine/uracil) is not alone sufficient to account for 

the variety of complex functions that RNA performs beyond translation of genes. To date, over 100 

modified RNA nucleosides have been discovered, with alterations to both the base-pairing and ribose 

moieties.[100] More recently still, evidence emerged suggesting that many of these modifications may 

have in fact been present in the genome of the last universal common ancestor (LUCA),[76] which 

prompted us to investigate whether particular modified nucleosides could have emerged in parallel 

to the canonical nucleosides on the early Earth. To such an end, we demonstrated in 2018 that certain 

methylated nucleosides can be generated in parallel to amino acid-modified nucleosides with the 

general formula 55 upon treatment of adenosine 33 with aminoacylated-nitrosoureas 56 in the 

presence of mild aqueous base (Figure 9a).[101]   

 
Figure 9 (a) Comparison between our 2018 synthesis of carbamoylated adenosine nucleosides and 

the primary goal of this work.[101] (b) Treatment of nucleosides with aminoacylated-nitrosoureas 

generates a complex mixture of carbamoylated and methylated regioisomeric products. 
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Although this type of model reaction was able to successfully generate the carbamoylated nucleosides 

g6A 57 as well as t6A 44, yields were low due to the plethora of methylated and (likely) regioisomeric 

side products that were also generated (Figure 9b). This result supported our hypothesis that the 

canonical-nucleosides were selected from a more diverse set of bases. We nevertheless wondered 

whether it would be possible to generate nucleosides such as g6A 57 and t6A 44 more selectively and 

in greater yields under prebiotically plausible conditions. Accordingly, we envisioned an alternative 

strategy that would involve, as the critical step, N-nitrosation of a methylurea substituent at the N-6-

position of adenosine (58), and subsequent addition of the relevant amino acid (47) (Figure 9a). We 

anticipated that such a strategy would also be effective for synthesising 2-thiomethyl-modified 

derivatives ms2g6A and ms2t6A, inspired by our earlier synthesis of ms2A.[102] 

 

The proposed synthesis of compounds of the type 55 would firstly involve N-nitrosation in the 

presence of a methylurea-modified nucleosides 59a/b to obtain 58a/b, which would collapse upon 

exposure to base, thus forming a reactive isocyanate (Scheme 10). Compounds 59a/b could 

themselves be obtained from the relevant formamidopyrimidine (FaPy) compounds 60a/b via the 

dry-state ribosylation chemistry already published by our group.[70] Finally, compound 60a/b could 

be obtained upon treatment of 61a/b with the prebiotically plausible molecule, methylisocyanate 

62.[103] Our revised strategy would thus take advantage of the rotational C2v symmetry present in 

61a/b, resulting as we would expect, in only a single anticipated carbamoylation product 60a/b when 

one molar equivalent of methylisocyanate 62 was used. 

 
Scheme 10 Retrosynthetic analysis of the nitrosourea 58. 
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3.1.2 Results and Discussion 

The first step towards establishing the prebiotically plausible synthesis of compounds with of the type 

55, would be to prepare the relevant references molecules 60a/b, and 59a/b, with which to develop 

model reactions. Based upon our prior syntheses of formamidopyrimidines, we anticipated that 60a 

should be accessible via the direct, nucleophilic carbamoylation of pyrimidine 63, followed by 

elaboration to give the N-5 formyl group. To this end, we began by synthesising compound 63 from 

the commercially available diamine 64 (Scheme 11). Upon treatment of 64 with sodium nitrite in the 

presence of acetic acid, a rapid reaction ensued to give compound 65 as a bright blue powder in 84% 

yield, whose 1H NMR spectra were identical to those reported in the literature. Compound 65 was 

then able to be converted into 63 upon Zn-mediated reduction of the nitroso moiety to a primary 

amine in 81% yield. 

 
 

 

Scheme 11 The synthesis of triaminopyrimidine 63 from diaminoprymidine 64. 

In another preliminary strategy, we aimed to introduce the methylurea moiety via the direct 

carbamoylation of 65 to give 66, followed by nucleophilic acyl substitution with methylamine 67, 

providing 68 (Scheme 12). In the event, however, we observed that the treatment of 65 with either 

phenylchloroformate 69, or alternatively, the less reactive 3-methyl-imidazolium carbamate 70 

resulted in rapid decomposition, as observed by thin layer chromatography. Adjustments to 

temperature or solvent (DMSO; DMF) further did not result in isolable product, and solubility issues 

prohibited the use of other typical solvents such as dichloromethane. In an alternative approach, 

compound 65 was treated directly with N-methyl-1H-imidazole-1-carboxamide 71, itself prepared 

from carbonyldiimidazole (CDI) and methylamine 67, which gave similar results. 

 

Scheme 12 Our initial synthetic strategy for preparing the methylurea 72a from 65. 
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A plausible mechanism accounting for the observed instability of carbamoylation products of 65 is 

depicted in (Scheme 13). Firstly, the direct product from carbamoylation 73 could undergo an 

intramolecular cycloannulation, as has been well documented among aryl-nitroso species such as ȕ-

nitroso-o-quinone methides.[104] The resulting doubly-activated carbamate 74, which is itself in 

equilibrium with 75, could then undergo a number of polymerisation or decomposition pathways, 

perhaps involving nucleophilic attack at either carbamate-carbonyl, or nitroso functional groups, such 

as is observed in the Liebermann nitroso reaction.[105] 

 
Scheme 13 A possible mechanism responsible for the apparent instability of compounds such as 73. 

In order to circumvent the aforementioned reactivity issues, we next sought to introduce the 

carbamate- and urea-functionality prior to the nitroso group (Scheme 14). Compound 64 was 

accordingly treated with phenyl carbamate 70 in dichloromethane, which gave the desired product 76 

in 52% yield. Notably, the decomposition that had previously been observed with compound 65 no 

longer appeared to be an issue. With this in mind, we next carried out the required substitution 

reaction of 76 with methylamine 67, to give the methylurea 77, also in 52% yield. Discouragingly, 

treatment of 77 with either of sodium nitrite or isoamylnitrite 78 did not yield formation of the desired 

product, but instead gave a complex mixture which we tentatively interpreted to contain homodimers, 

based upon the observed mass to charge ratios detected in the mixture. This outcome is particularly 

consistent with the observation that aryl nitroso moieties are prone to dimerization.[106]  

 
Scheme 14 The synthesis of methyl urea 77 from diamine 64 and its attempted nitrosation. 
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In our next approach, we aimed to avoid complications associated with the inherent reactivity and 

instability of the nitroso functional group by instead employing the triamine 63 (Scheme 15). Due to 

the enhanced N-5 nucleophilicity of 63 relative to the N-4 and -6 positions (resulting from protonation 

of the in-ring nitrogen atoms),[70] we anticipated that a protecting group for the exocyclic amine would 

be required. In the event, treatment of 63 with di-tert-butyl dicarbonate (Boc2O) gave a rapid reaction 

at 60 ºC, resulting in the formation of 79 which precipitated from solution upon cooling to room 

temperature, as noted by a sudden colour change. To our gratification, subsequent treatment of 79 

with ethylchloroformate 80 did not result in decomposition, as with 73, but instead gave the desired 

N-4,5-di-carbamate 81. The moderate yield of this reaction can perhaps be attributed to hydrolysis 

during purification, as reversal to give 79 was repeatedly observed during column chromatography. 

 
Scheme 15 Synthesis of the carbamate 81 from the triamine 63. 

With compound 81 in hand, we would next need to convert the N-4 carbamate into a methylurea via 

nucleophilic acyl substitution of the ethanoate moiety (Scheme 16). Compound 81 was thus treated 

with a solution of ethanolic methylamine at 45 ºC, which gave the desired urea 82a after 2.5 hours. 

In our hands, it was observed that the aforementioned reaction was highly sensitive to subtle changes 

in changes in temperature, reaction time, and concentration of methylamine. When, for example, we 

carried out the same reaction at 60 ºC instead of 45 ºC, only the hydrolysis product 79 was obtained. 

We noted similar outcomes when either concentration of methylamine was increased, or when the 

reaction was allowed to proceed for longer extents of time. We therefore chose to proceed, given that 

the current yields should be sufficient to facilitate our prebiotic experiments. Unreacted starting 

material was also recovered from each reaction, allowing us to resubject material in order to achieve 

higher-throughput. A portion of compound 82a was then converted into 82b via reductive 

desulfurisation using hydride, which was itself supplied by trimethylsilane in the presence of 

palladium on charcoal. In order to affect the deprotection of the Boc moiety, we first tried treating 

82a and 82b with solutions of hydrogen chloride in H2O and dioxane, although yields were limited. 

We then instead elected to use TMSCl, which upon exposure MeOH allowed us to generate specific 

concentrations of HCl in situ. In the event, treatment of a solution of 82a in methanol with TMSCl 

gave the desired compound 72a in 81% yield after 1 hour. The same reaction was also effective at 

generating 72b from 82b, where we opted to use the crude product directly for subsequent reactions. 
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Compounds 72a and 72b were then successfully converted into their corresponding 

formamidopyrimidines (FaPys) using mixtures of sodium formate in formic acid in excellent yields 

(89% for 60a and 83% over two steps in the case of 60b). 

 
Scheme 16 Synthesis of compound 60a and 60b from the ethyl carbamate 81.* 

The synthetic reference material for the adenosine derivative 59b was also prepared according to a 

procedure found in the chemical literature (Scheme 17).[107] First, the commercially available 

adenosine 33 was treated with acetic anhydride in the presence of 4-dimethylaminopyridine (DMAP) 

and triethylamine to give the acetate 83 in 85% yield, which was subsequently carbamoylated using 

70 to give 84, also in high yield. Substitution of the phenoxy group using methylamine 85 provided 

86, which was then deprotected using a 7-molar solution of ammonia in methanol to give the desired 

compound 59b in 83% yield. With compounds 60a and 60b to hand, efforts became focused towards 

the ribosylation and cyclisation of the exocyclic formyl group under plausible prebiotic conditions 

(Scheme 18a). Thus, the reactions of 60a and 60b were set up under conditions equivalent to those 

previous implemented in our syntheses of purine nucleosides from FaPys.[70,102] Remarkably, the 

reaction of 60b gave as the major product, the natural beta-furanoside 59b in 9% yield, with overall 

26% yield for all nucleoside products including alpha- and beta- furanosides and pyranosides. 

Although the yield for the ms2-modified compound 59a was significantly lower (1%) it should be 

noted that in both cases we were able to detect significant quantities of unreacted FaPy (limiting 

reagent), which could itself in principle be re-subjected to the same set of reaction conditions in a 

prebiotic context. 

 
* Experimental details for the prebiotically plausible access of compounds 60a and 60b are outlined in the doctoral 
thesis of C. Schneider.[132] 
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Scheme 17 Synthesis of the synthetic reference compound 59b. 

The mechanism of these reactions presumably proceeds via the same type of process that occurs for 

the canonical purine nucleosides, involving firstly, Schiff base condensation of the available FaPy 

amino moiety with ribose 6, and subsequent dehydrative cyclisation (either 5-exo- or 6-exo-trig) to 

afford the alpha- and beta- furanosyl and pyranosyl isomers (Scheme 18b).[70] 

 
Scheme 18 (a) Synthesis of the methylurea nucleosides under plausible prebiotic conditions.� (b) A 

probable mechanism accounting for the cycloannulation of 60a/b in the presence of ribose 6. 

 
� These two particular reactions were set up and monitored by C. Schneider with HPLC-MS analysis using material 
whose preparation is described here. Quantification and supporting data including preparation of 59a can be found in 
her doctoral thesis.[132] 
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In lieu of the successful transformation of 60a/b to give 59a/b, we next set our interests towards 

testing whether 59a/b could be converted into aminoacylated derivatives such as g6A 57 or t6A 44 

under prebiotic conditions analogous to those presented in our other 2018 study (Scheme 19).[101] 

This would involve, as the initial step, nitrosation of the 3-methylureido nitrogen with sodium nitrite, 

which is known to generate the electrophilic nitrosonium cation upon exposure to dilute acid.[108] The 

resultant N-nitroso compound 58b could then collapse to give a reactive isocyanate 87, as well as the 

elements of diazomethane 88. Subsequent nucleophilic attack from an amine (here ethylamine 89) 

should then afford the desired species 90.  

 

The outcomes of efforts to implement the reaction sequence just described are detailed below. In our 

initial trials, aqueous solutions of formic acid were chosen given the prebiotic plausibility of 

formate[109] and due to our former success in generating N-nitroso compound from amino acids under 

these conditions.[101] In our hands, however, formic acid was not successful in generating the desired 

nitroso compound 58b, even in very high aqueous concentrations (50% v/v). Furthermore, addition 

of a Lewis acid (NiCl2) only resulted in decomposition (likely depurination), as noted by LCMS, and 

TLC analyses. Similar experiments employing HCl solutions rather than formic acid gave comparable 

results. Gratifyingly, upon treatment of 59b with a concentrated solution (10% v/v) of phosphoric 

acid, the molecular ion associated with the protonated form of 58b (m/z = 354) became strongly 

visible via ESI mass spectrometry. We also observed disappearance of the starting material, as 

monitored by TLC. Upon the addition of ethylamine (delivered via a 70% w/w solution in H2O), 

however, the desired urea 90 was not observed. We suspected that the protonated form of 58b might 

be stabilised, thus preventing decay and release of 1-hydroxy-2-methyldiazene. Indeed, upon the 

addition of a large excess of borate buffer (pH = 9.5), the desired product 90 became observable via 

ESI MS, whereas it did not when phosphate buffer of lower pH was instead added. We also detected 

probable formation of adenosine, suggesting that the intermediate isocyanate 87 also undergoes 

hydrolysis due to H2O. 



 

 71 

 
 

Scheme 19 Preliminary investigations into the reactivity of 59b in the presence of sodium nitrite and 

an amine nucleophile. Reactions were screened in order to identify conditions able to affect the 

transformation of 59b to 90. 

Finally, having identified conditions allowing for the transformation of 59b to 90, we set about 

affecting the same towards the synthesis of g6A 57, t6A 44, and their 2-thiomethylated derivatives 91 

and 92. To our satisfaction, treatment of either 59a or 59b with sodium nitrite and 5% phosphoric 

acid for 16hr, followed by the addition of either glycine or threonine in a large excess of 30 mM 

borate buffer (pH = 9.5) resulted in the successful formation of all four expected nucleoside products 

in high yields (43-65%). The main discernible by-products were once again, the de-carbamoylated 

nucleosides resulting from nucleophilic attack of the in situ-generated isocyanate by H2O. Naturally, 

such products would have themselves been valuable in early Earth scenarios given that they could be 

recycled and have contributed towards the synthesis of canonical RNA. 
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Scheme 20 Synthesis of the aminoacylated nucleosides g6A 57, t6A 44, and their 2-thiomethylated 

derivatives 91 and 92, under prebiotically plausible conditions.‡  

In conclusion, we present here the first high-yielding prebiotically plausible synthesis of the non-

canonical RNA nucleosides, g6A 57, t6A 44, and their 2-thiomethylated derivatives 91 and 92. 

Compared with our previous convergent approach, which involved the use of 

methyl(nitroso)carbamoyl amino acid building blocks,[101] our updated method significantly 

improves upon existing regioselectivity issues. Future studies will be directed towards identifying 

strategies that allow for a continuous, one pot synthesis involving more plausible prebiotic conditions, 

as was already demonstrated with other non-canonical purine nucleosides.[102] 

  

 
Á These particular reactions were set up and monitored by C. Schneider with HPLC-MS analysis, according to the 
reaction conditions identified in Figure 10. Quantification and supporting data can be found in her doctoral thesis.[132] 
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3.2 INVESTIGATIONS INTO THE aa6A NUCLEOSIDE-MEDIATED ELONGATION OF 

POLYPEPTIDES 

3.2.1 Prologue 

The RNA world hypothesis posits that life first emerged from self-replicating nucleic acids.[1] 

Although the properties of RNA allow for the conceptual plausibility of this theory, opinions differ 

on whether RNA alone constituted the first self-replicating genetic system.[110] As such, various 

suggestions for simpleU ³SUH-5NAV´ KDYH EHHQ PDGH, including peptide nucleic acid (PNA), threose 

nucleic acid (TNA), and glycol nucleic acid (GNA).[111] Regardless of the nature of the first self-

replicators, it remains self-evident that chemical evolution must have eventually led to the formation 

of peptides with reproducible sequence specificity. IQ WRGD\¶V ELRORJ\, VXFK D SURFHVV LV FDUULHG RXW 

via the charging of codon-specific tRNAs with amino acyl esters DW WKH 3¶-position of terminally-

positioned nucleotides. Although stable within modern cells, tRNA-esters would be easily degraded 

under even mild prebiotic conditions.[80] We therefore set about exploring the abstract possibility that 

early, or pre-ribozymes facilitated peptide elongation via an entirely different mechanism.  

 

Central to our investigations was the finding that the nucleoside N6-threonylcarbamoyladenosine 

(t6A) 44, and its derivatives are universally conserved and found at position 37, ZKLFK LV 3¶-adjacent 

to the anticodon loop of tRNAs responsible for ANN codons (Figure 10a).[112] Unlike tRNA-esters, 

which bare amino acids at the hydrolytically-IUDJLOH 3¶-hydroxyl group, the amino acids present in 

nucleosides such as 44 are instead bound to stable N6-functionalised ureas, thus increasing their 

plausibility within a prebiotic context. Also intriguingly, these modifications are believed to have 

been present within the tRNA of LUCA.[113] In 2013, an additional cyclic isoform (93) of t6A was 

ostensibly discovered by Suzuki and co-workers in bacteria, fungi, protists, and plants, that was 

presumably formed via dehydration of t6A itself 44.[114] 5(4H)‐oxazolones, which are formed through 

WKH DFWLYDWLRQ RI DF\ODWHG Į‐amino acids or from the C termini of peptides, have themselves been 

implicated with early translation apparatus, further adding to our interest in the discovery of 93.[77] It 

was, however, curious that 93 appeared to be stable enough for isolation from tRNA. This was highly 

surprising owing to the reactive isoimide functionality embedded within the 2-iminooxazolidin-5-one 

ring of 93.[115] This confusion appeared to be resolved when in 2016 Sochacka reported 

crystallographic evidence for the correct structure of cyclic t6A, which instead contained a hydantoin 

ring 94.[116] Of interest to us, was the observation that 93 (in fact 94) would readily hydrolyse to give 

t6A 44 during handling of tRNA, and in certain instances, would even react with nucleophilic amines 

to give amides, making it a prime candidate for prebiotically plausible peptide synthesis.  
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A hypothetical mechanism involving modifications such as 44, from which peptides could plausibly 

be generated was thus proposed (Figure 10b). This mechanism involves, as the initial step, 

cyclisation of 95 to give a hydantoin intermediate 96, which would then be coupled via nucleophilic 

ring-opening to an appropriate peptide or amino acid 97, giving structure 98. Appropriate cleavage 

of the peptide residue 99, perhaps tethered to another templated-RNA strand, would reset the system 

for further peptide synthesis upon charging of a fresh amino acid. Although purely theoretical, we 

believed that such a system warranted investigation, particularly since the only prebiotic translation 

mechanisms to have so far been explored are (to our knowledge) those involving ester or phosphate 

ester linkages to RNA.[77] 

 

Figure 10 (a) The structures of t6A 44, ct6A 93 as assigned by Suzuki and co-workers, and the revised 

structure of ct6A 94 from Sochacka and co-workers.[112,114,116] (b) Speculative mechanism by which 

cyclic intermediates such as 95 could have plausibly facilitated the elongation of polypeptides on the 

early Earth.   
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We thus set out collecting preliminary data to indicate whether the chemical properties of RNA 

modifications such as 95 could in principal facilitate a rudimentary translation system. To achieve 

this goal, we first aimed to synthesise the nucleosides g6A 57 and its corresponding cyclic derivative 

in order investigate their ability to react with amino acids and generate polypeptides. This would also 

require demonstrating that the hydantoin-containing nucleosides are accessible under prebiotically 

plausible conditions. Finally, we aimed to incorporate these modifications into RNA strands using 

solid phase synthesis techniques and set about testing the capacity of such reactions to occur when 

embedded within an RNA strand. 

 
3.2.2 Results and Discussion 

Given our principal goals of exploring nucleoside-mediate peptide synthesis, preparation of the cyclic 

derivative of g6A 100 was initially pursued. An examination of the literature relating to cyclic t6A 94 

suggested that one way of achieving this end would be to do so by activating the terminal carboxyl 

group of a relevant amino acid-conjugated nucleoside using acetic anhydride.[117] Thus, the phenyl 

carbamate 84, which was itself prepared from commercially available adenosine 33, was readily 

converted into the corresponding amino acyl nucleoside 101 using glycine in pyridine (Scheme 21). 

The 1H and 13C spectroscopic data for this compound were consistent with those derived from the 

literature.[101] In agreement with earlier reports, treatment of the nucleoside 101 with neat acetic 

anhydride at 0 ºC gave a rapid reaction that afforded the novel nucleoside 102 in 75% yield. The 

hydantoin structure present in 102 was then confirmed by close comparison of the 1H and 13NMR 

spectra for the previously-reported threonine derivative.[116,117] Our results here also confirm earlier 

reports that hydantoin modified-nucleosides of this nature are stable in acidic medium. Compound 

102 presumably forms via the acylation and activation of the acid 101 to give a mixed anhydride 

intermediate with the N6-amide serving as a nucleophile for cyclisation, à la the Dakin±West 

reaction.[118] 

  
Scheme 21 Synthesis of the cyclic-g6A nucleoside 102 from the carbamate 84, whose synthesis is 

described in the previous section. 
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With compound 102 to hand, the nucleoside mediated formation of polypeptides under plausible 

prebiotic conditions was next pursued (Scheme 22). Thus, in a preliminary effort to investigate the 

capacity of the nucleoside to engage in ring-opening peptide-forming reactions, a solution of 102 in 

borate buffer (30 mM, pH = 9.5) was treated with an excess of glycine, and the reaction was monitored 

with ESI MS-coupled liquid chromatography. To our gratification, a new major species was formed 

in large quantities, whose molecular ion corresponded exactly to the dipeptide 103. 

 

 
Scheme 22 Treatment of 102 with glycine under buffered prebiotically plausible conditions likely 

generates the dipeptide 103 as detected by LCMS analysis, thus warranting further investigation. 

In pursuit of more realistic prebiotic conditions, we next sought to prepare the fully-deprotected 

derivative of the nucleoside 102 (Scheme 23). To this end, the silyl ether 104 was first generated 

from 33, which was then subsequently converted into the carbamate 105 using similar conditions to 

those previously mentioned. The nucleoside 106 was then obtained in high yields upon treatment of 

105 with glycine for 8 hours in neat pyridine. Finally, 106 was converted into the cyclic derivative 

107 using trichloroacetic anhydride. The reaction also afforded 108, which is presumably formed due 

to acid-promoted desilylation. When acetic anhydride was used in place of trichloroacetic anhydride, 

the acetate-protected compound 109 was instead obtained. With useful quantities of 107 to hand, we 

would next need to convert the former compound into its fully-deprotected form.  
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Scheme 23 Synthesis of the cyclic-g6A nucleosides 107, 108, and 109, from adenosine 33. 

To such an end, compound 107 was treated with triethylamine trihydrofluoride, which yielded the 

desired the free nucleoside 110 as a triethylammonium salt (Scheme 24). The illustrated ionic 

structure was proposed due to the disappearance of the hydantoin proton in the 1H NMR spectrum, 

as well as the observed reactivity of that particular nitrogen in the presence of acetic anhydride (see 

compound 109), suggesting a suitably low pKa value. Following dissolution of 110 in phosphate 

buffer (pH = 8), either glycine, diglycine, or triglycine were added, and the mixture was shaken for 5 

hours. After this time, samples were analysed using HRMS-coupled liquid chromatography. 

Satisfyingly, in all three cases, the starting material was almost entirely consumed, with the major 

product of the reaction being the desired peptide adduct. The identity of each nucleoside was assigned 

using the [M+H]+ ion in the corresponding peak-picked HRMS spectrum. The free-acid 57 was also 

detected, which could, in a prebiotic context, naturally be recycled to give additional 107.  
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Scheme 24 Silyl-deprotection of the cyclic-g6A nucleoside 107, and reactivity of 110 in the presence 

of glycine and short peptides. Reaction progress was monitored using HPLC-MS, and UV-traces (260 

nm) are shown for the reactions (i), (ii), and (iii) after 5 hr.  

Another important consideration in our studies was whether or not compounds such as 100 could 

themselves plausibly have arisen on the prebiotic earth. The reactions of compound 57 with various 

prebiotically plausible acid-activators was thus investigated in buffered aqueous solutions. In our 

hands, both cyanamide 25 and cyclic trimetaphosphate 114/Mg2+ succeeded in affecting the 

transformation of 57 to give 100, although only in very minimal yields (<1%). Formation of 100 was 

established by co-injection of the synthetically produced sample of 110 (the triethylamine salt of 100), 

and by m/z confirmation (Supporting Information). The reaction of 57 with cyanamide likely 

proceeds via the methanediimine tautomer, as has been previously employed in synthesis of the 

hydantoin cyclic form of t6A (95) using polymer bound carbodiimide (EDC-P).[82] In both cases, the 

reaction may involve activation of the carboxylic acid moiety through an intermediate such as 115, 

and subsequent substitution of the activated group. The low yields in this case could perhaps be 

attributed to the competing hydrolysis of 100 which gives 57. 
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Scheme 25 Reactions of g6A 57 with cyclic trimetaphosphate 114 and cyanamide 25 under plausible 

prebiotic conditions, and analysis of the reaction mixture by HPLC-MS, showing partial formation 

of the cyclic-g6A nucleoside 100. 

Having established preliminary prebiotic conditions for some degree of the formation of 100, as well 

as conditions that allow its reactions with amino acids and polypetides, we next set out to test similar 

transformations were capable of taking place directly within RNA strands. Accordingly, we began 

parallel syntheses of appropriate nucleoside phosphoramidite building blocks (Scheme 26). In 

addition to the nucleoside g6A 57, phosphoramidites corresponding to the modifications containing 

the amino acids alanine, proline, and aspartic acid were also pursued. These particular nucleosides 

were chosen on the basis of the prebiotic plausibility, and since alanine, proline and aspartic acid are 

all thought to have been among the earliest amino acids to emerge on the early earth.[119] The silyl 

ether 116 was thus initially prepared via a two-step, one-pot treatment of adenosine 33 with di-tert-

butylsilyl ditriflate, followed by TBSCl, which gave the former compound 116 in 83% yield. 
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Scheme 26 Synthesis of the phosphoramidite building block 136 and DMTr-protected compounds 

133, 134, and 135.§ 

Attempts to introduce the urea functionality were initially hampered, as when ethyl chloroformate 80 

was used, the reaction proved not be selective, and instead gave the unwanted bis-adduct 117 in 20% 

yield as well as the desired compound 118 (30% yield). Gratifyingly, treatment of 116 with the 

 
§ Phosphoramidite 136 and DMTr-compounds 133 and 134 were prepared according to a slightly modified procedure 
compared with those that appear in the final published work.[130] 
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imidazolium carbamate 68 gave a rapid reaction, which provided compound 119 in 82% yield. To 

convert 119 in the each of the relevant urea-containing compounds 120-123, 119 was treated with the 

NPE-protected amino acids 124-127. To aid with purification, the DTBS-protecting group was then 

also removed using hydrogen fluoride-pyridine, which gave the very pure compounds 128-131 in up 

to 73% yield over two steps, and avoided the need for tedious, repeated chromatographic purification 

of the mixture obtained from compound 119. DMTr protection finally gave compounds 132-135 in 

up to 94% yield. Having now established synthesis of the phosphoramidite precursors, compound 

132 was finally converted into phosphoramidite 136 using CEDCl under standard conditions. With 

compound 136 in hand, incorporation of g6A 57 into RNA was next pursued (Scheme 27). In keeping 

with expectations, 136 was successfully introduced to several RNA sequences in excellent purities, 

using a single 20-minute coupling, and combined with TBS-protected canonical amidites.  

 

 
Scheme 27 (a) Successful incorporation of the novel phosphoramidite building block 136 into an 

e[aPSOe RNA ROigRQXcOeRWide (VeTXeQce: 5¶-g6AAUCGCUUUUU-3¶), including (b) raw-HPLC 

chromatogram and MALDI-TOF mass spectrum of the purified oligo, and (c) preliminary results 

indicated successful g6A-mediated glycine-polymerisation in oligos. ** The preparation and 

characterisation of oligonucleotides is described in the Experimental section.  

 
** Investigations into EDC-mediated polymerisation of amino acids were performed by colleagues in the Carell Lab. 
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The NPE-protecting group was also able to be cleanly removed, upon simple treatment with solutions 

of DBU in THF. Using the method developed and presented here, parallel investigations were 

subsequently carried out in the Carell group, demonstrating the successful 1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide (137)-mediated formation of RNA-templated polypeptides. 

Further results in this area will be presented in due course. Finally, we were interested in pursuing 

reactions which resulted in cleavage of the synthesised peptides from an RNA-backbone. Promisingly, 

the literature precedent from Lauhon and co-workers indicated that threonylcarbamoyl-AMP 138 

would readily detach its amino acid under mildly basic aqueous conditions.[120] In contrast however, 

trial reactions conducted by the Carell group seemed to indicate that related nucleosides (136) 

containing N6-carbamoyl peptides whose first amino acid was glycine were very stable under alkaline 

or thermally-promoted conditions. 

 
Scheme 28 (a) Non-enzymatic degradation and amino acid cleavage of threonylcarbamoyl-AMP 

138, as demonstrated by Lauhon in 2012.[120] (b) Investigations carried out by colleagues in the 

Carell group suggested that g6A-substituted polypeptides are resistant to alkaline and thermal 

hydrolysis. 

Although this result was unsurprising, given the dramatic difference in stability between a carbamoyl 

phosphate and a urea moiety, we came to suspect that hydroxyl group-containing side chain of 

threonine might partly contribute to the observed reactivity of threonylcarbamoyl-AMP 138. To 

properly explore this notion, compound 139 was thus prepared from its methyl-ester, according to 

conditions similar to those already presented in this section (please see the Experimental Section). 

Indeed, when compound 139 was heated in aqueous solution containing a mild base, we noted 
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disappearance the starting material, accompanied by new formation of adenosine 33, indicating 

cleavage of the peptide (Scheme 29). Although we did not detect formation of the free-dipeptide, we 

did observe formation of an ion whose m/z ratio would match the depicted compound 140. In addition 

to being supported by the literature precedent,[120] this result would strongly suggest that the threonine 

side-chain does indeed facilitate the mild base-mediate cleavage of amino acids and peptides. This 

warrants further investigation, and so derivatives containing serine-, or other hydroxyl group-baring 

side chains will be studied in the future. Studies towards this end are already underway, and a 

complete synthesis of the serine-dipeptide analogue of 139 (compound 141) can be found in the 

Experimental section of this thesis. 

  

 
Scheme 29 In contrast to previous observations, hydrolytic cleavage of 139 is observed under mild 

conditions, as indicated by LCMS analysis. 

In conclusion, we present here the first ever synthesis of the g6A phosphoramidite 136 and its 

successful incorporation into RNA. In addition, we have developed syntheses for DMTr precursors 

to three other, related phosphoramidites, which we fully anticipate can also be introduced to RNA via 

the solid phase method. These resources will no doubt be of importance in future studies involving 

amino-acid modified nucleosides. We have also presented preliminary data showing the capacity for 

g6A 136 to cyclise, and thus generate polypeptides under conditions compatible with the early Earth.  
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3.3 SYNTHESIS TOWARDS A 3-AMINOISOXAZOLE-BASED PHOSPHORAMIDITE 

3.3.1 Prologue 

RNA has long been thought to have heralded the first life on earth due to its ubiquity and to its unique 

capacity to both store information and catalyse its own replication.[24] In pursuit of evidence for the 

RNA world hypothesis, chemists have reported a number of plausible routes that provide both the 

canonical and non-canonical RNA nucleosides, each with their own distinct advantages.[53] In 2019, 

we rose to the challenge of generating all four Watson-Crick RNA nucleosides under a unified 

prebiotically plausible model - a chemical feat that had not previously been accomplished.[121] 

Through this endeavour, we discovered a novel pathway that provided the pyrimidine nucleosides in 

high yields (Scheme 30). The key feature associated with our new approach involved Fe-mediated 

reductive cleavage of the isoxazole ring present in the nucleoside ȕ-142, followed by cyclisation to 

afford 23 and 17. The heterocyclic portion of ȕ-142 was generated through a highly regioselective 

(3+2) cycloannulation involving 1-hydroxyurea 143 and cyanoacetylene 5. 

 
Scheme 30 Prebiotically plausible synthesis of pyrimidine nucleosides, proceeding via the reductive 

ring-opening of 3-aminoisoxazole nucleoside β-142.[121] 

Although this novel pathway appeared to involve some degree of regio- and stereochemical control 

(especially when reactions were carried out in the presence of borate-containing minerals), we 

pondered whether this control could be enhanced via the involvement of catalytic RNA. Specifically, 

we anticipated that if the nucleoside precursor ȕ-142 were inserted into an RNA strand, then 

stereochemical information could in principal be transferred from an adjacently-paired guanine 

nucleoside present in a complimentary RNA strand (Figure 11). This would involve pairing of 

guanine to the intermediate 144 formed upon exposure to reductive conditions. Since the Į-anomer 

145 should not be able to pair with its complimentary ȕ-nucleotide, we anticipate that an enhanced 

stereoinductive effect would push the equilibrium towards 144, thus favouring cyclisation to afford 
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the ȕ-pyrimidine nucleotide 146. FXUWKHUPRUH, GXH WR WKH SUHVHQFH RI WKH 5¶-phosphate moieties found 

in RNA, unwanted pyranosyl isomers would effectively be removed as possible reaction products. 

 
Figure 11 The proposed stereoinductive effect of a complimentary RNA strand, in the formation of 

the nucleotide 146 from 144. 

In order to explore this proposed chemical model, the nucleoside precursor ȕ-142 would first need to 

be incorporated into RNA. To this end, we aimed to develop the synthesis of a nucleoside 

phosphoramidite 147 with which to generate custom RNA strands containing ȕ-142, and thus to study 

their chemical properties (Scheme 31). This could in principal be accomplished with either the ȕ- or 

Į- diastereomers of ȕ-142, although we aimed to eventually prepare both. Our initial strategy would 

involve synthesis of the nucleoside ȕ-142 from the elements of 3-aminoisoxazole 148, riboside 149, 

and silver isocyanate 150, and subsequent 2¶/5¶-protection and phosphitylation to afford 147. Upon 

preparation of precursor-RNA, we would subsequently investigate whether 147 could be converted 

selectively into ȕ-cytidine within an RNA strand. 

 
Scheme 31 Proposed synthesis of the phosphoramidite building block 147 from the elements of 148, 

149 and 150, and its incorporation into RNA. 
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3.3.2 Results and Discussion 

In our initial strategy towards synthesising the nucleoside phosphoramidite 147, we aimed to take 

advantage of the chemistry already established in our prebiotic synthesis of pyrimidine 

nucleosides.[121] This would firstly involve preparation of the nucleoside precursor 142 from the 

commercially available starting material 1-O-acetyl-2,3,5-tri-O-benzoyl-ȕ-D-ribofuranose 151. 

Accordingly, synthesis of 142 was pursued (Scheme 32). In the event, 151 was treated with TiCl4 at 

room temperature, which gave the crude chloride 149 as a mixture containing the ȕ- and Į-isomers, 

in accordance with the literature.[122] The progress of the reaction was judged by LCMS and TLC 

analyses. The crude mixture was subsequently treated with silver isocyanate in refluxing toluene, 

followed by the addition of 3-aminoisoxazole 148 to quench the in-situ generated intermediate 152, 

thus giving 153 in 74% yield over three steps. The depicted ȕ-stereochemistry of 153 was assigned 

based upon mechanistic considerations, namely, IRUPDWLRQ RI ȕ-intermediate 152 possessing 

the R configuration at the anomeric carbon as a result of neighbouring group participation from the 

2¶-acyl moiety.[123] Compound 153 was finally treated with a 7-molar solution of ammonia in 

methanol to provide the fully deprotected nucleoside 142 in 71% yield. The 1H and 13C NMR 

spectroscopic data derived from this anomeric mixture matched those that we had already 

reported.[121] 

 

Scheme 32 Synthesis of the 3-aminoisoxazole nucleoside precursor 142 from 1-O-acetyl-2,3,5-tri-O-

benzoylribose 151. 

In order to introduce the necessary phosphoramidite-functionality WR WKH 3¶-hydroxyl group of the 

ribose moiety, we began with 3ƍ,5ƍ‐silyl protection of 142 (Scheme 33). In contrast to previous efforts 

involving similarly substituted sugars,[124] attempts to protect 142 employing t‐Bu2Si(OTf)2 in DMF 

proved unsuccessful, and gave only starting material, including when elevated temperatures or when 
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a large excess of reagent were involved. Gratifyingly, treatment of 142 with the Markiewicz 

reagent[125] 154 instead afforded a 3:1 mixture of the silyl ethers Į-155 and ȕ-155. Separation of the 

two isomers was possible, but required repeated chromatography (silica gel, CH2Cl2:EtOAc = 9:1 → 

4:1), resulting in substantially lower yields. Subsequent synthetic efforts were thus pursued using the 

3:1 mixture with the separated standards Į-155 and ȕ-155 used as NMR and TLC references. 

 
Scheme 33 Silyl-protection of the nucleoside 142 to give a chromatographically-separable mixture 

of the nucleosides α-155 and β-155. 

With useful quantities of 155 to hand, the focus of the project next turned towards appending a 

V\QWKHWLFDOO\ FRPSDWLEOH 2¶- protecting group for solid phase RNA synthesis (Scheme 34). To our 

regret, treatment of the isomeric mixture 155 with various silyl chlorides (TBSOTf; TBSCl; TIPSCl) 

under standard conditions, failed to generate any of the anticipated silyl ethers 156-158 at all. In an 

effort to further promote 2¶-silylation, nucleophilic catalysts (DMAP; pyridine; imidazole) or Lewis 

acids (AgNO3) were added, but still no product formation was observed. It is possible here that 

unfavourable steric factors contributed to higher energetic barriers for the former process, which 

might in turn be due to the presence the bulky Markiewicz silyl enol ether residue embedded within 

155. Accordingly, we next sought to investigate reactions using a less-EXON\ 2¶- protecting group. 

Although 3-(chloromethoxy)propanenitrile (CEMCl) (itself prepared from 3-

((methylthio)methoxy)propanenitrile) gave no reaction, treatment of 155 with acrylonitrile in the 

presence of Cs2CO3 at 50 ºC resulted in a rapid reaction yielding several different products (as 

determined by TLC analysis). After 45 minutes reaction time, these spots converged into a single 

isolable compound. To our surprise, structural characterisation of the isolated spot revealed the 

presence of a fully-GHSURWHFWHG 2¶-hydroxy moiety. Furthermore, the reaction conditions that were 

employed appeared to have resulted in 1,3-bis-cyanoethyl-protection of the urea moiety, resulting in 

formation of compound 159 in 58% yield.  

 

α-155 β-155 142  
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Scheme 34 Synthesis of compound 159 from 155 and stereochemical interpretation involving 2D 

NOESY NMR spectral analysis. 

The illustrated structure of compound 159 and the stereochemistry at the anomeric centre, were thus 

assigned by 2D NOESY NMR and with comparison to the starting-material spectra. The unusual 

regiospecificity of the former process could perhaps due to the lower pKa value of the isoxazole-urea-

proton (~9) UHODWLYH WR WKDW RI WKH 2¶-hydroxyl group (~12, as calculated using the ChemAxon pKa 

plugin), although this does not explain the addition of the second equivalent of acrylonitrile. It also 

remains to be understood why the Į-anomer is exclusively obtained from the reaction involving both 

Į-155 and ȕ-155. To gain further insight into this matter, crystallographic evidence supporting this 

structure may be pursued in future studies. 

 

Given the forgoing difficulties, we set about a more direct approach to synthesising nucleoside 

phosphoramidites, that would firstly involve DMTr-SURWHFWLRQ RI WKH 5¶-hydroxyl group of ribose 

(Scheme 35). Although not entirely VHOHFWLYH, GLUHFW 5¶-protection with DMTrCl has been 

successfully applied in a number of cases with moderate yields.[126] To our gratification, upon 

treatment of 142 with DMTrCl in pyridine, a rapid reaction ensued that gave compounds Į-160 and 

ȕ-160 as a 3:1 mixture of anomers with no other isolated products. The high regiospecificity of this 

reaction, combined with prior our difficulties in affecting the 2¶-protection of 155, indicates a 

SRWHQWLDO 2¶-deactivating effect, perhaps owing to hydrogen-bonding interactions with the 3-

aminoxazoylurea moiety. The alpha-compound Į-160 was also successfully separated from the 

mixture, allowing us to achieve full structural characterisation for that isomer.  
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Scheme 35 The 5¶-tritylation of nucleoside 142 aQd aWWePSWed 2¶-protection of the resulting DMTr-

adducts α-160 and β-160.†† 

2QFH DJDLQ, LQWURGXFWLRQ RI D VXLWDEOH 2¶-protecting group proved troublesome, whereby treatment of 

the mixture containing Į-160 and ȕ-160 with TOMCl in the presence of Bu2SnCl2 ± conditions that 

KDYH SUHYLRXVO\ EHHQ HPSOR\HG LQ WKH UHOLDEOH 2¶-introduction of TOM functional groups[127] ± instead 

JDYH H[FOXVLYHO\ WKH 3¶-ether 161, as was confirmed with 2D COSY and HMBC NMR spectra. In 

order to exclude that this result was coincidental, 160 was also subsequently treated with Bz2O and 

DMAP, which similarly gave rise to WKH XQGHVLUHG 3¶-benzoate 162, thus mirroring the reactivity of 

Bu2SnCl2. Overall, these results strongly suggested a significant kinetic barrier, steric or otherwise, 

preventing SURWHFWLRQ RI WKH 2¶-hydroxyl moiety. 

 

7KH VHHPLQJO\ OLPLWHG UHDFWLYLW\ RI WKH 2¶-hydroxyl group present in 160 and other related compounds 

prompted an investigation into whether the 1-(isoxazol-3-yl)-urea functionality could be introduced 

to a ribose scaIIROG DOUHDG\ FRQWDLQLQJ WKH QHFHVVDU\ 2¶-protecting group. Accordingly, a synthesis of 

compound 163 was pursued (Scheme 36). Firstly, the silyl ether 164 was prepared according to the 

procedure that we had already developed.[124] This involved substitution of the acetyl group present 

in 151 ZLWK VRGLXP D]LGH, IROORZHG E\ EHQ]RDWH UHPRYDO, DQG VXEVHTXHQW 3¶/5¶-protection using t- 

Bu2SiCl2 to give 165. A TBS-protecting group was chosen in contrast to our earlier study, where a 

TOM-protecting group as used, due to the significantly reduced cost and availability of the necessary 

reagent. In the event, compound 165 was treated with TBSCl in the presence of imidazole, which 

gave the desired silyl ether 166 in 91% yield. In parallel, the 3-aminoxazole-substituted carbamates 

167, 168 and 169 were synthesised and characterised. In keeping with expectations, when compound 

166 was treated with H2 gas in the presence of palladium on charcoal, the primary amine 170 was 

 
�� Compounds 161 and 162 were originally synthesised by student S. Hübner, under supervision from myself. 
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generated, which we confirmed by LCMS and TLC analyses. Subsequent treatment of the in-situ-

generated amine 170 with carbamates 167-169 however, failed to generate the desired urea 163 in 

any more than trace quantities, although more optimisation is required. 

 
Scheme 36 The synthesis of azide 166 and the attempted carbamoylation of the amine generated 

upon hydrogen-mediated reduction of that compound. 

In summary, some preliminary, but nevertheless encouraging results have been obtained towards the 

synthesis of the nucleoside phosphoramidite 147. We envision that after a certain degree of 

optimisation, the azide 166 could conceivably be converted into 163 using the formerly mentioned 

strategy, or perhaps via a reactive isocyanate. Upon the successful synthesis of 163, only three 

additional steps would be required ± QDPHO\ 3¶/5¶-GHSURWHFWLRQ, 5¶-tritylation, and finally 

phosphitylation, all of which are routinely effective in phosphoramidite synthesis.[126] In the event 

that electrophilic additions to 170 continue to prove ineffective, we might instead consider a strategy 

such as that which is shown in Scheme 37.  This would firstly involve synthesis of a reactive 

carbamate 171 from the amine 170, which would upon isolation, be treated with 3-aminoisoxazole 

148 to give the desired compound 163. Studies towards this goal are now underway in the Carell 

laboratories. 

 
Scheme 37 Proposed future steps towards incorporating the 3-aminoisoxazole moiety into the fully 

protected riboside 170. 
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3.4 EXPERIMENTAL SECTION FOR UNPUBLISHED RESULTS 

3.4.1 General Experimental 

Chemicals were purchased from Sigma-Aldrich, TCI, Fluka, ABCR, Carbosynth or Acros organics 

and used without further purification. The solvents were of reagent grade or otherwise purified by 

distillation. Reactions and chromatography fractions were monitored by qualitative thin-layer 

chromatography (TLC) on silica gel F254 TLC plates from Merck KGaA. Flash column 

chromatography was performed on Geduran® Si60 (40-63 ȝP) VLOLFD JHO IURP MHUFN KGDA. 

Reactions were conducted under a positive pressure of anhydrous nitrogen in oven-dried glassware, 

and at ambient room temperature, unless otherwise specified. NMR spectra were either recorded on 

a 400 MHz Bruker AVIIIHD spectrometer or on a 599 MHz or 800 MHz Bruker spectrometer. 1H 

NMR shifts were calibrated to the following residual solvent signals: Chloroform-d (7.26 ppm), 

DMSO-d6 (2.50 ppm), Methanol-d4 (4.87 ppm), Benzene-d6 (7.16 ppm) or Deuterium Oxide (4.79 

ppm). 13C NMR shifts were calibrated to the following residual solvent signals: Chloroform-d (77.2 

ppm), DMSO-d6 (39.52 ppm), Methanol-d4 (49.00 ppm), Benzene-d6 (128.06 ppm). All NMR 

spectra were analysed using the program MestReNOVA 12.0.0 from Mestrelab Research S. L. 

Normally resolved mass spectra were measured on a LTQ FT-ICR from Thermo Finnigan GmbH. 

High resolution mass spectra were measured by the analytical department of the Department of 

Chemistry of the Ludwig-Maximilians-Universität München on the following spectrometers 

(ionisation mode in brackets): MAT 95 (EI) and FT-ICR MS (ESI) from Thermo Finnigan GmbH, 

unless otherwise specified. IR spectra were recorded on a PerkinElmer Spectrum BX II FT-IR system. 

All substances were directly applied as solids or oils on the ATR unit. Prebiotic reactions were carried 

out and analysed by LC-ESI-MS on a Thermo Finnigan LTQ Orbitrap XL and were chromatographed 

using a Dionex Ultimate 3000 HPLC system with a flow of 0.15 mL/min over an Interchim 

Uptisphere120A-3µm-HDO C18 column, unless otherwise specified. The column temperature was 

maintained at 30 °C. The eluting buffers were: buffer A (2 mM HCOONH4 in H2O, pH 5.5) and 

buffer B (2 mM HCOONH4 in H2O/MeCN 20/80). The pH values of individual buffers were adjusted 

using a MP 220 pH-meter (Metter Toledo). Matrix-assisted laser desorption/ionization-time-of-flight 

(MALDI-TOF) mass spectra were recorded on a Bruker Autoflex II mass spectrometer. 
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3.4.2 Synthesis of Oligonucleotides 

Oligonucleotides used in this study were synthesized on a 1 Ɋmol scale using a DNA automated 

synthesizer (Applied Biosystems 394 DNA/RNA Synthesizer) with standard phosphoramidite 

chemistry. The phosphoramidites of canonical ribonucleosides (Bz-A, Ac-C, DMF-G, U) were 

purchased from Glen Research and Sigma-Aldrich. NPE-protecting groups were removed by treating 

the CPG-bound oligonucleotides with DBU (10% w/w solution in THF) for 2 hr at room temperature. 

The cleavage and deprotection of the CPG bound oligonucleotides was carried out by treating the 

solid support with ammonia in MeOH (7 N, 1 mL) at room temperature for 4 hr. The resin was 

removed by centrifugation and the solution was evaporated at room temperature under reduced 

pressure. The residue obtained was subsequently heated with a solution of trimethylamine 

trihydrofluoride (98 PL) and triethylamine (60 PL) in DMSO (120 PL) at 65°C for 2 h. Upon cooling 

on ice, NaOAc (3.0 M, 25 PL) and n-BuOH (1 mL) were added. The resulting suspension was 

vortexed and cooled in a freezer (-20°C) for 30 min. After centrifugation, the supernatant was 

discarded, and the resulting oligonucleotide pellet was dried under reduced pressure. 

Oligonucleotides were further purified by reverse-phase HPLC XVLQJ D :DWHUV BUHH]H (2487 DXDO Ȝ 

Array Detector, 1525 Binary HPLC Pump) equipped with the column VP 250/32 C18 from Macherey 

Nagel. Preparative RP-HPLC was carried out XVLQJ WKH IROORZLQJ EXIIHU V\VWHP: EXIIHU A: 100PM 

NEt3/HOAc, pH 7.0 in H22 DQG EXIIHU B: 100PM NEW3/HOAc in 80% (v/v) acetonitrile. A flow rate 

RI 5PL/PLQ ZLWK D JUDGLHQW RI 0-25% of buffer B over 30PLQ ZDV DSSOLHG IRU WKH SXULILFDWLRQV. 

Analytical RP-HPLC was performed on a Waters Alliance Machine (2695 Separation Module, 2996 

Photodiode Array Detector) equipped with the column Nucleosil 120-2 C18 from Macherey Nagel 

using a flow rate RI 0.5PL/PLQ. A gradient of 0-25% of buffer B over 30PLQ ZDV DSSOLHG, H[FHSW 

where otherwise mentioned. Molarity calculations were assisted using the software OligoAnalyzer 

3.0 (Integrated DNA Technologies: https://eu.idtdna.com/calc/analyzer). Oligonucleotides were 

detected at the following wavelength: 260 nm. For strands containing non-canonical bases, extinction 

coefficients of those bases were derived from their unmodified-counterparts and employed without 

corrections. The structural integrity of the synthesized oligonucleotides was determined by MALDI-

TOF mass measurements. Prior to MALDI-TOF MS, oligonucleotide samples were desalted on a 

0.025 ȝP 96:3 ILOWHU (MLOOLSRUH) DJDLQVW GGH2O and co-crystallized in a 3-hydroxypicolinic acid 

matrix (HPA). 
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3.4.3 Specific Transformations 

 
3.4.3.1 Synthesis of Formamidopyrimidines (FaPys) and Related Compounds 

 
2-(Methylthio)-5-nitrosopyrimidine-4,6-diamine (65) 

 
Compound 65 was synthesised according to a modified literature procedure.[128] A magnetically 

stirred solution containing compound 64 (11.0 g, 70.4 mmol) in a 1:11 mixture of acetic acid in water 

(500 mL) was treated in several portions with a solution of sodium nitrite (10.6 g, 154.4 mmol) in 

water (50 mL) at 0 ºC. The resulting blue suspension was stirred for 45 min at 0 ºC, and then slowly 

warmed to room temperature. Upon consumption of the starting material, as judged by LCMS 

analysis after stirring for a further 45 min, the reaction was filtered, and the resulting blue precipitate 

washed with water. The solid was dried for 24 h under reduced pressure to give compound 65 as a 

blue powder (10.9 g, 58.9 mmol, 84%). The crude product was used directly for the next reaction 

without further purification. The 1H NMR spectral data for 65 were consistent with those previously 

reported in the literature.[128] Rf = 0.2 in 99:1 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, 

DMSO-d6) į 10.18 (s, 1H), 9.01 (s, 1H), 8.42 (s, 1H), 8.02 (s, 1H), 2.46 (s, 3H).  

 

2-(Methylthio)pyrimidine-4,5,6-triamine (63) 

 
A magnetically stirred solution containing compound 65 (10.9 g, 58.9 mmol) in a 1:2 mixture of 

acetic acid in Water (100 mL) was treated with zinc powder (15.0 g, 230 mmol) at 0 ºC, and 

maintained at that temperature for 30 min. After this time, the reaction mixture was allowed to warm 

to room temperature and stirred for a further 1 hr. Upon consumption of the starting material, as 

judged by LCMS analysis, the resulting mixture was filtered through a 2 cm plug of Celite, and the 

filtrate adjusted to pH 9 using small portions of 30 % ammonium hydroxide solution. The filtrate was 

cooled to 0 ºC and the resulting precipitate collected by filtration to give compound 63 (8.20 g, 47.9 

mmol, 81%, or 68% over two steps) as a yellow, crystalline solid. Rf = 0.2 in 92:8 v/v CH2Cl2:CH3OH 

elution; 1H NMR (400 MHz, DMSO-d6) į 5.69 (V, 4H), 3.74 ± 3.47 (m, 2H), 2.30 (s, 3H); 13C NMR 

(101 MHz, DMSO-d6) į 156.9, 152.8, 102.8, 13.3; IR (Ȟmax) 3407, 3144, 2932, 1600, 1547, 1307; 

HRMS (ESI): calculated for C5H10N5S+ [M + H]+: 172.0651; found 172.0651.  
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3-Methyl-1-(phenoxycarbonyl)-1H-imidazol-3-ium chloride (70) 

 
Compound 70 was synthesised according to a modified literature procedure.[129] A magnetically 

stirred solution of phenyl chloroformate (6.00 g, 4.81 mL, 38.3 mmol) in anhydrous CH2Cl2 (40 mL) 

was treated dropwise with 1-methylimidazole (10.6 g, 3.05 mL, 154.4 mmol) at 0 ºC. The resulting 

white suspension was stirred for 5 min at 0 ºC, and then slowly warmed to room temperature. Upon 

consumption of the starting material, as judged by LCMS analysis after stirring for a further 2 hr, the 

reaction was filtered, and the resulting white precipitate washed twice with anhydrous CH2Cl2 (2 x 

20 mL). The solid material was dried for 24 h under reduced pressure to give compound 70 as a white 

powder (8.69 g, 36.4 mmol, 95%). The 1H NMR spectral data for 70 were consistent with those 

previously reported in the literature.[129] Compound 70 is highly hygroscopic and should be stored 

under an inert atmosphere to avoid degradation. 1H NMR (400 MHz, DMSO-d6) į 10.17 (V, 1H), 

8.38 (dd, J = 2.0 Hz, 1H), 7.96 (dd, J = 2.0 Hz, 1H), 7.62 ± 7.52 (m, 2H), 7.52 ± 7.41 (m, 3H), 3.99 

(s, 3H). 

 

Phenyl [6-amino-2-(methylthio)pyrimidin-4-yl]carbamate (76) 

 
A magnetically stirred solution containing compound 64 (1.00 g, 6.40 mmol) in anhydrous CH2Cl2 

(100 mL) was treated with 3-methyl-1-(phenoxycarbonyl)-1H-imidazol-3-ium chloride 70 (1.53 g, 

6.40 mmol) at 20 ºC, and maintained at that temperature for 4 hr. Upon consumption of the starting 

material, as judged by TLC analysis, the resulting mixture was concentrated under reduced pressure, 

and the residue was purified by flash chromatography (silica gel, CH2Cl2:CH32H = 100:0 ĺ 99:1 ĺ 

98:2) to afford compound 76 (921 mg, 3.33 mmol, 52%) as a colourless oil. Rf = 0.5 in 96:4 v/v 

CH2Cl2:CH3OH elution; 1H NMR (400 MHz, DMSO-d6) į 10.52 (V, 1H), 7.46 ± 7.38 (m, 2H), 7.30 

± 7.23 (m, 1H), 7.23 ± 7.17 (m, 2H), 6.89 (s, 2H), 6.60 (s, 1H), 2.41 (s, 3H); 13C NMR (101 MHz, 

DMSO-d6) į 169.9, 165.1, 157.2, 152.0, 150.7, 129.9, 126.2, 122.4, 86.1, 13.5; IR (Ȟmax) 3150, 2801, 

1760, 1533, 1593; HRMS (ESI): calculated for C12H13N4O2S+ [M + H]+: 277.0754; found 277.0748.  
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1-[6-Amino-2-(methylthio)pyrimidin-4-yl]-3-methylurea (77) 

 
A magnetically stirred solution of compound 76 (500 mg, 1.81 mmol) in pyridine (20 mL) was treated 

in several portions with a 2M solution of methylamine in THF (5.43 mL, 10.86 mmol) at 20 ºC. The 

solution was then maintained for 24 hr at 50 ºC. Upon consumption of the starting material, as judged 

by LCMS analysis, the reaction mixture was subsequently filtered and the resulting precipitate 

washed three times with CH2Cl2 (5 mL). The solid was dried for 24 h under reduced pressure to give 

compound 77 as white powder (201 mg, 0.943 mmol, 52%) that did not require further purification. 

Rf = 0.1 in 96:4 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, DMSO-d6) į 9.01 (V, 1H), 7.45 (V, 

1H), 6.70 (s, 2H), 6.22 (s, 1H), 2.67 (d, J = 4.5 Hz, 3H), 2.37 (s, 3H); 13C NMR (101 MHz, DMSO-

d6) į 168.8, 164.1, 157.8, 155.0, 83.4, 25.9, 13.1; IR (Ȟmax) 3446, 3160, 2927, 1689, 1589, 1491; 

HRMS (ESI): calculated for C7H12N5OS+ [M + H]+: 214.0757; found 214.0757.  

 

tert-Butyl [4,6-diamino-2-(methylthio)pyrimidin-5-yl]carbamate (79) 

 
A magnetically stirred solution of compound 63 (8.20 g, 47.9 mmol) in anhydrous t-BuOH (200 mL) 

was treated dropwise with Di-tert-butyl dicarbonate (Boc2O) (11.5 g, 12.1 mL, 52.7 mmol) at room 

temperature and the reaction mixture was heated to 60 ºC. Upon consumption of the starting material, 

as judged by LCMS analysis after 2 hr, the mixture was allowed to cool to room temperature, and 

separated into smaller portions. The individual portions were centrifuged, and the supernatant 

discarded. The precipitate was washed twice with anhydrous t-BuOH (50 mL) and then dried under 

reduced pressure to afford compound 79 (9.91 g, 36.5 mmol, 76%) as a white powder. Rf = 0.3 in 

93:7 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, DMSO-d6) į 7.57 (V, 1H), 5.86 (V, 4H), 2.34 

(s, 3H), 1.42 (s, 9H); 13C NMR (101 MHz, DMSO-d6) į 166.0, 159.9, 154.1, 92.5, 78.6, 28.2, 13.4; 

IR (Ȟmax) 3475, 3312, 2935, 1680, 1610, 1478; HRMS (ESI): calculated for C10H18N5O2S+ [M + H]+: 

272.1176; found 272.1176. 
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tert-Butyl ethyl [6-amino-2-(methylthio)pyrimidine-4,5-diyl]dicarbamate (81) 

 
A magnetically stirred solution of compound 79 (9.90 g, 36.5 mmol) in anhydrous pyridine (60 mL) 

was treated dropwise with ethylchloroformate (6.74 g, 5.9 mL, 62.1 mmol) at 0 ºC. The reaction 

mixture was subsequently heated to 60 ºC, and maintained at that temperature for 4 h. Upon 

consumption of the starting material, as judged by TLC analysis, the mixture was cooled, 

concentrated under reduced pressure, and the residue thus obtained purified by flash chromatography 

(silica gel, CH2Cl2:CH32H = 100:0 ĺ 99:1 ĺ 98:2) WR DIIRUG FRPSRXQG 81 (6.12 g, 17.8 mmol, 49%) 

as a white solid. Rf = 0.4 in 96:4 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, Chloroform-d) į 

7.34 (s, 1H), 7.07 (s, 1H), 5.26 (s, 2H), 4.22 (q, J = 7.1 Hz, 2H), 2.43 (s, 3H), 1.44 (s, 9H), 1.30 (t, J 

= 7.1 Hz, 3H); 13C NMR (101 MHz, Chloroform-d) į 168.2, 161.5, 153.8, 151.1, 149.8, 128.3, 123.7, 

102.5, 81.0, 62.5, 28.2, 14.3, 14.2; IR (Ȟmax) 3329, 2979, 1716, 1618, 1496; HRMS (ESI): calculated 

for C13H22N5O4S+ [M + H]+: 344.1387; found 344.1386. 

 

tert-Butyl [4-amino-2-(methylthio)-6-(3-methylureido)pyrimidin-5-yl]carbamate (82a) 

 
A sealed glass tube containing compound 81 (500 mg, 1.46 mmol) suspended in a solution of 

ethanolic methylamine (33 % w/w, 6.25 mL) was heated to 45 ºC, and magnetically stirred at that 

temperature for 2.5 hr. Upon consumption of the starting material, as judged by TLC analysis, the 

reaction mixture was concentrated under reduced pressure. The residue thus obtained was subjected 

to flash column chromatography (silica gel, EtOAc:Hexane = 4:1) to afford compound 82a (64 mg, 

0.19 mmol, 13%) as a white solid. Rf = 0.3 in 4:1 v/v EtOAc:Hexane elution; 1H NMR (400 MHz, 

DMSO-d6) į 8.78 (G, J = 4.8 Hz, 1H), 7.79 (s, 1H), 7.70 (s, 1H), 6.68 (s, 2H), 2.75 (d, J = 4.8 Hz, 

3H), 2.42 (s, 3H), 1.42 (s, 9H); 13C NMR (101 MHz, DMSO) į 166.7, 161.2, 154.7, 154.0, 95.1, 79.7, 

28.5, 26.5, 14.1; IR (Ȟmax) 3428, 3250, 1720, 1671, 1532, 1488; HRMS (ESI): calculated for 

C12H21N6O3S+ [M + H]+: 329.1390; found 329.1391. 
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1-[5,6-Diamino-2-(methylthio)pyrimidin-4-yl]-3-methylurea (72a) 

 
A 15 mL-Falcon tube containing a solution of compound 82a (15 mg, 45.7 ȝmol) in methanol (1.8 

mL) was treated with a large excess of trimethylsilyl chloride (770 mg, 900 ȝL, 7.09 mmol) at 20 ºC, 

and the resulting solution was shaken at that temperature, during which a white precipitate appeared. 

Upon consumption of the starting material, as judged by LCMS analysis after 1 hr, the reaction 

mixture was concentrated under reduced pressure, and the solid material was re-suspended in CH2Cl2 

(1 mL). The mixture was then centrifuged, and the supernatant discarded. The solid residue was 

washed once more with CH2Cl2 (1 mL), and then dried overnight under high vacuum to afford 

compound 72a (8.5 mg, 37.2 mmol, 81%) as a white powder. Rf = 0.5 in 9:1 v/v CH2Cl2:CH3OH 

elution; 1H NMR (400 MHz, DMSO-d6) į 9.23 (V, 2H), 8.12 ± 7.84 (m, 2H), 7.73 ± 6.69 (m, 0H), 

2.78 ± 2.65 (m, 3H), 2.43 (s, 3H); 13C NMR (101 MHz, DMSO-d6) į 156.6, 155.8, 127.5, 26.6, 13.8; 

IR (Ȟmax) 3290, 3174, 2882, 1646, 1540, 1188; HRMS (ESI): calculated for C7H13N6OS+ [M + H]+: 

229.0866; found 229.0866. 

 

N-[4-Amino-2-(methylthio)-6-(3-methylureido)pyrimidin-5-yl]formamide (60a) 

 
A 1.5 mL-safe lock tube containing a solution of compound 72a (41 mg, 0.18 mmol) in formic acid 

(300 ȝL) was treated with sodium formate (14 mg, 0.21 mmol) and the reaction mixture was heated 

to 50 ºC and shaken at that temperature. Upon consumption of the starting material, as judged by 

TLC analysis after 2.5 hr, the mixture was concentrated under reduced pressure, and the solid material 

was suspended in H2O (1 mL). The mixture was then centrifuged, and the supernatant discarded. The 

solid residue was washed once more with H2O (1 mL), and then dried overnight under high vacuum 

to afford compound 60a (41 mg, 0.16 mmol, 89%) as a white powder. Rf = 0.4 in 94:6 v/v 

CH2Cl2:CH3OH elution; 1H NMR (400 MHz, DMSO-d6) į 8.94 (G, J = 4.8 Hz, 1H), 8.77 (d, J = 1.3 

Hz, 1H), 8.23 (s, 1H), 8.06 (d, J = 1.3 Hz, 1H), 6.76 (s, 2H), 2.75 (d, J = 4.8 Hz, 3H), 2.42 (s, 3H); 
13C NMR (101 MHz, DMSO-d6) į 166.6, 161.7, 160.3, 154.4, 153.5, 92.9, 26.0, 13.6; IR (Ȟmax) 3280, 

N

N

HN

H2N S

H
N

Boc

O

N
H

N

N

HN

H2N S

H2N

O

N
H

N

N

HN

H2N S

HN

O

N
H

O

N

N

HN

H2N S

H2N

O

N
H



 

 98 

3163, 2882, 1706, 1673, 1537, 1342; HRMS (ESI): calculated for C8H13N6O2S+ [M + H]+: 257.0815; 

found 257.0814. 

 

tert-Butyl [4-amino-6-(3-methylureido)pyrimidin-5-yl]carbamate (82b) 

 
A sealed glass tube containing a solution of compound 82a (30 mg, 91 ȝmol) in THF (8 mL) was 

treated with palladium on charcoal (3.2 mg, 28 ȝmol) and triethylsilane (109 mg, 150 ȝL, 0.94 mmol). 

The reaction mixture was heated to 40 ºC and magnetically stirred at that temperature for 50 hr. Upon 

consumption of the starting material, as judged by TLC analysis, the reaction mixture was 

concentrated under reduced pressure (caution, smelly), and the residue purified by flash 

chromatography (silica gel, CH2Cl2:CH32H = 100:0 ĺ 99:1 ĺ 98:2 ĺ 96:4) WR DIIRUG FRPSRXQG 

82b (9 mg, 31.9 ȝmol, 35%) as a colourless oil. Rf = 0.4 in 96:4 v/v CH2Cl2:CH3OH elution; 1H 

NMR (400 MHz, DMSO-d6) į 9.02 (G, J = 4.8 Hz, 1H), 8.09 ± 7.85 (m, 2H), 7.66 (s, 1H), 6.60 (s, 

2H), 2.75 (d, J = 4.8 Hz, 3H), 1.43 (s, 9H); 13C NMR (101 MHz, DMSO-d6) į 161.0, 154.4, 154.0, 

153.6, 153.4, 97.9, 79.4, 28.0, 26.1; IR (Ȟmax) 3470, 1384, 3119, 2977, 2361, 1680, 1549, 1159; 

HRMS (ESI): calculated for C11H19N6O3+ [M + H]+: 283.1513; found 283.1512. 

 

N-[4-Amino-6-(3-methylureido)pyrimidin-5-yl]formamide (60b) 

 
A 15 mL-Falcon tube containing a solution of compound 82b (33 mg, 0.12 mmol) in methanol (4 

mL) was treated with a large excess of trimethylsilyl chloride (1.71g, 2 mL, 15.8 mmol) at room 

temperature, and the reaction mixture was shaken at 25 ºC for 75 min. After this time, the reaction 

mixture was concentrated under reduced pressure, and the solid material was re-suspended in CH2Cl2 

(1 mL). The mixture was then centrifuged, and the supernatant discarded. The solid residue was 

washed once more with CH2Cl2 (1 mL), and then dried overnight under high vacuum to afford a white 

powder that was used directly for the subsequent reaction without further purification. A 1.5 mL-safe 

lock tube containing a solution of the crude compound from the previous step in formic acid (300 ȝL) 

was treated with sodium formate (9.2 mg, 0.13 mmol) and the reaction mixture was heated to 50 ºC. 
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Upon consumption of the starting material, as judged by LCMS analysis after 2.5 hr, the mixture was 

cooled and concentrated under reduced pressure, and the solid material was suspended in H2O (1 mL). 

The mixture was then centrifuged, and the supernatant discarded. The solid residue was washed once 

more with H2O (1 mL), and then dried overnight under high vacuum to afford compound 60b (21 mg, 

0.10 mmol, 83% over two steps) as a white powder. Rf = 0.4 in 94:6 v/v CH2Cl2:CH3OH elution; 1H 

NMR (599 MHz, DMSO-d6) į 9.16 (G, J = 4.8 Hz, 1H), 8.98 (s, 1H), 8.14 (s, 1H), 8.10 (s, 1H), 8.05 

(s, 1H), 6.69 (s, 2H), 2.75 (d, J = 4.8 Hz, 3H); 13C NMR (151 MHz, DMSO-d6) į 161.5, 160.6, 154.6, 

154.4, 153.6, 96.3, 26.1; IR (Ȟmax) 3330, 3265, 3154, 1680, 1557, 1467, 1267; HRMS (ESI): 

calculated for C7H11N6O2+ [M + H]+: 211.0938; found 211.0939. 

 

3.4.3.2 Synthesis of Modified Adenosine Nucleosides and Phosphoramidites 

Note: Phosphoramidite 136 and DMTr-compounds 134 and 135 were prepared according to a 

slightly modified synthesis route compared with that appearing in the final published work.[130] The 

alternative formulation is therefore also presented in this section. 

 
2',3',5'-Tri-O-acetyladenosine (83) 

 
Compound 83 was synthesised according to a modified literature procedure.[131] A magnetically 

stirred solution containing adenosine 33 (10.0 g, 37.4 mmol) and 4-dimethylaminopyridine (1.83 g, 

14.97 mmol) in anhydrous CH3CN (250 mL) was treated with triethylamine (15.2 g, 20.9 mL, 149.7 

mmol), and then acetic anhydride (15.3 g, 14.1 mL, 149.7 mmol) at 20 ºC. The resulting solution was 

maintained for 18 hr at room temperature. Upon completion of the reaction, as judged by TLC 

analysis, the mixture was cooled to 0 ºC and treated with distilled water (20 mL). The aqueous phase 

was then extracted with CH2Cl2 (3 x 100 mL), and the combined organic phases dried (MgSO4), 

filtered, and concentrated under reduced pressure. Recrystallisation of the material thus obtained, via 

the slow cooling of a saturated solution of boiling ethanol (ca. 200 mL), gave compound 83 as amber 

crystals (12.5 g, 31.8 mmol, 85%). The 1H NMR spectral data for 83 were consistent with those 

previously reported in the literature.[131] Rf = 0.4 in 9:1 v/v CH2Cl2:CH3OH elution; 1H NMR (400 

MHz, DMSO-d6) į 8.36 (V, 1H), 8.17 (V, 1H), 7.40 (V, 2H), 6.20 (G, J = 5.4 Hz, 1H), 6.03 (dd, J = 5.7 
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Hz, 1H), 5.63 (dd, J = 5.7, 4.8 Hz, 1H), 4.45 ± 4.33 (m, 2H), 4.24 (dd, J = 11.7, 5.4 Hz, 1H), 2.12 (s, 

3H), 2.04 (s, 3H), 2.01 (s, 3H). 

 

2',3',5'-Tri-O-acetyl-N6-(phenoxycarbonyl)adenosine (84) 

 
Compound 84 was synthesised according to a modified literature procedure.[107] A magnetically 

stirred solution containing compound 83 (1.00 g, 2.54 mmol) in anhydrous CH2Cl2 (250 mL), 

maintained under an atmosphere of argon, was treated with 3-methyl-1-(phenoxycarbonyl)-1H-

imidazol-3-ium chloride (70) (1.82 g, 8.17 mmol) at 20 ºC, and the resulting milky-white suspension 

was maintained for 3 hr at that temperature. Upon consumption of the starting material, as judged by 

TLC analysis, the reaction mixture was concentrated under reduced pressure. The residue thus 

obtained was then purified by flash chromatography (silica gel, EW2AF:HH[DQH = 1:1 ĺ 9:1) WR DIIRUG 

compound 84 (1.06 g, 2.06 mmol, 81%) as a colourless foam. The 1H NMR spectral data for 84 were 

consistent with those previously reported in the literature.[107] Rf = 0.2 in 99:1 v/v CH2Cl2:CH3OH 

elution; 1H NMR (400 MHz, Chloroform-d) į 8.81 (V, 1H), 8.51 ± 8.45 (m, 1H), 8.16 (s, 1H), 7.45 ± 

7.37 (m, 2H), 7.30 ± 7.21 (m, 5H), 6.24 (d, J = 5.2 Hz, 1H), 5.94 (dd, J = 5.2 Hz, 1H), 5.67 (dd, J = 

5.6, 4.4 Hz, 1H), 4.55 ± 4.33 (m, 4H), 2.16 (s, 3H), 2.13 (s, 4H), 2.09 (s, 3H). 

 

2',3',5'-Tri-O-acetyl-N6-[(methylamino)carbonyl]adenosine (86) 

 
Compound 86 was synthesised according to a modified literature procedure.[132] A sealed glass tube 

containing a magnetically stirred solution of compound 84 (420 mg, 818 ȝmol) in anhydrous pyridine 

(8 mL) was treated with a 2.0 M solution of methylamine in THF (531 ȝL, 1.06 mmol) at 20 ºC, and 

the resulting solution was heated to 55 ºC and maintained at that temperature for 12 hr. Upon 
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consumption of the starting material, as judged by TLC analysis, the reaction mixture was cooled to 

room temperature. The cooled reaction mixture was then concentrated under reduced pressure, and 

the residue purified by flash chromatography (silica gel, CH2Cl2:CH3OH = 97:3) to afford compound 

86 (198 mg, 442 ȝmol, 54%) as a colourless foam. The 1H NMR spectral data for 86 were consistent 

with those previously reported.[132] Rf = 0.2 in 19:1 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, 

Chloroform-d) į 9.52 ± 9.40 (m, 1H), 9.26 (s, 1H), 8.56 (s, 1H), 8.49 (s, 1H), 6.20 (d, J = 5.4 Hz, 1H), 

6.00 (dd, J = 5.4 Hz, 1H), 5.67 (dd, J = 4.9 Hz, 1H), 4.52 ± 4.23 (m, 3H), 2.97 (d, J = 4.6 Hz, 3H), 

2.11 (s, 3H), 2.07 (s, 3H), 2.04 (s, 4H). 

 

N6-[(Methylamino)carbonyl]adenosine (59b) 

 
Compound 59b was synthesised according to a modified literature procedure.[132] Compound 86 (198 

mg, 0.439 mmol) was added in one-portion to a magnetically stirred 7N solution of ammonia in 

methanol (3.77 mL, 26.38 mmol) at 20 ºC, and the resulting mixture was maintained at that 

temperature for 12 hr. Upon completion of the reaction, as judged by LCMS analysis, the reaction 

mixture was then centrifuged, and the supernatant discarded. The solid residue was washed once with 

a portion of ice-cold methanol (1 mL), and then dried overnight under high vacuum to afford 

compound 59b (119 mg, 0.365 mmol, 83%) as a white powder. The 1H NMR spectral data for 59b 

were consistent with those previously reported.[132] Rf = 0.1 in 9:1 v/v CH2Cl2:CH3OH elution; 1H 

NMR (400 MHz, DMSO-d6) į 9.24 (G, J = 4.7 Hz, 1H), 8.65 (s, 1H), 8.54 (s, 1H), 5.97 (d, J = 5.7 

Hz, 1H), 5.59 (s, 1H), 5.31 (s, 1H), 5.15 (s, 1H), 4.59 (dd, J = 5.4 Hz, 1H), 4.17 (dd, J = 4.3 Hz, 1H), 

4.02 ± 3.87 (m, 1H), 3.79 ± 3.65 (m, 1H), 3.65 ± 3.52 (m, 1H), 2.83 (d, J = 4.7 Hz, 3H). 
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2',3',5'-Tri-O-acetyl-N6-glycinylcarbamoyladenosine (101) 

 
A magnetically stirred solution containing compound 84 (7.16 g, 13.96 mmol) in anhydrous pyridine 

(60 mL) was treated with glycine (2.62 g, 34.91 mmol) at 20 ºC, and the resulting mixture was heated 

to 55 ºC and maintained at that temperature for 4 hr. Upon consumption of the starting material, as 

judged by TLC analysis, the reaction mixture was cooled to room temperature. The cooled reaction 

mixture was then concentrated under reduced pressure, and the residue purified by flash 

chromatography (silica gel, CH2Cl2:CH3OH = 9:1) to afford compound 101 (4.99 g, 10.10 mmol, 

72%) as a colourless foam. Rf = 0.3 in 9:1 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, DMSO-

d6) į 12.70 (V, 1H), 9.99 (V, 1H), 9.61 (dd, J = 5.7 Hz, 1H), 8.65 (s, 1H), 8.60 (s, 1H), 6.31 (d, J = 5.4 

Hz, 1H), 6.04 (dd, J = 5.7 Hz, 1H), 5.64 (dd, J = 5.9, 4.7 Hz, 1H), 4.49 ± 4.34 (m, 2H), 4.34 ± 4.20 

(m, 1H), 4.00 (d, J = 5.7 Hz, 2H), 2.13 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H); 13C NMR (101 MHz, 

DMSO-d6) į 171.9, 170.5, 169.9, 169.8, 154.1, 151.6, 150.8, 150.6, 143.2, 120.9, 86.2, 80.0, 72.5, 

70.4, 63.2, 42.1, 21.0, 20.9, 20.7; IR (Ȟmax) 3232, 2942, 1746, 1715, 1675, 1593, 1561; HRMS (ESI): 

calculated for C19H23N6O10+ [M + H]+: 495.1470; found 495.1472.  

 

2',3',5'-Tri-O-acetyl-6-(3-hydantoinyl)purinosine (102) 

 
To a magnetically stirred flask charged with neat acetic anhydride (3.24 g, 3.00 mL, 31.7 mmol), was 

added compound 101 (181 mg, 0.366 mmol) at 20 ºC, and the resulting solution maintained at that 

temperature for 1.5 hr. Upon completion of the reaction, as judged by TLC analysis, the reaction 

mixture was then cooled to 0 ºC and quenched with methanol (3 mL). After stirring for an additional 

5 min, the reaction mixture was concentrated under reduced pressure, and the residue purified by 

flash chromatography (silica gel, CH2Cl2:CH3OH = 96:4) to afford compound 102 (131 mg, 0.275 
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mmol, 75%) as a colourless foam. Rf = 0.2 in 96:4 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, 

Chloroform-d) į 9.04 (V, 1H), 8.38 (V, 1H), 7.05 (V, 1H), 6.29 (G, J = 5.6 Hz, 1H), 5.97 (dd, J = 5.6 

Hz, 1H), 5.64 (dd, J = 5.6, 4.1 Hz, 1H), 4.49 ± 4.44 (m, 1H), 4.42 ± 4.37 (m, 2H), 4.25 (s, 2H), 2.15 

(s, 3H), 2.11 (s, 3H), 2.07 (s, 3H); 13C NMR (101 MHz, Chloroform-d) į 170.5, 169.8, 169.5, 169.1, 

155.6, 153.7, 153.0, 144.7, 144.1, 130.0, 86.5, 80.8, 73.1, 70.8, 63.2, 47.2, 20.9, 20.7, 20.5; IR (Ȟmax) 

3311, 3122, 2936, 1726, 1602, 1579, 1380; HRMS (ESI): calculated for C19H21N6O9+ [M + H]+: 

477.1365; found 477.1365.  

 

2',3',5'-Tris-O-(tert-butyldimethylsilyl)adenosine (104) 

 
Compound 104 was synthesised according to a modified literature procedure.[133] A magnetically 

stirred solution containing adenosine 33 (5.00 g, 18.7 mmol) in anhydrous DMF (120 mL) was treated 

with tert-butyldimethylsilyl chloride, (11.3 g, 74.8 mmol), and then imidazole (7.64 g, 112 mmol) at 

20 ºC, and the resulting mixture was maintained at that temperature for 24 hr. Upon consumption of 

the starting material, as judged by TLC analysis, the mixture was then treated with NH4Cl (200 mL 

of a sat. aq. solution), the aqueous phase extracted with EtOAc (3 x 100 mL), and the combined 

organic phases dried (MgSO4), filtered, and concentrated under reduced pressure. The residue thus 

obtained was purified by flash chromatography (silica gel, CH2Cl2:CH3OH = 100:1ĺ 100:5) to afford 

compound 104 (10.6 g, 17.4 mmol, 93%) as a colourless foam. The 1H and 13C NMR spectral data 

for 104 were consistent with those previously reported in the literature.[133] Rf = 0.4 in 1:1 v/v 

EtOAc:Hexane elution; 1H NMR (400 MHz, Chloroform-d) į 8.35 (V, 1H), 8.16 (V, 1H), 7.36 (V, 1H), 

6.03 (d, J = 5.2 Hz, 1H), 5.52 (s, 2H), 4.69 (dd, J = 4.8 Hz, 1H), 4.32 (dd, J = 3.8 Hz, 1H), 4.13 (d, J 

= 3.8 Hz, 1H), 4.03 (dd, J = 11.3, 4.2 Hz, 1H), 3.79 (dd, J = 11.3, 2.8 Hz, 1H), 0.95 (s, 9H), 0.93 (s, 

9H), 0.79 (s, 9H), 0.14 (s, 3H), 0.13 (s, 3H), 0.11 ± 0.09 (m, 6H), -0.05 (s, 3H), -0.23 (s, 3H); 13C 

NMR (101 MHz, Chloroform-d) į 155.6, 153.1, 150.1, 139.8, 120.2, 88.5, 85.7, 76.0, 72.2, 62.7, 

26.3, 26.0, 25.9, 18.7, 18.3, 18.0, -4.2, -4.5, -4.6, -4.9, -5.2; IR (Ȟmax) 3310, 3167, 2929, 2857, 1675, 

1599, 1573, 1472; HRMS (ESI): calculated for C28H56N5O4Si3+ [M + H]+: 610.3635; found 610.3638. 
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2',3',5'-Tris-O-(tert-butyldimethylsilyl)-N6-(phenoxycarbonyl)adenosine (105) 

 
A magnetically stirred solution containing compound 104 (1.50 g, 2.46 mmol) in anhydrous CH2Cl2 

(55 mL) was treated with 3-methyl-1-(phenoxycarbonyl)-1H-imidazol-3-ium chloride (70) (1.47 g, 

6.15 mmol) at 20 ºC, and the resulting milky-white suspension was maintained for 3 hr at that 

temperature. Upon consumption of the starting material, as judged by TLC analysis, the reaction 

mixture was concentrated under reduced pressure. The residue thus obtained was then purified by 

flash chromatography (silica gel, EtOAc:Hexane = 1:4) to afford compound 105 (1.39 g, 1.89 mmol, 

77%) as a colourless foam. Rf = 0.3 in 1:4 v/v EtOAc:Hexane elution; 1H NMR (400 MHz, Benzene-

d6) į 8.51 (V, 1H), 7.98 (V, 1H), 7.14 ± 7.06 (m, 2H), 6.86 ± 6.78 (m, 3H), 6.10 (d, J = 4.3 Hz, 1H), 

5.55 (s, 2H), 5.06 (dd, J = 4.3 Hz, 1H), 4.56 (dd, J = 4.3 Hz, 1H), 4.28 (ddd, J = 4.9, 3.1 Hz, 1H), 

4.10 (dd, J = 11.4, 4.9 Hz, 1H), 3.75 (dd, J = 11.4, 3.1 Hz, 1H), 1.01 (s, 9H), 0.97 (s, 9H), 0.93 (s, 

9H), 0.15 ± 0.12 (m, 6H), 0.09 (s, 3H), 0.08 (s, 3H), 0.05 (s, 3H), -0.05 (s, 3H); 13C NMR (101 MHz, 

Benzene-d6) į 157.3, 156.1, 153.4, 150.1, 140.2, 129.9, 120.7, 120.3, 115.9, 89.7, 85.1, 75.4, 71.9, 

62.3, 26.2, 26.1, 26.0, 18.7, 18.3, 18.2, -4.2, -4.5, -4.6, -4.6, -5.3, -5.4; IR (Ȟmax) 2953, 2857, 1764, 

1616, 1583, 1462; HRMS (ESI): calculated for C35H60N5O6Si3+ [M + H]+: 730.3846; found 730.3850. 

 

2',3',5'-Tris-O-(tert-butyldimethylsilyl)-N6-glycinylcarbamoyladenosine (106) 

 
A magnetically stirred solution containing compound 105 (1.80 g, 2.47 mmol) in anhydrous pyridine 

(25 mL) was treated with glycine (1.11 g, 14.8 mmol) at 20 ºC, and the resulting mixture was heated 

to 55 ºC and maintained at that temperature for 8 hr. Upon consumption of the starting material, as 

judged by TLC analysis, the reaction mixture was cooled to room temperature. The cooled reaction 

mixture was then concentrated under reduced pressure, and the residue purified by flash 
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chromatography (silica gel, CH2Cl2:CH3OH = 9:1) to afford compound 106 (1.44 g, 2.03 mmol, 82%) 

as a colourless foam. Rf = 0.3 in 9:1 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, DMSO-d6) į 

9.94 (s, 1H), 9.64 (dd, J = 5.7 Hz, 1H), 8.63 (s, 1H), 8.55 (s, 1H), 6.02 (d, J = 6.4 Hz, 1H), 4.91 (dd, 

J = 6.4, 4.3 Hz, 1H), 4.34 (dd, J = 4.3, 1.8 Hz, 1H), 4.10 ± 3.90 (m, 4H), 3.77 (dd, J = 10.2, 3.2 Hz, 

1H), 0.93 (s, 9H), 0.89 (s, 9H), 0.70 (s, 9H), 0.14 (s, 3H), 0.12 (s, 3H), 0.08 (s, 6H), -0.10 (s, 3H), -

0.39 (s, 3H); 13C NMR (101 MHz, DMSO-d6) į 171.5, 153.6, 150.9, 150.4, 150.3, 142.2, 120.3, 87.0, 

85.6, 74.3, 72.3, 62.5, 41.8, 25.8, 25.7, 25.4, 18.1, 17.8, 17.5, -4.7, -4.8, -4.8, -5.4, -5.5, -5.5; IR (Ȟmax) 

2929, 2857, 1702, 1612, 1590, 1471; HRMS (ESI): calculated for C31H59N6O7Si3+ [M + H]+: 

711.3748; found 711.3750. 

 

2',3',5'-Tris-O-(tert-butyldimethylsilyl)-6-(1-acetyl-3-hydantoinyl)purinosine (109) 

 

To a magnetically stirred flask charged with neat acetic anhydride (2.16 g, 2.00 mL, 21.2 mmol), was 

added compound 106 (40 mg, 56.3 ȝmol) at 20 ºC, and the resulting solution maintained at that 

temperature for 1.5 hr. Upon consumption of the starting material, as judged by TLC analysis, the 

reaction mixture was then concentrated under reduced pressure, and the residue purified by flash 

chromatography (silica gel, CH2Cl2:CH3OH = 100:1) to afford compound 109 (30 mg, 43.3 ȝmol, 

77%) as a colourless foam. Rf = 0.2 in 99:1 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, 

Chloroform-d) į 9.02 (V, 1H), 8.62 (V, 1H), 6.17 (G, J = 4.3 Hz, 1H), 4.57 (dd, J = 4.3 Hz, 1H), 4.33 

(dd, J = 4.3 Hz, 1H), 4.21 ± 4.14 (m, 1H), 4.04 (dd, J = 11.6, 3.3 Hz, 1H), 3.81 (dd, J = 11.6, 2.4 Hz, 

1H), 2.65 (s, 3H), 0.95 (s, 9H), 0.93 (s, 9H), 0.81 (s, 9H), 0.14 (s, 3H), 0.14 (s, 3H), 0.11 (s, 3H), 0.10 

(s, 3H), 0.00 (s, 3H), -0.15 (s, 3H); 13C NMR (101 MHz, Chloroform-d) į 169.0, 165.3, 153.9, 152.4, 

151.1, 145.3, 142.3, 130.1, 88.8, 85.3, 76.4, 71.3, 62.1, 48.3, 26.2, 25.8, 25.7, 24.7, 18.6, 18.1, 17.9, 

-4.3, -4.7, -4.7, -4.9, -5.3, -5.3; IR (Ȟmax) 2953, 2930, 2897, 1751, 1714, 1605, 1372; HRMS (ESI): 

calculated for C32H61N6O7Si3+ [M-Ac+MeOH+2H]+: 725.3904; found 725.3990; calculated for 

C32H59N6O7Si3- [M-Ac+MeOH]-: 723.3759; found 723.3770. 
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2',3',5'-Tris-O-(tert-butyldimethylsilyl)-6-(3-hydantoinyl)purinosine (107) 

and 2',3'-Bis-O-(tert-butyldimethylsilyl)-6-(3-hydantoinyl)purinosine (108) 

 
A magnetically stirred solution containing compound 106 (30 mg, 43.3 ȝmol) in anhydrous CH2Cl2 

(3 mL) was treated with trifluoroacetic anhydride (222 mg, 1.05 mmol, 149 ȝL) at 20 ºC, and the 

resulting solution was maintained for 2 hr at that temperature. Upon consumption of the starting 

material, as judged by TLC analysis, the reaction mixture was then concentrated under a positive 

pressure of nitrogen gas, and the residue purified by flash chromatography (silica gel, CH2Cl2:CH3OH 

= 20:1). Concentration of fraction A (Rf = 0.3 in 20:1 v/v CH2Cl2:CH3OH elution) afforded tris-TBS-

compound 107 (11 mg, 15.9 ȝmol, 38%) as a clear, colourless oil. 1H NMR (599 MHz, Chloroform-

d) į 9.01 (V, 1H), 8.59 (V, 1H), 6.15 (G, J = 4.2 Hz, 1H), 6.06 (s, 1H), 4.59 (dd, J = 4.7, 3.7 Hz, 1H), 

4.34 (dd, J = 4.7, 4.2 Hz, 1H), 4.27 (s, 2H), 4.19 ± 4.15 (m, 1H), 4.04 (dd, J = 11.5, 3.3 Hz, 1H), 3.81 

(dd, J = 11.5, 2.5 Hz, 1H), 0.95 (s, 11H), 0.93 (s, 10H), 0.83 (s, 11H), 0.14 (s, 4H), 0.14 (s, 4H), 0.11 

(s, 3H), 0.10 (s, 4H), 0.01 (s, 3H), -0.11 (s, 3H); 13C NMR (151 MHz, Chloroform-d) į 168.9, 155.2, 

153.9, 152.6, 145.1, 143.7, 130.3, 89.1, 85.2, 76.4, 71.38, 62.2, 47.1, 26.3, 26.0, 25.9, 18.8, 18.3, 18.1, 

-4.1, -4.5, -4.6, -4.7, -5.1, -5.1; IR (Ȟmax) 2930, 2858, 1735, 1602, 1577, 1450; HRMS (ESI): 

calculated for C31H57N6O6Si3+ [M + H]+: 693.3642; found 693.3666. 

Concentration of fraction B (Rf = 0.2 in 20:1 v/v CH2Cl2:CH3OH elution) afforded the alcohol 108 

(10 mg, 14.4 ȝmol, 34%) as a clear, colourless oil. 1H NMR (599 MHz, Chloroform-d) į 9.03 (V, 

1H), 8.26 (s, 1H), 6.02 ± 5.75 (m, 2H), 5.44 (d, J = 11.4 Hz, 1H), 5.00 (dd, J = 7.5, 4.5 Hz, 1H), 4.36 

(d, J = 4.5 Hz, 1H), 4.28 (dd, J = 1.3 Hz, 2H), 4.23 ± 4.19 (m, 1H), 3.98 (d, J = 13.0 Hz, 1H), 3.75 

(dd, J = 12.1 Hz, 1H), 0.95 (s, 9H), 0.74 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H), -0.12 (s, 3H), -0.59 (s, 

3H); 13C NMR (151 MHz, Chloroform-d) į 168.2, 154.5, 152.9, 151.9, 146.2, 144.6, 131.1, 91.3, 

89.2, 74.2, 73.5, 62.8, 46.8, 25.8, 25.6, 18.1, 17.8, -4.6, -4.6, -4.6, -5.8; IR (Ȟmax) 3323, 2930, 2857, 

1790, 1732, 1602, 1578, 1449; HRMS (ESI): calculated for C25H43N6O6Si2+ [M + H]+: 579.2777; 

found 579.2802. 
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Triethylammonium 3-(purinosin-6-yl)-hydantoin-1-ide (110) 

 
A 1.5 mL-safe lock tube containing a solution of compound 107 (25 mg, 36.1 ȝmol) was treated with 

neat trimethylamine trihydrofluoride (593 mg, 600 ȝL, 3.68 mmol) at 20 ºC and the reaction mixture 

was shaken at that temperature for 4 hr. Upon consumption of the starting material, as judged by TLC 

analysis, the reaction was cooled to 0 ºC and quenched by transferring the entire mixture to a separate 

15 mL-Falcon tube containing methoxytrimethylsilane (4 mL), itself also maintained at 0 ºC. The 

mixture was then agitated using a vortex mixer, at which time a solid precipitated. The resulting 

suspension was then centrifuged, and the supernatant discarded. The solid residue was washed twice 

more with methoxytrimethylsilane (1 mL), and then dried overnight under high vacuum to afford 

compound 110 (11 mg, 24.4 ȝmol, 68%) as a pink/white powder. Rf = 0.05 in 19:1 v/v 

CH2Cl2:CH3OH elution; 1H NMR (400 MHz, Deuterium Oxide) į 8.98 (V, 1H), 8.78 (V, 1H), 6.24 (G, 

J = 5.2 Hz, 1H), 4.85 (dd, J = 5.2 Hz, 1H), 4.45 (dd, J = 4.8 Hz, 1H), 4.37 (s, 2H), 4.31 ± 4.21 (m, 

1H), 3.95 ± 3.79 (m, 2H), 3.16 (q, J = 7.3 Hz, 6H), 1.24 (t, J = 7.3 Hz, 9H); 13C NMR (101 MHz, 

Deuterium Oxide)ÁÁ į 152.3, 146.6, 88.8, 73.9, 70.3, 47.0, 85.6, 61.2, 61.2, 46.8, 8.2; IR (Ȟmax) 3327, 

2928, 1790, 1734, 1601, 1576, 1444; HRMS (ESI): calculated for C13H15N6O6+ [M + H]+: 351.1048; 

found 351.1103. 

 

  

 
ÁÁ 13C NMR shifts were extracted from the 400/101 MHz HSQC NMR spectrum for this compound.  
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3',5'-O-[Bis(tert-butyl)silylene]-2'-O-(tert-butyldimethylsilyl)adenosine (116) 

 
Compound 116 was synthesised according to a modified literature procedure.[134] A magnetically 

stirred solution containing adenosine (33) (2.00 g, 7.48 mmol) in anhydrous DMF (90 mL) was 

treated dropwise with di-tert-butyldichlorosilane (4.94 g, 4.90 mL, 23.2 mmol) at 0 ºC, and the 

resulting mixture was maintained at that temperature for 2 hr. Upon consumption of the starting 

material, as judged by TLC analysis, imidazole (4.08 g, 58,9 mmol) was added, and the reaction was 

maintained at 0 ºC for a further 5 minutes. The mixture was subsequently treated with tert-

butyldimethylsilyl chloride (4.52 g, 30.0 mmol), and allowed to warm slowly to room temperature. 

After stirring for a further 8 hr, the mixture was then treated with H2O (100 mL), the aqueous phase 

extracted with CH2Cl2 (3 x 200 mL). The combined organic phases were dried (MgSO4), filtered, and 

concentrated under reduced pressure. The residue thus obtained was purified by flash 

chromatography (silica gel, EtOAc:Hexane = 1:1) to afford compound 116 (3.25 g, 6.22 mmol, 83%) 

as a colourless foam. The 1H and 13C NMR spectral data for 116 were consistent with those previously 

reported in the literature.[134] Rf = 0.3 in 1:1 v/v EtOAc:Hexane elution; 1H NMR (400 MHz, 

Chloroform-d) į 8.32 (V, 1H), 7.82 (V, 1H), 5.90 (V, 1H), 5.72 (V, 2H), 4.62 (G, J = 4.7 Hz, 1H), 4.54 

(dd, J = 9.5, 4.7 Hz, 1H), 4.48 (dd, J = 9.1, 5.1 Hz, 1H), 4.21 (ddd, J = 10.5, 9.5, 5.1 Hz, 1H), 4.03 

(dd, J = 10.5, 9.1 Hz, 1H), 1.08 (s, 9H), 1.04 (s, 9H), 0.93 (s, 9H), 0.16 (s, 3H), 0.14 (s, 3H); 13C 

NMR (101 MHz, Chloroform-d) į 155.6, 153.4, 149.5, 139.0, 120.5, 92.6, 76.0, 75.6, 74.9, 68.0, 

27.7, 27.2, 26.1, 22.9, 20.5, 18.5, -4.1, -4.8; IR (Ȟmax) 3358, 3311, 3150, 2933, 1677, 1603, 1473; 

HRMS (ESI): calculated for C24H44N5O4Si2+ [M + H]+: 522.2926; found 522.2927. 
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3',5'-O-[Bis(tert-butyl)silylene]-2'-O-(tert-butyldimethylsilyl)-N6-(ethoxycarbonyl)adenosine (118) 

and 3',5'-O-[Bis(tert-butyl)silylene]-2'-O-(tert-butyldimethylsilyl)-N6,N6-

bis(ethoxycarbonyl)adenosine (117) 

 
A magnetically stirred solution containing compound (116) (1.80 g, 3.45 mmol) in anhydrous 

pyridine (50 mL) was treated dropwise with ethyl chloroformate (1.09 g, 960 ȝL, 10.1 mmol) at 0 ºC, 

and the resulting mixture was allowed to slowly warm to room temperature over 18 hr. Upon 

consumption of the starting material, as judged by TLC analysis, ethanol (3 mL) was added at 0 ºC, 

and the reaction was maintained at that temperature for a further 5 minutes. The reaction mixture was 

then concentrated under reduced pressure, and the residue purified by flash chromatography (silica 

gel, EtOAc:Hexane = 4:6). Concentration of fraction A (Rf = 0.5 in 4:6 v/v EtOAc:Hexane elution) 

afforded the bis-carbamate 117 (460 mg, 690 ȝmol, 20%) as a colourless foam. 1H NMR (400 MHz, 

Chloroform-d) į 8.86 (V, 1H), 8.11 (V, 1H), 6.00 (V, 1H), 4.64 (G, J = 4.6 Hz, 1H), 4.55 ± 4.43 (m, 2H), 

4.36 ± 4.22 (m, 5H), 4.05 (dd, J = 10.4, 9.2 Hz, 1H), 1.24 (t, J = 7.1 Hz, 6H), 1.07 (s, 9H), 1.05 (s, 

9H), 0.95 (s, 9H), 0.19 (s, 3H), 0.17 (s, 3H); 13C NMR (101 MHz, Chloroform-d) į 152.7, 152.4, 

152.0, 149.7, 143.4, 130.0, 92.8, 76.0, 75.7, 75.0, 67.9, 64.1, 27.6, 27.2, 26.1, 22.9, 20.5, 18.5, 14.2, 

-4.1, -4.8; IR (Ȟmax) 2933, 2859, 1798, 1767, 1738, 1601, 1577; HRMS (ESI): calculated for 

C30H52N5O8Si2+ [M + H]+: 666.3349; found 666.3354. 

Concentration of fraction B (Rf = 0.3 in 4:6 v/v EtOAc:Hexane elution) afforded the mono-carbamate 

118 (615 mg, 1.04 mmol, 30%) as a colourless foam. 1H NMR (400 MHz, Chloroform-d) į 8.72 (V, 

1H), 8.00 (s, 1H), 5.97 (s, 1H), 4.61 (d, J = 4.6 Hz, 1H), 4.49 (dd, J = 9.2, 5.1 Hz, 1H), 4.46 (dd, J = 

9.6, 4.6 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 4.23 (ddd, J = 10.1, 5.1 Hz, 1H), 4.03 (dd, J = 10.1, 9.2 

Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H), 1.07 (s, 9H), 1.04 (s, 9H), 0.93 (s, 9H), 0.16 (s, 3H), 0.14 (s, 3H); 
13C NMR (101 MHz, Chloroform-d) į 153.1, 151.4, 150.8, 149.9, 141.0, 122.8, 92.6, 76.0, 75.6, 74.9, 

67.9, 62.4, 27.6, 27.2, 26.1, 22.9, 20.5, 18.5, 14.6, -4.1, -4.8; IR (Ȟmax) 2932, 2858, 1746, 1610, 1587, 

1471; HRMS (ESI): calculated for C27H48N5O6Si2+ [M + H]+: 594.3138; found 594.3142. 
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3',5'-O-[Bis(tert-butyl)silylene]-2'-O-(tert-butyldimethylsilyl)-N6-(phenoxycarbonyl)adenosine 

(119) 

 
A magnetically stirred solution containing compound 116 (2.00 g, 3.83 mmol) in anhydrous CH2Cl2 

(60 mL) was treated with 3-methyl-1-(phenoxycarbonyl)-1H-imidazol-3-ium chloride (70) (1.37 g, 

5.75 mmol) at 20 ºC, and the resulting milky-white suspension was maintained for 3 hr at that 

temperature. Upon consumption of the starting material, as judged by TLC analysis, the reaction 

mixture was concentrated under reduced pressure. The residue thus obtained was purified by flash 

chromatography (silica gel, EtOAc:Hexane = 1:4) to afford compound 119 (2.02 g, 3.14 mmol, 82%) 

as a colourless foam. Rf = 0.3 in 1:3 v/v EtOAc:Hexane elution; 1H NMR (400 MHz, Chloroform-d) 

į 8.93 (V, 1H), 8.78 (V, 1H), 8.05 (V, 1H), 7.46 ± 7.35 (m, 2H), 7.29 ± 7.21 (m, 3H), 5.99 (s, 1H), 4.62 

(d, J = 4.6 Hz, 1H), 4.54 ± 4.41 (m, 2H), 4.24 (ddd, J = 10.0, 5.0 Hz, 1H), 4.02 (dd, J = 10.0 Hz, 1H), 

1.07 (s, 9H), 1.05 (s, 9H), 0.93 (s, 9H), 0.17 (s, 3H), 0.15 (s, 3H); 13C NMR (101 MHz, Chloroform-

d) į 153.1, 150.9, 150.4, 149.4, 149.4, 141.3, 129.6, 126.2, 123.1, 121.6, 92.7, 76.1, 75.7, 74.9, 67.9, 

27.6, 27.2, 26.1, 22.9, 20.5, 18.5, -4.1, -4.8; IR (Ȟmax) 3333, 2932, 2858 1772, 1641, 1617, 1593, 1470; 

HRMS (ESI): calculated for C31H46N5O6Si2- [M ± H]±: 640.2992; found 640.2991. 

 

2-(4-Nitrophenethoxy)-2-oxoethan-1-aminium chloride (124) 

 
Compound 124 was synthesised according to a modified literature procedure.[135] A 250 mL round-

bottom flask fitted to a Dean-Stark apparatus, was charged with glycine (1.94 g, 25.8 mmol), toluene 

(50 mL), 2-(4-nitrophenyl)ethan-1-ol (6.5 g, 38.9 mmol), and p-toluenesulfonic acid (7.39 g, 42.9 

mmol) at 20 ºC, in that order. The resulting vigorously-stirred mixture was then heated to reflux, and 

maintained at that temperature for 18 hr. Upon completion of the reaction, as noted by the appearance 

of immiscible water in the side-arm and distillation trap, the reaction mixture was cooled to room 
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temperature. The mixture was then treated with NaHCO3 (500 mL of a sat. aq. solution) in three equal 

portions, and the mixture was shaken vigorously to fully dissolve the solid material. The aqueous 

phase was extracted with EtOAc (4 x 100 mL), and the combined organic phases dried (MgSO4), 

filtered, and concentrated under reduced pressure. The residue thus obtained was then re-dissolved in 

the minimum amount of EtOAc (10 mL), and the product was precipitated via the dropwise addition 

of 1 mL conc. HCl at 0 ºC, to afford compound 124 (2.02 g, 3.14 mmol, 82%) as pale-yellow crystals. 

The 1H NMR spectral data for 124 were consistent with those previously reported in the literature.[135] 

Rf = 0.2 in 96:4 v/v CH2Cl2:CH3OH elution (free-base); 1H NMR (400 MHz, DMSO-d6) į 8.24 ± 

8.14 (m, 2H), 8.07 (s, 3H), 7.65 ± 7.52 (m, 2H), 4.44 (t, J = 6.4 Hz, 2H), 3.76 (s, 2H), 3.09 (t, J = 6.4 

Hz, 2H). 

 

(S)-1-(4-Nitrophenethoxy)-1-oxopropan-2-aminium chloride (125) 

 
A 250 mL round-bottom flask fitted to a Dean-Stark apparatus, was charged with L-alanine (2.00 g, 

22.5 mmol), toluene (50 mL), 2-(4-nitrophenyl)ethan-1-ol (5.63 g, 33.67 mmol), and p-

toluenesulfonic acid (6.42 g, 37.3 mmol) at 20 ºC, in that order. The resulting vigorously-stirred 

mixture was then heated to reflux, and maintained at that temperature for 18 hr. Upon completion of 

the reaction, as noted by the appearance of immiscible water in the side-arm and distillation trap, the 

reaction mixture was cooled to room temperature. The mixture was then treated with NaHCO3 (500 

mL of a sat. aq. solution) in three equal portions, and the mixture was shaken vigorously to fully 

dissolve the solid material. The aqueous phase was extracted with EtOAc (4 x 100 mL), and the 

combined organic phases dried (MgSO4), filtered, and concentrated under reduced pressure. The 

residue thus obtained was then re-dissolved in the minimum amount of EtOAc (10 mL), and the 

product was precipitated via the dropwise addition of 2 mL conc. HCl at 0 ºC, to afford compound 

125 (5.58 g, 20.3 mmol, 90%) as pale-yellow crystals. Rf = 0.2 in 96:4 v/v CH2Cl2:CH3OH elution 

(free-base); 1H NMR (400 MHz, DMSO-d6) į 8.60 (V, 3H), 8.25 ± 8.06 (m, 2H), 7.70 ± 7.47 (m, 2H), 

4.52 ± 4.33 (m, 2H), 4.00 (q, J = 7.2 Hz, 1H), 3.10 (dd, J = 6.3 Hz, 2H), 1.33 (d, J = 7.2 Hz, 3H); 13C 

NMR (101 MHz, DMSO-d6) į 170.0, 146.4, 146.3, 130.4, 123.5, 65.3, 47.8, 33.9, 15.7; IR (Ȟmax) 

3400-2700 (br), 1731, 1598, 1510, 1344; HRMS (ESI): calculated for C11H15N2O4+ [M + H]+: 

239.1026; found 239.1023. 
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(S)-1,4-Bis(4-nitrophenethoxy)-1,4-dioxobutan-2-aminium chloride (127) 

 
A 250 mL round-bottom flask fitted to a Dean-Stark apparatus, was charged with L-aspartic acid (2.00 

g, 15.0 mmol), toluene (50 mL), 2-(4-nitrophenyl)ethan-1-ol (7.54 g, 45.1 mmol), and p-

toluenesulfonic acid (4.30 g, 24.9 mmol) at 20 ºC, in that order. The resulting vigorously-stirred 

mixture was then heated to reflux, and maintained at that temperature for 18 hr. Upon completion of 

the reaction, as noted by the appearance of immiscible water in the side-arm and distillation trap, the 

reaction mixture was cooled to room temperature. The mixture was then treated with NaHCO3 (500 

mL of a sat. aq. solution) in three equal portions, and the mixture was shaken vigorously to fully 

dissolve the solid material. The aqueous phase was extracted with EtOAc (2 x 100 mL), and then 

CH2Cl2 (2 x 100 mL), and the combined organic phases were dried (MgSO4), filtered, and 

concentrated under reduced pressure. The residue thus obtained was then re-dissolved in the 

minimum amount of EtOAc (10 mL), and the product was precipitated via the dropwise addition of 

2 mL conc. HCl at 0 ºC, to afford compound 127 (6.74 g, 14.4 mmol, 96%) as pale-yellow crystals. 

Rf = 0.3 in 96:4 v/v CH2Cl2:CH3OH elution (free-base); 1H NMR (400 MHz, DMSO-d6) į 8.61 (s, 

3H), 8.26 ± 8.05 (m, 4H), 7.66 ± 7.42 (m, 4H), 4.37 (dd, J = 6.3 Hz, 2H), 4.31 ± 4.19 (m, 3H), 3.10 ± 

2.97 (m, 4H), 2.94 ± 2.86 (m, 2H); 13C NMR (101 MHz, DMSO-d6) į 169.0, 168.2, 146.3, 146.3, 

146.2, 130.3, 130.3, 130.2, 123.5, 123.4, 65.6, 64.6, 48.3, 34.1, 33.8, 33.7; IR (Ȟmax) 3400-2700 (br), 

1742, 1720, 1601, 1533, 1516, 1349; HRMS (ESI): calculated for C20H22N3O8+ [M + H]+: 432.1401; 

found 432.1392. 

 

4-Nitrophenethyl L-valinate (126) 

 
A 250 mL round-bottom flask fitted to a Dean-Stark apparatus, was charged with L-valine (2.00 g, 

17.1 mmol), toluene (50 mL), 2-(4-nitrophenyl)ethan-1-ol (4.28 g, 25.6 mmol), and p-toluenesulfonic 

acid (4.88 g, 28.3 mmol) at 20 ºC, in that order. The resulting vigorously-stirred mixture was then 
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heated to reflux, and maintained at that temperature for 18 hr. Upon completion of the reaction, as 

noted by the appearance of immiscible water in the side-arm and distillation trap, the reaction mixture 

was cooled to room temperature. The mixture was then treated with NaHCO3 (500 mL of a sat. aq. 

solution) in three equal portions, and the mixture was shaken vigorously to fully dissolve the solid 

material. The aqueous phase was extracted with EtOAc (2 x 100 mL), and then CH2Cl2 (2 x 100 mL), 

and the combined organic phases were dried (MgSO4), filtered, and concentrated under reduced 

pressure. The residue thus obtained was purified by flash chromatography (silica gel, CH2Cl2:CH3OH 

= 100:0 ĺ 99:1 ĺ 98:2 ĺ 96:4) WR DIIRUd compound 126 (3.94 g, 14.8 mmol, 87%) as a pale-yellow 

solid. Rf = 0.3 in 96:4 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, Chloroform-d) į 8.34 ± 8.03 

(m, 2H), 7.49 ± 7.36 (m, 2H), 4.50 ± 4.31 (m, 2H), 3.25 (d, J = 5.0 Hz, 1H), 3.08 (dd, J = 6.7 Hz, 2H), 

1.99 ± 1.87 (m, 1H), 0.91 (d, J = 6.7 Hz, 3H), 0.81 (d, J = 6.7 Hz, 3H); 13C NMR (101 MHz, 

Chloroform-d) į 147.1, 145.7, 129.9, 124.0, 64.2, 60.1, 35.1, 32.3, 19.4, 17.2; IR (Ȟmax) 3388, 2961, 

2873, 1729, 1600, 1516, 1466; HRMS (ESI): calculated for C13H19N2O4+ [M + H]+: 267.1339; found 

267.1338. 

 
4-Nitrophenethyl ({3',5'-O-[bis(tert-butyl)silylene]-2'-O-[tert-butyldimethylsilyl]adenosin-N6-

yl}carbonyl)glycinate (120) 

 
A magnetically stirred solution containing compound 119 (4.00 g, 6.23 mmol) in anhydrous pyridine 

(50 mL) was treated with compound 124 (1.95 g, 7.48 mmol) at 20 ºC, and the resulting mixture was 

heated to 55 ºC and maintained at that temperature for 16 hr. Upon consumption of the starting 

material, as judged by TLC analysis, the reaction mixture was cooled to room temperature. The 

cooled reaction mixture was then concentrated under reduced pressure, and the residue purified by 

flash chromatography (silica gel, CH2Cl2:CH32H = 100:0 ĺ 99:1 ĺ 98:2) to afford compound 120 

(3.35 g, 4.34 mmol, 70%) as a colourless foam. Rf = 0.2 in 98:2 v/v CH2Cl2:CH3OH elution; 1H 

NMR (400 MHz, Chloroform-d) į 10.00 (GG, J = 5.6 Hz, 1H), 8.78 (s, 1H), 8.50 (s, 1H), 8.23 (s, 1H), 

8.13 ± 8.05 (m, 2H), 7.42 ± 7.34 (m, 2H), 6.00 (s, 1H), 4.59 (d, J = 4.6 Hz, 1H), 4.53 ± 4.41 (m, 4H), 

4.22 (dd, J = 21.3, 5.3 Hz, 3H), 4.07 (dd, J = 10.5, 9.2 Hz, 1H), 3.09 (dd, J = 6.6 Hz, 2H), 1.08 (s, 
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9H), 1.04 (s, 9H), 0.94 (s, 9H), 0.17 (s, 3H), 0.15 (s, 3H); 13C NMR (101 MHz, Chloroform-d) į 

170.0, 154.4, 151.2, 150.3, 149.9, 147.0, 145.5, 141.7, 129.9, 123.9, 121.1, 92.5, 76.0, 75.8, 75.0, 

67.9, 64.8, 42.3, 35.0, 27.7, 27.2, 26.1, 22.9, 20.5, 18.5, -4.1, -4.8; IR (Ȟmax) 3233, 2932, 2857, 1749, 

1702, 1611, 1587, 1519, 1468; HRMS (ESI): calculated for C35H54N7O9Si2+ [M + H]+: 772.3516; 

found 772.3521. 

 
4-Nitrophenethyl {[2'-O-(tert-butyldimethylsilyl)adenosin-N6-yl]carbonyl}glycinate (128) 

 
A 50 mL-falcon tube containing a solution of compound 120 (3.35 g, 4.34 mmol) in CH2Cl2 (20 mL) 

was treated at 0 °C with pyridine (0.91 mL) followed by HF-pyridine (70% w/w, 563 ȝL, 619 mg, 

21.6 mmol) and the resulting mixture was maintained at that temperature with stirring for 3.5 hr. 

Upon consumption of the starting material, as judged by TLC analysis, the reaction was then 

quenched by dropwise addition of methoxytrimethylsilane (8 mL), itself also maintained at 0 ºC. 

After stirring for an additional 20 min, the reaction mixture was concentrated under reduced pressure, 

and the residue purified by flash chromatography (silica gel, CH2Cl2:CH32H = 100:0 ĺ 99:1 ĺ 

98:2ĺ 97:3) WR DIIRUG FRPSRXQG 128 (2.38 g, 3.77 mmol, 87%) as a colourless foam. Rf = 0.3 in 

97:3 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, Chloroform-d) į 9.91 (GG, J = 5.6 Hz, 1H), 

8.86 (s, 1H), 8.54 (s, 1H), 8.21 (s, 1H), 8.17 ± 8.10 (m, 2H), 7.43 ± 7.36 (m, 2H), 5.92 ± 5.76 (m, 2H), 

5.07 (dd, J = 7.2, 4.7 Hz, 1H), 4.44 (dd, J = 6.7 Hz, 2H), 4.39 ± 4.32 (m, 2H), 4.27 ± 4.12 (m, 2H), 

4.01 ± 3.92 (m, 1H), 3.09 (dd, J = 6.7 Hz, 2H), 2.92 (s, 1H), 0.79 (s, 9H), -0.19 (s, 3H), -0.38 (s, 3H); 
13C NMR (101 MHz, Chloroform-d) į 170.0, 154.0, 150.9, 150.9, 149.5, 147.1, 145.4, 143.6, 129.9, 

124.0, 122.1, 91.3, 87.7, 74.8, 72.9, 64.9, 63.4, 42.2, 35.0, 25.7, 18.0, -5.2, -5.3; IR (Ȟmax) 3242, 2927, 

2855, 1747, 1696, 1610, 1588, 1540, 1517, 1469; HRMS (ESI): calculated for C27H38N7O9Si+ [M + 

H]+: 632.2495; found 632.2492. 
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4-Nitrophenethyl {[5'-O-(4,4'-dimethoxytrityl)-2'-O-(tert-butyldimethylsilyl)adenosin-N6-

yl]carbonyl}glycinate (132) 

 
A magnetically stirred solution containing compound 128 (1.87 g, 2.96 mmol) in anhydrous pyridine 

(30 mL) was treated with 4,4¶-dimethoxytrityl chloride (1.50 g, 4.44 mmol) at 0 ºC, and the resulting 

pale-orange/yellow solution was maintained at that temperature for 4 hr. Upon consumption of the 

starting material, as judged by TLC analysis, the mixture was concentrated under reduced pressure. 

Excess pyridine was removed via azeotropic coevaporation using toluene. The residue thus obtained 

was purified by flash chromatography (silica gel, 0.1% pyridine, CH2Cl2:CH32H = 100:0 ĺ 99:1) to 

afford compound 132 (2.31 g, 2.47 mmol, 83%) as a colourless foam. Rf = 0.2 in 99:1 v/v 

CH2Cl2:CH3OH elution; 1H NMR (400 MHz, Chloroform-d) į 9.89 (dd, J = 5.6 Hz, 1H), 8.46 (s, 

1H), 8.17 (s, 1H), 8.16 ± 8.11 (m, 2H), 7.88 (s, 1H), 7.48 ± 7.21 (m, 11H), 6.84 ± 6.79 (m, 4H), 6.07 

(d, J = 5.2 Hz, 1H), 4.96 (dd, J = 5.1 Hz, 1H), 4.45 (dd, J = 6.7 Hz, 2H), 4.41 ± 4.33 (m, 1H), 4.30 ± 

4.24 (m, 1H), 4.19 (d, J = 5.6 Hz, 2H), 3.80 ± 3.78 (m, 6H), 3.53 (dd, J = 10.7, 2.9 Hz, 1H), 3.39 (dd, 

J = 10.7, 3.7 Hz, 1H), 3.10 (dd, J = 6.7 Hz, 2H), 2.68 (d, J = 4.2 Hz, 1H), 0.84 (s, 9H), 0.00 (s, 3H), 

-0.14 (s, 3H); 13C NMR (101 MHz, Chloroform-d) į 170.0, 158.7, 154.2, 151.2, 150.5, 150.2, 147.0, 

145.5, 144.7, 142.0, 136.1, 135.7, 130.2, 129.9, 128.3, 128.0, 127.1, 120.9, 113.3, 88.6, 86.8, 84.3, 

75.8, 71.5, 64.8, 63.4, 55.3, 42.2, 34.9, 25.7, 18.0, -4.8, -5.1; IR (Ȟmax) 3232, 3059, 2930, 2856, 1748, 

1701, 1608, 1509, 1468; HRMS (ESI): calculated for C48H56N7O11Si+ [M + H]+: 934.3802; found 

934.3797. 
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4-Nitrophenethyl {[5'-O-(4,4'-dimethoxytrityl)-2'-O-(tert-butyldimethylsilyl)adenosin-N6-

yl]carbonyl}glycinate, 3'-[2-cyanoethyl N,N-bis(1-methylethyl)phosphoramidite] (136) 

 
A magnetically stirred solution containing compound 132 (200 mg, 214 ȝmol) in anhydrous CH2Cl2 

(7 mL) was treated with N,N-diisopropylethylamine (42 mg, 56 ȝL, 321 ȝmol), followed by 2-

cyanoethyl N,N-diisopropylchlorophosphoramidite (86 mg, 81 ȝL, 364 ȝmol) at 0 ºC, and the 

resulting pale-yellow solution was stirred at room temperature for 1.5 hr. Upon consumption of the 

starting material, as judged by TLC analysis, the mixture was carefully concentrated under a blanket 

of nitrogen gas. The residue thus obtained was purified by flash chromatography (HPLC-grade 

solvent,§§ silica gel, 0.1% pyridine, EtOAc:Hexane = 7:3) to afford compound 136 (148 mg, 131 

ȝmol, 61%) as a colourless oil. A dry, white-powder was obtained via the sublimation of a solution 

of 136 in frozen benzene (6 mL) under high-vacuum. Rf = 0.3 in 1:1 v/v EtOAc:Hexane elution; 1H 

NMR (400 MHz, Benzene-d6) diastereomeric mixture į 9.84 ± 9.74 (m, 2H), 8.42 ± 8.35 (m, 2H), 

8.24 (s, 2H), 8.21 ± 8.14 (m, 2H), 7.78 ± 7.68 (m, 7H), 7.61 ± 7.18 (m, 6H), 7.12 ± 7.05 (m, 1H), 6.83 

± 6.51 (m, 9H), 6.27 ± 6.15 (m, 2H), 5.35 ± 5.24 (m, 2H), 4.79 ± 4.56 (m, 4H), 3.97 ± 3.76 (m, 10H), 

3.66 ± 3.04 (m, 18H), 1.21 ± 1.00 (m, 24H), 0.97 ± 0.87 (m, 18H), 0.20 ± 0.09 (m, 6H), 0.06 ± -0.02 

(m, 6H); 31P NMR (162 MHz, Benzene-d6) diastereomeric mixture į 150.5, 149.2; IR (Ȟmax) 3233, 

2930, 1747, 1704, 1608, 1587, 1509, 1467, 1345; HRMS (ESI): calculated for C57H73N9O12PSi+ [M 

+ H]+: 1134.4880; found 1134.4909. 

 

  

 
§§ Decomposition to the corresponding H-phosphonate was observed, except when HPLC-grade solvents were used. 
Exclusion of oxygen or H2O during purification meanwhile gave no improvement to the reaction outcome. Purification 
was also possible, for example, when an aqueous extraction was performed. 
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4-Nitrophenethyl {[2'-O-(tert-butyldimethylsilyl)adenosin-N6-yl]carbonyl}-L-alaninate (129) 

 
A magnetically stirred solution containing compound 119 (689 mg, 1.07 mmol) in anhydrous pyridine 

(10 mL) was treated with compound 125 (590 mg, 2.15 mmol) at 20 ºC, and the resulting mixture 

was heated to 55 ºC and maintained at that temperature for 16 hr. Upon consumption of the starting 

material, as judged by TLC analysis, the reaction mixture was cooled to room temperature. The 

cooled reaction mixture was then concentrated under reduced pressure, and the residue subjected to 

flash chromatography (silica gel, CH2Cl2:CH32H = 100:0 ĺ 99:1 ĺ 98:2). 7KH mixture obtained 

was used directly in the next reaction without further purification. A 15 mL-Falcon tube containing 

the residue obtained in the previous reaction, suspended in CH2Cl2 (5 mL) was treated at 0 °C with 

pyridine (230 ȝL) followed by HF-pyridine (70% w/w, 111 ȝL, 122 mg, 4.26 mmol) and the resulting 

mixture was maintained at that temperature with stirring for 3.5 hr. The reaction was then quenched 

by dropwise addition of methoxytrimethylsilane (2 mL), itself also maintained at 0 ºC. After stirring 

for an additional 20 min, the reaction mixture was concentrated under reduced pressure, and the 

residue purified by flash chromatography (silica gel, CH2Cl2:CH32H = 100:0 ĺ 99:1 ĺ 98:2ĺ 97:3) 

to afford compound 129 (408 mg, 785 ȝmol, 73% over two steps) as a colourless foam. Rf = 0.2 in 

97:3 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, Chloroform-d) į 9.82 (G, J = 7.1 Hz, 1H), 

8.56 (s, 1H), 8.29 (s, 1H), 8.19 ± 8.12 (m, 2H), 8.06 (s, 1H), 7.44 ± 7.39 (m, 2H), 5.88 (dd, J = 12.0, 

2.1 Hz, 1H), 5.83 (d, J = 7.3 Hz, 1H), 5.09 (dd, J = 7.3, 4.8 Hz, 1H), 4.68 ± 4.57 (m, 1H), 4.49 ± 4.42 

(m, 2H), 4.40 ± 4.34 (m, 2H), 4.01 ± 3.91 (m, 1H), 3.85 ± 3.71 (m, 1H), 3.11 (dd, J = 6.6 Hz, 2H), 

2.85 (s, 1H), 1.51 (d, J = 7.2 Hz, 3H), 0.80 (s, 9H), -0.18 (s, 3H), -0.39 (s, 3H); 13C NMR (101 MHz, 

Chloroform-d) į 173.1, 153.0, 151.1, 150.9, 149.4, 147.1, 145.5, 143.2, 130.0, 124.0, 122.2, 91.4, 

87.8, 74.7, 72.9, 64.9, 63.5, 49.4, 35.0, 25.7, 18.6, 18.0, -5.2, -5.2; IR (Ȟmax) 3238, 2930, 2857, 1742, 

1649, 1612, 1588, 1518, 1469, 1344; HRMS (ESI): calculated for C28H40N7O9Si+ [M + H]+: 646.2651; 

found 646.2648. 
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4-Nitrophenethyl {[5'-O-(4,4'-dimethoxytrityl)-2'-O-(tert-butyldimethylsilyl)adenosin-N6-

yl]carbonyl}-L-alaninate (133) 

 
A magnetically stirred solution containing compound 129 (123 mg, 190 ȝmol) in anhydrous pyridine 

(8 mL) was treated with 4,4¶-dimethoxytrityl chloride (129 mg, 381 ȝmol) at 0 ºC, and the resulting 

pale-orange/yellow solution was maintained at that temperature for 1.5 hr. Upon consumption of the 

starting material, as judged by TLC analysis, the mixture was concentrated under reduced pressure. 

Excess pyridine was removed via azeotropic coevaporation using toluene. The residue thus obtained 

was purified by flash chromatography (silica gel, 0.1% pyridine, CH2Cl2:CH32H = 100:0 ĺ 99:1) WR 

afford compound 133 (165 mg, 174 ȝmol, 91%) as a colourless foam. Rf = 0.2 in 99:1 v/v 

CH2Cl2:CH3OH elution; 1H NMR (599 MHz, Chloroform-d) į 9.86 (G, J = 7.2 Hz, 1H), 8.46 (s, 1H), 

8.16 (s, 1H), 8.13 ± 8.10 (m, 2H), 7.91 (s, 1H), 7.46 ± 7.37 (m, 4H), 7.36 ± 7.31 (m, 4H), 7.30 ± 7.25 

(m, 2H), 7.24 ± 7.20 (m, 1H), 6.83 ± 6.79 (m, 4H), 6.06 (d, J = 5.2 Hz, 1H), 5.00 (dd, J = 5.2 Hz, 1H), 

4.66 ± 4.59 (m, 1H), 4.47 ± 4.41 (m, 2H), 4.39 ± 4.35 (m, 1H), 4.27 (ddd, J = 3.5 Hz, 1H), 3.53 (dd, 

J = 10.7, 3.1 Hz, 1H), 3.39 (dd, J = 10.8, 3.7 Hz, 1H), 3.10 (dd, J = 6.6 Hz, 2H), 2.68 (d, J = 4.2 Hz, 

1H), 1.50 (d, J = 7.3 Hz, 3H), 0.85 (s, 9H), 0.00 (s, 3H), -0.14 (s, 3H); 13C NMR (151 MHz, 

Chloroform-d) į 172.8, 158.6, 153.0, 151.2, 150.3, 150.0, 149.9, 146.9, 145.3, 144.6, 141.5, 135.6, 

130.1, 129.8, 128.1, 127.9, 127.0, 123.7, 120.8, 113.2, 88.5, 86.7, 84.3, 75.7, 71.4, 64.6, 63.3, 55.2, 

49.1, 34.8, 25.5, 18.4, 17.9, -5.0, -5.2; IR (Ȟmax) 3235, 2930, 2856, 1742, 1700, 1608, 1587, 1519, 

1468, 1344; HRMS (ESI): calculated for C49H58N7O11Si+ [M + H]+: 948.3958; found 948.3971. 
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Bis(4-nitrophenethyl) {[2'-O-(tert-butyldimethylsilyl)adenosin-N6-yl]carbonyl}-L-aspartate (131) 

 
A magnetically stirred solution containing compound 119 (2.46 g, 3.83 mmol) in anhydrous pyridine 

(35 mL) was treated with compound 127 (2.69 g, 5.75 mmol) at 20 ºC, and the resulting mixture was 

heated to 55 ºC and maintained at that temperature for 16 hr. Upon consumption of the starting 

material, as judged by TLC analysis, the reaction mixture was cooled to room temperature. The 

cooled reaction mixture was then concentrated under reduced pressure, and the residue subjected to 

flash chromatography (silica gel, CH2Cl2:CH32H = 100:0 ĺ 99:1 ĺ 98:2). 7KH PL[WXUH REWDLQHG 

was used directly in the next reaction without further purification. A 15 mL-Falcon tube containing 

the residue obtained in the previous reaction, suspended in CH2Cl2 (15 mL) was treated at 0 °C with 

pyridine (450 ȝL) followed by HF-pyridine (70% w/w, 278 ȝL, 306 mg, 10.7 mmol) and the resulting 

mixture was maintained at that temperature with stirring for 3.5 hr. The reaction was then quenched 

by dropwise addition of methoxytrimethylsilane (4 mL), itself also maintained at 0 ºC. After stirring 

for an additional 20 min, the reaction mixture was concentrated under reduced pressure, and the 

residue purified by flash chromatography (silica gel, CH2Cl2:CH3OH = 100:0 ĺ 99:1 ĺ 98:2ĺ 97:3) 

to afford compound 131 (1.49 g, 1.77 mmol, 46% over two steps) as a colourless foam. Rf = 0.2 in 

97:3 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, Chloroform-d) į 10.25 (G, J = 7.9 Hz, 1H), 

8.70 (s, 1H), 8.55 ± 8.45 (m, 1H), 8.17 (s, 1H), 8.15 ± 8.02 (m, 4H), 7.41 ± 7.30 (m, 4H), 5.85 (d, J = 

7.2 Hz, 1H), 5.82 ± 5.74 (m, 1H), 5.12 ± 5.03 (m, 1H), 4.96 ± 4.85 (m, 1H), 4.51 ± 4.23 (m, 6H), 4.02 

± 3.92 (m, 1H), 3.77 (dd, J = 12.3 Hz, 1H), 3.13 ± 2.93 (m, 6H), 2.89 (s, 1H), 0.79 (s, 9H), -0.17 (s, 

3H), -0.38 (s, 3H); 13C NMR (101 MHz, Chloroform-d) į 170.7, 170.7, 153.4, 150.9, 150.8, 149.5, 

147.0, 145.5, 145.4, 143.6, 129.9, 129.9, 123.9, 123.9, 122.1, 91.4, 87.7, 74.8, 72.8, 65.3, 64.6, 63.4, 

49.9, 36.6, 34.9, 34.9, 26.0, 25.7, 18.0, -5.2, -5.2; IR (Ȟmax) 3234, 2951, 2929, 2856, 1734, 1695, 1608, 

1516, 1469, 1343; HRMS (ESI): calculated for C37H47N8O13Si+ [M + H]+: 839.3026; found 839.3033. 
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Bis(4-nitrophenethyl) {[5'-O-(4,4'-dimethoxytrityl)-2'-O-(tert-butyldimethylsilyl)adenosin-N6-

yl]carbonyl}-L-aspartate (135) 

 
A magnetically stirred solution containing compound 131 (541 mg, 645 ȝmol) in anhydrous pyridine 

(10 mL) was treated with 4,4¶-dimethoxytrityl chloride (328 mg, 967 ȝmol) at 0 ºC, and the resulting 

pale-orange/yellow solution was maintained at that temperature for 4 hr. Upon consumption of the 

starting material, as judged by TLC analysis, the mixture was concentrated under reduced pressure. 

Excess pyridine was removed via azeotropic coevaporation using toluene. The residue thus obtained 

was purified by flash chromatography (silica gel, 0.1% pyridine, CH2Cl2:CH32H = 100:0 ĺ 99:1) WR 

afford compound 135 (693 mg, 607 ȝmol, 94%) as a colourless foam. Rf = 0.2 in 99:1 v/v 

CH2Cl2:CH3OH elution; 1H NMR (400 MHz, Chloroform-d) į 10.21 (G, J = 8.0 Hz, 1H), 8.41 (s, 

1H), 8.20 (s, 1H), 8.11 ± 8.06 (m, 2H), 8.06 ± 8.00 (m, 2H), 7.95 (s, 1H), 7.48 ± 7.41 (m, 2H), 7.41 ± 

7.27 (m, 8H), 7.25 ± 7.17 (m, 2H), 6.86 ± 6.76 (m, 4H), 6.07 (d, J = 4.7 Hz, 1H), 4.96 (dd, J = 4.9 

Hz, 1H), 4.93 ± 4.86 (m, 1H), 4.51 ± 4.28 (m, 5H), 4.25 (ddd, J = 3.9 Hz, 1H), 3.78 (s, 6H), 3.54 (dd, 

J = 10.8, 2.9 Hz, 1H), 3.40 (dd, J = 10.8, 3.9 Hz, 1H), 3.11 ± 2.96 (m, 6H), 2.64 (d, J = 4.8 Hz, 1H), 

0.85 (s, 9H), 0.03 (s, 3H), -0.09 (s, 3H); 13C NMR (101 MHz, Chloroform-d) į 170.8, 170.8, 158.8, 

153.5, 151.2, 150.5, 150.1, 149.9, 147.0, 147.0, 145.5, 145.4, 144.8, 141.8, 136.1, 135.7, 130.3, 129.9, 

129.9, 129.9, 128.3, 128.1, 127.2, 124.0, 123.9, 123.8, 120.9, 113.4, 88.8, 86.9, 84.3, 76.0, 71.4, 65.2, 

64.6, 63.4, 55.4, 49.8, 36.7, 35.0, 34.9, 25.8, 18.1, -4.7, -5.01; IR (Ȟmax) 3209, 2929, 2856, 1735, 1699, 

1607, 1517, 1467, 1344; HRMS (ESI): calculated for C58H65N8O15Si+ [M + H]+: 1141.4333; found 

1141.4354. 
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4-Nitrophenethyl {[2'-O-(tert-butyldimethylsilyl)adenosin-N6-yl]carbonyl}-L-valinate (130) 

 
A magnetically stirred solution containing compound 119 (2.63 g, 4.10 mmol) in anhydrous pyridine 

(35 mL) was treated with compound 126 (1.31 g, 4.92 mmol) at 20 ºC, and the resulting mixture was 

heated to 55 ºC and maintained at that temperature for 16 hr. Upon consumption of the starting 

material, as judged by TLC analysis, the reaction mixture was cooled to room temperature. The 

cooled reaction mixture was then concentrated under reduced pressure, and the residue subjected to 

flash chromatography (silica gel, CH2Cl2:CH32H = 100:0 ĺ 99:1 ĺ 98:2). 7KH PL[WXUH REWDLQHG 

was used directly in the next reaction without further purification. A 15 mL-Falcon tube containing 

the residue obtained in the previous reaction, suspended in CH2Cl2 (15 mL) was treated at 0 °C with 

pyridine (580 ȝL) followed by HF-pyridine (70% w/w, 358 ȝL, 394 mg, 13.8 mmol) and the resulting 

mixture was maintained at that temperature with stirring for 1.5 hr. The reaction was then quenched 

by dropwise addition of methoxytrimethylsilane (4.8 mL), itself also maintained at 0 ºC. After stirring 

for an additional 10 min, the reaction mixture was concentrated under reduced pressure, and the 

residue purified by flash chromatography (silica gel, CH2Cl2:CH32H = 100:0 ĺ 99:1 ĺ 98:2ĺ 97:3) 

to afford compound 130 (1.31 g, 1.94 mmol, 47% over two steps) as a colourless foam. Rf = 0.3 in 

97:3 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, Chloroform-d) į 9.91 (G, J = 8.2 Hz, 1H), 

8.57 (s, 1H), 8.41 (s, 1H), 8.19 ± 8.13 (m, 2H), 8.10 (s, 1H), 7.44 ± 7.35 (m, 2H), 5.95 ± 5.78 (m, 2H), 

5.10 (dd, J = 7.3, 4.8 Hz, 1H), 4.53 (dd, J = 8.2, 4.7 Hz, 1H), 4.44 (dd, J = 6.6 Hz, 2H), 4.41 ± 4.33 

(m, 2H), 4.00 ± 3.87 (m, 1H), 3.76 (dd, J = 12.4 Hz, 1H), 3.10 (dd, J = 6.8 Hz, 2H), 2.88 (s, 1H), 2.31 

± 2.16 (m, 1H), 1.00 (d, J = 6.9 Hz, 3H), 0.95 (d, J = 6.9 Hz, 3H), 0.80 (s, 9H), -0.17 (s, 3H), -0.38 

(s, 3H); 13C NMR (101 MHz, Chloroform-d) į 172.1, 153.6, 151.1, 151.0, 149.4, 147.1, 145.6, 143.3, 

130.0, 129.9, 124.0, 122.2, 91.4, 87.7, 74.7, 72.9, 64.8, 63.5, 58.8, 35.1, 31.1, 25.7, 19.5, 18.0, -5.2, 

-5.2; IR (Ȟmax) 3234, 2956, 2857, 1739, 1697, 1612, 1588, 1519, 1469, 1345; HRMS (ESI): calculated 

for C30H44N7O9Si+ [M + H]+: 674.2964; found 674.2960. 
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4-Nitrophenethyl {[5'-O-(4,4'-dimethoxytrityl)-2'-O-(tert-butyldimethylsilyl)adenosin-N6-

yl]carbonyl}-L-valinate (134) 

 
A magnetically stirred solution containing compound 130 (90 mg, 134 ȝmol) in anhydrous pyridine 

(7 mL) was treated with 4,4¶-dimethoxytrityl chloride (68 mg, 200 ȝmol) at 0 ºC, and the resulting 

pale-orange/yellow solution was maintained at that temperature for 2.5 hr. Upon consumption of the 

starting material, as judged by TLC analysis, the mixture was concentrated under reduced pressure. 

Excess pyridine was removed via azeotropic coevaporation using toluene. The residue thus obtained 

was purified by flash chromatography (silica gel, 0.1% pyridine, CH2Cl2:CH32H = 100:0 ĺ 99:1) WR 

afford compound 134 (110 mg, 113 ȝmol, 84%) as a colourless foam. Rf = 0.2 in 99:1 v/v 

CH2Cl2:CH3OH elution; 1H NMR (400 MHz, Chloroform-d) į 9.91 (G, J = 8.3 Hz, 1H), 8.45 (s, 1H), 

8.15 (s, 1H), 8.14 ± 8.08 (m, 2H), 7.82 (s, 1H), 7.48 ± 7.37 (m, 4H), 7.36 ± 7.31 (m, 4H), 7.25 ± 7.19 

(m, 2H), 6.91 ± 6.74 (m, 4H), 6.06 (d, J = 5.1 Hz, 1H), 4.99 (dd, J = 5.1 Hz, 1H), 4.53 (dd, J = 8.3, 

4.7 Hz, 1H), 4.47 ± 4.41 (m, 2H), 4.37 (ddd, J = 4.4 Hz, 1H), 4.30 ± 4.24 (m, 1H), 3.79 (s, 6H), 3.53 

(dd, J = 10.7, 3.0 Hz, 1H), 3.39 (dd, J = 10.7, 3.9 Hz, 1H), 3.09 (dd, J = 6.6 Hz, 2H), 2.67 (d, J = 4.3 

Hz, 1H), 2.31 ± 2.20 (m, 1H), 1.01 (d, J = 6.9 Hz, 3H), 0.96 (d, J = 6.9 Hz, 3H), 0.85 (s, 9H), 0.01 (s, 

3H), -0.12 (s, 3H); 13C NMR (101 MHz, Chloroform-d)*** į 151.3, 141.4, 123.9, 128.3, 128.3, 130.0, 

130.3, 128.1, 113.4, 88.6, 75.9, 58.8, 64.2, 71.6, 84.4, 55.4, 63.4, 63.4, 35.0, 30.9, 19.4, 18.0, 25.7, -

5.1, -4.9; IR (Ȟmax) 3235, 2955, 2929, 2856, 1740, 1703, 1609, 1586, 1519, 1509, 1467, 1345; HRMS 

(ESI): calculated for C51H62N7O11Si+ [M + H]+: 976.4271; found 976.4282. 

  

 
*** These 13C NMR shifts were extracted from the 400/101 MHz HSQC NMR spectrum. 
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2',3',5'-Tri-O-acetyl-N6-(L-threonyl)carbamoyladenosine (172) 

 
Compound 172 was synthesised according to a modified literature procedure.[136] A magnetically 

stirred solution containing compound 84 (1.96 g, 3.82 mmol) in anhydrous pyridine (10 mL) was 

treated with L-threonine (910 mg, 7.64 mmol) at 20 ºC, and the resulting mixture was heated to 55 ºC 

and maintained at that temperature for 16 hr. Upon consumption of the starting material, as judged 

by TLC analysis, the reaction mixture was cooled to room temperature. The cooled reaction mixture 

was then concentrated under reduced pressure, and the residue purified by flash chromatography 

(silica gel, 0.1% CH3CO2H, CH2Cl2:CH3OH = 9:1ĺ 8:2) to afford compound 172 (1.94 g, 3.60 mmol, 

94%) as a colourless foam. The 1H NMR spectral data for 172 were consistent with those previously 

reported in the literature.[136] Rf = 0.2 in 9:1 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, 

Methanol-d4) į 8.58 (V, 1H), 8.41 (V, 1H), 7.93 (V, 1H), 7.19 (s, 1H), 7.10 (s, 1H), 6.28 (s, 1H), 6.03 

(s, 1H), 5.80 ± 5.63 (m, 1H), 4.53 ± 4.28 (m, 4H), 3.80 ± 3.77 (m, 2H), 2.14 (s, 3H), 2.10 ± 2.01 (m, 

6H), 1.32 ± 1.24 (m, 3H). 

 

Methyl {[(2',3',5'-Tri-O-acetyl-adenosin-N6-yl)carbonyl]-L-threonyl}glycinate (173) 

 
A magnetically stirred solution containing compound 172 (30 mg, 56 ȝmol) in anhydrous DMF (2 

mL) was treated with glycine methyl ester (10 mg, 111 ȝmol), 1-hydroxybenzotriazole (HOBt) 

hydrate (11 mg, 72 ȝmol), 1-ethyl-3-(3މ-dimethylaminopropyl)carbodiimide (EDC hydrochloride, 11 

mg, 72 ȝmol), and finally N,N-diisopropylethylamine (24 ȝL, 18 mg, 138 ȝmol) at 20 ºC, and the 

resulting solution was maintained at that temperature for 16 hr. Upon consumption of the starting 

material, as judged by TLC analysis, the mixture was treated with NH4Cl (10 mL of a sat. aq. solution), 

N

N

N

HN

N

OAc

OAc

O

OAc

O

O
Ph

N

N

N

HN

N

OAc

OAc

O

OAc

O

N
H

OH

O

OH

N

N

N

HN

N

OAc

OAc

O

OAc

O

N
H

H
N

O

OH

O

O

N

N

N

HN

N

OAc

OAc

O

OAc

O

N
H

OH

O

OH



 

 124 

the aqueous phase extracted with CH2Cl2 (3 x 10 mL), and the combined organic phases dried 

(MgSO4), filtered, and concentrated under reduced pressure. The residue thus obtained was purified 

by flash chromatography (silica gel, CH2Cl2:CH32H = 100:0 ĺ 99:1 ĺ 98:2 ĺ 97:3 ĺ 96:4 ĺ 

95:5) to afford compound 173 (20 mg, 33 ȝmol, 59%) as a colourless oil. Rf = 0.3 in 92:8 v/v 

CH2Cl2:CH3OH elution; 1H NMR (400 MHz, Methanol-d4) į 8.61 (V, 1H), 8.49 (GG, J = 5.9 Hz, 1H), 

8.44 (s, 1H), 6.30 (d, J = 5.1 Hz, 1H), 6.05 (dd, J = 5.3 Hz, 1H), 5.73 (dd, J = 5.3 Hz, 1H), 4.52 ± 

4.32 (m, 5H), 4.06 ± 3.97 (m, 2H), 3.72 (s, 3H), 2.15 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 1.30 (d, J = 

6.5 Hz, 3H); 13C NMR (101 MHz, Methanol-d4) į 173.6, 172.2, 171.9, 171.4, 171.2, 156.3, 152.6, 

151.7, 151.6, 143.8, 121.8, 88.2, 81.7, 74.4, 71.9, 68.5, 64.2, 61.3, 52.7, 42.0, 20.7, 20.5, 20.3, 20.2; 

IR (Ȟmax) 3236, 3123, 2957, 1742, 1664, 1611, 1589, 1518, 1468; HRMS (ESI): calculated for 

C24H32N7O12+ [M + H]+: 610.2103; found 610.2099. 

 

N6-{[(Glycinyl)-L-threonyl]carbamoyl}adenosine (139) 

 
A magnetically stirred solution containing compound 173 (20 mg, 33 ȝmol) in 1:1 water/methanol (3 

mL) was treated with lithium hydroxide (4 mg, 164 ȝmol) at 20 ºC, and the resulting mixture was 

maintained at that temperature for 1 hr. Upon consumption of the starting material, as judged by 

LCMS analysis, the reaction mixture concentrated under reduced pressure (lyophilised). The residue 

thus obtained was purified by reverse phase chromatography (Sep-Pak C18 cartridge, 4 x 1.5 mL 

H2O, then 4 x 1.5 mL CH3CN) to afford, after lyophilisation of the relevant fractions, compound 139 

(12 mg, 26 ȝmol, 78%) as a white solid. Rf = 0.05 in 92:8 v/v CH2Cl2:CH3OH elution; 1H NMR (400 

MH], DHXWHULXP 2[LGH) į 8.62 (G, J = 2.9 Hz, 1H), 8.46 (s, 1H), 6.11 (d, J = 5.7 Hz, 1H), 4.51 ± 4.37 

(m, 3H), 4.27 (ddd, J = 3.4 Hz, 1H), 3.96 ± 3.71 (m, 4H), 1.28 (d, J = 6.3 Hz, 3H); 13C NMR (101 

MHz, Deuterium Oxide) į 207.4, 176.4, 172.4, 155.9, 151.2, 150.1, 149.8, 142.6, 88.4, 85.6, 73.7, 

70.4, 67.4, 61.3, 59.9, 43.4, 18.8; IR (Ȟmax) 3224, 2936, 1659, 1611, 1590, 1529, 1468, 1396, 1297; 

HRMS (ESI): calculated for C17H24N7O9+ [M + H]+: 470.1630; found 470.1629. 
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Methyl {[(2',3',5'-Tri-O-acetyl-adenosin-N6-yl)carbonyl]-L-seryl}glycinate (174) 

 
A magnetically stirred solution containing compound 84 (378 mg, 736 ȝmol) in anhydrous pyridine 

(5 mL) was treated with L-serine (93 mg, 883 ȝmol) at 20 ºC, and the resulting mixture was heated 

to 55 ºC and maintained at that temperature for 16 hr. Upon consumption of the starting material, as 

judged by TLC analysis, the reaction mixture was cooled to room temperature. The cooled reaction 

mixture was then concentrated under reduced pressure, and the residue subjected to flash 

chromatography (silica gel, 0.1% CH3CO2H, CH2Cl2:CH32H = 9:1ĺ 8:2) WR DIIRUG a colourless oil. 

A magnetically stirred solution containing the residue obtained from the previous reaction in 

anhydrous DMF (3 mL) was treated with glycine methyl ester hydrochloride (31 mg, 248 ȝmol), 1-

hydroxybenzotriazole (HOBt) hydrate 38 mg, 248 ȝmol), 1-ethyl-3-(3މ-

dimethylaminopropyl)carbodiimide (EDC hydrochloride, 48 mg, 248 ȝmol), and finally N,N-

diisopropylethylamine (126 ȝL, 94 mg, 725 ȝmol) at 20 ºC, and the resulting solution was maintained 

at that temperature for 16 hr. Upon consumption of the starting material, as judged by TLC analysis, 

the mixture was treated with NH4Cl (10 mL of a sat. aq. solution), the aqueous phase extracted with 

CH2Cl2 (3 x 10 mL), and the combined organic phases dried (MgSO4), filtered, and concentrated 

under reduced pressure. The residue thus obtained was purified by flash chromatography (silica gel, 

CH2Cl2:CH32H = 100:0 ĺ 99:1 ĺ 98:2 ĺ 97:3 ĺ 96:4 ĺ 95:5 ĺ 94:6 ĺ 93:7 ĺ 92:8) to afford 

compound 174 (34 mg, 57 ȝmol, 8% over two steps) as a colourless oil. Rf = 0.3 in 92:8 v/v 

CH2Cl2:CH3OH elution; 1H NMR (800 MHz, Methanol-d4) į 8.58 (V, 1H), 8.43 (V, 1H), 6.28 (G, J = 

5.0 Hz, 1H), 6.04 (dd, J = 5.7, 5.0 Hz, 1H), 5.73 (dd, J = 5.4 Hz, 1H), 4.57 (dd, J = 4.7 Hz, 1H), 4.50 

± 4.43 (m, 2H), 4.41 ± 4.34 (m, 1H), 4.10 ± 3.98 (m, 3H), 3.94 ± 3.88 (m, 1H), 3.72 (s, 3H), 2.15 (s, 

3H), 2.07 (s, 3H), 2.05 (s, 3H); 13C NMR (201 MHz, Methanol-d4) į 173.2, 172.2, 171.8, 171.4, 

171.2, 155.9, 152.6, 151.6, 151.5, 143.8, 121.8, 88.2, 81.6, 74.4, 71.9, 64.1, 63.5, 57.6, 52.7, 42.1, 

20.7, 20.5, 20.3; IR (Ȟmax) 3240, 2951, 1741, 1661, 1611, 1589, 1518, 1467,1367; HRMS (ESI): 

calculated for C19H26N7O10+ [M ± 2Ac + 3H]+: 512.1736; found 512.1735; calculated for C17H24N7O9+ 

[M ± 3Ac + 4H]+: 470.1630; found 470.1629. 
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N6-{[(Glycinyl)-L-seryl]carbamoyl}adenosine (141) 

 
A magnetically stirred solution containing compound 174 (20 mg, 34 ȝmol) in 1:1 water/methanol (3 

mL) was treated with lithium hydroxide (4 mg, 168 ȝmol) at 20 ºC, and the resulting mixture was 

maintained at that temperature for 1 hr. Upon consumption of the starting material, as judged by 

LCMS analysis, the reaction mixture was neutralised to pH = 7 via the careful addition of HCl (ca. 

100 ȝL of a 1.0 M aqueous solution) and concentrated under reduced pressure (lyophilised). The 

residue thus obtained was purified by reverse phase chromatography (Sep-Pak C18 cartridge, 4 x 1.5 

mL H2O, then 4 x 1.5 mL CH3CN) to afford, after lyophilisation of the relevant fractions, compound 

141 (8 mg, 18 ȝmol, 52%) as a white solid. Rf = 0.05 in 92:8 v/v CH2Cl2:CH3OH elution; 1H NMR 

(400 MH], DHXWHULXP 2[LGH) į 8.43 (V, 1H), 6.02 (G, J = 5.8 Hz, 1H), 4.72 (dd, J = 5.5 Hz, 1H), 4.54 

(dd, J = 4.4 Hz, 1H), 4.39 (dd, J = 5.2, 3.7 Hz, 1H), 4.25 (ddd, J = 3.4 Hz, 1H), 4.05 (dd, J = 11.8, 

4.5 Hz, 1H), 4.00 ± 3.74 (m, 6H); 13C NMR (101 MHz, Deuterium Oxide) į 182.2, 172.7, 156.0, 

151.7, 150.4, 150.2, 143.1, 121.0, 89.1, 86.3, 74.5, 71.1, 62.5, 62.0, 56.9, 44.1; IR (Ȟmax) 3299, 2920, 

2850, 1713, 1651, 1588, 1469, 1424; HRMS (ESI): calculated for C16H22N7O9+ [M + H]+: 456.1474; 

[M + H]+ ion for this compound was not able to be identified. 
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3.4.3.3 Synthesis of Pyrimidine-Precursor Nucleosides 

N-(Isoxazol-3-yl)-N¶-(2¶,3¶,5¶-tri-O-benzoyl-ȕ-D-ribofuranosyl)urea (153) 

 
Compound 153 was synthesised according to a modified literature procedure.[121] A magnetically 

stirred solution containing 1-O-acetyl-2,3,5-tri-O-benzoyl-ȕ-D-ribofuranose (151) (17.0g g, 33.8 

mmol) in anhydrous CH2Cl2 (300 mL) was treated with TiCl4 (7.70 g, 4.46 mL, 40.6 mmol) at 20 ºC 

and the resulting solution was maintained at that temperature for 2 hr. Upon consumption of the 

starting material, as judged by TLC analysis, the mixture was treated with H2O (250 mL) at 0 ºC and 

the suspension was filtered through a 5 cm pad of Celite. The aqueous phase was extracted with 

CH2Cl2 (3 x 100 mL), and the combined organic phases dried (MgSO4), filtered, and concentrated 

under reduced pressure to obtain a white solid. The solid was then dissolved in anhydrous toluene 

(300 mL), and the magnetically-stirred solution treated with AgNCO (6.25 g, 41.6 mmol) at 20 ºC. 

This mixture was then brought to reflux, and maintained at that temperature for 2.5 hr, during which, 

AgCl was observed to precipitate. The cooled reaction mixture was then filtered once more through 

a 5 cm pad of Celite and the frit was washed with ca. 50 mL anhydrous toluene. The filtrate was then 

treated at 20 ºC with 3-aminoiosoxazole (3.40 g, 2.99 mL, 40.4 mmol) and stirred for 16 hr at that 

temperature. The cloudy reaction mixture was then separated into smaller portions, which were 

subsequently centrifuged, and the supernatants were discarded. The precipitate was washed twice 

with anhydrous toluene (50 mL) and then dried under reduced pressure to afford compound 153 (14.3 

g, 25.0 mmol, 74%) as a white powder containing an impurity in the aromatic region of the 1H NMR. 

This material was used directly in further reactions without additional purification. Rf = 0.3 in 98:2 

v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, Methanol-d4) į 8.43 (G, J = 1.8 Hz, 1H), 8.12 ± 

8.08 (m, 2H), 7.96 ± 7.90 (m, 4H), 7.61 ± 7.52 (m, 3H), 7.50 ± 7.43 (m, 2H), 7.42 ± 7.35 (m, 4H), 

6.70 (d, J = 1.8 Hz, 1H), 5.91 (d, J = 6.0 Hz, 1H), 5.88 ± 5.84 (m, 1H), 5.68 (dd, J = 6.0 Hz, 1H), 

4.73 ± 4.51 (m, 3H); 13C NMR (101 MHz, Methanol-d4) į 167.6, 166.8, 160.5, 159.6, 159.4, 155.7, 

134.8, 134.7, 134.5, 130.9, 130.8, 130.8, 130.7, 130.7, 130.3, 130.1, 129.9, 129.7, 129.7, 129.6, 129.5, 

129.2, 126.3, 99.4, 98.1, 84.8, 80.1, 75.3, 73.0, 65.5; IR (Ȟmax) 3299, 2911, 1713, 1693, 1557, 1451, 

1267; HRMS (ESI): calculated for C30H26N3O9+ [M + H]+: 572.1664; found 572.1666. 
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N-(Isoxazol-3-yl)-N¶-(D-ribofuranosyl)urea (142) 

 
Compound 142 was synthesised according to a modified literature procedure.[121] Compound 153 

(11.7 g, 20.5 mmol) was added in one-portion to a magnetically stirred 7N solution of ammonia in 

methanol (300 mL, 2.10 mol) at 20 ºC, and the resulting mixture was maintained at that temperature 

for 20 hr. Upon consumption of the starting material, as judged by TLC analysis, the reaction mixture 

was concentrated under reduced pressure. The residue thus obtained was then purified by flash 

chromatography (silica gel, CH2Cl2:CH32H = 100:0 ĺ 19:1 ĺ 9:1 ĺ 4:1) to afford compound 142 

(3.76 g, 14.5 mmol, 71%, 2:1 Į:ȕ) as a white solid. The 1H and 13C NMR spectral data for 142 were 

consistent with those previously reported in the literature.[121] Rf = 0.4 in 4:1 v/v CH2Cl2:CH3OH 

elution; 1H NMR (400 MHz, DMSO-d6) diastereomeric mixture į 9.96 (V, 1H), 9.62 (s, 1H), 8.79 (d, 

J = 1.8 Hz, 1H), 8.77 (d, J = 1.7 Hz, 1H), 8.14 ± 7.95 (m, 1H), 7.71 ± 7.51 (m, 1H), 7.34 (d, J = 9.5 

Hz, 1H), 7.07 (d, J = 9.6 Hz, 1H), 6.85 (d, J = 1.7 Hz, 1H), 6.84 (dd, J = 7.6, 1.7 Hz, 1H), 5.60 (dd, 

J = 9.5, 4.3 Hz, 1H), 5.51 (d, J = 4.8 Hz, 1H), 5.29 (dd, J = 9.6, 5.5 Hz, 1H), 5.19 (d, J = 6.2 Hz, 1H), 

5.13 (d, J = 6.0 Hz, 1H), 5.03 (d, J = 5.2 Hz, 1H), 4.89 (dd, J = 5.6 Hz, 1H),  4.79 (dd, J = 5.7 Hz, 

1H), 4.22 (ddd, J = 5.2 Hz, 1H), 4.06 ± 3.90 (m, 4H), 3.86 ± 3.73 (m, 4H), 3.65 ± 3.49 (m, 2H); 13C 

NMR (101 MHz, DMSO-d6) diastereomeric mixture į 159.8, 159.6, 158.4, 158.3, 153.5, 153.3, 98.4, 

98.4, 84.4, 83.6, 81.9, 80.6, 74.3, 71.2, 70.4, 70.2, 61.8, 61.6; IR (Ȟmax) 3299, 2937, 1673, 1600, 1532, 

1479, 1405; HRMS (ESI): calculated for C9H14N3O6+ [M + H]+: 260.0877; found 260.0881. 
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N-(Isoxazol-3-yl)-N¶-{3',5'-O-[1,1,3,3-tetrakis(1-methylethyl)-1,3-disiloxanediyl]-ȕ-D-

ribofuranosyl}urea (ȕ-155) 

and N-(Isoxazol-3-yl)-N¶-{3',5'-O-[1,1,3,3-tetrakis(1-methylethyl)-1,3-disiloxanediyl]-Į-D-

ribofuranosyl}urea (Į-155) 

 
A magnetically stirred solution containing compound 142 (51 mg, 197 ȝmol, 2:1 Į:ȕ) in pyridine (5 

mL) was treated at 0 ºC with 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane (TIPDSiCl2) (74 mg, 76 

ȝL, 236 ȝmol) and the resulting mixture was maintained at room temperature for 20 hr. Upon 

consumption of the starting material, as judged by TLC analysis, the mixture was treated with NH4Cl 

(20 mL of a sat. aq. solution), the aqueous phase extracted with CH2Cl2 (3 x 14 mL), and the combined 

organic phases dried (MgSO4), filtered, and concentrated under reduced pressure. The residue thus 

obtained was purified by flash chromatography (silica gel, CH2Cl2:EtOAc = 9:1 ĺ 4:1) to afford 

compound 155 (41 mg, 81.7 ȝmol, 42%, 3:1 Į:ȕ) as a colourless foam. Analytical samples of Į-155 

and ȕ-155 were obtained for spectroscopic characterisation by applying repeated chromatography to 

the 3:1 Į:ȕ mixture.  

Concentration of fraction A (Rf = 0.2 in 9:1 v/v CH2Cl2:EtOAc elution) afforded compound Į-155. 
1H NMR (400 MHz, Chloroform-d) į 8.92 (V, 1H), 8.19 (G, J = 1.7 Hz, 1H), 6.45 (s, 1H), 5.82 (dd, 

J = 8.5, 4.4 Hz, 1H), 4.35 (dd, J = 7.1, 5.5 Hz, 1H), 4.23 (ddd, J = 5.0, 1.9 Hz, 1H), 4.06 ± 3.84 (m, 

3H), 3.22 (d, J = 2.2 Hz, 1H), 1.13 ± 1.01 (m, 28H); 13C NMR (101 MHz, Chloroform-d) į 158.4, 

158.3, 154.5, 98.5, 81.5, 80.0, 72.9, 70.5, 62.6, 17.6, 17.5, 17.4, 17.2, 17.1, 17.1, 13.5, 13.3, 13.0, 

12.8; IR (Ȟmax) 3332, 2944, 2867, 1673, 1602, 1535, 1465; HRMS (ESI): calculated for 

C21H40N3O7Si2+ [M + H]+: 502.2399; found 502.2399. 

Concentration of fraction B (Rf = 0.2 in 9:1 v/v CH2Cl2:EtOAc elution) afforded compound ȕ-155). 
1H NMR (400 MHz, Chloroform-d) į 9.28 (V, 1H), 8.17 (G, J = 1.8 Hz, 1H), 7.71 (s, 1H), 6.39 (s, 

1H), 5.45 (dd, J = 8.3, 3.7 Hz, 1H), 4.40 (dd, J = 6.2 Hz, 1H), 4.08 ± 3.85 (m, 4H), 3.13 (d, J = 4.2 

Hz, 1H), 1.17 ± 0.94 (m, 28H); 13C NMR (101 MHz, Chloroform-d) į 158.4, 158.2, 154.5, 98.4, 86.0, 

82.1, 74.8, 71.8, 63.5, 17.6, 17.6, 17.5, 17.5, 17.4, 17.3, 17.2, 17.2, 13.5, 13.4, 13.0, 12.8; IR (Ȟmax) 

3333, 2944, 2867, 1674, 1596, 1536, 1465; HRMS (ESI): calculated for C21H40N3O7Si2+ [M + H]+: 

502.2399; found 502.2399. 
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N,N¶-Bis(2-cyanoethyl)-N-(isoxazol-3-yl)-N¶-{3',5'-O-[1,1,3,3-tetrakis(1-methylethyl)-1,3-

disiloxanediyl]-Į-D-ribofuranosyl}urea (159) 

 
A 1.5 mL-safe lock tube containing a solution of solution of compound 155 (10 mg, 19.9 ȝmol, 3:1 

Į:ȕ) in t-BuOH (800 ȝL) was treated at 0 ºC with caesium carbonate (16 mg, 49.1 ȝmol), followed 

by acrylonitrile (42 mg, 52 ȝL, 797 ȝmol), and the resulting mixture was heated to 50 ºC shaken at 

that temperature for 45 min. Upon consumption of the starting material, as judged by LCMS analysis, 

the mixture was carefully decanted using a micropipette, and the supernatant concentrated under a 

steady stream of nitrogen. The residue thus obtained was purified by flash chromatography (silica gel, 

CH2Cl2:CH32H = 100:0 ĺ 99:1 ĺ 98:2) to afford compound 159 (7 mg, 11.5 ȝmol, 58%) as a 

colourless oil. Rf = 0.2 in 99:1 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, Methanol-d4) į 8.21 

(d, J = 1.8 Hz, 1H), 5.96 (d, J = 1.8 Hz, 1H), 5.71 (d, J = 5.2 Hz, 1H), 4.96 (dd, J = 5.2 Hz, 1H), 4.33 

(dd, J = 9.3, 5.2 Hz, 1H), 4.14 ± 4.03 (m, 2H), 3.77 ± 3.69 (m, 2H), 3.55 (ddd, J = 14.4, 6.1 Hz, 1H), 

3.49 ± 3.43 (m, 2H), 2.86 ± 2.80 (m, 2H), 2.80 ± 2.73 (m, 2H), 1.17 ± 1.04 (m, 28H); 13C NMR (101 

MHz, Methanol-d4) į 159.7, 159.4, 119.2, 97.3, 89.6, 78.9, 78.0, 72.4, 60.7, 40.7, 39.8, 18.1, 18.0 

17.8, 17.8, 17.7, 17.7, 17.7, 17.6, 17.4, 17.4, 14.6, 14.2, 14.0, 13.8; IR (Ȟmax) 3380, 2945, 2856, 1759, 

1685, 1595, 1540, 1464; HRMS (ESI): calculated for C27H44N5O7Si2± [M ± H]±: 606.2785; found 

606.2793. 

 

N-(Isoxazol-3-yl)-N¶-[5'-O-(4,4'-dimethoxytrityl)-D-ribofuranosyl]urea (160) 

 
A magnetically stirred solution containing compound 142 (1.00 g, 3.86 mmol) in anhydrous pyridine 

(39 mL) was treated with 4,4¶-dimethoxytrityl chloride (1.57 g, 4.63 mol) at 0 ºC, and the resulting 

pale-orange/yellow solution was maintained at room temperature for 16 hr. Upon consumption of the 

starting material, as judged by TLC analysis, the mixture was concentrated under reduced pressure. 

The residue thus obtained was purified by flash chromatography (silica gel, 0.2% pyridine, 

CH2Cl2:CH3OH = 100:0 ĺ 99:1 ĺ 98:2 ĺ 97:3 ĺ 96:4 ĺ 95:5) to afford compound 160 (1.91 g, 
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3.40 mmol, 88%, 3:1 Į:ȕ) as a colourless foam. An analytical sample of Į-160 was obtained for 

spectroscopic characterisation by applying repeated chromatography to the 3:1 Į:ȕ mixture. 

Concentration of fraction A (Rf = 0.3 in 1:4 v/v CH2Cl2:EtOAc elution) afforded compound Į-160. 
1H NMR (400 MHz, DMSO-d6) į 9.94 (V, 1H), 8.69 (G, J = 1.8 Hz, 1H), 7.49 ± 7.17 (m, 10H), 6.95 

± 6.84 (m, 4H), 6.78 (s, 1H), 5.63 (dd, J = 9.6, 3.3 Hz, 1H), 5.54 (d, J = 4.0 Hz, 1H), 5.09 (d, J = 4.8 

Hz, 1H), 3.95 4.00 ± 3.89 (m, 3H), 3.73 (s, 6H), 3.19 ± 3.08 (m, 1H), 3.01 ± 2.90 (m, 1H); 13C NMR 

(101 MHz, DMSO-d6) į 159.7, 158.4, 158.1, 153.3, 145.1, 135.9, 135.8, 129.8, 128.1, 127.9, 127.8, 

127.6, 126.7, 113.2, 98.4, 85.3, 80.9, 80.0, 71.9, 70.3, 64.5, 55.1, 55.0; IR (Ȟmax) 3335, 2930, 1678, 

1606, 1508, 1249; HRMS (ESI): calculated for C30H30N3O8- [M ± H]±: 560.2038; found 560.2045. 

 

N-(Isoxazol-3-yl)-N¶-{5'-O-[4,4'-dimethoxytrityl]-3'-O-[(triisopropyl)silyloxymethyl]-D-

ribofuranosyl}urea (161) 

 
A magnetically stirred solution containing compound 160 (20 PJ, 35.7 ȝPRO) in 1,2-dichloroethane 

(140 ȝL) was treated at 20 ºC with N,N-diisopropylethylamine (16 mg, 21 ȝL, 124 ȝmol), followed 

by SnBu2Cl2 (12 PJ, 39.2 ȝPRO) and the resulting mixture was maintained at room temperature for 

1 hr. After this time, (triisopropylsiloxy)methyl chloride (TOMCl) (10 PJ, 10.4 ȝL, 45 ȝPRO) ZDV 

added and the reaction was stirred at 60 ºC for a further 1 hr. Upon consumption of the starting 

material, as judged by TLC analysis, the cooled mixture was purified by flash chromatography (silica 

gel, 0.2% pyridine, CH2Cl2:CH3OH = 100:0 ĺ 99:1) to afford compound 161 (9 PJ, 11.6 ȝPRO, 

32 %, 2:1 Į:ȕ) as a colourless oil. 1H NMR (400 MHz, Chloroform-d) diastereomeric mixture į 8.39 

± 8.31 (m, 2H), 8.17 ± 8.08 (m, 2H), 7.48 ± 7.17 (m, 20H), 6.87 ± 6.78 (m, 8H), 6.52 ± 6.35 (m, 2H), 

6.02 ± 5.85 (m, 2H), 5.09 ± 4.82 (m, 4H), 4.45 ± 4.05 (m, 6H), 3.84 ± 3.75 (m, 12H), 3.49 ± 3.07 (m, 

6H), 1.35 ± 0.96 (m, 42H); 13C NMR (101 MHz, Chloroform-d) diastereomeric mixture į 158.8, 

158.7, 158.6, 158.6, 158.4, 158.3, 158.2, 154.3, 145.0, 136.2, 136.0, 135.8, 130.4, 130.2, 128.3, 128.1, 

128.0, 126.9, 113.4, 113.3, 98.4, 90.7, 86.3, 80.8, 80.3, 70.3, 63.5, 55.4, 18.0, 12.0, 12.0; IR (Ȟmax) 

3343, 2943, 2866, 1678, 1606, 1536, 1508, 1248; HRMS (ESI): calculated for C40H52N3O9Si- [M ± 

H]±: 746.3478; found 746.3500. 
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N-(Isoxazol-3-yl)-N¶-[3'-O-benzoyl-5'-O-(4,4'-dimethoxytrityl)-D-ribofuranosyl]urea (162) 

 
A magnetically stirred solution containing compound 160 (100 mg, 178 ȝmol) in pyridine (1.8 mL) 

was treated with benzoic anhydride (40 mg, 0.178 mmol) followed by 4-dimethylaminopyridine 

(DMAP) (2 mg, 18 ȝmol) at 20 ºC, and the resulting solution was maintained at that temperature for 

1.5 hr. Upon consumption of the starting material, as judged by TLC analysis, the reaction was 

quenched with MeOH (100 ȝL) and then diluted with CH2Cl2 (20 mL) and brine (20 mL of a sat. aq. 

solution). The aqueous phase extracted with CH2Cl2 (3 x 10 mL), and the combined organic phases 

dried (MgSO4), filtered, and concentrated under reduced pressure. The residue thus obtained was 

purified by flash chromatography (silica gel, 0.2% pyridine, CH2Cl2:CH3OH = 100:0 ĺ 99:1 ĺ 98:2 

ĺ 97:3 ĺ 96:4 ĺ 95:5) WR DIIRUG FRPSRXQG 162 (20 mg, 30 ȝmol, 17%, 3:1 Į:ȕ) as a colourless 

solid. Rf = 0.3 in 19:1 v/v CH2Cl2:CH3OH elution; 1H NMR (400 MHz, Chloroform-d) 

diastereomeric mixture į 9.02 (G, J = 142.3 Hz, 2H), 8.16 ± 8.00 (m, 10H), 7.58 ± 7.14 (m, 16H), 

6.86 ± 6.71 (m, 8H), 6.53 ± 6.26 (m, 2H), 6.11 ± 5.71 (m, 2H), 5.49 ± 5.40 (m, 2H), 4.87 ± 4.50 (m, 

2H), 4.48 ± 4.27 (m, 2H), 3.73 (s, 12H), 3.49 ± 3.20 (m, 4H); 13C NMR (101 MHz, Chloroform-d) 

diastereomeric mixture į 169.8, 166.4, 166.2, 158.6, 158.6, 158.6, 158.4, 158.2, 154.8, 144.8, 136.0, 

135.9, 133.5, 132.8, 130.3, 130.2, 130.2, 130.0, 129.5, 129.4, 128.6, 128.4, 128.3, 128.1, 128.0, 126.9, 

113.3, 98.5, 86.7, 86.5, 82.2, 81.1, 80.1, 75.2, 74.6, 70.0, 63.8; IR (Ȟmax) 3310, 2934, 1717, 1675, 

1603, 1540, 1507; HRMS (ESI): calculated for C37H34N3O9- [M ± H]±: 664.2301; found 664.2308. 

 

3,5-O-[Bis(tert-butyl)silylene]-2-O-(tert-butyldimethylsilyl)-ȕ-D-ribofuranosyl azide (166) 

 
A magnetically stirred solution containing compound 164 [124] (2.42 g, 7.67 mmol) in anhydrous DMF 

(19 mL) was treated at 0 ºC with imidazole (2.31 g, 15.3 mmol) and then tert-butyldimethylsilyl 

chloride (2.09 g, 30.7 mmol) and the resulting mixture was maintained at that temperature for 16 hr. 

Upon consumption of the starting material, as judged by TLC analysis, the mixture was diluted with 

CH2Cl2 (100 mL) and treated with treated brine (150 mL of a sat. aq. solution). The aqueous phase 

was extracted with CH2Cl2 (3 x 100 mL), and the combined organic phases dried (Na2SO4), filtered, 

and concentrated under reduced pressure. The residue thus obtained was purified by flash 
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chromatography (silica gel, Hexane:EtOAc = 100:0 ĺ 99:1) to afford compound 166 (3.02 g, 7.03 

mmol, 91%) as a colourless oil. Rf = 0.2 in 99:1 v/v Hexane:EtOAc elution; 1H NMR (400 MHz, 

Chloroform-d) į 5.07 (V, 1H), 4.45 ± 4.36 (m, 1H), 4.12 (ddd, J = 10.8, 9.6, 5.1 Hz, 1H), 4.01 (d, J = 

4.1 Hz, 1H), 3.95 ± 3.87 (m, 2H), 1.05 (s, 9H), 1.00 (s, 9H), 0.91 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H); 
13C NMR (101 MHz, CDCl3) į 96.3, 76.4, 76.0, 74.7, 68.5, 27.6, 27.2, 26.0, 22.9, 20.5, 18.5, -4.2, -

5.0; IR (Ȟmax) 2933, 1859, 2109, 1471, 1253; HRMS (ESI): calculated for C19H40N3O5Si2- [M + OH]±: 

446.2512; found 446.2520. 

 
Phenyl isoxazol-3-ylcarbamate (167) 

 
Compound 167 was synthesised according to a modified literature procedure.[137] A magnetically 

stirred solution containing phenyl chloroformate (1.96 g, 1.57 mL, 12.5 mmol) and pyridine (1.03 g, 

1.06 mL, 13.1 mmol) in anhydrous CH3CN (25 mL) was treated dropwise with 3-aminoisoxazole 

(1.00 g, 879 ȝL, 11.9 PPRO) at 0 ºC and the resulting suspension was maintained at that temperature 

for 3.5 hr. Upon consumption of the starting material, as judged by LCMS analysis, the mixture was 

then treated with H2O (20 mL), and the resulting white precipitate collected quickly by filtration. The 

solid material was washed once with ice-cold anhydrous CH3CN (10 mL) and dried for 24 h under 

reduced pressure to give compound 167 as a white powder (1.75 g, 8.56 mmol, 72%). 1H NMR (400 

MHz, Benzene-d6) į 7.54 (V, 1H), 7.29 (G, J = 1.6 Hz, 1H), 7.08 ± 6.96 (m, 4H), 6.94 ± 6.86 (m, 1H), 

6.73 (s, 1H). 

 

Prop-1-en-2-yl isoxazol-3-ylcarbamate (169) 

 
A magnetically stirred solution containing 3-aminoisoxazole (332 mg, 3.95 mmol) and pyridine (348 

mg, 354 ȝL, 4.40 mmol) in anhydrous CH3CN (8 mL) was treated at 0 ºC with isopropenyl 

chloroformate (506 mg, 458 ȝL, 4.20 mmol) and the resulting mixture was maintained at that 

temperature for 4 hr. Upon consumption of the starting material, as judged by LCMS analysis, the 

reaction mixture was then concentrated under reduce pressure, and the residue thus obtained was 

purified via slow (evaporative) re-crystallisation from a 50% v/v solution of CH3OH/H2O (6 mL) to 

obtain afford compound 169 (579 mg, 3.44 mmol, 87%) as colourless needles. 1H NMR (400 MHz, 

Methanol-d4) į 8.50 (G, J = 1.8 Hz, 1H), 6.78 (d, J = 1.8 Hz, 1H), 4.86 ± 4.58 (m, 2H), 1.98 (d, J = 
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1.1 Hz, 3H); 13C NMR (101 MHz, Methanol-d4) į 160.8, 159.4, 154.1, 102.5, 99.2, 19.5; IR (Ȟmax) 

3245, 3186, 2955, 1743, 1674, 1614, 1486, 1404; HRMS (ESI): calculated for C7H7N2O3- [M + H]+: 

167.0462; found 167.0461. 

 

tert-Butyl isoxazol-3-ylcarbamate (168) 

 
A magnetically stirred solution containing 3-aminoisoxazole (101 mg, 88 ȝL, 1.20 mmol) in 

anhydrous pyridine (6 mL) was treated dropwise at 20 ºC with di-tert-butyl dicarbonate (Boc2O) (262 

mg, 276 ȝL, 1.20 mmol), followed by 4-dimethylaminopyridine (DMAP) (15 mg, 119 ȝmol) and the 

resulting mixture was maintained at that temperature for 75 min. Upon consumption of the starting 

material, as judged by TLC analysis, the reaction mixture was then concentrated under reduce 

pressure, and the residue thus obtained was purified by flash chromatography (silica gel, CH2Cl2) to 

afford compound 168 (120 mg, 651 ȝmol, 55%) as a colourless solid. Rf = 0.4 in CH2Cl2 elution;  1H 

NMR (400 MHz, Chloroform-d) į 8.37 (G, J = 1.7 Hz, 1H), 6.37 (d, J = 1.7 Hz, 1H), 1.46 (s, 9H); 
13C NMR (101 MHz, Chloroform-d) į 159.6, 158.7, 149.9, 103.6, 84.3, 27.9; IR (Ȟmax) 2980, 1770, 

1723, 1567, 1470, 1469; HRMS (ESI): calculated for C8H13N2O3+ [M + H]+: 185.0921; found 

185.0923. 
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3.4.3.4 Prebiotic Synthesis Experiments 

Electrophilic cyclisation of compound 57 

A set of two experiments were carried out in order to investigate the general capacity of the compound 

57 to undergo electrophilic cyclisation reactions in the presence of different activators (sodium 

trimetaphosphate and cyanamide) under prebiotically plausible conditions. To this end, a 1.5 mL-safe 

lock tube charged with compound 57 (2 mg, 5.43 µmol) suspended in phosphate buffer (100 ȝL, 100 

mM, pH = 8.0) was treated with the either cyanamide (10 mg, 238 µmol), or sodium trimetaphosphate 

(10 mg, 32.7 µmol) and magnesium chloride (10 mg, 105 µmol) and shaken at 25 ºC for 18 hr. After 

this time, a 1 ȝL DOLTXRW ZDV WDNHQ IURP WKH UHDFWLRQ PL[WXUH DQG VXEMHFWHG WR HPLC-MS analysis. 

The gradient for both samples was from 100% to 80% buffer A over 45 min; the elution was 

monitored at 260 nm (Dionex Ultimate 3000 Diode Array Detector); and the chromatographic eluent 

was directly injected into the ion source without prior splitting. Ions were scanned by use of a positive 

polarity mode over a full-scan range of m/z 50-1000 with a resolution of 30000. The retention time 

of each nucleoside was confirmed by the relevant [M+H] ion in the HRMS spectrum and by co-

injection of an independently synthesised standard (compound 110; Supporting Information). The 

results from this analysis are presented in Scheme 25 (Unpublished Results section).  

 

Nucleophilic ring-opening of compound 102 

A preliminary test reaction was carried out in order to investigate the general capacity of the 

hydantoin 102 to undergo nucleophilic ring-opening reactions in the presence of amino acids. To this 

end, a magnetically stirred solution containing compound 102 (28 mg, 59 ȝmol) in borate buffer (3 

mL, 30 mM, pH = 9.5) was treated with glycine (30 mg, 400 ȝmol) at 20 ºC, and the resulting mixture 

was maintained at that temperature for 2.5 hr. At this time, a 1 ȝL aliquot was taken from the reaction 

mixture and subjected to LCMS analysis. The gradient for all samples was from 95% to 80% buffer 

A over 5 min; the elution was monitored at 260 nm; and the chromatographic eluent was directly 

injected into the ion source without prior splitting. Ions were scanned by use of a positive polarity 

mode over a full-scan range of m/z 150-1000.  The retention time of each nucleoside was tentatively 

assigned by the relevant [M+H] ion in the ESI MS spectrum without co-injection of an independently 

synthesised standard, with the exception of the starting material. The results from this analysis are 

presented in Scheme 22 (Unpublished Results section). 
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Nucleophilic ring-openings of compound 110 

A set of three preliminary test reactions were carried out in order to investigate the general capacity 

of the hydantoin 110 to undergo nucleophilic ring-openings in the presence of amino acids (glycine) 

and short peptides (glygly and glyglygly) under prebiotically plausible conditions. To this end, a 1.5 

mL-safe lock tube charged with the relevant amino acid or peptide (133 ȝmol) suspended in 

phosphate buffer (100 ȝL, 100 mM, pH = 8.0) was treated with compound 110 (2 mg, 4.42 ȝmol) at 

20 ºC, and the resulting mixture was shaken at that temperature for 5 hr. After this time, a 1 ȝL DOLTXRW 

was taken from the reaction mixture and subjected to HPLC-MS analysis. The gradient for all samples 

was from 100% to 80% buffer A over 45 min; the elution was monitored at 260 nm (Dionex Ultimate 

3000 Diode Array Detector); and the chromatographic eluent was directly injected into the ion source 

without prior splitting. Ions were scanned by use of a positive polarity mode over a full-scan range 

of m/z 50-1000 with a resolution of 30000. The retention time of each nucleoside was tentatively 

assigned based upon the relevant [M+H] ion in the HRMS spectrum without co-injection of an 

independently synthesised standard, with the exception of the starting material. The results from this 

analysis are presented in Scheme 24 (Unpublished Results section). 

 

Peptide cleavage of compound 139 

A set of two preliminary test reactions were carried out in order to investigate the general capacity of 

the adenosine-dipeptide 139 to undergo base-promoted acyl substitution reactions, thus providing 

free adenosine 33 under prebiotically plausible conditions. To this end, a 1.5 mL-safe lock tube 

charged with compound 139 (1 mg, 2.13 ȝmol) suspended in either carbonate buffer (1.0 mL, 100 

mM, pH = 9.5), or borate buffer (1.0 mL, 30 mM, pH = 9.5) was heated to 50 ºC, and shaken at that 

temperature for 18 hr. After this time, a 1 ȝL DOLTXRW ZDV WDNHQ IURP WKH UHDFWLRQ PL[WXUH DQG 

subjected to LCMS analysis. The gradient for all samples was from 95% to 80% buffer A over 5 min; 

the elution was monitored at 260 nm; and the chromatographic eluent was directly injected into the 

ion source without prior splitting. Ions were scanned by use of a positive polarity mode over a full-

scan range of m/z 150-1000. The retention time of each compound was tentatively assigned based 

upon the relevant [M+H] ion in the ESI MS spectrum without co-injection of an independently 

synthesised standard, with the exception of the starting material. The results from this analysis are 

presented in Scheme 29 (Unpublished Results section). 
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4 THESIS DISCUSSION 

4.1 Geochemical Constraints upon Prebiotic Nucleoside Synthesis 

This work has been aimed towards addressing several major open questions in the field of origins of 

life research. The first of these questions relates to the nature and potentially independent origins of 

the building blocks that constitute OLIH¶V JHQHWLF FRGH. Specifically, we set out to determine whether 

a complete set of Watson-Crick RNA nucleosides, as well as their related non-canonical variants, 

could plausibly have arisen under conditions compatible with the Early earth. RNA molecules, which 

are constructed from both purine and pyrimidine nucleotides, are thought to have been the first 

fundamental biopolymers and those that heralded life on Earth.[24] In the context of the earliest stages 

RI OLIH¶V HYROXWLRQ, LW LV QHFHVVDU\ WR FRQVLGHU FKHPLFDO SDWKZD\V that predated enzymatic- or 

ribozymatic reactions. This begs the question of what other natural occurring processes could possibly 

have given rise to the complex organic networks that could have facilitated the first RNA synthesis. 

Some have argued that the prebiotic pathways leading to building blocks such as those described here 

were unlikely to have emerged from discontinuous processes that depended upon rare events.[138] 

Ultimately, however, some chain of improbable reactions must have eventually led to the highly-

complex informational molecules that make up RNA. In pursuit of prebiotically plausible routes to 

the different nucleosides discussed throughout this thesis, we set about exploring syntheses leading 

to those molecules, starting with the smallest practical building blocks that were likely to have been 

available on the early earth. 

 

Although independent high-yielding pathways leading to either purines or pyrimidines have been 

demonstrated,[67,70] no unified pathway providing an entire set of ribonucleosides was known at time 

of these investigations. Through the work described in this thesis, we are now able report a novel 

pathway leading to the pyrimidine nucleosides that is compatible with our previously reported FaPy 

chemistry, and which even yielded a complete collection of Watson-Crick nucleosides (rA, rU, rC 

and rG) under a unified set of reaction conditions (Scheme 38).[121] In addition to this discovery, we 

were SDUWLFXODUO\ LQWHUHVWHG LQ WKH UROH RI XUHD DW OLIH¶V RULJLQ. While pursuing further chemical 

SDWKZD\V VWHPPLQJ IURP :|KOHU¶V serendipitous synthesis of urea in 1828,[38] we were thus able to 

discover an entirely new class of polyurea-containing ³SVHXGR S\ULPLGLQH´ nucleosides whose 

nucleobase moieties are held together entirely through hydrogen bonding interactions, and which bare 

a prominent resemblance to the canonical pyrimidines.[124] In certain instances, these 

pseudopyrimdines were even found to possess highly specific base pairing properties. One of these 

bases (triuret), for example, was found to display wobble base interactions[139] when paired with 
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guanine or inosine within complimentary RNA strands. Additionally, we expanded upon the existing 

FaPy route to purine nucleosides,[70] leading to the discovery of several additional pathways that 

provided a plethora of non-canonical (modified) bases. 

 
Scheme 38 (a) Prebiotic synthesis of pyrimidine nucleosides, under conditions compatible with the 

previously-reported FaPy chemistry.[121] (b) Structure of a new class of ribonucleoside containing 

poly-urea functionality.[124] (c) A selection of modified-FaPys that provide non-canonical nucleosides 

upon dehydrative reactions in the presence of ribose.[102] 

Given the diversity of small molecules that are described in these pathways, namely in the formation 

of the nucleobase portion of the nucleosides, a discussion on the inorganic origins of their building 

blocks is warranted. It is well-understood that any search for past life on Earth or beyond should 

reflect the associated environmental constraints that may have permitted those chemical pathways.  

One such environmental limitation upon prebiotic chemistry would have been the nature of gases 

emitted by volcanoes into the Hadean atmosphere.[140] Isotopic data, for example, has demonstrated 

that Earth likely accreted from oxygen-poor material containing CO and CH4, as opposed to CO2, 

and with NH3 rather than N2.[140] AOVR OLNHO\ DEXQGDQW GXULQJ EDUWK¶V DFFUHWLRQ ZHUH UHGXFLQJ JDVVHV 

such as H2S and H2.[141] Remarkably, this composition of gasses is very close to that which was 

originally envisaged by Stanley Miller during his electrical discharge experiments that formed 

aldehydes, cyanide and amino acids.[43] Deviating IURP MLOOHU¶V K\SRWKHVLV, KRZHYHU, it is now 

known WKDW EDUWK¶V PDQWOH DV ZHOO DV LWV UHVXOWDQW DWPRVShere were only temporarily reducing. Rather, 

the planet experienced a rapid (less than 100 million years long) restructuring event as early as 4.51 

GD, LQ ZKLFK WKH PROWHQ LURQ FROODSVHG ZLWKLQ EDUWK¶V FRUH, ZKHUH LW has remained since.[142] This 

HYHQW LV JHQHUDOO\ WKRXJKW WR KDYH WUDQVIRUPHG EDUWK¶V Hadean atmosphere, generating a far more 

oxidizing composition of gases than were present LPPHGLDWHO\ DIWHU EDUWK¶V DFFUHWLRQ.  
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Emissions from Hadean volcanoes could also have fuelled the production of small molecules such as 

H2O, SO2, N2, and CO2. These molecules may have been directly involved in the assembly of 

nucleosides, through the formation of semi-activated building blocks such as nitrogen oxides and 

sulphites (Figure 12). Fixation of nitrogen in the prebiotic atmosphere could have been achieved via 

the lightning-mediated coupling of N2 to H2O, resulting in the production of NO gas.[143] As 

demonstrated experimentally, capture of NO can be facilitated by condensation with SO2/HSO3± to 

generate a disulfonate 175, which reacts upon exposure to cyanoacetylene to generate the key 

pyrimidine building block 3-aminoisoxazole 148.[121]  

 
Figure 12 The hypothetical formation of nucleoside building blocks including 3-aminoisoxazole 148 

via natural events resulting from Hadean volcanic emissions. 

In order to invoke chemistry such as that which is described here, a substantial feedstock of HCN 

PXVW DOVR KDYH EHHQ GHOLYHUHG WR EDUWK¶V VXUIDFH LQ D FRQFHQWUDWHG PDQQHU. 7R DFFRPSOLVK WKLV, UDLQ 

would not alone have been sufficient, as it would not have provided the steady concentrations of HCN 

that would have been necessary to accomplish known prebiotically plausible reactions.[144] A more 

plausible alternative, would involve the capture of HCN by FeII in groundwater to provide 

ferrocyanide [Fe(CN)6]4í.[144] This type of transformation would have been readily achievable on the 

early Earth, given the likely abundance of ferrous iron and various mechanisms by which HCN could 

have been supplied.[145] The formation of ferrocyanide is furthermore a very favourable process, and 

can be expected in bodies of water containing Fe2+ that are exposed to trace HCN.[144] Ferrocyanide 

further provides the advantage that it can facilitate the reductive homologation of HCN in the presence 

of sulphite (also critical to our pyrimidine synthesis), to provide simple sugars, hydroxy acids, and 

amino acid precursors.[145] The heating of dry-ferrocyanide salts that are distributed within 
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sedimentary terrain can also generate important sources of inorganic-carbon, such as calcium 

F\DQDPLGHௗandௗFDOFLXP FDUELGH (CDNCNௗ+ CaC2).[146] Finally, the presence of nitrite (from NO�) 

could facilitate further chemistry beyond that of hydroxylamine, which can be generated via the 

Raschig process, or by those described here.[147] Phosphate, the probable precursor to nucleotides and 

SKRVSKROLSLGV, PD\ KDYH EHHQ DYDLODEOH DW PDQ\ VWDJHV RI WKH HDGHDQ EDUWK¶V WLPHOLQH GXH WR LWV 

stability, and could derive from anoxic corrosion of minerals such as meteoric schreibersite or 

apatite.[148] It is understood that the success and sequence of reactions arising from such inorganic 

components would depend very much on their order of addition. This therefore raises the question of 

whether the majority of important prebiotic cKHPLVWU\ RFFXUUHG SUHGRPLQDQWO\ LQ ³RQH SRW´, RU 

whether these processes were facilitated by sequential delivery of reagents to support selective 

synthesis.[146] If the latter were to be true, then this could have been supported by certain geochemical 

mechanisms such as wet and dry cycles. 

 
4.2 Wet-Dry Cycles and Hypothetical Conditions for Prebiotic Nucleoside Synthesis 

Another key finding described within this doctoral thesis, relates to how early nucleoside-forming 

processes were likely contingent upon wet-dry cycles to drive their activity.[102,121,124]  Extant life on 

Earth is understood to rely heavily upon proteins, which facilitate the various chemical reactions 

necessary to keep our cells alive. Enzymes are able to accomplish these tasks by supplying a steady 

input of chemical- and photochemical energy, thereby allowing chemical processes inside of those 

cells to exist out of thermodynamic equilibrium with their neighbouring environments. Formation of 

biomolecules from monomers is often meanwhile characterised by relatively large free energies of 

formation, with ǻGI� YDOXHV UDQJLQJ between +2 to +4 kCal/mol for peptides, or as high as +5.3 

kCal/mol in the case of DNA phosphodiester bonds.[149±151] While these large endergonic barriers are 

overcome by enzymes in de novo processes, such would have been impossible for the formation of 

the earliest prebiotic nucleosides and RNA. At least in the case of prebiotic ribosylations, it was found 

here that wet-dry cycles are tremendously effective in overcoming these barriers, and thus delivering 

a variety of canonical, and modified nucleosides in substantial yields.[102,121,124] In WKH ³ZHW-GU\ F\FOH´ 

model, phases of cool temperatures that accumulate liquid H2O are iteratively followed by periods 

that are hot and result in evaporation. The ³dry´ phase of each cycle thus drives thermodynamically-

uphill condensation reactions, whereas the ³wet´ phase delivers fresh solvent, permitting better 

diffusion of reactants than would otherwise be possible in solid mixtures.[152] A recognisable 

limitation of wet-dry cycles in the context of prebiotic chemistry relates to their dependence upon 

unpredictable rehydration events like rainstorms or flooding. The prebiotic plausibility of wet-dry 

cycles is however clearly feasible given the magmatic, water-rich environment that likely existed on 
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the earth between 2.4 to 4 billion years ago.[153] If life indeed emerged on the Hadean Earth shortly 

after the decline of Late Heavy Bombardment, as is frequently invoked,[148,154] then geothermal 

activity, impact heating, surface water, and indeed rain and flooding would have been present 

HOHPHQWV VLPXOWDQHRXVO\ DW OLIH¶V RULJLQ.[155]  Based on these environmental factors, a hypothetical 

prebiotic scenario leading to formation of the aforementioned canonical and noncanonical 

nucleosides is presented in Scheme 39. 

 
Scheme 39 Plausible prebiotic routes to purine and pyrimidine nucleosides, as investigated in this 

thesis. 

As originally proven by Wöhler,[156] acetylene 176 can be generated under prebiotic conditions via 

the hydration of CaC2 177, which can itself arise from heating CaCN2 to elevated temperatures (1000 

ºC).[144] Acetylene 176 is also known to react with hydrogen cyanide 4 in the presence of copper (II) 

to generate cyanoacetylene 5, via its Cu-coordinated precursor.[157] Cyanoacetylene 5 formed through 

this pathway is reportedly highly stable, and can be released into mildly acidic aqueous solutions (for 

example through the dissolution of HCN 4) to generate highly concentrated mixtures available for 

nucleoside formation. Upon its reaction with the elements of hydroxylamine 178, either as the 

disulfonate 175, or as hydroxylurea 143, 3-aminoisoxazole 148 can be obtained in substantial yields 
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(up to 90 % under alkaline conditions).[121] This key building block can then be further modified to 

obtain the pyrimidine ribonucleosides 179 via a sequence of condensation and redox reactions driven 

by wet-dry cycles, as demonstrated in this work. The discussed poly-urea nucleosides 180 can also 

be obtained via similar chemistry, when instead employing nucleophiles of the form 181, which are 

the pyrolysis products of urea 1. Malonitrile 182 can meanwhile be obtained via the gas phase reaction 

of acetonitrile and cyanogen (NCCN) 183, the former of which is itself derived from cyanoacetylene 

5 under prebiotic conditions, as described by Trinks and Eschenmoser.[71] Aminomalonitrile, a 

candidate precursor to amino acids as well as for guanosine, can also be readily obtained by 

trimerization of HCN 4.[158] These building blocks can then be elaborated to provide 

formamidopyrimdines 184, the precursors to purines 185.[70] With these components present, it would 

thus be possible to form both pyrimidine and purine nucleosides, as well as such compounds as 180, 

via the chemistry described in our published works.[102,121,124] 

 
4.3 Poly-urea Wöhler RNA as an Informational Biopolymer 

The immense complexity in identifying prebiotically plausible routes to the canonical nucleosides 

has led to the idea that RNA itself may have been predated by proto-RNA derived from simpler, more 

readily available starting materials.[83] This prospect also implies that such a polymer could 

spontaneously assemble from simple precursors.[86] Of particular interest to us in this regard were the 

prebiotic origins of urea and its possible role in the formation of proto-RNA. Inspired by 

revolutionary studies from Eschenmoser and others,[88] we therefore asked the question of whether 

an RNA-like polymer could plausibly arise exclusively from urea and simple carbohydrates. In one 

of the most celebrated experiments in history, Wöhler unintentionally discovered that urea can be 

prepared under abiotic conditions, whilst attempting to study the properties of ammonium cyanate 

salt.[38] In addition to :|KOHU¶V V\QWKHVLV, urea and as its related compound guanidine can be prepared 

efficiently from cyanide and cyanamide under plausible prebiotic conditions, as shown by Oró and 

Kimball in 1961.[159] Urea can also be generated in large quantities through spark-discharge 

experiments such as those used in the pioneering works of Miller.[43] The prebiotic plausibility of 

urea is thus well established, and one can reasonable assume that urea may have been abundantly 

available as a nucleoside precursor on the Early earth.[39] This availability leads to interesting 

scenarios, such as the formation of eutectic solutions with unique properties that can favour a variety 

of prebiotic reactions.[160] An abundance of further evidence suggests that urea may have been a 

critical component in chemical evolution, including its ability to affect phosphorylation reactions in 

the presence of inorganic phosphate.[161±163] 
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Given the unique physicochemical properties of urea 1, together with its probable prebiotic 

availability, we set out to investigate whether an informational-, H-bonding biopolymer derived from 

1 could have plausibly existed on the early Earth. Since 1 has itself been known to react directly with 

ribose 6 under mild acidic conditions,[164] it was anticipated that the same would be true for biuret 53 

and triuret 54, the pyrolysis products of urea 1. To this end, we first showed that the H-bonded 

nucleosides 186 and 187 can be generated by treating either biuret or triuret with ribose under 

prebiotically plausible dry-down conditions (Scheme 40).[124] Remarkably, in addition to detecting 

both products in our experiments, we also observed that the resultant nucleosides were very stable, 

perhaps due to the nature of their intramolecular, pi-conjugated network of H-bonds.[165] This stability 

was subsequently verified via synthesis of phosphoramidite derivatives of 186 and 187, and their 

incorporation into RNA strands. Ensuing 1H NMR and UV melting studies not only confirmed the 

anticipated planar conformation of the folded pseudobase 187, but also revealed its capacity to base-

pair with the canonical nucleoside guanosine and related non-canonical nucleoside inosine. In 

reference to the pioneering work of Friedrich Wöhler, we termed the modified oligonucleotides 

Wöhler RNA. 

 
Scheme 40 (a) Synthesis of the nucleosides 186 and 187 under prebiotically plausible conditions. (b) 

Incorporation of the triuret phosphoramidite 188 into RNA, and its base-pairing interactions with 

guanosine and inosine. 
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life, then the earliest proto-RNAs may have possessed very different functional characteristics. 

Hydrolytic stability, ease of assembly, availability of precursor molecules, and versatility in forming 

catalytic structures are examples of properties that would have better suited proto-RNA, and that may 

have since been refined by evolution.[86] In this respect, structures resembling 186 and 187 are perhaps 

more likely candidates for the first information-encoding monomers. Future studies will therefore 

focus on whether building blocks such as 53 and 54 can be generated from even simpler aldose-

precursors (Scheme 41a). One potential shortcoming of our model is the fact that triuret-G/I base-

pairs are not as stable as canonical Watson-Crick base pairs, being only comparable in strength to 

UG wobble pairs. It should be noted, however, that informational flexibility may have presented 

distinct advantages during the earliest stages of life.[83] If for example, a proto-RNA could shift 

conformation to achieve different pairing characteristics, then individual recognition units might be 

able to enhance the stability of the polymer as a whole. This type of degeneracy is also not unheard 

of in contemporary biology, where in translation for example, each particular amino acid may be 

decoded by more than just one codon.[166] Certain primordial conditions, such as the presence of high-

salt concentrations may have also favoured such alternative recognition units in the absence of highly 

specific base-pairs.  

 
Scheme 41 (a) A hypothetical route to Wöhler RNA nucleosides, deriving from simple precursors, 

and possible evolutionary transition to Watson-Crick bases. (b) Future objectives of exploring XNAs 

derived from thiourea and simple carbohydrates. 
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nucleobases. To this ends, chemical modifications that enhance H-bonding affinity and might support 

catalysis, such as the incorporation of thiourea moieties, will also be explored (Scheme 41b). Finally, 

we aim to explore whether even simpler biopolymers derived from plausible backbones including 

GNA, TNA, and FNA are possible.[167] These findings will be reported in due course. 

 

4.4 Noncanonical Nucleosides and Coevolution of the Translational System 

As already noted, the chemical origins and evolution of the translational system is a tremendous and 

formidable problem. Central, yet unanswered questions include: why is the code universal; why is it 

derived from triplets; and why are there no more or less than 20 amino acids that are universally 

encoded?[168] To begin to tackle these problems, we aimed to approach the evolution of translation 

from a chemical standpoint. If the RNA World hypothesis were to be true, then one can also 

reasonably assume that informational decoding in the earliest translation systems was carried out by 

RNA molecules that were the evolutionary precursors of WRGD\¶V tRNAs.[168] It is therefore also 

conceivable that these proto-tRNAs possessed entirely different primary structural components to 

modern tRNAs. In the contemporary translational system, 20 unique and separately-evolved 

aminoacyl±tRNA synthetase (aaRS) each recognise a separate tRNA, each of which are catalytically 

charged with an associated amino acid (Scheme 42a). This aminoacyl-charging occurs by ATP (189)-

mediated transfer via 190 WR REWDLQ WKH DSSURSULDWH 3¶-aminoacylated derivative 191. 

 
 

Scheme 42 (a) De-novo synthesis of aminoacyl±tRNA by aminoacyl±tRNA synthetases. (b) Synthesis 

of N6-aminoacylcarbamoyl adenosine nucleosides, as shown in this work. 
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In order to circumvent the prebiotic chemical constraints associated with contemporary translation 

and peptide synthesis, we instead sought to explore an entirely new chemical pathway. Here, we 

showed that N6-aminoacylated adenosine nucleosides 192 can be obtained directly from N6-

carbamoylated building blocks (193), which are themselves derived from FaPys 194 (Scheme 

42b).[102] We also showed that that the same type of transformation can be achieved by direct 

carbamoylation of adenosine nucleosides, with nucleophilic substitution of N-methyl-N-

nitrosoureas.[101] We next developed syntheses of phosphoramidite building blocks that allowed us to 

incorporate the aforementioned N6-aminoacylated adenosine nucleosides into RNA strands.[130] 

Through these studies, we presented how alternating aminoacylated adenine bases positioned within 

an RNA-duplex might align in the major groove, thus being primed for peptide formation. Given 

appropriate activation conditions, for example via catalytically induced aminoacyl-cyclisation, it 

might in principal be possible to generate peptides entirely from modified RNA. With this in mind, 

future investigations will be aimed towards accomplishing chemical peptide synthesis from RNA. 

These studies are now underway in the Carell laboratories. 

 

4.5 Concluding Remarks 

The RNA World hypothesis has for decades been the most widely accepted view for the chemical 

origins of life on Earth.[19] Through this and other work, there is now ample evidence to show that 

5NA¶V EXLOGLQJ EORFNV are capable of arising in the absence of cellular life, given the right set of 

chemical conditions. Furthermore, this evidence undeniably supports the conclusion that many 

different non-canonical nucleotides were also likely present on the Early earth.[169] What remains yet 

unclear, is how simpler biopolymers eventually transitioned to those present in life today. When 

considering nucleoside syntheses involving the coupling of trivalent nucleophiles to sugars, such as 

those explored in this thesis, the exact chemical mechanism by which ribose emerged also becomes 

ever-pressing. In our view, the best hope for substantial progress in these and related efforts, lie with 

technically challenging but conceptually clear experimentation. That is to say, only through 

experimental synthesis can we truly delineate which prebiotic chemical pathways were once possible. 

It will therefore be exciting to see how the field develops in the coming decades.  
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6 APPENDICES ± UNPUBLISHED SUPPORTING INFORMATION 

 

 
 

Figure S1 Supplementary data to Scheme 25 showing HPLC-MS chromatogram data for (a) the 

reaction of compound 57 with cyclic trimetaphosphate in the presence of MgCl2, (b) compound 110 

only, and (c) co-injection of the reaction mixture from the first chromatogram, and compound 110. 

Compound identities were further confirmed by their identical [M+H] ion measurements. 

(a)  

(b)  

(c)  
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Figure S2 Supplementary data to Scheme 19 showing preliminary ESI data for (a) formation of 

compound 58b (m/z = 354.1), as well as (b) formation of compound 59b (m/z = 337.1). 

(a)  

(b)  
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101 MHz 13C NMR 
Spectrum 

of Compound 168 
(Chloroform-d) 
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