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Zusammenfassung

Das Ziel des Swampland Programms ist die Klassifizierung effektiver, zu Quantengravita-
tionstheorien vervollständigbarer Theorien. Aufgrund der enormen Anzahl an möglichen
Stringvacua, zusammengefasst in der sogenannten Stringlandschaft, sind die meisten der
bisherigen Resultate des Programms Vermutungen. Jedoch existiert ein beständig wach-
sendes dichtes Netz aus Abhängigkeiten zwischen diesen Vermutungen.

Ein besseres Verständnis oder ein Beweis dieser Vermutungen würde die erlaubten
Niederenergietheorien einschränken. Das Ziel dieser Arbeit ist deshalb die Entwicklung
mathematischer Methoden, die explizite Tests der Swampland Vermutungen in stringthe-
oretischen Modellen ermöglichen. Insbesondere werden Perioden von Calabi-Yau Mannig-
faltigkeiten auf numerischem und analytischem Weg berechnet. Darüber hinaus werden
Methoden zur Berechnung von Calabi-Yau Metriken, Linienbündelkohomologien und Stre-
beldifferentialen behandelt.

Diese werden zur Überprüfung zweier Vermutungen eingesetzt, zum Test der Swamp-
land Distanzvermutung sowie zum Test der dS Vermutung. Erstere besagt, dass eine effek-
tive Theorie nur bis zu bestimmten Feldwerten gültig sein kann. Werden diese überschritten
werden unendlich viele nicht berücksichtigte Zustände exponentiell leicht und die verwen-
dete effektive Beschreibung bricht zusammen. Diese Vermutung wird durch eine explizite
Berechnung von Distanzen zwischen effektiven Theorien in Calabi-Yau Moduliräumen
getestet. Die dS Vermutung verbietet hingegen stabile Vacua mit positiver kosmologischer
Konstante. Um diese Vermutung zu überprüfen, wird ein Teil der KKLT-Konstruktion
explizit durchgeführt. Darüber hinaus wird die Validität der zugrundeliegenden effek-
tiven Theorie in einem

”
warped throat“ analysiert. Neben diesen traditionellen Herange-

hensweisen werden exotischere Ansätze für die Konstruktion von dS Räumen untersucht.
Dies umfasst Tachyonenkondensation sowie andere Raumzeitsignaturen.



Abstract

The goal of the swampland program is the classification of low energy effective theories
which can be consistently coupled to quantum gravity. Due to the vastness of the string
landscape most results of the swampland program are still conjectures, yet the web of
conjectures is ever growing and many interdependencies between different conjectures are
known.

A better understanding or even proof of these conjectures would result in restrictions
on the allowed effective theories. The aim of this thesis is to develop the necessary math-
ematical tools to explicitly test the conjectures in a string theory setup. To this end the
periods of Calabi-Yau manifolds are computed numerically as well as analytically. Further-
more, tools applicable to general string phenomenological models are discussed, including
the computation of target space Calabi-Yau metrics, line bundle cohomologies and Strebel
differentials.

These periods are used to test two conjectures, the refined swampland distance conjec-
ture as well as the dS conjecture. The first states that an effective field theory is only valid
up to a certain value of field excursions. If larger field values are included, the effective
description breaks down due to an infinite tower of states becoming exponentially light.
The conjecture is tested explicitly by computing the distances in the moduli space of CY
manifolds. Challenging this conjecture requires the computation of the periods of different
Calabi-Yau spaces. The dS conjecture on the other hand forbids vacua with positive cos-
mological constant. To test this conjecture, the KKLT construction is examined in detail
and some steps of the construction are carried out explicitly. Moreover, the validity of
the assumed effective theory in a warped throat is investigated. Besides these traditional
approaches more exotic ones are followed, including the construction of dS theories using
tachyons as well as modifying the signature of space time.
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Chapter 1

Introduction

Over a century ago Einstein formulated his famous general theory of relativity, describing
the observed gravitational effects to impressive precision. Since then experiments con-
firmed the predictions of the theory, culminating in the observation of gravitational waves
by LIGO [6]. While the theory of general relativity describes the universe on a large scale,
it was found that quantum field theories (QFT), especially non-abelian gauge theories,
are well suited to describe the small scales appearing in atomic and particle physics. The
standard model has tremendous success in predicting the scattering amplitudes of elemen-
tary particles. But while experiments have confirmed both theories to high precision, they
contradict each other on a very fundamental theoretical level. The ground states in QFTs
produce infinite vacuum energy. In the QFT itself this does not cause any problems, as only
energy differences matter. But as the curvature of space-time couples to energy densities,
the absolute value of the energy density plays and important role in the theory of general
relativity. An infinite energy density would cause a gravitating universe to collapse to a
point, something which is certainly not observed. On the other hand, trying to formulate
Einstein gravity in terms of a QFT causes problems as the gravitational force, mediated
by a massless spin 2 field, is a non-renormalizable force. The unification of gravity with
quantum field theories is one of the unresolved problems in theoretical physics.

A possible way out of this situation is given by string theory. Originally string the-
ory was developed to describe the strong interaction. It was observed that the hadronic
spectrum follows so-called Regge trajectories, i.e. the mass squared of the hadrons is a
linear function of the angular momentum of the hadrons. Such behaviour is a typical
sign of spectra arising from strings. It is known today that the strong interaction is best
described using quantum chromodynamics and later experiments showed that Regge tra-
jectories are only approximately linear, which is why string theory is no longer a candidate
theory for the strong interaction. But it was soon realized that the spectrum of closed
strings naturally contains a massless spin 2 field, a graviton. This turned string theory
into a quantum theory of gravity. Moreover, it has many favourable properties one would
wish for a fundamental theory of everything. There is only a single free parameter, the
tension of the string. Everything else, for example the coupling constants, the mass spectra
and the field content, is predicted by the theory. The theory also enjoys a high amount of
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symmetries, which allow to compute the partition functions as well as rendering the theory
finite. The extended nature of the strings smooths the interactions such that the typical
divergences plaguing QFTs are absent. The theory also includes even higher dimensional
objects in form of so-called D-branes, which carry a gauge field on their world-volume and
thereby allow for a geometric construction of non-abelian gauge theories. And finally, and
probably most importantly, the theory even predicts the number of dimensions in which
it can be consistently formulated. But this is the point where the nice features end. The
mathematical consistency requires the theory to be formulated in more than 4 dimensions,
either 26 for the original bosonic version or 10 for a supersymmetric variant. While there
also exists a 4-dimensional variant, this turned out to describe pure self-dual gravity in a
Euclidean space and does not look like our world at all. As only 4 dimensions are observed,
it is necessary to somehow remove the additional 6 dimensions. To obtain a phenomeno-
logically viable theory, one thus assumes that 6 of the 10 dimensions are compactified, i.e.
their radii are taken to be too small to be observed by today’s experiments. The masses,
coupling constants and quantum numbers of the particles in the resulting 4-dimensional
low energy effective theory are then determined by the properties of this 6-dimensional
internal space. The problem with finding a theory describing our world is thus turned into
the problem of finding the correct 6-dimensional geometry. The string equations of motion
require this geometry to be Ricci flat, or equivalently to be a so-called Calabi-Yau(CY)
space. The number of possible real 6-dimensional CY spaces is vast, at least of the order of
several hundreds of millions. It is not even known if this number is finite. As each geom-
etry corresponds to a different low energy effective theory, this gives rise to the so-called
string landscape of possible theories. Due to the enormous amount of possibilities it is
hopeless to try them all. Thus a mechanism which chooses the correct theory is needed,
the so-called vacuum selection mechanism. When it became clear that such a mechanism
is at least for the moment out of reach, the research in string phenomenology shifted away
from constructing our world explicitly to restricting the possibilities. Despite the vastness
of the landscape, it does not contain every possible low energy theory. The theories which
are not contained in the landscape are said to lie in the swampland. While string theory is
used as the prime example of a quantum theory of gravity, the swampland is assumed to be
a general feature of quantum gravity independent of string theory itself. The assumption
that string theory captures all relevant aspects and possible theories of quantum gravity
is known as the string lamppost principle [7] or string universality. String theory gives
explicit examples of consistent theories which are completely under computational control.
But this control requires extended supersymmetry, as only in this case non-renormalization
theorems hold. Non-supersymmetric string theories are much less understood. This could
lead to a bias in the studied theories, thus it is important to construct new examples,
including non-supersymmetric ones.

A theory which is in the swampland cannot be consistently coupled to quantum gravity
in the UV. The aim of the swampland program is to find criteria when a low energy
theory is in the swampland, or equivalently when it cannot be completed in the UV.
It was initiated by the seminal work of Ooguri and Vafa [8, 9]. This paper introduced
the swampland distance conjecture, which predicts an infinite tower of states to become
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exponentially light when scalar fields take large trans Planckian values. This was only
the first of many conjectures which are now known to form a tight web of interrelations.
Many of these conjectures originate from black hole arguments [10], but were confirmed
to hold in various string theoretic examples. While these conjectures are expected to
hold in all theories of quantum gravity, we will focus on string theory, as this is the only
theory of quantum gravity available to us developed far enough and providing sufficient
computational control to test the conjectures.

The goal of this thesis is to challenge some of these conjectures in the string theory
setting. To this end detailed computational methods necessary to construct explicit string
models are developed. This reaches from the computation of so-called period integrals and
finding Ricci-flat metrics in 6-dimensional spaces over computing partition functions of
two-dimensional supersymmetric field theories to the construction of exotic string theories.
This thesis is organized as follows:

After a short introduction chapter 2 begins with an overview of string theory, showing
the plethora of possible string constructions as well as their interrelations and introduce
the concept of compactification.

In chapter 3 methods for computing string theory vacua are developed. The main
focus lies on the computation of the periods of CY manifolds in a symplectic basis. We
start by constructing CY spaces in terms of hypersurfaces in toric varieties and complete
intersections thereof. Using this formulation, the periods are computed on the complex
structure or B-model side exploiting the properties of a system of differential equations, the
so-called Picard-Fuchs (PF) system. To obtain the A-model periods the B-model periods
are then mapped to the Kähler side using mirror symmetry. We develop an algorithm to
compute analytic expressions for the periods at arbitrary points in the moduli space . This
allows a computation of the periods close to conifold singularities in moduli space. The
periods are expressed in terms of a local basis which gets mapped to the symplectic basis
by a transition matrix. We show that the entries of this matrix can be expressed in terms
of an ε-expansion of hypergeometric functions. The hypergeometric 2F1 functions related
to elliptic fibers are well studied, while the higher hypergeometric functions corresponding
to shrinking divisors or CYs are much less understood. The same functions and expansions
appear in the study of Feynman integrals, which allows us to use the rich literature in this
area for our computations. We finally point out the connection to number theory and how
the entries of the transition matrix are related to L-function values.

In the next section another possible description of CY spaces is introduced, which ap-
plies the gauged linear sigma models instead of the toric construction. These models allow
the computation of the Kähler potential directly on the A-model side without referring to
mirror symmetry. As this construction is not based on toric geometry, it is also possible
to describe more exotic geometries which do not necessarily have a toric pendant. Since
supersymmetric localization techniques are required for the computation of the partition
function, the method is only applicable in N = 2 supersymmetric theories. As the method
results directly in expressions for the Kähler potential without determining the periods,
it allows for a fast computation of the moduli space metric. Thus the GLSM approach is
well suited for tests of the refined distance conjecture, but the supersymmetry requirement
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prevents an application to flux vacua as these break parts of or all of the supersymmetry.
In the next section of this chapter the state-of-the-art techniques for the computation of
numerical CY metrics are discussed. This includes Donaldson’s T-operator, minimization
of the Calabi-energy as well as (holomorphic) neural networks. Knowledge of the target
space metric is a requirement for the computation of the spectrum of the Laplacian. Fur-
thermore, this would give a non-trivial test of of the results obtained by algebraic geometry.

Following this we discuss the computation of line bundle cohomologies. These are
for example required for heterotic compactification. It is shown that by using machine
learning techniques it is possible to determine analytic expressions for a given geometry in
a fully automatized way if only a small sample of values are known. As this sample can be
generated by the well-known CohomCalc algorithm, this solves the problem completely.

In the last section of this chapter we give a new method for computing analytic ex-
pressions for Strebel differentials of n-punctured spheres based on Belyi maps. There are
existing algorithms for these computations, but for generic points in moduli space these
become unmanageable. Thus only very few explicit examples are known. These differen-
tials are relevant for the computation of closed string scattering amplitudes and solve a
minimal area problem. Moreover, we point out a possible connection of this computation
to the mirror map of CY manifolds, as the mirror map itself can be interpreted as a Belyi
map.

After this mathematical chapter the swampland conjectures are introduced in chapter
4 and the refined swampland distance conjecture is discussed in detail. Using the moduli
space metrics of the previous chapter, the range of validity of effective theories in CY moduli
spaces is studied. The results are all in agreement with the refined distance conjecture. As
the radii of the phases decrease with h1,1, as has been seen in a 101-dimensional example,
it is to be expected that the conjecture holds in general, although it is still unproven.

In chapter 5 we put our focus on the validity of the KKLT construction. This represents
an explicit construction of 4-dimensional dS space in string theory. One of the swampland
conjectures forbids the existence of such solutions. We find an explicit string theory setting
in which the first ingredients of the construction are realized. I.e. we give a solution in
which all complex structure moduli are stabilized close to a warped throat in form of a
conifold, while the superpotential takes exponentially small values. Moreover, we show
that light KK modes localized in the warped throat lead to corrections of the effective
low energy theory. But these corrections are of the same functional form as the tree-level
result, rendering these corrections only mildly dangerous and not fatal for the theory.

As the construction of dS space turns out to be difficult in the usual string lamppost of
type II, F-theory or heterotic models, in chapter 6 we turn our attention to more exotic con-
structions which could lead to dS spaces. First we review the tachyon induced transitions
between theories in different number of dimensions. Starting from non-supersymmetric
tachyonic heterotic string theories, the transitions lead to stable dS vacua at late times, al-
beit with a linear dilaton background. Moreover, all known transitions seem to respect the
cobordism conjecture. The obtainable stable dimensions correspond exactly to the allowed
compactifications which do not suffer from a bubble of nothing instability. Similarly, the
condensation of the bosonic bulk tachyon is studied. The endpoint of this condensation
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is unclear, but using a supersymmetric embedding it can be shown that the previously
known non-perturbative minimum is unstable in new directions arising from the addition
of world-sheet fermions. As the number of dimensions and even the signature can change in
tachyon condensations, we then ask the question if the dS conjecture holds also for different
space-time signatures as well as for different world-sheet signatures. To this end Euclidean
CFTs corresponding to open strings are developed and the phenomenology of these theories
is studied. It turns out that for each non-standard target-space signature there is a single
brane in the Euclidean CFT with a ghost-free gauge sector. As the orientifolds required
to cancel the RR tadpole induced by these branes are exactly the orientifolds eliminating
the dS solutions, the dS conjecture is extended to these more exotic theories. While it
turns out that the studied theories do not give a loop-hole in the dS conjecture, the large
amount of consistency in the a priori absurd theories shows that much more is possible in
string theoretic constructions once one abandons the usual lamppost.

Finally, chapter 7 gives an outlook of possible future work, including new computational
techniques for the hypergeometric periods, the computation of Pfaffians for the stabilization
of Kähler moduli and the application of numerical CY metrics to the computation of the
KK spectrum of warped throats.
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Chapter 2

Basics of String Theory

This thesis will be mainly focused on the application of computational methods to the
problems arising in string theoretic models. We will start with a short review on the
fundamentals of string theory. This chapter is based on the discussion in [11] and follows the
notation therein. The first section begins by introducing bosonic string theory. This theory
will turn out to be consistently formulated in 26 dimensions. To obtain a supersymmetric
version of the theory, fermions living on the world-sheet will be added, which will reduce the
number of dimensions to 10. As only 4 dimensions are observed in our world, the additional
six dimension will be compactified to obtain a phenomenologically viable theory. It will
turn out that the compactification space required for this is a Calabi-Yau(CY) manifold.

2.1 Conceptual Ideas

Before the construction of string theory is described in detail, some basic ideas appearing
in the theory are discussed. This section is not mathematically rigorous and aims to give
a reader unfamiliar with string theory an overview of the concepts.

The main problem of gravitational amplitudes lies in the point like interactions. A way
out of this is to assume extended fundamental objects that “smear” the interaction. This
removes the dangerous point-like interactions from the theory. The scattering amplitudes
in a QFT computation are obtained by summing over the different Feynman diagrams.
Each vertex of the diagram comes with one factor of the coupling constant g. Thus the
sum over the Feynman diagrams corresponds to an expansion of the path integral in the
coupling constant. Similar, string theory has a single parameter, the string coupling con-
stant. The sum over Feynman diagrams gets replaced by a sum over possible world-sheet
geometries. For closed strings, the relevant geometries are 2-dimensional surfaces without
boundaries. These are characterized by a single topological number, the genus g, which,
roughly speaking, counts the number of holes of the manifold. A n-loop contribution thus
corresponds to a 2-dimensional manifold with n holes. The tree-level amplitude corre-
sponds to the sphere, which has genus 0. The one-loop-level is given by the torus. For
open strings the world sheet has a boundary. Thus the relevant geometries are a disc at
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Figure 2.1: Comparison of a QFT amplitude on the left and a closed string amplitude on
the right. There is no pointlike interaction in the string case.

tree-level and an annulus at one-loop-level. Intuitively the genus counts the number of
holes in the surface. Figure 2.1 shows the two diagrams for a tree-level 3-point amplitude
in a QFT as well as in string theory. Note that the string diagram is topologically a sphere
with three holes or punctures. While summing over topologies may seem more complicated
than summing Feynman diagrams, it also includes some simplifications. There is only a
single tree-level diagram for an n-point amplitude in the closed string case, the sphere with
n punctures. The tree-level n-point amplitude in a QFT computation can already include
several Feynman diagrams. E.g. the 4-point amplitude consists out of 3 contributions, the
s, t and u channels.

When computing a string scattering amplitude, one does not only sum over the different
topologies, but one also has to integrate over all possible configurations, i.e. positions of
the punctures. The symmetries of the sphere allow to fix 3 punctures. But starting from
4 punctures, there is additional freedom. The parameter space of n-punctured Riemann
surfaces has interesting modular properties. These are the reason the amplitudes remain
finite. A simple example of this is the 1-loop vacuum amplitude of string theory, given
by a torus without punctures. This amplitude computes the cosmological constant of the
theory. The detailed computation will be described in the next sections. Here we only state
that the torus has a SL(2,Z) symmetry. As usual one integrates only over a fundamental
domain of the symmetry group. In the case of SL(2,Z) this fundamental domain is the so-
called Teichmüller space. This space can be chosen to exclude the origin, thereby removing
the divergences.

In a QFT, divergences usually arise from momentum integrals of the form∫ ∞
0

d4k
1

(k2 −m2)n
, (2.1)

where n is an integer. For n ≥ 2 these integrals become divergent. If the theory would
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have a symmetry

k → 1

k
, (2.2)

the integration should only be over the fundamental domain. In this case, there would be
2 fundamental domains, either from 0 to 1 or from 1 to ∞. Choosing the second one, the
integral would become ∫ ∞

1

d4k
1

(k2 −m2)n
, (2.3)

which is finite.1 Exactly the same happens in string theory, only that here the integral is
two-dimensional and the fundamental domain is the Teichmüller space.

But this UV finiteness comes at a high cost. As the string is an extended object, it
can be internally excited. It behaves exactly like a guitar string which can vibrate in all
integer multiplicities of its eigenfrequency. This leads to an infinite tower of massive string
states. Moreover, if the space-time geometry includes non-trivial circles, the string can
wind around these. These winding modes have a mass proportional to the radius of the
circle and also form an infinite tower of states. We will later see that exactly these infinite
towers are necessary for the consistency of the theory, but at the same time it is important
for phenomenological purposes to suppress the towers enough such that they cannot be
seen in today’s experiments. This turns out to be a formidable challenge.

As we have seen, choosing an extended object can lead to the removal of the typical
UV divergences. String theory starts with the simplest choice for an extended object, a
1-dimensional string. One could ask the question why this is more natural than starting
with point like particles or any d-dimensional object. But this is only the starting point of
the theory. It turns out that open strings, depending on the boundary conditions, have to
end on other extended objects, the so-called Dirichlet D-branes. These can be described
equivalently by coherent states of closed strings or by the open strings ending on them.
This is known as a open-closed duality. As D-branes of all possible dimensions exist, string
theory is really not only a theory of strings. The advantage of taking a string as a starting
point is that the world-volume traversed by a string during its lifetime is 2-dimensional. As
2-dimensional gravity is trivial, the world-sheet theory can be quantized consistently as will
be described in the next section in detail. If one would start with a 2-dimensional brane or
a higher dimensional object, gravity on the world volume would no longer be trivial and it
is not clear how to quantize such a theory. There are signs that the true underlying theory
is not really a string theory and that string theories are only describing certain limits of
an underlying universal theory, often denoted M-theory. The meaning behind the M varies
with context, examples include mysterious, membrane, matrix or metaplectic. They all
mean a non-perturbative universal formulation of string theory, which is sadly still not
available.

After this short conceptual section we now turn to a more rigorous formulation of the
theory.

1For n < 2 one would choose the other fundamental domain to render the integral finite.
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2.2 Bosonic String Theory

The basic idea of string theory is to formulate a theory of 1-dimensional objects, the strings.
These can come in two varieties, open and closed. As we will see later, open strings are
intrinsically related to gauge forces, while closed strings describe gravity and the geometry
of space-time. While a particle traces out a one-dimensional world-line in space-time, a
string traces out a two-dimensional world-sheet Σ. This world-sheet will be parameterized
by the coordinates τ and σ, where τ ∈ (−∞,∞) parameterizes the time direction and
σ ∈ [0, l) describes the spatial extension of the string. Conventionally, the string length l is
chosen to be 2π for closed strings and π for open strings. In this section we will assume that
the world-sheet has Lorentzian signature (1, 1). Later on we will drop this assumption and
generalize the construction also to Euclidean world-sheets of signature (0, 2), i.e. purely
space-like.
To describe the movement of a string in a d-dimensional space-time, referred to as the
target space, one introduces d scalar fields Xµ on the world-sheet. These bosons describe
the position of the string in the target space-time, i.e. the usual coordinates become fields
on the world-sheet. More abstractly these fields can also be thought of as maps from the
world-sheet to the target space. Again for this section we will assume the target space to
be a flat Minkowski space of signature (1, d − 1) with metric ηµν , another assumption we
will loosen later on. The action to be extremized is the volume of the world sheet, the
so-called Nambu-Goto action.

SNG = −T
∫

Σ

dA , (2.4)

where T is the tension of the string. It is unknown how to quantize such an action due
to the square roots appearing in explicit formulas for the surface area. Instead of working
directly with (2.4), one introduces an auxiliary field on the world-sheet, the world-sheet
metric hαβ. Using this additional field it is possible to write down a classically equivalent
action, the Polyakov action

Sp = −T
2

∫
Σ

√
−hhαβ∂αX(σ, τ)µ∂βX(σ, τ)νηµνdσdτ . (2.5)

This action is the true starting point of string theory. It is invariant under two local
symmetries, coordinate reparameterizations as well as Weyl rescalings. Together, these
can be used to eliminate all the degrees of freedom of the world-sheet metric. One possible
gauge choice is the conformal gauge, in which the metric is set to the flat two-dimensional
Minkowski metric:

hαβ = ηαβ . (2.6)

This is the step which is only possible for two-dimensional world-sheets, as there is enough
freedom in 2 dimensions to completely gauge fix the metric. In d ≥ 3 dimensions the
reparameterizations and Weyl rescalings are no longer sufficient to achieve this. In the
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conformal gauge, the Polyakov action (2.5) simplifies drastically:

Sp =
T

2

∫
Σ

(∂τX(σ, τ))2 − (∂σX(σ, τ))2d2σ = T

∫
Σ

∂+X(σ, τ) · ∂−X(σ, τ)d2σ , (2.7)

where in the last equality the light cone coordinates σ± were introduced:

σ± = τ ± σ . (2.8)

From the variation of the Polyakov action follow the equations of motion in the usual way

∂+∂−X
µ(σ, τ) = 0 . (2.9)

These equations are solved by the following Ansatz for the scalar fields

Xµ(σ, τ) = Xµ
L(σ+) +Xµ

R(σ−) . (2.10)

This implies that the free string consists out of two independent sectors, called the left-
and right-moving sectors, which depend only (anti-)holomorphically on the world-sheet
coordinates. Note that this separation of the two sectors holds only in the free theory, i.e.
as soon as interactions between the world-sheet bosons Xµ are turned on, the two sectors
mix. These interactions would correspond to a curved space-time. In this thesis we will
always work in flat space, such that we will assume the independence of the two sectors.

The mode expansion of the left and right moving sectors depends on the boundary
conditions. For closed strings these are the periodicity conditions

Xµ(σ + l) = Xµ(σ) . (2.11)

The mode expansions compatible with this boundary condition are

Xµ(σ−) =
1

2
(xµ − cµ) +

πα′

l
pµσ− + i

√
α′

2

∑
n6=0

αµn
n
e−

2π
l
inσ− , (2.12)

Xµ(σ+) =
1

2
(xµ + cµ) +

πα′

l
pµσ+ + i

√
α′

2

∑
n6=0

αµn
n
e−

2π
l
inσ+ . (2.13)

In these expressions xµ is the center-of-mass of the string, pµ is the momentum and αµn are
the oscillators. We have also introduced the α′ parameter, which is given by the inverse
tension:

α′ =
1

2πT
. (2.14)

While from a string theoretic perspective the bosons X are the basic fields, they have
conformal dimension 0. Thus from a conformal field theory (CFT) point of view not
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the bosons X are the elementary degrees of freedom but the currents ∂X. Defining the
momentum pµ as the zero mode oscillator,

αµ0 = αµ0 =

√
α′

2
pµ , (2.15)

the currents can be expressed in terms of the oscillators as

∂−X
µ(σ−) =

2π

l

√
α′

2

∞∑
n=−∞

αµne
− 2π

l
inσ− , (2.16)

∂+X
µ(σ+) =

2π

l

√
α′

2

∞∑
n=−∞

αµne
− 2π

l
inσ+ . (2.17)

The mode expansions for open strings are constructed in a similar way. There are two
possible boundary conditions, Neumann(N) and Dirichlet(D), which are given by

Neumann : ∂σX
µ|σ=0,l = 0 , (2.18)

Dirichlet : δXµ|σ=0,l = 0 . (2.19)

A Dirichlet condition fixes the endpoint of the string in this direction. This would violate
momentum conservation, unless there is an object which absorbs any incoming momentum.
These objects are Dirichlet- or D-branes. The dimension of the brane is fixed by the number
of Dirichlet boundary conditions of the open string.

As the boundary conditions at the two endpoints of the string do not need to be the
same, there are four possible combinations of boundary conditions, NN, DD, DN and ND.
For these four possibilities the respective mode expansions are

Xµ
NN(σ, τ) =xµ +

2πα′

l
pµτ + i

√
2α′
∑
n6=0

αµn
n
e−

π
l
inτ cos(

nπσ

l
) , (2.20)

Xµ
DD(σ, τ) =xµ +

1

l
(xµl − x

µ
0)σ +

√
2α′
∑
n6=0

αµn
n
e−

π
l
inτ sin(

nπσ

l
) , (2.21)

Xµ
ND(σ, τ) =xµ +

√
2α′

∑
r∈Z+ 1

2

αµr
r
e−

π
l
irτ cos(

rπσ

l
) , (2.22)

Xµ
DN(σ, τ) =xµ +

√
2α′

∑
r∈Z+ 1

2

αµr
r
e−

π
l
irτ sin(

rπσ

l
) . (2.23)

Note that the mixed boundary conditions have half-integer indices and thus no zero mode
contribution. The zero modes for the NN and DD case are defined as

NN : α0 =
√

2α′pµ , (2.24)

DD : α0 =
1√

2α′π
(xµl − x

µ
0) . (2.25)
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In these cases different normalizations have been chosen for the oscillators to bring them
exactly in this form. The reason is that one can now write down a single expression for
the current ∂+X in all cases:

∂+X =
π

l

√
α′

2

∑
n

αµne
−π
l
inσ+ , (2.26)

where the summation index n runs over the integers for NN and DN boundary conditions
and over the half-integers for mixed boundary conditions. Note that there is only a single
oscillator family, αm. Also the anti-holomorphic current, ∂−X, can be described by the
holomorphic current if one doubles the range of the σ coordinate, i.e.

∂+X
µ = ±∂−Xµ(2l − σ) l < σ < 2l . (2.27)

In all cases the oscillators fulfill the following commutation relations

[xµ, pµ] = iηµν , (2.28)

[αµmα
ν
n] = [αµmα

ν
n] = mδm+nη

µν , (2.29)

[αµmα
ν
n] = 0 . (2.30)

This algebra, up to the numerical constant m which could in principle be absorbed into the
mode definition, resembles the algebra of the usual harmonic oscillator. Thus the αm with
m > 0 are interpreted as annihilation operators, while the αm with m < 0 are creation
operators.

In addition to the equations of motions obtained from the variation of the free bosons,
there are also the equations of motions from the variation of the world-sheet metric. After
gauge fixing these become constraints on the solutions, known as the Virasoro-constraints.
In light cone gauge they read

T++ = −α′−1 ∂+X · ∂+X = 0 , (2.31)

T−− = −α′−1 ∂−X · ∂−X = 0 , (2.32)

where T denotes the energy-momentum tensor. These constraints require the energy-
momentum tensor to be traceless. This tensor transforms under a conformal transformation
w = f(z) as

T (w) =
1

f ′2
(T (z)− c

12
{f(z), z}) , (2.33)

where { , } denotes the Schwarzian derivative. c is the central charge of the theory and
represents a conformal anomaly. As the conformal symmetry was used to gauge fix the
metric, the total central charge of the theory should vanish. This is a very important
constraint and will lead to the prediction of the number of space-time dimensions. The
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Fourier modes Ln of the energy-momentum tensor are given by

Ln = − l

4π2

∫ l

0

dσe−
2πi
2
nσT−− =

1

2

∑
m

αn−mαm , (2.34)

Ln = − l

4π2

∫ l

0

dσe−
2πi
2
nσT++ =

1

2

∑
m

αn−mαm . (2.35)

So far the discussion has been purely classical. When the theory is quantized, one encoun-
ters the problem of negative norm states in the spectrum due to the time direction. An
example of such a state would be |ψ〉 = α0

−1 |0〉 with norm

〈ψ|ψ〉 = 〈0|α0
1α

0
−1 |0〉 = [α0

1, α
0
−1] = η00 = −1 . (2.36)

This is exactly the same problem encountered in the quantization of gauge fields. The
gauge covariant formulation with D degrees of freedom for the gauge potential includes
non-physical states which have to be removed. Either the theory is formulated using only
D-2 degrees of freedom, i.e. one works in a transversal or Coulomb gauge, or all D degrees
of freedom are used and additional ghost fields are included. The contribution of these
fields effectively removes the unphysical directions.

To quantize the string theory the same two possibilities apply. First, one can only
work with the d-2 transversal directions. This approach is called light-cone quantization.
This directly removes all negative norm states as the time direction is no longer taken
into account. Second, if one includes all directions one also has to include the Faddev-
Popov ghost-fields arising from the gauge-fixing of the metric. This approach is known
as covariant quantization. The ghosts arising from the gauge fixing of the metric form a
first order fermionic bc system with central charge c = −26. Some properties of first order
systems are summarized in appendix A.2. A free boson has a central charge of c = 1. Thus,
for the total central charge to vanish in covariant quantization there have to be 26 bosons.
As each boson describes a dimension, the number of dimensions is d = 26. For explicit
computations it is often easier to use light-cone quantization, but for some arguments,
like the above determination of the critical dimension, it is more useful to use covariant
quantization. Moreover, the second quantization in terms of string field theory is mostly
based on this approach. For now we will use the light cone theory.

In the quantized theory, the expressions for the Virasoro modes of the energy momen-
tum tensor are replaced by their normal ordered versions. But due to the commutation
relations (2.28) there is a normal ordering ambiguity in the zero mode of the energy-
momentum tensor L0:

L0 =
1

2
α2

0 +
∞∑
m=1

: α−m · αm : +
1

2

∞∑
m=1

[αµm, α
µ
−m] . (2.37)



2.2 Bosonic String Theory 15

The infinite sum over the commutators can be evaluated as

∞∑
m=1

[αµm, α
µ
−m] = (d− 2)

∞∑
m=1

m = (d− 2)ζ(−1) = −(d− 2)

12
. (2.38)

In this evaluation we have applied a ζ-function normalization. As this function will appear
quite often in this thesis we have summarized its properties in appendix A.17. The (d− 2)
factor originates from the fact that each dimension contributes the same factor, but the
time dimension comes with an opposite sign, canceling out the contribution from one space
dimension. Using this the zero mode becomes

L0 =
1

2
α2

0 +
∞∑
m=1

: α−m · αm : −(d− 2)

24
. (2.39)

Using the modes of the energy-momentum tensor, we can rewrite the constraints (2.31) as

Ln |phys〉 = Ln |phys〉 = 0 ∀n > 0 . (2.40)

L0 +
(d− 2)

24
|phys〉 = 0 . (2.41)

L0 +
(d− 2)

24
|phys〉 = 0 . (2.42)

For the open string the constraints are the same, neglecting the constraints including the
L modes. In principle we would have to ensure that also the negative modes annihilate
the physical states, but that is actually impossible to achieve. But as Ln = (L−n)† the
above equations are sufficient to ensure the decoupling of of the negative modes. Another
important constraint is the so-called level matching constraint for closed strings:

L0 − L0 |phys〉 = 0 . (2.43)

This constraint is required for reparameterization invariance along the σ-direction of the
string. Finally, using (2.39), we can compute the masses of the states:

α′

4
m2 =

∞∑
m=1

: α−m · αm : −(d− 2)

24
= N − (d− 2)

24
, (2.44)

where the mode number operator N =
∑∞

m=1 : α−m·αm : was introduced in the second step.
This formula implies that for d > 2 there is a tachyon in the spectrum. These tachyons will
turn out to be present in most non-supersymmetric string theories. A tachyon in general
implies that the chosen vacuum is not a minimum of the potential and thus unstable. The
tachyon field then can “condense”, i.e. roll down to the minimum of the potential, where
it’s mass becomes non-negative. While tachyon condensation is a non-perturbative effect
and in general hard to study, it is by no means fatal for a theory. After all, the Higgs field
of the standard model is a tachyonic field. Tachyon condensation in this case corresponds
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to the electro-weak symmetry breaking. Tachyons will be discussed much more in detail
in section 6.1.1.

As the case of d = 2 is uninteresting for phenomenology, we will for now accept the
existence of the tachyon and fix a dimension d > 2. The central charge argument fixed this
to d = 26 in the covariant quantization. The same can be seen in light-cone quantization
as follows: The little group of a massless particle should be SO(d-1) and that of a massive
particle SO(d-2). For d = 26, the normal ordering constant becomes -1 (-2) in the open
(closed) case. The first excitation, αµ−1 increases the mass by 1 (2), thus in both cases
for d = 26 the first excitations are massless and form a representation of SO(24). For all
other numbers of dimensions these states are massive and thus have the wrong little group.
Thus d = 26 is the unique possible solution, in agreement with the vanishing of the central
charge of the CFT. We have worked here only with Minkowskian world-sheets, but as it
turns out, this critical dimension is actually independent of the chosen signature. [12]

The spectrum of the closed bosonic string consists at the massless level out of 26× 26
massless fields. These can be organized into a symmetric tensor gµν , the graviton, an
antisymmetric tensor Bµν , the so-called Kalb-Ramond field, and a scalar field, the dilaton.
In the open string case, there is besides the tachyon a massless gauge field. In both cases,
open as well as closed, there is an infinite tower of massive fields.

Next let us compute the 1-loop partition function or cosmological constant. At 1-loop,
the world sheet has the topology of a torus. Thus the partition function can be written
as [13]

Z(τ) = Tr(e−2πτ2He2πiτ1P ) , (2.45)

where τ = τ1 + iτ2 are the wick-rotated world sheet coordinates, which in this case corre-
spond to the complex structure of the torus, H is the Hamiltonian and P the momentum.
Expressing the Hamiltonian and momentum through the energy-momentum tensor, (2.45)
becomes

Z(τ) = Tr(qL0qL0) , (2.46)

where the nome q = e2πiτ was introduced. Note that we included the normal ordering
constant in the definition of L0. In most textbooks the central charge contribution is
written out explicitly in this formula, resulting in an additional factor q−

c
24 q−

c
24 in the

trace. Inserting the explicit expressions for the zero modes (2.39) and representing the
trace by a basis of Fock states, (2.46) becomes

Z(τ) = Tr(qNL−1+ 1
2
α2

0 qNR−1+ 1
2
α2

0) . (2.47)

The trace over the zero modes results in a Gaussian momentum integral∫
d24p

(2π)24
e−πα

′τ2p2

=
1

(2π
√
α′)24

1

τ 12
2

. (2.48)

while the contribution of each oscillator is given by
∞∏
n=1

1

(1− qn)
=

q
1
24

η(τ)
. (2.49)
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The factors of q1/24 cancel the central charge contribution. η(τ) is the Dedekind η-function
defined as

η(τ) = q
1
24

∞∏
n=1

(1− qn). (2.50)

This is the first example of a modular function. Some of its properties are gathered in
appendix A.4.1. Combining all contributions one arrives at the partition function

Z =
1

(2π
√
α′)24τ 12

2 |η|48
. (2.51)

This function is modular invariant. Modular invariance is an important non-trivial consis-
tency condition in string theory. The torus itself is modular invariant, thus every function
defined on it should also be modular invariant. This is exploited heavily in the construction
of supersymmetric string theory, where the modular invariance can be used as a guiding
principle.

This finishes the discussion of the bosonic string. While the bosonic string has many
promising features, especially the quantization of gravity, it also suffers from issues like the
high-dimensionality and the omnipresent bulk tachyon. The next step of the construction is
to introduce fermions on the world-sheet. This will reduce the critical dimension to d = 10
and at the same time allow the construction of tachyon-free supersymmetric theories.

2.3 Superstring Theory

In this section we will describe the web of ten-dimensional string theories and their low
energy effective actions. We will use these later in compactifications to obtain phenomeno-
logically interesting four-dimensional models. We will focus mostly on the closed string
models, as the computations for the open string are very similar and will only give the
results for the open string. The basic idea is to introduce fermions on the world-sheet,
introducing supersymmetry. The effect of this is a reduced critical dimension and the ap-
pearance of space-time fermions in the perturbative spectrum.2 The action for a complex
fermion on the world sheet in light-cone gauge reads

S =
i

2π

∫
d2σ ψ+ · ∂−ψ+ + ψ− · ∂+ψ− . (2.52)

From this action follow the equations of motion

∂−ψ+ = ∂+ψ− = 0 , (2.53)

which are solved by

ψ+(τ, σ) = ψ+(σ+) , (2.54)

ψ−(τ, σ) = ψ−(σ−) . (2.55)

2The non-perturbative spectrum of the bosonic string already includes fermions in the form of bound
states of D-branes [14], but the perturbative spectrum is purely bosonic.
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As in the bosonic case the spectrum splits in a left- and a right-moving part. The two
possible boundary conditions for fermions are3

ψµ(σ) = ±ψµ(σ + l) . (2.56)

The two possible sign choices give two sectors, known as the Ramond(R) sector (+) and the
Neuveu-Schwartz(NS) sector (-). The two fields ψ+ and ψ− can have different boundary
conditions, giving rise to in total four sectors, NSNS, RR, NSR and RNS. Again as in the
bosonic case the fields can be expanded into modes as

ψ−(σ−) =

√
2π

l

∑
r∈Z+a

bµr e
−2πir

σ−
l , (2.57)

ψ+(σ+) =

√
2π

l

∑
r∈Z+a

b
µ

r e
−2πir

σ+
l , (2.58)

where a = 0 in the R sector and a = 1/2 in the NS sector. For the open string the boundary
conditions relate the holomorphic and anti-holomorphic modes, such that again there is
only half as many oscillators as for the closed string. The modes fulfill the algebra

{bµr , bνs} = {bµr , b
ν

s} = δr+sη
µν , (2.59)

{bµr , bνs} = 0 . (2.60)

The Virasoro generators are given by

Ln =
∑
r∈Z+a

(r +
n

2
)b−r · bn+r . (2.61)

The critical dimension can be determined like in the bosonic case by demanding the van-
ishing of the total central charge. The central charge of a free fermion is 1

2
. Gauge fixing

the superconformal symmetry results in two ghost systems, the fermionic bc system as well
as a bosonic βγ system. The latter has a central charge c = 11, such that the bc and βγ
together have a central charge of −15. Each dimension contributes (1 + 1

2
) to the central

charge. Thus for d = 10 the total central charge vanishes.
Using light-cone quantization again, in the R sectors there is a normal ordering factor

in the zero mode of the energy momentum tensor:

L0 =
∑
r∈Z+a

r : b−r · br : −(d− 2)
∞∑

r=0+a

r{br, b−r} . (2.62)

In the R sector, a = 0 and the sum is again simply ζ(−1), but now with opposite sign
compared to the bosonic case. Therefore, in the total L0 which also includes the bosons

3These are not the only consistent choices, in general one can introduce any phase φ in the boundary
condition ψµ(σ) = eiφψµ(σ + l). These are known as twisted boundary conditions. For simplicity we
ignore these for the moment.
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the normal ordering constants cancel each other out. In the NS sector, we can rewrite the
sum in terms of the shifted variable r′ = r − 1/2 and use the closed form of the Hurwitz
ζ-function, see (A.22):

∞∑
r=1/2

r =
∞∑
r′=0

(r′ +
1

2
) = ζ(−1, 1/2) = − 1

12
(
6

4
− 6

2
+ 1) =

1

24
. (2.63)

Thus in the NS sector the total energy momentum tensor becomes

Ltot
0 =

1

2
α2

0 +
∞∑
m=1

: α−m · αm : +
∞∑
r= 1

2

r : b−r · br : +(d− 2)(− 1

12
− 1

24
) . (2.64)

For d > 2 there is again a tachyon in the spectrum. We will come back to this issue in a
moment. Let us first fix the dimension we are working in. By the same argument as in the
bosonic case the massless states should form representations of the little group SO(d-2).
In the open string case the first excited state is given by

bµ−1/2 |0〉 , (2.65)

where |0〉 denotes the ground state of the theory. This state has a mass

2α′m =
1

2
− 3(d− 2)

48
. (2.66)

It becomes massless for d = 10, fixing the critical dimension in agreement with the CFT
argument. The normal ordering constant in (2.64) simplifies in this case to −1

2
. This

theory as it stands is not consistent, as can be seen by examining the 1-loop terms. In the
oriented case the world-sheet then has the topology of a torus. A torus has the property
that functions defined on it are modular invariant. The 1-loop amplitudes of the full
string spectrum fail to be modular invariant. This is remedied by projecting onto a sub-
spectrum, known as the GSO-projection named after Gliozzi, Scherk and Olive. The
different possible projections correspond to different ways to weight the spin structures in
the path integral [15]. From a modern point of view they correspond to different choices of
topological invariants on the world sheet, the SPT phases [16]. This allows for a complete
classification of possible string theories in 10 dimensions, which completely agrees with the
historically found GSO projections.

To see the different possibilities we first compute the partition functions for each sector
separately. To shorten the notation we denote the NS sector with a + and the R sector
with a -. The partition functions in each sector are
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Z++ = η++
θ4

1(τ)

η4(τ)
, (2.67)

Z+− = η+−
θ4

2(τ)

η4(τ)
, (2.68)

Z−+ = η−+
θ4

4(τ)

η4(τ)
, (2.69)

Z−− = η−−
θ4

3(τ)

η4(τ)
. (2.70)

The total partition function is the sum of the Z±± together with the bosonic contribu-
tion. The phases η±± have to be chosen such that the total partition function is modular
invariant. There are several ways how to achieve that, one possibility is

ZII(τ) =
1

4τ 4
2 |η|24

|θ4
3 − θ4

4 − θ4
2 ± θ4

1|2 . (2.71)

This gives the so-called type II string theories, the two possible sign choices correspond to
the IIA and IIB theory. As θ1 = 0 this choice does not influence the partition function at
all. This is a general feature of the difference between type IIA and IIB, while they look
rather different from a space-time point of view, their CFT descriptions are very similar.
The additional factor of τ−4

2 |η|−16 originates from the bosonic contributions.
This partition function can also be written as a trace over the Hilbert space. Anti-

periodic boundary conditions are then represented by factors of (−1)F , where F is the
world-sheet fermion number. (2.71) then reads

ZII(τ) = Tr(e2πiτHNS
1

2
(1− (−1)F ))− Tr(e2πiτHR

1

2
(1± (−1)F )) + leftmoving . (2.72)

Type IIB corresponds to choosing the same sign in the R sector for left and right movers,
while IIA corresponds to opposite signs. Due to Jacobi’s “absurd identity” the partition
function vanishes, as required by supersymmetry. Using these GSO projections, we can
construct the Hilbert space. Each state of the theory corresponds to a physical field in the
ten-dimensional theory. The lowest lying state in the NS sector is the vacuum |0〉 with a
mass of −1/2. Here and in the following we will give the mass squared in units of α′. This
state is tachyonic and should be projected out. The NS vacuum gets assigned the fermion
number 04, such that

1

2
(1− (−1)F ) |0〉 = 0 . (2.73)

This choice projects the tachyon out. The ground state of the R sector is, due to the
presence of the fermionic zero modes, a SO(8) spinor. There are two possible chiralities,

4This convention differs from the convention in [11] but is required for consistency
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denoted |a〉 and |ȧ〉, which differ by one in fermion number. The GSO projections (1 ±
(−1)F ) select therefore exactly half of these states at each level. The resulting massless
spectra for type IIA and type IIB are:

IIA : [(1) + (28) + (35)]NSNS + [(8) + (56)]RR + 2 · [(8) + (56)]RNS/NSR (2.74)

IIB : [(1) + (28) + (35)]NSNS + [(1) + (28) + (35)]RR + 2 · [(8) + (56)]RNS/NSR (2.75)

The states have been split up into representations of SO(8). States in the NSNS and RR
sector are bosons, while the states in the mixed sector represent fermions. In both theories
there are 128 massless bosons and fermions, showing the supersymmetry. The NSNS sector
consists in both theories out of a scalar dilaton d (1), an antisymmetric tensor Bµν (28)
and the graviton gµν (35). The RR fields correspond to p-form fields, in the case of IIB
with even antisymmetric forms C0(1), C2 (28) and a self-dual rank 4 tensor C4 (35) and in
the case of IIA to a vector C1(8) and a rank 3 antisymmetric tensor C3 (56). These fields
correspond to higher rank versions of gauge fields, thus they will not appear directly in the
actions but in terms of their field strengths Fp+1 = dCp.

Low Energy Effective Theories

As the general string theories are hard to work with, one is interested in obtaining low
energy effective actions. These are obtained by truncating the infinite string spectrum
to the massless (or the first massive) level. The world-sheet theory has to be conformal,
which implies that the beta-functions of all fields have to vanish. The resulting equations
are known as the string equations. One then searches for a ten-dimensional action which
encodes these equations as its equation of motion. For the type II strings, these correspond
to the ten-dimensional supergravity theories. The actions of these theories consist out of
the NS sector, the R sector as well as topological Chern-Simons (CS) terms:

S[IIA/B] = SNS + SR[A/B] + SCS[A/B] , (2.76)
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where the NS-NS part is the same for type IIA and IIB. The respective terms in the action
are given by

SNS =
1

2κ2
10

∫
d10x

√
| detG| e−2φ

[
R+ 4(∇φ)2 − 1

2
|H3|2

]
,

SR[A] = − 1

2κ2
10

∫
d10x

√
| detG|

[
1

2
|F2|2 +

1

2
|F̃4|2

]
,

SR[B] = − 1

2κ2
10

∫
d10x

√
| detG|

[
1

2
|F1|2 +

1

2
|F̃3|2 +

1

4
|F̃5|2

]
,

SCS[A] = − 1

4κ2
10

∫
B2 ∧ F4 ∧ F4 ,

SCS[B] = − 1

4κ2
10

∫
B2 ∧ F3 ∧ F5 ,

(2.77)

where H3 = dB2, Fp = dCp−1, and F̃p = Fp − H3 ∧ Cp−3. Using partial integration the
Chern-Simons term in the last row can be equivalently written as

SCS[B] =
1

8iκ2
10

∫
C4 ∧G3 ∧G3

Im(S)
, (2.78)

where G3 = F3 − τH3 and S = C0 + ie−φ is the axio-dilaton, such that

G3 ∧G3 = 2iIm(S)F3 ∧H3 . (2.79)

This shows that the three-forms H3 and F3 act as a source term for the C4 field. Thus if
we give these a vacuum expectation value (vev), so-called fluxes, these fluxes contribute to
the tadpole for the C4 field as

Nflux =
1

(2π)4α′2

∫
X

F3 ∧H3 . (2.80)

In addition to the fluxes, the C4 field couples to D3 and O3 branes. Thus the total tadpole
cancellation condition becomes

ND3 −ND3 +Nflux −
1

2
NO3 = 0 , (2.81)

where ND3 is the number of D3 branes and the same for anti-D3-branes as well as O-
planes. Similar constraints exist for the higher form fluxes and branes. Note that the
number of O-planes is fixed by the chosen orientifold, but the fluxes and number of branes
are only restricted to be integer. These tadpole constraints play an important role in the
construction of realistic theories, but in practice are not too hard to fulfill. Especially in
F-theory compactifications there is an additional term related to the Euler characteristic of
the compactification manifold. As these can take rather large values, these terms weaken
the constraints considerably.



2.3 Superstring Theory 23

Frame Conventions

The Einstein-Hilbert terms in the low energy effective actions for the type II superstrings
(2.77) are of the form

SEH,string =
1

2κ2
10

∫
d10x

√
| detG| e−2φR . (2.82)

This is the form naturally arising in string theory, where the Ricci scalar R couples to the
dilaton field. This form is known as the string frame. In the usual formulations of gravity
the Einstein-Hilbert term is of the form

SEH,Einstein =
1

2κ2

∫
d10x

√
| detGE|R , (2.83)

where κ is the gravitational coupling constant. The string frame action can be brought
into Einstein frame by a Weyl rescaling of the metric,

Gµν → Gµν,E e
φ/2 . (2.84)

Another possibility is to first extract the vev from the dilaton field. As the dilaton corre-
sponds to the string coupling constant the vev is denoted gs. In this case one first defines
a new field

φ = φ′ + φ0 . (2.85)

and then performs the Weyl rescaling Gµν → Gµν,E e
φ′/2. This results in

SEH,modifiedEinstein =
1

2κ2
10g

2
s

∫
d10x

√
| detGE|R . (2.86)

This is known as the modified Einstein frame. The main difference is that the gravitational
coupling constant has absorbed the g−2

s factor.

Type 0 Theories

The type II theories were obtained by demanding modular invariance of the partition
function. There is actually another consistent choice for the GSO projection corresponding
to the type 0A/B theories with the partition function

Z0(τ) =
1

2τ 4
2 |η|24

(
|θ2|8 + |θ3|8 + |θ3|8 ± |θ1|8

)
. (2.87)

This choice of GSO projection corresponds to correlated spin structures between the left
and right moving sectors. In contrast to the type II theories the partition function does
not vanish, signaling a broken supersymmetry. Supersymmetry is even maximally broken
as the type 0 theories do not include any fermions at all, the spectrum is purely bosonic.
Like in most non-supersymmetric string theories, the spectrum includes a tachyon. This
tachyon condenses in a chain of theories until they end up in a two dimensional theory,
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either type 0 [17] or the bosonic string theory with a dilaton gradient [18]. This renders
these theories rather uninteresting for phenomenological purposes. The existence of the
2-dimensional endpoint of tachyon condensation is mainly interesting for the larger picture
of tachyon condensation, where most closed string tachyons end up.

Orbifolds and Orientifolds

Type II and type 0 still do not exhaust all possibilities for a modular invariant partition
function. It is possible to obtain new partition functions from these by applying a con-
struction known as orbifolding. In this procedure the spectrum of the theory is projected
by a symmetry to construct another consistent theory. If the symmetry group acts on
the target space side the resulting geometry is an orbifold. If the symmetry acts on the
world-sheet instead, it is known as an orientifold. The spectrum obtained this way is in
many cases no longer modular invariant. The restoration of modular invariance then forces
the addition of so-called twisted sectors. An example of a symmetry which can be used is
world-sheet parity of type IIB string theory. As the partition function is the same in the
left and right moving sector, the two sectors can be exchanged without altering the theory.
World sheet parity is defined as the transformation

Ω : (σ, τ)→ (l − σ, τ) . (2.88)

Including the operator 1+Ω
2

in the trace projects onto parity even states. The resulting
theories are unoriented string theories. In the case of type IIB the result of the orientifold
projection is type I string theory. Fixed points of the orientifold projection represent
geometrical objects: orientifold planes, or for short O-planes. The dimension of these
depend on the dimension of the locus fixed under the projection. This can be altered by
including additional symmetry operators in the projection like shifts or reflections of target
space coordinates. O-planes have opposite charges under the p-form fields compared to
the D-branes and thus play an important role in the cancellation of overall charges and
RR-tadpoles.

If a symmetry of the target space is used instead one obtains so-called orbifolds. If
the symmetry acts non-freely this results in singular target spaces. But as strings are
objects of finite extension they can resolve these singularities and still result in a sensible
theory. In chapter 3 we will describe compactification geometries in detail and see that
phases of certain solvable 2d superconformal models describe strings moving on orbifolds
of Calabi-Yau spaces without producing any singularities.

As a simply toy example for an orbifold we take the complex plane. The complex plane
C has as a subgroup of its symmetries a U(1) given by rotations around the origin. Thus
it is possible to divide the complex plane by a Zn operation by identifying

z = e
2πi
n z , (2.89)

where z is the coordinate parameterizing the complex plane. The resulting space is an
infinite real 2-dimensional cone where both edges are identified. There is a singularity
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at the origin. If one would use such a geometry as a background for string theory, one
would find a twisted sector localized at the origin. This sector is in general tachyonic,
describing the decay of the orbifold back to the flat complex plane. This example is of
course non-compact. In the case of a compact CY the orbifolds can be stable. Another
important example of an orbifold is the K3 space, a complex 2-dimensional CY obtained
by orbifolding the 4-torus.

Heterotic Theories

Another possible construction of consistent string theories is heterotic string theory. The
left and right moving sectors of closed string theories are completely independent, thus
nothing forbids choosing different theories for each of them. The heterotic superstrings are
obtained by combining the bosonic string as a left-mover and the N = 1 superstring as the
right-mover (or vice versa). There is only one obvious problem with this construction: The
critical dimension of the bosonic string is 26 while the superstring lives in 10 dimensions.
The way out is to compactify the bosonic string on a 16-dimensional torus T 16. In the
pure bosonic case one can choose any toroidal compactification, but for a heterotic theory
the compactification has to be on an even self-dual lattice to ensure modular invariance
of the combined theory. There are only two such lattices in 16 dimensions, the E8 × E8

and SO(32) lattices, giving rise to two supersymmetric heterotic string theories with the
gauge groups corresponding to the lattices, E8 ×E8 and SO(32).5 It is important to note
that the strings in a heterotic construction are necessarily closed, as there cannot be any
boundary condition relating the left to the right-moving sector due to the different number
of dimensions. The gauge sector arises from the isometries of the compactification lattice
of the additional bosonic dimensions instead of the open string sector.

But this does not exhaust all possible heterotic theories. One can introduce twists
or use the automorphism symmetry group of E8 × E8 to generate new theories out of
the above [19]. These constructions are best described by the free fermion description.
The internal 16 bosonic dimensions are fermionized and therefore replaced by 32 free
fermions. To each of these fermions one can assign different boundary conditions. Modular
invariance restricts this choice slightly by demanding multiples of 8 fermions to have the
same boundary condition. The resulting theories are listed in table 2.1. The same theories
can be obtained by taking orbifolds of the supersymmetric heterotic string theories. E.g.
the O(16)×O(16) theory is the Z2 orbifold of the E8×E8 theory where the Z2 corresponds
to the automorphism group. This theory is the only tachyon free non-supersymmetric
theory. All other non-supersymmetric heterotic theories are tachyonic. These tachyonic
theories descend from the tachyonic SO(32) theory. This is a non-supersymmetric theory,
obtained by identifying the spin structures of the left and right moving sector in the free
fermionic construction. This is in contrast to the usual supersymmetric theories, where
the spin structures for the left- and right moving fermions are chosen independently. The
system of the 32 left-moving fermions has a Z5

2 symmetry, where each Z2 factor acts on

5While the theory is commonly denoted SO(32), this actually describes only the gauge algebra. The
gauge group is given by it’s double cover spin(32).
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16 of the 32 fermions with a minus sign and on the other 16 as the identity. Gauging
or equivalently orbifolding n = 1 . . . 5 of these symmetries results in the other tachyonic
theories. It is interesting to note that the O(16)×O(16) theory has a positive cosmological
constant. But despite the absence of tachyons, it still has a vacuum instability due to the
dilaton and is thus no counter example to the dS conjecture.

gauge group tachyons massless fermions gauge bosons
SO(32) 32 0 496

O(16)× E8 16 256 368
O(8)×O(24) 8 384 304

(E7× SU(2))2 4 448 272
SU(16)× U(1) 2 480 256

E8 1 496 248
O(16)×O(16) 0 512 240

Table 2.1: Tachyonic heterotic strings in d = 10. Table adopted from [5].

N = 2 Theories

So far we have included one world-sheet fermion per boson. Of course nothing prohibits
larger amounts of super symmetry. In the case of an N = 2 superconformal symmetry,
one ends up with a ghost system consisting out of a bc system, two βγ systems and an ηξ
system. The 2 βγ systems originate in the gauge fixing of the supersymmetries, while the ηξ
system corresponds to the gauge fixed R-symmetry. Combined, these ghost systems have a
central charge c = −6. To cancel that, one needs two complex bosons with their respective
superpartners, each contributing c = 3. As both bosons in each pair have to have the same
signature, this only allows for the signatures (2, 2) or (0, 4). Thus the phenomenologically
interesting signature (1,3) is not possible. Moreover, it has been shown that this theory
describes self-dual gravity and includes only a single perturbative degree of freedom, a
tachyonic scalar, which corresponds to the Kähler deformation of the spacetime [20]. In
non-critical versions of this theory one of the time dimensions is pure gauge, reducing the
effective number of time dimensions to 1.

Nevertheless it is known that all string theories with less supersymmetry can be em-
bedded into this theory [21]. The additional degrees of freedom (d.o.f.) of these theories
are hidden in the non-perturbative sector of the N = 2 theory. Going beyond N = 2 leads
to negative critical dimensions, rendering these theories uninteresting.

The Web of Theories

In figure 2.2 we summarize the string theories mentioned so far and all their interconnec-
tions in various dimensions. It is interesting to note that while the N = 1 superstrings
are all connected via dualities and tachyon transitions, the bosonic theory and the N = 2
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string theory are separated from this web. But the bosonic string theory is tachyonic, thus
this tachyon should condense to some other theory. The endpoint of the tachyon conden-
sation is not known, it was conjectured to lead to a type II string theory in 10 dimensions.
Tachyons and especially the bosonic tachyon will be studied in chapter 6.

In addition to the tachyon condensations there exists another type of relations between
different theories, so-called dualities. A duality is a symmetry of a theory which is not a
symmetry of the Lagrangian. If we apply a duality transformation on a theory, we obtain a
different theory which describes the same physical system. Important examples of dualities
in string theory are the T and S dualities. T duality arises in compactifications on a circle
and connects type IIA and IIB theories. A IIA theory compactified on a circle of radius R
is equivalent to a type IIB theory compactified on a circle of radius 1/R. Physically, the
duality exchanges the role of the winding and KK modes.

S duality is a non-perturbative duality acting on the axio-dilaton of type IIB theory,
which plays the role of a gauge coupling parameter in string theory. The low energy
effective 10-dimensional IIB SUGRA theory is invariant under SL(2,R) transformations,
which act on the axio-dilaton and the H and F fluxes, but leave the metric invariant. In
the full string theory setting this symmetry gets broken to a discrete SL(2,Z) symmetry
due to an instanton contribution of D(-1) branes to the action. The SL(2,Z)6 symmetry
acts on the axio-dilaton τ = C0 + ie−φ as

τ → aτ + b

cτ + d
, (2.90)

and on the fields H and F as (
F ′

H ′

)
=

(
a b
c d

)(
F
H

)
. (2.91)

S duality is generated by one of the generators of the group

S =

(
0 −1
1 0

)
. (2.92)

Thus S-duality exchanges the F and H fluxes. Moreover, it exchanges the roles of the
fundamental string and the D1-brane as well as the D5-brane and the NS5-brane7. This
renders type IIB self-dual under S-duality. In contrast to this, type I string theory is related
to the supersymmetric SO(32) heterotic string under S-duality.

6Note that the two transformation matrices A and -A produce the same transformation, thus the
symmetry group is actually PSL(2,Z) = SL(2,Z)/Z2.

7A NS5-brane is a 5-dimensional brane magnetically charged under the Kalb-Ramond field. They have
to be included in the theory as they are the magnetic dual of the fundamental string. The name NS brane
originates from the fact that they were first discovered as black hole SUGRA solutions which correspond
to fields living purely in the NS sector.
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Figure 2.2: The web of string theories and their interconnections. Gauge groups represent
heterotic strings, T- and S- denote the respective dualities and t denotes tachyon conden-
sations. Geometric notations like S1 or T 2 denote compactifications on the geometry.

M- and F-Theory

For completeness we mention two more string theoretic constructions of theories living
in 11 and 12 dimensions, M- and F-theory. These theories are closely related to the 10-
dimensional string theories. M theory arises as the strong coupling limit of type IIA string
theory. From the 11 dimensional point of view, type IIA string theory is a circle compact-
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ification of M theory, where the radius of the circle plays the role of the coupling constant
of the type II theory. When the circle becomes very small, the theory is effectively 10
dimensional and described by weakly coupled type II strings. A non-perturbative formula-
tion of M theory is not known, but it was proposed that the BFSS matrix model [22] gives
a non-perturbative description. M theory is especially interesting as 11 dimensions is the
maximal number of dimensions allowed by supergravity.

F-theory on the other hand is not really a 12 dimensional theory. It is obtained by
interpreting the possible values of the axio-dilaton of type IIB as the complex structure
of a 2-dimensional torus. The SL(2,Z) symmetry of type IIB is made manifest in the
diffeomorphisms of the torus. The momenta for on-shell states in the additional dimensions
are necessarily 0, such that the theory is effectively 10-dimensional. This is also required
due to the signature, the theory has signature (2,10) and the additional time direction
would cause problems if it would be a usual dimension.

M- and F-theory also enjoy some type of T-duality due to the T-duality of the un-
derlying type II strings. M theory compactified on an elliptically fibered manifold X is
equivalent to F theory compactified on X × S1 [23].
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2.4 Compactifications

So far we have discussed string theory in the critical dimension of the superstring, d =
10. But in the real world only four dimensions are observed. Thus a way to get rid
of the additional 6 dimensions is required. This is usually done by compactifying the
extra dimensions. The internal space one compactifies on has to be a solution of the ten
dimensional equations of motion. This gives the constraint that the internal manifold
has to be Ricci flat, i.e. the Ricci tensor Rµν has to vanish. The easiest possible choice
fulfilling this constraint is a six-torus. But this results in an N = 8 supersymmetric theory
which is phenomenologically uninteresting. There are two ways out of this situation. One
way is to take orbifolds of the torus, breaking some of the supersymmetries. Another
possibility resulting in an N = 2 supersymmetric theory is to compactify not on a torus
but on a Calabi-Yau 3-fold. In this section we will go through some of the details of this
construction.

2.4.1 Geometric Preliminaries

Before we describe the compactifications themselves, we give short review of (co)homologies
of complex manifolds X to set the notation. We use ∂ for the boundary operator and d
for the exterior derivative. Let ap be a p-chain, i.e. a sum of p-dimensional submanifolds
of X. Thus any p-chain can be written as

∑
i ciYi with Yi ⊂ X and ci constants. Then the

p-th homology group of X is defined as

Hp(X,G) =
{ap|∂ap = 0}
{∂ap+1}

, (2.93)

i.e. the chains without boundaries which are not boundaries themselves. The G denotes
the group (or field) in which the coefficients ci are defined. The dimensions of the homology
groups are the Betti numbers bp:

bp = dim(Hp(X,R)) . (2.94)

The de Rham cohomology is defined in complete analogy but using the exterior derivatives
and p-forms ωp. The p-th de Rham cohomology group is defined as

Hp(X) =
{ωp|dωp = 0}
{dωp−1}

, (2.95)

i.e. the closed p-forms which are not exact. By the Hodge decomposition theorem the
p-cohomology group is isomorphic to the space of harmonic p-forms on X. On a complex
manifold the cohomology can be refined a bit further using the ∂ operator, resulting in the
Dolbeault cohomology. The Dolbeault cohomology groups are defined by

Hp,q(X) =
{ω(p,q)|∂ω(p,q) = 0}
{∂ω(p,q−1)}

, (2.96)
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again the ∂ closed forms which are not ∂ exact. The dimensions of these groups are the
Hodge numbers hp,q. Also, like the de Rham cohomologies the Dolbeault cohomologies
correspond to the harmonic (p,q)-forms on X. In the case of a Kähler manifold, which will
always be the case for the compactifications we are interested in, the Hodge numbers have
some symmetries, namely:

hp,q = hq,p , (2.97)

hp,q = hd−p,d−q , (2.98)

where d is the complex dimension of the manifold. Moreover, the only 0-forms are the
constants, thus h0,0 = h3,3 = 1.8 Using the symmetries, the remaining independent Hodge
numbers are hp,0, h1,1 and h2,1. If we demand that X is, in addition to being Kähler,
a Calabi-Yau, there is a unique holomorphic (d,0)-form Ωd, thus hd,0 = 1 and all hp,0 =
0 , 0 < p < d. Therefore, in the case of a CY there are two unfixed Hodge numbers h1,1 and
h2,1. h1,1 parameterizes the Kähler deformations of the metric, while h2,1 parameterizes
the complex structure deformations. Some orientifolds include a holomorphic involution of
the target space,

σ : X → X . (2.99)

It is important how the cohomology cycles transform under the involution to be able to
determine which fields survive the projection. Thus it is in this case useful to further refine
the cohomologies in even and odd parts under the transformation rule:

Hp,q(X) = Hp,q
+ (X)⊕Hp,q

− (X) . (2.100)

The dimensions of Hp,q
+ (X) and Hp,q

− (X) are denoted hp,q+ and hp,q− respectively. For each
Dolbeault cohomology class we choose a orthogonal basis. We follow the conventions of [24],
i.e.

{ωA} ∈ H1,1(X) , (2.101)

{ω̃A} ∈ H2,2(X) , (2.102)

{αλ, βλ} ∈ H2,1(X) , (2.103)

such that ∫
X

ωA ∧ ω̃B = δBA and

∫
X

αλ ∧ βΣ = δΣ
λ . (2.104)

The indices always run over the dimension of the cohomology groups, e.g. A = 1 . . . h1,1.
To shorten the notation it is useful to assign the identity and the volume element to the 0
index, i.e. ω0 = 1 and ω0 = dvol6. In the case of an orientifold we use the following basis:

{ωα} ∈ H1,1
+ (X) {ωa} ∈ H1,1

− (X) , (2.105)

{ω̃α} ∈ H2,2
+ (X) {ω̃a} ∈ H2,2

− (X) , (2.106)

{αλ, βλ} ∈ H3
+(X) {αi, βi} ∈ H3

−(X) . (2.107)

8This holds only for connected manifolds, but this will always be the case in our examples.
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Note that we use upper case letters for the unsplit cohomology, lower case Greek letters
for the even part and lower case Latin for the odd part. We can now expand the fields of
the 10-dimensional effective actions in terms of four-dimensional fields and these bases.

2.4.2 Kaluza Klein Compactifications

Before we investigate the more complicated cases of CY compactifications, we present a
famous historical example of a compactified theory developed long before string theory,
the 5-dimensional Kaluza-Klein theory. This is a purely gravitational theory with one
extra dimension in form of a circle. The theory was proposed by Kaluza in 1921 [25]
and turned into a quantum theory by Klein in 1926 [26]. Klein proposed that the 5th
dimension should be periodic. There are actually two theories which are named Kaluza-
Klein theory. The first theory is a theory of a full five-dimensional metric, which results
in a 4-dimensional theory of gravity and electromagnetism as well as matter fields. This
unification of electromagnetism and gravity is known as the Kaluza-Klein miracle. The
idea was extended by Witten to include the full standard model gauge group SU(3) ×
SU(2) × U(1) by increasing the number of dimensions to 11, but the resulting matter
representations do not match the observed particles [27].

Second, there is the theory where the 5-dimensional metric assumes the formM4×S1,
whereM4 is a general 4-dimensional manifold, e.g. Minkowski space. This theory ignores
some d.o.f. of the full theory and the matter energy momentum tensor has to be added by
hand. But this version is closer to the situation in string theory, where mostly aM4×CY 3

spacetime is assumed. In the following we use capital Latin letters for 5-dimensional indices
and lower case Greek letters for 4-dimensional indices. The purely gravitational action is
given by

S = M5

∫
d5x
√
−gR5 = M5

∫ 2π

0

rdx5

∫
d4x
√
−gR4 . (2.108)

Here g is the determinant of the metric and R is the Ricci scalar. Integrating over the
circular dimension of radius r, the 4-dimensional action is obtained as

S = M52πr

∫
d4x
√
−gR . (2.109)

This shows that the four dimensional Planck scale depends on the internal volume, here
simply given by the circumference of the circle. This implies that the internal dimensions
have to be compact, as an infinite volume would correspond to an infinite Planck scale
and thus to a decoupling of gravity. To obtain matter in the 4-dimensional theory one
can either add matter fields into the 5-dimensional theory or relax the constraint that the
spacetime metric is block-diagonal. For simplicity we will add a scalar field φ of mass m
in the 5-dimensional theory. Its action then reads

S =

∫
d5x
√
−g
(
∂Mφ∂Mφ+m2φ2

)
. (2.110)
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The field can then be expanded into its eigenmodes along the circular direction:

φ(xM) =
1

2πr

∑
n∈Z

φn(xµ)einx5/r . (2.111)

The normalization 1
2πr

has been chosen such that the resulting 4-dimensional fields are
canonically normalized. Inserting this expansion into the action and performing the inte-
gration in the x5 direction, one obtains:

S =
∑
n∈Z

∫
d4x
√
−g
(
∂µφn∂µφ

†
n +

(
n2

r2
+m2

)
φ†nφn

)
. (2.112)

This is an action for an infinite tower of massive states, known as the Kaluza-Klein tower.
The fields are thus often denoted as the KK-modes of the original higher dimensional field.
If the higher dimensional field is massless, the zero mode in the lower dimensional theory is
also massless. In many cases it is sufficient to study these zero modes and ignore the massive
states, which are then integrated out. This toy model incorporates most properties of the
higher dimensional compactifications of string theory. The situation there is complicated
by the fact that the volumes of the different cycles of a CY are hard to compute and there
are many more moduli than a single radius. Moreover, a string can also wind around the
circle. This gives in addition to the KK modes a second infinite tower of states, whose
mass scales with the radius of the circle.

2.4.3 Preliminaries: Calabi-Yau Geometry

Before we describe the phenomenology, we first develop the necessary tools to describe the
geometry. A Calabi-Yau(CY) can be defined in many different but equivalent ways. It is
a complex Kähler manifold for which any of the following conditions hold

• the metric is Ricci-flat,

• it has SU(d) holonomy,

• the first Chern class vanishes.

Sometimes the stronger constraint that the CY has trivial canonical bundle is demanded.
As we are interested in compact CY manifolds, these are equivalent. In the non-compact
case the triviality of the canonical bundle implies the above constraints, but the opposite
is not true.

That these manifolds are solutions of string theory can be seen in two ways. First,
as already mentioned, the one-loop β function for the graviton of type II string theory is
given by

βG = α′(Rµν −
1

4
Hρσ
µ Hνσρ + 2∇µ∇νΦ) +O(α′2) , (2.113)



2.4 Compactifications 34

where Φ is the dilaton, H is the 3-form field strength of the Kalb-Ramond field and Rµν is
the Ricci tensor. If one assumes the dilaton and Kalb-Ramond field to be constants, the
Ricci flatness constraint follows directly. Note that this is only taking into accounts effects
linear in α′ and a non-zero H-flux also breaks the constraint. Thus for phenomenological
applications one often assumes the so-called dilute flux limit, where the volume of the
CY is taken to be large such that the backreaction of the fluxes on the geometry can be
neglected.9

Another way to derive the CY constraint is supersymmetry. The supercharge of aN = 1
supersymmetric theory in ten dimensions is given by a Majorana-Weyl spinor living in the
16 representation of SO(1,9). Splitting the spacetime into a 4- and a 6-dimensionl part,
M10 →M4 ×M6 splits this representation into representations of SO(1,3) and SO(6) as
follows:

16→ (2L, 4) + (2R, 4) . (2.114)

Thus the Weyl representation splits into a total of 8 spinors in four dimensions. Imposing
the Majorana constraint halves that number, resulting in a N = 4 supersymmetric theory.
This assumed a N = 1 spacetime supersymmetric theory, i.e. a type I string theory. Type
II theories have double the amount of supercharges, thus these theories result in a N = 8
4-dimensional theory. These are phenomenological not interesting. Thus more structure
of the internal manifold is assumed. SO(6) is isomorphic to SU(4), which has a natural
maximal subgroup of SU(3). Thus if one chooses a manifold with holonomy group SU(3),
the 4 of SO(6) decomposes under this subgroup as

4→ 3 + 1 , (2.115)

and similar for the 4. Supersymmetry requires a covariantly constant spinor. This require-
ment especially includes that the spinor does not transform under the holonomy group,
i.e. it is a singlet of the SU(3). For each chirality, i.e. 4 and 4 of SO(6), there is one
covariantly constant spinor. This implies the number of supercharges is divided by 4 when
compactifying on a manifold with SU(3) holonomy. For type I theories this corresponds to
N = 1 supersymmetry and for type II to N = 2.

If one had chosen SU(2) holonomy instead, the 4 would decompose as

4→ 2 + 1 + 1 , (2.116)

resulting in 2 covariantly constant spinors per 4 or equivalent half the amount of super-
symmetry. For type II this would lead to a N = 4 theory. Of course, as stated above,
manifolds of SU(N) holonomy are CY manifolds. Thus demanding the correct amount of
supersymmetry also fixes the compactification geometry to be a CY.

CY spaces in 1 or 2 complex dimensions have been completely classified. In 1 dimension
there is only the torus T 2, in 2 dimensions there is only the K3 manifold, which is an
orbifold of T 4. Finally, in 3 dimensions there is an enormous amount of CY manifolds and
it is not even known if the number of them is finite.

9Using GLSM models with torsion, it is possible to obtain exact solutions with non-zero H-flux. These
solutions correspond to non-flat manifolds known as Fu-Yau manifolds [28].
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A Toy Example: The Elliptic Curve

As a first very simple example of a CY space we take the two-torus represented as C/Z2.
Due to historical reasons genus 1 curves, i.e. tori, are also called elliptic curves. The torus
arises by taking the complex plane C and identifying points of a lattice, i.e.

z ∼ z +mλ1 + nλ2 ∀n,m ∈ Z . (2.117)

Here the λi are constants parameterizing the manifold. But different values of the λi
give the same lattice. If (

λ′1
λ′2

)
= A

(
λ1

λ2

)
, (2.118)

with an invertible integer matrix A the lattices are equivalent. Moreover, w = z
λ1

defines an
analytic map to another elliptic curve with λ1 = 1. Thus all elliptic curves are isomorphic
to an elliptic curve with λ1 = 1. The other parameter then is given by τ = λ2

λ1
. It represents

the complex structure of the torus. Of course sending any λ to −λ does not change the
lattice, so we can restrict the space of τ to be the upper half plane. The equivalent lattices
of (2.118) act on the complex structure τ as follows:

τ → aτ + b

cτ + b
, (2.119)

with the matrix

(
a b
c d

)
∈ SL(2,Z). The symmetry group SL(2,Z) is also known as

the modular group. This will play an important role in this thesis, some properties of this
group and modular functions are summarized in appendix A.4. The moduli space of elliptic
curves thus corresponds to the upper half plane mod SL(2,Z) transformations. This space
is the so called Teichmüller space, shown in figure 2.3. Note that this is the same group as
the duality group of the axio-dilaton in type IIB. That the fundamental domain does not
include the origin is the reason for the absence of IR singularities in string theory.

The elliptic curve inherits the flat metric of C, therefore the tangent bundle is trivial and
the space is a Calabi-Yau. In fact tori are the only example of 1-dimensional Calabi-Yau
spaces.

A torus has only a single closed form, dz. We can integrate this form over the line
segments a between z and z + 1 and b between z and z + τ . This gives the periods

ωa =

∫
a

dz = 1 , (2.120)

ωb =

∫
b

dz = τ . (2.121)

The important relation here is that the periods are closely connected to the complex
structure τ . In fact we can compute the complex structure from the periods:

τ =
ωb
ωa

. (2.122)
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Figure 2.3: A plot of the Teichmüller space. It extends infinitely in the imaginary direction.

This is the first (trivial) example of a mirror map. In principle the Calabi-Yau 3-folds
necessary for string theory will work exactly in the same way. The line segments (1-cycles)
a and b are replaced by 3-cycles γα, the holomorphic 1-form dz is replaced by the unique
holomorphic 3-form Ω3 such that the periods become

ωα =

∫
γα

Ω3 . (2.123)

The mirror maps are then given by ratios of these periods

ta =
Aaα ωα
ω0

. (2.124)

Here appears a slight complication compared to the torus. The numerator of the mirror
map is a linear combination of all periods. The vector A can be fixed using monodromy
considerations. If the basis of 3-cycles γα is chosen in a specific way, the mirror map
simplifies to

ta = δa,α
ωα
ω0

, (2.125)

which is of the same form as in the case of the elliptic curve. How to choose this basis will
be discussed in detail in the next chapter. Moreover, while the integrals in (2.120) can be
performed analytically, in the case of CY 3-folds they can in many cases only be performed
in a power series approximation. The whole third chapter is dedicated to the computation
of the periods in an as large as possible generality. For now we will simply assume that we
can compute the periods of the CY we are interested in.
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2.4.4 Calabi-Yau Compactifications

In this section we will put the results of the previous sections together to obtain explicit
formulas for the low energy effective 4-dimensional theories in the case of a compactification
on a CY manifold. To this end the fields of the low energy effective SUGRA action are
expanded into 4-dimensional fields and the basis elements of the cohomology of the internal
space defined in section 2.4.1. For example, the 4-form field C4 is expanded as

C4 = DA
2 ∧ ωA + V κ ∧ ακ − Uκ ∧ βκ + ρAω̃

A , (2.126)

where D2 is a two-form field, V and U are vector fields and ρ is a scalar field. Note
that C4 is a bit of a special case due to the self-duality constraint of F5, such that only
half of the fields are actually present. One can choose to either eliminate D2 or ρA and
either V κor Uκ. In case of orientifold compactifications one expands the fields in either the
even or odd basis of the cohomology, such that the combined cycle and field is invariant
under the symmetry. After inserting these expansions into the action, the 6-dimensional
internal integral can be performed and one obtains a 4-dimensional effective action. The
expressions are rather lengthy, for type II orientifolds with O3/O7 and O5/O9 planes they
can be found in [29]. We refrain from giving them here but instead directly use that
the resulting 4-dimensional theory of a flux compactification is a N = 1 supersymmetric
theory. Such a theory is completely defined by a Kähler potential K, a superpotential W
and the gauge kinetic function. The superpotential for a CY flux compactification was
worked out in [30] by comparing the general expression for a 4-dimensional theory to the
result from the compactification of the 10-dimensional theory, resulting in

W =

∫
X

G ∧ Ω = GΣ Π , (2.127)

where G is the combination of three-form fluxes

G = F + iSH , (2.128)

and Σ is the symplectic pairing matrix while Π are the periods in the integral symplectic
basis. S is the axio-dilaton and F and H are the fluxes, given by integrals of the three-forms
H3 = dB2 and F3 over the cycles of the symplectic basis, i.e.

F =

(∫
Aa
F3∫

Ba
F3

)
, H =

(∫
Aa
H3∫

Ba
H3

)
. (2.129)

The Kähler potential is independent of the fluxes and depends only on the periods and the
axio-dilaton [31],

K = −2 log(V)− log(S + S) = − log(ΠΣΠ)− log(S + S) , (2.130)

where V is the volume of the CY. From this potential one obtains the Kähler metric

Gi,j = ∂i∂jK , (2.131)
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where i = 1, . . . , h1,1. Finally, the gauge kinetic function Mij is given in terms of the
periods as [29]

Mij = F ij + 2i
Im(Fik)X

kIm(Fjl)X
l

XnIm(Fnm)Xm
. (2.132)

In this equation all indices run over the range 0 . . . h2,1. The Xk represent the A-cycle
periods, and Fnm are the derivatives of the B-cycle periods Fj:

Fij = ∂XiFj . (2.133)

Note that the notation in terms of F originates from the fact that due to special geometry,
the period vector and therefore the Kähler potential can be expressed in terms of h2,1

special coordinates and a holomorphic function of these coordinates, the prepotential F .
These coordinates are obtained by introducing a homogeneous coordinate system for the
A-cycle periods: zi = Xi

X0 , while the B-cycle periods are then given by the derivative of this
prepotential with respect to the special coordinates, i.e.

Π =



1
X1

X2

. . .

Xh2,1

∂F
∂X1

∂F
∂X2

. . .
∂F

∂Xh2,1

2F −
h2,1∑
i=1

∂F

∂Xh2,1



. (2.134)

The periods and the prepotential are thus in one-to-one correspondence. We will mainly
focus on the computation of the periods in this thesis and derive the prepotential from
these and mainly use the prepotential as a mean to summarize the results.

Given the Kähler as well as the superpotential, it is possible to explicitly compute the
scalar potential of the theory:

V = eK
(
GijWiWj − 3|W |2

)
. (2.135)

In this formula Wi are Kähler covariant derivatives of the superpotential and Gi,j is the
inverse Kähler metric.

Both, the superpotential as well as the Kähler potential depend on the choice of fluxes
and the periods of the CY. While the fluxes, up to tadpole cancellation conditions and
the requirement of them being integer, can be chosen freely, the periods are fixed by the
geometry. The next chapter is focusing on methods to compute the periods, which then
allows the computation of the 4-dimensional effective theory.



Chapter 3

Mathematical Tools

In this chapter we focus on the development of mathematical tools which will be applied
in string theoretic settings in the later chapters. We start with the construction of CYs
and the computation of their periods. For the construction we will use Batyrev’s mirror
polytope construction [32]. Then we will compute the periods using two different methods.
First we apply a geometric method using Picard-Fuchs (PF) operators and solving the
PF system locally. Second, we will use gauged linear sigma models to compute the Kähler
potential directly and extract the periods from the potential. Depending on the application
both approaches have their advantages and disadvantages. Then we turn to numerical
algorithms for CY metrics as well as line bundle cohomologies.

3.1 Construction of Calabi-Yau manifolds

We will describe the CY as a hypersurface in a toric variety. A toric variety is a general-
ization of (weighted) projective space. An n-dimensional projective space is obtained by
taking n+1 copies of the affine plane, Cn+1, removing the origin and identifying points
under the rescaling

C? : {x1, x2, . . . , xn+1} → {λk1x1, λ
k2x2, . . . , λ

kn+1xn+1}, λ 6= 0 . (3.1)

The exponents ki, i = 1, . . . , n+1 are called weights. There is a bit of an abuse of notation
common in this field by using the symbol C? for the group action as well as for the complex
plane without the origin, C? = C/{0}. It should be clear from the context which one is
meant. The weighted projective space is then defined as

Pnk1,k2,...,kn+1
=

Cn+1 − {0}
C?

. (3.2)

This space is free of singularities as long as the weights have no common divisor except 1.
Otherwise they have only quotient singularities which can be resolved by blowing them up.
Allowing for more than one C? action, possibly with different weights, results in so-called
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toric varieties. An algebraic torus is a group which is isomorphic to C?m for any integer
m. A d-dimensional variety V is obtained as

VΣ =
Cn − FΣ

C?
Σ

. (3.3)

FΣ in this case is a subset of Cn defined by the coordinate hyperplanes. This space
contains an algebraic torus T = C?n

C?n−d
of dimension d which is the origin of the name toric

variety. The Σ indicates that these objects will be defined using a fan Σ of strongly convex
rational polyhedral cones to describe them.

Before we go into details of the construction we note that there are in principle two ways
of constructing a toric variety. One possibility is to use a fan, allowing the construction
of normal varieties, the other is the application of a reflexive polyhedron, allowing the
construction of projective varieties. As long as the variety of interest is both normal and
projective, the different methods result in the same geometry and it does not matter which
is applied [33]. This will be the case for all varieties in this thesis, therefore we will work
mostly with fans and describe how to obtain a fan from a reflexive polytope Σ. Given
a reflexive polyhedron, there are two ways to obtain a fan. First, a fan is obtained by
interpreting the facets (dimension 1 faces) of the polyhedron as a cone and their collection
as the fan. In this case the coordinates of the fan’s vertices and the polyhedron coincide.
The only difference then is that the origin is an integral point of the polytope and not
an element of the vectors spanning the 1-dimensional cones.1 We will refer to this fan as
the fan over faces. Second, one can take the in-pointing normals of the cone’s faces and
interpret the collection of these as a fan. This gives the normal fan. This fan coincides
with the fan over the cones of the dual polyhedron. To minimize possible confusion we
assign to each polyhedron the fan over its faces, not the normal fan. The dual is denoted
by a star ?. Polyhedra are denoted by ∆, while fans are denoted by Σ. Pictorially the
relations can be described as follows:

∆

Σ Σ?

∆?

normal fan

fan
over
faces

fan
over
faces

dual

dual

Figure 3.1: The relations between fans and cones.

1This fact will be important for a correct counting of the exponents of the monomials when we write
down the monomial-divisor map.
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To complicate things even further, in the construction of Calabi-Yau manifolds the
polyhedra and their duals are sometimes interpreted in a space with one more dimension
and lying in a hypersurface at distance 1 from the origin. We will use ∆ to denote the
polyhedra in n+1 dimensions to distinguish them from the polyhedra in n dimensions. The
dual polytope is defined by

∆? = {m ∈ Zr|〈m, v〉 ≥ −1,∀v ∈ ∆} . (3.4)

In the case of the interpretation in one higher dimension this changes to

∆
?

= {m ∈ Zr+1|〈m, v〉 ≥ 0,∀v ∈ ∆} . (3.5)

Reflexive polyhedra in 3 and 4 dimensions have been completely classified with the result
that there are 4319 different 3-dimensional polyhedra [34] and 473,800,776 four-dimensional
ones [35].

A fan Σ of strongly convex rational polyhedral cones is a collection of cones with the
following properties:

• The intersection of any two cones is a face.

• All faces of the elements in Σ are in Σ .

• Any angle between two cones is less than π (strongly convex).

• There is only a finite number of cones in the fan (polyhedral).

• The cones are defined over a lattice N ∼ Zr (rational).

A face is a d-dimensional cone, which is the boundary of a (d+1)-dimensional cone. We
denote by Σ(i) the i-dimensional cones of Σ. The dimension of the fan will be denoted by
r. There is a correspondence between the cones of the fan and submanifolds of the toric
variety. Every fan includes the zero fan, the only element of Σ(0), which corresponds to
the whole toric variety. The elements of Σ(1) correspond to divisors while the elements of
Σ(2), i.e. two-dimensional cones, correspond to co-dimension 2 submanifolds. This scheme
continues, i.e. elements of Σ(i) represent submanifolds of co-dimension i. Especially,
elements of Σ(r) represent points.

As the fan is rational, we can find an integral basis for the generators of the 1-
dimensional cones, {va}, a = 1 . . . n. I.e. each generator va ∈ ∆(1) is a vector in Zr.
The components of this vector are denoted va,j, a = 1 . . . n, j = 1, . . . , r. To each va one
assigns a complex coordinate xa. All xa together parameterize an affine space Cn. The
number of elements in Σ(1), denoted n, then corresponds to the dimension of the affine
space Cn in (3.3). The set FΣ corresponds to the fixed points of the action of (C?

Σ). This
set is encoded in the fan as follows. Take any subset S of Σ(1) whose elements do not span
a cone in Σ. V (S) is defined as the subspace of Cn obtained by setting the coordinates
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assigned to the elements of S to zero, xa = 0. FΣ is then the union of all V (S). Finally
the group C?

Σ is defined as the kernel of the map φ:

φ : (C?)n → (C?)r , (t1, . . . , tn)→ (
n∏
i=1

t
vi,1
i ,

n∏
i=1

t
vi,2
i , . . . ,

n∏
i=1

t
vi,r
i ) , (3.6)

and
C?

Σ = Ker(φ) . (3.7)

As this construction is very abstract we will apply it to an example, the line bundle
O(−3) over P2. The reason for choosing this example is the importance of line bundles
over projective spaces for the construction of CY spaces. E.g. the quintic is constructed as
a hypersurface in O(−5) over P4. But this case includes a 5-dimensional polyhedron which
is hard to visualize, thus we show the O(−3) example, whose construction is fundamentally
the same as the construction of O(−5).

We start with the description of the base P2. The fan of this space is spaned by the
vertices

v1 = {1, 0},
v2 = {0, 1},
v3 = {−1,−1}.

The resulting fan is shown in figure 3.2. Note that in this fan there are in total 7 cones.
The origin or the 0 cone, 3 1-dimensional cones given by the va and 3 two-dimensional
cones in between these. As we have 3 1-dimensional cones, the affine space described by

Figure 3.2: The fan for P2.

this fan is C3. The next step is to look for subsets of ∆(1) = {v1, v2, v3} which do not span
a cone in Σ. The only such subset is the whole ∆(1), resulting in a single fixed point, the
origin. The fixed point set is thus FΣ = {{0, 0, 0}}. The map φ is now given by

φ : (C?)3 → (C?)2 , (t1, t2, t3)→ (t1 t
−1
3 , t2 t

−1
3 ) . (3.8)
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The kernel is parameterized by a single coordinate t, such that φ(t, t, t) = (1, 1), t 6= 0. The
space spaned by t is C?, thus C?

Σ = C?. The toric variety defined by the fan is therefore

VΣ =
C3 − {{0, 0, 0}}

C?
= P2 . (3.9)

Any Pn can be constructed this way by taking the vertices vi = ei, i = 1, . . . , n with ei

the usual orthonormal basis vectors of Cn and vn+1 = −
n∑
i=1

vi. A line bundle above a

projective space is obtained by increasing the dimension of the fan by 1 and adding one
additional vertex. The additional vertex has the coordinates v0 = {0, 0, . . . , 0, 1}. The
original vertices are all given by va = {va, 1}. For the example of O(−3) the vertices are

v1 = {1, 0, 1},
v2 = {0, 1, 1},
v3 = {−1,−1, 1},
v0 = {0, 0, 1}.

The resulting fan is shown in figure 3.1. The 1-dimensional cones do not span all of R3, thus
the resulting variety is non-compact, as expected for a line bundle. Furthermore there are
now 4 vertices, resulting in an four dimensional affine space C4. The only subset of ∆(1) not

Figure 3.3: The fan for O(−3).

spanning a cone is {v1, v2, v3}, thus the fixed point set is given by FΣ = {x1 = x2 = x3 = 0}.
The map φ is

φ : (C?)4 → (C?)3 , (t1, t2, t3, t4)→ (t1 t
−1
3 , t2 t

−1
3 , t1t2t3t

−1
4 ) . (3.10)

The kernel of this map is (t, t, t, t−3) which is isomorphic to C?, hence again C?
Σ = C?.
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Furthermore, the direct product of weighted projective spaces is described by the prod-
uct of the fans. For example, if one wants to construct Pn×Pm with the respective n and m
dimensional fans ∆n and ∆m, the fan for the product space is obtained by taking vertices
in Rn+m. The vertices are the same as in ∆n or ∆m with the additional coordinates set to
zero.

The line bundles are then constructed as before by adding additional dimensions and
vertices, one for each weighted projective space. This finishes the construction for the
ambient spaces of any complete intersection Calabi Yau. The last ingredient needed is
the description of the hypersurface. These are defined by a polynomial equation in the
ambient coordinates. As the ambient space is projective the defining polynomials have
to be homogeneous. Moreover, they have to be invariant under the action of C? used
to construct the ambient variety. For the CY condition to be fulfilled, the degree of the
polynomials has to be the sum of the weights of the projective space. The polynomials are
encoded in the integral points of the dual fan. The map assigning the monomials to the
points of the dual fan is known as the monomial-divisor map [36]. It is given by

P =
M∑
i=0

ai

r∏
j=1

x
〈vj ,mi〉
j =

M∑
i=0

ai

r∏
j=1

x
〈vj ,mi〉+1
j . (3.11)

Here M is the number of integral points in the dual polyhedron ∆?. The coordinate vectors
of the integral points are denoted mi, i = 1, . . . ,M . The name of the map originates in the
interpretation of the polyhedron as a fan, where the elements mi of Σ?(1) correspond to
divisors of the variety. The ai parameterize the deformations of the complex structure of
the mirror manifold. But this is an over-paramterization, as coordinate redefinitions leave
the polynomial invariant. Therefore, from the M ai, r can be fixed by reparameterizations.
The physical deformations are encoded in the relations between the vertices of the fan Σ.
One can choose any basis for the lattice of relations L. We will denote the elements of
this basis as la, a = 1, . . . , dim(L). Thus the dimension of the lattice equals the number of
complex structure moduli, h2,1 = dim(L). It has been shown in [37] that there is a unique
choice of coordinates centered around the large complex structure(LCS) point, given by

xa =
r∏
i=1

a
la,r
i . (3.12)

For the Kähler side, Batyrev showed [32] that the following formula holds:

h1,1(∆) = hr−2,1(∆?) = l(∆?)− (r + 1)−
∑

codimΘ?=1

l′(Θ?) +
∑

codimΘ?=2

l′(Θ?)l′(Θ) . (3.13)

Here the functions l and l′ count the number of integral points on the face and on the
interior respectively. Θ and its dual Θ? are faces of a fixed codimension. For a CY 3-
fold the dimension of the reflexive polyhedra is r = 4, thus this formula relates h1,1 of
a reflexive polyhedron to h2,1 of its dual. This is the first example of mirror symmetry.
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We will not use this formula as there are easier ways to determine the dimensions of the
moduli spaces, but we will heavily exploit the resulting mirror symmetry to replace the
complicated Kähler side computations by easier computations on the complex structure
side. In the third section of this chapter we will introduce gauged linear sigma models,
which allow the computation to be performed directly on the Kähler side.

3.1.1 An Example: The (Mirror) Quintic

In this section we will apply the methods described so far to the easiest example of a CY
3-fold, the mirror of a quintic hypersurface in P4. The quintic itself has 1 Kähler modulus
and 101 complex structure moduli. Thus the mirror has 1 complex structure deformation,
which by the mirror map corresponds to the single Kähler modulus of the quintic. So
while we will compute everything for the mirror quintic, in the end we will have described
the Kähler side of the quintic itself. From now on we will simply write the quintic and it
should be obvious form the context if we refer to the quintic or its mirror. The fan for P4

is spanned by

vi,j =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 −1 −1 −1

 . (3.14)

The dual fan of this is spanned by

mi,j =


4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4
−1 −1 −1 −1

 . (3.15)

Note that the dual fan interpreted as a polyhedron includes the origin as an integral point.
Now we extend the dimension of the fan by 1 and include the origin, to obtain

vi,j =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
−1 −1 −1 −1 1
0 0 0 0 1

 . (3.16)

These vertices have exactly one linear dependence,
∑5

i=1 vi − 5v6 = 0, thus

l1 = {1, 1, 1, 1, 1,−5} . (3.17)
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The monomial divisor map can be written using either vi,j or vi,j with the same result.
From (3.11) follows the polynomial

P = a1x
5
1 + a2x

5
2 + a3x

5
3 + a4x

5
4 + a5x

5
5 + a6x1x2x3x4x5 = 0 . (3.18)

As we have 5 coordinate reparameterizations we can set the first 5 ai to 1 and denote
the last a6 = 5ψ to bring the defining polynomial to the usual form mostly used in the
literature

P = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 + 5ψx1x2x3x4x5 = 0 . (3.19)

As the ambient space is just P4 it has no singularities. Therefore, the quintic is only
singular when the defining polynomial fails to be transversal, i.e.

P = ∂iP = 0 ∀ i = 1, . . . , 5 . (3.20)

These equations have only a solution in the case ψ = 1, where the manifold develops a
conifold singularity. For all other values of ψ the manifold is smooth. Note that the simple
value for the conifold position is the reason to choose a6 = 5ψ. This coordinate choice is
centered around the so-called Landau-Ginsburg point at ψ = 0. The LCS coordinate as
given by (3.12) is

x =
a1a2a3a4a5

a5
6

=
1

55ψ5
. (3.21)

3.1.2 Constructing General CICYs

To set the notation for the next sections we finally give the description of a general CICY.
We use the notation 

P
w

(1)
1 w

(1)
2 ...w

(1)
nk+1

d
(1)
1 d

(1)
2 . . . d

(1)
p

P
w

(2)
1 w

(2)
2 ...w

(2)
nk+1

d
(2)
1 d

(2)
2 . . . d

(2)
p

. . . . . . . . . . . . . . .

P
w

(k)
1 w

(k)
2 ...w

(k)
nk+1

d
(k)
1 d

(k)
2 . . . d

(k)
p

 . (3.22)

This describes a complete intersection of hypersurfaces in k projective spaces. The di-
mension of the m-th projective space is denoted nm and the weight of its coordinates by
w

(m)
i , i = 1, . . . , nm+1 , m = 1, . . . , k . The degree of the coordinates of the i-th projective

space in the j-th polynomial is denoted d
(i)
j , j = 1, . . . , p , i = 1, . . . , k . The degrees are

taken to be positive integers.2

The ambient space of a complete intersection is the direct product of weighted projective
spaces, thus the polytope describing the ambient spaces are also given by the direct product
of the polytopes for each factor. In the case of k ambient spaces

∆ = ∆1 ×∆2 × . . .×∆k . (3.23)

2It is possible to generalize this construction by allowing for the entries to take negative integers [38].
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∆ then is a polytope in Rn1 ×Rn2 × . . .×Rnk . The vi,j are the same as before. To describe
the hypersurfaces another dimension is added to the polytope, one for each polynomial.
For p polynomials we thus add another Rp. The vertices of ∆ are grouped into p sets and
assigned the coordiantes {~ep, vi,j} in Rp×Rn1×Rn2× . . .×Rnk . Here ~ep is the unit vector in
the p-th direction. How the vertices are grouped does not influence the resulting geometry.
The resulting dual vertices v? have the following relations:

li = {−d(i)
1 , . . . ,−d(i)

p , 0, . . . , 0, w
(i)
1 , . . . , w

(i)
ni+1, 0, . . . , 0} , i = 1 . . . k . (3.24)

Note that while there is one relation per defining polynomial this does not directly
imply that the number of moduli equals the number of equations, as some of the la can be
linearly dependent.

3.2 Periods of CY Manifolds

As we now have a description of the CY itself, we turn to the computation of its periods.
This whole section assumes for simplicity a CY 3-fold, but most of the formulas have
straightforward generalizations for CY d-folds. The periods are defined as integrals of the
unique holomorphic 3-form Ω over 3-cycles γi which form a symplectic basis of H3{X,Z}.
The integral representation of the periods is then

Π =

∫
γi

Ω . (3.25)

Ω can be expressed in terms of the defining polynomial of the hypersurface:

Ω =
dx1dx2dx3

∂4P
. (3.26)

Often a symplectic basis is not known a priori. In this case one first calculates any basis
of periods ωi and then transforms them into the symplectic basis. As the periods fulfill a
linear system of differential equations, the transformation can be described by a matrix m:

Π = m ω . (3.27)

The determination of the matrix m is then the most involved step in the computation.
There are two ways to approach the integral in (3.25). First one can develop the integrand
into a Taylor series and integrate order by order. Second one can determine a system of
differential equations fulfilled by the periods. Here we will follow the second approach.
The first approach was historically used in [39–42] to compute the periods of the quintic
and generalized to any hypersurface in weighted projective spaces.

The method described in this section will be based on solutions to a special system
of differential equations introduced by Gel’fand, Kapranov and Zelevinsky(GKZ) [43]. It
was shown by Batyrev in [32] that the periods as defined in (3.25) fulfill a GKZ system of
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equations. This system is defined in terms of two differential operators, Dl and Zj. The
first type of operators is given by the lattice of relations L. To each basis vector l one
assigns an operator Dl:3

Dl =
∏
li>0

(∂ai)
li −

∏
li<0

(∂ai)
−li . (3.28)

The second type of operator depends on the vertices themselves:

Zj =
n∑
i=0

v?i,jai∂ai − βj . (3.29)

The number of Z operators equals the dimension of the fan, i.e. j = 1, . . . , r. β is a vector,
which is in the case of the period system given by β = {−1, 0, . . . , 0} [32]. The periods are
annihilated by both types of operators, i.e.

DlΩi = ZjΩi = 0 i = 0, . . . , 2h2,1 + 1 . (3.30)

The Zj part of the system restricts the coordinates to the physical complex structure
coordinates. As described in the last section the ai over-parameterize the space of complex
structure deformations. The coordinates xa given in (3.12) are exactly chosen such that

Zjf(xa) = 0 , (3.31)

for any function f of the coordinates xa. The remaining PF operators can be written in
terms of the weights w

(a)
i of the a-th weighted projective spaces and the degrees of the

polynomials d
(a)
j [44]:

Da =
na+1∏
j=1

(
w

(a)
j θa

)(
w

(a)
j θa − 1

)
· · ·
(
w

(a)
j θa − w(a)

j + 1
)

−
p∏
j=1

( k∑
i=1

d
(i)
j θi

)
· · ·
( k∑
i=1

d
(i)
j θi − d

(a)
j + 1

)
xa .

Again, as for the lattice relations the operators do not all have to be independent. Note
that there are as many differential operators as there are complex structure coordinates.
This is due to the fact that on the mirror side the only Kähler moduli the toric construction
sees are the sizes of the weighted projective spaces. Interestingly, most known CYs have
a so-called favorable embedding where the number of Kähler moduli equals the number of
ambient projective spaces [45].

3In general it can happen that these operators do not generate the full differential system. In this case
additional operators need to be added. This does not happen for the models studied in this thesis. For
the details of the computation in these cases see [37].
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3.2.1 Local Solutions

A solution to the GKZ system (3.30) around the LCS point was constructed in [37]. This
solution is based on a so-called fundamental period ω0(ρi). The solution corresponds to
the derivatives of this period with respect to the indices ρi evaluated at ρi = 0. These
indices are merely an organizing principle to write down the solution. The fundamental
period for a complete intersection CY is given by

ω0 =
∞∑
n=0

cnx
n+ρ . (3.32)

Here and in the following we apply a multi-index notation to simplify the notation, i.e.
xn = xn1

1 x
n2
2 . . . x

nh21

h21 and
∑∞

n=0 =
∑∞

n1=0

∑∞
n2=0 . . .

∑∞
nh21=0 . The expansion coefficients

are [44]

cn =

p∏
j=1

Γ

(
1 +

k∑
i=1

(ni + ρi)d
(i)
j

)
k∏
i=1

ni+1∏
j=1

Γ
(

1 + w
(i)
j (ni + ρi)

) , (3.33)

where we applied the notation from section 3.1.2. The full basis of periods is obtained by
acting with the following differential operators on the fundamental periods:

D1,i =
1

2πi
∂ρi ,

D2,i =
1

2

Kijk

(2πi)2
∂ρj∂ρk ,

D3 = −1

6

Kijk

(2πi)3
∂ρi∂ρj∂ρk ,

(3.34)

where the Kijk are the classical triple intersection numbers and i = 1 . . . , h2,1. The period
vector is then

ωLCS =


ω0

D1,i ω0

D2,i ω0

D3 ω0


∣∣∣∣∣∣∣∣
ρi=0

. (3.35)

We will refer to this basis as the hypergeometric basis, as performing one of the sums in
the fundamental period explicitly results in a hypergeometric function.

At other points in the moduli space a local basis can be obtained order by order by
making an Ansatz for the periods as

ω =
3∑
j=0

∞∑
n=0

cnx
n log(x)j . (3.36)

This Ansatz represents the most general polynomial of degree 3 in the logarithms of the
coordinates and of infinite degree in the coordinates. If the exponents of the logarithms
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at the LCS are known, one can compute the exponents at any point in moduli space by
performing a coordinate change to coordinates centered around the point in moduli space
one is interested in [46]. This reduces the required computational time, as the sum over
j can be restricted to the values needed. In low moduli examples this is actually not
necessary and the Ansatz can be solved by brute force and the lowest order equations
determine the logarithms.

An important technical detail is the correct determination of the coordinates. (3.12)
gives the coordinates around the LCS point. The structure of the Z operators shows that
inverting the exponents of all ai simultaneously in (3.12) gives another solution. This is the
opposite point in moduli space, in many cases this represents the Landau-Ginzburg(LG)
point in moduli space.4 In the case of the quintic example, the ψ coordinate is exactly
this second solution. For any other point in moduli space it is a priori unclear what
coordinates to choose. The other possible intersections of divisors in moduli space are
points of tangency, i.e. the divisors do not intersect normal. To remedy this situation one
has to perform a blow up of the moduli space, carefully keeping track of the coordinates
in this process.

3.2.2 Computation of the Transition Matrix

What remains to do is to compute the transition matrices. Around the LCS point these
have been first computed by Candelas et al. in [40]. The basic idea is that one can
compute the classical prepotential at the LCS point due to the fact that there are no
instanton corrections at this point. There are only the classical intersection numbers as
well as a 1- and a 4-loop contribution. The 4-loop term turns out to be related to the Euler
characteristic χ, while the 1-loop term contributes subleading, i.e. quadratic and linear,
terms. Thus the prepotential at the LCS point is given by5

F = −Kijk

6
titjtk +

1

2
aijt

itj + bit
i +

ζ(3)χ

(2πi)3
. (3.37)

This prepotential corresponds to the periods vector

Π =


1
ti
∂iF
F

 . (3.38)

Here we already use homogeneous coordinates, i.e. we divided by Π0, of course one can also
work in inhomogeneous coordinates. The constants bi are topological and can be computed

4There exist models e.g. P5[3 3] which do not have a LG point but instead there is a symmetry of the
model Π(x) = Π(x−1), in this case there is another LCS point. The geometric interpretation of the phase
does not influence the computations, the coordinates and periods are still valid.

5This is exact up to 4-loops. For a CY 3-fold there are no further corrections. For a CY d-fold there
are higher α′ corrections resulting in further corrections of the form ζ(2n + 1)c2n where c2n denotes the
Chern classes.
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as [37]:

bi = − 1

24

∫
X

c2Ji , (3.39)

where Ji is the Kähler form corresponding to the i-th parameter. The aij are not related to
topological numbers and do not influence the geometry. The shift symmetry t→ t+1 forces
Im(aij) = Im(bi) = 0. Acting with this symmetry on the period vector and demanding
that the action corresponds to a symplectic transformation fixes the aij. As the form of Π
at the LCS point is thus fixed, one can easily determine the transition matrix by solving
the equation

Π = m ω . (3.40)

At other points in the moduli space one does not know the prepotential a priori, thus an-
other way is needed to compute the transition matrix. The form of the matrix is restricted
by the monodromies of the periods as well as the symplectic form. Both methods reduce
the degrees of freedom. At the point of maximal monodromy, which is the LCS point, the
monodromies are enough to completely fix the transition matrix. But at other points the
monodromies are not sufficient. Thus one uses the knowledge of the periods at the LCS
and analytically continues these periods to other points in moduli space. The phenomeno-
logically interesting points are intersections of singular divisors. These correspond to one
of the following: LCS points (i.e. large volume), Landau-Ginzburg points corresponding
to a point-like target space which receives quantum corrections, hybrids between the two
possibilities, i.e. a fibration of a LG model over a geometric fibre, or conifold points. In
terms of coordinates, the LCS point corresponds to all xi = 0. The LG point, if existent,
then corresponds to all xi =∞.6 Hybrid phases are obtained when some xi = 0 and some
xj = ∞. Finally, at the phase boundaries for real values of the coordinates there are the
conifold points. We normalize our coordinates such that the conifolds are located at xi = 1
if all other xi are either 0 or ∞. Analytic continuation to the LG or hybrid phases can be
performed explicitly using the Mellin-Barnes representation of the periods. The periods
around the LG point can be written as an infinite sum

ω =
∞∑
n=0

cnx
n . (3.41)

Here we are for the moment only interested in one coordinate which we denote x, the
dependence on all other coordinates is absorbed into the coefficients cn. The sum can be
rewritten as an integral

ω =

∫
γ

dν

2isin(πν)
cν(−x)ν , (3.42)

where the path γ connects −i∞ with i∞ such that it does not intersect any poles. For
small x we can close the contour to the right. The sum over residues then picks up the
poles from the sin function at ν ∈ N0, resulting exactly in the sum (3.41). For large x the

6We will call the point xi =∞ LG point even if it is another LCS point to be able to easily distinguish
the points in moduli space. In all explicit examples in this thesis it will be an actual LG point.



3.2 Periods of CY Manifolds 52

contour has to be closed to the left, leading to another infinite series description of the
same period, now convergent for x > 1. The exact form of this period depends on cn. This
procedure can be repeated for each coordinate separately, allowing to express the periods
around the center of each phase. The general expressions become rather involved and we
will not give them here. They can be found in [42].

This method converges well when applied to computations deep in the phases of the
models, but it is not possible to compute periods close to the phase boundaries. At
the boundaries all series representations converge rather badly. In practice, numerical
computations are only reliable for x (or 1/x) smaller than 0.9. The solution for this
problem is to use a local basis centered around the conifold and to compute the transition
matrix from this basis to the LCS basis, whose transition matrix to the symplectic basis
is known. The transition matrix is usually computed numerically by choosing a point at
which both bases, the LCS and local basis, converge. This point is normally taken to be
exactly the midpoint, i.e. x = 1/2. This approach was taken e.g. in [47, 48] to construct
explicit vacua. While this method allows to compute rather good approximations to the
periods, it does not give analytic results. As these are required in some applications,
we will now give a second method developed in [46] to compute the transition matrices
analytically. While the idea of using the LCS basis and a local basis around the conifold
remain the same, we will use the hypergeometric structure of the LCS periods to obtain
an explicit expansion around xi = 1. Comparing the coefficients of this basis with the
coefficients of the local basis fixes the transition matrix uniquely. This method works for
all moduli except one fixed at the LCS. Figure 3.4 shows the different bases and how they
are connected.

ω ω ωc

Π Π

x3 = 1 x3 = 0

analytic continuation coefficient matching

m

monodromy m1 m2 = m ·m1

Figure 3.4: The different bases involved in the computation and the relations between
them.

The critical step in this method is the analytic continuation. The periods are given at
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the LCS as infinite sums of hypergeometric type. This means that (3.32) can be rewritten
as infinite sums of hypergeometric functions of one variable:

ω0 =
∞∑
ni=0
i 6=j

h2,1∏
i=0
i 6=j

xni+ρii x
ρj
j f(ni, ρi) pFq(~a;~b;xj) , (3.43)

Here f(ni, ρi) denotes a combination of hypergeometric functions which does not depend
on the moduli. This will result in finite polygamma contributions to the period which
pose no problem for the analytic continuation. The exact form of the hypergeometric pFq
function depends on the model in question. It follows from the data of the l-vectors as
follows. For shrinking curves the parameters p and q are given by

p =
∑

k,l
(z)
k <0

|l(z)k | , q =
∑

k,l
(z)
k >0

|l(z)k | − 1 ,
(3.44)

i.e. p is the sum of the negative entries of the charge row vector l(z) , and q is the sum
of the positive entries of the same row( minus 1). Due to the CY-condition these sums
have to be equal and p = q + 1. The entries of l(z) appear inversely in the parameters ~a
of the hypergeometric function. The exact form of the hypergeometric function is model
dependent. Note that due to possible cancellations in the hypergeometric function the
effective p can be smaller. Also, the fundamental period can have larger p if the fibration
structure is complicated. But in these cases the hypergeometric functions simplify after
taking the limit ρ→ 0.

We know assume that we can compute an expansion of the fundamental period (3.43)
around ρi = 0. I.e. we expand

ω0 =
3∑

ki=1

h2,1∏
i=1

ρkii Fi,j(x) +O(ρ4
i ) . (3.45)

This expansion is known as the ε-expansion of a hypergeometric function. The origin of
this name lies in the computation of Feynman amplitudes in dimensional regularisation,
where the amplitudes are expanded around 4 − ε dimensions. The indices ρi play in our
case the role of ε. The periods are then given by linear combinations of the Fi,j(x). If
we are able to expand these functions around xj = 1 we can compare the result to the
local basis. Note that the expansion in the xi, i 6= j, i.e. in the moduli which are still in
the LCS, is trivial as the fundamental period is already written as a power series in these
coordinates. Also, as the transition matrix is only 2(h2,1 + 1) × 2(h2,1 + 1) dimensional,
we only need a finite amount of terms to uniquely fix the transition matrix. As the form
of the hypergeometric function is crucial for the computations which will follow, we will
give here some examples. For simplicity we take 1-moduli examples and denote the single
coordinate by x.

The simplest case is the charge vector l = {1, 1,−2}. This charge vector describes 2
points given by the vanishing of a polynomial in P2, i.e. a 0-dimensional manifold. This is
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of course only a toy example, but it already carries all the details of the more complicated
higher dimensional examples and is exactly solvable. As the sum of the negative entries
is 2, the corresponding fundamental period is a 2F1 function. The entries of the charge
vector appear inversely in the parameters, thus the parameters are multiples of 1/2. The
exact form in this case is

ω0 = xρ 2F1(1,
1

2
+ ρ1; 1 + ρ1; 4x) . (3.46)

As the hypergeometric function has only half-integer parameters it can be ε-expanded
using the HypExp2 package [49]. The result can be expressed in terms of logarithms and
poly-logarithms:

2F1(1,
1

2
+ ρ1; 1 + ρ1; 4x) =

1√
1− 4x

+
ρ1 2 log

(
1−
√

1−4x√
1−4x+1

+ 1
)

√
1− 4x

+

ρ2
1 2
(

Li2

(
−1−

√
1−4x√

1−4x+1

)
+ log2

(
1−
√

1−4x√
1−4x+1

+ 1
))

√
1− 4x

+

ρ3
1 2 log

(
2√

1−4x+1

)(
2 log2

(
2√

1−x+1

)
− 3 log

(
4x+2

√
1−4x−2

4x

)
log
(

2√
1−4x+1

)
+ π2

)
3
√

1− x
+

ρ3
1 2
(
−6Li3

(
1−
√

1−4x√
1−4x+1

+ 1
)
− 3Li3

(
−1−

√
1−4x√

1−4x+1

)
+ 6ζ(3)

)
3
√

1− 4x
+O(ρ4) .

Note the appearance of ζ(3) in the ρ3 term. This will turn out to be the origin of the
ζ(3) term in the prepotential. Moreover, each term includes a factor of 2F1(1, 1

2
; 1; 4x) =

(1− 4x)−1/2. Thus the expansion can be written as

2F1(1,
1

2
+ ρ1; 1 + ρ1; 4x) = 2F1(1,

1

2
; 1; 4x)(1 + c1(x)ρ+ c2(x)ρ2 + c3(x)ρ3) . (3.47)

The functions appearing in the coefficients ci are much simpler than the original hypergeo-
metric functions. These functions appear e.g. in the mirror map. Note that this behaviour
is general and does not only appear in this simplex example.

Inserting the ε-expansion in (3.46) and taking the derivatives with respect to ρ as
defined in (3.35) gives the period vector. As we are dealing with a 1-parameter model, the
mirror map is simply

e2πt = q = e

(
ω1
ω0

)
= exc1(x) =

4x(√
1− 4x+ 1

)2 . (3.48)

Expanding the right hand side around x = 0 we obtain the series

q = x+ 2x2 + 5x3 + 14x4 + 42x5 + 132x6 + 429x7 + 1430x8 +O
(
x9
)
. (3.49)
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The coefficients are known as the Catalan numbers. They are all integers as it is expected
for a mirror map around the LCS point. The integrality of the coefficients is in practice
a very useful tool. If no closed form is available for the ε-expansion, one can still com-
pute these numbers by numerically evaluating the series expansion in a computer algebra
program like Mathematica. This provides a very fast way to compute Gromov-Witten
invariants as well as a crosscheck for computations.

For applications it is also important to invert the mirror map. In this case this can be
done algebraically with the result

x =
q

(1 + q)2
. (3.50)

As a second example we take the charge vector l = {1, 1, 1, 1, 1,−5}. This corresponds
to the quintic hypersurface in P4. In this case the fundamental period is

ω0 = xρ 5F4(1,
1

5
+ ρ1,

2

5
+ ρ1,

3

5
+ ρ1,

4

5
+ ρ1; 1 + ρ1, 1 + ρ1, 1 + ρ1; 55x) . (3.51)

This hypergeometric function is highly unbalanced, i.e. there are more rational parameters
in the ~a parameters than in the ~b parameters. Most of the mathematical literature focuses
on balanced hypergeometric functions. Denoting the degree of unbalance, i.e. the number
of rational parameters in ~a minus the number of rational parameters in ~b, by s, shrinking
curves correspond to s ≤ 2, shrinking divisors to s ≤ 3 and shrinking CYs to s = 4. In the
case of half-integer parameters the hypergeometric functions correspond to sums of central
binomial coefficients with exponent s, i.e. sums of the form

∞∑
n=0

f(n)

((
2n
n

)
4n

)s

xn . (3.52)

Evaluation of these sums for s = ±1 is standard by now. The cases s=2 and s=3 have
been recently started to be studied by mathematicians, see e.g [50–52] and references
therein. For the case s=4 only special cases are known, mostly related to Ramanujan-like
representations of π. This is the reason we mostly focus on shrinking curves in this thesis
and will only comment on the cases of shrinking divisors or CYs. As the example of the
quintic is of the s=4 type, the ε-expansion is not known. But the series expansion can still
be computed numerically with the result

q = e

(
ω1
ω0

)
= x

(
1 + 770x+ 1014275x2 + 1703916750x3 + 3286569025625x4

)
+O

(
x6
)
,

(3.53)
which agrees with the mirror map found originally in [39]. There are in total 13 1-parameter
hypersurfaces in a single projective space. The fundamental periods for all of them can be
written as

ω0 = 5F4(1, a1 + ρ, a2 + ρ, a3 + ρ, a4 + ρ; 1 + ρ, 1 + ρ, 1 + ρ, 1 + ρ;x) . (3.54)
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The quintic example above corresponds to a = {1/5, 2/5, 3/5, 4/5}. The full list of possible
values of the ai can be found in [53]. Here we will just focus on two more examples, the
four quadrics in P7 with all ai = 1/2 and the codimension 2 hypersurface P7

111112[3 4]. In
the first case the l-vectors are given by [37]

l =


−2 1 1 0 0 0 0 0 0
−2 0 0 1 1 0 0 0 0
−2 0 0 0 0 1 1 0 0
−2 0 0 0 0 0 0 1 1

 . (3.55)

The resulting fundamental period is

ω0 = 5F4(1,
1

2
+ ρ,

1

2
+ ρ,

1

2
+ ρ,

1

2
+ ρ; 1 + ρ, 1 + ρ, 1 + ρ, 1 + ρ;x) . (3.56)

The resulting mirror map is

q = x(1 + 64x+ 7072x2 + 991232x3 + 158784976x4 + 27706373120x5) +O
(
x7
)
. (3.57)

While the ε expansion of all of these models is unknown, we still can obtain some informa-
tion about the periods. It was observed in [54] that the ε-expansion in the case of a one
parameter CY fulfills the following. If we write

ω0 =
3∑
j=0

ρjFj(x) , (3.58)

then the following holds:
Fj(1)

L(g, s)
∈ Q . (3.59)

Here g are Hecke eigenforms of Γ0(N), where N in the known examples is in the range
[4,864] and s is an integer. We have gathered some definitions and details on modularity
and L-functions in the appendix. Note that while this observation holds in all models
which where tested, it is not proven. Furthermore, for critical values of a modular form g
it holds that

L(g, 2k)

L(g, 2k − 2)
= algebraic number · πs , (3.60)

as well as
L(g, 2k + 1)

L(g, 2k − 1)
= algebraic number · πs , (3.61)

for some integers k and s [55]. Finally, the derivatives of a hypergeometric function with
respect to its argument only change the parameter values by integers, i.e.

d

dx
pFq(~a;~b;x) =

q∏
i=1

ai

p∏
i=1

bi

pFq(~a+ 1;~b+ 1;x) . (3.62)
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As the complexity of a hypergeometric function only depends on its degree of unbalance,
the derivatives can also be expressed in terms of L-values. These three observations would
imply that the entries of the transition matrix can be expressed in terms of 2 different
L-values, one even and one odd. But of course only the last one is proven at the time of
writing.

The appearance of L-values in the transition matrix to the conifold is a general phe-
nomenon. In the case of elliptic curves the L-values simplify and can be evaluated directly.
Returning to the example of four quadrics, the fundamental period can be written as

F0 =
16

π2
L(f, 2) , (3.63)

where f = η(2τ)4η(4τ)4 is a weight 4 modular form of Γ0(8). There is no known expression
for this modular form in terms of Γ-functions. But the ratios of the periods have very simple
expressions, i.e.

F3(1)

F1(1)
=

1

8π2
(3.64)

and
F2(1)

F0(1)
=

1

4π2
. (3.65)

An even simpler example is the one parameter complete intersection P7
1,1,1,1,1,2[3, 4] which

corresponds to the parameters ai = {1/3, 2/3, 1/4, 3/4}. In this case the weight 4 modular
form of Γ0(9) is

f(τ) = η(3τ)8 . (3.66)

The leading orders of the ε expansion are given by

F1(1) = −
3
√

3Γ(1
3
)9

16π5
. (3.67)

F2(1) =
9Γ(1

3
)9

8π4
. (3.68)

F3(1) = −
3
√

3Γ(1
3
)9

π3
. (3.69)

In the ratios of Fj(1) the Γ-functions cancel out, thus they represent algebraic numbers
times multiples of π as expected. But the fundamental period seems not to follow this
simple scheme and actually we could not find a closed form in terms of Γ-functions for the
fundamental. Comparing these expressions to the known L-values of f = η(3τ)8 [54]

L(f, 2) = −
Γ(1

3
)9

96π4
, (3.70)

and

L(f, 3) = −
Γ(1

3
)9

144
√

3π3
, (3.71)

it is easy to verify that the conjectures (3.59) and (3.61) hold.
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3.2.3 Example: P4
112812[24]

Finally, we give the main example of [46], P4
1,1,2,8,12[24]. It will be used in the next chapter

to construct explicit vacua. The geometry represents a 3-parameter elliptic fibration. It’s
l-vectors are given by

l =

−6 3 2 0 0 0 0 1
0 0 0 0 1 1 0 −2
0 0 0 1 0 0 −2 1

 . (3.72)

We use the coordinates xi, i = {1, 2, 3} where the i labels the row of the l-matrix. We can
write the fundamental period in 3 different ways in terms of hypergeometric functions, one
for each coordinate. These correspond to

ω0 =
∞∑

n2=0

∞∑
n3=0

xρ1

1 x
n2+ρ2

2 xn3+ρ3

3 f1 3F2(1,
1

6
+ ρ1,

5

6
+ ρ1; 1 + ρ1, 1 + ρ1 − 2ρ3 − 2n3; 432x1)

ω0 =
∞∑

n1=0

∞∑
n3=0

xn1+ρ1

1 xρ2

2 x
n3+ρ3

3 f2 3F2(1,−n3

2
+ ρ2 −

ρ3

2
,
1

2
− n3

2
+ ρ2 −

ρ3

2
; 1 + ρ2, 1 + ρ2; 4x2)

ω0 =
∞∑

n1=0

∞∑
n2=0

xn1+ρ1

1 xn2+ρ2

2 xρ3

3 f3·

3F2(1,−n1

2
− ρ1

2
+ ρ3,

1

2
− n1

2
− ρ1

2
+ ρ3; 1 + ρ3, 1 + ρ3 − 2(n2 + ρ2); 4x3)

They are all equivalent, the difference being only which infinite sum has been resumed into
a hypergeometric function. The fi denote again some coordinate independent combina-
tion of Γ functions. As these are rather long and are easily treatable in computer aided
computations we only give f1:

f1 =
Γ (ρ2 + 1) 2Γ (ρ1 − 2ρ3 + 1) Γ (ρ3 + 1) Γ (−2ρ2 + ρ3 + 1) Γ (n2 + ρ2 + 1)−2

Γ (−2n3 + ρ1 − 2ρ3 + 1) Γ (n3 + ρ3 + 1) Γ (−2n2 + n3 − 2ρ2 + ρ3 + 1)
.

These different ways of writing the fundamental period nicely represent the fibration struc-
ture of the manifold. Keeping the other moduli fixed at the LCS values, i.e. xi = 0, only
the leading terms of the remaining sums, i.e. ni = 0 contribute. In these cases the hyper-
geometric functions reduce in the latter two cases to the function in our example (3.46).
This allows the computation of the ε-expansion and therefore of the transition matrix an-
alytically. The matching of the coefficients in the expansion around the conifold uniquely
fixes the transition matrix. The exact expressions for the local basis used are given in the
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appendix A.7. The resulting transition matrix is

m2 =



1 0 0 0 0 0 0 0
id
2π

− i
2π

0 − i
2π

0 0 0 0
i log(2)
π

0 − i
π

0 0 0 0 0

0 0 0 i
π

0 0 0 0
a7

2
−11 log(2)−6 log(3)

2π2 − d
2π2

1−3 log(2)
2π2

1
4π2 0 1

2π2 0

a6 − d
2π2 0 0 0 1

4π2 0 0

a7
−11 log(2)−6 log(3)

π2 − d
π2 0 0 0 1

π2 0

a8 b c 0 0 − i log(2)
4π3 − id

2π3
i

6π3


, (3.73)

where

a6 =
4π2 + 25 log2(2) + 9 log2(3) + 30 log(2) log(3)

4π2
,

a7 =
23π2 + 180 log2(2) + 54 log2(3) + 198 log(2) log(3)

6π2
,

a8 =
i
(
726ζ(3)− 325 log3(2)− 54 log3(3)− 540 log2(2) log(3)

)
12π3

,

+

(
−297 log(2) log2(3) + 127π2 log(2) + 69π2 log(3)

)
12π3

,

b =
i
(
−23π2 + 180 log2(2) + 54 log2(3) + 198 log(2) log(3)

)
12π3

,

c =
i
(
−4π2 + 25 log2(2) + 9 log2(3) + 30 log(2) log(3)

)
4π3

,

d = 5 log(2) + 3 log(3) .

While these expressions are rather long and non-rational, the important part is that all
entries are known analytically, such that the cancellation of the irrational factors in the
following steps is manifest.

Applying this matrix to the local solution around the conifold gives an expression for
the periods in the symplectic basis to arbitrary order. The periods themselves, especially
those corresponding to the β-cycles, are too long to be presented here, instead they are
listed in the appendix A.7. After dividing by the fundamental period, the α-periods which
represent the mirror map take the form
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1

log(x1)
2πi
− 31ix1

72π
+ ix3

4π
+

5ix1
√
x3

72π
− 5ix1x2

√
x3

1152π
+

ix2
√
x3

32π
− i
√
x3

2π
+ 3i log(3)

2π
+ 5i log(2)

2π
+ · · ·

log(x2)
2πi

+ x3

πi
− i log(x3)

π
+ i log(2)

π
+ · · ·

5ix2
√
x3x1

576π
− 5i

√
x3x1

36π
− ix2

√
x3

16π
+

i
√
x3

π
+ · · ·

 .

Changing the x3 coordinate to x3 = x2
3 and defining

qU1 = 864 e2πiU1

= x1 + · · · ,

qU2 =
4

(π
i
Z)4

e2πiU2

= x2 + · · · ,

qZ = (π
i
Z) = x3 + · · ·

(3.74)

allows us to invert the mirror map order by order. The numerical factors in the expressions
for qU1 and qU2 arise from the chosen coordinates. A choice for the normalization of the
coordinates is possible such that these are absent. The resulting mirror map is given by

x1 = qU1 − qU1qZ −
31q2

U1

36
+ · · · , (3.75)

x2 = qU2 +
5

9
qU1qU2qZ −

q2
U2

4
− 5

9
qU1qU2 + · · · , (3.76)

x3 = qZ +
5

36
qU1qZ −

5

192
qU1qU2qZ +

1

16
qU2qZ + · · · . (3.77)

Moreover, the hypergeometric representation allows us to compute the mirror maps around
the conifold exactly in the conifold coordinate. At x1 = x2 = 0 the conifold modulus on
the Kähler side is given by

2πiZ = log(1− x2
3)− 2 log(2) + 2 HPL

[
−1;

1− x3

1 + x3

]
= −2 arctanh(x3) .

In this case the harmonic polylogarithm (HPL) actually reduces to a simple logarithm, but
in higher orders more complicated HPLs of higher weight appear. In the appendix A.4.1
we give the basic definitions of harmonic polylogarithms. The mirror maps can be written
purely in terms of a sum of these at any order in x1 and x2. Finally, inserting the mirror
map into the periods allows us to write down the prepotential around the conifold as

F =− 4

3
(U1)3 − U2(U1)2 +

23

6
U1 + U2 − 120i

π3
e2iπU1 − 35496i

π3
e4πiU1

− Z3

4
− 2(U1)2Z − U2U1Z − U1Z2 +

23

12
Z +

120

π2
e2iπU1

Z

+ Z2

(
i log(2πZ)

2π
− 3i

4π
+

1

4

)
+

121iζ(3)

4π3
+ higher order .

(3.78)
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Note that all polynomial terms involving U1 or U2 are rational. The only non-rational
terms are the quadratic Z2 term and the constant ζ(3) term shown in the last row. We also
observe that the linear terms related to the U i are all given by the same topological numbers
as they are in the LCS regime. The same holds for the manifold P4

1,1,2,2,6[12]. Together
with the observation that the topological numbers at a conifold transition are given by
sums of the LCS topological numbers [56], this gives rise to the following conjecture: all
coefficients in the prepotential around the conifold except the quadratic terms are rational
numbers. While we cannot prove this for the general case, it seems to be a rather frequent
property.

If one would try to compute the analytic transition matrix to the conifold at x1 = 1,
one would encounter the ε-expansion of

2F1(
1

6
+ ρ1,

5

6
+ ρ1; 1 + ρ1; 432x) . (3.79)

This function turns out to be much harder to treat than the first case. One complication
is the singularity of the fundamental period at x = 1. This does not influence the physical
quantities as these only depend on the derivatives of f in the combination f’/f, such that
these divergences cancel out. Moreover, the ε-expansion is not known. But as it is only
an elliptic curve or respectively only a 2F1 function, one can use a generalized version of
Euler’s reflection formula to expand this function around x = 1 by rewriting it in terms of
a Meijer G function [57]:

2F1(a, b; c, x) =
Γ[c]

Γ[a]Γ[b]Γ[c− a]Γ[c− b]
G2,2

2,2(a, b; c− b− a, 0; 1− x) . (3.80)

Changing the coordinate x→ 1− x and expanding around 0 gives the required expansion.

3.3 Gauged Linear Sigma Models

After having computed the periods on the complex structure side and applying the mirror
map we will take a completely different approach in this section. This will allow for a direct
computation of the periods on the Kähler side. In his seminal paper Witten introduced the
so-called gauged linear sigma models (GLSM) [58]. These models are 2-dimensional N = 2
supersymmetric field theories. He showed that due to the supersymmetry it is possible to
compute many properties of an IR theory using a much simpler UV theory whose RG-
flow ends in the IR theory. Due to the high amount of supersymmetry these models
are solvable using supersymmetric localization, which leads to exact expressions for the
partition functions [59,60]. The important formula allowing to compute the periods is the
observation that the sphere partition function of a GLSM is in one to one correspondence
with the Kähler potential of a CY [61]:

ZS2 = e−K . (3.81)
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We will first describe the GLSM construction itself and how it relates to the geometric
formulation used in the last section. Then we will describe the algorithm of [61] to compute
the periods. Finally we will give some example computations for the quintic and P4

11222[8].

3.3.1 The Gauged Linear Sigma Model

The GLSM is a two-dimensional N = 2 supersymmetric gauge theory. Such theories
consist out of chiral multiplets as well as vector multiplets. We will only be interested in
hypersurfaces in toric varieties, thus we will only consider abelian GLSMs, i.e. the gauge
group G will be U(1)s with an integer s. Each U(1) factor will represent a (weighted)
projective space, thus the number of gauge factors exactly equals the number of Mori cone
generators, s = h1,1. The charges of the chiral fields under the U(1) factors correspond to
the weights.

As before we want to describe a D-dimensional complex projective space with D+1 co-
ordinates zi with weights ki. The N homogeneous polynomials describing the hypersurfaces
have degrees di, i = 1, . . . , N , i.e. the geometry we are interested in is:

PDk1,...,kD+1
[d1, . . . , dN ] . (3.82)

To achieve this one closely follows the geometry description. First one describes the ambient
toric variety. For each of the D+1 coordinates one introduces a chiral multiplet Φm with
m = 1, . . . , D+ 1 and the s vector multiplets Vj describe the action of the toric symmetry
by which the variety is quotiented. This results in a non-compact variety. Then the
polynomial constraints are included by adding a chiral multiplet Σn for each of the N
polynomials. The chiral multiplets carry the U(1) charges shown in table 3.83.

Φ1 Φ2 . . . ΦD+1 Σ1 . . . ΣN

U(1)1 Q1,1 Q2,1 . . . . . . QD+1,1 QD+2,1 . . . QN+D+1,1

U(1)2 Q1,2 Q2,2 . . . . . . QD+1,2 QD+2,2 . . . QN+D+1,2
...

...
...

...
...

...
...

...
U(1)s Q1,s Q2,s . . . . . . QD+1,s QD+2,s . . . QN+D+1,s

(3.83)

These charges are in one-to-one correspondence with the l-vectors encoding the relations
of the polytope in the last section, i.e. the generators of the Mori cone. The dimension of
the resulting compact hypersurface is d = D + 1 − N − s. Note that the hypersurface is
described in a different manner compared to the geometric construction on the B-model
side. The toric variety which is used by the GLSM is not simply the projective space
of the hypersurface one started with. As a simple example of this we use P11222[8]. As
described earlier this corresponds to an octic surface in a complex 5-dimensional space
with one projection. The GLSM description of the same surface is given by a surface
in a 6-dimensional variety with 2 projections which are represented by the gauge group
U(1) × U(1). It is always possible to use a symplectic quotient of a single affine space
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(Cn/(C?)m) to describe any toric variety, no matter how many factors of projective space
it contains [58]. The GLSM uses exactly this description.

But a GLSM is much more general than the toric formalism. If one chooses non-abelian
gauge groups, it is also possible to construct determinantal CYs or purely non-geometrical
spaces which do not posses a geometrical phase. Thus we will change the point of view
now slightly and will assume the GLSM as the fundamental construction, only taking
the charges (l-vectors) for specific constructions as an input if necessary. If we want to
construct a general GLSM corresponding to a CY we only have the following constrains:

The CY condition is related to the vanishing of the mixed gravitational - abelian gauge
anomalies, which are proportional to the sum of the gauge charges

D+1∑
i=1

Qi,j = 0 . (3.84)

In addition there exists a superpotential

W =
N∑
n=1

Pn(Φ) Σn , (3.85)

which is linear in the Σn and the polynomials Pn are chosen such that W carries van-
ishing charges. Moreover, one associates R-charges Ri to the chiral fields such that the
superpotential has R-charge 2. The superpotential only depends on the complex structure,
given by the deformations of the polynomials. Therefore the A-model partition function is
independent of the superpotential itself as it can only depend on the Kähler parameters.
The superpotential only restricts the value of the R-charges. This does not uniquely fix
the R-charges, but the remaining freedom corresponds to a rescaling of the partition func-
tion or equivalently a Kähler transformation of the Kähler potential. Thus the remaining
freedom does not influence any physical observables.

3.3.2 The Partition Function

The partition function for an abelian gauge group G = U(1)s can be written as [59,60]

ZS2(ξ, ξ̄, Q,R) =
∑
m1∈Z

. . .
∑
ms∈Z

i∞∫
−i∞

dσ1 . . .

i∞∫
−i∞

dσs Zclass Zgauge Zchiral , (3.86)

where the purely imaginary integration contour for the scalar fields σi is chosen to simplify
the expressions. For an abelian gauge group Zgauge = 1 is trivial. The classical contribution
is

Zclass =
s∏
j=1

e−4πrjσj+iθjmj , (3.87)
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and the contribution from the 1-loop determinants of the chiral fields are given by

Zchiral =
M∏
i=1

Γ

(
Ri/2 +

s∑
j=1

Qi,j · (σj −mj/2)

)

Γ

(
1−Ri/2−

s∑
j=1

Qi,j · (σj +mj/2)

) . (3.88)

Thus given the Q- and R-charges, the partition function depends only on the complexified
FI-parameters τ = rj + iθj. Depending on the signs of the τj the contour of the integral
in (3.86) can be closed to the right or to the left. The classical contribution Zclass ensures
that the contributions at infinity are suppressed. Thus the integrals can be written as as
sum of residues of gamma functions. As a Γ function is only singular at negative integer
arguments, the choice of FI parameters determines which Γ functions contribute to the sum.
The resulting sums are exactly of hypergeometric type. Rewriting the partition function
for general charges poses a difficult problem and has only been solved for 1-parameter
models in [62]. The reason for the complexity of the evaluation in multi-parameter models
lies in the definition of multivariate residues. A detailed explanation of the evaluation can
be found in the appendix of [63] which applies a method developed in [64]. Here we only
give a short review of the method.

Before we go into details on the evaluation method we explicitly evaluate the example
of the quintic. This will show the necessity of a systematic method in the multivariate
case. We have h1,1 = 1, thus the gauge group is U(1). The ambient space is described by 5
chiral fields with U(1) charge 1. The CY constraint then enforces the addition of another
chiral field with charge -5 to cancel the gravitational anomaly. This corresponds to the
addition of the line bundle in the toric construction. The charge vector is thus given by

Q = {−5, 1, 1, 1, 1, 1} , (3.89)

which is the same as the l-vector in the toric description given in (3.17). The R-charges of
the fields in the superpotential need to add up to 2. The easiest choice for this is 7

R = {2, 0, 0, 0, 0, 0} . (3.90)

The partition function then becomes

ZS2 =
∑
m∈Z

∫ i∞

−i∞
dσ e−4πrσ+iθmΓ[σ − m

2
]5Γ[1− 5(σ − m

2
)]

Γ[1− σ − m
2

]5Γ[5(σ + m
2

)]
. (3.91)

The Γ functions in the nominator have poles at

(i) σ =
m

2
− k1 and (ii) σ =

m

2
+
k1 + 1

5
k1 ∈ N0 . (3.92)

7This choice is singular in the sense that the integration contour intersects poles of the Γ functions. In
more complicated examples this can lead to problems, but in the explicit evaluation of this example the
choice does not cause any problems and shortens the equations.
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For r < 0 the contour can be closed to the left. Thus only zeroes where σ takes negative
values will contribute. This results in constraints on the values of m which contribute. In
the case (i) m < 2k1 and in the case (ii) m < −2k1+2

5
. These are all possible poles. But

the Γ functions in the denominator can cancel some of these poles. As there is a pole of
order five in case (i) the only possible cancellation can come from the Γ[1− σ − m

2
]5 term.

Thus if a solution to the equation

1− σ − m

2
= 1−m+ k1 = −k2 , (3.93)

exists for non-negative k2 the corresponding m will not contribute. Rewriting this as

m = 1 + k1 + k2 ≤ 1 + k1 (3.94)

shows that only m ≤ k1 will contribute. A similar argument shows that all poles of the
case (ii) are canceled. Thus we can write the partition function as

Z =
∞∑
k=0

∑
m≤k

∮
ε=0

dε(zz)εzkzm−k
Γ[−k + ε]5Γ[1 + 5k − 5ε]

Γ[1 + k −m− ε]5Γ[5(m− k + ε)]
, (3.95)

where we have defined z = e−2πr+iθ. To bring this into a more symmetric form we introduce
a new summation variable l = m− k and apply the reflection formula

Γ[x] =
π

sin(πx)Γ[1− x]
(3.96)

to all Γ functions which are singular at ε = 0. This results in

Z =
∞∑
k=0

∞∑
l=0

∮
ε=0

dε(zz)εzkzlπ4 sin(5πε)

sin(πε)5

Γ[1 + 5l − 5ε]Γ[1 + 5k − 5ε]

Γ[1 + l − ε]5Γ[1 + k − ε]5
. (3.97)

Defining

f(ε) =
∞∑
n=0

Γ[1 + 5n− 5ε]

Γ[1 + n− ε]5
zn =

Γ[1− 5ε]

Γ[1− ε]5 5F4(1,
1

5
−ε, 2

5
−ε, 3

5
−ε, 4

5
−ε; 1−ε, 1−ε, 1−ε; 55z) ,

the partition function takes its final simple form

Z =

∮
ε=0

dε(zz)επ4 sin(5πε)

sin(πε)5
|f(ε)|2 . (3.98)

Note that the hypergeometric function appearing in f(ε) is exactly the same as the one
in the fundamental period (3.51). The different prefactors appear due to the unfixed
normalization of the partition function. Evaluating the integral of the partition function
in this form is simple. To be able to express the result compactly we define the “period”
vector ω = {f(0), f ′(0), f ′′(0), f ′′′(0)}. With this definition the partition function is

Z = ω σ ω , (3.99)
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where

σ =


50π2

3
log(zz)− 5

6
log(zz)3 −50π2

3
+ 5

2
log(zz)2 −5

2
log(zz) 5

6

−50π2

3
+ 5

2
log(zz)2 −5 log(zz) 5

2
0

−5
2

log(zz) 5
2

0 0
5
6

0 0 0

 . (3.100)

For the LG phase, i.e. r > 0, a similar computation leads to the result

ZLG =
1

5

3∑
l=0

(−1)l (zz̄)−
l
5

Γ5
(

1+l
5

)
Γ2(l + 1) Γ5

(
4−l
5

) ·∣∣
5F4

(
1+l
5
, . . . , 1+l

5
, 1; 2+l

5
, . . . , 5+l

5
;− 1

55z

)∣∣2 . (3.101)

Note that the 1 in the first parameter set is canceling a 1 in the second parameter set
such that the functions are actually only 4F3 functions, the 5F4 is just used for notational
convenience.

It is possible to extract the periods as well as the Gromov-Witten invariants from the
LCS partition function. The method was developed in [61] and involves the following steps:

• Extract the coefficient of ζ(3).

• Perform a Kähler transformation such that the coefficient becomes χ
4π3 . This fixes

the normalization.

• Identify the log(zn) log(zm) terms with i
8π2Klnmt

l

• The flat coordinates are tl = log(zl)
2πi

+ t
(0)
l + fl(z). This is fixed up to the constants

t
(0)
l .

• The remaining constants are fixed by demanding positivity of the lowest order Gromov-
Witten invariants.

• Inverting the mirror map and computing the q-expansions allows the read-off of the
Gromov-Witten invariants.

Thus if the classical intersection numbers Klnm as well as the Euler characteristic χ are
known one can determine the genus 0 Gromov-Witten invariants. Moreover, the partition
function allows for a fast evaluation of the Kähler potential, avoiding the computation of
the transition matrices completely. But as should be clear after the example, the evaluation
of the partition function by hand involves many steps and is inconvenient. Additionally,
the complexity increases drastically with the dimension of the moduli space. Thus a
more algorithmic approach which can be fully automated is necessary. This approach was
developed in [65]. In the algorithm the divisors are sorted in a geometric way, uniquely
determining which contribute in a certain phase to the residue count. Then the poles are
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extracted using a variation the reflection formula (3.96). Finally the residue is transformed
into a form treatable by Cauchy’s residue formula. This approach works only in the
resonant case, i.e. if the sum of the upper a parameters of the hypergeometric function
equal the sum of the lower b parameters. As this condition is exactly the CY condition,
the method is always applicable in our cases of interest.

We will now go through each of these steps in detail. We follow the original work and
first treat the two-dimensional case before describing the general d-dimensional procedure.
We will use P11222[8] as an example. This manifold is one of the most often used two
parameter models, details of its GLSM evaluation can be found e.g. in [2, 62, 66]. The
charge matrix is given by

Q =

(
1 1 1 0 0 1 −4
0 0 0 1 1 −2 0

)
. (3.102)

Moreover, the defining polynomial can be obtained by the toric construction to be

P = x8
1 + x8

2 + x4
3 + x4

4 + x4
5 − 8ψx1x2x3x4x5 − 2φx4

1x
4
2 . (3.103)

The superpotential of the GLSM is Σ0P and has to have R charge 2, thus the following R
charges are assigned to the fields

R =
(

2−q1
4

2−q1
4

2−q1−4q2
4

2−q1−4q2
8

2−q1−4q2
8

q2 q1

)
. (3.104)

These are only fixed up to the choice of two parameters q1 and q2. These can take any
value as long as all R-charges remain positive. In principle even choosing 0 is possible, but
this will lead to singular divisors at 0, causing problems for numerical algorithms. The
different choices correspond to Kähler transformations and thus do not influence the result.
With this choice the partition function (3.86) becomes

Z =
∑
m1∈Z

∑
m2∈Z

∫ i∞

−i∞
dσ1

∫ i∞

−i∞
dσ2 z

−m
2
−σ1

1 z
m
2
−σ1

1 z
−m

2
−σ2

2 z
m
2
−σ2

2 Z0Z1Z
2
2Z

3
3 , (3.105)

where the Zi correspond to the 1-loop determinants of the chiral fields. With the chosen
charges they read explicitly

Z0 =
Γ[ q1

2
− 4(−m1

2
+ σ1)]

Γ[1− q1
2

+ 4(m1

2
+ σ1)]

, (3.106)

Z1 =
Γ[ q2

2
− m1

2
+ σ1 − 2(−m2

2
+ σ2)]

Γ[1− q2
2
− m1

2
− σ1 + 2(m2

2
+ σ2)]

, (3.107)

Z2 =
Γ[−m2

2
+ 1

8
(2− q1) + σ2]

Γ[1− m2

2
+ 1

8
(q1 − 2)− σ2]

, (3.108)

Z3 =
Γ[−m1

2
+ 1

16
(2− q1 − 4q2) + σ1]

Γ[1− m1

2
+ 1

16
(q1 − 2 + 4q2)− σ1]

. (3.109)
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Figure 3.5: The divisor structure for P11222[8] at two different scales. On the left hand side
the cones are clearly visible. On the right hand side the region around the origin is shown,
making the polyhedron around the origin visible.

The zeroes of the polynomials inside the Γ functions define divisors in the σ-plane. Figure
3.5 shows the structure of these divisors for fixed values of mi and qi. This shows that
there are no divisors in a small polyhedron around the origin as well as the cone structure.

The first step in the evaluation is the determination of the cones corresponding to the
different phases of the GLSM. To this end one draws a line l through the origin of the
σ-plane. Of course there are infinitely many possible lines, but the procedure will still only
result in finitely many phases. As long as the slope of the line does not cross any slope
of a divisor the result will not change. Moreover, for each line there will be two resulting
cones, one on each side of the line. The line should also not be taken parallel to any of the
divisors to ensure the existence of intersections.

As the partition function consists out of two integrals, only intersections of two divisors
will contribute to it. A pole is included in a phase when the two divisors intersect the
line l at different sides of the origin. This rather strange looking definition is necessary to
exclude so-called spurious poles and at the same time defines the cones.

The side on which the divisor intersects l depends on the values the summation variables
mi take. This constraints the values for which the divisors contribute and reproduces the
conditions on the summation range worked out before by hand. Working this out for the
example gives the following phase picture:

Knowing the contributing factors, one can perform the same transformations as in the
1-dimensional case. The singularities are first brought to the origin by the transformation

σi → εi + f(~m,~k) , (3.110)

where f(~m,~k) are the roots of the contributing polynomials. Then the singularities are
extracted from the Γ function by using the reflection formula

Γ[x− k] = (−1)k
Γ[1 + x]Γ[1− x]

xΓ[1 + k − x]
.
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Figure 3.6: The four GLSM phases and the contributing pairs in the partition function for
P11222[8]. I corresponds to the geometric phase while III is the LG phase.

Note that the only singularity on the right hand side is in form of the x−1, all Γ-functions
are regular at x = 0. In phase II, only Z0 and Z2 contribute. These have vertical and
horizontal divisors. Applying the reflection formulas to this pair, the partition function is
of the form

Resε1=0,ε2=0
h(ε1, ε2)

εn1ε
m
2

, (3.111)

where n and m are integers given by the exponents of the contributing Zi in the partition
function and h(ε1, ε2) is a combination of Γ functions which is regular at the origin. These
residues can be directly evaluated using Cauchy’s residue theorem, i.e.

Resε1=0,ε2=0
h(ε1, ε2)

εn1ε
m
2

=
1

Γ[n]Γ[m]

∂n+m−2h(ε1, ε2)

∂nε1∂mε2

∣∣∣∣
ε1=0,ε2=0

. (3.112)

This finishes the computation in phase II. In the other phases, each pair has a contribution
of Z1, which leads to structures of the form

Resε1=0,ε2=0
h(ε1, ε2)

ε1(ε1 − 2ε2)
. (3.113)

This complicates the computation slightly due to the appearance of linear combinations of
the εi in the denominator. This can be transformed into a residue which can be evaluated
by Cauchy as above by application of the transformation theorem [67], i.e.

Res

(
h(ε1, ε2)

εn1ε
m
2 (ε1 + aε2)p(ε1 + bε2)q

)
= Res

(
h(ε1, ε2) det(A)

εr1ε
s
2

)
, (3.114)
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where n,m, p, q, r and s are integers, h(ε1, ε2) is a regular function at ε1 = ε2 = 0 and A
is an analytic 2x2 matrix. The condition for this theorem are the following. Define two
vectors f and g, where

g = {εr1, εs2} f = {f1, f2} . (3.115)

The fi are products of the elements of the denominator of the residue one wants to evaluate,
i.e products of (ε1 + aε2)p,(ε1 + bε2)q, εn1 and εm1 . The assignment to f1 and f2 is based
on the intersection of the divisor they originate from with the line l as well as whether
the cone lies to the left or to the right of l. If the cone lies to the left of l,f1 includes
the ones intersection the left side, f2 the ones intersecting the right side. If the cone lies
to the right exactly the opposite is applied. Finally the matrix A is determined by the
equation Af = g.8 This equation does not have an analytic solution for all values of r and
s, restricting the values these integers can take. But different values of r and s leading to
solutions result in the same residue, thus taking small values simplifies the computation.

For the LG phase above we have f = {ε1, ε1 − 2ε2}. The simplest g that works is
g = {ε1, ε2}. Solving for A results in

A =

(
1 0
1
2
−1

2

)
. (3.116)

Thus the residuum (3.113) becomes simple −1
2
h(0, 0). The absence of derivatives is typ-

ical for LG phases. The resulting expression consists of 4 infinite summations. This is
already useful for numerical evaluation, but can be simplified by redefining the summation
variables. This computation was performed in [62] with the result

ZLG =
1

8

3∑
δ=1

(
(−1)Gr0

Γ̂δ,0(0)

Γ̂∗δ,0(0)
Iδ,0(z1, z2, 0)Iδ,0(z1, z2, 0)

+ (−1)Gr1
Γ̂δ,1(0)

Γ̂∗δ,1(0)
Iδ,1(z1, z2, 0)Iδ,1(z1.z2, 0)

)
.

(3.117)

Here Grκ = δ + κ + 3
⌊
δ
4

⌋
+ 2

⌊
δ+4κ

8

⌋
encodes the signs obtained by the transformations,

Iδ,i(z1, z2, ε) is the Givental I function [68]

Iδ,κ(z1, z2, 0) =
1

Γ
(〈

δ
4

〉)3
Γ
(〈

δ+4κ
8

〉)2

∞∑
l=0

∞∑
p=0

(−1)pe
z1
4

(4p+δ−1)e
z2
8

(8l+δ−1+4κ) Γ
(
p+ δ

4

)3
Γ
(
l + δ+4κ

8

)2

Γ (4p+ δ) Γ (1 + 2l − p+ κ)
,

(3.118)

The I functions are closely related to the periods and together with the gamma class form
the geometric ingredients of the partition function. In these expressions the brackets denote

8What is considered left and right of the line, i.e. the orientation of the line, contributes an overall sign
and the choice does not matter as long as the same convention is chosen for all contributing pairs.
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expressions modulo 1, i.e. 〈x〉 = x− bxc. Finally the gamma class is given by

Γ̂δ,κ(0) = Γ

(〈
δ

4

〉)3

Γ

(〈
δ + 4κ

8

〉)2

, (3.119)

The gamma class in the denominator is obtained from the gamma class in the nominator
by reflecting the gamma function inside the bracket, i.e. setting 〈x〉 → 〈1− x〉. In the
example this corresponds to

Γ̂∗δ,κ(0) = Γ

(〈
1− δ

4

〉)3

Γ

(〈
1− δ + 4κ

8

〉)2

. (3.120)

Note that the ratio of gamma classes is exactly like the structure of Γ-functions appearing
in the partition function. There are 6 different Givental functions appearing in (3.117), in-
terpreting this as a period vector ω = {I1,0, I2,0, I3,0, I1,1, I2,1, I3,1} and denoting the rations
of gamma classes as

γ(i, j) =
Γ̂i,j(0)

Γ̂∗i,j(0)
, (3.121)

we can write the partition function compactly as

ZLG = ωMω , (3.122)

with the pairing matrix

M =
1

8


γ(1, 0) 0 0 0 0 0

0 γ(2, 0) 0 0 0 0
0 0 γ(3, 0) 0 0 0
0 0 0 −γ(1, 1) 0 0
0 0 0 0 −γ(2, 1) 0
0 0 0 0 0 −γ(3, 1)

 .

Note that the γ(i, j) are only numbers independent of the coordinates and ω is holomorphic
while ω is anti-holomorphic. As the moduli space metric is given by the derivatives of the
Kähler potential, which itself is given by

K = − log(Z) , (3.123)

this leads to an simple expression for the moduli space metric

gij = ∂i∂jK = −
ωM∂jω∂iωMω

(ωMω)2
+
∂iωM∂jω

ωMω
. (3.124)

This equation can then be numerically evaluated for any values of the moduli. This finishes
the mathematical computations and can now be used to test the Swampland conjectures.
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Before we come to this we will show the methods developed so far for some more examples.
We start by giving the explicit expressions for the partition function for P11222[8] in the
other phases. We will see that the simple diagonal form of M is an artifact of the LG
phase and will not persist to other phases.

In the geometric phase, there are two pairs of divisors contributing to the partition
function, Z1Z2 and Z2Z3. Thus in this phase the carefully defined overall signs matter.
Carefully performing the algorithm one arrives at

MLCS = −8π3



168ζ(3)
4π3 0 0 0 0 4i
0 0 0 0 4i 0
0 0 0 4i 8i 0
0 0 0 4i 0 0
0 0 4i 0 0 0
0 4i 8i 0 0 0
4i 0 0 0 0 0


. (3.125)

The details of this evaluation can be found in [62]. The I function in this case is given by

I(z, ε) =
Γ
(
1 + ε1

2πi

)3
Γ
(
1 + ε2

2πi

)2

Γ
(
1 + 4 ε1

2πi

) ∑
n1,n2≥0

e−z1n1e−z2n2e−z1
ε1
2πi e−z2

ε2
2πi

·
Γ
(
1 + 4n1 + 4 ε1

2πi

)
Γ
(
1 + n1 + ε1

2πi

)3
Γ
(
1 + n2 + ε2

2πi

)2


Γ(1+

ε1
2πi
−2

ε2
2πi)

Γ(1+n1−2n2+
ε1
2πi
−2

ε2
2πi)

n1 ≥ 2n2

(−1)n1
Γ(−n1+2n2− ε1

2πi
+2

ε2
2πi)

Γ(− ε1
2πi

+2
ε2
2πi)

n1 < 2n2.

(3.126)

Finally, the period vectors is given by

ω = (I0,0(z, 0), I0,1(z, 0), I1,0(z, 0), I1,1(z, 0), I2,0(z, 0), I2,1(z, 0) + 2I3,0(z, 0)) . (3.127)

The pairing matrix is in this case close to being an anti-diagonal matrix. Note that this nice
form depends on the chosen basis for the periods. As one can see in the quintic example,
even in the LCS regime the matrix can be rather complicated. Next we give the result for
the hybrid phase. Again a rather tedious computation gives

M =



γ1(0)(log 2)3 − iπ
2
γ1(0) 0 0 0 0

− iπ
2
γ1(0) 0 0 0 0 0
0 0 γ2(0)(log 2)2 − iπ

2
γ2(0) 0 0

0 0 − iπ
2
γ2(0) 0 0 0

0 0 0 0 1
γ1(0)

(log 2)3 − iπ
2

1
γ1(0)

0 0 0 0 − iπ
2

1
γ1(0)

0

 .

(3.128)
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The entries γδ(ε) are again given by the ratio of gamma classes, which in this case take the
form

Γ̂δ(ε) = Γ

(
δ

4
+

ε

πi

)
Γ

(
δ

4

)3

Γ
(

1− ε

2πi

)2

Γ̂∗δ(ε) = Γ

(
1− δ

4
− ε

πi

)
Γ

(
1− δ

4

)3

Γ
(

1 +
ε

2πi

)2

. (3.129)

as well as the I-function

Iδ(z1, z2, ε) =
Γ
(
1 + ε

2πi

)2

Γ
(
δ
4

+ ε
πi

)
Γ
(
δ
4

)3 e
−z2 ε

2πi

∑
a,n≥0

Γ
(
a+ δ

4
+ 2n+ 2 ε

2πi

)
Γ
(
a+ δ

4

)3

Γ (4a+ δ) Γ
(
1 + n+ ε

2πi

)2 e
z1
4

(4a+δ−1)e−z2n.

3.4 Numerical CY Metrics

Up to now we have focused on the computation of the periods of the CY. These allow
the computation of the effective Kähler- and superpotential. But for some applications
the knowledge of the periods is actually not sufficient. For example, the Laplace operator
depends on the target space metric directly and cannot be expressed in terms of the periods.
Sadly, only few Ricci flat CY metrics are actually known. While the existence of the Ricci
flat CY metrics was proven long ago by Yau [69], until recently only the flat metric of the
torus was known. In [70,71] explicit constructions of K3 metrics were given using dualities
of little string theories. For the phenomenologically relevant CY 3- and 4-folds no analytic
expressions are known at all. Thus one has to fall back on numerical methods. Different
methods to compute the metric numerically have been developed in [72,73]. More recently
neural networks have been used to compute the metrics [74–76].

While the methods used to fix the parameters of the Ansatz differ in the papers men-
tioned above, the objective functions of the algorithms are all based on the same idea. There
are two ways how one can build a top form for a CY three form. First one can use the
known unique three-form Ω, second one can use the Kähler form J. As the top-cohomology
H3,3 contains only a single element, the resulting expressions have to be proportional to
each other, i.e.

J ∧ J ∧ J = κ Ω ∧ Ω , (3.130)

where κ is constant over the moduli space. Thus computing the ratio of the two expressions
gives a measure of the flatness of the metric, as

J ∧ J ∧ J
Ω ∧ Ω

=
6i det g

Ω ∧ Ω
= κ . (3.131)

The usual Ansatz for the metric is the so-called algebraic metric. This is motivated by the
form of the Fubini-Study metric for a projective space Pn,

K =
1

2π
log(p) , (3.132)
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with

p =
n∑
i=0

zizi . (3.133)

The idea is to replace the polynomial p by more general polynomials. Let sα be a basis of
degree k monomials, then one makes the Ansatz

p =

Nk∑
α=1

sαh
αβsβ . (3.134)

where Nk is the number of degree k monomials in the coordinates zi and hαβ is a coefficient
matrix to be fixed by the algorithm, which is interpreted as an inverse metric. Note that
this is the metric of a line bundle L=OX(k) and not the CY metric itself, which follows
in the usual way from the Kähler potential. The monomials sα then form a basis of the
global sections. It was proven by Donaldson [72] that for infinite k this Ansatz does result
in the correct Ricci-flat CY metric. The algorithms now have to fix the elements of hαβ.
The first algorithm developed for this task was Donaldson’s T map introduced in [72]. The
T-map is explicitly given by

T (h)αβ =
Nk

Vol(X)

∫
X

sαsβ
|s|2h

dVolX . (3.135)

The absolute value in the denominator on the right hand side depends on the inverse metric.
The T operator thus gives a map from the inverse metric hαβ to a new metric T (h)αβ. This
new metric can then, after inversion, used again as an input for the T operator. Applying
the T operator repeatedly converges to a special metric, known as the balanced metric
[73]. The precise mathematical statement is that if the automorphism group Aut(X,L) is
discrete, for any initial Hermitian metric G0 and r →∞ the sequence T r(G0) converges to a
fixed point. The fixed point has constant scalar curvature proportional to c1(X) [77], which
for a CY implies that it is a Ricci flat metric. In practical applications the convergence is
very fast, often a few iterations are enough that the entries of hαβ do no longer change at
double precision.

Another way to find the entries of hαβ is to reformulate the problem into an optimization
problem. In an optimization problem the goal is to extremize, i.e either minimize or
maximize an objective function subject to some constraints. There are several possible
choices, e.g. the integrated value of the deviation from flatness defined in (3.131). Another
possibility are the energy functionals introduced in [78]. These are energies depending
indirectly on the Ricci tensor, as for example the Calabi energy∫

X

J3

6
R2 . (3.136)

Thus minimizing these energies will result in the so-called optimal metric possible with
the made Ansatz. Indeed results show that the curvature of these metrics are smaller than
the ones of the T-map at a fixed order k. It should be noted that these energy functionals
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used are already several years old, due to the increase in computational power it is now
possible to directly integrate the Ricci scalar over the CY. [75]. The Ricci scalar depends
on the Kähler potential with a fourth derivative. This renders the computation expensive,
but the results are obviously better if one uses the Ricci scalar directly. Finally, the most
modern approach involves the application of neural networks. This has the advantage that
the neural network can directly learn the metric components and no detour to the Kähler
potential has to be taken. But for the training the network needs some known results,
which have to be obtained by either the T map or optimization. Nevertheless, combining
these older methods with neural networks is able to outperform the purely optimization or
purely T-map approach in terms of computational time needed [75].

All methods mentioned above need a numerical way to implement the integration op-
erator

∫
X

dVolX . This is done by approximating the integral by n points sampled from
the geometry. The sampling turns out to be the limiting factor in the computations, as
first the maximal possible number of points which can be taken into account is limited by
the available memory and second the more advanced sampling algorithms take quite some
computation time to generate the sample.

The goal of the sampling is to produce a sample which approximates the integral as
close as possible while needing as little computation time as possible. The problem is, that
the CY spaces we are interested in are defined only indirectly as hypersurfaces is projective
spaces. While homogeneous sampling from a projective space can be realized easily, for
hypersurfaces therein some algorithms are required. There are three main ways used in
the literature how to perform this:

1. Rejection sampling

2. Solving for a coordinate

3. Intersection Sampling

In the first approach, rejection sampling, one draws random points in the ambient
projective space. The distance between the drawn points and the hypersurface is computed
by inserting the point in the defining polynomial of the hypersurface. If the point is closer
than a given small value of ε, the point is added to the sample, otherwise the point is
rejected. This leads to a homogeneous sample, but the points to not exactly lie on the
hypersurface, leading to errors. Moreover, if one requires the precision ε to be smaller
than 10−4 the algorithm becomes very slowly. As for high precision in the integration of
the order of 106 to 109 points are used, this renders this approach unpractical. It can be
improved by projecting the sample points orthogonal onto the hypersurface. This removes
the error, but at the same time destroys the homogeneity of the sample, reintroducing the
error in the approximation of the integral.

In the second approach the hypersurface constraint is explicitly solved. For this the
ambient projective space Pn with coordinates Xi, i = 0, . . . n is covered by n+1 coordinate
patches Ui, defined by the coordinate Xi taking the largest value. Without loss of generality
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we work in the U0 coordinate patch. Then homogeneous coordinates are introduced by
dividing by X0, i.e.

xi =
Xi

X0

. (3.137)

As X0 was the largest coordinate, the xi have an absolute value |xi| ≤ 1, i.e. they take
values in the unit disk D. Thus the projective space Pn is given by n+ 1 copies of Dn. A
concrete example for this is P1 = S2. This space can be covered by two charts U0 and U1,
each consisting out of a unit disc parameterized by the coordinates

x1 =
X1

X0

and x0 =
X0

X1

. (3.138)

respectively. The two discs represent the two hemispheres centered around the north and
south poles. Then the roots of the defining polynomial p can be solved for any of the
coordinates, e.g xn. This requires the solution of a high degree polynomial. For numerical
algorithms this does not pose any problems. Analytically this is a surprisingly hard task,
but the roots of polynomials of any degree can be expressed in terms of hypergeometric
functions [79]. Of course for polynomials of degree ≤ 4 these can be reduced to radicals,
for degree 5 to elliptic functions and for degree d ≥ 6 to genus d − 4 θ-functions. As an
example we take again the quintic defined by the polynomial

p =
4∑

n=0

X5
n + 5ψX0X1X2X3X4 . (3.139)

This equation is completely symmetric in all 5 coordinates, thus we can simply take 5
copies of the U0 chart. In this chart the defining equation becomes

1 +
4∑

n=1

x5
n + 5ψx1x2x3x4 = 0 . (3.140)

If we want to solve this equation for x4, we can treat all other coordinates and ψ as fixed
coefficients, i.e. we have to solve

x5
4 + αx4 + β = 0 , (3.141)

where α = 5ψx1x2x3 and β = 1 +
3∑

n=1

x5
n. This form of the quintic equation is known as

the Bring-Jerrad normal form. The roots of this form can be explicitly stated in terms of
the Bring radical BR as

x4 = 4

√
−α

5
BR

(
−1

4

(
− 5

α

) 5
4

β

)
. (3.142)

Finally, the Bring radical can be expressed in terms of a hypergeometric 4F3 function.

BR(a) = −a 4F3(
1

5
,
2

5
,
3

5
,
4

5
;
2

4
,
3

4
,
5

4
,−55(

a

4
)4) . (3.143)
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The hypergeometric function appearing in this solution is rather complicated and does not
seem to be in any direct relation with the hypergeometric functions appearing in the periods
due to the multiples of 1/4 parameters appearing in the b parameters of the function. This
solution allows to write the integration operator on the CY explicitly. The integration is
over 3 unit discs parameterized by xi, i=1,2,3, subject to the constraint that |x4| ≤ 1, with
x4 given in (3.142).

Finally, there exists a method to use homogeneous sampling on the sphere to sample
homogeneously on a hypersurface. The idea is to draw randomly two points in Pn. These
points span a line. This line intersects the hypersurface exactly d times, where d is the
degree of the defining polynomial. It can be shown that these points are distributed
homogeneously on the hypersurface. Finding the 5 intersection points can be performed
numerically with high precision. This allows a fast and precise computation of sample
points. Therefore the method is faster than explicitly integrating, but has the disadvantage
that localized effects like the conifold can be missed. Indeed, when the scalar Laplace
operator is solved using this method, the quintic at ψ = 1 does not show any signs of a
conifold [80].

3.5 Line Bundle Cohomologies of Toric Varieties

In this section we will give an algorithm to determine analytical formulas for the rank of
line bundle cohomologies of toric varieties or hypersurfaces therein. This section is based
on the paper [81]. We will be interested in computing the rank of the cohomology group
H i(OX(D)) of some divisor D of a toric variety X. There exist algorithms which solve this
problem , e.g. the CohomCalc algorithm [82]. While these solve the problem for given
line bundle charges, they become very slow for more complicated problems and large line
bundle charges. In [81] a method was developed to obtain an analytic formula only using
the knowledge of a few cohomologies with low line bundle charges. It should be noted that
the ranks of the cohomology groups are in principle a hard problem for machine learning
techniques as they jump between neighbouring values. This can be seen by the failure of
simple neural networks to correctly reproduce the cohomologies, especially in the case of
hypersurfaces. The core observation which allows the use of machine learning techniques
in form of classification algorithms is that the cohomologies have a phase structure similar
to the GLSM of CYs. In each phase the rank of the cohomology group is given by a simple
polynomial of the line bundle charges. Thus the problem is reduced to classifying the phase
structure and determining the rational coefficients of the polynomials.

The Algorithm

The CohomCalc algorithm [82] allows the determination of the ranks of the cohomology
groups for given values of the line bundle charges.9 In this section an algorithm using

9In some of the following examples it is necessary to extend the algorithm by implementing an additional
cut in the Koszul sequence, we will not go into details of the CohomCalc algorithm in this thesis and refer
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unsupervised learning is presented which allows the identification of analytic expressions.
First a data set S of the cohomologies is calculated for all values of the line bundle

charges ~m satisfying |mi| ≤ a ∀i for a fixed value of a. Tests have shown that a = 25 is
sufficient for the algorithm to find the analytic formulas.

The algorithm uses the observation that the hi have a distinct phase structure. In the
interior of one phase the hi are polynomial functions of the line bundles of maximal degree
d, where d is the dimension of the variety. If one can identify the phase structure, it is
then easy to perform a polynomial fit. This represents a classification problem. As one a
priori does not know the phase structure, unsupervised learning has to be applied.

In unsupervised learning one faces the task to group data points into different sets
without specifying any conditions. This leads to a clustering of similar data. The only
input is the data to classify and the maximal number of sets to be used. We applied the pre-
implemented ClusterClassify function of Mathematica 11.3 with 200 classes and “Quality”
as optimization goal as well as “KMeans” as the method to generate the classifiers and the
LinearModelFit function for the polynomial fits.

In the interior of one phase, the d-th derivatives of the hi with respect to ~m are constant
and the (d + 1)-th derivatives vanish. As the hi are only defined for integer ~m, the data
forms a lattice. The derivatives are therefore calculated using the central difference scheme
with a lattice spacing of one. This leads to a non-vanishing (d + 1)-th derivative exactly
at the phase boundaries. The first step is to remove the boundaries out of the data set S.
To do so a cluster classifier with a very large number of classes is trained on the data set{

~m ,
∂d+1hi

∂d+1m1

,
∂d+1hi

∂dm1∂m2

, ..... ,
∂d+1hi

∂d+1mR

}
, (3.144)

where i = 0, . . . , d runs over all cohomology groups. This set takes for a point inside a
phase the form

{~m, 0, 0, 0, ....., 0} (3.145)

and for a point at a phase boundary at least one of the latter entries is non-vanishing.
This leads to a classification where all data points which lie in the interior of a phase are
classified into one set and various sets of boundary points. For large enough line bundle
charges the interior will always be the largest set. The boundaries are simply thrown
away. Tests show that the classification works better for a small dimensional space. The
number of partial derivatives increases with the degree d and the number of line bundle
charges. Therefore this step was divided into several classification steps. First one trains
one classifier on a subset of the derivatives of degree d + 1 and removes the boundary.
Then a second classifier is trained on the next subset and so on. As the training of one
classifier takes only seconds, this is not a huge performance loss but drastically improves
the result. In the examples presented in this paper we used a splitting into two randomly
chosen subsets of equal size.

to the paper [81] for the details.
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With the remaining points forming the interior of the phases the set

S3 =

{
~m ,

∂dhi

∂dm1

,
∂dhi

∂dm1∂m2

, ..... ,
∂dhi

∂dmR

}
(3.146)

is formed and a second classifier trained on this set. The set S3 is, in contrary to the
original data set S, not connected in the ~m, which improves the classification and is the
reason for the two step procedure. This now classifies the phase structure of the problem.
The number of allowed classes is again taken to be very large. While it can happen that
one phase is grouped into two classes, this does not pose any problem as in this case the
polynomials obtained will agree and the phases can be merged later on.

The final step is to perform the polynomial fit on each set and each hi. Sets with iden-
tical polynomials for all hi are then merged. This concludes the algorithm. To summarise:

1. Calculate a set of data points using the extended cohomCalg.

2. Determine the (d+ 1)-th derivatives of these points.

3. Classify the data using these derivatives.

4. Determine the d-th derivatives of the remaining data points.

5. Classify the data using these derivatives.

6. Perform a polynomial fit of degree d on each set for each hi.

7. Merge sets with identical polynomials.

We note that this algorithm requires no input besides the geometric data describing
the variety and can therefore be completely automatised. The only thing which has to be
done by hand is to extract the boundaries of the phases, as the classifier encodes them
not in closed form. This is quite tedious, but for practical purposes one does not need the
functions. One can use the classifier to identify in which phase a given ~m lies and apply the
polynomial of this phase. For convenience we added the phase boundaries in the tables.

As a non-trivial test of the procedure we calculated the Euler characteristic of the
examples by summing up the polynomials and compared them to the Euler characteristic
as obtained from the Hirzebruch-Riemann-Roch theorem. The two expressions agree in all
examples and phases.

In the following sections this algorithm is applied to some examples.

Line Bundles on Toric Varieties

We start with an example where the analytic expressions are well known, the del Pezzo
surface dP1. This provides on one hand an easy method to cross-check the results and on
the other hand is an easy example with only 3 phases.
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Using cohomCalg, we generate a data set of the cohomology ranks with the line bundle
charges in the range a = [−25, 25]. These are shown in figure 3.7. The application of the
unsupervised learning on the third derivatives cuts out two phase-boundaries where the
underlying function describing the ranks is non-differentiable. The second cluster analysis
then classifies the remaining points using the second derivatives into 6 phases, three pairs
of which have identical polynomials for h1. The result is shown in figure 3.8.

Figure 3.7: h1 (O(m,n)) of dP1.

Figure 3.8: Classification result for h1 (O(m,n)) of dP1.

Fitting a polynomial of degree 2 to the ranks in each of these phases results in the
polynomials listed in table 3.1. These agree with the known analytic expressions, see
e.g. [82].
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Phase Polynomial
(n ≤ −2 ∧m ≥ 0)

∨(n ≥ 0 ∧m ≤ −3)
−1−m− n

2
−mn+ n2

2

(n ≤ −2 ∧ n+ 1 ≤ m < 0)

∨(n ≥ 0 ∧ −3 < m ≤ n− 2)
m
2

+ m2

2
− n

2
−mn+ n2

2

else 0

Table 3.1: Polynomials for h1 (O(m,n)) in the case of dP1.

Line Bundles on Hypersurfaces

We now turn to the more complicated problem of finding analytic expressions for line
bundle cohomologies of hypersurfaces in toric varieties. As an example for a hypersurface
we take the K3 space P3

1112[5]. This hypersurface has two line bundle charges, so that
~m = (m,n). The expected degree of the polynomials is d = 2. Figure 3.9 shows the ranks
of the zeroth cohomology for different values of m and n.

Figure 3.9: h0 (O(m,n)) of P3
1112[5].

At first glance this seems to consist of 3 phases. But applying the algorithm described in
the last section reveals that there are actually 6 phases. Figure 3.10 shows the result of the
second classification. The fitted polynomials can be found in table 3.2. One nicely sees the
cut boundaries and phases. Also the separation between the orange and brown phase seems
redundant from the point of view of h0, but is necessary because of the higher cohomology
groups. Especially interesting is the subdivision in the yellow/purple and red/green phases
into even and odd n, which are also described by different polynomials. The phase structure
thus is not only defined by some linear functions of m and n. If one tried a polynomial
fit in the whole of these phases instead of separating into even/odd one would not obtain
rational coefficients. E.g. in the yellow/purple phase the polynomials are 5m2

4
+ 2 for

n even and 5m2

4
+ 7

4
for n odd. If one mixes these phases, the interpolating polynomial

obtained is 1.80407 + 0.0131771n+ 1.24945n2, which does obviously not reproduce any of
the cohomologies correctly and cannot be extrapolated.
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Figure 3.10: h0 (O(m,n)) of P3
1112[5] separated into phases.

Phase Polynomial
m < 0, n > m

2
0

m < 0, n < m
2

m2

2
− 2mn− 3m

2
+ 2n2 + 3n+ 1

m > 0, n > m
2
,m even 5m2

4
+ 2

m > 0, n > m
2
,m odd 5m2

4
+ 7

4

m > 0, 0 < n < m
2

m2 +mn− n2 + 2
m > 0, n < 0 m2 − 2mn− 3m+ 2n2 + 3n+ 2

Table 3.2: Polynomials for h0 (O(m,n)) in the case of P3
1112[5].

Another interesting example is the octic P4
11222[8]. Here we expect the polynomials to

be of degree d = 3. Figures 3.11 and 3.12 show again the input data for h0 and the result
after classification. The resulting polynomials for h0 are listed in table 3.3. We note

Figure 3.11: h0 (O(m,n)) of P4
11222[8].

that the only disadvantage of this procedure is that the boundaries are cut out and it is
not possible to determine the value at the boundaries itself, which is reflected in only >
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Figure 3.12: Classification result for h0 (O(m,n)) of P4
11222[8].

Phase Polynomial
m < 0, n ∈ Z 0

m > 0, n < 0 m3

3
− 2m2 + 11m

3
− 1

m > 0, n > m
2

−8m3

3
+ 2m2n+ 2m

3
+ 2n

m > 0, 0 < n < m
2

, m even
m3

3
− 2m2 + 11m

3
+ n3

8
+ 3n2

8

+ 5n
4
− 1

m > 0, 0 < n < m
2

, m odd
m3

3
− 2m2 + 11m

3
+ n3

8
+ 3n2

8

+ 7n
8
− 11

8

Table 3.3: Polynomials for h0 (O(m,n)) in the case of P4
11222[8].

statements in the table instead of ≥. But as these are only a limited number of points
one can simply compare these with the results from cohomCalg. The tables for the other
cohomology groups can be found in appendix A.6.

While at the time of the paper [81] the appearance of two polynomials in one phase was
a surprise, in the meantime a formula for the line bundle charges has been proven in [83].
The formula is based on consecutive projections onto nef divisors. In this procedure ceiling
functions appear, explaining the mod 2 structure appearing in some of the examples as
well as the fact that polynomials suffice to describe the ranks of the groups.

3.6 Strebel Differentials

In this section we will focus on the computation of a special case of quadratic differentials,
the Strebel differentials. Quadratic differentials play an important role in many string
theoretic computations, from the definition of a complex structure in terms of Beltrami
differentials to the evaluation of string field theory vertices defined in terms of minimal area
metrics. In this section we will focus on the latter application, but it should be mentioned
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that the developed tools are applicable in other areas too. Especially we will comment at
the end of the section on possible applications in the understanding of the moduli space of
CY manifolds. The results of this section contain unpublished work.

In string field theory, one of the basic problems is to decompose the diagrams into
vertex and propagator contributions. For example, a part of the moduli space of the 4-
punctured sphere is already covered by the combination of two 3-vertices combined by a
propagator. One solution to this problem is to define the vertices in terms of a minimal
area metric [84,85]. This reduces the problem to the computation of minimal area metrics.
These in turn can be shown to originate from Strebel differentials.

A Strebel differential is a quadratic differential with second order poles with residues10

-1 which satisfies the Strebel condition. This means that in a local coordinate z the
quadratic differential q can be written as

q = φ(z)d2z , (3.147)

where φ(z) is a meromorphic function of z with Laurent expansions around a pole p

φ(z) =
−1

(z − p)2
+

b−1

(z − p)1
+ b0 + b1(z − p) . . . . (3.148)

The coefficients bi are complex numbers independent of z. The Strebel constraint states
that the integral between any two zeroes zi of the differential is real, i.e.

li,j = Im

∫ zj

zi

√
φdz = 0 . (3.149)

These integrals are of elliptic type and in general very hard to solve. This in turn renders the
explicit computation of Strebel differentials complicated. The general quadratic differential
with n second order poles can be written as

φ(z) =

−z2n−4 +
2n−5∑
i=0

aiz
i

n−1∏
i=1

(z − zi)2

. (3.150)

This form is derived as follows: One puncture is positioned at infinity, which is always
possible by using the SL(2,C) symmetry. Then the residue condition at infinity forces the
polynomial in the nominator to be of order 2n − 4 and the leading coefficient to be -1.
This expression has 2n− 4 undetermined coefficients ai. n− 1 of these can be fixed by the
remaining residue constraints, leaving n− 3 unfixed parameters. Thus for the 3-punctured
sphere there are no remaining degrees of freedom. Choosing the usual punctures at 0, 1
and infinity, the unique Strebel differential is given by

φ(z) =
−z2 + z − 1

z2(z − 1)2
. (3.151)

10With residue one means in this context the coefficient of the first term in the Laurent expansion.
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For the 4-punctured sphere, there remains one unfixed parameter. Choosing the punctures
to be at 0,1, ξ and infinity, the differential takes the form

φ(z) =
a

(z − 1)z(z − ξ)
− (z2 − ξ)2

(z − 1)2z2(z − ξ)2
. (3.152)

The undetermined parameter a depends on the position of the fourth puncture ξ. Moreover,
the boundaries of the moduli space are a priori unknown and have to be determined by
finding the values of ξ for which one of the lengths li,j = π. This problem was solved
numerically by Möller in [86] and used to compute quartic string field theory vertices.
Here we will instead ask the question of how to compute the Strebel differential given the
lengths li,j. In the case of 4 punctures there are 3 different lengths which we will denote
a,b and c which fulfill due to the residue constraint

a+ b+ c = 2π . (3.153)

Sometimes it is useful to use differently normalized lengths obtained by dividing a,b and c
by π

α + β + γ = 2 . (3.154)

This problem was actually solved by mathematicians for the n-punctured sphere in [87].
For the 4-punctured case some examples have been recently worked out in [88]. The basic
idea is the equivalence between the following 3 objects

• Strebel differentials on Riemann surfaces

• Algebraic curves over Q

• Ribbon Graphs (”child’s drawings” or “dessins d’enfants”)

The name child’s drawing originates from Groethendieck, who was fascinated by the
amount of information stored in such simple figures. These are defined by the inverse
image of a Belyi map of the interval [0,1]. A Belyi map is a map from a Riemann surface
onto P1 which is ramified at 0,1, and infinity. This language may be unfamiliar for physi-
cists and is a bit counter intuitive. A function is said to be ramified at a point to a degree
d if the inverse of its derivative has a branch point of degree d. Effectively this means that
a function of the form zn is ramified at 0 of degree n − 1. This notion will become more
clear in the examples.

Instead of solving the problem of rational lengths and fixed residues, one solves the
problem with residues n and integer lengths. The value of n can be chosen as the least
common multiple of the denominators of the rational numbers. Rescaling the solution
obtained this way by 1/n then produces the wanted differential. This approach was also
taken in [89], were the Strebel differentials for integer lengths were computed by solving
a factorization problem. The authors also show the relation to Belyi maps but do not
use it as a computational tool. Our new proposal is to use the property that the Strebel
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differential originates from the pull-back of a simple known quadratic differential by a Belyi
map, i.e.

φ(z) = f ?g?q , (3.155)

where the ? denotes the pull-back, q is the known quadratic differential

q =
1

z(1− z)2
d2z (3.156)

and f and g are functions such that f ◦ g is a Belyi map. We split the Belyi map into two
functions as it was observed in [88] that in the case of a 4-punctured sphere all Belyi maps
can be written as f ◦ g with

g(z) = z2 . (3.157)

This Ansatz halves the degree of the unknown function f . The function f has to be ramified
only at 0,1 and infinity. It was also worked out in [88] that this restricts the maximal degree
the function f can take. We will take a different approach here and simply make different
Ansätze for the function f and see how far we can get with each of them. As the first try
we take

f(z) = −a0 + a1z + a2z
2

c0 + c1z
. (3.158)

This is the lowest degree which gives a solution. We now have to determine the 4 complex
parameters a0, a1, c0 and c1. This is done by computing the pullback of q by g and f and
comparing the resulting quadratic differential with the known form of a Strebel differential
for a 4-punctured sphere given in (3.152). This is most easily done by comparing not
the differentials directly but the expansions around the punctures. Around the origin φ
expands as

φ(z) =
−1

z2
+
a− 2− 2ξ

z
+
aξ + a− 3ξ2 − 2ξ − 3

ξ2
+O(z) . (3.159)

Requiring the pull back of q to have a residue of -1 has 2 solutions

c0 = −a0 and c1 = −a0 − a1 . (3.160)

or
c0 = a0 and c1 = 2a0 + a1 + a2 . (3.161)

Using this and comparing order by order the series expansions gives in the first case the
unique solution

φ(z) = − (ξ + z2 − 2ξz)
2

(z − 1)2z2(ξ − z)2
. (3.162)

This is a Strebel differential with only 2 zeroes. It thus corresponds to special symmetric
cases at the boundary of the moduli space where one of the lengths shrinks to 0 size. The
second case leads only to a solution if ξ = 1

2
± i√

3
. In this case a = 2± 2i√

3
. This corresponds

to the most symmetric configuration of the 4-punctured sphere where the punctures are
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positioned on the corners of a tetrahedron. The values found values agree with the values
given in [88,89] for this point. This shows that demanding the power expansions to agree is
sufficient for a complete solution. But the equations become cumbersome to solve with an
increasing degree of the Ansatz for f . Already for a cubic Ansatz the general equation is
very hard to solve. But it is possible to find special solutions with fixed ξ as in the second
case. The values for these solutions are also in agreement with the table of solutions in [89].
Thus we have shown that it is possible to simplify the computations and reduce them to
an algebraic problem by using series expansions.

The unknown function a(ξ) enjoys some modular properties. For example, it is known
that [88]

a

(
1

ξ

)
=
a(ξ)

ξ
a(1− ξ) = 2− a(ξ) . (3.163)

This is obtained directly from (3.152) by exchanging two poles and demanding equality.
These identities are sufficient to give a solution for all real values of ξ given the values
in [1/2, 1) but they do not allow a solution for all complex values. But they are a strong
hint that there could be an underlying hypergeometric solution to the general problem. If
this is true, the hypergeometric function would reduce at special points to simple rational
functions. That this is the often the case is well-known. We leave this interesting possibility
for future studies.

Finally we want to comment on the relation to the moduli space of CY manifolds.
For 1-parameter models, the moduli space is equivalent to a P1 with 3 punctures at the
LCS, the LG point and the conifold. The inverse mirror map can thus be interpreted as
a Belyi map from the Kähler moduli space to the complex structure moduli space. This
map defines a unique quadratic differential and thus a metric on the moduli space. This
metric is not necessarily the metric following from the periods. It would be interesting
to understand its meaning. Moreover, the γ coordinate introduced in [39] is also a Belyi
map to the complex structure side, albeit a different one than the mirror map. Thus this
interpretation could give a hint on the meaning of this function as well. This finishes the
mathematical discussion. We now turn to the application of the developed methods to the
swampland conjectures.



Chapter 4

The Swampland Conjectures

In this chapter the swampland conjectures are tested in the context of string theoretic
models. First the general idea of the swampland program is introduced. Then the focus
is put on two of the conjectures, the swampland distance conjecture as well as the dS
conjecture. Finally, explicit string models are constructed and it is shown that all of them
satisfy the conjectures.

4.1 The Swampland Program

String theory compactifications give rise to a vast amount of vacua, known as the land-
scape. While the number of different vacua is huge and ever increasing, famous estimates
are ranging between 10500 [90] for type II vacua, 101500 in heterotic models [91] and an
astonishing 10272000 vacua for a single compactification geometry of F-theory [92]. Also,
the obtainable gauge groups are huge, including for example the compactification on the
fourfold P1,1,84,516,1204,1806[3612] with gauge group E2561

8 × F 7576
4 ×G20168

2 × SU(2)30200 [93].
Especially embedding the standard model in this huge landscape is rather simple, but the
huge amount of possible constructions makes predictions impossible. While it thus may
seem that everything can be constructed in string theory, there nonetheless seem to be
restrictions. Some low energy theories have no known embedding in string theory or other
UV completions. These theories are said to be in the swampland. The swampland program
tries to classify the boundary between the swampland and the landscape. This includes
the search for criteria which lead to a theory being in the swampland. The first of these
conjectures appeared in [9]. The conjecture, now known as the distance conjecture, states
that if one formulates an effective theory around one point p1 in moduli space and deforms
the theory away from this point to another point p2 infinitely far way in moduli space, the
effective theory will break down due to an infinite tower of states becoming exponentially
light. This conjecture was refined in [94] to include finite distances. I.e. there is a tower
of states whose masses scale like

m = m0 e
λ
d(p1,p2)
MPl , (4.1)
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for some order one constant λ. This conjecture will be the focus of the next section.
Another important conjecture is the weak gravity conjecture (WGC) [95]. This conjecture
follows from many different arguments, many of which do not refer to string theory at all
but rather to black hole arguments, unitarity or entropy [96–104], all of which are basic
assumptions of a general theory of quantum gravity. One of the main arguments is that a
charged black hole should always be able to decay to prevent the existence of black hole
remnants. For extremal black holes this requires the existence of a particle whose charge
is larger than its mass, i.e. for an abelian symmetry1

m <
√

2gqMPl , (4.2)

where g is the gauge coupling and q the charge of the particle. This is the electric version
of the conjecture, there is also a magnetic variant. It limits the allowed gauge coupling
depending on the cutoff Λ of the theory,

Λ < gMPl . (4.3)

This already includes another famous conjecture, the no global symmetries conjecture. As
a global symmetry can be seen as the limit of a local symmetry where the gauge coupling
is sent to 0, (4.3) requires a vanishing cutoff as g → 0. Thus global symmetries would
be forbidden. That string compactifications forbid continuous global symmetries has been
long known [106]. More recently this was extended to include discrete symmetries [10].
In the same paper it was conjectured that the symmetry groups have to be compact.
The breaking of all global symmetries is conjectured to be implemented by Chern-Simons
terms [107]. There are several extensions to the weak gravity conjecture. If the WGC is
extended to multiple gauge groups, one arrives at the convex hull condition [108]. This
requires that the convex hull spanned by the charge vectors of the particles in the theory
includes the d-dimensional unit ball, where d is the sum of the ranks of the gauge group.

Another conjecture is the so-called lattice weak gravity conjecture [109]. This conjecture
follows from the requirement that if the WGC holds, it should also hold when the theory is
compactified. This requires the completeness of the charge lattice, i.e. all particles in the
lattice should actually exist in the theory. This is a variant of Polchinski’s completeness
conjecture [110], which states that all gauge representations allowed by charge quantization
have to exist in the theory.

Finally, scalar interactions can be included. This modifies the black hole argument as
well as the bound state argument, depending on the sign of the scalar force [111].

Another important conjecture is the non-SUSY AdS conjecture, which forbids stable
non-supersymmetric AdS vacua [105]. The reason is the existence of instanton solutions
turning the flux stabilising the vacuum into a brane. The charge of the brane will then
lead to the decay of the AdS vacuum. The existence of the brane and thus of this decay
mechanism is a consequence of the refined WGC.

1The originally proposed version states the relation as ≤, but as an equality would relate an internal
symmetry to the Poincaré symmetry, which is forbidden by the Coleman-Mandula theorem, it was argued
in [105] that equality is impossible.
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One of the most important conjectures is the dS conjecture [112]. The conjecture relates
the scalar potential and its derivative

|∇V | ≥ cV , (4.4)

for some order one constant c. Especially this forbids dS vacua, as for these the derivatives
vanish while V > 0. The constant c is not fixed, but cosmology constraints it to be smaller
than 0.6 [113]. In fairly general tree-level setups, there exist no-go theorems [114,115] (and
extensions in [112]) that explicitly forbid dS vacua. Moreover, in [116] dS was excluded in
parametrically controlled regimes. There are several refinements of this conjecture, most
importantly there are counter examples to the above conjecture in presence of tachyons
(instabilities) of the solution, i.e. dS maxima. To include these, the conjecture is amended
as follows [117]:

|∇V | ≥ c
V

MPl

or ∇i∇jV ≤ −c′
V

M2
Pl

. (4.5)

This conjecture allows for unstable dS solution as long as the instability is strong enough.
The tachyons lead to a decay of the vacuum, with a lifetime of [118]

T ∝ − 3H

m2
tachyon

, (4.6)

where H is the Hubble constant and mtachyon is the mass of the heaviest, i.e. most negative,
tachyon. As the world we live in seems to be approximately a dS space, this conjecture
seems to rule out string theory. The conjecture is in sharp contradiction with the explicit
constructions of dS in string theory like for example the KKLT construction [119]. This
construction has not been carried out in full detail yet despite some recent progress. But
it also has not been disproven yet despite many tests and criticism. For some arguments
against KKLT see [120–122], and for arguments in favor of the model see [123–125]. We
will describe the model itself in more detail in the section focusing on tests of the dS
conjecture.

A close cousin to the dS conjecture is the AdS scale separation conjecture. Like dS
minima it is surprisingly hard to construct true 4-dimensional AdS minima [126]. The
length scale of the 4-dimensional AdS space often turns out to be of the same order than
the internal 6-dimensional length scale, invalidating the effective theory and making a 10-
dimensional perspective necessary. A string theoretic formulation of the conjecture thus
can be stated as follows. The length scale L of an AdS solution of string theory is bounded
by the lightest moduli mass m, i.e.

m2L2 ≤ c′′ , (4.7)

where c′′ is another unfixed order one constant. All the different conjectures mentioned
above seem to form a tightly interrelated web. It is natural to wonder if there is a common
origin to many or all of the conjectures. One possible explanation is the emergence proposal
[96, 117, 127–129], stating that the IR couplings as well as gauge dynamics arise from
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integrating out an infinite tower of massive states, which is required for the UV theory to
be unitary. In this proposal the UV values of the couplings are assumed to be zero, such
that the IR effects are emergent in the sense that they originate purely from integrating
out UV states. Especially, integrating out a tower of scalar fields results in the distance
conjecture [130].

As should be clear from the previous pages, there exists a large net of conjectures, many
of which are interconnected. For a recent review of the swampland program see [131]. In
the following we will focus on two of the conjectures, the refined swampland distance
conjecture as well as the dS conjecture.

4.2 The Refined Swampland Distance Conjecture

In this section we will focus on the refined swampland distance conjecture. The section
is mainly based on [2]. The conjecture states, that if one moves for a distance more than
MPl, there is a tower of states which become exponentially light, i.e.

m(φ0 + ∆φ) = m(φ0) e
−λ ∆φ

MPl . (4.8)

The constant λ should be of order 1 but is not fixed in the conjecture. This is a refinement
of the original conjecture, which was formulated for infinite distances. It is important to
note that ∆φ is the proper distance measured along a geodesic curve. When the geodesic
is parameterized by a coordinate τ the distance is given by

∆φ =

τ∫
τ0

dτ

√
gαβ

dxα

dτ

dxβ

dτ
, (4.9)

where gαβ is the moduli space metric which was computed in chapter 3. The curve has to
be a solution to the geodesic equation, i.e. it has to fulfill

d2xµ

dτ 2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 , (4.10)

where Γµαβ denotes the usual Christoffel symbol.
Recently it was noted in [132] that the addition of a potential can lead to non-geodesic

curves. Below a cutoff, heavy directions can be integrated out, restricting the allowed
paths. The possible trajectories in this low-energy effective theory are non-geodesics from
the point of view of the UV theory. This can lead to larger distances compared to the
case without a potential. As the conjecture should also hold in the low energy theory, this
produces stronger bounds. The scalar potential depends on both, the Kähler as well as the
superpotential, thus full knowledge of the periods is necessary to compute the distances.
While this is a doable calculation, here we will focus on the simpler case without fluxes or
respectively with vanishing superpotential. In this case one can use the GLSM partition
function to compute the metric and the geodesics, simplifying the computations drastically.
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But as the partition function is given by multivariate hypergeometric functions, solving
the geodesic equation (4.10) analytically is still a hard task. Instead, the equations will be
solved numerically.

Examples

The idea how to test the conjecture is most easily explained in a simple one-parameter
example, the quintic hypersurface. The model has two phases, a LG phase as well as an
LCS or geometric phase. The periods and GLSM partition function of this model have
already been computed in chapter 3, see (3.98). The GLSM partition function directly
gives the Kähler potential and thus the metric on moduli space. The exact form of the
metric is rather long, thus we refrain from writing it down explicitly and instead only
present a plot of the metric.

Re(ψ)

Im(ψ)

Gψψ(ψ)

Figure 4.1: The metric on the Kähler moduli space of the quintic.

Figure 4.1 shows the only non-vanishing component of the metric, Gψψ, on the complex
structure moduli space. The coordinate ψ is the coordinate appearing in the defining
polynomial (3.19). This coordinate is centered around the LG point at ψ = 0. The model
has a Z5 symmetry, which causes the physical coordinate to be ψ5. Thus we restrict our
attention to the fundamental domain in the form of a cone. To this end we write ψ = reφ.
The phase φ is restricted to the interval [0, 2π

5
). Moreover, as can be seen from figure

4.1, the metric in the fundamental domain enjoys another Z2 symmetry corresponding to
reflections around the axis φ = π

5
. The conifold is located at ψ = 1 and the pictures of

this point under the Z5 symmetry, which correspond to the points ψ = e
2πin

5 , n = 1, 2, 3, 4.
Finally, the LCS point is located at ψ = ∞. The mirror map relates this to the Kähler
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moduli space. The cone in the complex moduli space is mapped to the region shown in
figure 4.2.
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Figure 4.2: Sketch of the Kähler moduli space of the quintic.

In the Kähler coordinate t, the fundamental domain is the Teichmüller space of SL(2,Z).
The large volume point lies at Im(t) =∞. The LG point corresponds to

t = −1

2
+

√
1

4
+

1

2
√

5
i ≈ −0.5 + 0.688i.

This value has an interesting consequence. As there is only a single Kähler modulus, it’s
imaginary part is a measure of the volume of the CY. The LG is the point deepest in
the non-geometric regime, yet the volume is still non-vanishing. This does hold for all
1-parameter models, but there are known geometries which indeed reach 0 volume [133].
A simple example of this is the two parameter model P12366[18]. There the two Kähler
moduli tx and ty are only bounded to be positive and follow the further restriction

tx ≥
1

2
√

3Γ[1/3]3
e−2πity . (4.11)

This also shows the non-linearity of the Kähler-cone, which due to the exponential function
on the right hand side is not really a cone. But as it is commonly denoted cone in the
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literature we will continue to denote it as a cone. Also, the Kalb-Ramond field represented
by the real part of the Kähler modulus takes the value −1

2
. This appears to be a general

feature of LG points. That the minimal volume can be computed analytically originates
from the modular properties of the moduli spaces. The SL(2,Z) does act naturally not on
the Kähler modulus t, but on another space γ. There are remarkable similarities to the
mirror map if one expresses γ via the complex structure coordinate x = 1

ψ
[39]:

e
2πi( γ

2
√

5+2
√

5
− 1

2
)

= x
∂ε 2F1(2

5
+ ε, 3

5
+ ε; 1;x5)|ε=0

2F1(2
5
, 3

5
; 1;x5)

. (4.12)

We recall the expression for the mirror map of the quintic found in chapter 3:

e2πit = x
∂ε 4F3(1

5
+ ε, 2

5
+ ε, 2

5
+ ε, 3

5
+ ε; 1, 1, 1;x5)|ε=0

4F3(1
5
, 2

5
, 3

5
, 4

5
; 1, 1, 1;x5)

. (4.13)

While these functions seem very related, the actual map between them is rather compli-
cated. But it explains the omnipresent appearance of the factor −1

2
for the Kalb-Ramond

field due to the shift of the modular variable γ. This shift is required by the Schwarzian
triangle map and thus has to appear in the Kähler modulus at the LG point.

Returning to the distance conjecture, close to the LCS point at ψ = ∞ the metric
behaves as [39]

Gψψ =
3

4|ψ|2 log2(|ψ|)
. (4.14)

Applying the asymptotic mirror map, t = log(1/ψ), to this expression results in

Gtt =
3

4|Im(t)|2
. (4.15)

This expression is independent of the phase, thus geodesics are straight lines of constant
phase. Thus moving a distance r away from the point at infinity corresponds to a distance

∆ =

∫ r1

r0

√
Gttdt =

∫ r1

r0

√
3

4

1

t
dt =

√
3

4
log

(
r1

r0

)
. (4.16)

This logarithmic behaviour of the proper field distance has the consequence that one can
approximate the KK masses as

MKK ∝
MPl

r2
= MKK,0e

−λ∆ , (4.17)

with λ =
√

3
4
. Thus if the proper field distance exceeds λ−1 ≈ 1.15 the tower of KK

states becomes exponentially light and the effective theory breaks down. Note that this
approximation only took the leading order of the mirror map and the prepotential into
account. Including the ζ(3) correction in the prepotential, i.e. taking

F = −κ
6
t3 +

iχζ(3)

(2π)3
, (4.18)
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where χ = −200 is the Euler characteristic and κ = 5 is the triple intersection number.
With this approximation the proper field distance becomes

∆(t) =

√
3

2
log(t) +

√
3χζ(3)

5(2π)3

1

t3
+O

(
1

t6

)
. (4.19)

A more detailed analysis performed in [2] shows that the first correction in the prepo-
tential becomes relevant roughly at the boundary to the non-geometric phase. Thus the
approximation is valid throughout the whole geometric phase. But there are geodesics
which do not only traverse the geometric phase, but originate deep in the non-geometric
phases. The point in moduli space which is the farthest away from the LCS point is the
LG point. While the theory is deformed in the non-geometric phases, there are no modes
becoming exponentially light as long as the path remains in a general configuration, i.e.
away from the conifold locus. This adds additional field distance without a breakdown of
the theory. The requirement that the critical distance where the masses start to become
exponentially light is sub-Planckian thus also requires that the distance traversed in the
non-geometric phases is smaller than MPl. In the following the critical distance is split into
the contributions in the geometric phase Θλ and the contribution from the non-geometric
phases, Θ0. For a 1-parameter model Θ0 is simply the proper distance between the phase
boundary and the LG point, i.e. the value at |ψ| = 1. The proper distances are in practice
obtained by numerically computing the geodesics starting in the LG point. All possible
geodesics starting in this point are parameterized by a single angle at which the geodesic
intersects the LG point. We denote this angle by θ. The initial movement in θ is chosen to
be 0 to maximize the distance the geodesics span in the fundamental domain. Due to the
symmetry we can stop the numerical computation once the geodesics reaches the boundary
of the fundamental domain, as there will always be a shorter geodesic to the point outside
the fundamental domain. The resulting geodesics are shown in picture 4.3. Obviously they
have the same Z2 symmetry as the metric.

Once the geodesics are computed, the metric can be integrated along them to obtain the
proper field distances. From this the parameters need to be extracted. The Θ0 is obtained
by integrating to |Ψ| = 1. The value of λ is more difficult. Its asymptotic value is known,
but not all geodesics reach very far into the geometric regime. But as the higher order
corrections are irrelevant even close to the non-geometric regime, one can fit the Ansatz

∆(t) = λ−1 log(t) + α0 +
α1

t3
+O

(
1

t6

)
. (4.20)

The parameters α0,α1 and λ−1 are determined by the fit, but are asymptotically known
by comparing to (4.19). Due to the Z2 symmetry there are two geodesics in form of a
straight line with angles θ = 0 and θ = π

5
. The first connects the LG point to the conifold,

the second is a straight line between the LCS and the LG point. As this geodesic reaches
the LCS point, the values of λ−1 and α1 have to be the same as in (4.19), which gives a
non-trivial check of the method. The parameters obtained by the fit are listed in table 4.1.
The geodesic ending in the LCS point is given by the last entry. The expected value for
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Re(ψ)

Im(ψ)

1

Figure 4.3: Geodesics for the initial data (r, ṙ, θ, θ̇) = (0, 1, i · π/50, 0), for i = 1, . . . , 10.
The orange geodesics are the Z2 images.

λ−1 is
√

3
4
≈ 0.8660 while the value obtained by the fit is 0.8657, which is accurate with

an error of less than 1%. For the α1 parameter related to the ζ(3) correction the expected
value is 0.168, while the obtained parameter is 0.166, also within an error of 1%.

θinit · π/60 α0 α1 λ−1 Θ0 Θc

3 0.1315 0.2043 0.9605 0.4262 1.3866
4 0.1127 0.2099 0.9865 0.4261 1.4125
5 0.0998 0.2213 0.9780 0.4260 1.4040
6 0.0955 0.2294 0.9567 0.4259 1.3827
7 0.0818 0.2475 0.9611 0.4259 1.3869
8 0.0877 0.2592 0.9275 0.4258 1.3533
9 0.0808 0.2825 0.9253 0.4257 1.3510
10 0.0929 0.3093 0.8969 0.4257 1.3226
11 0.0998 0.3497 0.8845 0.4257 1.3102
12 0.1234 0.1662 0.8657 0.4256 1.2914

Table 4.1: Values of the fit-parameters α0, α1, λ
−1, critical distance Θ0 and combined

critical distance Θc for the family of geodesics with initial angles θinit = iπ/60, for i =
3, . . . , 12. We see that Θ0 is approximately constant for the quintic. The total critical
distance varies mostly because of the angular dependence of λ.

The obtained critical values for the proper field distance Θc are all smaller than 1.42.
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While this value is larger than 1, it is certainly of order 1. This analysis cannot only
performed for the quintic, but for all other known 1-parameter models in CICYs. There
are in total 14, with 4 of them being hypersurfaces in projective space. The hypersurfaces
where treated all in [2], while the more exotic models where discussed in [134]. All results
are in agreement with the refined swampland distance conjecture, with the largest values
for Θc being around 1.8. It should be noted that hybrid phases were seen to have larger
values for Θ0 than the LG phases.

Going beyond 1-parameters the numerical solution to the geodesic equations becomes
drastically more difficult. The difficulty lies in the boundary region between phases in
multi-parameter models. The convergence close to the boundary is rather bad, thus one
needs to take into account many terms in the expressions for the periods. E.g. in the quintic
it is necessary to take at least a hundred terms into account to find agreement between the
LCS and LG expressions at |ψ| = 1. As there is a separate infinite sum for each coordinate,
in a n-parameter model one would need 100n terms to reach the same precision. As this
is for a single period and the Kähler metric depends on 2n+ 2 periods, the complexity of
the resulting metric soon becomes intractable. Thus instead of numerically computing the
metrics, the symmetry of the moduli space is again used to determine straight lines which
fulfill the geodesic equations. One class correspond to the boundaries of the moduli space.
In the 1-parameter models we have seen that the critical values for the geodesics did not
vary much within a phase, but rather strongly between different phases. Thus knowing the
boundary values should give a good approximation to the geodesics in the bulk.

Again we will present an example, the two parameter model P11222[8]. This model can
be viewed as either a K3 fibration over an elliptic base or as an elliptic fiber over an K3
base. The two Kähler parameters describe the volume of the K3 and of the elliptic curve
respectively. The manifold itself is constructed as the hypersurface P = 0 for

P = x8
1 + x8

2 + x4
3 + x4

4 + x4
5 − 8ψ x1x2x3x4x5 − 2φx4

1x
4
2 , (4.21)

where φ and ψ represent the complex structure parameters around the LG point. The
polynomial fails to be transversal for φ = 1 and for

(φ+ 8ψ4)2 = 1 . (4.22)

At these loci the geometry develops conifold singularities. It is useful to introduce the
logarithmic coordinates

ρ1 =
1

2π
log |4φ2| , ρ2 =

1

2π
log

∣∣∣∣211 ψ4

φ

∣∣∣∣ . (4.23)

These coordinates are related to the GLSM coordinates and make the “amoeba” struc-
ture of the conifold nicely visible. Figure 4.4 shows the moduli space in terms of the ρi
coordinates. Note that due to the absolute values these coordinates only represent a two
dimensional slice of the moduli space. The conifold is still of complex codimension 1 such
that it is possible to go around the conifold and traverse several patches.
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Figure 4.4: The moduli space of P11222[8]. Figure taken from [1].

The model consists of in total 4 phases. The LG and LCS phase as well as 2 hybrid
phases. The two hybrid phases consist out of a K3 orbifold, denoted simply orbifold phase
in figure 4.4 and a LG theory fibered over a P1, denoted P1 phase. The geometric target
space is real 6-dimensional in the geometric or large volume phase as well as in the orbifold
phase, 2-dimensional in the P1 phase and 0-dimensional ( a point) in the LG phase. But
due to quantum fluctuations, the effective dimension is in all cases real 6-dimensional.
These contributions are called non-geometric. There are various differing nomenclatures
for the phases and their classifications. In this theses all phases which are not a LCS
or respectively on the Kähler side a large volume phase will be denoted non-geometric
phases. The orbifold and P1 phase will be denoted hybrid phases, as they correspond to a
large value of complex structure for one parameter while the other remains small. Other
authors, e.g. the authors of [62] denote orbifold phases as pseudo-hybrid phases and only
phases like the P1 phase as true hybrid phases. There are actual differences appearing in
the evaluation of the GLSM partition functions, but from a period point of view there is
no difference between a hybrid and a pseudo-hybrid phase.

The methods developed in chapter 3 are fully applicable to this model. As an elliptic
curve shrinks to zero size at the φ = 1 conifold, it is possible to analytically determine the
transition matrix to this conifold. The symplectic periods obtained this way agree with the
periods of P5

111111[2 4], a 1-parameter CICY. This is an example of a conifold transition,
where the conifold locus of one CY correspond to the moduli space of another CY.

The Kähler potential is given by the partition function of the corresponding GLSM.
The partition function of P11222[8] is given in equation (3.105) and was evaluated in detail in
chapter 3. The GLSM partition functions converges deep in the phases, but the convergence
becomes worse at the phase boundaries. For the computation of the distances this does
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not pose a problem, but for the computations of the geodesic it is a severe problem, as the
resulting metric is not exactly continuous at the boundary where the two phases are glued
due to numerical errors. Thus instead of computing the geodesics 9 curves γi, i = 1 . . . 9, are
defined and their lengths computed. The curves along the boundary are actual geodesics,
while the curves inside the bulk of the moduli space are not. The curves are shown in
figure 4.5, while the exact data is shown in table 4.2.

φ

ψ

0 φ = 1

|8ψ4| ≶ |φ± 1|

γ2

γ1

γ3
γ4 γ5

γ6

γ7

γ8

γ9

LV

P1

Landau-

Ginzburg

orbifold

Figure 4.5: Definitions of curves in the moduli space of P11222. The dotted blue lines represent
a sketch of the phase boundaries. Adapted from [2].

All finite values of Θ0 are smaller than 1, in agreement with the refined swampland
distance conjecture. There are some interesting observations which can be made form this
data. First of, the length of γ8 is actually 0. This implies that for ψ =∞ the points φ = 0
and φ = 1 are actually the same point. The usually drawn figures of the moduli space are
thus misleading when it comes to true distances. Furthermore, there are 2 different infinite
distance limits in terms of γ6 and γ9. These correspond to large volumes of the elliptic
fiber and the K3 respectively. for these the proper distances scale as

∆Θγ6 ∝ log log(φ) ∝ log(Im(t2)) , (4.24)

∆Θγ9 ∝ log log(ψ) ∝ log(Im(t1)) . (4.25)

Thus these infinite distance limits are exactly as expected from the distance conjecture.
The exact proportionality constant depends only on the dimension of the space approaching
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i start end Θ0

1 (0,0) (0,0.59) 0.40
2 (0,0) (1,0) 0.24
3 (0,0) (0.5,0.5) 0.36
4 (1.1,0) (1.1,0.33) 0.24
5 (0,∞) (∞,∞) 0.46
6 (0,1) (0,∞) ∞
7 (0,0.59) (1,0.59) 0.21
8 (∞,0) (∞,1) 0
9 (0,0.59) (0,∞) ∞

Table 4.2: Starting and end points of 9 curves in the moduli space of P11222[8]. The
coordinates are given as (φ, ψ).

large volume. To see this the asymptotic form of the Kähler potential in the hybrid phases
for either φ→∞ or ψ →∞ are computed. These take the form

Kasymp
P1 ' − log(t2 − t2) , (4.26)

as well as

Kasymp
orbi ' −3 log(t1 − t1) . (4.27)

For a d-dimensional space with 1-parameter, one expects an asymptotical Kähler potential
of the form

Kasymp
d−dimensional ' −d log(t− t) . (4.28)

This shows nicely that the P1 phase is a complex 1-dimensional phase, while the orbifold is
indeed a 3-dimensional phase. The metric resulting form the d-dimensionl Kähler potential
is given by

gij =
d

4Im(t)2 . (4.29)

From this one immediately obtains the constant λ as

λ =
2√
d
. (4.30)

As the critical distance depends on Θλ = λ−1 =
√
d

2
, this immediately shows that for all

1-parameter geometric phases the distance conjecture holds. For a CY 4-fold the constant
even becomes 1. This also shows an interesting way to violate the distance conjecture: If
a supercritical string theory in d > 12 dimensions is compactified on a CY (d-4)/2-fold,
Θλ becomes larger than 1 and is in principle unbounded. Of course such theories include
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tachyons and are therefore unstable. What about the multi parameter models? The Kähler
potential has the general form

Kasymp
d−dimensional ' −d log

(κijk
6

(ti − ti)(tj − tj)(tk − tk)
)
. (4.31)

Interestingly, if one approaches the large volume point at different angles, i.e in a curve

ti(τ) = ai · τ i = 1 . . . h1,1 , (4.32)

for constant ai, the integrand in the proper distance only depends on the dimension, i.e.√
gαβ

dxα

dτ

dxβ

dτ
=

√
d

2 τ
. (4.33)

Especially it is independent of the chosen values of ai and of the triple intersection numbers.
This holds as long as the corrections remain irrelevant, i.e. the ζ(3) term as wells as the
terms linear in ti can be ignored relative to the cubic terms. While this result can be
obtained directly from the form of the asymptotic Kähler potential, it is also possible to
apply the nilpotent orbit theorem to arrive at the same conclusion. The theorem states
that the period vector can be written as [135]

Π = etNA(t) , (4.34)

where A is a holomorphic vector and N is the logarithm of the monodromy matrix T which
shifts the Kähler moduli by 1, i.e. Tti = ti + 1:

N = log T . (4.35)

As the vector A is holomorphic it can be expanded in the coordinates, i.e.

A = a0 +
∞∑
n=1

anz
n . (4.36)

For many applications the leading term a0 independent of the moduli is sufficient. Espe-
cially exactly at the LCS point the periods are given by

Π = etNa0 . (4.37)

The integer d is now defined as the smallest integer for which

Nda0 6= 0 . (4.38)

For the point of maximal unipotent monodromy, i.e. the LCS point, d is equal to the
dimension of the CY and one directly obtains (4.33). The power of the nilpotent orbit
theorem now lies in the fact that it does not only hold at the LCS point but at any
boundary of the moduli space. d in these cases is equal to the dimension of the cycle which
is still at largest volume. As an example, at the LG point d = 0, while for the P1 phase
of P11222[8] d = 1. The resulting critical distances are in agreement with what has been
found in the example.
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Outlook

This finishes the discussion of the (refined) swampland distance conjecture. While the
conjecture still remains unproven, it passed all tests in string theory setups so far. Recently,
it was pointed out [132] that the distance conjecture should not only hold in the full theory,
but also in effective theories below a certain cutoff. The allowed trajectories in the low
energy effective actions are geodesics in the effective theory. But in the full theory they
are non-geodesic curves. This allows for further tests of the distance conjecture in these
effective theories. In the case of type IIB compactifications on CY manifolds, this implies
that the conjecture should also hold in presence of fluxes which stabilize a subset of the
moduli. The fluxes induce a superpotential and break the N = 2 supersymmetry, thus
for these computations knowledge of the periods is necessary. The methods developed
in chapter 3, excluding the GLSM approach, are applicable to such a situation. How
the length of the trajectories and the non-geodesity depends on the chosen fluxes will be
studied in a forthcoming paper [136].



Chapter 5

KKLT and the dS Conjecture

After discussing the distance conjecture, we will now turn to another swampland conjecture,
the dS conjecture. This conjecture forbids the existence of stable dS vacua in quantum
gravity. In contrast to the previous conjecture, which is generally expected to be true, the
dS conjecture has been discussed controversially. The main reason for this is the existence
of explicit constructions of dS spaces in string theory, most famously the construction by
Kachru, Kallosh, Linde and Trivedi (KKLT) [119]. The construction is obviously in sharp
contradiction to the conjecture. Thus either the conjecture or the construction is wrong.
As the construction involves non-perturbative effects, this has not been settled yet. In this
chapter we will first describe the construction followed by a detailed look at some of the
involved steps, especially the existence of exponentially small superpotentials as well as
the consistency of the approximations made in warped throats.

5.1 The KKLT Construction

One of the most famous constructions of dS minima in string theory is the KKLT con-
struction. It consists out of a three step procedure:

1. Stabilize the axio-dilaton and the complex structure moduli using three-form fluxes.

2. Stabilize the Kähler moduli balancing non-perturbative effects against an exponen-
tially small superpotential W0

3. Uplift the resulting AdS vacuum to dS using an anti D3-brane localized in a warped
throat.

In the first step one considers a CY compactification with F and H flux. These do not
couple to the Kähler moduli, thus the resulting scalar potential is of the so-called no-scale
type, i.e.

V = eKGi,jWiWj . (5.1)

The −3|W |2 term of the general scalar potential was canceled against the Kähler part of
the derivatives, i.e. the indices i and j run only over the complex structure and axio-dilaton.
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The Wi denote the Kähler covariant derivatives of the superpotential, i.e.

Wi = ∂iW + (∂iK)W . (5.2)

Due to the positive definiteness of the metric there is a Minkowski minimum at V = 0.
Thus solving Wi = 0 results in a supersymmetric Minkowski minimum. The value of
the superpotential in this minimum is denoted W0. In the next step it is assumed that
this value is exponentially small, such that it can be balanced against the contribution of
Euclidean brane-instantons, such that the superpotential, after integrating out the complex
structure moduli and the axio-dilaton, becomes

W = W0 + Ae−aT . (5.3)

Here T is a Kähler modulus, A is the Pfaffian and a a constant. The Pfaffian depends on the
complex structure moduli. They are rather difficult to compute, in known examples they
turn out to be polynomials [137–139] originating from Euclidean D-branes or exponential
functions from NS 5-branes [140]. The constant a depends on the origin of the non-
perturbative correction. It can be related to the Gromov-Witten invariants of the space
in the case of instanton contributions or to the rank of the condensing gauge group in the
case of a gaugino condensate.

Note that the existence of such minima with small superpotentials is a priori an as-
sumption. For quite some time there was only a statistical argument that such vacua
should exist [141]. More recently, based on an idea of [142,143], they have been explicitly
constructed close to the LCS point [144]. But the existence of a warped throat is required
for the uplift in the next step. The geometry develops such throats close to a conifold
singularity in moduli space. The algorithm of [144] was generalized to the region close to
a conifold in [46,145].

The minimum obtained after the second step is an AdS minimum with all moduli
stabilized. The final third step is to uplift this minimum to dS by adding an anti-D3-
brane in a warped throat. This contributes the missing energy to reach dS, but represents
a non-perturbative contribution which is not completely understood. Thus this step has
received much attention in testing the validity of the construction. Moreover, the existence
of the warped throat could lead to light KK modes localized in the throat, invalidating the
effective theory as these have been integrated out.

All steps of the above construction have been criticized and tested in many instances
with varying conclusions. For example it was questioned whether the 4D AdS minimum
is really a solution to the full 10 dimensional string theory [121, 123, 146–153]. Another
question is whether the effective action describing the warped regime is valid [154–159].
In the next sections we will take a closer look at two of the assumptions, the existence of
small superpotentials and the validity of the effective action in the presence of a warped
throat.
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5.2 Small Superpotentials in the Quintic

Th first step of the construction requires an AdS vacuum with exponentially small super-
potential close to a conifold. We will start the discussion with the method of DKMM [144],
which constructs exponentially small superpotentials at the LCS point. Then we will ex-
tend this construction to the conifold, following [46,145].

The authors of [144] propose a two-step procedure to generate exponentially small W0

terms at weak string coupling and large complex structure. When using mirror variables,
the prepotential splits into classical and non-perturbative terms. Initially neglecting the
non-perturbative terms, the first step is to find quantized fluxes for which the F-terms and
superpotential vanish perturbatively. DKMM formulate a Lemma which gives a sufficient
condition to construct such solutions and directly determine the flat direction. In the
second step, the previously neglected non-perturbative terms generate a potential along
the flat direction which can generically be stabilized to an exponentially small value by a
racetrack-like procedure.

The Kähler- and superpotential are as given in (2.130) and (2.127), i.e.

K = − log
(
−iΠ · Σ · Π

)
− log

(
S + S̄

)
,

W = (F + iSH)T · Σ · Π .
(5.4)

When written in terms of the mirror variables, the tree-level prepotential F can be sepa-
rated into a classical, perturbative part Fpert and non-perturbative instanton contributions1

Finst, such that F(U) = Fpert(U) + Finst(U) with

Fpert(U) = − 1

3!
KabcU

aU bU c +
1

2
aabU

aU b + baU
a + ξ ,

Finst(U) =
1

(2πi)3

∑
~q

A~q e
2πi ~q·~U .

(5.5)

We denote the moduli here with U , the expressions refer to the mirror CY, so Kabc are
the triple intersection numbers of the mirror, and the sum runs over effective curves in
the mirror. The constants aab, ba are rational numbers, and ξ = − ζ(3)χ

2(2πi)3 with the Euler
number χ of the CY. The contributions to the superpotential stemming from Fpert and
Finst are respectively denoted Wpert and Winst, such that W = Wpert +Winst.

Since the axionic real parts of ~U do not appear in the perturbative Kähler potential,
they enjoy a discrete Zn shift symmetry which is broken by generic fluxes. The shift
symmetry generates a monodromy transformation on the flux vectors, and only if such a
monodromy combined with an appropriate SL(2,Z) transformation (H,F )→ (H,F+rH),
r ∈ Z leaves the flux vectors invariant there can be an unbroken remaining shift symmetry.

The first step in the construction is to find fluxes that do not break the shift symmetry
and obey the tadpole cancellation constraint and solve Wi = 0 as well as Wpert = 0. The

1It is important to notice that the “non-perturbative” part in the mirror variables is part of the classical
contribution to the type IIB theory.
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following is a sufficient condition for the existence of such a perturbatively flat vacuum. If
a pair of Zn vectors ~M , ~K exists such that

• −1
2
~M · ~K ≤ QD3,

• Nab = KabcM c is invertible,

• ~KTN−1 ~K = 0,

• ~p = N−1 ~K lies in the Kähler cone of the mirror CY,

• and a · ~M and ~b · ~M are integer-valued,

then the fluxes

F =


~b · ~M
a · ~M

0
~M

 and H =


0
~K
0
0

 . (5.6)

are compatible with the QD3 tadpole bound, and the potential is perturbatively flat along
~U = ~p S with Wpert|~U = 0. I.e. these combinations stabilize all but one complex structure
modulus.

The non-perturbative contributions can now stabilize the remaining flat direction. The
effective superpotential along ~U in terms of the axio-dilaton S is given at weak coupling
by

Weff(S)√
2/π

= Ma∂aFinst =
∑
~q

A~q ~M · ~q
(2πi)2

e2πi~p·~q S . (5.7)

The final idea is to find flux quanta that stabilize S via a race-track scenario, balancing the
two most relevant instantons ~q1, ~q2 against each other. This is achieved when ~p ·~q1 ≈ ~p ·~q2.

The conditions indicate that h2,1 ≥ 2 is necessary in order to apply this mechanism. For
a one-parameter model, the vectors and matrices are just numbers and K2N−1 = 0 means
K = 0. But then the perturbative vacuum found by the mechanism is U = N−1K S = 0
which is both outside the LCS regime of validity and has no flat direction along which the
non-perturbative terms could generate a small |W0|.

For a complete stabilization of all moduli, the hope is to continue with a KKLT-like
procedure starting with this small W0. Unfortunately it is not quite so straightforward, as
examples show that the perturbatively flat direction produces a mass scale of order |W0|,
which coincides with the mass scale of the Kähler moduli in the KKLT scenario. The low
energy theory must contain not only the Kähler moduli, but also the axio-dilaton, and the
Pfaffian prefactors which appear in the non-perturbative superpotential cannot be treated
as a constant. DKMM argue that under some assumptions, the unbroken shift symmetry of
the perturbatively flat vacuum would guarantee that the contributions of the axio-dilaton
to the Pfaffian factors are exponentially small. Then one could reasonably approximate
the Pfaffians by constants. To show this explicitly is however left open, and will also not
be treated here.
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5.3 Small Superpotentials Close to a Conifold

For really getting the uplifted dS minimum in the last step of KKLT, a strongly warped
throat is required. Thus, one needs a similar construction in the region close to a conifold
point. This is not straightforward, as the periods take a completely different form when
expanded around such a point.

To demonstrate this, we will again take the quintic as our main example. Close to the
conifold point the period vector ΠT = (X0, X1, F0, F1) can be expressed as [48,53,160–162]

Π = X0


1
Z

A+BZ +O(Z2)
− 1

2πi
Z logZ + C +DZ +O(Z2)

 , (5.8)

where Z = 1− ψ is the conifold modulus and with parameters

A = (−0.103412 + 0.090045i) , D = −(0.043170− 0.039843i) ,

B = C = (0.074533 + 0.085597i) ,
(5.9)

that are only known numerically2. Note that these are in general irrational numbers
though featuring certain correlations and rationality properties. The relation B = C is a
consequence of the existence of a prepotential for these periods, which reads

F = − 1

4πi
Z2 logZ +

A

2
+BZ +

(
D

2
+

1

8πi

)
Z2 +O(Z3) . (5.10)

Further relations follow from the modularity properties. As the transition matrix is the
only source for non-rationalities and the entries of the transition matrix can be expressed
in terms of 2 quasi-periods of the quintic, at most 2 of A,B,C and D are independent. The
corresponding Kähler potential for the complex structure modulus is given by

Kcs = − log
[
−iΠΣ Π

]
= − log

[
1

2π
|Z|2 log(|Z|2) + 2Im(A) + 2Im(B)(Z + Z) + · · ·

]
.

(5.11)

This will be the leading order Kähler potential in the volume-dominated regime, i.e. for
V|Z|2 � 1. Including also the overall Kähler modulus V and the axio-dilaton S, the total
unwarped Kähler potential becomes

Kunwarp = −2 log(V)− log(S + S)− log(2Im(A))− Im(B)

Im(A)
(Z + Z)

− 1

4πIm(A)
|Z|2 log(|Z|2) + · · · .

(5.12)

2There are known expressions for the transition matrix of all hypergeometric 1-parameter models in
terms of L-values/quasiperiods of Hecke eigenforms of Γ0(N) [163].
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For the strongly warped, throat-dominated regime V|Z|2 � 1, the effective action was
derived in [154–156]. Here the warping backreacts non-trivially so that the Kähler potential
takes the different form

Kwarp = −2 log(V)− log(S + S) + ξ

(
|Z|
V

) 2
3

, (5.13)

with ξ = c′M2, c′ an order one parameter and M denoting the F3 flux along the conifold
A-cycle. This Kähler potential features a warped no-scale structure∑

I,J

GIJ∂IK∂JK = 3− (N − 1)
ξ|Z| 23
V 2N

3

+O(ξ2) , (5.14)

where the sum runs over the set I, J ∈ {T, Z}. Thus, precisely for the Kähler potential
(5.13) the order O(ξ) term vanishes.

Moduli stabilization

A general flux induced superpotential

W =

∫
M

(
F + iS H

)
∧ Ω3

= (XΛfΛ − FΛf̃
Λ) + iS(XΛhΛ − FΛh̃

Λ)

(5.15)

leading to the stabilization of the conifold modulus at exponentially small values can be
expanded as

W = −M

2πi
Z logZ +

∞∑
n=0

MnZ
n + iS

∞∑
n=0

KnZ
n

= −M

2πi
Z logZ +M0 +M1Z + iK0S + iK1SZ +O(Z2) ,

(5.16)

with

M = −f̃ 1 , M0 = f0 − Af̃ 0 − Cf̃ 1 , M1 = f1 −Bf̃ 0 −Df̃ 1 ,

K0 = h0 − Ah̃0 , K1 = h1 −Bh̃0 .
(5.17)

Here we have chosen h̃1 = 0 in order to avoid (SZ logZ)-terms. Note that while the
quantized fluxes are integers, the coefficients Mn and Kn are in general complex numbers.

Next we have to solve the minimum conditions DZW = DSW = 0. Using the Kähler
potential (5.12), one finds for the volume-dominated case

DZW = ∂ZW + ∂ZKW

= −M

2πi
logZ − M

2πi
+M1 + iK1S −

Im(B)

Im(A)

(
M0 + iK0S

)
+ · · · .

(5.18)
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As shown in [156], in the warped, throat-dominated case, the warped no-scale structure
(5.14) implies that the minimum of the scalar potential is at ∂ZW ≈ 0. This gives the
same result as in (5.18) once we formally set Im(B) = 0.

Solving (5.18), in both cases at leading order the Z modulus can be written as

Z0 = ζ0 exp

(
−2πK̂1

M
S0

)
, ζ0 = exp

(
2πi

M̂1

M

)
, (5.19)

with parameters

K̂1 =

{
K1 − Im(B)

Im(A)
K0 volume-dominated

K1 throat-dominated
(5.20)

and

M̂1 =

{
M1 − M

2πi
− Im(B)

Im(A)
M0 volume-dominated

M1 − M
2πi

throat-dominated .
(5.21)

For K̂1 > M and Re(S) > 1 the value of the conifold modulus can be guaranteed to be
exponentially small, hence making our expansion in orders of Z self-consistent.

Looking at the axio-dilaton condition DSW = 0, at leading order we find

0 = iK0 + iK1Z

− 1

S + S

(
M0 + iK0S +

M

2πi
Z +

Im(B)

Im(A)

(
M0 +K0S

)
Z

)
,

(5.22)

where DZW = 0 was invoked. As in [162], for the stabilization of the axio-dilaton we now
distinguish the two cases, K0 6= 0 and K0 = 0.

Case A: K0 6= 0

In this case, the terms linear in Z in (5.22) can be neglected so that one gets the simple
solution

S0 = −iM0

K0

. (5.23)

For Re(S)� 1 we need to require

1� Im(M0/K0) =
M0K0 −M0K0

2i |K0|2
. (5.24)

For the resulting value of the superpotential in the minimum one obtains

W0 =
M0K0 −M0K0

K0︸ ︷︷ ︸
w0

+O(Z0) .
(5.25)



5.3 Small Superpotentials Close to a Conifold 110

Thus, in order to have an exponentially small value of the superpotential in the minimum,
the leading order term w0 in (5.25) must vanish or at least be very tiny. Thinking of M0 and
K0 as two-dimensional vectors, the superpotential w0 vanishes if M0 and K0 are collinear.
Since M0 and K0 generically contain model dependent complex valued parameters, solving
this condition for the fluxes becomes a number theoretic question.

Let us analyze this in more detail using the concrete values for the (mirror of the)
quintic. First one realizes that due to (5.24) w0 = 0 implies Re(S) = 0 which means the
string coupling is infinitely large and thus outside the regime of validity. Moreover, using
w0 = 2iRe(S)K0 and Re(S) > 1 one can derive the lower bound

|w0| > 2|K0| = 2|h0 − Ah̃0| > 2|Im(A)| = 0.18 , (5.26)

where we used that due to K0 6= 0 not both h0 and h̃0 are allowed to vanish. Thus, at
least for the specific case of the quintic, in Case A the superpotential in the minimum is
bounded from below by |w0| > O(10−1).

Case B: K0 = 0

This means that we have h0 = h̃0 = 0 so that K̂1 = K1 = h1 and M = −f̃ 1 are both
integers. Now, up to order O(Z) the condition (5.22) reads

iK1Z −
1

S + S

(
M0 +

M

2πi
Z

)
= 0 , (5.27)

where Z is related to S as Z = ζ0 exp(−2πK1

M
S). We observe that (5.27) is nothing else

than the vanishing F-term condition FS = 0 for an effective superpotential

Weff = M0 +
M

2πi
ζ0 e

− 2πK1
M

S . (5.28)

This is very reminiscent of the KKLT superpotential, where here we are dealing with a
no-scale potential. Writing S = s+ ic one obtains for the C0 axion

c = − M

2πK1

arg

(
M0

iζ0

)
(5.29)

and the dilaton is given by the solution of the transcendental equation∣∣∣∣M0

ζ0

∣∣∣∣ =
(

2K1s+ M
2π

)
e−

2πK1
M

s . (5.30)

As in KKLT this only admits a solution in the controllable regime if the left hand side is
very tiny, M0 � 1. Whether the flux landscape admits such values is a model dependent
number theoretic question. Let us recall the parameters

M0 = f0 − Af̃ 0 − Cf̃ 1 , M1 = f1 −Bf̃ 0 −Df̃ 1 , M = −f̃ 1 , (5.31)
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which are in general complex valued. One can easily convince oneself that for the quintic
there exist choices of the fluxes that yield M0 = O(10−4), as for instance

f0 = 14 , f̃ 0 = 77 , f̃ 1 = −81 . (5.32)

This gives M0 ≈ −(1 + i) · 10−4, M1 ≈ −3.2 − 3.4i and M = 81. Moreover, one gets
ζ0 ≈ 0.46− 0.12i. For this choice the solution to (5.29) and (5.30) is

c0 ≈ −
33.9

K1

, s0 ≈
180.4

K1

, (5.33)

which for small enough K1 is in a perturbative regime. For the value of the conifold
modulus we find |Z0| ∼ 4 · 10−7 and the value of the superpotential in the minimum is of
the order of M0 namely

|W0| ∼ |M0| ≈ 1.4 · 10−4 . (5.34)

Therefore, the Case B provides a controlled KKLT-like stabilization of the complex struc-
ture and axio-dilaton moduli giving for the quintic a Minkowski minimum of the no-scale
scalar potential with a small value of |W0|. This value was dialed by a suitable choice of
flux quantum numbers. In our case these were of the order O(102) and so that there is
the concern of overshooting in some tadpole cancellation conditions. In the example, there
will be a contribution to the D3-brane tadpole QD3 = h1f̃

1 = −K1M = O(102).

Moduli masses

The latter result is encouraging for extending the model à la KKLT by adding a non-
perturbative contribution to the superpotential that depends on the Kähler modulus T .
Recall that in the DKMM construction the issue arises that the mass of the lightest complex
structure modulus is of the same order as the mass of the Kähler modulus, calling for a
more detailed analysis. Let us see how the situation is in the conifold regime.

For estimating the masses, we compute the Hessian Vab = ∂a∂bV in the minimum,
which for a no-scale model simplifies considerably. Since FI = 0 in the minimum, the only
non-vanishing contributions can come from

∂a∂bV = eK
(
KIJ(∂aDIW )(∂bDJW ) + (a↔ b)

)
. (5.35)

The masses in the canonically normalized field basis are the eigenvalues of the matrix
KacVcb, where Kac denotes the inverse Kähler metric.

In the volume-dominated regime, we find for the mass eigenvalues the following scaling3

with V and |Z|

m2
Z ∼

M2
pl

V2|Z|2
∼ M2

s

V|Z|2
, m2

S ∼
M2

pl

V2
. (5.36)

3In the more precise relations also factors of the dilaton and the fluxes appear, but they do not change
our conclusion.
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In Case B we also have the relation |Z| ∼ M0/s. The expression for the mass mZ makes
it evident that the expressions in this regime can only be valid for V|Z|2 � 1, because
otherwise the mass of the conifold modulus would come out larger than the string scale.
Moreover, one always finds the hierarchy mZ � mS. Extending this model to KKLT
by also including a non-perturbative contribution A exp(−aT ) depending on the overall
Kähler modulus, the mass of the latter scales as

m2
τ ∼
|W0|2

V 2
3

M2
pl ∼

|M0|2

V 2
3

M2
pl ∼

|Z|2

V 2
3

M2
pl , (5.37)

which for small M0 can be kept much smaller than the complex structure and axio-dilaton
moduli.

Next consider the throat-dominated regime, where for Case A we find the mass eigen-
values

m2
Z ∼

(
|Z|
V

) 2
3

M2
pl ∼

(
V|Z|2

) 1
3M2

s , m2
S ∼

M2
pl

V2
. (5.38)

The expression for mZ nicely shows that we need V|Z|2 � 1 in order for the mass to be
smaller than the string scale. Moreover, one has the hierarchy mS � mZ . However, at
least for the concrete example of the quintic we do not get |W0| � 1 in Case A.

For Case B there is an important change in the mass scales

m2
Z ∼

(
|Z|
V

) 2
3

M2
pl , m2

S ∼
(
|Z|
V

) 4
3

M2
pl

(5.39)

so that now we have the inverted hierarchy mZ � mS. In addition, taking into account
(5.37) for sufficiently small |Z| the Kähler modulus can be kept lighter than the axio-
dilaton, i.e. mS � mτ .

This looks very promising, so let us summarize our findings: In Case B, by a suitably
tuned choice of fluxes one can stabilize the conifold modulus and the axio-dilaton in the
controlled regime such that |W0| ∼ O(10−4) and their masses are hierarchically larger than
the mass of the Kähler modulus. Thus, the AdS KKLT minimum seems to exist. In the
throat-dominated regime, there is also a tiny warp factor that in principle could allow
to uplift the minimum to dS. However, in this case other issues might appear, like the
appearance of light KK modes localized at the tip of the long throat, whose mass has been
shown [156] to scale like the mass of the Z modulus. This might spoil the validity of the
employed effective action of just the conifold modulus and the axio-dilaton.

While in the simple one-parameter model we could explore the stabilization of the
conifold modulus, generalizing the DKMM procedure requires more moduli to work with.
That Case B with h0 = h̃0 = 0 showed more promise is nice, since these fluxes are also
suggested by the procedure of DKMM. In the following we shall propose a general algorithm
which extends the work of DKMM to the Coni-LCS regime of a multi-parameter CY.
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5.3.1 |W0| � 1 in the Coni-LCS Regime

Consider an n-parameter CY with one modulus close to the conifold described in terms of
the perturbative prepotential and instanton series

Fpert = − 1

3!
KijkX

iXjXk +
1

2
AijX

iXj +BiX
i + C − Z2 logZ

2πi
,

Finst =
1

(2πi)3

∑
~c

a~c

n∏
i=1

qi
ni ,

(5.40)

with qi the coordinates used to invert the mirror map4 and ~c running over effective curves.
To simplify notation, we use Latin indices to denote all moduli X i = (~U, Z)T , i = 1, . . . , n,
and Greek indices to denote only the LCS moduli Uα, α = 1, . . . , n − 1. If a pair of Zn

flux vectors ~̃f , ~h exists such that

• −1
2

~̃f · ~h ≤ QD3,

• Nαβ = Kiαβ f̃
i is invertible,

• (N−1)αβhαhβ = 0,

• pα = (N−1)αβhβ lies in the Kähler cone of the mirror CY,

• Aiαf̃
i and Bif̃

i are integer-valued,

then the fluxes

F =


Bif̃

i

(Aiαf̃
i, fn)T

0
~̃f

 , H =


0
~h
0
0

 (5.41)

are compatible with the QD3 tadpole bound, and there is a perturbatively flat vacuum
along

Uα = pα S , Z = ζ0 e
−2π

K1
M
S , (5.42)

with ζ0 = e2πi
M1
M
−1 and

M = −2f̃n , M1 = fn − Anif̃ i +
f̃n

2πi
, K1 = hn −Kiαnf̃

i(N−1)αβhβ (5.43)

along which Wpert|~U,Z ≈
ZM
2πi

is exponentially small in Re(S). As before, the conditions

imply that too few moduli break the mechanism. Here , h2,1 ≥ 3 is necessary.

4Since we are close to the conifold these coordinates are not simply exponentials of the moduli as in
the LCS regime, but rather the conifold modulus enters linearly (3.74).
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Following a three-step procedure, let us outline in more detail how this works. The
periods are computed from the prepotential as

X0 = 1, Xα = Uα, Xn = Z,

F0 = 2C +BiX
i +

1

3!
KijkX

iXjXk +
Z2

2πi
,

Fi = −1

2
KijkX

jXk + AijX
j +Bi − δin

(
Z

2πi
+
Z log(Z)

πi

)
.

(5.44)

By restricting our choice of fluxes to

h̃Λ = (0, 0), hΛ = (0, hi), f̃Λ = (0, f̃ i), fΛ = (Bif̃
i, Aαif̃

i, fn) (5.45)

we obtain a superpotential which, similar to the DKMM case, is homogeneous of order two
at Z = 0. Note that for this to work, Bif̃

i, Aαif̃
i must be integer valued, which calls for

the parameters Aij and Bi in the prepotential (5.40) to be rational numbers. The resulting
superpotential can be expanded as

W = (F + iSH)T · Σ · Π = (XΛfΛ − FΛf̃
Λ) + iS(XΛhΛ − FΛh̃

Λ)

=
1

2
Kijkf̃

iXjXk +
f̃nZ

2πi
+
f̃nZ log(Z)

πi
+ ihiX

iS + (fn − Anif̃ i)Z .
(5.46)

To proceed, at zeroth order in Z we first stabilize the Uα moduli in a supersymmetric
minimum with vanishing superpotential

W =
1

2
NαβU

αUβ + iShαU
α = 0 ,

∂αW = 0 ,
(5.47)

with Nαβ = Kiαβ f̃
i. Provided Nαβ is invertible, the minimum is located at

Uα = pαS = −iS(N−1)αβhβ . (5.48)

Demanding that W = 0 results in a condition on the fluxes, (N−1)αβhαhβ = 0.
Integrating out the moduli Uα, since we invoked a vanishing superpotential at zeroth

order in Z, the remaining terms of the superpotential are at least of order Z

Wpert(S,Z) = −MZ log(Z)

2πi
+M1Z + iK1SZ +O(Z2) , (5.49)

with the parameters given in (5.43). For the F-term we find

DZW = ∂ZW + ∂ZK ·O(Z)

= −M

2πi
log(Z)− M

2πi
+M1 + iK1S +O(Z) ,

(5.50)
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showing that the Kähler potential contribution to DZW is of subleading order. Thus, the
conifold modulus is stabilized at

Z0 = ζ0 e
−2π

K1
M
S , with ζ0 = e2πi

M1
M
−1 . (5.51)

What we have found is a perturbatively flat vacuum extending the Lemma of DKMM,
where the complex structure moduli are stabilized in terms of the axio-dilaton as log(Z) ∼
Uα ∼ S.

The final step is to integrate out Z, resulting in an effective superpotential composed
of the instanton superpotential Winst = −f̃ i∂iFinst as well as the linear corrections in Z
resulting from WZ = Wpert|Z=Z0 = ZM

2πi
,

Weff = −f̃ i∂iFinst +
ZM

2πi
∼
∑

an e
cnS . (5.52)

Similar to DKMM, such an effective non-perturbative superpotential has the potential to
stabilize the axio-dilaton by choosing fluxes that balance the leading terms against each
other in a racetrack-like way. As long as the approximations we did along the way hold
true in the minimum, the resulting W0 can be stabilized at exponentially small values.
Here it is important to keep the instanton series under control, as the conditions |qi| < 1
will result in non-trivial constraints on the fluxes we may choose.

5.3.2 Example: P1,1,2,8,12[24]

Now let us apply this generic algorithm to the example P1,1,2,8,12[24] worked out in detail
in section 3.2.3. Recall the form of the prepotential (3.78), from which one can read off
the data for the perturbative part

K111 = 8, K112 = 2, K113 = 4, K123 = 1, K133 = 2 ,

A33 =

(
1

2
+

3− 2 log(2π)

2πi

)
, B =

(
23

6
, 1,

23

12

)T
.

(5.53)

Moreover, the leading instanton contributions are

Finst = −5i qU1

36π3
−

493 q2
U1

10368π3
+

5i qU1qZ
36π3

+ . . .

= −120i

π3
e2πiU1 − 35496i

π3
e4πiU1

+
120

π2
e2πiU1

Z + · · · .

(5.54)

The generic relation (5.48) provides a minimum at Uα ∼ S which is flat along S as long
as the following condition on the fluxes is satisfied

~U = S

(
p1

p2

)
= S

ih2

2f̃ 1 + f̃ 3

(
−1

4f̃1+f̃2+2f̃3

2f̃1+f̃3

)
,

h1 =

(
2 +

f̃ 2

2f̃ 1 + f̃ 3

)
h2 .

(5.55)
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Additionally the conifold modulus is stabilized by (5.51) with

M = −2f̃ 3 ,

M1 = f3 − f̃ 3

(
1

2
+

1− log(2π)

πi

)
,

K1 = h3 −
(f̃ 1 + f̃ 3)(4f̃ 1 + f̃ 2 + 2f̃ 3)

(2f̃ 1 + f̃ 3)2
h2 .

(5.56)

Note that with the exception of M1, the parameters are real and |ζ0| = 1
2π

is independent
of the fluxes. Hence, the conifold modulus is guaranteed to be small for Re(S) � 1 and
our trusted regimes overlap.

So to first order in Z, which we can trust if we can stabilize at Re(S) � 1, we have
a “perturbatively flat vacuum”. The final step is to realize a racetrack-like vacuum for S
with Re(S) � 1 and resulting in |W0| � 1. The effective superpotential (5.52) evaluates
to

Weff = − 5

36π2
(2f̃ 1 + f̃ 3)qU1 − f̃ 3

π2
qZ +O(qi

2) . (5.57)

By now we have several constraints on the fluxes. Besides the original choices and the
condition we get from the Uα minimization, we need Re(S)� 1. The instanton expansion
is under control if |qi| < 1 with qi given in (3.74). Altogether we have

f0 = f̃ iBi ⇒ 2f̃ 1 + f̃ 3

12
∈ Z ,

h1 =

(
2 +

f̃ 2

2f̃ 1 + f̃ 3

)
h2 ⇒ h2f̃

2

2f̃ 1 + f̃ 3
∈ Z

(5.58)

and from the instanton series

1 > |qU1| =
∣∣∣∣864 exp

(
2π

h2

2f̃ 1 + f̃ 3
S

)∣∣∣∣ ,
1 > |qU2| =

∣∣∣∣∣64 exp

(
2π
(4f̃ 1 + f̃ 2 + 2f̃ 3

(2f̃ 1 + f̃ 3)f̃ 3
h2 −

2

f̃ 3
h3

)
S

)∣∣∣∣∣ ,
1 > |qZ | =

∣∣∣∣∣12 exp

(
π
(
− (f̃ 1 + f̃ 3)(4f̃ 1 + f̃ 2 + 2f̃ 3)

(2f̃ 1 + f̃ 3)2f̃ 3
h2 +

1

f̃ 3
h3

)
S

)∣∣∣∣∣ .
(5.59)

Also, it is assumed that f̃ 3 6= 0 and 2f̃ 1+f̃ 3 6= 0 in order to be able to invert the relations of
steps 1 and 2. It is straightforward to find flux combinations that fulfill these requirements
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without going to very large flux numbers, e.g.

F =



74
0
0
0
0
−24
120
24


H =



0
−9
3
−4
0
0
0
0


. (5.60)

The final step is to search for a racetrack type Minkowski minimum close to the pertur-
batively flat minimum. Semi-analytically minimizing the effective scalar potential for S,
with superpotential (5.57) evaluated along the perturbatively flat valley, we find approx-
imate positions for the axio-dilaton (see figure 5.1) that lie close to the minimum of the
full scalar potential depending on all eight real scalar fields. This true Minkowski vacuum
can then be found by a numerical search using those starting points.

We have checked that in this example for the specific choice of fluxes (5.60) such a
numerical minimum indeed exists at

〈U1〉 = 2.79 i, 〈U2〉 = 8.36 i, 〈Z〉 = 1.36 · 10−6i, 〈S〉 = 22.3 . (5.61)

22.0 22.5 23.0 23.5 24.0

5.×10
-15

1.×10
-14

1.5×10
-14

2.×10
-14

2.5×10
-14

Figure 5.1: The effective scalar potential for the real part of S shows the existence of a
Minkowski minimum.

With these values we observe that the instanton series is nicely under control with
|qi| ≈ (2 ·10−5, 0.2, 4 ·10−6). The superpotential in this minimum is very well approximated
by (5.57) and evaluates to

W0 = −3.10 · 10−6 . (5.62)
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Sections through the full potential are shown in figure 5.2.

(a) Figure V vs. Re(U1) and Im(U1). (b) V vs. Re(U2) and Im(U2).

(c) V vs. Re(Z) and Im(Z). (d) V vs. Re(S) and Im(S).

Figure 5.2: Full scalar potential around the minimum.

Computing the mass eigenvalues for our example, we find a very heavy eigenvalue
corresponding to the conifold modulus, two less heavy directions which mix the complex
structure moduli U i with the axio-dilaton, and a very light direction along the perturba-
tively flat vacuum

{m2} = {6 · 1014, 1 · 103, 3 · 102, 2 · 10−11}M2
pl . (5.63)

The smallest value is approximately |W0|2, which also corresponds to the mass scale of the
Kähler modulus in the KKLT scenario. The challenge of further stabilizing the remaining
moduli thus persists from the LCS point.

In an inexhaustive search over fluxes and performing the semi-analytic minimization
of the effective potential for S to keep the computation tractable, we find more than
104 (approximate) vacua for which |W0| ≤ 10−6, with values like |W0| ≈ 10−12 being
commonplace. Indeed it seems that arbitrarily small values of W0 can be reached with
reasonably small fluxes, however it is not clear if those minima are true vacua or if the
approximations and numerics break down around those small values. This has to be tested
case by case using the full potential without approximations, as has been done in the
example above. The search suggests that examples with reasonably small W0 as the one
discussed are nonetheless plentiful.
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Thus the assumption of exponentially small superpotentials close to a conifold can
be explicitly realized in a string theory setup. Of course this analysis focused purely on
the complex structure side, it remains to be seen if the additional steps, especially the
stabilization of the Kähler moduli as well as the uplift can be realized as well. Instead of
pursuing this direction, the next section will discuss the validity of warped throats.

5.4 Warped Throats

One possible issue of the KKLT construction is the existence of a warped throat. In an
effective field theory the geometry is usually assumed to be fixed and the KK modes as
well as winding modes are integrated out. If some of these become light, they could spoil
the validity of the effective theory. In this section we will study the effect of KK modes
localized in a warped throat. It will turn out the corrections due to the KK modes are
of the same form as the tree-level results. This precise agreement renders the effect of
the KK-modes harmless, such that the effective theory can still be applied, yet with some
different numerical values.

As analytic CY metrics are unknown, global descriptions of warped throats are not
available. Instead, one refers to local descriptions, which are then glued into a global
picture. This has the disadvantage that on the one hand one has to ensure to stay in the
regime where the approximation is valid and on the other hand modes originating from
the bulk of the CY cannot be taken into account. Even the numerical methods reviewed in
section 3.4 are not applicable. While these allow to compute the spectrum of the theory to
arbitrary precision at general points in moduli space, they fail close to the conifold, where a
warped throat develops. While it would certainly be interesting to obtain a global picture,
we will thus in the following restrict to the local description and ensure that the modes
are completely localized inside the throat. This section strongly follows [156]. In the case
of a flux compactification, the fluxes will backreact on the geometry. Thus in the presence
of fluxes, a CY is no longer a solution to the equations of motion of string theory. This
is usually remedied by assuming the dilute flux limit, where the flux is small compared
to the volume of the CY, rendering the corrections to the CY geometry negligible and
thus allowing one to work with a CY approximation. This method works well for moduli
stabilization close to the LCS point. But close to a warped throat the warping becomes
strong and thus also the backreaction. Indeed, it is well known that the backreaction of
such a three-form flux and of localized D3-branes on the geometry leads to a warped CY
metric [164]

ds2 = e2A(y)gµνdx
µdxν + e−2A(y)g̃mndy

mdyn . (5.64)

Here gµν is the 4-dimensional space time metric, while g̃mn is the metric of the 6-dimensional
internal space, which is paramterized by 6 coordinates ym. The so called warp factor A(y)
depends only on the internal coordinates.

The prime example of a warped throat solution of SUGRA theories is the Klebanov-
Strassler(KS) throat [165]. For this geometry the metric is explicitly known, it is given



5.4 Warped Throats 120

by

d̃s
2

=
1

2
|S|

2
3K(y)

[
dy2 + (g5)2

3K3(y)
+ cosh2

(y
2

) (
(g3)2 + (g4)2

)
+ sinh2

(y
2

) (
(g1)2 + (g2)2

) ]
.

(5.65)

This metric is describing a 6-dimensional warped throat. Topologically, it is an infinite
cone over S2×S3. The coordinate y is parameterizing the cone. At y = 0 the S2 shrinks to
zero size while the S3 retains a finite volume. Note that exactly at the conifold singularity
also the S3 shrinks to zero size. The KS throat thus describes a so-called deformed conifold
and only at S = 0 the real conifold. We will in the following simply write conifold, not
distinguishing the cases. All compactifications will assume a non-zero value of S. The base
S2×S3 is described by the einbeins gi, i = 1 . . . 5. The overall scale parameter S is related
to the conifold modulus, i.e. the distance in moduli space one is away from the conifold
singularity. The function K(y) is explicitly given by

K(y) =
(sinh(2y)− 2y)

1
3

2
1
3 sinh(y)

. (5.66)

The warp factor corresponding to the KS solution is given by

e−4A(y) = 2
2
3

(α′gsM)2

|S| 43
I(y) , (5.67)

where M is a flux parameter and

I(y) =

∫ ∞
y

dx
x cothx− 1

sinh2 x
(sinh(2x)− 2x)

1
3 . (5.68)

The exact relation between the SUGRA parameter S and the conifold modulus Z can
be worked out by a dimensional analysis. Z is dimensionless, while from the warp factor
5.67 one can see that S is of dimension [length3]. Moreover, scaling the internal metric
via g̃ → λ2g̃ describes the breathing mode of the CY, i.e. the Kähler modulus for the
overall volume. As the fluxes do not stabilize the Kähler moduli, this should better be an
unconstrained deformation. There exists the relation λ ∼ V1/6

w where5

Vw =
1

g
3/2
s (α′)3

∫
d6y e−4A

√
g̃ ∼ τ

3
2 (5.69)

5Our notation is related to the one used in [154,155] by a rescaling of the moduli fields τ and Z (called
ρ and S in [154, 155]) by suitable powers of ||Ω||2 and Vw. Note that the latter two quantities are not
considered to be moduli dependent but just values around which one expands.
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denotes the warped volume of the CY in units of α′. In [166] it was shown that the 10D
string equations of motion admit an unconstrained deformation λ only if the warp factor
scales non-trivially

e−4A = 1 +
e−4Acon

λ4
∼ 1 +

c

(Vw|Z|2)
2
3

+ . . . , (5.70)

where we have chosen the warp factor to be one in the large volume, unwarped regime.
Putting the last two observations together, the coordinate S in the KS solution (5.65),
(5.67) and the conifold coordinate Z are related via the rescaling

S → (α′)3/2

√
g

3/2
s VwZ . (5.71)

Thus the warp factor close to the conifold locus can be written as

e−4A(y) ≈ 2
2
3

gsM
2

(Vw|Z|2)
2
3

I(y) . (5.72)

The KS throat is non-compact due to the infinite y direction. Thus for string theory
applications one assumes that the geometry ends at some fixed finite value of y, denoted
yUV , where the geometry is glued into the bulk of the CY. The resulting geometry is shown
in picture 5.3. This requires that all modes one takes into account are localized inside the
throat.

KK modes in the warped throat

It is now possible to examine the KK modes arising inside the KS throat. We will employ
two methods, the first will be a leading order approximation and the second a numerical
analysis. Let us do the dimensional reduction of a ten-dimensional scalar field Φ with mass
m to four dimensions. Starting with the action

S ∼
∫
d10x
√
−G
(
GMN∂MΦ∂NΦ +m2Φ2

)
(5.73)

and making the usual warped Ansatz for the ten-dimensional metric

G =

(
e2A(y)g4 0

0 e−2A(y)g̃CY

)
, (5.74)

the action can be written as

S ∼
∫
d4x
√
−g4

∫
d6y
√
g̃CY

[
e−4Agµν4 ∂µΦ∂νΦ+

g̃mnCY∂mΦ∂nΦ + e−2Am2Φ2
]
.

(5.75)
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Figure 5.3: A sketch of a Calabi-Yau with a KS-throat. At the tip of the throat the S2

shrinks to zero size while the S3 remains finite. yUV marks the cutoff where the throat
meets the bulk.

The resulting equation of motion for the field Φ(x, y) becomes

�4Φ + e4A∇̃m∇̃mΦ− e2Am2Φ = 0 . (5.76)

Doing a product Ansatz Φ(x, y) = ϕ(x)χ(y) the four-dimensional KK masses m2
KK are

given by the eigenvalues of the six-dimensional warped Laplace equation

e4A(y)∇̃m∇̃mχ(y)−m2 e2A(y)χ(y) = −m2
KK χ(y) . (5.77)

We are heading for the lightest modes, which are expected to arise from the KK modes
of the four-dimensional components of the metric g4µν(x, y). The zero mode is the 4D
graviton that is the lowest excitation of the closed string. Placing such a closed string deep
into the throat region, we expect to find highly red-shifted KK masses. Therefore, we set
m = 0 and note that at linear order KK modes of the 4D metric are also governed by the
same Laplace equation (see [167])

e4A(y) ∇̃2
CY χ(y) = −m2

KK χ(y) . (5.78)

Actually, one now has to solve this equation on the entire Calabi-Yau manifold for a point
in complex structure moduli space that is very close to a conifold singularity. This is a
horrendous task that is beyond the scope of this paper.
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Here, we take a simpler approach and first look for local solutions that are supported
close to the tip of the cone of the KS solution (5.65). These are the ones which are expected
to yield small red-shifted masses. For this purpose, we take the local CY metric of the
KS throat and evaluate the Laplacian ∇̃2

CY for solutions that do only depend on the radial
direction y and are constant on the S2 × S3 base of the cone. These are expected to be
the ones that have minimal mass. We compute the relevant Laplace equation from the KS
metric (5.65) and warp factor (5.67)

21/3 (V|Z|2)
1
3

g
3/2
s M2

1

I(y)

[
3K2(y) ∂2

yχ(y) + 4
∂yχ(y)

sinh(y)K(y)

]
= −α′m2

KK χ(y) . (5.79)

Leading order approximation

Before we solve this differential equation numerically, to get an idea what the solutions
might look like, we expand all quantities up to leading order around y = 0. Using

K(y) =

(
2

3

) 1
3

+O(y2),

sinh(y)K(y) =

(
2

3

) 1
3

y +O(y3),

I(y) = κ+O(y2),

(5.80)

with κ ≈ 0.72, we arrive at

2 · 31/3

κ

(V|Z|2)
1
3

g
3/2
s M2

[
∂2
yχ+

2

y
∂yχ
]

= −α′m2
KK χ . (5.81)

Up to some scaling factors, this is the spherical Bessel differential equation[
∂2
yχ+

2

y
∂yχ+ k2χ

]
= 0 , (5.82)

whose solution with Neumann boundary conditions at y = 0 is

χ(y) =
sin(ky)

ky
, (5.83)

where kn = fn/yUV is expected to be quantized by imposing (Neumann) boundary con-
ditions at the UV end yUV of the throat. Here fn denotes the solutions of the equation
tan f = f that are approximately fn ≈ (2n+ 1)π/2 with n ≥ 1.

Therefore, the KK masses of these localized solution scale

m2
KK =

2 · 31/3

κ

f 2
n (Vw|Z|2)

1
3

g
3/2
s (MyUV)2

M2
s . (5.84)
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Note that, with respect to Ms, gs, M and (Vw|Z|2) this scales precisely in the same way
as the mass (5.38) of the conifold modulus, so that

m2
KK

m2
Z

= c
f 2
n

y2
UV

, (5.85)

where c is an order one coefficient. Note that yUV is bounded from below by

1� gs|M | y2
UV . (5.86)

This constraint is obtained by demanding that the length of the throat is larger than the
string length. This constraint is weaker than imposing yUV > 1. In the latter regime there
are finitely many KK modes that have a mass lighter than the conifold modulus. This
indicates that the employed effective action might be at the edge of reliability. We will
further analyze this important question in the upcoming sections.

In Einstein frame, massive bulk string excitations have a mass m2
str ∼ g

1/2
s M2

s . If placed
into the warped throat we have checked that there exist localized solutions of (5.77) leading
to KK masses that are shifted up by

m2
str,throat ∼

1

M
(Vw|Z|2)

1
3M2

s . (5.87)

With respect to Vw and Z this scales in the same way as the mass of the conifold modulus
and the KK modes. Note, that in this way each of the string modes comes with a whole
tower of KK excitations with spacing of the order (5.84).

Numerical solution of warped Laplace equation

For y > 1 we do not expect our leading order approximation to be valid so that a full
numerical analysis of the solution of (5.79) is necessary. Except for the radial dependence
of I(y), this is a one dimensional differential equation with Neumann boundary conditions.
This function could only be evaluated numerically. To obtain an expression which can be
inserted into the numerical procedure, the function was sampled at 5000 points in the
interval [0, 50] and interpolated using a degree three polynomial. Figure 5.4 shows the first
and second eigenfunctions of the approximate analytical solution as well as the numerical
solution.
The functions are normalized such that the integral over the absolute values squared is
equal to one. Only the radial contribution is shown, i.e. all prefactors are set to one:

(Vw|Z|2)
1
3

gsM2α′
= 1 . (5.88)

To estimate the numerical errors made in solving the differential equations, the same
methods were used to solve the spherical Bessel equation numerically, the results are shown
in all figures in black. The functions as well as eigenvalues agree with the analytical result,
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Figure 5.4: Eigenfunction of the numerical solution (blue) and analytical approximation
(red) of the first (left) and second (right) radial mode.

showing that the numerical errors are small. We notice that the numerical functions are
shifted towards small y relative to the analytical spherical Bessel functions, improving the
localization in the warped throat.

The eigenvalues of the numerical solution scale approximately like 1/yUV for small
values of yUV and approach an asymptotic value for yUV ' 10 due to the localization of
the functions at small y. The left hand side of figure 5.5 shows this behavior exemplary
for the case of the first eigenmode. The right figure shows the mass eigenvalues obtained
via the analytical and the numerical method.
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Figure 5.5: Left: The first eigenvalue of the numerical solution for different yUV . Right:
Eigenvalues of the numerical solution (blue) and analytical approximation (red) of the first
five radial modes. The numerical evaluation of the spherical Bessel equation is shown in
black.

Validity of the effective action

Now that the mass scaling has been determined, the KK modes can be integrated out to
study their effect on the effective theory. In the regime gsM

2 � 1 the tower of KK modes
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with spacing

∆m ≈ 1√
gsM2 yUV

(
|Z|
Vw

)1
3

Mpl , (5.89)

is supposed to be lighter than the cut-off. Integrating out these light gravitationally coupled
KK modes leads to a one-loop correction to the field space metric of the conifold modulus

g1−loop

ZZ
∼M−2

pl

Nsp∑
n=1

(
∂Zmn(Z)

)2

∼
Nsp∑
n=1

n2

(
1√

gsM2yUV

1

(Vw|Z|)1/3

)2

∼ N3
sp

1

gsM2y2
UV

1

(Vw|Z|)2/3
.

(5.90)

Consistency with the picture of kinetic terms arising from integrating out fields in the
UV as assumed by the emergence proposal demands that the parametric scaling of this
contribution matches the tree level result

g1−loop

ZZ
∼ gsM

2

(Vw|Z|2)2/3
. (5.91)

Enforcing this scaling in (5.90) constrains the number of light KK species in the effective
description to scale as

Nsp ∼
(
gsM

2yUV

)2/3
. (5.92)

Note that due to the lower bound (5.86), this number is guaranteed to satisfy Nsp & |M |2/3.
Thus, there is a finite number of KK modes whose mass is lighter than the species scale.

Using this scaling, analogously one finds that the corrections g1−loop

ZT
and g1−loop

TT
are

proportional to the tree-level expressions following from the Kähler potential
K ∼ gsM

2|Z| 23/(T +T ). As a result, a consistent effective description of the warped throat
should accommodate at most Nsp light KK modes and thus should have a cutoff of at most

Λ̃sp ∼ Nsp∆m ∼
(
gsM

2

y2
UV

)1
6
(
|Z|
Vw

)1
3

Mpl . (5.93)

In analogy to the “gravitational” species scale Λsp = Mpl/
√
Nsp this scale can be inter-

preted as a generalized species scale6

Λ̃sp =
Λ√
Nsp

, (5.94)

for an effective gravity theory with a cut-off

Λ ∼
√
gsM2

(
|Z|
Vw

)1
3

Mpl . (5.95)

6At this scale the one-loop correction to the Planck-scale M2
pl(µ) = M2

pl(0) − µ2

12πNsp becomes of the
order of the cut-off scale Λ.
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In contrast to the emergence of the SDC at large volume, here the ultimate cut-off
Λ is also field dependent. This implies a finite distance of the conifold point in complex
structure moduli space

Φ = d(0, |Z0|) ∼
∫ |Z0|

0

√
gZZ ∼

√
gsM2

(
|Z0|
Vw

)1
3

∼ Λ

Mpl

, (5.96)

where Φ < 1 is the canonically normalized field corresponding to Z. In terms of Φ the
relevant quantities become

Λ ∼ ΦMpl , ∆m ∼ Φ

gsM2 yUV

Mpl , Λ̃ ∼ Φ

(gsM2 yUV)
1
3

Mpl , (5.97)

with still Nsp ∼ (gsM
2 yUV)2/3. The mass of the conifold modulus Z scales as mZ ∼

Φ/(gsM
2) and the coupling constant in the three-point vertex γφh2

n reads

γ ∼ m(Φ)∂Φm(Φ) ∼ Φ

(gsM2 yUV)2
� 1 (5.98)

so that perturbation theory makes sense. We notice that, in contrast to the SDC for
infinite field distances, at the conifold point ∆m does not scale exponentially with the
proper field distance but only linearly. In addition, the number of light species does not
increase exponentially but stays constant.

How can these results be interpreted? The cutoff obtained in (5.95) turns out to scale
exactly like the mass of a D3 brane. The action of a D3 brane is given by

SD3 ∼
M4

s

gs

∫
dt

∫
S3

d3y
√
−G ∼ M4

s

gs

∫
dt

∫
S3

d3y e−2A
√
g̃CY . (5.99)

Using the scaling of the metric (5.65) and the warp factor (5.72), the mass of the dimen-
sionally reduced brane turns out to be

m2
D3 ∼ g

1
2
sM

2(Vw|Z|2)
1
3M2

s ∼ gsM
2

(
|Z|
Vw

)2
3

M2
pl , (5.100)

which scales exactly like the cutoff. As this is a non-perturbative state not taken into
account in the original formulation of the effective theory, it’s mass is a natural cutoff.

As the 1-loop corrections arising from integrating out a finite number of KK modes
below this cutoff are proportional to the tree level metric, the corrections are effectively
harmless, only modifying the numerical prefactors.

This is of course an optimistic interpretation of the results. One could also interpret
the result negatively, stating that the Wilsonian action cannot be trusted as there are light
modes which have been integrated out. Depending on which interpretation one chooses,
the consequences for the KKLT construction differ drastically. We will here simply state
that there are indeed corrections to to light KK modes, but that these are not necessarily
dangerous for the construction.



Chapter 6

Other Ways to dS

In this chapter we will discuss more exotic ways to obtain dS in string theory. These meth-
ods are much less established than the KKLT scenario discussed in the previous chapter.
We will focus on two main approaches. First the idea of spontaneous compactification
mediated via tachyon condensation, which leads to theories on dS space in fewer dimen-
sions. This kills two birds with one stone, as the construction results in dS spaces as well
as avoiding the no-gos following from the cobordism conjectures as it does not include any
compactified dimensions. The second idea is to modify the signature of space-time, by
either including additional time dimensions or changing the signature of the world-sheet.
This allows for a rather easy construction of dS spaces, but of course introduces many
problems like non-unitarities, closed timelike curves and ghosts.

6.1 dS Spaces from Tachyons

One of the conjectured reasons for the non-existence of dS lies in another conjecture, the
cobordism conjecture [3]. This conjecture states that the cobordism group of quantum
gravity should be trivial,

ΩQG
d = 0 . (6.1)

Two d-dimensional manifolds are said to be in the same cobordism class if they form the
boundary of a (d+ 1)-dimensional manifold. Thus the cobordism group is given by the set

Ωd = {compact, closed d− dimensional manifolds}/ ∼ , (6.2)

where ∼ denotes the equivalence of manifolds under bordisms as described above. For
geometric compactifications the physical equivalence relation is exactly the mathematical
definition of a cobordism group. But quantum gravity, especially in the string theoretic
examples, allows for dynamical changes of the topology, e.g. flop or conifold transitions of
the compactification geometry. In these cases the equivalence relation∼ has to be modified.
Also, if additional structures exist these have to be taken into account. The most important
example is the spin structure, playing an important role for the existence of supersymmetry.
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The cobordism equivalence then asks for the boundary of a spin-manifold. Some cobordism
groups have already been computed, table 6.1 lists the known groups which are important
for string theory.

k 0 1 2 3 4 5 6 7 8 9 10

ΩSpin
k Z Z2 Z2 0 Z 0 0 0 Z2 Z2

2 Z3
2

ΩPin+

k Z2 0 Z2 Z2 Z16 0 0 0 Z2 × Z32 0 Z3
2

ΩSpinc

k Z 0 Z 0 Z2 0 Z2 0 Z4 0 Z4

ΩString
k Z Z2 Z2 Z24 0 0 Z2 0 Z2 × Z Z2

2 Z6

Figure 6.1: Cobordism groups appearing in string theory. Table taken from the appendix
of [3].

The triviality of cobordism groups has dramatic consequences. One possible problem for
a compactification is the existence of so-called bubbles of nothing. These were first found to
destabilize non-supersymmetric Kaluza-Klein theories [168], but were expected to be absent
in supersymmetric theories. Recently, in [169] the authors showed that the existence of
a bubble of nothing is related to the spin structure of the compactification manifold. If
the spin-cobordism group ΩSpin

d is trivial, the construction of a bubble of nothing is always
possible. In these cases the vacuum has no topological protection against its decay. Of
course there are also dynamical obstructions, but these are often absent if supersymmetry
is broken. This is closely related to the conjectures that non-supersymmetric stable vacua
of quantum gravity do not exist [170, 171]. The known constructions of dS vacua break
supersymmetry, thus the conjectures would rule these out. It is important to note that
these arguments only forbid eternally stable dS vacua, meta stable vacua with a finite
lifetime are not forbidden. To reach a phenomenologically interesting theory from the
10-dimensional superstrings or the 11-dimensional M-theory, they have to be compactified
on a 6- or 7-dimensional internal manifold. The spin-cobordism groups of these manifolds
are ΩSpin

6 = ΩSpin
7 = 0. This implies that the usual non-supersymmetric compactifications

would be unstable to a decay into nothing.
The arguments above have two loop-holes. First, string theory includes additional

degrees of freedom, which require modified cobordism groups. Especially in non-geometric
compactification it is unclear how to compute the groups or how to define them, as they
are an intrinsically geometric statement and thus it is unclear if the logic above applies.
Second, even if the cobordism conjecture holds and the quantum gravity cobordism group
is trivial if all degrees of freedom are taken into account independent of the dimension,
the existence of the bubble of nothing has a second requirement, which is that the theory
includes an internal manifold or equivalently that there exist additional dimensions. There
are known consistent string theories formulated in 4 dimensions, most prominently the
N = 2 superstring or the bosonic string in a linear dilaton background. As these do
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not include extra dimensions there is no bubble of nothing instability. But of course these
theories have other problems, especially the existence of tachyons or a broken 4-dimensional
Lorentz-symmetry. But nothing forbids in principle the existence of a stable 4-dimensional
string theory. One way to construct lower dimensional string theories is to actually use
the bubbles of nothing. The endpoint of a closed string bulk tachyon condensation is
in general a lower dimensional theory. In the next sections the tachyon condensations
will be described in detail and how they give rise to eternal dS spaces in string theory.
Interestingly it will turn out that the constructed theories exist exactly in the dimensions
which are allowed by the non-trivial spin cobordism groups.

6.1.1 Tachyon Condensation

Before we go into the details of tachyon condensation in string theory we give a short
review of tachyon dynamics. We start with the usual Lagrangian for a real interacting
massive scalar field.

L = ∂µΦ∂µΦ +m2Φ2 + λΦ4 . (6.3)

For negative m2 < 0 the potential has 3 extremal points, a maximum at the origin Φ = 0

as well as two minima at Φ = ±
√
−m2

2λ
.1 The mass squared at the origin is negative, while

the mass at the minima is positive. Explicitly for the Lagrangian (6.3) the masses are

m(Φ = 0) = 2m2 m(Φ = ±
√
−m2

2λ
) = −4m2 . (6.4)

Thus if the theory is expressed in fields expanded around the minimum it is free of tachyons
and well defined. There is nothing pathological about tachyons if the potential is bounded
from below. If the latter is not the case the theory is inconsistent even in the absence of
tachyons due to tunneling effects induced by instantons. As the instanton action depends on
the energy difference between two extremal points, an unbounded potential has an infinite
instanton action. Thus, in a consistent theory a tachyon always assumes the value in its
minimum, where its mass is no longer tachyonic. Note that the theory in the minimum can
look drastically different compared to the theory formulated around the maximum. The
most famous theory including a tachyonic field is the standard model, where the Higgs
field is tachyonic. The process of tachyon condensation corresponds in this case to the
electro-weak symmetry breaking.

String theoretic tachyons do not behave much differently from their field theoretic
counterparts. Their potential can be computed in a string field theory approach. It was
conjectured by Ashoke Sen [172] that the open string tachyon condensation represents the
decay of the D-branes where the strings end on. Thus in the real minimum of bosonic open
string theory there are no branes left and the perturbative cohomology is empty. These

1This holds for a real field, in the case of a complex field there is a whole circle of degenerate minima

with radius
√
−m2

2λ .
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conjectures are now proven, the analytic solution of Schnabl [173] correctly reproduces
the mass of the brane as the energy difference between the vacua. The theory formulated
around the true stable vacuum is known as vacuum string field theory [174]. As there are
no perturbative states left due to the absence of branes, the only degrees of freedom are
non-perturbative instantons, corresponding to the creation of a brane out of the vacuum.
Thus by now it is well understood how open string tachyons describe brane decays. The
same mechanisms apply for superstrings. While there is no analytic solution known, level
truncation approaches in open superstring field theory have confirmed Sen’s conjecture also
in this case. In the superstring case some open tachyons get removed by the GSO projec-
tion. These correspond to the stable BPS branes which have no tachyons in their spectra.
But in the spectrum of a brane-anti-brane pair a tachyon appears whose condensation
describes the annihilation of the two branes.

In the closed string sector much less is understood. Localized tachyons are known to
describe the decay of the defect or space they are localized at, e.g. the decay of C/Zn

orbifolds to flat space [175] or the decay of tori into nothing. Bulk tachyons can either
change the dimension of the theory or even change the type of theory. Examples of such
processes have been worked out exactly by Hellerman et al. in a series of papers [18,
176–178]. Figure 2.2 in chapter 2 shows a simplified summary of the known tachyon
condensations. There is a tower of bosonic theories decaying into each other which ends in
a two-dimensional theory. Moreover, there are several tachyonic variants of the heterotic
string. These will be discussed in the next section.

6.1.2 Heterotic String Tachyon Condensation

That the heterotic strings condense to lower dimensional theories was first worked out
in [179], where it was shown that the heterotic E8 string decays to a 9-dimensional string
theory. More recently the same methods were applied to the other heterotic theories [5],
resulting in even lower dimensional theories.

We follow [5] and start with a partition function of a heterotic superstring theory in
ten dimensions

Z = ZNS − ZR , (6.5)

ZNS = |η|−16
[
(Z0

0)8(Z0
0)32 − (Z0

1)8(Z0
1)32

]
, (6.6)

ZR = |η|−16(Z1
0)8(Z1

0)32 , (6.7)

where η is the Dedekind eta-function and

Zα
β =

√
θαβ
η

. (6.8)

The θ-functions are defined in appendix A.4.1. This partition function is modular invariant.



6.1 dS Spaces from Tachyons 132

Expanding the partition functions to low order in q one obtains

ZNS = 32q−1/2 + 4032 + 188928(qq)1/2 + . . . , (6.9)

ZR = 8388608qq + . . . . (6.10)

From this one can see that there are 32 tachyons. Moreover, the theory is non-supersymmetric
as there are at each level a different amount of states in the NS and R sector. Finally, it is
possible to read of the gauge group. In a heterotic string theory there are at the massless
level the Kalb-Ramond field, the dilaton, the metric and a gauge field. In 8 transverse
dimensions this corresponds to 64 degrees of freedom excluding the gauge field. Thus the
4032 minus the 64 other degrees of freedom should decompose into the gauge representa-
tion. A gauge field in d dimensions has (d− 2)·dim(G) degrees of freedom. Thus it follows
that the dimension of the gauge representation is

dim(G) =
4032− 64

8
= 496 . (6.11)

This is exactly the dimension of the adjoint of SO(32).2 The free fermion formulation of
the theory shows a Z5

2 symmetry which can be used to generate twisted versions of this
partition function. These twists correspond to n of these symmetries being gauged. The
partition functions are explicitly given by

ZNS = |η|−16
[
(Z0

0)8L0
0 − (Z0

1)8L0
1

]
, (6.12)

ZR = |η|−16(Z1
0)8L1

0 , (6.13)

where the Lβα are given by [5]

L0
0 =

1

2n
(Z0

0)16
[
(Z0

0)16 + (2n − 1)(Z0
1)16 + (2n − 1)(Z1

0)16
]
, (6.14)

L0
1 =

1

2n
(Z0

1)16
[
(Z0

1)16 + (2n − 1)(Z0
0)16 + (2n − 1)(Z1

0)16
]
, (6.15)

L1
0 =

1

2n
(Z1

0)16
[
(Z1

0)16 + (2n − 1)(Z0
0)16 + (2n − 1)(Z0

1)16
]
. (6.16)

These theories can be formulated for n = 0, . . . , 5. For n = 0 the theory reduces to the orig-
inal SO(32) theory. From these partition functions one can read of the data listed in table
2.1, especially the theories have t = 25−n tachyons. When closed string tachyons condense,
they need to break the Lorentz symmetry in the dimensions which are removed from the
theory. Each tachyon can thus only remove one dimension. After all tachyons condensed,
there are two possibilities. First, the resulting theory is stable, then the endpoint is a
d− t dimensional theory. But during the condensation other fields can become tachyonic.
In this case a secondary condensation appears. In all heterotic theories the endpoints are
stable. In type 0 theories, there is only a single tachyon. But the resulting theories are still

2This does not rule out E8×E8 or even U(1)496 yet, but the massive representations ensure that it is
indeed a SO(32) theory.
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tachyonic, leading to a cascade of theories ending only in a stable 2 dimensional theory.
This implies that theories with at least 8 tachyons condense to 2-dimensional theories. The
remaining tachyons become massless in two dimensions, such that these theories are always
an endpoint of tachyon condensation. But if a theory has less than 8 tachyons, it cannot
condense to a 2-dimensional theory. In these cases the theory ends up in a 10− t dimen-
sional vacuum, where t is the number of tachyons in the 10-dimensional theory. Therefore
the non-supersymmetric string theories with n = 3, 4, 5 end up in a d = 6, 8, 9 dimensional
theory. These theories do no longer include any tachyons and are thus interesting theories
to study. Their partition functions are obtained by integrating out t dimensions. This
leads to

ZNS = |η|−16+26−n
[
(Z0

0)8−25−n
L0

0 − (Z0
1)8−25−n

L0
1

]
, (6.17)

ZR = |η|−16+26−n
(Z1

0)8−25−n
L1

0 . (6.18)

where Lab are now given by

L0
0 =

1

2n
(Z0

0)16−25−n
[
(Z0

0)16 + (2n − 1)(Z0
1)16 + (2n − 1)(Z1

0)16
]
, (6.19)

L0
1 =

1

2n
(Z0

1)16−25−n
[
(Z0

1)16 + (2n − 1)(Z0
0)16 + (2n − 1)(Z1

0)16
]
, (6.20)

L1
0 =

1

2n
(Z1

0)16−25−n
[
(Z1

0)16 + (2n − 1)(Z0
0)16 + (2n − 1)(Z0

1)16
]
, (6.21)

Note that these are effectively the same partition functions as before, only the exponents
of the untwisted Zα

β are reduced to match the dimension. These partition functions can be
integrated over the fundamental domain to obtain the cosmological constant of the theories.
As usual the integration over τ1 eliminates all states which are not level-matched. In all
cases one obtains a small positive cosmological constant. How is this to be interpreted?
The theories are free of anomalies and tachyons, thus they represent consistent theories.
But this comes at the cost of a linear dilaton. Moreover, they are obtained by a light-like
tachyon profile

T i = eβX+Xi . (6.22)

This has the effect of suppressing the i-th dimension in the X+ →∞ limit. But the linear
dilaton profile is along the X1 direction. Thus only in the double limit X+ → ∞ , X1 →
−∞ the theory is in a weak coupling regime and true lower dimensional. For larger X1

one has to use a dual description. Also there is no domain wall separating these regions.
All of this is phenomenologically problematic, but from a purely theoretic point of view
these are still valid theories in conflict with the dS conjecture. But there is a way out of
this dilemma.

The heterotic theories have 2n−5 tachyons. Thus the only endpoints of the conden-
sation of heterotic theories are d = 2, 6, 8, 9. It appears to be impossible to construct
a 4-dimensional tachyon free theory using this mechanism. It is interesting to note that
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the obtained theories are in complete agreement with the cobordism conjecture. Com-
paring with table 6.1, one can see that the only allowed stable compactifications of a
10-dimensional theory by the cobordism conjecture are d = 0, 1, 2, 6, 8, 9. Tachyon con-
densation always stops at d = 2 as there are no longer any tachyons, but otherwise the
obtainable theories agree exactly. Turning this argument around, the cobordism conjecture
would forbid a 10-dimensional theory with t = 3, 5, 6, 7 tachyons in the spectrum. To test
this conjecture one thus could try to classify all possible heterotic partition functions in
ten dimensions. In [5] it was commented that further 10 dimensional modular invariant
partition functions can be obtained by allowing for torsion in the gauged Z5

2 group, which
corresponds to additional phases in the partition functions. If all partition functions can
be classified like the GSO projections in the type 0/II theories, this would allow to reject
this mechanism as a way to obtain dS, or, if a theory with 6 tachyons exists, to construct
a 4-dimensional dS theory.

Without knowing if such a 10-dimensional theory exists, we can still say something
about the would be 4-dimensional theory. The gauge algebras arising from possible twists
are of the form so(t)so(32 − t), where t is again the number of tachyons. The so(32 − t)
factor can be enhanced to a larger gauge algebra of the same rank. When the tachyons
condense, the so(t) factor gets broken, while the so(32− t) factor remains intact. Thus if
there would exist a twist to 6 tachyons, the resulting 4-dimensional theory would include
a so(26) gauge algebra or an enhanced version of it, i.e. a algebra of rank 13. This algebra
is large enough to embed any GUT gauge group usually used. It would be interesting to
see if these theories exist and to study them, but we leave this for future work.

6.1.3 Closed Bosonic String Tachyon

After having discussed the 10-dimensional tachyon condensations, we will now turn to
the 26-dimensional closed string tachyon. This was one of the first tachyons to appear
in string theory, yet it is still unclear what it condenses to. In the usual approaches to
study string theory it mainly gets ignored, stating that in a supersymmetric construction
the bulk tachyon gets projected out by a GSO projection. As we have seen in the last
section, non-supersymmetric tachyons can lead to interesting lower dimensional theories,
thus the endpoint of the bosonic bulk tachyon could be an interesting theory. In view of
the c-theorem, stating that different UV conformal field theories flow to the same IR CFT,
the bosonic tachyon is especially interesting as bosonic string theory with c = 26 is one of
the best studied CFTs with a large central charge.

The potential of the closed string bulk tachyon has been studied in detail in bosonic
string field theory [86, 180–184]. A high level computation to quintic order shows the
existence of a stable non-perturbative vacuum with a non-zero tachyon vev. Unlike the
case of open tachyon condensation it is unknown if the cohomology of the theory formulated
around this vacuum is empty. As the energy of the potential at the minimum seems to
converge to a non-zero value it is also unclear how to interpret this value. In the open
string case the value of the potential corresponds to the tension of the brane. An analogous
interpretation in the case of closed strings would correspond to an energy of space-time.
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But as the process changes the number of dimensions in the theory it is unclear how to
even define an energy.

The meaning of the non-perturbative minimum is still unclear. One conjecture is that
it resembles one of the supersymmetric 10 dimensional theories and the tachyon thus
describes the decay of 16 dimensions [185]. As the left-moving sector of the heterotic string
theories can be describes by the bosonic string compactified on a 16-dimensional lattice,
a mechanism could exist which freezes out the remaining d.o.f. of the 16 dimensions by
condensing the bulk tachyon [186].

More recently in [187] the bosonic bulk tachyon potential was studied in a superstring
field theory setup. Due to the complexity of the computation it was performed only at
massless level and cubic order, but already at this level the result deviates from the bosonic
string field theory result. Additional tachyonic states originate from the supersymmetric
ghosts, destabilizing the bosonic solutions. At the low orders studied in [187] the potential
appears to be unbounded from below. Of course the same appears to be the case for the
potential in the bosonic SFT at quartic order and only gets resolved at higher orders.
As these seem to be out of reach at this time it is unclear how to interpret the results
of [187]. Nevertheless it is interesting that even 40 years after the discovery of the closed
bulk tachyon, it is still unclear what its true meaning is.

This finishes the discussion of tachyon condensation. As we have seen, tachyons can
result in a loophole for the usual conjectures. But they also seem to respect the cobordism
conjecture and do not result in 4-dimensional dS theories. In the next section another
possible loophole will be investigated, a change of the signature of spacetime, either of the
world-sheet or of the target space.

6.2 Exotic String Theories

As we have seen in the previous sections, 4-dimensional dS seems to not be obtainable
from the usual 10 dimensional string theories. Non-supersymmetric compactifications on
CY 3-folds suffer from bubbles of nothing, while the tachyon condensations which remove
the extra dimensions are constraint in such a way that they never lead to a 4-dimensional
theory. In this section we will try to think about another way around the no-go conjecture,
by modifying the signature of spacetime. The usual constraints on the allowed dimensions
in string theory, like the vanishing of the conformal anomaly, the nilpotence of the BRST
operator or the little group of the graviton, only restrict the allowed number of dimensions,
not the metric signature. The usual choice is the signature (d − 1, 1). For this choice no-
ghost theorems can be proven [188].3 Note that with ghosts in the following we mean
Pauli-Villar ghosts, i.e. states of negative norm which violate unitarity. A ghost field has
the wrong sign of the kinetic term in the Lagrangian. Note that this is not in one-to-one
correspondence with tachyons, which have negative mass squared or equivalently imaginary
mass, but the correct sign of the kinetic term. For other signatures no analogous theorems

3The same theorem holds in 2 time dimensions for the N = 2 string, i.e. signature (2,2) corresponding
to one complex time boson.
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are known. But nevertheless there exists a whole net of exotic string theories in different
signatures. The aim of this section is a study of the phenomenology of these theories. The
section closely follows [12]. We will start with a short motivation why additional times
allow the construction of dS spaces by Wick-rotating the well known AdS ×S5 solution of
the type II string. After reviewing the net of theories, the quantization of closed and open
strings in arbitrary dimensions is worked out, including the boundary states required for
D-branes and O-planes. This will then be used to identify ghost-free gauge-subsectors of
the theories.

6.2.1 Fluxed AdS×dS Solutions

In this section we first recall that in theories with more time-like directions the AdS5×S5

solution of type IIB supergravity generalizes to solutions containing de Sitter spaces (cf.
[189]). The natural habitat of these solutions are Hull’s exotic string theories that we review
in the second part of this section. The prototype solution of the type IIB superstring
theory with flux is AdS5 × S5 with self-dual five-form flux supported on AdS5 and S5,
respectively. Of course this theory has just a single time-like coordinate which is part of
the AdS5 background. The question that we would like to approach in this section is what
happens if more than one of the ten directions of type IIB were time-like, i.e. on a space
with signature (10− p, p). For the five-form to still satisfy a self-duality relation, one must
have p odd.

The 10D effective (quasi-)action governing the dynamics of the metric and a form field
Cn−1 reads

S ∼M8
s

∫
d10x

√
|G|
(
e−2φR− κ

2
|Fn|2

)
, (6.23)

where in the following we will set the dilaton to a constant. This is justified for the actual
case of interest, namely the R-R four-form, for which in addition one has to impose the
self-duality relation F5 = ± ? F5 by hand and change the prefactor of |Fn|2 to κ/4. Here
we have left the sign κ = ±1 of its kinetic term open, where κ = 1 is the usual case. The
kinetic term of the n-form Fn is defined as

|Fn|2 =
1

n!
Gi1j1 . . . Ginjn Fi1...in Fj1...jn . (6.24)

The resulting equation of motion for the metric reads

Rij −
1

2
gijR =

κ

2(n− 1)!

(
Fi k2...kn F

k2...kn
j − 1

2n
gijFk1...knF

k1...kn
)

(6.25)

and for Cn−1

∂i

(√
|G|F i k2...kn

)
= 0 . (6.26)

We can write the first relation (6.25) as a matrix equation R = κT.
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Now, we want to consider these equations in a theory with more time-like directions.
Generalizing the AdS5 × S5 solutions, we make the Ansatz

AdS5−m,m × dS5−n,n , with m+ n = p = odd . (6.27)

The description of such multiple times AdS and dS spaces is reviewed in appendix A.1.
For a self-dual five-form flux we can then solve (6.26) simply by choosing F5 to satisfy the
Bianchi identity dF5 = 0. This is the case for

F5 = fE1 ∧ . . . ∧ E5 − fE1 ∧ . . . ∧ E5 (6.28)

with constant f and with the 5-beins of AdS5−m,m and dS5−n,n as reviewed in appendix
A.1. Choosing the same curvature radius α for the AdS and dS factors, the Ricci scalar
vanishes and the left hand side of (6.25) becomes

R =

(
− 4
α2η

(m,5−m) 0
0 4

α2η
(n,5−n)

)
. (6.29)

The right hand side then is

κT = κ (−1)n

(
−f2

4
η(m,5−m) 0

0 f2

4
η(n,5−n)

)
. (6.30)

Therefore, for α = 4/f the equations of motion are satisfied if we choose κ = 1 for n even
and κ = −1 for n odd.

Let us mention a few special cases: For m = 1, n = 0 one gets the original AdS5 × S5

solution and for m = 0, n = 1 one finds H5 × dS4,1, where H5 denotes the hyperbolic
5-space. However, the price one has to pay to get this simple solution is that the R-R
five-form has the wrong sign of the kinetic term.

We note that all these solutions can also be understood by applying (m−1, n) Wick-
rotations to the respective coordinates of the original type IIB AdS5 × S5 background.
From this perspective, in order to keep F5 purely real or imaginary, one has to apply either
an (even, even) or an (odd, odd) number of Wick-rotations. In the first case, F5 remains
real, giving the solutions with n even and κ = 1. In the second case however, F5 becomes
purely imaginary, so the sign of the kinetic term indeed changes and one finds the n odd,
κ = −1 solutions. If for the original type IIB the 5-form is chosen to be self-dual ?F5 = F5,
the Wick rotation changes this to ?F5 = κF5. Thus, the sign of the kinetic term of F5 and
the one in the self-duality relation are related.

We have seen that in type IIB-like supergravities with multiple time directions and
possibly wrong signs of the kinetic term for the 5-five form, dS solutions do exist. Of
course, our analysis was only applied to a subsector of the full initial type IIB supergravity
action so that one might wonder whether fully consistent supergravity or string theories
exist that exhibit precisely those two features.
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6.2.2 Exotic Superstring Theories

Since the early work of Hull [190,191] it is known that string theories with exotic signatures
arise from the usual type II theories with (9, 1) signature by applying successive T-duality
also along time-like directions. This leads to an intricate web of dual theories in ten
dimensions of more general signature (10− p, p), whose supergravity actions (quadratic in
derivatives) are similar to the type II actions but contain kinetic terms of opposite sign.
Despite these apparent ghosts, it was argued that each theory of this duality web represents
a different limit of ordinary type II theories, and as a full non-perturbative theory should
therefore be intrinsically well-behaved.

However, since these theories are reached via a circle compactification of a time-like
direction, they could also all be severely pathological, as at an intermediate step closed
time-like curves are encountered that are generally thought to be highly problematic. In
the course of this paper we assume that this is not the case and that Hull’s exotic theories
can make sense.

The de Sitter solutions from the previous subsection will find their natural home in
these exotic supergravity theories, meaning that they arise as solutions to the effective
theories at leading order in derivatives and at weak string coupling. Therefore, it is this
limit that we are most interested in. The perturbative spectrum of the exotic closed string
theories which arises via quantization of the corresponding fundamental string was recently
worked out in [4]. As expected, the perturbative description of exotic theories carries many
pathologies, most prominently ghosts. In this section we review the bouquet of exotic string
theories, for more details we refer to the original literature.

The zoo of type IIαβ theories

T-duality along a space-like direction exchanges type IIA and IIB string theory. Along a
time-like direction, this cannot be the case. For instance, Dirichlet and Neumann boundary
conditions of a D-brane are interchanged in the direction that T-duality is applied to. Since
regular type II theories only contain Lorentzian D-branes, this means that the T-dual
theory can only have Euclidean branes.

Adopting the notation introduced in [4], we label the theories as IIAαβ
(10−p,p) and IIBαβ

(10−p,p)
with two signs α, β ∈ {+,−} and the space-time signature (10− p, p). The first sign indi-
cates whether the theory contains Lorentzian (+) or Euclidean (−) fundamental strings,
while the second indicates the same for D1/D2 branes. Here, we will call any even (odd)
number of time-like directions Euclidean (Lorentzian). If the signature is omitted we as-
sume (9, 1). The usual string theories in this notation are IIA++, IIB++. We will also
use the notation IIAL and IIBL collectively for all theories with Lorentzian fundamental
strings and IIAE and IIBE for the ones with Euclidean strings.

Starting from the usual string theories, time-like T-duality as discussed above leads to
Euclidean branes of one dimension less. This means that (IIA++ ↔ IIB+−) and (IIB++ ↔
IIA+−) are related by time-like T-duality, just as (IIA++ ↔ IIB++) and (IIB+− ↔ IIA+−)
are space-like T-duals.
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Now taking the strong coupling limit of the type IIB theories, S-duality acts by ex-
changing F1↔D1 and NS5↔D5, while D3 is self-dual. Then while IIB++ is self-dual,
IIB+− has Euclidean D-branes that now get exchanged with the fundamental string and
NS5-brane. The resulting theory must be of type IIB−+ with Lorentzian D1 and D5 and
Euclidean F1, NS5 and D3-branes.

One can now complete the type II picture by considering the T-duals of this exotic IIBE

theory. However since the D-branes of type IIB−+ are not homogeneously Lorentzian, one
can see that type IIB−+ compactified along a space-like circle must be dual to a theory
compactified along a time-like direction! This theory has Euclidean D2-branes and is thus
of type IIA−−(8,2).

All theories with Euclidean F1 have the property that T-duals are with respect to
different signature directions. Their respective D-brane spectrum is alternating between
Euclidean and Lorentzian as was the case for type IIB−+, and each T-dualization changes
the signature. The list of T-dual theories with Euclidean fundamental strings is schemati-
cally given by

IIA−+
(10,0) ↔ IIB−+

(9,1) ↔ IIA−−(8,2) ↔ IIB−−(7,3) ↔ IIA−+
(6,4) ↔ ...↔ IIB−+

(1,9) ↔ IIA−−(0,10) (6.31)

where going to the right (left) means T-dualizing along a space-like (time-like) direction.
Now that we have found more signatures of type IIB−+, we can S-dualize back to the

theories with Lorentzian fundamental strings, where we find that they correspond to type
IIB+− with the same signatures. The full bouquet of dual theories and their relations is
shown in figure 6.2.

For completeness let us mention that the strong coupling limit of the type IIA theories
are two M-theory variants. In other words, the type IIA theories arise from M theories
with Lorentzian or Euclidean M2-branes on various signatures, compactified on space- or
time-like circles. For more on the exotic M-theories see [4, 191].

Type IIαβ supergravities

The bosonic parts of the low-energy SUGRA actions for the exotic theories have been
worked out in [190,191]. Here we provide the compact presentation given in [4]. As usual
the 10D actions are given by a sum over NS-NS, R-R and Chern-Simons contributions

S[IIA/Bαβ] = SαβNS + SR[A/B]αβ + SCS[A/B] , (6.32)
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Figure 6.2: T-dualities (solid lines) and S-dualities (dashed lines) relating type II string
theories. The label x (t) indicates dualities arising from compactification on a spatial
(time-like) circle. The left side consists of the type IIAL/IIBL theories with Lorentzian
fundamental strings, the theories with Euclidean fundamental strings (IIAE/IIBE) are on
the right. (Diagram adopted from [4])

where the NS-NS part is the same for type IIA and IIB and the CS part is independent of
α, β. The respective terms in the action are given by

SαβNS =
1

2κ2
10

∫
d10x

√
| detG| e−2Φ

[
R+ 4(∇Φ)2 − α

2
|H3|2

]
,

SR[A]αβ = − 1

2κ2
10

∫
d10x

√
| detG|

[
αβ

2
|F2|2 +

β

2
|F̃4|2

]
,

SR[B]αβ = − 1

2κ2
10

∫
d10x

√
| detG|

[
αβ

2
|F1|2 +

β

2
|F̃3|2 +

αβ

4
|F̃5|2

]
,

SCS[A] = − 1

4κ2
10

∫
B2 ∧ F4 ∧ F4 ,

SCS[B] = − 1

4κ2
10

∫
B2 ∧ F3 ∧ F5 ,

(6.33)

where H3 = dB2, Fp = dCp−1, and F̃p = Fp−H3∧Cp−3. These actions are very reminiscent
of the usual SUGRA actions (2.77), only modified by some signs α and β .The actions are
all independent of the respective signature (p, q), and as usual one has to additionally
require (anti-)self-duality F̃5 = (αβ) ? F̃5 in the type IIB variants. Note that as in the
previous subsection the sign of the kinetic term of the 5-form flux is correlated with the
sign in the self-duality relation. Moreover, we have set the Romans mass of type IIA
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variants to zero for simplicity.
It is clear that in general these actions feature the appearance of ghost states, i.e. states

whose kinetic term has the wrong sign. This sign is the result of two effects. First, there
is the overall sign of the kinetic terms in (6.33) and second the combination of signs of the
inverse metric factors in

Lkin ∼ −κ
√
|G| |Fn|2 = − κ

n!

√
|G|Gi1j1 . . . Ginjn Fi1...in Fj1...jn . (6.34)

If κ = +/− 1, an odd/even number of time-like indices indicates a ghost. The presence of
ghosts is of course strongly related to the existence of dS solutions. Recall that in section
6.2.1 we have seen that theories with ghosts can admit solutions to the SUGRA equations
of motion that contain dS factors. These ghosts could arise either due to wrong overall signs
of the kinetic terms or due to extra time-like directions. These are precisely the two issues
that also appear for the exotic superstring theories, making them the natural framework
for a string theory embedding of the dS solutions of section 6.2.1. While dS is conjectured
to be forbidden in string theory and there exist no-go theorems in certain setups, compare
section 4.1, the derivation of most of the arguments implicitly assumes that all fields have
the usual kinetic terms. The explicit dS solutions show that violations of the dS no-go
theorems can potentially arise from the presence of ghost fields. For a concrete set-up,
an effective 4D potential is generated via dimensional reduction of an exotic string theory
on some internal space with non-trivial fluxes turned on. Whether this effective potential
indeed admits dS minima requires a more detailed investigation, but as long as there are
ghosts present we expect that the no-go theorems will not hold. But there could be ways
around this problem. In the next section we will examine the ghosts more closely, as well
as the possibility to remove them by applying an orbifold construction.

6.2.3 Ghosts in Exotic String Theories

In this section we continue the discussion of ghosts in the exotic string theories. Ghosts
are states of negative norm in the Hilbert space, preventing a probabilistic interpretation
and, even when removed by hand from the set of physical states, leading to a violation of
unitarity. While they might be an important ingredient to find dS solutions, massless or
light ghosts are phenomenologically excluded.

A standard procedure to get rid of such states is to gauge more symmetries on the world-
sheet, hence introducing new (b, c) ghost systems that change the critical central charge of
the theory and cancel the contributions of the problematic ghosts. A famous example is
the N = 2 superstring with a critical central charge of c = 6 and a four-dimensional target-
space of signature (2, 2) or (0, 4) [20]. Due to the extra gauge symmetry, more target-space
directions can be gauged away.

However, since we do not want to change the critical dimension, there will only be
the usual gauge invariances leading to a critical central charge of 26 (15) for the bosonic
(super) string theory. This means there will be a single distinctive time direction and the
corresponding bc (and βγ) ghost system. Let us analyze the appearance of ghosts for the
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Lorentzian IIAL/IIBL theories and the Euclidean IIAE/IIBE theories in more detail. For
simplicity, we present the string world-sheet arguments only for the bosonic string, while
they analogously hold for the superstring theories.

Ghosts for the Lorentzian string

The Lorentzian fundamental strings in the IIAL/IIBL theories can be quantized in complete
analogy to the usual IIA and IIB (super-) strings with signature (9, 1). This means that
the mode algebra for the bosonic fields Xµ reads

[αµm, α
ν
n] = mηµν(10−p,p) δm,−n , (6.35)

where ηµν(10−p,p) denotes the flat metric of signature (10 − p, p) ∈ {(9, 1), (5, 5), (1, 9)}. In
the following let us denote the space-like directions and the single universal time direction
with indices m,n, ... and the additional new time-like directions by a, b, ... . Note that the
universal time and one space direction can be gauged away as usual. Then for instance
the off-diagonal graviton states

|V st
G (0)〉 = εµaα

m
−1α̃

a
−1|0〉 (6.36)

have negative norm (for 〈0|0〉 = 1) and give physical ghosts that cannot be gauged away.
Note that the graviton modes |V ss

G (0)〉 = εµνα
m
−1α̃

n
−1|0〉 and |V tt

G (0)〉 = εabα
a
−1α̃

b
−1|0〉 have

positive norm.
In the NS-NS sector of the superstring, one only has to replace the Xµ by their fermionic

superpartners ψµ and the logic goes through analogously. In the R-R sector, there is the
distinction between the IIA/B++ and the IIA/B+− theories, where the latter carry a wrong
overall sign for the kinetic terms of the massless R-R fields. This can be taken care of in
the world-sheet theory by flipping by hand the overlap between the R-R ground states

〈0|0〉+−RR = −〈0|0〉++
RR . (6.37)

Light cone gauge and Lorentz symmetry

The (time-like) T-duality arguments suggest that a change of the target-space signature
does not affect the critical dimension of the string theory. Let us check this explicitly
on the world-sheet. This can be readily seen for the bosonic string in light cone gauge by
checking for anomalies of the SO(p, q) Lorentz symmetry. The world-sheet metric is fixed as
hαβ = ηαβ and we introduce light cone coordinates in space time X+ = 1/

√
2 (X0 +X1),

X− = 1/
√

2 (X0 −X1), where we singled out one time and spatial direction X0, X1.
The target-space metric becomes η+− = η−+ = −1 for the light cone, ηab = −δab for
a, b = 1, . . . , p − 1 remaining time directions and ηmn = δmn for the m,n = 1, . . . , q − 1
spatial directions.

We follow the standard procedure and look at the open string with (NN) boundary
conditions. The remaining gauge freedom is fixed by setting X+ (σ, τ) = x+ + p+τ . Using
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the Virasoro constraint equation ηµν(Ẋ
µ ± X ′µ)(Ẋν ± X ′ν) = 0 to express the oscillator

modes of X− in terms of the transverse modes yields

α−n =
1

p+

(
1

2

∞∑
k=−∞

: ηij α
i
n−kα

j
k : − a δn,0

)
(6.38)

with i, j running over the transverse directions and for simplicity setting α′ = 1/2. The
modes still satisfy a “transverse” Virasoro algebra[

p+α−m, p
+α−n

]
=(m− n) p+α−m+n+(

D − 2

12
(m3 −m) + 2am

)
δm+n

(6.39)

and have commutation relations with the transverse oscillator modes[
αin, p

+α−k
]

= nαin+k . (6.40)

The only relevant appearance of the space-time metric is in commutation relations [αµm, α
ν
n] =

k ηµνδm+n,0. We can use these commutation relations and follow the standard computation
for the potentially anomalous commutator [J i−, J j−] of Lorentz generators Jµν . Doing so
we find [

J i−, J j−
]

= 0 ⇔ D = 26, a = 1 , (6.41)

but no additional constraints on the number of time respectively spatial dimensions. Hence
Lorentz symmetry SO(p, q) is preserved for a total of p+ q = 26 space-time dimensions.

Orbifolding ghosts

Generally, having a theory that has too many degrees of freedom one can proceed in
two ways. Either one gauges extra symmetries or one projects out the unwanted states.
Since gauging symmetries completely removes the time-like directions, we want to take the
second route. Can one remove the massless ghosts by performing an appropriate orbifold
projection? In contrast to the gauging procedure an orbifold will not change the critical
central charge, but will potentially break the 10D diffeomorphism symmetry to a subgroup.

Following the usual recipe for performing an orbifold in string theory, the untwisted
sector is projected to invariant states and a twisted sector must be introduced. Let us
discuss appropriate orbifold projections to remove light ghosts from the Lorentzian theories.
In the IIA/B+−

(9,1) theory, the ghost R-R fields can be projected out by performing an orbifold

by (−1)FL . To avoid the appearance of new massless ghosts in the Z2 twisted sector, one can
combine this action with a half-shift S : X → X+πR along a compactified spatial direction.
For the IIA/B++

(5,5) theories physical ghosts are related to four extra time-like directions.
These ghosts can be removed by taking the quotient by a Z2 reflection I4 : xa → −xa along
these four directions. Similarly, the ghosts in IIA/B++

(1,9) are removed by I8, reflecting the

eight extra time-like coordinates. Finally, the massless ghosts of IIA/B+−
(5,5) and IIA/B+−

(1,9)

are projected out by I4(−1)FL and I8(−1)FL , combining the previous reasoning. These
results are summarized in figure 6.3.
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IIA++

IIA+−

IIB+−IIB++

x

t x

t

(9, 1)

(5, 5)/I4

(1, 9)/I8

(9, 1)/(−1)FL

(5, 5)/(−1)FLI4

(1, 9)/(−1)FLI8

(9, 1)

(5, 5)/I4

(1, 9)/I8

(9, 1)/(−1)FL

(5, 5)/(−1)FLI4

(1, 9)/(−1)FLI8

Figure 6.3: Orbifold projections that remove the massless ghosts for Lorentzian theories.
New ghosts in twisted sectors can be avoided by combining these actions with a shift along
a spatial direction.

Compact time-like dimensions

Eventually, we are interested in compactifications of the exotic string theories to 4 dimen-
sions with signature (3, 1), so in theories with multiple time-like directions some of them
will need to be compactified. The standard problem of compact time-like dimensions are
closed time-like curves which violate causality. Since the orbifolds project out massless
excitations in these directions, one might naively think that the quotient theories are safe.
However, we will see that compact time dimensions in exotic string theories lead to further
complications.

For the IIA/B+−
(9,1) theory the orbifold by (−1)FL removes all ghost fields from the

untwisted sector. In case of the IIA/B++
(5,5) theories however, even though the massless

mixed graviton modes |V (ev,odd)
G (0)〉 = εmaα

m
−1α̃

a
−1|0〉 are projected out, for non-vanishing

momentum/energy the linear combination

|V (ev,odd)
G (pn, eb)〉 = εmaα

m
−1α̃

a
−1|pn, eb〉 − εmaαm−1α̃

a
−1|pn,−eb〉 (6.42)

remains in the spectrum. Here the upper index pair indicates the behavior of the left and
right moving part under the Z2 operation. Here pn, m,n ∈ {0, 1, . . . , 5} denote the usual
energy p0 = E and space-like momenta, and eb, a, b ∈ {6, . . . , 9} denote the extra time-like
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energies. Therefore, there are still massive ghosts in the string spectrum, a Z2 projection
does not allow to remove all of them.

The on-shell condition for such a state is

E2 +
∑
a

(ea)2 =
∑
i

(pi)2 +m2 , (6.43)

where m is the mass of the state. We interpret this condition such that for a state of mass
m with momenta pi the total energy can be distributed among all the time-like energies
such that this quadratic relation is satisfied [192]. Only E is the energy that we have access
to. Note that while for negative E we have an interpretation in terms of anti-particles with
positive E, the additional energies ea can be both positive and negative.

Let us now consider a Lorentzian string on a time-like torus of radius R . As for a
space-like compactification, the time-like momentum (i.e. energy) gets quantized along
the compact direction and leads to a mass contribution, resulting in a KK tower of massive
states. Similarly, the winding modes contribute to the mass so that in total we find the
on-shell condition

E2 +
∑
b

[(mb

R

)2

+

(
nbR

α′

)2
]

=
∑
i

(pi)2 +
2

α′
(N +N − 2a) (6.44)

with a = 1/2 for the superstring and the level-matching condition
∑

amana = −(N −N).
For R >

√
α′ it is tempting to identify a UV cutoff with the Kaluza-Klein scale ΛUV = 1/R

that we assume to be only a few orders of magnitude below the string scale. Let us analyze
this on-shell condition in the IR regime |p| < ΛUV.

In the massless sector N = N = 1/2, a non-vanishing time-like KK/winding mode
(ma, na) 6= (0, 0) already lies outside the IR regime. Thus all the light on-shell states that
we have access to are frozen in the extra time directions and feature ea = 0. Then together
with the Z2 projections there are no light ghosts left, so it seems that we are safe. However,
for the tower of massive string excitations N = N > 1/2 their contribution to the right
hand side of (6.44) can be balanced against KK/winding contributions. Therefore, these
massive excitations combine with time-like KK/winding modes to appear as extremely
light particles from a 4D perspective. As already observed in [4], even for irrational values
of the radius there will always be integers N,N,ma, na such that their 4D mass lies below
any cut-off. Related, there exist kinematically allowed scattering processes like

|Vm1=0(pm1 , e
a
1 = 0)〉+ |Vm2=0(pm2 , e

a
2 = 0)〉

−→ |Vm3>0(pm3 , e
a
f )〉+ |Vm4>0(pm4 ,−eaf )〉

(6.45)

with the extra energies in the final state eaf 6= 0. Thus, the ultralight states with N = N >

1/2 do not decouple in the scattering amplitudes of massless states with N = N = 1/2.
We can summarize these findings by saying that the dimensionally reduced 10D Lorentzian
supergravity actions cannot be considered as Wilsonian effective actions of a 4D theory.
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Ghosts for the Euclidean string

The quantization of the Euclidean fundamental string has been investigated in [4] and
features a couple of new aspects and pathologies. Note that this theory is different from
the Wick rotated Lorentzian string. In section 6.2.4 we will review and continue this
analysis, where our special focus will be on the construction of boundary states, providing
the CFT description of D-branes for these exotic string theories.

One new aspect of the quantization is that factors of i =
√
−1 appear at various places.

For instance, the mode algebra for the bosonic fields Xµ now reads

[α̂µm, α̂
ν
n] = −im ηµν(10−p,p) δm,−n . (6.46)

As a consequence, the diagonal graviton/B-field states |V ss
G (0)〉 and |V tt

G (0)〉 have negative
norm and the off-diagonal ones |V st

G (0)〉 positive norm (for 〈0|0〉 = 1). However, this is
not consistent with the normalization of the Einstein-Hilbert term for the Euclidean string
SUGRA actions (6.33). This can be remedied by choosing the correct normalization of the
vertex operators. These have been worked out in [4]. The graviton gets an extra factor of
−i, rendering its norm positive, while the B-field remains a ghost. Of course the time-like
ghosts from the previous section also remain in the spectrum.

Orientifolding ghosts

Now we investigate whether there also exist Z2 operations that can mod out all the massless
ghost fields for the Euclidean exotic string theories IIAE/IIBE. Let us start with the IIB−+

(9,1)

theory, which is the S-dual of the IIB+−
(9,1) theory. By looking at its SUGRA action (6.33)

we see that H3, F1, F5 have the wrong sign of the kinetic terms and F3 the usual sign.
These are precisely the p-form fields that are odd and even under the world-sheet parity
transformation Ω, and indeed the S-dual of (−1)FL is known to be Ω. Therefore, the
orientifold IIB−+

(9,1)/Ω has no ghost fields in the closed string sector. Depending on whether

the orientifold projection has fixed loci or acts freely (after combining it again with a shift
symmetry), there will be a twisted sector in the form of appropriate D-branes that need to
be introduced to cancel the R-R tadpole of the O-plane. This open string sector can host
additional ghosts. We will come to this point in section 6.2.6.

Now by successively applying spatial T-dualities we can find the orientifold projections
for all the IIA/B−,β(10−p,p) theories. After one T-duality one gets IIA−−(8,2) with the projection
ΩI1, where I1 reflects the new additional time-like coordinate. The corresponding branes
are D8-branes localized at a point in the new time-like direction. Another T-duality leads
to the IIB−−(7,3)/ΩI2(−1)FL orientifold, etc. All the resulting quotients are shown in the
right hand part of figure 6.4. T-dualizing instead along the time-like direction, we find the
appropriate orientifold quotient to be IIA−+

(10,0)/ΩĨ1(−1)FL , where Ĩ1 is a reflection along
the space-like direction that was created by T-dualizing.
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t(10, 0)/ΩĨ1(−1)FL

(6, 4)/ΩI3(−1)FL

(2, 8)/ΩI7(−1)FL

(8, 2)/ΩI1

(4, 6)/ΩI5

(0, 10)/ΩI9

(9, 1)/Ω

(5, 5)/ΩI4

(1, 9)/ΩI8

(7, 3)/ΩI2(−1)FL

(3, 7)/ΩI6(−1)FL

Figure 6.4: Orientifold projections removing the massless ghosts for Euclidean theories.

Compact dimensions

Another new aspect of the Euclidean theories is that the tower of string excitations has
imaginary squared mass m2. Moreover, since under T-duality a space-like circle maps to a
time-like one and vice versa, the winding modes contribute with the opposite sign as the
KK modes. Thus, the on-shell relation for a compactification on a torus TD of radii Rk

with metric ηk = ±1 now reads

E2 −
D∑
k=1

ηk

[(
mk

Rk

)2

−
(
nkRk

α′

)2
]

=
∑
i

(pi)2 − i 2

α′
(N +N − 2a) . (6.47)

with the level-matching condition
∑

k ηkmknk = N − N . In contrast to the Lorentzian
string, here the KK/winding modes can never cancel against the string oscillations. How-
ever, for both space-like and time-like compactifications the KK mode contribution can
cancel up to arbitrary precision against the winding mode contribution, leading again to
the conceptual problem of interpreting the dimensional reduction of the 10D Euclidean
supergravity actions as Wilson effective theories. As for the Lorentzian string, these ultra-
light modes do not decouple in string scattering amplitudes.

The CFT perspective is rather robust against signature changes as the signature at the
level of the CFT is merely a sign change in the commutation relations. Thus we will now
focus on developing the required tools to compute the brane spectrum of the Euclidean
theories and especially the tensions of the branes from the CFT.
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6.2.4 CFT Description of Euclidean Exotic Strings

In this rather technical section we will take a closer look on the Euclidean world-sheet
CFTs. After a short review of the closed string construction of [4] we construct the purely
Euclidean open string theories including the fermionic sector. We use this to identify the
allowed D-branes of the different theories as well as the tension of the branes. In section
6.2.6 these results will be confirmed using the map (6.136) inspired by horizon crossing in
the presence of negative branes.

Let us first present a couple of basic results for the structure of CFTs on purely Eu-
clidean world-sheets. We will see that in this case some extra factors of i appear.

Lorentzian vs. Euclidean world-sheets

When considering purely Euclidean bosonic closed strings we have to thoroughly disentan-
gle the differences between a Lorentzian, a Wick-rotated Euclidean and a purely Euclidean
field theory. We could take several approaches to quantize the theory, but the differences
in the mode algebra of the field become most apparent when using the path integral for-
malism. Consider the path integral

Z =

∫
[Dγ] [DX] eKSε , (6.48)

where we introduced K = {i,−1} with K = −1 only in the Wick-rotated case, and
ε = {1,−1} labels the Euclidean or Lorentzian world-sheet action. Thus K = i, ε = −1
is the Lorentzian string, K = −1, ε = 1 is the Wick-rotated Euclidean string and finally
K = i, ε = 1 is the purely Euclidean string. Before applying path integral methods we
have to bring the action into a quadratic form

S = − ε

2πα′

∫
d2σ
√
ε detγ ηµν X

µ∂a∂aX
ν . (6.49)

The kinetic operator depends on the world-sheet metric and thus differs for Lorentzian and
Euclidean field theories. The two point function has to satisfy the identity

2πα′

Kε
δµ2
µ1
δ2(σ − σ′) =

√
ε detγ ηµ1ν ∂

a∂a 〈Xµ2(σ)Xν(σ′)〉 , (6.50)

where σ, σ′ are coordinates on the world-sheet. The kinetic operator on the rhs is in the
σ = (σ1, σ2) coordinates. Let us concentrate for a moment on the two Euclidean field
theories. Introducing the usual cylinder world-sheet coordinate

z = eσ1+iσ2 , (6.51)

the equation for the two point function becomes

2πα′

K
δµ2
µ1
δ2(z − w) = ηµ1ν ∂z∂z 〈Xµ2(z, z)Xν(w,w)〉 . (6.52)
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The solution to this is given by

〈Xµ(z, z)Xν(w,w)〉 = ηµν
α′

K
log|z − w|2 . (6.53)

We want to derive the mode algebra for the CFT. The action in the above coordinates
reads

S =
1

2πα′

∫
d2z ∂X(z, z) · ∂X(z, z) , (6.54)

where the target-space metric is hidden in the multiplication dot. Going through the usual
steps for the above action we find holomorphic and anti-holomorphic currents ∂Xµ(z), ∂Xµ(z).
Using (6.52) we find for their two-point functions

〈∂Xµ(z)∂Xν(w)〉 = ηµν
α′

K

1

(z − w)2
. (6.55)

Expanding the current fields ∂Xµ(z) = −
√

α′

2ε

∑
α̂µm z

−m−1, the mode algebra reads

[α̂µm, α̂
ν
n] = ε ηµν

α′

K
mδm+n,0 . (6.56)

Thus we see that for the Wick-rotated Euclidean string (K = −1) the procedure gives the
usual commutation relations, whereas in the purely Euclidean field theory (K = i) the
commutation relations get an extra factor of −i.

Closed and open Euclidean strings

From now on we will only be concerned with the purely Euclidean theories, i.e. the world-
sheet theories of the IIAE and IIBE exotic string theories. To construct the world-sheet
theory we follow [4] closely. This section follows the same line of arguments already pre-
sented in chapter 2, now allowing for a general signature. This introduces additional phase
factors, which have to be treated carefully, which especially includes correct treatment of
branches. The action for a free boson is given by

Sb =
1

2πα′

∫
d2σ
√

detg gab ηµν ∂aX
µ∂bX

ν . (6.57)

The world-sheet metric g is gauge fixed to the flat metric gσ1σ1 = gσ2σ2 = 1 and light cone
coordinates are chosen as

σ± = σ1 ± iσ2 , (6.58)

such that the derivatives become

∂± =
1

2
(∂σ1 ∓ i∂σ2) . (6.59)
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We now choose a convenient mode expansion, simplifying the mode algebra as much as
possible. In this framework the oscillators will behave as in the usual string theories. The
zero modes will be solely responsible for the changes in the physics. The mode expansion
of the closed string sector is given by

Xµ(σ1, σ2) = xµ + α′pµσ1 +

√
α′

2i

∑
n6=0

(
αµn
n
e−nσ

+

+
αµn
n
e−nσ

−
)

= xµ +
α′

2
pµ log(|z|2) +

√
α′

2i

∑
n 6=0

(
αµn
n
z−n +

αµn
n
z̄−n
)
,

(6.60)

so that the mode algebra becomes

[xµ, pν ] = iηµν , [αµm, α
ν
n] = [αµm, α

ν
n] = mδm,−n η

µν (6.61)

for m,n 6= 0. Moreover, one has as usual [αµm, α
ν
n] = 0, and the oscillators αµm, α

µ
m commute

with the zero modes xµ and pµ.
Let us make a couple of remarks. To arrive at this standard mode algebra, we have

effectively rescaled the standard oscillator modes α̂ by a factor of
√
i. As a consequence,

one needs to be very careful when computing overlaps of states 〈φ1|φ2〉. Indeed, taking
the general definition of the conjugate (φn)† = (φ†)−n for a field φ in Euclidean CFT into
account, the rescaling leads to phase factors, as some of the fields won’t be purely real
anymore. On the one hand, in this paper we are mostly concerned with partition functions
where these phases do not matter as one simply counts the number of states at each level.
On the other hand, in the boundary state overlaps (to be introduced later in (6.79)), due
to loop-channel tree-channel equivalence the (suitably generalized) CPT operator Θ has to
remove these factors. These two facts make this basis very useful for our computations.

If one wants to calculate the low energy effective action and determine for instance the
sign of the kinetic terms, one also needs to know the normalization of the corresponding
vertex operators. In fact in [4] the normalizations for the metric and the B-field vertex
operators have been determined. The graviton state turned out to be

|VG(p)〉 = iεµν α̂
µ
−1α̂

ν

−1|p〉 = εµν α
µ
−1α

ν
−1|p〉 , (6.62)

whereas the Kalb-Ramond state has a different normalization

|VB(p)〉 = −bµν α̂µ−1α̂
ν

−1|p〉 = −ibµν αµ−1α
ν
−1|p〉 . (6.63)

Thus, working with the modes αµ, αµ and treating them in the same way as the usual
oscillators in string theory makes it evident that the B-field is a ghost.

In a similar fashion one can expand the open string into modes. For Neumann-Neumann
(NN) and Dirichlet-Dirichlet (DD) boundary conditions the mode expansion reads

Xµ
NN = xµ + 2α′pµσ1 +

√
−2iα′

∑
n6=0

αµn
2n

(
e−nσ− + e−nσ+

)
,

Xµ
DD = xµ +

∆xµ

π
σ2 +

√
−2iα′

∑
n 6=0

αµn
2n

(
e−nσ− − e−nσ+

)
,

(6.64)
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with the distance between the branes ∆xµ = xµa − x
µ
b . Taking the derivatives one gets

∂±X
µ
NN = α′pµ −

√
α′

2i

∑
n 6=0

αµn e
−nσ± = −

√
α′

2i

∑
n∈Z

αµn e
−nσ± ,

∂±X
µ
DD = ∓i∆x

µ

2π
±
√
α′

2i

∑
n 6=0

αµn e
−nσ± = ±

√
α′

2i

∑
n∈Z

αµn e
−nσ± ,

(6.65)

where we have defined the zero modes as

αµ,NN
0 = −pµ

√
2iα′ , αµ,DD

0 = −
√
−i√

2α′π
∆xµ . (6.66)

For completeness we also present the mode expansion for mixed boundary conditions

Xµ
ND = xµ +

√
−2iα′

∑
n∈Z+1/2

αµn
2n

(
e−nσ− + e−nσ+

)
,

Xµ
DN = xµ +

√
−2iα′

∑
n∈Z+1/2

αµn
2n

(
e−nσ− − e−nσ+

)
.

(6.67)

Next we want to define the closed and open string partition functions. For that purpose we
first focus just on a single direction X(σ1, σ2) and recall that in the Sugawara construction
the energy momentum tensor reads

T (z) =
i

α′
ηµν : ∂Xµ(z)∂Xν(z) : . (6.68)

With this, the normal ordered Hamiltonian becomes

H =

∫ 2π

0

dσ

2πα′

(
(∂+X)2 + (∂−X)2

)
= −i

(
L0 + L0 − c

12

)
, (6.69)

where the factor of i originates in the mode expansion. The explicit form of the energy
momentum tensor’s zero mode L0 is

L0 = i
α′p2

4
+
∑
n>0

ηµν α
µ
−nα

ν
n (6.70)

and similarly for L0. The second term is just the number operator which has non-negative
integer eigenvalues. In contrast to the usual case, the zero mode contribution is purely
imaginary.

The momentum P which generates σ2 translations is now given by

P = −i
∫ 2π

0

dσ

2πα′

(
(∂+X)2 − (∂−X)2

)
= −(L0 − L0) . (6.71)



6.2 Exotic String Theories 152

In this case the normal ordering constant cancels out. As a consequence the torus and
cylinder amplitudes receive additional factors of i. The torus amplitude with complex
structure τ = τ1 + iτ2 is constructed by taking a field theory on a circle, translating in σ1

direction by τ2, in σ2 direction by τ1 and identifying the ends, producing the trace. With

q = e2πi(τ1+iτ2) , (6.72)

the torus partition function can be written as

Ztorus = Tr(e−2πiτ2H−2πiτ1P ) = Tr
(
qL0− c

24 qL0− c
24

)
. (6.73)

Note that due to the missing Wick rotation for the Euclidean CFT, the coefficient in front
of the Hamiltonian is −2πi instead of the usual −2π. But this factor gets multiplied by the
additional factor of −i in the Hamiltonian (6.69), such that the expression for the partition
function is still the usual one. Evaluating the amplitude for a single direction one obtains

Ztorus =
eiπ/4√

4πα′τ2 |η(τ)|2
, (6.74)

reproducing the result of [4].
Now we turn to the open string cylinder amplitude which is defined as

ZC(t) = Tr
(
e−2πitHopen

)
= Tr

(
e−2πt(L0− c

24
)
)
, (6.75)

with t the circumference of the cylinder. The explicit form of L0 for NN and DD boundary
conditions is

LNN
0 = iα′p2 +

∑
n>0

ηµν α
µ
−nα

ν
n , LDD

0 =
i

4π2α′
Y 2 +

∑
n>0

ηµν α
µ
−nα

ν
n . (6.76)

The total distance between the Dirichlet loci is defined as Y 2 = ηµν∆x
µ∆xν . Now, consid-

ering only a single direction of either NN or DD type, the open string partition functions
can be evaluated straightforwardly with the result

ZC(NN)(t) =
e−iπ/4√

2α′t η(it)
, ZC(DD)(t) = e−

it
2πα′ Y

2 1

η(it)
. (6.77)

The additional factor of e−iπ/4 in the Neumann-Neumann case arises from the analytic
continuation of the Gaussian integral for the zero mode4. For mixed boundary conditions
one finds

ZC(ND)(t) =

√
2η(it)

θ4(it)
. (6.78)

4We often employed the Gaussian integral
∫∞
−∞ dx e−ax

2+bx =
√

π
a · e

b2

4a and its analytic continuation.
This is where most of the phases arise.
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As usual, the open string (loop-channel) cylinder amplitude is closely related to the (tree-
channel) overlap of boundary states

Z̃(l) = 〈ΘB| e2πilHclosed |B〉 = 〈ΘB| e−2πl(L0+L0− c
12

) |B〉 , (6.79)

with l the length of the cylinder formed by the closed strings exchanged between the
boundaries. We will construct the appropriate boundary states in the next section.

Boundary states

Next we analyze the construction of boundary states in a Euclidean world-sheet CFT5. For
the moment we assume also a purely Euclidean space-time and postpone the treatment
of the effects of the target-space metric signature to the next section. The boundary
conditions are unaffected by the signature of the world-sheet. Despite the now Euclidean
signature we will think of the coordinate σ1 ∈ (0, l) as the time coordinate and σ2 ∈ (0, π)
as the space component. The conformal map exchanging the open and closed channels
acting on the complexified coordinate ξ = σ2 + iσ1 is then given by

f(ξ) = −iπ
l
ξ , (6.80)

which is the same as in the Lorentzian case exchanging world-sheet time τ and space σ.
The Neumann and Dirichlet gluing conditions are given by

∂σ1X
µ|σ1=0 |BN〉 = 0 , ∂σ2X

µ|σ1=0 |BD〉 = 0 . (6.81)

Inserting the mode expansion (6.60) results in

pµ |BN〉 = 0 , (αµn + αµ−n) |BN〉 = 0 (6.82)

as well as
xµ |BD〉 = yµ , (αµn − α

µ
−n) |BD〉 = 0 , (6.83)

where yµ is the position of the brane. These are exactly the same conditions as in the
Lorentzian case. Defining a matrix Sµν = ±ηµν , with the + sign for Neumann directions
and the − sign for Dirichlet directions, the non-zero mode conditions are given by(

αµn + Sµν α
ν
−n
)
|B〉 = 0 . (6.84)

As usual the solution to these gluing conditions is

|B〉 =
1

N
exp

(
−
∞∑
n=1

1

n
αµ−n Sµν α

ν
−n

)
|0〉 . (6.85)

5Our analysis follows that of [193–196] for Lorentzian strings.
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Using the explicit form of the boundary states (6.85), the overlap (6.79) becomes

Z̃C(NN)(l) =
1

N 2
N

1

η(2il)
. (6.86)

Mapping the open string loop-channel result with t = 1/2l and a modular S transformation
to the closed string tree-channel, the normalization constant can be determined via

ZC(NN)(t) =
e−iπ/4√

2α′t η(it)
=

e−iπ/4√
α′ η(2il)

!
=

1

N 2
Nη(2il)

⇒ NN = (α′)1/4eiπ/8 . (6.87)

Turning to the DD case, the only thing that changes is the α0 zero-mode contribution
which is now given by ∫ ∞

−∞

dkadkb
2π

eikaxa eikbxb 〈ka| e−2πl(α0)2 |kb〉

=

∫ ∞
−∞

dkadkb e
ikaxa eikbxb e−πilα

′k2
b δ(ka + kb)

=

∫ ∞
−∞

dka e
ika(xa−xb) e−πilα

′k2
a =

eiπ/4√
α′l

e−i
Y 2

4πα′l ,

(6.88)

where we used 〈0|0〉 = 2πδ(0) and that the CPT operator Θ in (6.79) involves a complex
conjugation. Therefore the total DD overlap is

Z̃C(DD)(l) =
e−iπ/4

N 2
D

1√
4π2α′l η(2il)

e−i
Y 2

4πα′l . (6.89)

Comparing this to the open string amplitude we obtain

ND = (α′)−1/4 e−iπ/8 . (6.90)

Finally, as a cross-check for the normalization factors, we evaluate the mixed case as

Z̃C(ND)(l) =
1

NNND

√
2η(2il)

θ2(2il)
=

√
2η(it)

θ4(it)
= ZC(ND)(t) , (6.91)

featuring that the normalizations of the boundary states are indeed consistent.

The total cylinder amplitudes

After having studied the open string amplitude for just a single direction, we now combine
the separate contributions into a total cylinder amplitude of two parallel d-dimensional
branes in D space-time dimensions6. For the open string loop-channel amplitude one
obtains

A = Vd

∞∫
0

dt

2t

(
e−iπ/4√
8π2α′t

)d
1

ηD−2(it)
e−

it
2πα′ Y

2

, (6.92)

6Note that in this convention a Dp-brane has d = p+ 1.
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where the additional η2(it) factor originates from the ghost contribution. The total closed
string tree-channel amplitude is

Ã =
Vd
N 2

∞∫
0

dl eiπ(D−d)/4

(
1

4π2α′l

)(D−d)/2
1

ηD−2(2il)
e−

i
4πα′lY

2

. (6.93)

Applying a modular S-transformation, this amplitude is mapped to the loop-channel and
comparing it to (6.92) one can read off the normalization

N−1 = 2
D−2

4 e
iπ
8

(D−2d)(4π2α′)
1
4

(D−2d−2) . (6.94)

Finally, the tension of the branes is determined by the coupling of the boundary state to
a graviton with polarization εµν

〈Vg|B〉 = − 1

N
〈0| εµνSµν |0〉 = − 1

N
εµνS

µν Vd+1
!

= −Td εµνSµν Vd+1 , (6.95)

so that the tension is given by the normalization of the boundary state as Td = N−1. For
connecting a D-brane theory to phenomenology, we require the tension to be real, so that
the normalization of the boundary state also has to be real. Inserting D = 10 into (6.94),
we see that there are exactly three cases fulfilling this condition, d ∈ {1, 5, 9} with tension

Td = ±22(4π2α′)(4−d)/2 , (6.96)

with the minus sign for d ∈ {1, 9} and the plus sign for d = 5.

Fermionic boundary states

So far we have only discussed the contribution of the world-sheet bosons to the boundary
states. Let us now also discuss the inclusion of the world-sheet fermions. The action for a
free fermion is

Sf =
iε

4π

∫
d2σ
√
ε detg ηµν Ψ

µ
γα∂αΨν , (6.97)

where the 2 × 2 matrices γα satisfy the Clifford algebra with respect to the world-sheet
metric gαβ

{γα, γβ} = 2gαβ 12 . (6.98)

Moreover, one defines

Ψ
µ

= Ψµγ0 in the Lorentzian case and

Ψ
µ

= ΨµC in the Euclidean case,
(6.99)

with C the charge conjugation matrix

(γα)T = CγαC−1 , CT = C† = C−1 = C . (6.100)
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For Lorentzian signature we choose the representation

γ0 =

(
0 1
1 0

)
= σ̂1 , γ1 =

(
0 1
−1 0

)
. (6.101)

Under Wick rotation τ = iσ1 one has ∂τ → −i∂σ1 , so effectively γ1 is replaced with

γ1 =

(
0 −i
i 0

)
= σ̂2 . (6.102)

Therefore, the Wick rotation has the effect of replacing the Lorentzian gamma matrices
with the Euclidean gamma matrices. Then, the kinetic term of the Wick rotated theory is
the same as in the purely Euclidean theory up to an overall sign. Choosing the same Pauli
matrices σ̂1, σ̂2 also as a representation for the Euclidean Clifford algebra, the conditions
(6.100) uniquely determine C to be

C =

(
0 −1
−1 0

)
= −γ0 . (6.103)

Denoting the components of a 2D spinor as Ψµ = (Ψµ
+, Ψµ

−)T, the action reduces to

Sf = −K
2π

∫
d2σ ηµν

(
Ψµ

+∂−Ψν
+ + Ψµ

−∂+Ψν
−

)
, (6.104)

where K = −1 for the (Wick-rotated) Lorentzian world-sheet and K = i for the Euclidean
case. Here we have used again the coordinates σ± = σ1 ± iσ2. The equations of motion
are

∂−Ψµ
+ = ∂+Ψµ

− = 0 (6.105)

with the usual (anti-)holomorphic solutions Ψµ
+ = Ψµ

+(σ+) and Ψµ
− = Ψµ

−(σ−), which can
be expanded as

Ψµ
+ =
√
−K

∑
r

bµr e
−2πirσ+

, Ψµ
− =
√
−K

∑
r

b
µ

r e
−2πirσ− . (6.106)

As in the bosonic case, the factor
√
−K ensures that the mode algebra takes the usual

form
{bµr , bνs} = δr,−s η

µν , {bµr , b
ν

s} = δr,−s η
µν {bµr , b

ν

s} = 0 . (6.107)

The energy momentum tensor is obtained by the Sugawara construction, resulting in the
explicit expression for the zero mode

L0 =
∑
r≥1/2

(
r + 1

2

)
ηµν b

µ
−r b

ν
r . (6.108)

Now that we have the algebra of the fermions we turn to the construction of the boundary
state. We will work again in the Euclidean formalism. The exchange of σ1 and σ2 acts on
the Euclidean light cone variables as

σ± → σ′± = ∓iσ± . (6.109)
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The fermions transform under this conformal transformation as

Ψ′±(σ′±) =

(
∂σ′±

∂σ±

)−1/2

Ψ±(σ±) . (6.110)

Imposing the open string boundary conditions on the boundary state, and taking the
transformation behavior into account one obtains conditions on the boundary states(

Ψµ
+(σ+) + iηSµν Ψν

−(σ−)
)
|B, η〉 = 0 , (6.111)

where η = ±1 labels periodic/antiperiodic boundary conditions. Expanding into modes
results in the fermionic gluing conditions(

bµr + iηSµν b
ν

−r

)
|B, η〉 = 0 . (6.112)

As usual, these gluing conditions are solved by the state

|B, η〉NS =
1

N
exp

−iη ∞∑
r=1/2

bµ−r Sµν b
ν

−r

 |0〉 (6.113)

in the NS sector and by

|B, η〉R =
1

N
exp

(
−iη

∞∑
n=1

bµ−n Sµν b
ν

−n

)
|0〉R (6.114)

in the R sector, where |0〉R is the Ramond ground state which satisfies the gluing conditions
for the zero modes. The resulting tree-channel annulus amplitudes for a single fermion read

〈B, η| e−2πl(L0+L0− c
12

) |B, η〉NS =

√
θ3(2il)

η(2il)
,

〈B, η| e−2πl(L0+L0− c
12

) |B,−η〉NS =

√
θ4(2il)

η(2il)
,

〈B, η| e−2πl(L0+L0− c
12

) |B, η〉R =

√
θ2(2il)

η(2il)
,

〈B, η| e−2πl(L0+L0− c
12

) |B,−η〉R = 0 .

(6.115)
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Applying a modular S-transformation leads to the open channel amplitudes

TrNS

(
e−2πt(L0− c

24
)
)

=

√
θ3(it)

η(it)
,

TrNS

(
(−1)F e−2πt(L0− c

24
)
)

=

√
θ4(it)

η(it)
,

TrR

(
e−2πt(L0− c

24
)
)

=

√
θ2(it)

η(it)
,

TrR

(
(−1)F e−2πt(L0− c

24
)
)

= 0 ,

(6.116)

which are the same as for Lorentzian superstrings.
Now let us construct the boundary state for a full d-dimensional D-brane in 10D.

As usual, invariance of the boundary states under the left and right GSO projections and
stability requires the presence of all sectors. Then the total loop-channel annulus amplitude
for two parallel d-dimensional branes becomes

A = Vd

∞∫
0

dt

2t

(
1√

8π2α′t

)d
eiπd/4

θ4
3(it)− θ4

4(it)− θ4
2(it)

η12(it)
e−

it
2πα′ Y

2

. (6.117)

Transforming this amplitude to the closed tree-channel amplitude

Ã = Vd

∞∫
0

dl

( √
l√

4π2α′

)d

eiπd/4
θ4

3(2il)− θ4
2(2il)− θ4

4(2il)

η12(2il) · (
√

2l)8
e−

i
4πα′lY

2

, (6.118)

allows us to fix the relative contribution from the boundary states as

|D〉 =
1

2N

(
|B,−〉NS − |B,+〉NS + i |B,+〉R + i |B,−〉R

)
, (6.119)

where the normalization N is the same as in the bosonic case.

6.2.5 The Influence of Space-time Signature

In the CFT approach the signature of the space-time merely appears as a sign change in
the commutation relations. This is hidden in most formulas we have written down so far.
In this section we will take a closer look how the signature influences the amplitudes and
boundary states.

We have seen that after absorbing the factor K = i in a redefinition of the modes, we
essentially get back the results for the Lorentzian string. The only difference resides in the
zero mode contribution. As we will be concerned with branes wrapping various amounts
of time dimension, in the following a D

(s,t)
(10−p,p)-brane will fill t time and s space dimensions

in a R10−p,p target-space with p time and 10− p space dimensions. Thus the system we are
concerned with consists of
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• Nt = t time dimensions with Neumann boundary conditions,

• Dt = p− t time dimensions with Dirichlet boundary conditions,

• Ns = s space dimensions with Neumann boundary conditions,

• Ds = 10− p− s space dimensions with Dirichlet boundary conditions.

In the analysis so far all directions were assumed to be space-like. Let us now analyze
what changes in case some of the directions become time-like. First, recall that the oscil-
lator part of the boundary state (6.85) involves the matrix Sµν . For a D

(s,t)
(10−p,p)-brane this

takes the form

S =


1Ns

−1Nt
−1Ds

1Dt

 . (6.120)

Thus, we see that the oscillators of a space-like N/D direction contribute to the boundary
state like a D/N time-like direction. However, these signs in Sµν cancel anyway when
computing the overlap.

Now, let us consider the zero mode contribution, where some phase factors appeared
from the zero mode integrals. For a Neumann boundary condition in a space-like direction
this phase is

N−2
N,space ∝

∫ ∞
0

dp e−πip
2

= e−iπ/4 . (6.121)

Changing the signature replaces p2 by −p2, so that

N−2
N,time ∝

∫ ∞
0

dp eπip
2

= eiπ/4 . (6.122)

Similarly, for a Dirichlet direction the exact same integrals appear in the overlap of the
zero modes of the boundary states, i.e. for a space-like direction the phase

N 2
D,space ∝

∫ ∞
0

dp e−πip
2

= e−iπ/4

⇒ N 2
D,time ∝

∫ ∞
0

dp eπip
2

= eiπ/4
(6.123)

appears. This implies that changing the signature, the only effect on the normalization of
the boundary state is a change of the phase factor such that

arg (NN,space) = arg (ND,time) ,

arg (NN,time) = arg (ND,space) .
(6.124)
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Effectively this means that the formula for the normalization (6.94) holds in all signatures,
one just has to adjust the phase factor as

T
(s,t)
(10−p,p) = 22e

iπ
4

(5+t−p−s)(4π2α′)
1
2

(4−s−t) . (6.125)

Note that we have simply replaced d → d̃ = d + Dt − Nt = p + s − t in the phase factor
to account for the additional phases. This formula is now valid for all branes in Euclidean
world-sheet theories.

Taking now into account that the tension is real only for d̃ ∈ {1, 5, 9}, it is straightfor-
ward to iterate all possible (real) branes for a given space-time signature. In the appendix
we present an exhaustive list of all D-branes in all possible Euclidean string theories. Here,
let us just discuss two examples of space-time signature (7, 3) and (5, 5).

In the first case there are 3 time directions, thus p = 3. Then, d̃ ∈ {1, 5, 9} requires that
s − t is either −2, 2 or 6. Moreover s and t count the number of longitudinal dimensions
of the brane, which cannot exceed the available dimensions, i.e. in this case 0 ≤ t ≤ 3,
0 ≤ s ≤ 7. Iterating over all possibilities one finds the allowed branes and tensions as
shown on the left in table 6.1. Note that the tensions are given by (6.125), here we just
list the signs. Now we turn to the second example with signature (5, 5). As p = 5, from
d̃ ∈ {1, 5, 9} follows that s− t is either equal to −4, 0 or 4. Moreover, s and t are integers
in the interval [0, 5]. Iterating over all possibilities we find the brane spectrum listed on
the right in table 6.1.

s t Tension Dp E/L

0 2 − D1 E

1 3 − D3 L

6 0 − D5 E

7 1 − D7 L

2 0 + D1 E

3 1 + D3 L

4 2 + D5 E

5 3 + D7 L

s t Tension Dp E/L

0 4 − D3 E

1 5 − D5 L

5 1 − D5 L

4 0 − D3 E

0 0 + D(-1) E

1 1 + D1 L

2 2 + D3 E

3 3 + D5 L

4 4 + D7 E

5 5 + D9 L

Table 6.1: Brane spectrum for signature (7, 3) (left) and signature (5, 5) (right).

As one can see, only even dimensional branes exist, implying that we are in a type IIB
setup. Note that this information was not put in by hand, but is enforced by the signature of
space-time. These tables agree precisely with the results obtained by a spacetime argument
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[12]. Moreover, the tables are consistent with the classification of D-branes obtained by
Hull.

As a final remark we note that in our derivation the constraints for the allowed D-branes
followed directly from the bosonic normalization factor. We have not explicitly discussed
the GSO projections in the fermionic sector, but as usual the constraint on even/odd
dimension of the branes follows directly from the Clifford algebra of the fermionic zero
modes. This computation does not change in the Euclidean case so that the D-branes
obtained from the bosonic normalization are also GSO invariant.

Orientifolds of Euclidean strings

In this section, we will take a look at orientifold projections of the Euclidean exotic super-
string theories. As the calculation strongly resembles the usual one, we will be very brief
and refer to standard textbooks [195, 197] for more details. Here we only show that in
the computation of the loop-channel Klein-bottle and Möbius strip amplitudes, the same
phase factors appear as for the corresponding annulus amplitude.

Thus, let us consider a single bosonic direction X(σ1, σ2). The orientifold projection
Ω : (σ1, σ2)→ (σ1,−σ2) acts on the modes as

Ω αn Ω−1 = αn . (6.126)

One can also combine Ω with the reflection I1 : X → −X so that

(ΩI1) αn (ΩI1)−1 = −αn . (6.127)

Moreover, we choose the action of Ω on the vacuum as Ω |0〉 = |0〉. Recall that the Klein-
bottle amplitude is defined as

ZKΩ = Tr
(

Ω qL0−c/24 qL0−c/24
)

= Trsym

(
e−4πt(L0−c/24)

)
. (6.128)

The non-zero mode contribution again agrees with the usual result, while the zero modes
contribute a phase due to the additional factor of i in the Gaussian integral. Thus for a
single boson we get

ZKΩ =
e−iπ/4√
α′t

1

η(2it)
. (6.129)

The Klein-bottle amplitude for the orientifold projection ΩI1 does not receive any zero
mode contribution so that one obtains

ZKΩI1 = Tr
(

ΩI1 q
L0−c/24 qL0−c/24

)
= e

iπ
24

√
2

√
η(2it)

θ2(2it)
. (6.130)

Turning to the open string sector, the action of the orientifold on the modes is

Ω αµn Ω−1 = ±(−1)nαµn , (6.131)
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with the plus sign for NN boundary conditions and the minus sign for DD conditions.
Again the non-zero modes agree with the usual expressions. As in the DD sector there is
no zero mode contribution in the open string channel, the Möbius strip amplitude is as
usual

ZM(DD) = e
iπ
24

√
2

√
η(it+ 1

2
)

θ2(it+ 1
2
)
. (6.132)

The NN amplitude receives an additional phase from the Gaussian integral so that

ZM(NN) = e
iπ
24
e−iπ/4√

2α′t

1

η(it+ 1
2
)
. (6.133)

Therefore, both the former annulus amplitudes and these additional non-oriented one-loop
amplitudes differ from the usual ones for Lorentzian signature by the same relative phases.
The next step is to introduce the corresponding crosscap states satisfying the usual crosscap
gluing conditions and allowing the description of the amplitudes in tree-channel. Moreover,
one can add the contributions from the world-sheet fermions. However, also here the only
difference to the standard case is the appearance of the same phases as already experienced
for the D-brane boundary states. Thus, we refrain from presenting the explicit form.

Performing now a full orientifold projection7 ΩI9−p of the Euclidean type IIA/B super-
string theories, the tadpole cancellation conditions go through as usual, the Op-planes will
have tension

TOp = −2p−4TDp . (6.134)

Introducing time-like directions has the same effect on the phase of the tension as for the
corresponding boundary states. To cancel the tadpole induced by the orientifold projection
one can introduce stacks of Dp-branes on top of the orientifold planes.

6.2.6 Exotic Brane Phenomenology

The mathematical description of the Euclidean CFTs in the previous sections can now be
studied in regards to their phenomenological viability. While the additional time directions
necessarily lead to ghost states in the closed string sector, we will study the possibility of a
ghost-free gauge subsector. Moreover, we demand the existence of a subspace of signature
(3,1). This of course rules out the purely space-like IIA theory with signature (10,0) as well
as theories with less than three space dimensions. The absence of massless ghost requires
the brane to have negative tension. This can be seen as follows. The DBI action of a brane
expanded to low order is given by

SDBI+CS =− Tq
∫

Σq+1

dq+1x
√
|g| e−φ

[
1 +

1

4
(2πα′)2FµνF

µν + ...

]

+ µq

∫
Σq+1

[Cq+1 + F ∧ Cq−1 + ...] .

(6.135)

7As already shown in figure 6.4 there will be extra factors of (−1)FL in certain cases.
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To obtain the Euclidean branes from this one can use a map developed in [12]. This
map relates a usual type II theory to an exotic theory. Explicitly it is given by

det eaµ → ω−p det eaµ ,

eaµ =
(
ea‖, e

a
⊥
)
→ ω

1
2

(
ω−1ea‖, e

a
⊥
)
,

G(9,1) → ωG(10−p,p) ,

e−φ → ω
p−3

2 e−φ ,

(Cp+1)|Σp+1 → −(Cp+1)|Σp+1 ,

(6.136)

where ω = ±i. Note that under this map the gauge field kinetic terms |F 2| change their
sign. We have seen that the branes can have positive as well as negative tension. Thus
after applying the map there are two possibilities for the DBI action.

SDBI =

−Tq
∫

dq+1x
√
|g| e−φ

[
1− 1

4
(2πα′)2FµνF

µν + ...
]
± µq

∫
[Cq+1 + ...]

+Tq
∫

dq+1x
√
|g| e−φ

[
1− 1

4
(2πα′)2FµνF

µν + ...
]
± µq

∫
[Cq+1 + ...] .

(6.137)

In the upper case the overall sign in front of the kinetic term of the gauge field is
positive. As this is the wrong sign, it implies that these are ghost fields. Thus the absence
of ghosts requires the brane to have negative tension.

It is now possible to use formula (6.125) in each possible signature to find all theories
which have a ghost-free gauge sector. Moreover, to be phenomenological viable they should
have a subspace of signature (3,1). The full list of branes satisfying these conditions is

type IIB : D9
(9,1)
(9,1) , D7

(7,1)
(7,3) , D5

(5,1)
(5,5) , D3

(3,1)
(3,7) ,

type IIA : D8
(8,1)
(8,2) , D6

(6,1)
(6,4) , D4

(4,1)
(4,6) .

(6.138)

Note that these have some common properties. They are all space-filling and only
extend in 1 of the time directions. This immediately leads to a problem. The additional
time dimensions have to be compactified and the displacements of the brane in these
directions would give rise to ghosts. These deformations are absent if the brane wraps a
rigid cycle. This condition rules out the compactification on simple tori. Moreover, open
strings ending on these branes will only have winding modes in the space-like directions
and KK modes in the time-like directions. Thus the spectrum of such a string would be

E2 =
∑
i

(pi)2 +
∑
s

(
ms

Rs

)2

+
∑
t

(
ntRt

α′

)2

− i

α′
(N − a) , (6.139)

where s(t) indicate space(time)like directions, The N is the mode number and a is the
ghost or normal ordering contribution. The winding and KK modes contribute in the
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same way, but the oscillator contributions are imaginary. We will not try to interpret
this behaviour and will simply focus on the “massless” level N = a. Another important
consistency condition is the tadpole cancellation. In this case especially the RR tadpole in
the transversal directions of the branes. As usual O-planes have the opposite charge relative
to the branes, thus they exactly cancel the tadpole. The required orientifold projection in
each theory is exactly the projection needed to remove all massless closed string ghosts.
But these ghosts are exactly correlated with the existence of dS space solutions. Therefore,
for the Euclidean exotic string theories with in general multiple times, there is a strong
correlation between the presence of a phenomenologically viable D-brane (gauge theory)
sector and the existence of dS solutions, which leads to the conjecture:

Conjecture: A compactified Euclidean exotic string theory contains a 4D
ghost-free gauge theory with signature (3, 1), iff the closed string sector does
not admit classical dS vacua.

This conjecture extends the usual dS conjecture to the exotic theories.

6.2.7 Conclusions

In this chapter exotic attempts to construct dS space in string theory have been studied.
While it is possible to construct dS spaces in string theory using tachyon condensation, 4
dimensional dS was not constructed yet. The obtained dimensions are in agreement the
cobordism conjecture, claiming that compactifications are only possible in certain dimen-
sions. If one allows for more time directions or changes the signature of the world-sheet,
it is possible to obtain dS spaces, also in 4 dimensions. The price one has to pay is the
existence of massless ghosts. The orientifold projections required to eliminate these ghosts
are also eliminating the dS solutions. Even only demanding a ghost-free gauge subsector is
impossible, as the orientifold projections needed for the tadpole cancellation are the same
as in the closed string sector.



Chapter 7

Outlook

In this final chapter some possible future research directions arising form the work in this
thesis are discussed. One of the main results of this thesis are analytic expressions for
the transition matrices at the conifold and thereby analytic expressions for the conifold
periods. These have been used to realize the first step of the KKLT construction by
constructing exponentially small superpotentials close to a warped throat. The next step in
the construction would be the explicit stabilization of the Kähler moduli. This requires the
computation of the so-called Pfaffians of the CY space. While some expressions for these
are known, a method to compute them for a general CY has not been found yet. Especially
the simple polynomial expressions in the known examples motivate future research in this
direction.

The analytic expressions for the periods can also be used in general studies of string
phenomenology close to conifolds. The procedure is in principle general enough to compute
the conifold periods for any CICY. In practice the limiting step is the analytic evaluation of
certain hypergeometric functions at argument 1. These can be determined numerically to
arbitrary precision, but in practice are hard to compute analytically. It is conjectured that
the values of these functions at the conifold are always expressible via colored multiple zeta
values. Thus machine learning tools could be able to identify closed forms for these values
given a basis of CMZVs of different weights, which are known. For the computation of the
periods we have mainly used analytical properties of the hypergeometric functions. While
this is a powerful approach, implementing it in explicit examples is complicated and prone
to errors. It is long known that the periods and the mirror map have many interesting
arithmetic and modular properties [198]. One example for this are the mirror maps for
elliptic fibers and K3 manifolds, which are known to follow a Schwarzian equation. In
the CY 3-fold case this equation is only slightly modified by certain quantum corrections
depending on the Yukawa couplings. This allows to rewrite the mirror map and the periods
in terms of automorphic forms. These expressions are not only compact, but can speed
up computations drastically. Yet, these methods have not seen wide applications, as the
determination of the suitable subgroups of SL(2,Z) is difficult in practice and mainly
worked out by computing the hypergeometric periods first. A better understanding of these
properties could improve the computational control, especially at singular configurations
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like the conifold. These properties seem to be related to the observation made in chapter
3 that the elements of the transition matrices are given by L-function values, as these are
deeply related to θ-functions which can be used to construct bases of modular forms.

We have also given a review of the state-of-the-art techniques in computing numerical
CY metrics. It would be interesting to use these to study the full KK spectrum of a CY in
the warped regime. As the Laplace operator depends on the target space metric, this seems
to be an obvious application. But most numerical techniques to compute CY metrics are
not applicable close to a conifold. Recent developments using machine learning techniques
could lead to progress in this area. Also, all techniques applied to this date are based on
either optimizing an energy functional or Donaldson’s T-operator. These approaches limit
the form of the metric to algebraic metrics. While this is well suited for generic points in
moduli space, the algebraic metrics do not reproduce the singularities expected at a conifold
point. Thus applying more elaborated Ansätze for the metric, enforcing this singularity
structure, may improve the convergence in this region as well as perhaps giving a hint
of the analytic form. Also, the recent analytic result for K3 metrics could be compared
to these methods. As the former is exact, this would give a nice benchmark scenario for
numerical tools. At the moment we have only numerical approximations to compare to,
it is unclear how far from the real solutions these results are. The best we can do is to
use integrated measures like the deviation from Ricci-flatness. Moreover, the numerical
metrics can be used to test the results obtained by algebraic geometry. An example is
the recent test of the distance conjecture, where an exponential decay of KK states was
explicitly seen using the numerical metrics [199]. The distances at which the first states
become exponentially light are larger than expected due to level crossings between states.

In the last chapter we have seen that tachyons can lead to very interesting theories,
including even dS spaces. The available techniques to study closed string tachyons are
restricted to on-shell methods based on exactly solvable CFTs. These processes are fine-
tuned to keep the conformal invariance along the whole condensation process. In general
one would be interested in the endpoint of zero momentum tachyons, as these represent true
vacuum solutions of string theory. The computation of these requires methods of string field
theory. But even the computation of the quartic bosonic SFT vertex is a formidable task,
which has only been solved numerically. Results beyond the quintic order are not available
at all. This renders statements about the true vacuum of string theory impossible, although
the results point towards the existence of such a vacuum with non-zero cohomology. The
most difficult step in this computation is given by a minimal area problem, which is solved
by the Strebel differentials mentioned in chapter 3. If these differentials could be computed
analytically, this would also result in analytic expressions for the SFT vertices. While this
problem may look daunting at first glance, a surprisingly simple solution in a real co-
dimension 1 subspace of the moduli space was found in [88]. The solution on this subspace
turns out to be a simple linear function in the fundamental domain. All non-linearities
are introduced by mapping this function via Möbius transformations to other domains.
While the known examples show that this simple Ansatz does not work when extended
to the whole moduli space, it is possible that an analytic solution could be guessed by
machine learning techniques, as was the case with the polynomial solutions for the line
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bundle cohomologies of hypersurfaces in toric varieties.
Despite all this progress and possible future directions one of the main questions of

string phenomenology remains: Are effective theories formulated in 4-dimensional dS space
part of the swampland? In all situations where we have complete computational control it
turns out to be impossible to construct a stable dS solution. Yet, the KKLT construction
of dS also survives every test made so far and more parts of the construction continue to be
carried out explicitly without any obvious flaws appearing. It seems that the core step in
resolving this contradiction lies in a better understanding of the non-perturbative effects of
string theory. This could require a new formulation of string theory and the development
of new mathematical tools. But while string theory did not manage to predict our world
in the last 40 years, it managed to create a plethora of new areas of mathematics and
mathematical results. So maybe this task is not as difficult as it may seem today.
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Appendix

A.1 (A)dS Spaces of Signature (p, q)

First we introduce the notion of anti-de Sitter and de Sitter spaces with signature (p, q)
where p denotes the number of time-like directions.

AdSp,q spaces: This space is defined as the real hypersurface

−
p∑
i=0

t2i +

q∑
j=1

x2
j = −α2

(A.1)

in Rp+1,q, where α denotes a real number. A solution to this equation can be written as

t0 = α cosh(ρ/α) +
eρ/α

2α
(−

p∑
i=1

t̂2i +

q∑
j=2

x̂2
j)

x1 = α sinh(ρ/α)− eρ/α

2α
(−

p∑
i=1

t̂2i +

q∑
j=2

x̂2
j)

ti = eρ/αt̂i , i = 1, . . . p

xj = eρ/αx̂j , j = 2, . . . q .

(A.2)

The metric on AdSp,q is then given as

ds2 = dρ2 + e2ρ/α(−
p∑
i=1

dt̂2i +

q∑
j=2

dx̂2
j) (A.3)

which is the so-called flat slicing of AdSp,q. One can introduce a corresponding (p+q)-bein

EA on AdSp,q so that the metric (A.3) takes the simple form ds2 = η
(p,q)
AB EAEB. The

resulting Ricci-tensor in this frame reads

RAB = −η(p,q)
AB

(p+ q − 1)

α2
(A.4)
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so that the Ricci-scalar becomes R = −(p+ q)(p+ q − 1)/α2.

dSp,q spaces: Similarly, one can define and describe de Sitter spaces with signature (p, q).
It is defined as the real hypersurface

−
p−1∑
i=0

t2i +

q+1∑
j=1

x2
j = β2 (A.5)

in Rp,q+1 with a solution given as

t0 = β sinh(τ/β) +
eτ/2β

2β
(−

p−1∑
i=1

t̂2i +

q+1∑
j=2

x̂2
j)

x1 = β cosh(τ/β)− eτ/2β

2β
(−

p−1∑
i=1

t̂2i +

q+1∑
j=2

x̂2
j)

ti = eτ/β t̂i , i = 1, . . . p− 1

xj = eτ/βx̂j , j = 2, . . . q + 1

(A.6)

yielding the metric

ds2 = −dτ 2 + e2τ/β(−
p−1∑
i=1

dt̂2i +

q+1∑
j=2

dx̂2
j) , (A.7)

from which one can read of a (p+ q)-bein EA. The resulting Ricci-tensor reads

RAB = η
(p,q)
AB

(p+ q − 1)

β2
(A.8)

with the Ricci-scalar R = (p+ q)(p+ q − 1)/β2.

A.2 First Order Systems

In this appendix we give the used conventions for the first order systems. These represent
the ghost systems appearing in the covariant quantization of string theory. These repre-
sent interacting conformal field theories. They come in two variants, fermionic as well as
bosonic.

A.2.1 Fermionic Systems

The energy momentum tensor of a first order system is given by

T = −λb∂c+ (1− λ)(∂b)c , (A.9)
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where λ is the only parameter of the system, fixing the conformal dimensions of the fields.
The fields have the conformal dimension of the two fields b and c hb = λ and hc = 1 − λ.
For λ = 2 this corresponds to the bc-ghosts arising from gauge fixing the metric. For
λ = 1 this describes ghosts for a U(1) symmetry, e.g. the R-symmetry ghosts of N = 2
superstrings or the additional ghost system obtained by fermionizing a boson. In this case
the fields b and c are usually denoted η and ξ. For λ = 1/2 the system becomes a complex
fermion.

Independent of λ the system describes a U(1) symmetry with a background charge of

Q = (1− 2λ) . (A.10)

By computing the OPE between T and itself the central charge is determined to be

c = −(12λ2 − 12λ+ 2) = 1− 3Q2 . (A.11)

For the bc system this results in cbc = −26 while for the ηξ system in cηξ = −2. For the
complex fermion the central charge becomes 1. As a complex fermion consists out of 2 free
fermions with central charge c = 1/2 this is expected.

The U(1) current is not conserved due to the background charge and corresponds to
the zero modes of the fields. The number of zero modes follows from the Riemann-Roch
theorem and turns out to be

Nc −Nb = Q(g − 1) , (A.12)

where g is the genus of the surface. This non-conservation is the reason why it is necessary
to insert c ghost zero modes in the string amplitudes, as they would otherwise vanish.

A.2.2 Bosonic Systems

The bosonic version of a first order system works rather similar to the fermionic. The
different spin statistic leads to the appearance of several signs.The energy momentum
tensor is the same as in the fermionic case. The most important example of a bosonic first
order system is the βγ ghost system of superstring theory, described by λ = 3/2 . For the
bosonic case the following formulas hold

Q = −(1− 2λ) , (A.13)

c = 12λ2 − 12λ+ 2 = −1 + 3Q2 , (A.14)

Nc −Nb = −Q(g − 1) . (A.15)

This results in a central charge of cβγ=11. As it is more convenient to work with fermionic
fields it is conventional to fermionize this system as

b = e−φ∂ξ , c = ηeφ , (A.16)
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where η and ξ form a λ = 1 fermionic first order system and φ is a scalar field with
background charge Q. The non conservation of the current then requires the insertion of
e−2φ into the amplitudes.

A.3 Number Theory

A.3.1 The ζ-function

The Riemann ζ-function is defined as

ζ(x) =
∞∑
n=1

n−x . (A.17)

This sum converges only for x > 1, but it can be analytically continued to the whole
complex plane. Especially, the ζ-function fulfills the functional equation

ζ(1− s) =
2

(2π)s
cos(

πs

2
)Γ[s]ζ(s) . (A.18)

This allows to express the values of ζ(x) at negative x in terms of the converging series
(A.17) with x > 1. Especially important for string theory is the value of the zeta function
at -1, which can be evaluated as

ζ(−1) =
2

(2π)2
cos(π)Γ[2]ζ(2) = − 1

2π2
ζ(2) . (A.19)

With Euler’s famous solution to the Basel problem, ζ(2) = π2

6
this results in

ζ(−1) = − 1

12
. (A.20)

One possible generalization is the Hurwitz ζ-function:

ζ(x, q) =
∞∑
n=0

(q + n)−x . (A.21)

For q = 0 or q = 1 this function reduces to the usual Riemann ζ-function. Importantly,
for x = −1 this function has a closed form:

ζ(−1, q) = − 1

12
(6q2 − 6q + 1) . (A.22)
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A.3.2 Colored Multiple Zeta Values

The colored multiple zeta values (CMZV) are a generalization of the usual zeta function.
They are defined as

CMVZ(~a,~s) =
∑

n1>n2>...nd>0

an1
1 a

n2
2 . . . andd

ns11 n
s2
2 . . . nsdd

. (A.23)

The length of the parameter vectors d is usually called the depth of the CMZV. The
ai, i = 1, . . . , d are N-th roots of unity, with the most important example being N=2, the
so-called Euler sums. CMZV fulfill several algebraic relations, known as stuffel and shuffel
relations, which allow to reduce the number of basis elements needed at each depth. There
are many explicit evaluations of CMZV known, and they represent a useuful basis for
integer relation algorithms. The elements of the transition matrices, given by parameter
derivatives of hypergeometric functions at 1 can be represented in terms of CMZV in the
case of elliptic curves.

In the case all ai = 1, the CMZV reduce to multiple zeta values

CMVZ(~1, ~s) = ζ(~s) . (A.24)

The relation between periods ( solutions of a Piccard-Fuchs system) and CMZV was used
by mathematicians to evaluate new CMZV, see e.g. [200].

A.4 Modularity and L-functions

Modular functions are functions which are defined in the upper half-plane H and transform
under modular transformations, i.e. elements of the modular group SL(2,Z) as

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) . (A.25)

The integer k is known as the weight of the function. Another representation of a modular
form is given by its q-expansion. There the function is mapped to the unit disc by the
coordinate change

q = e2πiτ . (A.26)

q is know as the ”nome”. The modular function can then be expanded as

f(τ) =
∞∑
n=0

anq
n . (A.27)

If the first term in this expansion vanishes, i.e. a0 = 0, the modular form is a cusp-form.
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A value L(f, j) is called a critical L-value if j ∈ {1, 2, . . . , k − 1}. The Hecke operators
Tm are defined by their action on a modular form as

Tmf(τ) = mk−1
∑
d|m

d−k
d−1∑
b=0

f

(
mτ + bd

d2

)
. (A.28)

A modular form which is an eigenfunction of all Hecke operators is called a Hecke eigenform,
i.e.

Tmf(τ) = λmf(τ) . (A.29)

SL(2,Z) is generated by two transformations denoted S and T, corresponding to inver-
sions and translations:

S :f(τ)→ f(−1

τ
), (A.30)

T :f(τ)→ f(τ + 1) . (A.31)

Sometimes one is not interested in the full modular group SL(2,Z) but only into sub-
groups. The most common subgroups are Γ0(N). These are given by the elements of
SL(2,Z) for which c ≡ 0 mod N.

A.4.1 Examples of Modular Functions

Dedekind η-function

The η function is defined as

η(τ) = q
1
24

∞∏
n=1

(1− qn) . (A.32)

Equivalently, it can be written as an infinte sum

η(τ) = q
1
24

∞∑
n=−∞

(−1)nq
3(n2−n)

2 . (A.33)

Under modular transformation it transforms as

η(τ + 1) = e
πi
12η(τ), (A.34)

η(−1

τ
) =
√
−iτη(τ) . (A.35)

It represents a level 1 weight 1/2 modular form. This allows it to be used to construct
other modular forms via so-called eta-quotients.
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Theta functions

There is a plentora of different conventions in use for the θ-functions. As only the zero
values are needed in this thesis, we will use a convention suppressing the second coordinate.
I.e. we define the θ functions as

θαβ(τ) =
∑
n∈Z

eiπ(n+α)τ2+2πi(n+α)β . (A.36)

4 special cases of this function are usually denoted as θi, i = 1, . . . , 4

θ1 = θ1/2,1/2 , (A.37)

θ2 = θ1/2,0 , (A.38)

θ3 = θ0,0 , (A.39)

θ4 = θ0,1/2 . (A.40)

While θ1 is identically 0, it is nevertheless important as its derivative is non-vanishing.
These can all expressed as eta-quotients as

θ2(τ)θ3(τ)θ4(τ) = 2η(τ)3 , (A.41)

θ2 =
2η2(2τ)

η(τ)
, (A.42)

θ3 =
η2((τ + 1)/2)

η(τ + 1)
, (A.43)

θ4 =
η2(τ/2)

η(τ)
. (A.44)

Moreover, the θ functions obey Jacobi’s ”absurd identity”

θ4
3 − θ4

2 − θ4
4 = 0 . (A.45)

These identities are useful in proving the vanishing of certain superstring partition functions
as well as crosschecks for numerical implementations of the functions. The θ functions
appear in many places, e.g they can be used to express the j-function as well as its inverse
and they appear in the string partition functions.

Harmonic Polylogarithms

In this section we give the basic definitions of the used harmonic polylogarithms (HPL).
These as well as a Mathematica package to evaluate them can be found in [201]. HPLs
are one-variable functions with a parameter vector ~a. The dimension k of the vector a is
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called the weight of the HPL. We define the functions

f1(x) =
1

1− x
,

f0(x) =
1

x
,

f−1(x) =
1

1 + x
. (A.46)

The HPL’s are defined recursively through integration of these three functions:

HPL(a, a1, . . . , ak;x) =

x∫
0

fa(t) HPL(a1, . . . , ak; t) dt . (A.47)

For the weight one HPL
[
−1; 1−x3

1+x3

]
from the main text we have

HPL

[
−1;

1− x3

1 + x3

]
=

1−x3
1+x3∫
0

1

1 + t
dt = log

(
1 +

1− x3

1 + x3

)
. (A.48)

The modular properties of these functions depend on the parameters. Some example
transformations include

HPL[0,
1

x
] = −HPL[0, x], (A.49)

HPL[1,
1

x
] = HPL[1, x] + HPL[0, x]− iπ, (A.50)

HPL[−1,
1

x
] = HPL[−1, x]− HPL[0, x]. (A.51)

(A.52)

This shows that the HPL itself are not modular forms, but combinations thereof are. Note
that harmonic polylogarithms only including weight 0 represent the usual polylogarithms.
At x=1 these reduce to multiple zeta values, explaining the appearance of CMZVs in the
transition matrices.

A.5 Hypergeometric Functions

Hypergeometric functions are defined by the infinite series

pFq ({a1, a2, . . . , ap}, {b1, b2, . . . , bq}, x) =
∞∑
n=0

p∏
i=1

(ai)n

q∏
i=1

(bi)n

xn

n!
, (A.53)
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where (x)n denotes the Pochhammer symbol

(x)n =
Γ[x+ n]

Γ[x]
. (A.54)

They are annihilated by the differential operator

D = x

p∏
n=1

(x∂x + an)− x∂x
q∏

n=1

(x∂x + bn − 1) . (A.55)

The Piccard-fuchs operators for Calabi-Yau periods are of exactly this type. This operator
has the important property that a coordinate change x → 1

x
results in another hypergeo-

metric differential operator. This relates the solutions at the LCS point to the solutions at
the LG point, allowing for analytic expressions for the transition matrices. The continua-
tion to the conifold point leaves the regime of hypergeometric functions and requires other
methods, either by extending the function space to Meijer G functions or by rewriting the
derivatives of the hypergeometric functions in term of variations of polylogarithms.

The Meijer G functions fulfill the differential equation(
(−1)p−m−nz

p∏
j=1

(z∂z + aj − 1)−
q∏
j=1

(z∂z + bj)

)
Gm,n
p,q (~a;~b, z) = 0 . (A.56)

Every hypergeometric function is expressible in terms of Meijer G functions as

pFq(~a;~b;x) =

∏p
j=1 Γ[aj]∏q
j=1 Γ[bj]

G1,p
p,q+1(1− ~a; 0,~b;−x) . (A.57)

A.6 Line Bundle Cohomologies

Phase h0 h1 h2

I 0 0 −n2 + nm+m2 + 2
II −n2 + nm+m2 + 2 0 0

III 5m2

4
+ 7

4
3n2−3nm−3n+ 3m2

4
+ 3m

2
+ 3

4
2n2−2nm−3n+m2

2
+ 3m

2
+1

IV 2n2−2nm+3n+m2

2
− 3m

2
+1 3n2−3nm+3n+ 3m2

4
− 3m

2
+ 3

4
5m2

4
+ 7

4

V 2n2−2nm+3n+m2

2
− 3m

2
+1 3n2−3nm+3n+ 3m2

4
− 3m

2
+1 5m2

4
+ 2

V I 5m2

4
+ 2 3n2−3nm−3n+ 3m2

4
+ 3m

2
+1 2n2−2nm−3n+m2

2
+ 3m

2
+1

V II 0 3n2 − 3nm− 3n+ 3m 2n2−2nm−3n+m2+3m+2
V III 2n2−2nm+3n+m2−3m+2 3n2 − 3nm+ 3n− 3m 0

Table A.1: Polynomials for all hi in the case of P3
1112[5].
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Phase h0 h1 h2 h3

I 0 0 0 8m3

3
− 2m2n− 2m

3
−

2n

II −8m3

3
+ 2m2n +

2m
3

+ 2n
0 0 0

III m3

3
−2m2+ 11m

3
+

n3

8
+ 3n2

8
+ 5n

4
− 1

−1 + 3m − 2m2 +
3m3 − (3n)/4 −
2m2n + (3n2)/8 +
n3/8

0 0

IV 0 0 −3m3 + 2m2n −
2m2 − 3m − n3

8
+

3n2

8
+ 3n

4
− 1

−1 − (11m)/3 −
2m2 − m3/3 −
(5n)/4 + (3n2)/8 −
n3/8

V m3

3
−2m2+ 11m

3
−

2
3m3−2m2n−2m2+
3m− 2n− 2

0 0

V I m3

3
−2m2+ 11m

3
+

n3

8
+ 3n2

8
+ 7n

8
− 11

8

3m3−2m2n−2m2+
3m+ n3

8
+ 3n2

8
− 9n

8
−

11
8

0 0

V II 0 0 −3m3 + 2m2n −
2m2 − 3m − n3

8
+

3n2

8
+ 9n

8
− 11

8

−m3

3
− 2m2− 11m

3
−

n3

8
+ 3n2

8
− 7n

8
− 11

8

V III 0 0 −3m3 + 2m2n −
2m2 − 3m+ 2n− 2

−m3

3
−2m2− 11m

3
−2

Table A.2: Polynomials for all hi in the case of P4
11222[8].
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A.7 Periods of P4
112812[24]

In this appendix we collect some more details about the periods of P1,1,2,8,12[24]. The given
periods are local solutions to the PF equations. To obtain the symplectic basis these have
to multiplied by the transition matrices given in the main text.

A.7.1 Local Periods at the LCS

A local basis of periods ωLCS around the LCS point is given by

ωLCS,1 = w1 ,

ωLCS,2 = w2 −
iw1 log(x1)

2π
,

ωLCS,3 = w3 −
iw1 log(x2)

2π
,

ωLCS,4 = w4 −
iw1 log(x3)

2π
,

ωLCS,5 = w5 +
w1 log2(x1)

π2
+
w1 log2(x3)

4π2
+
w1 log(x1) log(x2)

2π2
+
w1 log(x1) log(x3)

π2

+
w1 log(x2) log(x3)

4π2
+

(
4iw2

π
+
iw3

π
+

2iw4

π

)
log(x1)

+

(
2iw2

π
+
iw3

2π
+
iw4

π

)
log(x3) +

(
iw2

π
+
iw4

2π

)
log(x2) ,

ωLCS,6 = w6 +
w1 log(x1) log(x3)

4π2
+
w1 log2(x1)

4π2
+

(
iw2

π
+
iw4

2π

)
log(x1) +

iw2 log(x3)

2π
,

ωLCS,7 = w7 +
w1 log(x1) log(x2)

4π2
+
w1 log(x1) log(x3)

2π2
+
w1 log2(x1)

2π2

+

(
2iw2

π
+
iw3

2π
+
iw4

π

)
log(x1) +

iw2 log(x2)

2π
+
iw2 log(x3)

π
,

ωLCS,8 = w8 +
iw1 log(x1) log(x2) log(x3)

8π3
+
iw1 log2(x1) log(x2)

8π3
+
iw1 log2(x1) log(x3)

4π3

+
iw1 log(x1) log2(x3)

8π3
+
iw1 log3(x1)

6π3
+
(
−w2

π2
− w3

4π2
− w4

2π2

)
log(x1) log(x3)

+
(
−w2

π2
− w3

4π2
− w4

2π2

)
log2(x1) +

(
− w2

2π2
− w4

4π2

)
log(x1) log(x2)

− w2 log(x2) log(x3)

4π2
− w2 log2(x3)

4π2
+
iw5 log(x1)
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where the power series terms are
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A.7.2 Local Periods at the Conifold

A local basis of periods ωc around the (x, y, z) = (0, 0, 1) conifold is given by

ωc,1 = w̃1 ,

ωc,2 = w̃2 + w̃1 log(x1) ,

ωc,3 = w̃3 +
1

2
w̃1 log(x2) + w̃1 log(x3) ,

ωc,4 = w̃4 ,

ωc,5 = w̃5 + w̃4 log(x2) ,

ωc,6 = w̃6 + w̃1 log2(x1) + 2w̃2 log(x1) ,

ωc,7 = w̃7 +
1

2
w̃1 log(x1) log(x2) + w̃1 log(x1) log(x3) + w̃1 log2(x1)

+ (2w̃2 + w̃3) log(x1) +
1

2
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4
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3

2
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(
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3w̃3

2

)
log2(x1) +

3

2
w̃2 log(x1) log(x2) + 3w̃2 log(x1) log(x3)

+
3

4
w̃6 log(x2) +

3

2
w̃6 log(x3) + 3w̃7 log(x1) ,
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where the power series terms are
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