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A B S T R A C T

Hippocampal cells exhibit preference to be active at a specific place in a famil-
iar environment, enabling them to encode the representation of space within
the brain at the population level (J. O’Keefe and Dostrovsky 1971). These cells
rely on the external sensory inputs and self-motion cues, however, it is still not
known how exactly these inputs interact to build a stable representation of a
certain location (“place field”). Existing studies suggest that both proprioceptive
and other idiothetic types of information are continuously integrated to update
the self-position (e.g. implementing “path integration”) while other stable sen-
sory cues provide references to update the allocentric position of self and correct
it for the collected integration-related errors. It was shown that both allocentric
and idiothetic types of information influence positional cell firing, however in
most of the studies these inputs were firmly coupled. The use of virtual reality
setups (Thurley and Ayaz 2016) made it possible to separate the influence of
vision and proprioception for the price of not keeping natural conditions - the
animal is usually head- or body-fixed (Hölscher et al. 2005; Ravassard A. 2013;
Jayakumar et al. 2018a; Haas et al. 2019), which introduces vestibular motor-
and visual- conflicts, providing a bias for space encoding. Here we use the novel
CAVE Virtual Reality system for freely-moving rodents (Del Grosso 2018) that al-
lows to investigate the effect of visual- and positional- (vestibular) manipulation
on the hippocampal space code while keeping natural behaving conditions.

In this study, we focus on the dynamic representation of space when the visual-
cue-defined and physical-boundary-defined reference frames are in conflict. We
confirm the dominance of one reference frame over the other on the level of
place fields, when the information about one reference frame is absent (Gothard
et al. 2001). We show that the hippocampal cells form adjacent categories by
their input preference - surprisingly, not only that they are being driven either
by visual / allocentric information or by the distance to the physical boundaries
and path integration, but also by a specific combination of both. We found a
large category of units integrating inputs from both allocentric and idiothetic
pathways that are able to represent an intermediate position between two refer-
ence frames, when they are in conflict. This experimental evidence suggests that
most of the place cells are involved in representing both reference frames using a
weighted combination of sensory inputs. In line with the studies showing domi-
nance of the more reliable sensory modality (Kathryn J. Jeffery and J. M. O’Keefe
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1999; Gothard et al. 2001), our data is consistent (although not proving it) with
CA1 cells implementing an optimal Bayesian coding given the idiothetic and
allocentric inputs with weights inversely proportional to the availability of the
input, as proposed for other sensory systems (Kate J. Jeffery, Page, and Simon
M. Stringer 2016). This mechanism of weighted sensory integration, consistent
with recent dynamic loop models of the hippocampal-entorhinal network (Li,
Arleo, and Sheynikhovich 2020), can contribute to the physiological explanation
of Bayesian inference and optimal combination of spatial cues for localization
(Cheng et al. 2007).
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I N T R O D U C T I O N

space and navigation as abstract concepts of everyday life

For about a decade I was curious whether reading books from an electronic
device is anyhow affecting comprehension or learning, an ability to remember
facts, events or their sequence - compared to their paper versions. The modern
electronic way of reading exposes many advantages: you can store 1000 books in
the same small device, you can quickly search any text by a word, there is an abil-
ity to make notes and highlight valuable fragments and, of course, to share all
that content between physical devices. These advantages were by far overtaking
and convincing towards using electronic versions for reading until I found the
research on reading comprehension by Mangen, Walgermo, and Brønnick 2013.
They demonstrate that text comprehension was lower for the group of electronic
readers, compared to the paper-based readers, and that it is mostly related with
the reduced ability to reproduce the sequence of described events for narratives
or locating information in texts in general (Giulia Cataldo and Oakhill 2000). In-
terestingly, the major hypothesis for the decrease of performance is the reduced
spatial representation of the electronic book compared to the printed content
(Mangen, Walgermo, and Brønnick 2013). They argue that access to paper texts
comes in a coherent combination of visual and tactile cues, allowing a reader
to build spatial extension and physical dimension of the text. This is supported
by earlier empirical and theoretical studies showing that a good mental spatial
representation of the text layout supports reading comprehension (Kintsch 1998;
Piolat, Roussey, and Thunin 1997). So building a good spatial representation of
the content is important for comprehension and learning.

How else do the abstract concepts of space and navigation have an impact on
our life? Let’s jump to the world of classical music and imagine a musical piece.
A set of notes (tones) can be taken as a particular music space (e.g. the standard
88 keys on the piano keyboard). A melody, from note to note, accompanied by
chords and passages, builds a trajectory in this imaginary music space. This

1



2 introduction

music space has a physical projection called sheet notes, usually printed on
paper. While reading sheet notes of a particular piece, we go through the special
signs and symbols - “forte” or “piano”, “fermata”, “rest”, “coda” and others,
which act as visual cues and landmarks in the current music trajectory. So what
is essential to be able to play a music piece? It is inevitable to build a mental
representation of the music space in the brain, as well as to be able to navigate
in that music space, by learning and executing existing or building new “music”
trajectories and linking them to the physical arm and finger actions - depending
whether you prefer piano, violin or a guitar (see also “Mental play” in Chang
2016).

A game of chess is another example of an abstract space, a bit closer to the clas-
sical physical “real-world” space representation. The chessboard has its strictly
defined boundaries and spatial positions. Direction and type of movements in
the chessboard space are predetermined for different actors and also limited
depending on the position of other figures. The victory in a game is critically
dependent on the ability to build a reliable representation of that chessboard
space in the brain, as well as to build a magnitude of possible trajectories that,
one after the other, could be implemented by figures of both colors.

Abstract concepts of space and navigation are applicable to many physical
modalities. Besides the traditional spatial navigation from a bedroom to a kitchen,
from home to work or from Munich to Moscow, we constantly need to solve spa-
tial problems in relative spaces - like to define on which shelf relative to the
freezer should I put back a coffee cup, or to imagine somewhere away to the far
left in the egocentric space when locating a source of a pleasant sound (see also
Buzsáki, 2019, “Space in the world versus space in the brain”). What do all these
physical or abstract “spatial” tasks have in common? At the high cognitive level,
the implementation of all these types of spatial navigation mostly located in the
medial temporal lobe, specifically in the hippocampal-entorhinal system. Hav-
ing location- and spatial cue-selective neurons (John O’Keefe and Nadel 1978,
M.-b. Moser, Rowland, and Edvard I Moser 2015), hippocampus and parahip-
pocampal cortex together are able to form representations of not only physical
spatial dimensions, but act as a general machinery for building arbitrary repre-
sentations of physical and abstract spaces (Aronov, Nevers, and David W. Tank
2017). These mental cognitive maps - dynamic ensembles of cells selective for
combinations of physical or abstract spatial features representing unique loca-
tions or experiences - are necessary to build and implement navigation in these
spaces, potentially via sequential activation of these neural ensembles in a form
of mental trajectories (Hopfield 2010; György Buzsáki and Tingley 2018).

Up to the moment, the exact mechanisms how these neuronal dynamics are
implemented at both population or single neuron level is still not fully under-
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stood. In this work, I’m trying to contribute to the research on navigation
in physical space as a special subclass of cognition tasks implemented by the
hippocampal-entorhinal system.

spatial representation in the hippocampal-entorhinal circuit

Spatial navigation in mammals is implemented as a cooperative dynamic neural
network, distributed across multiple brain regions. This network encodes not
only an allocentric position in space, but also movement direction, as well as the
past and future trajectories. The great evidence for it are the discoveries of place
cells, grid cells, head direction cells and other types of spatial feature selective
cells, located mostly within the hippocampal, parahippocampal and entorhinal
brain areas (see review in M.-b. Moser, Rowland, and Edvard I Moser 2015).
Place cells were defined mostly as neurons selective to a particular location in
an environment. Grid cells, one synapse away from the place cells, are also place
selective neurons but that are active not at single locations, but at a regularly-
spaced intervals, bringing a periodic structure to the physical space inside the
cognitive brain map. Place cells are modulated by a variety of inputs, including
external visual landmarks, olfactory or tactile cues, translational and rotational
signals and integrated proprioceptive signals, which allow them to maintain ac-
tivity of their place of preference when the sensory signals are absent, like in
the absence of light. While place cell activity can unpredictably change from
one environment to the next (Colgin, Edvard I. Moser, and M. B. Moser 2008),
in contrast, grid cells keep their firing independent of the individual details
of a particular environment (Fyhn et al. 2007), providing a putative metric of
space. Additionally, orientation in the environment can be taken from the head-
direction system, implemented by the neurons located in different brain areas
but importantly in the post-subiculum, and being active when the animal’s head
is pointed to a certain direction (Jeffrey S. Taube 2007). More specific cell types,
like boundary-vector cells, or cells responding to a combination of environmen-
tal features (Sachin S. Deshmukh and James J. Knierim 2013; Høydal et al. 2019)
extend the navigation system in fine-tuning actual position estimation, in correct-
ing accumulated positional errors and perfecting future spatial planning. Below,
there is a short review of each of the particular cell types and its possible involve-
ment in the brain navigational system. As the exact internal organization of the
navigation system is not fully defined yet, at the end of this chapter I discuss
open questions and focus on the yet unknown parts of it that I try to address
and to make a contribution to in this study.
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Place cells

Hippocampal cells responsive to a current location of an animal were first found
by O’Keefe and Dostrovsky in 1971. After the discovery, these cells acquired a
name of “place cells” (Figure 1a). Although there are many ways of the func-
tional organization in the cortex - like the topographic organization in the visual
area V1 (Schuett, Bonhoeffer, and Hübener 2002), place cells in the CA1 area
appeared to not form any simple organizational pattern, such that the neigh-
boring cells may represent different locations and features of the environment.
Later it was discovered that the size of the environment, selective for a particu-
lar place cell, varies from the cell location within the hippocampus, from dorsal
(smaller, precise fields) to ventral (lager fields, Jung, S. I. Wiener, and Bruce L.
McNaughton 1994). The emerging interest to the hippocampal research after the
place cell discovery led to the discovery of the hippocampal neurons respond-
ing to non-spatial features, like odors (Wood, Paul A Dudchenko, and Howard
Eichenbaum 1999; Igarashi et al. 2014), border and general tactile information
(Young, Fox, and H Eichenbaum 1994; O’keefe and Burgess 1996), distance or
timing (Hampson, Heyser, and Deadwyler 1993; Kautzky and Thurley 2016).
However, although much of the hippocampal findings relate to the representa-
tion of space, it does not limit the role of the hippocampus in declarative memory
in general - place representation is just a key element in many episodic or even
semantic memories (György Buzsáki and Edvard I Moser 2013).

Importantly, the recordings of hippocampal neurons in novel environments re-
veal that the majority of place cells appear to have immediate firing fields (Frank,
Stanley, and Brown 2004). Although several studies of hippocampal ensembles
demonstrate, that often the formation of stable fields takes up to several minutes
(Wilson and B L McNaughton 1993), this presence of immediate fields suggests
that certain components of the network are pre-wired in the circuit, and that the
basic elements (neurons, synaptic connections) of the cognitive map are largely
predetermined. In short summary - place cells provide dynamic and continuous
information about the animal’s position in space, and together, on the popula-
tion level, these cells are able to form a cognitive map - an abstraction in the
brain that represents allocentric space.

Grid cells

In addition to the discovery of the place cells, a few decades after, another im-
portant type of the place-selective cells were found in the brain’s entorhinal
cortices. Particularly, in the layer II of the Medial Entorhinal Cortex (mEC) neu-
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Figure 1: Place, grid and border cells. (a) Firing rate map of an example hippocampal neuron that is active
at a certain location in the rectangular environment - a “place” field. (b) another example neuron that
has multiple place fields of different size (examples from the data used in the current study). (c) Firing
rate map of an example mEC neuron that is active at certain locations of the environment, that form a
hexagonal grid pattern (left). Place preference autocorrelograms reveal hexagonal structure (Adapted with
permission from M.-b. Moser, Rowland, and Edvard I Moser 2015) (d) Examples of pairs of grid cells
having different scale, orientation and phase (adapted with permission from Edvard I Moser et al. 2014).
(e) Firing rate maps of an example neuron that is active near the right border of the environment, invariant
of the environment type (adapted with permission from Solstad et al. 2008) (f) schematic of the receptive
field of an example neuron that is selective for a particular direction and distance to the environmental
boundary (Lever et al. 2009).
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rons, forming discrete regularly spaced firing fields were identified (Hafting et
al. 2005). Surprisingly, the firing fields of those neurons were organized in a grid
of tessellating triangles evenly covering the corresponding space (Figure 1c). A
simple autocorrelogram analysis revealed the rigid hexagonal structure (Figure
1c right). Key features of the newly discovered cells were, first - their different
spacing between individual fields and phase shift relative to each other, with
the increasing scale from dorsal to ventral mEC, and second - their anchoring
to the boundaries, persistence between environments and independence on vi-
sual or olfactory landmarks. These facts suggest this type of cells is primarily
based on self-motion and plays a main role in path integration, mixing idiothetic
vestibular and proprioceptive signals. Anatomically, mEC has a direct input to
the Hippocampus. This led to the assumption that grid cells, sharing common
peak and different spacing, might be a good basis to form place cells, taking
grid cell inputs as a linear combination (John O’Keefe and Burgess 2005). How-
ever, experimental evidence, based on studies on developing animals, shows that
mechanisms are more sophisticated, as there is a delayed maturation of the grid
fields relative to place cells. An alternative assumption, that place cells can be
formed as a combination of the grid and other cell-type inputs - like border cells
(see below), which are ready at the early stages of the development, looked to
be more consistent. As suggested (Savelli, Yoganarasimha, and James J. Knierim
2008), specific place cells may arise as neurons integrating inputs from grid cells
that provide proprioceptive-based distance information, and border cells that
provide position relative to external boundaries. This putative idiothetic place
cells will be named “boundary-driven” or “boundary-vector” cells later in the
text.

Head direction system

One of the key components for successful navigation is maintenance of the
proper allocentric orientation. Even before grid cells, neurons, which firing rates
depend on the animal’s head orientation were found - originally in postsubicu-
lum (Jeffrey S. Taube 2007), and later in other nearby areas (mEC, AdN etc.).
Besides their primary feature of keeping the absolute directional preference, the
“head-direction” cells were shown to maintain their relative directional prefer-
ences between each other; however, each cell by itself has no particular prefer-
ence in absolute world coordinates - its directional preference can change be-
tween different environments. Importantly, in absence of light, head direction
cells are able to integrate angular velocity of the head and maintain original
directional preference, although for the cost of accumulation of directional error.
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The presence of head direction cells is a necessary part to perform success-
ful path integration, especially when light or external allocentric sensory cues
are not present. The interaction of grid cells, providing distance estimation and
a metric for space based on idiothetic inputs, and head direction cells supply-
ing absolute orientation define the basis for position estimation based on path
integration, which is discussed more in one of the next sections of this chapter.

Border and BVC cells

While grid cells and head direction cells provide distance and orientation esti-
mation, respectively, actual position should be estimated in relation to a certain
point in space - usually relative to a physical boundary. Further research of the
cell functions in the mEC lead to a discovery of the neurons representing geo-
metric boundaries (Solstad et al. 2008), and cells active at a particular distance
to a certain boundary. These “border” and “boundary” cells are active when an
animal is located near a certain physical boundary; their firing is independent of
affine transformations (Figure 1e). A border cell, or more generally, a putative
boundary vector cell (Barry et al. 2006, Lever et al. 2009), is another type of the
neuronal encoding found in the mEC, that is involved in spatial representation.
In a series of recordings these cells demonstrated preference to fire at a certain
distance and direction to a particular object (Figure 1f) or, as a special case, to a
certain boundary.

Border and boundary-vector cells (BVCs) may play an important role in up-
dating positional signals of grid cells, as the latter tend to drift in open spaces. If
the animal hits the boundary, any accumulated error in the grid cell positioning
can be “reset” and appropriately corrected (Hardcastle, Ganguli, and Giocomo
2015). Taken together, by defining the perimeter and stable physical objects rel-
ative to this perimeter inside, border and object-vector cells may represent an
independent reference frame that can be used later by place cells to form correct
space representations in the hippocampus.

Landmark and object vector cells

Besides environmental boundaries, stable visual landmarks can be used for
building navigational strategies. In the visual sensory domain, cells, selective
for certain spatial landmarks were discovered in the LEC (mEC) (Sachin S Desh-
mukh and James J Knierim 2011; Kinkhabwala et al. 2020), and later in the CA1

and CA3 (Sachin S. Deshmukh and James J. Knierim 2013). These different se-
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lectivity types are ranging from an increase of neuron’s activity when passing a
certain visual cue on the linear tracks (Kinkhabwala et al. 2020), up to forming
a stable firing field relative to a landmark at a certain distance and orientation.
This discovery was further developed to a concept of general object vector cells
found in the mEC, pointing to an idea that vector coding is a dominant form of
position coding the entorhinal system (Høydal et al. 2019).

Anatomy of the hippocampal-entorhinal system

To establish meaningful conclusions about the mechanisms of the spatial nav-
igation system, it’s important to explore the basic anatomical and functional
connectivity of the underlying brain regions. Below we provide an essential ex-
traction from the review of the anatomy of the hippocampal formation and the
entorhinal cortex regions as the key areas involved in navigation, based on the
rodent brain.

First we focus on the sagittal view of the rat’s right hemisphere, a horizon-
tal brain slice in the middle of the hippocampal formation (Figure 2a). The
hippocampal formation is presented by the key areas CA1, CA2 and CA3, as
well as the DG and Subiculum. Darker areas show a density of pyramidal cell
types (stratum pyramidale), where most of the place selective hippocampal neu-
rons are found; lighter areas mostly contain dendrites and interneurons. The
Parahippocampal region is represented by LEC, mEC, PrS and PaS areas. These
regions contain the aforementioned grid cells and boundary-vector cells, as well
as neurons selective to absolute orientations.

Pyramidal cells are excitatory cells that use Glutamate as a neurotransmitter.
Different types of interneurons are all GABAergic (inhibitory), having their cell
bodies distributed within all layers of the hippocampal formation (stratum ra-
diatum, pyramidale, lacunosum-moleculare, oriens). Importantly, the activity of
pyramidal cells are modulated by both external (e.g. mEC neurons) and internal
(like CA3 principal cells and local inhibitory interneurons) inputs. One can dis-
tinguish principal cells and interneurons from electrophysiology. Principal cells
have larger action potentials, have in average lower mean firing rate, and show
noticeable bursty behavior.

The main cortical input to the hippocampus is the input from the entorhi-
nal cortex that goes via the perforant pathway. Essentially this input conveys
pre-processed information from higher-order sensory and association areas. In
particular, most of the neurons of the layer 2 of the EC project to the DG and
CA3, at the same time neurons in the layer 3 find their targets in the CA1 and
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Figure 2: (a) A slice of the right hemisphere of the rat brain (left). The focus is made on hippocampal
and entorhinal regions. The same regions are shown located inside the rat brain (right). (b) Schematic
of the connections within and between hippocampus and entorhinal cortex (adapted with permission from
Edvard I Moser et al. 2014)

Subiculum. CA1 and Subiculum provide feedback connections to the EC layer 5.
There is a complex topography: all entorhinal layers are reciprocally connected
(Figure 2b). In addition, there is also a mEC projection to the contralateral hip-
pocampus with the same topography, although of a smaller density.

In essence, in the context of formation of place cells, the presented hippocampal-
entorhinal connectivity allows for integration of the different mEC / LEC types
of inputs with local CA3 inputs at the level of the CA1 pyramidal cells. This
forms an anatomical basis for the assumption of the integration of grid, or
boundary-vector cells, coming from the EC, with sensory driven cells - like visual
landmark cells for the transient formation of the stable spatial representation in
the form of place cells in the CA1 region.
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Sequence coding and theta phase precession in hippocampal cells

As was established in the end of 1960x, hippocampal local field potential (LFP)
activity provides oscillations of different modes and frequencies (Vanderwolf
1969). There are two main regimes - a prominent oscillation in a range between
7 to 12 Hz named Theta oscillation, and other irregular activity with broader
spectrum of frequencies, including Gamma periods, Sharp-Wave Ripples (SWRs)
and others. In rodents, theta oscillation highly correlates with animal actions and
movements - running, jumping, grooming (J O’Keefe and Recce 1993). Here we
focus on the theta regime and the corresponding animal behaviors, as they have
an intrinsic connection with hippocampal cells.

Looking more detailed at these hippocampal place cells, an outstanding fea-
ture of the place cells behavior is their ability to lock their activity to a certain
phase of the theta oscillation, when an animal runs through a place field (Figure
3a). While crossing a place field in one-dimensional or two-dimensional environ-
ment, place cell discharges in spiking bursts at progressively earlier phases of
the theta rhythm, from spiking at peak of theta oscillation when entering a place
field, having the highest firing rate (middle of the place field) on the trough to
later spikes when exiting a place field on the ascending phase of theta oscilla-
tion (Jensen and Lisman 1996, Skaggs et al. 1996, Tsodyks et al. 1996, Dragoi and
György Buzsáki 2006).

This mechanism of spiking bursts within regular time windows is important
for linking related path segments using the spike-timing dependent plasticity
(Dan and Poo 2004). Importantly, the same mechanism might be useful for suc-
cessful integration of the coherently incoming feature-extracted information of
different modality, like the positional information relative to the spatial bound-
aries (boundary vector cells) and positional information relative to visual cues or
landmarks (visual object vector cells), forming a unique spatial representation.
More generally, the same mechanism, when used to integrate non-positional in-
formation like odors, sounds, or reward expectations, could be the basis of form-
ing time-invariant memories, or episodes (György Buzsáki and Tingley 2018).

Formation of place fields

Grid, border and head direction cells in the mEC together form one independent
representation of space, stable between environments. The reciprocal represen-
tation is constructed by hippocampal place cells, that often fully remap between
different environments, forming an unique representation of a particular space.
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Figure 3: (a) A phenomena of the spiking precession of hippocampal neurons relative to the internal LFP
theta oscillation. A neuron spiking is chunked by the oscillation and appears earlier in phase as a rat goes
through a place field. (b) Sequences of memories and their interference (top), spiking phase relative to the
theta oscillation (adapted from Geisler et al. 2010; permission not required).

These two spatial representations are complementary: one expresses the metric
of a space independent of the specific landmarks or action-defined context, an-
other is sensitive to the unique experiences in that space, location of objects or
landmarks, building a number of context-dependent orthogonal representations.

The experimental evidence of the increased density of hippocampal place
fields near corners and boundaries compared to the center of the environment
(S. Wiener, Paul, and H Eichenbaum 1989) leads to a suggestion of a high level of
a direct contribution of the border cells to the formation of place fields. Another
fact supporting this hypothesis, is that border cells in the mEC are available in
the early development - as do place cells when an animal explores an environ-
ment on the first day. This leads to an assumption that border cells might have
a larger influence on place cells in youth, with the increasing role of grid and
other types of mEC cells in adulthood.

Importantly, there is a bidirectional connectivity between hippocampus and
entorhinal cortex (see - hippocampal anatomy), the latter receiving feedback
from the hippocampus that may be essential for the formation or maintenance
of entorhinal spatial maps. This is supported by the experimental evidence that
the inactivation of the hippocampal inputs leads to the loss of hexagonal firing
pattern of grid cells (Bonnevie et al. 2013). These facts might be crucial for the
explanation of the effects of place cell behavior presented in the results section.

To build experience-dependent representations, place cells need to interact
with a variety of entorhinal cell assemblies, carrying distinct types of informa-
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tion. The efficiency and domination of different input types depends on intrinsic
properties, like synaptic plasticity, but also on interaction with the environment -
animal running speed, behavior, or environmental changes (Igarashi et al. 2014).
It is not yet clear if some of the input types dominate the other, and how place
cells recruit synaptic inputs of a certain type to build stable spatial fields. In this
work I try to address these questions and to demonstrate that in some particular
conditions these inputs of allocentric and idiothetic nature are mixed, and try to
further explore the dynamic balance between them.

General questions

The mechanisms that implement spatial navigation in the hippocampal-entorhinal
system are not fully described and understood. Among open questions are the
mystery behind the formation of the grid patterns, the phenomenon of theta
phase precession, the role of gamma oscillations in memory consolidation, how
and where the path integration is implemented and many others. Here in this
study I focus on the phenomena of place cells in the CA1 region of the hippocam-
pus, especially on the integration of the idiothetic, or precisely boundary-driven
information and the visual, landmark driven information into a reliable space
representation. The interaction between these allothetic and idiothetic inputs at
the level of their postsynaptic influence, especially when they are in conflict, is
not yet fully understood. Ultimately, these interactions may reveal, if described
in detail, the more general mechanisms of episodic memory formation within
the hippocampus which could be extended from navigation to a broad range of
behavioral applications, including general action planning and abstract thinking.

the role of visual landmarks and physical boundaries in spatial

navigation

What is a place?

A place in physical space can be uniquely defined by a set of reference points and
landmarks, similar to it’s representative location on an allocentric map. Place is
usually considered invariant of time and independent of the way how a subject
gets there. This invariance connects the definition of place to the broader defini-
tion of semantic memory - invariant stable description of living things, facts or
other knowledge (György Buzsáki and Edvard I Moser 2013). Repeated explo-
ration of the environment allows subjects to revisit the same location multiple
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times, gradually building its representation from recurrent similar episodes - by
linking together different (in time) episodes that share the same set of features,
landmarks and relations between them.

High-level feature extraction is necessary to build a coherent representation of
space, mainly because early sensory systems predominantly encode very simple
stimulus modalities with very localized receptive fields. These would not be
enough to build similar episodes sharing the same set of features, in case, for
example, an animal reached the same location from opposite sides - and expe-
rienced some different visual flow, experienced a set of new sounds, or made a
different number of steps walking from the other boundary. Higher brain areas
like hippocampus or cortical areas, involved in both memory and navigation,
need to operate with higher order features like boundaries, objects of different
shape, visual and olfactory landmarks, in order to be able to combine them as
a set of similar combinations of sensory features (episodes) to an invariant rep-
resentation of a particular location. As was shown in the first section, these op-
erations of high-order feature selectivity might mainly reside in the mEC/LEC,
being mostly implemented by boundary, object, and landmark vector cells. As
anatomically hippocampus receives its major input from the entorhinal cortices,
its role in navigation, shown by place cells, might be to orchestrate these in-
coming navigational information elements to either build and store a new place
memory - a unique constellation of features, representing new location, or to up-
date already existing place memory, if this set of features is similar to the already
experienced number of stable objects, shapes and cues at a certain distance.

While external sensory information about distinctive and stable environmen-
tal features is necessary to build a stable allocentric map, the internal idiothetic
information is required to both support this initial formation, as well as to main-
tain the constructed representation when the external information is partially or
completely not available - for example, in total darkness. Our brains are able to
maintain the allocentric position and navigate in space without external inputs,
for the price of some error accumulation (Ariane S Etienne, Roland Maurer, and
Saucy 1988; Ariane S Etienne and Kathryn J Jeffery 2004). This is an indispens-
able function of the internal navigation system, essential for successful survival
and evolution. The implementation of that feature requires an integration of
the information coming from the internal idiothetic system into the circuits, en-
coding spatial maps. This aspect of establishing, recalling and maintaining the
spatial map in absence of sensory inputs are discussed below in this chapter.
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Landmark and boundary vectors as reference frames to establish spatial map

Overall, to build a spatial map one needs to define a set of related places (in the
brain - place fields) having a certain position within a particular spatial reference
frame. A reference frame can be defined as an independent coordinate system,
having a definite distance and orientation to one or several reference points.
Following this classical definition both environmental boundaries and a set of
visually defined landmarks can serve as two independent reference frames, if
they don’t change their relational stability between reference points within itself.
When it is the case, the aforementioned landmark vector cells and boundary
vector cells (Sachin S Deshmukh and James J Knierim 2011; Høydal et al. 2019)
can be used to represent two reference frames of different modality in the brain.

While exploring the new environment, these inputs from the boundary vec-
tor cells and landmark vector cells (as well as other sensory modalities - olfac-
tory, auditory etc.) are integrated to form coherent stable points, or recurrent
episodes, which taken altogether, can be used to form a consistent allocentric
representation of the surrounding environment. While moving from one place
to another, animal revisits the places, formed of the similar set of environmental
features, and reactivates the very similar sensory inputs which, with the help of
some pattern completion mechanisms, updates and sharpens the CA1 ensemble
representation of a particular physical location - place field in the hippocampal
memory system. This movement from one place to another builds a trajectory
- a set of connected physical places as an animal path, as well as the set of acti-
vated and connected places fields as a virtual path in the brain (György Buzsáki
and Edvard I Moser 2013).

Mechanisms of path integration to support navigation stability

To maintain the navigational stability when allocentric cues are removed, the in-
ternal navigation system, including place cells, continues to track location using
self-motion. Path integration is essentially a computation transforming a change
in motion into a change in position. Having a current position estimate, one can
derive a new allocentric position by tracking angular movements and distance
travelled. Whether this system is based on continuous integration of angular or
linear velocities, or on addition of a distance travelled vector to the current esti-
mate - it is based on cues derived from the inputs from the self-motion systems
(Ariane S Etienne and Kathryn J Jeffery 2004). These cues include vestibular, pro-
prioceptive cues or motor efference copy (step counting). Additionally, a change
in airflow (e.g. sensed by whiskers) or vibration from textures while moving can
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support speed calculation and resulting translation detection (Savelli and James
J. Knierim 2019).

How can the path integration system be implemented in the brain circuits?
While both distance and angular movement signals coming from grid and head
direction cells tend to drift in open spaces without correction by particular cues
or landmarks (Barry et al. 2007), they are still the great candidates to support
the path integration system. Boundary cells, or the tactile sensory inputs in
the environmental corners, can episodically reset the grid and head direction
inputs bringing the path integration system up to date with the environment
position and orientation (Barry et al. 2007; Cheung et al. 2012). This leads to an
assumption that path integration is mainly implemented in the cerebral cortex
in a form of an attractor-network (James J. Knierim and Zhang 2012; Bruce L
McNaughton et al. 2006), supported by the fact that the hippocampal upstream
regions have all necessary components.

Another reported alternative is that the path integration computations are per-
formed in lower regions, subcortically, reflecting the organization of the head
direction system (Savelli and James J. Knierim 2019). As thalamic or other sub-
cortical regions already receive vestibular and motor signals, they are able to
compute and integrate angular and translational velocity signals, implementing
basic path integration. The anatomical structure of the head direction system,
for instance, with head direction cells found in anterior dorsal thalamic nucleus
(J S Taube 1995) is another evidence to support this alternative.

Impact on place cells

Navigation at the level of hippocampal formation with its place cells are the
main focus of this study. There is evidence showing that place cells follow vi-
sual cues (Muller and Kubie 1987; Sachin S. Deshmukh and James J. Knierim
2013; Aronov and David W Tank 2014), suggesting that they receive incoming al-
locentric information. There is also a large evidence showing that place cells are
able to maintain their place preference in case the sensory inputs are removed
(Gothard et al. 2001; Quirk, Muller, and Kubie 1990). In conflicting situations, as
was shown in virtual reality (VR) studies (Gothard et al. 2001; Haas et al. 2019),
cells are able to switch from one to another reference frame in their selective
firing, suggesting integration of allothetic and idiothetic inputs. As described
in the previous sections of this chapter, initial sensory processing and feature
extraction, as well as path integration happens mainly outside the hippocampus.
Taken together - how exactly these different pathways are integrated within the
hippocampal neural circuits? This question is still not well understood. Below I
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review a few model studies exploring potential mechanisms of this integration
(see modelling section).

research on interaction of allothetic and idiothetic inputs

One of the first seminal research studies of the effect of the allothetic environ-
mental changes on place cells was done in 1987. Muller and Kubie (Muller and
Kubie 1987) showed that the rotation of a visual cue card, but not its width or
shape, produces rotation of the place fields in a cylindrical arena. Removing the
card led to a randomized angular representation of the arena. These recordings
demonstrated direct dependence of the place field orientation on the visual in-
formation, implicating that cells in the hippocampus are modulated by allothetic
visual inputs.

Getting more detailed, several years later, it was shown that objects located
near the center of the arena could not control the orientation of the place fields
in the environment, but do that with a help of a cue card on the wall (Cressant,
Muller, and B Poucet 1997). Same objects, placed near the walls enable control
over the fields orientation, indicating that involvement of the head direction
system, that potentially resets angular orientation relative to the unique objects,
located close to the environmental borders.

The question of interaction of allocentric and idiothetic representations got
more specificity in later studies by Bures and Zahalka (Bures et al. 1998), where
they experimentally trained animals to avoid foot shocks using either room land-
marks or using idiothetically defined area on the floor. The ability of rats to
avoid shock locations defined in both reference frames showed credible inde-
pendence of the allocentric and idiothetic mechanisms, encoding two reference
frames. However, a question of how these two systems are intermixed remained
unclear.

Gothard and McNaughton proposed that place cells, mainly driven by inter-
nal “path integrator” - accumulated internally-driven translational information
about a movement in space together with head direction cells - form a precon-
figured network of a two-dimensional space. This network is updated by the
visually-specific landmark information using associative learning (Mcnaughton
et al. 1996). They performed a series of experiments with rats on the linear track
where two separate reference frames were used by a rat to track self position.
By gradually moving these reference frames (a reward site and a starting box),
they found both cells fired at fixed distances from the origin and cells fired at
proximity to the destination. The same neuron was able to shift its spatial pref-



1.5 optimal combination of environmental cues and path integration during navigation 17

Figure 4: (a) A schematic of the experiment with a moving box. A starting box together with a reward
location at the end of the track act as two independent reference frames. By gradually moving the box one
can investigate the change of the spatial encoding relative to either of the frames. (b) The resulting place
cell firing in light and dark establish gradual shift in encoding position (adapted with permission from
Bruce L McNaughton et al. 2006)

erence from being aligned to the origin to an alignment to the destination. They
postulate that when mismatches between the visual and the idiothetic informa-
tion occur, path integration and sensory cues competitively interact to affect
place field preference (Gothard, Skaggs, and B L McNaughton 1996). Their fur-
ther recordings in light and dark conditions, showing that the box-referenced
cells tend to keep their firing preference longer even without light, supported
that idea. Ultimately, based on their moving-box-reward experimental data they
suggest that interaction between internal dynamics and path integration and ex-
ternal sensory cues happens before both CA1 and CA3 areas, possibly in the
entorhinal cortex or subiculum.

However the question of exact mechanism of position computation based on
actual or path integrated information remained unclear. A new set of tools
including virtual reality was introduced to continue the research of dynamics
and circuitry implementing allocentric- and idiothetic- based navigation.

optimal combination of environmental cues and path integra-
tion during navigation

How algorithmically do the allocentric and idiothetic inputs merge at the level
of the hippocampal place cells? When the brain needs to integrate information
of different sensory modalities it often uses “optimal” combination - a weighted
sum of the inputs with weights proportional to their reliability. This has been
established in many behavioral and theoretical studies for humans (Ernst and



18 introduction

Figure 5: Sensory integration at larger and smaller conflicts. (a) In a situation of a small conflict between
estimations it is beneficial to use optimal coding - a weighted combination of the estimation with weights
proportional to their reliability (variance). Also named Bayesian decoding, or maximum likelihood estima-
tion (MLE). (b) In a situation of a large conflict between estimations a strategy of abandonment of a less
reliable information source will have higher chances to end with a better precision.

Banks 2002; Alais and Burr 2004; Knill and Saunders 2003; Hillis et al. 2004) for
combinations of different sensory modalities (visual / auditory, visual / haptic,
stereo / texture, environmental geometry / path integration etc.). The optimal
coding theory is also applicable for spatial navigation. In a series of behav-
ioral studies position estimation based on Bayesian decoding was established
and predicted. In particular, optimal cue integration is demonstrated in ants
(Wystrach, Mangan, and Webb 2015), rats (Shettleworth and Sutton 2005) or hu-
mans (M. Zhao and William H Warren 2015; X. Chen et al. 2017; Sjolund, Kelly,
and Mcnamara 2018). However, while real-world navigation normally implies
redundant integration of external, allocentric, cues and internal, idiothetic or
path-integration based position estimations, is that combination always optimal?

Intuitively, when the conflict between two given estimations is small, weighted
integration and resulting averaging makes sense. Especially if performed in an
optimal, Bayesian way, it allows for a maximization of the precision of the result-
ing estimate, attributing a conflict to a sensory noise (Figure 5a). On the other
hand, situations of a large conflict might be caused by misidentification of an
object identity, incorrect memory retrieval or in general - failure in estimation
based on a particular sensory source. In that case Bayesian integration might
lead to large errors relative to both information sources, while full abandonment
of one, ideally less reliable, source of estimate might be a logical choice (Figure
5b). This abandonment of one source, or cue, in favor of the other has been
demonstrated in animal and human navigation studies. For instance, when hu-
mans were presented with a large > 115 degrees conflict between landmark and
path integration cues they prefered path integration (M. Zhao and William H.
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Warren 2015). Rats in large spatial conflicts also prefer to rely on path integra-
tion in favor of a single landmark (Shettleworth and Sutton 2005).

While the ability of a brain to implement optimal coding is well known, how-
ever it has not been thoroughly explored at the physiological level. Different
potential schemes, including gain field theory, convolutional encoding, doubly
distributional population coding were introduced (see review in Pouget, Dayan,
and Zemel 2003), however it is still not clear which scheme is used by the neu-
rons or whether neurons actually encode continuous distributions at the pop-
ulation level. In this work, we address this question and make an attempt to
show on the cellular level how these mechanisms of estimation integration at
small conflicts and estimation abandonment at large conflicts could be imple-
mented by a population of hippocampal neurons. We hypothesize that attractor
dynamics in the hippocampal circuits might implement nearly-optimal coding
for spatial and potentially non-spatial estimations, predicted earlier in other sen-
sory systems (Kate J. Jeffery, Page, and Simon M. Stringer 2016) and how the
abandonment of less reliable estimation could be implemented at the level of a
single neuron.

modelling multisensory integration at the level of place cells

“. . . Each place cell receives two different inputs, one conveying information
about a large number of environmental stimuli or events, and the other from
a navigational system which calculates where an animal is in an environment in-
dependently of the stimuli impinging on it at that moment. The input from the
navigational system gates the environmental input, allowing only those stimuli
occurring when the animal is in a particular place to excite a particular cell. . . ” -
an original sentence by O’Keefe led to a general proposal that the place cells
might integrate idiothetic information coming from the different cell groups
from the entorhinal cortex with some other sensory information.

Initially, a discovery of grid cells led to a model proposed by Solstad and
Einevoll, which assumed formation of place cells via linear summation of weighted
inputs from the grid cells (Solstad, Edvard I Moser, and Einevoll 2006). It was
suggested that irregularly spaced place fields can appear as a result of summing
inputs from entorhinal cells with different spacing and orientation, and rela-
tively similar grid phases. However, this model was free from complex network
interactions and required having place cells integrating grid cell inputs with
overlapping vertices. This issue was fixed later by demonstrating that adding
fast hebbian plasticity may result in the careful selection of appropriate inputs,
without the need for specific network wiring (Savelli and James J. Knierim 2010).
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The discovery of border cells and boundary vector cells led to another ap-
proach, assuming that environmental boundaries can serve as determinants of
the hippocampal place fields. The boundary vector cell model (Barry et al. 2006)
describes place fields emerging from a combination of cells active at a certain
direction and orientation relative to the environmental boundaries.

However, both of these approaches were focused on feed-forward type of infor-
mation transfer, uni-directional communication between cortex and hippocam-
pus. Recently, a novel approach connecting feed-forward information flow from
the entorhinal layers to the hippocampus with feedback flow to the entorhinal
areas, was proposed (Li, Arleo, and Sheynikhovich 2020). It is a model that
assumes continuous interaction between grid and place cells, with plasticity
mechanisms enabling balance in control over place definition between vision
and self-motion, allocentric and idiothetic inputs. In this model, self-motion is
represented by multiple layers of grid cells that integrate angular and transla-
tional movement velocities (see grid cells). Visual input is modelled using a
retina-like grid with Gabor filters, applied to the incoming stream of camera im-
ages. It is also assumed that it gets input from the head direction system such
that the resulting visual information in particular location is independent from
head orientation, similar to the non-grid cell in the LEC (see object-vector cells).
Competitive organization of the network outputs establishes two different popu-
lations of place-selective cells - purely self-motion (or boundary) driven (motion
place cells - MPCs), and purely visually driven (visual place cells - VPCs). These
cells are assumed to be present in the CA3 regions of the hippocampus and
together provide informative inputs to CA1 place cells. Having hebbian plas-
ticity mechanisms and feedback connections back to the self-motion grid cells
(MPCs), these latter CA1 cell are classified into 3 major groups - visually driven,
self-motion or boundary driven and multisensory cells, that combine both of
the allothetic and idiothetic inputs. These simulation results are very similar to
the previously reported results (Haas et al. 2019), as well as they highly corre-
late to the new electrophysiological data from the current study. Here I found
very similar groups of neurons, having similar spatial firing properties (see Re-
sults). However, the disadvantage of the model is that it does not account for
border-defined inputs which, as we also find in the neural data, might play an
important role in correcting self-motion vectors and modulating the dynamics
of the network as a whole.

Ultimately, considering models of the underlying neural dynamics, the current
work is attempting to provide additional evidence for the modern loop-based ap-
proach to describe hippocampal-entorhinal networks implementing principles of
spatial navigation. Based on the collected data, we hypothesize that hippocam-
pal neurons implement a weighted combination of position estimation based
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on allocentric and idiothetic inputs in a nearly-optimal fashion. We show that
the resulting position estimation influences self-motion based place representa-
tion, possibly via backprojections from the hippocampus to the entorhinal cortex.
Overall this makes a step towards bringing evidence based on the neurophysi-
ological data for the proposed model in situations, when place definitions are
conflicting.

aim of the thesis

For many years hippocampus has been identified as a brain structure, critical
for spatial learning and navigation. The spatial domain extends beyond the
traditional navigation in physical spaces - to many abstract spaces humans need
to operate daily, not only to be partially efficient, but also to be successful in
survival. Hippocampus, having specially tuned neurons - place fields - that
rely on external sensory inputs and self-motion cues, mainly coming from the
cortical areas, is able to implement high-level context-dependent representation
of the environment. However it is still not known how exactly these different
information flows interact to build a consistent and stable map of connected
place fields.

Existing studies suggest that both proprioceptive and idiothetic types of in-
formation are continuously integrated to update the self-position (e.g. imple-
menting “path integration”) while other stable sensory cues provide references
to periodically update the allocentric position of self and correct it for the col-
lected integration-related errors. It was shown that both allocentric and idio-
thetic types of information influence positional cell firing, however in most of
the studies these inputs were firmly coupled. The use of virtual reality setups
(Thurley and Ayaz 2016) made it possible to separate the influence of vision and
proprioception for the price of not keeping natural conditions - the animal is
usually head- or body-fixed (Hölscher et al. 2005; Ravassard A. 2013; Jayakumar
et al. 2018b), which introduces vestibular motor- and visual- conflicts, providing
a bias for space encoding. Here we use the novel CAVE Virtual Reality system
for freely-moving rodents (Del Grosso 2018) that allows to investigate the effect
of visual- and positional- (vestibular) manipulation on the hippocampal space
code while keeping natural behaving conditions.

Particularly, the current research is aimed at studying the impact of visual and
vestibular (passive translation) manipulations on the hippocampal code using
this novel freely-moving ratCAVE system. With the ability to manipulate the
projected virtual environment and to unidirectionally move the physical arena
depending on animal’s position, the following questions are addressed:
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• how would the stable visually-defined spatial reference frame impact the
hippocampal place code when put in conflict with the moving space refer-
ence frame, defined by the physical boundaries

• would the passive physical move in space, locked to the physical bound-
aries and supported with vestibular inputs, differently impact the place
code in contrast to the opposite situation when the move of the reference
frame is just visual and not supported by the vestibular inputs - addressing
the question of the role of vestibular information in coding the preference
to one or another reference frame

• whether an instant mismatch between the visual and proprioceptive inputs
(gain) would distort the hippocampal place map and at which threshold

• what types of the hippocampal place cells could be separated by their sen-
sory and / or feedback inputs (visual, self-motion or boundary-driven or
their combinations) and how strong is the path integration component

• whether a single instant conflict between information coming from the in-
ternal path integration system and the visual information can influence the
current place code or lead to any remapping

In summary, we focus on the dynamic representation of space when the visual-
cue-defined and physical-boundary-defined reference frames are in conflict. We
confirm the dominance of one reference frame on the other on the level of place
fields, when the information about one reference frame is absent (Gothard et
al. 2001). We show that the hippocampal cells form distinct categories by their
input preference - surprisingly, not only that they are being driven either by vi-
sual / allocentric information or by the distance to the physical boundaries and
path integration, but also by a specific combination of both. I found a large cat-
egory of units integrating inputs from both allocentric and idiothetic pathways
that are able to represent an average location between two reference frames,
when they are in conflict. The use of virtual reality allowed me to demonstrate
that these units become only path integrator driven when they lose their visual
inputs. Based on the recorded information about these single cell theta phase-
modulation, I propose a model how these units can integrate allocentric and
idiothetic inputs to form this independent category of place representation.

Ultimately, the aim of the current work is to try to provide more support
in linking the view over the hippocampus from the other side - to consider
it not only as a spatial machine, but as a common generator of sequences of
episodic memories (György Buzsáki and Edvard I Moser 2013), having place
cells as examples of a particular recurrent episode - an integrated internal and
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external feature-processed sensory information at a particular moment of time,
shaped by brain theta rhythms.
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E X P E R I M E N TA L D E S I G N A N D P R O C E D U R E S

using virtual reality to study navigation

An efficient strategy that advances understanding of the complex spatial repre-
sentation system is based on perturbation of one of its components. Experimen-
tal approaches using Virtual Reality systems (VR) allow to selectively perturb
and manipulate visual cues. In recent years these systems have been widely
used to study navigation (Hölscher et al. 2005; Ravassard A. 2013; Aronov and
David W Tank 2014; Thurley and Ayaz 2016).

The development of virtual reality (VR) systems for rodents (Hölscher et al.
2005) enabled scientists to manipulate environmentals properties, such as visual
cues and landmarks in a fast and accurate way. It was shown that, despite the
absence of the normal vestibular motion signals or tactile border inputs, ani-
mals are able to navigate in virtual coordinates, as well as their similar spatial
neuronal metrics like place cells in the hippocampus are preserved. Chen and
O’Keefe demonstrated that in VR, similar to the real environment, movement
and visual information are combined nonlinearly in the place cell activity; the
influence of one (visual) or another (proprioceptive) component varied signifi-
cantly across cell population (G. Chen et al. 2013). However, while being a good
tool for sensory manipulation, body-fixed VR systems cannot fully model nav-
igational processes in the brain - they do not only reduce theta frequency and
speed dependence, but also reduce the number of active place cells and affect
their directionality (Ravassard A. 2013).

Although only simulating real environments and spatial navigation, VR sys-
tems opened a large door to the investigation of the neural behaviors when
sensory inputs of different types are in an instant conflict. By introducing a gain-
like difference between the speed of the visual projection and self-motion, one
could establish a distinct population of neurons that either were locked to the
salient visual cues or were strongly influenced by animal’s locomotion (Jayaku-
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mar et al. 2018b, Haas et al. 2019). A set of experiments with continuous con-
flict between path integration and visual landmarks resulted in demonstrating
stable and prolonged recalibration of the path integrator by the external infor-
mation. This evidence supports the idea that visual cues do not only correct
accumulated path integration errors, but can quickly reset the sense of position
and update appropriate path integrator computation (Jayakumar et al. 2018b).
The very recent work exploring hippocampal CA1 - CA3 regions shows highly
context-dependent spatial coding in these regions (X. Zhao et al. 2020), suggest-
ing a high level of pre-processing of environmental features before they reach
hippocampal formation.

Looking outside the hippocampus to the entorhinal cortex, gain experiments
in VR revealed that border cells are mainly locked to the visual landmarks, while
grid cells are modulated by both locomotion and optic flow. In the same set of
experiments it was shown that the visual optic flow becomes more influential
if it’s faster than expected (Campbell et al. 2018). The recent mEC recordings
show a new class of visual cue cells - neurons exhibiting firing fields near visual
cues, consistently across different environments (Kinkhabwala et al. 2020). This
is another evidence that the entorhinal cortex contains both representation of
landmarks and physical boundaries, - enough information to perform proper
path integration.

However, while enabling outstanding opportunities for visual sensory input
manipulations, conventional VR systems require animals to be body- or head-
fixed. This poses a series of difficulties with animal training, imposing a different
animal state (e.g. fear, aversion), as well as keeping some of the sensory informa-
tion sources (e.g. vestibular, or olfactory) in a non-natural condition. These head-
or body behavioral restrictions distort partially the vestibular and proprioceptive
inputs and may lead to differential effects on place cell maps (Stackman, Clark,
and Jeffrey S. Taube 2002). Altogether this significantly impacts the navigation -
both behavior and neural code.

To address these issues a freely-moving VR system ratCAVE was built (Del
Grosso 2018). In contrast to conventional VR systems (Thurley and Ayaz 2016),
ratCAVE allows for a natural animal movement and exploration in a rectan-
gular arena, while retaining the possibility to manipulate distal and proximal
(virtual) visual cues to influence animal navigation. It avoids vestibular motor
and vestibular visual sensory conflict during locomotion, while constantly up-
dating the surrounding virtual environment via the subject’s own freely-moving
head movements, supporting natural perception and behavior. In addition, the
ratCAVE setup (see Methods) enables to physically move the arena, partially
distorting vestibular and proprioceptive inputs and changing the allocentric po-
sition of the animal.
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Figure 6: Model of the virtual environment for the ratCAVE Virtual Reality setup. (a) Top view of the
Virtual environment for vSHIFT and vGAIN experiments (b) Same virtual environment viewed from the
Blender modelling software to better see virtual objects and separation in three visually-distinct compart-
ments.

experimental protocols

To study the role of different components of the allothetic and idiothetic sys-
tems on the hippocampal place code we introduce a conflict between different
sensory inputs using Virtual Reality. We manipulate visual (virtual, projected)
relative to the physical (defined by arena boundaries, tactile) reference frames as
a key instrument to implement this mismatch while recording hippocampal CA1

neurons. By comparing the original condition, where both visual and boundary-
defined reference frames are aligned, with the non-matching condition, where
these frames are in conflict, one could study the dependency of the place cell ac-
tivity on the navigation relative to one or another frame, as well as how intrinsic
path integration would influence single unit activity.

The virtual environment consisted of the proximal and distal elements. Distal
landmarks were unreachable, they consisted of two green spheres and several
blue bricks located at some distance around the arena. The proximal landmarks
are represented by landmarks on the arena walls - black and white stripes, black
and white plaid, a grey star on a green background, together with distinct visual
patterns on the floor - checkerboard pattern, black square pattern, stripes pattern,
and virtual objects inside the arena - torus of several sizes, blue and green tall
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vertical bars. These objects and patterns supported the split of the virtual en-
vironment in three distinct “compartments”, which were chosen specifically to
induce maximum visual influence on the animal visual perception system and
engage more neurons in coding the visual reference frame (see Figure 6). For ex-
ample, the “stripes” compartment in the vSHIFT -physical experiment is hidden
in the original position of the arena, but is available to the animal in the shifted
position. At the same time salient green bars on the other end are not reachable,
which overall might induce visually-driven cells to more prominently react on
the change.

For all shift and gain experiments animals were kept on the light food diet
(about 90% of ad libitum weight); animals were randomly foraging for food pel-
lets inside the ratCAVE arena (see methods). Experimental time and movement
protocols are described in detail in the following sections.

introducing mismatch between stable reference frames

The aim of this experimental series is to identify the distribution of a subset of
external sensory inputs (visual, tactile or boundary-defined) to the hippocampal
place cells and the interaction of these inputs with the internal self-motion (pro-
prioceptive, vestibular) signals, crucial for path integration. By probing whether
the place fields would follow the 3D virtual visual reference frame or the physi-
cal boundary-defined arena frame one could split the influence of visual versus
tactile (corner- or boundary- related) stimulus and determine how much they
are influenced by path integration.

vSHIFT-coherent - no conflict between reference frames

To provide an evidence, that the external room cues (e.g. a projector and a
mirror) do not play a role in formation of the spatial map, we designed an exper-
iment where the both the arena and the visual scene were moving congruently
together in the same time and spatial order as in the previous experiments. As
these cues are subtle and hardly seen it is expected that they are ignored by the
sensory inputs and do not influence spatial information in the hippocampus as
well as the mechanisms of path integration. More precisely, it is expected that
none of the units are able to fixate their spatial firing to the room reference frame,
and all place fields would move together with the arena and the aligned visual
scene. In addition to the experimental evidence of reference frame preference,
the resulting distribution of the shift of the place fields could provide statistical
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Figure 7: Schematic of the concept of the vSHIFT experiment. For all plots: the green/gray bars on the
bottom determine the protocol of the arena movement between original and shifted positions. S (single) -
a single move, P (periodic) - translation every 30s. (a) vSHIFT - coherent. ratCAVE arena is translated
together with the projected virtual objects and visual cues back and forth along one axis, while the animal is
randomly foraging inside. (b) vSHIFT-physical. The arena is periodically translated back and forth while
the visual projection (virtual environment) is kept stable in room coordinates. (c) During vSHIFT-visual
the arena is kept stable while the visual projection is translated further and back at the same protocol as in
(b).
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metrics (e.g. standard deviation) for these particular conditions (arena length,
animal size and behavior), useful for future analysis of other experimental con-
ditions.

In this experiment both the arena and the visual projection were physically
moved every 30 seconds in a longitudinal direction for 0.3 meters forth (shifted
position, B) and back (original position, A), using the linear actuators located
below the arena, like in the physical shift experiment. This action kept visual
and border-defined reference frames aligned, while passively moving an animal
in allocentric room coordinates (Figure 7a).

vSHIFT-physical - conflict between vision and path integration

In this experiment, a stable visual projection of the 3D virtual environment, con-
taining proximal (virtual bars, torus and pillars) and distal (spheres) landmarks,
was projected on the walls of the physical ratCAVE arena. This projection was
stable in room coordinates for the whole experiment. To implement a shift, the
arena was physically moved once or every 30 seconds in a longitudinal direction
for 0.3 meters forth (shifted position, B) and back (original position, A), using
the linear actuators located below the arena. The acceleration of the move was
above the detection of the vestibular system, supporting the animal feeling of
"being moved". As the projection was stable in room coordinates, it appeared
to “shift” inside (relative to) the arena because of the arena move. This intro-
duced a shift between the spatial reference frame, defined by the physical arena
boundaries, relative to the visual virtually-defined VR reference frame (see Fig-
ure 7b). Neuronal activity was recorded during the whole session, and later only
the times when the arena was stationary were analysed. For condition analysis,
all periods when arena was in either original (A) or shifted (B) position were
integrated to form two separate conditions A and B. For all animals, the session
duration was ranging from 12 to 16 minutes, resulting in approx. 6 to 8 minutes
of recording in condition A (12-16 arena moves) and 6 to 8 minutes in condition
B (12-16 arena moves back).

For some sessions a 8 minutes period of an animal foraging in total darkness
was recorded. These result in approx. 4 minutes of recording of the same neu-
ronal units in position A and 4 mins in position B in darkness.

The shift of the arena to position (B) allowed an animal to enter a new virtual
area, not available previously in original position (A). This area is marked by hor-
izontal stripes (see Figure 7b, orange). Simultaneously, a virtual area at the end
of the virtual scene (with green pillars), was no longer available in position (B)
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as the physical arena wall prevented an animal from going there. The salient vi-
sual landmarks (stripes, pillars) were specifically designed to be present in these
areas to engage more place cells to change their activity in two shift conditions.

It is expected that this experiment allows to classify cells by their visual and/or
self-motion or boundary-defined selectivity, thus suggesting their possible up-
stream input types. By studying the way the two different reference frames are
represented by place fields may indicate the way the integration of these path-
ways is processed in the CA1 pyramidal layer.

vSHIFT-visual - alternative way for a conflicting condition

To probe whether the passive physical movement in space, supported by vestibu-
lar signals, is crucial for physical or visual reference frame encoding, it was asked
if the shift of the visual scene alone could induce the shift in the encoding of the
spatial map. Opposite to the previous physical shift experiment, here the visual
projection, containing all distal and proximal virtual landmarks, was moved rela-
tive to the stable arena. In original position, the projected virtual scene matched
the arena walls similar to the previous experiment, condition A. To introduce a
shift, the visual projection was moved every 30 seconds in a longitudinal direc-
tion for 0.3 meters forth and back with the same timing, as it would take the
physical arena to move. As the physical arena was stationary during the whole
experiment, this move introduced a shift between the spatial reference frame, de-
fined by the stationary physical arena boundaries, relative to the changing visual
reference frame, with the exception that the animal was not physically moved
in room coordinates and the vestibular input pathways were not stimulated (see
Figure 7c).

This experimental condition is similar to the physical shift condition but with-
out the translation of the animal and the arena in space. As the physical move
engages vestibular inputs, this might influence the encoding of one or another
reference frame in the hippocampus and might be interesting for a separate re-
search.

introducing mismatch between vision and proprioception

The invention of different types of virtual reality setups for rodents (Thurley and
Ayaz 2016) allowed to study the activity of the hippocampal cells when visual
flow and self-motion are in continuous conflict. Tracking the position of the
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animal at high frequency enabled instant manipulation of the incoming visual
flow inducing permanent gain mismatch between the actual translation (e.g. a
real number of steps travelled) and the translation in the virtual space (e.g. the
distance in virtual coordinates). Many studies claimed the ability of the hip-
pocampal place cells to encode visual landmarks (G. Chen et al. 2013; Aronov
and David W Tank 2014; Jayakumar et al. 2018b) as well as the distance travelled
(Haas et al. 2019) in both gain and no gain conditions. However, as mentioned
previously (see - using virtual reality to study navigation) in the head- or body-
fixed VR systems some signals from the vestibular system (e.g. otoliths) are not
present, while is has been shown that the vestibular system has a significant
impact on the formation and stability of the place cells in general (Stackman,
Clark, and Jeffrey S. Taube 2002). Additionally, the ball-VR setups do not pro-
vide any real boundaries, making complex to bind position encoding based on
self-motion to the environmental geometry. This series of VR experiments in
freely-moving condition targeted to investigate effects on the hippocampal CA1

activity when there is either an instant or spontaneously induced mismatch be-
tween visual landmark-defined information and the self-motion, path integra-
tion defined information.

vGAIN - shift via introducing a gain mismatch between visual flow and proprioception

Another way of studying the preference for visual versus boundary-defined ref-
erence frames for spatial navigation is to introduce a gain mismatch between
actual animal movement and the visual flow. Using the VR system, this can be
implemented as essentially letting the animal move for a certain distance while
moving the visual scene for the same distance multiplied by a coefficient.

To keep all the series of experiments compliant and comparable, we intro-
duced the linear longitudinal gain of the visual flow of 1.2 and 1.5 between the
virtual scene and the animal physical translation in a series of 3 stages: original
no gain condition, gain condition (when an animal can access extended envi-
ronment in VR coordinates) and again the no gain condition, when the virtual
scene is shifted relative to the arena reference frame (see Figure 8a). Intuitively
this experiment is similar to the physical or visual shift experiments (above),
with the difference that the shift is performed with the transition via the gain
period, when there is a mismatch between the animal longitudinal translation in
physical and virtual coordinates.

Each period consisted of 6 minutes recording in every condition with 1 minute
between periods, when the gain was linearly increased or decreased. This
smooth increase of the gain was required to avoid instant change of the ani-
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mal position in virtual coordinates and, as a consequence, potential remapping.
For some sessions the dark period of 6 minutes was recorded. Recording cell
activity in darkness can help in analysis and definition of cells, dependent on
visual inputs and their firing behavior after the visual input is cut.

Teleport experiment

Place cells build spatial maps based on coherent sensory and self-motion-based
representations. According to the accumulating evidence (Gothard, Skaggs, and
B L McNaughton 1996, Samsonovich and Bruce L. McNaughton 1997, Derdik-
man et al. 2009) these maps are discrete for distinct environments, associated
with unique experiences. Inconsistency between the actual sensory inputs and
the recent position history, defined by self-motion and path integration, may in-
troduce a specific type of remapping of the active place representation, referring
to one or another discrete spatial map or having a mixture of components (Jezek
et al. 2011).

To study these effects on the level of hippocampal place cells, I designed a
virtual teleport experiment. Using the freely-moving virtual reality setup, I de-
signed an environment containing two visually distinct rooms of the same size,
that fit the physical VR arena (rooms A and B). While an animal explores room
A, the room B was not rendered, so only one room was visually available at a
time. Crossing the midline of the arena allowed an animal to move between the
rooms. Each room had a hidden circular spot, defined by the proximal visual
cues, where an animal could trigger a reward if it stayed within the spot for more
than 2 seconds. The rewards were continuously altered between rooms A and B
to enforce an animal to navigate between rooms. After the initial learning of the
environment for 8 minutes, rooms were switched at the earliest midline cross-
ing, such that it appeared to the animal that it was entering the same room. The
switch of the rooms was the central point to investigate whether the mismatch
between the previous trajectory (path integration) and a newly imposed visual
sensory cues would result in a map substitution or any other type of change in
the corresponding place field representation (see Figure 8c).

Due to the time limitations only behavior, but not physiology was recorded
with two animals. Behavior recordings demonstrate the ability of animals to
learn the reward locations before the switch, as well as quick adaptation to the
new orientation of the virtual environment after the room switch (see Figure 8c).
This shows the significance of the visual-based virtual representation in original
and switched versions and its very probable impact on the spatial map in the
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Figure 8: (a) Schematic representation of the vGAIN experiment. Experimental session has 4 periods of
original position condition when the animal learns the environment (top row), followed by a gain condition
with the extended visual environment fit inside the same physical environment (middle row), and a shifted
position condition, where there is no gain but the visual projection is shifted 0.3m relative to the original
condition (bottom row). Some sessions followed by a navigation dark (4th period, not shown). Note the
visuo-idiothetic spatial conflict between original (A) and gain (B) conditions depends on the position inside
the arena (middle row, the conflict is largest at the north of the arena, while there is no conflict on the
south of the arena). (b) The same protocol for the vGAIN 1.4x. The difference is the amount of instant
(middle row) and resulting (bottom row) conflict ranging from 0 to 0.6m. (c) Schematic representation
of the vTELEPORT experiment. Animals learn the environment where the green room is located on the
south, and the blue room on the north. Note the projection for only one room where the animal currently
is, is active at the same time (left two columns). After an exploration period, green and blue rooms are
switched (green room goes north) bringing the conflict between visual cues and path integrator (middle
columns). The main conditions are followed by a period of foraging in the dark.



2.5 comparison of ball- and freely-moving vr 35

brain. However how this teleportation affects the place field maps remains to be
investigated.

comparison of hippocampal spatial activity between ball- and

freely-moving vr systems

Previous research on the influence of sensory conditions on the hippocampal
place code shows that inactivation of the vestibular system, which severely dis-
rupts the head-direction system, was able to disrupt spatial maps in the hip-
pocampus (Stackman, Clark, and Jeffrey S. Taube 2002). While conventional
ball-virtual reality systems impose behavioral restrictions such as head- or body
fixation they distort parts of the vestibular and proprioceptive inputs, which
may result in deformation effects on place cell maps. Understanding the lev-
els of these distortions might be crucial to understand the contribution of self-
motion cues to the expression of place fields. The presence of both types of
virtual reality setups (ball-VR and ratCAVE VR, see methods and also Thurley
et al. 2014) on-site provided an opportunity to design experiments that com-
pare neuronal activity involved in navigation between the setups, even in the
same animal. By recording simple random foraging in the same virtual environ-
ment in body-fixed and freely-moving conditions, one could compare neuronal
activation patterns, detect differences in place field firing and ultimately better
understand the contribution of the vestibular inputs and physical boundaries on
the hippocampal place map.

To implement this experiment, I adopted the rendering engine and wrote ex-
perimental control software that enables the rendering of the same virtual envi-
ronment in both VR setups (see methods). I designed a simple 2D environment
and a beacon foraging task where gerbils need to navigate to a green beacon,
which was changing its position every trial, to get a reward (20mg sucrose pel-
lets in the ratCAVE setup, a 0.1ml dose of sweet milk in the ball setup).

While a freely-moving situation does not require any specific pre-conditioning,
ball-virtual reality requires extensive handling and animal adaptation to being
restricted by a harness. In gerbils, this restriction does not always lead to a
successful animal adaptation and, empirically, depends on animal age, personal
character and status in the cohort. As a result, many animals do not feel comfort-
able in the harness or even build aversion to both harness and setup. Practically
this results in either animal freezing while being in the setup on the styrofoam
ball, or a periodic running in a single direction, supposedly ignoring the visual
projection, with an appearance aimed at escaping. Overall, such animal behavior
even after extensive training and adaptation (4-5 weeks) does not always allow
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Figure 9: Body-fixed virtual reality system. (a) A photo providing an overview of the setup with an
animal inside. Animal is held in a harness fixed to the commutator that allows for a 360 degrees rotation.
Running on a ball treadmill implements movement in the virtual environment, projected on the screen
around the animal. (b) Schematic of the 2D virtual environment used in the beacon navigation task.

for navigation in a 360 virtual 2D environment. Actual training results show on
average one out of four animals capable of adapting to the harness and setup,
learning the 360 rotation, reward system and 2D navigation for a salient green
beacon (not shown in this work). This imposes restrictions on the timing for
the surgery: first - one has to train animals to select the right candidate, and
second - it increases the risk of an overall wasted time, in case the surgery or
recovery does not go well. Ultimately there was a decision to freeze this type of
experiment until there is a better and more stable solution for animal training
and harness adaptation.
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R E S U LT S

example units and their conditional place firing

To get an intuition of place cell activity in different experimental conditions
below I provide a series of examples of single cells. This is a qualitative, not
quantitative visual analysis to get an overview of the types of place fields and
their spatial preference in current experimental conditions. Quantitative analysis
follows in subsequent sections.

In all 3 experimental conditions of a shift experiment (see introducing mis-
match between stable reference frames) I recorded putative pyramidal cells from
the hippocampal CA1 region from 9 animals; 521 of these cells were classified as
spatially selective (see identification of single units). As some cells had multiple
place fields, for the purpose of this study I’m going to focus on individual place
fields instead of single cells as more relevant for the data analysis.

Visually-driven place cells (VPCs)

A total number of 176 place fields showed preference for the visual reference
frame. Below we provide examples of a single unit firing, selective for particular
features of the visual virtual scene, like:

• a dark compartment of the scene (Figure 10a)

• an initially invisible part of the scene (Figure 10b)

• virtual pillars located in the middle of two compartments (Figure 10c)

• several virtual boundaries (Figure 10d)
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Figure 10: Examples of visually-driven place cells. Each plot shows spiking (top) and firing rate maps
(bottom) of a single neuron in the original and shifted arena positions. A ruler bar on the left shows
schematic representation of the compartments of the (stable) virtual environment. (a) Cell selective for
a dark compartment of the virtual environment. (b) Cell showing firing preference only for the initially
invisible compartment, available only in the shifted position. (c) Cell selective for the virtual bars that
make a virtual boundary inside the arena. (d) Cell showing preference to be active near physical and
virtual borders.
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Figure 11: Examples of boundary-driven place cells (2 cells). Each plot shows spiking (top) and firing
rate maps (bottom) of a single neuron in the original and shifted arena positions. A ruler bar on the left
shows schematic representation of the compartments of the (stable) virtual environment. (a) Cell active
in a particular corner of the physical arena only. (b) Place cell showing preference for the upper arena
boundary.

Self-motion or boundary-driven place cells (MPCs)

A significant fraction (n=213, 29%) of the recorded place fields showed prefer-
ence for the arena reference frame. The Figure 11 demonstrates examples of the
single units and their fields selective for physical arena boundaries:

• for a particular corner of the arena

• for a particular arena boundary

Multi-field place cells

On the Figure 12 I provide a couple of example cells that have multiple place
fields.
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Figure 12: Examples of multi-field place cells (2 cells). Each plot shows the schematic of the experiment
(top), spiking (middle) and firing rate maps (bottom) of a single neuron in the original and shifted arena
positions in light (A - B) and dark (Ad - Bd) respectively. (a) Example cell having three stable place fields.
(b) Example cell having 2 fields locked to the arena reference frame.
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Place cells integrating visual and self-motion components

Recordings in conflicting sensory conditions revealed a non-bimodal distribution
of place selectivity relative to the idiothetic and allocentric inputs. Many of the
cells show weighted integration of both information pathways, encoding an av-
erage position. On Figure 13 is an example cell recorded in light and dark, orig-
inal and shifted conditions. Note, the place field shift in light (left two columns)
shows encoding of the average position defined by visual and boundary defined
reference frames, while the shift gets bigger when the visual influence is lost
(right column), illustrating integration of both information pathways.

Multi-modal place cells

A small portion (n=44, 6%) of the recorded units is particularly interesting be-
cause these cells demonstrate two different types of place fields in both condi-
tions, one encoding a particular visual landmark and another being selective for
arena boundaries. Cells of this type can be identified by having one field sta-
ble between arena shifts, while the other field shifting together with the arena.
These examples demonstrate an ability of a particular unit to simultaneously
encode two reference frames of different type - visual and boundary-driven.

Place cells expressing selectivity to specific virtual landmarks and visual features

Several recorded units exposed specific place or domain selectivity. Figure 15

illustrates cells selective for both physical and virtual boundaries, or a cell se-
lective for any place except a dark compartment of a virtual reference frame.
These high-level encoding cells were mostly unique and cannot be statistically
classified to a particular category.

place representation is based on enclosure geometry and proxi-
mal visual landmarks in vr arena

First, to establish a baseline of the behavior of the place cells and their naviga-
tional map in the non-conflicting allothetic and idiothetic conditions in the rat-
CAVE arena, I conducted the shift experiment with a coherently moving arena
and the virtual scene (see vSHIFT - coherent). In this experiment, we expect CA1
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Figure 13: Example of a multisensory place cell. Each plot shows the schematic of the experiment (top),
cell spiking (second row), firing rate maps (third row) and place fields (bottom) of a single neuron in the
original and shifted arena positions for light (left two columns) and dark (right two columns) positions.
Dashed lines on bottom plots indicate the difference in place field shift between light and dark periods,
indicating an influence of the visual information on spatial selectivity. Stability in dark shows integration
of the self-motion inputs.
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Figure 14: Examples of multisensory cells simultaneously encoding two reference frames. Each plot shows
the schematic of the experiment (top), neuron spiking (middle) and firing rate maps of a single neuron in
the original and shifted arena positions. (a) Place cell selective for the dark virtual compartment and the
lower arena boundary. (b) Cell showing firing preference for the lower arena boundary and some location
in the middle of the virtual environment. (c) Place cell selective for the upper arena boundary and also for
some virtual location.
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Figure 15: Example units showing selectivity to specific virtual landmarks and visual features. Each plot
shows firing rate maps of a single neuron in the original and shifted arena positions. (a) Cell representing
a mixture of physical and virtual boundaries. Spiking activity near the middle of the arena corresponds to
the virtual bars that make a virtual boundary. (b) Cell selective for any place in the virtual environment
except a dark compartment.

cells to encode local visual cues and arena boundaries, ignoring global room co-
ordinates. In fact, position in the global coordinates could only be derived from
either the only visible cue in the experimental room - the mirror on the ceiling,
or from the vestibular stimulation, coming from the moving arena, carrying a
feeling of being passively moved. We assume that neither of the two options
should be applicable as the mirror is located far from the animal and is almost
not visible, as well as it’s been reported that animals hardly able to update their
absolute position during passive shifts (M. L. Mittelstaedt and H. Mittelstaedt
1980; Ariane S Etienne, Roland Maurer, and Saucy 1988).

In total 119 spatially selective cells from 4 animals (see spatial firing maps and
place field detection) were recorded and then analysed using the shift detection
procedure (see place field shift detection). The shift detection procedure returns
the position of each place field in the two different conditions - original and
shifted. For this coherent translation case, if a particular place field has a shift
between original and shifted conditions similar to the translation of the arena,
this would indicate the field is moving “together” with the arena (and VR scene
in this coherent case) and is locked to the non-conflicting arena/VR reference
frame. Conversely, if the field has no shift between conditions that would display
either its preference towards some globally positioned landmark, or its ability to
compute position estimation in global coordinates based on vestibular inputs.
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Figure 16: Passive coherent movement of the whole environment (arena + visual projection) does not affect
place fields firing. (a) example place cell with 2 place fields. (b) The distribution of the place fields shift
between original (A) and shifted (B) conditions is centered near the actual shift of the whole environment,
indicating spatial encoding based on the proximal visual cues and arena boundaries. A fraction of outliers
might be due to mismatches in the shift detection procedure related with occasional low arena occupancy
resulting in inaccurate place field centers. The red bars indicate the ideal points of field shift if a field
is locked to the visual (at 0m) or to the physical (at 0.3m) reference frames. The small but significant
difference of the mean (0.279) from the ideal lock to the physical reference frame (0.3m) might indicate the
involvement of the vestibular component in position encoding.

The mean of the resulting place field distribution appeared at the shift of
0.28m in the global (room) reference frame given arena translation of 0.3m (see
Figure 16). The absence of any distribution bias towards zero shows general
preference for all place cells to encode arena / virtual scene reference frames,
as expected. Although from these data one cannot make a full statement, one
can assure that the total majority of hippocampal place cells in these conditions
ignore any external stimuli (distal cues or vestibular inputs associated with arena
displacement), encoding position inside the arena based on the arena boundaries
and projected visual cues only. This allows to ignore any influence of these
factors for future experiments. In the meanwhile, the statistics of these sessions
(mean, SD) could be very practical for the subsequent analysis to quantitatively
characterize the place field shift detection method for the recorded place field
data.
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place field stability in darkness can be attributed to integra-
tion of self-motion inputs

Assuming animals can only use local boundaries and projected virtual visual
cues for self-localisation in the VR arena (see previous chapter), the only pos-
sibility to encode position in absence of visual cues (darkness) is to rely on
integration of self-motion (path integration). If a particular place cell continues
to fire in the same location in darkness indicates that it is driven either purely by
self-motion, or by a combination of vision and self-motion when visual inputs
are available (exceptions might be the place fields in the corners of the arena or
in places where animal had left its feces, where the tactile or olfactory cues alone
could define the absolute position within the arena). By quantifying the amount
of place cells that keep their location preference between light and dark condi-
tions one can build an assumption on how much of the self-motion component
is integrated by the place cells in the non-conflicting (vision versus boundaries)
sensory situation.

Using the field matching procedure (see place field shift detection), we split
detected place fields (if a place field in original condition Fa that has a pair in
shifted condition Fb it is one detected field F) into four categories. If a field Fa
has a corresponding field Fdark

a in darkness, as well as its corresponding field Fb
has a pair Fdark

b in darkness we classify this field as “stable”. If we cannot detect
a corresponding pair field in dark condition for either Fa or Fb, we classify this
as “B-stable” or “A-stable” field, respectively. If neither of the fields Fa or Fb
have a corresponding pair after the lights were turned off we classify this field
F as “remapping”. The example on Figure 16 a) is a place cell with two “stable”
fields.

A small percentage of place fields (6.3%) experience full remapping in dark-
ness, which could be attributed to the impaired path integration (Allen et al.
2014). The relatively large (7.4 + 16.8 = 24.2%) percentage of A- or B- only sta-
ble cells might be due to the decreased occupancy in the darkness condition
(less running time, 4 versus 8 minutes in light) which led to the reduced quality
in identification of place fields and false negatives in detection of place fields.
Overall, the total domination of stable or partially-stable place fields between
light and dark conditions (93.7%) indicate that the majority of the place cells
integrate position estimates based on self-motion inputs given non-conflicting
sensory conditions (Figure 17c) and are not affected by the displacement of the
arena with respect to the room coordinate system and are not controlled by the
room-bound landmarks (mirror, projector, cameras etc).
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Figure 17: The majority of place cells integrate self-motion inputs. Distribution of place field shifts in
darkness (b) is similar to the light periods (a) in non-conflicting sensory conditions. (c) Fractions of
place fields that can be tracked between light and dark periods. Only a small percentage of place fields
(6.3%) experience full remapping in darkness, indicating a high probability of integration of self-motion
component for single cells, in line with previous reports (Allen et al. 2014).

simultaneous encoding of different reference frames

To investigate place cell behavior relative to the allocentric and idiothetic inputs
we introduced a conflict between visually-defined and boundary-defined refer-
ence frames while an animal was randomly foraging inside the arena. A fraction
(55%) from the total recorded neurons (n = 521) in the vSHIFT-physical exper-
iment demonstrate preference to either boundary-defined or visually-defined
(examples in the section above) reference frame (see Figure 18a). This sepa-
ration of place encoding in categories goes in line with already reported data
(Mcnaughton et al. 1996; Aronov and David W Tank 2014; G. Chen et al. 2013;
Haas et al. 2019), however so far it’s been only shown for the cases of animal
running on real track bound by reward-containing start/stop boxes or virtual
linear tracks with VR-space contingent reward where it could be influenced by
the reward bias. In contrast, here animals are freely-foraging 2D arena for ran-
domly scattered reward. Surprisingly, we found a significant number of cells
(n=44, 6%) having multiple place fields where each field was encoding a differ-
ent reference frame (see Units encoding multiple reference frames). The ability
of single hippocampal cells to simultaneously encode different categories of the
same type of information (e.g. distal and proximal visual cues) was already
presented (James J. Knierim 2002), however this does not account for distinct
types of information - visual and non-visual (self-motion or direct tactile and
olfactory), presented in the current experiment. This suggests that hippocampal
cells might pre-synaptically combine distinct types of sensory afferents and can
be equally engaged in encoding different sensory modalities.
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Figure 18: Place field shift enables classification of the CA1 cells into categories depending on their inputs.
(a) Distribution of place field shifts between original (A) and shifted (B) conditions in the VR reference
frame. Peak near zero denotes a group of place fields locked to the visual reference frame. Another peak
near 0.3m defines fields encoding stable locations relative to the arena reference frame. A peak in the middle
shows non-bimodal distribution of spatial selectivity in favor of a weighted integration of sensory inputs.
(b) The same distribution as in (a) plotted against the position of the field in the arena in original (A) and
shifted (B) conditions. Note the higher concentration of the 0.3 values near arena boundaries (bottom left
and top right). (c) Overall classification of all place fields into 4 categories by their shift in conflicting
sensory conditions.

Using the same shift detection procedure (see methods), the shifts in global
(=VR) coordinates of a total of n=729 place fields from 6 animals were obtained
from the recorded neural data (see Electrophysiology). The resulting place field
shift distribution demonstrates place preference relative to the visual or bound-
ary reference frames along the longitudinal axis, as well as the distribution of
place fields along the arena (see Figure 18a). The distribution of place field shifts
has 3 peaks around 0, 0.15 and 0.3 meters. On one hand, a non-uniformity of
the resulting distribution suggests categorical structure of the underlying firing
fields and corresponding neuronal mechanisms. On the other hand, a presence
of the large group of place fields (n=246, 33%) encoding average between ref-
erence frames suggests possible continuous weighted integration of visual and
self-motion sensory components (see discussion about weighted integration). A
light domination of the boundary-driven over the visual place representation
preference (29% versus 24%, cells attributed to each group by having a place
field shift of 0.3m (+- 1 SD = 0.075m) or 0.0m (+- 1 SD = 0.075m)) can be ex-
plained by the initial larger influence of the boundaries while initially exploring
the environment (Keinath, Epstein, and Balasubramanian 2018). Another reason
can be that the recordings were made from mainly distal, not proximal CA1,
which is known to get more input from the mEC representing idiothetic inputs,
rather than LEC, better known to provide allothetic sensory information (James
J. Knierim, Neunuebel, and Sachin S. Deshmukh 2014).

According to our analysis, a place field shift near 0 m defines a group of
place fields, stable relative to the landmarks in the virtual scene during physical
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arena displacement (24% cells). This allocentric stability in virtual space could
be explained by a profound drive of the hippocampal cells by visual inputs. This
type of neurons having fields mainly driven by vision was already established
(Muller and Kubie 1987; G. Chen et al. 2013, Haas et al. 2019). Another possibility
would be that this group of cells receives both visual and self-motion inputs,
but the self-motion component is weak and is fully reset by visual landmarks
every time the animal appears to be navigating near virtual cues away from the
borders. The appropriate evidence for that hypothesis still needs to be found
and it is being discussed later in the following chapters.

A place field shift near 0.3 m includes a number of place fields that move
together with the boundary-defined reference frame. A presence of this type of
location encoding can be explained if either cells would be driven by self-motion
inputs away from arena boundaries (the idiothetic path integrator, trajectory
integration relative to the arena walls) or by a direct tactile contact with borders
(e.g. inputs from border cells).

Similar results of separating groups of place fields into visually- and boundary-
driven categories was reported in several studies (G. Chen et al. 2013, Haas et al.
2019). However a third category of place fields, representing an average location
between visual-landmark- and boundary-defined reference frames, was not yet
explicitly found and investigated.

To test if this category of place fields appeared by chance the random simula-
tion procedure as there would be only two visual- and boundary- cell categories
was performed. Assuming there is no average position encoding, the overall
distribution of the field shifts could be represented by a sum of two gaussian
distributions (visual and boundary categories) with means of 0, 0.28 and SD
of 0.82 (values taken from the original vSHIFT - coherent experiment) having
sample proportions as the ratio of the actual peaks around these means (1:1.2).
The random simulation of such a sum of distributions reveals a 0.00001 chance
of 0.33% of all samples (246 out of 634 fields) falling between 0.075 and 0.225

(middle shift range). This is a strong evidence that this category is not a result
of a chance coming from experimental recordings.

balance in availability of a certain sensory modality determines

position encoding at the population level

According to the previous reports (Mcnaughton et al. 1996; Gothard et al. 2001)
and subsequent reviews (Maaswinkel and Whishaw 1999) it is hypothesised
that in conditions, where different spatial reference frames are in conflict with
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each other the place code shows a hierarchy of preferences (Maaswinkel and
Whishaw 1999). In particular, in absence of immediate boundaries or away from
the boundaries visual cues can take over. In the vSHIFT-physical experiment,
the distribution of the place field shifts reveals the higher concentration of the
visually-driven fields in the center of the arena (e.g. away from the northern and
southern arena boundaries), while having a higher concentration of boundary-
or self-motion driven fields near the borders (see Figure 19a, b). This could be
explained by a competition of boundary-driven self-motion and visual inputs.
Close to the environmental boundaries the direct tactile contact engages addi-
tional sensory modalities, while the quality of visual projection decreases. Away
from the boundaries all the visual cues are instantly available while the preci-
sion of the self-motion based inputs decays with time and distance travelled
since the last boundary, although not that fast to be very distorted in current
experimental conditions (Hardcastle, Ganguli, and Giocomo 2015). This allows
to hypothesize, that if a place cell encodes a combination of the self-motion and
visual components, the contribution of the visual one would be larger in the cen-
ter of the arena, setting a higher weight for that type of an input. Opposite, near
the boundaries the contribution of tactile / self-motion component would over-
take the vision and a place field input weights would be more balanced towards
self-motion. More of the interpretation of these findings in the discussion.

removal of allocentric information reveals a group of multi-
sensory ca1 cells to be driven by a combination of vision

and self-motion

To further investigate the interaction of the hippocampal place cell afferents, we
recorded several sessions of the original vSHIFT-physical experiment having a
darkness period after the main session time. This allowed to analyse the change
in spatial selectivity for place fields, especially the fields driven by a combination
of visual- and self-motion inputs, when the visual input together with the whole
virtual reference frame are absent. Essentially by looking at the change in cell
activity - change in firing rate, field size, field shift or complete re-mapping -
we can hypothesize how the reduction of sensory input, in particular, visual
information influences place cell binding to a specific reference frame.

For the light periods, place field shift distribution for sessions with darkness
is equivalent to the regular shift experiment sessions (see Figure 20a). However,
taking the darkness periods alone, all identified place field shifts are centered
around 0.28m with no substantial amount of fields near 0.0m, showing their
preference to encode the boundary-defined reference frame (Figure 20b). Intu-
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Figure 19: Balance in concentration of fields of different types (vision versus self-motion) in the center
versus near the boundaries of the arena demonstrates a tendency to prefer more available sensory input
for spatial encoding, potentially implementing optimal coding at the population level. (a) Distribution of
place field shifts between original (A) and shifted (B) conditions with visual (yellow), hybrid (green) and
self-motion (blue) groups highlighted. Right plot: no field shift in the non-conflicting direction. (b) Place
field shift plotted against position in the arena (top). Visual and self-motion groups highlighted as in (a).
Density of place fields of different groups depending on the distance to the boundary plotted as a kernel
density estimate (bottom). (c) Distiribution of different types of field groups across animals demonstrates
individual per-animal variabilities in reliability to different sensory modalities.
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itively, this is logical: the only way to encode the position in the global (or visual,
when the projection is on) reference frame in darkness is to integrate the vestibu-
lar information about the arena translation and keep this information intact in
relation to the arena borders. This would be unexpected, first, because the infor-
mation about the passive move is normally not used by the animal to represent
the local environment (see the results from vSHIFT - coherent), and second, be-
cause there is no clear evidence that path integrator can ever maintain absolute
positional information during passive translations based on the vestibular inputs
only.

Likewise, the distribution of the place field shifts along the arena in light
shows equivalence to the regular experimental sessions, having higher concen-
tration of the visually-driven (shift 0.0m) place fields in the middle of the envi-
ronment and higher concentration of the boundary-driven fields (shift 0.3m) near
the boundaries. The distribution of the fields in darkness confirms absence of
visually-driven cells, and additionally displays higher shift variance (not shown)
for fields in the middle of the arena, pointing to a reduced precision of position
encoding. As most of the cells in dark are driven by self-motion or boundary-
defined cues, this could be taken as another light evidence of error accumulation
by path integrator away from the reference point.

Overall, the dark period is characterized by the reduction in the mean firing
rate (by 10% average, t(146)=-4.38, p<.00002) and decrease in sparsity (by aver-
age 15%, t(146)=-7.85, p<.00001). This might be explained that the loss of visual
input, that decreases the overall amount of incoming excitatory activity to the
hippocampal circuit, also leads to the reduction in the spiking probability of the
place cells in the pyramidal layer. The overall increase in information content (by
average 9%, t(146)=5.21, p<.00001) might be explained by the increased propor-
tion of fields near the boundaries in darkness which are in general more precise
(see fine position calibration near the boundaries).

Looking at the place field maps and visually analysing changes of the field
locations and place cell activity between light and dark conditions a number of
typical cases show up: a) place field firing is completely abolished (see Figure
21a), place field stays in the same location with no substantial change in firing
rate (see Figure 21b), place field loses spatial selectivity, changes its firing rate or
remaps to a new location within the arena (see Figure 21c). For a more detailed
analysis, we separate the resulting fields in 4 groups using the field matching
procedure (same as for vSHIFT - coherent, see place field shift detection). If a
field Fa has a corresponding field Fdark

a in dark, as well as its corresponding field
Fb has a pair Fdark

b in dark we classify this field as “stable” - these fields keep
firing along the whole session in corresponding light and dark periods. If we
cannot detect a corresponding pair field in dark condition for either Fa or Fb , we
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Figure 20: Change in place field shift distribution for the vSHIFT-physical experiment between light and
dark conditions. (a) Distribution of place field shifts in light. Similar to Figure 18a. (b) Distribution of
place field shifts in the dark shows that most of the cells rely on path integration in absence of visual input
(average shift near 0.3m). Distribution of the place fields of different types inside the arena in light (c) and
in dark (d) confirms higher concentration of the visually-driven cells away from the arena boundaries (see
next section).
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Figure 21: Different types of changes in place cell behavior after the lights are off. (a) An example place cell
that goes fully silent in dark. (b) An example place cell with stable location and mean firing rate between
light and dark condition shows independence of the visual reference frame. (c) An example cell showing
preference for a particular visual part of the environment exposes complete remapping in dark.

classify this as “B-stable” or “A-stable” field, respectively. If neither of the fields
Fa or Fb have a corresponding pair after the lights were turned off we classify
this field F as “remapping”.

A bit more than a half of the population of fields goes to the stable group (see
Figure 21a). Their stability might be due to these cells getting strong self-motion
inputs which do not reduce their sharpness (Pérez-Escobar et al. 2016) and which
enable them to keep their stability in darkness. The unstable group, comprising
partially stable (place field can’t be detected in both original and shifted posi-
tions in dark) and fully remapped fields, react by a significant amount of change
to the loss of the visual input and the virtual reference frame. The contrast be-
tween the groups is of particular interest for investigation relative to their shift



3.6 multisensory cells driven by a combination of vision and self-motion 55

preference, which could be attributed to the amount of allocentric and idiothetic
information that drive their activity.

The place field shift distribution for the stable group contains a substantial
amount of field shifts centered at 0.15 and at 0.3, which correlates with the
assumption that these fields are mostly self-motion / boundary-driven and the
underlying place cells receive a strong input of information from the self-motion
(see Figure 22a). In contrast, all cells in unstable groups are balanced towards
0.0m shift, having field shifts centered at 0.0m and 0.15m and less around 0.3m.
This distribution could be explained by assuming that many place fields, driven
by visual allocentric information (field shift around 0.0m), when they lose their
main driving input, remap or go unstable, thus belong to unstable groups. The
correlation between the amount of self-motion input and cell firing stability can
be also illustrated by the normalized difference of these field shift distributions
(see Figure 22e), which shows negative peak around 0.0m (unstable fields having
0.0m field shift) and positive around 0.3m (more stable field shifts near 0.3m),
putatively separating the groups to mostly allocentric- and mostly idiothetic-
driven units. Besides field shifts, there is no significant change in mean firing
rates for the stable but not for the unstable groups, accordingly. The reduction
in mean firing rate might be explained by the loss of visual inputs.

More intriguing result shows up when analysing the change in place field
shift distribution of the stable group between the light and dark conditions. The
0.3m boundary-driven group, assumed to be composed of units mostly driven
by self-motion inputs, does not show any change in its shift preference (see Fig-
ure 23a, stars). The group of fields near 0.0m, putatively mostly driven by visual
cues, loses their 0.0m shift preference and gets a high variance (not shown). Im-
portantly, the middle “multisensory” 0.15m unit group change their shift prefer-
ence from encoding an average between self-motion and visually given distances
(0.15m) to an average shift of 0.3m, indicating the visual input can no longer in-
fluence the path integrator for these units and these cells stay driven by the
idiothetic inputs only.

Furthermore, the detailed analysis of the place field position shifts for the mul-
tisensory 0.15m unit group reveals that in both original and shifted conditions
the shift is directed towards the middle between their corresponding place field
locations in dark (see Figure 23b). To be more precise, in the original arena
position the place field in light is “ahead” of its corresponding field in dark
(when it’s self-motion driven only), as the same time for the shifted position the
field is “behind” its corresponding field in dark. This direction of the shift is
unique to the multisensory group as, for instance, this is not the case for the
pure self-motion driven group of cells (see Figure 23c). Altogether this points
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Figure 22: The stability of the cell activity in darkness is correlated with the balance between its visual
and self-motion afferents. Distribution of the place field shift (a-b) and change in mean firing rate (c-d)
for the stable (cell continues to fire in darkness, top row) and unstable (cell remaps in dark, bottom row)
groups. Note that significant reduction in mean firing rate for the unstable group (bottom right) suggests
dependency of these cells on the visual inputs. (e) Difference between normalized distributions of place
field shifts between stable and unstable groups. The plot shows more visually-driven fields (0m-shift) go to
the unstable group, while more self-motion fields (0.3m-shift) go to the stable group, showing a correlation
between an amount of shift in light (dependency on the visual reference frame) and firing stability in
darkness. (f) Overall classification of all place fields into 3 categories by their stability between light and
dark conditions.
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Figure 23: A detailed analysis of place field shifts of the multisensory cells shows the integration of the
visual and the self-motion components as a weighted combination. (a) For the stable group, the plot shows
place field shift in light versus shift in dark. For the 0.3m fields (stars) place field shift is not different
between conditions showing their independence from the visual reference frame. Note that the 0.15m group
(triangles) the shift in dark grows to 0.3m showing a switch to the purely self-motion based navigation.
(b) Relative shifts in the same arena positions for the 0.15m group show that visual information calibrates
the spatial representation towards the middle between the reference frames. For the 0.3m group (c) relative
shifts in the same arena positions are not significant probably because of visual independance (right plot).

to the special type of integration of visual with self-motion information. The
possible underlying mechanisms are provided in the discussion.

In summary, the change of the place cell firing in darkness confirms the dif-
ferent amount of visual- and self-motion inputs distributed among the 0.0m,
0.15m, and 0.3m shift groups. This suggests the continuous connection between
the amount of influence of an allocentric input versus idiothetic inputs and a cell
behavior in darkness, ranging from the remapping, if the cell is more visually-
driven, to the stable place field in case the self-motion inputs are dominating.
The substantial amount of units having 0.15m shift demonstrate the ability of
the hippocampal circuitry to use weighted combination of inputs and repre-
sent places centered at the average between visual-landmark- and self-motion or
boundary-defined distances.

fine position calibration near the environmental boundaries

In the vSHIFT - physical experiment the distribution of place field sizes relative
to their arena locations points to a more precise (smaller fields) place encoding
near the arena boundaries, rather than in the center of the arena (larger fields,
Figure 24a). One explanation of the observed effect might be due to the cells that
are getting self-motion inputs tend to be less precise away from the boundaries
due to error accumulation in the underlying path integration (A S Etienne, R
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Figure 24: The distribution of place field sizes inside the arena. All place fields (left plot) and two groups
of self-motion (middle) and visually (right plot) driven fields, classified as in vSHIFT -physical. Smaller
sizes of place fields near the boundaries suggest higher quality of spatial orientation.

Maurer, and Séguinot 1996). Cells closer to the boundaries can easier reset their
self-motion dependent component due to the wall proximity, thus being able to
more precisely encode actual location. However, this could be also attributed
to the increased sensory information due to the direct contact with boundaries
(boundary cells). This change in field size, converted to position encoding re-
liability, was used in the study demonstrating bayesian inference for position
encoding by the hippocampal place cells (Madl et al. 2014).

conflict induced by physical arena translation is comparable

to the translation of the visual reference frame

In order to verify whether the information about the passive move during arena
translation and the propagation of this information to the brain circuits through
vestibular system is required for the successful encoding of either of the visual-
or boundary- reference frames, we conducted visual shift experiment (vSHIFT
- visual, Figure 25a). The protocol for the visual shift experiment was exactly
matching the physical shift experiment, with the only difference that instead
of the arena move for 0.3m, the visual projection was moved 0.3m keeping the
same speed, such that from inside the arena the only possibility to distinguish
whether the physical arena or the virtual projection is moved is to attend to the
vestibular system informing about the start and the end of the passive move,
or possibly to the tactile receptors informing about the vibrations during the
physical arena move (Figure 25a).
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Figure 25: vSHIFT-visual. (a) Schematic of the experimental protocol. (b) Example place cell spiking
(top) and firing rate maps (bottom) for original, shifted and dark conditions. (c) Distribution of place field
shifts is similar to the vSHIFT-physical experiment. (d) Same as in the vSHIFT-physical, there is a higher
concentration of the visually-driven fields in the center of the arena, confirming the tendency to rely on
the more available reference frame at the population level. (e) Comparison of normalized place field shift
distributions between physical (arena moves) and visual (projection moves) types of experiments. (f) A
substantial (90.2%) amount of cells continue to be active in the dark showing widespread integration of
the self-motion component.

In total 209 place fields were recorded in visual shift condition. Analysis of the
place field shift distribution demonstrates presence of field shifts around 0.0m,
0.15m and 0.3m, showing the ability to use both visual and boundary defined
reference frames for position encoding (see Figure 25c). High concentration of
field shift in the middle of the distribution near 0.15m confirms the tendency
of the hippocampal cells to encode the location centered at average between
the visual and boundary defined estimates, similar to the physical arena shift
condition. The comparison of the place field shift probability distributions be-
tween the physical and visual experiments (Figure 25d) demonstrates that even
without the vestibular or tactile information about the passive move the visual
information alone, when stable for at least 30s periods of time, can influence the
positioning of the place fields and overall has very similar impact on formation
of the hippocampal place code.
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Figure 26: Visual conflict induces recalibration of the idiothetic self-motion based place map. (a) Distribu-
tion of the place field shift in light (A -> B) shows the influence of the conflicting visual reference frame and
suggests encoding in a weighted combination manner. (b) a very little place field shift back after the lights
are off (non-significant) shows that the overall spatial representation was recalibrated during conflicting
condition. (c) Direct comparison of original (A) and dark (D) conditions confirms the recalibration of the
spatial map as in (b). (d) A correlation between the field shift in light (e.g. its dependency on vision) and
the resulting shift of the field (A -> Dark) demonstrates the connection between the amount of visual input
and its influence on recalibration.

visual conflict induces recalibration of the self-motion based

place map

Similar to the vSHIFT-physical, for several sessions in vSHIFT-visual we recorded
navigation in the dark after the shifted condition. This allowed us to analyze the
contribution of the induced visual mismatch to the self-motion based representa-
tion of the environment. At first, as many place cells integrate both self-motion
and visual inputs, we assumed that turning the light off after “shifted” (B) condi-
tion would just cut off the visual part and bring the overall place representation
into the “original” (A) learned state. In other words, for place fields that are
active in dark we expect that place field would shift back to match the original
position in A, because of the loss of the visual influence.
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Surprisingly, this appears not to happen. As described in the previous chapter,
on the population level there is indeed a place fields shift between original A and
shifted B conditions (Figure 26a, n is smaller comparing to 25c as only sessions
with dark periods are taken into account) due to the conflict induced by a shifted
visual reference frame (by -0.11m average, t(112)=-6.07, p<.00002, Figure 26a).
However, the shift “back” to the original representation is not significant (0.04m
average, t(96)=1.27, p=0.2, Figure 26b). The same is confirmed by looking at
the place field shift distribution between original A and dark D conditions (-
0.05m average, t(89)=-2.76, p=0.007, Figure 26c). Taking individual fields and
their shift induced by a visual-to-self-motion conflict versus the shift between
original condition and darkness one can see, that cells that have a larger shift
in conflicting conditions (more influenced by vision) tend to recalibrate more
relative to their original position (Figure 26d). The interference of two reference
frames led to a new state of the spatial map, where place code represents the
weighted combination of them.

The results demonstrate that the self-motion based and visual landmark-based
spatial representations are interconnected. Conflict induced by the shifted visual
reference frame leads to recalibration of the whole spatial representation system,
including the self-motion based representation. How can the change in place
representation in the upstream CA1 area influence the self-motion based rep-
resentation, located hypothetically in the downstream cortical areas (e.g. head-
direction, speed, grid cells)? Theoretically, this recalibration could be imple-
mented via backprojections from the hippocampal CA1 to the entorhinal system
via subicular pathways. This has been already hypothesized and similar results
were collected in the modelling study (Li, Arleo, and Sheynikhovich 2020).

gradual mismatch between sensory inputs confirms weighted po-
sition estimation at smaller conflicts

To further investigate the change in spatial selectivity of hippocampal cells in
an continuously growing sensory conflict we designed an experiment with grad-
ually increasing mismatch between position estimations coming from two dif-
ferent reference frames. By inducing a visual to self-motion instantaneous gain
difference along the longest dimension of the arena in an asymmetric way we as-
sume that the gain mismatch between self-motion and visual flow would affect
path integration, providing a way to test its contribution to the CA1 place code,
as well as allowing to test whether place fields would gradually follow the mis-
match estimating position as a weighted combination of both types of sensory
inputs.
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Figure 27: vGAIN 1.2x experiment. (a) An example place cell with a field active in all conditions. The
gradual shift of the field along the shift of the visual reference frame (north -> south) shows influence of
visual objects and cues. (b) Place field shifts between no-gain (A) and gain (B) conditions plotted against
the position in the arena. Dashed lines indicate the amount of conflict between visual and boundary-defined
reference frames (100% reflects the amount of conflict at the Y-axis). Note neurons encode the weighted
average between two reference frames (blue linear regression bar), that linearly grows with the amount of
conflict, on the population level.

In the first phase (A) of the vGAIN experimental session animals were learn-
ing the stable virtual environment, coherent with environmental borders. The
slow transition to the vGAIN 1.2x phase (B) introduced a visual to boundary-
defined conflict in self-location ranging from no conflict near the southern arena
wall to the 0.3m conflict near the northern arena wall. In line with previous
vSHIFT experiments, we expect no place field shift at the southern wall followed
by a gradual increase in the shift towards the northern arena wall up to a 0.3m,
when comparing the initial (no-gain) and gain conditions.

In total, 275, 316 and 253 place fields from 4 animals were recorded in the
vGAIN 1.2x experiment for each condition (no gain - gain - no gain shifted),
respectively. An example place field, showing an influence of the conflicting
visual inputs is presented in Figure 27a. Although we encounter a variance
of place field shifts for different parts of the arena between no-gain and gain
conditions, on the population level, we see that there is a gradual influence of the
visual- to self-motion conflict along the arena, as expected. Specifically, cells tend
to encode the average between the estimations given by two conflicting reference
frames, positively correlated with the gradually increasing conflict (Figure 27b),
providing more evidence for the hypothesis regarding the weighted combination
of sensory inputs by hippocampal cells.
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abandonment of a sensory estimate at larger sensory conflicts

It has been shown for different sensory modalities and different animal species
and also humans, that information from the internal body and environmental
cues are integrated at small sensory conflicts to increase response precision (see
Optimal combination of environmental cues). However, as proposed in several
studies, it is reasonable to abandon less reliable sensory input in case of large
conflicts (Sjolund, Kelly, and Mcnamara 2018; Cheng et al. 2007). To test whether
there is a change in place cells behaviour at larger conflicts we conducted an
asymmetric vGAIN 1.4x experiment following the same vGAIN protocol, which
enabled to record 1.4 gain mismatch between vision and self-motion, as well as
to analyze the gradual increase of conflicting position estimation ranging from
0 to 0.6m.

Similar to the vGAIN 1.2x, the first, exploratory phase, followed by a gain
condition where we induced an asymmetric 1.4x gain between self-motion and
visual flow. The asymmetry enabled it to build a gradual conflict along the
arena, from northern (0 conflict) to southern (0.6m conflict) wall. Taking into ac-
count an average place field size of 0.42m within these experimental conditions,
the smaller gain of 1.2x and the conflict of 0.3m would still keep the incoming
pre-synaptic inputs, defined by different reference frames, overlap, potentially
bringing a situation to a smaller sensory conflict category, where the integration
of sensory inputs makes sense. In contrast, the gain of 1.4x would build larger
conflicts exceeding the average place field size, making self-motion and visual
inputs completely uncorrelated in space and time. This conflicting condition
might bring many place fields to the larger conflict category, where it makes
sense to abandon one of the inputs. In that case, we would expect cells to prefer
self-motion or path integration relative to the visual cues, as reported previously
for human and rat studies (Sjolund, Kelly, and Mcnamara 2018; M. Zhao and
William H Warren 2015; Shettleworth and Sutton 2005).

A typical example of the place field shift is shown on Figure 28a. At first, a
place field follows the visual projection and shifts in the direction of the conflict,
encoding a weighted combination of the estimations (A -> B). However, after
we asymmetrically reduce back the gain to no gain condition (B -> C) bringing
two reference frames in a larger 0.6m conflict relative to the original condition,
the place field tends to ignore further visual shift and keeps its spatial preference
relative to the arena boundaries. This ignorance of the visual but not self-motion,
or path integration driven spatial preference is confirmed by the stable spatial in
darkness after the shifted condition (C -> D).
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Figure 28: vGAIN 1.4x and analysis of GAIN experiments. (a) An example place cell with a field active
in all conditions. The gradual shift of the field along the shift of the visual reference frame (north ->
south) shows influence of visual objects and cues. Note that in contrast to the gain 1.2x condition, a
field is no longer influenced by vision when conflict is too large (B -> C). (b) Place field shifts between
no-gain (A) and gain (B) conditions plotted against the position in the arena. Dashed lines indicate the
amount of conflict between visual and boundary-defined reference frames (100% reflects the amount of
conflict at the Y-axis). Note neurons encode the weighted average between two reference frames (blue
linear regression bar), that linearly grows with the amount of conflict, until the conflict does not exceed
0.4m. At larger conflicts > 0.4m there is a significant drop in the fraction of cells influenced by the visual
reference frame. (c) Distribution of place field shifts for no gain (A) - gain (B) and gain (B) - no gain
shifted (C) conditions shows continuous influence of the visual reference frame at smaller conflicts, similar
to the vSHIFT experiment (top row, left and middle). A small shift back after the lights are off (top right
plot) shows the overall recalibration of the spatial map between original and shifted conditions, similar to
vSHIFT - visual. In contrast, the initial influence of the visual reference frame (bottom left) stops when
the conflict becomes too large (bottom middle).
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In total, 165, 177 and 170 place fields from 2 animals were recorded in the
vGAIN 1.4x experiment for each condition (no gain - gain - no gain shifted),
respectively. On the population level, as expected from the multisensory integra-
tion, cells tend to follow the visual reference frame in a weighted combination
manner (Figure 28b, left part of the plot) at arena south, where the conflict be-
tween reference frames is relatively small (0 - 0.3m). However, at an arena north
where the conflict exceeds a certain threshold, there is a decrease in the concen-
tration of place fields following the visual projection in favor of the self-motion,
boundary-defined input (Figure 28b, right part of the plot). This would be in
line with an assumption, that cells tend to abandon one of the inputs at larger
sensory conflicts.

Similar to the vSHIFT - visual experiment, the distributions of the place cell
shift for the vGAIN 1.2x show overall shift of 0.17m between original (A) and
shifted (C) conditions (e.g. “shift via gain”, Figure 28c top left plots). Interest-
ingly, that turning the lights off at the end of the session led to a significant, but
relatively small shift back of the overall spatial representation (Figure 28c top
right plot), but not to the original position, which again supports the hypothesis
of the recalibration of the self-motion based spatial representation by inducing a
visual conflict (see visual conflict induces recalibration of the self-motion based
map). For the 1.4x gain, enabling gain with asymmetric conflict leads to an over-
all significant shift of 0.14m at the population level (Figure 28c bottom left plot),
smaller that the average between estimations given two reference frames, prob-
ably because cells tend to ignore visual reference frame at larger conflicts at the
northern part of the arena. Further conflict from gain to no gain shifted (B -> C)
does not have any further influence on the place cell location (Figure 28c bottom
middle plot), potentially because of an overall larger conflict between original
and shifted conditions (A -> C, 0.6m). Similar to the gain 1.2x, a small shift back
is detected after the lights are off (Figure 28c bottom right plot), contributing to
the recalibration hypothesis.
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electrophysiology

Subjects

All experiments were conducted with Mongolian gerbils (Meriones unguicula-
tus). Gerbils were selected as an experimental animal for a number of reasons.
First, gerbils were shown to have a good visual acuity ( 1.75 cycles/deg grat-
ing acuity at 70 cd/m2; Baker and Emerson 1983) and visual alertness (Ingle
1981). Second, gerbils are more active in the light part of the day cycle (Naumov
and Lobachev 1975), suitable for experimental recordings. Finally, gerbils show
better exploration of novel contexts and less dependency on moving along the
boundaries (thigmotaxis) (Stuermer et al. 2003), which is highly important to
reach high levels of arena occupancy across all experimental conditions.

In total, 9 wild-type animals from the local breeding facility were used. Among
those, all 9 were used in the shift experiment, and 4 were recorded in the gain
experiments, so some animals took part in both experimental paradigms. After
the implantation of microelectrodes, animals were housed individually with a
maintenance of the 12 hours light/dark cycle. A few days after the surgery and
before the start of the experiments animals had ad libitum access to food and wa-
ter. During the recordings, animals were kept on a food diet to maintain 90-95%
of their original ad libitum weight to increase the interest in random foraging
for food pellets during the recording. All experiments were approved according
to national and European guidelines on animal welfare (Reg. von Oberbayern,
license number AZ 55.2-1-54-2532-70-2016).

67
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implant design

In the beginning, we used 4- or 8-tetrode Axona microdrives (Axona Ltd., U.K.
http://www.axona.com/) to record from the dorsal CA1 region of the hippocam-
pus. Later in the project, aimed at increasing the density of the recording sites
in the brain area of interest as well as to have a possibility to reuse recording de-
vices we chose the 32- and 64-channel Buzsaki H64 silicon probes as candidates
for electrophysiological recordings. In order to support implantation, mainte-
nance and successful recovery of the probe after the end of the experiment, a
set of custom components was designed. These include the microdrive, the base
plate, the protecting box and a set of components supporting the implantation
procedure.

Microdrive

The industrial microdrives (e.g. nano-Drives from Cambridge NeuroTech) are
usually very expensive and do not allow reusing the recording device. The
recent advances in 3D-printing allowed for custom design of the small compo-
nents, necessary to build reliable microdrives within a short period of time. To
be able to change to the procedure to using silicon probes instead of tetrode
drives I designed a custom microdrive that meet the following characteristics:

• the bottom size of the microdrive should not exceed 20 mm2 to be able
to be cemented on the gerbil skull, as well as the body of the microdrive
should be fully contained inside the protecting box

• the weight of the microdrive should not exceed 2g to be able to carry by
small animals

• the smallest stable movement of the shuttle of the microdrive should be in
the range of 30 to 50 um

• the microdrive should be resistant to vibrations and stable enough to allow
up to 24 hours of recordings from the same units

• the microdrive can be (partially) recovered together with the recording de-
vice to be able to be fully reused in the next implantation

In the beginning of the project, I invested time to design the custom micro-
drive that meets these criteria (Figure 29 a and b). The major parts needed to
assemble the microdrive are the U-shaped rails (commercially available), the M1
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Figure 29: Pictures of the custom-made microdrive. (a) 3D-printed and pre-cut brass parts, required to
build the microdrive. (b) A picture of the assembled microdrive.

and M1.4 10mm screws (also commercially available) and the custom designed
plastic parts. The Asiga Pico2 3D printer (https://www.asiga.com/) was used
to print the plastic parts. The M1 driving screw having 250um height change
per full turn allowed for the 31.25um single movement precision when rotated
at 1/8 of a turn per adjustment. The total price of the required parts does not
exceed 5 euros, the assemble time does not exceed 1 hour if the printed parts
are ready. The drive was successfully implanted to 12 gerbils and proved it’s
stability during the recordings. Most of the silicon probes were fully recovered
after the end of the experiment, although some had to be trashed due to the
surgical issues (recording shanks were clogged by cerebro-spinal fluid or some
bleeding and the probe was not recoverable).

Protecting box

In contrast to the different designs of the tetrode drives, which are typically ce-
mented to the skull together with the connector and protection for moving parts,
the reusable microdrive with the recording device should be placed in a separate
protective enclosure, disconnected from the drive itself. The standard procedure
is to build this exclosure from copper mesh during the surgery, gradually build-
ing the shielding walls with cement. This method requires careful manipulation
of the mesh parts with close proximity to the implanted probe and takes a long
time, increasing the duration of the surgery and reducing the chances for suc-
cessful recovery. The availability of high-precision 3D-printing in house allowed
to design a custom protective box that can be assembled directly on the head of
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Figure 30: (a) A 3D-model of the protecting box with the connector pocket. (b) A picture of the implant
on the animal.

the animal during the surgery in a matter of a few minutes (figure 30a). The box
has the following properties:

• it is fast and easy to assemble during the surgery, easy to dismount at the
end of the experiment

• it has a quickly removable cover for a) adjustments of electrode’s position,
and b) changing the type of the cover from the simple protecting cover
to the recording cover that has infra-red sensitive markers, required for
tracking system

• it’s length and width do not exceed 18x18 mm to not interfere with gerbil
eyes and ears position

• it is lighter than 3g to not exceed 5g of the total implant weight together
with the microdrive

• it protects the recording device from dust (while animal is in cage) and
light (during recording)

• it is strong and can last for long time (up to several months)

I designed the corresponding protecting box for 3D printing. I used 1x1.5x5

mm magnets, glued inside both the walls of the box and the top cover, to imple-
ment easy access inside for electrode adjustments. The M1 10mm screws were
used to hold the walls together. As a result, the overall surgical time decreased
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and the new implant design allowed for the recovery of the recording device
with the connector at the end of the experiment.

The designed protective box was successfully used in 12 animals (figure 30b), 4

of them for the duration of more than 2.5 months. Despite the light accumulation
of dust inside the box, due to an imperfect connection between the top cover and
the wall with the connector, the box was stable and reliable and didn’t show any
failure in all of the animals.

Surgery

Standard stereotaxic surgical procedures of implantation of microelectrodes in
the rodent hippocampal area CA1 were performed. Before the surgery, a 3D
model prototyping the stages of the implantation was designed to ensure the cor-
rect placement of the microdrive and the protecting box, as well as the later fixa-
tion of the connector (figure 4.3 a-c). A 3-component solution with medetomidine-
midazolam-fentanyl (0.15mg/kg, 7.5mg/kg, 0.03mg/kg) was used to anesthetize
animals and keep the anesthesia for the duration of the surgery, by re-injecting
the solution every 2 hours if the animal showed foot reflexes. During the surgery,
animals were head-fixed in a stereotaxic frame (Stoelting Co.) placed on the
heating pad with the termometer to maintain the body temperature of 36°C. All
animals were implanted in the right hippocampus. A silicon probe oriented 15%
to the vertical plane attached to a microdrive was inserted into a 2mm wide
craniotomy window (AP 3.0mm, ML 3.3mm, DV 0.9mm, averaged using the
lambda-bregma distance according to the Radtke-Schuller et al. 2016). Sealing
wax was used to protect the electrodes and to cover the craniotomy window.

The base plate, necessary to hold the protecting box, was cemented to the
skull together with 10 M1 1mm screws, anchored to the frontal, left parietal and
occipital bones (Dental cement, Paladur). Two screws inserted in the occipital
bone above the cerebellum served as electrical ground. The surgery finished
with the 3-component antagonist atipamezole-flumazenil-naloxone (0.4mg/kg,
0.4mg/kg, 0.5mg/kg). The post-surgical treatment included 5 days of daily in-
jections of antibiotics (Baytril, 10mg/kg) and 3 days of analgesics (meloxicam,
0.2 mg/kg). The recordings started only after complete animal recovery.
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Figure 31: 3D-modelled stages of the microdrive insertion and implant assembly during the surgery. (a)
Insertion of the grounding screws to the skull. (b) Fixation of the base plate on top of the grounding screws.
(c) Placement of the microdrive with the electrodes under the required angle and fixation of the drive with
the cement. (d-e) Assembly of the protecting box using M1 10mm screws on top of the base plate. (f) The
resulting implant assembled.
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Recording procedures

After the successful animal recovery the electrodes were adjusted daily to lower
the probe tips with recording channels to the pyramidal layer of hippocampal
CA1. Lowering of the electrodes was done in small increments of 1/8 to 1/4

of a turn (31.25 to 62.5um) not exceeding 125um per day to avoid damaging
neural tissue and missing the right hippocampal layer. To make a proper ad-
justment, an animal was connected to the acquisition system before the move
of the electrodes and the LFP signal was monitored. The correct placement of
the electrodes was defined by several factors, including the presence of sharp
waves (G Buzsáki 1986) and ripples (John O’Keefe and Nadel 1978) in the LFP
signal during immobility periods, as well as the presence of simultaneous bursts
of spikes pointing to the putative pyramidal cell activity in this region. If these
factors were not observed within a reasonable time (approx. half an hour) the
electrodes were adjusted and an animal was left for another half a day. Other-
wise, an experimental session was recorded.

Histology

To confirm the correct electrodes location, a histology on the animal’s brain tis-
sue was performed. Animals were deeply anesthetized with pentobarbital and
perfused with 4% paraformaldehyde. After the perfusion, brains were extracted
and stored in paraformaldehyde for at least one day. Brains were sliced coronally
in 60um slices and the slices near the craniotomy were stained with neutral red.
Pictures of the slices were taken using the 10x microscope (see examples on
figure 32).

virtual reality setup

RatCAVE system

All experiments were designed to be conducted in a 3D virtual reality setup
named ratCAVE (Del Grosso 2018). The setup consists of a large rectangular
arena (floor area 162 cm × 72 cm and walls of 60 cm height, placed with a 70

degrees angle to accommodate the visual projection),a set of 7 infra-red tracking
cameras (Prime 13W 240 fps, OptiTrack, NaturalPoint Inc., United States) located
above the arena, and a high-frequency projector (Prime 13W 120 fps, OptiTrack,
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Figure 32: Example pictures of histological slices. (a) Example picture from animal 00908 slide 6 slice 4 -
2x (b) Example picture from 003281 slide 6 slice 5 - 2x. Note multi-shank tracks of electrodes penetrating
the CA1 pyramidal layer (top).

NaturalPoint Inc., United States), used to project a 3D virtual environment on the
walls of the arena. Each experimental session a 3D-printed set of three spherical
reflective markers was magnetically attached to the head of the animal, on top
of the implant to not interfere with the headstage. These markers were tracked
in a closed-loop by the cameras to be able to adjust the projection depending on
the animal’s position. Blender (https://www.blender.org/) package was used
to design the virtual environment and export it to .obj files, used by the custom-
written 3D graphics python software (Grosso and Sirota 2019) for rendering.

Two standard linear actuators and a bearing rail system were installed below
the arena to physically move the arena ialong one coordinate axis. The maximum
move was 30cm, limited by the borders of the projection. The actuators were
controlled by an arduino with a motor shield, connected via USB / serial port to
the computer with the experiment control software.
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Figure 33: The ratCAVE freely-moving virtual reality system for rodents used in experiments. (a) A
3D-model of the arena, position tracking and the projection systems. Left inset (left) shows the reflective
markers placed on the animal’s head, which is used by the tracking system to locate the animal (adapted
from Del Grosso 2018). (b) Location of the arena in the experimental room and a schematic of the potential
experiments: linear translation of the arena using linear actuators (top) or manipulation of the virtual
projection (bottom).

Rewarding system

A food dispenser (Campden Instruments Ltd.), positioned above the arena served
for automatic reward administration. As most of the experiments were designed
for random foraging, a food dispenser was triggered for dropping a food pellet
(20 mg, TestDiet LabTab AIN-76A) at a random location within the arena at 1

minute intervals.

Acquisition system

An Open Ephys acquisition system (www.open-ephys.org , Siegle et al. 2017)
driven by an Opal Kelly XEM-6310 FPGA module was used to acquire neuronal
data at a 30kHz sampling rate. The 32 or 64-channel Buzsaki H64 silicon probes
were connected via the Intan RHD2000 series headstage to the acquisition box,
which transmitted the raw data to the Open Ephys GUI for saving and visual-
ization. The synchronization between the electrophysiology and virtual reality
systems was done using the “Network Events” plugin, essentially implemented
by periodic sending of TCP packets using python ZeroMQ package from the
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VR computer to the Open Ephys acquisition socket on the Ephys computer, con-
nected directly via ethernet cable.

Automatic experiment control

A custom experimental control software was written to asynchronously man-
age the virtual projection, information from the tracking system, linear actua-
tors, food dispenser, visualization of the animal position, video- and position
logging and synchronization with the acquisition system. The non-blocking
transmission of the information between components was implemented using
the PUB/SUB communication scheme based on the ZeroMQ messaging system
(https://zeromq.org/). Rendering of the virtual projection was performed by
the ratCAVE package (Grosso and Sirota 2019), food dispenser and linear actua-
tors were connected and operated via USB serial ports, OpenCV (https://opencv.org/)
was used for both video recording and animal position visualization, and built-
in python components for metadata and logging.

data analysis

Data analysis was primarily done in Python 3.5 with the standard math packages
numpy and scipy, as well as scikit-learn, matplotlib and other utility packages.
Partially the analysis was done in Matlab R2018b using standard libraries (de-
tection of local minima, detection of center of mass of place fields). Significant
amount of analysis was written in Jupyter notebooks for better visualisation.
Analysis scripts, jupyter notebooks and the code implementing the data process-
ing workflow are available in the project repository.

Data processing workflow

To increase efficiency and consistency working with large amounts of heteroge-
neous neuroscience data I developed a custom software automating the data pro-
cessing workflow. A python package named “stapler” (https://gitlab.lrz.de/asobolev/stapler)
was written to implement a pipeline consisting of the following steps:

• collecting recording session data about animal positioning, animal elec-
trophysiology and session configuration from the local PCs to the central
storage
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• merging corresponding data into a single folder

• converting OpenEphys files to binary formats, creating LFP files, compress-
ing video files

• running spike sorting workflow on the raw data (high pass filtering, ex-
tracting spikes, PCA on spikes, running KlustaKwik, cleaning up)

• backing up unit clusters, syncing position and unit firing data, saving opti-
mized data to HDF5

• performing post-processing steps required for final analysis (building place
fields, calculate unit metrics, computing center of masses of place fields,
running bootstrapping on the spiking data, running density based cluster-
ing, calculating place field shift matrixes, creating place field figures for
every epoch)

The program allowed to change the running configuration for each step inde-
pendently, enabling having custom processing parameters for different types of
experimental sessions.

Identification of single units

Klusta (https://github.com/klusta-team/) software was used to perform spike
clustering. The NeuroSuite (http://neurosuite.sourceforge.net/) was used to vi-
sualize raw data and to manually filter out noise clusters, as well as to merge
similar clusters according to their burstiness and waveform shapes on corre-
sponding channels. Clusters, representing interneurons by their spike width
and average firing rate, were not taken into further analysis. I used cluster iso-
lation distance as a parameter to assess spike sorting quality (Schmitzer-Torbert
et al. 2005). Clusters having isolation distance < 15 were excluded from further
analysis.

Spatial firing maps and place fields

For every recording session and subsequent experimental condition I calculated
spatial firing maps, mainly to visualize the conditional spatial selectivity - the
change of the unit firing rate depending on the animal’s and arena position. The
space was binned in 0.5 x 0.5 cm squares and the number of spikes for each
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Figure 34: Spike clustering. (a-d) Example cluster projections in pairs of principal components. Spike
belonging to the same cell share the same color. (e) Example waveforms (mean) and (f) cross-correlograms
of spiking of the same cells as in (a-d).

bin was accumulated. The spiking map was computed by dividing the number
of spikes in each square bin by the total time spent in the bin. The resulting
firing rate maps were created by applying smoothing with 2D gaussian filter
with sigma = 3 cm.

To define the precise analytical locations of place fields, I calculated the areas
above the 0.5 * peak firing rate (threshold) of each firing rate map, and each
connected area was taken as a putative place field. For each place field the
center of mass (COM, Cx; Cy) was calculated:

where fi is the firing rate and xi yi are the coordinates of the spatial bin. For
each place field these centers of masses were not used as a final location of the
field but used to further refine the position by bootstrapping.

To reach better precision on defining the place field locations, as well as to
exclude noisy fields I used bootstrapping on the original spiking data. First, I
split each spike train into several experimental conditions. For each condition I
bin the timelapse of the spike train in chunks of 10-15 s and build a new spike
train by randomly taking chunks with replacement. As a result of performing
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this operation 1000 times I get 1000 re-sampled place fields for each experimental
condition. Second, for each new re-sampled spike train I compute individual
place field locations using the thresholding / center-of-mass method, described
above. This resulted in the number of bootstrapped locations of putative place
field centers for each unit / condition. By design of the bootstrapping method,
the centers of these individual fields tend to cluster together across all resamples
if the field is stable, and tend to spread if the field is just noise. To get the
actual fields, I used density-based spatial clustering with noise to separate well-
connected clusters of bootstrapped field centers. The density-based clustering
procedure allows to ignore noisy resamples (less than 100 field centers in the
cluster from 1000 resamples), as well as to rank resulting clusters by the number
of points (field centers) in the cluster. By taking the clusters with the highest rank
I separate the most stable fields from the ones that hardly survive bootstrapping
(practically I take the best 2 clusters, e.g taking 2 fields per unit maximum).
Finally, the center of each cluster given by the density-based clustering was taken
as a final place field location (figure 34 a-c).

Place field shift detection

For each cluster I use it’s surface projection to calculate corresponding fields be-
tween experimental conditions (Figure 35c). By gradually shifting one projection
relative to another in a range from 0 to 0.3 m (the shift of the arena or the virtual
projection in all experiments) and computing the maximum of their overlap I
determined the clusters which projections overlap the most (if a field in A does
not overlap with any other field in B it means it remapped). After the fields are
"paired" between conditions the vertical difference between the centers of their
clusters (literally center-of-mass of their bootstrapped field centers) is computed
as a shift of that particular field between given conditions (Figure 36).
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Figure 35: Detection of place fields. (a) Example spiking (blue) and arena occupancy (grey) plotted in
the arena coordinates. (b) Example firing rate maps of a neuron in (a). (c) Place field patches and their
center-of-masses computed using the bootstrapped procedure

Figure 36: Detecting place field shift. An example place field with patches in all experimental conditions.
This example has only one place field, it has a shift along the Y-axis of 0.15m (light condition, left two
plots) and a shift of 0.3m (dark, right two plots).
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D I S C U S S I O N

Aimed at contributing to the research on the question of integration of allothetic
and idiothetic information at the level of the hippocampal place cells, I used
freely-moving virtual reality setup where I conducted several types of electro-
physiological experiments with randomly foraging animals. To study the place
cell spatial representation I designed vSHIFT, vGAIN and vTELEPORT experi-
ments, each implementing a mismatch between the boundary-defined and the
visual reference frames.

From the vSHIFT - coherent experiment we learn that most of the CA1 place
cells are getting self-motion inputs. The analysis of the place field shift in the
conflicting sensory conditions showed simultaneous encoding of both reference
frames, balanced from mostly self-motion driven near the boundaries to the
visually driven in the center of the arena. Analysis of the interplay between the
visual and self-motion inputs in the vSHIFT experiment confirms better position
calibration in the presence of the boundaries versus to the middle of the arena. It
was found that, despite previous suggestions that CA1 cells responsive to visual
and self-motion cues are anatomically separated (Fattahi et al. 2018), an evidence
that the same CA1 cell can integrate both types of self-motion and visual inputs
on the single cell level. These CA1 cells can not only be visually or self-motion
selective, but also represent a specific combination of the two types of inputs
- forming distinct categories of place fields. Current experiments demonstrate
that place cells having self-motion components in their place fields keep being
driven by self-motion inputs only, if the visual component is not available. This
suggests place cells could use weighted integration of allocentric and idiothetic
sensory afferents for spatial encoding.

In the vGAIN experiment, sessions with animals recorded with the 1.2x gain
condition showed that hippocampal cells can encode both visual and boundary-
defined reference frames even during and after being in conflict between the pro-
prioceptive and visual systems. The distribution of the place fields shifts shows
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a substantial amount of units having shifts of 0.0m (visually-driven fields) and
0.3m (boundary driven fields), similar to the regular physical or visual shift ex-
periment. An outstanding amount of fields with the place field shift of 0.15m
confirms the above hypothesis of an ability of the hippocampus to represent
location as a combination of visual-landmark- and boundary-defined reference
frames. Recordings in dark allowed to show that the induced visual- to self-
motion conflict results in recalibration of the overall spatial representation, pos-
sibly via feedback projections from the hippocampus to the entorhinal cortical
areas.

While we collected evidence from both vSHIFT and vGAIN 1.2x experiments
that under small conflicts place cells tend to integrate both sensory inputs, the
vGAIN 1.4x suggests that in a situation of a larger conflict one sensory modality
is being abandoned. Moreover, in line with previous human and animal studies
(M. Zhao and William H Warren 2015; Shettleworth and Sutton 2005), we found
that in larger conflicts involving vision path integration tend to be implemented
based on non-visual (mostly self-motion, but can be also tactile and olfactory)
sensory inputs only; cells mostly encode positions relative to the environmental
boundaries, ignoring information coming from vision.

integration of the self-motion and visual information

It is established that hippocampal cells can build spatial representations with-
out self-motion inputs - mainly the grid cell inputs from the entorhinal cortex
(Bruno Poucet et al. 2015; Muessig et al. 2015). Moreover, without the stable
grid cell activity new place cells can be established in new environments (Bran-
don et al. 2014). This leads to an assumption that both external sensory and
internally-generated self-motion information come to the hippocampus as two
different, potentially overlapping, parallel pathways - one integrating proprio-
ceptive, vestibular and other idiothetic signals to represent self-motion, another
providing a combination of the allocentric sensory signals instantaneously occur-
ring at a particular location.

The data from current experiments demonstrates the reliance of place cells
on these inputs via encoding position based either on self-motion, or on visual
information, or on combination of both (see results). In contrast to the identi-
fied groups of neurons recorded in the body-fixed VR (Haas et al. 2019), where
a negligible subset of neurons shows integrative properties of both allothetic
and idiothetic (proprioceptive) inputs, we found a large subset of hippocampal
cells being selective based on both types of input. This suggests there is an
interference between two input pathways, and involvement of some competi-
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tive learning mechanisms used by the hippocampal CA1 neurons to establish
their firing preference based on one or another information stream, or a com-
bination of them. This in turn, would suggest a much stronger contribution of
self-motion-driven path integration to hippocampal spatial representation than
what could be expected from head- or body-fixed VR experiments (Jayakumar
et al. 2018b; Haas et al. 2019; G. Chen et al. 2013, Aronov and David W Tank
2014).

Also, it was long assumed that in absence of boundary-defined reference
frame, additional allocentric (e.g. visual) information can “reset” the path inte-
grator, which should move the place field centers such that they have 0.0m shift
and belong to the “visual” group, to represent the position defined solely by the
allocentric frame (Savelli, Yoganarasimha, and James J. Knierim 2008). Instead,
our data shows that the information about the moved distance is somehow in-
tegrated in the pre-hippocampal brain circuits to represent the average between
the distances defined by two different reference frames, and does not simply
bind to one or another, at least at small conflicts (see results about removal of a
visual reference frame).

representation of a combination of different reference frames

Clear effect of visual influence on multisensory boundary-and-visual cells shows
that the pure boundary vector cell model (Barry et al. 2006; Grieves, Duvelle, and
Paul A. Dudchenko 2018) or different periodic grid cells inputs (John O’Keefe
and Burgess 2005; Rolls, Simon M Stringer, and Elliot 2006) is not highly prob-
able. The recent work involving single-cell recordings, where place fields can
be induced by precise time stimulation (X. Zhao et al. 2020), demonstrates that
co-firing, or general synaptic plasticity should be a mechanism for recruitment
of particular CA1 cells to integrate visual, boundary or multimodal inputs and
form a field of a certain type. Another work shows that dendritic plateau poten-
tials, coming from the EC3 in conjunction with CA3, are sufficient to produce
place field in CA1 pyramidal cells by means of strengthening synaptic inputs
active around the time of plateau formation (Bittner et al. 2015). Altogether this
is a strong evidence for the crucial role of synaptic plasticity in integration of al-
lothetic and idiothetic inputs. Below I would like to propose a few mechanisms
how it could be involved in the process of coding an intermediate estimate of
the positions, defined by two reference frames.
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Effect of a shift of a particular reference frame after learning and establishing a place field

One possible explanation how the average between visual- and boundary-defined
distances could be implemented by the hippocampal neurons would be to as-
sume that pyramidal cells, having these fields, receive both inputs from the self-
motion (distance from arena walls) and visual (distance to proximal virtual cues)
streams. At the time of original field formation, the corresponding sensory and
path integrator signals are coherently coming as inputs to the pyramidal neu-
rons to form a stable place field, defined by mutual presence of information
about the distance to the walls and information about visual landmarks. This
could be done by strengthening the necessary synaptic connections between the
appropriate sensory afferents and a particular post-synaptic neuron, encoding
this place field. In the shifted condition, signals from the path integrator and
a visual system might loose their coherence and appear to be shifted relative
to each other in space (Figure 37), leading to the asynchrony in the incoming
cell firing and to a shift of the place field center to a half distance between the
original position and actual arena shift. If this is the case, this would lead to dif-
ferent place field characteristics between the original and the shifted conditions.
If incoming signals are not coherent and have only partial overlap, this should
decrease the place field peak firing rate in case of the additive synapses. Also
the place field should appear to be larger, as one of the inputs starts to be active
earlier (later).

I verified whether on average place fields in this middle group (0.15m place
field shit +- 1 SD of 0.082m) change their firing characteristics between two condi-
tions. Although some of the cells demonstrate exactly these effects (not shown),
the total majority of the fields in this group keep their firing rate and field size
stable between original and shifted conditions (see Figure 37b). This suggests
that either the synaptic connections are multiplicative, or in general there is
another mechanism how the average location between points in two reference
frames can be represented. One of the opportunities for further investigations is
to use the advantage of the VR system and record these groups of cells’ activity
when first one and then the other inputs are completely removed.

Change in input reliability together with Bayesian coding may explain categorization of
CA1 cells by input preference

According to the principles of optimal Bayesian coding (Pouget, Dayan, and
Zemel 2003) the weighted integration of sensory estimates should have weights
proportional to the reliability of the estimate, in order to maximize the result-
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Figure 37: Weighted integration of visual and self-motion inputs might lead to the average representation
of the resulting position estimate. (a) Schematic of the inputs to the postsynaptic CA1 neuron. Visual
(yellow) and self-motion (blue) afferent estimations are learned in a coherent representation by some CA1
neuron (top row). In a conflicting situation incoming inputs are not aligned which can lead to the
averaging of the inputs if the cell is using weighted input integration. Applicable if the conflict is small
(place fields overlap). (b) No change in mean firing rate (top plot) and field size (bottom plot) between
original and shifted (conflicting) conditions for the group of cells showing average position encoding.
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Figure 38: Conflicting presynaptic inputs in different places within the arena together with Bayesian
coding can lead to formation of all categories of visually and self-motion driven place cells. (top) High
reliability of the self-motion inputs near the boundaries results in formation of self-motion driven place
cells. (middle) Relatively equal contribution of both types of sensory inputs leads to formation of cells
encoding average between reference frames. (bottom) Higher reliability of the visual signals away from the
boundaries results in formation of visually-driven place cells.

ing estimate. Intuitively, the reliability of the position estimation relative to the
boundaries is highest near the walls (supported by tactile contact) and lowest
in the arena center. At the same time position estimation relative to both proxi-
mal and distal visual cues and landmarks is almost the same everywhere in the
arena except at the actual arena walls, where the quality of the projection is low.
If CA1 neurons use weighted integration, having these assumptions a Bayesian
estimations integration model (like used in the seminal study by Ernst and Banks
2002) can explain the continuous distribution of place field shifts recorded in the
vSHIFT experiments (Figure 38).
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In particular, one can assume that indirect EC2 inputs to the hippocampus
e.g. to the area CA3 might lead to the existence of two different continuous
attractor networks, each encoding position relative to a different reference frame
(Li, Arleo, and Sheynikhovich 2020, Haas et al. 2019). Then instead of classifying
CA1 cells in different groups we hypothesize all cells use the same principles
of sensory integration (near-like optimal), with the difference that some cells
initially by chance are more strongly connected (e.g. via schaffer collaterals) with
the neurons from the attractor encoding position based on self-motion, and some
with the attractor encoding position based on visual inputs. This assumption
can also explain why there is a balance in favor of vision in the middle of the
arena, while there is a clean domination of the position encoding relative to the
boundaries near arena walls (see results).

Frequent arena shift results in encoding intermediate position by accumulation of synap-
tic plasticity effect

Another option how a place field could shift to a half distance between estimates
is when it is assumed that those self-motion and visual inputs, that have max-
imum cumulative probability of simultaneous firing among both original and
shifted conditions, are integrated (Figure 39a). Assuming a cell has a stable vi-
sual input relative to a certain visual landmark, it could be that the chances of
integrating the self-motion input that has maximum firing probability in both
original and shifted are the highest, leading to a place field that shifts by a half
distance of the arena shift (Figure 39a).

Assuming all inputs do have regular gaussian spiking probability, this could
be confirmed by computing the convolution between the stable visual input and
both self-motion driven inputs in both conditions, located 0.3m apart from each
other. If place field sizes relative to the longitudinal arena shift are large enough,
the maximum convolution will be when the visual input is located symmetrically
between self-motion inputs (in our case an average field size of 0.4m, Figure 39b)
Even if the two original and shifted conditions never appear at the same time,
some potential accumulation of the total mutual spiking of these visual and
symmetrically located self-motion inputs and a postsynaptic neuron can lead
to an increased connection by hebbian plasticity, resulting in this half-distance
situation.
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Figure 39: Symmetric positioning of self-motion inputs around visual input can lead to an average en-
coding. (a) When position relative to both reference frames is always in conflict, the higher probability of
mutual spiking will happen to sensory afferents shifted 0.15m relative to each other in both conditions. (b)
In cases of small conflicts the convolution of the putative visual and self-motion place afferents is highest
when they are shifted 0.15m relative to each other like in (a).

Behavior of multisensory cells can be explained by dynamic loops in the hippocampal-
entorhinal network

However, the actual mechanisms could be more complicated. A recent mod-
elling work of a entorhinal-hippocampal system, assuming necessary involve-
ment of recurrent connections from the CA1 to the EC region (Li, Arleo, and
Sheynikhovich 2020), can explain the half-distance shift phenomena. The dy-
namic loop-based network model, tested against the multi-compartment exper-
imental data (Carpenter et al. 2015; Wernle et al. 2018), demonstrates the same
effect on the level of CA1 place cells when self-motion and visual cues are in
conflict. Authors performed a simulation of the condition with gain between the
vision and self-motion in a similar rectangular arena-like experiment, and found
that the population of place cells shifts to the intermediate position between the
self-motion and visual estimates. This effect is explained by the dynamic loop-
like interaction between the visually-driven place cells and populations of grid
cells, which are shifted by them towards the visually identified location. To ver-
ify this hypothesis a more precisely defined gain experiment can be designed
and implemented.
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aspects of using freely-moving virtual reality system

The use of the freely-moving virtual reality system has its advantages but also
potential drawbacks. As all conventional virtual reality systems, ratCAVE is an
excellent instrument for visual manipulations and induction of a visual to move-
ment mismatch, in a closed-loop with the computation of the animal position.
The freely-moving condition is far more naturalistic compared to the head or
body fixed conditions, where certain internal (vestibular, proprioceptive) and
external (feeling of boundaries) information is not present. It also allows for
easier and shorter training protocols (Ferreiro et al. 2020) avoiding any animal
fear states.

The existence of boundaries might be of a special importance as the boundary
driven cells have significant impact on the place code (O’keefe and Burgess 1996;
Barry et al. 2006; Savelli, Yoganarasimha, and James J. Knierim 2008). Environ-
mental boundaries play a special role in the formation of a spatial map, without
physical contact with the walls, as it is usually in conventional virtual reality
systems, the map of space at the level of place cells might not be complete.

However, the same issue can be applied to the ratCAVE. The 3D virtual reality
setup allows placing 3D virtual objects inside the arena, not just having visual
proximal or unreachable distal landmarks on the walls. Although this makes
the virtual environment more immersive, absence of the physical tactile contact
with virtual objects might affect their representation in the brain, potentially
reducing their significance for the spatial map. In particular, object vector cells
(Høydal et al. 2019), which play an important role in spatial coding, might be
affected. Favourably, current experimental results demonstrate strong influence
of the visual cues on the hippocampal place cells, so the overall influence of
visual virtual objects is doubtless - however the amount of the mismatch between
visual object appearance and their tactile insensitivity is to be identified.

aspects of experimental design

I recorded several sessions of the shift and gain experiments with the same co-
hort of animals. Theoretically, this might bias the experimental data in a few
ways.

First, after several sessions being in the same experimental protocol, animals
can better learn the environment and understand that the projected visual refer-
ence frame is not required to get food rewards. This might influence the amount
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of visual place encoding down to complete ignorance of the virtual reference
frame. To account for that, tests for the difference in the amount of visually or
self-motion selective cells across days were done. They do not show any differ-
ence.

Second, some animals were used in both shift and gain experiment types.
Hypothetically, the knowledge of one virtual environment may influence the be-
havior of cells in another condition - as both virtual shift and gain environments
are the same, the knowledge of the environment in one condition (e.g. shift)
might cause activation of the same cells in another condition (e.g. gain), which
would not happen otherwise due to, for instance, ignorance of the visual flow
because of the proprioceptive mismatch. To be sure to exclude this influence,
experiments with separated cohorts of animals should be performed.

open questions

It is still not clear at which stage the integration of the self-motion and exter-
nal sensory information is done. One possibility for the multisensory neurons
would be to integrate recurrent inputs from the same CA1 - CA3 circuit, basically
working with the same visually- and boundary-defined cells in CA1. Another
possibility would be to get direct self-motion and sensory inputs from the mEC
/ LEC. An opportunity to test these options would be to perturb entorhinal in-
puts to the hippocampus while recording the shift experiment and investigate
the change of activity of the multisensory neurons.

Apart from that, data showing the integration of the inputs on the hippocam-
pal level confirms the idea of a hippocampus as a general memory device -
providing mechanisms to match and update neuronal firing patterns represent-
ing recurrently occuring episodes, that allows to implement stable place fields,
like any memory sharpens and stabilizes with repeats. Further design of exper-
imental protocols with gradual visual virtual cue manipulations could provide
more insights into the mechanisms of pattern completion and pattern separation
- investigating the stability of the recorded place fields, or a change in the place
field firing depending on the changes in the virtual environment.



6

C O N C L U S I O N

It is established that spatial navigation employs two mechanisms for successful
encoding of the environment and tracking the location of self: one is based
on the information about stable landmarks, cues and environmental bound-
aries, another enables to compute movement trajectory using orientation and
distance traveled coming mainly from self-motion (John O’Keefe and Nadel 1978;
György Buzsáki and Edvard I Moser 2013). Both types of information pathways
closely interact not only to form a coherent representation of space, but also
to maintain a unique identity of the current location, keeping dynamic balance
depending on which type of information is better available. In the brain, the
hippocampal-entorhinal network is a key structure involved in implementation
of the main mechanisms of spatial navigation. While entorhinal cortices pro-
vide pre-processed information about self-motion (grid cells, mEC), landmarks
(landmark-vector cells, lEC) and boundaries (boundary cells, mEC), hippocam-
pal place cells are known to be able to sequentially integrate the combination of
these types of information to form stable episodes, building invariant represen-
tation of a certain location in a particular environment (Edvard I Moser, Kropff,
and M.-B. Moser 2008; M.-b. Moser, Rowland, and Edvard I Moser 2015). The
mechanisms of this integration are of deep scientific interest since the discovery
of place cells (J. O’Keefe and Dostrovsky 1971), however the exact details of this
interaction on both functional and cellular levels are still not known.

I recorded hippocampal activity from randomly foraging gerbils in the freely-
moving 3D virtual reality system to further research this interaction. As virtual
reality systems enable to manipulate visual information, inducing a conflict be-
tween vision and other sensory systems, recording hippocampal single cell ac-
tivity in the conflicting conditions allows to explore the mechanisms of place cell
formation when their afferent inputs do not match.

I designed experiments that introduce a periodic (shift of the virtual space) or
instant (gain between vision and locomotion) conflict between external sensory
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and internal self-motion systems. The recorded data presents a novel way to
show several features of hippocampal neurons, consistent with previous find-
ings:

• place cells form their location representation based on visual and self-
motion / boundary-defined inputs;

• the density of the visually-driven place fields was higher in the middle
of the arena, confirming that one reference frame (e.g. visual) dominates
when the other is weaker or not instantly available (e.g. arena boundaries);

• the overall place cell activity is reduced in darkness;

• cells driven mainly by self-motion inputs keep their place selectivity in
darkness, while visually-driven cells mostly stop firing or remap;

• hippocampal cells might use a weighted combination of sensory inputs
while establishing a spatial representation.

In line with some previous virtual reality studies (G. Chen et al. 2013; Haas
et al. 2019) recorded neurons could be classified in distinct groups depending
on the strength of their visual or self-motion afferents. However, I was able to
better characterize the group of hippocampal neurons driven by a combination
of visual and self-motion signals in freely-moving animals naturally foraging
in a 2D environment. By comparing single cell activity in light and dark con-
ditions this multisensory group could be discretized. In both periodic (shift)
and instant (gain) conflicting conditions these neurons demonstrate an ability to
encode an intermediate position between estimates, defined by two spatial ref-
erence frames. This resulted in a few suggestions of the potential mechanisms
how this two types of information can be integrated at the level of the CA1

place cells, some of which are consistent with the dynamic loop models of the
hippocampal-entorhinal network (Li, Arleo, and Sheynikhovich 2020).

Hippocampus and entorhinal cortex are not only involved in navigation, but
also support formation and maintenance of general declarative memories (Scov-
ille and Milner 2000). The parallel between explicit allocentric representations
and items of semantic memory, or between trajectories in space and sequences of
episodic events (György Buzsáki and Edvard I Moser 2013) suggests that similar
networks and mechanisms are involved in spatial navigation and all other types
of sequential actions, like walking, speaking, or mental planning. The discovery
of “schema” cells in monkeys is recent evidence that the hippocampus can han-
dle these types of abstract representations (Baraduc, Duhamel, and Wirth 2019).
Mechanisms proposed in the current manuscript could be expanded to the gen-
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eral memory formation also in non-spatial domains. The further research on
spatial navigation or on the hippocampus in general is a great potential for the
neuroscience field to ultimately understand the key brain mechanisms, particu-
larly such an essential aspect of it as learning and memory.





B I B L I O G R A P H Y

[1] David Alais and David Burr. “The ventriloquist effect results from near-
optimal bimodal integration.” eng. In: Current biology : CB 14.3 (Feb. 2004),
pp. 257–262. issn: 0960-9822 (Print). doi: 10.1016/j.cub.2004.01.029.

[2] Kevin Allen et al. “Impaired Path Integration and Grid Cell Spatial Peri-
odicity in Mice Lacking GluA1-Containing AMPA Receptors”. In: Journal
of Neuroscience 34.18 (2014), pp. 6245–6259. issn: 0270-6474. doi: 10.1523/
JNEUROSCI.4330-13.2014.

[3] Dmitriy Aronov, Rhino Nevers, and David W. Tank. “Mapping of a non-
spatial dimension by the hippocampal-entorhinal circuit”. In: Nature 543.7647

(2017), pp. 719–722. issn: 14764687. doi: 10.1038/nature21692.

[4] Dmitriy Aronov and David W Tank. “Article Engagement of Neural Cir-
cuits Underlying 2D Spatial Navigation in a Rodent Virtual Reality Sys-
tem”. In: Neuron 84.2 (2014), pp. 442–456. issn: 0896-6273. doi: 10.1016/
j.neuron.2014.08.042.

[5] A. G. Baker and Victor F. Emerson. “Grating acuity of the Mongolian
gerbil (Meriones unguiculatus)”. In: Behavioural Brain Research 8.2 (1983),
pp. 195–209. issn: 01664328. doi: 10.1016/0166-4328(83)90054-2.

[6] P. Baraduc, J. R. Duhamel, and S. Wirth. “Schema cells in the macaque
hippocampus”. In: Science 363.6427 (2019), pp. 635–639. issn: 10959203.
doi: 10.1126/science.aav5404.

[7] Caswell Barry et al. “Experience-dependent rescaling of entorhinal grids”.
In: Nature Neuroscience 10.6 (2007), pp. 682–684. issn: 1546-1726. doi: 10.
1038/nn1905.

[8] Caswell Barry et al. “The boundary vector cell model of place cell firing
and spatial memory”. In: Reviews in the Neurosciences 17.1-2 (2006), pp. 71–
97. issn: 03341763. doi: 10.1515/REVNEURO.2006.17.1-2.71.

[9] Katie C. Bittner et al. “Conjunctive input processing drives feature selec-
tivity in hippocampal CA1 neurons”. In: Nature Neuroscience 18.8 (Aug.
2015), pp. 1133–1142. issn: 15461726. doi: 10.1038/nn.4062.

[10] Tora Bonnevie et al. “Grid cells require excitatory drive from the hip-
pocampus”. In: Nature Neuroscience 16.3 (2013), pp. 309–317. issn: 1546-
1726. doi: 10.1038/nn.3311.

95

http://dx.doi.org/10.1016/j.cub.2004.01.029
http://dx.doi.org/10.1523/JNEUROSCI.4330-13.2014
http://dx.doi.org/10.1523/JNEUROSCI.4330-13.2014
http://dx.doi.org/10.1038/nature21692
http://dx.doi.org/10.1016/j.neuron.2014.08.042
http://dx.doi.org/10.1016/j.neuron.2014.08.042
http://dx.doi.org/10.1016/0166-4328(83)90054-2
http://dx.doi.org/10.1126/science.aav5404
http://dx.doi.org/10.1038/nn1905
http://dx.doi.org/10.1038/nn1905
http://dx.doi.org/10.1515/REVNEURO.2006.17.1-2.71
http://dx.doi.org/10.1038/nn.4062
http://dx.doi.org/10.1038/nn.3311


96 Bibliography

[11] Mark P Brandon et al. “New and distinct hippocampal place codes are
generated in a new environment during septal inactivation.” eng. In:
Neuron 82.4 (May 2014), pp. 789–796. issn: 1097-4199 (Electronic). doi:
10.1016/j.neuron.2014.04.013.

[12] J. Bures et al. “Rodent navigation after dissociation of the allocentric and
idiothetic representations of space”. In: Neuropharmacology 37.4-5 (1998),
pp. 689–699. issn: 00283908. doi: 10.1016/S0028-3908(98)00031-8.

[13] G Buzsáki. “Hippocampal sharp waves: their origin and significance.”
eng. In: Brain research 398.2 (Nov. 1986), pp. 242–252. issn: 0006-8993

(Print). doi: 10.1016/0006-8993(86)91483-6.

[14] György Buzsáki and Edvard I Moser. “Memory, navigation and theta
rhythm in the hippocampal-entorhinal system.” In: Nature neuroscience
16.2 (2013), pp. 130–8. issn: 1546-1726. doi: 10.1038/nn.3304. arXiv:
NIHMS150003.

[15] György Buzsáki and David Tingley. “Space and Time: The Hippocampus
as a Sequence Generator”. In: Trends in Cognitive Sciences 22.10 (2018),
pp. 853–869. issn: 1879307X. doi: 10.1016/j.tics.2018.07.006.

[16] Malcolm G Campbell et al. “Principles governing the integration of land-
mark and self-motion cues in entorhinal cortical codes for navigation”.
In: Nature Neuroscience (2018). issn: 1546-1726. doi: 10.1038/s41593-018-
0189-y.

[17] Francis Carpenter et al. “Grid cells form a global representation of con-
nected environments.” eng. In: Current biology : CB 25.9 (May 2015), pp. 1176–
1182. issn: 1879-0445 (Electronic). doi: 10.1016/j.cub.2015.02.037.

[18] Chuan C. Chang. “The fundamentals of piano practice”. In: (2016).

[19] Guifen Chen et al. “How vision and movement combine in the hippocam-
pal place code”. In: Proceedings of the National Academy of Sciences of the
United States of America 110.1 (2013), pp. 378–383. issn: 00278424. doi:
10.1073/pnas.1215834110.

[20] Xiaoli Chen et al. “Cue combination in human spatial navigation.” eng.
In: Cognitive psychology 95 (June 2017), pp. 105–144. issn: 1095-5623 (Elec-
tronic). doi: 10.1016/j.cogpsych.2017.04.003.

[21] Ken Cheng et al. “Bayesian Integration of Spatial Information”. In: Psy-
chological Bulletin 133.4 (2007), pp. 625–637. issn: 00332909. doi: 10.1037/
0033-2909.133.4.625.

[22] Allen Cheung et al. “Maintaining a Cognitive Map in Darkness: The Need
to Fuse Boundary Knowledge with Path Integration”. In: PLoS Computa-
tional Biology 8.8 (2012). issn: 1553734X. doi: 10.1371/journal.pcbi.
1002651.

http://dx.doi.org/10.1016/j.neuron.2014.04.013
http://dx.doi.org/10.1016/S0028-3908(98)00031-8
http://dx.doi.org/10.1016/0006-8993(86)91483-6
http://dx.doi.org/10.1038/nn.3304
http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1016/j.tics.2018.07.006
http://dx.doi.org/10.1038/s41593-018-0189-y
http://dx.doi.org/10.1038/s41593-018-0189-y
http://dx.doi.org/10.1016/j.cub.2015.02.037
http://dx.doi.org/10.1073/pnas.1215834110
http://dx.doi.org/10.1016/j.cogpsych.2017.04.003
http://dx.doi.org/10.1037/0033-2909.133.4.625
http://dx.doi.org/10.1037/0033-2909.133.4.625
http://dx.doi.org/10.1371/journal.pcbi.1002651
http://dx.doi.org/10.1371/journal.pcbi.1002651


Bibliography 97

[23] Laura Lee Colgin, Edvard I. Moser, and May Britt Moser. “Understanding
memory through hippocampal remapping”. In: Trends in Neurosciences
31.9 (2008), pp. 469–477. issn: 01662236. doi: 10.1016/j.tins.2008.06.
008.

[24] a Cressant, R U Muller, and B Poucet. “Failure of centrally placed objects
to control the firing fields of hippocampal place cells.” In: The Journal of
neuroscience : the official journal of the Society for Neuroscience 17.7 (1997),
pp. 2531–2542. issn: 0270-6474.

[25] Yang Dan and Mu-Ming Poo. “Spike timing-dependent plasticity of neu-
ral circuits.” eng. In: Neuron 44.1 (Sept. 2004), pp. 23–30. issn: 0896-6273

(Print). doi: 10.1016/j.neuron.2004.09.007.

[26] Nicholas Andrew Del Grosso. “Design of virtual reality systems for ani-
mal behavior research”. In: (2018).

[27] Dori Derdikman et al. “Fragmentation of grid cell maps in a multicom-
partment environment”. In: Nature Neuroscience 12.10 (2009), pp. 1325–
1332. issn: 1546-1726. doi: 10.1038/nn.2396.

[28] Sachin S. Deshmukh and James J. Knierim. “Influence of local objects on
hippocampal representations: Landmark vectors and memory”. In: Hip-
pocampus 23.4 (2013), pp. 253–267. issn: 10509631. doi: 10.1002/hipo.
22101.

[29] Sachin S Deshmukh and James J Knierim. “Representation of non-spatial
and spatial information in the lateral entorhinal cortex.” eng. In: Frontiers
in behavioral neuroscience 5 (2011), p. 69. issn: 1662-5153 (Electronic). doi:
10.3389/fnbeh.2011.00069.

[30] George Dragoi and György Buzsáki. “Temporal Encoding of Place Se-
quences by Hippocampal Cell Assemblies”. In: Neuron 50.1 (2006), pp. 145–
157. issn: 08966273. doi: 10.1016/j.neuron.2006.02.023.

[31] Marc O. Ernst and Martin S. Banks. “Humans integrate visual and haptic
information in a statistically optimal fashion”. In: Nature 415.6870 (2002),
pp. 429–433. issn: 00280836. doi: 10.1038/415429a.

[32] A S Etienne, R Maurer, and V Séguinot. “Path integration in mammals
and its interaction with visual landmarks.” eng. In: The Journal of experi-
mental biology 199.Pt 1 (Jan. 1996), pp. 201–209. issn: 0022-0949 (Print).

[33] Ariane S Etienne and Kathryn J Jeffery. “Path integration in mammals.”
In: Hippocampus 14.2 (2004), pp. 180–192. issn: 1050-9631. doi: 10.1002/
hipo.10173.

http://dx.doi.org/10.1016/j.tins.2008.06.008
http://dx.doi.org/10.1016/j.tins.2008.06.008
http://dx.doi.org/10.1016/j.neuron.2004.09.007
http://dx.doi.org/10.1038/nn.2396
http://dx.doi.org/10.1002/hipo.22101
http://dx.doi.org/10.1002/hipo.22101
http://dx.doi.org/10.3389/fnbeh.2011.00069
http://dx.doi.org/10.1016/j.neuron.2006.02.023
http://dx.doi.org/10.1038/415429a
http://dx.doi.org/10.1002/hipo.10173
http://dx.doi.org/10.1002/hipo.10173


98 Bibliography

[34] Ariane S Etienne, Roland Maurer, and Francis Saucy. “Limitations in the
assessment of path dependent information.” In: Behaviour 106.1-2 (1988),
pp. 81–111. issn: 1568-539X(Electronic),0005-7959(Print). doi: 10.1163/
156853988X00106.

[35] Mohammad Fattahi et al. “Differential representation of landmark and
self-motion information along the CA1 radial axis: Self-motion generated
place fields shift toward landmarks during septal inactivation”. In: Journal
of Neuroscience 38.30 (2018), pp. 6766–6778. issn: 15292401. doi: 10.1523/
JNEUROSCI.3211-17.2018.

[36] D.N. Ferreiro et al. “Sensory Island Task (SIT): A New Behavioral Paradigm
to Study Sensory Perception and Neural Processing in Freely Moving
Animals”. In: Frontiers in Behavioral Neuroscience 14 (2020). issn: 16625153.
doi: 10.3389/fnbeh.2020.576154.

[37] Loren M. Frank, Garrett B. Stanley, and Emery N. Brown. “Hippocampal
Plasticity across Multiple Days of Exposure to Novel Environments”. In:
Journal of Neuroscience 24.35 (2004), pp. 7681–7689. issn: 0270-6474. doi:
10.1523/JNEUROSCI.1958-04.2004. eprint: https://www.jneurosci.org/
content/24/35/7681.full.pdf.

[38] Marianne Fyhn et al. “Hippocampal remapping and grid realignment in
entorhinal cortex”. In: Nature 446.7132 (2007), pp. 190–194. issn: 14764687.
doi: 10.1038/nature05601.

[39] Caroline Geisler et al. “Temporal delays among place cells determine the
frequency of population theta oscillations in the hippocampus”. In: Pro-
ceedings of the National Academy of Sciences of the United States of Amer-
ica 107.17 (2010), pp. 7957–7962. issn: 00278424. doi: 10 . 1073 / pnas .
0912478107.

[40] Maria Giulia Cataldo and Jane Oakhill. “Why are poor comprehenders
inefficient searchers? An investigation into the effects of text represen-
tation and spatial memory on the ability to locate information in text.”
In: Journal of Educational Psychology 92.4 (2000), pp. 791–799. issn: 1939-
2176(Electronic),0022-0663(Print). doi: 10.1037/0022-0663.92.4.791.

[41] K M Gothard, W E Skaggs, and B L McNaughton. “Dynamics of mis-
match correction in the hippocampal ensemble code for space: interaction
between path integration and environmental cues.” In: The Journal of neu-
roscience : the official journal of the Society for Neuroscience 16.24 (Dec. 1996),
pp. 8027–40. issn: 0270-6474.

[42] K M Gothard et al. “Dentate gyrus and ca1 ensemble activity during spa-
tial reference frame shifts in the presence and absence of visual input.” In:
The Journal of neuroscience : the official journal of the Society for Neuroscience
21.18 (Sept. 2001), pp. 7284–92. issn: 1529-2401.

http://dx.doi.org/10.1163/156853988X00106
http://dx.doi.org/10.1163/156853988X00106
http://dx.doi.org/10.1523/JNEUROSCI.3211-17.2018
http://dx.doi.org/10.1523/JNEUROSCI.3211-17.2018
http://dx.doi.org/10.3389/fnbeh.2020.576154
http://dx.doi.org/10.1523/JNEUROSCI.1958-04.2004
https://www.jneurosci.org/content/24/35/7681.full.pdf
https://www.jneurosci.org/content/24/35/7681.full.pdf
http://dx.doi.org/10.1038/nature05601
http://dx.doi.org/10.1073/pnas.0912478107
http://dx.doi.org/10.1073/pnas.0912478107
http://dx.doi.org/10.1037/0022-0663.92.4.791


Bibliography 99

[43] Roddy M. Grieves, Éléonore Duvelle, and Paul A. Dudchenko. “A bound-
ary vector cell model of place field repetition”. In: Spatial Cognition and
Computation 18.3 (2018), pp. 217–256. issn: 15427633. doi: 10.1080/13875868.
2018.1437621.

[44] Nicholas A Del Grosso and Anton Sirota. “Ratcave: A 3D graphics python
package for cognitive psychology experiments”. In: (2019).

[45] Olivia V Haas et al. “Modality-speci fi c Subpopulations of Place Fields
Coexist in the Hippocampus”. In: March (2019), pp. 1109–1120. doi: 10.
1093/cercor/bhy017.

[46] Torkel Hafting et al. “Microstructure of a spatial map in the entorhinal
cortex”. In: Nature 436.7052 (2005), pp. 801–806. issn: 00280836. doi: 10.
1038/nature03721.

[47] R E Hampson, C J Heyser, and S A Deadwyler. “Hippocampal cell fir-
ing correlates of delayed-match-to-sample performance in the rat.” eng.
In: Behavioral neuroscience 107.5 (Oct. 1993), pp. 715–739. issn: 0735-7044

(Print). doi: 10.1037//0735-7044.107.5.715.

[48] Kiah Hardcastle, Surya Ganguli, and Lisa M. Giocomo. “Environmental
Boundaries as an Error Correction Mechanism for Grid Cells”. In: Neuron
86.3 (2015), pp. 827–839. issn: 10974199. doi: 10.1016/j.neuron.2015.03.
039.

[49] James M Hillis et al. “Slant from texture and disparity cues: optimal cue
combination.” eng. In: Journal of vision 4.12 (Dec. 2004), pp. 967–992. issn:
1534-7362 (Electronic). doi: 10.1167/4.12.1.

[50] C Hölscher et al. “Rats are able to navigate in virtual environments.” In:
The Journal of experimental biology 208.Pt 3 (2005), pp. 561–569. issn: 0022-
0949. doi: 10.1242/jeb.01371.

[51] John J Hopfield. “Neurodynamics of mental exploration.” In: Proceedings
of the National Academy of Sciences of the United States of America 107.4
(2010), pp. 1648–1653. issn: 0027-8424. doi: 10.1073/pnas.0913991107.

[52] Øyvind Arne Høydal et al. “Object-vector coding in the medial entorhinal
cortex”. In: Nature 568.7752 (2019), pp. 400–404. issn: 14764687. doi: 10.
1038/s41586-019-1077-7.

[53] Kei M Igarashi et al. “Coordination of entorhinal–hippocampal ensemble
activity during associative learning”. In: Nature 510.7503 (2014), pp. 143–
147. issn: 1476-4687. doi: 10.1038/nature13162.

[54] D J Ingle. “New methods for analysis of vision in the gerbil.” eng. In: Be-
havioural brain research 3.2 (Sept. 1981), pp. 151–173. issn: 0166-4328 (Print).
doi: 10.1016/0166-4328(81)90045-0.

http://dx.doi.org/10.1080/13875868.2018.1437621
http://dx.doi.org/10.1080/13875868.2018.1437621
http://dx.doi.org/10.1093/cercor/bhy017
http://dx.doi.org/10.1093/cercor/bhy017
http://dx.doi.org/10.1038/nature03721
http://dx.doi.org/10.1038/nature03721
http://dx.doi.org/10.1037//0735-7044.107.5.715
http://dx.doi.org/10.1016/j.neuron.2015.03.039
http://dx.doi.org/10.1016/j.neuron.2015.03.039
http://dx.doi.org/10.1167/4.12.1
http://dx.doi.org/10.1242/jeb.01371
http://dx.doi.org/10.1073/pnas.0913991107
http://dx.doi.org/10.1038/s41586-019-1077-7
http://dx.doi.org/10.1038/s41586-019-1077-7
http://dx.doi.org/10.1038/nature13162
http://dx.doi.org/10.1016/0166-4328(81)90045-0


100 Bibliography

[55] Ravikrishnan P Jayakumar et al. “Recalibration of path integration in hip-
pocampal place cells”. In: (2018). doi: 10.1101/319269.

[56] Ravikrishnan P Jayakumar et al. “Recalibration of path integration in hip-
pocampal place cells”. In: bioRxiv (2018), p. 319269. issn: 0028-0836. doi:
10.1101/319269.

[57] Kate J. Jeffery, Hector J.I. Page, and Simon M. Stringer. “Optimal cue
combination and landmark-stability learning in the head direction sys-
tem”. In: Journal of Physiology 594.22 (2016), pp. 6527–6534. issn: 14697793.
doi: 10.1113/JP272945.

[58] Kathryn J. Jeffery and John M. O’Keefe. “Learned interaction of visual
and idiothetic cues in the control of place field orientation”. In: Experi-
mental Brain Research 127.2 (1999), pp. 151–161. issn: 00144819. doi: 10.
1007/s002210050785.

[59] Ole Jensen and John E Lisman. Hippocampal CA3 region predicts memory
sequences: Accounting for the phase precession of place cells. US, 1996. doi:
10.1101/lm.3.2-3.279.

[60] Karel Jezek et al. “Theta-paced flickering between place-cell maps in the
hippocampus”. In: Nature 478.7368 (2011), pp. 246–249. issn: 00280836.
doi: 10.1038/nature10439.

[61] Min W. Jung, Sidney I. Wiener, and Bruce L. McNaughton. “Comparison
of spatial firing characteristics of units in dorsal and ventral hippocampus
of the rat”. In: Journal of Neuroscience 14.12 (1994), pp. 7347–7356. issn:
02706474. doi: 10.1523/jneurosci.14-12-07347.1994.

[62] Magdalena Kautzky and Kay Thurley. “Estimation of self-motion dura-
tion and distance in rodents.” In: Royal Society open science 3.5 (2016),
p. 160118. issn: 2054-5703. doi: 10.1098/rsos.160118.

[63] Alexandra T. Keinath, Russell A. Epstein, and Vijay Balasubramanian.
“Environmental deformations dynamically shift the grid cell spatial met-
ric”. In: eLife 7.April (2018), pp. 1–13. issn: 2050084X. doi: 10.7554/eLife.
38169.

[64] Amina A. Kinkhabwala et al. “Visual cue-related activity of cells in the
medial entorhinal cortex during navigation in virtual reality”. In: eLife 9

(2020), pp. 1–24. issn: 2050084X. doi: 10.7554/eLife.43140.

[65] Walter Kintsch. Comprehension: A paradigm for cognition. New York, NY,
US: Cambridge University Press, 1998, pp. xvi, 461–xvi, 461. isbn: 0-521-
58360-8 (Hardcover); 0-521-62986-1 (Paperback).

http://dx.doi.org/10.1101/319269
http://dx.doi.org/10.1101/319269
http://dx.doi.org/10.1113/JP272945
http://dx.doi.org/10.1007/s002210050785
http://dx.doi.org/10.1007/s002210050785
http://dx.doi.org/10.1101/lm.3.2-3.279
http://dx.doi.org/10.1038/nature10439
http://dx.doi.org/10.1523/jneurosci.14-12-07347.1994
http://dx.doi.org/10.1098/rsos.160118
http://dx.doi.org/10.7554/eLife.38169
http://dx.doi.org/10.7554/eLife.38169
http://dx.doi.org/10.7554/eLife.43140


Bibliography 101

[66] James J. Knierim. “Dynamic interactions between local surface cues, distal
landmarks, and intrinsic circuitry in hippocampal place cells”. In: Journal
of Neuroscience 22.14 (2002), pp. 6254–6264. issn: 02706474. doi: 10.1523/
jneurosci.22-14-06254.2002.

[67] James J. Knierim, Joshua P. Neunuebel, and Sachin S. Deshmukh. “Func-
tional correlates of the lateral and medial entorhinal cortex: Objects, path
integration and local - Global reference frames”. In: Philosophical Transac-
tions of the Royal Society B: Biological Sciences 369.1635 (2014). issn: 14712970.
doi: 10.1098/rstb.2013.0369.

[68] James J. Knierim and Kechen Zhang. “Attractor Dynamics of Spatially
Correlated Neural Activity in the Limbic System”. In: Annual Review
of Neuroscience 35.1 (2012), pp. 267–285. issn: 0147-006X. doi: 10.1146/
annurev-neuro-062111-150351.

[69] David C Knill and Jeffrey A Saunders. “Do humans optimally integrate
stereo and texture information for judgments of surface slant?” eng. In:
Vision research 43.24 (Nov. 2003), pp. 2539–2558. issn: 0042-6989 (Print).
doi: 10.1016/s0042-6989(03)00458-9.

[70] Colin Lever et al. “Boundary vector cells in the subiculum of the hip-
pocampal formation”. In: Journal of Neuroscience 29.31 (2009), pp. 9771–
9777. issn: 02706474. doi: 10.1523/JNEUROSCI.1319-09.2009.

[71] Tianyi Li, Angelo Arleo, and Denis Sheynikhovich. “Modeling place cells
and grid cells in multi-compartment environments: Entorhinal–hippocampal
loop as a multisensory integration circuit”. In: Neural Networks 121 (2020),
pp. 37–51. issn: 18792782. doi: 10.1016/j.neunet.2019.09.002.

[72] Hans Maaswinkel and Ian Q. Whishaw. “Homing with locale, taxon, and
dead reckoning strategies by foraging rats: Sensory hierarchy in spatial
navigation”. In: Behavioural Brain Research 99.2 (1999), pp. 143–152. issn:
01664328. doi: 10.1016/S0166-4328(98)00100-4.

[73] Tamas Madl et al. “Bayesian integration of information in hippocam-
pal place cells”. In: PLoS ONE 9.3 (2014). issn: 19326203. doi: 10.1371/
journal.pone.0089762.

[74] Anne Mangen, Bente R. Walgermo, and Kolbjørn Brønnick. “Reading lin-
ear texts on paper versus computer screen: Effects on reading comprehen-
sion”. In: International Journal of Educational Research 58.December (2013),
pp. 61–68. issn: 08830355. doi: 10.1016/j.ijer.2012.12.002.

[75] B. L. Mcnaughton et al. “Deciphering the hippocampal polyglot: The hip-
pocampus as a path integration system”. In: Journal of Experimental Biology
199.1 (1996), pp. 173–185. issn: 00220949.

http://dx.doi.org/10.1523/jneurosci.22-14-06254.2002
http://dx.doi.org/10.1523/jneurosci.22-14-06254.2002
http://dx.doi.org/10.1098/rstb.2013.0369
http://dx.doi.org/10.1146/annurev-neuro-062111-150351
http://dx.doi.org/10.1146/annurev-neuro-062111-150351
http://dx.doi.org/10.1016/s0042-6989(03)00458-9
http://dx.doi.org/10.1523/JNEUROSCI.1319-09.2009
http://dx.doi.org/10.1016/j.neunet.2019.09.002
http://dx.doi.org/10.1016/S0166-4328(98)00100-4
http://dx.doi.org/10.1371/journal.pone.0089762
http://dx.doi.org/10.1371/journal.pone.0089762
http://dx.doi.org/10.1016/j.ijer.2012.12.002


102 Bibliography

[76] Bruce L McNaughton et al. “Path integration and the neural basis of the
’cognitive map’.” In: Nature reviews. Neuroscience 7.8 (2006), pp. 663–678.
issn: 1471-003X. doi: 10.1038/nrn1932.

[77] M. L. Mittelstaedt and H. Mittelstaedt. “Homing by path integration
in a mammal”. In: Naturwissenschaften 67.11 (1980), pp. 566–567. issn:
14321904. doi: 10.1007/BF00450672.

[78] Edvard I Moser, Emilio Kropff, and May-Britt Moser. “Place cells, grid
cells, and the brain’s spatial representation system”. In: Annu. Rev. Neu-
rosci. 31 (2008), pp. 69–89. issn: 0147-006X. doi: 10.1146/annurev.neuro.
31.061307.090723.

[79] Edvard I Moser et al. “Grid cells and cortical representation.” In: Nature
reviews. Neuroscience 15.7 (2014), pp. 466–481. issn: 1471-0048. doi: 10.
1038/nrn3766.

[80] May-britt Moser, David C Rowland, and Edvard I Moser. “Place Cells,
Grid Cells, and Memory”. In: (2015), pp. 1–15.

[81] Laurenz Muessig et al. “A Developmental Switch in Place Cell Accuracy
Coincides with Grid Cell Maturation.” eng. In: Neuron 86.5 (June 2015),
pp. 1167–1173. issn: 1097-4199 (Electronic). doi: 10.1016/j.neuron.2015.
05.011.

[82] R U Muller and J L Kubie. “The effects of changes in the environment on
the spatial firing of hippocampal complex-spike cells.” In: The Journal of
neuroscience : the official journal of the Society for Neuroscience 7.7 (July 1987),
pp. 1951–68. issn: 0270-6474.

[83] N P Naumov and V S Lobachev. “Ecology of Desert Rodents of the
U.S.S.R. (Jerboas and Gerbils)”. In: Rodents in Desert Environments. Ed. by I
Prakash and P K Ghosh. Dordrecht: Springer Netherlands, 1975, pp. 465–
606. isbn: 978-94-010-1944-6. doi: 10.1007/978-94-010-1944-6_23.

[84] J. O’Keefe and J. Dostrovsky. “The hippocampus as a spatial map. Pre-
liminary evidence from unit activity in the freely-moving rat”. In: Brain
Research 34.1 (1971), pp. 171–175. issn: 0006-8993. doi: https://doi.org/
10.1016/0006-8993(71)90358-1.

[85] J O’Keefe and M L Recce. “Phase relationship between hippocampal place
units and the EEG theta rhythm.” eng. In: Hippocampus 3.3 (July 1993),
pp. 317–330. issn: 1050-9631 (Print). doi: 10.1002/hipo.450030307.

[86] John O’Keefe and Neil Burgess. “Dual phase and rate coding in hip-
pocampal place cells: theoretical significance and relationship to entorhi-
nal grid cells.” eng. In: Hippocampus 15.7 (2005), pp. 853–866. issn: 1050-
9631 (Print). doi: 10.1002/hipo.20115.

http://dx.doi.org/10.1038/nrn1932
http://dx.doi.org/10.1007/BF00450672
http://dx.doi.org/10.1146/annurev.neuro.31.061307.090723
http://dx.doi.org/10.1146/annurev.neuro.31.061307.090723
http://dx.doi.org/10.1038/nrn3766
http://dx.doi.org/10.1038/nrn3766
http://dx.doi.org/10.1016/j.neuron.2015.05.011
http://dx.doi.org/10.1016/j.neuron.2015.05.011
http://dx.doi.org/10.1007/978-94-010-1944-6_23
http://dx.doi.org/https://doi.org/10.1016/0006-8993(71)90358-1
http://dx.doi.org/https://doi.org/10.1016/0006-8993(71)90358-1
http://dx.doi.org/10.1002/hipo.450030307
http://dx.doi.org/10.1002/hipo.20115


Bibliography 103

[87] John O’keefe and Neil Burgess. Geometric determinants of the place fields of
hippocampal neurons. Tech. rep. 1996.

[88] John O’Keefe and Lynn Nadel. The Hippocampus as a Cognitive Map. Vol. 27.
1978, pp. 263–267. isbn: 0198572069. doi: 10.5840/philstudies19802725.

[89] José Antonio Pérez-Escobar et al. “Visual landmarks sharpen grid cell
metric and confer context specificity to neurons of the medial entorhinal
cortex”. In: eLife 5 (July 2016). Ed. by Howard Eichenbaum, e16937. issn:
2050-084X. doi: 10.7554/eLife.16937.

[90] Annie Piolat, Jean-Yves Roussey, and Olivier Thunin. “Effects of screen
presentation on text reading and revising”. In: International Journal of
Human-Computer Studies 47.4 (1997), pp. 565–589. issn: 1071-5819. doi:
https://doi.org/10.1006/ijhc.1997.0145.

[91] Bruno Poucet et al. “Is there a pilot in the brain? Contribution of the self-
positioning system to spatial navigation.” eng. In: Frontiers in behavioral
neuroscience 9 (2015), p. 292. issn: 1662-5153 (Print). doi: 10.3389/fnbeh.
2015.00292.

[92] Alexandre Pouget, Peter Dayan, and Richard S. Zemel. “Inference and
computation with population codes”. In: Annual Review of Neuroscience
26 (2003), pp. 381–410. issn: 0147006X. doi: 10.1146/annurev.neuro.26.
041002.131112.

[93] G J Quirk, R U Muller, and J L Kubie. “The firing of hippocampal place
cells in the dark depends on the rat’s recent experience.” eng. In: The Jour-
nal of neuroscience : the official journal of the Society for Neuroscience 10.6 (June
1990), pp. 2008–2017. issn: 0270-6474 (Print). doi: 10.1523/JNEUROSCI.10-
06-02008.1990.

[94] Susanne Radtke-Schuller et al. “Brain atlas of the Mongolian gerbil (Meri-
ones unguiculatus) in CT/MRI-aided stereotaxic coordinates.” eng. In:
Brain structure & function 221 Suppl 1.Suppl 1 (Sept. 2016), pp. 1–272. issn:
1863-2661 (Electronic). doi: 10.1007/s00429-016-1259-0.

[95] P. Ravassard A. “Multisensory Control of Hippocampal Spatiotemporal
Selectivity”. In: (2013). issn: 0036-8075.

[96] Edmund T Rolls, Simon M Stringer, and Thomas Elliot. “Entorhinal cor-
tex grid cells can map to hippocampal place cells by competitive learn-
ing.” eng. In: Network (Bristol, England) 17.4 (Dec. 2006), pp. 447–465. issn:
0954-898X (Print). doi: 10.1080/09548980601064846.

[97] Alexei Samsonovich and Bruce L. McNaughton. “Path integration and
cognitive mapping in a continuous attractor neural network model”. In:
Journal of Neuroscience 17.15 (1997), pp. 5900–5920. issn: 02706474. doi:
10.1523/jneurosci.17-15-05900.1997.

http://dx.doi.org/10.5840/philstudies19802725
http://dx.doi.org/10.7554/eLife.16937
http://dx.doi.org/https://doi.org/10.1006/ijhc.1997.0145
http://dx.doi.org/10.3389/fnbeh.2015.00292
http://dx.doi.org/10.3389/fnbeh.2015.00292
http://dx.doi.org/10.1146/annurev.neuro.26.041002.131112
http://dx.doi.org/10.1146/annurev.neuro.26.041002.131112
http://dx.doi.org/10.1523/JNEUROSCI.10-06-02008.1990
http://dx.doi.org/10.1523/JNEUROSCI.10-06-02008.1990
http://dx.doi.org/10.1007/s00429-016-1259-0
http://dx.doi.org/10.1080/09548980601064846
http://dx.doi.org/10.1523/jneurosci.17-15-05900.1997


104 Bibliography

[98] Francesco Savelli and James J. Knierim. “Hebbian analysis of the transfor-
mation of medial entorhinal grid-cell inputs to hippocampal place fields”.
In: Journal of Neurophysiology 103.6 (2010), pp. 3167–3183. issn: 00223077.
doi: 10.1152/jn.00932.2009.

[99] Francesco Savelli and James J. Knierim. “Origin and role of path integra-
tion in the cognitive representations of the hippocampus: Computational
insights into open questions”. In: Journal of Experimental Biology 222 (2019).
issn: 00220949. doi: 10.1242/jeb.188912.

[100] Francesco Savelli, D. Yoganarasimha, and James J. Knierim. “Influence of
boundary removal on the spatial representations of the medial entorhinal
cortex”. In: Hippocampus 18.12 (2008), pp. 1270–1282. issn: 10509631. doi:
10.1002/hipo.20511.

[101] N Schmitzer-Torbert et al. “Quantitative measures of cluster quality for
use in extracellular recordings”. In: Neuroscience 131.1 (2005), pp. 1–11.
issn: 0306-4522. doi: https://doi.org/10.1016/j.neuroscience.2004.
09.066.

[102] Sven Schuett, Tobias Bonhoeffer, and Mark Hübener. “Mapping retino-
topic structure in mouse visual cortex with optical imaging.” eng. In: The
Journal of neuroscience : the official journal of the Society for Neuroscience 22.15

(Aug. 2002), pp. 6549–6559. issn: 1529-2401 (Electronic). doi: 10.1523/
JNEUROSCI.22-15-06549.2002.

[103] W B Scoville and B Milner. “Loss of recent memory after bilateral hip-
pocampal lesions. 1957.” eng. In: The Journal of neuropsychiatry and clin-
ical neurosciences 12.1 (2000), pp. 103–113. issn: 0895-0172 (Print). doi:
10.1176/jnp.12.1.103.

[104] Sara J. Shettleworth and Jennifer E. Sutton. “Multiple systems for spatial
learning: Dead reckoning and beacon homing in rats”. In: Journal of Exper-
imental Psychology: Animal Behavior Processes 31.2 (2005), pp. 125–141. issn:
00977403. doi: 10.1037/0097-7403.31.2.125.

[105] Joshua H Siegle et al. “Open Ephys: an open-source, plugin-based plat-
form for multichannel electrophysiology.” eng. In: Journal of neural engi-
neering 14.4 (Aug. 2017), p. 45003. issn: 1741-2552 (Electronic). doi: 10.
1088/1741-2552/aa5eea.

[106] Lori A Sjolund, Jonathan W Kelly, and Timothy P Mcnamara. “Optimal
combination of environmental cues and path integration during naviga-
tion”. In: (2018), pp. 89–99. doi: 10.3758/s13421-017-0747-7.

[107] W E Skaggs et al. “Theta phase precession in hippocampal neuronal pop-
ulations and the compression of temporal sequences”. In: Hippocampus 6

(1996).

http://dx.doi.org/10.1152/jn.00932.2009
http://dx.doi.org/10.1242/jeb.188912
http://dx.doi.org/10.1002/hipo.20511
http://dx.doi.org/https://doi.org/10.1016/j.neuroscience.2004.09.066
http://dx.doi.org/https://doi.org/10.1016/j.neuroscience.2004.09.066
http://dx.doi.org/10.1523/JNEUROSCI.22-15-06549.2002
http://dx.doi.org/10.1523/JNEUROSCI.22-15-06549.2002
http://dx.doi.org/10.1176/jnp.12.1.103
http://dx.doi.org/10.1037/0097-7403.31.2.125
http://dx.doi.org/10.1088/1741-2552/aa5eea
http://dx.doi.org/10.1088/1741-2552/aa5eea
http://dx.doi.org/10.3758/s13421-017-0747-7


Bibliography 105

[108] Trygve Solstad, Edvard I Moser, and Gaute T Einevoll. “From grid cells
to place cells: a mathematical model.” eng. In: Hippocampus 16.12 (2006),
pp. 1026–1031. issn: 1050-9631 (Print). doi: 10.1002/hipo.20244.

[109] Trygve Solstad et al. “Representation of geometric borders in the entorhi-
nal cortex”. In: Science 322.5909 (2008), pp. 1865–1868. issn: 00368075. doi:
10.1126/science.1166466.

[110] Robert W. Stackman, Ann S. Clark, and Jeffrey S. Taube. “Hippocam-
pal spatial representations require vestibular input”. In: Hippocampus 12.3
(2002), pp. 291–303. issn: 10509631. doi: 10.1002/hipo.1112.

[111] Ingo W Stuermer et al. “Intraspecific Allometric comparison of Labora-
tory gerbils with Mongolian Gerbils Trapped in the Wild Indicates Do-
mestication in Meriones unguiculatus (Milne-Edwards, 1867) (Rodentia:
Gerbillinae)”. In: Zoologischer Anzeiger - A Journal of Comparative Zoology
242.3 (2003), pp. 249–266. issn: 0044-5231. doi: https://doi.org/10.
1078/0044-5231-00102.

[112] J S Taube. “Head direction cells recorded in the anterior thalamic nuclei of
freely moving rats.” eng. In: The Journal of neuroscience : the official journal of
the Society for Neuroscience 15.1 Pt 1 (Jan. 1995), pp. 70–86. issn: 0270-6474

(Print). doi: 10.1523/JNEUROSCI.15-01-00070.1995.

[113] Jeffrey S. Taube. “The Head Direction Signal: Origins and Sensory-Motor
Integration”. In: Annual Review of Neuroscience 30.1 (2007). PMID: 17341158,
pp. 181–207. doi: 10.1146/annurev.neuro.29.051605.112854. eprint:
https://doi.org/10.1146/annurev.neuro.29.051605.112854.

[114] Kay Thurley and Aslı Ayaz. “Virtual Reality Systems for Rodents”. In:
Current Zoology June (2016), pp. 1–11. issn: 1674-5507. doi: http://dx.
doi.org/10.1093/cz/zow070.

[115] Kay Thurley et al. “Mongolian gerbils learn to navigate in complex vir-
tual spaces”. In: Behavioural Brain Research 266 (2014), pp. 161–168. issn:
01664328. doi: 10.1016/j.bbr.2014.03.007.

[116] M V Tsodyks et al. “Population dynamics and theta rhythm phase pre-
cession of hippocampal place cell firing: a spiking neuron model.” eng.
In: Hippocampus 6.3 (1996), pp. 271–280. issn: 1050-9631 (Print). doi: 10.
1002/(SICI)1098-1063(1996)6:3<271::AID-HIPO5>3.0.CO;2-Q.

[117] C H Vanderwolf. “Hippocampal electrical activity and voluntary move-
ment in the rat.” eng. In: Electroencephalography and clinical neurophysiology
26.4 (Apr. 1969), pp. 407–418. issn: 0013-4694 (Print). doi: 10.1016/0013-
4694(69)90092-3.

http://dx.doi.org/10.1002/hipo.20244
http://dx.doi.org/10.1126/science.1166466
http://dx.doi.org/10.1002/hipo.1112
http://dx.doi.org/https://doi.org/10.1078/0044-5231-00102
http://dx.doi.org/https://doi.org/10.1078/0044-5231-00102
http://dx.doi.org/10.1523/JNEUROSCI.15-01-00070.1995
http://dx.doi.org/10.1146/annurev.neuro.29.051605.112854
https://doi.org/10.1146/annurev.neuro.29.051605.112854
http://dx.doi.org/http://dx.doi.org/10.1093/cz/zow070
http://dx.doi.org/http://dx.doi.org/10.1093/cz/zow070
http://dx.doi.org/10.1016/j.bbr.2014.03.007
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:3<271::AID-HIPO5>3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:3<271::AID-HIPO5>3.0.CO;2-Q
http://dx.doi.org/10.1016/0013-4694(69)90092-3
http://dx.doi.org/10.1016/0013-4694(69)90092-3


106 Bibliography

[118] Tanja Wernle et al. “Integration of grid maps in merged environments”.
In: Nature Neuroscience 21.1 (2018), pp. 92–105. issn: 15461726. doi: 10.
1038/s41593-017-0036-6.

[119] SI Wiener, CA Paul, and H Eichenbaum. “Spatial and behavioral cor-
relates of hippocampal neuronal activity”. In: Journal of Neuroscience 9.8
(1989), pp. 2737–2763. issn: 0270-6474. doi: 10.1523/JNEUROSCI.09-08-
02737.1989. eprint: https://www.jneurosci.org/content/9/8/2737.
full.pdf.

[120] M A Wilson and B L McNaughton. “Dynamics of the hippocampal en-
semble code for space”. In: Science 261 (1993).

[121] Emma R Wood, Paul A Dudchenko, and Howard Eichenbaum. “The
global record of memory in hippocampal neuronal activity”. In: Nature
397.6720 (1999), pp. 613–616. issn: 1476-4687. doi: 10.1038/17605.

[122] Antoine Wystrach, Michael Mangan, and Barbara Webb. “Optimal cue
integration in ants”. In: Proceedings of the Royal Society B: Biological Sciences
282.1816 (2015). issn: 14712954. doi: 10.1098/rspb.2015.1484.

[123] B J Young, G D Fox, and H Eichenbaum. “Correlates of hippocampal
complex-spike cell activity in rats performing a nonspatial radial maze
task.” eng. In: The Journal of neuroscience : the official journal of the Society for
Neuroscience 14.11 Pt 1 (Nov. 1994), pp. 6553–6563. issn: 0270-6474 (Print).
doi: 10.1523/JNEUROSCI.14-11-06553.1994.

[124] Mintao Zhao and William H. Warren. “Environmental stability modu-
lates the role of path integration in human navigation”. In: Cognition 142

(2015), pp. 96–109. issn: 0010-0277. doi: https://doi.org/10.1016/j.
cognition.2015.05.008.

[125] Mintao Zhao and William H Warren. “How you get there from here: in-
teraction of visual landmarks and path integration in human navigation.”
eng. In: Psychological science 26.6 (June 2015), pp. 915–924. issn: 1467-9280

(Electronic). doi: 10.1177/0956797615574952.

[126] Xinyu Zhao et al. “Membrane potential dynamics underlying context-
dependent sensory responses in the hippocampus”. In: Nature Neuro-
science 23.July (2020). issn: 15461726. doi: 10.1038/s41593-020-0646-
2.

http://dx.doi.org/10.1038/s41593-017-0036-6
http://dx.doi.org/10.1038/s41593-017-0036-6
http://dx.doi.org/10.1523/JNEUROSCI.09-08-02737.1989
http://dx.doi.org/10.1523/JNEUROSCI.09-08-02737.1989
https://www.jneurosci.org/content/9/8/2737.full.pdf
https://www.jneurosci.org/content/9/8/2737.full.pdf
http://dx.doi.org/10.1038/17605
http://dx.doi.org/10.1098/rspb.2015.1484
http://dx.doi.org/10.1523/JNEUROSCI.14-11-06553.1994
http://dx.doi.org/https://doi.org/10.1016/j.cognition.2015.05.008
http://dx.doi.org/https://doi.org/10.1016/j.cognition.2015.05.008
http://dx.doi.org/10.1177/0956797615574952
http://dx.doi.org/10.1038/s41593-020-0646-2
http://dx.doi.org/10.1038/s41593-020-0646-2


C U R R I C U L U M V I TA E

PhD in Neurobiology
Research study: Impact of different sensory conditions on the hippocampal pop-
ulation code for space (in-vivo electrophysiology)
Cognition and Neural Plasticity, Ludwig-Maximilians-Universität Munich
Supervisors: Prof. Dr. Christian Leibold, Prof. Dr. Anton Sirota

Software Developer, German Neuroinformatics Node
Development of tools for handling/analyzing neurophysiological data.
Computational Neuroscience, Ludwig-Maximilians-Universität Munich
Supervisor: Prof. Dr. Thomas Wachtler. Projects: https://github.com/G-Node

Systems Analyst / Programmer
Industry assignments for General Motors Europe and Philip Morris Interna-
tional

Post-graduate study, Computational Modelling
Department of Design and Analysis of Oil Field Development
Russian Oil and Gas Scientific Research Institute

Diploma in Applied Mathematics and Computer Science
Department of Computational Mathematics and Cybernetics
Moscow State University of M.V. Lomonosov
Qualification: mathematician / systems programmer
Specification: applied mathematics and informatics

107





L I S T O F P U B L I C AT I O N S

First author:

Sobolev, A., Stoewer, A., Leonhardt, A., Rautenberg, P. L., Kellner, C. J., Gar-
bers, C., & Wachtler, T. (2014). Integrated platform and API for electrophysiolog-
ical data. Frontiers in Neuroinformatics, 8(APR).

Sobolev, A., Stoewer, A., Leonhardt, A., Rautenberg, P. L., Kellner, C. J., Gar-
bers, C., & Wachtler, T. (2014). Integrated platform and API for electrophysiolog-
ical data. Frontiers in Neuroinformatics, 8(APR).

co-author:

Ferreiro, D. N., Amaro, D., Schmidtke, D., Sobolev, A., Gundi, P., Belliveau, L.,
Sirota, A., Grothe, B., & Pecka, M. (2020). Sensory Island Task (SIT): A New Be-
havioral Paradigm to Study Sensory Perception and Neural Processing in Freely
Moving Animals. Frontiers in Behavioral Neuroscience, 14.

Zehl, L., Jaillet, F., Stoewer, A., Grewe, J., Sobolev, A., Wachtler, T., Brochier,
T. G., Riehle, A., Denker, M., & Grün, S. (2016). Handling metadata in a neuro-
physiology laboratory. Frontiers in Neuroinformatics, 10(JUL).

Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg, P.
L., Rodgers, C. C., Sobolev, A., Wachtler, T., Yger, P., & Davison, A. P. (2014).
Neo: An object model for handling electrophysiology data in multiple formats.
Frontiers in Neuroinformatics, 8(FEB).

Rautenberg, P. L., Sobolev, A., Herz, A. V. M., & Wachtler, T. (2011). A
database system for electrophysiological data. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics): Vol. 6990 LNCS.

109





A F F I D AV I T

Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation "Con-
tribution of the idiothetic and the allothetic information to the hippocampal
place code" selbstständig angefertigt habe, mich außer der angegebenen keiner
weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz
oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer
Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe.

I hereby confirm that this dissertation "Contribution of the idiothetic and the
allothetic information to the hippocampal place code" is the result of my own
work and that I have only used sources or materials listed and specified in the
dissertation.

Munich, June 10, 2021

Andrey Sobolev

111





A U T H O R C O N T R I B U T I O N S

Andrey Sobolev, Dr. Kay Thurley, Dr. Dustin Fetterhoff, Prof. Dr. Christian
Leibold and Prof. Dr. Anton Sirota contributed to this research study.

The project was established by Anton Sirota, Christian Leibold and Kay Thur-
ley. The design of the experimental protocols and the virtual environment was
done by Andrey Sobolev with the support of Anton Sirota. Animal handling
was performed by Andrey Sobolev under the guidance of Kay Thurley. Printing
and assembling implants as well as the surgical procedures were done by An-
drey Sobolev. Dustin Fetterhoff contributed with animals from his project to the
study. Data analysis was done by Andrey Sobolev under review of Anton Sirota
and Christian Leibold.

We assert that aforementioned author contributions are correct and accurate:

Munich, June 10, 2021

Andrey Sobolev

Prof. Dr. Anton Sirota

113


	Acknowledgments
	Abstract
	Introduction
	Space and navigation as abstract concepts of everyday life
	Spatial representation in the hippocampal-entorhinal circuit
	Place cells
	Grid cells
	Head direction system
	Border and BVC cells
	Landmark and object vector cells
	Anatomy of the hippocampal-entorhinal system
	Sequence coding and theta phase precession in hippocampal cells
	Formation of place fields
	General questions

	The role of visual landmarks and physical boundaries in spatial navigation
	What is a place?
	Landmark and boundary vectors as reference frames to establish spatial map
	Mechanisms of path integration to support navigation stability
	Impact on place cells

	Research on interaction of allothetic and idiothetic inputs
	Optimal combination of environmental cues and path integration during navigation
	Modelling multisensory integration at the level of place cells
	Aim of the thesis

	Experimental Design and Procedures
	Using Virtual Reality to study navigation
	Experimental protocols
	Introducing mismatch between stable reference frames
	vSHIFT-coherent - no conflict between reference frames
	vSHIFT-physical - conflict between vision and path integration
	vSHIFT-visual - alternative way for a conflicting condition

	Introducing mismatch between vision and proprioception
	vGAIN - shift via introducing a gain mismatch between visual flow and proprioception
	Teleport experiment

	Comparison of ball- and freely-moving VR

	Results
	Example units and their conditional place firing
	Visually-driven place cells (VPCs)
	Self-motion or boundary-driven place cells (MPCs)
	Multi-field place cells
	Place cells integrating visual and self-motion components
	Multi-modal place cells
	Place cells expressing selectivity to specific virtual landmarks and visual features

	Geometry and visual landmarks forming place representation
	Integration of self-motion inputs in darkness
	Simultaneous encoding of different reference frames
	Sensory availability determines position encoding at the population level
	Multisensory cells driven by a combination of vision and self-motion
	Fine position calibration near the environmental boundaries
	Conflict induced by visual versus physical translation
	Visual conflict induces recalibration of the self-motion based place map
	Weighted position estimation at smaller sensory conflicts
	Abandonment of a sensory estimate at larger sensory conflicts

	Materials and Methods
	Electrophysiology
	Subjects

	Implant design
	Microdrive
	Protecting box
	Surgery
	Recording procedures
	Histology

	Virtual reality setup
	RatCAVE system
	Rewarding system
	Acquisition system
	Automatic experiment control

	Data analysis
	Data processing workflow
	Identification of single units
	Spatial firing maps and place fields
	Place field shift detection


	Discussion
	Integration of the self-motion and visual information
	Representation of a combination of different reference frames
	Effect of a shift of a particular reference frame after learning and establishing a place field
	Change in input reliability together with Bayesian coding may explain categorization of CA1 cells by input preference
	Frequent arena shift results in encoding intermediate position by accumulation of synaptic plasticity effect
	Behavior of multisensory cells can be explained by dynamic loops in the hippocampal-entorhinal network

	Aspects of using freely-moving virtual reality system
	Aspects of experimental design
	Open questions

	Conclusion
	Curriculum Vitae
	List of publications
	Affidavit
	Author Contributions

