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Abstract

New requirements and demands on pattern mining arise in modern applica-
tions, which cannot be fulfilled using conventional methods. For example,
in scientific research, scientists are more interested in unknown knowledge,
which usually hides in significant but not frequent patterns. However, ex-
isting itemset mining algorithms are designed for very frequent patterns.
Furthermore, scientists need to repeat an experiment many times to ensure
reproducibility. A series of datasets are generated at once, waiting for cluster-
ing, which can contain an unknown number of clusters with various densities
and shapes. Using existing clustering algorithms is time-consuming because
parameter tuning is necessary for each dataset. Many scientific datasets are
extremely noisy. They contain considerably more noises than in-cluster data
points. Most existing clustering algorithms can only handle noises up to
a moderate level. Temporal pattern mining is also important in scientific
research. Existing temporal pattern mining algorithms only consider point-
based events. However, most activities in the real-world are interval-based
with a starting and an ending timestamp. This thesis developed novel pattern
mining algorithms for various data mining tasks under different conditions.

The first part of this thesis investigates the problem of mining less fre-
quent itemsets in transactional datasets. In contrast to existing frequent
itemset mining algorithms, this part focus on itemsets that occurred not that
frequent. Algorithms NIIMiner, RaCloMiner, and LSCMiner are proposed
to identify such kind of itemsets efficiently. NIIMiner utilizes the negative
itemset tree to extract all patterns that occurred less than a given support
threshold in a top-down depth-first manner. RaCloMiner combines exist-
ing bottom-up frequent itemset mining algorithms with a top-down itemset
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mining algorithm to achieve a better performance in mining less frequent
patterns. LSCMiner investigates the problem of mining less frequent closed
patterns.

The second part of this thesis studied the problem of interval-based tem-
poral pattern mining in the stream environment. Interval-based temporal
patterns are sequential patterns in which each event is aligned with a start-
ing and ending temporal information. The ability to handle interval-based
events and stream data is lacking in existing approaches. A novel interval-
based temporal pattern mining algorithm for stream data is described in this
part.

The last part of this thesis studies new problems in clustering on numeric
datasets. The first problem tackled in this part is shape alternation adap-
tivity in clustering. In applications such as scientific data analysis, scientists
need to deal with a series of datasets generated from one experiment. Clus-
ter sizes and shapes are different in those datasets. A kNN density-based
clustering algorithm, kadaClus, is proposed to provide the shape alternation
adaptability so that users do not need to tune parameters for each dataset.
The second problem studied in this part is clustering in an extremely noisy
dataset. Many real-world datasets contain considerably more noises than
in-cluster data points. A novel clustering algorithm, kenClus, is proposed
to identify clusters in arbitrary shapes from extremely noisy datasets. Both
clustering algorithms are kNN-based, which only require one parameter k.

In each part, the efficiency and effectiveness of the presented techniques
are thoroughly analyzed. Intensive experiments on synthetic and real-world
datasets are conducted to show the benefits of the proposed algorithms over
conventional approaches.



Zusammenfassung

In modernen Anwendungen ergeben sich neue Anforderungen an das Pat-
tern Mining, die mit herkömmlichen Methoden nicht erfüllt werden können.
Beispielsweise interessieren sich Wissenschaftler in der wissenschaftlichen
Forschung mehr für unbekanntes Wissen, das sich normalerweise in Patterns
verbirgt, die signifikant, aber nicht sehr häufig sind. Bestehende Itemset-
Mining-Algorithmen sind jedoch für sehr häufige Pattern ausgelegt. Darüber
hinaus müssen Wissenschaftler ein Experiment viele Male wiederholen, um
die Reproduzierbarkeit sicherzustellen. Eine Reihe von Datensätzen wird
gleichzeitig generiert und wartet auf Clustering, das eine unbekannte An-
zahl von Clustern mit verschiedenen Dichten und Formen enthalten kann.
Die Verwendung vorhandener Clustering-Algorithmen ist zeitaufwändig, da
für jeden Datensatz eine Parameteroptimierung erforderlich ist. Viele wis-
senschaftliche Datensätze sind extrem verrauscht, d.h. Es gibt erheblich mehr
Rauschen als In-Cluster-Datenpunkte. Die meisten vorhandenen Clustering-
Algorithmen können nur Rauschen bis zu einem moderaten Pegel verarbeiten.
Temporal Pattern Mining ist auch in der wissenschaftlichen Forschung wichtig.
Bestehende zeitliche Pattern-Mining-Algorithmen berücksichtigen nur punkt-
basierte Ereignisse. Die meisten Ereignisse in der realen Welt basieren je-
doch auf Intervallen mit einem Start- und einem Endzeitstempel. In dieser
Arbeit wurden neuartige Pattern-Mining-Algorithmen für verschiedene Data-
Mining-Aufgaben unter verschiedenen Bedingungen entwickelt.

Der erste Teil dieser Arbeit untersucht das Problem des Mining sel-
tener Itemsets in Transaktionsdatensätzen. Im Gegensatz zu bestehenden
Algorithmen für das Mining von häufige Itemsets konzentriert sich dieser
Teil auf nicht so häufig auftretende Itemsets. Wir schlagen neue Algorith-
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men NIIMiner, RaCloMiner und LSCMiner in dieser Arbeit vor, um solche
Objektgruppen effizient zu identifizieren. NIIMiner verwendet den nega-
tiven Itemset-Baum, um alle Pattern, die unter einem bestimmten Unter-
stützungsschwellenwert aufgetreten sind, von oben nach unten zu extrahieren.
RaCloMiner kombiniert vorhandene Bottom-Up-Algorithmen für häufiges
Itemset-Mining mit einem Top-Down-Algorithmus für das Itemset-Mining,
um eine bessere Leistung beim Mining weniger häufiger Pattern zu erzielen.
LSCMiner untersucht das Problem des Mining seltener sogenannter closed
Patterns.

Der zweite Teil dieser Arbeit untersuchte das Problem des intervallbasierten
zeitlichen Pattern Mining in der Stream-Umgebung. Intervallbasierte zeitliche
Pattern sind sequentielle Pattern, bei denen jedes Ereignis mit einer zeitlichen
Start- und Endinformation ausgerichtet ist. Die Fähigkeit, intervallbasierte
Ereignisse zu verarbeiten und Daten zu streamen, fehlt in bestehenden An-
sätzen. In diesem Teil wird ein neuartiger intervallbasierter zeitlicher Pattern-
Mining-Algorithmus für Stream-Daten beschrieben.

Der letzte Teil dieser Arbeit untersucht neue Probleme beim Clustering.
Das erste Problem, das in diesem Teil behandelt wird, ist die Anpassungs-
fähigkeit von Clustering an wechselnde Formen von Clustern. In Anwen-
dungen wie der wissenschaftlichen Datenanalyse müssen sich Wissenschaftler
mit einer Reihe von Datensätzen befassen, die aus einem Experiment gener-
iert wurden. Clustergrößen und -formen unterscheiden sich in diesen Daten-
sätzen. Ein auf kNN-Dichte basierender Clustering-Algorithmus, kadaClus,
wird vorgeschlagen, um Clusteralgorithmen in die Lage zu versetzen, ver-
schiedene und sich verändernde Clusterformen zu erkennen, sodass Benutzer
nicht die Parameter für jeden Datensatz anpassen müssen. Das zweite in
diesem Teil untersuchte Problem ist das Clustering in einem extrem ver-
rauschten Datensatz. Viele reale Datensätze enthalten erheblich mehr Rauschen
als In-Cluster-Datenpunkte. Ein neuartiger Clustering-Algorithmus, ken-
Clus, wird vorgeschlagen, um Cluster in beliebigen Formen aus extrem ver-
rauschten Datensätzen zu identifizieren. Beide Clustering-Algorithmen basieren
auf kNN und erfordern nur einen Parameter k.

In jedem Teil werden die Effizienz und Effektivität der vorgestellten Tech-
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niken gründlich analysiert. Intensive Experimente sowohl mit synthetischen
als auch mit realen Datensätzen werden durchgeführt, um die Vorteile der
vorgeschlagenen Algorithmen gegenüber herkömmlichen Ansätzen aufzuzeigen.
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Chapter 1

Introduction

During the past decades, information technology becomes ever more preva-
lent in nearly every aspect of our daily lives, such as medical biology, finance,
and scientific research. The amount of data generated and stored continues
to grow at an astounding rate in various fields, calling for a need for efficient
and effective automatic data analysis tools. The interdisciplinary field of
Knowledge Discovery in Databases (KDD) has thus emerged to unveil the
potential patterns contained implicitly in the data automatically. In recent
years, new requirements and demands on pattern mining arise in modern
applications, which cannot be handled by conventional methods. For exam-
ple, existing itemset mining algorithms are designed to extract very frequent
patterns, but in some applications, people are more interested in unknown
knowledge hidden in less frequent patterns. The study of pattern mining
under new conditions has attracted much attention.

In this chapter, the main concepts of Knowledge Discovery in Databases
are first introduced in Section 1.1. Afterward, new pattern mining require-
ments and demands studied in this thesis are briefly described in Section 1.3.
This chapter concludes with an outline of the thesis in Section 1.4.
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1.1 Knowledge Discovery in Databases

“Knowledge Discovery in Databases is the non-trivial process of
identifying valid, novel, potentially useful, and ultimately under-
standable patterns in data” [36]

Pattern/Rules

Selection Preprocessing Transformation Data	Mining Interpretation/
Evaluation

Raw	Data Preprocessed	DataTarget	Data Transformed	Data Knowledge

Figure 1.1: The KDD process.

According to the definition above, KDD is a process which aims at ex-
tracting meaningful and human interpretable patterns from data. It consists
of an iterative sequence of steps as illustrated in the following (cf. Figure
1.1):

1. Selection. The first step of KDD process is to create a target data
set by selecting a data set or focusing on a subset of attributes or data
samples. The criteria of data selection often include data availability,
quality, type, format, semantics, etc.

2. Preprocessing. Performing data cleaning operations, such as remov-
ing noise, handling missing data fields, etc. The data from multiple
sources should be combined together.

3. Transformation. Finding useful features to represent the data, e.g.
using feature selection approaches or transformation methods such as
PCA to reduce the number of attributes or to find compact represen-
tation for the data.

4. Data Mining. Searching for patterns of interest in a particular repre-
sentation form, e.g. clustering, classification and association rule min-
ing, etc. Efficient and effective algorithms are used to extract novel,
unknown and useful patterns from the transformed or original data.
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5. Interpretation and Evaluation. Using visualization and knowledge
representation techniques to present the interesting patterns extracted
in the data mining step. Results are evaluated by domain experts.

Data mining is the core step of the KDD process. The notions “KDD”
and “Data Mining” are often used as synonyms. By definition [36], the step
of data mining consists of applying data analysis algorithms, with acceptable
computational efficiency limitations, to produce a particular enumeration of
patterns over the data. In general, existing data mining tasks can be classified
as in the following:

• Association Rules Analysis: Discovering association rules showing
attribute value conditions that are interesting (e.g. occur frequently
together) in a given data set. Association rules express as a specified
set of items appearing together in the same transaction with a certain
support/probability.

• Clustering: Grouping objects in the data set such that objects in
the same group are more similar to each other than to those in other
groups.

• Classification: Learning a function from a given training data set to
map new data objects to one or several classes in a predefined class set.

• Prediction: Learning a function from a given training data set to
predict the numerical output values of new data objects.

• Outlier Analysis: Identifying irregular data objects in the data set
that can not be described by the general model of the data, e.g. do not
belong to any classes or clusters.

• Characterization and Discrimination: Summarization and com-
parion of general features of objects in the data set.



4 Chapter 1. Introduction

1.2 Pattern Mining in This Thesis

This thesis studies pattern mining under new conditions arisen in modern
applications that are different from conventional scenarios. Many data min-
ing tasks mentioned above will generate patterns. Topics discussed in this
thesis mainly relate to three research areas: itemset mining, sequential pat-
tern mining, and clustering. Itemset mining and sequential pattern mining
extract itemsets and sequences as patterns. Clustering identifies clusters as
patterns. Those three research areas are closely related to each other.

Itemset Mining

Itemset mining aims at discovering interesting co-occurrences of items or
events as patterns in transactional databases. Each row of the database is a
transaction which logs the types of items (events) that happened together.
Various criteria can define the interestingness of a pattern. One of the most
common criteria to define interestingness is the frequency (or support) of
patterns. Frequent patterns are useful in generating association rules, which
provide essential insights to the database. For example, given a database that
tracks customers’ transactions in a supermarket. Frequent itemset mining
may find out patterns, such as people usually by beers and bread, which are
useful for customer behavior analysis.

Other itemset mining tasks, such as high-utility itemset mining, are de-
veloped upon frequent itemset mining. In high-utility itemset mining, each
item is also aligned with quantity and profit values. High-utility itemsets are
not just frequently happened, but also bring a large amount of profit. Using
the example above, high-utility itemset mining does not only tell us that cus-
tomers buy beers and bread together, but also tell us that the combination
of beers and bread brings a lot of profit.

Sequential Pattern Mining

Itemset mining extracts sets of items that occurred together as patterns. The
order of items inside patterns is not considered. Sequential pattern mining
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is introduced to tackle this drawback. By considering the order of events,
sequential patterns can describe more complicated phenomena. For instance,
instead of just knowing that customers always by beers and bread together,
sequential patterns might tell us that customers tend to pick up beers before
looking at bread. Besides transaction data, such sequential information is
also essential in many other application areas, such as medical, financial,
and scientific data analysis. For example, in medical data analysis, the order
of symptoms’ occurrences is essential for doctors. Most sequential pattern
mining techniques are developed upon itemset mining.

In some cases, temporal information is also available. Patterns that only
provide “before” and “after” information are not able to properly uncover
insights in the database. Temporal pattern mining is developed upon sequen-
tial pattern mining to address this problem. Usually, sequential patterns are
extracted first. Each sequential pattern is supported by a group of subse-
quences. Clustering techniques are applied to each group of subsequences to
generate temporal patterns. Subsequences that support the same temporal
pattern share the same order of events and similar temporal information.

Clustering

Clustering aims to group a set of objects in such a way that objects in the
same cluster are more similar to each other than those in other clusters. Clus-
tering is one of the most important tasks in pattern mining. Each identified
cluster can be considered as a pattern.

Clustering and itemset mining are closely related to each other. Each
item type in itemset mining can be seen as a dimension in clustering. There-
fore, each transaction in itemset mining is a binary vector that records if an
item type exists or not. A subset of all item types can form a subspace in
which each transaction is a data point. If a transaction contains all items in
the subset, its corresponding data point is located at (1, 1, . . . , 1, 1). If the
number of data points at (1, 1, . . . , 1, 1) is larger than a given threshold, a
frequent pattern is reported. In clustering, data points are numerical vectors
and thus rarely locate in the same position. Usually, a distance function is
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needed to measure the similarity between data points. Data points that are
close to each other are assigned to the same group. If the number of data
points in a group is large, it is returned as a cluster. Indeed, itemset mining
is equivalent to subspace clustering with binary values.

1.3 New Challenges in Pattern Mining

New challenges in the three research areas mentioned above are investigated
in this thesis, as listed in the following:

Rare Itemset Mining

Itemset mining aims at extracting interesting itemsets from transaction data
sets. Each itemset contains items that occurred together in transactions.
Conventionally, itemset mining implies frequent itemset mining, i.e., people
only interested in very frequent itemset. However, with the expansion of
the itemset mining technique’s application scope, the new challenge, rare
itemset mining, arise, which can not be addressed by frequent itemset min-
ing methods. Rare itemset mining, or infrequent itemset mining, aims at
extracting itemsets that appeared not that frequently, which may contain
unknown knowledge. In applications such as scientific research or medical
data mining, such kind of itemsets is more interesting than frequent itemset.

Interval-based Temporal Pattern Mining

Most existing sequential pattern mining algorithms aim at extracting fre-
quent subsequences that appeared in a sequential data set. Each sequence
in the data set records the order of events in some activities, such as the
business process. However, using order information along is not enough to
describe events that happened in the real world. The temporal informa-
tion is also essential. Obviously, “Happened one second before” is different
from “happened one day before”. Furthermore, events in the real world are
intervals aligned with two timestamps: the starting and ending times. Con-
ventional sequential pattern mining algorithms treat events as single time
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stamps. Some relations between events, such as a one event overlapping
with another event, can not be modeled by sequential patterns.

kNN Density-based Clustering

Density-based clustering is one of the most important categories of clustering
methods. It is widely used in identifying clusters in arbitrary shapes. Most
density-based clustering approaches do not need to know the number of clus-
ters in prior, which is a big advantage. However, they usually require more
than one parameter, which makes parameter tuning more difficult. Recently,
novel density-based clustering algorithms are proposed to address the prob-
lem by reducing the complexity to the use of one parameter. They introduce
the concept of k Nearest Neighbor (kNN) and Reverse k Nearest Neighbor
(RkNN) for density estimation. kNN density-based clustering approaches
are useful but failed when dealing with the following challenges:

Shape Alternation Adaptability

Existing clustering pipelines assume that there is only one data set waiting for
analyzing. However, in applications such as scientific research, experiments
may be repeated many times, which leads to a series of data sets. Those data
sets contain clusters with similar density but different shapes. When multiple
data sets arrived, scientists need to turn parameters for each data set, run
the clustering algorithm, and output the result, which is time-consuming.

High-noise Robustness

Another challenge is clustering on extremely noisy data sets. In real-world,
many applications generate data sets that contain more noise than normal
observations. Existing clustering algorithms only considered noise under a
moderate level. None of then can produce meaningful results for high-noise
data set.
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1.4 Outline of this thesis

In this thesis, novel rare itemset mining, interval-based temporal pattern
mining and clustering algorithms are proposed to address new challenges
under different conditions. The content of this thesis is organized as in the
following:

Chapter 1 presents an overview on the field of Knowledge Discovery in
Databases and Data Mining. The three pattern mining research areas inves-
tigated in this thesis are introduced.

Part I presents efficient rare itemset mining algorithms.
Chapter 2 introduces the importance of rare itemset mining and the ba-

sic notions of itemset mining. Fundamental algorithms of frequent itemset
mining are surveyed in detail.

Chapter 3 describes a novel data structure, the negative itemset tree,
which is used as the basis for our novel rare itemset mining algorithm. A naive
rare itemset algorithm using the negative itemset tree is described. Part of
the contents in this Chapter has been published in [71], where Y.L. designed
the research and implemented algorithms. F.R and T.S. gave important
suggestions. Y.L., F.R. and T.S. wrote the paper.

Chapter 4 proposes a more advanced rare itemset mining algorithm based
on the negative itemset tree. The idea of residual counts is used. Part of
the contents presented in this Chapter has been published in [73], where
Y.L. designed the research and implemented algorithms. F.R and T.S. gave
important suggestions. Y.L., F.R. and T.S. wrote the paper.

Chapter 5 studies the concept of closed patterns in the context of rare
itemset mining. A general bi-directional closed rare itemset mining frame-
work is proposed. Part of the contents presented in this Chapter has been
published in [74], where Y.L. and T.S. designed the research, implemented
algorithms and wrote the paper.

Chapter 6 proposes a closed rare itemset mining algorithm based on the
negative itemset tree. Part of the contents presented in this Chapter has
been published in [72], where Y.L. designed the research and implemented
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algorithms. F.R and T.S. gave important suggestions. Y.L., F.R. and T.S.
wrote the paper.

Part II presents a novel interval-based temporal pattern mining algorithm
for data streams.

Chapter 7 introduces the concept of interval-based temporal patterns
and their relationship with sequential patterns and temporal patterns. Nec-
essary notations and fundamental algorithms for sequential pattern mining
and temporal pattern mining are described.

Chapter 8 describes the application and preliminaries of temporal pattern
mining under a stream environment.

Chapter 9 proposes an incremental temporal pattern mining algorithm
for data streams. Part of the contents presented in this Chapter has been
published in [70], where Y.L. and M.H. designed the research. Y.L. imple-
mented algorithms and wrote the paper. T.S. gave essential suggestions.

Chapter 10 adapts the algorithm introduced above to interval-based events
streams. Part of the contents presented in this Chapter has been published
in [70], where Y.L. and M.H. designed the research. Y.L. implemented algo-
rithms and wrote the paper. T.S. gave important suggestions.

Part III describes two kNN density-based clustering algorithms designed for
special use cases.

Chapter 11 introduces basic notations and concepts of density-based clus-
tering. Fundamental algorithms are surveyed in detail.

Chapter 12 proposes a k Nearest Neighbor based clustering algorithm
with shape alternation adaptability. Part of the contents presented in this
Chapter has been published in [75], where Y.L. designed the research. Y.L.
and Y.Z. implemented algorithms. Y.L., F.R. and Y.Z. wrote the paper.
T.S. gave important suggestions.

Chapter 13 describes a k Nearest Neighbor based clustering algorithm for
an extremely noisy dataset.
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Chapter 2

Introduction

2.1 Rare Itemset Mining

Frequent itemset (pattern) mining is a well-studied topic in the last decades
and has been successfully applied to many application areas. Infrequent
itemset mining (rare pattern mining), on the other hand, also shows its
usefulness as a valid mining subject but attracts less attention. In many
applications, frequent patterns represent known, mainstream behaviors while
infrequent patterns are unknown knowledge which can be seen as hints for
unexpected problems.

For example, in a medical database which contains logs about treatments,
medications and symptomatic consequences of patients, the pharmacologists
may already know that the medications A and B might help against disease
C while frequent pattern analysis can also only yield this obvious informa-
tion. The rare case that both medications {A,B} together can lead to a
lethal health condition will probably be pruned if we only consider frequent
patterns. Another example is scientific data analysis. In scientific experi-
mental data, frequent patterns usually represent phenomena or theories that
scientists may already know. Such unknown information hidden in infre-
quent patterns is more important and interesting for scientists since they
might lead to new knowledge or new theories. Infrequent pattern mining is
also important in many other application scenarios such as financial fraud
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detection or network security analysis. Such mining task is challenging while
efficient approaches are absent.

Most existing itemset mining algorithms mainly focus on extracting fre-
quent patterns. Those algorithms start the mining process from the empty
set ∅. Frequent patterns are extracted by extending the candidate itemset
recursively. This recursive process is terminated until the current candi-
date itemset is infrequent due to the well-known anti-monotonicity property.
Anti-monotonicity property tells us that the support of an itemset is always
larger or equal to the support of its super-set while smaller or equal to the
support of its sub-set. Thus, when using frequent itemset mining algorithm
to solve infrequent itemset mining problem, the corresponding minimum sup-
port value must be set to 1. All frequent patterns have to be traversed first
before accessing infrequent itemsets, which wastes unnecessary traversing
time.

Few infrequent itemset mining approaches are also proposed in recent
years while most of them are adapted from frequent itemset mining algo-
rithms which also start from the empty set ∅. In principle, such kind of ap-
proaches must perform the same as frequent itemset mining algorithms since
they also traverse frequent itemsets first. Only a few algorithms start the
mining process from long infrequent itemsets so that we can avoid traversing
the frequent pattern part. Items are removed from candidate patterns recur-
sively and the algorithm stopped until current candidates become frequent.
Such kind of algorithms could be more efficient since no time is wasted on
traversing frequent itemsets.

Besides, many condensed representations have been proposed for fre-
quent patterns to reduce the size of final results and increase the perfor-
mance. Adapting condensed representation for infrequent patterns is benefi-
cial. However, there is a lack of effective approaches focusing on extracting
condensed representations.
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2.2 Related Works

In the research field of itemset mining, most approaches discover the occur-
rences of frequent itemsets and association rules. A traditional approach is
Apriori [3] by Agrawal and Srikant, which extends the size of candidate item-
sets step-wise. The search-space is pruned by utilizing a minimum support
threshold. To avoid explicit candidate generation, FP-growth [51] by Han
et al. uses a data structure called FP-Tree. Both approaches mine frequent
itemsets. However, rare itemsets only occur in the result for a low support
threshold, which yields very large results and makes mining for rare itemsets
inefficient.

Apriori-like Approaches

First of all, shifting from a static minimum support threshold to a dynamic
minimum support or avoiding a minimum support at all offers some chance
to include rare itemsets in the result. Typical approaches here are to attach a
separate minimum item support for each item in the database [67] or let the
minimum supports adapt in case of lower frequencies or changing significance
[106][101][93]. Seno and Karypis [88] propose an approach to favor smaller
itemsets over larger ones. Koh and Rountree [61] inverted the idea of Apriori
by defining a maximum support threshold. Szathmary et al. followed this
idea of mining the rare itemsets with ARIMA[92], which uses the pruned
itemsets of Apriori in a first mining step to generate rare itemset candidates
bottom-up in a second step. FRIMA[56] also follows a bottom-up traversal
based approach. Wang et al.[100], Cohen et al.[29], Xiong et al. [103] and
Haglin et al. [48] propose methods to avoid a minimum support threshold.
Jain et al.[58] proposed a prepruning step to reduce the search space for rare
pattern mining. All these methods employ the bottom-up strategy, i.e., scan
all frequent itemsets first, which is not efficient.

To the best of our knowledge, AfRIM[92] and Rarity[95] are the only
two approaches traverse the search space in a top-down fashion. However,
Apriori-like paradigm is employed in these approaches which leads to a huge
number of candidates during mining process.
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Pattern-growth Approaches

Approaches in the second field are mainly based on the FP-growth [51] algo-
rithm, such as the RP-tree algorithm [96]. The RP-tree is constructed similar
with the FP-tree but for rare items. Transactions with only frequent items
are pruned. It is more efficient than the previous works due to its avoidance
of candidate generation. However, only a subset of rare itemsets is provided.
Rare itemsets made up of frequent items are ignored. This kind of itemsets
are interesting especially in dense dataset. The Inverse FP-Tree approach
by Gupta et al. [44] also utilizes FP-growth and mines minimally infrequent
itemsets. These are infrequent itemsets and any subset is frequent. Kiran
et al.[59] used multiple minimum support values in the FP-tree. The tree is
constructed in descending item order regarding the minimum item support.
Lavergne et al. [65] consider user interest to focus the search on certain rule
sets. The pattern-growth based approaches increase the performance due to
their avoidance of candidate generation. However, they still use some sort of
user-defined input or constraint to mine for rare items. A detailed overview
about rare itemset mining methods can be found in [60] by Koh and Ravana.

Knowledge Embedding

The last field here utilizes knowledge about the data and it focuses specific
rules and itemsets. Liu et al. [68] prune rules using a chi-square significance
test. Bayardo et al. [9] proposed the Dense-Miner, which introduces rule
constraints in addition to minimum support. This allows to mine rules with
low support, however some knowledge about the data is needed to specify
the constraints. Li et al.[66] developed emerging patterns, which involves
using predefined consequences to iteratively remove rules. Rahal et al. [84]
supplied an approach that yield the highest support rules by only specifying
the minimum confidence. Koh et al. [62] developed MIISR, which is based
on the apriori-inversed approach [61] and uses an absolute maximum support
threshold to mine rare rules with a candidate itemset. Cagliero et al. [17]
uses weights in transactional databases to mine infrequent items. Although
these approaches can be used to mine rare or sporadic itemsets and rules,
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they assume some background knowledge about the data in advance.

2.3 Powerset Lattice Traversing
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Figure 2.1: Powerset lattice. The minimum support splits the lattice into
three parts.

In general, both frequent itemset mining and infrequent itemset mining
algorithms can be seen as a process of traversing through the itemset powerset
lattice, where each node in the lattice represents an itemset. Figure 2.1 gives
an example lattice. With some minimum support threshold, the lattice can
be divided into three parts: frequent part, infrequent part, and nonexistent
part. The frequent part stays at the bottom of the lattice while the infrequent
part takes a relatively higher position.

Priority
Direction Bottom-up Top-down

Breadth-first Apriori[3] Rarity[95]
Depth-first FP-Growth[51] –

Table 2.1: Powerset lattice traversing strategies and example algorithms.

Counting the support of all possible itemsets is impossible since the size
of the powerset lattice is exponential. Efficient mining algorithm will fully
utilize given constraints, like minSup, and only traverse nodes that fulfill
the criteria. Different algorithms differ in their traversing directions and
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priorities, as shown in Figure 2.1. In summary, all frequent itemset mining
algorithms and most existing rare itemset mining algorithms are traversing
bottom-up. Some rare itemset mining algorithms use top-down and breadth-
first traversing.

In this part of the thesis, the problem of rare itemset mining is studied.
Several novel top-down depth-first traversing based algorithms are described.
The basic data structure, negative itemset tree, is introduced in Chapter 3.
A naive rare itemset mining algorithm using the negative itemset tree is also
introduced. Then Chapter 4 introduces an advanced rare itemset mining
algorithm using residual counts on the negative itemset tree. Chapter 5
provides a framework to combine both top-down and bottom-up traversing
algorithms. Finally, Chapter 6 describes how to utilize the negative itemset
tree for closed rare itemset mining.

2.4 Frequent Itemset Mining Algorithms

As mentioned above, existing rare itemset mining algorithms are mainly
adapted from frequent itemset mining algorithms. In this section, a brief
survey on fundamental frequent itemset mining algorithms is given.

When itemset mining was first introduced decades ago, it was mainly used
for association rules mining on transactional datasets. In order to generate
significant association rules, people only focus on patterns that occurred
very frequently in the data set. Table 2.2 gives an example of transactional
dataset. Let I be the universe of items, the transactional dataset T contains
N = 6 transactions. Each transaction T ∈ T is a non-empty subset of I.
An itemset (pattern) X is also a subset over I. Its support is defined as
the number of transactions T ∈ T such that X ⊆ T , denoted as X.supp =
|T (X)| = |{X ⊆ T, T ∈ T }|. Frequent itemset mining aims to identify all
itemsets with support greater than or equal to the given minimum support
threshold minSup.

Conventional frequent itemset mining algorithms can be divided into
two categories: Apriori-based approaches and Divide-and-conquer-based ap-
proaches. Both of them can be seen as a traversing process on the powerset
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Tid Transactions
1 A B C
2 A B D
3 B C
4 A B
5 A B E
6 D E

Table 2.2: An example of transaction database

lattice of itemset. They start the traversing from the bottom of the lattice
(the empty set). The Apriori approach employed a breadth-first traversing
while the Divide-and-conquer approach employed a depth-first traversing.
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Figure 2.2: A simple powerset lattice with four distinct items.

Apriori Approach

The naive way to generate all frequent itemsets is by counting the frequency
of all possible subsets of I in the dataset T . However, such an approach is
too expensive since there are 2|I| distinct itemsets for |I| items.

Apriori approach [3] was the first efficient frequent itemset mining al-
gorithm. It contains two major steps: candidate generation and candidate
pruning. The key principle used in this approach is the so-called Apriori
principle. It described the anti-monotonicity property of itemsets.

Theorem 2.4.1 (Apriori Principle (anti-monotonicity))
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• Any (non-empty) subset of a frequent itemset X is also frequent:

∀X ′ ⊆ X : X.supp ≥ minSup⇒ X ′.supp ≥ minSup

• Any superset of a non-frequent itemset X is also non-frequent:

∀X ′′ ⊇ X : X.supp < minSup⇒ X ′′.supp < minSup

The basic idea of the Apriori algorithm is to use the anti-monotonicity
property to prune infrequent itemsets. Let l-itemset denotes an itemset with
l items. Apriori algorithm starts from frequent 1-itemset (frequent items).
In each iteration, it combines two frequent l-itemsets together to generate
a candidate (l + 1)-itemset. Let P and Q be two frequent l-itemsets, and
items are sorted by any order. P and Q are joined if they share the same
(l − 1) items. Such a join strategy is complete. All frequent (l + 1)-itemsets
are contained due to the anti-monotonicity property. It is also selective. The
number of candidate (l + 1)-itemsets is much smaller than the number of
all (l + 1)-itemsets. The pruning step also employed the anti-monotonicity
property. Instead of checking the support of every candidate (l+1)-itemsets,
the Apriori algorithm removes candidate (l + 1)-itemsets that contain an
infrequent l-subset.

As an example, given the dataset in Table 2.2 and let minSup = 2.
The set of 1-itemsets, i.e., frequent items, is L1 = {A,B, C,D,E}. The
Apriori algorithm starts from this set of itemsets. In the candidate generation
step, itemsets in L1 are joined with themselves, which leads to the candidate
set of 2-itemsets C2 = {AB,AC,AD,AE,BC,BD,BE,CD,CE,DE}. The
pruning step first filtered out itemsets in C2 that contain infrequent 1-subset.
In this example, all 1-itemsets are frequent and therefore, no candidates are
filtered out. Then Apriori algorithm checks the support of each candidate
left in C2 and generates the set of frequent 2-itemsets L2 = {AB,BC}. The
above generation and pruning steps are repeated until the set of frequent
l-itemsets is empty. In this example, Apriori algorithm will generate C3 =
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{ABC} and L3 = ∅, and then stop. The final frequent itemsets list is
{A,B,C,D,E,AB,BC}. Algorithm 2.1 illustrates the detail of the Apriori
algorithm.

Algorithm 2.1: Apriori Algorithm
// Cl ←candidate itemsets of size l
// Ll ←frequent itemsets of size l

1 L1 ← {Frequent items} ;
2 for l = 1;Ll 6= ∅; l + + do

// Candidate generation step. Join Ll with itself to
produce Cl+1

// Discard (l + 1)-itemsets from Cl+1 that contain
non-frequent l-itemsets as subsets

3 Cl+1 ←candidates generated from Ll;
// Candidate pruning step.

4 foreach c ∈ Cl+1 do
5 foreach s ⊂ c do
6 if s /∈ Ll then
7 Delete c from Cl+1;
8 end
9 end

10 end
11 foreach Transaction T ∈ T do
12 Increase the support of all candidates in Cl+1 that are

contained in T ;
13 end
14 Ll+1 ←candidates in Cl+1 with support at least minSup;
15 end
16 return ∪lLl

Generally speaking, the Apriori algorithm performs a breadth-first travers-
ing on the powerset lattice. All frequent itemsets on one level are identified
before accessing the next level. Such a breadth-first traversing strategy leads
to huge candidate sets. To discover a frequent pattern of 100 items, one
needs to generate 2100 ≈ 1030 candidates. Furthermore, if l is the length of
the longest pattern, the Apriori algorithm needs to scan the database for l
times.



22 Chapter 2. Introduction

Divide-and-conquer Approach

To overcome the Apriori algorithm’s problem, frequent itemset mining algo-
rithms without the candidate generation step are proposed. The main idea
is to employ the divide-and-conquer paradigm with database projection. As-
suming items are sorted in any order, the database can be projected onto
each item step by step, which divides the frequent itemset mining problem
on the original dataset into a set of problems on smaller subdatasets. The
prefix of projection forms valid itemsets, which avoids the expensive candi-
date generation step. A naive divide-and-conquer approach using database
projection is illustrated in Algorithm 2.2.

Algorithm 2.2: Database Projection
Input: Database T , minSup
Output: The set of frequent itemsets F

1 F ←Projection(T , ∅, minSup);
2 return F ;
3 Function Projection(Database T ′, Prefix pre, minSup):

// Let I ′ be the set of distinct items in T ′, T ′|i be
the projected database of T ′ on item i ∈ I ′. T ′|i is
initialized to ∅.

4 foreach Transaction T ∈ T ′ do
5 if i ∈ T then
6 T ′ ← {i′ ∈ T, i′ � i} // i′ are items after i, in any

order
7 Add T ′ to T ′|i;
8 end
9 end

10 F ′ ← ∅;
11 foreach T ′|i do
12 if |T ′|i| ≥ minSup then
13 pre′ ← pre ∪ {i};
14 Add pre′ to F ′;
15 F ′ ← F ′∪Projection(T ′|i, pre′, minSup);
16 end
17 end
18 return F ′
19 end
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As an example, let minSup = 2 and the dataset is shown in Table 2.2.
Assuming that items are sorted in lexicographic order, the projected sub-
database on item A is {BC,BD,B,BE}. The size of this projected database
is larger than minSup = 2. Therefore, {A} is a frequent itemset. Then, the
sub-dataset is recursively projected onto items B, C, D, and E. Here we
show the projection on B, which gives a projected database {C,D, ∅, E}
with prefix {AB}. The size of this projected dataset is also larger than
minSup, so that the itemset {AB} is frequent. The database project process
is applied recursively on all items. Frequent itemsets are generated without
the candidate generation step.

The divide-and-conquer approach described above performs a depth-first
traversing on the powerset lattice, which is different from the breadth-first
traversing of the Apriori approach. In general, most efficient frequent itemset
mining algorithms also followed the divide-and-conquer approach. For exam-
ple, the FP-Growth [51] algorithm, which is one of the most famous frequent
itemset mining algorithms, utilizes the database projection technique. A spe-
cial data structure, so-called FP-Tree, is employed to compress the database
and provide better performance.

Approximation Summarization Approach

Algorithms mentioned above extract the exact set of frequent itemsets. How-
ever, when the size of the dataset becomes really large, most approaches are
in trouble. To further improve the efficiency of frequent itemset mining, ap-
proximation algorithms are proposed. Such algorithms do not guarantee that
identified itemsets are frequent. For example, the algorithm SLIM [90] pro-
posed to mine interesting itemsets based on the minimum description length
(MDL). It followed the idea of compression, which considered the set of in-
teresting itemsets as a variable-length code table for encoding the original
transaction dataset.
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Chapter 3

Negative Itemset Tree

As mentioned above, conventional itemset mining algorithms use a bottom-
up traversing strategy, which is not suitable for the task of rare itemset
mining. To address this problem, the concept of negative itemset is used.
Mining negative itemset is also an important topic in itemset mining. It aims
at extracting interesting patterns that are not in the dataset.

In this thesis, negative itemsets are used to form negative dataset. A
bottom-up based algorithm is proposed to mine frequent itemset in the neg-
ative dataset, which is equivalent to top-bottom traversing in the original
dataset. To achieve this goal, a novel data structure, negative itemset tree,
is developed.

In this chapter, the negative itemset tree is introduced. A naive rare
itemset mining algorithm using the negative itemset tree is described. Ex-
periments show that the naive method’s performance is much better than
using conventional methods on the rare itemset mining task. Parts of the
material presented in this Chapter have been published in [71].
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3.1 Preliminaries

Consider I = {i1, i2, . . . , im} to be a set of all distinct items. Any non-
empty subset X ⊆ I is an itemset. Any itemset X with size |X| = k is
referred to as a k-itemset. A tuple T = (tid,X) is called a transaction,
where tid is the transaction identifier. For simplicity, a transaction T also
refers to its itemset X if not specified. Any non-empty itemset Y ⊆ X is
contained by a transaction T = (tid,X) and we just write Y ⊆ T . A set
of transactions establish a transaction database T . Table 3.1 illustrates an
example transaction database.

Tid Transactions
1 A B C
2 A B D
3 B C
4 A B
5 A B E
6 D E

(a)

Tid Transactions
1 ¬D ¬E
2 ¬C ¬E
3 ¬A ¬D ¬E
4 ¬C ¬D ¬E
5 ¬C ¬D
6 ¬A ¬B ¬C

(b)

Table 3.1: Example transaction database (a) and its corresponding neg-rep
dataset (b).

Given a transaction database T , the (absolute) support of an itemset X
is defined as the number of transactions T ∈ T containing X: X.supp =
|{T ∈ T |X ⊆ T}|. The minimum support threshold (minSup) categorize all
itemsets (patterns) into three types: nonexistent, infrequent and frequent. An
itemsetX is infrequent if and only if: 0 < X.supp < minSup. Otherwise, it is
frequent (X.supp ≥ minSup) or nonexistent (X.supp = 0). With |I| distinct
items, a dataset contains 2|I| patterns while most of them are nonexistent.

We are aiming at extracting all infrequent itemsets with support smaller
than the given minimum support threshold and larger than 0. However, it is
still worth to note that extracting low support patterns does not necessarily
mean to extract all infrequent patterns. User might interest in patterns with
support fall in a range, for example between 10 and 20, which is still small
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in a dataset with hundred thousands of long transactions. A bottom-up
based approach can extract patterns in this range with minimum support
threshold set to 10 rather than 0. However, the number of frequent patterns
to be identified is still massive. In contrast, a top-down based approach
will be more efficient since it only extracts “infrequent” patterns occurred
less than 20 times. In our experiments later, different threshold values are
assigned to simulate the low support pattern mining scenario.

Neg-Rep and Negative Itemsets

In the conventional notation of an itemset, each symbol expresses the exis-
tence of an item. For example, given an itemset X = {A,B,C}. Its notation
implies that items A, B and C exist in X. For simplicity, we call symbol
of items in this notation as positive items and the notation as positive item-
sets. Similarly, we can also represent the itemset X by utilizing those items
that do not exist in X. This negative representation is the basic concept for
support counting in our mining process.

Definition 3.1.1 (Negative Item)
Given the set of items I = {i1, i2, . . . , im}, the corresponding negative item
of i ∈ I is denoted as ¬i.

The symbol ¬ is used to represent the idea of not exist, which can be
dropped in some notations below for simplicity.

Definition 3.1.2 (Neg-Rep Itemset and Negative Itemset)
Given a positive itemset X = {x1, x2, . . . , xn} ⊆ I, its neg-rep (negative
represented) itemset is the set of items that X does not have, denoted as
X = {¬i|i ∈ I ∧ i /∈ X} = I \X. The negative itemset of X is denoted as
¬X = {¬x1,¬x2, . . . ,¬xn}.

A positive itemsetX and its neg-rep itemsetX are two different notations
of the same pattern. This concept is important for the support definition
described later. Converting each transaction in T into the their neg-rep
itemset yields the corresponding neg-rep transaction database T (Table 3.1b).
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Two support values, intersection support and joint support, are defined on T
and T respectively.

Definition 3.1.3 (Intersect Support and Joint Support)
Given a non-empty itemset X = {x1, . . . , xn}:

• The intersect support of X in a transaction database T is the number
of transactions that contains all items of X: X.isupp = |{T ∈ T | x1 ∈
T ∧ x2 ∈ T ∧ · · · ∧ xn ∈ T}|.

• The joint support of the negative itemset ¬X is defined in the cor-
responding neg-rep dataset T . It is the number of transactions that
contains at least one item of ¬X: ¬X.jsupp = |{T ∈ T | ¬x1 ∈
T ∨ ¬x2 ∈ T ∨ · · · ∨ ¬xn ∈ T}|.

Obviously, the intersect support is equivalent to the original definition for
(absolute) support, i.e.: X.isupp = X.supp. The join support, on the other
hand, has the following property:

Theorem 3.1.1
Given itemset X, dataset T and the corresponding neg-rep dataset T , then
X.isupp = |T | − ¬X.jsupp.

Proof. If a transaction T does not contain X, then T + X ⇔ T ∪ ¬X 6= ∅.
Based on the definition of joint support, ¬X.jsupp = |{T ∈ T |T ∪ ¬X 6=
∅}| = |{T ∈ T |T + X}|. Furthermore, X.isupp = |{T ∈ T |T ⊇ X}|. Thus,
X.isupp+ ¬X.jsupp = |T | ⇒ X.isupp = |T | − ¬X.jsupp.

Thus, the support of patterns in T can be computed equivalently using
the joint support of neg-rep patterns in T . Mining rare itemset with support
smaller than a given threshold minPts in T is the same a mining frequent
itemset with support larger than the threshold |T | −minPts in D.

3.2 Negative Infrequent Itemset Tree

In this section, I describe the naive rare itemset mining algorithm using
negative itemset tree (NI-tree). The NI-tree is a prefix tree which compresses
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the neg-rep database. Each node n = [¬i, c, l] is a triple consisting of a
negative item ¬i, a count value c and a successor list l. The root node
r = [is, c, l] stores an itemset is which is empty at the beginning. Direct
successors of the root, i.e. in the list r.l, are called the 1st-layer nodes. All
negative items on a path from the root to any node form a negative itemset
by concatenation. The count value c represents the number of occurrences of
the corresponding itemset. The count of the root node represents the size of
the database. The negative itemset tree is built in the same way as the well
known FP-tree by scanning the whole neg-rep database. Negative items are
sorted in descending order which leads to a smaller tree. The corresponding
negative itemset tree for the database in Table 3.1 is shown in Figure 3.1a.

Infrequent itemsets are extracted by recursively subtracting (excluding)
nodes from the NI-tree. The new tree after subtraction, called deducted tree
(de-tree), is also an NI-tree. Items that have been subtracted so far are stored
in the root node. Figure 3.1 illustrates two de-trees by excluding ¬C and
¬C,¬D from the original NI-tree, respectively.
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Figure 3.1: Examples of (a) Negative Itemset tree and its corresponding
de-tree by excluding (b) ¬C and (c) ¬C,¬D. (c) is also a de-tree of (b).

When new negative item is added to the root node, corresponding nodes
in the tree are also removed. Sub-trees rooted at the excluded node will
be attached and merged recursively to the node above. For example, from
Figure 3.1a to Figure 3.1c, the path ¬E is attached to the root node and
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the path ¬D ¬E is merged to the existing path. Algorithm 3.1 illustrates
the pseudo code of the subtraction process.

Algorithm 3.1: Naive NI-tree Substraction
Input: NI-tree Root Node r, Negative Item ¬i
Result: New Root Node r′
/* New root with identical itemset, count but empty

children list */
1 r′ ←new NI-treeNode(r)

/* Add the given negative item to the new root */
2 Add ¬i to r′.is
3 foreach Child node n ∈ r.l do
4 if n.¬i ∈ r′.is then
5 TraverseSubtree(r′, n)
6 else
7 Add n to r′.l
8 end
9 end

10 return r′

11 Procedure TraverseSubtree(NI-tree Root r, NI-tree Node n)
12 foreach Child n′ ∈ n.l do
13 if n′.¬i ∈ r.is then
14 TraverseSubtree(r, n′)
15 else
16 Add n′ to r.l
17 end
18 end
19 end

Each NI-tree during the mining process corresponds to a specific itemset
X whose neg-rep itemset X is stored in the root node. Other negative items,
which remained in the tree, form the corresponding negative itemset X̃.

Theorem 3.2.1
Given a NI-tree root r and an itemset X with X = r.is, the joint support of
the negative itemset is: X̃.jsupp = ∑

n∈r.l
n.c

Proof. Since r.is = X, paths remained in the tree correspond to transactions
containing at least one item in X̃. Thus, the joint support of X̃ is the number
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of transactions remained. Furthermore, the NI-tree is a prefix tree. Let n.T
denotes the set transactions in CTD that contribute to the count of the
corresponding itemset, we have: n′.T ⊆ n.T, if node n′ is in the subtree
of node n. Thus, the count of a node summarize all counts in its subtree,
X̃.jsupp = ∑

n∈r.l
n.c.

For example, the NI-tree in Figure 3.1c corresponds to the itemset {A,B,E}
as its neg-rep itemset {¬C,¬D} is excluded. The joint support of the cor-
responding negative itemset {¬A¬B¬E} is 1 + 4 = 5. The joint support is
used as the stopping criteria for our mining process.

In practice, a pseudo-subtraction strategy is employed to avoid unnec-
essary tree construction. Firstly, only a new root node is created in the
subtraction step. Related child nodes will be attached to the new root im-
mediately. The subtraction process remains correct since the value of the
joint support is not affected, as illustrated in Figure 3.2a. Secondly, the sub-
traction process is terminated when no negative item in the 1st-layer needs
to be excluded. For example, excluding ¬D from the original tree will lead
to the tree in Figure 3.2b. The remaining ¬D node will only be removed
after the removing of node ¬C . Again, the correctness is not affected since
the computation of joint-support only depends on 1st-layer nodes.

{}

¬D

¬E

¬C

¬E

¬A¬E

¬D

4

2

1

1

2

2

1

¬A
1

¬B
1

6

{¬D}

¬E

¬C ¬E

¬A

¬E

¬D

4

2

1

1

2

1
¬A

1

¬B
1

6
{¬C}

¬D¬E

¬E

¬A

1 4

3

1

¬A
1

¬B
1

6

{¬C¬D}

¬E

¬A

4

1

¬A
1

¬B
1

6

{¬C}
6

(a)

{}

¬D

¬E

¬C

¬E

¬A¬E

¬D

4

2

1

1

2

2

1

¬A
1

¬B
1

6

{¬D}

¬E

¬C ¬E

¬A

¬E

¬D

4

2

1

1

2

1
¬A

1

¬B
1

6
{¬C}

¬D¬E

¬E

¬A

1 4

3

1

¬A
1

¬B
1

6

(b)

{}

¬D

¬E

¬C

¬E

¬A¬E

¬D

4

2

1

1

2

2

1

¬A
1

¬B
1

6

{¬D}

¬E

¬C ¬E

¬A

¬E

¬D

4

2

1

1

2

1
¬A

1

¬B
1

6
{¬C}

¬D¬E

¬E

¬A

1 4

3

1

¬A
1

¬B
1

6

{¬C¬D}

¬E

¬A

4

1

¬A
1

¬B
1

6

{¬C}
6

¬D

¬E

¬A

4

3

1

¬A
1

¬B
1

{¬C¬E}
6

(c)

Figure 3.2: (a) The pseudo-subtraction of ¬C in practice, only root is cre-
ated, no merging happened. (b,c) Examples of de-tree by excluding ¬D and
¬C¬E. Only 1st-layer nodes are checked and removed.

Algorithm 3.2 illustrates the overall procedure of the naive negative item-
set tree miner. Negative items are excluded one by one recursively. The whole
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Algorithm 3.2: Naive Miner
Input: Transaction Database T , Minimum Support minSup
Result: Infrequent Itemset List L

1 r ←NI-tree(T )
2 ε← |T | −minSup
3 L← ∅
4 Extend(r, ε, L)
5 return L

6 Procedure Extend(NI-tree Node r, Threshold ε, L)
7 foreach Negative Item ¬i ∈ I \ r.is do

/* Items to be excluded must after items exist r.is
*/

8 if r.is ≺ ¬i then
9 r′ ←NItreeSub(r,¬i)

10 if JointSupport(r′)≥ ε then
11 Add r′.is to L
12 Extend(r′, ε, L)
13 end
14 end
15 end
16 end

process terminated until the joint support is lower than the given threshold.

3.3 Experimental Evaluation

The naive method described above is compared to the Rarity [95] algorithm,
which is the state-of-the-art top-down Apriori-like infrequent itemset mining
approach. Other rare pattern mining algorithms, such as ARIMA [92] and
AfRIM [1], are not included in our experiments since they use a breadth-first
search with bottom-up traversal similar to Rarity, and their performance
compared to Rarity have been conducted in detail in Rarity papers.

All algorithms are implemented in Java and executed on an Intel Core
i7 3.4 GHz machine running Ubuntu 16.04. Real dataset Connect-4 from
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UCI repository1 is used in our experiment. Our experiments are conducted
on different dataset sizes, minimum supports, and maximum itemset sizes.
Given dataset size set to N and the maximum itemset size set to L, the first
N transactions in a dataset and the first L items in each itemset are used.
We limit the maximum itemset size since otherwise, the Rarity algorithm
won’t be able to finish the mining task on our machine. Experiment results
are illustrated in Figure 3.3

(a) L = 12, minSup = 1% (b) L = 12, N = 5E + 4 (c) N = 5e + 4, minSup =
1%

Figure 3.3: Runtime on Connect-4 dataset

Taking the advantage of the depth-first traversal over the breadth-first
traversal, the new method is significantly faster than Rarity under most of
the settings. The only exception is under large minimum support value and
small maximum itemset size settings. This is because the Connect-4 dataset
has a limited number of unique items, which leads to fewer candidates during
candidate generation step. Rarity also suffers from its pruning step under
small minimum support settings. As shown in Figure 3.3, the runtime per-
formance of Rarity is increasing when the minimum support is decreasing,
which is unusual as a top-down based approach. It costs much more time
but output less rare patterns with a smaller minimum support. In real appli-
cations, extracting infrequent itemsets usually implies to find itemsets with
small support rather than large support. In summary, the new approach,
with the ability to extract the complete set of rare patterns, is very efficient.

1https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php
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3.4 Conclusion and Future Works

The novel rare itemset mining algorithm has proven to solve the problem
of rare itemset mining in an efficient and successive manner. By utilizing
the negative representations of rare itemsets to frequent itemsets, this task
is addressed from its dual perspective. However, this approach traverses all
infrequent itemsets, including those patterns with support equal to 0, known
as nonexistent patterns. There are a huge number of nonexistent patterns,
especially in a sparse dataset, which should be skipped since they are not
important in many applications. It has to spend a lot of time on traversing
those patterns while Rarity only returns rare patterns that exist and could be
faster than this new method on sparse datasets. Further investigations are
necessary to avoid the expensive traversing step on nonexistent patterns.



Chapter 4

Negative Itemset Tree with
Residual Counts

The naive method described in Chapter 3 does not fully utilize the advantage
of a negative itemset tree. When computing the joint support, the naive
method needs to traverse all nodes connected to the root in the NI-tree.
In this Chapter, a more efficient rare itemset mining algorithm: Negative
Infrequent Itemset tree miner (NIIMiner), is introduced which utilizes the
NI-tree more efficiently. This approach is inspired by the diff-set in [108].
Instead of computing the joint support of rare itemsets directly, the residual
count is computed. Experiments show that the new residual counting strat-
egy is more efficient. Parts of the material presented in this Chapter have
been published in [73].
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Figure 4.1: Negative Itemset tree built based on dataset in Figure 6.1. Ter-
mination nodes are marked in red.

4.1 Negative Itemset Tree and Support Count-
ing

As mentioned in Chapter 3, negative itemset tree (NI-tree) is a prefix tree
generated based on the neg-rep database T which summarizes the itemset
information. The mining process extracts infrequent itemsets from the tree
by deleting nodes recursively. For residual counting, the NI-tree is adapted
accordingly.

Each node n = [¬i, c, l] is a triple consisting of a negative item ¬i, a count
value c and a child list l. The root node r = [is, c, l] stores an itemset {is},
which is initialized as I. The root node is on the 0th-layer. Nodes that are
direct successors of the root, i.e. in the list r.l, are called the 1st-layer nodes
and so on. All negative items on a path from the root to any node form
an itemset with negative items. The count value c is the number of neg-rep
transactions that end at the node. l is the list of child nodes.

To build a negative itemset tree, the dataset T is converted into its neg-
rep database T . Negative items in each transaction are sorted in descending
order based on their occurrence in T . Transactions in T are inserted to the
NI-tree one by one in ascending order with respect to their length.

This time, only the count c of the last node in each insertion is increased
by 1. Furthermore, if the count of all nodes on the path during an insertion
are 0, then the last node will be marked as a termination node, since it is the
end of a negative itemset. In another words, termination nodes are the first
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node with non-zero count on each path from root to leaf. The corresponding
NI-tree built based on the dataset in Figure 6.1 is shown in Figure 6.2.

Removing items from the root node, as well as the corresponding nodes in
the NI-tree, lead to a new NI-tree, called the deducted tree (de-tree). Detailed
excluding process is shown in Algorithm 4.1. The support of a pattern can
be computed efficiently during such removing process. The itemset {is} in
the new root node of the de-tree is a new pattern.

Given the initial NI-tree constructed from the neg-rep dataset T , we first
check each node on the 1st-layer of the NI-tree (Step 6-13, Algo 4.1). If a
node is marked with an item in the itemset is, it will be attached to the
new root node. Otherwise, we will skip this node and its child nodes will be
recursively checked (Step 11, Algo 4.1).

Algorithm 4.1: NI-treeSubtraction
Input: Root Node r, Items to be removed R
Result: New Root Node r′

1 r′ ←new NI-treeNode({r.is \R}, r.c, ∅)
2 TraverseSubtree(r, r′, r′.is)
3 return r′

4

5 Procedure TraverseSubtree(Node n, Node p, Itemset is)
6 foreach Child n′ ∈ n.l do
7 if n′.i ∈ p.is then
8 Add n′ to p.l
9 else

10 p.c← p.c+ n′.c
11 TraverseSubtree(n′, p, is)
12 end
13 end
14 end

We add the count value of removed nodes to the new root node (Step
10, Algo 4.1). When the removing process is finished, the count in the new
root node of the de-tree is the support of the corresponding pattern. It is
worth to note that the subtraction process is terminated when all 1st-layer
nodes in the original NI-tree are checked. Thus, nodes below the 1st-layer of
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the de-tree are not checked yet and may still contain items not covered by
the itemset in the root node. Such scheme avoids the scanning of the whole
NI-tree. Those nodes can be removed later and the count value is still correct
as proved later.

Three examples are illustrated in Figure 4.2 by excluding ¬C, ¬C¬D and
¬C¬D¬B from the NI-tree in Figure 6.2 respectively. In Figure 4.2a, the
node of ¬C is removed and all its child nodes are attached to the new root
node. The support of the pattern {ABDE} is 0 after the subtraction since
the count of the removed node is 0. The NI-tree in Figure 4.2b is achieved by
further subtracting node of ¬D from the previous tree. The count of node
¬D is added to the new root. Thus, the support of the pattern {ABE} is 1.
However, if we further exclude item ¬B from the above NI-tree, the node of
¬B is kept since the node of ¬A above it is on the 1st-layer. Thus, nothing
is removed and the support of pattern AE is still 1 as shown in Figure 4.2c.
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Figure 4.2: Examples de-trees by excluding ¬C, ¬C¬D and ¬C¬D¬B from
the NI-tree in Figure 6.2. The node of ¬B is not removed in tree (c) since
the subtraction process is terminated when all 1st-layer nodes are covered
by the itemset in root.

Theorem 4.1.1
The items removing process on the NI-tree described above generates the
support of patterns correctly.

Proof. According to the construction process of the initial NI-tree, only the
count of the last node is increased by 1 for each transaction. Thus, the total
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count of all nodes in a NI-tree is |T | = |T |.
Assume the itemset in the new root node of the de-tree is X. Given a

transaction T in |T |, if T ∩ ¬X 6= ∅, then at least the last node of T must
be in the de-tree since otherwise, all nodes on the path corresponding to T
will be removed.

Thus, the number of such transaction T is just the total count remained
in the de-tree. By definition, it equals to ¬X.jsupp. As all other counts are
added to the new root node, its count value is |T |−¬X.jsupp = X.isupp.

Furthermore, the items removing and support counting process can be
applied recursively. Given two set items to be removed: R1 and R2. Ob-
viously, first removing R1 then R2 is equivalent to first removing R2 then
R1. Both removing order will finally generate the same de-tree as removing
the joint set of R1 ∪R2. Thus, we can enumerate all patterns in the dataset
without starting from the initial NI-tree.

The removing process is simple and efficient. Considering one removing
process which generate a new de-tree with k items in the new root node of
the de-tree. The time to determine if an item is in the new root is O(log k).
Moreover, let M be the number of nodes in the original NI-tree labeled with
items that not in the new root node. Then, in the worst case, all M nodes
are removed during the process. Thus, the overall complexity of the process
is O(M log k). The value of k, which is the length of a pattern, is relatively
small compared the size of dataset. Therefore, log k can be treated as a
constant. The number of nodes M is linear to the size of the dataset |T |.
Thus, the complexity of our support counting process is also linear to the
size of the dataset, which is the same as other efficient bottom-up pattern
mining algorithms [97].

4.2 Infrequent Pattern Mining with Termi-
nation Nodes Pruning

The initial NI-tree contains the full itemset I in the root node, which means
that the NI-tree represents the support of the pattern I. One item is excluded
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in each recursive step and a new de-tree will be generated with a shorter
itemset in the root node. All combinations of items in I will be enumerated
recursively. This is a typical divide-and-conquer paradigm, which is employed
by many other pattern mining algorithms as well. The difference is that we
remove items in the NI-tree rather than project on items in the tree.

Algorithm 4.2: NIIMiner
Input: Transaction Database T , Minimum Support minSup
Result: Infrequent Itemset List IL

1 r, Lt ←BuildNI-tree(T ) ; // root node r, termination node
list Lt

2 IL,FL ← ∅ ; // Infrequent and frequent pattern list
/* Start with excluding items towards termination nodes

*/
3 foreach Termination Node Nt ∈ Lt do
4 lt ← {Items on path from r to Nt}
5 is′ ← r.is \ lt
6 if is′ /∈ IL ∧ is′ /∈ FL then
7 r′ ←NI-treeSubtraction(r, lt)
8 if r′.c < minSup then
9 IL ← IL ∪ {is′}

10 RecursiveRemove(r′,minSup,IL,FL,null) ;
// null≺ i ∈ I

11 else
12 FL ← FL ∪ {is′}
13 end
14 end
15 end
16 return IL

More specifically, items are excluded in ascending order with respect to
their frequency in the original dataset. Let the operator ≺ denotes “less fre-
quent”, A ≺ B ≺ C, we exclude items using the following divide-and-conquer
paradigm: 1. excluding A and all its combinations, 2. excluding all combi-
nations of B but without A, 3. excluding all combinations of C but without
A and B. The support value will be computed for each excluded itemset as
described above. Infrequent patterns found so far are stored in the infrequent
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Algorithm 4.3: RecursiveRemove
/* Typical divide-and-conquer step */

1 Procedure RecursiveRemove(Node r, minSup, IL, FL, Last item
iX)

2 foreach i ∈ r.is, iX ≺ i do
3 is′ ← r.is \ {i}
4 if is′ /∈ IL ∧ is′ /∈ FL then
5 r′ ←NI-treeSubtraction(r,{i})
6 if r′.c < minSup then
7 IL ← IL ∪ {is′}
8 RecursiveExtend(r′,ε,IL,FL,i)
9 else

10 FL ← FL ∪ {is′}
11 end
12 end
13 end
14 end

pattern list IL. The recursive process is terminated if the current pattern
is frequent. Such divide-and-conquer paradigm is known as the depth-first
traversing for itemset mining [2]. The procedure RecursiveRemove in Algo-
rithm 4.2 illustrates such process.

It is obvious that there are a huge number of nonexistent patterns in
a real dataset. Intuitively, they should be skipped. However, the simple
divide-and-conquer procedure described above starts from the full set and
excluding items one by one. All nonexistent patterns have to be traversed
before considering existent infrequent patterns, which might cost even more
time than bottom-up traversing. For example, the NI-tree in Figure 4.2a,
which only excludes C, should be skipped since its corresponding pattern
{A,B,D,E} does not exist in the dataset.

To address this problem, patterns stored in termination nodes mentioned
before are used as the starting point, rather than the full pattern I. Algo-
rithm 4.2, step 1-16, illustrates the overall NIIMiner procedure in detail. For
each termination node, items in its corresponding neg-rep itemset, which is
formed by all items on the path up to the root node, will be removed at
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once in the first recursive step, which guarantees that the generated de-tree
represents an existing pattern in the dataset (Step 4-6, Algo 4.2).

The divide-and-conquer paradigm is then applied similarly on each de-
tree for the rest of items after removing termination nodes. But, introducing
termination nodes will lead to duplicates in the recursive traversing process.
For example, given termination nodes in the initial NI-tree in Figure 6.2,
excluding CD and B is equivalent to excluding BD and C. If a duplicate
arises, the recursion should be terminated sine removing more items will also
lead to duplicates.

An extra pruning step is necessary to check if the current pattern has
been accessed before (Step 5 and 20, Algo 4.2). Infrequent and frequent
patterns found so far are stored in two hash sets. Before generating a new
de-tree, its corresponding pattern is tested. If it already exists in one of the
hash sets, itself and all its subsets must have been accessed already. Thus,
further divide-and-conquer process on this pattern can be terminated.

4.3 Infrequent Pattern Mining with 1st-layer
Nodes Pruning

In experiments on real-world datasets, we noticed that the number of du-
plicates is enormous. Thus, it is worth to rethink about the non-existent
pattern skipping schema. First of all, the structure of NI-tree can address
the nonexistent pattern problem implicitly, without suffering from the ex-
pensive duplicates checking schema. For example, in the NI-tree of Figure
6.2, we have C ≺ D ≺ E ≺ A ≺ B. Only ¬C and ¬D are on the 1st-layer.
Removing items that are not on the 1st-layer does not lead to any existent
pattern. For instance, according to the divide-and-conquer paradigm, if we
first remove E, then in the following recursive step, we remove EA, EB and
EAB. All of them correspond to nonexistent patterns. However, if we re-
move C, though the pattern {ABDE} is nonexistent, removing C will still
lead to a valid pattern later when further items after C are removed under
the divide-and-conquer paradigm.
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Thus, when the current pattern is nonexistent, we should only remove
items in a 1st-layer node. We can guarantee that each removing action will
eventually lead to at least one valid infrequent pattern. Our NIIMiner is
modified respectively. The first part (step 3-16, Algo. 4.2) of removing
termination nodes is skipped. We perform the divide-and-conquer paradigm
directly on the initial NI-tree. When the pattern in the current root is nonex-
istent, we only remove items on its 1st-layer, i.e., changing step 18, Algo. 4.2
to “foreach i ∈ {n.i|n ∈ r.l}, iX ≺ i do”. The duplicate checking step (step
20, Algo. 4.2) is then not necessary since the divide-and-conquer paradigm
for pattern mining guarantees that no duplicate happen.

Moreover, only removing items in the 1st-layer is also more efficient since
the child list of the root is always short when compared with I. The reason
is simple. Assume that the order of items in the given dataset T is A ≺ B ≺
C ≺ D ≺ . . . , i.e., A is the rarest item in T . There will be a node ¬A on the
1st-layer of the initial NI-tree. A node labeled with ¬B should also be there
since otherwise, A is an item that does not exist in any transactions, which
is contradict to the fact that A is in T . Thus, the root node in our initial
NI-tree must contain two children: A and B.

The story is different for item C. If ¬C is on the 1st-layer, then there
must be at least one transaction T ∈ T such that {¬A,¬B} /∈ T ⇒ {A,B} ∈
T . Let P (i) be the probability that the item i is in a randomly selected
transaction of T . Then, the probability that {A,B} ∈ T is P (A)P (B),
assuming items are independently distributed. Since A and B are the two
rarest items in T , we know that P (A)P (B) is minimal. Therefore, it is
unlikely that ¬C is on the 1st-layer. In fact, we have P (i ∈ r.l) = ∏

j≺i P (j),
which means that all frequent items are unlikely to appear on the 1st-layer.
In consequence, the modified mining process is more efficient.

4.4 Experimental Evaluation

Four real datasets obtained from the frequent itemset mining dataset reposi-
tory (http://fimi.ua.ac.be/data/) are investigated. Figure 4.3 lists main
features of these four datasets. It is worth to note that they have a larger

http://fimi.ua.ac.be/data/
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average transaction length when compared with a typical business/super-
market dataset. LCMfreq [97] is used as the baseline. LCMfreq is one of
the most efficient frequent itemset mining algorithms which represents the
performance of bottom-up and depth-first lattice traversing approach. Our
NIIMiner is implemented in JAVA while LCMfreq is obtained from the SPMF
library [37].

An early approach proposed in [71], which starts from the full itemset
and tests all nonexistent patterns, is not included since it can not finish on
those real datasets. Existing top-down breadth-first algorithms are also not
included in our experiments since they can not finish the mining task too,
due to the expensive candidate generation step. In fact, they are much slower
than bottom-up depth-first based approaches, such as FPGrowth, as shown
in [96]. We also test the first top-down depth-first pattern mining algorithm
mentioned in [107]. This algorithm treats items as transaction ids and trans-
action ids as items and identifies patterns with limited length using typical
bottom-up traversing method. However, such algorithm is also extremely
slow since it has to mine patterns from a dataset with very long transac-
tions. In our early experiments, this first top-down depth-first algorithm can
only handle datasets with hundreds of transactions. As a consequence, our
experiments in this section only compare three algorithms: LCMfreq, which
represents bottom-up depth-first approach, and our NIIMiner with different
nonexistent pattern skipping methods (Tnode: Termination Nodes, 1node:
1st-layer nodes).

Dataset |T | |X| |I| |L| sparsity

Chess 3k 118k 75 37 0.49
Mushrooms 8k 193k 119 23 0.19
Connect 67k 2904k 129 43 0.33
Accidents 340k 11500k 468 33.8 0.07

Figure 4.3: Statistics on real datasets. |T |: transaction number, |X|: number
of items, |I|: number of distinct items, |L|: average itemset size.

We first investigate the runtime performance with respect to different
minimum support values for each dataset. Note that the main goal of this
work is to extract low support patterns. Given a small minimum support
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value minSup, the NIIMiner will access all patterns with support smaller
than minSup. In contrast, the bottom-up based LCMfreq algorithm needs
to traverse all patterns with support larger than 1 in T to generate the same
set of low support patterns. It is too slow to make a reasonable performance
comparison. A small value c is introduced so that the LCMfreq algorithm
only traverse patterns with support larger than minSup− c, rather than 1.
Thus, our experiments can also be interpreted as comparing the runtime per-
formance of accessing patterns in the support range of [minSup−c,minSup).
The value c is fixed for each dataset. Furthermore, the maximum transaction
length L is restricted since otherwise, no algorithm can finish the low support
mining task.

As shown in Figure 4.4, our NIIMiner is more efficient than the LCMfreq
approach since it has to access a huge number of high support patterns.
When the minimum support increasing, the NIIMiner needs to traverse more
patterns while the LCMfreq algorithm traverses less. Thus, a bottom-up
based approach might be more efficient if desired supports are not that small.
However, since we focus on the low support scenario, our NIIMiner will be a
better choice. NIIMiner with 1st-layer nodes pruning is even faster since it
avoids nonexistent patterns as well as expensive duplicate checking step.

We also studied the runtime performance with respect to different dataset
size (total number of items |X|). The dataset size is adjusted by limiting the
maximum transaction length L. Our top-down based NIIMiner behaviors
similar to the bottom-up based approach. Obviously, runtime is positively
correlated to the dataset size. However, the runtime of our NIIMiner in-
creased much slower than its competitor. This is because the NI-tree em-
ployed in our approach compresses the dataset as well as provides efficient
counting ability. Moreover, bottom-up traversing strategy accessed more
frequent patterns when the dataset size increased.

It worth to note that our negative itemset tree is actually the same as the
FP-tree used by the FPGrowth algorithm [51]. Thus, the space complexity
of our approach is the same as the FPGrowth algorithm, which is known to
be efficient. More specifically, our consumption is a constant multiple of the
space used by FPGrowth while the constant value is determined by how the
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Figure 4.4: Runtime experiments on different absolute minimum support
values.

negative dataset is larger than the original one.

4.5 Conclusion and Future Works

Our novel rare itemset miner NIIMiner has proven to solve the problem
of rare itemset mining in an efficient and successful manner. By utilizing
the negative representations of rare itemsets, we addressed this task from
its dual perspective. Two different nonexistent pattern pruning methods is
proposed and the 1st-layer nodes pruning method is more efficient. The
major limitation of our NIIMiner appears on extreme sparse datasets, such
as a typical supermarket dataset, since the corresponding neg-rep dataset
can be thousand times larger than the original one with very long neg-rep
transactions. An integration of both bottom-up and top-down traversing
strategies should be investigated to overcome this problem. Furthermore,
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Figure 4.5: Runtime experiments on different dataset size.

condensed representations for rare patterns, such as closed pattern or non-
derivable patterns, and their corresponding algorithms could be used for real
applications and should be conducted as future works.
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Chapter 5

Bi-directional Rare Closed
Itemset Mining

Previous chapters introduced novel rare itemset mining algorithms using neg-
ative itemset tree. Approaches proposed uses top-down depth-first traversing
strategy. However, experiments show that when the dataset is sparse, con-
ventional bottom-up based approaches can be more efficient in mining rare
patterns. The reason is that patterns in sparse datasets are short. Bottom-
up based algorithms only need to access a few frequent patterns. In this case,
the overhead of top-down traversing becomes significant.

In this chapter, a bi-directional itemset mining framework is proposed,
which combines both bottom-up and top-down traversing strategy. The mo-
tivation is simple: even in dense datasets, there are sparse parts. Combining
both bottom-up and top-down traversing strategy is a good way to achieve
better performance.

Furthermore, instead of extracting the full list of rare itemset, this chapter
aims at finding closed rare patterns. Closed itemset is a lossless condensed
representation for patterns. In real applications, the full list of patterns is
usually too large to process. Mining closed itemsets can significantly reduce
the size of redundant information.

Parts of the material presented in this chapter have been published in
[74].
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5.1 Closed Infrequent Itemset

For the ease of reading, the basic definitions and notations for itemset mining
is introduced here again. Consider I = {i1, i2, . . . , im} to be the set of distinct
item. Any non-empty subsetX ⊆ I is an itemset. Any itemsetX with length
|X| = l is referred to as a l-itemset. Itemset Y ⊆ X is a subset ofX whileX is
a superset of Y . A tuple T = (tid,X) is called a transaction, where tid is the
transaction identifier. For simplicity, a transaction T = (tid,X) also refers
to its itemset if not specified. Any non-empty itemset Y ⊆ X is contained
by a transaction T = (tid,X) and we just write Y ⊆ T . A set of transactions
establish a transaction database T . Given an itemset X, a projected database
with respect to X is the set of transactions in T that contain X, denoted as
TX = {T ∈ T |X ⊆ T}. A dataset is sparse if most of its transactions only
contains few items in I, i.e., the value of ∑T∈T |T |/(|T | · |I|) is small. Table
5.1 illustrates an example transaction database.

Tid Itemset
1 {a,b,c}
2 {a,b,d}
3 {b,c}
4 {a,b}
5 {a,b,e}
6 {d,e}

Table 5.1: Example dataset

Given a transaction database T , the (absolute) support of an itemset X
is defined as the number of transactions T ∈ T containing X, i.e.: X.supp =
|{T ∈ T |X ⊆ T}|. An itemset (pattern) X is infrequent if and only if:
0 < X.supp < minSup, where minSup is a user-defined minimum sup-
port threshold. Otherwise, it is frequent (X.supp ≤ minSup) or nonexistent
(X.supp = 0). The main goal of this work is to extract closed infrequent
itemsets from a large transaction database efficiently.

The concept of closed frequent itemset proposed in [109] is a lossless con-
densed representation of frequent patterns. Given the set of closed frequent
itemsets, we can determine whether an itemset is frequent or not. If it is
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frequent, we can further determine the value of its support. We adapt this
concept as a lossless condensed representation for infrequent patterns.

Definition 5.1.1
An itemset X is closed if and only if @Y ⊇ X such that Y.supp = X.supp. In
addition, if 0 < X.supp < minSup, X is called a closed infrequent itemset.

The set of closed infrequent itemsets is denoted as CI. To guarantee the
lossless property of closed infrequent itemset, we also introduce the frequent
border set FB.

Definition 5.1.2
The frequent border FB is a set of closed frequent itemset. An itemset
X ∈ FB if and only if X.supp ≥ minSup and @Y ⊃ X, Y.supp ≥ minSup.

In fact, the definition of FB is equivalent to the concept of maximal
frequent itemset [16]. If an itemset X is frequent, then it must be covered
by an itemset in FB, otherwise, itself is in FB by definition. Furthermore,
it is obvious that itemsets in FB are also closed.

Theorem 5.1.1
Given the set of closed infrequent itemset CI and the corresponding frequent
border set FB, we can determine if an itemset X is infrequent or not, and if
it is, we can also determine the support X.supp.

Proof. If X is frequent, then it must be in FB or covered by an itemset in
FB, due to the definition of maximal frequent itemset [16]. IfX is infrequent,
then:

• if X ∈ CI, we have its support.

• if X /∈ CI, then X.supp = Y.supp, where Y = argmin
Y ∈CI,X⊂Y

|Y |.

All infrequent itemset that exists in the dataset must be covered by CI. This
can be proofed by contradiction: if an infrequent itemset that exists in the
dataset is not covered by any closed itemset in CI, then by the definition of
the closed itemset, itself is a closed itemset and must be in CI.

In summary, the set of closed infrequent itemset CI with frequent border
set FB form a concise condensed representation of infrequent patterns.
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5.2 Bi-directional Infrequent Itemset Mining

Let t be the average traversing time cost for each accessed pattern and S be
the total number of accessed patterns, the overall traversing runtime can be
roughly considered as t× S.

Considering the two performance factors for itemset mining t and S men-
tioned above, one might conclude that an efficient infrequent itemset mining
algorithm should traverse 1. depth-first (small t) and 2. top-down (small S)
with 3. condensed representation (small S) applied. However, experiments in
[96] show that existing breadth-first top-down based infrequent itemset min-
ing algorithms such as Rarity [95] are actually much slower than extracting
all patterns using bottom-up depth-first based frequent itemset mining algo-
rithms. Furthermore, a top-down based algorithm with depth-first traversing
applied is only efficient on very dense datasets [71].

Thus, we assume that the value of S is reduced due to the top-down
traversing but the value of t becomes much larger. As a consequence, top-
down traversing is meaningful only if there are much more frequent patterns
than infrequent patterns, so that the t×S value can be smaller on top-down
based approach. Such case might happen in a very dense dataset while most
real-world datasets are very sparse, i.e. traversing the frequent part only
wastes an insignificant amount of time.

However, we notice that in most real datasets, items are not uniformly
distributed. There exist both sparse and dense sub-parts in one dataset.
Figure 5.1 illustrates the frequency of items in BMS1 and mushrooms dataset
(http://fimi.ua.ac.be/data/) in ascending order. A few items are very
frequent while most of the others are less frequent.

If we assume that items are distributed independently, the (relative) sup-
port of an itemset X can be estimated as the product of all its items’ prob-
ability: X.supp = ∏

i∈X
P (i), where 0 ≤ P (i) ≤ 1 is the frequency of item i.

Thus, if an itemset X contains a less frequent item, this itemset tends to be
infrequent even though it is short. Therefore, the projected database with
respect to a less frequent item i only contains few frequent patterns, which
is suitable for bottom-up traversing. Similarly, the sub-database that only

http://fimi.ua.ac.be/data/
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δ

(a) (b)

Figure 5.1: Ascending ordered frequency plot of items in BMS1 and mush-
rooms dataset.

contains more frequent items tends to contain more frequent patterns. Thus,
top-down traversing should be a better choice for infrequent itemset mining
task on such sub-database.

In fact, if we sort items based on their frequency in ascending order, a
bottom-up depth-first based algorithm spent most of its runtime on pro-
cessing sub-datasets projected on more frequent items to extract infrequent
patterns. Figure 5.2 illustrates the cumulative runtime of the LCM algorithm
spent on each projected dataset of the BMS1 dataset. Traversing projected
datasets of 150 least frequent items only costs 1 second. However, projected
datasets of 150 most frequent items consume more than 50 seconds. The
latter group of projected datasets should be suitable for top-down travers-
ing under the assumption we made above. Thus, combining bottom-up and
top-down traversing for infrequent itemset mining has a good opportunity to
improve the performance.

Based on the idea of divide-and-conquer, we could split a single dataset
into two parts: 1. contains less frequent items and 2. does not contain less
frequent items. A bi-directional itemset mining framework can be applied to
extract closed infrequent patterns as the following:

1. Traverse itemsets that contain less frequent items in a bottom-up di-
rection.

2. Traverse itemsets that only contain more frequent items in a top-down
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Top-down traversing

Figure 5.2: Cumulative traversing time of LCM [97] on each projected
databases of the BMS1 dataset.

direction.

3. Combine results from above.

In other words, we first extract closed infrequent patterns from projected
datasets with respect to less frequent items. Then, we remove all less fre-
quent items and perform top-down traversing to extract all closed infrequent
patterns that only contain more frequent items. Finally, we join results from
the two steps above and get the complete set of patterns.

A threshold δ is necessary to determine if an item is less frequent or not.
The optimized value of δ might depend on many factors such as the relative
efficiency between bottom-up and top-down traversing, how items distributed
across the dataset, which is very difficult to determine. In practice, the
corresponding frequency value around the inflection point on the frequency-
order plot, as shown in Figure 5.2 (a), is chosen as the value of δ, which
performs pretty good in our experiments. Obviously, the value of δ should
be larger than minSup.

Based on the bi-directional traversing framework described above, we
propose a Closed Infrequent Itemset Mining algorithm, Rare Closed Itemset
Miner (RaCloMiner).

Bottom-up Closed Infrequent Itemset Mining

The LCM [97] algorithm is adapted to generate infrequent closed itemsets
which contain at least one item with support smaller than δ. LCM is one
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of the most efficient closed frequent itemset mining algorithms based on
database projection (bottom-up depth-first traversing) with efficient closure
checking function. Algorithm 5.1 illustrates the pseudo code of the bottom-
up traversing step.

Algorithm 5.1: BottomUpTraverse
Input: Transaction Database T , Minimum Support minSup,

Threshold δ
Result: Closed Infrequent Patterns CI, Frequent Border Set FB

1 foreach Transaction T ∈ T do
2 foreach Item i ∈ T do
3 if i.supp < δ then
4 Ti ← T ′i ∪ T
5 end
6 end
7 end
8 foreach Projected database Ti do
9 CloseCheck(Ti)

10 if Ti is closed then
11 LCM(i, {i}, Ti)
12 end
13 end

In the original LCM algorithm, items are sorted in descending order ac-
cording to their support. Here we sort items in ascending order since less
frequent items must be included in the pattern. Operator ≺ is used to express
the order of items.

In the first projection iteration, the original transaction database is pro-
jected only onto items with support smaller than the given threshold δ. Each
projected database is then traversed by the adapted LCM algorithm. All
closed patterns in projected databases are enumerated. Infrequent closed
itemsets will be added to IC. A frequent closed itemset will be added to FB
if all its supersets are infrequent (step 34). Details of the LCM algorithms,
such as the CloseCheck() function, can be found in the original LCM paper
[97].

Other bottom-up based closed frequent itemset mining algorithms could
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Algorithm 5.2: LCM
1 Function LCM(Current Item iX, Current Closed Itemset iS,

Projected Database T ′iS)
2 ∀i, iX ≺ i, T ′i ← ∅
3 foreach Transaction T ∈ T ′iS do
4 foreach Item i ∈ T, iX ≺ i, i /∈ iS do
5 T ′i ← T ′i ∪ T
6 end
7 end
8 AllInfreq←true
9 foreach Projected database T ′i do

10 CloseCheck(T ′i )
11 if T ′i is closed then
12 r←LCM(i, iS ∪ {i}, T ′i )
13 AllInfreq←AllInfreq∧r
14 end
15 end
16 if |T ′iS| < minSup then
17 CI ← CI ∪ iS
18 return true
19 else
20 if AllInfreq = true then
21 FB ← FB ∪ iS
22 end
23 return false
24 end
25 end

also be adapted and employed in this bottom-up traversing step. The per-
formance of this bottom-up traversing step is at least as the same as the
employed frequent itemset mining algorithm, which should be very efficient
as discussed above.

Top-down Closed Infrequent Itemset Mining

To the best of our knowledge, there is no closed infrequent itemset mining
algorithm in the literature. Thus, we propose a simple algorithm which
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traverses the lattice top-down by adapting the idea of database projection.
At the beginning of the top-down traversing step, all items with support
smaller than the given threshold δ are removed. This guarantees that all
patterns found in this step do not contain less frequent items.

In bottom-up based traversing, such as the LCM algorithm, the database
is projected with respect to single items. Contrarily, in the top-down based
traversing, a database is projected onto itemsets called projection itemsets (p-
itemsets). Each top-down projected database is aligned with one p-itemset
which covers all transactions in the database. An itemset X in the database
T is a projection itemset if and only if it is not covered by others, i.e.,
@Y ∈ T , X ⊂ Y . For example, the set of p-itemsets in the database in Table
5.1 are: {a, b, c}, {a, b, d}, {a, b, e} and {d, e}.

p-itemset count T-List R-List
{a, b, c} 1 {a, b}, {b, c}, {a, b}, {a, b} ∅
{a, b, d} 1 {d} {a, b}
{a, b, e} 1 {e} {a, b}
{d, e} 1 ∅ {d}, {e}

(a)

p-itemset count T-List R-List
{a, b} 4 {b} ∅
{b, c} 2 ∅ {b}

(b)

Table 5.2: Projected databases extracted (a) from the database in Table 5.1
and (b) from the projected database of {a, b, c} (the first row in (a)). Each
row is a projected database.

The pseudo code of the top-down traversing and its subroutines are il-
lustrated in Algorithm 5.3 and 5.4. All transactions are sorted based on
their length in descending order so that an itemset will not be covered by
another itemset after it. Each projected database T ′ contains three compo-
nents: the count of its p-itemset T ′.count, a list of projected transactions
T ′.T and a list of restriction itemsets T ′.R. If a transaction is equal to the
p-itemset of T ′, the value of T ′.count will be increased (Step 8, Algorithm
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5.4). If an itemset is a subset of or partially covered by the p-itemset T ′, the
common part is added to the transaction list T ′.T (Step 12, 16, Algorithm
5.4). The restriction list of a projected database T ′.R is created by inter-
sects its p-itemset with all p-itemsets of previously projected databases (Step
8, Algorithm 5.4). The restriction list tells if a pattern has been processed
in previously projected databases and should be skipped. The count of the
projection itemset T ′.count and the restriction list T ′.R are inherited and
aggregated from previous recursion step. This recursive projection process
is terminated until the count of the projection itemset is larger or equal to
the minimum support. Projection itemsets with different support values are
added to CI and FB respectively. Figure 5.2 (a) and (b) illustrates an ex-
ample of the first 2 recursion steps in the top-down projection process. Table
(a) is the set of projected databases extracted from the original database in
Figure 5.1 while table (b) lists projected databases w.r.t. the first database
in the table (a).

Algorithm 5.3: TopdownTrverse
Input: Transaction Database T , Minimum Support minSup,

Threshold δ
Result: Closed Infrequent Pattern CI, Frequent Border Set FB

1 foreach Item i ∈ T do
2 if i.supp < δ then
3 Remove i from T
4 end
5 end
6 T .count← 0
7 T .R← ∅
8 TopdownProject(T , minSup)
9 Remove all X ∈ FB if ∃Y ∈ FB, X ⊂ Y

Theorem 5.2.1
Our top-down projection algorithm is correct and complete as all patterns
returned are projection itemsets.

Proof. The completeness property is obvious since the recursive process re-
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Algorithm 5.4: TopdownProject
1 Function TopdownProject(Projected database T ′,

Minimum support minSup)
2 Sort(T ′)
3 L← ∅
4 foreach Transaction X ∈ T ′.T do
5 R← T ′.R
6 covered←false
7 foreach Projected database T ′Y ∈ L do
8 if X = Y then
9 T ′Y .count← T ′Y .count+ 1, covered←true

10 break
11 else if X ⊂ Y then
12 add X to T ′Y .T , covered←true
13 break
14 else if X ∩ Y 6= ∅ then
15 Z ← X ∩ Y
16 if ¬Restricted(R, Z) then
17 R← R ∪ Z, add Z to T ′Y .T
18 end
19 end
20 end
21 if covered = false then
22 T ′X .T ← ∅
23 T ′X .count← T ′.count+ 1
24 T ′X .R← R

25 end
26 end
27 foreach Projected database T ′X ∈ L do
28 if T ′X .count < minSup then
29 CI ← CI ∪X
30 TopdownProject(T ′X , minSup)
31 else
32 FB ← FB ∪X
33 end
34 end
35 end
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Algorithm 5.5: Ristricted
1 Function Ristricted(Restriction list R, Itemset Z)
2 foreach Itemset X ∈ R do
3 if Z ⊆ X then
4 return true
5 end
6 end
7 return false
8 end

turns all projection itemsets that are infrequent or its supersets are all infre-
quent.

To prove the correctness property, we need to show those projection item-
sets and closed itemsets are equivalent. Given a database T , a p-itemset
Y ∈ T and its corresponding projected database T ′Y . Let an itemset Z be
a p-itemset in T ′Y .T . By definition, Z is closed in T ′Y .T since no itemset in
T ′Y .T covers Z.

According to the projection process (step 7-23, Algorithm 5.4), itemset
Z is assigned to T ′Y .T when Z ⊂ Y or ∃X ∈ T , X ⊃ Z,X ∩ Y = Z. In
both cases, Z ⊂ Y, Z.supp > Y.supp. Assume that Z is not closed in T , then
there must be an itemset Z ′ ∈ T , Z ′ ⊃ Z,Z ′.supp = Z.supp.

• If Z ′ ∈ T ′Y .T , then Z is not a p-itemset in T ′Y .T .

• If Z ′ /∈ T ′Y .T , then Z ′ * Y . Given Z ⊂ Z ′, Z ⊂ Y, Z ′ * Y , we have
Z.supp > Z ′.supp.

The first situation violates the assumption that Z is a p-itemset in T ′Y .T .
The second situation violates the fact that Z ′.supp = Z.supp. Thus, a p-
itemset in any projected database is also a closed itemset in the original
database.

Furthermore, if itemset Z is not a p-itemset in any projected database
during the recursive projection process, then ∃Z ′ ⊃ Z such that Z ′ always
appears together with Z. Thus, if Z is not a p-itemset in any projected



Chapter 5. Bi-directional Rare Closed Itemset Mining 61

database, it is not closed itemset in T . In other words, a closed itemset in
the original database must be a p-itemset in one of the projected databases.

In summary, projection itemsets and closed itemsets are equivalent and
our top-down projection is correct.

Results Joining

The last step of our RaCloMiner is to join the temporary results from both
bottom-up and top-down traversing steps above.

Closed patterns from the bottom-up traversing step, denoted as CI1 and
FB1, must contain items with support smaller than δ while patterns from the
top-down step, denoted as CI2 and FB2, do not. Given an itemset X ∈ CI1,
there might be an itemset Y ∈ CI2 such that Y ⊂ X. However, @Y ∈ CI2

such that Y ⊃ X. The same relationship also applies to patterns in FB1 and
FB2. The join process iterates each pattern from the first step and removes
the corresponding itemset from the second step if it exists. Algorithm 5.6
illustrates the pseudo code of the joining step.

Algorithm 5.6: JoinResults
Input: Closed infrequent itemsets CI1, CI2, Frequent border set

FB1,FB2
Result: Closed infrequent itemsets CI, Frequent border set FB

1 foreach Itemset X ∈ CI1 do
2 X ′ ← {i ∈ X|i.supp ≥ δ}
3 if ∃Y ∈ CI2 ∧ Y = X ′ ∧ Y.supp = X.supp then
4 Remove Y from CI2
5 end
6 end
7 CI ← CI1 ∪ CI2
8 foreach Itemset X ∈ FB2 do
9 X ′ ← {i ∈ X|i.supp ≥ δ}

10 if ∃Y ∈ FB2 ∧ Y = X ′ then
11 Remove Y from FB2
12 end
13 end
14 FB ← FB1 ∪ FB2
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5.3 Experiments

To the best of our knowledge, there is no algorithm designed specifically for
closed infrequent itemset mining. Thus, we select the LCM [97] and the
Rarity [95] algorithms as the baseline but mainly focus on the time spent
on lattice traversing by each algorithm under different settings. The LCM
algorithm represents the most efficient bottom-up closed frequent itemset
mining approach. In order to generate all closed infrequent patterns, the
(absolute) minimum support value of LCM algorithm will be always set to
1. Extra post-processing steps, such as removing all frequent patterns, is
skipped since we only focus on the lattice traversing performance. The Rarity
algorithm is the most efficient approach that extracts infrequent itemsets
using top-down traversing strategy. Similarly, the post-processing step to
generate closed patterns is also skipped. The algorithm proposed in [71] is
not used since it returns all nonexistent patterns and thus only works under
a very dense case.

6 real-life datasets, obtained from the frequent itemset mining repository
(http://fimi.ua.ac.be/data/), are used to conduct the performance of
our algorithms. Table 6.11 lists main statistic information of datasets used
in our experiments. The first three datasets are very sparse while the last
three datasets are relatively dense.

We test the performance of each dataset with different dataset size N and
minimum support value minSup settings. First N transactions will be used
as the testing dataset. Bottom-up threshold δ is set around the inflection
point of the histogram plot as described above for each dataset.

Database Size (N) Items (|I|) Average length (L)
retail 88162 16470 10.3
BMS1 59602 497 2.5
BMS2 77512 3340 4.6

mushrooms 8415 119 23
chess 3196 75 37

connect 67556 129 43

Table 5.3: Statistics of real-life datasets used in our experiments.

http://fimi.ua.ac.be/data/
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We implement our RaCloMiner and the Rarity algorithm while the LCM
algorithm is obtained from the SPMF tool [37]. All of them are implemented
in Java. Experiments are executed on a machine with Intel 3.4GHz CPU
and Ubuntu 16.04 installed.

It is worth to note that some experiments will not finish if the maxi-
mum transaction length is too large in the dataset. Let LR be the maximum
length value for the Rarity algorithm while LL is the value for LCM and
RaCloMiner. If such value is given, it implies that the corresponding algo-
rithm cannot finish the experiment under the same settings as others and
transactions used will be cut down to the specified length. It is well known
that the runtime increases monotonically with transactions length. As the
Rarity algorithm is the slowest one even with a smaller maximum transac-
tion length, the conclusion on performance comparison will not be affected
by such inconsistency in experiments settings.

(a) Varying dataset size, minSup =
0.05%

(b) Varying minimum support, N = 30k

Figure 5.3: Runtime performance on retail dataset, δ = 1%, LR = 10

Figure 5.3 5.4 and 5.5 present results from the first three experiments
conducted on retail, BMS1 and BMS2 datasets. These three datasets are
very sparse since their average transaction length L is much smaller than the
number of distinct items |I|, as shown in Table 6.11. Rarity cannot finish
the task in all cases. A few long transactions in these datasets make the
pruning step in Rarity extremely slow so that the maximum transactions
length LR has to be set. The runtime results of Rarity is abnormal in some
cases. For example, in Figure 5.5 (a), the runtime or Rarity decreased when
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(a) Varying dataset size, minSup =
0.1%

(b) Varying minimum support, N = 30k,
Logarithmic

Figure 5.4: Runtime performance on BMS1 dataset, δ = 0.3%, LR = 15

(a) Varying dataset size, minSup =
0.1%

(b) Varying minimum support, N = 30k

Figure 5.5: Runtime performance on BMS2 dataset, δ = 0.3%, LR = 15

(a) Varying dataset size, minSup =
0.5%, Logarithmic

(b) Varying minimum support, N = 8k,
Logarithmic

Figure 5.6: Runtime performance on mushrooms dataset, delta = 30%, LR =
10
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(a) Varying dataset size, minSup =
0.2%

(b) Varying minimum support, N = 2K

Figure 5.7: Runtime performance on chess dataset, δ = 1%, LR = 9, LL = 25

(a) Varying dataset size, minSup =
0.1%

(b) Varying minimum support, N =
40K

Figure 5.8: Runtime performance on connect dataset,δ = 30%, LR = 9, LL =
15

the dataset size increasing. This abnormality is also caused by the expensive
pruning step in Rarity.

The delegate of bottom-up based algorithms, LCM, is much faster than
Rarity since the number of frequent patterns to be traversed is relatively
small in a sparse dataset. Bottom-up based algorithms, with better lattice
traversing efficiency, won’t waste too much time on traversing the frequent
part.

Our RaCloMiner, which is based on the bi-directional framework, is al-
ways faster than the other two algorithms. In most cases, we can even achieve
1 to 2 order of magnitude performance boost when compared with the LCM
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algorithm. This result meets our expectations. As shown in Figure 5.2, LCM
only spend less than 1% of its total runtime on projected databases with re-
spect to less frequent items. In our RaCloMiner, LCM is employed to only
traversing this very efficient part. The rest of the dataset, which contains
more frequent items and relatively large frequent part on the corresponding
lattice, is traversed using a top-down based algorithm. As no time is wasted
on traversing the expensive frequent part, our RaCloMiner is much faster
than others.

The performance-boosting effect of the bi-directional traversing on the
dense dataset is not as dramatic as on the sparse dataset above. Figure 5.6,
5.7 and 5.8 show results of experiments conducted on three dense datasets:
mushrooms, chess and connect datasets. The Rarity algorithm is again the
slowest one among all three approaches even though it has the shortest trans-
action length. On the other hand, the LCM algorithm performs pretty well
under several settings. For example, when the minimum support value be-
comes large in chess dataset (Figure 5.7 (b)), the LCM algorithm can even be
faster than our RaCloMiner under the same settings. This is because only a
small portion of patterns are frequent so that the top-down traversing won’t
be able to save much runtime. A better threshold value δ could be helpful
in such case. Nevertheless, our bi-directional traversing framework should
be able to provide at least the same runtime as a bottom-up algorithm by
setting the δ value to 1. Overall, our RaCloMiner can still achieve a multiple
times performance boosting even on dense datasets.

5.4 Discussion and Conclusion

In this work, we analyzed the factors that might affect the performance
in terms of infrequent itemset mining problem. A simple but useful bi-
directional traversing itemset mining framework is proposed to mine infre-
quent patterns efficiently. The closed infrequent itemset mining problem is
defined and solved by introducing the RaCloMiner based on our bi-directional
traversing framework. Our intensive experiments on real-world datasets show
that, by using the bi-directional traversing framework, a simple algorithm,
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without advanced data structures or pruning techniques, could still achieve
more than 10 times performance boosting when compared with existing op-
tions.

However, we should notice that only having this bi-directional traversing
is not enough. In some dataset with specific minimum support, the total
number of infrequent itemsets is extremely large even if we only consider
closed patterns. In such cases, bi-directional traversing might perform almost
the same as the bottom-up based algorithm since the time spent on traversing
the frequent part is relatively ignorable. In extreme cases, none of those
algorithms can finish the task. Directions to improve the itemset mining
performance could be introducing further constraints, such as the confidence
value, or more condensed representations than the closed set concept.

Many efforts have been put into the area of introducing new condensed
representations or restriction criteria in recent years. However, most of them
only focus on the frequent itemset mining problem while infrequent patterns
may have different requirements in some scenarios. For example, frequent
patterns with higher confidence value are usually preferable while infrequent
patterns with lower confidence value are more important in some applications
since those patterns might represent real unusual events. Designing new
condensed representation or restriction criteria for infrequent itemset mining
task is still an open question for further investigation.
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Chapter 6

Mining Closed Rare Itemsets
on NI-Tree

In this chapter, a top-down based closed rare itemset mining algorithm so-
called LSCMiner (Low Support Closed Miner) is proposed. LSCMiner fully
utilized the property of negative itemset tree. The closeness checking step
is integrated into the NI-tree subtraction process, which is more efficient
than the naive top-down closed rare itemset mining approach described in
Chapter 5. Furthermore, LSCMiner can be combined with bottom-up based
frequent itemset mining algorithms using the framework proposed in Chapter
5. The combined approach achieves state-of-the-art performance for closed
rare itemset mining. Part of the material presented in this chapter has been
published in [72].
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6.1 Basic Definition

For the ease of reading, basic definitions and notations are introduced here
again. Let I be the universe of items, a subset of I that contains l items is a
l-itemset, denoted as X = {x1, x2, . . . , xl}. A transaction dataset T contains
a set of transactions where each transaction T ∈ T is an itemset over I. Let
T (X) = {T |T ∈ T , X ⊆ T} be the set of transactions in T that contains X,
the (absolute) support of X on T is defined as |T (X)|.

In this work, we tend to find less frequent or low support patterns, i.e.,
|T (X)| � |T |. Formally speaking, given two user-defined threshold: mini-
mum support α and maximum support β, we are going to mine patterns X
such that α ≤ |T (X)| < β, where α ≥ 1 ∧ β � |T |. In general, our mining
task is the same as infrequent itemset mining since β � |T |. The parameter
α is introduced for more flexibility as users might consider patterns occurred
less than α as noise. Conventional frequent itemset mining algorithms can
also extract low support patterns by setting their minimum support thresh-
old to α and then removing all frequent patterns with support larger than
β.

An itemset X is a closed itemset in dataset T if and only if there is
no other itemset Y in T such that X ⊂ Y ∧ |T (X)| = |T (Y )|. The closed
itemset concept was first proposed in [109] to address the redundant problem
in frequent itemset mining problem. It is a lossless condensed representation:
user can determine the support of any frequent itemsets from closed frequent
itemsets. The set of closed low support patterns is LP .

A frequent border set FB is defined as the set of longest patterns such
that |T (X)| ≥ β, which is also known as the maximal frequent itemset [16].
FB is necessary to make LP complete. For example, given a pattern {ab}, if
∃X ∈ LP such that {ab} ⊆ X but @X ′ ∈ LP such that X ′ ⊆ {ab}, then the
pattern {ab} can be either frequent or not frequent. The border FB helps in
this case to identify whether {ab} is frequent or not.
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Support Counting on Negative Itemset Tree

The ni-tree [71] is initially proposed in Chapter 3 to mine all infrequent pat-
terns. It stores support information of negative represented (neg-rep) item-
sets. Neg-rep itemsets are itemsets represented by symbol of items that do
not exist in the original itemsets. For example, given I = {a, b, c, d, e, f}, an
itemset X = {a, b, c} can also be represented using the symbol of items not
in X, denoted as X = {d, e, f}.

Obviously, X and X represent the same information since X ⊆ T ⇔ X ⊇
T . Let T be the negative dataset formed by neg-rep itemsets, the support of
X can be defined as the number of neg-rep transactions in T that covered
by X such that:

|T (X)| := |{T |T ∈ T , T ⊆ X}| ⇔ |T (X)| = |T (X)| (6.1)

Tid Itemset
1 b c
2 d e
3 a e
4 c d e
5 b d e
6 a d e

(a)

Tid Negative Itemset
1 a d e
2 a b c
3 b c d
4 a b
5 a c
6 b c

(b)

Figure 6.1: Transaction dataset and
its negative dataset.
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The ni-tree is a prefix tree, as shown in Figure 6.2. Items are sorted
in ascending order concerning their frequency T . Each node n is a triplet
〈i, c, l〉, where i and c are the item label and its count, l is the list of child
nodes. c is initialized to 0. The root node r = 〈P, c, l〉 stores the current
pattern P .

Each transaction T ∈ T is converted to T and inserted to the ni-tree. The
last node, known as the termination node or t-node for short, will increase its
count by 1. Thus, the count of a node n is the number of its corresponding
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transactions, i.e. n.c = |{T ∈ T , T = n.L}|, where n.L is the set of items on
the path from root to n. According to equation 6.1, |T (X)| can be computed
by aggregating all nodes whose path from the root is fully covered by X:

|T (X)| = |T (X)| =
∑

n.L⊆X

n.c (6.2)

For example, to identify the support of itemset X = {de}, the count of nodes
on paths that covered by X = I \X = {abc} are aggregated, which equals
to 4. Therefore, the ni-tree can be used to compute the support of a given
pattern.

Moreover, given patterns X and X ′, X ⊂ X ′ ⇐ X ⊃ X ′, the set of nodes
for computing |T (X)| can be decomposed as: {n|n.L ⊆ X} = {n|n.L ⊆
X ′}∪ {n|n.L ⊆ X,n.L * X ′}. Thus, the aggregating process can be decom-
posed and computed recursively. For example, let X = {de}, X ′ = {bcde},
the support of X can be obtained by removing nodes on the path covered by
X ′ = {a}, which leads to a new ni-tree that represents the pattern {bcde},
as shown in Figure 6.3. Then, removing nodes covered by X from the second
ni-tree will generate the pattern {de}. Such process is in top-down style. In
practice, we only need to create a new root node rather than a brand new
ni-tree.
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6.2 Closed Itemset on Negative Itemset Tree

Though the ni-tree is not initially designed for closed pattern mining, we
found that the closeness can be determined readily by using t-nodes.
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Closed Itemset Determination

According to the definition, an essential property of a closed pattern X is
that its support must be different from its supersets. In ni-tree, the count
value of any node, except t-nodes, is 0. Thus, if the count of all removed
nodes is 0, the generated pattern is not closed. A closed pattern can only
be achieved if at least one t-node is involved in the aggregating process.
Formally speaking:

Theorem 6.2.1
Given I and the initial ni-tree, let NX be the set of nodes been removed
from the initial ni-tree to achieve the pattern X. Let N t

X ⊆ NX be the set
of t-nodes been removed. Then pattern X is closed if and only if the set of
items been removed (X) equals to the set of items on paths to t-nodes:

I \X = X =
⋃

n∈Nt
X

n.L (6.3)

Proof. Obviously, NX = {n|n.L ⊆ X}, NX ⊇ N t
X . Thus,

X =
⋃

n∈NX
n.L ⊇

⋃
n∈Nt

X

n.L (6.4)

As non-terminated nodes are counted at 0 in the ni-tree, the support of
pattern X is the sum of all t-nodes:

|T (X)| = |T (X)| =
∑

n.L⊆X

n.c =
∑
n∈Nt

X

n.c (6.5)

Let M = X \ (⋃n∈Nt
X
n.L). Thus, any node n′ ∈ NX with item n′.i ∈ M

is not on the path to a t-node in N t
X . Removing such nodes or not won’t

affect the support value, i.e. |T (X)| = |T (X ∪M)|. By closeness definition,
M = ∅ ⇔ X is closed.

In short, a pattern X is closed if all removed items can be found on paths
towards removed t-nodes. For example, in the ni-tree of Figure 6.2, pattern
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X = {be} is not closed since item d is removed but its corresponding nodes
are not on a path towards t-nodes covered by X = {acd}. On the other
hand, itemset X = {de} is closed.

Naïve Method

According to Theorem 6.2.1, top-down closed pattern mining can be realized
by simply enumerating and removing all combinations of paths towards t-
nodes. The ni-tree is slightly adapted. The root node and each t-node stores
a list of pointers (lt) linked to their child t-nodes, as shown in Figure 6.4. In
each step, nodes on the path from one t-node (excluding) to its child t-node
(including) are removed together, which guarantees that only closed patterns
are generated. Figure 6.4 illustrates an example. By removing all nodes on
the path to t-node 1, a new ni-tree is generated, and the corresponding closed
pattern {de} is returned. Then removing t-node 2 in the new ni-tree lead to
another closed pattern {e}. Enumerating all removing combinations generate
all closed patterns.
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Figure 6.4: The adapted initial ni-tree with t-node links (blue) and corre-
sponding ni-tree by removing t-node 1, 2 or 1, 2 together. Each link is marked
with the t-node id. In each step, only child t-nodes of root are considered
(e.g. node 6 can only be removed after node 4).

The main disadvantage of this naive approach is the duplicate access-
ing problem. For example, given I = {abcde}, the pattern X = {ab} can
be achieved by either removing {cd} and {ce} or removing {cd} and {de}.
A pattern X might be accessed repeatedly up to O(2|T (X)|) times. Extra
duplicate checking and pruning step are necessary. By examining patterns
discovered so far, we can avoid the majority of duplicates. However, the over-
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head of the pruning step plus remaining duplicates are still time-consuming.
Indeed, this naïve method is the top-down part used in the bi-directional
traversing framework [74].

6.3 Algorithm: LSCMiner

Divide-and-Conquer Paradigm

The naive approach described above is a top-down based algorithm. However,
it is not efficient due to the expensive duplicate accessing problem. To take
advantage of top-down traversing, we propose our Low SupportClosed Miner
(LSCMiner), which employs the depth-first traversing strategy with novel
closeness checking and pruning steps. The general mining process employed
a divide-and-conquer paradigm, which is commonly used in bottom-up based
algorithms. The main difference is that we remove items recursively, rather
than grow patterns.

First of all, let operators≺ and� denote the concept of “before (smaller)”
and “after (larger)” with respect to the ascending frequency order used by
the ni-tree. Given I = {a ≺ b ≺ c ≺ . . . }, the top-down mining process
removes items recursively, which can be represented as a tree as shown in
Figure 6.5. We call the tree above as the deletion tree. Each node in the tree
is the set of items to be removed, known as the deletion set. Given a node
in the deletion tree, we say that deletion sets in its sub-tree and right to it
are under or after the deletion set in the node, as shown in Figure 6.5.

The first challenge is to combine the closeness checking process with the
divide-and-conquer paradigm. According to Theorem 6.2.1, we need to check
if every removed item can be found on paths to removed t-nodes. To solve
the problem, we let each t-node nt contains a list nt.L, which stores items
on the path from itself (including) to its proceeding t-node (excluding), as
shown in Figure 6.6. During the removing process, a set U is maintained
to track items that are not covered by paths towards removed t-nodes yet.
In one recursive step, we first add the current item to U . If a t-node nt is
removed, all items exist in nt.L are removed from U . When U = ∅, we knew
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that the current pattern is closed.
Figure 6.7 gives an example of the closed pattern mining process. We

first remove item a, no t-node is removed right now. Thus, U = {a} and the
pattern {bcde} is not closed. Then, we recursively remove b from the current
ni-tree. There is a t-node of b is removed and U = {ab} \ {ab} = ∅. Pattern
{cde} is closed and should be added to the result set.
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Figure 6.7: Recursive steps of the removing process a→ ab→ abd→ abde.

Algorithm 6.1 illustrates the pseudo code of the LSCMiner. Each iteration
step removes one item (Line 5). If there are t-nodes in removed nodes list li,
we remove items from U and aggregate counts (Line 10-13). If the current
candidate pattern is not frequent, we attach nodes with larger item to the new
ni-tree root for the next recursive call (Line 18). The recursive mining process
is continued until the aggregated count is larger than the given maximum
threshold β. Variables iM1 and iM2 are pruning thresholds as described
later.
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Algorithm 6.1: LSCMiner
Input: Ni-tree root r, Minimum support α, Maximum support β
Output: Infrequent Itemset List LP , Frequent Border List FB

1 LP ← ∅,FB ← ∅;
2 LSCMiner(r,∅,+∞, −∞) ;
3 return LP ,FB ;
4 Function LSCMiner(r, U , iM1, iM2)
5 foreach Item i ∈ r.l ∧ i � iM1 do
6 li ←List of nodes in r.l with label i ;
7 U ′ ← U ∪ {i}, P ′ ← r.P \ {i}, c′ ← r.c;

/* Closeness checking */
8 foreach Termination node n ∈ li do
9 U ′ ← U ′ \ n.is, c′ ← c′ + n.c ;

10 end
11 if c′ < β then
12 if c′ ≥ α ∧ U ′ = ∅ then
13 Add P ′ to LP
14 end
15 l′ ← {n′ ∈ r.l|n′.i � i} ∪ {⋃n∈li n.l}, r′ ← {P ′, c′, l′};

/* Initial new end index */
16 if P ′ is closed then
17 iM ′

1, iM
′
2 ← +∞,−∞;

18 else
19 iM ′

1, iM
′
2 ←UpperBound(l, iM2);

20 end
21 LCSMiner(r′, U ′, iM ′

1, iM ′
2) ;

22 if No closed pattern generated in the recursive call above
then

23 Break; // Trial-and-Error Pruning
24 end
25 else
26 if U ′ = ∅ then
27 Add P ′ to FB;
28 end
29 end
30 end
31 end
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Pruning

An efficient algorithm should be able to prune unclosed itemsets as early
as possible, known as the “look ahead” ability [109][97]. In our LSCMiner,
we fully utilized the closeness property of the ni-tree. Two types of pruning
methods are utilized.

Trial-and-Error Pruning

Our first pruning method (Line 27, Algorithm 6.1) is based on the following
observation:

Theorem 6.3.1
Given the current ni-tree root r and the current unclosed items set U 6= ∅.
Let R be the set of items been removed so far. If ∃i ∈ r.l such that no closed
pattern in deletion sets under {R∪ i}, then there is also no closed pattern in
deletion sets after {R ∪ i}.

Proof. The sub-ni-tree under item i must contain at least one t-node. Let
l be the set of items from i (including) to a t-node nt (including) in its
sub-ni-tree. Obviously, we have nt.L ⊇ l and i ∈ nt.L.

Let deletion sets after i be R�i. Assuming the deletion set of i and
deletion sets under i are not closed. If ∃p ∈ R�i which will lead to a closed
pattern, then removing all items in {p ∪ l} will also lead to a closed pattern
(by further removing the node nt mentioned above). Obviously, {p ∪ l} is a
deletion set of i or under i, which is contradict to our assumption.
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In short, if removing i does not generate a closed pattern, the recursion
call will be executed (Line 21, Algorithm 6.1). This recursive call will try
all possible combinations of items with respect to i. If no closed pattern is
generated, iterations on items (Line 5, Algorithm 6.1) after i can be canceled.

Upper-bound Pruning

The second pruning technique computes the largest possible item as an upper
bound for the next recursion step. Given the current removed item i and the
list of nodes to be removed li, assuming all nodes in li are not terminated,
then the largest possible item iM ′

1 that can be removed in the next recursion
step is the largest item among all children of nodes in li.

The reason is straightforward: the item i will be covered by a t-node if
and only if at least one of its children is removed. If we remove an item
i′ � iM ′

1 in the next recursion step, all items to be removed in the future
are also larger than iM ′

1. Thus, it is impossible to reach a t-node that covers
i. For example, given the left ni-tree in Figure 6.9, assuming now we are
removing item a, which results in the right ni-tree in Figure 6.9. However,
t-nodes that cover a only exist in the sub-ni-tree of a. Thus, the upper bound
for item removing on the second ni-tree is b. Further removing process on
items after b is pruned since the item a will never be covered.
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The above upper bound assumes that @n ∈ li, i.e., item i can only be
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covered by children of nodes in li. However, if one node of item i is termi-
nated, then i is covered by a node of itself. Removing items larger than the
upper bound iM ′

1 can still lead to closed patterns. Another weaker upper
bound iM ′

2 is introduced for this case, which is defined as the largest upper
bound, except for infinity, among all previous recursion steps. For example,
assuming the left ni-tree in Figure 6.10 is achieved by removing item a, and
the right ni-tree is achieved by further removing item b. Since node b is
terminated, removing items larger than its children is valid. However, the
previously removed item a needs to be covered so that the upper bound iM ′

2

is the upper bound when removing a. Algorithm 6.2 computes both upper
bounds described here.

Algorithm 6.2: Compute the new upper bound.
1 Function UpperBound(li, iM2)
2 iM ′

1 ← −∞
3 foreach n ∈ li ∧ n is not t-node do
4 xlast ←Last item in n.l
5 if iM ′

1 ≺ xlast then
6 iM ′

1 ← xlast
7 end
8 end
9 if iM ′

1 6= −∞ then
10 iM ′

2 ← max(iM ′
1, iM2)

11 end
12 if ∃n ∈ li, n is terminated then
13 iM ′

1 ← iM ′
2

14 end
15 return iM ′

1, iM ′
2

16 end

Complexity

Pattern mining is an NP-hard problem. The overall runtime is highly de-
pendent on the number of desired patterns. For instance, one of the most
efficient frequent closed pattern mining algorithms, LCM [97], declares that
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it extracts each closed pattern in polynomial time: O(P (|T |)). Let U and UC
be the set of desired and undesired patterns, the time complexity per item-
set of the LCM algorithm can be written as: O( |U|+|UC||U| P (|T |)), where UC
contains frequent patterns in the low support closed pattern mining scenario.

Our approach can also achieve the same level of complexity. Given the
current ni-tree root r and the current unclosed items set U , removing item i

from the child list r.l involves the following steps:

1. aggregate counts in removed nodes, which requires O(|li|) time, where
li is the list of nodes in r.l labeled with i.

2. closeness checking if t-nodes exist, which requires O(|U | log(|nt.L|))
time, where nt.L is the set of items in a t-node and binary search is
employed

3. add children of nodes in li to the new root node r′, which takesO(∑n∈li |n.l|)
time.

4. add all nodes in r.l with label larger than i to the new root node r′,
which requires O(|l�i|) time, where l�i is the list of nodes.

The total complexity is O(|li| + |U | log |nt.L| + ∑
n∈li |n.l| + |l�i|). |U | and

|nt.L| are limited to the size of a single transaction so that the second term
can be seen as a constant. The length of li, l�i and n.l are limited to the
size of the dataset. Thus, the complexity of removing item i is polynomial.
A closed itemset X is achieved by removing items in X. The complexity to
extract X is O(∑i∈X P (|T |)) ∈ O(P (|T |)) since |X| is small compared to
|T |. Considering that our approach also accesses some unclosed patterns, its
complexity per itemset is also O( |U|+|UC||U| P (|T |)), where UC are those unclosed
patterns.

In terms of memory complexity, it is obvious that our approach is limited
by the size of the dataset, similar to algorithms such as FPGrowth [51].
However, LSCMiner has to store the negative dataset such that a scale factor
s = |I|

avg. transaction length exists, known as the sparsity of the dataset. s can be
huge on sparse dataset. In this case, the bi-directional traversing framework
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proposed in [74] can be used so that our LSCMiner only need to handle the
densest part of a dataset.
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6.4 Experiments

We first conduct the runtime performance of our LSCMiner. In experiments,
the naive approach described in Section 6.2 represents the performance of
a simple top-down based algorithm. The LCM [97] algorithm represents
the most efficient bottom-up based algorithm in solving low support pattern
mining problem. We also conduct the bi-directional traversing framework
[74] by combining the LCM algorithm with our LSCMiner. Other infrequent
pattern mining algorithms are not included since they are either represented
by LCM (bottom-up based) or too memory expensive to finish (apriori alike).

Database Size (N) Items (I) Avg. length (L)
mushrooms 8k 119 23

chess 3k 75 37
connect 67k 129 43
accident 340k 468 33.8
kddcup99 1000k 135 16
BMS1 59k 497 2.5

Figure 6.11: Real-life datasets in our experiments.

Algorithms are implemented using Java. The LCM implementation comes
from [37]. 6 real-world datasets obtained from the fimi repository (http:
//fimi.ua.ac.be/data/) are used as our test datasets. Necessary informa-
tion of those datasets are listed in Figure 6.11. There are three small dense
datasets, two large dense datasets, and one sparse dataset. First N transac-
tions and first L items in each transaction are used in our experiments. We
are interested in the time difference in accessing patterns on a certain level
of support from different directions. Thus, we set α = β − 10. The default
value of N , L and β are provided in each experiment. The splitting threshold
for the bi-directional framework is set to δ = 1%.

Dense Data

Figure 6.12 illustrates the performance on small dense dataset. On these
datasets, the bottom-up algorithm, LCM, is up to two order of magnitude

http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/
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LSCMiner

(a) chess dataset (default: N = 3200, L = 26,� = 20)

(b) connect dataset (default: N = 10k, L = 25,� = 20)

(c) mushrooms dataset (default: N = 8k, L = 23,� = 20)

Naive

LSCMiner
+LCM

LCM

Figure 6.12: Runtime on small dense dataset.

slower than our top-down LSCMiner on the first two datasets. It is even
slower than the naive approach under some settings. This is mainly because
the bottom-up LCM algorithm has to traverse all frequent patterns. When β
increased, i.e., we become more interested in frequent patterns, the runtime
of LCM is reduced and may surpass top-down approaches since it needs
to traverse less frequent patterns. On the mushrooms dataset, top-down
approach is slower with β > 150. This is mainly because that the mushrooms
dataset has less number of patterns. Our LSCMiner is very efficient. Its
runtime grows similar to the LCM approach with increasing dataset size,
which indicates that the time complexity of both approaches is on the same
level. The combined approach is also efficient under most settings. Our
LSCMiner under the bi-directional framework only need to handle the densest
part of the dataset, which reduces the memory consumption, as discussed in
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Section 16. However, the slowness of the bottom-up part under some settings
drag down its performance. The performance gap between top-down and
bottom-up approaches is further enlarged on large dense datasets, as shown
in Figure 6.13. Both accidents and kddcup99 datasets have larger size and
longer transactions. The LCM algorithm is up to 3 order of magnitude slower
than our LSCMiner. Even the naive approach is better under most cases.
Though increasing β slows down our LSCMiner, it is still hard for LCM
algorithm to overtake in the low support pattern mining scenario.

(a) accidens dataset (default: N = 300k, L = 15,� = 50)

(b) kddcup99 dataset (default: N = 1000k, L = 16,� = 20)
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Figure 6.13: Runtime on large dense datasets.

Sparse Data

In theory, bottom-up algorithms should perform better than our top-down
approach on a sparse dataset. According to our analysis above, both LCM
and our LSCMiner have a complexity of O( |C|+|UC||C| P (|T |)). In the case of
sparse datasets, |UC| in LCM is much smaller since the number of frequent
patterns is tiny. On the other hand, a sparse dataset leads to a huge ni-
tree, which is a substantial overhead for LSCMiner. Figure 6.14 illustrates
the runtime performance on a sparse dataset BMS2. The results fulfill our
expectations. The combined approach performs the best since we can take
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advantage of both bottom-up and top-down algorithms.
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Figure 6.14: Runtime on BMS1 dataset (default: N = 60k, L = 30, β = 20)

Memory-Performance Trade-off

As discussed above, the performance of our LSCMiner is limited by the
dataset size. An extra constant scale factor s exists since the ni-tree stores
the negative dataset. Sparsity is a crucial factor that affects the memory con-
sumption of LSCMiner. By applying the bi-directional traversing framework
and adjusting the value of splitting threshold δ, the LSCMiner only need to
traverse the densest part of the dataset, which costs much fewer memories.
We can still benefit from the efficient top-down traversing since top-down
traversing is powerful on dense dataset while bottom-up traversing is good
at the sparse dataset, as shown in experiments above. In this section, we
study the relation between memory consumption and runtime performance
by investigating how the trade-off behaviors with respect to different (rela-
tive) dividing threshold δ.

Two dense datasets, chess and connect, are selected as representatives
since they have both sparse and dense parts. We measure the memory
consumption using the first 1k transactions in each dataset. The runtime
value for connect dataset is measured with the first 10k transactions in-
stead. When the value of δ is close to 0, all patterns are extracted by the
LSCMiner. When the value of δ is close to the relative support of the most
frequent item, the bottom-up approach extracts all patterns. Thus, by in-
creasing δ, the bi-directional traversing is moving from purely LSCMiner to
purely LCM algorithm.

On the chess dataset, the runtime of the bi-directional framework in-
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(a) chess dataset (b) connect dataset

Figure 6.15: Memory consumption and runtime under different δ values. δ
is set up to 0.4 on connect dataset since almost all items occurred less than
40%.

creased about 20 times while the memory consumption decreased about 2.5
times when moving from LSCMiner to LCM approach. On the connect
dataset, the runtime increased about 7 times while the memory consumption
decreased about 30%. LSCMiner is beneficial on both datasets: we spend
some memory but get much better performance.

6.5 Conclusion

We present a very efficient low support closed pattern mining algorithm,
LSCMiner, which avoids traversing undesired frequent patterns. It is partic-
ularly effective on datasets with huge amounts of frequent patterns. Though
it is memory expensive to store the ni-tree, much better runtime performance
is achieved in return. Furthermore, we can balance the memory consumption
and runtime performance by using the bi-directional traversing framework.
If only those dense datasets are considered, our LSCMiner guarantees to
provide the best performance in time complexity.
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Chapter 7

Introduction

The need to analyze information aligned with the temporal attribute from
streams arises in various applications, such as smart home data analysis
or stock fluctuation data analysis. According to the characteristics of these
data, challenges need to be overcome in three most important aspects: mining
sequential pattern from streams, interpreting the temporal information and
handling interval-based event.

7.1 Towards Interval-based Temporal Pattern
Mining on Streams

The story of interval-based temporal pattern mining starts from sequential
pattern mining. Sequential pattern mining (SPM) is a well-studied topic
for decades. Algorithms such as PrefixSpan [50] were proposed in the last
decades to generate sequential patterns from a static database efficiently.
Conventional sequential pattern mining approaches treat events as points on
the timeline. Predefined relationships such as before, equal and after are
considered. However, the limited diversity of predefined relationships makes
it hard to describe heterogeneous temporal information accurately.

Temporal pattern mining (TPM) is an extension to SPM in which tempo-
ral information of events is also considered. Temporal information is valuable
in a variety of applications. For example, in disease dataset, one symptom
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is “1 minute before” and “1 week before” another symptom must be consid-
ered as different cases. Treating different temporal information as the same
relationship in SPM is problematic in this case. The noise introduced by
the temporal information can not be handled by the SPM approaches ei-
ther. If noise exists in the temporal information, two events that happened
simultaneously are hard to retrieve as “equal”. Researches such as [39] were
proposed in recent years to generate temporal patterns from a static tem-
poral database. However, to the best of our knowledge, the task of mining
temporal patterns from stream data has not been conducted in the literature
yet.

Stream data analysis is one of the most important fields in recent years.
Additional constraints on the analysis method are posed when considering
the complexity of streaming data: it is impossible to store all the stream data
in memory due to the immense size of data; each stream event can only be
accessed once to avoid possible blocking operations; current results should
be available immediately on demand. Furthermore, for a correct and more
balanced extraction of the underlying knowledge in a stream environment,
recent objects should be given more importance than older ones as they
usually reflect current trends of the data more accurately.

Sequential pattern mining on stream data is the one of the challenges to
be tackled in this part. The interest is in the patterns that are frequently
happening on a stream and their evolution over time. Mining frequent se-
quential patterns from a single stream is non-trivial since it is hard to identify
the support of patterns. Moreover, frequent patterns may appear not only
in a single stream but also across multiple streams. For example, each stock
market is a stream of stock fluctuation. The price of a stock may also be
affected by other stocks in different markets. Patterns happened within a sin-
gle stream are called intra-pattern while patterns happened across multiple
streams are called inter-pattern. As in [53], multiple streams will be merged
into a single stream to extract both types of patterns, as illustrated in Figure
7.1. Thus, sequential pattern mining on a single stream is the core problem
conducted in here. Existing stream sequential pattern mining approaches ei-
ther require multiple streams or cut the single stream into batches. A static
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database is generated during the stream mining process, and conventional
sequential pattern mining algorithms are applied. Both strategies have their
own drawbacks. In this part, we proposed to employ the sliding window
model and an estimated support to extract frequent patterns.
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Figure 7.1: Streams will be merged together in order to find intra- and inter-
pattern.

Furthermore, events in the real world usually persist for a period. Con-
sider the case of a smart home data consisting of the ON/OFF states of elec-
trical appliances in a normal household usage [63]. The microwave is used
for 5 minutes “during” the usage of the electrical oven. The point-based
event model used in SPM can be seen as a special case of the interval-based
event model. More complicated relationships among interval events need to
be considered [5]. In this part, we show that our model can be extended
easily to handle the interval-based event streams further.

In a nutshell, the contributions can be summarized as follows. Similarity
measures are defined based on the temporal information, and frequent pat-
terns are generated based on clustering results. Multiple streams are merged
and processed as a single stream so that both intra-and inter-patterns are
kept. A stream clustering approach and an estimated support are introduced
to mine frequent patterns incrementally.

7.2 Related Works

In the literature, there exist many researches conduct the problem of min-
ing sequential patterns from streams and mining temporal patterns from a
static database. However, to the best of our knowledge, the issue of mining
temporal patterns from streams has not been studied. In this section, we
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divide our related works into two parts: SPM on streams and TPM on a
static database.

Point-based Sequential Pattern Mining on Streams

Existing stream mining approaches only focus on the point-based case. Fur-
thermore, a static database is maintained during the process so that the
conventional concept of support could be inherited, i.e., the count of pattern
divide by the total number of sequences. Old patterns are not decaying but
pruned based on the current status of the static database. Applying stream
clustering algorithm on these approaches is not a trivial matter.
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Figure 7.2: Mining models employed in point-based stream mining. Both (a)
Batch and (b) Sliding Window provide a static database.

Batch based approaches [81, 24] cut the stream into sequences. Each
batch contains multiple sequences to form a static databases. Conventional
sequential pattern mining approach, such as PrefixSpan [50], is then applied
to each batch to generate the latest patterns. This approach is efficient
but loses patterns came across multiple batches. Other approaches, such
as [22, 55], extract sequential patterns incrementally based on the sliding
window model. Multiple streams are processed individually so that patterns
came across multiple streams might be lost. Both types of approach are
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illustrated in Figure 7.2.
In contrast, multiple streams are merged into a single stream, and a

sliding window is applied in this work. No static database is created during
the process. To the best of our knowledge, [47] is the only work that makes
use of a similar setting except for the temporal information. However, the
count of a pattern in the current window, rather than a percentage value, is
used as the support. When the speed of stream (the number of events arrived
in one unit time) is changing, it was difficult to tell whether a pattern frequent
or not with its count value. For example, if the speed of stream increased
dramatically, everything might become frequent.

Point-based Temporal Pattern Mining on Static Database

In SPM, predefined relationships such as “before” and “after” are used, and
the temporal information is ignored during the mining process. TPM ap-
proaches extend SPM ideas by taking the temporal information into consid-
eration, which provides more informative patterns.

One of the strategies to handle temporal information is introducing more
predefined relationships, for example, “small before” and “large before”. The
length of the gap between events was quantized, and more accurate relation-
ships between events were defined in approaches [105, 54]. Other approaches,
such as [21, 26], employed the fuzzy logic technique to express the tempo-
ral information. However, the quantization functions or relationships were
still predefined in those approaches, which makes it difficult to reveal the
temporal information precisely.

Instead of using predefined temporal relationships, temporal patterns can
also be learned from the data by clustering. One of the examples is [39]
which generates temporally annotated patterns (T AS) by the clustering of
temporal information. The length of the gap between consecutive events is
used to present the temporal information, for example, “A 3.5−→ B

1.5−→ C”
represents “A before B before C” with gap length 3.5 and 1.5 in between.
Each sequence is treated as a point in high-dimensional space. For example,
the sequence above is a point in space {AB,BC} with value (3.5, 1.5).
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The idea of PrefixSpan is employed in most of these approaches which
require sequences that support the same pattern mast share the same events
order. When ordering event based on their happening time, sequences with
similar temporal information may generate entirely different patterns due
to noise. For example, events B and C might have a equal relationship in
sequences shown in Figure 7.3. Clustering approaches such as [39] can not
alleviate the problem since the gap information is used. Similar sequences
will locate in different spaces due to noise. For example, similar sequences
in Figure 7.3 are points in various spaces {AB,BC} and {AC,CB}. In this
work, we propose to use the temporal information aligned with each event
to represent temporal sequences and patterns.
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Figure 7.3: Two sequences with the same event types and similar temporal
information, but different events order due to some natural noise.

7.3 Fundamental Sequential Pattern Mining
Algorithm

In general, sequential pattern mining algorithms are similar to frequent item-
set mining algorithms. Given a dataset of event sequences, it extracts fre-
quent subsequences as sequential patterns. The main difference between
sequential pattern mining and frequent itemset mining is that the order of
events is also considered in sequential patterns. Therefore, the same type
of events can occur multiple times in one sequence. Table 7.1 gives an ex-
ample of a sequence dataset. Let I be the universe of events, the sequence
dataset S contains N = 6 sequences. Each sequence S ∈ S is a non-empty
list formed by events in I. The support of a pattern (subsequence) X is
defined as the number of sequences S ∈ S such that X is a subsequence of S,
denoted as X.supp = |S(X)|. Sequential pattern mining aims at extracting
all subsequences with support greater than or equal to the given minimum
support threshold minSup.
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Sequential pattern mining algorithms can also be divided into Apriori-
based and Pattern growth (divide-and-conquer) based. The apriori-based
algorithm, GSP [91], was first introduced to address the sequential pattern
mining problem. Then, more efficient algorithms such as FreeSpan [49] and
PrefixSpan [50] are proposed. They utilized the divide-and-conquer paradigm
with the dataset projection technique. Other popular sequential pattern
mining algorithms also followed a similar structure but equipped with more
advanced data representations and pruning techniques—for example, SPAM
[8] stores the sequence dataset using a vertical bitmap representation.

Sid Sequences
1 A B C A D
2 A B D A
3 B C B A
4 A B D C
5 E B A C
6 D E B A C

Table 7.1: An example of sequence database

Sid Sequences (temporal information)
1 A(0.6) B(0.8) C(1.2) A(1.3) D(2.0)
2 A(0.5) B(0.7) D(1.9) A(2.5)
3 B(0.8) C(1.3) B(2.1) A(2.4)
4 A(1.0) B(1.3) D(2.2) C(3.0)
5 E(0.5) B(1.1) A(2.1) C(4.0)
6 D(0.9) E(1.0) B(1.8) A(2.1) C(2.2)

Table 7.2: An example of temporal sequence database, each event is aligned
with a timestamp.

Temporal pattern mining is developed upon sequential pattern mining by
taking the temporal information of each event in the sequence into account.
The set of subsequences that support a temporal pattern share the same or-
der of events and similar temporal information. Table 7.2 gives an example
of temporal sequence dataset. Each event in sequences is aligned with tem-
poral information. The basic idea to mine temporal patterns involves two
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steps: 1) extracting frequent sequential patterns; 2) identifying clusters in
each sequential pattern based on the temporal information of subsequences.
The first step usually utilizes sequential pattern mining algorithms such as
PrefixSpan [50].

In this section, the algorithm PrefixSpan [50] is briefly explained.

PrefixSpan

PrefixSpan (Prefix-projected Sequential pattern mining) [50] is the most fa-
mous frequent sequential pattern mining algorithm. It is used as the back-
bone in many other advanced sequential pattern mining or temporal pattern
mining algorithms. The main idea of PrefixSpan is to project the sequence
dataset recursively onto prefix subsequences. This idea is very similar to
divide-and-conquer based algorithms in itemset mining.

Using the dataset in Table 7.1 as an example and let the minimum sup-
port minSup = 3. The first step of PrefixSpan is removing all infrequent
items from the dataset. Item E is removed from the dataset in the first step
since it only occurred for two times in the dataset. Then the dataset is pro-
jected onto each remaining item in the dataset, leading to a set of projected
datasets, respectively. The item is the prefix sequence, while the part after
the item in each sequence is the postfix in the projected dataset. For in-
stance, when the original dataset is projected onto the item A, the projected
dataset is {BCAD,BDA, ∅, BDC,C,C}. The size of the projected dataset
is 6. Therefore, its prefix A is a frequent sequential pattern. The dataset
projection process can be applied recursively. For example, the projected
dataset of item A and be projected onto the item C. The new projected
dataset is {AD, ∅, ∅, ∅} and its prefix AC is a frequent sequential pattern.
Sequential patterns are identified by repeating the projection process until
no projected dataset can be generated.

The pseudo-code of PrefixSpan is described in Algorithm 7.1. In this
brief description, some cases, such as multiple events that happened simulta-
neously, are not discussed. Nevertheless, the overall structure of PrefixSpan,
i.e., recursive dataset projection, is clear. Other advanced sequential pattern
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mining algorithms, such as interval-based sequential pattern mining [102] or
temporal pattern mining algorithms [39] are mostly developed upon PrefixS-
pan.

Algorithm 7.1: PrefixSpan
Input: Sequence Dataset S, minSup
Output: The set of frequent sequential patterns F

1 F ←Projection(S, ∅,minSup);
2 return F ;
3 Function Projection(Database S ′, Prefix pre, minSup):
4 Scan S ′ once, find the set of frequent items b;
5 For each frequent item b, append it to pre to form a sequential

pattern X, and add X to F ;
6 For each X, construct X-projected dataset S ′|X , and call

Projection(S ′|X , X,minSup);
7 end

The remainder of this part is organized as follows: Chapter 8 introduces
some preliminaries needed for proposing our approach for temporal pattern
mining in streams in Chapter 9. Chapter 10 extends the idea to handle the
interval-based temporal pattern mining tasks on streams, with Section 10.5
shows the results of our extensive experimental evaluation and Section 10.6
concludes this work with an outlook. Part of the contents presented in this
part has been published in [70].
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Chapter 8

Temporal Patterns in Streams

Formally speaking, a stream S is an infinite sequence of interval events which
evolves continuously, as shown in Figure 8.1. People can only retrieve the
current value from the stream. Storing the whole stream into the main
memory is unrealistic.
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Figure 8.1: Small example of point-based events stream.

8.1 Temporal Event and Temporal Sequence

Given an event label set Σ, an point-based event E has two attributes: (l, t),
where l ∈ Σ is the label or the type of the event. t ∈ R is the time or the
temporal information aligned with the event.

A sequence S is defined as a list of events. In order to handle the noise
exists in temporal information as mentioned above, events are ordered based
on the alphabet of their labels rather than the temporal information as is
used in other approaches. Formally speaking, S = {E1, E2, . . . , En}, where
∀i ∈ {1, . . . , n − 1}, Ei.l ≤ Ei+1.l. Sequence contains n events is called n-
sequence for short.

Events with the same label will be ordered based on their temporal in-
formation. Besides, each event will preserve their temporal information. For
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example, the sequence appeared in the snapshot of a stream in Figure 8.1 is
denoted as

S = {(A, 1.5), (A, 5.8), (B, 4.6), (C, 2.9), (C, 5.1), (D, 3.3)}.

A subsequence S ′ is a sublist of sequence S, denoted as S ′ ⊆ S. For
example, S ′ = {(A, 1.5), (B, 4.6), (C, 2.9)} is a subsequence of the sequence
above.

Furthermore, the concept of sequence string is introduced for simplicity. A
string of a sequence is the label list, denoted as S.str = 〈l1, l2, . . . , ln〉, where
li = Ei.l. For example, the string of the sequence in Figure 8.1 is 〈A,A,B,C,
C,D〉. In the rest of this part, {·} and 〈·〉 will be used to represent sequence
and string respectively.

Given string str′ ⊆ S.str, the corresponding subsequence is denoted as
S ′ = S(str′). When multiple events in S share the same label, more recent
events are chosen first. For example, let str′ = 〈A,B,C〉, the corresponding
subsequence is S ′ = S(str′) = {(A, 5.8), (B, 4.6), (C, 5.1)}.

8.2 Similarity Measures and Temporal Pat-
tern

Commonly speaking, sequential patterns or temporal patterns describe the
relative relationship between events. Thus, the similarity between sequences
should only depend on the relative difference within sequences. The abso-
lute happening time should not affect the distance value. For example, the
event sequence drinking coffee then read a book, happened in the morning or
the afternoon should be considered as the same and support the same pat-
tern. This invariant in absolute happening time is implicitly provided if the
gap information is employed, while in consequence the noise problem men-
tioned above could not be avoided. In contrast, we let each event store their
temporal information and guarantee the invariant property in the distance
function.
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We first consider the similarity between two events. The distance be-
tween events with different labels is set to infinity. Furthermore, events with
the same label are considered as equivalent despite the difference in their
happening time. Under such settings, we define the distance between two
events E1 and E2 as follows:

d(E1, E2) =

 ∞ , l1 6= l2

min
h∈R
|t1 − (t2 − h)| = 0 , l1 = l2

(8.1)

l, t are the corresponding properties of each event. When h = t2 − t1,
equation 8.1 is minimized with value 0, i.e., h is an argument of the distance
function that helps to eliminate the difference in happening time between
events, which will be used later in the distance function of sequence.

Based on the distance function given above, the distance between se-
quences with different strings is also set to infinity. When sequences contain
the same string, the distance is defined as the minimum sum of distances
between events.

d(S1, S2) =


∞ , S1.str 6= S2.str

1
n

min
h,f(·)

∑n
i=1 d(E1i, f(E1i)) , S1.str = S2.str

(8.2)

where n is the sequence length, h ∈ R, E1i ∈ S1, E2i ∈ S2. f : E1i → E2j

is a bijective mapping of events in one sequence to that in another sequence.
An event will only be mapped to another event with the same label.

Otherwise, the distance is infinity. When multiple events share the same
label, the mapping is determined by the temporal order. Thus, for point-
based temporal sequences with the same string, the best mapping between
events is: f(E1i) = E2i.

The optimized value of h is independent from the mapping function f(·).
Assuming f(·) is given, equation 8.2 can be written as:

d(S1, S2) = 1
n

min
h

n∑
i=1
|E1i.t− (f(E1i).t− h)|
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Let ∂d
∂h

= 0, we have:

hopt = 1
n

n∑
i=1

(f(E1i).t− E1i.t) = 1
n

n∑
i=1

f(E1i).t−
1
n

n∑
i=1

E1i.t

= 1
n

n∑
i=1

E2i.t−
1
n

n∑
i=1

E1i.t

which means that the value of the distance function is computed by mov-
ing sequences horizontally until their mean points coincide, as shown in Fig-
ure 8.2.
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Figure 8.2: Similarity between temporal sequences is computed by moving
sequence first. Points represent events, colors represent event labels.

A temporal pattern is an abstract sequence of a group of temporal se-
quences which is determined by the clustering results of temporal informa-
tion, as will be described later. Sequences in the group support the pattern.
Patterns with support larger or equal to some user defined minimum support
are called frequent patterns.

Based on the distance given above, sequences been clustered together
must share the same string. An average sequence is used as the temporal
pattern which can be computed in 2 steps: move all sequences horizontally
to align the mean point; calculate the average temporal value of each corre-
sponding events, i.e., for each event EPi in a pattern P which is supported
by m sequences with length n, EPi.t = 1

m

∑m
j=1Eji.t.
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For example, given the following sequences belonging to the same cluster:

S1 = {(A, 1.5), (B, 4.6), (C, 2.9)}

S2 = {(A, 2.7), (B, 6), (C, 7.2)}

S3 = {(A, 2), (B, 3.3), (C, 5.3)}

the pattern P is {(A, 1.66), (B, 4.22), (C, 4.72)}. Furthermore, we shift the
first event to time 0 as the standard pattern representation, i.e., the pattern
above can also be written as {(A, 0), (B, 2.57), (C, 3.07)}.

Different similarity measures could also be applied depending on the ap-
plication scenario. For example, the absolute happening time or the invari-
ance of sequence scale might be valuable. To fulfill those different require-
ments, other distance functions could be employed as long as an average
sequence can be defined.
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Chapter 9

Incremental Temporal Pattern
Mining

The sliding window model is employed as shown in Figure 9.1. Events covered
by current sliding window form the current sequence.
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Figure 9.1: Current sequence is covered by the sliding window. All candidate
subsequences for pattern updating contain the newly evolved event (A).

A subsequence which contains the latest event is a candidate sequence. It
will be processed and inserted into the closest micro-cluster which represents
a group of sequences.

The online-offline model acts as the primary structure in our approach,
as illustrated in Algorithm 9.1. With the similarity measure defined above, a
feature vector will be maintained for each micro-cluster incrementally. Out-
dated micro-clusters will be pruned based on an estimated support. Merging,
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Pruning and GeneratePatterns steps are adopted from the stream cluster-
ing algorithm DenStream [19].

In this chapter, we will first introduce the adopted stream clustering
process followed by the definition of the estimated support. An indexing
system based on prefix tree is presented for efficient micro-cluster access.
Part of the materials presented in this chapter have been published in [70].

Algorithm 9.1: Temporal Interval Pattern Mining
Input: Stream S, minimum support minSup, decaying factor α

1 while S is not end do
2 I ← S.NextInstance
3 S ← CurrentSequence

/* Online pattern update */
4 foreach Candidate sequence S ′ in S do
5 Merging(S ′)
6 end
7 if It is time for pruning then
8 Pruning()
9 end

/* Offline pattern generation */
10 if A clustering request arrives then
11 GeneratePatterns()
12 end
13 Move sliding window
14 end

9.1 Stream Clustering

In this section, we will first introduce the adopted stream clustering process
followed by the definition of the estimated support. An indexing system
based on prefix tree is presented for efficient micro-cluster access.In static
database case, related literature such as [39, 46] proposed to extract temporal
patterns by clustering sequences. Following the same idea here, we obtain
temporal patterns by using a stream clustering approach, which is mainly
adopted from the DenStream [19] algorithm. Each candidate sequence S
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with n events can be seen as a n dimensional point with a decaying weight
w:

w(t) = 2−α(t−t0) (9.1)

where α is the decaying factor, t is the current time and t0 is the appearing
time of the data point.

A list of micro-clusters is maintained, each of which represents a tem-
porary pattern supported by a group of sequences S with the same string,
defined asMC = (n, tc,W,WLS, WSS, str), where n is the number of points,
tc is the last updating time of the micro-cluster, str is the string shared by
all sequences in the micro-cluster.

W =
n∑
i=1

wi(t), WLS =
n∑
i=1

wi(t) · Si, WSS =
n∑
i=1

wi(t) · S2
i ,

Si ∈ S, S2
i is the element-wise square of Si, wi(t) is the decaying weight

corresponding to each sequence, W is the total weight of the micro-cluster.
As defined in the similarity measures, all sequences are aligned to a common
mean point for the computation of WLS and WSS.

In order to handle outlier, all micro-clusters will be distinguished between
potential core micro-cluster (p-micro-cluster) and outlier micro-cluster (o-
micro-cluster) based on their estimated support (cf. Section 9.2). The center
of a micro-cluster is c = WLS

W
, which defines the average sequence. Candidate

sequence will be first assigned to the closest p-micro-cluster with respect to
the distance from the center, and the new radius will be tested:

r =
√
WSS

W
−
(
WLS

W

)2
≤ ε

If the new radius is smaller than a threshold ε, the candidate sequence will be
added to the p-micro-cluster. Otherwise, an o-micro-cluster will be updated
or created with the single candidate sequence. As a consequence, each micro-
cluster contains sequences that are similar to each other, and the center can
be seen as the temporary pattern. Each micro-cluster will be scanned and
pruned periodically based on the estimated support.
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It is worth to note that all elements above could be maintained incre-
mentally. For example, let ti0 be the appearing time of sequence Si in a
micro-cluster c and tc be the appearing time of the last sequence. Total
weight at time tc is

Wtc =
n∑
i=1

wi(tc) =
n∑
i=1

2−α(tc−ti0)

Given the current time t, if no new sequence is merged,

Wt =
n∑
i=1

wi(t) =
n∑
i=1

2−α(t−ti0) =
n∑
i=1

2−α(t−tc)−α(tc−ti0)

= 2−α(t−tc) ·
n∑
i=1

2−α(tc−ti0) = 2−α(t−tc) ·Wtc

If a new sequence is merged,

Wt = 2−α(t−tc) ·Wtc + 1

Thus, attributes of micro-cluster can be updated incrementally by decaying
factor 2α(t−tc).

When the user requires clustering results of the stream, all potential core
micro-clusters are clustered using a modified version of DBSCAN [35], tem-
porary patterns represented by different micro-clusters might be joined and
support the same final pattern. Based on the clustering results of micro-
clusters, temporal pattern P is computed as average sequence:

P =
∑
ci.WLS∑
ci.W

where all micro-clusters ci are in the same cluster.

9.2 Support Estimation

Some criteria are necessary for pruning during stream mining process to keep
the size of information stored small. DenStream prunes micro-clusters based
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on the corresponding weight. SEQ [47] prunes candidate patterns if the count
value is low. As discussed in Section 7.2, these criteria are not suitable for a
stream with varying speed.

Support is a better criterion in the stream scenario. However, conven-
tional definition of support of a pattern in a static database is the percentage
value of sequences which contain the pattern. It is not applicable to the min-
ing task discussed here since no static database is created and the total
number of sequences is unknown.

We adopted the support definition from [53]:

supp(P ) = C(P )
N
≤ minSup

where C(P ) is the count of pattern P , and N is the total number of events
evolved in the stream. minSup is the minimum support threshold given by
the user.

Taken decaying weights into consideration, the support definition above
can also be written as:

supp(P ) = supp(MC) = MC.W

W
(9.2)

where MC is the micro-cluster that represents the pattern P , MC.W is the
corresponding weight. W is the overall weight of the data stream which
depends on the speed of stream v: W = v

1−2−α [19]. The corresponding
support value supp(P ) divides micro-clusters into two categories, p-MC and
o-MC. The pruning of micro-clusters is also determined by the value of
support.

A p-micro-clusters will be pruned if its support is smaller than the min-
imum support minSup. Pruning is performed every Tp unit of time period-
ically. The value of Tp is estimated based on the minimum time span for a
p-micro-cluster fading into an outlier [19]. Let the current support of such
p-micro-cluster cp is suppold(cp) = cp.Wold

Wold
= minSup, the new support after
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Tp units of time should be: suppnew(cp) = cp.Wnew

Wnew
= minSup,

2−αTpMC.Wold + 1
Wnew

= minSup

Tp = 1
α

log cp.Wold

minSup ·Wnew − 1

= 1
α

log minSup ·Wold

minSup ·Wnew − 1

However, the future speed of stream is unknown, i.e., Wnew is unknown.
We assume that the speed will not change within one pruning period, i.e.,
Wnew = Wold. Thus, Tp can be estimated based on the current total weight
of stream Wold:

Tp = 1
α

log minSup ·Wold

minSup ·Wold − 1 .

Tp and Wold will then be updated until the next pruning step.

The pruning threshold for o-micro-cluster is determined by the function
ξ(∆t), where ∆t is the existing time of the o-micro-cluster up to now. If an
o-micro-cluster co tends to become a p-micro-cluster, then:

ξ(∆t) + 2−α∆t(minSup ·Wold − 1) = minSup ·Wnew

Again, let Wnew = Wold, we have:

ξ(∆t) = 2−α(∆t+Tp) − 1
2−αTp − 1

Detailed proofs of the correctness of these components above are the
same as in [19]. Having all settings defined above, the Merging and Pruning
processes are described in Algorithms 9.2 and 9.3.
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Algorithm 9.2: Merging
Input: Candidate sequence S ′

1 Assign S ′ to the nearest potential core micro-cluster cp
2 if new radius of cp rp ≤ ε then
3 Merge S ′ to cp
4 Update attributes of cp
5 else
6 Assign S ′ to the nearest outlier micro-cluster co
7 if new radius of co ro ≤ ε then
8 Merge S ′ to co
9 Update attributes of cp

10 if new support of co supp(co) > minSup then
11 Convert co to a potential core micro-cluster p-MC
12 end
13 else
14 Create a new outlier micro-cluster by S ′
15 end
16 end

Algorithm 9.3: Pruning
1 foreach potential core micro-cluster cp do
2 if supp(cp) < minSup then
3 Delete cp
4 end
5 end
6 foreach outlier micro-cluster co do
7 ξ(∆t) = 2−α(∆t+Tp)−1

2−αTp−1
8 if supp(co) < ξ(∆t) then
9 Delete co;

10 end
11 end

/* Update the total weight of stream */
12 W ←Current stream total weight

/* Compute the next pruning period */
13 Tp = 1

α
log minSup·W

minSup·W−1
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9.3 Fast Micro-cluster Updating

For each candidate sequence, searching through all existing micro-clusters
to find the nearest one for insertion (Algorithm 9.2, step 1,6) is inefficient.
Since the distance between sequences with different strings is infinity, all
sequences in the same micro-cluster must share the same string. A prefix tree
is introduced to index micro-clusters based on their strings for fast candidate
sequence insertion and micro-cluster retrieving, as shown in Figure 9.2.
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Figure 9.2: Prefix tree for micro-cluster update.

Each node of the prefix tree is marked with one event type while the root
node is null. One concatenation of labels from the root to any node forms
a sequence string. Thus, each node corresponds to a set of micro-clusters
CS = {c1, c2, . . . , cn} in which ∀i ∈ {1, . . . , n} : ci.str = CS.str. Micro-
clusters with the same string of a given candidate sequence can be retrieved
efficiently by traversing through the prefix tree.

Moreover, given sliding window size w, the total number of candidate se-
quences for insertion is 2w−1, as the latest event must be included. Traversing
all candidate sequences in Algorithm 9.1 (step 4) is time-consuming. In order
to reduce the search space, the Apriori property of sequences is employed,
i.e., if sequence S ′ can not be merged to any existing micro-clusters, then its
super-sequence S ⊃ S ′ has a high degree of outlierness. In this work, such
kind of super-sequence will be dropped to reduce the search space of pattern
updating.

We first identify the high degree outlierness candidate sequence S ′ by
categorizing as follows:

1. The string of S ′ matches an existing path in the prefix tree, i.e., ∃micro−
clusterc : S ′.str = MC.str.
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2. The string of S ′ matches a path in the prefix tree by adding one extra
node, i.e., ∃micro− clusterc : c.str ⊂ S ′.str ∧ |S ′.str| = |c.str|+ 1.

3. The string of S ′ matches a path in the prefix tree by adding more
than one extra node, i.e., ∃micro− clusterc : c.str ⊂ S ′.str∧ |S ′.str| ≤
|c.str|+ 2.

A candidate sequence belonging to the first category will be merged into
the corresponding micro-cluster stored in the prefix tree. Candidate se-
quences in the second type have no corresponding node in current prefix
tree. A new node will be created, and sequences in this category will be
considered as supporting an unusual pattern at the moment. Candidate se-
quences in the third group will be considered as abnormal sequences since
additional nodes need to be created and attached to new nodes set up by
sequences in the second type. These candidate sequences will be directly
dropped, and the search space is reduced. For example, given newly evolved
eventD and current sequence S = 〈D,E, F,G〉, subsequences such as 〈D,E〉,
〈D,F 〉 and 〈D,G〉 will be considered and new micro-cluster will be added.
However, subsequence such as 〈D,E, F 〉 is not eligible for insertion since
|〈D,E, F 〉| = |〈D〉|+ 2.

Furthermore, the monotonicity property of distance function could also be
used to reduce the search space. If a sequence in the first category above is far
away from all existing micro-clusters, then its super-sequence will be dropped.
However, it should be noted that the similarity measure presented in Section
8.2 violates the monotonicity property, i.e., given S1.str = S2.str, S

′
1.str =

S ′2.str, S
′
1 ⊂ S1, S

′
2 ⊂ S2, d(S ′1, S ′2) > ε; d(S1, S2) > ε, as the distance func-

tion is normalized with respect to the length of the sequence. Nevertheless,
this pruning strategy still works well in practice.

In practice, we will first detect the string of all valid candidate sequences
in the current prefix tree based on the discussion above. Candidate sequences
will then be merged into corresponding micro-clusters stored in the prefix
tree. Given current sequence covered by the sliding window Sc and the latest
event Ec, new sequence instances are added (Algorithm 9.1, step 4) more
efficiently as shown in Algorithm 9.4. If a candidate sequence brings a new
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outlier micro-cluster, it is considered as an outlier, and its super-sequences
will not be merged due to the monotonicity.

The subroutine TraverseNode detects all valid string with respect to
the current sequence Sc from the prefix tree recursively. Events are traversed
based on the order given in the definition of sequence in Section 8. Parameter
Skipped Events is a list which tracks all events been skipped due to the order
of traversal. These skipped events will be used to create new node only if
the latest event is covered by current prefix tree (Step 5-7). Otherwise, the
new node can only be set up by the latest event.

Algorithm 9.4: MicroClusterUpdate
Input: Current Sequence Sc, Latest Event Ec, Prefix Tree T

1 Current Node n← T.root
/* Detect valid strings without changing prefix tree */

2 Candidate string list LIST ← TraverseNode(Sc, Ec, n, ∅)
/* Add the subsequence of each valid string */

3 OUTLIER← ∅
4 foreach str ∈ LIST do
5 if ∃s ∈ OUTLIER : s ⊂ str then
6 Continue
7 end
8 if ∃node ∈ T : node.str = str then
9 Merge Sc(str) to node

10 if New outlier micro-cluster created then
11 OUTLIER← str ∪OUTLIER
12 end
13 else
14 node′ ← T.newNode(str)
15 Merge Sc(str) to node′
16 end
17 end
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Algorithm 9.5: TraverseNode
Input: Sequence S, Latest Event Ec, Current Node n, Skipped

Events SE
Output: Valid String List LIST

1 LIST ← ∅
2 if Ec 6= null then
3 LIST ← 〈n.str ∪ {Ec.l}〉 ∪ LIST
4 else
5 foreach Event Ej ∈ SE do
6 LIST ← 〈n.str ∪ {Ej.l}〉 ∪ LIST
7 end
8 end
9 foreach Event Ei ∈ S do

10 if ∃n′ ∈ n.children : n′.label = Ei.l then
/* Select events after Ei */

11 Sequence S ′ ← {E ′ ∈ S|E ′ > Ei}
12 if Ei = Ec then

/* The latest event is covered and set to null
*/

13 LIST ← TraverseNode(S ′, null, n′, SE) ∪ LIST
14 else
15 LIST ← TraverseNode(S ′, Ec, n′, SE) ∪ LIST
16 end
17 else
18 SE ← {Ei} ∪ SE
19 end
20 end
21 return LIST
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Chapter 10

Mining Interval-based Event
Streams

Many events in the real world persist for some short or long period, so it
is quite natural and more appropriate to reflect the temporal extension in
the model and to represent events in intervals, as shown in Figure 10.1.
Despite the demand, to the best of our knowledge, in stream environment, the
interval-based temporal pattern mining problem has not been investigated.
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Figure 10.1: Stream of interval-based events, each event is represented by a
rectangle.

In the static database environment, existing point-based approaches uti-
lizing the gap information, such as [39], can be extended to handle interval-
based data. Each interval-based event will be processed as two individual
events. Additional processes are necessary to guarantee that interval-based
patterns generated are complete, i.e., each starting point has a correspond-
ing ending point. Some other approaches only focus on the interval-based
data with novel representations. Our approach, on the other hand, can be
extended to handle interval-based temporal data smoothly and efficiently by
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just introducing one more numerical attribute to the event point.
In this section, we will first give a short introduction to the interval-

based temporal pattern mining in the static database. Then, our approach
proposed above will be extended to handle interval-based temporal event
streams.

10.1 Interval-based Temporal Pattern Min-
ing in Static Database

Relationships among interval-based events are more complicated than the
point-based case. Different temporal operators, such as Allen’s relations [5]
which describe interval-based sequences using 13 different relationships, were
proposed. Approaches such as [102] investigated the interval-based SPM.
Most of them extended the point-based algorithm PrefixSpan with additional
completeness checking and pruning steps.

Handling interval-based events with temporal information at the same
time is nontrivial since not only the gap between events but also the duration
of each event need to be considered. Approaches such as [25, 27] generate se-
quential patterns first. Temporal information was attached to each frequent
pattern. To integrate the SPM strategy with the clustering techniques, novel
representations were introduced in recent years. [45] proposed to represent
an interval-based temporal sequence as a hypercube. Each interval event is
treated as an edge of the cube. Temporal patterns were generated based on a
breadth-first search and EM algorithm. [82] annotated the point-based rep-
resentation with temporal information. Subspace clustering is conducted in
high-dimensional space repeatedly in a PrefixSpan based search. [46] was pro-
posed to mine item sets with attached interval-based temporal bounds. By
introducing temporal information to SPM, the relationship between events
can be expressed more in detail. All approaches mentioned above declare
that a better mining quality could be achieved compare with point-based
SPM.

In algorithms discussed above, intervals are ordered based on their tem-
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poral information, such as the starting time or ending time. Thus, the same
problem mentioned in the point-based case when considering noisy temporal
database also exists in the interval-based case, as shown Figure 10.2.
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Figure 10.2: Two sequences with the same event types and similar temporal
information, but support different patterns due to some natural noise.

10.2 Interval-based Temporal Event and Se-
quence

Given an event label set Σ, an interval-based event E has four attributes:
l, s, e, d, where l ∈ Σ is the label. s, e ∈ R are the starting and ending time
respectively. Duration d = e − s is a dependent variable. Each interval
event can be uniquely defined by any two elements in s, e and d. Thus,
an interval event can be represented as a labeled point on the 2D plane as
proposed in [85]. In this work, starting time s and duration d are used as
the X and Y axises. The relationship between interval-based events on such
2D representation can be converted to the widely used Allen’s relations by
comparing their relative positions, as shown in Figure 10.3.

Similar to the point-based case, a interval-based sequence S is defined as
a list of interval-based events. Events are ordered based on the alphabet of
their labels, i.e., S = {E1, E2, . . . , En},∀i ∈ {1, . . . , n − 1}, Ei.l ≤ Ei+1.l.
Events with the same label will be ordered based on their starting time. For
example, the sequence appeared in the snapshot of a stream in Figure 10.3
is:

S ={(A, 1.1, 2.0), (A, 5.3, 6.3), (B, 4.4, 4.9), (C, 2.3, 3.3),

(C, 4.7, 5.8), (D, 2.8, 4.0)}

Other definitions such as subsequence and string of sequence are the same as
in the point-based case.
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Figure 10.3: 13 Allen’s relations and the 2D representation.

10.3 Similarity Measures

The distance between interval-based events is defined similarly as the point-
based case. Events with different labels differ completely. As shown in
Figure 10.3, relationships between interval-based events are complicated and
affected by both starting time and duration. Euclidean distance is employed
to describe the distance between events with the same label.

d(E1, E2) =

 ∞ , l1 6= l2

min
h

√
(s1 − (s2 − h))2 + (d1 − d2)2 , l1 = l2

(10.1)

where s, d are the corresponding properties of each event. The parameter
h ∈ R is also employed here but only applied to the starting time. When
h = s2−s1, equation 10.1 is minimized with value |d1−d2|, as shown in Figure
10.4a. That is, the difference between interval-based events with the same
label only depends on the difference in duration value. Absolute happening
time, i.e., the starting time, did not affect the distance value.

Distance between interval-based sequences follows the same definition
used in point-based case:
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Figure 10.4: Similarity between interval events (a) and interval sequences
(b).

d(S1, S2) =


∞ , S1.str 6= S2.str

1
n

min
h,f(·)

∑n
i=1 d(E1i, f(E1i)) , S1.str = S2.str

(10.2)

where n is the sequence length, h ∈ R, E1i ∈ S1, E2i ∈ S2. f : E1i →
E2i is the bijective mapping of events in one sequence to that in another
sequence. It can be shown that the optimized value of h is independent from
the mapping function f(·), the same as the point-based case. Assuming f(·)
is given, equation 10.2 can be written as:

d(S1, S2) = 1
n

min
h

n∑
i=1

√
(E1i.s− (f(E1i).s− h))2 + (E1i.d− f(E1i).d)2

Let ∂d
∂h

= 0, we have:

hopt = 1
n

n∑
i=1

(f(E1i).s− E1i.s) = 1
n

n∑
i=1

f(E1i).s−
1
n

n∑
i=1

E1i.s

= 1
n

n∑
i=1

E2i.s−
1
n

n∑
i=1

E1i.s

which means that the value of distance is computed by moving sequences
horizontally until they have a common average value of starting time, as
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shown in Figure 10.4b.
The mapping function f(·) keeps the same as before. When multiple

events with the same label exist, the mapping between those events is given
in the order of their starting time.

The interval-based temporal pattern is also computed as the average se-
quence. Sequences support the same pattern are aligned to a common average
starting time. The average value of starting time and duration corresponding
to each event is computed, as shown in Figure 10.5.

Start time

D
u

ra
ti

o
n

Start time

D
u

ra
ti

o
n

Start time

D
u

ra
ti

o
n

Start time

D
u

ra
ti

o
n

Start time

D
u

ra
ti

o
n

Start time

D
u

ra
ti

o
n

Start time

D
u

ra
ti

o
n

Start time

D
u

ra
ti

o
n

Start time

D
u

ra
ti

o
n

Start time

D
u

ra
ti

o
n

Start time

D
u

ra
ti

o
n

S1&S2&S3&S4

Start time

D
u

ra
ti

o
n

S1&S2&S3

S1&S3

S2&S4

Start time

D
u

ra
ti

o
n S1&S3

S2

Start time

D
u

ra
ti

o
n

Start time

D
u

ra
ti

o
n

Start time

D
u

ra
ti

o
n S1&S3

Start time

D
u

ra
ti

o
n S2

Start time

D
u

ra
ti

o
n

Start time

D
u

ra
ti

o
n

Figure 10.5: Visualization of interval-based temporal pattern as an average
sequence.

Other similarity measures could also be applied to fulfill different applica-
tion requirements. For example, the similarity measure IBSM [64] proposed
recently performs full sequence matching and the sequence scale invariant
could be achieved.

10.4 Interval-based Event Stream

As shown in Figure 10.6, an interval-based temporal stream can be repre-
sented as a stream of starting and ending points. The starting point will be
stored in a buffer first until the corresponding ending point appears. A new
interval event is then created based on the pair of starting and ending points.
For a new event just arrived, the relevant information of the starting point
(l, s) is added to the starting point buffer. When an ending point is coming,
the corresponding entry will be retrieved from the starting point buffer and
a new event (l, d, e) is generated. Old information will be removed from the
buffer to keep the size small.
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Figure 10.6: Sliding window on the interval-based event stream shown in
Figure 10.1.

As illustrated above, our model can be easily extended from point-based
data to interval-based data. The incremental mining process on streams can
be applied without any modification. This advantage is given by the fact that
each event is considered as a 2D point with a label and numerical attributes.

On the other hand, alternative representation which makes use of the
gap information presents each interval-based event as two points, one start-
ing point, and one ending point. Point-based approaches utilizing those
representations need to be revised.

10.5 Experiment Results

In this section, we present the experimental results conducted on our tem-
poral pattern mining algorithm on the stream data. To the best of our
knowledge, there is no pre-existing approach solve the same task as we do.
Thus, the purpose of this comparison is to show that our approach, with
its richer information, can still provide a comparable performance. Quality
and performance of our approach are compared with that of SS-BE [81], a
batch based method, and SEQ [47], which employs sliding window on a sin-
gle stream without considering temporal information. Furthermore, we also
studied the property of our approach when extending to interval-based event
streams. All algorithms presented here are implemented in JAVA.

[4] proposed a well-known synthetic data generator for point-based se-
quential pattern mining. Our synthetic stream is generated in the same
strategy with necessary modifications, such as timing information and noise
for temporal events. Sequences are connected end to end to generate the
stream. Parameter settings for stream clustering follow the suggestion in
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Figure 10.7: Accuracy on synthetic stream with respect to the sliding window
size and the minimum support.

[19]. Unless otherwise mentioned, the default values for other parameters
are: Stream length L = 200000, Minimum support minSup = 10% and
Window Size w = 20. To measure the SS-BE algorithm, we cut the stream
into sequences with length equal to the window size. Every 200 sequences
form a batch. The same minimum support is also used for SS-BE approach.
The corresponding cardinality threshold used by SEQ is roughly computed
as minSup · w. POINT and INTERVAL refer to our point-based approach
and interval-based approach respectively.

We first compared the quality of patterns generated by those algorithms
on synthetic streams. The accuracy value is defined as the rate of correctly
identified patterns with respect to the total number of patterns. In synthetic
streams, the ground truth, i.e., the total number of patterns, is known. Pat-
terns found by SS-BE and SEQ will be considered as correct if the order
of events is correct. As shown in Figure 10.7, our approach can achieve a
better accuracy value under different minimum support and window size set-
tings. Two major reasons lead to the low accuracy value of the other two
approaches. Firstly, patterns such as {(A, 0), (B, 1)} and {(A, 0)(B, 20)} are
considered as the same. Secondly, patterns such as A equal B will not be
detected due to the noise. The accuracy value of the batch based method,
SS-BE, is even lower since many patterns across sequences and batches are
lost.

Figure 10.8 illustrate the comparison of processing time on the synthetic
dataset with respect to the stream length, the minimum support, and the
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Figure 10.8: Processing time on synthetic stream with respect to the stream
length, the minimum support and the sliding window size.

sliding window size. The fastest approach is obviously the SS-BE. By cutting
streams into batches and applying the PrefixSpan algorithm, SS-BE is very
efficient. Thanks to the efficient micro-cluster updating schema and the prefix
tree, our approach can achieve a similar runtime as SEQ despite the effort
taken to consider temporal information. Thus, with richer information, our
algorithm can still provide a comparable performance.

The test on a real dataset, REDD [63], also gives the same conclusion.
REDD dataset is a sequential stream which tracks the ON/OFF status of
electrical devices in several smart homes. The original REDD data records
the voltage value of device at every second. We took the time where the volt-
age value changed as the events. A small noise is added to each timestamp.
There are only around 10000 events after the preprocessing.

Figure 10.9 illustrated the accuracy value on the real stream. The ground
truth of the real data is the temporal patterns extracted by applying a long
sliding batch over a stream. Frequent strings in each batch are clustered
based on their temporal information. This naive method is slow but can
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Figure 10.9: Accuracy on real stream with respect to the sliding window size
and the minimum support.
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Figure 10.10: Processing time on real stream with respect to the minimum
support and the sliding window size.

obtain temporal patterns as many as possible. As shown in the figure, the
accuracy value is increasing with a longer window size. Overall, a better
accuracy is achieved by our approach. A comparison of runtime on the real
stream is investigated in Figure 10.10.

In conclusion, sliding window based algorithms are slower than batch
based methods. However, many patterns coming across different sequences
and batches are lost. Our approach, gives a similar performance as other
sliding window based methods and can provide richer information.

We also investigate the property of our approach when extends to interval-
based streams. The synthetic stream is generated in the same way as the
point-based stream while each event has a corresponding ending event. In
the case of real dataset, we also transferred the REDD dataset to an interval-
based stream by taking the increasing and decreasing of voltage as the start-
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ing and ending time of an event respectively. Our point-based approach will
treat each starting and ending point as an independent event. Figure 10.11
illustrates the runtime performance on the synthetic stream with various
stream length, minimum support and sliding window size.

Figure 10.12 depicts the runtime performance on the real stream. It is
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Figure 10.11: Processing time on interval-based synthetic stream with respect
to the stream length, the minimum support and the sliding window size..
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Figure 10.12: Processing time on interval-based real stream with respect to
the minimum support and the sliding window size.
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clear that our interval-based approach is more efficient than the point-based
one. The stream length that the point-based approach processes is actu-
ally doubled the size of the original stream since each interval-based event is
treated as two separate events. Furthermore, incomplete patterns in which
some ending points are missing, such as “A+ before B+”, will be generated by
a point-based approach. Those patterns can be identified by post-processing
or completeness checking and pruning during the mining process, as shown in
[102], but with additional runtime cost. Our interval-based approach treats
each interval-based event as a 2D point. Only one extra dimension is intro-
duced in the clustering step, and the completeness of pattern is guaranteed
implicitly in the model. In conclusion, our approach can be extended to
handle interval-based data easily and efficiently.

10.6 Conclusion and Future Perspective

In this part, we presented our novel efficient algorithm for temporal pattern
mining over streams. Noise in the temporal information will not affect the
order of events in a sequence. A similarity measure is introduced and the
stream clustering approach is applied to generate temporal patterns. The
extension to interval-based data is smooth using our approach. Experimental
studies indicate that our approach, with richer information, can still provide
comparable performance. One drawback of frequent pattern mining is the
large number patterns been extracted. A lot of research has been made on
condensed representations such as maximum patterns and closed patterns.
Such condensed representation in the context of incremental mining with
temporal information will be investigated in the future.
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Chapter 11

Introduction

Clustering is a vital pattern mining task that aims to group similar objects
into the same group while separating dissimilar objects into different groups.
Clustering algorithms are traditionally divided into one of several categories,
which include partitioning, hierarchical, model, density, and grid-based ap-
proaches. In this part, novel clustering algorithms are proposed to address
two new challenges that appeared in application scenarios, such as scientific
data analysis. In those application scenarios, the ability to handle clusters
in arbitrary shapes is necessary. Therefore, clustering algorithms developed
in this part are more or less density-based clustering algorithms.

In general, density-based clustering algorithms need more than one pa-
rameter to define the density threshold, which makes parameter tuning diffi-
cult. k nearest neighbor density-based clustering algorithms are proposed to
address the problem by using the concepts of k nearest neighbor and reverse
k nearest neighbor to define density. Algorithms proposed in this part are all
k nearest neighbor based. More importantly, only one parameter is required
for clustering.

11.1 Density-based Clustering

In this section, the most famous density-based clustering, DBSCAN [34],
is recalled. The general structure of density-based clustering algorithms is
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described. Usually, density-based clustering algorithms require more than
one parameter, the density threshold definition. To address the problem,
the idea of k nearest neighbor (kNN) is employed. Therefore, kNN-based
clustering algorithms are also introduced afterward.

DBSCAN

DBSCAN (Density Based Spatial Clustering of Applications with Noise) [34]
is one of the most famous density-based clustering algorithms. The key idea
of density-based clustering is that for each observation in a cluster, the local
density must be higher than a given density threshold. In DBSCAN, such
local density is described as the number of observations within a given radius
ε. The density threshold is the minimum number of observations within the
radius ε, denoted as minPts.

Given the data set of observationsD, the distance function between obser-
vations in D is denoted as dist. For a given ε ∈ R+, the set of ε-neighborhood
of an observation p ∈ D is denoted as Nε(p):

Nε(p) = {o ∈ D|dist(p, o) ≤ ε}.

Definition 11.1.1 (Core points, border points and local density)
Given minPts ∈ N+,minPts ≤ |D|, a data point p ∈ D is called a core point
if |Nε(p)| ≥ minPts, border point if otherwise. |Nε(p)| is the local density of
the data point p.

Usually, clusters in density-based clustering are formed by connecting
consecutive core points and their neighbors together. To determine how
data points are connected, the concepts of direct density-reachability, density-
reachability and density-connectivity are introduced in DBSCAN.

Definition 11.1.2 (direct density-reachability)
Given D, ε and minPts. An observation p ∈ D is directly density-reachable
from an observation q ∈ D w.r.t. ε and minPts if |Nε(q)| ≥ ∧p ∈ Nε(q).

Definition 11.1.3 (density-reachability)
Given D, ε and minPts. An observation p ∈ D is density-reachable from an
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observation q ∈ D w.r.t. ε and minPts if there is a sequence of observations
p1, . . . , pn where p1 = q, pn = p such that pi+1 is directly density-reachable
from pi for 1 ≤ i ≤ n− 1.

Definition 11.1.4 (density-connectivity)
Given D, ε and minPts. An observation p ∈ D is density-connected to an
observation q ∈ D w.r.t. ε and minPts if there is an observation o ∈ D such
that both p and q are density reachable from o.

Algorithm 11.1: DBSCAN
Input: Dataset D, ε, minPts

1 foreach Unvisited data point p ∈ D do
2 Mark p as visited;
3 if |Nε(p)| < MinPts then

// Border point
4 Mark p as noise;
5 else
6 C ← New empty cluster;
7 Add p to C;
8 Nε ← Nε(p);
9 foreach q ∈ Nε do

10 if q is not visited then
11 Mark q as visited;
12 if |Nε(q)| ≥ minPts then

// Core point
13 Nε ← Nε(q) ∪Nε;
14 end
15 if q is not yet a member of any cluster then
16 Add q to C;
17 end
18 end
19 end
20 end

A density-based cluster is defined to be a set of density-connected obser-
vations. Given a cluster C, all data points that are density-reachable from
a data point q ∈ C are also in cluster C. According to the definition above,
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density-based clusters are mainly formed by connecting core points together.
Border points that are directly density-connected to a core point are also
assigned to a cluster. Border points that are not directly density-connected
to any core points are defined as noise.

The algorithm DBSCAN uses the previously described concepts and com-
putes flat density-based clusters w.r.t. the user-defined parameters ε and
minPts. DBSCAN can detect clusters in arbitrary shapes without requir-
ing prior knowledge of cluster numbers. To identify clusters, DBSCAN starts
from a core point p and recursively traversing directly density-connected data
points w.r.t. to core points in the cluster, until all directly density-connected
data points are accessed. The detailed process of DBSCAN is illustrated in
Algorithm 11.1.

The recursive cluster expanding process of DBSCAN can also be found in
many other density-based clustering algorithms. Different local density defi-
nitions are used to address weaknesses in DBSCAN. For example, DBSCAN
requires two parameters, which makes parameter tuning difficult. Novel
density-based clustering algorithms, such as k nearest neighbor (kNN) based
approaches, are proposed to tackle this problem.

kNN-based Clustering

As mentioned above, one of the main drawbacks of DBSCAN is the diffi-
culty of parameter tuning. To address the problem, novel k nearest neighbor
density-based clustering algorithms are proposed to reduce the complexity of
the problem to the use of a single parameter.

In this section, a novel density-based clustering algorithm, RNNDBSCAN
[15] is introduced, which employed the concepts of kNN and RkNN (Reverse
k nearest neighbor) to define local density. Therefore, this algorithm only
requires one parameter k.

Definition 11.1.5 (k nearest neighbor)
Given dataset D and k ∈ N+. The set of k nearest neighbors of data point
p ∈ D is Nk(p) where |Nk(p)| = k and ∀o ∈ D, o /∈ Nk(p) : dist(p, q) ≤
dist(p, o).
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Definition 11.1.6 (reverse k nearest neighbor)
Given dataset D and k ∈ N+. The set of reverse k nearest neighbors of data
point p ∈ D is Rk(p) where ∀q ∈ Rk(p) : p ∈ Nk(q).

Based the concepts of kNN and RkNN described above, a data point p
is a core point iff |Rk(p)| ≥ k where k is the user defined parameter. After
core points being identified, the concept of directly density-reachability can
also be defined for RNNDBSCAN:

Definition 11.1.7 (directly density-reachability)
Given dataset D and k ∈ N+. An observation p ∈ D is directly density
reachable from an observation q ∈ D if p ∈ Nk(q) ∧ |Rk(q)| ≥ k.

Density-reachability and density-connectivity are then defined similarly
to DBSCAN. In the last step of the RNNDBSCAN algorithm, the recursive
cluster expanding process of DBSCAN (Algorithm 11.1) is used to generate
clusters. Other kNN based clustering algorithms such as ISDBSCAN [20] and
ISBDBSCAN [76] are also designed similarly. Some kNN based clustering
algorithms are not following the DBSCAN-alike paradigm. For example, the
KNNCLUST [94] algorithm does not define core and border points. Instead,
the algorithm starts by assigning each data point with a separate cluster
label. Then, in each iteration, the cluster label of a data point is updated to
the majority cluster label in its k nearest neighbors.

11.2 kNN-based Clustering - New Challenges

Two kNN based clustering algorithms are introduced in this part to tackle
two new challenges in clustering: shape alternation adaptability (Chapter
12) and extremely noisy dataset (Chapter 13).

Shape Alternation Adaptability

As shown above, most density-based clustering algorithms follow a DBSCAN-
alike paradigm. Clusters are formed by connecting consecutive dense regions
together. A region is dense if its local density exceeds a given threshold,
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which is defined using kNNs in our case. In other words, the connectivity is
purely determined by local density. The shape of data points distributed in
the dataset on a global scale is not considered. However, in some applications
such as scientific research, a series of datasets are generated at once, waiting
for clustering, since an experiment has to be repeated for many times. Points
distribution shape in those datasets may alter, for instance, from a strip shape
to a dumbbell shape, which implies cluster changing. Figure 11.1 gives an
example of RNNDBSCAN on a series of datasets with shape alternation.

(a) (b)

(c) (d)

Figure 11.1: RNNDBSCAN correctly detects one cluster in (a) but failed to
find two clusters properly in (b) and (c), when parameters are fixed. Even if
we set parameters to find two clusters, the small cluster in (d) is incorrectly
labeled as noise.

Figure 11.1(a-c) illustrate three datasets with data points distributed
in different shapes but similar densities. Clusters are identified using a
DBSCAN-alike approach (RNNDBSCAN [15]) under the same parameter.



Chapter 11. Introduction 139

In the first dataset (a), it is safe to say that the result is correct as all points
are in the same strip-shaped cluster. When the number of points increased
on the two ends (b,c), it is likely that there are two clusters. However,
RNNDBSCAN can not adapt automatically and still return a single clus-
ter. Of course, we can also choose the parameters to return two clusters in
Figure 11.1(b,c), but then the single strip-shaped cluster in (a) will be sep-
arated. Therefore, users always need to manually adjust the parameter on
each dataset to generate the correct result, which is infeasible for applications
where hundreds of datasets are waiting for clustering. We call this problem
the lacking of shape alternation adaptability. Obviously, this problem is
caused by the use of the DBSCAN-alike paradigm, where a single threshold
is used to determine whether a region is dense or not. There are also some
other problems, even in the case of a single dataset. For example, in Figure
11.1d, the small cluster (gray) is identified as noise if we set parameters to
detect the two big clusters properly since the density threshold is too large.

Existing DBSCAN-alike approaches can not adapt automatically when
distribution shapes alter across different datasets. A painful parameter tun-
ing process is necessary for each dataset. Clustering algorithms with shape
alternation adaptability can adapt to cluster shapes across different datasets,
without extra parameter tuning. In Chapter 12, a novel kNN based clustering
algorithm with shape alternation adaptability is proposed.

Extremely Noisy Dataset

In some applications such as scientific data analysis, the noise level in datasets
can be extremely high, i.e., the quantity of noises is considerably larger than
the number of “in-cluster” data points, and the density in noise regions are
also similar to the density in the region of clusters. Figure 11.2 is an example
from scientific research. The dataset contains the position of atoms detected
using microscopy technology. Material scientists only interest in areas that
atoms concentrate. Other atoms, which are the majorities, are considered
as “noise”. A clustering algorithm that can extract concentrated atoms from
the extremely noisy dataset is essential for scientists. However, most existing
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clustering algorithms only consider noises up to a moderate level. They
can not extract clusters correctly from such kinds of datasets, or a painful
parameter tuning process is necessary.

Figure 11.2: A real extremely noisy dataset example.

To address the issue, Chapter 13 studies the property of extremely noisy
datasets and introduces a two-step kNN based clustering algorithm. It can
identify arbitrarily shaped clusters under high noise settings. Moreover, it
requires only a single parameter.



Chapter 12

Shape Alternation Adaptable
Clustering

The problem of shape alternation in a series of datasets is described in the
previous chapter. To tackle this problem, a new kNN-based clustering algo-
rithm is proposed here. The DBSCAN-alike structure is avoided. The new
approach can handle arbitrary shaped clusters using a single parameter k.
With shape alternation adaptability, it is also aware of the overall data dis-
tribution so that clusters can be identified and separated even if it is densely
connected to other clusters, without parameter tuning. We estimate simi-
larities using the concept of kNN to reflect the probability that two points
belonging to the same cluster and the probability that a point is a cluster
center. The Affinity Propagation [38] algorithm is applied to extract cluster
centers.

Figure 12.1 illustrates the clustering result of our approach on toy exam-
ples given in Figure 11.1. The parameter k is selected so that three clusters
are detected in Figure 12.1d. Without manual parameter tuning for the rest
of the datasets, our approach can adapt itself to identify clusters properly.
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(a) (b)

(c) (d)

Figure 12.1: Clustering results of our approach. The parameter k is set to
work properly on (d). No further parameter tuning is applied to the rest of
datasets.

12.1 Related Works

The concept of k-nearest neighbor is widely used in density-based clustering
approaches. For example, the relationship between the connectivity of a
mutual k-nearest neighbor graph and the clustering structure is studied in
[14]. The SNN [33] algorithm uses the kNN to handle clusters with various
densities. LDBSCAN [32] employs the local outlier factor as the metric,
which is also defined using kNN. However, extra parameters are required in
those approaches.

Our work is a single parameter kNN clustering algorithm. Most reported
single parameter kNN clustering algorithms borrowed the idea of DBSCAN
[34]. The RECORD [98] algorithm makes use of kNN graph and reverse kNN
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graph to define core points. Clusters are extracted from the subgraph of core
observations. HDBSCAN [18] builds a minimum spanning tree on a mu-
tual reachability graph. Edges are iteratively removed to generate optimized
clusters. The IS-DBSCAN [20] approach introduced the concept of influence
space of a data point, which is defined as the intersect between its reverse and
k nearest neighbor sets. The influence space concept is then used to describe
local density and reachability of data points. ISB-DBSCAN [76] goes a step
further by using an undirected influence space graph. In RNNDBSCAN [15],
density reachability is defined by only using the concept of k-nearest neighbor
and reverse k-nearest neighbor. A data point is a core point if the number
of its reverse k-nearest neighbor is larger than k. KNNCLUST [94] does not
follow a DBSCAN clustering style. Instead, it starts clustering by assigning
different cluster labels to each data point. The cluster label is then updated
recursively by computing a posterior probability concerning labels in kNN.
Unfortunately, all methods above can not adapt automatically to the drift
in cluster shapes. The parameter k needs to be determined separately for a
series of datasets.

Of course, there are algorithms such as spectral clustering [89] that can
handle cluster shape alteration. However, they need to know the cluster
number in advance.

12.2 Preliminaries

A good clustering should have a high intra-cluster similarity. To identify
cluster properly, we need a good estimation of similarities, and an algorithm
that maximizes the intra-cluster similarity. Affinity Propagation (AP) [38]
is designed to identify clusters that maximizing the intra-cluster similarity
based on a similarity matrix and a preference vector. As suggested in AP,
the similarity matrix and the preference vector should reflect the probability
that two points belong to the same cluster and the probability that a point
is a cluster center. Thus, the major challenge of this work is how to estimate
both probabilities properly.

In this work, we use the kNN distance to measure those two probabilities.
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The heuristic of cluster centers proposed is DPC [86] is also employed in
computing the preference vector. Those two probabilities are utilized as the
similarity matrix and the preference vector for AP to generate cluster centers,
which eventually produces clusters. Only one parameter k is employed in the
whole process.

Affinity Propagation

Affinity Propagation does not require the user to estimate the number of
clusters or the density of points. Instead, the user has to provide a similarity
matrix S in which sij is the similarity between point i and j. The diagonal
of S is the preference vector. sii is the preference of point i, denoted as
prefi. The similarity measures how likely that two points belong to the same
cluster. The preference value reflects the likelihood that a point being a
cluster center. Cluster centers and cluster assignments are determined by
maximizing the overall intra-cluster similarity:

S =
N∑
i=1

Si,ei (12.1)

where ei is the cluster center of point i. Obviously, the overall distribution
of data points influences the final clustering result.

AP is reported to work well on certain tasks such as computational bi-
ology, where the similarity between observations is well defined. In a more
general case, the similarity between points is set to the negative Euclidean
distance. Preferences of all points are initialized to the same value, such as
the minimum or the median of similarities. However, it is difficult to achieve
the desired results with the default setting of AP. Figure 12.2 illustrates the
clustering results on two datasets. Although the data only contains 2/3 sim-
ple clusters, AP does not identify these clusters successfully due to shapes
and cluster proximity.
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Figure 12.2: Clustering results of AP under default settings.

Density Peaks Clustering

Density Peaks Clustering (DPC) is a semi-automated clustering approach,
which makes use of two heuristics to highlight cluster centers: 1) cluster
centers are surrounded by neighbors with lower density; 2) cluster centers are
far away from other points with a higher density. A decision graph is derived
by computing the local density ρi and the distance to the nearest point with
a higher density δi (delta distance) for each point. Then the user identifies
cluster centers by selecting points manually with both large ρ and large δ.

The DPC algorithm shows outstanding performance in a variety of clus-
tering tasks by providing a great visualization tool for identifying cluster
centers manually. There are some algorithms proposed in recent years to
fully automate the cluster center selection process by analyzing the values of
ρ and δ. Indeed, the original DPC algorithm also proposes to examine the
product of ρ and δ for each data point. However, those approaches introduce
additional parameters, which need to be precisely selected [104].

Nonetheless, the heuristic introduced by DPC is useful for our approach,
which provides a good description of cluster centers. We apply it to compute
the probability of a point being a cluster center, i.e., the preference of points.

12.3 AdakNN Clustering Algorithm

In this section, the kNN based clustering algorithm with shape alternation
adaptability, AdakNN, is presented. There are four major steps in our ap-
proach: 1) estimating the similarity matrix; 2) estimating the preference
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vector; 3) using affinity propagation to identify cluster centers; 4) assigning
labels to the rest of data points.

Similarity Estimation

As mentioned above, similarities used by AP should reflect how likely that
two points belong to the same cluster. To achieve the goal, we adopt the idea
of minimax distance on graph. Minimax distance can model the underlying
structures and the transitive relations nonparametrically [23]. Moreover,
minimax distance on a graph is equivalent to longest edge on the path of the
corresponding minimum spanning tree (MST). In this work, we built MST
on our dataset. Instead of using edge length, the minimum edge density on
the path from point i to j is used to measure similarity. Edge density of an
edge e is represented using the kNN distance of the center point of e in the
dataset.

For simplicity, the MST is built based on the Euclidean distance between
points, known as the Euclidean Minimum Spanning Tree (EMST). Other
distance function can also be used but are beyond the scope of this work.

Let T be the EMST built on our dataset, Tij be the path from point i to
point j, which is formed by a list of adjacent edges eii1 , ei1i2 , . . . , eimj of T .
The distance between two points i, j is:

distij = max
e∈Tij

dk(e) (12.2)

where dk(e) of edge e is the kNN distance of the center point of e with respect
to points in the dataset.

Intuitively, we measure how sparse it is on the path from point i to
j. If data points stay densely around all edges on the path, then disti,j is
small, and i, j tend to come from the same cluster. Figure 12.3a shows a
toy example. Dashed lines (red and green) represent the kNN distance of
corresponding edges, i.e., the edge density. Thus, the point B is closer to A
than C. As AP asks for negative similarity values, we normalize our distance
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(a) (b)

Figure 12.3: Similarity and Preference on toy MST example.

and take the negative as the similarity value:

sij = − distij − distmin
distmax − distmin

(12.3)

where distmin = min
i 6=j

(distij), distmax = max
i 6=j

(distij)
Algorithm 10 illustrates procedure for calculating the similarity matrix.

Algorithm 12.1: Similarity Matrix
Input: Dataset X, Parameter k
Output: Similarity Matrix S

1 T ← MinimumSpanningTree(X) ;
2 foreach xi ∈ X do
3 foreach xj ∈ X, j 6= i do
4 distij = maxe∈Tij dk(e) ;
5 end
6 end
7 foreach sij ∈ S, i 6= j do
8 sij ← − distij−distmin

distmax−distmin ;
9 end

10 return S;

Preference Estimation

The preference value of a data point implies the likelihood of being a cluster
center. According to the heuristic of DPC, the preference value of a data
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point i is positively correlated with two properties:

1. ρi, the local density of point i,

2. δi, the delta distance of point i (distance to a point with larger ρ).

As DPC suggests to analyzing the production of ρ and δ for automatic cluster
center detection, we can assume prefi ∝ δi · ρi.

AP requires both similarity and preference values to be negative values.
A cluster center point with large ρi and δi should have a negative preference
value close to 0. Preference values of off-center points must be much smaller
than 0. In consequence, we define the preference of a point i as:

prefi = (δi − distmax) · ρi (12.4)

where the local density ρi is defined as the kNN distance of point i, which is
similar to the edge density dk(e) defined above.

In Figure 12.3b, the length of the red line is the local density of points D,
E, and F. δi and distmax are defined using distance values in equation 12.2.
Under such definition, boundary points may also have high preference values
(close to 0) when δi− distmax ≈ 0. AP might identify those points as cluster
centers of small clusters. However, their cluster size are smaller than k so
that we can identify and correct those “outlier clusters” easily.

Furthermore, prefj is not defined in equation 12.4 if ρj = max(ρ), since
δj is not defined. Thus, we let prefj = maxi 6=j(prefi) as j is very likely to
be a cluster center. Moreover, we need to normalize the preference value by
dividing by the maximum nonzero preference value:

prefi = − prefi
maxpref6=0 pref

(12.5)

Such normalization reflects how likely a point i is to be a cluster center, when
compared with the most possible one. Algorithm 12.2 presents the procedure
for calculating the preference vector.
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Algorithm 12.2: Preference(X, k, dist)
Input: Dataset X, Parameter k, Distance Matrix dist
Output: Preference Vector pref

1 ρi ← local density of xi ∈ X ;
2 j ← argmax

i
ρi;

3 foreach xi ∈ X, i 6= j do
4 δi ←delta distance of xi;
5 prefi ← (δi − distmax) · ρi;
6 end
7 prefj ← maxi 6=j(prefi) ;
8 pref← − pref

maxpref 6=0 pref ;
9 return pref;

Generating Clusters

After estimating similarities and preferences, we add the preference vector
pref into the diagonal of the similarity matrix S and let AP determine clus-
ter centers. As AP tends to maximize the overall intra-cluster similarity,
the global distribution of data points is also taken into consideration when
identifying cluster centers.

Cluster labels of the rest of the points are assigned in a similar way to
DPC. We traverse unlabeled points in descending order according to the local
densities. The label of the nearest cluster is attached. A refinement step is
introduced by comparing the label of each point to its k nearest neighbors.
Labels will be updated to the majority label among kNN. Such a refinement
step is useful since AP may generate “outlier clusters”, as mentioned above.
Algorithm 12.3 illustrates the overall procedure of our approach.

Computational Complexity

Our approach contains four primary steps: 1) EMST generation; 2) Similarity
and Preference estimation; 3) AP for cluster centers generation and 4) Cluster
labels assignment. The complexity of the first step, generating EMST, can
achieve O(N logN) by utilizing index structure and the Prim’s algorithm
[11]. Similarity and preference computation involves the EMST traversing
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Algorithm 12.3: Generating Clusters
Input: Dataset X, Parameter k
Output: Cluster labels l = [l1, ..., lN ]T

1 N ×N similarity matrix: s← Similarity(X, k);
2 N × 1 preference vector: pref← Preference(X, k,−s);
3 diag(s)← pref;
4 ∀xi ∈ X, li ← −1 ; // initial cluster label to -1
5 Exemplars E ← AffinityPropagation(s);
6 foreach xi ∈ E do
7 li ← A unique cluster label;
8 end
9 Sort X in descending order of ρ;

10 foreach all xi ∈ X, li = −1 do
11 li = argmax

(lj 6=−1)
(si,j);

12 end
13 foreach all xi ∈ X do
14 li ← majority label among kNN of xi ; // refinement
15 end
16 return c;

and the similarity matrix filling, which takes O(N2). The time complexity of
Affinity Propagation makes O(N2T ), where N is the number of data points,
T is the number of iterations. The last cluster assignment step is mainly
about nearest neighbor search, which takes O(N logN) in total. In summary,
our k-nearest neighbor density-based clustering approach has a complexity
of O(N2T ).

12.4 Experimental Results

We investigate our approach on both synthetic and real-world datasets from
the UCI Machine Learning Repository [31]. Additionally, several artificial
datasets of varying sizes, densities, and shapes were generated to highlight
the effectivity of our approach. A summary of each dataset is provided in
Table12.1.

Affinity Propagation algorithm under default settings (as described in
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Table 12.1: Dataset Statistics

(a) Synthetic Datasets

Data N Nc d

spiral[31] 312 3 2
aggregation[31] 788 7 2

flame[31] 240 2 2
d31[31] 3100 31 2

moon (Fig 12.4) 600 2 2
gaussian (Fig 12.5) 800 2 2
blobs (Fig 12.6) 1K, 5K, 10K 2 2
strip (Fig 12.7) 1K, 5K, 10K 2 2

(b) Real-world Datasets

Data N Nc d

iris[31] 150 3 4
digits[31] 1797 10 64
seeds[31] 210 3 7

segments[31] 2310 7 19
seismic-bumps[31] 210 3 8

satimage[31] 6430 6 37
banknote[31] 1372 2 4

Section 12.2) is conducted. RNNDBSCAN algorithm is included to represent
recent DBSCAN-alike kNN clustering algorithms. KNNCLUST stands for
the performance of kNN clustering approaches that are not DBSCAN-alike.
Furthermore, two density-based algorithms, DBSCAN and OPTICS, and
a manifold-based algorithm, Spectral Clustering, are also conducted as a
baseline.

Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI)
are reported. For each kNN based algorithm, we vary k from 1 to 100 and
report the result of k with the best ARI score. Clusters generated by KN-
NCLUST are inconsistent across multiple runs on the same dataset due to
its random access to data points. Thus, the average score of several runs is
reported while the best run is used for visualization. For DBSCAN, minpts
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is selected from the set {2, 5, 10, 20}, and eps is selected over a set of values
equal to the minpts nearest neighbor distance of each observation. OPTICS
has the same parameter pool as DBSCAN, while the schema mentioned in
[6] is used for cluster generation. The affinity matrix we used in Spectral
Clustering (SC) is constructed using the kNN method, where k also varies
from 1 to 100. Table 12.2 and 12.3 show the ARI and NMI score on synthetic
and real datasets. The best values in each row are marked in bold.

Our approach has the best ARI and NMI scores in almost all synthetic
datasets. It is only defeated by the Spectral Clustering on the gaus dataset
with a narrow margin. On real-world datasets, our method is also very com-
petitive. It has the best ARI score in 4 out of 7 datasets. It also ranks second
or third place in the rest of the datasets. In terms of NMI score, our approach
also outperforms competitors in real datasets. It has the highest NMI score
in 5 real datasets and takes the second place in sati dataset with a marginal
gap. bank dataset is the only one that our approach is not among top-2, but
still better than AP, KNNCLUST, and OPTICS. In summary, our approach
provides solid clustering quality compared with traditional methods, as well
as novel kNN based methods.

Figure 12.4 12.5 12.6 and 12.7 visualize the clustering result of our ap-
proach and other kNN clustering algorithms on a series synthetic datasets.
Our approach provides the best clustering result, especially in Figure. 12.5
and 12.6, where two or three clusters are mutually overlapped. Our approach
can identify clusters from densely connected data, while other kNN methods
fail.

Each experiment above also compares the clustering quality (ARI score)
of our approach with other algorithms. The available range of k with a
high ARI score is much more extensive than competitors, which means that
the user can estimate the parameter roughly. Indeed, accepting roughly
estimated parameters is an essential feature of kNN clustering algorithms
since users do not need to search for the best parameter value accurately as
kmeans or spectral clustering required, which is time-saving.

More importantly, the more extensive available range of k also means that
our approach can handle a series of datasets without parameter tuning on
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Table 12.2: ARI & NMI Score on Synthetic Datasets

Dataset Our AP RNN KNN DBS OPT SC

spir
ari 1 0.101 0.179 1 1 0.162 0.388
nmi 1 0.538 0.454 1 1 0.395 0.466
nc 3 34 8 3 3 4 3

aggr
ari 0.996 0.177 0.991 0.809 0.992 0.984 0.809
nmi 0.988 0.681 0.987 0.895 0.98 0.977 0.895
nc 7 38 7 5 8 8 5

flame
ari 0.97 0.086 0.949 0.208 0.97 0.967 0.650
nmi 0.93 0.483 0.891 0.517 0.93 0.927 0.741
nc 2 19 3 16 3 2 3

d31
ari 0.954 0.529 0.855 0.457 0.884 0.641 0.943
nmi 0.97 0.854 0.917 0.081 0.927 0.879 0.962
nc 31 86 31 43 32 29 31

moon
ari 0.984 0.076 0.976 0.485 0.980 0.976 0.802
nmi 0.97 0.458 0.946 0.379 0.970 0.951 0.754
nc 2 27 2 5 3 3 2

gaus
ari 0.962 0.042 0.183 0.544 0.526 0.034 0.98
nmi 0.931 0.409 0.156 0.554 0.501 0.195 0.97
nc 2 47 10 5 3 12 2

blobs
ari 0.941 0.093 0.511 0.245 0.765 0.469 0.921
nmi 0.908 0.508 0.569 0.493 0.717 0.619 0.887
nc 3 40 5 37 4 2 3

strip
ari 0.783 0.097 0.530 0.355 0.750 0.621 0.709
nmi 0.780 0.487 0.544 0.477 0.723 0.626 0.697
nc 3 44 4 14 3 3 3

Average ari 0.949 0.150 0.647 0.443 0.791 0.607 0.672
nmi 0.935 0.552 0.640 0.485 0.781 0.696 0.711

each dataset. In this example, our method can identify all clusters properly
by fixing k at around 30. In contrast, KNNCLUST is able to find clusters
correctly only if the parameter is accurately selected. Spectral clustering
works only if the number of clusters is chosen appropriately. RNNDBSCAN
has a wider parameter range, but parameter tuning is still necessary across
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Table 12.3: ARI & NMI Score on Real-World Datasets

Dataset Our AP RNN KNN DBS OPT SC

iris
ari 0.882 0.344 0.548 0.562 0.739 0.578 0.767
nmi 0.867 0.633 0.688 0.664 0.722 0.731 0.811
nc 4 12 3 5 3 3 3

digi
ari 0.799 0.126 0.574 0.783 0.677 0.116 0.756
nmi 0.854 0.667 0.742 0.848 0.805 0.495 0.854
nc 10 142 34 19 17 15 10

seed
ari 0.753 0.177 0.534 0.434 0.582 0.470 0.602
nmi 0.712 0.510 0.562 0.543 0.554 0.550 0.629
nc 4 19 5 11 3 3 3

segm
ari 0.428 0.080 0.500 0.116 0.401 0.175 0.473
nmi 0.699 0.544 0.622 0.570 0.610 0.531 0.651
nc 4 128 14 214 93 3 8

seis
ari 0.738 0.186 0.436 0.477 0.499 0.558 0.616
nmi 0.711 0.526 0.555 0.565 0.531 0.618 0.644
nc 4 18 7 9 4 3 3

sati
ari 0.529 0.169 0.432 0.389 0.389 0.090 0.550
nmi 0.628 0.540 0.575 0.537 0.551 0.364 0.656
nc 4 51 7 19 5 4 4

bank
ari 0.516 0.027 0.763 0.029 0.668 0.342 0.531
nmi 0.569 0.394 0.707 0.391 0.638 0.439 0.451
nc 4 85 4 122 11 10 3

Average
ari 0.664 0.158 0.541 0.399 0.565 0.333 0.614
nmi 0.720 0.545 0.636 0.588 0.630 0.533 0.671

different datasets.

12.5 Further Properties and discussions

Automatic cluster centers detection for DPC

Many approaches are proposed to detect cluster centers for DPC automati-
cally by proposing new density functions [43] or analyzing the scalar value,



Chapter 12. Shape Alternation Adaptable Clustering 155

(a) KNNCLUST (b) RNNDBSCAN

(c) AdakNN (d) ARI vs. k

Figure 12.4: Visualization of kNN based clustering approaches on synthetic
datasets and the ARI score under different k values.

such as ρi · δi, of each point. Points with properties larger than a threshold
are returned as cluster centers.

Our approach is different since we keep the information of both ρ and
δ, and use AP to find cluster centers that maximize intra-cluster similarity.
Thus, cluster centers are determined not only by the properties of each point,
but also by the relationship between points. Figure 12.8 illustrates cluster
centers found by our approach and their corresponding preference values. We
can see that three centers are not those points with the highest preference
value.

Various Dataset Size

Despite less complexity in parameter selection, another essential property of
kNN clustering over DBSCAN is the dataset size invariant [15]. Figure 12.9
shows the clustering qualities of our approach on two datasets with different
dataset sizes. We can see that, although the DBSCAN structure is not used,
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(a) KNNCLUST (b) RNNDBSCAN

(c) AdakNN (d) ARI vs. k

Figure 12.5: Visualization of kNN based clustering approaches on synthetic
datasets and the ARI score under different k values.

(a) KNNCLUST (b) RNNDBSCAN

(c) AdakNN (d) ARI vs. k

Figure 12.6: Visualization of kNN based clustering approaches on synthetic
datasets and the ARI score under different k values.
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(a) KNNCLUST (b) RNNDBSCAN

(c) AdakNN (d) ARI vs. k

Figure 12.7: Visualization of kNN based clustering approaches on synthetic
datasets and the ARI score under different k values.

(a) Proposed Algo. (b) Preference Plot

Figure 12.8: Cluster centers (red stars) and their preference values in the
dataset.

the quality does not differ a lot under different sizes.

Cluster Number and Parameter k Estimation

There is no ground truth in the real-word for unsupervised learning. Thus,
even if we can try different settings, we do not know which one is the best.
Some unsupervised cluster quality measures, such as the silhouette coefficient
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(a) Dataset blobs (b) Dataset strip

Figure 12.9: ARI Performance vs k on blobs and strip dataset with different
sizes.

[87], are introduced to address the problem. However, those methods can only
be applied to model-based algorithms such as kmeans, and it is challenging
to estimate the qualities of arbitrary shaped clusters.

Note that the quality of our kNN clustering approaches is relatively high
on a wide range of parameters. Such property can be used to estimate cluster
numbers and the best parameter setting in the real-world [15]. Our approach
also keeps such benefits. Figure 12.10 illustrates the histogram of cluster
number been identified with respect to the value of parameter k for k ∈
[0, 100]. Red and blue lines are the corresponding best and worst ARI scores
in each cluster number. As shown in Figure 12.10, for k ∈ [1, 100], the number
of clusters concentrates to a few values. Thus, the real cluster number can be
estimated as the most frequent cluster number, and the value of k that leads
to the most frequent cluster number can be considered as a good setting.

12.6 Conclusion

In this work, we present a novel kNN based clustering algorithm. Although
we are not DBSCAN-alike, we still keep the ability of arbitrary shape clus-
tering using the only parameter k. Similarities and preferences of points
are measured as probabilities based on heuristics from DPC and kNN dis-
tance. Affinity Propagation algorithm is employed to maximize the overall
intra-cluster similarity. In consequence, our kNN based clustering approach
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Figure 12.10: Histogram of cluster number identified by our approach, k ∈
[1, 100]. The best (red) and the worst (blue) ARI score are illustrated for
each case.

is also aware of the overall distribution in the dataset. In cases where we
need to cluster a series of datasets with similar density but different shapes,
our approach is particularly useful since it can adapt to changes in shapes
automatically. Furthermore, with all those functional benefits, our approach
still provides a reliable clustering quality.
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Chapter 13

Extremely Noisy Datasets
Clustering

(a) Raw data (b) Extracted concentrated atoms

Figure 13.1: The clustering result of our KENClus algorithm a real-world
example.

In this chapter, a novel kNN-based clustering algorithm is proposed for
an extremely noisy datasets. In-cluster and noise data points are identified
by analyzing the k nearest neighbor (kNN) statistics of each data point. A
DBSCAN-alike clustering algorithm based on kNN and reverse kNN (RkNN)
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is then applied to generate final clusters. Practically, k is the only parameter
involved in the whole clustering process. Other parameters are fixed at a
default value. For instance, the statistical significant level of unimodality test
α is fixed at 0.05. Intensive experiments on both synthetic and real-world
datasets with different noise quantities and noise densities show that the
approach can provide better clustering quality under strong noise settings.
As shown in Figure 13.1, our method works well in real world applications.

13.1 Related Works

(a) Raw Data (b) Spectral (c) DBSCAN (d) HDBSCAN

(e) SkinnyDip (f) DBMAC-II II (g) AdaWave (h) KENClus

Figure 13.2: Clustering results on extremely noisy datasets. Here, the results
of DBSCAN and HDBSCAN are promising because we put huge efforts to
obtain the correct parameters.

Figure 13.2 illustrates the clustering result of some related works on an
example dataset. Partition-based clustering approaches, such as kmeans [69],
EM with Gaussian mixture model[30] and spectral clustering [110], are not
suitable for this task. They partition the dataset so that each data point is
assigned to one cluster. The existence of noise is completely ignored [10].

The famous density-based clustering algorithm, DBSCAN [34], can be a
good solution, as it is designed to identify arbitrarily shaped clusters and
noise-robust. However, tuning the two parameters of DBSCAN to achieve
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its best performance is not easy under a strong noise setting. HDBSCAN
[18] tackles this problem by reducing the number of parameters to one. It
is a hierarchical clustering algorithm that only requires a single parameter,
the minimum cluster size mclSize. The non-hierarchical clustering result is
generated by maximizing the total link area in the dendrogram. However,
its performance is not very promising when the quantity of noise points is
enormous.

Other clustering techniques such as OPTICS [7], CURE [42], SYNC [12],
FOSSCLU [40] and RNNDBSCAN [15] are also only effective on low noise
level datasets. A serious performance degradation, or a difficult parameter
tuning process, is inevitable. Use an existing outlier detection algorithm,
such as LOF [13], to remove noise and then perform clustering is also not
possible since noises in an extremely noisy dataset are not unusual objects.

Recently, three algorithms, SkinnyDip [79], DBMAC-II [111], and Adawave
[28], are proposed to tackle the clustering problem on an extremely noisy
dataset with less parameter tuning difficulties. SkinnyDip and AdaWave
are practically parameter-free. DBMAC-II removes noise first and then use
another clustering algorithm, such as DBSCAN, to generate final clusters,
which is easier than directly cluster the original dataset. However, as shown
in Figure 13.2, their performances are not promising. Their clustering results
are even worse than the fine-tuned DBSCAN.

13.2 KENClus Clustering Algorithm

Here we propose a novel k Nearest Neighbor based Extremely Noisy Dataset
Clustering algorithm, named as KENClus. It consists of two steps: noises
identification and clusters identification. We assume that noises are uni-
formly distributed in the background with densities slightly smaller than
clusters. For noise identification, the kNN distance (k-dist) is used to define
the local-density of each data point. Noises are then identified by analyzing
the overall local-density distribution of all data points in the dataset. For
cluster identification, we design a novel algorithm based on kNN and RkNN.
Practically, the whole process only requires one parameter k. Though all dis-
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tance functions (metric or non-metric) can be used, the Euclidean distance
is employed for all results produced in this work.

Noise Identification

Noise identification is the main challenge in extremely noisy dataset cluster-
ing. The large quantity and the high density of noises make noise identifica-
tion difficult. Figure 13.3 shows two datasets under different noise settings.
Their k-dist histograms are also illustrated. Regions with similar densities
form a peak in the histogram. Noises form the right-most one. A large
number of noises lead to a high peak, which makes other peaks formed by
clusters invisible. In this case, clustering algorithms that optimize an ob-
jective function, such as HDBSCAN, encounter difficulties. Furthermore, a
large number of noises might also form dense areas due to randomness. Pa-
rameters of conventional clustering algorithms such as DBSCAN have to be
selected carefully to filter out those areas. In the case of high noise density,
the peak of low-density clusters is covered by the peak of noises. This situa-
tion is also difficult for algorithms such as DBSCAN to determine the correct
density threshold. Our KENClus is robust in both cases.

(a) 90% noises, high density (b) 75% noises, extremely high density

Figure 13.3: Datasets under different noise settings and their k-dist his-
togram.

Local-Density using Neighbors’ k-dist

Local-density is employed to identify noises. k-dist is commonly used to rep-
resent the local-density of data points in density-based clustering algorithms.
The larger k-dist value, the lower the local-density of a data point. Ideally,
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the k-dist of an in-cluster point is always smaller than a noise point. How-
ever, the local-density contrast between in-cluster and noise data points is
small under strong noise settings. Using k-dist alone is less effective.

In KENClus, we assume that most neighbors of an in-cluster data point
should also be in-cluster data points. Therefore, kNNs’ information of a
data point should also be involved when computing its local-density. We
first compute the self-density of a data point using the distances to its all
kNNs. Then the local-density of the data point is then computed using its
own and its neighbors’ self-densities.

Formally speaking, let X be the dataset with n data points, Nk(xi) be the
set of kNNs of data point xi ∈ X. A data point is also a neighbor of itself,
i.e., xi ∈ Nk(xi). The local-density of xi, denoted as den[i], is computed
using the self-density of all data points in Nk(xi), as shown in Algorithm
13.1.

Algorithm 13.1: LocalDensity
Input: Dataset X, Parameter k
Output: Local Density List den

1 D1 ← kNN-Query(X, k) ; // D1: Distances, n× k matrix
2 D2 ← SVD(D1, dim = 1) ; // D2: Self-density, n× 1 vector
3 D3 ← D2[Nk] ; // D3: Neighbors’ density, n× k matrix
4 den← SVD(D3, dim = 1) ; // den: Local density, n× 1

vector
5 return den

The first step is to run kNN query, which returns a n×k matrix D1. Row
i of the matrix contains distances between xi and ∀xj ∈ Nk(xi), in ascending
order. Then we compute the vector D2 where D2[i], is the self-density of xi,
by reducing the dimensionality of D1 to 1 using SVD (step 2). As a result,
the self-density of xi includes distances to all neighbors in Nk(xi). We do
not use k-dist alone since it is not robust. For example, if the selected k

is too large, all data points may share a similar k-dist value. Finally, we
store all neighbors’ self-density in D3 and using SVD again to compute the
local-density vector den.

Figure 13.4 demonstrates the difference between k-dist and our local-
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density. In the histogram of k-dist, the peak formed by low-density clusters
is fully covered by noises. However, the peak in the histogram of local-density
is clear.

(a) k-dist (b) local-density

Figure 13.4: Comparison of histograms k-dist and our local-density with
respect to the dataset in Figure 13.2a.

Note that our local-density is defined based on k-dist, which means the
larger absolute value, the lower density. To avoid confusion, the term “left”
and “right” on the histogram are used to represent higher and lower local-
density respectively.

Noise Identification by Recursive Splitting

Noises can be identified by finding the right-most peak of the local-density
histogram. As each peak is a cluster in the 1-dimensional local-density space,
clustering algorithms such as kmeans and EM can be applied to find peaks.
Since we do not know the number of peaks, a parameter-free strategy is
necessary.

Here we develop a recursive splitting method. The idea is to split the
local-density space at a valley in the histogram at each step. The left part
has a higher density and is formed by in-cluster points. The right part
contains both in-cluster data points and noises, and therefore must be split
further. Figure 13.5 demonstrates two splitting steps.

In designing the recursive splitting algorithm, two problems have to be
solved: 1) where to split and 2) when to stop.

Previous works such as DBMAC-II [111] also contains a recursive splitting
step where kmeans is employed to find the splitting position in each step.
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(a) The first splitting (b) The second splitting

Figure 13.5: Each splitting step divides the local-density histogram into two
parts. The right part (blue) is used for the next splitting.

(a) kmean splitting (b) EM splitting

Figure 13.6: Splitting local-density histogram using kmeans and EM algo-
rithms.

However, directly using kmeans for splitting is not ideal. As shown in Figure
13.6, kmeans may split local-densities at the center of a cluster since it is
bad at handling clusters of various sizes and densities. Clusters found by the
EM algorithm are not consecutive so that there is no splitting position. We
address the problem by adapting the EM algorithm. The initial splitting po-
sition is set to the kth smallest local-density value (Algorithm 13.2, step 17).
In each iteration, the intersect position of two Gaussians is computed (step
14-20). Objects on each side are fully assigned to each Gaussian model. The
process is repeated until the splitting position is not changed or a maximum
iteration limit is reached. As shown in Figure 13.5 and 13.6, our approach
works better in finding the splitting position.

The recursive splitting process is stopped when there is only one peak left.
The Dip-test[52], which is a parameter-free statistical test of unimodality, is
employed to test if there is only one peak. If the p-value of the Dip-test is less
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than the given significant level α, the null hypothesis of unimodal is rejected,
which implies that there are more than one peaks left and further splittings
are still necessary (step 2). The parameter α is fixed at 0.05. When the
Dip-test detects only one peak, we still need to try one more splitting (step
5-8). The reason is that the peak formed by low-density clusters and covered
by the noise peak might note be recognized by the Dip-test. Therefore, we
execute one more splitting and check if the splitting position is valid (step
7).

Algorithm 13.2: NoiseIdentification
Input: Local-density List den, Significant level α, Maximum

Iteration maxIter, Stop Threshold ε, Parameter k
Output: Noise Set R

1 den′ ← den ; // Make a copy
2 while Dip-test(den′)< α do
3 splitPos← Split(den′,maxIter, ε, k) ;
4 den′ ← den[den ≥ splitPos] ; // The right part
5 end

/* Test if one more splitting is necessary */
6 splitPos′ ← Split(den,maxIter, ε, k) ;
7 N(µl, σl), N(µr, σr), wl, wr ←Gaussian Mixture Model wrt. splitPos′;
8 if fN(µl,σl)(µl) < fN(µr,σr)(µr) then
9 splitPos← splitPos′; // Accept the splitting

10 end
11 foreach den[i] ∈ den, den[i] < splitPos do
12 R ← R∪ xi ;
13 end
14 return R

Finally, the noise set R is returned (step 8-10). Figure 13.7 shows the
noise identification results on our running example. The result is promising
but some errors still exist. Therefore, a refinement strategy is necessary
during the cluster generation step.
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Algorithm 13.3: Local-Density Splitting
1 Function Split(den, maxIter, ε, k)
2 splitPos← kth smallest value in den′ ; // Initial split

position
3 while iter < maxIter do
4 denl ← den[den < splitPos] ;
5 denr ← den[den ≥ splitPos] ;
6 N(µl, σl)←Gaussian fit on denl ;
7 N(µr, σr)←Gaussian fit on denr ;
8 wl, wr ←Normalized weight of two Gaussians ;

/* Compute the intersect position */

9 a← 1
2σ2
l
− 1

2σ2
r
, b← µr

σ2
r
− µl

σ2
l
, c← µ2

l

2σ2
l
− µ2

r

2σ2
r
− ln(wlσr

wrσl
) ;

10 splitPos′ ←The root of ax2 + bx+ c closer to (µl + µr)/2 ;
11 if |splitPos′ − splitPos| < ε then
12 break;
13 else
14 splitPos← splitPos′;
15 end
16 end
17 return splitPos

18 end

(a) High noise (b) Extremely high noise

Figure 13.7: Noise identification results on high and extremely high noise
datasets. Some noises that are close to clusters or locate in small but dense
areas due to randomness are identified as in-cluster points. Further refine-
ment is necessary.

Noise Identification Complexity

Local density computation involves dimensionality reduction (SVD) on a n×
k matrix, which has a complexity of O(k2n). Each split iteration takes O(n)
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distance computations. Let m be the number of peaks, the split operation is
expected to be called for O(logm) times. Therefore, the overall complexity
of noise identification is O(k2n+ In logm), where I is the maximum number
of iterations of splitting.

Clusters Identification

We follow a general density-based clustering algorithm paradigm to identify
clusters: 1) identify core and border points and 2) connect consecutive core
points and their neighboring border points together to form clusters.

Core and Border Points

The concept of core and border points are widely used in density-based clus-
tering algorithms. A core point and its border points form the smallest unit
of a cluster. In this work, we use reverse k nearest neighbor (RkNN) to define
core points.

Definition 13.2.1 (Reverse k Nearest Neighbor)
Given the dataset X, let Nk(xi) be the set of kNN of xi ∈ X. The set of
reverse k nearest neighbors (RkNN) of xi, denoted as NRk(xi), is the set of
point xj ∈ X such that xi ∈ Nk(xj).

The size of RkNN set varies across different data points. Given xi,
|NRk(xi)| measures how many data points are “similar” to xi. If many other
in-cluster points are similar to xi, we say xi is a core point.

Definition 13.2.2 (Core Points)
Given the dataset X, a data point xi ∈ X is a core point if xi /∈ R and
the number of in-cluster points in its RkNN set is larger than k: |{xj|xj ∈
NRk(xi) ∧ xj /∈ R}| ≥ k.

Definition 13.2.3 (Border Points)
Given the dataset X, a data point xi ∈ X is a border point if xi /∈ R and
the number of in-cluster points in its RkNN set is less than k: |{xj|xj ∈
NRk(xi) ∧ xj /∈ R}| < k.
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The definition of core and border points is important for noise refinement.
A noise been mistakenly identified as in-cluster points will be labeled as a
border point and re-classified as noise if it is not assigned to any clusters
later.

Clusters

The concept of directly density-reachable, density-reachable and density-connected
are defined to describe clusters. Let Q be the set of core points:

Definition 13.2.4 (Directly Density-reachable)
A point xj ∈ X is directly density-reachable from another point xi ∈ X,
denoted as xi → xj, if xj /∈ R and:

1. xj ∈ Nk(xi), where xi ∈ Q or

2. xj ∈ NRk(xi), where xi ∈ Q ∧ xj ∈ Q

Note that the kNN relationship is not symmetric, i.e., xj ∈ Nk(xi) <
xi ∈ Nk(xj). The second condition includes core points in RkNNs, which
guarantees the symmetry of directly density-reachable between core points.
However, when a border point is involved, directly density-reachable is not
symmetric.

Definition 13.2.5 (Density-reachable)
A point xj ∈ X is density-reachable from another point xi ∈ X, denoted as
xi ⇒ xj, if there exists a chain of points x1, x2, . . . , xn−1, xn, where x1 = xi,
xn = xj, ∀m ∈ [1, n− 1], xm → xm+1.

Density-reachable extends the definition of directly density-reachable by
making it transitive. It is symmetric for core points.

Definition 13.2.6 (Density-connected)
A point xj ∈ X is density-connected to another point xi ∈ X, denoted as
xi � xj, if there is a point xn ∈ X such that xn ⇒ xi, xn ⇒ xj.

Obviously, density-connected is symmetric.
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Definition 13.2.7 (Cluster)
A cluster C in the dataset X is a non-empty subset of X such that:

1. ∀xi, xj ∈ X, if xi ∈ C and xi ⇒ xj, then xj ∈ C.

2. ∀xi, xj ∈ C, xi � xj.

3. for a border point xj ∈ X that is not density-reachable from any core
point, we have xj ∈ C if ∃xi ∈ C such that:

(a) xi is a core point and dist(xi, xj) ≤ max
xn,xm∈{C∩Q}∧xn→xm

dist(xn, xm).

(b) @x′i ∈ Nk(xj) such that x′i ∈ C ′ 6= C and the condition (a) holds,
while dist(x′i, xj) < dist(xi, xj)

The first two criteria in the definition above describe the maximality and
the connectivity property of a cluster. However, there are border points that
are very close to a cluster but not directly density-reachable from any core
points, since the parameter k might be too small for some core points in a
highly dense region. The first two criteria do not cover such kind of border
points. We address the problem by introducing the last criterion, which
adds a border point to cluster C if its distance to a core point in C is smaller
than the maximum distance between any two directly density-reachable core
points in C.

Algorithm 13.4 illustrates the cluster generation process. L is the list of
cluster labels. L[i] = −1 indicates that xi is a noise. L[i] = 0 means that xi
has not been processed yet. A cluster is generated starting from a core point
(step 8-10) and expanding to neighbors recursively (Step 15-28). According
to the definition of directly density-reachable, neighbors of a core point xi
include the set of its kNN and core points in the set of its RkNN (step 17,
23). A border point that is not density-reachable from any core points in
any cluster is labeled as noise (Step 12). Finally, all clusters are expanded by
including nearby border points that are close enough (step 13). Algorithm
13.6 is the cluster expanding process that assigns border points that fulfill
the 3rd criterion in Definition 13.2.7 to the corresponding clusters.
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Algorithm 13.4: GenerateClusters
Input: Dataset X, Core set Q, Noise set R
Output: Cluster Label List L

1 foreach xi ∈ X do
2 if xi ∈ R then
3 L[i]← −1 ; // Noise
4 else
5 L[i]← 0 ; // UNPROCESSED
6 end
7 end
8 label← 1 ; // Cluster label starts from 1
9 foreach xi ∈ X ∧ L[i] = 0 do

10 if xi ∈ Q then
11 GenerateCluster(xi, label, L,Q,R) ;
12 label← label + 1;
13 else
14 L[i]← −1 ; // Border become noise
15 end
16 end
17 ExpandCluster(X,L) ;
18 return L ;

Cluster Identification Complexity

Cluster identification is a kNN based clustering algorithm with a DBSCAN-
alike structure. A kNN query is performed on each in-cluster data points.
If the complexity of kNN query is O(log n) with an indexing structure, the
average complexity of cluster identification is O(n log n + |Q|2), where |Q|2

is the additional component for cluster expanding, which is quadratic to the
number of core points.

13.3 Experiments

Experiments are conducted on both synthetic and real datasets with different
manually controlled noise levels. Details about the setting of noise are shown
below. We use the Adjusted Mutual Information (AMI) score [99], which is
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Algorithm 13.5: Generate Cluster
1 Function GenerateCluster(xi, label, L,Q,R)
2 L[i]← label;
3 q ← {Neighbors of xi} ;
4 foreach xj ∈ q do
5 L[j]← label;
6 end
7 while Q is not empty do
8 xj ← q.pop() ;
9 if xj ∈ Q then

10 foreach xn ∈ {Neighbors of xj} do
11 if L[n] = 0 then
12 q.append(xn) ;
13 L[n]← label ;
14 else if L[n] = −1 ∧ xn /∈ R then
15 L[n]← label;
16 end
17 end
18 end
19 end
20 end

a standard metric ranging from 0 at worst and 1 at best, to evaluate the
performance. Noises are included in computing the AMI score.

Seven different algorithms are selected as baselines for comparison. We
begin with DBSCAN and HDBSCAN, which are the most commonly used
conventional density-based clustering algorithms. SkinnyDip, DBMAC-II
and AdaWave are the most recent approaches aimed to be robust on ex-
tremely noisy datasets. kmeans and EM are widely known centroid and
model based clustering algorithms. We use the implementation of DBSCAN,
kmeans and EM in the scikit-learn library [83]. The HDBSCAN implemen-
tation can be found in [80]. SkinnyDip [79] and AdaWave [28] provide the
source code in their original works. We implement DBMAC-II and our KEN-
Clus using Python. The final clustering result of DBMAC-II is generated
using DBSCAN. The implementation can be found in our supplementary
material.
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Algorithm 13.6: ExpandCluster
Input: Dataset X, Core set Q, Noise set R,
Cluster Label List L
Output: Cluster Label List L
/* Maximum distance between directly density-reachable

core points in each cluster */
1 foreach Unique label ∈ L do
2 C ← {xi ∈ X|L[i] = label} ;
3 dmax[label]← max

xn,xm∈C∧xn,xm∈Q∧xn→xm
dist(xn, xm) ;

4 end
/* For each border point not in a cluster */

5 foreach xi ∈ X ∧ xi /∈ R ∧ L[i] = −1 do
6 mindist←∞;
7 foreach xj ∈ Nk(xi), xj is a core point do
8 label← L[j];
9 if dist(xi, xj) ≤ min(dmax[label],mindist) then

10 mindist← dist(xi, xj);
11 L[i]← label;
12 end
13 end
14 end

We put great effort on parameter tuning for DBSCAN. We select minpts
from the set {5, 10, 15, . . . , 100}. The value of ε is tested over the minpts
nearest neighbor distance of every data point in the dataset. The parame-
ter of HDBSCAN, minimum cluster size mclSize, is selected from the set of
{5, 10, 15, . . . , 500}. SkinnyDip is practically parameter-free, with significant
level α fixed at 0.05. We manually adjust the 4 parameters (starting/end-
ing radius, step size and significant level) of DBMAC-II for noise identifica-
tion, and then reuse the best parameters of DBSCAN to generate clusters.
AdaWave has one parameter scale to control the resolution of the grid. We
follow the suggestion in the original work [28] and set scale = 128. For
kmeans and EM, the correct cluster number is given.
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Synthetic Dataset

In the synthetic dataset, we try to mimic the general situation of extremely
noisy dataset clustering and investigate how the quantity and the density of
noise affect clustering performance. As shown in Figure 13.8, the synthetic
dataset has 2 dimensions with 6 clusters. Clusters 1, 2 are two interleaving
half circles with 1000 data points and Gaussian noise (σ = 0.1). Clusters
3, 4, 5, 6 are Gaussian distributed with 300, 500, 2000 and 500 data points
respectively. Noises are uniformly distributed in the background. Noises that
locate inside a cluster are considered as in-cluster points. In the default syn-
thetic dataset, 75% data points are noises. The noise density is represented
as the average local-density ratio between the most sparse cluster and noises,
which is set to 2.0 by default. The size of the background is adjusted ac-
cordingly (Figure 13.8b and 13.8c) so that we can change the noise quantity
without affecting density, and vice versa. As synthetic datasets are randomly
generated, each experiment is repeated for 3 times and the average AMI score
is reported.

(a) Default (b) Increase noise quantity (c) Increase noise density

Figure 13.8: Synthetic dataset examples. The noise density and the noise
quantity are controlled independently.

The experimental results on varies noise quantities and noise densities
are shown in Figure 13.9. kmeans and EM are the worst since they do not
consider noise at all. SkinnyDip and AdaWave are better as they are de-
signed for high noise dataset. Since SkinnyDip only generates rectangular
shaped clusters, it is worse than AdaWave. The conventional method, DB-
SCAN, outperforms SkinnyDip and AdaWave. However, the time we spend
on parameter tuning for DBSCAN is also much more than that of the oth-
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ers. DBMAC-II is a noise removing algorithm. Its performance here is the
same as DBSCAN since DBSCAN is used to generate clusters after noises
been removed. Although DBMAC-II aims to ease the parameter tuning dif-
ficulty under strong noise settings, the 4 parameters for noise removing are
not easy to set. HDBSCAN is slightly worse than DBSCAN in most cases.
Our KENClus algorithm, with only one parameter, is among the best under
all circumstances.

(a) Quantity increased, density fixed (b) Density increased, quantity fixed

Figure 13.9: Experimental results on synthatic datasets.

It is worth to note that noise quantity and noise density have different im-
pacts on the performance of clustering algorithms, as the asymptotic trends
of clustering quality are different between two experiments series. The AMI
score of KENClus, DBSCAN, DBMAC-II, SkinnyDip and AdaWave is stable
with large noise quantity but decreasing with high noise density. The reason
is that those algorithms detect noises based on the density of data points.
High quantity of noise does not affect the density contrast between in-cluster
and noise data points. However, high noise density leads to a small density
contrast, which makes it more difficult to distinguish between in-cluster and
noise data points. The performance of kmeans and EM are stable with re-
spect to noise densities since all noises are wrongly classified. As long as the
quantity of noise is not increased, the AMI score is not affected. HDBSCAN
is a hierarchical clustering algorithm. When the noise level is increasing
(quantity or density), it tends to classify noises as low-density clusters. In
general, our KENClus is the most stable one with respect to changes in both
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noise quantity and noise density.

Real-world Dataset

Six real-world datasets obtained from the UCI repository are tested, as shown
in Figure 13.10. Note that in these classification-style datasets, every point
is assigned to a semantic class label, i.e., none of those datasets have noise.
For this reason, we manually add uniformly distributed noises for testing.
Firstly, all dimensions of each dataset are normalized to [0, 1]. Then, noises
that are uniformly distributed in the space [0, 1]d are added to the dataset.
We investigate the performance on different noise levels by adjusting the
number of noises been added. As the background area size is fixed at 1, both
noise quantity and noise density are changed accordingly. Noises that locate
inside a cluster is treated as in-cluster data points. As noises are generated
randomly, each experiment is repeated for 3 times and the average AMI score
is reported. SkinnyDip contains a dimensionality reduction step. For fair
comparison, we use t-SNE [77] to reduce the dimensionality of the two high
dimensional datasets (texture, optdigits) to 3 for all other algorithms.
Experimental results are illustrated in Figure 13.10, where n is the number
of data points without noise and d is the dimensionality of the data.

In general, the results of our KENClus approach are promising on all
real-world datasets and all noise levels. In particular, when the noise level is
high (noise percentage > 80%), it outperforms all other baselines. The con-
ventional method, DBSCAN, is also very competitive. It outperforms more
recent noise robust clustering algorithms. However, the parameter tuning
step is time-consuming. Different from the results on synthetic dataset, the
performance of DBMAC-II on real-world datasets falls behind DBSCAN.
This is because its noise removing step becomes unstable under high di-
mensional settings. SkinnyDip and AdaWave are parameter-free clustering
algorithms designed for high noise dataset. However, they show unsatisfac-
tory results on real-world datasets with noise. In summary, our KENClus is
a very competitive clustering algorithm for extremely noisy dataset cluster-
ing. Its clustering quality is better than the fine tuned DBSCAN, and most
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importantly, only one parameter is required.

(a) seeds (n = 210, d = 7) (b) segment (n = 2310, d = 19)

(c) banknote (n = 1372, d = 4) (d) wilt (n = 4839, d = 5)

(e) texture (n = 5500, d = 40) (f) optdigits (n = 5620, d = 64)

Figure 13.10: Experimental results on real datasets with varies background
noise levels .
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13.4 Conclusion

In this work, we investigate the extremely noisy dataset clustering prob-
lem. The huge quantity and the high density of noises in such datasets
are challenging for existing clustering algorithms. Through our intensive
experiments, surprisingly, we found the conventional method DBSCAN out-
performs algorithms that are proposed recently for extremely noisy dataset
clustering. However, to achieve such promising results under strong noise set-
tings, a timing consuming parameter tuning step is necessary for DBSCAN.
In applications such as scientific research, where there may be hundreds of
datasets waiting for processing, such kind of parameter tuning is impractical.
To address the problem, we propose our KENClus algorithm, which reduces
the complexity of parameter tuning as only one parameter is required. At
the same time, it has a promising clustering performance under strong noise
settings.



Chapter 14

Summary and Outlook

In this chapter, the major contributions of this thesis are summarized, and
possible directions for future research are pointed out.

14.1 Summary

In this thesis, novel algorithms are proposed to solve new challenges under
different conditions in different pattern mining tasks, including itemset min-
ing, sequential pattern mining, and clustering. The preliminaries of pattern
mining involved in this thesis are introduced at the very beginning. Then,
the new challenge of extracting rare patterns in itemset mining is investigated
in part I. A novel data structure called the negative itemset tree is designed
for top-down rare itemset mining. An efficient rare itemset mining algorithm
using the negative itemset tree and the idea of diff-set, called NIIMiner, is
proposed in chapter 4. Besides extracting the full list of rare itemsets, the
problem of closed rare itemset mining is also conducted, which produces a
small condensed representation. In chapter 5, a bi-directional closed rare
itemset mining framework is proposed to accelerate the mining process. In
chapter 6, an efficient closed rare itemset mining algorithm, called LSCMiner,
is proposed.

In part II, existing sequential pattern mining and temporal pattern mining
are extended to handle data streams and interval-based events. A general
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introduction and preliminaries of sequential and temporal pattern mining
are given in chapter 7 and 8. Then, an incremental temporal pattern mining
algorithm for data streams is described in chapter 9. Chapter 10 further
extends the algorithm to handle interval-based events in data streams.

Part III studies two new challenges, shape alternation adaptability and
extremely noisy dataset, in kNN based clustering. Chapter 9 presents a novel
kNN based clustering algorithm with shape alternation adaptability. Given
a series of datasets, users do not need to tune the parameter manually for
each dataset. Chapter 10 proposes a novel kNN based clustering algorithm
for extremely noisy datasets.

14.2 Outlook

The last section points out some directions for future research. In this the-
sis, various novel algorithms are proposed to address new challenges under
different conditions in the area of itemset mining, sequential pattern mining,
and clustering. One big common challenge in those pattern mining areas is
the performance on a big dataset. For example, the rare itemset mining algo-
rithms we proposed in this thesis are orders of magnitude faster conventional
methods. However, when the transaction dataset becomes large and dense, it
still takes a significant amount of time to generate rare itemsets. One solution
to address the performance issue is to design anytime algorithms for pattern
mining. An anytime algorithm can return a valid solution to a problem even
if it is interrupted before it ends. The longer it keeps running, the better
solution it can provide. In recent years, the challenge of developing anytime
pattern mining algorithms has caught much attention. There are various
anytime frequent itemset mining and sequential pattern mining algorithms
[41][57]. Anytime density-based clustering algorithms such as AnyDBC [78]
has also been proposed recently. However, those anytime algorithms are de-
signed for normal application scenarios such as frequent itemset mining. New
challenges studies in this thesis, such as rare itemset mining and kNN based
clustering, are not covered. It is worth developing new antytime pattern
mining algorithms.
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Besides the common performance issue, each pattern mining tasks studied
in this thesis also has its own research problems to be solved. For example,
this thesis developed efficient rare itemset mining algorithms. Efficient closed
rare itemset mining algorithms are also proposed to achieve better perfor-
mance and reduce the redundancy of the full rare itemset list. However,
existing condensed itemset representations such as the closed pattern are
designed for frequent patterns, which will cause problems. For example, as
shown in this thesis, an extra frequent border set is necessary to keep the
closed pattern representation lossless. Developing condensed representations,
either lossless or approximated, for rare itemset mining is necessary.

Furthermore, the interval-based temporal pattern mining algorithm pro-
posed in this thesis is still based on the fundamental sequential pattern min-
ing algorithm, PrefixSpan. Subsequences that support the same temporal
pattern must share the same event type order. However, in real-world appli-
cations, the log of event labels might not be as robust as temporal informa-
tion. Mining temporal patterns without categorical label information could
be very useful in this case.
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