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Summary 

In this thesis, I present the development of a novel mass spectrometry (MS) platform and scan modes 

in conjunction with a versatile and robust liquid chromatography (LC) platform, which addresses 

current sensitivity and robustness limitations in MS-based proteomics. I demonstrate how this 

technology benefits the high-speed and ultra-high sensitivity proteomics studies on a large scale. This 

culminated in the first of its kind label-free MS-based single-cell proteomics platform and its 

application to spatial tissue proteomics. I also investigate the vastly underexplored ‘dark matter’ of the 

proteome, validating novel microproteins that contribute to human cellular function. 

First, we developed a novel trapped ion mobility spectrometry (TIMS) platform for proteomics 

applications, which multiplies sequencing speed and sensitivity by ‘parallel accumulation – serial 

fragmentation’ (PASEF) and applied it to first high-sensitivity and large-scale projects in the biomedical 

arena. Next, to explore the collisional cross section (CCS) dimension in TIMS, we measured over 1 

million peptide CCS values, which enabled us to train a deep learning model for CCS prediction solely 

based on the linear amino acid sequence. We also translated the principles of TIMS and PASEF to the 

field of lipidomics, highlighting parallel benefits in terms of throughput and sensitivity. 

The core of my PhD is the development of a robust ultra-high sensitivity LC-MS platform for the 

high-throughput analysis of single-cell proteomes. Improvements in ion transfer efficiency, robust, 

very low flow LC and a PASEF data independent acquisition scan mode together increased 

measurement sensitivity by up to 100-fold. We quantified single-cell proteomes to a depth of up to 

1,400 proteins per cell. A fundamental result from the comparisons to single-cell RNA sequencing 

data revealed that single cells have a stable core proteome, whereas the transcriptome is dominated by 

Poisson noise, emphasizing the need for both complementary technologies.  

Building on our achievements with the single-cell proteomics technology, we elucidated the image-

guided spatial and cell-type resolved proteome in whole organs and tissues from minute sample 

amounts. We combined clearing of rodent and human organs, unbiased 3D-imaging, target tissue 

identification, isolation and MS-based unbiased proteomics to describe early-stage β-amyloid plaque 

proteome profiles in a disease model of familial Alzheimer’s. Automated artificial intelligence driven 

isolation and pooling of single cells of the same phenotype allowed us to analyze the cell-type resolved 

proteome of cancer tissues, revealing a remarkable spatial difference in the proteome. 

Last, we systematically elucidated pervasive translation of noncanonical human open reading frames 

combining state-of-the art ribosome profiling, CRISPR screens, imaging and MS-based proteomics. 

We performed unbiased analysis of small novel proteins and prove their physical existence by LC-MS 

as HLA peptides, essential interaction partners of protein complexes and cellular function. 
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1. Introduction 

1. 1. Life is just a more complex binary code 

1.1.1. The central dogma of molecular biology 

 

“The course of life processes in an organism show an admirable regularity and order 

that is unparalleled in inanimate matter. It is regulated by a highly ordered group of 

atoms, which make up only a tiny fraction of their totality in the cell.” 

 

Erwin Schrödinger, What is life?, 1944 

 

Understanding the fundamental principles that have enabled life to evolve throughout billions of years 

has been fascinating to humans for a long time. Only in 1859, Charles Darwin published his work ‘On 

the Origin of Species’, introducing the scientific theory that populations and species evolve over the 

course of generations by means of natural selection, challenging the dominant view of that time that 

God had created the world in seven days1. This theory also suggested that life has most likely evolved 

from a ‘last universal common ancestor’, the first life form on earth, and is still subject of studies 

today2. Only seven years later, Gregor Mendel discovered in pea experiments that phenotypic traits 

like color, height and shape can be inherited by offspring in a dominant or recessive manner and that 

this is passed on to the next generation. He stated that ‘invisible factors’ carry the phenotypic 

information, strengthening and expanding Darwin’s theory3.  

Three years later in 1869, Friedrich Miescher isolated by accident a substance from white blood cell 

nuclei with a very high phosphorous content that furthermore resisted protein digestion. He also 

proved the existence of this molecular entity in a variety of nuclei isolated from different cells and 

consequently termed it ‘nuclein’. He was also the first person to suggest that this substance could carry 

hereditary information, but rejected this hypothesis due to lack of experimental evidence4. Throughout 

the next decades it became well understood that the hereditary information, later coined ‘genes’ (Greek 

- ‘birth’) by the Danish botanist Wilhelm Johannsen, carry the information for phenotypic traits in any 

living organism. Still, it was not clear which substance is the carrier. In 1944, Oswald Avery and 

colleagues experimentally identified a distinct molecular entity, neither a protein nor a carbohydrate, 

that turned rather harmless pneumococcus species into pneumonia-inducing bacteria when co-
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cultivated with the pathogenic species. This groundbreaking work introduced the ‘transforming 

principle’ after isolating the yet unknown substance from literally ’twenty gallons of bacteria’. This was 

also the time, where the new hereditary information carrying entity was identified as a deoxyribonucleic 

acid5.  

Inspired by the described principle, Erwin Chargaff began to analyze the chemical constitution of 

DNA. He first discovered a regularity in DNA base distribution, where the number of guanines turned 

out to be equal to the number of cytosines, while the number of thymidines was equal to the number 

of adenines, and second, that the relative proportion of these two pairs varies between species6. At that 

time, it was well known that proteins exist in a three-dimensional structure, but it was still elusive what 

the structure of DNA looks like and how it is packed. Already in 1944, without knowing about the 

compositional regularity discovery by Erwin Chargaff, Erwin Schrödinger suggested the idea of an 

‘aperiodic crystal’ that contained genetic information7. In 1952, Rosalind Franklin set out to elucidate 

the structure of the DNA experimentally via X-ray crystallography and produced several high-

resolution DNA-fiber records hinting toward a helical structure. In 1953, James Watson and Francis 

Crick were able to solve the outstanding question of the phosphate-, sugar-, and base arrangement to 

a double-helical DNA-structure8. Since it was still not clear which molecular moiety stores the genomic 

information, Crick and Watson furthermore suggested a possible DNA-copying mechanism, which is 

necessary for the transfer of genetic information to descendants9.  

Their paper was the starting point for a race to decode the code of life laid down in the DNA sequence.  

Only three years later, Francis Crick proposed the ‘The Central Dogma’ of biology, in which he 

described how he imagines genes to be encoded by DNA, that RNA molecules are the most likely 

mediators of genetic information based on RNA-virus experiments and that RNA molecules could be 

turned into proteins10. This paper was historic in that it permanently altered how biology was seen, 

even though it only described the most likely theoretical flow of information at that time (Fig. 1).  
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Figure 1 | Theory of the ‘Central Dogma of Molecular Biology’ as initially outlined by Francis Crick 

in 195611.  

 

At that point, it was known that proteins consist of 20 amino acids and that DNA consists of four 

base pairs. To encode these, one would at least need a sequence of base pair triplets, which would give 

rise to a total of 43 = 64 codons. A still remaining issue was the missing link of how to get from the 

DNA code to the protein level and which role RNA plays in this context. In 1960, experiments with 

bacteriophages, which inject their DNA into bacteria, giving rise to the fast appearance of short-lived 

small RNA molecules, which closely resemble the sequence of the bacteriophage genome, resolved 

this long-lasting question, using a simple beta-galactosidase reporter assay. The RNA mediating the 

information from DNA to protein level was called messenger RNA12. In 1965, Marshall Nirenberg 

succeeded in deciphering the code of life in a sequence of experiments, in which he introduced synthetic 

RNA of different base composition to an E. coli lysate capable of protein translation and the step-wise 

addition of a single radioactive amino acids including non-radioactive counterparts, while removing 

DNA enzymatically. Analyzing the amino acid composition and combinatorically linking it to the 

introduced synthetic RNA allowed him to break the ‘code of life’13. Interestingly, until the introduction 

of Sanger sequencing for proteins, people did not know about the fact that proteins are defined by a 

determined amino acid sequence, which he first proved by the sequencing of insulin in the 1950s.  
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After The Central Dogma of molecular biology was experimentally proven and researchers were able to 

decipher the sequence of proteins and DNA, novel technologies had to be developed to be able to 

scale up these sequencing endeavors. The first of these techniques for DNA-sequencing was developed 

by Frederick Sanger in 1977 and termed DNA sequencing with chain-terminating inhibitors. This was rapidly 

followed by whole-genome sequencing of the first laboratory bacteriophage model φX174 and the 

subsequent viral proteome prediction based on the deciphered genetic code14,15.  

This was the starting point for many exciting developments and researchers realized that there must 

be organism-specific blueprints encoded by at least four base pairs - just like a more complex binary 

code in computer science, giving rise to the functional level of proteins. It also suggested that life could 

in principle be programmable in the future, just like executable functions in informatics and that the 

field was poised to create new products, drugs and revolutionize medical diagnostics.  

The fast-paced evolving field of Genomics turned to sequencing several organisms including Haemophilus 

Influenzae16, Mycoplasma genitalium17 and Caenorhabditis elegans18 in 1995, Saccharaomyces cerevisiae19 in 1996, 

Drosophila melanogaster20 in 2000 and Mus musculus21 in 2002. Soon, scientists realized the potential impact 

of Genomics on human health and disease and aimed to generate full sequence maps. This publicly 

funded effort commenced in 1990 under the leadership of Francis Collins and was called the Human 

Genome Project. In 1998, J. Craig Venter joined this race with a privately held company called Celera 

aiming to commercialize human genome sequencing and even patent readouts of genomic loci, which 

could be associated with health or disease. In February 2001, both groups published first drafts of the 

human genome, revealing a size of close to three billion nucleotides, thousands of single-nucleotide 

polymorphisms, novel aspects of gene and chromosome architecture and the estimate that there are 

more than 20,000 protein-coding genes to be found in the human genome22,23.  

Furthermore, the development of the polymerase chain reaction technology to amplify target DNA-

sequences by Kary Mullis revolutionized the field of DNA research, enabling targeted gene 

amplification, sequencing, and cloning24. It also created the basis for many future sequencing 

technologies like next generation of sequencing approaches (NGS), which allowed parallel and scalable 

sequencing at much decreased overall costs - below 1,000 $ by now - leading the way into the clinic25,26.  

The entirety of the originally sought-after missing link between genes and proteins is called the 

transcriptome and represents all actively transcribed genomic loci including regulatory RNA and open 

reading frames, which will ultimately be translated into long strings of amino acids. Initially, the 

presence of the transcript was investigated by hybridization and so-called micro-array technologies. 

This also allowed the inference of single nucleotide polymorphisms (SNPs) in the corresponding gene, 

which is still state of the art in clinical applications. One major drawback of this technology is that it 
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only probes for mRNA entities with a known sequence and therefore does not capture the entirety of 

the transcriptome27. Later, adapted NGS protocols also allowed the parallel sequencing of transcripts 

and the representation of the transcriptome as a whole, which enabled deep transcriptome analysis of 

tissues present within the human body, as one of a plethora of different applications as discussed 

later28,29.  

Understanding the entire dogma of molecular biology and having the capability to sequence whole 

genomes and transcriptomes gave rise to many game-changing discoveries and technologies. For 

example, the availability of genome sequencing and its exploration across the phylogenetic tree not 

only impacted diagnostics, but also lead to the finding of evolutionary conserved mechanisms resulting 

in disruptive technologies like CRISPR/Cas9 for genome engineering, which was awarded with the 

Noble prize in 202030–35. Furthermore, elucidation of the interplay between genome, transcriptome and 

proteins also enabled researchers to extend the code of life with unnatural amino acids and introduce 

biorthogonal chemistry, engineer minimal life carrying only the most essential genes and even 

transplant artificial full genomes between organisms36–38. All these technological innovations happening 

within the last ~60 years have turned organisms into models for systems biologist and bioengineers, 

who can now program biological function in what is essentially just a more complex binary code. 

 

1.1.2. The proteome and its higher order complexity 

The development of technologies to investigate the first two layers of molecular biology, the genome 

and transcriptome, were immense breakthroughs that have enabled novel approaches in modern biology 

and clinical applications. Even though the importance of these omics technologies are undisputed, 

nearly all cellular processes are executed by proteins. The entirety of all proteins and their complex 

interplay is summarized as the proteome. Depending on the system it spans more than 1010 orders of 

magnitude in abundance distributed across approximately a total of 150 pg protein mass per cell39,40. 

The intrinsic importance of the proteome is also reflected by the fact that currently more than 40 % 

of laboratory tests in the clinic are protein readouts – in stark contrast, less than 0.5 % target nucleic 

acids (not taking into account the recently increased demand due to COVID-19)41. Antibody-based 

assays aiming for the quantification of target proteins are the gold-standard for fast and sensitive 

clinical readout and are widely used in basic research. The Human protein atlas project even aimed to 

raise highly specific antibodies against all known proteins with the goal to qualitatively and 

quantitatively describe the protein distribution across all human tissues, cells and body fluids. It 

demonstrated that protein expression levels are vastly different across analyzed matrices, or even 
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specific to them in the sense that the amount of protein present was below the assays detection limit42–

44. In recent years, many binder-based commercial assays are being developed, which promise 

scalability across large sample cohorts and the quantification of proteins across the full dynamic range. 

These include proximity-dependent DNA ligation assays from Olink and the aptamer-based 

technologies from Somalogic45,46. Briefly, both assays follow the same principle by binding to highly 

specific epitopes of the target protein, followed by PCR amplification of a specific oligonucleotide 

linked to the binder coupled to a quantitative readout (single binder for Somamers and two independent 

antibodies for Olinks). These assays are widely applied due to their multiplexing possibility, which 

resulted already in many examples of body fluid proteome expression analysis in clinical settings47–49.  

However, there are several drawbacks of antibody-based assays: first, they infer the protein expression 

levels indirectly; second, shared epitopes lead to disturbed quantification due to off target effects; third, 

proteins need to be in their native state to enable proper epitope binding; fourth, the proteome itself 

is highly dynamic in structure and function as described below and inferring accurate protein quantities 

from epitope targeting approaches is inherently challenging; fifth, they quantify only their target 

proteins, revealing only a part of the bigger picture; sixth, the detection of protein isoforms and 

posttranslational modifications adds another level of proteome complexity, which asks for the 

generation of even more highly specific antibodies50.   

The proteome by itself is immensely complex and cannot simply be summarized by the 

bioinformatically inferred ~20,000 human open reading frames (ORFs) as is done with ‘black and 

white’ rules like the presence of a translational start and stop codon, the presence of protein-coding 

exons and a strict cutoff of at least 100 amino acids (the latter under the assumption that smaller amino 

acid stretches cannot be functional since they are most likely not able to form a stable three-

dimensional structure). Instead, studies have shown that there are ~26,000 additional small open 

reading frames present even in the yeast genome with a length of 2-99 amino acids, which can give rise 

to potentially functional microproteins51. Several technological advances including ribosome profiling, 

which allows to identify actively translated genomic regions, and ultra-high sensitivity mass 

spectrometry can experimentally prove their physical existence. Combined with phenotypic readouts 

and CRISPR-based genome engineering technologies, this enables the systematic investigation of these 

microproteins, highlighting their essential function in a cellular context52–54 (Article 10). Especially 

ribosome profiling turned out to be a very important technique for hunting down small novel ORFs, 

since it provides high-density ribosome maps enabling back-tracking of the actively translated genome 

locus, decreasing the total number of putative small ORFs dramatically and enables targeted genome 

engineering of these positions55.  



7 
 

Furthermore, splicing events and so-called exon-shuffling increase the complexity of the proteome 

immensely together with posttranslational modifications including acetylation, ubiquitination, 

phosphorylation, glycosylation, amidation, methylation, citrullination and targeted proteolytic 

processing to regulate function 56. For example, the tumor suppressor p53, a protein with a length of 

393 amino acids is estimated to have more than 100 possible sites of modification57. Furthermore, 

PTMs can give rise to structural rearrangements of proteins, change their function in a signaling 

context and regulate the activity of bioactive peptides, which are highly modified short amino acid 

stretches, often involved in regulation of our behavior, and processed by a large hierarchical proteolytic 

network. The single ORF pro-glucagon, for example, is by now known to give rise to more than ten 

tissue-specific proteolytically processed bioactive peptides58. Furthermore, proteins are consistently 

proteolytically processed by the human leukocyte antigen presenting machinery, giving rise to 

intracellular proteins being presented as small peptides on the cell surface as class I or II peptides to 

CD8+ and CD4+ T-cells of the immune system, respectively, as checks to distinguish self from non-

self59,60. This higher order complexity of the proteome is gaining more and more attention from the 

scientific community and is discussed under the umbrella of proteoforms or even peptidoforms. Taking 

these variations into account leads to proteome complexity estimates comprising several 100,000 

proteins, which is still most likely a vast underestimation61. 

To fully capture the diversity of the proteome, one would need a technology that is unbiased in the 

sense of aiming to measure all proteins without prior knowledge about proteome composition, providing 

direct physical evidence of the proteins’ presence. It should also be scalable, robust, quantitatively 

reproducible, and applicable to all biological matrices.  

 

 

1.2. Mass spectrometry-based proteomics  

The technology of choice with the capability to measure complete and quantitative proteomes as well 

as its structure and dynamics in an unbiased way is liquid chromatography coupled to mass 

spectrometry (LC-MS). Since the inception of electrospray ionization in the 1980s for transferring 

biomolecules from liquid into gas phase in their intact form and accurate charge state deconvolution 

of biomolecules, the field of LC-MS has been developing at a tremendous speed62–64. Mass 

spectrometers measure mass-to-charge ratios of ions dragged by the gas flow from ambient conditions 

into the vacuum of the system. This results in an inherently high specificity and the potential of extreme 

sensitivity – even down to detecting single ions65,66. By now, advanced sample preparation and 
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computational workflows in conjunction with cutting-edge mass spectrometers have achieved the 

acquisition of comprehensive proteome profiles, the complement to the transcriptomes and genomics67,68. 

MS-based proteomics can also be used to reveal dynamic structural changes of proteins in response to 

metabolite or drug engagement, enabling the analysis of dynamic and functional changes of the 

proteome and paving the way for novel analytical approaches69–72. Since mass spectrometers can prove 

the physical existence of any ionizable biomolecule species, modern MS-based techniques can be 

applied to many other biomolecules besides proteins, including those that would elude the analysis 

capabilities of other techniques. Such samples include in vivo derived peptides from body fluids, 

peptides of the HLA system, but also metabolites, as well as lipids59,73–75.  

 

1.2.1. Bottom-up proteomics  

Proteomics workflows are generally divided into three main pillars, which are sample preparation, LC-

MS and data analysis. Depending on the size and processing of the proteomic sample, three approaches 

are pursued, which are called top-down, middle-down, and bottom-up proteomics workflows76.  

Top-down, as the name already states, aims to analyze proteins in their native constitution (usually in a 

size range of 10 to 30 kDa), conserving protein isoform information, amino acid sequence variants 

and all PTMs in their combinatorial arrangements. The main challenges to overcome are 

chromatographic separation of the proteins due to the complexity of proteoforms, their poor 

ionization decreasing overall sensitivity, low proteome coverage per sample and throughput. Besides 

this, the highly complex charge patterns require sophisticated algorithms and ultra-high resolution 

mass spectrometers to be able to obtain a high-quality isotope pattern for deconvolution61,77,78. Middle-

down represents a fairly new field aiming to analyze rather large proteolytic fragments of proteins with 

a size between 3 to 10 kDa to obtain very high sequence coverage and also conserving PTM 

information, but again at the expense of throughput, proteome coverage and the need for novel 

bioinformatic solutions76. In contrast, in bottom-up proteomics (Fig. 2), the extracted and solubilized 

complex protein matrix of any given sample is proteolytically digested with a sequence-specific 

protease, mostly trypsin, to generate peptides at a median length of about 12 amino acids79.  
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Figure 2 | Bottom-up proteomics. A, Proteins are obtained from a biological matrix, which could be of e.g. 

cellular origin. Proteins are then isolated and solubilized by chaotropic or detergent based solutions, 

proteolytically digested into peptides with a defined cleavage site, followed by optional fractionation to decrease 

proteome complexity per analysis or enriched for PTM and finally purified prior to LC-MS analysis. B, The 

peptide mixture is then separated by HPLC based on hydrophobicity, ionized and transferred into the vacuum 

of the mass spectrometer via electrospray. The mass spectrometer acquires full scans (MS1) to determine the 

peptide mass and fragment ion spectra (MS2) of either the TopN most abundant peptides per MS1 scan or 

from a pre-defined m/z range. C, Precursor masses and peptide fragment patterns within MS2 spectra are then 

compared to in silico generated peak lists, followed by spectral annotation, protein assembly, quantification and 

downstream bioinformatics analysis. (Adapted from Ref.80) 
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This results in a very complex peptide mixture, which allows a very high proteome coverage, sensitivity 

and throughput, but at comprised protein sequence coverage often comprising the analysis of 

potentially important PTMs and their co-occurrence. To alleviate this issue, fractionation or subset 

enrichment techniques to decrease peptide mixture complexity can be applied, followed by online 

liquid chromatography to separate peptides by their hydrophobicity before electrospray ionization and 

analysis in the mass spectrometer81–83. In silico proteolytically digested proteins from a reference 

database and their respective theoretical peptide masses as well as fragment spectra, representing ORFs 

calculated from species-specific genome sequences, are then compared to the experimental spectra. 

Finally, these comparisons are scored by sophisticated computational frameworks, which includes 

reassembling proteins from peptides in a bottom-up-fashion, and quantified to enable downstream 

bioinformatics analysis84–86. Due to its high throughput and unbiased analysis capabilities for discovery 

proteomics, bottom-up proteomics is by far the most widely applied workflow in the proteomics 

community. It has reached many milestones including a proposed first draft of the human proteome 

(a compilation of MS2 spectra covering more than 70 % of expected human ORFs), showed its 

potential for diagnostic readouts, phyloproteomic analysis and large-scale interactome studies87–91.  

 

1.2.2. Sample preparation  

The preparation of samples for MS-based proteomics analysis is crucial and has to be optimized for 

the sample type to be analyzed, the initial sample starting amount and also for the experimentally 

addressed question. Many sample preparation protocols have been developed over time, but there are 

three principles, which virtually all of them follow since more than a decade: (I) protein extraction and 

solubilization - including reduction of disulfide bonds and alkylation of free cysteins; (II) protein 

digestion by endoproteases; (III) peptide purification before LC-MS analysis.  

 

1.2.2.1. Protein extraction and solubilization 

The first step of sample preparation for LC-MS analysis is protein extraction and solubilization. 

Different classes of protein solubilizing agents are used in combination with mechanical and thermal 

treatment to extract proteins from their native environment and to stop residual enzymatic activity 

within the sample, preventing artificial modification, which could compromise the experimental 

outcome. Three major classes of protein solubilizing agents are used in proteomics, which are 

chaotropic agents like urea, thiourea, or guanidinium-chloride (GdmCl), detergent-based agents like 

sodium-dodecyl-sulfate (SDS) and sodium-deoxycholate (SDC), and organic solvent-based agents like 
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acetonitrile (ACN)92–95. All of these agents have their advantages and disadvantages depending on the 

sample to be analyzed.  

For example, SDS is presumably the most efficient protein solubilizing agent disrupting any protein 

structure, but interferes with tryptic digestion and ionization96. It is still used in many harsh tissue 

protocols and new approaches to remove SDS like Filter-Aided Sample Preparation (FASP), S-trap, 

Protein Aggregation Capture (PAC) on micro-particles, or the single-pot solid-phase-enhanced sample 

preparation (SP3) technology prior to proteome digestion have enabled a comeback even in automated 

and multiplexed applications92,97–100. GdmCl based protein extraction appears to be the most efficient 

chaotropic agent-based approach and can also be combined with heating steps in contrast to urea, 

which would result in carbamylation adducts of free amines at elevated temperatures95,101,102. Even 

though GdmCl is the chaotropic agent of choice, it is known to influence protein digestion efficiency 

at high molarities and consequently the sample has to be drastically diluted to keep ‘missed cleavage 

rates’ (percentage of peptides with internal cleavage sites) low and reproducible across sample 

preparations. SDC-based protocols recently found widespread application, because of its mild 

nature90,103,104. SDC interacts with exposed hydrophobic amino acid stretches under elevated 

temperature, stabilizing the unfolded state even when the sample returns to room temperature. This 

ensures highest digestion efficiency of the proteome since endoproteases are not structurally 

influenced. Organic solvent based approaches using ACN start to find their use especially in sample 

limited applications, since it can easily be removed by evaporation105. Furthermore, enzymatic digestion 

kinetics are elevated in many cases when using ACN concentrations of up to 20 %.  

The extraction and protein solubilization step with detergents or chaotropic agents is in many cases 

performed in conjunction with the reduction of cysteine bridges and alkylation of free cysteins. This 

fully breaks down higher order protein structures, ensures a highly efficient digestion and downstream 

peptide identification. There are two commonly used reducing agents in proteomics sample 

preparation, namely dithiothreitol (DTT) and tris(2-carboxyethyl)phosphine (TCEP)92,95. DTT is a very 

mild reducing agent, works in a basic environment and results in a kinetically favored ring-structure 

when interacting with disulfide bridges106. TCEP, the stronger reducing agent of the two, is gaining 

more attention in modern proteomics sample preparation procedures since it is more stable, more 

reactive across a broader pH range and results in an irreversible breakdown of disulfide bridges107. Still, 

in our laboratory, we observed that prolonged elevated temperature in the presence of TCEP can lead 

to protein fragmentation, which can be an issue for sensitive in vivo peptidome analysis, and this favors 

DTT as reducing agent.  
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After reduction of disulfide bridges, the reactivity of cysteine thiol groups is quenched by the addition 

of alkylating agents. Two halogen-based alkylating agents - iodo- and chloro-acetamide - are 

predominantly used and they are added in excess during the reduction reaction108. Iodoacetamide (IAA) 

has been shown to be highly reactive and even alkylates off-targets like lysines109. This results in a 

comprised downstream peptide identification, which is the reason why many protocols switched to 

the less reactive chloroacetamide (CAA). Furthermore, due to the absence of free thiols on TCEP in 

contrast to DTT, TCEP can be used together with the less reactive CAA to enable a ‘one-pot’ 

reduction-alkylation reaction of disulfide bridges, while DTT would quench the alkylation reagent 

when added simultaneously and in equimolar stoichiometry95.  

A combination of mechanic and thermal disruption of rigid tissue for protein solubilization is in many 

cases mandatory to ensure the unbiased extraction of proteins. Many approaches have emerged of 

which sonication, bead-milling, grinding and blending are the most prominent ones and can also be 

used under semi-frozen conditions. Thermal disruption by boiling is also used in many applications 

where either sample-specific enzymes need to be inactivated or rigid tissue needs to be loosened up in 

combination with mechanic approaches. Highly optimized boiling protocols at above 90 °C in 

conjunction with excess tris concentrations have been developed for Formalin-Fixed Paraffin 

Embedded (FFPE) tissues to first break up formalin crosslinks and second quench free formalin93,94. 

In the course of my PhD project, I developed a protocol combining many of the described sample 

preparation advances to process solvent-cleared fully transparent tissues, which render completely 

solid, for a method called DISCO-MS (Article 8). Interesting freeze-thaw-heat cycles together with 

sonication are emerging that are attractive for efficient protein extraction and solubilization in sample 

limited applications and prevent excess pipetting steps, which I also implemented for the sample 

preparation of single-cells (Article 7)105,110.  

 

1.2.2.2. Protein digestion by endoproteases 

Enzymatic digestion is one of the most rate limiting and error-prone steps in the sample preparation 

process. The goal of protein digestion is to generate peptides from the sample, which are short, 

straightforward to be analyzed by the mass spectrometer and most likely unique per protein, and ionize 

well.  

There is a plethora of different sequence specific enzymes, which could potentially be used in 

proteomics experiments. Due to the following characteristics, the by far two most used enzymes are 

trypsin and LysC79. First, trypsin always hydrolyses the amide bond C-terminally to a lysine or arginine 

and LysC only C-terminally to a lysine, yielding predominantly so-called fully tryptic peptides. Since 
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bottom-up proteomics experiments are routinely performed in positive ionization mode, fully tryptic 

peptides yield multiply charged peptides due to the N-terminal amine group and the amine or guanidine 

group of the lysine or arginine side chain, respectively. Multiply charged tryptic peptides are highly 

advantageous for identification in tandem MS experiments since fragmentation experiments will 

mostly yield two singly charged fragments, which add up to the full precursor mass. Also, the 

combination of LysC and trypsin is favorable compared to Trypsin alone, because LysC is more 

efficient in cleaving lysine residues, yielding peptides with internal arginines to be cut by trypsin. This 

approach results in a very low missed cleavage rate, which is essential for label-free quantification 

approaches, ensuring accurate and sensitive protein quantification111.  

Alternative proteases such as LysN, AspN, GluC, chymotrypsin, or even chemical lysis by high formic 

acid concentrations do not have the above advantages, but can yield complementary peptides to 

increase protein sequence coverage112,113.  

 

1.2.2.3. Sample clean-up for LC-MS analysis 

After digestion and prior to MS analysis, peptides need to be purified. This includes the removal of 

insoluble aggregates, detergents and chaotropic agents, and salts to prevent damaging or clogging of 

the liquid chromatography system and the analytical column. Sample cleanup is also essential to 

prevent analyte ionization suppression and the built-up of debris on hardware components of the MS, 

which can decrease ion transmission efficiency and consequently performance of the instrument. 

Essentially, the cleaner the injected sample, the higher the instrument up-time at highest performance 

and the more reproducible large-scale studies become.  

State-of-the-art sample clean-up in bottom-up proteomics is done with so-called Stop-and-Go 

Extraction Tips (StageTip)114,115. StageTips are pipette tips filled with a small amount of 

chromatography material embedded in Teflon, also called solid phase extraction (SPE) material, which 

is pushed tightly to the very end of the tip. Two SPE materials are now commonly used in StageTip 

based cleanup procedures, which are C18 and styrenedivinylbenzene reversed phase sulfonate (SDB-

RPS)95. After quenching of the digestion reaction under acidic conditions and pelleting of soluble 

fragments, the peptide solution is loaded onto StageTips and washed. C18 material allows aqueous 

washes only to remove salts, while SDB-RPS also allows isopropanol washes to remove lipids. SDB-

RPS is also more efficient in retaining very hydrophilic peptides during the wash steps. In contrast, 

C18 allows for a more efficient recovery of the cleaned up and SPE-bound peptides with high 

acetonitrile concentrations under acidic conditions from the SPE material, while peptides can only be 

eluted from SDB-RPS under very basic conditions and high acetonitrile concentrations95. Both 
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materials have their advantages and disadvantages with regards to sample cleanup and the experimenter 

has to decide which one to favor depending on the biological matrix to be analyzed. In general, our 

laboratory prefers the SDB-RPS cleanup, simply because the additional isopropanol wash allows for a 

cleaner peptide extract, which improves analytical column life-time and MS performance.  

Recent developments also allow miniaturization of sample preparation in a single vial reactor, avoiding 

the transfer and aforementioned buffer-exchange steps95. This drastically simplifies sample preparation 

and decreases hands on time. Furthermore, miniaturized in-solution sample preparation also allowed 

the automation of large sample cohorts on liquid-handling platforms, streamlining the whole process 

and thereby increasing reproducibility within and across experiments89,103.  

Several sample preparation technologies for low cell-count experiments have been developed in the 

last years including micro-fabricated nanowell chips with a robotic nanoliter liquid handling system 

and in 384-well formats. All these approaches aim to reduce adsorptive peptides loss and improve 

digestion kinetics due to reaction volume miniaturization110,116,117. Still, one of the main remaining issues 

is the transfer of the peptides from the low cell-count experiment into the liquid chromatography 

system without losing the analytes. I overcame this challenge by coupling sample preparation to liquid 

chromatography as described in the next chapter and in Article 7.   

 

1.2.2.4. Peptide fractionation and subset enrichment 

Fractionation steps can be performed on the subcellular level, protein level and peptide level. 

Subcellular fractionation techniques usually aim to determine the proteomic makeup of cellular 

compartments, while protein or peptide level fraction aims to increase proteome coverage118. Since 

fractionation at the protein level usually suffers from lower resolution and is challenged by the 

solubility of proteins, peptide level fraction is the method of choice. Splitting the sample into several 

injections reduces complexity. This approach is especially useful for biological matrices with a very 

high dynamic range, or in other words, where only a small proportion of proteins occupy a large 

amount of the proteinogenic space as in body fluids or tissue samples41. The depth of proteome 

coverage by fractionation scales with the available sample amount, number of fractions to be analyzed 

and availability of measurement time83,101. Since on-line liquid chromatography separates peptides by 

their relative hydrophobicity under acidic conditions before being analyzed by the mass spectrometer, 

one would ideally want to couple it to orthogonal fractionation methods beforehand.  

StageTips packed with either anionic or cationic SPE material allow the manual separation of bound 

peptides by their charge state resulting in more than 10,000 protein identifications in only six fractions 

per sample by means of strong cation/anion exchange (SCX/SAX)95,119. Sophisticated post-acquisition 
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strategies allow merging of manually fractionated samples for qualitative and quantitative comparisons 

across fractionated samples, thus correcting partially for higher sample to sample variability or an 

automated fractionation procedure.  

Another possibility is off-line basic reversed phase fractionation, which was first implemented on C18 

StageTips. Here, peptides are eluted with an increasing ACN concentration under basic conditions into 

many fractions and pooled, or concatenated, keeping the largest distance with regards to ACN 

concentration levels82. This fractionation and concatenation principle was also automated by our group 

as a loss-less spider fractionator resulting in more than 12,000 protein identifications83,101. Extensive pre-

fractionation of digested peptides by various enzymes already allowed us to reach a depth of proteome 

coverage which is in some ways on par with the comprehensiveness to which the transcriptome can 

be probed by next-generation sequencing120. I used this strategy in many projects of this PhD thesis to 

create representative peptide libraries, which were used to either transfer peptide identifications into 

single-shot measurements, or as spectral libraries for data independent acquisition analysis.  

Besides the goal of obtaining the deepest representative proteome possible by reducing sample 

complexity, more specialized applications like the analysis of sub-stoichiometric global post-

translational modifications of the proteome call for enrichment steps to reduce the background signal 

of unmodified peptides and increase the signal of the modified ones56,121. For example, several highly 

efficient protocols exist for phosphorylated or ubiquitylated peptides. The high affinity of the bivalent 

phospho-groups to immobilized metal cations (IMAC) or titanium dioxide (TiO2) is the basis for the 

standard phosphopeptide enrichment strategy122. Selective immunoprecipitation of tyrosine 

phosphorylated peptides is another powerful strategy to enrich only for very low abundant 

phosphopeptides directly involved in cell signaling123. This strategy can also directly be transferred to 

the enrichment of ubiquitylated peptides. Here, the remaining side-chain GGK-motif after tryptic 

digestion and removal of the covalent lysine-bound ubiquitin can be enriched by specific antibodies to 

investigate the ubiquitin system at scale124,125. Immunoprecipitation or -enrichment is also used to create 

global protein-protein interaction networks as presented for the human interactome in Article 3 

(Ref.126,127). Here, short parts of a fluorescent protein were directed to the protein of interest and fused 

N- or C-terminally in-frame by CRISPR-CAS9, while the complementary fluorescent protein part is 

expressed in trans128. Upon endogenous expression of the protein of interest, the fluorescent protein 

is reconstituted. Antibodies, which are either bead- or plate-conjugated, can then be used to immuno-

precipitate the fusion protein and enrich for binding partners.   
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Furthermore, in the analysis of in vivo peptides or the entirety of the peptidome the digestion step is 

avoided completely. Here precipitation steps or molecular weight cutoff filters enrich for the 

endogenous peptides to be analyzed73.  

 

1.2.3. Liquid chromatography  

Modern proteomics applications aim for the deepest proteome measurements at highest sensitivity, 

reproducibility and robustness at scale. Due to the inherently high dynamic range of the proteome and 

the presence of tens of thousands peptides per sample, mass spectrometers are routinely coupled to a 

reversed-phase high-performance liquid chromatography (RP-HPLC) system. In classical RP-HPLC, 

samples in solution are aspirated (‘picked’) with a sample syringe, transferred into a sample loop and 

pushed out onto an analytical column packed with a bed of (mostly hydrophobic C18) functionalized 

beads that the sample analytes interact with. Peptides are then eluted over time according to their 

physicochemical properties with an increasing proportion of organic solvent. LC-MS systems allow 

the on-line separation of the analyte and couple it directly to ES, which results in a decreased sample 

complexity entering the mass spectrometer at each time point129. 

One of the main performance determining LC components is the analytical column. Nanoflow 

columns are often produced in-house from cut fused silica slugs and usually filled with either 

monolithic material or functionalized beads. Due to many technical challenges of creating monolith 

columns, including polymerization reproducibility, most proteomics laboratories use particle-based 

column beds. Packed columns can then either be coupled to a separate emitter at orifice IDs of 20 µm 

and below, or the fused silica column can be laser-pulled to result in an emitter-like fine-structure 

before being packed129–131.  

Chromatography performance can be described by the Van Deemter equation summarizing the 

dependency of theoretical plate height on flow rate, eddy diffusion and mass transfer132,133: 

 

𝐻 = 𝐴 +
𝐵

𝑣
+ C ∗ v 

H = Theoretical plate height 

𝐵

𝑣
 = Longitudinal diffusion  

𝐶 ∗ 𝑣 = Mass transfer 

𝑣 = Linear velocity of the mobile phase 

A = Eddy diffusion parameter 

B = Longitudinal diffusion coefficient of analyte 
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The smaller the theoretical plate height, the higher the resolving power of the chromatographic system. 

The dimensions of the column are the main factor influencing theoretical plate height133. Different 

lengths, column IDs, bead IDs and functional groups on their surface, as well as porous surface IDs 

of the beads itself are parameters all need to be taken into account134. It is well-established that the 

sensitivity of the measurement increases with the lower ID of the column due to the fact that 

electrospray is more sensitive at the lower flow rates of smaller ID columns (see below)135. 

Furthermore, the more homogenous the column bead is packed and the smaller the bead ID, the more 

homogenous the sample analytes are transferred through the column preventing analyte distribution, 

known as Eddy dispersion. The mass transfer, a measure of the analyte moving between the stationary 

bead material and liquid phase, is largely dependent on the surface area of the bead material. Smaller 

ID beads and smaller ID bead surface porosity increase the theoretical stationary surface that the 

analyte interacts with and decrease mobile phase turbulence. This results overall in a more laminar flow 

and therefore sharper peaks. Furthermore, flow rates play a very important role. Since the same flow 

rate (volume per time unit) has a very different effect on columns of different dimensions, it is helpful 

to normalize to linear flow velocity (distance per hour, or speed of the mobile phase traveling through 

the column), which is defined as the volumetric flow rate per unit cross-sectional area. In general, the 

higher the flow rate, the less pronounced column bed imperfections are and therefore the lower the 

contribution of Eddy dispersion becomes. This also counteracts the longitudinal diffusion of the 

analyte within the column resulting in sharper peaks. The column temperature is also a very important 

factor to consider, since increased temperature positively influences the bidirectional mass transfer 

kinetics between the stationary and mobile phase, reduces column back pressure and therefore results 

in overall improved chromatographic resolution136.  

In our laboratory, the current gold standard for bottom-up proteomics are laser-pulled and in-house 

packed 50 cm columns with an ID of 75 µm packed with 1.9 µm ID beads with a 120 nm surface 

porosity. We run these columns at up to 60 °C to decrease backpressure at 300 nL/min flow rate 

resulting in a peak capacity of up to 1,000 in a 120 min gradient. However, the smaller the column and 

bead IDs get, the more challenging reproducible column bed packing becomes. Furthermore, the 

longer the columns get, the harder it is to get the column packed at all. Additionally, even small 

imperfections resulting from the tip pulling procedure can disturb electrospray efficiency. Finally, ‘long 

pulls’ (emitter tips, which are rather long and not conical) can make the column packing process 

challenging by itself, resulting in small but detrimental dead volumes at the column tip. They cause 

solvent mixing, peak broadening and decreased column resolution. Taking all these factors into 

account, packing of high performance columns can be considered as an art as much as a science, which 
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researchers are still improving by faster and multiplexed column packing strategies137,138. High-

performance small-dimensional LC columns can be easily overloaded with too high sample amounts, 

which in turn can result in very high backpressures that are detrimental for the LC pumps. This is 

especially an issue for binary pumping systems, where the elution gradient is mixed in situ, since very 

high backpressures can lead to solvent compression and admixture artefacts. We find that the 

performance decay of these columns is sharp, resulting in peak broadening and drastic analyte retention 

time variation across experiment, and often leading to a turnover in less than two weeks to keep 

measurements comparable.  

Since the number of samples per proteomics study is increasing over time and the bottlenecks of 

current LC setups are well appreciated, the community is working on alternatives to keep the highest 

chromatography performance for sufficient time spans. An alternative to in-house pulled and bead-

packed columns are commercial columns, which can be connected to a separate emitter with a close 

to zero dead volume. The most promising alternative to bead packed columns are solid silicon wafers, 

which are lithographically etched into a perfectly assembled array of micropillars139,140. This perfect 

column bed symmetry decreases Eddy dispersion and promises to create a perfect laminar flow of the 

analyte through the column. Interestingly, these µPAC columns appear to be very modular and can be 

engineered with different pillar density, shape, surface functionalization and column thickness. This 

allows the tailored and fully standardized creation of columns for many applications. They are also 

extremely reproducible with regards to analyte elution time point due to the incompressibility and 

perfect assembly of the pillars at potentially much longer life time90. These columns have already been 

used in large-scale pilot studies and also high-sensitivity applications, and appear to be ideal for many 

more applications in the near future90,141.  

Another direction, especially for high-throughput applications, where sample amounts are not very 

limited, are short higher ID columns (e.g. 15 cm length, 1 mm ID) operated at flow rates in the range 

of one or more microliters per minute. The chromatographic performance of these systems can be 

superb, resulting in very sharp analyte peaks, very high peak capacity and robustness, but at the expense 

of up to 100 to 1000-fold decreased sensitivity142,143. Since mass spectrometer scan speeds are increasing 

gradually calling for very sharp elution profiles, this approach will especially find its application in large-

scale industry-like projects, where throughput and robustness are key, while there is sufficient sample 

amount. As one example, a recent proteomics study showed that sub-one minute gradients at a flow 

rate of 800 µL/min resulted in a rather high peak capacity and allowed in combination with ultra-fast 

mass spectrometry methods the robust analysis of large blood plasma sample cohorts at a proteome 

depth sufficient to draw novel biological conclusions in a biomedical setting144.  
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The other extreme is liquid chromatography for ultra-high sensitivity applications down to the level of 

single cells. These ultra-high sensitivity applications call for very low flow rates to enable highest 

electrospray efficiency, a very low column ID to prevent analyte dispersion and longitudinal diffusion, 

while still keeping chromatographic resolution high. Many proof of principle studies report the use of 

in-house packed columns with IDs down to 20 µm with beads packed down to 1 µm ID at flow rates 

of less than 20 nL/min145,146. Since the production of these columns is very challenging, smallest 

imperfections are detrimental to overall performance, and the performance drop over time is sharp, 

no large scale or even routine studies have been reported with this type of columns so far. Furthermore, 

many binary pump systems (Figure 3A) have inherent issues mixing the gradient in situ, due to the very 

high backpressure and flow rate, resulting in reproducibility issues. Also, low sample amounts tend to 

adhere to sample-vials and disappear before being analyzed147,148. Additionally, autosampler-based LC 

systems dilute the sample into a large liquid reservoir, which leads to analyte dispersion and signal loss. 

Novel approaches transferring the analyte directly onto the chromatographic column by capillary 

forces have been suggested, but suffer from throughput and automation149.  

 

 

 

Figure 3 | Comparison of two LC pumping schemes. A, Binary high-pressure pumping scheme as used in 

state-of-the-art LC. B, Single-high-pressure pump setup as used in the EvoSep One.  

 

A novel LC platform, called EvoSep One (Figure 3B), promises to solve many of the described 

bottlenecks for micro- and nano-flow applications, and even allows to directly couple sample 
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preparation to LC analysis150. First, it aims to standardize LC by a high-performance industrial plug 

and play column and emitter setup. Second, samples without prior clean-up are loaded onto a 

disposable trap-column, which works just like a StageTip followed by elution of analytes with only up 

to 40 % ACN directly from the EvoTip into the system114,151. This prevents the introduction of very 

hydrophobic analytes and insoluble material, drastically reducing analytical column clogging and 

increasing lifetime. It also concentrates sample analytes at the interface of the SPE material, which is 

eluted as a very small volume peptide nanopackage and directly navigated to the start of the analytical 

column105. Third, analytes are eluted and stored at the very end of a preformed gradient, which is 

pushed out in a highly reproducible way by a single high-pressure pump. This alleviates the issue of in 

situ gradient admixture, sample dilution, and allows full control of flow rates across the gradient and 

gradient lengths itself. Furthermore, the choice of fixed column dimensions allows for standardized 

high-performance microflow applications with a flow rate of up to 2 µl/min at very high throughput 

or even true nanoflow applications down to only 25 nl/min for ultra-high sensitivity applications. I 

successfully applied the microflow gradient for ultra-robust high-speed interactome studies (Article 

3) and realized the idea of a standardized true nanoflow setup with a ten-fold reduction in flow, allowing 

the analysis of true single-cells (Article 7). Even though this LC system provides the opportunity to 

standardize high-performance liquid chromatography in the high-flow and true nano-flow segment, 

one of the weakest links is still the analytical column.  

I am currently working on combining the advantages of the EvoSep LC system with the advantages 

of laser etched µPAC columns to create a robust full solution for LC, which is applicable to ultra-high 

sensitivity as well as non-sample limited high-throughput applications139.  

 

1.2.4. Mass spectrometry 

Major advances in the fields of DNA and RNA sequencing happened due to methodological and 

technological developments25,28. This is also the case in the field of proteomics. Since our core 

technology besides liquid chromatography is the mass spectrometer, innovative hardware 

improvements are tightly coupled with an increase in proteome depth, throughput and performance 

robustness. In simple words, mass spectrometers detect the abundance of incoming ions and measure 

their accurate mass-to-charge ratio in vacuum152. Many parameters determine the performance 

characteristics of a mass spectrometer, such as mass resolving power, mass accuracy, sequencing-

speed, duty cycle, sensitivity and dynamic range coverage (Box 1). Four main technical features are 
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part of every modern mass spectrometer for proteomics applications: analyte ionization, ion filtering, 

ion fragmentation, mass analysis.   

 

Box 1: Nomenclature in mass spectrometry 

 

 

Mass resolving power  

Measure of the ability to distinguish two peaks of different mass-to-charge ratios in a mass 

spectrum. It is calculated as m/Δm, while m is the actual mass of the peak and Δm is the mass 

deviation of the actual peak at Full Width at Half Maximum (FWHM) and is therefore a 

dimensionless quantity.  
 

Mass accuracy 

Measure describing the deviation of experimentally measured mass-to-charge and exact mass-

to-charge ratios of an ion. It is often calculated as the root mean square value of technical repeat 

measurements and usually expressed in parts per million (ppm).  
 

Sequencing-speed  

Number of fragmentation scans the mass spectrometer can acquire at a given resolution per 

time frame, e.g. per second.  
 

Duty cycle 

Time proportion within an acquisition cycle spent on analyzing ions, or the proportion of 

incoming ion submitted for analysis.  
 

Sensitivity 

The signal intensity a mass spectrometer records for a fixed analyte concentration. The more 

sensitive a mass spectrometer becomes, the less analyte is needed to reach the same signal. Also 

related to the lower limit of detection, a measure for the minimum ion abundance required to 

detect a signal 
 

Signal-to-Noise 

The ratio of the analyte signal to the chemical and electric noise level measured on a blank. 

 

Dynamic range 

Fold change of the lowest and highest abundant ion quantified within a spectrum or across a 

measurement.  
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1.2.4.1. Analyte ionization - Moving analytes into the gas phase 

One of the main challenges in MS-based proteomics is the transfer of sample analytes from ambient 

pressure into the first vacuum stage of the mass spectrometer. The transfer of non-volatile protein and 

peptide ions for biological mass spectrometry into gas phase was mentioned first in 1968 (Ref.153), but 

practically realized for the first time by the means of two soft-ionization techniques in the 1980s: 

matrix-assisted laser desorption/ionization (MALDI)154–156 and electrospray (ES)62,157.   

In MALDI, analytes are co-crystalized with a matrix of molecules, which have a strong optical 

absorption in the UV or IR range enabling a rapid and efficient absorption of irradiation with a 

particular wave-length. A pulsed laser beam is directed towards the matrix with the embedded sample 

to locally excite the molecules. This results in the desorption of the analytes and ionization in the gas 

phase158. Due to the high-complexity of the proteome and the inability to easily couple MALDI to on-

line separation techniques its application spectrum is much narrower than of ES. Still, MALDI 

imaging, a technique to reconstruct the analytes accessible from the surface of tissue sections in 2D, is 

gaining popularity in the biopharmaceutical industry and for example in large-scale drug 

screenings159,160.  

Electrospray is a very different approach, for transferring sample analytes from liquid into gas phase 

but was developed at the same time62. In ES, an electric field between the liquid flowing through the 

analytical column and the entrance of the mass spectrometer is applied, which charges the emitter tip 

to kilovolt potential. This leads to an electrostatic dispersion and desolvation of the sample analytes at 

the emitter tip161. Since sample analytes continuously leave the column at a fixed flow rate, this principle 

results in a continuous ion beam of LC-separated analytes entering the mass spectrometer. In more 

detail, a jet of highly charged droplets is ejected from the so-called Taylor cone at the emitter tip161. 

Subsequently, liquid dispersion and droplet formation results in a spray plume. Further evaporation of 

solvent molecules from the droplets increases their surface liquid tension and charge density until the 

Rayleigh limit162. This leads to a coulomb explosion forming even smaller charged droplets (note, 

however, that the details of this process are still not clear after many decades.) High temperatures of 

the carrier gas and the ion guides at the MS entrance, bridging the analyte transfer from subambient 

pressure into the first MS vacuum stage, assist further desolvation until analytes are close to completely 

desolvated. ES efficiency and therefore the transfer of sample analytes from liquid into gas phase 

strongly depends on the LC flow rate, since this determines the solvent amount leaving the emitter 

tip163,164. Increasing the flow rate increases initial droplet and Taylor cone size. High flow rates therefore 

decrease ES efficiency due to larger droplets that do not enter the MS, less efficient desolvation, ion 

suppression effects and the increased formation of singly charged cation adducts152. Nanoflow ES 
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alleviates this issue with very narrow-bore analytical columns, allowing to reduce the flow rate into 

nanoflow regions, while still keeping an optimal linear velocity and increasing LC-MS sensitivity into 

the attomolar range163. In Article 7, we decreased the flow rate down to 100 nl/min to increase 

sensitivity by up to 10-fold compared to the microflow gradients that were the standard of this 

instrument. This was one of the main factors to enable true single-cell proteomics applications. As a 

matter of principle, the transfer of sample analytes from ambient pressure into the vacuum stages of 

the mass spectrometer always comes with a loss of sample analyte. A different ES Source, operating 

at pressures of about 30 Torr in the first vacuum stage of the mass spectrometer, called sub-ambient 

pressure ionization (SPIN-source), has been reported and would potentially side-step this issue165. Also, 

the addition of dimethyl-sulfoxide (DMSO) has been reported to positively impact the ES process, 

increasing the number of ions entering mass spectrometer166,167. A suggested model is that the addition 

of up to 10 % DMSO into the mobile phase of LC reduces the surface tension of droplets during ES, 

in particular for aqueous solvents. This would increase the likelihood of sample analytes being ionized 

since sequestration of sample analytes into charged nanoscale droplets is improved167. Once sample 

analyte ions enter the mass spectrometer, multiple ion optical elements refocus and guide ions through 

the instrument to the mass analyzer.  

 

1.2.4.2. Mass isolation - The quadrupole 

Quadrupoles are some of the simplest type of mass analyzers (not as simple as TOF) and consist of 

four cylindrical or hyberbolic rods, which are pairwise symmetrically aligned to the center of a square, 

with ions transmitted down the middle152,168. In operation, a quadrupolar field is generated by setting 

opposing rods to the same potential and adjacent rods to the opposite potential. Ions entering the 

quadrupole are exposed to the periodically alternating quadrupolar electric field, which results from a 

direct current (dc) superimposed on an alternating current (ac) run at radiofrequency (rf; Mhz)152,169. 

This means that ions are moving on oscillating trajectories through the quadrupole. Only a fraction of 

the ions with a distinct m/z will have a stable trajectory and hence be able to pass the quadrupole, 

while others with an oscillation larger than the inner diameter of the quadrupole will eventually hit the 

rods and get discharged. Setting defined potentials allows to isolate narrow m/z regions of interest152,170. 

Mathematically, the motion of ions through a quadrupolar field can be described as a function of the 

ac and dc potential and quadrupole geometry by the Matthieu equation, which identifies ‘stability 

regions’ for ions of a given m/z (Fig. 4).  
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Figure 4 | A linear quadrupole mass filter. A, Schematic of a typical quadrupole, showing the parallel square 

orientation of all four rods and opposing potentials. Periodic attraction and repulsion occurs into the x- and y- 

plane, while analyte ions traverse in z-direction. B, Linear quadrupole scanning across m/z range highlighting 

transmission stability regions depending on the applied ac and dc potentials. 

 

Quadrupoles operated in rf-only mode can be used to transmit very wide m/z ranges, which makes 

them attractive as ion guides or as ‘switchable’ ion filters in hybrid mass spectrometers152. The 

resolution of a quadrupole correlates with the number of oscillations ions perform in the quadrupole 

and is determined by the isolation width a quadrupole can offer without losing transmission efficiency 

of the target analyte ion. Modern quadrupoles allow the isolation of ions without signal compression 

at a width of below 2 m/z and with sub-ms switching times, which can be used in proteomics for the 

isolation of many peptide ions per second. To further increase resolution, which would enable even 

sharper ion isolation without transmission efficiency impairment, the kinetic energy of the ion passing 

the quadrupole can be lowered, the rf can be increased, rod-to-rod distance can be decreased, or the 

quadrupole length can be increased. However, some of these options come hand in hand with major 

manufacturing challenges.  

Quadrupoles can also be used as ion storage devices (linear ion traps), with optical lenses positioned 

at the entrance and back of the quadrupole to create a potential well that prevents the ions from exiting 

the device. Another feature of quadrupoles (N = 4) is that they can be produced as higher order –

poles such as hexa- (N = 6) or octapoles (N = 8), which have an increased ion transmission efficiency 

in rf-only mode and are therefore preferred at several stages of some MS as ion guides152,170. In some 

Orbitrap instruments, for instance, multipoles are used in a bent version to remove residual neutrals, 

where charged ions have a stable trajectory across a wide m/z range, while neutrals are tangentially 

ejected.  
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1.2.4.3. Ion fragmentation - The collision cell 

Mass spectrometers in bottom-up proteomics perform two fundamental experiments per acquisition 

cycle. Peptides eluting from the column and entering the MS are first subjected to full scan (MS1) 

acquisition covering a broad m/z range of usually 100-1,700 by operating the quadrupole in rf-only 

mode. Precursors of interest are then isolated with either very narrow m/z ranges of about 2 m/z in 

data dependent, or consecutive, larger m/z ranges of for example 25 m/z in data independent 

acquisition, followed by mass analysis of their fragment ions (MS2). There are several fragmentation 

techniques for MS2 analysis, including collision-induced dissociation (CID), higher-energy C-trap 

dissociation (HCD), electron-capture dissociation (ECD), electron-transfer dissociation (ETD), and 

ultraviolet photo-dissociation (UVPD) all of which create distinct peptide fragment ion series’ patterns 

from (usually) positively charged peptide precursors (Fig. 5)171–173.  

 

 

Figure 5 | Peptide backbone fragmentation pattern according to the Roepstorff-Fohlmann-Biemann 

nomenclature. Upon fragmentation of peptides, a/b/c fragments from the peptide N-terminus and x/y/z 

fragments from the peptide C-terminus are obtained.  

 

Upon fragmentation of a positively charged peptide, fragments are created by breaking the peptide 

amide bond. Following the Roepstorff-Fohlmann-Biemann nomenclature, indicating the position of 

the dissociated bond, peptides yield a/b/c fragments when they include the N-terminus and x/y/z 

fragments when they include the C-terminus174,175. Peptide fragments are visible in the MS2 spectrum, 

as long as they preserve at least one positive charge from the precursor after fragmentation. All above 

mentioned fragmentation techniques have certain preferences for yielding a/x, b/y, c/z fragment ion 
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pairs. The most widely used fragmentation technique in bottom-up proteomics are beam-type CID or 

HCD, which are actually minor variants of each other176. In CID, the ion beam is accelerated into a 

multipole run at rf-only and low pressure of a neutral gas ions like N2, He is leaked into the multipole, 

which the ions collide with. High kinetic energy peptides (tens of eV) collide repeatedly with the neutral 

gas ions and the kinetic energy is converted into internal energy, destabilizing the chemical structure 

of the peptide. This ultimately leads to the breakage of the amide bond and the predominant formation 

of a b- and y-ion series’ (Ref.152,177). Fragmentation efficiency is dependent on mass, charge stage and 

the constitution of the peptides. Furthermore, fragmentation energy can be controlled by altering the 

collision gas density as well as the kinetic energy of the peptides entering the collision cell. In triple 

quadrupole mass spectrometers (QQQ), the first quadrupole (Q1) is used as a mass filter, the second 

quadrupole (Q2) serves as a collision cell and the third quadrupole (Q3) serves again as a mass filter of 

a distinct fragmentation m/z range before ions hit the detector152. On Orbitrap instruments, beam-

type CID was first performed by accelerating ions into the C-trap (normally used to trap ions before 

mass analysis in the Orbitrap) through a potential gradient - hence the term Higher energy C-trap 

Dissociation (HCD) and later on in a dedicated octapole ion trap176. Historically, this configuration 

overcame the problem of low trapping efficiency for low m/z fragment ions and poor fragmentation 

spectra for peptides with labile modifications as typically observed with resonant-excitation CID in ion 

traps, which used to be the only fragmentation mode for Orbitrap mass spectrometers. This 

development was essential for applications like the quantification of low molecular mass reporters in 

the Tandem Mass Tag (TMT) technology178. When the endoprotease trypsin is used for peptide 

generation, there will likely be at least one positive charge located on the N-terminal amine-group and 

one charge on the C-terminal side-chain of the lysine or arginine, while the ‘mobile proton theory’ 

suggests that the charge moves along the peptide backbone upon excitation179. This results in series’ 

of b- and y-ion fragment pairs, which add up to the precursor mass (even though b-ions are often less 

stable than y-ions)79. In contrast, electron transfer dissociation (ETD) and electron capture dissociation 

(ECD) yield predominantly c- and z- fragments and are often used for top-down analysis as these 

techniques readily fragment the peptide backbone of highly charged ions while keeping 

posttranslational modifications on the side-chains intact180–182. UVPD is also mostly used in top-down 

analyses, yielding higher energy a- and x-ions that require higher energy, which was also demonstrated 

to be advantageous for glycosylation mapping183–185. These fragmentation techniques can provide 

complementary information to HCD or can even be combined with HCD, for example in EThcD.  
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1.2.4.4. Mass determination - Mass analyzers 

Mass analyzers are ‘the’ essential hardware part of the MS. Many different types have been invented 

and further developed over time with very different physical working principles. All of them have their 

individual strengths and limitations. Since I contributed to the development of novel hardware and 

scan modes for a time-of-flight (TOF) based MS instrument and used an Orbitrap-based MS 

instrument for proteomics measurements during my PhD, I will focus on these two.  

 

 

Figure 6 | Mass analyzers and how they are embedded in the ion path of hybrid MS instruments. A, 

The time-of-flight mass analyzer within the timsTOF Pro (Bruker Daltonik GmbH, adapted from Ref.186) used 

for method development and high sensitivity applications in this thesis. B, Orbitrap mass analyzer within the 

Orbitrap Exploris (Thermo Fisher Scientific GmbH, adapted from Ref.187).   

 

Time-of-flight mass analyzers appeared the first time in 1946188. The first generation of instruments 

was designed for gas chromatography MS (GC-MS)189. Later, MALDI introduced a strong demand for 

TOF instrument, since its pulsed nature is suited to TOF and since its m/z range coverage is in theory 

unlimited, enabling the analysis of large molecules, which was dramatically demonstrated by the ES-

TOF-based analysis of intact viruses156,190. In simple words, TOF instruments measure the time ions 
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need to travel a fixed path length in a field-free high vacuum chamber after acceleration by a defined 

energy. This is summarized by the potential energy to kinetic energy conversion of a charged particle 

in an electric field. In this case, the acceleration voltage is translated into kinetic energy and finally 

translational motion according to the following equation152:  

 

𝐸𝑒𝑙 = 𝑒𝑧𝑈 =
1

2
𝑚𝑣2 = 𝐸𝑘𝑖𝑛 

      Eel = Potential energy of the electric field 

      e = Elementary charge 

      z = Charge stage of m 

      U = Acceleration voltage 

      m = Ion mass 

      v = Velocity of the ion 

    

When ions start from rest as in MALDI, or if we assume that ions to be accelerated and extracted from 

a continuous directed beam were initially at rest with regards to the direction they are pushed (typically 

orthogonal to the direction of a continuous ion beam), its velocity can be calculated by191,192: 

 

𝑣 =  √
2𝑒𝑧𝑈

𝑚
 

 

This highlights that the ions velocity after acceleration is inversely proportional to the square root of 

its mass. This allows to express the ion-specific flight time, which is the time an ion of unknown m/z 

needs to travel through the flight tube of a TOF instrument with a known length and acceleration 

voltage152:  

 

𝑡 =  
𝑠

𝑣
=

𝑠

√2𝑒𝑧𝑈
𝑚

 

      s = Length of the TOF flight tube 

      t = Time 

 

This finally enables the calculation of ion-specific m/z values for a beam of ions, which were 

accelerated into a field-free high vacuum TOF flight tube of known length at constant velocity152: 
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𝑚

𝑧
=  

2𝑒𝑈𝑡2

𝑠2
 

 

Since ions with different m/z values will hit the detector at pico- to nanosecond scale differences, it is 

essential to be able to measure short time intervals with high accuracy, which was one of the resolution-

limiting factors when TOF instruments initially appeared. This is now enabled by highly efficient 

electronics, whereas detector dynamic range is still a challenge193. At the end of the TOF flight tube, 

ions hit a detector, which is in most cases a microchannel plate (MCP)194. As an ion impinges on the 

detector surface, it releases one or more electrons with a given quantum efficiency and this signal is 

amplified into a cascade of electron multiplications, produced in a stacked microchannel plate. Today, 

MCP detectors compensate for the angular spread of the ion beam and can provide spatial resolution. 

The abundance of an ion hitting the detector is finally inferred from the number of electrons generated 

and transformed by fast analog-to-digital conversion in high dynamic range digitizers195.  

Modern TOF instruments are very attractive mass spectrometers, since their acquisition rate is very 

high with up to 1000 spectra/s, their unlimited m/z range in principle and intrinsically high and 

constant resolution. Since traditional TOFs very rapidly sample from a continuous ion beam, the 

signal-to-noise (S/N) of individually acquired mass spectra is not very high. Therefore, all single spectra 

acquired within a given time-frame can be summed up by an acquisition processing unit to drastically 

increase the S/N, which is common practice in the field196. An increase in ion density per push would 

in theory increase spectral S/N, which makes it attractive to introduce a trapping device fitting in 

between the chromatographic and TOF time-scale like a trapped ion mobility device186,197,198.  

As the mass resolution of a TOF analyzer is proportional to its total flight path length, a minimum 

path length is desired (roughly one to two meters). This also means insuring high vacuum to prevent 

collision scattering and maintain spatial focusing of ions with the same m/z values before hitting the 

detector, although not nearly as high as in the Orbitrap analyzers199,200. Reflectrons were developed in 

Russia in the 1970s, and cleverly compensate for slight differences in ion energy as described just 

below201. They also increase the flight path length, focusing spatially and now provide excellent overall 

TOF resolution of about 50,000. Reflectrons are ion mirrors, consisting of ring-shaped electrodes at 

increasing potentials located behind the field-free drift region and positioned opposed to the 

accelerator unit resulting in a V-shaped flight path. They correct for the initial spatial distribution of 

ions with the same m/z and slightly different kinetic energies in the accelerator unit. This principle 

results in an adjusted flight path length and spatial focusing202. After acceleration and initial drift, ions 
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penetrate the reflectron until they reach a kinetic energy of zero, followed by acceleration into the 

opposite direction. This means that ions with slightly increased kinetic energy enter the reflectron 

deeper than ions with lower kinetic energy. To ensure that all ions are reflected within the homogenous 

portion of the electric field of the device, the reflection voltage is set to about 1.1x the pulse 

acceleration voltage.  

Extending the principle of reflectrons also gave rise to so-called ‘jig-saw’ TOF designs, which position 

reflectrons at opposite positions to another to further increase drift length and ultimately resolution at 

the expense of compromised acquisition speed and sensitivity loss due to ion beam scattering203. To 

counteract this, electrostatic lenses are positioned halfway between the opposed reflectors for spatial 

focusing. In addition to reflectrons, modern TOFs use the time-lag-focusing principle to delay the 

extraction and orthogonal acceleration of the continuous ion beam right before the accelerator 

unit196,204. This results in a time-dependent ion focusing and pulsed acceleration of an ion package, 

which reduces the initial position acceleration effect further and consequently increases overall 

resolution. Combined, state-of-the art TOFs in proteomics reach a resolution between 20,000 and 

100,000 across the entire m/z range186,196.  

 

The Orbitrap mass analyzer, introduced in 2000, is an ion trapping device in contrast to TOF mass 

analyzers 205. Historical developments date back to 1923, where Kingdon used a wire along the axis of 

a cylindrical electrode enclosing the trapping volume with flanges to create an ion trapping device. This 

setup demonstrated that axial motion of ions along a wire, defined by a field curvature, can indefinitely 

capture ions and was called the Kingdon trap206. In 1981, Knight built on this principle and redesigned 

the Kingdon trap by introducing an increased radius at the center of the cylindrical electrode enabling 

storage and ejection of ions, but still with no m/z analysis207. Only in 2000 did Makarov realize that 

one could ‘re-purpose’ the periodic back and forth movement of ions along the attractive central 

electrode in a perfectly symmetric Knight-like Kingdom trap to read out the m/z values of the 

analytes205. A stable trajectory along the Orbitrap is only possible, when rotation around the central 

axis with axial oscillations are combined. Makarov recognized that the axial frequency of the axial 

motion is a function of the ion m/z and is independent of their tangential velocity and spatial 

distribution205: 

 

𝜔𝑧 =  √𝑘
𝑧𝑒

𝑚
 

ωz = Axial oscillations (rad s-1) 



31 
 

z = Charge of the analyzed ion 

m = Mass of the analyzed ion 

e = Elementary charge 

k = Constant 

 

Thus, the axial oscillation frequency is inversely proportional to the square root of the m/z ratio of 

the ions to be analyzed. A differential amplifier connected to both halves of the outer electrode allows 

to detect and amplify the image current152. Ions with the same m/z value will move in phase, while 

diverging ions will move at lower or higher frequencies, which allows to deconvolute the multiplexed 

signals. The ion-specific frequency of its corresponding harmonic axial oscillations produces a 

characteristic sine wave for each m/z value. Finally, frequency domain signal translation via Fourier 

transformation allows sub-ppm mass accuracy measurements of analyzed ions208. The resolving power 

of the Orbitrap is directly linked to the time the ions oscillate within the Orbitrap and decreases 

inversely proportional to the square root of m/z. Depending on the requirements of the experimental 

application, the time spent within the Orbitrap (also known as transient time) is adjusted by the user, 

which results in a known resolving power and can be up to 1,000,000 at m/z 200 with a 3 sec transient 

on an advanced, hand-picked but otherwise standard Orbitrap instrument209.  

An essential step to couple the Orbitrap mass analyzer to continuous ion beam experiments and 

electrospray ionization was the development of the C-trap, which is a quadrupole bent into a C-shape 

and operated in rf-only mode210,211. Since the Orbitrap needs time to analyze a batch of ions at high 

resolution and sensitivity, the C-trap allows to partition the continuous ion beam by trapping a desired 

number of ions for subsequent introduction into the Orbitrap. As soon as the Orbitrap finished the 

analysis of the current ion package, it is purged and the C-trap moves the next ion package into the 

Orbitrap for analysis. Keeping in mind that the C-trap, like all ion trapping devices, has a maximum 

charge capacity, the continuous ion beam entering the mass spectrometer has to be cut off before that 

limit is reached – even when the mass analysis in the Orbitrap is not yet finished. This can result in the 

analysis of only a small percentage of the whole ion beam for sampling in an Orbitrap, depending on 

the desired transient length. To alleviate this issue to some degree, successive methods have increased 

the resolution of the orbitrap analyzer at a given transient time. The latest of these is a method called 

‘phase-constrained spectrum deconvolution method’, which promises to half the timed needed for 

mass analysis at constant resolution212.  

The MS market in industry and academia is now dominated by Obitrap-based mass spectrometers due 

to their superior mass accuracy, dynamic range coverage and sensitivity compared to the TOF-based 
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instruments available just a few years ago. The many Obitrap-based instrument iterations have brought 

an increase in speed, sensitivity, ion transmission efficiency, resolution and ease of handling176,187,213–215. 

However, TOF-based instruments appear to be ready to make a comeback due to their high speed of 

spectral acquisition and vast improvements in mass accuracy, dynamic range coverage and sensitivity196. 

Intriguingly, the combination of modern TOF instrument with a novel trapped ion mobility 

spectrometry device (TIMS) promises to open up entirely new vistas. We have shown that it increases 

sensitivity and sequencing speed compared to previous TOF instruments for proteomics experiments 

by at least 10-fold. It also allows close to 100 % ion beam utilization at full speed and much 

more186,195,198. Performance-wise, this instrument is currently a serious competitor for Orbitrap-based 

instruments, the first time this has happened in almost two decades. 

 

 

1.2.5. Computational proteomics  

The high-confidence identification, quantification and interpretation of acquired large-scale mass 

spectrometry data is a key challenge in proteomics. The human proteome alone, when subjected to a 

bottom-up proteomics workflow, could give rise to more than 600,000 tryptic peptides at a length 

cutoff of seven amino acids, even without missed cleavages or taking into account posttranslational 

modifications216. Analyzing tryptic proteome samples of human origin currently typically results in 

more than 120,000 MS2 fragment spectra on an Orbitrap platform and more than 700,000 MS2 

fragment spectra on a TOF-based platform per 2 h run. Large-scale experiments have reported the 

analysis of more than 18 billion fragment ion spectra gathered across more than 16,000 LC-MS runs, 

which have to be identified and quantified in an automated way at high confidence, precision and 

accuracy87. 

By now, a plethora of software tools have been developed to enable proteomics analysis of such data 

sets. For data dependent acquisition, the gold standard in many laboratories including ours is still 

MaxQuant, developed in our group from 2006 onwards. Since MaxQuant was used for most of the 

projects in the course of this PhD and the same key concepts it relies on for protein identification and 

quantification are also used in other software solutions, I will mostly describe the computational 

workflow from raw data to output tables the way it is implemented in MaxQuant217,218.  
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1.2.5.1. Protein identification 

The first step of MaxQuant analysis is ‘feature detection’ where data objects are reconstructed from a 

3-dimensional space (or by now 4-dimensional when using ion mobility) at the MS1 level. The key at 

this stage are high-resolution spectra where isotope patterns are fully resolved. Features describe ions 

analyzed by LC-MS, which are assembled as a function of retention time, m/z and intensity, and also 

ion mobility in case of a TIMS device coupled to a TOF mass analyzer (Fig. 7)217,219.  

 

 

Figure 7 | Feature space in LC-MS analysis of complex proteomics samples. A, 2D feature space of RT 

versus ion mobility. B, Typical 2D feature space of RT versus m/z. C, A single ion mobility scan in the center 

of a gradient and zoomed view of an isotope pattern in m/z to ion mobility space. D, Mass spectrum of the 

corresponding isotope pattern.  

 

Experimentally derived isotope patterns are fitted to an ‘averagine model’, which is an approximation 

of the expected isotope distribution for a distinct ion mass, followed by charge state assignment and 

de-isotoping220. Here, isotope patterns are collapsed to a single potential peptide precursor mass to 

speed up and enhance the next analysis steps. Co-eluting isotope patterns can be separated by higher-

dimensional feature spaces (e.g. in ion mobility enhanced measurements)219. Even though high-

resolution mass spectrometers have a very high mass precision, it does not mean that they are 
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inherently accurate. This is due to static errors like hardware imperfections or dynamic errors like 

temperature shifts, which result in systematic measurement errors and calibration drifts in the 3D or 

4D feature space. To correct for this in real-time, atmospheric polymethylsiloxanes were initially used 

as ‘lock-masses’, achieving low ppm mass accuracy208. Later, the ‘software lock mass’ approach was 

developed, which allows for a more robust post-acquisition strategy without using actual calibrants. 

Here, a first survey search at high mass tolerance for high confidence identifications is performed and 

thousands of high-confidence peptides are used for nonlinear global recalibration of the m/z 

dimension, resulting in sub-ppm mass accuracy221. Since non-linear shifts in the retention time are 

common, dedicated global correction algorithms were developed and in particular in MaxQuant a 

similarity-guided tree approach is used to circumvent the need for an alignment to a reference run222.  

 

After feature detection and recalibration at the MS1 level 3D- or 4D feature space, the next step in 

data processing is the peptide identification. Here, the fragmentation information on MS2 level of 

isolated precursors is used to determine the sequence of a peptide. In database search engines, peptides 

following cleavage rules mirroring the experimental protease are generated in silico from a protein 

sequence database, which is inferred from the genomic information of the experimental organism223. 

Then, masses corresponding to the expected fragment ions to be found in the MS2 spectra are 

calculated following the experimentally used fragmentation techniques (e.g. b- and y-ions for 

HCD/CID). Next, the search engine calculates a score for each experimental MS2 spectrum against 

all theoretical fragmentation spectra within a specified mass tolerance window and precursors mass, 

following many criteria like number of matching fragment ion masses. The highest scoring peptide 

spectrum match (PSM) remains as a possible peptide identity-verifying candidate spectrum86,224. The 

calculated high accuracy mass from the MS1 level is used to decrease the number of possible spectral 

comparisons by narrowing down the possible full length peptide mass of the match217. Due to the high 

proteome complexity, the best scoring PSM might still be a false-positive, which raises the issue of a 

proper false-discovery rate (FDR) control mechanism. In the target-decoy model, experimental spectra 

are not only compared to the target database, but also against a decoy database, which can only produce 

false-positive PSMs. Comparing the score distribution of all PSMs reveals that target and decoy 

database hits resemble two distinct Gaussian distributions, while the decoy database hits produce a 

low scoring one. Posterior error probabilities, taking into account the PSM identification score, 

number of variable modifications, charge stage, number of missed cleavages and peptide length, can 

now be calculated based on the target and decoy database distribution, which allows simple FDR-

control by thresholding known false-positives within the dataset at 1 %. Decoy databases can be 
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generated in several ways, while the most prominent one is a reversed version including terminal 

arginine or lysine swaps, providing nonsense peptides that do not occur in nature. Other models also 

exist, which are mostly machine learning based225,226. Interestingly, recent developments in deep 

learning and the prediction of fragment spectral intensities, retention times and collisional cross 

sections allowed to add more layers of information to increase the confidence in PSM calling by more 

than 10-fold depending on the application227–230. Especially very large search spaces with many more 

possible matches and non-standard peptide fragmentation patterns like unspecific digests or 

unexpected proteoforms drastically benefit from this in the future231,232. Currently, these models are 

mainly limited to unmodified and rather short peptides of less than 25 amino acids, but recent 

developments point into the direction that these approaches will be a driver of future innovations in 

the field of computational proteomics.  

A different approach for peptide identification, based on MS2 level fragment ion information, is de 

novo sequencing. Here, exact fragment ion mass differences between adjacent fragments can 

correspond to unique amino acid masses and if e.g. a full b- and y-ion series exists, the full MS1 level 

precursor mass and amino acid sequence can in principle be reconstructed without the need for a 

sequence database search233. In hybrid approaches, incomplete de novo sequenced fragment ion spectra, 

resembling only a part of the peptide amino acid sequence (sequence tag) are combined with database 

search to increase sensitivity of the database search84,234,235. The advantage of this approach is that one 

knows the missing mass to the C- or N-terminus based on the precursor mass, which can only come 

about by a fixed combination of amino acids or a PTM. Such PTMs can then be localized by in silico 

placing them on all possible amino acids in the matching sequence.  

Known PTMs of amino acids can be routinely identified by database searches, where a fixed mass 

corresponding to the PTM can be assigned as present or absent. A major challenge is that the number 

of different PTMs to be considered is limited due to combinatorial explosion of the in silico generated 

fragment ion spectra and the resulting search time needed for spectral comparisons. This issue is 

already alleviated to a large degree by novel search engines, which use fragment ion indexing to 

drastically speed up the whole search, but it still has its limits with regards to the size of the resulting 

database236. There is a trend towards using the massively parallel computing power available on 

graphics processing units (GPU) in the proteomics community and this promises a breakthrough in 

speeding up search calculations, just like it did in deep learning237,238. Two major recent developments 

promise a solution for the unbiased search of PTMs. First, MaxQuant offers the so-called dependent 

peptide search, which assumes that peptides tend to occur in a modified and unmodified state. Here, 

all unassigned MS2 spectra are compared to all already assigned unmodified spectra and investigated 
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for systematic fragment mass shifts of the whole fragment ion series, which could be due to a PTM239. 

Another option are open-search algorithms, which do not increase the database size directly, but open 

up the MS1 precursor mass tolerance window to several hundred Dalton, while MS2 fragment mass 

tolerance is kept low. This allows to match mass shifted fragment ions series’, due to a PTM or 

mutation, to still be matched to the unmodified counterpart in a database search236,240. However, the 

large search space itself decreases statistical power of peptide identification. 

 

After peptide PSMs have been identified and filtered to 1 % FDR, they need to be assigned to proteins 

of an organism-specific reference proteome to reflect the qualitative and quantitative proteome of the 

analyzed sample218. These reference proteomes, including isoforms of open reading frames and much 

additional information about the proteins itself, are deposited in a curated form in the UniProt 

database241. Since bottom-up proteomics gives rise to many peptides, which can be either unique, or 

shared between proteins they could have arisen from. Dedicated methods have to be applied to solve 

this many-to-many relationship. In MaxQuant, Occam’s razor principle is applied as a solution to the 

protein inference problem, which aims to find the smallest set of proteins that explain the observed 

peptides. Proteins that cannot be identified by unique peptides are combined into ‘protein groups’. 

Since it is known that protein misidentifications tend to accumulate across large data sets, the FDR 

rate has to be controlled at the protein level, too. One possibility is to create a protein level score as 

the product of all PEPs from PSMs matching the protein and taking into account a factor for the total 

number of used PSMs. Since the protein FDR dominates the PSM FDR, retained PSM have FDRs far 

below the original of 1 %. Furthermore, high confidence PSM identifications can be transferred 

between experimental runs after recalibration and FDR filtering at the PSM and protein levels, as 

described above, to alleviate the stochastic nature of data dependent acquisition methods242.  

 

1.2.5.2. Protein quantification 

The identification of peptide and their inferred proteins allows the description of the qualitative 

proteome within and between samples. The ability to quantify identified proteins precisely and 

accurately across a wide dynamic range is even more important, because it enables the investigation of 

the quantitative proteome distribution within a given sample and allows the comparison of single or 

protein group abundances across several conditions. Since the scale of MS-based proteomics studies 

has increased dramatically over the last few years and the technology is finally being applied to large-

scale sample cohort studies comprising thousands of samples, robust identification and especially 

quantification is more important than ever105,126,243.  
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Quantification of proteins is not a trivial task, since samples have to be submitted to the described 

multi-stage bottom-up proteomics workflows including sample preparation, liquid chromatography, 

electrospray ionization and mass spectrometric analysis. All of these steps can potentially introduce 

systematic or stochastic distortions on the true results. In sample preparation, pipetting errors of small 

volumes, variations in starting material, the amount of endoproteases used for digestion, and chemical 

modification are only some of the sources for initial variation. In liquid chromatography, minor 

differences in column length, solvent constitution and temperature can affect chromatographic 

resolution and peptide retention behavior, which makes quantitative comparisons across samples 

challenging. Furthermore, variation in electrospray ionization influences how many ions enter the mass 

spectrometer, which is affected by background ions, emitter fouling and spray voltage, if present. Mass 

spectrometers can also introduce variation by performance decay over time with regards to ion 

transmission efficiency and time-dependent calibration drifts. Quantitative proteomics is therefore a 

rather complex endeavor and a plethora of techniques have developed over time to enable precise and 

accurate protein abundance estimations244–246. They can be divided into two main categories, which are 

label-free and label-based techniques for the quantification of protein abundance on the MS1, MS2, or 

both levels (Fig. 8). 
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Figure 8 | Quantification strategies in bottom-up proteomics. Left, Stages of bottom-up proteomics. 

Middle and right, Orange and blue boxes indicate different samples; Horizontal lines indicate at which stage 

the samples are pooled; All steps before pooling can introduce systematic or stochastic quantitative bias. Dashed 

lines indicate potential bias introduction. (Adapted from Ref.246) 
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In an ideal quantification experiment resulting in highest precision and accuracy, samples to be 

quantified experience exactly the same bottom-up workflow. This principle was largely implemented 

in 2002 with the introduction of in vivo stable-isotope labeling by amino acids in cell culture, short SILAC247. 

SILAC experiments use the natural occurrence of stable isotopes and in case of a cell culture 

experiments supplement the media with an either only heavy or light labeled version of an amino acid 

- in most cases lysine and arginine. After only five cell doublings, proteins of each respective cell are 

essentially labeled completely as either heavy or light247. Since trypsin digestion yields peptides with a 

C-terminal arginine or lysine, tryptic peptides are mass shifted exactly by the introduced natural isotope 

mass difference. The foundation for this approach is that isotopically labelled peptides have the same 

physicochemical properties when it comes to LC-MS analysis and behave the same throughout the 

workflow, but can be separated by their m/z difference in the mass spectrum. The most accurate 

quantification between conditions can be reached by mixing heavy and light labelled cells right after 

the experiment followed by a bottom-up proteomics workflow and calculation of relative MS1-level 

ratios, which circumvents any workflow introduced distortion248. SILAC has also been extended from 

cell culture to full organisms like Mus musculus, which resulted in fully heavy (13)C(6) or light (12)C(6) 

lysine labelled mice after four weeks of supplementation as exemplified by the analysis of several organs 

and blood cells249. Furthermore, SILAC was used to investigate protein turnover in a pulsed chase 

SILAC experiment250,251 and found widespread application in PTM analysis252. Even though SILAC 

labeling presumably has the highest quantitative accuracy, it increases MS1 level spectral complexity 

by the factor corresponding to the number of introduced SILAC labels. This complicates spectral 

analysis, which usually results in a decreased proteome dynamic range coverage and together with the 

finite number of possible labels limits multiplexing capabilities248. Furthermore, the ideal heavy labelled 

amino acid remains lysine since it is essential and metabolic interconversion to proline is observed in 

case of heavy labelled arginines253. Although SILAC was initially limited to cell culture experiments, it 

was later extended to other biological systems that do not allow metabolic labelling. In one approach, 

called super-SILAC, heavy labeled pooled cell lysate spike-ins serve as a reference channel to the 

endogenous peptide version on MS1-level254.  

 

SILAC has been the gold standard for accurate quantification in proteomics for several years. Still, 

since it is labor intensive and expensive, metabolic labeling is not applicable to every sample type and 

in many cases more than two or three conditions need to be compared. Sample multiplexing by 

chemical labeling is an alternative approach to SILAC, which can be performed independently from 

sample origin and is usually introduced after protein digestion246. By now, several techniques have been 



40 
 

developed, but isobaric labeling approaches like iTRAQ and foremost TMT have become very popular 

in the proteomics community255–257. These labels are constituted by a ‘balancer group’ and ‘reporter 

group’. Using N-hydroxysuccinimide chemistry, free amine groups are labeled with a preference for 

side-chains rather than only the peptide N-terminus. Just like SILAC, the isobaric labels have the same 

physicochemical properties in LC-MS analysis, but they do not increase spectral complexity on the 

MS1 level. Stable 13C and 15N isotopes are distributed across the balancer and reporter group within an 

N-plex in a way that all N labels have the same mass. Upon fragmentation in MS2 experiments, label-

derived low molecular mass reporters are produced, which split by the introduced isotope mass shift 

and are used for relative quantification across the N-plex. Furthermore, peptide ions carrying the 

balancer group are produced in minor proportion, known as complementary ions (TMTc in case of 

TMT labeling) and were shown to be promising for alternative quantification strategies258. The TMT 

principle by now allows the multiplexing of up to 16 samples in a single measurement by commercially 

available kits178. Within an N-plex, isobaric labeling approaches can result in deep proteome coverage 

with high quantitative accuracy when combined with fractionation, but the integration of several N-

plexes suffers from a continuous increase in missing values and batch effects259. Also, a very high mass 

resolution of e.g. 128k for the 16-plex on MS2-level is needed to deconvolute the low molecular mass 

reporter ions, which limits it to very high-resolution mass spectrometers only. In addition, multiplexing 

reagents are very expensive, but miniaturization and highly optimized protocols decreased the cost per 

experiment by close to 10-fold260. Furthermore, since N-plexes are identical for all peptides within a 

sample, a major drawback is ratio compression due to co-eluting and co-isolated peptides, which disturb 

the low molecular mass reporter ion intensity261. This issue can be alleviated by MS3 methods, which 

repeat the fragmentation of the most intense MS2-derived peptide fragment ion, while co-isolated ions 

are fragmented and distributed across the full MS2 scan262. Decreased quadrupole isolation width has 

also been suggested263. Still, these approaches come with disadvantages like longer cycle times and 

decrease in proteome depth. A novel chemical labeling reagent called EASI-tag (easily abstractable 

sulfoxide-based isobaric-tag) promises very accurate quantification without described drawbacks of 

other multiplexing agents. First, EASI-tag very efficiently generates peptide-coupled reporter ions at 

high yield and rather low collision energies compared to TMT. Furthermore, the isolation of MS1 

precursors with narrow and asymmetric quadrupole windows enables 12C-only precursor isolation. 

This suppresses the signal from adjacent isotope peaks and enables ratio-compression free 

quantification of up to six multiplexed samples264. We implemented this particular scan approach in 

our MaxQuant.Live software, which is freely available to the community265. Still, there are some 

disadvantages like decreased identification rate, high costs and the availability of a 6-plex only.  
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In contrast to label-based quantification approaches, where the number of samples to be analyzed at 

high accuracy is very limited, label-free quantification (LFQ) approaches hold promise to keep up with 

the quantification of rapidly growing sample numbers in proteomics projects such as more than 1,000 

plasma proteomes or more than 4,000 protein pulldown measurements90,243,266. They can also be applied 

to virtually any sample type and number. Due to its scalability, robustness and ease of use LFQ has 

turned into a method of choice for proteome quantification over the last few years and has become 

the gold standard in our laboratory65. Spectral counting concepts were among the first and most 

primitive LFQ approaches for protein quantification, as they simply count how often a peptide 

precursor was sent for MS2 sequencing267,268. Although a great improvement on purely qualitative 

measurements, these approaches are sensitive to experimental parameter changes like chromatographic 

peak width, dynamic exclusion and acquisition speed. More modern approaches calculate either MS1 

intensities in data dependent, or precursor matched MS2 fragment ion intensities in data independent 

acquisition across the elution peak for more accurate quantitative estimates222,269. Since samples within 

a cohort are first identified within each run, followed by relative quantitative comparisons between the 

runs, any bias introduced by the bottom-up proteomics workflow is reflected at the raw intensity level, 

as discussed above. To enable most accurate and precise LFQ, all experimental sources of error have 

to be kept to a minimum. This can be done for example by automated sample preparation, robust 

liquid chromatography and mass spectrometers with a very flat or absent performance decay. 

Furthermore, sophisticated algorithms normalizing for many of these effects have been developed, 

which gather peptide intensity estimates into protein level estimates to allow for quantitatively very 

accurate comparisons223. In MaxLFQ for example, this is realized by calculating the median-fold 

change across many peptide pairs, resulting in a very robust quantification across many runs and very 

accurate quantitative estimates as shown by the means of a two-proteome experiment across several 

orders of magnitude dynamic range270. Inherently, MaxLFQ assumes that the majority of the proteome 

is stable between conditions. The more peptides are identified, the better LFQ becomes, since the 

number of data points across runs is automatically increased, which allows many more peptide pairings. 

Due to the semi-stochastic effect in data dependent acquisition scan modes, inconsistent quantification 

of peptides across many runs can occur, which can result in a comprised quantitative estimate. This is 

to some degree alleviated by the matching between runs algorithm218. Furthermore, novel data dependent 

and very fast data independent acquisition scan modes have proven to generate very high data 

completeness at high quantitative accuracy across hundreds of runs and even across 

laboratories105,186,271–273. Furthermore, the higher the resolution of a mass spectrometer, the more 

accurate extracted ion chromatograms become, which automatically improves label-free quantification 
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accuracay270. Interestingly, novel approaches start to combine the quantitative information from MS1 

and MS2 extracted ion chromatograms with dedicated LFQ algorithms similar to MaxLFQ to improve 

quantitative robustness even further.   

 

After identification and quantification of experimental proteomes, a plethora of bioinformatics 

methods and software packages can be used to explore the data. Perseus and MSstats are only two 

state-of-the-art solutions242,274. A recent development for the interpretation of proteome data in a 

clinical setting is the clinical knowledge graph275. It aims to automate downstream analysis and integrate 

proteomics with clinical data in a graph database currently comprising more than 16 million nodes and 

220 million relationships representing public databases, literature and experimental data.  

 

 

1.3. Ion mobility spectrometry 

Ion mobility spectrometry (IMS) describes the separation of ions by size-to-charge ratios based on 

their interactions, or collisions, with an inert buffer gas in an electric field. This promises the separation 

of isomers, isobars, and conformers in the analysis of biomolecules75,276. The first ion mobility 

spectrometry (IMS) related experiments can be traced back to the late 1800s with Thomson and 

Rutherford studying the mobility of ions formed by X-rays277. The first instruments in which ions were 

sent through electric fields, were developed in the early 1900s and they significantly improved the 

analytical capabilities of ion mobility spectrometry. This already allowed the creation of sharp ion 

species peaks278. Many parameters like pressure, temperature, electric field strength and the time ions 

spent within the device were subject of early investigation for their influence on ion mobility 

separation279. IMS has been coupled early to mass spectrometers to study gas-phase ion chemistry in 

the 1960s and has already been used in the early days of ES280–282. Since the success of MALDI and ES, 

IMS co-developed into an increasingly mature technique62,156. One of the important developments was 

the development of electrodynamic ion funnels, which re-focus ions undergoing jet expansion in ES 

and efficiently transfer them from ambient pressure into the first vacuum stage of the mass 

spectrometer where most of the IMS devices are located283.  

In a classical ion mobility or ‘direct diffusion’ experiment, the arrival time of ions migrating through a 

buffer gas under the influence of a homogenous electric field is measured. Under ideal conditions, e.g. 

no carrier gas contamination, the velocity or mobility of ions passing the field is proportional to the 
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electric field strength and dependent on the intrinsic physical properties of the ions. This allows for 

the calculation of the ion mobility constant K [cm2 V-1 s-1] (Ref. 284):  
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      K = Ion mobility constant  

      v = Velocity of the ion  

      E = Electric field in the drift region  

      L = Length of the drift region 

      V = Total voltage drop from start to end region  

 

Since the ion mobility of ions varies based on temperature and pressure, it is common practice to 

correct the ion mobility constant by standard temperature and pressure to a reduced mobility constant 

(K0). This can be a quantitative indicator for an ions identity and is constant for a given compound in 

a distinct buffer gas284:  
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      K0 = Reduced mobility constant 

      P = Pressure in the drift region  

      T = Buffer gas temperature  

 

The reduced ion mobility constant is also fundamentally related to the collisional cross section value 

(CCS) of an ion through the already mentioned Mason-Schamp equation, which is a direct measure for 

the rotational average of the analyzed ion in the gas phase and directly proportional to the inverted 

reduced ion mobility constant (K0)
285:  
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      Ω = CCS of the ion and drift gas molecules 

K0 = Reduced mobility constant 

      Q = Ion charge 

      e = Elementary charge 
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      µ = Reduced mass of the ion and drift gas molecules 

      kB = Boltzmann constant 

      T = Drift gas temperature 

 

To determine accurate CCS values, it is essential that the electric field strength is kept the low field 

limit, which is defined by the maximum E/N, where E is the drift field strength and N the number 

density of the buffer gas, to keep the ions mobility independent of the drift field286. At an extreme, if 

the electric field strength is too high and the buffer gas density is too low, all ions would be pushed 

through the drift region without separation. 

Due to the time-scale requirements of IMS (in the ms range), it ideally fits in between liquid 

chromatography (sec) and mass analyzer (especially time-of-flight mass spectrometers (µs)). It has the 

potential to improve a wide range of performance factors such as speed, selectivity and sensitivity 

when coupled to mass spectrometry. Furthermore, in this thesis, we could show that TIMS increases 

the peak capacity of an LC-MS setup on average by 10-fold and that the average number of peaks 

separated by the IMS device per time point is 10 (Ref.216). Importantly, the determination of ion 

mobility values increases the dimensionality for describing sample analytes from 3D (m/z, intensity, 

retention time) to 4D186,219. The fact that mobility correlates well with the mass or mass-to-charge ratio 

of an ion also makes it useful for the identification of unknown compounds by direct correlation 

curves, which we have made use of in Article 4 (Ref.75,287).  

Many different IMS devices have been developed over time with unique advantages and disadvantages 

depending on the application. There are three different types of ion mobility experiments, namely 

temporally-dispersive, spatially-dispersive and confinement and selective release279. The spatially dispersive IMS 

method, such as differential or field asymmetric IMS, sends ions on different drift paths and separates 

them in space based on their mobility, and thus act as ion filters. In contrast, temporally-dispersive 

methods, such as drift tube or traveling wave IMS, separate ions according to their mobility and ions 

will arrive sequentially in a time-resolved manner at the detector. In the confinement and selective release 

method, such as TIMS, ions are trapped in a low pressure region and selectively ejected based on their 

ion mobility. Four major types of ion mobility mass spectrometers have been commercialized: drift-

time-, traveling wave-, differential- and trapped ion mobility spectrometry. All of these devices, except 

for differential IMS, allow to determine (directly or following calibration) collisional cross sections 

(CCS) as a measure for the rotational average of an ion conformation in the gas phase.  
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1.3.1. Drift tube ion mobility spectrometry 

Drift tube IMS (DTIMS) devices belong to the temporally-dispersive category and are operated either 

under ambient or reduced pressure conditions. In DTIMS, ions are axially propagated through a static 

buffer gas with a uniform electric field. This leads to the separation of ions according to their ion 

mobility in the drift tube. Ions with a high ion mobility pass the drift tube earlier, while ions with a low 

ion mobility pass the device later (Fig. 9)279. 

 

 

 

Figure 9 | Drift tube ion mobility spectrometry. Separation is achieved for ions dragged through a static 

drift gas by an electric field. Small ions pass the drift tube faster due to their higher mobility, while large ions 

pass the drift tube later due to their lower mobility. (Adapted from Ref.279) 

 

This strategy allows the direct calculation of ion mobility values of sample analytes and also collisional 

cross sections via Mason-Schamp equation288. The precise control of gas pressures and electronics of 

DTIMS instruments enables absolute CCS deviations across measurements of less than 0.5 %, 

highlighting the potential for precise CCS determination289. In contrast to other IMS devices, DTIMS 

results in a comprehensive ion beam representation, since all analyte mobilities are collected per 

pulse290.  Stacked ring ion guides (SRIG) were included very early in the device manufacturing process 

of DTIMS instruments. SRIGs consist of metal rings stacked coaxially along a central line with small 

gaps in between the rings. They allow to maintain a very uniform electrostatic field to radially confine 

ions by two RF waveforms applied to two consecutive sets of plates at same frequency, but 180° out 
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of phase. Furthermore, a direct current is axially applied to the SRIG to make ions propel through the 

SRIG. Their modularity allowed to assemble them at a length of more than one meter for ultra-high 

resolution DTIMS291. Due to long drift times, overall duty cycles tend to be rather low in these devices 

and in DTIMS in general. Endeavors to multiplex TOF pushes in the acceleration unit increased the 

duty cycle from a few % to up to 50 % (Ref.292). Furthermore, it is challenging to improve the resolving 

power of DTIMS instruments, since ions have to be kept in the low field limit so that the Mason-Schamp 

equation still holds true. Approaches to do so include an increase of the drift cell length and pressure in 

conjunction with an increased voltage drop across the device. This was shown to increase the resolving 

power to up to 250 (Ω/∆Ω)293–295. Even though prototype instruments have proven the applicability 

of DTIMS for proteomics applications, the need for very high voltages and rather long drift tubes 

hampered commercialization and acceptance in the community296.  

 

1.3.2. Travelling wave ion mobility spectrometry 

Travelling wave ion mobility spectrometers (TWIMS) are operated in the first vacuum stage of the 

mass spectrometer at reduced pressure and belong to the temporally-dispersive category of IMS devices. 

This device, coupled to a time-of-flight mass analyzer, was first commercialized in 2006 by Waters as 

the Synapt HDMS and later the G2 and G2-Si (Ref.297,298). However, in TWIMS, a pulsed direct current 

is applied to the electrodes and used to move ions through the drift gas region in ‘voltage waves’. To 

radially confine the ions, RF-voltages of opposite phases, which result in an oscillating electric field, 

are applied to adjacent electrodes (Fig. 10)299.  
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Figure 10 | Traveling wave ion mobility spectrometry. Separation is achieved by ions pushed axially into 

the device passing the drift tube region along an oscillating electric field. Small ions ‘surf’ the wave fast and pass 

the drift tube earlier due to their higher mobility, while large ions roll over the wave slower and pass the drift 

tube later due to their higher mobility (Adapted from Ref.279).  

 

Ions are then separated at a fixed wave speed and magnitude. Alternation of the speed and travelling 

voltage wave magnitude allows to adjust mobility resolution (Ω/∆Ω) at a fixed drift tube length. Higher 

mobility ions ‘get carried’ by the wave and leave the drift region faster, while lower mobility ions will 

‘roll over’ the wave, leaving the device last276. Even though TWIMS operates below the ‘low-field limit’, 

the separation principle differs from classical drift time IMS. TWIMS devices have to be calibrated 

with ions of known mobility to allow for ion CCS determination, since Mason Schamp only holds true 

for linear electric fields285,300. The effective ‘wave length’ was taken to the extreme by a cyclic ion 

mobility device introduced by Waters. Here, ions are orthogonally deflected into a 98 cm long cyclic 

device separating ions by traveling waves. This allows a user defined ion mobility resolution based on 

the time the ions spend within the device, resulting in up to 750 (Ω/∆Ω) resolution, albeit at a loss of 

sensitivity301. TWIMS, positioned in between LC and the mass analyzer, has been shown to be very 

beneficial for proteomics applications as exemplified by a reported increase of ~60% in peptide and 

protein identifications in Escherichia Coli whole cell lysates302. Furthermore, TWIMS positioned right 

behind the collision cell allows the separation of fragment ions by their ion mobility, also known as 
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post-fragmentation IMS. Here, synchronization of orthogonal acceleration and ion mobility separation 

was used to increase the MS2 duty cycle, which doubled the number of protein identifications and 

increased sensitivity by up to 10-fold from a human cell line compared to non-synchronized TOF-

pushes303. Although TWIMS appears to be a promising IMS technology, a number of issues, including 

mass accuracy distortion issues due to detector saturation and closed data formats of the vendor have 

prevented its widespread use in the proteomics community302.  

 

1.3.3. Differential or field asymmetric ion mobility spectrometry  

Differential or field asymmetric ion mobility spectrometers (DMS; FAIMS) belong to the spatially 

dispersive IMS category and make use of different analyte ion mobilities in low-field and high-field 

operation290,304. They are operated under ambient pressure conditions, serve as mass filters and are 

positioned directly after ES when combined with LC-MS instruments. DMS devices can be 

constructed of two parallel electrodes with an electric field across them, while FAIMS devices have a 

cylindrical shape and ions are introduced perpendicular to the electric field (Fig. 11).  

 

 

Figure 11 | Differential or field asymmetric ion mobility spectrometry. A, Differential ion mobility 

spectrometry setup. B, Field asymmetric ion mobility spectrometry setup. C, Ions are exposed to alternating 

low and high electric field strength to spatially disperse them as a function of their different ion mobilities in 

both fields. A DC compensation voltage is superimposed to transmit ion mobility ranges of interest305,306. 
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To separate ions two voltages are applied: First, the dispersion voltage, which follows an alternating 

asymmetric waveform. The introduction of ions into this electric field causes them to drift towards the 

two electrodes at different rates, depending on whether the analyte is more mobile in the high- or low-

field. The overall operation time at positive voltage is shorter than at negative voltage, while an equal 

‘voltage x time’ product for each waveform is maintained. To counteract the drift towards either one 

of the electrodes, a superimposed DC voltage, also known as compensation voltage, refocuses the ions 

flight path through the device on a stable trajectory276. Ions with a high mobility travers the device 

quickly and need high CVs to prevent collision with the electrode, while ions with a low mobility need 

lower CVs to correct their trajectory, because they are less affected276. Adjusting the CVs results in a 

mass filter effect, enriching for analyte ions of interest, while chemical noise is reduced significantly. 

Due to its compact design and potentially advantageous effects for MS-based applications, FAIMS 

was recently re-introduced for the Orbitrap analyzers on high-end instruments187,306. Several use cases 

of FAIMS in proteomics have been shown since its introduction and rigorous investigations of its 

mass or charge state peptide filter capabilities have been published187,306. Gas phase fractionation in 

proteomics by alternating CVs can drastically increase overall proteome coverage and resulted in 

peptide identifications of more than 100,000 in 5 h DDA single-run analyses306. Furthermore, the use 

of a single CV optimized for proteome depth (although at compromised peptide coverage), allowed 

the identification of more than 5,000 proteins in as little as 21 min with DIA187. Even though FAIMS 

has been reported to have compromised sensitivity due to decreased target ion transmission in the 

early days, it has recently been shown to be useful for ultra-high sensitivity measurements down to the 

single cell level with protein identifications of up to 1,000 per cell307,308. This can most likely be 

explained by the efficient filtering of singly charged chemical noise by FAIMS and the consequently 

increased fill times and thus signal-to-noise level for peptides. Although many applications reportedly 

benefit from FAIMS, this technology has so far not been sufficiently robust for wide-spread 

applications in our laboratory. Unless several CVs are combined, it selectively loses many of the 

peptides present in the sample. Furthermore, since DMS and FAIMS operate above the low-field limit, 

CCS values cannot be determined, which leaves only the ion filter function. Still, it will be interesting 

to see in the future if fast CV-switch times can be achieved on a chromatographic time scale in a way 

that eluting peaks convoluted by several peptides benefit from the mass selection capabilities of 

FAIMS, which could increase proteome depth.  
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1.3.4. Trapped ion mobility spectrometry 

Trapped ion mobility spectrometers belong to the class of confinement and mobility-selective release devices 

and TIMS is one of the latest developments in the field of IMS279. It was developed by Melvin Park 

and colleagues at Bruker and is operated in the first vacuum stage of the mass spectrometer when 

combined in a hybrid mass spectrometer309,310. TIMS devices reverse the principle of DTIMS by 

pushing the ions with a carrier gas into a weak electric field of increasing strength290. The latest TIMS 

devices consist of SRIGs and can be divided into three main regions, which are the entrance funnel, 

mobility analyzer section and exit funnel. The SRIG is furthermore divided into quadrants and a 

quadrupolar rf-field is applied, which radially confines ions entering the analyzer279. As ions are injected 

into the device by a continuous flow from the ion source, they are first focused by an electrodynamic 

funnel before entering the mobility analyzer311. A longitudinal increasing DC field is applied across the 

ring electrodes, which separates the ion beam into dense packages as a function of their size-to-charge 

ratio, or mobility, as they are axially trapped in regions of the analyzer, where the drag of the incoming 

gas flow is compensated by the electric force305. Upon decreasing the longitudinal DC potential across 

the analyzer, ion packages of the same mobility elute sequentially from high to low size-to-charge 

ratios, (or low to high mobility), refocused by an electrodynamic exit tunnel (Fig. 12).  
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Figure 12 | Trapped ion mobility spectrometry. Sample analyte ions that are pushed into the TIMS tunnel 

by a steady-flow carrier gas (vg) experience an increasing electric field strength (E) composed of a static 

component, which is superimposed on a quadrupolar rf-field to confine the ions trajectories. Ions are axially 

trapped at distinct ion mobility positions along the field gradient where the drift force is compensated by the 

electric field force. Dense ion packages are released upon lowering the electric field strength (E) (Adapted from 

Ref. 197). 

 

The resolution of TIMS depends on the ramp time - the time which is allocated to scan out the ions 

from the tunnel. The largest separation effect happens just at the exit of the TIMS device and can 

exceed a resolution of more than 250 Ω/∆Ω311,312. Typical ramp times in proteomics and lipidomics 

analyses, which I have used in all articles of this thesis were between 50-100 ms and resulted in ion 

mobility peak widths less than 2 ms195,216. TIMS has been used to separate structurally very similar ions, 

where ions of the same charge state separate into ‘charge state families’, which appear along the mass-

mobility correlation line. Interestingly, the MS2 analysis of target ions can yield virtually noise-free 
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spectra (Articles 1, 7). Recently, Melvin Park and colleagues also implemented a dual version of the 

TIMS device. This is possible due to the small footprint of the device itself of only about 0.8 cm inner 

diameter and 10 cm length197. The dual TIMS device circumvents one of the bottlenecks in IMS, 

pushing the duty cycle up to 100 % if operated in sync198, where the first TIMS allows the accumulation 

of all incoming ions of the continuous ion beam, while the second TIMS device scans out the previous 

batch of ions. Furthermore, since TIMS can be operated within the low-field limit and the electric field 

potential within TIMS is linear, the Mason-Schamp equation allows, in principle, the direct calculation of 

CCS-values from the analysis285,313. With proteomics applications in mind, TIMS had been 

implemented into the ion path of a prototype based on the Bruker Impact II, just in between the ES-

source and the analytical quadrupole. This hybrid MS was later marketed as timsTOF Pro by Bruker 

Daltonik. It allowed the first proof of principle implementation of a novel scan mode developed in 

our group and was called Parallel accumulation serial fragmentation (PASEF)195.  

A major focus of my PhD was to enable this instrumental setup for proteomics applications and make 

best use of its strengths such as ultra-high sensitivity, robustness and speed to advance bottom-up 

proteomics126,186,314 (Articles 2, 3, 5, 6, 7, 8, 9). Furthermore, we devised the novel scan mode 

diaPASEF, which combines the advantages of data independent acquisition and PASEF (Ref.315). I 

also implemented a next generation hybrid TIMS MS, which in conjunction with novel very low-flow 

liquid chromatography boosted the sensitivity of bottom-up proteomics by up to 100-fold. Together, 

these developments enabled the core of my PhD, the MS-based proteome analysis of single-cells at a 

depth of up to 1,500 proteins per cell – and ongoing improvements even pushed this to more than 

2,000105.  

 

 

1.4. Data acquisition strategies  

Mass spectrometry based proteomics has emerged to the method of choice for the in-depth analysis 

of proteomes in an unbiased way65. The number of open reading frames encoding proteins in humans 

exceeds 20,000 while the number of theoretically possible tryptic peptides easily exceeds 600,000 – 

even when not taking into account the plethora of possible posttranslational modifications216,316. The 

number of tryptic peptides to be sampled within a proteomics experiment is not only astronomically 

high, but it is also distributed across more than 10 orders of magnitude in many biological matrices. 

Furthermore, a single cell only contains approximately 150 pg of protein39,41. This means that sampling 

the proteome at depth is a tremendous challenge not only for the mass spectrometric technology but 
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especially for the way how peptides are sampled, since it has been shown that a vast majority of the 

theoretically assessable peptides are simply not recorded in proteomics exeperiments317. Three methods 

of choice have developed and stood the test of time, namely data dependent acquisition, targeted acquisition, 

and data independent acquisition. Each of them has its unique way of sampling the proteome as discussed 

in detail below (Fig. 13).  

 

 

Figure 13 | Scan modes for data acquisition in proteomics on a timsTOF instrument. Left, Data 

dependent acquisition – The mass spectrometer selects suitable precursors as a function of intensity from MS1 

survey scans for MS2 analysis (isolated precursors highlighted in orange). Middle, Targeted proteomics – 

Peptides to be targeted are constantly analyzed along the retention time and sent for either MS1 or MS2 analysis 

(target peptides highlighted in orange). Right, Data independent acquisition – The analytical quadrupole scans 

with a pre-defined width and window scheme across the mass range of interest after MS1 survey scan acquisition 

(orange boxes indicate a possible window scheme).  

 

1.4.1. Data dependent acquisition  

Data dependent acquisition (DDA) is currently still the by far most used method for unbiased 

proteome profiling. DDA belongs to the tandem MS category, where ions are subjected at least twice 

to MS analysis. A typical DDA experiment begins with the acquisition of a MS1 or survey scan in a 

defined m/z range (e.g. 100-1,700 m/z), which gives an overview of the peptides currently eluting 

from the liquid chromatography column into the MS. Then, based on the precursor ions identified in 

the survey scan, the quadrupole is moved to the m/z of interest for isolation with a narrow window 

(< 2 m/z) and fragmentation with a precursor-specific collision energy – This DDA scan cycle was 

initially executed manually318. DDA methods are also known as TopN methods as the instrument 

automatically determines a list of precursors from the MS1 ranked by their respective intensity values 

on the fly, followed by isolation and fragmentation of the N most intense precursors. This isolation 

strategy drastically increases the likelihood of identifying the MS2 fragmentation spectra, since the 
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signal will be optimized. As TopN methods have to fit the chromatographic time scale by sampling 

the peak on MS1 level sufficiently often for reconstruction and quantification, the number N of 

precursors per TopN cycle has to be restricted. To prevent constant resequencing of abundant 

precursors, the concept of ‘dynamic exclusion’ was introduced319. Here, precursors, which have been 

subjected to MS2 sequencing, will be added to an ‘exclusion list’ for a distinct time (usually 30-40 sec) 

so that low-intensity precursors eluting within the same time-frame have the chance to also be 

subjected to MS2 analysis. Furthermore, singly charged species are usually excluded from MS2 analysis 

in bottom-up proteomics since trypsin cleavage results under normal conditions in at least doubly 

charged peptide species79. All these concepts optimize the MS analysis time and increase the likelihood 

of peptide identification with the goal to increase overall proteome depth. The concept behind DDA 

makes it readily compatible with label-free and label-based quantification/multiplexing at the MS1 level 

and also with MS2 label-based quantification strategies247,256,264,270. Due to the straightforward data 

interpretation, it is the method of choice to benchmark the intrinsic capabilities of MS instruments. It 

also scales well with the speed, sensitivity, and dynamic range, yielding a ground truth for instrumental 

performance.   

However, there are also many limitations to this scan mode. First, successful identification of MS2 

spectra benefits from the isolation and fragmentation of only one dominant target precursor species317. 

Too many co-isolated peptides will inevitably complicate the MS2 spectrum, which results in so-called 

chimera and decreases the likelihood of unique b- and y-ion series assignment. In consequence, peptide 

identification may be comprised. Still, algorithms like the ‘second peptide search’ can make use of 

chimeric spectra to re-search them after a first successful round of target precursor identification and 

in silico removal of those fragments218. MS3 analysis is another option to alleviate this issue and works 

by isolating fragmented ions from MS2 for a second round of fragmentation termed MS3. Here, the 

idea is that convoluted fragmentation patterns in MS2 are distributed across the full scan range, which 

allows for a ‘pure’ second round of isolation followed by fragmentation. This concept is especially 

successful for multiplexed analysis by tandem mass tags, however it also increases overall analysis time, 

and therefore comes at the expense of proteome depth and is currently incompatible with very short 

LC gradients262. Furthermore, DDA is a semi-stochastic scan mode, which means that the number of 

missing values will increase across many runs, especially in the low-intensity range272. This 

phenomenon is mainly due to speed limitations of MS platforms. Orbitrap-based analyzers achieve a 

DDA sequencing speed of up to 40 Hz at declining sensitivity. In contrast, we showed in Article 1 

that the timsTOF platform in conjunction with the parallel accumulation serial fragmentation (PASEF) scan 
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mode can achieve a sequencing speed of more than 100 Hz without comprising measurement 

sensitivity186,187.  

In any case, the semi-stochasticity of DDA limits the quantification of proteins and hence the 

downstream interpretation of the data, because protein expression outputs have to be filtered 

stringently for high data completeness while remaining missing values have to be imputed by 

instrumental noise. This can hamper insights into biology or even be misleading. The matching-between-

runs (MBR) algorithm aims to alleviate this problem by high-confidence transfer of re-calibrated and 

aligned MS1-level features, which have been identified by MS2-analysis in other runs within the same 

experiment218. This principle helps a lot with the above issues and was taken to the extreme with the 

advent of the BoxCar scan mode320. Still, it has been shown that MBR can inflate FDRs, which has 

only recently been addressed by a new algorithm for FDR-controlled feature transfer321,322.  

 

1.4.2. Targeted proteomics 

In contrast to data dependent acquisition, which is used for the unbiased proteome analysis, targeted 

proteomics strategies aim to detect and quantify a single or a small set of predetermined fragment ions 

from precursor ions that are anticipated, but not necessarily detected in survey scans323. The 

relationship between a precursor ion and a specific fragment ion is termed a ‘transition’, while a 

targeting experiment itself has been called an ‘assay’. Targeted proteomics approaches were originally 

used for the quantification of small molecules such as metabolites or drugs. They emerged as a 

promising technique for the precise and accurate quantification of target peptides with known 

fragmentation properties in complex backgrounds324,325. Targeted proteomics experiments were mainly 

performed on triple quadrupoles (QQQ), where Q1 acts as a mass filter, Q2 as a collision cell and Q3 

to isolate fragment ions of interest324,326. Targeted proteomics assays can be divided into selected 

reaction monitoring (SRM), multiple reaction monitoring (MRM) and parallel reaction monitoring 

(PRM). SRM assays isolate and quantify a single transition, while MRM assays use several. PRM is an 

MRM assay performed on an Orbitrap mass spectrometer, which allows the readout of multiple 

transitions in the Orbitrap in parallel (as always the entire MS2 spectrum is recorded). The analysis of 

multiple fragments at high resolution drastically increases assay specificity compared to triple 

quadrupoles327. Furthermore, the presence of a C-trap in Orbitrap instruments in conjunction with 

sharp quadrupole isolation windows allows for long accumulation times to increase sensitivity of the 

assay several-fold328.  
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Targeted proteomics has long been developed with the hope to make it a key technology to test 

biological hypotheses, reproducibility and validate biomarkers by scoring changes in their abundances 

in large sets of clinical samples323. In a clinical context, one can think of targeted MS as a single or 

multiplexed ELISA assay, but with much higher specificity, since it does not suffer from possible cross-

reactivity with similar target epitopes. Repeatability and reproducibility can be excellent, even across 

laboratories for very challenging biological matrices like blood plasma329. Targeted proteomics can also 

be used for absolute quantification of peptide and proteins in conjunction with isotopically labeled 

reference peptides that are physicochemically identical to the ‘light’ endogenous peptides, but it is very 

difficult to guarantee a desired amount of the standard itself330,331.  

Many peptide/fragment ion features have to be considered to successfully set up a targeted assay. 

Peptides have to be selected by their proteotypicity, which means that they should be unique signature 

peptides of the target protein to be quantified332,333. Furthermore, their physicochemical properties are 

crucial, since signal response of different peptides can vary by as much as 100-fold334. Also, fragment 

ions should be selected based on least signal interference and robustness335. Ideally, properties of target 

peptides would have to be established only once for an instrument type and can be used steadily, which 

would make the transfer of assays between laboratories possible329,336. However, this can be very 

difficult in practice where even the same instruments in the same laboratory may need optimized 

assays. Another important factor to take into account is the instrument-specific dwell time, which is 

the time spent on actually acquiring the transition. Ideally, one wants to acquire as many transitions as 

possible for a particular peptide to achieve highest sensitivity. This requires a substantial dwell time. 

Consequently, very long cycle times and hence an insufficient number of data points to reconstruct 

the chromatographic peak at high resolution have to be avoided as they would compromise 

quantitative accuracy. This generates a tradeoff between limit of detection and number of transitions 

within an SRM experiment, and ultimately limits multiplexing.334 

One of the newest methods in targeted proteomics is prm-PASEF, which is the implementation of 

multiplexed targeting on the timsTOF Pro337. It takes full advantage of the PASEF principle and the 

dual TIMS tunnel design, where several peptides can be targeted per ion mobility scan. This increases 

multiplexing capabilities at a fixed mass resolution of up to 60,000195,198. Furthermore, selectivity and 

sensitivity are drastically increased, since chemical noise and other analytes are distributed well across 

the ion mobility ramp, while incoming ions are focused into sharp ion mobility peaks.  

As the minimum knowledge about the target peptide are retention time and m/z, the first of which is 

subject of variation between experiments, setting up target assays is very challenging. Real-time 

recalibration of these parameters, as exemplified by MaxQuant.Live, alleviates these issues and has 
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allowed the global targeting of more than 25,000 peptides in only 120 min265. Furthermore, the tedious 

creation of libraries for targeting assays can likely be replaced by deep learning predicted libraries in 

the near future, which will make the experimental design of targeted proteomics assays less time 

consuming and more robust216,227,228,230.  

 

1.4.3. Data independent acquisition  

Even though data dependent acquisition has evolved as the gold standard for unbiased proteome 

analysis, it has two major limitations. First, it is limited by analytical reproducibility due to its semi-

stochastic sampling approach and the high complexity of the sample. Second, MS2 fragmentation can 

be triggered not exactly at the chromatographic elution apex, which can result in low-intense and 

potentially uninterpretable fragment ion spectra – especially for low abundant peptides. In contrast, 

targeted proteomics aims for highest data completeness and sensitivity, but is limited in terms of 

proteome coverage. Data independent acquisition (DIA) sets out to combine the advantages of both 

worlds. It aims for virtually complete data matrices at highest sensitivity and depth across hundreds of 

samples269. The term DIA was first mentioned in a publication from 2004 (Ref.338). Here, a method 

was proposed for the sequential isolation and fragmentation of precursor windows at 10 m/z width 

of a specified precursor range in an ion trap instrument. Peptide precursor quantities were 

reconstructed from the fragment ion spectrum level instead of from the full scan. Furthermore, the 

data structure consisted of a full 3D-record (retention time, fragment ion intensity, m/z) of fragment 

ion spectra across the run with intertwined full scans, only limited in resolution by the cycle time. It 

also promised a very high selectivity, quantitative robustness and data completeness. However, the 

mass spectrometric resolution and mass accuracy was orders of magnitude lower than possible today.  

A principal challenge of this scan mode is the loss of the direct relationship between precursor and 

fragment ion series due to highly convoluted and multiplexed MS2 spectra339. In the early days, DIA 

data were analyzed in analogy to DDA data by direct spectral comparisons with limited success338. A 

breakthrough for the analysis of this data type was the targeted extraction of precursors in a similar 

way as in SRM assays using prior knowledge of the peptides to be expected and their respective peptide 

query parameters (PQP) summarized in ‘spectral libraries’. Spectral PQP information used for scoring 

during analysis originates either from project-specific or community-based single-shot and fractionated 

DDA measurements269,340,341. This approach was called ‘peptide-centric’ as opposed to ‘spectrum-

centric’, where experimental spectra are compared to all theoretical in silico generated spectra within 

the search space. It is also marketed as ‘SWATH-MS’ by Sciex269. Since the initial inception of DIA, 
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several other approaches or modifications to the method have appeared, including different windows 

sizes ranging from fragmenting the full scan at once down to windows of only 2.5 m/z215,269,342,343. Also, 

multiplexed (MSX) or intra-run offset window approaches as well as dynamic window width 

adjustment according to eluting precursor density were suggested and promise to increase 

selectivity344,345.  

Due to the highly complex data structure of DIA, rather slow instrument scan speeds and low 

resolution, its performance was for a long time inferior to DDA approaches. This changed with the 

development of more sophisticated software and faster instruments resulting in high proteome depth 

exceeding 4,000 protein identifications by SWATH-MS across many laboratories346,347. In particular, 

the implementation of DIA on the Q-Exactive Orbitrap instrument generation allowed fast 

acquisitions at increased resolution and much higher ion signals at the MS2 level due to relatively long 

injection times into the Orbitrap. Accompanying software for the analysis of these data led to very 

high performance345. Rigorous optimization of scan parameters was subsequently shown to exceed 

8,000 and 11,000 protein identifications in single LC-MS runs at a data completeness of close to 100 

% and robust quantification from cell lines271,348. In DIA, this level of performance has been so far only 

reached by highly sophisticated methods like ‘BoxCar’, which also make use of optimal Orbitrap 

filling264. Since quantitative robustness and high data completeness are essential in large clinical sample 

cohort studies, DIA was consequently successfully applied to blood plasma and cerebrospinal fluid 

studies exceeding a sample count of 1,000 (Ref.89,243). Due to the fact that DIA data contain a full run-

record of fragment ion spectra, it is also very attractive for the analysis of posttranslational modification 

and site-localization, which has already been achieved but is still an active field of research124,349.  

Novel deep neural network strategies have recently been used to distinguish real signals from noise 

and new quantification and interference correction strategies have been developed that outperform 

classical software solutions in terms of protein recovery, data completeness and quantitative 

robustness350. Another very interesting development is the use of a scanning quadrupole351. Here, in 

contrast to stepping through the m/z region of interest, the quadrupole scans through a defined 

precursor mass range with a fixed isolation width. This means that fragment ion signals appear and 

disappear over time according to precursor isotopes entering and exiting the scan window. This 

additional dimension on top of retention time, m/z and intensity, promises to greatly add selectivity 

to traditional stepped DIA methods340. SWATH-DIA just recently was merged with this approach on 

a triple-quadrupole time-of-flight instrument, which now allows ultrafast DIA analyses with cycle times 

of as low as 280 ms in conjunction with short high-flow liquid chromatography (800 µL/min) but 

using a high sample load. This resulted in close to 2,000 protein identifications in 30 sec LC-MS runs 
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from a human cell lysate and was also applied to clinical samples144. As DIA applications provide ever 

increasing numbers of reported proteins in studies comprising thousands of samples in drastically 

decreasing analysis time, sophisticated FDR models and benchmarks are required, which is still an 

active field of research352. Furthermore, since the computational prediction of PQPs by deep learning 

is becoming more and more accurate, it is only a matter of time that experimentally generated spectral 

libraries will be replaced by in silico generated ones227,228,230,353.  

In the course of this thesis, we implemented DIA on the timsTOF Pro and demonstrated that we can 

acquire very deep proteomes from long and short gradients at up to 100 % ion utilization due to the 

dual TIMS setup (Article 6)198. This is in stark contrast to traditional DIA, which may utilize only ~1.5 

% (assuming the scan range is 800 m/z and quadrupole isolation width is 12.5 m/z). The 

implementation of diaPASEF and summing up of several consecutive diaPASEF scans within the 

same cycle was crucial to increase the signal-to-noise for ultra-high sensitivity applications - down to 

the level of true single-cell proteomes (Article 7)105. Furthermore, we showed that the prediction of 

CCS values is already accurate enough to replace experimentally determined CCS values with in silico 

generated ones without any compromise in diaPASEF data quality (Article 5)216. Currently, we are 

exploring possibilities of scan modes akin to scanning quadrupole implementation on the timsTOF Pro, 

however, using the correlation between peptide m/z and ion mobility to the full extent. As described 

above, this adds a fifth dimension to the inherent four dimensions (retention time, m/z, intensity, ion 

mobility), increasing selectivity even further while keeping up to 100 % ion utilization (assuming that 

the ion release from the TIMS ramp is in sync with the quadrupole scanning and that the quadrupole 

only performs a single scan per cycle).  

 

Finally, since instrument electronics, communication interfaces to the mass spectrometer and software 

are becoming faster and faster, real-time data-acquisition software will become a reality in the future. 

Ultimately, the boundaries for distinct scan modes will disappear and ‘Omni-methods’ will emerge, 

which will allow very dynamic scan decisions during the run, as well as live quality control and data 

processing, followed by direct intervention to correct for these. ‘MaxQuant.Live’ (Appendix) is one 

of the latest software solutions, which are poised to make the dream of a very intelligent mass 

spectrometer soon come true265,354.  
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1.5. Spatial and single-cell omics analysis  

The discovery and naming of ‘cells’ dates back to 1665 when Robert Hooke inspected bottle cork 

slices under a light sheet microscope and realized that it was organized in well-ordered enclosed 

patterns, which reminded him of honeycomb or monastic cells355. Almost 200 years later in 1852, 

Robert Remak reported that every cell arises from a pre-existing one and in this way represent the 

minimum unit of life356. This cell division manifests as mitosis, following a hard-coded sequence of 

intermediate states. Further technological advances in microscopy allowed the description of cells in 

every greater detail, highlighting differences in morphology, location and spatial architecture with 

regards to how they are embedded in a tissue context. A typical human cell contains an estimated 6 

billion base pairs of DNA, 600 million bases of mRNA and 150 pg of protein at a density of 300 g/l 

distributed across only 3,000 µm3 volume (Ref.39,357). According to the ‘central dogma of molecular 

biology’, each cell constantly transcribes mRNA from the ‘hardcoded’ genome level and mRNA is in 

turn translated into proteins, the main drivers of cellular function65. Even though the analysis of 

samples in bulk, comprising a pool of cells, reveals impactful insights into health and disease, 

information about the individual contribution of cells is lost104. In a biomedical context, recent 

approaches have shown that the spatial context and the arrangement of cells, especially within the 

tissue proteome, is crucial to reveal direct treatment options93,358. This clearly indicates that cellular 

morphology and behavior correlates well with dynamic changes on the molecular level and that every 

cell is unique in its makeup to some degree. It occupies an exclusive position in space, carries unique 

differences in its genome and distinct changes in gene expression are induced by its environment.  

Many imaging-based technologies like fluorescent-activated cell sorting (FACS) have emerged to reveal 

cellular phenotype heterogeneity, but are limited to a fixed number of fluorophores due to spectral 

overlap359. In addition, many advanced methods can track subcellular target proteome changes in 

individual cells by a combination of antibody labeling and live-cell imaging360. Spatially resolved 

fluorescence in situ hybridization (FISH) techniques enable tracking and counting single mRNA molecules 

in the cell361. Even though these technologies revealed novel biology, they do not create an unbiased 

picture of the cellular genome, transcriptome and proteome. It is therefore of highest importance to 

enable the analysis of all three layers of the central dogma of biology in an unbiased omics approach at single-

cell resolution to fully understand the role of each single cell within a tissue and reconstruct their 

contribution to health and disease based on its heterogeneity.  
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1.5.1. Single-cell sequencing  

Single-cell genome sequencing addresses the first layer of biological information and is by now applied 

to many research areas. For example, it is used to dissect the composition of microbial ecosystems and 

reveals its dark matter in metagenomics analyses362. It is also applied to detect gene mosaicism and allele 

frequencies in multicellular organisms to understand health and disease363. This is a tremendous 

challenge, since genes are mostly encoded as a single nucleotide stretch across the whole genome of 

the cell (not taking into account the presence of multiple chromosome sets and gene doublings). One 

of many modified techniques build on single cell genome sequencing and one, called ATAC-seq, can 

be used to study chromatin structure and epigenetics364,365. Here, a hyperactive transposase inserts 

primers into open chromatin, which allows the downstream amplification of accessible genome 

stretches.  

Even though the genome represents the blueprint for every organism, it is rather static and does not 

necessarily allow for fast and dynamic changes in response to environmental changes. In contrast, the 

RNA-level does rapidly change and therefore single-cell RNA-sequencing is a very active field of 

research366. It allows to quantitatively describe gene expression levels, which is also very important in 

the context of proteomics, since it represents the most direct connection to the abundance levels of 

proteins. Current estimates suggest that 5,000-15,000 different genes are transcribed in a typical 

mammalian cell357.  

The feasibility of single-cell transcriptome analysis (scRNA-seq) was first demonstrated on only seven 

single cells in 2009 (Ref.367) where the aim was to elucidate changes in early embryonic development. 

Since then, many protocols have been published focusing on single-cell isolation automation, volume 

decrease in sample processing, chemistries to capture and amplify mRNA, increased multiplexed 

sequencing capabilities and reduced costs368–372. This scaled the number of single-cells routinely covered 

in scRNA-seq projects to several hundred thousand cells and even to whole bodies by now373,374. Single-

cell sequencing was therefore justifiably selected to the method of the year by Nature Methods in 2013 

(Ref.375). The main enabling technologies for the analysis of single-cells were the polymerase-chain 

reaction, cDNA library generation, large-scale combinatory nucleotide synthesis, and next generation 

sequencing, allowing for massively parallel sequencing of several billion short reads28,376,377.  

All scRNA-seq protocols follow the same scheme, starting with single-cell isolation and cell lysis378. 

Reverse transcription into cDNA and combinatorial nucleotide barcoding for quantification and cell-

specific transcriptome labeling are the next crucial steps. Here, poly-T sequence primers designed to 

bind the poly-A tail of mRNAs are used for highly specific priming, followed by second strand 
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synthesis and several rounds of full cDNA amplification. Poly-T primers can also carry short unique 

combinatory barcodes specific for each cell if cells will ultimately be pooled for sequencing. Last, the 

amplified fragments, which are now representative for the single-cell transcriptome and also called 

‘libraries’, are fragmented, sequenced by NGS and aligned to a reference genome.  

scRNA-seq techniques can be differentiated by the quantification approach and initial sample 

processing strategy. Quantification strategies fall into full-length sequencing methods, which allow for 

sequence variant calling and 3’-tag counting methods that predominantly cover the 3’-end of the 

mRNA. 3’-tag count approaches use so called unique molecular identifiers (UMI), which alleviate the 

amplification bias inherent to other techniques379. UMIs are unique short nucleotide sequences 

attached to the poly-T primer, which results in a unique barcode of every single transcript molecule – 

this means that the initial copies of the same transcript will each obtain a unique UMI and can be 

distinguished in the downstream analysis. Amplification bias is then reflected by a non-uniform 

presence of the UMI of each respective transcript and only unique UMIs are counted to determine the 

initial transcript copy number. Due to the improved robustness of this approach, the latest generation 

sequencing approaches like 10X Genomics are exclusively UMI-based. Furthermore, template switching 

oligos have been introduced, which bind to the 5’-poly-guanidine cap of the mRNA and allow higher 

5’-end sequence coverage368,369. Sample processing strategies are similarly divided into those based on 

384-microwell plates and those using microfluidics chips368,370,380.  

Another very important factor that is specific for each protocol is its sensitivity. Sensitivity is a measure 

for the detection limit of single-cell mRNA and consequently also reflects the amplification chemistry 

and capture efficiency of each assay381. The more sensitive the methods are, the less dropouts, or zero 

entries for each gene are observed. Dropouts can either reflect a biological truth, since a gene is not 

expressed with even a single mRNA copy at the point when the experiment was performed, or the 

gene is not expressed at all - or the number of mRNA copies was simply too low to be captured 

efficiently. It is conceptually interesting – also in relation to my single-cell proteomics work - that some 

of the latest single-cell RNA sequencing technologies with very high overall sensitivity still report 

dropouts, which suggests that most of these reflect true biology382. This observation is also in 

agreement with the notion of transcriptional bursts383.  

Due to the accessibility and commercialization of single-cell RNA sequencing in the last years it has 

developed into an increasingly routine technology. It has allowed the study of circulating single tumor 

cell transcriptomes, direct gene expression differences and cell lineage characteristics368. Remarkably, 

the reconstruction of dynamic cell lineage branching across developmental stages, RNA velocity 

calculations, which is the rate of gene expression change for an individual gene at a given time point 
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based on the ratio of its spliced and unspliced mRNA, and much more has been realised384,385. scRNA-

seq has also proven itself in the analysis of many projects relevant to human health and disease386,387. 

The applications of this technology seem to be unlimited and has therefore been recognized with the 

breakthrough of the year award in 2018 by Science for tracking early development at the single-cell 

transcriptome level. It has also been combined with large-scale combinatory CRISPR screens and 

phenotypic readouts on the single-cell level in a technology termed perturb-seq388. Furthermore, several 

spatial scRNA-seq techniques are emerging, which reveal transcriptome dynamics, incorporating an 

additional dimension389,390. This approach was again awarded with the breakthrough method in 2020 

by Nature methods391. 

The analysis of large-scale scRNA-seq data and the plethora of available techniques call for 

standardization in the downstream analysis to keep results consistent and reproducibe392. This is 

currently an important research topic and first tools have emerged that are already widely used by the 

community393. Further bioinformatics challenges in scRNA-seq are systematic biases introduced by 

technical differences between experiments, also known as batch effects394. This is especially of high 

interest for the global inter-laboratory effort called the Human Cell Atlas initiative, which aims to create 

comprehensive reference maps of all human cells and demands advanced data integration strategies 

for very large data sets, and for the European LifeTime initiative aiming for multi-omics integration of 

single-cell data to model disease progression395,396. Many more computational challenges have been 

recognized in large-scale scRNA-seq projects, which now drive the development of next generation 

bioinformatics tools397.  

Given the fact that a typical human cell contains on average only tens of each mRNA the question 

arises to what degree these small numbers of molecules can actually play a major role in cellular 

regulation and if they can give rise to functional cell states defining cell types. It is conceivable that 

proteins are the better proxy for this type of functional analysis357. Furthermore, even though scRNA-

seq has developed into a mature technique, which creates comprehensive cell type maps based on 

differential mRNA signatures, it is not a direct record of the functional molecular level that is charged 

with executing functions in cells and gives rise to the phenotype – this is instead level of the proteome. 

Currently researchers implicitly use mRNA level quantifications as a proxy for protein expression 

values, but often neglect that there is a plethora of translationally regulatory mechanisms in between 

mRNA and final protein product. At the bulk level this has become more and more evident with 

mRNA expression levels often correlating only weakly (R ~ 0.2-0.4) with the protein level251,398. 

Importantly, we have shown that this is also true for the single-cell level (Article 7). Many one-to-one 

correlations of mRNAs and their cognate proteins show no correlation or even anti-correlation in 
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particular biological processes. This demonstrates that both molecular levels yield their own 

information and do not necessarily recapitulate each other’s characteristics. This creates a fundamental 

need for the development of techniques that can measure the proteome of single cells, described next.  

 

1.5.2. Single-cell proteomics  

Several technologies such as cyTOF, CITE-seq and SCoPE-MS have been developed over time to 

determine aspects of the proteome of single cells, since proteins directly reflect the functional layer of 

the cell65.  

The technique termed Cellular indexing of transcriptomes and epitopes by sequencing, short CITE-seq combines 

protein-specific antibodies conjugated with a combinatorial nucleotide tag, which allows amplification 

and target-specific deconvolution for single cells – just like in scRNA-seq399. For now, this technology 

is limited to cell surface proteins, but has shown tremendous potential for the characterization of 

immune cell populations and tumor cells. Still, it suffers from amplification biases as described above 

and low proteome coverage400,401. Fundamentally, it is currently a targeted approach and reveals only a 

small part of the whole picture.  

Single-cell mass cytometry, short cyTOF, combines a mass spectrometric readout with antibodies labelled 

with heavy isotopically pure elements402. After target binding, residual antibodies are washed off, 

followed by nebulization of each entire cell and injection into an argon plasma, which decomposes it 

to its atomic constituents. This ionizes the heavy metals whose characteristic isotope pattern can 

specifically be deconvoluted for antibody targets and their abundance. Even though the number of 

possible targets is currently limited to about 100, its throughput is immense, since it essentially only 

needs a single mass spectrum per cell as a readout. A recent study comprised more than 70 target 

protein identifications across more than 25 million cells in human breast cancer tumors, revealing the 

tumor ecosystem and heterogeneity at single-cell resolution403,404.  

Even though CITE-seq and cyTOF are limited by the number of available antibodies, their throughput 

is comparable to modern scRNA-seq methods. Recent developments move into the direction of ‘cut’ 

cell layers, followed by antibody labeling, which has the potential to reveal a quantitative picture of 

proteins in each particular plane. This approach could allow the reconstruction of full spatial 

proteomes across many stacked layers in 3D. However, their fundamental limitation is that they do 

not allow the full proteome description of single cells, which can only be addressed by MS-based 

proteomics strategies as described above.  
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MS-based proteomics is unbiased in the sense that it measures all proteins within its range of 

detection65. Thus, it would be highly desirable to apply this technology to single cells if the required 

sensitivity and robustness could be achieved. Bottom-up MS-based single-cell proteomics is an 

emerging technology and can be divided into two branches that drastically differ in the way of how 

single-cells are introduced into the MS and also how they are quantified – either label-based or label-

free110,149. In contrast to sequencing-based single-cell approaches, proteomics does not have the 

capability of amplification, and therefore has to make do with processing and measurement of the 

originally present protein mass. This introduces severe challenges as one can only increase proteome 

coverage by increasing the direct sensitivity of the hardware and by sample handling – especially in 

label-free quantification approaches – but has the main advantage that PCR-induced biases are omitted.  

Label-based single-cell proteomics was introduced in 2018 as Single Cell ProteOmics by Mass Spectrometry, 

short SCoPE-MS110. This approach uses TMT-based multiplexing and single cells are labeled by 

different TMT isotope channels, to which a so-called booster-channel comprising the protein amount 

of several hundred cells is added. All differently labeled TMT samples are combined before LC-MS 

analysis, which results in a total of several hundred cells from the booster channel plus the single cells 

from the other channels. This means that the total signal on MS1 level stems largely from the booster 

channel. Upon fragmentation TMT labeled peptides produce low molecular weight mass reporter ions 

at the MS2-level. The peptide will ultimately be identified from the many cells in the booster channel, 

while the quantification of the single-cell derived peptide is meant to happen in the low molecular 

weight mass reporter region. This approach was initially reported to identify more than 1,500 proteins 

across the total data set and around 400 proteins from each cell110. Despite its conceptual attractiveness 

in that it stacks the peptide signal, SCoPE-MS unfortunately has many intrinsic issues that have 

prevented biological applications at least in its current form. First, it has been shown that the more 

cells used within the booster channel, the more overall proteins are identified and quantified - even 

though the total signal from the single cells remains the same. This can be explained by ‘channel 

bleeding effects’ intrinsic to TMT and here due to the dominant booster channel, where low abundant 

isotopes appear in the single-cell channels and result in an erroneous contribution to the quantified 

signal. Second, TMT ratio compression is a serious issue not only from the ‘channel bleeding effect’ 

but also from co-isolated chemical noise or background ions, which are in the same intensity range as 

the low molecular weight mass reporters from the single cells. This topic has been extensively discussed 

and simulated, leading to the recommendation to either completely eliminate the booster channel, or 

to only limit it to less than 20 cells in total405. Software and guidelines are being developed that aim to 

optimize MS acquisition parameters to prevent this phenomenon as much as possible405,406. Third, since 
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TMT can only multiplex up to 16 channels in total, many plexes have to be merged to enable the 

analysis of large single-cell proteome data sets. However, merging different TMT data sets has in 

practice been difficult since it is known to inflate false-positive identifications, missing values and 

results in batch effects259. Fourth, and related to the previous point, it is crucial to properly control the 

FDR on PSM and protein levels due to the reported false-positive inflation when merging several 

TMT-experiment. Keeping in mind that single-cell proteomics studies should eventually aim for study 

sizes of several thousand cells, FDR models have to be stringently applied. This has already been 

shown to be very important in bulk proteomics studies comprising hundreds of samples in data 

dependent and data independent acquisition scan modes352,407. In SCoPE-MS, researchers tend to 

increase PSM FDR to up to 3 % and do not apply any protein FDR calculation110. This is expected to 

vastly increase the overall FDR in the dataset, especially in conjunction with the known false-positive 

inflation from merging several TMT-experiments. Due to these limitations in quantitative accuracy 

and false-positive inflation, researchers have increasingly turned to LFQ-based approaches for single-

cell proteomics. 

In label-free single-cell proteomics single cells are injected one by one into the mass spectrometer, 

identifying and quantifying proteins based on tryptic peptides by conservative downstream FDR 

control and standardized software as in other bottom up experiments. However, this ‘true single-cell’ 

approach comes with the need for a drastic increase in overall sensitivity of the bottom-up proteomics 

workflow. Several groups, including ours, have miniaturized the sample preparation process in 384-

microwell titer plates at below 10 µL volume or even in customized chips, which allows the handling 

of volumes down to 200 nL116,149,408. Furthermore, improvements in chromatography by scaling down 

the inner diameter of columns to reduce the radial analyte diffusion in conjunction with decreased flow 

rates have been reported to increase ES sensitivity and desolvation efficiency145,146. Extensive 

optimization of MS experiment parameters has also been investigated, including the use of matching 

between runs. The latter did increase the number of protein identifications up to 1,000 per cell, but 

can inflate false-positives308,321.  

Even though proof of principle for label-free single-cell proteomics has been demonstrated, a 

technology that provides quantitatively accurate MS proteomics data from true single cells to answer 

biological questions was still outstanding – and this challenge is the main topic of my PhD thesis.  
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2. Aims of  the thesis 

The overarching goal of my PhD thesis is the development of a novel mass spectrometry (MS) 

platform in conjunction with novel scan modes and a versatile and robust liquid chromatography (LC) 

platform, which overcomes current sensitivity and robustness limitations in MS-based proteomics. In 

the course of my PhD, I demonstrated how this technology benefits the high-speed and ultra-high 

sensitivity analysis of large-scale proteome studies in basic biology and biomedicine. This culminated 

in the first of its kind robust label-free MS-based single-cell proteomics platform and its application to 

spatial tissue proteomics. I also investigate the vastly underexplored ‘dark matter’ of the proteome, 

highlighting novel microproteins that contribute to human cellular function. 

 

In the first project, a close collaboration with the research and development department at Bruker 

Daltonik, we aimed to develop a novel quadrupole time-of-flight (qTOF) platform in conjunction with 

a dual trapped ion mobility spectrometry (TIMS) device for proteomics applications. In the dual TIMS 

analyzer all incoming ions can be stored in the first TIMS, while ions within the second TIMS can be 

manipulated in their trajectory to enable an up to 100 % duty cycle. By synchronizing quadrupole 

switching events with the precursor elution profile from the TIMS device, which we call ‘parallel 

accumulation – serial fragmentation’, or short PASEF, we showed that this principle multiplies 

sequencing speed to up to 100 Hz at full sensitivity in routine proteomics applications. Furthermore, 

I demonstrated the capabilities for high-throughput and high-sensitivity proteomics (Article 1).  

Next, we aimed to apply this novel MS platform to projects which are in unique need of high-sensitivity 

and high-throughput. In a collaboration with the laboratory of Michele Solimena from the Paul 

Langerhans Institute at the TU Dresden, we aimed to dissect pancreatic islet cell proteomes across the 

diabetic continuum from living metabolically profiled human subjects. Pancreatic islet pools, isolated 

by laser capture microdissection, were subjected to high-sensitivity proteome analysis on the novel 

TIMS-qTOF platform revealing a substantial heterogeneity in islet isolates from diabetic subjects 

(Article 2). 

Furthermore, we aimed to use the high-throughput and robustness capabilities of the TIMS-qTOF 

platform to analyze the human protein interactome under endogenous expression levels and integrate 

the data with substantial imaging and localization studies. Finally, we combined the TIMS-qTOF MS 

with the EvoSep One, a very robust LC platform to measure more than 1,300 protein pulldowns in 

triplicates (~4,000 runs) in less than three months with no major interruption. Due to the high 
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sensitivity and throughput capabilities of this setup, we were able to decrease the traditionally needed 

measurement time and initial sample amount by more than 10-fold (Article 3).  

 

Next, we aimed to translate the principles of TIMS and PASEF to the field of lipidomics, highlighting 

the same beneficial effects as described for the proteomics implementation. Furthermore, we show 

that the CCS dimension especially benefits lipidomics with regards to lipid class separation in the gas 

phase and isomer identification (Article 4). 

We also explored the collisional cross section (CCS) dimension, a nearly intrinsic property of 

biomolecules that the TIMS offers ‘for free’. We set out to create a very large tryptic peptide CCS 

compendium from several laboratory organisms comprising more than 1 million CCS values, which 

enabled us to train a deep learning model for the prediction of CCSs for any tryptic peptide. We also 

described the fundamental behavior of peptides in the gas phase and the contribution of amino acid 

sequence composition as well as positional constitution (Article 5).  

 

The main aim of my PhD was the development of a robust ultra-high sensitivity LC-MS platform for 

the high-throughput analysis of single-cell proteomes to complement the achievements of single-cell 

RNA-sequencing in basic research and biomedical applications. We set ourselves the goal to increase 

the overall sensitivity of our LC-MS technology by up to 100-fold, which would enable us to inject 

single-cells – one by one – and quantify their proteomes in an unbiased manner. Together with the 

Bruker research and development team, we developed a brighter ion source and improved ion 

transmission through the TIMS-qTOF instrument, which increased the overall signal by more than 4-

fold. Furthermore, we developed robust and very low flow gradients on the EvoSep One LC, which 

increased the signal by more than 10-fold compared to the standard microflow gradients at more than 

40 single-cell measurements per day. We also coupled sample preparation to LC, which ensures highest 

single-cell peptide transfer efficiency and developed a novel scan mode combining the advantages of 

data independent acquisition and PASEF, which in principle allows up to 100 % ion utilization, while 

standard data independent acquisition methods usually make use of less than 3 % (Article 6). 

Altogether, this increased the sensitivity of our LC-MS technology by up to 100-fold and enabled the 

quantification of SCP to a depth of up to 1,400 proteins per cell. Comparisons to single-cell RNA 

sequencing data revealed fundamental insights such as that single cells have a stable core proteome, 

but Poisson noise-dominated transcriptome, emphasizing the need for both complementary 

technologies. (Article7) 
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Building on the capabilities of the SCP technology, we aimed to elucidate the image-guided spatial and 

cell-type resolved proteome in whole organs and tissues from minute sample amounts. We combined 

tissue clearing of rodent and human organs - rendering them fully transparent, unbiased 3D-imaging, 

pathological target tissue identification, isolation and MS-based unbiased proteomics. This revealed 

early-stage β-amyloid plaque proteome profiles in a familial Alzheimer’s disease model (Article 8).  

We also aimed for the automated artificial intelligence driven isolation of pooled single-cells of the 

same phenotype from tissue sections. This allowed us to characterize cell-type specific spatial 

proteomes of cancer tissues, which would have otherwise been obscured in bulk measurements 

(Article 9). 

 

Last, we aimed for a systematic elucidation of pervasive functional translation of noncanonical human 

open reading frames, also known as the ‘dark matter’ of the proteome. Here, we combined state-of-

the art ribosome profiling, CRISPR screens, imaging and MS-based proteomics. We highlight the 

unbiased analysis of small novel proteins and prove their physical existence by mass spectrometry as 

HLA-presented peptides, essential interaction partners of protein complexes and cellular function. 

(Article 10) 
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3. Articles 

3.1. TIMS for high-sensitivity and high-speed proteome analysis 

Great strides have been made in the development of liquid chromatography and mass spectrometry 

platforms to enhance the speed and sensitivity of proteome measurements. Hybrid quadrupole Time-

Of-Flight (qTOF) mass spectrometers, like the Bruker Impact II have the capability to inherently scan 

precursor ions very fast at a constant and high resolution of up to 35,000 at excellent sub 1.5 ppm 

mass accuracy in routine bottom-up proteomics experiments196. A major bottleneck of current qTOF 

instruments is that this happens at compromised sensitivity per scan. Furthermore, the peptide 

complexity eluting into the mass spectrometer is very high and to increase peptide coverage during 

analysis, the sequencing rate has to be increased, again at the cost of reduced sensitivity317. Equipping 

the Impact II with a so-called Trapped Ion Mobility Spectrometer (TIMS) in the first vacuum stage of 

the instrument developed by Melvin Park and colleagues at Bruker promises to solve this dilemma198,310. 

Here, all ions introduced into the mass spectrometer face an opposed electric field gradient and are 

trapped at distinct positions corresponding to their IM within the TIMS device. Ions can then be 

accumulated for a chosen time period dictated by the speed of the chromatographic elution time of 

each precursor and their overall number. Since m/z and IM values are correlated, one can synchronize 

the elution of the precursors trapped per TIMS scan with sub-millisecond quadrupole switching events. 

In this way, when decreasing the electric field strength, the quadrupole isolates concentrated ion 

packages sequentially eluting from the TIMS device in sharp IM peaks. This principle, termed Parallel 

Accumulation SErial Fragmentation (PASEF), was recently introduced by our laboratory and promises 

to increase the sequencing speed by more than 10-fold per TIMS scan without a decrease in 

sensitivity195. 

 

When I started my PhD, Heiner Koch, Scarlet Beck, and Florian Meier co-developed and evaluated a 

first full implementation of the PASEF scan mode on an upgraded Impact II instrument equipped with 

a dual TIMS-tunnel and substantial firmware upgrades, the Bruker timsTOF Pro195,196,198. After Heiner 

Koch and Scarlet Beck left to join Bruker, I took over their responsibilities with regards to method 

development and implementation of the PASEF/TIMS-qTOF combination for proteomics analyses 

together with Florian Meier. In our paper, we evaluated the timsTOF Pro and the PASEF scan mode 

for proteomics applications and showed that the predictions described in the initial PASEF paper with 

regards to sequencing rates were actually realized in the current implementation with an astounding 
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fragmentation rate of more than 100 per second. Careful optimization of this setup enabled us to 

identify more than 6,000 protein groups in 120 min measurement time, which was on par with the best 

performing instruments on the market at this time. We also showed that the instrument is well suited 

for high-sensitivity measurements, exemplified by the identification of more than 2,500 protein groups 

from only 10 ng of tryptic HeLa digest and for high-speed measurements, highlighted by the 

identification of more than 1,000 protein groups in less than 5 min in combination with the EvoSep 

One LC system. Quantitative reproducibility and accuracy were also very high across many replicate 

measurements and within mixed two-proteome experiments.  

Due do the advantages in speed, robustness and sensitivity proteomics of the timsTOF Pro and the 

PASEF scan mode, I applied this technology in two main biological projects, which also showcase the 

benefits of this setup. First, I investigated the proteomic landscape of small numbers of pancreatic 

islets in the context of diabetes and second, I used it to study the HEK293T human protein-protein 

interactome.  

 

In the first project, a collaborative effort within the RHADOPSY consortium with the laboratories of 

Michele Solimena from the TU Dresden and Mark Ibberson from the Swiss Institute of 

Bioinformatics, we asked if we can apply multi-omics analyses including RNA-sequencing and 

proteomics on small numbers of pancreatic islets. The goal was the in-depth description of molecular 

changes of pancreatic islets in diabetes and to integrate those with clinical data and lipidomics data 

from matching plasma samples. A major drawback of current pancreatic islet cell investigations in this 

field is that the pancreatic isolates are from terminal or post-mortem donors, which have also 

undergone severe pharmacological treatment perturbing molecular profiles, which can result in 

inconsistent conclusions409. Furthermore, proteomics studies in this field are hampered by 

technological challenges in sample preparation and the sensitivity of the LC-MS setup410. Additionally, 

donors often lack in-depth clinical records, which could for example be used for differential marker 

correlation analysis409. To minimize extraneous variability and reveal a more comprehensive picture of 

changes due to diabetes, we isolated pancreatic islets from pancreatectomized and metabolically 

profiled human living donors across the diabetic continuum by optimized laser capture microdissection 

(LCM) and subjected them to multiomics analysis including transcriptomics, metabolomics, and high-

sensitivity proteomics analysis followed by the integration of clinical data. 

We show that islets from diabetics have remarkably heterogeneous transcriptome and proteome 

profiles, while non-diabetic controls did not. Furthermore, we identified gene sets that are already 

dysregulated in pre-diabetic individuals. Furthermore, we applied an ultra-high sensitivity MS-based 
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proteomics workflow on the newly developed timsTOF Pro instrument combined with miniaturized 

sample preparation to the analysis of pancreatic islets isolates, identifying up to 2,000 proteins per 

pancreatic islet pool. We demonstrate a progressive and disharmonic remodeling of pancreatic islets 

cells, challenging current hypotheses of linear trajectories toward precursor or trans-differentiation 

stages of T2D. Differential expression analysis revealed many potential biomarker candidates for T2D 

diabetic islets including the downregulation of the glucose-transporter Slc2a2. We describe for the first 

time that the sulfonylurea receptor ABCC8, whose role is to stimulate insulin secretion when glucose 

levels are high, was strongly reduced in islets of T2D. This could be a confounding or disease-

associated effect of pharmacological treatment with anti-diabetic antagonists targeting this receptor. 

We also showed that the proteomes and transcriptomes of pancreatic islet cells are in general very 

different (R < 0.3), while the glycolytic enzyme AldoB is consistently up- and Slc2a2 is consistently 

down-regulated in diabetic islets on both mRNA and protein levels, which could make them suitable 

as prognostic markers for T2D. Furthermore, we show that T2D pancreatic islets tend to lose protein 

mass associated with the secretory pathway, which could contribute to the inability of beta-cells to 

efficiently secrete insulin. Since ACADS and ACADSB, proteins involved in promoting DNA 

methylation and inhibition of histone deacetylases by beta oxidation products of short-chain fatty acids 

including butyrate, were upregulated in T2D pancreatic islets, we reasoned that histone H3 and H4 

lysine acetylation could be increased in T2D pancreatic islet cells. We confirmed this hypothesis by 

immunostaining, suggesting a change in gene expression programs in T2D.  

In summary, we applied a multi-omics study on LCM isolated pancreatic islet pools from living 

metabolically profiled pancreatectomized patients spanning the glycemic continuum in diabetes. This 

identified many potentially novel biomarkers on different molecular layers, while transcriptome and 

proteome analyses revealed AldoB and Slc2a2 as shared markers. Importantly, AldoB correlates well 

with elevated HbA1c levels in blood – the clinical gold standard in tracking blood glucose levels and 

for the diagnosis of diabetes. Furthermore, lipidomics revealed a systematic upregulation of ceramides 

in plasma levels of diabetic. Our proteomics data set turned out to be especially rich in novel 

information. In addition to the decrease in protein mass of the secretory pathway, our data reveal a 

pharmacologically induced receptor downregulation, highlighted that pancreatic islet proteomes of 

T2D were highly heterogeneous while non-diabetic isolates were not, and enabled us to uncover an 

increased histone methylation in T2D pancreatic islets, hinting an active change in their gene 

expression program. 

Since we were not able to assign detected proteome changes to the pancreatic islet cell types in this 

study, we are currently following this up with our recently developed Deep Visual Proteomics workflow, 
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combining ultra-high sensitivity mass spectrometry with an artificial intelligence-driven imaging 

workflow for cell typing combined with Laser Capture Microdissection (LCM)-mediated cell type 

isolation. This will clarify if our findings in this study apply to all cell types found in pancreatic islets, 

or if they are specific to one of the major cell types and much more.  

 

The measurement of very large sample-cohorts like the thousands of samples from protein-protein 

interactome studies needs ultra-robust and high-speed LC-MS systems to keep results qualitatively and 

quantitatively comparable, and to measure the project in a reasonable time. While developing the 

timsTOF Pro for routine proteomics applications, we observed that its performance was extremely 

stable irrespective of the injected sample type across thousands of runs. Furthermore, its high 

sensitivity makes it attractive for very large sample cohort measurements since sample and processing 

reagents can be kept to a minimum, drastically reducing overall project expenses. Combining the 

described MS advantages with the ultra-robust LC system EvoSep One150 with fast turnover times, 

allowed us to measure 60 samples per day without any drop in performance and at highest sensitivity.  

In a second major project, I demonstrated these novel capabilities in the context of a close 

collaboration with the laboratory of Manuel Leonetti at the Chan Zuckerberg BioHub in San 

Francisco. We set out to decode the interaction and localization architecture of the human cellular 

proteome. This was a very ambitious goal and one of the main challenges was that it required the 

combination of several cutting-edge technologies to succeed. First, we used CRISPR to endogenously 

tag more than 1,300 proteins with a split mNeonGreen construct at their endogenous locus (either on 

the C- or N-terminus depending on structural accessibility), preserving endogenous protein expression 

in the HEK293T cell line employed128. Separately, we expressed the matching mNeonGreen construct 

to allow reconstitution of the fluorescent protein, which enables us to track cellular localization by 3D 

live-cell imaging. Furthermore, it provides a handle for immunoprecipitation followed by LC-MS (IP-

MS) analysis for protein-protein interaction studies. We automated the imaging process for localization 

studies in Python, which enables scalable on-the-fly computer vision on a spinning disk confocal 

microscope to select desirable fields of view from 96-well cell culture plates and the reconstruction of 

3D protein distribution in consecutive z-slices. This resulted in the most comprehensive image 

collection of live-cell protein localization to date comprising more than 5,000 3D stacks - on average 

four to five field of views per cell line. Interestingly, more than 50 % of our tagged proteins localized 

to multiple parts of the cell. Most of these proteins located to both the nucleus and cytoplasm, 

highlighting the importance of nuclear protein import- and export-machinery for protein localization. 

Next, we combined the advantages of our TIMS-qTOF/PASEF and the EvoSep liquid 
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chromatography system to perform IP-MS experiment from the 1,300 cell lines in biological triplicates, 

resulting in more than 4,000 runs at very high robustness150,195. Compared to previous interactome 

studies at this scale, we decreased the overall data acquisition time at least by a factor of 15 to less than 

3 months total127. Furthermore, the sensitivity of our LC-MS setup allowed miniaturization down to 

only 0.8x106 cells of starting material per pulldown, which enabled us to cultivate cells in 12-well plates. 

This reduced the required starting amount for sample preparation by more than 10-fold, allowing 

multiplexed sample preparation and tremendous cost reduction127. Also, the use of digitonin for 

protein extraction enabled us to effectively preserve the native structure and properties of membrane 

proteins during sample preparation. However, we observed that digitonin tends to gradually 

accumulate in the analytical column and prevented the consecutive measurement of hundreds of 

samples. Using the EvoSep One LC-system alleviated the problem and allowed us to run the whole study 

on a single column-emitter setup - most likely because digitonin does not elute from the EvoTip, a 

Stage-tip like construct, which serves as a run-specific trap column150,411. Our protein-protein 

interaction network comprised 30,293 interactions distributed across 5,271 bait-proteins. Interestingly, 

amino acid sequence-based analysis revealed that proteins with highly disordered and hydrophilic 

domains tend to systematically have more interaction partners than proteins with helical and 

hydrophobic domains. Next, we integrated the bait localization information from the imaging data 

with the interaction partner data from the IP-MS experiments and trained a machine learning model 

to learn associations between patterns of localization and physically interactions. Indeed, we were able 

to show that localization patterns contain in many cases enough information to predict molecular 

interaction partners.  

In summary, we delineated interacting protein families and elucidated cellular organization by 

superimposing physical and co-localization imaging data combining CRISPR-mediated genome 

engineering, automated confocal microscopy, high-speed/-sensitivity MS and data science. We 

uncovered that most proteins interact at low stoichiometry with low spatial overlap within the cell, 

emphasizing their role as ‘molecular glue’ of cellular proteome interaction networks. In contrast, high 

stoichiometry interactors tend to share similar localization patterns. We also reveal that membrane-

related and RNA-binding interacting protein groups segregate from the global proteome, which 

emphasizes the power of combining localization and IP-MS interactome data. Membrane protein 

interactors segregate due to the spatial organization of the cell as expected, while the finding of 

segregating RNA-binding proteins was surprising. However, there is a growing body of evidence that 

proteins and RNA can form distinct condensates in cells sometimes termed phase-transitions, 

supporting our finding and suggesting that RNA itself could play a role in organizing function and 
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localization of the cellular proteome412. Furthermore, we made all analytical tools and data developed 

in this project available to the community through our interactive website OpenCell.czbiohub.org 

presenting the quantitative cartography of human cellular organization at the proteome level.  

 

The above applications - using the timsTOF Pro alone or in combination with the EvoSep One platform 

- proved its suitability to high-sensitivity, high-speed, and ultra-robust proteomics. Besides the analysis 

of the human interactome, we also applied this setup to Saccharomyces cerevisiae interactome mapping 

(manuscript in preparation) using every single known gene protein product as a bait – and approaching 

the ideal of a complete protein-protein interaction map. These papers only mark the start for further 

novel applications to biological and biomedical questionings. One could for example start to compare 

interaction networks upon perturbation or as a function of time. Likewise, one could analyze very large 

patient cohorts in the biomedical arena following the same rules for ultra-robust, fast and sensitive 

LC-MS. Advanced technological developments of this platform also allowed us to enter unexpected 

areas of MS-based proteome analyses with tremendous impact as described in the next chapters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 
 

3.1.1. Article 1: Online PASEF with a novel TIMS 

 

Online parallel accumulation – serial fragmentation (PASEF) with a novel trapped ion 

mobility mass spectrometer 

 

Molecular & Cellular Proteomics, December 01, 2018 

 

Florian Meier1, Andreas-David Brunner1, Scarlet Koch2, Heiner Koch2, Markus Lubeck, Michael 

Krause2, Niels Goedecke2, Jens Decker2, Thomas Kosinski2, Melvin A. Park3, Nicolai Bache4, Ole 

Hoerning4, Jürgen Cox5, Oliver Räther2, Matthias Mann1,6, # 

 

# Correspondence 

 

1Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, 

Germany 

2Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany 

3Bruker Daltonics Inc., Manning Road, Billerica, Massachusetts 01821, USA 

4Evosep Biosystems, Thriges Pl. 6, 5000 Odense, Denmark  

5Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, 

Germany 

6NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blogdamsvej 3B, 2200 

Copenhagen, Denmark  

 

Contribution 

I contributed to the overall experimental design of the paper and accompanying data analysis. I 

performed all experiments to evaluate the mass spectrometry setup for high-speed proteomics in 

combination with the ultra-robust EvoSep One liquid chromatography platform and performed 

qualitative/quantitative benchmarking assessments of one-/two-proteome experiments. Furthermore, 

I evaluated the ion mobility reproducibility across many runs, scan times, and highlighted the 

instruments capability for ultra-high sensitivity proteomics down to only 10 ng of tryptic HeLa digest.  
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3.1.2. Article 2: Multi-omics profiling of living human pancreatic islet donors  

 

Multi-omics profiling of living human pancreatic islet donors reveals heterogeneous 

beta cell trajectories toward type 2 diabetes 

 

Nature metabolism, (Accepted)  

 

Leonore Wigger1, *, Marko Barovic2, 3, 4, *, Andreas-David Brunner5, *, Flavia Marzetta1, Eyke 

Schöniger2, 3, 4, Florence Mehl1, Nicole Kipke2, 3, 4, Daniela Friedland2, 3, 4, Frederic Burdet1, Camille 

Kessler1, Mathias Lesche6, Bernard Thorens7, Ezio Bonifacio3, 4, 8, Cristina Legido Quigley9, Philippe 

Delerive10, Andreas Dahl6, Kai Simons11, Daniela Aust12, 13, Jürgen Weitz14, Marius Distler14, Anke M 

Schulte15, Matthias Mann5, #, Mark Ibberson1, #, Michele Solimena2, 3, 4, # 

 

* These authors contributed equally to this work  

# Correspondence 

 

1 Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland 

2Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany 

3Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, 

Germany 

4German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany 

5Max Planck Institute of Biochemistry, Martinsried, Germany 

6Deep Sequencing Facility, CMCB Technology Platform, Dresden, Germany 

7Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland 

8DFG Center for Regenerative Therapies Dresden, Medical Faculty, TU Dresden, Dresden, Germany  

9Steno Diabetes Center Copenhagen, Gentofte, Denmark 

10Institut de Recherches Servier, Pôle d'Innovation Thérapeutique Métabolisme, Suresnes, France 

11Lipotype GmbH, Dresden, Germany 

12Department of Pathology, Medical Faculty, University Hospital Carl Gustav Carus, TU Dresden, Dresden  

13NCT Biobank Dresden, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany  

14Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, TU Dresden, Dresden, 

Germany 

15Sanofi-Aventis Deutschland GmbH, Diabetes Research, Industriepark Höchst, Frankfurt am Main, Germany 
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Contribution 

I contributed to the overall experimental and analytical design of the study and to the writing of the 

manuscript. I established and optimized the miniaturized sample preparation workflow in close 

consultation with the researchers isolating the pancreatic islets via laser capture microdissection in 

Dresden. Furthermore, I performed all proteomics experiments, analyzed accompanying data, 

performed RNA-sequencing to proteomics comparisons, prepared figures and wrote the proteomics 

part of the manuscript.  
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3.1.3. Article 3: OpenCell 

 

OpenCell: Proteome-scale endogenous tagging enables the cartography of human 

cellular organization 

 

bioRxiv, March, 2021, (under review in Science) 

 

Nathan H. Cho*, Keith C. Cheveralls*, Andreas-David Brunner*, Kibeom Kim*, André C. 

Michaelis*, Preethi Raghavan*, Hirofumi Kobayashi, Laura Savy, Jason Y. Li, Hera Canaj, James Y.S. 

Kim, Edna Stewart, Christian Gnann, Frank McCarthy, Joana P. Cabrera, Rachel Brunetti, Bryant B. 

Chhun, Greg Dingle, Marco Y. Hein, Bo Huang, Shalin Mehta, Jonathan S. Weissman, Rafael Gómez-

Sjöberg, Daniel N. Itzhak, Loïc A. Royer, Matthias Mann, Manuel D. Leonetti# 

 

* These authors contributed equally to this work  

# Correspondence 

 

 

Contribution 

In this project, I contributed to all aspects of the proteomics part, including experimental design, the 

establishment of the pulldown conditions and sample preparation for bottom-up proteomics analysis. 

I also combined the timsTOF Pro mass spectrometry platform with the EvoSeop One liquid 

chromatography system for a first of its kind study comprising several thousands of samples at highest 

robustness and sensitivity. Furthermore, I prepared and measured all >4,000 pulldowns, ensured 

highest quality control throughout the project, performed proteomics data analysis and contributed to 

manuscript writing. 
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3.2. The collisional cross section universe in omics analysis 

Following the successful introduction of the TIMS-qTOF platform (timsTOF Pro, Bruker Daltonik 

GmbH) to bottom-up proteomics and its application to high-throughput interactome measurements 

and high-sensitivity applications in pancreatic islet research, we aimed to transfer these achievements 

to the field of lipidomics.  

 

The current state of the art in this omics field entails the identification of lipids based on the accurate 

mass measurement at the MS1 level and to integrate it with MS2 or even extend it to MS3 

fragmentation information, when the first two levels are not sufficient. Furthermore, either direct 

infusion or high-flow chromatography systems are used to increase sample throughput with the 

negative effect of compromised analytical sensitivity resulting in a need for more initial sample.413  

First, we reasoned that combining nanoflow chromatography with the PASEF principle on the 

timsTOF Pro should increase speed and sensitivity of the analysis. Indeed, we showed that this 

combination increased sensitivity more than 100-fold to the attomomole-range at a 16-fold increased 

sequencing speed reaching more than 100 Hz while keeping full resolution of co-eluting isomers. Next, 

we showcased the applicability of our setup to several biological matrices including blood plasma, liver 

tissue biopsies and cell lines, reaching system saturation with as little as 0.05 µl blood plasma, 10 µg 

liver tissue, or 2,000 HeLa cells. All major lipid classes like glycerophospholipids, mono-/di-/tri-acyl-

glycerols, sterol lipids, ceramides, glycosphingolipids, and phosphosphingolipids were covered in our 

measurements.  

Second, since the chemical structure of lipids is well known to determine their collisional cross sections, 

we reasoned that the TIMS device, positioned between chromatography and analytical quadrupole, 

could allow us to separate lipid isomers and yield an additional dimension for identification414. This 

was indeed the case. We investigated the correlation of lipid mass and ion mobility and showed that 

lipid isomers can be separated in routine measurements at a resolution of up to 200 CCS/ΔCCS, while 

keeping an up to 100 % ion beam utilization and up to 50-fold increased signal to noise ratio compared 

to not using TIMS. Furthermore, we showed that the intra- and inter-laboratory variability of CCS 

determination was well below 0.3 % with Pearson correlations of greater than 0.99. Comparisons to 

published CCS compendia acquired with drift tube systems, ion mobility devices that revert the 

principle of TIMS, also highlighted the high accuracy of our measurements (r = 0.999)415. We 

investigated the ion mobility-enhanced lipidomics 4D space and found that each lipid class occupies a 

specific area or volume in the conformational lipid landscape, reflecting structural differences in 
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chemical composition. Since features of these lipid classes, only diverging by e.g. the number of carbon 

atoms in their chains, perfectly line up in the multidimensional space, we were able to infer the 

composition of unidentified lipids, which followed the positional rules in the 4D cuboid comprised of 

intensity, CCS, retention time, and m/z. 

In summary, we developed a nanoflow lipidomics workflow that takes full advantage of TIMS and 

PASEF in terms of sensitivity, sequencing speed and ion mobility resolution. It is applicable to a wide 

range of biological samples and it appears to be attractive for sample limited applications such a 

biopsies and small cell populations. Furthermore, we assume that all the analytical advantages 

demonstrated for lipidomics should be transferable to metabolomics and that the high precision and 

accuracy of the 4D feature space including the CCS as additional dimension should also be suited well 

for machine learning approaches.  

 

In the next study we explored the CCS peptide universe. We reasoned that the robustness of the 

timsTOF instrument itself and the high precision of CCS determination (CV <0.1 %), should allow us 

to infer all CCS values of peptides encountered in bottom-up proteomics – the distinct rotational 

average of a peptides gas-phase conformation. 

To fully capture the conformational diversity of peptides in the gas phase, we acquired CCS values for 

more than 400,000 unique peptide sequences resulting in more than 2,000,000 peptide CCS values 

from five model organisms (HeLa, Caenorhabditis elegans, Drosophila melanogaster, Escherichia coli, and 

Saccharomyces cerevisiae). We digested isolated proteins with three different proteases (LysC, LysN, 

trypsin) yielding complementary peptide termini. Furthermore, we separated those samples into 24 

fractions to increase peptide analysis depth. This experimental design allowed us to ask and answer 

several fundamental questions.  

First, we investigated the precision of the CCS determination at scale and compared it to publically 

available data sets from drift tubes devices. We showed that our initial observation of highly 

reproducible CCS value determination in repetitive measurements holds true at scale across several 

instruments (CVs < 1%). We found that systematic TIMS tunnel pressure-dependent CCS shifts, can 

be corrected by linear alignment. This highlights that ion mobility values are largely independent of 

experimental circumstances and can be of high value for peptide identification, similar to the molecular 

mass.  

Second, it allowed us to address the long-standing question of amino acid sequence and positional 

contribution to the CCS value of peptides, and if amino acids with high occurrence frequencies for 

particular secondary structures also determine structures in the gas phase. Indeed, we found CCS values 
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of peptides with a high proportion of amino acids known to be in alpha helices (Q, E, A, L, M, H) to 

be larger, while peptides with a high proportion of amino acids (D, N, G, S, P) known to be in beta 

sheets to be smaller. These trends are well reflected by the overall hydrophobicity of the peptide itself 

and summarized as the GRAVY score, a measure for the compositional hydrophobicity of the 

peptide416. Peptides with a high GRAVY score (high hydrophobicity) tend to be larger than peptides 

with a low GRAVY score (low hydrophobicity). Furthermore, we found that the more prolines a 

peptide sequence contains, the smaller the CCS values, most likely due do its inability of to donate 

hydrogen bonds for 2D structure stabilization and increased flexibility. We also showed that the 

position of histidines within a peptide drastically influences the CCS value, most likely due its peptide 

net charge contribution and its position along the peptide sequence. The closer the histidine is located 

to the terminal positively charged lysine, the smaller the peptides cross section is and vice versa. 

Interestingly, these experimental observations were also recapitulated by the Shapley Additive 

Explanation (SHAP) analysis of CCS values predicted by our deep recurrent neural network described 

below417.  

Third, we were able to increase the number of peptide-specific CCS values to a level that allowed us 

to train a deep recurrent neural network consisting of a three-layered bi-directional long short-term 

memory (LSTM) network followed by a two-layer multilayer perceptron (MLP) for CCS value 

regression. This resulted in a generalized prediction model of CCS values solely based on the peptide 

sequence. Comparing network derived CCS values with experimental values of the synthetic 

ProteomeTools418 peptide resource demonstrated a prediction accuracy with a 1.4 % median relative 

error. Replacing experimentally derived CCS values within a spectral library used for diaPASEF 

analysis by our predicted ones did not compromise identification, suggesting that predicted CCS aware 

spectral libraries will be able to replace the tedious process of creating those experimentally in the 

future. 

In summary, CCS values can now be predicted for any tryptic peptide and organism. We illustrated 

this by the prediction of CCS values for the human peptide universe, comprising 616,948 unique tryptic 

peptides to form a basis for advanced proteomics workflows that make full use of the additional 

information. Furthermore, this project is only a starting point for the prediction of a peptide ions shape 

in the gas phase and can be extended to other peptide classes like modified and cross-linked peptides, 

or even to the peptidome - the set of in vivo processed peptides. Most importantly, we set the stage for 

the prediction of fully predicted ion mobility aware spectral libraries for data independent acquisition 

analysis, which could improve the specificity in database searches, especially in challenging analyses 

with a very large search spaces and will benefit targeting approaches.   
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3.2.1. Article 4: TIMS and PASEF enable high-sensitivity lipidomics  

 

Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from 

minimal sample amounts 

 

Nature communications, January 16, 2020 

 

Catherine G. Vasilopoulou1, Karolina Sulek2, Andreas-David Brunner1, Ningombam Sanjib Meitei3, 

Ulrike Schweiger-Hufnagel4, Sven W. Meyer4, Aiko Barsch4, Matthias Mann1, 2, #, Florian Meier1, # 
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1Max Planck Institute of Biochemistry, Martinsried, Germany 

2NNF Center for Protein Research, Copenhagen, Denmark  

3PREMIER Biosoft, Indore, India 

4Bruker Daltonik GmbH, Bremen, Germany  

 

Contribution 

In this project, I contributed to the experimental design of the paper and performed experiments.  
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3.2.2. Article 5: Deep learning the CCS peptide universe 

 

Deep learning the collisional cross sections of the peptide universe from a million 

experimental values 

 

Nature communications, February 19, 2021 

 

Florian Meier1, 2, *, Niklas D. Köhler3, *, Andreas-David Brunner1, *, Jean-Marc H. Wanka3, Eugenia 

Voytik1, Maximilian T. Strauss1, Fabian J. Theis3, #, Matthias Mann1, 4, # 

 

* These authors contributed equally to this work  

# Correspondence 

 

1Department for Proteomics and Signal transduction, Max Planck Institute of Biochemistry, Martinsried, Germany 

2Functional Proteomics, Jena University Hospital, Jena, Germany 

3Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, 

Germany 

4NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Denmark  

 

Contribution 

In this project, I contributed to all aspects of the paper including the overall experimental design and 

establishment of its goals. I performed the sample preparation of all presented model organisms with 

different proteases, including the optimization of peptide isolation and fractionation conditions. 

Furthermore, I acquired all data for the presented model organisms and the ProteomicsTOOLS 

peptide set. I also ensured highest quality of the data including downstream analysis and evaluation. 

This resulted in a total of more than 400 high-quality raw data files comprising more than 2,500,000 

peptide collisional cross sections. I also contributed to data analysis, literature research and manuscript 

writing.  
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3.3. True single-cell proteomics on a TIMS-qTOF platform 

Single-cell technologies are revolutionizing biology but were until now mainly limited to imaging and 

deep sequencing. Since proteins are the main drivers of cellular function rather than nucleic acids or 

metabolites, we reasoned that it would be highly valuable to analyze the proteomes of single cells, 

complementing the achievements in the single-cell sequencing arena65,378,419. Many approaches, 

including multiplexing and the usage of a booster channel consisting of several hundred cells as 

described above, promised to enable this110,408,420. However, that came at the expense of drastic 

quantitative distortion and the inflation of false-positive identifications405. To pave the way for true 

unbiased single-cell proteomics at highest qualitative and quantitative reproducibility, we had to 

address fundamental technological limitations across the bottom-up proteomics workflow. 

First, we optimized conditions to capture live single-cells by FACS sorting and coupled it to sample 

preparation to quantitatively ‘freeze’ the proteome. We realized this by sorting the cells into a weak-

organic reservoir comprising only 1 µL of volume, followed by thermal and mechanical steps to fully 

dissociate the single-cells in the 384-well format. Furthermore, since single cells comprise on average 

only 150 pg of protein, we had to keep the digestion kinetics high by titrating digestion enzyme 

concentration accordingly. This allowed us to process single-cells at a volume of less than 2 µL. Next, 

we enabled the loss-less transfer of the minute amounts of peptides onto a StageTip, which we realized 

by repeated solvation of the pellet in pure formic acid. Loading of the StageTip at a centrifugation 

speed at 600 xg for 1 min was crucial to concentrate the single-cell peptides at the solid phase extraction 

(SPE) material surface to create a nanopackage. Furthermore, the StageTip itself allowed us not only to 

concentrate the peptides, but also to remove residual salt, which could otherwise result in suppression 

of the ES signal.  

Second, we had to make liquid chromatography extremely sensitive, robust and reproducible, since 

even smallest imperfections such as of the analytical column or accompanying connectors, could 

disrupt the transfer of the 150 pg protein digest of a single cell into the mass spectrometer39. To do so, 

we decided to use the EvoSep One LC system designed for robustness at microflow conditions over 

thousands of runs150. We reasoned that the system would have two key advantages for single-cell 

proteomics, one of which is the peptide nanopackage principle described above. Before analytical 

separation of the single-cell material, the peptide nanopackage is eluted from the EvoTip into the LC 

system. Here it stacks up at the head of the analytical column, preventing any peptide dilution and LC-

related analyte loss. The second advantage should be that the preformed gradient is pushed out by a 

single high-pressure pump, thereby preventing the admixture of the elution gradient as can happen in 
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binary pump systems at very low flow rates. We found that this principle enables robust flow rates 

down to 25 nl/min and results in proportionally increased overall ES efficiency due to its concentration 

dependency. Establishing this concept enabled us to run hundreds of single-cell proteome analyses at 

a throughput of more than 40 cells per day and at a 100 nl/min flow rate without any drop in 

performance. The performance increase was about 10-fold compared to a microflow gradient, as 

anticipated. 

Third, we realized that the sensitivity of our timsTOF Pro mass spectrometer - although superb due to 

virtually noise-free spectra in TIMS and concentrated ion packages - was not sufficient for the analysis 

of true single cells. Since ionization efficiency, ion transfer efficiency into the vacuum system and ion 

utilization of the instrument govern MS sensitivity, we teamed up with Bruker Daltonik to construct 

an alpha prototype instrument, including an ion source with at least 4-fold increased brightness and 

improved ion transfer efficiency throughout the instrument.   

Fourth, we developed a novel data independent scan mode called diaPASEF for parallel accumulation-

serial fragmentation combined with data-independent acquisition by hijacking the instruments 

firmware. Common to DIA, this scan mode is especially attractive for the analysis of large sample 

collections, e.g. hundreds of single-cell proteomes, due to its non-stochastic nature, resulting in high 

measurement reproducibility and data completeness. However, in DIA, precursor ions are recursively 

isolated by the quadrupole and concurrently fragmented to generate convoluted fragment ion spectra 

from many precursors, resulting in a great challenge for subsequent analysis269,271. To reduce this 

spectral complexity, isolation window sizes are often decreased at the expense of reduced ion current 

sampling down to less than 1%215. In contrast, diaPASEF allows ion sampling efficiency of up to 100% 

when precursor elution from the TIMS ramp is synchronized with the quadrupole isolation window 

and when scan time in the TIMS tunnel two is equal to the accumulation time in TIMS tunnel one198. 

Note that the addition of ion mobility separation to the chromatographic and mass separation results 

in a four dimensional data cuboid (taking intensity values into account) containing all fragment ions of 

all precursors across each run. This should also result in reduced spectral complexity, increased overall 

sensitivity and enable improved algorithmic scoring due to the introduction of ion mobility as an 

additional dimension, and the fact that fragmentation ions share the same ion mobility position as their 

parental ion.  

We demonstrated the applicability of diaPASEF to deep proteome measurements in the context of 

sample saturation and long gradients for high-speed applications and benchmarked its quantitative 

accuracy. This included optimizing the window placement of diaPASEF to balance selectivity, 

sensitivity and precursor coverage as a function of chromatographic performance and gradient length. 



204 
 

Taking all these parameters into account, we designed a fast diaPASEF scan mode for single-cell 

proteomics consisting of one MS1 scan and three subsequent diaPASEF scans covering the m/z range 

from 400-1,000 m/z at a duty cycle of 12.5 % resulting in a cycle time of 2.5 sec. In downstream 

processing, we observed that the summation of several subsequently acquired diaPASEF scans 

increases S/N levels in the 4D data cuboid, resulting in a higher spectral library recovery, especially for 

very low sample amounts. In my hands, three consecutive diaPASEF scans were optimal, which still 

allowed efficient sampling of the chromatographic peak. 

Together these developments allowed us to sample ions at an estimated 40- to 100-fold increased 

sensitivity, as highlighted by the robust identification of more than 3,200 protein groups from only 1 

ng of HeLa digest compared to only about 800 protein groups from a similar input amount on the 

previous standard setup. Benchmarking single-cell dilution experiments in DDA mode identified up 

to 1,000 protein groups per cell at excellent quantitative reproducibility (R = 0.92) and a steady increase 

to more than 2,000 protein group identifications for six-cell measurements while maintaining the 

expected dynamic range increase with increasing cell counts. I then applied our true single-cell 

proteome workflow to the analysis of a cell cycle arrested and released culture of cells, identifying up 

to 1,400 protein groups per single cell. Furthermore, raw total single-cell peptide signals reflected cell 

size gain across cell cycle progression. Normalized quantitative data allowed the prediction of cell-cycle 

states and highlighted known and potentially novel cell-cycle state markers. In contrast to other 

methods, signals in raw spectra were still readily visualized. Next, we compared our single-cell 

proteomics data to publicly available single-cell RNA-sequencing data from two different technologies 

(dropSEQ, smartSEQ) in an attempt to obtain insights into fundamental differences between the 

proteome and transcriptome levels370,380. We found that single-cells have a very high protein expression 

completeness - in contrast to RNA levels - and that quantitative protein expression correlations 

between single-cell proteomes are very high. Furthermore, we asked to what degree single-cell RNA 

sequencing data could serve as a proxy for protein measurements and showed that single-cell 

proteomes are very different to RNA levels. This finding implies distinct RNA and protein abundance 

regulation mechanisms, dissection of which is only possible when integrating both layers of 

information. We also discovered that single cells have a quantitatively and qualitatively stable, and 

functionally essential core proteome comprising members of the folding machinery, nucleic acid 

helicases, cellular structure determining proteins and the translation initiation/elongation machineries. 

This is in stark contrast to the mRNA level, which is qualitatively and quantitatively volatile across 

single cells because of the very low median number of messages per gene383,419.  
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Although these technological developments and findings only mark the beginning of an exciting new 

area of research, we believe that they are a milestone for the elucidation of single-cell proteomes and 

their integration with single-cell RNA-sequencing studies. There are many opportunities to increase 

overall workflow sensitivity and for improving data analysis and modelling tools, similar to the rapid 

advances in single-cell RNA sequencing technologies over the last ten years. Since our workflow is 

also compatible with chemical multiplexing, but at much higher sensitivity, it should also be possible 

to multiplex single-cell measurements without the need for a booster channel, minimizing reporter ion 

compression. Finally, these developments are not only limited to single-cell proteomics. We imagine 

that this platform will find its use in many ultra-high sensitivity settings including PTMs from minute 

sample amounts and very small tissue isolates from FFPE material as described in the next chapter. 

We also imagine it to be applied to the lipidomics and metabolomics analysis of single cells, which 

could finally enable their MS-based multiomics investigation in conjunction with single-cell sequencing 

methods.  
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3.3.1. Article 6: diaPASEF – PASEF combined with DIA 

 

diaPASEF – parallel accumulation-serial fragmentation combined with data-

independent acquisition 

 

Nature Methods, November 30, 2020 
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Contribution 

I contributed to the conceptualization of the scan mode and its adjustments for high-sensitivity, high-

throughput and also to the deep proteome measurements. Furthermore, I performed experiments, 

benchmarks, method optimization and analysis of the raw data with a focus on tuning the method for 

ultra-high sensitivity applications.  
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3.3.2. Article 7: Ultra-high sensitivity MS quantifies single-cell proteomes 

 

Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon 

perturbation 

 

bioRxiv, December 23, 2020 (Under review in Nature) 
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Contribution 

I developed a full single-cell proteomics workflow in which we measured true single cell proteomes – 

one by one. Sample preparation included optimization of miniaturization and its coupling to the EvoSep 

One LC platform. Furthermore, since ES is concentration dependent, I re-purposed or ‘hijacked’ the 

EvoSep One microflow system together with our collaboration partners to run robust true nanoflow 

gradients. Additionally, I benchmarked the novel and modified timsTOF Pro, tuned it to highest 

sensitivity and coupled it to the novel EvoSep One true nanoflow gradients. The diaPASEF scan mode 

optimization, all single-cell benchmarking and cell cycle experiments, as well as downstream analysis 

was performed by me. Comparisons to similar single-cell RNA sequencing data was led by me with 

help from our collaboration partners. Moreover, I wrote the manuscript draft and co-edited it to its 

final form.  
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3.4. Image-guided spatial and cell-type resolved proteomics 

The development of the ultra-high sensitivity mass spectrometry workflow as described before enabled 

the analysis of single-cell proteomes upon drug perturbation, which opens the door for the elucidation 

of drug-response assays at the level of single cells in a biomedical setting. Today, single-cell sequencing 

allows the mapping of cell types and states, uncovering a tremendous complexity395. However, proteins 

are the drivers of cellular function and single-cell proteomics will therefore extensively complement 

the elucidation of cellular heterogeneity, leading to a better understanding of developmental and 

pathological processes65. Keeping in mind that many pathologies start in unknown areas of organs, cell 

types, or even subcellular regions, it would be highly desirable to combine our ultra-high sensitivity 

MS single-cell technology with unbiased imaging approaches to automatically locate the pathological 

region, excise it without contaminating surrounding tissue and subject it to unbiased proteome analysis. 

This would allow us to connect the visual dimension in 3D with the molecular phenotype in its native 

environment, determine drivers in health and disease, and suggest treatment options to eliminate 

diseased tissue or even restore function. We realized this vision in two independently developed 

approaches called DISCO-MS: Proteomics of spatially located target tissues in whole organs and DVP: Deep 

Visual Proteomics, which I imagine to be combined in the future: 

 

DISCO-MS, a very close collaborative effort with the laboratory of Ali Ertürk at the Helmholtz center 

Munich, combines solvent-based tissue clearing, whole-organ imaging by light-sheet microscopy, 

automated image analysis powered by deep learning and ultra-high sensitivity mass spectrometry. In 

solvent-based tissue clearing, whole rodent bodies or isolated organs are rendered translucent by 

several shrinkage-mediating organic solvent extraction steps resulting in a rigid sample, which can then 

be subjected to unbiased imaging, followed by in silico 3D image reconstruction421. Since many 

pathologies arise in unknown regions, whole-organ imaging holds promise to locate them in an 

unbiased way, followed by laser capture microdissection isolation and unbiased proteomics analysis.  

First, we asked if proteomes of solvent-cleared tissues artificially changed qualitatively or quantitatively 

upon the diverse and harsh clearing steps and how they compare to their fresh or PFA-fixed 

counterparts. To do so, I developed a bottom-up proteomics sample preparation workflow aiming for 

highest protein recovery. Indeed, fresh and paraffin -fixed (PFA) tissue subjected to several clearing 

techniques yielded quantitatively and qualitatively very comparable proteomes at a depth of up to 6,000 

proteins. Deep proteome comparisons at 8,000 proteins in mouse brains showed high quantitative 

reproducibility with Pearson correlations of up to 0.94. We also verified the applicability of the 
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protocol to other rodent organs besides brain (lung, heart) with a very different proteome dynamic 

range and archival human brains, obtaining equal proteome quality. Furthermore, we showed that 

summed abundance changes of protein groups annotated by gene ontology for ‘cellular compartment’ 

were well below 15 % between fresh and cleared organs, highlighting high proteome preservation. The 

exception was ‘Blood microparticle’ proteins which can easily be explained as rodents undergo cardiac 

blood-flushing and PFA-fixation before the actual clearing process starts. Interestingly, even 

aggregated membrane protein abundances changed less than 3 % change in cleared organs compared 

to fresh counterparts, suggesting that DISCO-MS could identify novel surface markers for drug 

targeting. Astonishingly, rodent whole-organ clearing is also very reproducible on the proteome level 

across biological replicates with median CVs of 20 % across the full dynamic range, just like their fresh 

organ counterparts. 

Next, we investigated if we could isolate pathological regions of interest by LCM, which have been 

located in the cleared organ by AI-guided image analysis followed by MS-based proteomics. If done 

manually, it would have taken years of hands on work to finish the imaging analysis and even then, 

very early-stage pathologies would most likely have been missed. Two challenges had to be solved to 

enable this workflow, first the reliable dissection of small tissue regions comprising a volume of less 

than 100 cells and second to obtain a proteome from only a few nanograms of dissected rigid solvent-

cleared tissue. Both hurdles were taken by literally reversing the last tissue clearing protocol steps to 

rehydrate the sample and combining this with miniaturization of the proteomics sample preparation. 

We explored DISCO-MS first on a mild traumatic brain injury mouse model, isolating locally inflamed 

tissue regions and their counterparts in controls. This revealed very distinct proteomes and 

recapitulated biomarkers known to be involved in injury and tissue recovery in the mTBI isolates.  

We then turned to a familial Alzheimer’s disease (FAD) mouse model to measure all early-stage Aβ-

plaques in an unbiased way, followed by their equally unbiased proteome analysis using DISCO-MS. 

First, since the locations of early-stage plaque are unknown, we automatically localized them in whole 

FAD mouse brains in week 5 after birth by imaging combined with deep learning and showed that 

they initially preferentially localized towards the hippocampal region. Interestingly, we were able to 

detect them already at a volume of 2,000-3,5000 µm3, highlighting the sensitivity of our methods. We 

then isolated some of these early-stage plaques as well as non-FAD littermate control tissue at 

corresponding coordinates and subjected them to MS-based proteome analysis. This quantified more 

than 1,900 proteins across replicates, determined the core proteome of early-stage beta-amyloid 

plaques including known and potentially novel biomarkers comprising oligopeptidases/-isomerases, 

calcium binding protein family members, while confirming that Amyloid-beta deposition plays a key 
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role in early Aβ plaque development. Furthermore, we highlighted a substantial compositional 

proteome heterogeneity across deposits422. Together, this provided valuable insights into the initial 

stages of AD in this mouse model.  

DISCO-MS successfully combines unbiased imaging of whole rodent bodies or organs with the 

unbiased proteome analysis of AI-determined and LCM-isolated target tissue regions. It also yields 

qualitative and quantitative proteomics data nearly indistinguishable from uncleared samples in both 

rodent and human tissue, confirmed many known and revealed potentially novel biomarkers in two 

disease models. This sets the stage for the elucidation of very early-stage pathologies and accompanying 

therapeutic interventions. One remaining drawback of the current implementation of this technology 

is that pathological target regions are isolated in a small volume comprising cells, extracellular matrix 

and other depositions. This inevitably results in a merged proteome of all constituents within this 

volume, but is addressed by the technology described next.  

 

Deep Visual Proteomics combines high-resolution microscopy, deep learning-based image 

recognition, cell segmentation and identification of cell phenotypes, coupled to automated LCM-based 

isolation of single cells or cell states followed by the ultra-high sensitivity proteomics workflow 

developed and described above. This concept promises to link protein abundance to complex cellular 

and subcellular phenotypes while preserving the spatial meta-information of cell cultures and FFPE-

embedded tissue thin sections.  

The key challenge to realize DVP was the AI-driven accurate definition of single cell boundaries and 

cell classes from high-resolution whole-slide images, which is the specialty of our close collaborators, 

the Peter Horvath group at the Hungarian Academy of Sciences. Furthermore, the transfer of the 

resulting coordinates from the scanning to a laser microdissection microscope turned out to be a major 

challenge. We solved these issues in the software called BIAS (Biology Image Analysis Software), which 

combines image preprocessing, deep learning-based image segmentation, machine-learning driven 

morphological and neighborhood feature extraction, plus phenotype classification. It also allows to 

transfer defined features, or cell contours from a scanning to a laser microdissection microscope to 

physically isolate cells at full accuracy by the integration and conversion of microscope data formats. 

After establishing this workflow, we benchmarked it in several applications. Since deep learning 

methods require large training datasets and we are limited by the size of high-quality training data, we 

used project-specific image style transfer to synthesize artificial microscopy images. This allowed us to 

train the cell segmentation algorithm called NucleAIzer to define cells and cellular compartments of 

interest at highest accuracy423,424.  
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In a first proof of principle application of DVP, we aimed to characterize the proteome of minute 

numbers of phenotypically different cells (80-100) and nuclei (250-300) of an unperturbed U2OS cell 

line. Replicate analyses of cells and nuclei showed high quantitative reproducibility (R = 0.96), while 

cellular and nuclei proteomes were different (R = 0.84) proving the idea of analyzing distinct proteome 

subsets by direct LCM-mediated biological or cellular fractionation.  

Next, we asked if DVP can define distinct nuclei classes based on morphological differences in nuclear 

area, perimeter, form factor, solidity and DNA staining intensity. The goal was to investigate if those 

phenotypes are reflected by their proteomic makeup. Indeed, we were able to define six distinct classes, 

which we isolated and analyzed by MS-based proteomics revealing quantifiable proteomic differences 

in these subcellular phenotypes. Interestingly, this experiment revealed that these morphological 

differences of the nucleus reflects in many cases the cell cycle progression state and even uncovered a 

characteristic nuclear deformation in the context of cell migration. Furthermore, we identified many 

differentially expressed uncharacterized proteins, which could be associated with a potential cellular 

function driving the actual phenotype differences.  

In a second experiment, we asked if DVP allows the precise and unbiased proteomic profiling of 

distinct cells or subcellular compartments preserving their spatial context in tissue, since this would 

enable the analysis of archived pathological samples. To do so, we developed an immunohistochemical 

protocol, stained archived tissue thin sections of salivary gland acini cell carcinoma tissue sections with 

EpCAM to define cell boundaries and subjected it to our BIAS software for cell segmentation. We 

aimed to directly compare normal appearing to malignant cell isolates only with DVP, which should 

reveal distinct proteomic signatures without admixing unrelated cell populations as in current studies. 

Indeed, within group quantitative reproducibility was very high (R > 0.96), while between groups 

correlations were much lower (R = 0.8). We also found that protein markers of the healthy tissue were 

downregulated in neoplastic tissue, confirming our approach.  

In a third experiment, we asked if DVP can also resolve different states of the same cell type simply 

based on spatial differences in a pathological setting, thereby highlighting differences in proteome 

signatures. We turned to 18-years old archived thin sections of melanoma tissue from which we 

isolated cells double-positive for melanoma markers from the inner tumor and out tumor mass with 

close proximity to the stroma. Indeed, central and peripheral proteomes were very different, while e.g. 

peripheral melanoma cells revealed an upregulation of favorable prognostic proteins for immune 

related processes.  
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In summary, we established a workflow that can automatically excise up to 700 cell contours per hour 

and it allows to correlate cellular phenotypes with the proteome level in an unbiased way. This enables 

the investigation of rare cell types and even subcellular structures in their natural tissue environment.  

 

I imagine that in the future, DISCO-MS and DVP could merge for many applications. This would 

allow us to define unknown pathological target regions by unbiased macroscopic whole-organ imaging, 

microscopic isolation of the target tissue and ultimately cell type- or structure-resolved isolation by 

LCM followed by ultra-high sensitivity proteomics without the admixture of surrounding constituents. 

Both technologies have the potential to already discover disease-specific and therapeutically relevant 

proteins on the basis of target tissue (DISCO-MS) or cell-type (DVP) resolved proteomics and could 

serve as starting points in drug development.  
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3.4.1. Article 8: DISCO-MS  

 

DISCO-MS – Proteomics of spatially identified tissues in whole organs 

 

bioRxiv, April, 2021 (To be submitted) 

 

Harsharan Singh Bhatia1,2*, Andreas-David Brunner3*, Zhouyi Rong1,2, Hongcheng Mai1,2, Marvin 

Thielert3, Rami AL-Maskari2,6, Johannes Christian Paetzold6, Florian Kofler6,7, Mihail Ivilinov 

Todorov1,2,4, Mayar Ali1, Bjoern H Menze6,, Muge Molbay1,2,8, Zeynep Ilgin Kolabas1,2,4, Doris 

Kaltenecker2,9, Ingo Bechmann10, Fabian J Theis11, Stephan Müller12, Stefan Lichtenthaler4,5,12,13, 

Matthias Mann3,14#, Ali Ertürk1,2,4,5# 
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Contribution 

I developed the sample preparation workflow to enable bottom-up proteomics from solid solvent-

cleared organs and tissue resulting in qualitative and quantitative data nearly indistinguishable from 

fresh of PFA-fixed tissue. Furthermore, I optimized this workflow for the processing of laser capture 

microdissection (LCM) isolates comprising a volume of less than 100 cells. I also transferred the 

knowledge in ultra-high sensitivity proteomics analysis of true single-cells to this project and acquired 

high quality data in an Alzheimer’s and mild traumatic brain injury disease model. I performed all 

proteomics data analysis and related figures. Furthermore, I helped to conceptualize and design the 

study, contributed to the overall experimental design and helped to write the manuscript. 
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3.4.2. Article 9: Deep visual proteomics 

 

AI-driven deep visual proteomics defines cell identity and heterogeneity 

 

bioRxiv, January, 2021 (Under review in Nature) 

 

Andreas Mund1, *, #, Fabian Coscia1, *, #, Réka Hollandi4, Ferenc Kovács4, 5, András Kriston4, 5, Andreas-

David Brunner6, Michael Bzorek7, Soraya Naimy7, Lise Mette Rahbek Gjerdrum7, 13, Beatrice Dyring-

Andersen1, 8, 14, Jutta Bulkescher3, Claudia Lukas2, 3, Christian Gnann9, Emma Lundberg9, 10, 11, Peter 
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Contribution 

In this project, I contributed to the experimental design of the paper and transferred the achievements 

in ultra-high sensitivity mass spectrometry for single-cell proteomics to our sibling group in 

Copenhagen. Furthermore, I ensured the sound data acquisition of cell-type resolved pooled single 

cell proteomes on the novel hardware and supervised the mass spectrometry experiments.   
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3.5. MS-based proteomics proves noncanonical human ORF 
translation 

The in silico proteome is bioinformatically inferred from the genome itself, following a distinct set of 

rules. These rules include the presence of a traditional start and stop codon, as well as base and amino 

acid conservation across genomes of the same and different species. Furthermore, those defined ‘open 

reading frames’ (ORFs) are routinely filtered to a minimum length of e.g. 100 amino acids, because it 

is difficult to assign coding regions below this threshold. It is also assumed that proteins or peptides 

need a certain amino acid length to fold into stable structures, which are required for independent 

function.51  

Ribosome profiling, a method that ‘freezes’ ribosomes actively translating mRNAs, allows the 

reconstruction of nascently translated regions by recovering so-called ribosome density maps55. Briefly, 

the more ribosomes are identified to be located across a continuous stretch of mRNA, the higher the 

chance that this sequence is currently translated into a continuous amino acid sequence of a functional 

peptide or protein. Ribosome profiling ideally complements mass spectrometry, since it provides an 

additional ORF search space to find peptides in and because active translation or physical existence of 

the product can be directly proven by MS analysis. Our collaborators, the Jonathan Weissman group 

at UCSF, used this technology to reveal that active translation can occur outside of the above 

mentioned classical ORF-defining boundaries. Specifically, there is non-AUG translation initiation, 

upstreamORF (uORF) localization (located before the 5’ start codon of a known ORF) known to 

regulate translation of the actual downstream ORF in cis, alternative start codons within a known 

ORF, or even small proteins encoded on thought to be long noncoding RNAs425. Many small proteins 

that do not follow the classical ORF annotation guidelines have been found and described by now53,54. 

However, a systematic evaluation of those hits and especially the opportunity to link them to function, 

including proof of physical existence to narrow down the number of true positive novelORF hits, had 

been lacking.  

In this study, we combined ribosome profiling, advanced ORF-rating, mass spectrometry, large-scale 

CRISPR screens and sequencing to systematically identify noncanonical protein coding sequences 

(novelORFs) of the genome that are essential for cellular growth and whose disruption elicits robust 

transcriptomic and phenotypic changes in human cells.  

First, we investigated the genome wide translation by ribosome profiling across several cell lines and 

annotated all ORFs including features like ribosome density accumulation at start and stop codons, 

three-nucleotide periodicity, and harringtonine-induced ribosome stalling at the translation initiation 
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site426. This led to the identification of several thousand novel ORFs that were either unknown or 

already described, verifying our approach. Strikingly, these novel ORFs correlated with the hallmarks 

of active translation - high ribosome density maps and three nucleotide periodicity features of well 

characterized protein coding regions.  

Next, we asked if the novel ORFs affect cell growth as a potentially functional peptide and turned to 

CRISPR-mediated ‘barcoded knockins’ at novelORF positions in combination with deep or single-cell 

RNA-sequencing as functional readout in several cell lines. Indeed, we found hundreds of our novel 

ORF hits to affect cell growth using indexed sgRNA (barcoded knockins) accumulation as readout 

after ten cell doublings – If the novelORF does not affect the growth phenotype it accumulates in the 

total population and vice versa388. Interestingly, novel ORFs affecting the phenotype had a higher 

conservation score than novel ORFs that did not affect the phenotype in our assay. Furthermore, 

canonical ORFs had a higher conservation score than novelORFs affecting the phenotype in our 

cellular screen. Disruption of novelORFs systematically affected known proteins involved in essential 

cellular processes like glycosylation and novelORF expression in trans could rescue the knockout 

phenotype.  

Importantly, we wished to directly detect novelORF proteins by mass spectrometry, which is by itself 

challenging since the shorter a protein is the lower the chance of harboring a tryptic peptide with the 

required ionization efficiency for identification and quantification. We identified several novelORF 

proteins after high stringency filtering and manual inspection of mass spectra. We also asked if we can 

identify novelORFs that are presented as HLA class I peptides, since every protein has the chance to 

contribute to the antigen repertoire and also has to be counter-selected in the thymus during 

development. Indeed, we found several hundred novelORF peptides to be presented by the HLA 

system, highlighting that they undergo processing and presentation in an essential cellular system just 

like any other protein. Furthermore, we showed that many of these novelORF HLA class I peptides 

bind with high affinity to characterized allotypes, specific for the investigated cell lines.  

We also tagged many novelORF hits found to impact the cellular growth phenotype with a minimally 

disruptive 16 amino acid long splitNeonGreen-tag (mNG11), which reconstitutes to a functional GFP 

by expression of the matching split-GFP in trans128. This prevents functional disruption of the very 

short novelORF derived peptides and allowed us to evaluate stable expression of the novelORF 

proteins, their cellular localization and also to perform MS-based interactomics studies to investigate 

interaction partners. Indeed, several novelORFs localized to distinct cellular compartments and we 

identified protein interaction partners for many, which co-localize to the same compartments. 

Interestingly, we also found uORFs that integrate into the main ORF complex and co-localize. There 
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were also cases where uORFs even localized to distinct compartments independent of the main ORF. 

This reveals dependency and independency mechanisms to the main ORF. Strikingly, the knockout of 

the MIEF1 uORF induced differential expression of mitochondrial fusion and fission genes, while 

overexpression induced a fragmented mitochondrial phenotype hinting increased fission. As expected, 

the MIEF1 uORF knockout resulted in elongated, tubular mitochondria and therefore increased 

fusion, while exogenous expression rescued this phenotype.  

In summary, our results highlight a yet to be fully explored novel protein and peptide diversity encoded 

by the human genome. Novel microproteins affect the cellular growth phenotype, localize to distinct 

cellular compartments, are part of protein complexes, and engage with the human leukocyte antigen 

system. Our data also indicate a role for upstream novelORF encoded peptides that regulate the 

downstream-encoded ORF, thereby challenging the mono-cistronic gene assumption, suggesting that 

bi-cistronic expression could be a general phenomenon in mammalian genomes and highlights an 

unexpected complexity of the human proteome.  

This exciting project showed that the combination of several high-throughput screening technologies 

on different molecular levels allowed us to reveal novel biology. It also demonstrated that there is 

much room for technological developments to fully grasp and understand the biological complexity in 

the cell. Since novelORFs tend to be rather small with ~60 amino acids in length on average and 

consequently yield at most only a few of tryptic peptides of which only some will ionize efficiently, 

alternative approaches like top down peptide analysis or peptidomics could be more successful in 

physically identifying novelORFs. This is a topic we are currently working on.   
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3.5.1. Article 10: Pervasive translation of noncanonical human ORFs 

 

Pervasive functional translation of noncanonical human open reading frames 

 

Science, March 06, 2020 

 

Jin Chen1,2, Andreas-David Brunner3, J. Zachery Cogan1,2, James K. Nuñez1,2, Alexander P. 

Fields1,2, Britt Adamson1,2, Daniel N. Itzhak4, Jason Y. Li4, Matthias Mann3,5, Manuel D. 

Leonetti4, Jonathan S. Weissman1,2, #  
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Contribution 

In this project, I contributed to the experimental design, the writing of the paper and prepared all 

proteomics related figures. I optimized and performed all proteomics experiments including deep 

proteome, pulldown and HLA peptidome analyses. Furthermore, I established a high-confidence 

framework for the identification of microproteins encoded by novel open reading frames, many of 

which were thought to be long non-coding RNA and proved their physical existence as e.g. protein 

complex members, HLA presented peptides in cancer cells and their localization to distinct cellular 

compartments.   
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4. Discussion and outlook 

Electrospray, the enabling technology we are using in nearly every MS-based proteomics experiment, 

only emerged 30 years ago62,64. Since then, the field has rapidly evolved and by now allows measuring 

proteomes at unprecedented throughput (Article 3), depth (Article 5, 10) and sensitivity (Articles 7, 

8, 9). The technology is starting to be so robust and universally applicable that it is finally poised to 

impact the study of human health and disease as well as to tackle fundamental biological questions at 

spatial and single cell resolution101,103. To continue this developmental trajectory, sample preparation, 

liquid chromatography, mass spectrometry and bioinformatics technology have to continuously 

improve. 

 

Every bottom-up experiment starts with the extraction of proteins, followed by proteolytic digestion 

and peptide clean up. Sophisticated isolation methods now enable the automated processing of bio-

fluids, tissues and cell culture100,103. Even the processing of single cells comprising only about 150 pg 

of protein is rapidly advancing39. Miniaturization on glass slides or specialized chips and the use of MS-

compatible protein solubilization agents side-stepping peptide clean-up allows the processing in less 

than 1 µl volume116,149,408. One of the largest remaining challenges was to transfer the single-cell derived 

tryptic peptides into the mass spectrometer. Our solution to this dilemma was to merge sample 

preparation with liquid chromatography using an EvoTip to concentrate single-cell derived tryptic 

peptides in a nanopackage that can readily be moved through the LC system (Article 7). This is in 

contrast to solutions from other groups, which tend to be much more complex and therefore less 

robust for any ultra-high sensitivity application. The EvoTip itself has also proven to be beneficial for 

the large-scale human interactome project (Article 3), since it serves as a concentration device and at 

the same time as disposable trap-column. This allowed us to use digitonin as a protein solubilizing 

agent, which is known for its superior membrane protein solubilizing characteristics427.  

Another challenge in single-cell and ultra-high sensitivity applications is the robust, high-resolution 

and high-throughput liquid chromatography itself428. The system has to ensure that the sample is 

transferred without any loss to the analytical column and limit radial dilution, since electrospray is 

concentration dependent163. Our approach to this challenge was to repurpose and standardize the 

EvoSep One platform, which is known for its robustness and reproducibility across hundreds of runs at 

microliter flow rate150. We optimized the sample transfer route to minimize sample loss. We made use 

of the fact that the preformed gradient is pushed out under the control of a single high-pressure pump, 

which in principle allows us to elute single-cell derived peptides at an arbitrarily low flow rate while all 
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known benefits from the microflow gradients with regards to robustness and reproducibility remain. 

We standardized on a 100 nl/min flow rate to increase desolvation efficiency and ion transfer into the 

mass spectrometer, while keeping a high throughput of 40 samples per day. Standardization here was 

key to enable method optimization at very low sample loads and to perform comparative single-cell 

proteome studies.  

Very low flow rates usually come at the expense of broader peaks, since the linear velocity of the 

mobile phase decreases when column inner diameters (ID) are kept constant. To compensate for this, 

researchers have turned to smaller ID columns, which comes at the expense of decreased overall 

robustness and reproducibility145,146. In practice, this renders them incompatible with large-scale 

studies. In our single-cell proteomics study, arguably the most performance limiting component is the 

rather large ID column (75 µm), which we retained since we experienced robustness issues with smaller 

IDs. A possible solution to this could be the next generation of chip-based columns, also called 

µPAC139. These columns can be manufactured in any ID with perfectly arranged micropillars, ensuring 

highest reproducibility and chromatographic performance140. We are currently investigating the 

combination of the chip-based µPACs with the EvoSep One nanoflow gradients to improve 

chromatography for ultra-high sensitivity applications and also for large-scale microflow approaches, 

where robustness and reproducibility are key.  

Next up is the crucial electrospray process, which currently happens under ambient pressure conditions 

and therefore requires the transfer of gas-phase ions into the first vacuum stage of the mass 

spectrometer. This comes at the expense of analyte loss, especially at higher flow rates429. Sub-ambient 

pressure ionization appears to be a promising solution to elevate measurement sensitivity by making 

all ions available for analysis in the mass spectrometer165. This is a technology, which could enter the 

field sooner rather than later and could fit well into the ion path of the presented TIMS-qTOF 

instrument (Article 1). This setup promises to further multiply performance in single-cell proteomics 

applications together with standardized very low flow EvoSep One chromatography.  

Even though we already used a novel TIMS-qTOF instrument with a brighter ion source and the 

diaPASEF scan mode for ultra-high sensitivity applications down to the level of single cells (Articles 

6, 7, 8, 9), mass spectrometry technology and scan modes itself will always be subject of continuous 

improvement. The combination of diaPASEF (Article 6) with a continuously moving quadrupole 

window in a way that fully synchronizes the elution profile of trapped ions from the TIMS tunnel, can 

replace the stepped window acquisition to create a five-dimensional scan mode (m/z, intensity, ion 

mobility, retention time, quadrupole scan speed) at up to 100 % ion utilization. Note that this is in 

stark contrast to ‘scanning quadrupole DIA’ without TIMS, which typically samples only a few percent 
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of the ion beam144,351. This would enable very fast cycle times and allow the measurement of large 

sample cohorts as in single-cell proteomics or clinical studies at unprecedented speed. Furthermore, 

increasing the capacity of the TIMS tunnel and the detector dynamic range of the TIMS-qTOF 

instrument (Article 1) would increase overall proteome dynamic range coverage in highly complex 

samples.  

The advances in mass spectrometry and scan modes always depend on the implementation of highly 

sophisticated software. The arrival of deep learning in proteomics already allows the prediction of all 

dimensions in mass spectrometry, including CCS values (Article 5)227,228,230. It is set to obviate the need 

for experimental spectral libraries in DIA experiments and is beneficial for proteogenomic applications 

with large search spaces232,353. However, its full implementation in a dedicated search engine is still 

missing. Such software could be especially advantageous for ultra-high sensitivity applications where 

fragment ion spectra are often of low quality due to the compromised signal-to-noise. It will also be 

interesting to see how these models will transfer to post-translational modification searches and non-

tryptic peptides derived from the human leukocyte antigen system.  

 

Single-cell analysis and spatially resolved omics analyses are currently two of the ‘hottest’ topics in 

research375,391. The mRNA of a single cell was first analyzed in 2009 and since then many workflow 

developments have continued to revolutionize the field366. Due to the robustness and throughput of 

scRNA-seq of by now several hundred thousand cells per study and its promise to impact health and 

disease, consortia like the Human cell atlas and the LifeTime initiative aim to map all single-cell 

transcriptomes of the human body395,396. Interestingly, it appears that the latest scRNA-seq techniques 

have reached a technological plateau in terms of depth – only 12 years after the inception of scRNA-

seq366,382. Keeping in mind that mRNA is only a mediator of the flow of molecular information and 

often regulated in transcriptional bursts, it may not be ideal to use this layer of information to define 

cell types383. This could explain the need for very large data sets in the field. 

In contrast, from a biological perspective, a large proportion of the proteome has to be stable to enable 

cellular function and cell types are most likely defined by a subset of signature proteins, which give rise 

to their distinct phenotype (Article 7). The field of single-cell proteomics is just rising and for now 

only very specialized laboratories have the knowledge and technology to perform these experiments. 

Two main approaches are currently emerging, which are the label-based multiplexed and the label-free 

(Article 7) analysis of single cells. Both have their distinct advantages and disadvantages, mainly in 

terms of throughput and quantitative accuracy. It will be interesting to see where the community 

develops in the future and which approach will take over.  
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Since scRNA-seq has the main goal of cell typing by aggregating the mRNA profiles of thousands of 

cells, it could also be possible to isolate cells by their phenotype itself and pool them before the MS-

based analysis as we have shown in the concept of deep visual proteomics (DVP) (Article 9). This 

drastically decreases project measurement time, but at the expensive of limiting proteome resolution 

compared to the analysis of single-cell proteomes and requires that the cellular phenotype correlates 

highly with its proteomic makeup. In our own work, we are interested to see if DVP can elucidate the 

contribution of pancreatic islet cells to the emergence of diabetes, which we have until now performed 

on complete islets (Article 2). In a clinical setting, DVP would use tissue thin sections from a 

pathology laboratory. The unbiased localization of pathologies in whole organs, especially at an early 

stage, is very challenging. We showed that this can be realized by solvent-based whole organ clearing 

followed by whole organ imaging (Article 8). We established a protocol to isolate thin sections of the 

pathology itself and subject them to unbiased proteomics analysis, a concept we call DISCO-MS. The 

combination of DISCO-MS and DVP could complete the cycle of unbiased analysis from whole organ 

analysis, pathology localization, target tissue isolation and cell-type or even subcellular resolved 

proteome analysis. 

 

Classic bottom-up proteomics searches are performed against databases comprising more than 20,000 

proteins and an optimized bottom-up proteomics strategy for the analysis of human cellular proteomes 

has already detected more than 14,000 protein isoforms and 12,200 protein-coding genes101. Still, those 

proteins are inferred from the genome following cutoff rules like the presence of classic start and stop 

codons at a minimum length of more than 100 amino acids to reduce possible noise51. These 

assumptions mean that proteomics data base searches are not able to capture proteins below this 

cutoff, which leaves the ‘dark matter’ of the proteome untouched. We have shown (Article 10) that a 

plethora of proteins exist below the 100 amino acid cutoff and execute essential functions in human 

cell lines. Even though we identified many actively translated open reading frames of presumably non-

coding genomic regions by ribosome profiling55, many of these proteins do not yield tryptic peptides 

and consequently evaded our traditional bottom-up proteomics approach. Therefore, it will be of 

highest importance to develop novel approaches to solve this dilemma by the implementation of 

dedicated workflows that aim to identify small proteins or peptides in their in vivo constitution. This 

would again come with challenges in sample preparation, LC-MS and especially bioinformatics 

approaches, since these peptides will have very different properties as compared to tryptic peptides in 

addition to the vastly increased computational search space.  
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In conclusion, it is an exciting time with a burst of technological breakthroughs in sample preparation, 

instrumentation and computational proteomics. Sample preparation is becoming automated and 

applicable to virtually every biological matrix and can be tailored to any experimental question. 

Instrumentation has become very robust, fast and sensitive, which finally allows the acquisition of 

thousands of samples within a single project. Also, computational proteomics is rapidly advancing and 

most importantly made available to the community as open-source packages. It appears that all these 

developments will enable MS-based proteomics to make even more important discoveries in basic 

biology and biomedicine. These will not only result from classical proteome profiling. Functional 

studies of proteome dynamics at unprecedented depth and sensitivity, as well as the integration with 

other layers of information like the genome, transcriptome, imaging and less explored modalities such 

as the metabolome and in vivo processed peptides will have a tremendous impact. 
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6. Appendix 
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6.2. Article 12: Proteomics of human brown and white adipocytes  

 

Proteomics-based comparative mapping of the secretomes of human brown and white 
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