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Zusammenfassung 

Hintergrund 

Charakteristisch für Patienten mit einer Schizophrenie sind Defizite in exekutiven Funktionen 

und Aufmerksamkeit sowie Störungen im episodischen und Arbeitsgedächtnis. Diese 

reduzieren das Funktionsniveau und die Lebensqualität der Patienten wesentlich. Die Defizite 

zeigen sich vor, während und nach der ersten Psychose und sind assoziiert mit strukturellen 

Veränderungen in präfrontalen und temporalen Hirnregionen. Trotz umfangreicher Forschung 

sind die neuronalen Mechanismen der Kognitionsdefizite bei Schizophrenie unklar. 

Diagnostisch erschwerend ist die unterschiedliche Ausprägung der Beeinträchtigungen – etwa 

25% der Patienten erzielen in neuropsychologischen Tests ähnliche Leistungen wie gesunde 

Kontrollen. Wir adressierten diese Heterogenität, indem wir neuronalen Korrelate von zwei 

Kognitionsprofilen bei einer Stichprobe von Patienten mit Schizophrenie (SP), gesunden 

Kontrollprobanden (HC) und Verwandten (UR) mittels maschinellen Lernens untersuchten. 

Mittels eines Random-Forrest-Modell (RF) analysierten wir strukturelle Bildgebungsdaten, um 

zu identifizieren, ob und welche Gehirnregionen eine hohe (HighCog) und eine niedrige 

(LowCog) kognitive Leistung bei Schizophrenie mit einer Genauigkeit von über 50% 

vorhersagen können. 

Methoden 

Wir untersuchten das Gehirnvolumen mittels T1 Magnetresonanztomographie (MRI, 

MPRAGE Sequenz) in 54 SP, 54 HC und 19 UR. Im Anschluss untersuchten wir das 

episodische Gedächtnis, die Aufmerksamkeit, exekutive Funktionen und das Arbeitsgedächtnis 

mit dem Verbalen Lern- und Merkfähigkeitstest (VLMT), dem Digit Symbol Substitution Test 

(DSST), dem Trail Making Test A und B (TMT-A, TMT-B) und dem Digit Span Task (DST). 

Die Testergebnisse wurden standardisiert (z-Transformation), gewichtet und zu einem globalen 

Kognitionsindex gemittelt. Patienten mit einem Kognitionsindex bis zu oder über 1 SD des 

kumulierten Durchschnitts von SP und UR wurden den Untergruppen HighCog (n = 13) bzw. 

LowCog (n = 41) zugeordnet. Anschließend klassifizierten wir HighCog und LowCog mittels 

eines RF-Algorithmus mit volumetrischen Daten von SP, HC und UR und definierten die 

relevantesten Gehirnstrukturen für die Vorhersage. Darüber hinaus führten wir mehrere 

Regressionsanalysen durch, um die Beziehung zwischen der Kognition und den Volumina der 

sieben wichtigsten Regionen zu untersuchen. Schließlich verwendeten wir multivariate 

(MANOVA) und univariate Varianzanalysen (ANOVA), um Unterschiede zwischen den 
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Studienpopulationen (SP vs. HC vs. UR) und zwischen den kognitiven Profilen (HighCog vs. 

LowCog) in den Volumina der Hirnregionen zu ermitteln. 

Ergebnisse 

Die RF unterschied zwischen den beiden kognitiven Profilen mit einer Genauigkeit 

(Sensitivität/Spezifität) von 62,1% (62,1%/76,0%) und einer ausgeglichenen Genauigkeit 

(BAC) von 69,0%. Darüber hinaus wurden Volumina der grauen Substanz (GM) von Regionen 

im präfrontalen, temporalen, parietalen und okzipitalen Lappen als relevant für die 

Klassifizierung identifiziert. Die ermittelten Hirnregionen hatten relativ kleine 

Wichtigkeitswerte von 0,01 bis 0,03 und umfassten den rechten dorsolateralen Gyrus frontalis 

superior, den linken und rechten Gyrus frontalis medius, den linken operculare Gyrus frontalis 

inferior, den rechten Gyrus lingualis, den rechten Gyrus supramarginalis, und den linken Gyrus 

temporalis superior. Die anschließende Regressionsanalyse zeigte, dass große GM-Volumina 

aller Regionen, außer des linken Gyrus frontalis medius, eine gute kognitive Leistung in der 

gesamten Stichprobe signifikant vorhersagen (alle p < 0,001). Außerdem stellten die 

MANOVA und ANOVAs in allen Regionen signifikant geringere GM-Volumina in SP im 

Vergleich zu UR und HC fest (alle p <0,003). Allerdings hatten SP und UR ein größeres GM-

Volumen des linken Gyrus frontalis medius als HC. Entgegen unserer Hypothese zeigten die 

Regressionsanalysen keine signifikanten Beziehungen zwischen den wichtigsten Hirnregionen 

und dem Kognitionsindex in SP. Darüber hinaus gab es keine Gruppenunterschiede bei den 

GM-Volumina zwischen HighCog und LowCog. 

Diskussion und Perspektive 

Der aktuelle RF-Algorithmus mit volumetrischen Gehirndaten von Patienten, gesunden 

Verwandten und Kontrollen, konnte erfolgreich konservierte und beeinträchtigte Kognition bei 

Schizophrenie klassifizieren. Das Modell erreichte Vorhersagewerte im Einklang mit früherer 

Forschung und identifizierte Gehirnstrukturen, die mit Arbeitsgedächtnis, Aufmerksamkeit 

und verbaler Verarbeitung in Verbindung stehen. Die beiden kognitiven Profile unterschieden 

sich nicht in der Gehirnmorphologie, was eine Überlappung der zugrunde liegenden kortikalen 

Muster impliziert. Im Vergleich zu HC und UR hatten die Patienten signifikant geringere GM-

Volumina in den relevantesten Regionen, was auf deren Potenzial als endophenotypische 

Marker bei Schizophrenie hinweist. Zukünftige Forschung sollte unsere Ergebnisse in einer 

größeren Stichprobe kreuzvalidieren und sie mit multimodaler Bildgebung, Genetik und 

soziokulturellen Daten kombinieren, um Erkenntnisse über die bei der Schizophrenie 

beeinträchtigten Kognition und deren zugrundeliegende Mechanismen zu gewinnen. 
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Abstract 

Background 

Deficits in executive functions, attention, episodic and working memory are characteristic of 

schizophrenia and lead to poor functional outcome and life quality. Previous research 

demonstrated their prevalence prior, during, and after the first onset of psychosis and linked 

them to altered prefrontal and temporal structures. Moreover, cognitive impairment in 

schizophrenia is associated with genetic factors and, thus, a fundamental component in modern 

etiology models. Despite extensive research in recent years, the neuronal mechanisms of 

cognition in schizophrenia are still poorly understood. One of the main difficulties is the 

observed heterogeneity, with approximately 25% of patients performing similarly to healthy 

controls in neuropsychological tests. In the current work, we addressed this issue by applying 

machine learning to investigate brain morphological correlates of two cognitive profiles in 

schizophrenia in a sample of patients (SP), healthy controls (HC), and unaffected relatives 

(UR). Specifically, we used a random forest (RF) model with neuropsychological and structural 

imaging data to identify if and which brain regions could predict high (HighCog) and low 

(LowCog) cognitive performance in schizophrenia with accuracy above 50%.  

Methods 

We measured brain volume via T1-weighted magnetic resonance imaging (MPRAGE MRI) in 

54 SP, 54 HC, and 19 UR. We then assessed episodic memory, attention, executive functioning, 

and working memory using the Verbaler Lern- und Merkfähigkeitstest (VLMT: Verbal 

Learning and Memory Test), Digit Symbol Substitution Test (DSST), and the Trail Making 

Test A and B (TMT-A, TMT-B), and the Digit-Span-Task (DST). Test scores were 

standardized (z-transformation), weighted, and averaged into a global cognition index. Patients 

with a cognition index up to or above 1 SD of the cumulated average of SP and UR were 

assigned to HighCog (n = 13) and LowCog (n = 41) subgroups, respectively. We then 

conducted an RF analysis using volumetric data of SP, HC, and UR to classify HighCog and 

LowCog and to define the most relevant brain structures for the prediction. Furthermore, we 

performed several subsequent regression analyses to investigate the relationship between 

cognition and the volumes of the top seven regions. Finally, we used multivariate (MANOVA) 

and univariate analyses of variance (ANOVA) to detect differences between study populations 
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(SP vs. HC vs. UR) and between cognitive profiles (HighCog vs. LowCog) in the volumes of 

the seven most important brain regions. 

Results 

As expected, the RF distinguished between the two cognitive profiles with an accuracy 

(sensitivity/specificity) of 62.1% (62.1%/76.0%) and balanced accuracy (BAC) of 69.0%. 

Furthermore, it identified grey matter (GM) volumes of regions in the prefrontal, temporal, 

parietal, and occipital lobe as most relevant for the classification. The top seven brain regions 

with relatively small importance values of .01 – .03 were the right dorsolateral Superior Frontal 

Gyrus, left and right Middle Frontal Gyrus, left opercular Inferior Frontal Gyrus, right Lingual 

Gyrus, right Supramarginal Gyrus, left Superior Temporal Gyrus. 

The subsequent regression analysis demonstrated that large GM volumes of all regions, but the 

left Middle Frontal Gyrus, significantly predict good cognitive performance in the whole study 

sample (all p < .001). Moreover, the MANOVA and ANOVAs revealed significantly smaller 

GM volumes in SP compared to UR and HC in all regions (all p < .003). Only GM volumes of 

the left Middle Gyrus SP and UR had a larger GM volume than HC.  

Against our hypothesis, regression analyses between the most important brain regions and the 

cognition index in SP yielded no significant results. Moreover, there were no significant group 

differences in GM volumes between HighCog and LowCog.   

Discussion and Perspective 

The current RF algorithm with volumetric brain data from patients, healthy relatives, and 

controls successfully classified between preserved and compromised cognitive functioning in 

schizophrenia. The model achieved prediction values in line with previous research and 

identified brain structures associated with working memory, attention, and verbal processing. 

However, the two cognitive profiles did not differ in brain morphology, implying overlapping 

of the underlying cortical patterns. Nevertheless, compared to HC and UR, patients had 

significantly smaller GM volumes in the most relevant regions, suggesting their potential as 

endophenotypic markers in schizophrenia. Future research should cross-validate our findings 

in a larger sample and combine them with multimodal imaging, genetics, and social-cultural 

data to further unravel the mechanisms of cognition in schizophrenia. 
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1. Introduction 

Schizophrenia is a severe neuropsychiatric disorder that affects approximately 1% of 

the world’s population. Despite the low prevalence, it is one of the leading causes for health 

burden and disability (James et al., 2018; Whiteford et al., 2013) and thus an immense 

economic strain on health systems in Germany (Frey, 2014) and worldwide (Chong et al., 

2016). Typically, patients experience distortions in thinking, perception, and behavior reflected 

in symptoms like delusions, hallucinations, apathy, and avolition (DGPPN, 2019). Most 

importantly, schizophrenia impairs cognition, decreasing patients’ clinical outcome, social and 

occupational status, and quality of life (Green, Kern, Braff, & Mintz, 2000; Harvey et al., 2012; 

Hofer et al., 2005). Prior research demonstrated deficits in various domains such as executive 

functioning, attention (Orellana & Slachevsky, 2013), language processing (Crow, 1998), 

working, and episodic memory (Barch & Ceaser, 2012). These impairments are often present 

prior to the onset of the disease (Lencz et al., 2006), stable through its course (Heilbronner, 

Samara, Leucht, Falkai, & Schulze, 2016), and associated with abnormalities in prefrontal and 

temporal brain structures (Antonova, Sharma, Morris, & Kumari, 2004). Moreover, cognitive 

deficits are also observed in healthy first-degree relatives of patients, implying a strong genetic 

component and, thus, a fundamental factor in etiology models (e.g. Howes & Murray, 2014). 

Despite extensive research on cognitive impairment in schizophrenia, its underlying neural 

mechanisms are still unclear. One of the biggest challenges facing researchers is the 

heterogeneity of deficits, with previous work reporting ca. 25% of patients having almost 

healthy cognitive performance (Joyce & Roiser, 2007). In addition, the understanding of 

neuropsychiatric processes requires analysis of complex interactions between brain function, 

behavior, and environmental factors, where traditional statistical methods are often insufficient. 

Machine learning, however, has the capability to process and integrate big amounts of multi-

dimensional data and thus has the potential to solve this methodological issue (N. Tandon & 

Tandon, 2019). In the present study, we applied machine learning to address heterogeneity in 

schizophrenia by investigating the neural correlates of different cognitive profiles in a sample 

of patients, unaffected relatives, and healthy controls. Upon neuropsychological and structural 

imaging data, we aimed to identify, if and which brain structures could predict high and low 

neuropsychiatric performance in schizophrenia.  
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1.1.  Schizophrenia  

Definition and diagnostic of schizophrenia have been continuously evolving since the 

beginning of the 20th century (R. Tandon, 2012). In 1899, Emil Kraepelin first described it as 

“dementia praecox,” a clinical syndrome with an early onset, characterized by neurocognitive 

deficits and poor prognosis in contrast to affective disorders (Kraepelin, 1899). Later, Bleuler 

(1916) recognized key symptoms such as disorganized thinking and speech and renamed it as 

“schizophrenia” (“splitting of the mind”). Schneider (1946) continued the work on the 

nosology of schizophrenia by classifying the symptoms in first-rank and second-rank, a concept 

that was adopted and further developed by modern classification systems such as the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (American Psychiatric 

Association, 2013) and the International Classification of Disorders and Related Problems 

(ICD-10) (WHO, 1993). Currently, the newest revisions of DSM and ICD try to integrate novel 

genetic and neurobiological research findings, to reduce heterogeneity by eliminating subtypes 

and introducing new pathological dimensions (R. Tandon, 2012; Zielasek & Gaebel, 2018). 

1.1.1. Clinical presentation and diagnosis  

Schizophrenia is a complex mental disorder characterized by a broad variety of 

symptoms affecting thinking, emotions, motor functions, and behavior (Mehl, Falkenberg, 

Leopold, Bechdolf, & Kircher, 2019). The symptoms are usually classified as “positive,” 

“negative,” and “cognitive” (Kahn et al., 2015). Positive or psychotic symptoms could be 

defined as exceeding the healthy experience and include odd behavior and distortion in thinking 

and perception. Specifically, patients often have hallucinations, delusions, disorganized 

speech, and appear to have lost sense of reality. In contrast, negative symptoms are 

characterized by the impairment or loss of healthy experiences and include social withdrawal, 

avolition, and diminished emotional expression. Cognitive symptoms refer to impairment in 

cognitive functions such as attention, memory, reasoning, and decision making (Kahn et al., 

2015). For an overview and description of the most common schizophrenia symptoms, see 

Table 1. Various factors such as culture (Myers, 2011) and gender (Ochoa, Usall, Cobo, Labad, 

& Kulkarni, 2012) could influence the content of symptoms (e.g., the content of delusions), but 

not the overall symptom structure. 
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Table 1. Overview of schizophrenia symptoms classified as ‘positive,’ ‘negative,’ and ‘cognitive’ (based on Lincoln, 2018; Mehl et al., 2019). 

Symptom Definition 

Positive symptoms  

Delusion A personal belief/conviction that is not shared by others and persists despite lack of evidence or even despite 

evidence of the contrary. It is often described as bizarre or irrational. 

Common delusions: paranoia, grandiosity, delusions of reference  

Hallucinations Perceptions that occur without external stimuli. In schizophrenia, they could be: 

 acoustic (50% of patients, e.g., hearing voices) 

 visual (15% of patients, e.g., seeing points, stars, or even people) 

 olfactory 

 somatic 

Formal thought disorder  Impairment of the thought process and speech. According to Kircher et al. (2018), they could be classified in:  

 Positive: increase in speech and thought production. Typical positive formal thought disorders are 

loosening of associations, circumstantial thinking, logorrhea (increase in speech production), and 

neologisms (using new non-existing words). 

 Negative: decrease in speech and thought production. Typical negative formal thought disorders are 

poverty of speech (alogia), slowed thinking, thought block. 

Distortions of self-experience Experiences where the line between the self and the environment is disrupted. Common symptoms in 

schizophrenia are (as first defined by Schneider (1946)): 

 thought broadcasting: patients have the feeling that their thoughts are being heard/understand by others 

 thought insertion: patients perceive personal thoughts as being inserted/generated by others 
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Symptom Definition 

 thought withdraw: patients have the feeling that their thoughts are being taken away by others 

 passivity experiences: patients perceive that emotion, intentions, actions, sensations, or bodily 

functions are controlled/generated by others 

Negative Symptoms  

Blunted Affect Patients show no or diminished emotional expressions. They have reduced or “frozen” facial expressions and 

reduced emotional responsiveness to the outside world. 

Anhedonia  Reduced or diminished ability to feel joy, even while participating in usually pleasurable activities 

Avolition Lack of motivation 

Social withdraw Reduction or lack of interest to maintain social contacts and friendships 

Cognitive symptoms  

Memory Deficits in verbal episodic memory, verbal and visual short-term and working memory (Aleman, Hijman, De 

Haan, & Kahn, 1999) 

Attention and concentration Impairment of information processing, orientation, selective attention (Heinrichs & Zakzanis, 1998) 

Executive functions Impaired planning and reasoning (Orellana & Slachevsky, 2013) 

Social cognition Deficits in the ability to understand and recognize that the thoughts, intentions, and emotions of others are 

different from one’s own thought, intentions, and emotions (Theory of mind) (Bora, Yucel, & Pantelis, 2009) 
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Schizophrenia is diagnosed based on the criteria of the classification systems DSM-5 

or ICD-101 upon psychopathological assessment, medical history, and clinical tests (DGPPN, 

2019). In the present work, we applied ICD-10 (German version: Dilling & Freyberger, 2012), 

where criteria include positive and negative symptoms, consider their duration, and the course 

of the disease (specific criteria are presented in Table 2). ICD-10 distinguishes between several 

schizophrenia subtypes (e.g. paranoid schizophrenia, catatonic schizophrenia, schizophrenia 

simplex). However, this division in subtypes is poorly supported by research data and is 

therefore eliminated in DSM-5 and ICD-11 (R. Tandon, 2012; Zielasek & Gaebel, 2018). To 

confirm a diagnosis of schizophrenia, all other possible psychiatric conditions such as 

substance addiction, mania or depression, and possible somatic causes such as cerebral injury 

or autoimmune encephalitis should be ruled out (DGPPN, 2019).  

 

Table 2. Diagnostic criteria for schizophrenia, according to ICD-10 (WHO, 1993, Chapter 

F20 - F29 Schizophrenia, Schizotypal and Delusional Disorders). 

G1. Either at least one of the symptoms of a) – d) or at least two of the symptoms of e) – h) 

should be present for most of the time during an episode of psychotic illness lasting for at least 

one month: 

a) Thought echo, thought insertion or withdrawal, or thought broadcasting. 

b) Delusions of control, influence or passivity, clearly referred to body or limb movements or 

specific thoughts, actions, or sensations, delusional perception. 

c) Hallucinatory voices giving a running commentary on the patient's behavior, or discussing 

him between themselves, or other types of hallucinatory voices coming from some part of the 

body. 

d) Persistent delusions of other kinds that are culturally inappropriate and completely impossible 

(e.g., being able to control the weather, or being in communication with aliens from another 

world. 

e) Persistent hallucinations in any modality, when occurring every day for at least one month, 

when accompanied by delusions (which may be fleeting or half-formed) without clear 

affective content, or when accompanied by persistent over-valued ideas 

f) Neologisms, breaks or interpolations in the train of thought, resulting in incoherence or 

irrelevant speech. 

                                                 
 

1 ICD-11 is set to be released in Germany on 1. January 2022 
(https://www.dimdi.de/dynamic/de/klassifikationen/icd/icd-11). Therefore, in the present work, we focus on 
criteria of ICD-10  
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g) Catatonic behavior, such as excitement, posturing or waxy flexibility, negativism, mutism 

and stupor. 

h) “Negative" symptoms such as marked apathy, paucity of speech, and blunting or incongruity 

of emotional responses (it must be clear that these are not due to depression or to neuroleptic 

medication). 

G2. Most commonly used exclusion criteria: If the patient also meets criteria for manic episode 

(F30) or depressive episode (F32), the criteria listed under G1 above must have been met before 

the disturbance of mood developed.  

G3. The disorder is not attributable to organic brain disease (in the sense of F0), or to alcohol- 

or drug-related intoxication, dependence or withdrawal. 

 

1.1.2. Epidemiology and prognosis 

Patients are usually diagnosed with schizophrenia as young adults with the onset of 

positive symptoms, shaping a first psychotic episode. The first psychotic phase is preceded by 

a prodromal stage, defined by social withdraw, decline in cognitive functioning, and a negative 

affect (Zielasek, Hasan, & Gaebel, 2019). The prodromal stage is often overlooked and could 

begin over ten years prior to the first psychosis (Haijma et al., 2013). The acute psychotic 

episode is followed by the manifestation of mostly negative symptoms and eventually by a 

remission phase (McGlashan & Johannessen, 1996). About 20% of the patients experience a 

single schizophrenia episode, about 30% have multiple episodes with full remission in-

between. In the rest 50% of the patients the disease has a chronic course, with the majority 

(40%) progresses with increasing residual symptoms and thus lowers social-economic status 

and quality of life (Watts, 1985). Schizophrenia affects men and women equally. However, 

men tend to develop it approximately five years earlier than women do. Specifically, 

schizophrenia begins in the early 20s in male patients and in the late 20s or early 30s in female 

patients. Furthermore, schizophrenia could have late-onset in women with begin of menopause 

(Häfner, 2003). Due to the earlier onset and the more common comorbidities, men tend to have 

a more severe progression of the disease and a poorer outcome (Häfner, 2003; Seeman, 2004, 

2012).  

Overall, patients with schizophrenia have lower life expectancy than the general 

population, with some estimates revealing a discrepancy of approximately 20 years (Laursen, 

Nordentoft, & Mortensen, 2014; Schmitt et al., 2018). A systematic review revealed a 2.6 

higher risk of mortality for patients with schizophrenia, a trend which has been worsening in 
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the past decades (McGrath, Saha, Chant, & Welham, 2008). The main factors for the increased 

mortality in schizophrenia are suicide, somatic comorbidities such as metabolic syndrome, 

cardiovascular diseases and diabetes, smoking, and unhealthy lifestyle (Hoang, Stewart, & 

Goldacre, 2011; McGrath et al., 2008; Schmitt et al., 2018). Moreover, the stable fatality rate 

and the growing gap in mortality indicate that patients with schizophrenia have not profited 

from medical care advances and prevention as the general population (Saha, Chant, & 

McGrath, 2007).  

1.1.3. Etiology, Pathophysiology, and Risk factors 

The underlying mechanism for the development and chronification of schizophrenia, 

although still unclear, is hypothesized as a complex gene-environment interaction involving 

abnormalities in neurotransmission, changes in brain function and structure, and compromised 

neurodevelopment (Kahn et al., 2015; Schmitt, Falkai, & Schulze, 2019). 

1.1.3.1. Neurotransmission 

Circumstantial evidence from psychopharmacological and post-mortem studies led to 

the two leading theories regarding neurotransmitters - the dopamine and the glutamate 

hypothesis (Howes, McCutcheon, & Stone, 2015). The dopamine hypothesis states that 

dopamine hyperactivity in limbic and subcortical areas causes positive symptoms in 

schizophrenia (Schmitt et al., 2019). It is based on first observations of psychotic symptoms 

after intake of amphetamine, which increases dopamine levels (Lieberman, Kane, & Alvir, 

1987). The dopamine hypothesis is further supported by the positive effect of drugs, which act 

as D2 receptor antagonist and thus decrease dopamine concentration (Wålinder, Skott, 

Carlsson, & Roos, 1976). Post-mortem studies provided some evidence of neuroanatomical 

changes such as an increase in D2 receptor density (F. Owen et al., 1978) and changes in pre- 

and postsynaptic expression of D2 autoreceptors (Kaalund et al., 2014). Application of Positron 

Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) 

imaging revealed specific dysfunction patterns in vivo, i.e., abnormalities in presynaptic 

dopamine availability (Howes et al., 2009), altered dopamine content in the prefrontal cortex, 

anterior cingulate gyrus, and hippocampus (Patel, Vyas, Puri, Nijran, & Al-Nahhas, 2010). 

Especially in the latter region, the dopaminergic system showed hyperactivity in schizophrenia 

patients (Grace, 2012). Dopaminergic dysfunction could also be responsible for cognitive 

symptoms, as research reveals abnormalities in the D1 receptor to influence working memory 

(Goldman-Rakic, Castner, Svensson, Siever, & Williams, 2004), where both hyper- and 
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hypoactivity lead to deficits (Williams & Goldman-Rakic, 1995). Despite inconsistencies in 

research findings on molecular markers and pathways, the dopamine hypothesis forms the basis 

for all current antipsychotic medications (Kahn et al., 2015). 

The glutamate hypothesis stated initially that schizophrenia is associated with an 

overall glutamate deficiency. For instance, there were early findings of reduced glutamate 

levels in liquor (Kim, Kornhuber, Schmid-Burgk, & Holzmüller, 1980). However, after 

excessive research of various glutamatergic receptors in recent years, the hypothesis was 

modified mainly as a hypofunction of the N-Methyl-D-aspartate (NMDA) receptor (Stone, 

Morrison, & Pilowsky, 2007). It was developed upon findings of phencyclidine and ketamine, 

both NMDA/glutamate antagonists, could induce schizophrenia-like symptoms, positive as 

well as negative (Javitt, 2007; Krystal et al., 1994; Morgan & Curran, 2006). Post-mortem brain 

studies provide some evidence of abnormalities in the glutamatergic system, i.e., decreased 

number of glutamatergic neurons and morphological alterations in their dendrites (Hu, 

MacDonald, Elswick, & Sweet, 2015). However, findings in a reduction in NMDA receptor 

density and glutamate subunits are still inconclusive (Hu et al., 2015; McCullumsmith, 

Hammond, Funk, & Meador-Woodruff, 2012). The specific pathways of the glutamatergic 

dysfunction in schizophrenia are still unknown, but recent research indicates the involvement 

of gamma-amino-butyric acid (GABA) interneurons (Schmitt et al., 2019). NMDA-antagonists 

lead to NMDA inhibition that, in turn, reduces the activity of GABA interneurons and, 

consequently, the release of GABA in the synaptic cleft. The decreased GABA levels cause 

disinhibition of the pyramidal cell and thus increase their firing rate (Homayoun & 

Moghaddam, 2007). Findings from post-mortem (M. J. Schmidt & Mirnics, 2015) and genetic 

studies (Guillozet-Bongaarts et al., 2014) provide conclusive evidence for the alterations of 

GABA neuronal activity. Yet, the underlying mechanism of the GABA system dysfunction 

and its specificity for schizophrenia are still unclear (Kahn et al., 2015).  

Dopamine, glutamate, and GABA all modulate the cortical function and are in constant 

interplay, implying that neurotransmission models for schizophrenia involve complex 

pathways and interactions within neuronal networks (Kahn et al., 2015). 

1.1.3.2. Gene-Environment Interaction 

Genetic factors are of great importance for the etiology of schizophrenia, as twin studies 

reveal heritability of approximately 80% that decreases with the degree of relation. (Cardno & 

Gottesman, 2000; Sullivan, Kendler, & Neale, 2003). However, a substantial part of the 
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heritability, approximately 11%, could be explained with shared environmental factors 

(Sullivan et al., 2003), underlying the notion of schizophrenia due to gene-environment 

interaction (Schmitt, Malchow, Hasan, & Fallkai, 2014). 

Genome-wide-associations studies (GWAS) indicated that schizophrenia is 

polygenetic, i.e., multiple gene risk variations (single nucleotide polymorphisms, SNPs) are 

involved (Schwab & Wildenauer, 2013). Ripke et al. (2014) investigated a sample of 36,989 

patients and 113,075 controls and identified 108 loci of genomic significance. In a more recent 

work, Pardinas et al. (2018) were able to define additional loci (>250) associated with 

schizophrenia. Among those loci are variations related to the dopamine D2 receptor (DRD2), 

glutamate receptors (i.e., GMR3), and NMDA receptor (i.e., SRR). Other genetic risk variants 

include neuregulin (NRG-1), associated with NMDA receptor expression (Stefansson et al., 

2002); catechol-O-methyltransferase (COMT), involved in the dopaminergic system (Mattay 

et al., 2003; Shifman et al., 2002), and disrupted in schizophrenia 1 (DISC1), associated mostly 

with negative and cognitive symptoms (Hennah, Thomson, Peltonen, & Porteous, 2006). NRG-

1 (Grimm et al., 2014), COMT (Erk et al., 2011), and DISC1 (Callicott et al., 2005) have also 

been linked with structural and functional brain imaging to elicit neuroimaging phenotypes. 

Yet, the polygenic risk variants have a rather small overall effect. For instance, according to 

Ripke et al. (2013), 8,300 relevant SNPs could collectively make up approximately 32% of the 

common risk for schizophrenia, suggesting the importance of environmental factors. 

Many studies have investigated relevant environmental factors across the life span 

(Kahn et al., 2015; Schmitt et al., 2014). A large body of research established prenatal and 

perinatal risks like birth and obstetric complications, abnormal fetal growth (Cannon, Jones, & 

Murray, 2002), and perinatal hypoxia (Fineberg, Ellman, Buka, Yolken, & Cannon, 2013). 

Adverse childhood events (e.g., childhood trauma, parental neglect) increase the risk of 

psychosis as well (Varese et al., 2012). Furthermore, social stress during childhood and 

adolescence could also contribute to the development of schizophrenia (Veling, Pot-Kolder, 

Counotte, van Os, & van der Gaag, 2016). One of the most investigated risk factors is substance 

abuse (Murray, Paparelli, Morrison, Marconi, & Di Forti, 2013). Specifically, the use of 

cannabis in adolescence has been repeatedly linked to an increased risk of psychosis (Semple, 

McIntosh, & Lawrie, 2005). Other environmental factors include migration status (Cantor-

Graae & Selten, 2005) and urbanicity (Vassos, Pedersen, Murray, Collier, & Lewis, 2012).  
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These findings can be integrated into the neurodevelopment hypothesis, which states 

that gene and environmental factors (both risk and protective) are in constant interaction and 

affect neurodevelopment and cause schizophrenia (Schmitt et al., 2019). The theory was first 

proposed in the late 80s (Murray & Lewis, 1987; Weinberger, 1987) and since then has 

progressed to one of the leading etiology theories for schizophrenia (Fatemi & Folsom, 2009). 

In the 2-hit model within this framework, Keshavan proposes impaired neurodevelopment 

during two critical stages - early brain development and adolescence (Keshavan, 1999; 

Keshavan & Hogarty, 1999). Specifically, genetic predispositions combined with prenatal 

adverse events could negatively impact the formation of individual networks and lead to a 

neurobiological vulnerability and first premorbid symptoms. This vulnerability could impair 

brain maturation during adolescence, causing excessive synaptic pruning and provoking first 

schizophrenia symptoms (Keshavan, 1999). The neurodevelopmental theory has been 

supported by a large body of work showing gene variations involved in neuronal development 

to be perturbed in schizophrenia. Moreover, imaging studies demonstrating altered brain 

structure and function as well as reports of premorbid symptoms at an early age, years before 

the first onset of the disease, further support the notion of schizophrenia as a 

neurodevelopmental disorder (Fatemi & Folsom, 2009). However, a recent review suggested 

that the 2-hit model could oversimplify the pathogenesis process of risk factors interacting with 

each other and with genetic predispositions during multiple critical stages for 

neurodevelopment and cumulating to the onset of schizophrenia (Davis et al., 2016). 

1.1.3.3. Alterations in brain function and structure 

Imaging methods extend the understanding of the pathophysiology of schizophrenia by 

linking neurobiological findings to brain anatomy, behavioral symptoms, and progression of 

the disease (Kahn et al., 2015). A meta-analysis investigating structural magnetic resonance 

imaging (sMRI) data from 317 studies demonstrated volumetric brain abnormalities in 

schizophrenia (Haijma et al., 2013). Specifically, both first episode and chronic schizophrenia 

patients had reduced total grey and white matter as well as total brain and intracranial volumes 

compared to healthy controls. In contrast, cerebrospinal fluid (CSF) and ventricular volumes 

were increased. Prefrontal, temporal, parietal structures (e.g., Olabi et al., 2011) and the insula 

(Wylie & Tregellas, 2010) are particularly affected (McDonald et al., 2005). Furthermore, brain 

volumetric changes are observed in unaffected relatives (Boos, Aleman, Cahn, Pol, & Kahn, 

2007; W. Zhang et al., 2020) and high-risk individuals (Chan, Di, McAlonan, & Gong, 2009) 

as well. In addition, reduction in global grey matter volume was associated with duration of 
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illness and medication dose, suggesting morphological changes as a result of impaired neuronal 

development and disease progression (Haijma et al., 2013; Olabi et al., 2011). In unmedicated 

patients, a decrease in volumes of the thalamus and nucleus cuadales were more pronounced 

than in medicated patients, implying that morphological changes in subcortical regions occure 

prior beginn of treatment and are eased by antipsychotics (Haijma et al., 2013). Moreover, 

studies revealed cortical thinning which is associated with poor oucome and advances with the 

course of the disease (van Haren et al., 2011). Neuroimaging studies using functional MRI 

(fMRI) and PET have linked positive and negative symptoms with brain activation. For 

instance, auditory verbal hallucinations are associated with increased activation of fronto- and 

media-temporal areas involved with language processing and memory (Jardri, Pouchet, Pins, 

& Thomas, 2011). Negative symptoms like emotional processing and social cognition 

impairments are related to altered activatons of the amygdala, medial prefrontal cortex and the 

inferior paretial lobe (Brunet-Gouet & Decety, 2006; Pankow et al., 2013). Neuroimaging 

research, investigating cognitive symptoms, is summarized in Chapter 1.2.1. 

1.1.4. Treatment  

According to the German clinical practice guideline, schizophrenia is best treated by 

combining medication, psychotherapy, and psychosocial therapy (DGPPN, 2019). 

Antipsychotics act as dopamine antagonists and improve mostly positive symptoms (Huhn et 

al., 2019). They can be divided into two groups: typical or first-generation (FGAs, e.g., 

chlorpromazine, haloperidol) and atypical or second-generation antipsychotics (SGAs, e.g., 

clozapine, olanzapine, risperidone). Although effective, antipsychotics could cause severe side 

effects (e.g., Parkinsonism with FGAs and metabolic syndrome with SGAs) and contribute to 

the emergence of comorbid somatic conditions (e.g., diabetes) (for details, see Kahn et al., 

2015), which have been linked to the increased mortality in schizophrenia (McGrath et al., 

2008). Moreover, neuroimaging studies reveal that antipsychotics could be involved in brain 

anatomy changes, such as grey matter reduction (Guo et al., 2015). There is no effective 

pharmacological treatment for negative and cognitive symptoms (Leucht et al., 2017; Nielsen 

et al., 2015), but in a subgroup of patients, they could be managed with psychotherapy, 

cognitive remediation therapy, and, as novel research shows, noninvasive brain stimulation 

(DGPPN, 2019). 
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1.2.  Cognitive deficits in schizophrenia 

Cognitive impairment is a main characteristic of schizophrenia. First described by 

Kraepelin (1919) and Bleuler (1916), deficits in various neuropsychological domains could be 

observed across patients’ lifespan (Keefe & Fenton, 2007). In the last decades, research on this 

topic has rapidly increased, investigating the neurobiological pathways of cognitive 

dysfunction (Barch & Ceaser, 2012) and recognizing its potential as an intermediate phenotype 

for schizophrenia (e.g., Park & Gooding, 2014). Thus, cognition has been included as a 

fundamental component in etiology models such as the integrated sociodevelopmental-

cognitive model (Howes & Murray, 2014) and the neurodevelopmental hypothesis (M. J. 

Owen, O'Donovan, Thapar, & Craddock, 2011). 

1.2.1. Domains and neuronal pathways of cognitive dysfunction in schizophrenia 

Schizophrenia is associated with a global cognitive impairment (Schaefer, Giangrande, 

Weinberger, & Dickinson, 2013). Various domains like episodic memory, working memory, 

executive functioning, attention, processing speed, problem-solving, and social cognition are 

significantly affected (Nuechterlein et al., 2004).  

Attention is a core cognitive function, often considered to be hierarchical and fractioned 

in several dimensions by neuropsychological theories (Lezak, Howieson, Bigler, & Tranel, 

2012). Sohlberg and Mateer (1989) differentiated in their clinical model of attention between 

(1) focused attention, the ability to direct attention as a response to stimuli; (2) sustained 

attention or vigilance, the capacity to keep high attentional activity over time; (3) selective 

attention, the ability to focus our attention to relevant stimuli, while suppressing distractions; 

(4) alternating attention, the capacity to switch attention between tasks and (5) divided 

attention, the ability to operate on different tasks simultaneously. Recent research using 

machine learning revealed that performance across the attention domains could discriminate 

between schizophrenia patients and healthy controls with 90.70% accuracy, indicating 

psychomotor speed, sustained and divided attention to be crucial for the classification (Shen et 

al., 2014). These findings are supported by a large body of research showing lower performance 

on vigilance tasks in schizophrenia (e.g., Nuechterlein et al., 2015) during active psychosis and 

remission (Nuechterlein et al., 1992). Moreover, a recent fMRI meta-analysis linked 

impairment in sustained attention to reduced activation in the insular cortex and the inferior 

frontal gyrus, to hyperactivation in the thalamus, and altered activation in the anterior cingulate 

cortex (ACC), indicating dysfunction in the latter two regions to be specific for schizophrenia 
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and not for bipolar disorder (Sepede et al., 2014). Deficits in selective attention have also been 

repeatedly observed (e.g., Carter, Robertson, & Nordahl, 1992) and are associated with altered 

activations of the ACC (Carter, Mintun, Nichols, & Cohen, 1997) and the prefrontal cortex 

(Weiss et al., 2003). 

Working memory refers to the ability to process, temporally maintain and manipulate 

information (Baddeley, 2010), and it is crucial for academics (Alloway & Alloway, 2010) and 

professional success (Higgins, Peterson, Pihl, & Lee, 2007). In Baddeley’s model of working 

memory (2007), it is conceptualized as a multi-modal system with limited capacity, consisting 

of (1) a central executive, a supervisory system that directs attention, inhibits irrelevant stimuli 

and updates, encodes and coordinates information flow, and (2) modality-specific subsystems 

(phonological loop, episodic buffer and visuospatial sketchpad). Deficits in working memory 

in schizophrenia are observed across domains and modalities (Forbes, Carrick, McIntosh, & 

Lawrie, 2009; J. Lee & Park, 2005), with the most noticeable results for the central executive 

(Barch & Ceaser, 2012). Encoding and maintenance of information are significantly affected 

(Park & Gooding, 2014). Moreover, neuroimaging studies have repeatedly demonstrated 

abnormal activation of the dorsolateral prefrontal cortex (DLPFC) (e.g., Potkin et al., 2009), a 

region anatomically and functionally associated with working memory (Esposito, Detre, Alsop, 

& Shin, 1995). Several neuroimaging studies revealed hypoactivation of DLPFC during 

working memory tasks compared to healthy controls (Barch, Csernansky, Conturo, & Snyder, 

2002; Carter et al., 1997) and patients with major depression (Barch, Sheline, Csernansky, & 

Snyder, 2003), indicating the specificity of the deficit for schizophrenia. However, there is also 

evidence of both hypo- and hyperactivation of the DLPFC regarding factors such as task 

demand, suggesting an overall DLPFC insufficiency (Manoach, 2003; Potkin et al., 2009). 

Working memory impairment is further associated with the prefrontal cortex's abnormal 

connectivity to the intraparietal cortex and the hippocampus (Henseler, Falkai, & Gruber, 

2010). Moreover, DLPFC-hippocampus dysconnectivity in relation to working memory 

deficits, has been repeatedly reported to be more common in schizophrenia than other 

psychiatric disorders (M. Schneider et al., 2017).  

Executive function is a group of cognitive abilities that are crucial for planning, 

executing, and coordinating complex behavior and managing everyday life (Lezak et al., 2012). 

It includes planning, cognitive flexibility, attention, problem-solving and working memory 

(Orellana & Slachevsky, 2013). According to Miyake et al. (2000), the main three underlying 

functions are (1) shifting or cognitive flexibility, the ability to switch between tasks, (2) 
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updating, monitoring, and adjusting of working memory contents and (3) inhibition, 

suppressing an automatic response (later revised as a common executive function) (Miyake & 

Friedman, 2012). In their unity/diversity framework, Miyake and Friedmann (2012) postulate 

that the executive functions are both unique and highly correlated; they have a genetic basis 

and stability across the lifespan; are related to psychopathology in several disorders. Indeed, a 

recent review revealed that deficits in executive functions (including working memory) are 

observed in affective and mood disorders, but are most prominent in schizophrenia (Snyder, 

Miyake, & Hankin, 2015). These results correspond with previous findings of executive 

dysfunction in schizophrenia (Heinrichs & Zakzanis, 1998; Orellana & Slachevsky, 2013). 

Anatomically, executive functioning impairment is associated with the prefrontal cortex's 

abnormal structure, specifically with volumetric alterations of the parahippocampal gyrus, 

superior temporal gyrus, and integrity of the striatum, hippocampus, and ACC (Antonova et 

al., 2004). A meta-analysis of 41 fMRI studies demonstrated that healthy controls and 

schizophrenia patients activate the same networks during executive functioning (Minzenberg, 

Laird, Thelen, Carter, & Glahn, 2009). However, the pattern is altered in schizophrenia, where 

the activation of DLPFC, right ventrolateral prefrontal cortex (VLPFC), thalamus, cerebellum, 

temporal and parietal areas is reduced. In contrast, other prefrontal areas compensate for 

hyperactivation (Minzenberg et al., 2009), supporting the hypothesis of disturbed functioning 

not of single brain regions but also neural circuits (Schmitt, Hasan, Gruber, & Falkai, 2011). 

There is growing evidence of executive impairment resulting from dysfunction of prefronto-

striato-thalamic, prefronto-parietal, and prefronto-temporal networks (Orellana & Slachevsky, 

2013). 

Memory is a complex multidimensional and hierarchical system (Milner, Squire, & 

Kandel, 1998) that has been repeatedly reported to be impaired in schizophrenia (Aleman et 

al., 1999). Episodic memory, a subsystem of long-term memory retaining phenomenological 

memories (e.g., events) (Tulving & Markowitsch, 1998), is particularly affected (Barch & 

Ceaser, 2012). Indeed, several meta-analyses indicated that patients with schizophrenia 

perform poorly on visual and verbal episodic memory tasks (Aleman et al., 1999; Heinrichs & 

Zakzanis, 1998). A recent review demonstrated greater deficits during recall than recognition, 

especially during encoding (Danion, Huron, Vidailhet, & Berna, 2007). Anatomically, episodic 

memory performance is associated with structures of the medial temporal lobe (Leavitt & 

Goldberg, 2009), specifically the hippocampus, where numerous studies reported reduced 

volume (Nelson, Saykin, Flashman, & Riordan, 1998) and cellular abnormalities (Heckers & 
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Konradi, 2002) in schizophrenia. A meta-analysis of 18 fMRI studies showed hypoactivation 

of the left inferior prefrontal cortex and the hippocampus in patients during episodic memory 

tasks than healthy controls (Achim & Lepage, 2005). However, a more recent review suggested 

that the direction of the altered prefrontal and hippocampal activation could be multilateral 

(Leavitt & Goldberg, 2009). Furthermore, episodic memory impairment is associated with 

disturbed fronto-temporal connectivity, including the DLPFC, parahippocampus and superior 

temporal gyrus (Wolf et al., 2007). For instance, in a computational model study, Talamini et 

al. (2005) demonstrated that reduced parahippocampal connectivity could result in 

schizophrenia-like memory deficits. 

The extensive evidence of deficits in various neuropsychological domains has led to the 

hypothesis of the generalized or broad cognitive deficit in schizophrenia (Braff et al., 1991; 

Gold & Dickinson, 2013). Indeed, Wilk et al. (2004) demonstrated that 575 patients with 

schizophrenia perform on average 2 SDs poorer than healthy controls as measured by the total 

scale of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), 

including domains like processing speed, attention, and memory. Besides, a recent meta-

analysis of 100 studies with a total of 9048 patients and 8841 controls showed moderate to 

severe deficits in all investigated cognitive domains in schizophrenia, where processing speed 

and episodic memory were most affected. Moreover, the evidence of impairment has persisted 

over time despite changing diagnostic criteria, materials, and research methods (Schaefer et al., 

2013). Global cognitive deficits have been linked to an overall whole brain volume and grey 

matter reduction, increased ventricles and grey matter reduction in frontal and temporal 

structures (Antonova et al., 2004), and white matter abnormalities (Dickinson & Harvey, 2008). 

Furthermore, a recent review of resting-state fMRI studies indicated that cognitive impairment 

is associated with lower connectivity between cortical (e.g., prefrontal cortex) and subcortical 

regions (e.g., thalamus, cerebellum, basal ganglia), which is not specific to particular 

neuropsychological functions (Sheffield & Barch, 2016). However, the generalized deficit 

hypothesis has been challenged by findings of preserved cognitive functions in schizophrenia 

and suggesting a more selective impairment of specific abilities (Chapman & Chapman, 1989; 

Green, Horan, & Sugar, 2012). Nevertheless, deficits in attention, working memory, executive 

functioning, and episodic memory are considered to be characteristic of schizophrenia 

(Reichenberg & Harvey, 2007) and hypothesized to have a common underlying mechanism 

and neurobiological pathways involving mostly prefrontal and temporal cortical and 
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subcortical structures (Barch & Ceaser, 2012; Lesh, Niendam, Minzenberg, & Carter, 2011; 

Silver & Feldman, 2005). 

1.2.2. Prevalence and heterogeneity 

With estimates of about 80% of schizophrenia patients performing at least 1 SD worse 

than the general population's mean, cognitive impairment is considered widespread in 

schizophrenia (Keefe & Fenton, 2007). Yet, this would mean that a significant subgroup of 

patients shows no clinically relevant neuropsychological deficits. Indeed, previous studies 

indicated that approximately 20-30% of patients with schizophrenia have comparable 

neurocognitive functioning as healthy controls (Holthausen et al., 2002; Palmer et al., 1997). 

However, there is evidence that despite no relevant neuropsychological deficit, all patients with 

schizophrenia are performing worse than expected (Keefe, Eesley, & Poe, 2005; Wilk et al., 

2005), especially regarding premorbid intelligence and maternal education (Kremen, Seidman, 

Faraone, Toomey, & Tsuang, 2000). For instance, patients with high intelligence have similar 

cognitive decrements as patients with low or average intelligence, despite achieving results 

within the normal range on neuropsychological testing (Vaskinn et al., 2014). Moreover, 

studies with monozygotic twins discordant for schizophrenia provide further cognitive decline 

findings due to psychosis (Goldberg et al., 1990). Nevertheless, there is persistent evidence of 

heterogeneity in cognitive impairment in schizophrenia (Joyce & Roiser, 2007). Studies using 

cluster analysis classified neuropsychological functioning in schizophrenia in three to four 

subgroups; each solution consisted of a high or average cognition and a severely impaired 

cluster. In addition, subgroups with moderate or specific deficits in processing speed, executive 

function, and/or memory were also defined (Bechi et al., 2019; G. Goldstein, Allen, & Seaton, 

1998; G. Goldstein & Shemansky, 1995; Hill, Ragland, Gur, & Gur, 2002). Geisler et al. (2015) 

differentiated between four cognitive profiles of patients with compromised (1) verbal fluency, 

(2) verbal memory and motor control, (3) low face memory and processing, and (4) general 

cognitive impairment. Each cluster was associated with a distinct pattern of altered brain 

morphology and function, including cortical thinning overall and specifically in Wernicke’s 

area and lingual gyrus, reduced hippocampal volume and abnormal fronto-parietal activity 

(Geisler et al., 2015). Most recently, different cognitive profiles in first episode schizophrenia 

patients could be elicited and linked to altered brain connectivity in e.g. the salience network, 

fronto-parietal network, the default mode network (Rodriguez et al., 2019). In sum, the large 

body of research suggests a widespread cognitive decline in schizophrenia, which is 
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heterogeneous in nature regarding severity and distinctive patterns of deficits and could be 

linked to neuronal pathways (Geisler et al., 2015; G. Goldstein et al., 1998; Hill et al., 2002). 

1.2.3. Heritability and course of cognitive deficits 

Previous research showed that neuropsychological impairment accompanies patients 

with schizophrenia across their lifetimes (Woodberry, Giuliano, & Seidman, 2008). For 

instance, cognitive deficits during early childhood (Cannon, Caspi, et al., 2002; Seidman et al., 

2013), and later in fluid intelligence in the preteen years (Reichenberg et al., 2010) and in 

verbal processing in adolescence (MacCabe et al., 2013) are present in children, who later 

develop schizophrenia. In addition, individuals with a high risk for schizophrenia perform 

worse than healthy controls in various neuropsychological domains (Keefe, 2014), such as 

attention, working memory, and episodic memory (Fusar-Poli et al., 2012; Seidman et al., 

2010). Accordingly, a recent meta-analysis comparing 197 high-risk with 199 healthy 

participants demonstrated the most considerable discrepancies in overall cognition, processing 

speed, and attention, whereas effects regarding working memory, problem-solving, and 

learning were moderate (Zheng et al., 2018). Moreover, unaffected first-degree relatives of 

people with schizophrenia also show cognitive abnormalities, yet milder than patients (Bora et 

al., 2014; Snitz, Macdonald, & Carter, 2006). The neuropsychological decrements are most 

prominent in participants that later develop schizophrenia (Seidman et al., 2010). Moreover, as 

in schizophrenia patients, changes in brain morphology and function associated with cognition 

have been demonstrated in first-degree relatives, including grey matter reduction overall, in the 

hippocampus, thalamus, and ventricular enlargement (Boos et al., 2007; de Zwarte et al., 2019; 

W. Zhang et al., 2020). Due to the consistent evidence of cognitive deficits in schizophrenia 

patients and their first-degree relatives, they are proposed to be heritable and linked to genetic 

polymorphisms (Sabb et al., 2008). Indeed, a recent review of 82 molecular studies determined 

several candidate genes, thereunder COMT and DISC1, and revealed empirical evidence, 

though inconsistent, of their role in cognitive impairment in schizophrenia (Zai, Robbins, 

Sahakian, & Kennedy, 2017).  

Prodromal neuropsychological abnormalities intensify during the first episode of 

schizophrenia, where deficits in verbal memory and processing speed are most prominent 

according to meta-analytical findings (Mesholam-Gately, Giuliano, Goff, Faraone, & Seidman, 

2009). However, a more recent meta-analysis of 25 studies with 905 first-episode patients, 560 

high-risk patients, and 405 healthy controls indicated no progression of the preexisting 
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cognitive deficits due to psychosis. Moreover, neuropsychological impairment decreased with 

the improvement of negative symptoms (Bora & Murray, 2013). Despite heterogeneous 

findings on the initial cognitive decline with the first onset of schizophrenia, longitudinal and 

meta-analytical studies indicate stability of neuropsychological functioning in chronic patients 

(Albus et al., 2019; Heilbronner et al., 2016). Regarding psychopathology, cognitive deficits 

are mostly associated with negative symptoms, especially with disorganization syndrome (de 

Gracia Dominguez, Viechtbauer, Simons, van Os, & Krabbendam, 2009). Furthermore, 

cognitive impairment has been demonstrated to be more critical for everyday functioning, 

employability, socializing, and overall quality of life than other symptom clusters (Bryson & 

Bell, 2003; Green et al., 2000). Despite its significance, there are only few treatment options 

with cognitive remediation and antipsychotic therapy having no significant overall effects 

(Nielsen et al., 2015) with exception of few clinical subgroups, where small improvement is 

achieved (Krug, Stein, & Kircher, 2020). 
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1.3.  Machine Learning 

Despite extensive research, the underlying cognitive impairment mechanisms in 

schizophrenia are still unclear, mostly due to the heterogeneity of deficits and overall 

psychopathology. Moreover, research on this topic involves a large amount of 

multidimensional data of complex neuronal pathways, behavioral performance, social and 

environmental factors, which are in constant interaction and could be only poorly analyzed by 

classical statistical methods (Bzdok & Meyer-Lindenberg, 2018). However, with the rapid 

advancement in computer power, machine learning methods emerged as a powerful tool to 

address these methodological issues (Dwyer, Falkai, & Koutsouleris, 2018). Indeed, 

schizophrenia research using machine learning, particularly in neuroimaging, is steeply 

increasing in the last years (N. Tandon & Tandon, 2019).   

1.3.1. Machine learning: definition, types, and application in schizophrenia research 

Machine learning is a field within artificial intelligence, involving the development of 

computer systems capable of improving and adjusting using previous experiences (Jordan & 

Mitchell, 2015). Specifically, algorithms apply pattern recognition techniques to large amounts 

of data, test various assumptions about its structure, and then learn from these assumptions by 

comparing them and modifying single aspects of the models. Thus, it involves repeated 

parameter estimation, performance evaluation, error identification, and correction until the 

model maximizes accuracy (Dwyer et al., 2018; N. Tandon & Tandon, 2019). Machine learning 

algorithms are classified into three main categories: (a) supervised where the cases of the output 

variable are labeled (e.g., binary/multiclass classification); (b) unsupervised where the aim is 

to identify the structure (e.g., dimension reduction); (c) reinforcement where the learning is 

reinforced through immediate reward or penalties (mostly used in robotics) (Jordan & Mitchell, 

2015; N. Tandon & Tandon, 2019). Machine learning analysis follows three main steps: (1) 

data preparation (data preprocessing and division in training and test subset), (2) learning 

(choice of parameters, model tuning, estimator parameter regularization), and (3) evaluation 

(application of the parameters to the test subset) (N. Tandon & Tandon, 2019). In the field of 

schizophrenia, machine learning has been successfully applied for diagnosis, the prognosis of 

clinical outcome, and treatment (Dwyer et al., 2018). For instance, a meta-analysis including 

38 studies showed that implementing multivariate pattern recognition techniques to 

neuroimaging data could differentiate patients with schizophrenia from controls with 

sensitivity and specificity of ~80% (Kambeitz et al., 2015). Similarly, a more recent systematic 
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review demonstrated that machine learning analysis of functional and structural MRI data 

could diagnose schizophrenia with an accuracy of 60%-80%, which could be improved by 

integrating various machine learning algorithms (de Filippis et al., 2019). Moreover, fMRI 

studies attain greater specificity (Kambeitz et al., 2015) and overall accuracy (de Filippis et al., 

2019) than sMRI studies. Regarding specific algorithms, support vector machines (SVM) are 

the most frequently used (de Filippis et al., 2019; Dwyer et al., 2018). Pattern recognition 

techniques could also be applied to elicit different cognitive profiles in schizophrenia. For 

instance, Gould et al. (2014) used SVM to whole-brain morphometry to differentiate patients 

with compromised and spared cognitive subtypes from each other and from healthy controls. 

With approximately 70% accuracy both cognitive subtypes could be recognized from healthy 

controls, suggesting similar neuroanatomical abnormalities in cortical (e.g. inferior temporal 

gyrus), subcortical (e.g. hippocampus) and cerebellar regions (e.g. vermis). However, the 

classification of patients with compromised and spared cognition was only ≤ 60% but increased 

to 83% in female sample when stratified for gender (Gould et al., 2014). Regarding prediction 

of clinical and treatment outcome in schizophrenia, machine learning algorithms have 

previously obtained balanced accuracy values of >70% (e.g. prognosis of first-episode 

psychosis, Koutsouleris et al., 2016) and 85% (e.g. response to repetitive transcranial brain 

stimulation, Koutsouleris et al., 2017).  

Despite promising results, machine learning methods in schizophrenia research should 

be applied and interpreted with caution due to limitations such as future selection bias, 

overfitting, biased reporting of classification results, small sample sizes, heterogeneity of 

diagnostic labels, clinicians’ insufficient computational knowledge, and lack of transparency 

in model and data presentation (Arbabshirani, Plis, Sui, & Calhoun, 2017; Dwyer et al., 2018; 

N. Tandon & Tandon, 2019). Regarding sample size, Schnack and Kahn (2016) demonstrated 

its influence with a small sample size leading to high accuracy and low generalizability and 

vice versa.  

1.3.2. Random Forrest Classification: general principles and application 

The random forest (RF) classifier is a supervised ensemble learning method, proposed 

by Breiman (1999, 2001). It is based on bootstrap aggregation (bagging) of classification trees. 

A classification tree is a type of decision tree, where the outcome is a class label. A class 

describes a group of items with common properties, whereas the class label is the name of the 
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class (Drummond, 2010b). Each class is defined by its characteristics or features. (Drummond, 

2010a).  

A decision tree is an old classification model with a tree-like structure (e.g., Breiman, 

Friedman, Olshen, & Stone, 1984; Quinlan, 1986), commonly used in machine learning and 

statistics. Figure 1A shows a simple example of a decision tree that aims to classify a fictional 

letter sequence by the attributes color and letter type. The classification process starts at the 

root node, representing the entire data set and then splits it using the attribute color (Blue?). It 

then moves down the branch that refers to a specific characteristic of the attribute (here, “yes” 

or “no”). This step is repeated until it arrives at an unsplittable leaf node (Fürnkranz, 2010). In 

the current example, the branch “no” arrives at a leaf node “not blue,” whereas the branch “yes” 

arrives at an internal node “blue” that is further split using the attribute letter type (B?). The 

process moves then down the branches “yes” and “no” to the according leaf nodes “blue B” 

and “blue, not B” (see Figure 1A). In machine learning, the induction of decision trees is mostly 

based on recursive top-down algorithms (e.g., Top-Down Induction of Decision Trees, 

TDIDT), where the selection of a suitable attribute is essential (Fürnkranz, 2010). Attribute 

selection is typically based on the node impurity, describing whether the data points included 

in the node belong to a single class. If the node consists only of examples of a single class, it 

is a pure node. Impurity is typically measured by the information-theoretic entropy (Quinlan, 

1986) or the Gini index (Breiman et al., 1984). Despite the many advantages of decision trees 

learners, such as feasibility and simple interpretation, they are vulnerable to overfitting by 

constructing over-complex trees. A typical technique to avoid overfitting is to simplify the tree 

by removing sub-nodes (pruning) (Fürnkranz, 2010).  

RF classifiers combine many uncorrelated classification trees, where each tree carries 

out a class prediction, and the class with the most votes is taken as a prediction model (see 

Figure 1B). Every classification tree is built applying bagging, where the training data set is 

generated by selecting a bootstrap sample, a random subset from the data set with replacement 

(Breiman, 1996). Moreover, unlike a classical decision tree, each tree in an RF considers not 

all but only a random subset of features (Breiman, 2001). In this way, the individual trees are 

trained on different data sets using different features, which reduces the correlation between 

trees. In an RF, trees are inducted upon the Gini Index or the information gain/entropy as 

attribution selection methods. Trees are not pruned but grown to a maximum depth. Overfitting 

is avoided by application of the Strong Law of Large Numbers (Breiman, 2001). 
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RF algorithms have been successfully applied in neuroimaging research. For instance, 

a recent systematic review demonstrated that the RF classifier is robust to overfitting and 

outliers and could recognize between patients with Alzheimer's disease and healthy controls 

with accuracy up to 90%, especially when applied to multi-modal neuroimaging data (Sarica, 

Cerasa, & Quattrone, 2017). In schizophrenia, the analysis of EEG data with RF could exclude 

patients from healthy participants with an accuracy of 100% (Buettner et al., 2019). In addition, 

RF models have obtained high predictive accuracy for mapping cognitive subtypes with 

schizophrenia-associated genes (Zheutlin et al., 2018). Applied to sMRI data, an RF algorithm 

using cortical thickness could classify patients with childhood-onset schizophrenia from 

healthy controls with 73.7% accuracy, identifying prefrontal, left precuneus, and temporal 

regions as most important for the model (Greenstein, Weisinger, Malley, Clasen, & Gogtay, 

2012). Moreover, RF outperformed SVM and logistic regression in classifications of symptom 

profiles in schizophrenia based on cortical thickness achieving >70% accuracy (Talpalaru, 

Bhagwat, Devenyi, Lepage, & Chakravarty, 2019). Thus, RF can be a feasible and effective 

classification model using complex imaging data.  
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 Figure 1. Graphic illustrations of classification models. (A) Decision tree describing a fictive data (based on, Fürnkranz, 2010); (B) Random 

Forest Classifier (Source: Venkata Jagannath, https://community.tibco.com/wiki/random-forest-template-tibco-spotfirer-wiki-page). 
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1.4. The present study 

The main aim of the present study is to link cognitive heterogeneity in schizophrenia to 

brain structure. To do so, we used a data-driven approach to define high and low cognitive 

profiles in a study sample of patients with schizophrenia, unaffected relatives, and healthy 

controls. We then applied an RF algorithm with neuroanatomical variables as predictors of the 

two cognitive profiles and identified the most important anatomical structures for the 

classification. Then, we explored the relationship between the most important regions and 

cognition via regression analyses. We further used group comparisons to investigate if and how 

study groups and cognitive profiles differ in the anatomical regions of importance. Therefore, 

we obtained demographic, clinical, neuroimaging (sMRI), and cognitive data in this 

observational case-control study. The neuropsychological testing included assessments of 

episodic verbal memory, working memory, processing speed, attention, and executive 

functions (cognitive flexibility), and results were cumulated in a global cognition index.  

We hypothesized that the RF model with volumetric measures as predictors and trained 

with data from all study groups would classify high and low cognitive performance in 

schizophrenia with accuracy above 50%. Moreover, we expected that the prefrontal and 

temporal regions would be most important for the prediction. We further assumed that volumes 

of the best seven predictors would significantly predict cognition, differ between high and low 

cognitive profiles, and between patients, healthy controls, and unaffected relatives.   

  



2  METHODS 25 

 
 

2. Methods 

2.1. Study Design 

The current work presents data from the MIMICSS study (“Multimodal Imaging in 

chronic Schizophrenia Study”), part of the KFO 241 working group (http://www.kfo241.de/) 

and later of the PsyCourse consortium (http://www.psycourse.de/). MIMICSS is an 

observational case-control study that investigates genetics, neurocognition, brain morphology, 

and function as factors for the development of schizophrenia with a 2-year follow-up. The 

study protocol and its amendments were written according to the rules of the Declaration of 

Helsinki of 1975, revised in 2008, and approved by the local ethic committee (Medical Faculty 

of the Ludwig-Maximillian-University Munich: Code 17-13; Date of Approval: 25th of 

February 2013 and 25th of March 2014). Here, we present clinical, neurocognitive, and 

structural MRI data from the first time of measurement.  

2.2. Participants 

Originally, 74 patients with schizophrenia (SP, n = 74, 17 female, Mage = 35.04, SDage = 

11.77), 56 controls (HC, n = 56, 16 female, Mage = 33.13, SDage = 11.83) and 22 unaffected 

relatives (UR, n = 22, 17 female, Mage = 40.91, SDage = 17.33) participated in the study. SPs 

were recruited at the Department for Psychiatry and Psychotherapy, Clinic of the University of 

Munich, where they were currently in- or outpatients. Diagnosis of schizophrenia disorder 

without psychiatric comorbidity was made according to ICD-10 (F20.x) by a consulted 

physician and confirmed by a senior psychiatrist. URs were recruited through their affected 

relatives or the clinics’ psychoeducation group for relatives of psychosis patients. Upon study 

participation, URs showed an official document (e.g., medical history, physician’s letter) to 

confirm the schizophrenia diagnosis of their first-degree relative. HCs were recruited via flyers 

in the Munich area. Both UR and HC were screened using the Mini-International 

Neuropsychiatry Interview (M.I.N.I.) (Sheehan et al., 1998) to exclude mental illness. Detailed 

in- and exclusion criteria are presented in Table 3. All participants were fully informed about 

the study background and its procedures and gave their written informed consent. In the case 

of legal representation, patients’ representatives were contacted, informed, and gave their 

written consent. All participants received a 50 € (7.50 €/h) compensation for their participation. 

UR and HC received another 50 € for their travel expenses. Furthermore, a travel-accident 

insurance for the patients was obtained (ECCLESIA mildenberger HOSPITAL GmbH).  

http://www.kfo241.de/
http://www.psycourse.de/
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Table 3. Overall and specific inclusion and exclusion criteria for patients with schizophrenia 

(SP), healthy controls (HC), and unaffected relatives (UR). 

 Inclusion Criteria Exclusion Criteria 

Overall  Age: >18 

 Language: sufficient German 

knowledge 

 Capability to consent 

 Neurological disorder (e.g., epilepsy)  

 Current alcohol abuse or dependence 

 Current substance abuse or 

dependence 

 MRI contraindications (e.g., 

claustrophobia, metal implants) 

SP  Diagnosis of schizophrenia (F20.x)  Psychiatric comorbidity 

HC  No additional inclusion criteria  Psychiatric disorder 

 First-degree relatives with a psychiatric 

or a neurological disorder 

UR  A first-degree relative with 

schizophrenia 

 Psychiatric disorder 

 

Eighteen participants (15 SP, 1 HC, and 2 UR) were excluded from further analysis due 

to false diagnosis or missing data. Thus, we analyzed cognitive data with 59 SP (10 female, 

Mage = 34.93, SDage = 11.39), 55 HC (16 female, Mage = 32.69, SDage = 11.48) and twenty UR 

(Mage = 37.95, SDage = 15.16). We excluded seven more participants due to imaging artifacts 

and conducted the analysis of imaging data with 54 SP, 54 HC, 19 UR (see Figure 2 for 

CONSORT-Flow diagram).  
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Figure 2. Consort-Flow diagram 

 

2.3.  Measures 

2.3.1. Demographics 

Participants completed a questionnaire on demographics, including data about 

education, current occupation, German language proficiency, and relationship status. 

Furthermore, detailed information about their smoking behavior was collected using the 

Fagerström Test for Nicotine Dependence (FTND) (Heatherton, Kozlowski, Frecker, & 

Fagerstrom, 1991). The FTND is a 6-item scale based on biochemical measures for nicotine 

dependence and yields an overall score between 0 (very low dependency) and 10 points (very 

high dependency). We furthermore assessed hand preference using the Edinburgh handedness 

inventory (Oldfield, 1971). Here, participants assigned 2 points (very strong preference), 1 

point (preference with occasional use of the other hand), or 1 point for each side (indifferent) 

for the completion of 10 everyday activities (e.g., writing, drawing). Laterality is then 

calculated by the difference between points for the right (R) and left hand (L), divided by the 

total score and multiplied by a hundred: [(R-L)/(R+L)]*100. Thus, the handedness score varies 

from -100 (pure left-hander) to +100 (pure right-hander). 
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2.3.2. Clinical measures 

Medication and clinical history 

Participants reported clinical history data, including age during the first onset, duration 

of illness, and number of hospitalizations. Furthermore, daily dose and time of administration 

of current stable and PRN medication were collected. Using the Defined Daily Doses (DDD) 

method, we converted antipsychotic medication to chlorpromazine dose equivalence (CPZ) 

(for details see, Leucht, Samara, Heres, & Davis, 2016). 

Schizophrenia symptoms  

The severity of schizophrenia symptoms was evaluated with the Positive and Negative 

Syndrome Scale (PANSS) (Kay, Fiszbein, & Opler, 1987) and the Scale for the Assessment of 

Negative Symptoms (SANS) (Andreasen, 1989). PANSS is widely used in clinical research 

and is considered a standard instrument for assessing psychopathology in schizophrenia (T. 

Suzuki, 2011). Upon a semi-structured interview with the patient and relevant clinical 

information from primary care workers, the examiner rates the severity of positive (Positive 

Scale, 7 items, e.g., hallucinations), negative (Negative Scale, 7 items, e.g., emotional 

withdraw), and global symptoms (Global Psychopathology Scale, 16 items, e.g., anxiety) 

during the last seven days on a scale from 1 (absent) to 7 (extreme). Noticeably, PANSS 

includes not only content-related information on productive symptoms (e.g., delusions) but also 

observations on social behavior (e.g., hostility), body movement (e.g., mannerisms and 

posturing), and thought disorder (e.g., stereotyped thinking). To calculate PANSS scores, item 

ratings are summed for each scale and overall for all 30 items, yielding possible ranges of 7 – 

49 points for both Positive and Negative Scales, 16 – 112 points for the Global 

Psychopathology Scale, and 30 – 210 for PANSS total. To increase standardization, here, 

PANSS was administered upon the Structured Clinical Interview for PANSS (SCI-PANSS) 

(for details see, Kay et al., 1987). 

Negative symptoms were further explored using the German version of SANS 

(Andreasen, 1989; Dieterle, Albus, Eben, Ackenheil, & Rockstroh, 1986). SANS measures 

negative symptoms across the domains affective blunting (German version: 7 Items, original 

version: 8 items); alogia (5 items), avolition/apathy (4 items), anhedonia/asociality (5 items), 

and attention (3 items) on a six-point scale from 0 (not at all) to 5 (severe). Each domain 

includes a global rating item. Ratings are based on data collected from the clinical interview 

and primary caregivers. The sums of the five global items (summary global score) and all 24 
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items (composite score) are calculated and serve as negative syndrome measures with a range 

of 0 – 25 and 0 – 120, respectively.    

Depression symptoms 

Symptoms of depression, which are very common in schizophrenia (e.g., Hafner et al., 

2005), were assessed with the Inventory of Depressive Symptomatology (IDS-C) (Rush, 

Carmody, & Reimitz, 2000; Rush, Gullion, Basco, Jarrett, & Trivedi, 1996) and Beck 

Depression Inventory II (BDI-II) (Beck, Steer, & Brown, 1996). IDS-C is a semi-structured 

30-item interview, where a clinician rates severity of patients’ depressive symptoms on a four-

point scale from 0 (absent) to 3 (max. symptom severity). IDS-C includes i.e. items on sleep 

problems (e.g., early morning insomnia), mood (e.g., sadness, anxiety, quality and variation of 

mood), outlook (e.g., on future), cognition, and physical symptoms (e.g., appetite). Since only 

one of the items about appetite (increase/decrease) and weight (increase/decrease) should be 

answered, 28 items are included in the overall score that therefore varies between 0 and 84 (for 

further details, see Rush et al., 2000; Rush et al., 1996). In contrast to IDS-C, BDI-II is a self-

report measure with 21 items (Beck et al., 1996). Here, patients had to rate the severity of their 

depressive symptoms in the last two weeks between 0 and 3. The sum of all items serves as a 

measure of depression (range: 0 – 63).  

Global ratings 

We rated the overall severity of patients’ symptoms using the Clinical Global 

Impression Scale (CGI-S) (Guy, 1976) that varies between 1 (normal, not at all ill) and 7 

(among the most ill patients). Additionally, we applied the Global Assessment of Functioning 

Scale (GAF) (Endicott, Spitzer, Fleiss, & Cohen, 1976; Goldman, Skodol, & Lave, 1992) to 

rate the psychological, social, and occupational functioning of the patient on a scale of 1 

(persistent danger of severely hurting self or others) to 100 (superior functioning). 
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2.3.3. Neuropsychological measures  

Crystalline intelligence 

Crystalline intelligence (IQ) was measured using a German vocabulary test, Wortschatztest 

(WST-R) (K.-H. Schmidt & Metzler, 1992). The WST-R included 42 items, where participants 

had to recognize the existing word in the German language among five non-existing pseudo-

words. There was no time limit for completion. The number of correct items (max. 42) was 

converted using a norming table to a verbal IQ value.   

Episodic Verbal Memory 

Episodic Verbal Memory was measured with the Verbaler Lern-und Merkfähigkeitstest 

(VLMT: Verbal Learning and Memory Test). VLMT (Helmstaedter & Durwen, 1990) is 

developed for the German language area and is based on the Rey Auditory Verbal Learning 

Test (RAVT) (Muller, Hasse-Sander, Horn, Helmstaedter, & Elger, 1997). First, the 

investigator read out a list of 15 nouns in a fixed order at a two-second-pace five times 

(Learning List A). After each learning trial, the participant was required to recall as many words 

as possible in a free order (Free Recall). After completing this first learning phase, the 

investigator read out another list of 15 independent nouns (Interference List B). Here, the 

participant had to again recall as many nouns from List B as possible. Next, the participant was 

asked to freely recall the words from List A without a further list presentation (Trial 6). After 

a 30 min. delay, the procedure was repeated – a free retrieval of List A without a renewed 

reading-out of the list (Trial 7). The test finished with a recognition trial, where the investigator 

read out a list containing the words of List A, of List B and 10 words with a semantic and 10 

words with a phonetic similarity to the words of List A and B (Recognition List W). Here, the 

participant had to answer with “yes” or “no” if the word was part of List A. VLMT assesses 

multiple episodic verbal memory features, including short-term memory and long-term 

memory parameters. Here, we focused on the following factors: (a) learning as the sum of 

correct words during the learning phase (Trial 1 to 5); (b) long-term memory consolidation as 

the decrease of learning performance after the 30 min. delay (Trial 5 minus Trial 7); and (c) 

correct recognition as the subtraction of false answers from the correct recognized List A words 

(Trial W- F). 

Processing speed, visual attention, cognitive flexibility 

Trail Making Test (TMT) (Tombaugh, 2004) is a popular neurocognitive paper-pencil 

test to assess visual attention, motor speed, and cognitive flexibility and consists of two parts: 

A and B. In TMT-A, participants were presented with a paper sheet with circles with the 
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numbers 1 to 25, which they must connect in a consecutive order as quickly as possible. In 

TMT-B, the task sheet included again 25 circles with the numbers 1 - 13 and with the letters  

A – L . Here, participants had to shift strategies and quickly connect the circles in the right 

numerical or alphabetical order, alternating between numbers and letters (e.g., 1-A-2-B). 

Before both TMT-A and -B, participants completed a task training sample with eight circles 

each. Participants were corrected during task performance when needed. Time of task 

completion in s served as a measure of processing speed (TMT-A) and cognitive flexibility 

(TMT-B). The Digit Symbol Substitution Test (DSST, a subtest of the Hamburg-Wechsler 

Intelligence Test) (Tewes, 1994) is also a paper-pencil test applied to measure motor speed and 

visual memory. Here, participants were presented with nine simple symbols. Each symbol was 

assigned to a number (1 – 9). The task sheet consisted of seven rows with 20 numbers each. 

Participants were required to fill the blank spaces below each number with the according 

symbol in 120 s. The first 7 digits were training trials. The assignment of symbols to digits was 

visible at all times. Outcome measure was the number of correctly completed symbols (range: 

0 – 133).  

Working memory 

In the Digit Span Test (DST, a subtest of the Hamburg-Wechsler Intelligence Test) 

(Tewes, 1994), the investigator read out numeric sequences at a one-second rhythm that 

participants had to memorize and recall forwards (DST forwards) or backward (DST 

backward), immediately after the presentation. DST forwards included eight levels of difficulty 

representing the length of the numeric sequences (2 – 9 digits). Levels of difficulty were 

administrated in a consecutive order. When participants could not complete both trials of a 

level, the task was stopped. DST backward had an identical procedure but consisted only of 

seven levels of difficulty. The number of correct recalled numeric sequences forwards (range: 

0 – 16) served as a measure of attention and concentration, and backward (range: 0 – 14) – as 

a measure of working memory. 
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2.3.4. Cognition index 

We calculated a cognition index as the primary measure of cognitive functioning. The 

cognition index was constructed upon scores from VLMT (Sum of Trial 1 to 5, Trial 5 minus 

Trial 7, W - F), TMT (A and B, in s), DST (forwards and backward), and DSST (number of 

correct symbols) and calculations were based on the neurocognitive composite score described 

by Hasan et al. (2016). It included data from 59 SP, 55 HC, 20 UR (see Figure 2) and was 

constructed using SPSS in the following steps: 

(1) Imputation of missing data: There were three missing data points from the data set. 

Using Little's Missing Completely at Random (MCAR) test, we confirmed that they 

were MCARs (χ2 = 12.57 (13), p = .479) and therefore replaced them via the Expectation 

Maximation Method (EM). 

(2) Recoding of variables: The variables VLMT Trial 5 minus VLMT Trial 7, TMT-A, and 

TMT-B were multiplied by -1 so that larger values would refer to a better performance. 

(3) Z-transformation: All variables were transformed into z-standard scores (with M = 0, 

SD = 1), to avoid influence of different scaling. 

(4) Calculation of cognition index: The cognition index was constructed as the weighted 

means of the z-scores using the formula:  

𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 = 
1
4 Mean(zVLMTSum(Trial 1 to Trial5) , zVLMTTrial5-Trial7, zVLMTW-F) + 

1
4 Mean(zTMTA, zTMTB)+

1
4 zDSST + 

1
4 Mean (zDSTforwards, zDSTbackward) 
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2.3.5. Imaging Data 

Data acquisition 

MRI data were obtained using a Siemens 3.0 Tesla MAGNETOM Skyra Scanner 

(Siemens Healthineers, Erlangen, Germany) with a 20-channel phased-array head and neck 

coil. To acquire high-resolution T1-weighted images, a 3D Magnetization Prepared Rapid 

Gradient Echo (MPRAGE) sequence with 176 slices of 0.80 mm thickness, echo time (TE) = 

2.22 ms, repetition time (TR) = 1900 ms, flip angle (FA) = 9° and 0.8 mm isotropic voxels. 

Before scanning, small cushions were placed on both sides of participants’ head and a roller 

cushion underneath participants’ legs to minimize head movement during scanning and 

possible back strain. All data images were visually controlled for low image quality and MR 

artifacts.   

Data preprocessing and segmentation 

Data preprocessing and segmentation was carried out by application of an in-house 

high-performance-computing applicable pipeline that includes software libraries of FSL 5.0.9 

(https://fsl.fmrib.ox.ac.uk) (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012) and 

AFNI (Analysis of Functional Images; https://afni.nimh.nih.gov/) (Cox, 1996). Preprocessing 

and segmentation procedures are described in detail by Beller et al. (2019) and Malchow et al. 

(2016). First, we applied the brain extraction tool (BET) (Smith, 2002) and the 3dskullstrip 

(AFNI) to remove the skull and other non-brain tissue (e.g., fat, skin), to reorientate the image 

to FSL-friendly space, and to create a binary mask. Next, images were segmented into grey 

matter (GM), white matter (WM), and CSF using FMRIB’s Automated Segmentation Tool 

(FAST) (Y. Zhang, Brady, & Smith, 2001). Then, we run the FMRIB’s Linear Image 

Registration Tool (FLIRT) (Jenkinson, Bannister, Brady, & Smith, 2002) and Non-linear 

Registration Tool (FNIRT) (Andersson, Jenkinson, & Smith, 2007) to carry out an affine and 

a non-linear registration and warped individuals’ images onto the Automatic Anatomical 

Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) in MNI standard space (Montreal 

Neurological Institute, Montreal, Canada). Herewith, we calculated parameters for total GM, 

total WM, total CSF, 45 cortical, and subcortical regions for the left and right hemisphere 

(AAL90) and 26 (AAL-2) cerebellum regions (list of regions, see Appendix A). All measures 

were carried out in mm3 and voxels. Total intracranial volume (ICV) for each participant was 

also calculated as the sum of WM, GM, and CSF volumes (Dell'Oglio et al., 2015) and used as 

a standardizing parameter for all brain regions, applying the residual-method (Pintzka, Hansen, 

Evensmoen, & Håberg, 2015): VOLcor =VOLraw – b(ICV – ICV)̅̅ ̅̅ ̅̅ ̅, where VOLcor is the 

https://fsl.fmrib.ox.ac.uk/
https://afni.nimh.nih.gov/
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corrected volume, VOLraw is the original volume, b is the slope of the linear regression of 

VOLraw on ICV, ICV is the ICV for the subject and ICV̅̅ ̅̅ ̅ is the mean ICV of the study sample. 

  

 

2.4.  Data Analysis  

2.4.1. Random Forest Classification 

To examine if and which brain regions could predict cognitive performance, we applied 

an RF classification algorithm with a total of 238 features: age, sex, and the volume calculations 

of ICV, total GM, total WM, total CSF, and WM and GM of 116 cortical and subcortical areas 

(for details, see Appendix A). Since ICV was included in the model, we carried out calculations 

with uncorrected volumes for all brain regions. The cut-off value to divide cognitive 

performance was 1 SD below the average the cognition index means of HC und UR and set at 

-0.1, resulting in two classes of patients with high cognitive (HighCog, n = 13) and low 

cognitive performance (LowCog, n = 41, for details see Chapter 3.1.2.1.). The RF classifier 

was conducted using the scikit-learn version 0.21.3 tool (3.2.4.3.1. 

sklearn.ensemble.RandomForestClassifier) (Pedregosa et al., 2011) for Python 3.7.3. The 

model builds 380 trees with a maximal depth of 20 leaves each and Gini Index (see Chapter 

1.3.2.) as a splitting criterion, which is calculated as 𝐺𝑖𝑛𝑖(𝐷) = 1 −  ∑ 𝑝𝑗2𝑛𝐽=1   (Breiman et al., 

1984), where n is the number of classes and 𝑝𝑗 the frequency of class j in the subset D. D goes 

up to the number of attributes for the feature. To control the bootstrapping's randomness and 

the sampling of the features, we set the seed for the random number generator at 12. For all 

parameters, see Appendix B. First, participants were randomly assigned to a training test 

consisting of SP, UR, and HC (n = 110) and to a test set consisting only of SP (n = 17). Second, 

the model is trained and then cross-validated with the left-out test set. This procedure was 

repeated 1000 times. Every time, the confusion matrix for each class was reported, consisting 

of correctly identified participants as class members (true positives, TP), correctly identified 

participants as class nonmembers (true negatives, TN), falsely categorized participants as class 

members (false positives, FP) and falsely categorized participants as class nonmembers (false 

negatives, FN) (Ting, 2017). Upon these values, the overall and balanced accuracy (BAC), 

sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and 

F1-score were calculated as presented in Table 4. The average parameters over the 1000 runs 
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served as measures for classification performance. Due to the imbalanced dataset, we weighted 

parameters by class size. 

 

Table 4. Definitions and calculations for the classification parameters. 

Parameter Formula Definition 

Accuracy (TP+TN)/(TP+TN+FP+FN) 
The proportion of the study sample that is 

classified correctly a) 

BAC (sensitivity + specificity)/2 
Average of the accuracy for each class 

(correcting for imbalanced data) a) 

Sensitivity TP/(TP+FN) 
The proportion of positive examples that a 

correctly classified by the model b) 

Specificity TN/(TN+FP) 
The proportion of negative examples that a 

correctly classified by the model b) 

PPV TP/(TP+FP) 

The ratio of positive examples correctly 

classified by the model and the total number 

of examples b) 

NPV TN(TN+FN) 

The ratio of negative examples correctly 

classified by the model and the total number 

of negative examples b) 

F1-score 2*[Sensitivity*PPV/(Sensitivity+PPV) The harmonic mean of sensitivity and PPV c) 

a) (Mower, 2005); b) (Ting, 2017); c) ("F1-Measure," 2017) 

 

Finally, we estimated Gini importance, a parameter for feature importance, to detect the 

most relevant brain regions for high and low cognitive performance classification. Each split 

of a node on a variable results in a decrease of the impurity criterion Gini index for the 

descendent nodes. Gini importance for each variable is calculated as the averaged sum of the 

decrease of node impurity (Gini index), weighted by the probability of reaching that node, over 

all trees in the forest (Breiman, 2001; Breiman et al., 1984). Thus, the larger the value, the more 

important the feature for the classification model. The Gini importance values of all features 

sum up to 1 (Pedregosa et al., 2011). The top seven most important features and their averaged 

Gini importance values over the 1000 runs were determined. 
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2.4.2. Statistical Analysis 

All data preparation for calculating the cognition index and further statistical analysis 

was conducted at α = .05 using SPSS 24 (IBM Inc.) for Windows. Demographic and clinical 

differences between groups were assessed using χ²-tests and one-way analyses of variance 

(ANOVAs) with between factor ‘experimental group’ or ‘cognitive profile’ and post-hoc 

Tukey HSD tests. Via Pearson’s correlation analysis, we investigated the relationship between 

cognition index and age of onset, duration of illness, CPZ equivalents, and number of 

hospitalizations. We used Kolmogorov-Smirnov (K-S) tests to test the normal distribution of 

cognition index in each study group.  

To explore the relationship between cognition and the most important features for the 

classification, we conducted seven separate linear regression analyses with the dependent 

variable ‘cognition index’ and the ICV corrected volumes of each region as predictors. A 

multiple regression analysis was not performed because the assumption of independence of 

residuals was violated (Durbin-Watson test = 0.84 in the whole study sample and 0.27 in SP). 

Therefore, we applied the Bonferroni-correction for multiple testing and conducted the 

regressions analyses at α = .007. We performed seven regression analyses for the whole study 

sample (N = 127) and only for the patient sample (n = 54). 

We then conducted two identical multivariate analyses of variance (MANOVA) with 

the most important features as dependent variables and SP cognitive profile (HighCog vs. 

LowCog) (MANOVA 1) and study group (SP vs. HC vs. UR) (MANOVA 2) as the 

independent variable to explore group differences. MANOVA 1 was carried out using only the 

SP sample (n = 54) and with seven post-hoc ANOVAs to test how HighCog and LowCog differ 

in the ICV corrected GM volumes of the most important structures. MANOVA 2 analyzed data 

from the whole sample (N = 127), and we performed seven one-way ANOVAs with between-

subject factor ‘experimental group,’ and post-hoc Tukey HSD tests for the ICV corrected grey 

matter volumes of each region. All post-hoc ANOVAs were conducted at α = .007 (Bonferroni-

corrected). In case of violation of the assumption of homogeneity of variance, the Welch 

correction estimates were reported. 
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3. Results 

3.1.  Demographic and clinical characteristics  

3.1.1. Study sample for calculation of cognition index (N = 134) 

Experimental groups did not differ in age (p = .232), handedness (p = .521) and 

language use (p = .492), but in sex distribution (p < .001) (see Table 5). Subsequent paired χ²-

tests indicated that the effect is due to the UR group, since SP and HC had similar sex 

distribution (χ2(1) = 2.38, p = .123). As expected, there was a significant group difference in 

cognition index (p < .001), where SP had the smallest values. Moreover, cognition index did 

not correlate with CPZ equivalents (r(57) = -.02, p = .913), duration of illness (r(57) = -.14, p 

= .28), age of onset (r(57) = -.166 , p = .209) and number of hospitalizations (r(55) = .02, p = 

.911). 

 

Table 5. Demographic and neuropsychological characteristics of the study sample for analysis 

of cognitive data (N = 134).  

  SP (n = 59) HC (n = 55) UR (n =20) χ2 (df) p 

Sex (m : f) 49 : 10 39 : 16 6 : 14 20.10 (2) < .001*** 

Handedness (right : left : both) 53 : 5 : 1 49 : 6 16 : 4 3.23 (4) .521 

Language (native : foreign) 50 : 9 48 : 7 19 : 1 1.42 (2) .492 

  M (SD) M (SD) M (SD) F (df1, df2) p 

Age 34.93 (11.39) 32.69 (11.48) 37.95 (15.16) 1.47 (2, 131) .232 

Cognition Index -0.54 (0.66) 0.47 (0.50) 0.28 (0.65) 44.30 (2, 131) <.001*** 

*p < .05, **p < .01, ***p < .001 

 

3.1.2. Study sample for the machine learning analysis (N = 127) 

There were no differences between experimental groups regarding age (p = .461), 

handedness (p = .460) and language use (p = .555). We observed again a significant effect of 

experimental group in sex distribution (p < .001). Direct comparison of HC and SP, however, 

showed no differences (χ2(1) = 2.55, p = .110). As expected, the groups further differed in 

smoking behavior (p < .001), educational years (p = .007) and crystalline intelligence (p<.001) 

(see Table 4). Tukey HSD post-hoc tests revealed that SP had significantly fewer educational 

years (p = .009) and smaller value for crystalline intelligence (WST-R: p < .001; IQ: p < .001) 

than HC. UR also had greater values for crystalline intelligence than SP (WST-R: p = .003; IQ: 
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p = .001). There were no significant differences between SP and UR (all p > .005, for 

descriptive data, see Table 6). 

 

Table 6. Demographic and neuropsychological characteristics of the sample for the machine 

learning analysis (N = 127).  

  SP (n = 54) HC (n = 54) UR (n =19) χ2 (df) p 

Sex (m : f) 45 : 9 38 : 16 5 : 14 21.52 (2) <.001*** 

Handedness (right : left : 

both) 

48 : 5 : 1 49 : 5 15 : 4 3.62 (4) .460 

Language (native : foreign) 46 : 8 47 : 7 18 : 1 1.17 (2) .555 

Smoking (no : yes) 18 : 36 41 : 12 16 : 3 27.18 (2) <.001*** 

  M (SD) M (SD) M (SD) F (df1, df2) p 

Age 34.31 (10.91) 32.80(11.57) 36.63(14.35) 0.78 (2, 124) .461 

Crystalline IQ 103.09(14.70) 114.43(11.56) 116.16(13.20) 12.45 (2, 124) <.001*** 

WST-R 29.74 (7.74) 34.69 (3.97) 35.05 (4.40) 11.25 (2, 

59.96) 

<.001*** 

Edinburgh Scale 0.72 (0.41) 0.75 (0.51) 0.67 (0.67) 0.15 (2, 116) .860 

Education Years 14.57 (4.18) 16.56 (2.71) 16.63 (3.01) 5.23 (2, 124) .007** 

Cognition Index -0.53 (0.66) 0.47 (0.50) 0.32 (0.65) 40.34 (2, 124) <.001*** 

*p < .05, **p < .01, ***p < .001 

 

3.1.2.1. Results on cognition index 

As expected, the one-way ANOVA on cognition index revealed a significant difference 

between experimental groups (p < .001, Table 6). A Tukey HSD post hoc test showed that the 

cognition index was statistically lower in the SP group than in the HC (p < .001) and UR (p < 

.001) groups. Although HC had numerically higher cognition index than UR, the difference 

did not reach significance (p = .614). Pearson’s correlation analysis showed no significant 

correlations between cognition index and clinical parameters such as age of onset (r(52) = -.01, 

p = .350), duration of illness (r(52) = -.13, p = .480), CPZ equivalents (r(52) = -.10, p = .941) 

and number of hospitalizations (r(51) = .07, p = .604). 

Cognition index was normally distributed in SP (K-S test: p = .796), in HC (K-S test: 

p=.437) and in UR (K-S test: p = .758). The cut-off value for SP's high and low cognitive 

performance was set at -0.1, approximately 1 SD below the collective cognition index score of 

SP and UR (M = 0.43, SD = 0.55). As previously demonstrated (Keefe & Fenton, 2007), while 
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SP's distribution was shifted about 2 SDs below the distribution of HC, both distributions still 

overlapped substantially. Specifically, 24.1% of SP (n = 13) performed as the majority of HC 

with cognition index values above -0.1 (see Figure 3). Accordingly, small part of HC (9.3%,   

n = 5) and UR (15.8%, n = 3) achieved a cognition index score below -0.1 as the majority of 

SP (75.9 %, n = 41). The resulted patient groups with high (HighCog) and low cognitive 

(LowCog) did not differ in their age (p = .201), sex distribution (p = .319), medication use and 

overall clinical data. LowCog had significant lower values in negative symptoms, which 

include cognitive deficits, as measured by PANSS (p = .008) and SANS (p < .001) than 

HighCog. Detailed descriptive and statistical data are presented in Table 7. 

 

Figure 3. Distribution of cognition index score across all experimental groups (N = 127): 
schizophrenia patients (SP, n = 54), healthy controls (HC, n = 54) and unaffected 
relatives (UR, n = 19). 

 

3.1.2.2.  Description of the patient group (SP, n = 54). 

On average, patients had mild to moderate schizophrenia symptoms as indicated by 

PANSS Total (M = 60.23, SD = 15.93) (Leucht et al., 2005) and SANS composite (M = 35.83, 

SD = 16.96) scores. Furthermore, values of BDI-II (M = 14.32, SD = 9.11) and IDS-C                

(M = 19.38, SD = 9.93) revealed mild symptoms of depression. In accordance, ratings of CGI            

(M = 3.92, SD = 0.87) and GAF (M = 56.40, SD = 9.24) suggested a mild to moderate symptom 

severity and difficulties in social, occupational, school functioning. In line with previous 

research (e.g., Rüther et al., 2014), the majority of the patients were tobacco users (66.7 %,        

n = 36) and had a moderate level of nicotine dependence as measured by FTND (M = 4.44,  

SD = 2.16). All but two patients were medicated, and 51.9% (n = 24) received antipsychotic 
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monotherapy. SP consisted of patients at different stages of illness, since one third of them 

(33.3 %, n = 18) had schizophrenia for less than 2 years, and another third of them (29.6%,        

n = 16) - for more than 10 years (see Table 7). 
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Table 7. Demographic and clinical data of the patient group (SP, n = 54), the patient 

subgroups with high cognitive (HighCog, n = 13) and low cognitive (LowCog, n = 

41) performance 

  SP 

(n = 54) 

HighCog SP 

(n = 13) 

LowCog SP 

(n = 41) 

χ2 (df) p 

Sex (m : f) 45 : 9 12 : 1 33 : 8 0.99 (1) .319 

Handedness (right : left : 

both) 

48 : 5 : 1 10 : 3 38 : 2 : 1 4.12 (2) .127 

Language (native : foreign) 46 : 8 11 : 2 35 : 6 <.01 (1) .947 

Smoking (no : yes) 18 : 36 5 : 8 13 : 28 .203 (1) .910 

Antipsychotic monotherapy 

(y : n) 

24 : 30 4:9 20 : 21 1.30 (1) .255 

Antipsychotic combination 

therapy (y: n) 

28 : 26 8: 5 20 : 21 0.64 (1) .422 

Clozapine (y : n) 9 : 45 0 : 13 9 : 32 3.42 (1) .064 

Antidepressants (y : n) 9 : 45 1: 12 8 : 33 0.99 (1) .319 

Benzodiazepine (y : n) 8 : 46 3 : 10 5 : 36 .93 (1) .336 

 M(SD) M (SD) M (SD) F (df1, df2) p 

Cognition Index -0.53 (0.66) 0.23 (0.31) -0.77 (0.55) 39.01 (1,52) <.001*** 

Age 34.31 (10.91) 30.92 (10.19) 35.39 (11.02) 1.68 (1,52) .201 

Education Years 14.57 (4.18) 15.85 (5.58) 14.17 (3.62) 1.61 (1,52) .210 

FTND 4.44 (2.16) 3.25 (1.98) 4.79 (2.11) 3.37 (1,34) .075 

CPZ equivalents 488.45 (334.88) 517.98 (345.64) 479.08 (335.23) 0.13 (1,52) .719 

Age of onset 25.84 (8.74) 24.12 (7.04) 26.39 (9.23) 0.66 (1,52) .419 

Duration of illness 8.42 (8.70) 6.81 (7.92) 8.93 (8.97) 0.58 (1,52) .450 

Hospitalizations 3.43 (2.71) 3.15 (2.67) 3.58 (2.75) 0.23 (1,51) .632 

PANSS Positive Scale 13.51 (5.25) 13.38 (4.82) 13.55 (5.44) 0.01 (1,51) .923 

PANSS Negative Scale 16.75 (5.14) 13.54 (3.80) 17.80 (5.13) 7.59 (1,51) .008** 

PANSS General Scale 29.96 (8.06) 29.31 (6.98) 30.18 (8.45) 0.11 (1,51) .739 

PANSS Total 60.23 (15.93) 56.23 (14.77) 61.53 (16.25) 1.09 (1,51) .302 

CGI-S 3.92 (0.87) 3.69 (0.95) 4.00 (0.85) 1.22 (1,51) .274 

GAF 56.40 (9.24) 60.15 (11.84) 55.18 (8.03) 2.96 (1,51) .092 

SANS summary global score  8.87 (3.97) 4.85 (2.58) 10.18 (3.43) 26.34 (1,51) <.001*** 

SANS composite score 35.83 (16.96) 19.54 (12.68) 41.13 (14.72) 22.46 (1,51) <.001*** 

IDS-C 19.38 (9.93) 20.67 (9.31) 19.00 (10.19) 0.26 (1,51) .614 

BDI-II 14.32 (9.11) 14.58 (5.55) 14.24 (9.97) 0.23(1,33.39) .880 

*p < .05, ** p < .01, ***p < .001 
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3.2. Machine Learning Analysis 

  The RF classifier determined between SP with high and low performance based on 

sMRI features with average accuracy (sensitivity/specificity) of 62.1% (62.1%/76.0%) and 

BAC of 69.0%. Furthermore, the classifier achieved a mean PPV (F1-score) of 79.7 % (0.65) 

and an NPV of 48.6%. Each class's results individually indicated that HighCog is classified 

more sensitively, whereas the specificity for LowCog was higher (both values 82.3%)2. 

Table 8. Classification performance parameters overall and for each class (HighCog vs. 

LowCog  

RF-Classifier HighCog2 LowCog2 

 M 95%CI [LL, UL) M 95%CI [LL, UL) M 95%CI [LL, UL) 

Accuracy 62.1%2 [61.4%, 62.7%]     

BAC 69.0% [68.3%, 69.7%]     

Sensitivity 62.1% [61.4%, 62.7%] 82.3%2 [81.0%, 83.5%] 55.7% [54.9%, 56.45%] 

Specificity 76.0% [75.0%, 77.0%] 55.7%2 [54.9%, 56.5%] 82.3% [81.0%, 83.5%] 

PPV 79.7% [79.1%, 80.2%] 36.8%2 [36.0%, 37.7%] 91.4% [91.0%, 92.0%] 

NPV 48.6% [47.6%, 49.5%] 91.4%2 [91.0%, 92.0%] 36.8% [36.0%, 37.7%] 

F1-score 0.65 [0.64, 0.65] 0.49 [0.48, 0.50] 0.68 [0.68, 0.69] 

 

As expected, the model identified GM volumes of prefrontal regions as features of 

highest importance (right dorsolateral Superior Frontal Gyrus, left and right Middle Frontal 

Gyri, left opercular Inferior Frontal Gyrus) for the classification. Among the seven most 

important features were also GM volumes of regions of the occipital lobe (right Lingual Gyrus), 

the parietal lobe (right Supramarginal Gyrus), and the temporal lobe (left Superior Temporal 

gyrus). All importance values are rather small (range .01-.03) and summed up to 0.10 (see 

Figure 4). 

  

                                                 
 

2  In the context of binary classifiers, calculations of performance parameters (as presented in Table 4) result in 
identical values of sensitivity and PPV of Class 1, and specificity and NPV of Class 2 and vice versa. Overall 
ACC equals balanced sensitivity 
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 Brain Region Importance 

 Superior Frontal Gyrus, dorsolateral part (right) .027924 

 Middle Frontal Gyrus (left)  .014565 

 Middle Frontal Gyrus (right)  .013542 

 Inferior Frontal Gyrus, opercular part (left) .012815 

 Lingual Gyrus (right) .012354 

 Supramarginal Gyrus (right) .011344 

 Superior Temporal Gyrus (left) .011267 

 

  

  

x = 0.8; y = 0.78; z = 0.78 

Figure 4. Results of Random Forest Classification: Mean importance values of the top seven 

features for classification accuracy 



3  RESULTS 44 

 
 

3.2.1. Subsequent regression analysis 

The subsequent separate linear bivariate regression analysis on cognition of the whole 

study sample (N = 127) as the dependent variable and the brain regions as predictors revealed 

significant results for all structures (all p < .001), but for the left Middle Frontal Gyrus (p = 

.062, see Table 9). The regression coefficients indicate a positive relationship, viz. a higher 

GM volume of right Superior Frontal Gyrus, right Middle Frontal Gyrus, Inferior Frontal 

Gyrus, right Lingual Gyrus, right Supramarginal Gyrus, and left Superior Temporal Gyrus 

predicts a higher cognition index. In contrast, the regression coefficient for the left Middle 

Frontal Gyrus is negative, so a low GM volume causes a high cognition index (not significant). 

For linear regression coefficients and equations, see Table 9 and Figure 5. 

 

Table 9. Results from the separate bivariate regression analysis with the dependent variable 

‘cognition index’ and the ICV-corrected grey matter volumes of the most important 

brain regions as predictors in the whole study sample (N = 127). 

Predictors β t P R2 F (df1, df2) P 

Superior Frontal Gyrus, dorsolateral part (right) .495 6.37 < .001*** .245 40.55 (1, 125) < .001*** 

Middle Frontal Gyrus (left)  -.166 -1.89 .062 .020 3.56 (1, 125) .062 

Middle Frontal Gyrus (right)  .484 6.19 < .001*** .235 38.33 (1, 125) < .001*** 

Inferior Frontal Gyrus, opercular part (left) .322 3.80 < .001*** .103 14.41 (1, 125) < .001*** 

Lingual Gyrus (right) .314 3.69 < .001*** .098 13.65 (1, 125) < .001*** 

Supramarginal Gyrus (right) .369 4.45 < .001*** .137 19.76 (1, 125) < .001*** 

Superior Temporal Gyrus (left) .418 5.14 < .001*** .175 26.46 (1, 125) < .001*** 

***p < .001 
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Figure 5. Linear regression analysis using the whole study sample (N = 127) with dependent 
variable ‘cognition index’ (y-axis) and predictors (x-axis): A. Superior Frontal 
Gyrus, dorsolateral part (right); B. Middle Frontal Gyrus (left); C. Middle Frontal 
Gyrus (right), D. Inferior Frontal Gyrus, opercular part (left); E. Lingual Gyrus 
(right); F. Supramarginal Gyrus (right) and G. Superior Temporal Gyrus (left). 
***p < .001 
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The subsequent separate linear bivariate regression analysis on cognition of SP (n = 54) 

as the dependent variable and the brain regions as predictors revealed no significant results (see 

Table 10). Despite not reaching statistical significance, the results' pattern, including the 

regression direction, resembled those in the whole study sample (Figure 6).  

 

Table 10. Results from the separate bivariate regression analysis with the dependent variable 

‘cognition index’ and the ICV-corrected grey matter volumes of the most important 

brain regions as predictors in the patient group (N = 54). 

Predictor β t P R2 F (df1, df2) p 

Superior Frontal Gyrus, dorsolateral part (right) .282 2.12 .039 .080 4.50 (1, 52) .039 

Middle Frontal Gyrus (left)  -.077 -0.56 .580 .006 0.31 (1, 52) .580 

Middle Frontal Gyrus (right)  .192 1.41 .164 .037 1.99 (1, 52) .164 

Inferior Frontal Gyrus, opercular part (left) .108 0.78 .438 .012 0.61 (1, 52) .438 

Lingual Gyrus (right) .071 0.51 .611 .005 0.26 (1, 52) .611 

Supramarginal Gyrus (right) .222 1.64 .106 .049 2.70 (1, 52) .106 

Superior Temporal Gyrus (left) .124 0.90 .374 .015 0.81 (1, 52) .374 
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Figure 6. Linear regression analysis using the patient group (n = 54) with dependent variable 
‘cognition index’ (y-axis) and predictors (x-axis): A. Superior Frontal Gyrus, 
dorsolateral part (right); B. Middle Frontal Gyrus (left); C. Middle Frontal Gyrus 
(right), D. Inferior Frontal Gyrus, opercular part (left); E. Lingual Gyrus (right); F. 
Supramarginal Gyrus (right) and G. Superior Temporal Gyrus (left). 
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3.2.2. Subsequent group comparison analysis 

3.2.2.1. Schizophrenia Cognitive Profiles (LowCog vs. HighCog) 

The one-way MANOVA showed no significant difference between the cognitive 

profiles in SP (LowCog vs. HighCog) on the combined dependent variables (ICV corrected 

GM volumes of the most important regions) with F(7, 46) = 1.75, p =.210, Wilks Λ = .79. The 

post-hoc ANOVAs indicated no significant differences between groups in volumes of all seven 

brain regions (all p > .007) (see Table 11). HighCog had numerically larger GM volumes of 

right Superior Frontal Gyrus, right Middle Frontal Gyrus, left Inferior Frontal Gyrus, right 

Supramarginal Gyrus, and left Superior Temporal Gyrus than LowCog. In contrast, the GM 

volumes of left Middle Frontal Gyrus and right Lingual Gyrus were numerically greater in 

LowCog (see Figure 7). However, none of these numerical differences reached statistical 

significance.   

 

 

Figure 7. Box plots of the grey matter volumes of the most important brain regions across 

cognitive profiles in schizophrenia patients HighCog (n = 13) and LowCog (n = 41).  

Boxes represent the ICV corrected values within the 25th and 75th percentile. Central 

horizontal lines indicate medians. Whiskers indicate the 1.5 interquartile distance. 

Filled circles represent outlier data points outside the 1.5 interquartile range. 
1dorsolateral part, 2opecular part
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Table 11. Effects of the post-hoc one-way ANOVAs with between-subject factor ‘cognitive 

profile’ (HighCog vs. LowCog) on the ICV-corrected grey matter volumes of the 

most important brain regions in the patient group (SP, n = 54). 

  
HighCog SP 

(n = 13) 

LowCog SP 

(n =41) 
F (df1. df2) p 

 M (SD) M (SD)   

Superior Frontal Gyrus, 
dorsolateral part (right) 

3863142.00 (315184.35) 3550009.63 (422642.00) 8.17 (1, 26.96) .008 

Middle Frontal Gyrus 
(left)  

4733883.31 (555831.49) 4810721.49 (469435.52) 0.24 (1, 52) .625 

Middle Frontal Gyrus 
(right)  

4646749.15 (269666.76) 4396657.24 (535684.72) 4.97 (1, 41.38) .031 

Inferior Frontal Gyrus, 
opercular part (left) 

5489685.77 (434427.77) 5323721.10 (623642.32) 0.79 (1, 52) .377 

Lingual Gyrus (right) 6288919.00 (515276.55) 6473147.27 (604846.03) 0.98 (1, 52) .327 

Supramarginal Gyrus 
(right) 

9502148.77 (562718.98) 9238014.73 (963253.30) 0.88 (1, 52) .354 

Superior Temporal 
Gyrus (left) 

8551993.23 (497381.28) 8473412.98 (845095.95) 0.17 (1, 35.18) .683 

 

 

3.2.2.2. Experimental groups 

The one-way MANOVA showed a significant difference between the experimental 

groups (SP vs. HC vs. UR) on the combined dependent variables (ICV corrected GM volumes 

of the most important regions) with F(14, 238) = 6.80, p < .001, ηp
2 =0.29, Wilks Λ = .51. The 

post-hoc ANOVAs indicated significant differences between groups in volumes of all seven 

brain regions (all p < .007) (see Table 12). Post-Hoc Tukey HSD tests indicated that SP had 

significantly smaller GM volumes of right Superior Frontal Gyrus, right Middle Frontal Gyrus, 

Inferior Frontal Gyrus, right Lingual Gyrus, right Supramarginal Gyrus, and left Superior 

Temporal Gyrus than HC and UR (all p < .05). In contrast, there were no differences between 

HC and UR (all p > .05). Surprisingly, the volumes of left Middle Frontal Gyrus were in SP 

and UR significantly greater than in HC (both p < .001). For details, see Table 12 and Figure 

8. 
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Figure 8. Box plots of the grey matter volumes of the most important brain in the patient (SP, 

n = 54), control (HC, n = 54), and unaffected relatives (UR, n = 19) groups.  

Boxes represent the ICV corrected values within the 25th and 75th percentile. Central 

horizontal lines indicate medians. Whiskers indicate the 1.5 interquartile distance. 

Filled circles represent outlier data points outside the 1.5 interquartile 

range.1dorsolateral part, 2opecular part, *p < .05, **p < .01, ***p < .001 
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Table 12. Effects of the post-hoc one-way ANOVAs with between-subject factor ‘experimental group’ (SP vs. HC vs. UR) with post-hoc Tukey 

HSD tests on the ICV-corrected grey matter volumes of the most important brain regions.  

  SP 

M (SD) 
HC 

M (SD) 
UR 

M (SD) 
F (df1. df2) p ηp

2 Tukey HSD: p 

Superior Frontal Gyrus, 
dorsolateral part (right) 

3625393.35 
(419004.95) 

3962935.93 
(368765.76) 

3979844.63 
(411535.75) 

11.52 (2, 124)  < .001***  .157 
SP vs. HC 
SP vs. UR 
HC vs UR 

< .001*** 

.003** 

.986 

Middle Frontal Gyrus (left)  
4792223.41 
(487203.18) 

4342992.33 
(473589.11) 

4966560.42 
(553714.27) 

16.58 (2, 124) < .001***  .211 
SP vs. HC 
SP vs. UR 
HC vs UR 

< .001*** 

.382 
< .001*** 

Middle Frontal Gyrus (right)  
4456864.56 
(494656.70) 

4892600.85 
(390736.36) 

5043278.42 
(578205.34) 

16.76 (2, 124) < .001*** .213 
SP vs. HC 
SP vs. UR 
HC vs UR 

< .001*** 
< .001*** 

.450 

Inferior Frontal Gyrus, opercular 
part (left) 

5363675.56 
(584287.85) 

5776020.50 
(632394.36) 

5788460.16 
(783874.38) 

6.60 (2, 124) .002** .096 
SP vs. HC 
SP vs. UR 
HC vs UR 

.003** 

.036* 

.997 

Lingual Gyrus (right) 
6428796.02 
(585269.96) 

6829137.98 
(499915.75) 

7103278.21 
(629769.71) 

12.81 (2, 124) < .001***  .171 
SP vs. HC 
SP vs. UR 
HC vs UR 

< .001*** 
< .001*** 

.160 

Supramarginal Gyrus (right) 
9301602.56 
(885978.11) 

9874891.56 
(779171.97) 

10200397.32 
(1123531.57) 

9.59 (2, 124) < .001***  .134 
SP vs. HC 
SP vs. UR 
HC vs UR 

.003** 
< .001*** 

.353 

Superior Temporal Gyrus (left) 
8492330.44 
(772121.47) 

9302882.35 
(704953.45) 

9661914.42 
(1052610.10) 

21.64 (2, 124) < .001***  .259 
SP vs. HC 
SP vs. UR 
HC vs UR 

< .001*** 
< .001*** 

.210 
*p < .05, **p < .01, ***p < .001 
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4. Discussion 

The present study aimed to distinguish between different cognitive subtypes in 

schizophrenia using machine learning. Specifically, we expected an RF algorithm applied to 

GM and WM volumetric data of SP, HC, and UR to classify with accuracy above 50% between 

patients with high and low cognition and identify the most relevant brain structures. As 

expected, the RF algorithm achieved an accuracy of 62.1% and BAC of 69.0%. Furthermore, 

it recognized prefrontal, temporal, parietal, and occipital structures among the seven most 

important for the classification. Greater volumes of all identified structures, except the left 

Middle Frontal Gyrus, significantly predicted good cognitive performance. However, these 

regression analyses reached significance only in the whole study sample and not in the patient 

group alone. Similarly, against our hypothesis, there were no differences in the most important 

features between HighCog and LowCog. Finally, group comparisons revealed significantly 

smaller GM volumes in all identified structures than UR and HC, except for the left Middle 

Frontal Gyrus, where SP and UR had significantly greater volumes than HC. 

4.1. Performance parameters of the RF algorithm 

The obtained overall and balanced accuracy is within the range of 60-80% reported by 

prior studies using machine learning to sMRI data to discriminate schizophrenia patients from 

controls (de Filippis et al., 2019). Moreover, our model achieved slightly higher accuracy 

values than the only previous work that applied multivariate pattern analysis (SVM) to 

neuroanatomical variables to classify two cognitive subtypes in schizophrenia with accuracy 

<60% (Gould et al., 2014). Both sensitivity and specificity were above 50%, with higher values 

for specificity (76%), indicating that the model could better recognize a non-member than a 

member of HighCog or LowCog. Similarly, the PPV value (~80%) was much higher than the 

NPV value, the latter being <50%. However, these findings could be due to the imbalanced 

class sizes, since binary classifiers are often biased towards the majority class (LowCog) 

(López, Fernández, García, Palade, & Herrera, 2013). Indeed, the sensitivity of HighCog and 

the specificity of LowCog were relatively high (>80%), where HighCog is more than three 

times smaller in size than LowCog. It is plausible that the algorithm recognized most members 

of the smaller class but had difficulties to discriminate them from the majority class and thus 

obtained high sensitivity and low specificity values (for calculations, see Table 4). 
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Consequently, the results of other performance parameters mirrored this effect with very high 

PPV for LowCog and very high NPV for HighCog (>90%).  

4.2. Neuroanatomical structures of importance 

The top seven most relevant features included GM volumes of prefrontal (the right 

dorsolateral Superior Frontal Gyrus, bilateral Middle Frontal Gyrus, left opercular Inferior 

Frontal Gyrus), temporal (the left Superior Temporal Gyrus), parietal (the right Supramarginal 

Gyrus), and occipital (the right Lingual Gyrus) regions. Notably, their importance indexes were 

small and summed up to 0.10 from max. 1.0, indicating that neuropsychological performance 

in schizophrenia and overall is associated not with single brain regions but with whole neuronal 

networks. This notion is supported by modern neuroscience, demonstrating cognitive processes 

as a result of dynamic and complex structural and functional connections, hierarchical and 

heterogeneous in nature (e.g., Lynn & Bassett, 2019; Mazoyer et al., 2001). Overall, 

intelligence, attention, and executive functions have been associated with general GM volume, 

ICV, volumes of the prefrontal lobe and the cerebellum (e.g., Andreasen et al., 1993; Hogan et 

al., 2011), a more effective brain organization (Y. Li et al., 2009) and the global connectivity 

of the prefrontal cortex (Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012). In accordance, 

we found that large GM volumes of the right dorsolateral Superior Frontal Gyrus, right Middle 

Frontal Gyrus, left opercular Inferior Frontal Gyrus, right Lingual Gyrus, right Supramarginal 

Gyrus, and left Superior Temporal Gyrus predicted strong cognitive performance in the whole 

study sample. Furthermore, these regions had reduced GM volume in SP compared to HC and 

UR. The present findings are in line with previous evidence of an association between cognitive 

deficits and the decreased whole brain and GM volumes, specifically in frontal and temporal 

structures in schizophrenia (Antonova et al., 2004).  

The dorsolateral Superior Frontal Gyrus is anatomically and structurally connected to 

the Middle Frontal Gyrus, which includes the DLPFC, and the Inferior Frontal Gyrus and are 

all associated with working memory and attention (W. Li et al., 2013). Furthermore, fMRI 

studies have demonstrated that the right Middle Frontal Gyrus is essential for switching 

between top-down and bottom-up attentional control networks (Japee, Holiday, Satyshur, 

Mukai, & Ungerleider, 2015), filtering distracting information (Marini, Demeter, Roberts, 

Chelazzi, & Woldorff, 2016), and numeracy (Koyama, O’Connor, Shehzad, & Milham, 2017). 

The left Inferior Frontal Gyrus is associated with language processing, working memory, 

empathy (Liakakis, Nickel, & Seitz, 2011), action observation, and imitation (Molnar-Szakacs, 
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Iacoboni, Koski, & Mazziotta, 2005). Its opercular part includes a portion of Broca’s area and 

is involved in speech production (Brown, Ingham, Ingham, Laird, & Fox, 2005) and 

phonological processing (Nixon, Lazarova, Hodinott-Hill, Gough, & Passingham, 2004). 

Noticeably, language processing requires the activation of other most important features like 

the Supramarginal Gyrus and the Superior Temporal Gyrus, among others (Price, 2012). The 

Supramarginal gyri are involved in phonological processing and verbal memory (Deschamps, 

Baum, & Gracco, 2014), where the right one is associated with empathy and emotional 

processing as well (Preckel, Kanske, & Singer, 2018; Silani, Lamm, Ruff, & Singer, 2013). 

The left Superior Temporal Gyrus often includes the Wernicke area and is responsible for 

phonological and semantic language comprehension (Buchsbaum, Hickok, & Humphries, 

2001; Leff et al., 2009). The right Lingual Gyrus is associated with visual processing (Fink et 

al., 1996) and divergent thinking (L. Zhang et al., 2016). In conclusion, the RF classifier 

identified cortical structures of the attentional, cognitive control, and language processing 

networks that have been previously found to be altered in schizophrenia (Barch & Ceaser, 

2012; Sommer, Ramsey, & Kahn, 2001).  

Indeed, numerous studies have reported reduced GM volumes of the prefrontal and 

temporal structures in relation to executive dysfunction in schizophrenia (e.g., Antonova et al., 

2004). Several findings have demonstrated reduced GM volume of the Superior (Yamasue et 

al., 2004), Middle (J. M. Goldstein et al., 1999; M. Suzuki et al., 2005), and Inferior (Buchanan 

et al., 2004; Buchanan, Vladar, Barta, & Pearlson, 1998) Prefrontal Gyri, with some evidence 

indicating strongest effects for the latter two regions (Harms et al., 2010). A large amount of 

research focused on the DLPFC (part of the Middle Frontal Gyrus) as a neuronal basis for 

working memory and executive functions. GM volume reductions and functional abnormalities 

of the DLPFC (Kawada et al., 2009; Kikinis et al., 2010; Wright et al., 1999) regarding working 

memory impairment have been repeatedly observed in schizophrenia (Barch & Ceaser, 2012). 

Moreover, DLPFC plays a crucial role in encoding and is thus associated with episodic memory 

deficits in schizophrenia (Guo, Ragland, & Carter, 2019). The decrease in the GM volume of 

the left Superior Temporal Gyrus has also been consistently shown in schizophrenia and linked 

to both positive symptoms such as auditory hallucinations and thought disorder (Rajarethinam, 

DeQuardo, Nalepa, & Tandon, 2000) and cognitive impairment (Antonova et al., 2004). 

Furthermore, structural abnormalities in the Supramarginal and Lingual Gyri have been 

associated with deficits in verbal fluency, face memory, and motor speed (Geisler et al., 2015). 

Notably, the right Supramarginal gyrus is also crucial for social cognition (Silani et al., 2013) 
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and could be hyperactivated during perspective-taking in schizophrenia (Jáni & Kašpárek, 

2018). In addition, altered activation in the Lingual Gyri has been previously associated with 

major depression (W.-N. Zhang, Chang, Guo, Zhang, & Wang, 2013). This finding is 

particularly interesting since both social cognition deficits (Nuechterlein et al., 2004) and 

depression symptoms (Hafner et al., 2005) are characteristic of schizophrenia but were not 

explicitly investigated by the present work. Thus, it supports the notion of neurocognition, 

social cognition, and negative symptoms being distinctive, yet strongly related to each other 

constructs that possibly share some common neuronal pathways (K.-H. Lee, Farrow, Spence, 

& Woodruff, 2004; Penn, Sanna, & Roberts, 2008; Sander et al., 2005). Surprisingly, 

hippocampal structures were not among the most important for the cognitive classification, 

despite their role in episodic memory in schizophrenia (Nelson et al., 1998). This result could 

be explained by the cognition index's construction, of which episodic memory makes up for 

only 25% (see Chapter 2.3.4.). The other 75% include executive functions, working memory, 

attention, and motor speed, all associated with prefrontal structures. Moreover, as described 

beforehand, episodic memory is strongly related to working memory and attention and 

consequently involves activation of the DLPFC (Guo et al., 2019), which we found to have 

reduced GM volume in schizophrenia. 

Although the RF algorithm identified structures associated with cognition and 

schizophrenia, we could not find any distinctive neuronal patterns for the different cognitive 

subtypes. This finding is in line with previous work, suggesting that the structural differences 

between HighCog and LowCog might be too minor to detect (Gould et al., 2014). One possible 

explanation for this effect is the division of the SP sample into two groups, which, similarly to 

a median split, could have led to the overestimation of group differences (MacCallum, Zhang, 

Preacher, & Rucker, 2002). Future research of extreme groups (e.g., best and worst 10%) from 

a larger patient pool could reveal more clear results on neuronal correlates of cognitive 

heterogeneity in schizophrenia. Another unexpected result was the significantly lower GM 

volumes in the left Middle Frontal Gyrus in controls than SP and UR. This finding was so 

unusual that we reviewed the image quality again and could attribute it to artifacts in the left 

frontal lobe that were slightly more prominent in the healthy sample. 

In contrast to previous results of abnormalities in brain morphology in healthy relatives 

of patients with schizophrenia (W. Zhang et al., 2020), our findings showed no group 

differences between UR and HC. UR even had numerically, but not significantly, larger GM 

volumes of the relevant regions than HC. We attribute this finding to the substantial difference 
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in group sizes - UR is more than two times smaller and more homogenous than HC. 

Furthermore, all included URs were highly educated, a factor positively correlating with GM 

volumes (Arenaza-Urquijo et al., 2013), which might further contribute to the effect. 

4.3. Strengths 

The present study is the first to predict cognition in schizophrenia using a machine 

learning paradigm on sMRI data of patients, unaffected relatives, and healthy controls. On the 

one hand, we incorporated previous evidence of cognitive heterogeneity in schizophrenia 

(Joyce & Roiser, 2007), partial heritability of neuropsychological deficits (Bora et al., 2014), 

and the common but compromised neurocognitive brain networks in patients compared to 

healthy controls (Minzenberg et al., 2009). On the other hand, we applied a less common 

machine learning method in psychiatry, an RF classifier (Dwyer et al., 2018). Hence, the 

current study both provides further evidence for the neurobiological pathways of cognitive 

deficits in schizophrenia and contributes to the methodological knowledge by demonstrating 

the feasibility of the RF classifier. Only one previous work applied similar methods to classify 

two cognitive subtypes in schizophrenia upon sMRI data (Gould et al., 2014). Here, the authors 

applied a VBM model only to patient data to discriminate between the predefined cognitive 

subgroups and achieved an accuracy initially slightly lower (<60%), which then increased to 

>80% for female patients after sex stratification. They also conducted several other VBM 

analyses to discriminate each cognitive profile from healthy controls (Gould et al., 2014). 

However, they did not perform the analysis including cognitive data from healthy participants. 

Thus, the present work complements their findings by showing the effective classification of 

patients’ cognitive performance by including HC and UR data. 

Another key strength of the current study is that the patient sample accurately 

represented the clinical picture of schizophrenia in Germany. For instance, we included in and 

outpatients with mild to moderate-severe symptoms, most of whom received antipsychotic 

medication. Furthermore, they were in different stages of the disease, with DOI ranging from 

less than one to over ten years. Moreover, the results on cognition of SP, HC, and UR mirrored 

previous findings patients’ neuropsychological being ca. 2 SDs worse than in healthy 

participants with significant overlapping of both distributions (Keefe & Fenton, 2007). 

Therefore, we believe that our study has high external validity for schizophrenia. 
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Lastly, another advantage of the current work is the application of standard testing tools 

and, thus, the high comparability with previous research. For instance, we assessed cognitive 

performance with traditional tests used in general neuropsychological diagnostic (Lezak et al., 

2012; Tewes, 1994) and are also part of specific test batteries for schizophrenia like RBANS 

(Wilk et al., 2004), BACS3 (Keefe et al., 2004) and MCCB4 (Nuechterlein & Green, 2006). 

Moreover, the tests are applied in numerous observational and treatment studies on cognitive 

deficits in schizophrenia (e.g., Hasan, Guse, et al., 2016; Malchow et al., 2016). The 

comparability is further increased by the assessment of psychopathology with PANSS (Kay et 

al., 1987) and SANS (Andreasen, 1989), which are standard tools in clinical research (T. 

Suzuki, 2011).  

4.4. Limitations  

The main critical point of the current work is the relatively small study sample of 127 

participants, which could have limited the generalizability of our results. Although comparable 

with previous publications (for an overview, see Arbabshirani et al., 2017, page 146, Table 3), 

recent research demonstrated the disadvantages of studies with similar case numbers when 

applying multivariate pattern recognition tools (Dwyer et al., 2018; N. Tandon & Tandon, 

2019). The sample size is especially crucial in works investigating heterogeneous groups, 

directly affecting prediction accuracy (Schnack & Kahn, 2016). A possibility to increase the 

findings' generalizability is cross-validation of the current model with an independent sample 

(Schnack & Kahn, 2016; N. Tandon & Tandon, 2019). Unfortunately, an independent dataset 

of schizophrenia patients with similar cognitive, imaging, and clinical variables was 

unavailable. In the future, however, we plan to validate our findings cooperating with the 

Exercise study (Maurus et al., 2020), which has an almost identical dataset but is still in the 

data acquisition phase. 

Another critical point is the calculation Gini importance as future importance. Although 

widely used due to its low computation cost, it could lead to an inflation of the importance of 

continuous variables (Wright, Dankowski, & Ziegler, 2017). In future models, a correction 

could be applied to avoid this bias (Nembrini, König, & Wright, 2018) 

                                                 
 
3 BACS: The Brief Assessment of Cognition in Schizophrenia 
4 MCCB: The MATRICS Consensus Cognitive Battery 
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Our findings could also be limited by the operationalization of neuropsychology and 

the definition of cognitive subgroups. As aforementioned, we used standard measures to assess 

cognitive deficits and increase comparability. Although feasible and effective in a clinical 

context, these traditional tests are often criticized for being unspecific (Snyder et al., 2015). 

We attempted to address this issue by constructing a global cognition index in line with the 

generalized cognitive deficit hypothesis (Braff et al., 1991; Gold & Dickinson, 2013). 

However, several authors have opposed this theory demonstrating more selective 

neuropsychological impairments in schizophrenia (Chapman & Chapman, 1989; Green et al., 

2012). Most recently, Geisler et al. (2015) defined four cognitive subgroups with specific 

deficits and linked them to distinct structural and functional brain patterns. Therefore, applying 

more precise neuropsychological measures (Snyder et al., 2015) could help us elicit clearly 

defined subgroups and better understand the neural basis of cognitive heterogeneity in 

schizophrenia. 

Moreover, the separation of the patient sample in HighCog and LowCog upon a data-

driven cut-off value could also be problematic. First, as described in Chapter 4.2., a 

dichotomization of a continuous variable could cause several methodological issues such as 

information loss and overestimation of effect size (MacCallum et al., 2002). Second, despite 

using standard methods for setting the cut-off value (e.g., Keefe & Fenton, 2007), this method 

is still very oriented to the particular dataset and could lower results' generalizability.  

Lastly, the RF algorithm did not include duration of illness, age of onset, and 

antipsychotic medication as features, all associated with structural brain alterations in 

schizophrenia (Guo et al., 2015; Hashimoto et al., 2018; van Erp et al., 2018) and thus, potential 

confounding variables. Despite demonstrating that these factors did not correlate with 

cognition or differ between cognitive profiles (see Chapter 3.1.2), we cannot make any 

assumptions about their impact on the classification. Moreover, we used only cross-sectional 

data, which could further limit the generalizability of the current findings.  

4.5. Implications 

The current findings have several implications for both treatment and research. First, 

they provide further empirical evidence of the neurobiological underprints of cognitive 

dysfunction and, consequently, new possible avenues to treat them. For instance, novel 

neurostimulation methods applied to the DLPFC could improve working memory in 

schizophrenia (Hasan, Guse, et al., 2016; Papazova et al., 2018). However, most studies focus 
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only on the prefrontal cortex (Hasan, Strube, Palm, & Wobrock, 2016). Our findings confirm 

the role of temporal, occipital, and parietal brain regions in cognitive processing and indicate 

them as possible stimulation targets. Future trials should investigate if brain stimulation of 

these areas would successfully treat cognitive deficits in schizophrenia. 

Second, our findings underline the potential of cognitive profiling to tackle 

heterogeneity in schizophrenia (Chapman & Chapman, 1989). Here, we were able to determine 

critical brain regions by linking them to two neuropsychological subgroups. In addition, 

previous research linked cognitive dysfunction to several candidate genes (e.g., DISC1) in 

schizophrenia (Zai et al., 2017). Indeed, cognitive impairment and specific deficits (e.g., 

working memory) emerged in recent years as possible endophenotypes for genetic liability in 

schizophrenia (Gur, 2007; Park & Gooding, 2014; Snitz et al., 2006). For instance, a recent 

work applied an RF algorithm to predict six cognitive subtypes upon genetic data (Zheutlin et 

al., 2018). Therefore, combining cognitive, molecular, and imaging findings with machine 

learning algorithms is the next step in characterizing distinctive schizophrenia endophenotypes. 

It could even help us move away from the broad construct of schizophrenia towards a psychosis 

spectrum with several subgroups with specific symptom patterns (Guloksuz & van Os, 2018; 

N. Tandon & Tandon, 2019). 

Finally, the current work provides a basis for future research. Here, we predicted 

cognition in schizophrenia, using only volumetric brain data. However, previous research 

linked neuropsychological deficits to further parameters such as cortical thickness (Ehrlich et 

al., 2011), WM density (measured with DTI) (Dwork, Mancevski, & Rosoklija, 2007), and 

resting-state connectivity (Sheffield & Barch, 2016). Moreover, various socio-demographic 

factors, such as educational background (Heinrichs, 2005), a history of childhood trauma (Aas 

et al., 2014), are also associated with neuropsychological functioning. Combining biological 

and demographic parameters into the prediction model would deepen our understanding of 

cognitive deficits in schizophrenia. Further research should also include “hot” 

neuropsychological functions such as emotional processing and social cognition, which are 

also compromised in patients with schizophrenia (Kohler & Martin, 2006; Penn et al., 2008). 

Increasing the modalities of both features and dependent variables would not only benefit our 

theoretical understanding but will also improve our prediction model. Indeed, previous studies 

have demonstrated that the inclusion of multi-modal data and the combination of several 

machine learning techniques increase classification accuracy (de Filippis et al., 2019; Sarica et 

al., 2017). Therefore, future research with prediction models combining several machine 
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learning tools and incorporating multi-modal parameters on cognition in schizophrenia are 

much needed. 

4.6. Conclusions and Outlook 

Overall, we demonstrated that an RF algorithm with combined sMRI data from patients, 

healthy relatives, and controls could successfully classify two cognitive profiles in 

schizophrenia with BAC of 69%. Moreover, the prediction model replicated previous findings 

of prefrontal, temporal, parietal, and occipital structures playing a pivotal role in 

neuropsychological functions like working memory, attention, and verbal processing 

(Antonova et al., 2004; Barch & Ceaser, 2012; Sommer et al., 2001). Although the GM 

volumes did not differ between the two cognitive profiles, they were significantly smaller in 

the patient group than in the other two study samples. Thus, the cortical structures emerged as 

potential biomarkers for schizophrenia, and their association with neuropsychological deficits 

underlines the importance of cognition in etiology models in schizophrenia (e.g., Howes & 

Murray, 2014; M. J. Owen et al., 2011). However, the current findings should be considered 

with caution since 69% BAC is rather low in a clinical context, and the relatively small study 

sample limits the generalizability.  

Nevertheless, the present work provides further evidence of machine learning's 

potential to resolve heterogeneity in schizophrenia and define subgroups with distinctive 

symptom patterns (N. Tandon & Tandon, 2019). Future research should combine multimodal 

imaging, genetics, and socio-cultural background with machine learning methods to large 

samples with longitudinal data to fully understand the mechanisms of cognitive deficits in 

schizophrenia and help create novel approaches for their treatment. 
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Appendix A: 

Nr AAL label Brain Region 

1.  Precentral_L Precental gyrus (left) 

2.  Precentral_R Precental gyrus (right) 

3.  Frontal_Sup_L Superior frontal gyrus, dorsolateral (left) 

4.  Frontal_Sup_R Superior frontal gyrus, dorsolateral (right) 

5.  Frontal_Sup_Orb_L Superior frontal gyrus, orbital part (left) 

6.  Frontal_Sup_Orb_R Superior frontal gyrus, orbital part (right) 

7.  Frontal_Mid_L Middle frontal gyrus (left) 

8.  Frontal_Mid_R Middle frontal gyrus (right) 

9.  Frontal_Mid_Orb_L Middle frontal gyrus, orbital part (left) 

10.  Frontal_Mid_Orb_R Middle frontal gyrus, orbital part (right) 

11.  Frontal_Inf_Oper_L Inferior frontal gyrus, opercular part (left) 

12.  Frontal_Inf_Oper_R Inferior frontal gyrus, opercular part (right) 

13.  Frontal_Inf_Tri_L Inferior frontal gyrus, triangular part (left) 

14.  Frontal_Inf_Tri_R Inferior frontal gyrus, triangular part (right) 

15.  Frontal_Inf_Orb_L Inferior frontal gyrus, orbital part (left) 

16.  Frontal_Inf_Orb_R Inferior frontal gyrus, orbital part (right) 

17.  Rolandic_Oper_L Rolandic operculum (left) 

18.  Rolandic_Oper_R Rolandic operculum (right) 

19.  Supp_Motor_Area_L Supplementary motor area (left) 

20.  Supp_Motor_Area_R Supplementary motor area (right) 

21.  Olfactory_L Olfactory cortex (left) 

22.  Olfactory_R Olfactory cortex (right) 

23.  Frontal_Sup_Medial_L Superior frontal gyrus, medial (left) 

24.  Frontal_Sup_Medial_R Superior frontal gyrus, medial (right) 

25.  Frontal_Mid_Orb_L Superior frontal gyrus, medial orbital (left) 

26.  Frontal_Mid_Orb_R Superior frontal gyrus, medial orbital (right) 

27.  Rectus_L Gyrus rectus (left) 

28.  Rectus_R Gyrus rectus (right) 

29.  Insula_L Insula (left) 

30.  Insula_R Insula (right) 



APPENDIX A: 95 

 
 

31.  Cingulum_Ant_L Anterior cingulate and paracingulate gyri (left) 

32.  Cingulum_Ant_R Anterior cingulate and paracingulate gyri (right) 

33.  Cingulum_Mid_L Median cingulate and paracingulate gyri (left) 

34.  Cingulum_Mid_R Median cingulate and paracingulate gyri (right) 

35.  Cingulum_Post_L Posterior cingulate gyrus (left)  

36.  Cingulum_Post_R Posterior cingulate gyrus (right) 

37.  Hippocampus_L Hippocampus (left) 

38.  Hippocampus_R Hippocampus (right) 

39.  ParaHippocampal_L Parahippocampal gyrus (left) 

40.  ParaHippocampal_R Parahippocampal gyrus (right) 

41.  Amygdala_L Amygdala (left) 

42.  Amygdala_R Amygdala (right) 

43.  Calcarine_L Calcarine fissure and surrounding cortex (left) 

44.  Calcarine_R Calcarine fissure and surrounding cortex (right) 

45.  Cuneus_L Cuneus (left) 

46.  Cuneus_R Cuneus (right) 

47.  Lingual_L Lingual gyrus (left) 

48.  Lingual_R Lingual gyrus (right) 

49.  Occipital_Sup_L Superior occipital gyrus (left) 

50.  Occipital_Sup_R Superior occipital gyrus (right) 

51.  Occipital_Mid_L Middle occipital gyrus (left) 

52.  Occipital_Mid_R Middle occipital gyrus (right) 

53.  Occipital_Inf_L Inferior occipital gyrus (left) 

54.  Occipital_Inf_R Inferior occipital gyrus (right) 

55.  Fusiform_L Fusiform gyrus (left) 

56.  Fusiform_R Fusiform gyrus (right) 

57.  Postcentral_L Postcentral gyrus (left) 

58.  Postcentral_R Postcentral gyrus (right) 

59.  Parietal_Sup_L Superior parietal gyrus (left) 

60.  Parietal_Sup_R Superior parietal gyrus (right) 

61.  Parietal_Inf_L Inferior parietal, but supramarginal and angular 

gyri (left) 
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62.  Parietal_Inf_R Inferior parietal, but supramarginal and angular 

gyri (right) 

63.  SupraMarginal_L Supramarginal gyrus (left) 

64.  SupraMarginal_R Supramarginal gyrus (right) 

65.  Angular_L Angular gyrus (left) 

66.  Angular_R Angular gyrus (right) 

67.  Precuneus_L Precuneus (left) 

68.  Precuneus_R Precuneus (right) 

69.  Paracentral_Lobule_L Paracentral lobule (left) 

70.  Paracentral_Lobule_R Paracentral lobule (right) 

71.  Caudate_L Caudate nucleus (left) 

72.  Caudate_R Caudate nucleus (right) 

73.  Putamen_L Lenticular nucleus, putamen (left) 

74.  Putamen_R Lenticular nucleus, putamen (right) 

75.  Pallidum_L Lenticular nucleus, pallidum (left) 

76.  Pallidum_R Lenticular nucleus, pallidum (right) 

77.  Thalamus_L Thalamus (left) 

78.  Thalamus_R Thalamus (right) 

79.  Heschl_L Heschl gyrus (left) 

80.  Heschl_R Heschl gyrus (right) 

81.  Temporal_Sup_L Superior temporal gyrus (left) 

82.  Temporal_Sup_R Superior temporal gyrus (right) 

83.  Temporal_Pole_Sup_L Temporal pole: superior temporal gyrus (left) 

84.  Temporal_Pole_Sup_R Temporal pole: superior temporal gyrus (right) 

85.  Temporal_Mid_L Middle temporal gyrus (left) 

86.  Temporal_Mid_R Middle temporal gyrus (right) 

87.  Temporal_Pole_Mid_L Temporal pole: middle temporal gyrus (left) 

88.  Temporal_Pole_Mid_R Temporal pole: middle temporal gyrus (right) 

89.  Temporal_Inf_L Inferior temporal gyrus (left) 

90.  Temporal_Inf_R Inferior temporal gyrus (right) 

91.  Cerebelum_Crus1_L Crus I of cerebellar hemisphere (left) 

92.  Cerebelum_Crus1_R Crus I of cerebellar hemisphere (right) 

93.  Cerebelum_Crus2_L Crus II of cerebellar hemisphere (left) 
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94.  Cerebelum_Crus2_Rs Crus II of cerebellar hemisphere (right) 

95.  Cerebelum_3_L Lobule III of cerebellar hemisphere (left) 

96.  Cerebelum_3_R Lobule III of cerebellar hemisphere (right) 

97.  Cerebelum_4_5_L Lobule IV, V of cerebellar hemisphere (left) 

98.  Cerebelum_4_5_R Lobule IV, V of cerebellar hemisphere (right) 

99.  Cerebelum_6_L Lobule VI of cerebellar hemisphere (left) 

100.  Cerebelum_6_R Lobule VI of cerebellar hemisphere (right) 

101.  Cerebelum_7b_L Lobule VIIB of cerebellar hemisphere (left) 

102.  Cerebelum_7b_R Lobule VIIB of cerebellar hemisphere (right) 

103.  Cerebelum_8_L Lobule VIII of cerebellar hemisphere (left) 

104.  Cerebelum_8_R Lobule VIII of cerebellar hemisphere (right) 

105.  Cerebelum_9_L Lobule IX of cerebellar hemisphere (left) 

106.  Cerebelum_9_R Lobule IX of cerebellar hemisphere (right) 

107.  Cerebelum_10_L Lobule X of cerebellar hemisphere (left) 

108.  Cerebelum_10_R Lobule X of cerebellar hemisphere (right) 

109.  Vermis_1_2 Lobule I, II of vermis  

110.  Vermis_3 Lobule III of vermis 

111.  Vermis_4_5 Lobule IV, V of vermis 

112.  Vermis_6 Lobule VI of vermis 

113.  Vermis_7 Lobule VII of vermis 

114.  Vermis_8 Lobule VIII of vermis 

115.  Vermis_9 Lobule IX of vermis 

116.  Vermis_10 Lobule X of vermis 
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Appendix B: 

Random Forest Classification Parameters: 

 bootstrap=True 

 class_weight=None 

 criterion='gini' 

 max_depth=20 

 max_features='auto' 

 max_leaf_nodes=None 

 min_impurity_decrease=0.0 

 min_impurity_split=None 

 min_samples_leaf=1 

 min_samples_split=2 

 min_weight_fraction_leaf=0.0 

 n_estimators=380 

 n_jobs=None 

 oob_score=False 

 random_state=12 

 verbose=0 

 warm_start=False 
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