Proteomic characterisation of diabetic pig models
diabetic treatment effect on metabolic tissues

von Erik Gunnar Emanuel Ländström

### Proteomic characterisation of diabetic pig modelsdiabetic treatment effect on metabolic tissues

von

Erik Gunnar Emanuel Ländström

aus Göteborg, Schweden

München 2020

Aus dem Veterinärwissenschaftlichen Department der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Lehrstuhl für Molekulare Tierzucht und Biotechnologie

> Arbeit angefertigt unter der Leitung von: Univ.-Prof. Dr. Eckhard Wolf

im Labor für Funktionale Genomanalyse (LAFUGA) Genzentrum der Ludwig-Maximilians-Universität München Proteomics

Mentor: Dr. Thomas Frölich

### Gedruckt mit Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München

| Dekan:            | UnivProf. Dr. Reinhard K. Straubinger, Ph.D                                                            |
|-------------------|--------------------------------------------------------------------------------------------------------|
| Berichterstatter: | UnivProf. Dr. Eckhard Wolf                                                                             |
| Korreferenten:    | UnivProf. Dr. Cornelia A. Deeg<br>UnivProf. Dr. Johannes Hirschberger<br>PrivDoz. Dr. Florian M. Trefz |

Tag der Promotion: 25. Juli 2020

### **Table of Contents**

| List of Figur | es                               | xii  |
|---------------|----------------------------------|------|
| List of Table | 5                                | xiv  |
| Index of Abb  | previations                      | xvii |
| 1 Introduct   | ion                              | 1    |
| 2 Literature  | e Review                         | 6    |
| 2.1 Diabe     | tes                              | 6    |
| 2.1.1         | Obesity, metabolic syndrome, and |      |
|               | type 2 diabetes mellitus         | 8    |
|               | 2.1.1.1 Treatments of diabetes   | 9    |
| 2.1.2         | Monogenic causes of diabetes .   | 10   |

|     |        | 2.1.2.1 Insulin folding and ER                                                |       |
|-----|--------|-------------------------------------------------------------------------------|-------|
|     |        | stress                                                                        | 12    |
|     |        | 2.1.2.2 Mutations leading to MII                                              | OY 14 |
| 2.2 | Anima  | al models                                                                     | 15    |
|     | 2.2.1  | Transgenic dominant-negative gluc                                             | ose-  |
|     |        | dependent                                                                     |       |
|     |        | insulinotropic polypeptide recep-                                             |       |
|     |        | tor pigs                                                                      | 17    |
|     | 2.2.2  | Transgenic $INS^{C94Y}$ pigs an an-                                           |       |
|     |        | imal model for human perma-                                                   |       |
|     |        | nent neonatal diabetes                                                        | 19    |
| 2.3 | Metab  | oolism                                                                        | 20    |
|     | 2.3.1  | Liver metabolism                                                              | 21    |
|     | 2.3.2  | Adipose tissue metabolism                                                     | 22    |
|     |        | 2.3.2.1 Differences between vis-                                              |       |
|     |        | ceral and subcutaneous                                                        |       |
|     |        | adipose tissue                                                                | 24    |
|     | 2.3.3  | Retinoid metabolism                                                           | 24    |
| 2.4 | Protec | $pmics \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 28    |
|     | 2.4.1  | Sample preparation                                                            | 29    |
|     | 2.4.2  | Liquid chromatography                                                         | 31    |
|     | 2.4.3  | Mass spectrometry $\ldots$ $\ldots$                                           | 32    |
|     |        | 2.4.3.1 Electrospray ionization                                               | 33    |
|     |        |                                                                               |       |

3

|     |         | 2.4.3.2     | Mass spectrometry and       |    |
|-----|---------|-------------|-----------------------------|----|
|     |         |             | mass analysers              | 34 |
|     | 2.4.4   | Computa     | ational and bioinformatic   |    |
|     |         | analysis    |                             | 38 |
|     |         | 2.4.4.1     | Identifying peptides: from  | 1  |
|     |         |             | spectra to proteins         | 38 |
|     |         | 2.4.4.2     | Quantitative proteomics     | 41 |
|     |         | 2.4.4.3     | Missing value imputa-       |    |
|     |         |             | tion                        | 44 |
| 2.5 | Statist |             |                             | 45 |
|     | 2.5.1   | Statistic   | al hypothesis testing       | 46 |
|     |         | 2.5.1.1     | Different outcomes of sta-  |    |
|     |         |             | tistical testing            | 47 |
|     | 2.5.2   | Multiple    | hypotheses testing          | 48 |
|     | 2.5.3   | Analysis    | of variance, linear mod-    |    |
|     |         | els and $p$ | $post\ hoc\ tests\ .\ .\ .$ | 50 |
|     | 2.5.4   | Principa    | l component analysis .      | 51 |
|     | 2.5.5   | Gene set    | enrichment analysis .       | 52 |
|     |         |             |                             |    |
|     |         | and met     |                             | 55 |
| 3.1 | Adipos  | se tissue f | rom the Munich MIDY         |    |
|     | pig bio | obank       |                             | 55 |
|     | 3.1.1   | Proteom     | ic sample preparation .     | 56 |

|   |     | 3.1.2   | Mass spectrometry and proteomic           |           |
|---|-----|---------|-------------------------------------------|-----------|
|   |     |         | analysis                                  | 60        |
|   |     | 3.1.3   | Bioinformatics                            | 61        |
|   | 3.2 | GIPR    | <sup>dn</sup> liraglutide treatment study | 63        |
|   |     | 3.2.1   | Mass spectrometry and proteomic           |           |
|   |     |         | analysis                                  | 67        |
|   |     | 3.2.2   | Bioinformatics                            | 68        |
| 4 | Res | ults    |                                           | <b>71</b> |
|   | 4.1 | Differe | ential proteome analysis of adipose       |           |
|   |     | tissue  | from the Munich MIDY pig biobank          | 71        |
|   |     | 4.1.1   | Genotype effects                          | 76        |
|   |     |         | 4.1.1.1 Gene Ontology enrich-             |           |
|   |     |         | ment analysis using the                   |           |
|   |     |         | STRING database                           | 82        |
|   |     |         | 4.1.1.2 Gene set enrichment anal-         |           |
|   |     |         | ysis $\ldots$                             | 84        |
|   |     | 4.1.2   | Tissue effects                            | 89        |
|   |     |         | 4.1.2.1 GSEA: gene sets enriched          |           |
|   |     |         | in different AT depots                    | 97        |
|   |     | 4.1.3   | Interaction effects                       | 101       |
|   | 4.2 | GIPR    | 10                                        | 103       |
|   |     | 4.2.1   | 0 0 1                                     |           |
|   |     |         | enriched in liraglutide treated pigs      | 107       |

 $\mathbf{5}$ 

|      | 4.2.2  | Proteins  | and gene sets significantly     | y   |
|------|--------|-----------|---------------------------------|-----|
|      |        | enriched  | in placebo treated pigs         | 113 |
|      | 4.2.3  | GSEA ar   | alysis using all proteins       |     |
|      |        | quantifie | d in the pig liver              | 119 |
| Disc | ussion |           |                                 | 125 |
| 5.1  |        |           | eome analysis of MIDY           |     |
|      |        | -         | · · · · · · · · · · · · · · · · | 125 |
|      | 5.1.1  |           | ic differences between MA       | Т   |
|      |        | and SCA   | ТТ.                             | 126 |
|      |        | 5.1.1.1   | Genes with large log2           |     |
|      |        |           | fold changes                    | 126 |
|      |        | 5.1.1.2   | Gene sets involved in           |     |
|      |        |           | metabolism and energy           |     |
|      |        |           | derivation were signif-         |     |
|      |        |           | icantly upregulated in          |     |
|      |        |           | MAT                             | 129 |
|      |        | 5.1.1.3   | Gene sets upregulated           |     |
|      |        |           | in SCAT                         | 131 |
|      | 5.1.2  | Genotyp   | e effects                       | 132 |
|      |        | 5.1.2.1   | RDH16 is upregulated            |     |
|      |        |           | in AT in MIDY pigs and          |     |
|      |        |           | potential links to BAT          | 134 |

|       | 5.1.2.2   | Proteomic changes in proteins involved in fatty | -   |
|-------|-----------|-------------------------------------------------|-----|
|       |           | acid<br>and lipid metabolism .                  | 139 |
|       | 5.1.2.3   | Other proteins signifi-                         |     |
|       |           | cantly more abundant                            |     |
|       |           | in MIDY AT                                      | 143 |
|       | 5.1.2.4   | Gene sets enriched in                           |     |
|       |           | MIDY but not MAT .                              | 146 |
|       | 5.1.2.5   | Angiotensinogen is down                         | -   |
|       |           | regulated in MIDY AT                            | 148 |
|       | 5.1.2.6   | Glycolytic enzymes were                         |     |
|       |           | upregulated in WT adi-                          |     |
|       |           | pose tissue $\ldots$                            | 150 |
|       | 5.1.2.7   | Immune response pro-                            |     |
|       |           | teins were more abun-                           |     |
|       |           | dant in WT $\ldots$ $\ldots$                    | 151 |
|       | 5.1.2.8   | Other proteins upreg-                           |     |
|       |           | ulated in WT adipose                            |     |
|       |           | tissue $\ldots$ $\ldots$ $\ldots$               | 152 |
| 5.1.3 | Overlap   | between enriched gene                           |     |
|       | sets betw | veen genotype and tissue                        | 154 |

|              | 5.1.4                     | Only a few proteins had signifi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |
|--------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|              | 5.1.5                     | cant Genotype x Tissue interac-<br>tion effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 155\\ 157 \end{array}$ |
| 6            | Summary                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 161                                      |
| 7            | Zusammer                  | nfassung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 165                                      |
| A            | Supplement<br>pose tissue | ntary material for MIDY adi<br>e analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i-<br>170                                |
| В            |                           | ${f htm} {f htm} {$ | 3s<br>216                                |
| $\mathbf{C}$ | Additiona                 | l materials and methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 243                                      |
| Ac           | cknowledge                | ments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 249                                      |

# List of Figures

| 2.1 | Retinol metabolism                         | 26      |
|-----|--------------------------------------------|---------|
| 3.1 | GIPR: visual methodology workflow.  .      | 66      |
| 4.1 | MIDY adipose tissue PCA                    | 74      |
| 4.2 | MIDY AT p-value histograms                 | 75      |
| 4.3 | MIDY 2-way ANOVA volcano plot              | 77      |
| 4.4 | Distribution of observed values for RDH16. | 80      |
| 4.5 | Genotype GSEA using the STRING databa      | ase. 83 |
| 4.6 | Top 20 most enriched gene sets in the      |         |
|     | genotype GSEA.                             | 86      |
| 4.7 | GSEA enrichment map for the genotype       |         |
|     | factor                                     | 87      |
|     |                                            |         |

| 4.8  | Significant GOBP categories enriched in      |        |
|------|----------------------------------------------|--------|
|      | AT of MIDY pigs                              | 90     |
| 4.9  | Venn diagram showing number of ob-           |        |
|      | served proteins in each group                | 92     |
| 4.10 | Top 20 most enriched gene sets in the        |        |
|      | tissue GSEA.                                 | 99     |
| 4.11 | 3-way ANOVA: Significant proteins            | 106    |
|      | GIPR, liraglutide treatment PCA              | 108    |
| 4.13 | Volcano plot, $GIPR^{dn}$ liraglutide study. | 109    |
|      | GIPR: Significant proteins heatmap           | 110    |
| 4.15 | Liraglutide GSEA using the STRING            |        |
|      | database                                     | 114    |
| 4.16 | Placebo GSEA using the STRING databa         | se.118 |
| 4.17 | GIPR: the most enriched GSEA gene sets       | .121   |
| 4.18 | GIPR: Representative enriched GSEA           |        |
|      | categories.                                  | 122    |
| A.1  | Cytochrome P450 3A sequence alignment        | .215   |
| B.1  | Liver GIPR GSEA enrichment map               | 241    |

# List of Tables

| 2.1 | The four outcomes of a statistical test.                         | 48  |
|-----|------------------------------------------------------------------|-----|
| 3.1 | Characteristics of the pigs and adipose                          | ~ _ |
|     | tissue samples from the MIDY-pig biobank.                        | 57  |
| 3.2 | Experimental design: MIDY adipose tis-                           |     |
|     | sue study. $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ | 58  |
| 3.3 | Characteristics of pigs and liver samples                        |     |
|     | from the $GIPRdn$ linguide treatment                             |     |
|     | study                                                            | 65  |
| 4.1 | Proteins significantly upregulated in adi-                       |     |
|     | pose tissue from MIDY pigs                                       | 79  |
| 4.2 | Proteins significantly downregulated in                          |     |
|     | adipose tisuee from MIDY pigs                                    | 81  |

| 4.3 | Top 15 most significant proteins more                   |
|-----|---------------------------------------------------------|
|     | abundant in mesenteric adipose tissue. 94               |
| 4.4 | Top 15 most significant proteins more                   |
|     | abundant in subcutaneous adipose tissue. 96             |
| 4.5 | Significant proteins for the interaction                |
|     | factor                                                  |
| 4.6 | Top 10 proteins in liraglutide treated                  |
|     | $\operatorname{GIPR}^{dn}$ pigs                         |
| 4.6 | Top 10 proteins in liraglutide treated                  |
|     | $GIPR^{dn}$ pigs                                        |
| 4.7 | Top 10 proteins in placebo treated $\mathrm{GIPR}^{dn}$ |
|     | pigs                                                    |
| 4.7 | Top 10 proteins in placebo treated $\mathrm{GIPR}^{dn}$ |
|     | pigs                                                    |
| A.1 | All significant proteins more abundant                  |
|     | in MAT                                                  |
| A.2 | All significant proteins more abundant                  |
|     | in SCAT                                                 |
| A.3 | GSEA: Significantly enriched gene sets                  |
|     | in MIDY pigs                                            |
| A.4 | GSEA: Significantly enriched gene sets                  |
|     | in WT pigs                                              |

| A.4        | GSEA: Significantly enriched gene sets             |      |
|------------|----------------------------------------------------|------|
|            | in WT pigs                                         | 192  |
| A.4        | GSEA: Significantly enriched gene sets             |      |
|            | in WT pigs                                         | 193  |
| A.5        | GSEA: Significantly enriched gene sets             |      |
|            | in MAT in pigs                                     | 193  |
| A.6        | GSEA: Significantly enriched gene sets             |      |
|            | in SCAT in pigs.                                   | 203  |
| <b>D</b> 4 | ~ ~ ~                                              |      |
| B.1        | Significant proteins in liraglutide treated        |      |
|            | $\operatorname{GIPR}^{dn}$ pigs                    | 217  |
| B.2        | Significant proteins in placebo treated            |      |
|            | $\operatorname{GIPR}^{dn}$ pigs                    | 222  |
| B.3        | 0 , 0                                              |      |
|            | in linguide treated $\text{GIPR}^{dn}$ pig livers. | 226  |
| B.4        | GSEA: Significantly enriched gene sets             |      |
|            | in place<br>bo treated in ${\rm GIPR}^{dn}$ pigs   | 242  |
| 0.1        |                                                    |      |
| C.1        | All parameters used in the proteomic               | 0.40 |
|            | analysis in Maxquant                               | 243  |

# Index of Abbreviations

ABC Ammonium Bicarbonate AC Alternating Current ACOT4 Acyl–Coenzyme A Thioesterase 1–Like ADA American Diabetes Association AGT Angiotensinogen AK2 Adenylate Kinase 2 ALDH1A1 Aldehyde Dehydrogenase 1 family, member A1

- ALDH1A2 Aldehyde dehydrogenase 1 family, member A2
- ALOX15 Arachnidonate 15–Lipoxygenase
- AMT Aminomethyltransferase, mito-

chondrial **ANOVA** Analysis of Variance **ARFGAP3** ADP ribosvlation factor GTactivating Pase protein 3 **AT** Adipose Tissue ATOX1 Copper Trans-Protein port ATOX1 **ATP** Adenosine Triphosphate

- atRA all-trans-Retinoic Acid
- **BAT** Brown Adipose Tissue
- BCAA Branched-chain Amino Acids
- BLAST Basic Local Alignment Search Tool

genetic Protein 7

- CBR2 Carbonylreductase [NADHPH] 2
- **CES1** Carboxylesterase 1
- **CFD** Complement Factor D

**CIAPIN1** Anamorsin

- CID Collision-Induced Disassociation
- CLIC5 Chloride Intracellular Channel Protein 5
- COL3A1 Collagen Alpha-1(III) chain
- COX7A1 Cytochrome C Oxidase Subunit 7A1. Mitochondrial Precursor
- **CRISPR** Clustered Regularly Interspaced Palindromic Repeats
- BMP7 Bone Morpho- CYP3A39 Cytochrome

- P450 3A39 CYP3A4 Cvtochrome P450 3A4 **DC** Direct Current DDA Data-Dependent Acquisition DHRS4 Dehydrogenase/Reductase SDR. Family Member 4 **DLST** Component of 2-Oxoglutarate Dehydrogenasecom-Mitochonplex. drial Precursor **DM** Diabetes Mellitus **DR** Direct Repeat **DTT** Dithiothreitol **EEF1D** Elongation Factor 1-delta
- EIF3C Eukaryotic Translation Iniation

Factor 3 Subunit C

- EIF4E2 eukaryotic translation iniation factor 4E type 2
- **ER** Endoplasmic Reticulum
- ESI Electrospray Ionization
- FBP1 Fructose-1,6 Bisphosphatase 1
- **FDR** False Discovery Rate
- FFA Free Fatty Acid
- FOXO1 Forkhead Box Protein O1
- **FPR** False Positive Rate

**FWER** Family–Wise Error Rate

- G6P Glucose-6-Phospate
- GALM Aldose 1-Epimerase

- GCK Glucokinase
- GIP Glucose-dependent Insulinotropic Polypeptide
- GIPR Glucose-dependent Insulinotropic Polypeptide Receptor
- GLP1 Glucagon-Like Peptide 1
- GLUT Glucose Transporter
- GMDS GDP-Mannose-4.6-Dehydratase
- GO Gene Ontology
- GOBP Gene Ontology Biological Process
- GOCC Gene Ontology Cellular Component
- **GOMF** Gene Ontology Molecular Function

GSEA Gene Set Enrich- HPLC

ment Analysis

- HADHA Trifunctional Enzyme Subunit Alpha, Mitochondrial
- HADHB Trifunctional Enzyme Subunit Beta, Mitochondrial
- HIF1 Hypoxia-Induced Factor 1
- HILIC Hydrophilic Interaction Liquid Chromatography
- HK1 Hexokinase 1
- ${\bf HMGCS2}\ {\rm Hydroxymethyl glutaryl-}$

CoA Synthase, Mitochondrial

- HNF1A Hepatocyte Nuclear Factor 1A
- HNF4A Hepatocyte Nuclear Factor 4A
- HPLC High Perfor-

Liquid mance Chromatography

- **HSD** Honest Significant Differences
- HSP90AA1 Heat Shock Protein 90-Alpha
- IAH1 Isoamvl Acetate-Hydrolyzing Esterase 1 Homolog
- Isotope-Coded ICAT Affinity Tag

**INS** Insulin

- **ITRAQ** Isobaric Tag for Relative and Absolute Quantitation
- **KEGG** Kyoto Encyclopedia of Genes and Genomes
- **KO** Knockout
- **KRT19** Keratine Type I **MAR** Missing At Ran-Cytoskeletal 19

**KRT8** Keratine Type II Cytoskeletal 8

- L2FC Log2 Fold Change
- LAMC1 laminin subunit gamma-1
- LFQ Label Free Quantification
- **LIT** Linear Ion Trap

LMAN1 Lectin Mannose Binding 1

- LysC Endoproteinase LvsC
- m/z Mass-to-charge Ratio

MALDI Matrix-Assisted Desorp-Laser tion/Ionization

- MAOA Amine Oxidase [Flavine Containing] A
  - dom

- MAT Mesenteric Adipose Tissue
- MCAR Missing Completely At Random
- MFAP2 Microfibrillar-Associated Protein 2
- MIDY Mutant INS Gene-induced Diabetes of Youth
- MNAR Missing Not At Random
- MODY Maturity Onset Diabetes of the Young
- mRNA Messenger Ribonucleic Acid
- **MS** Mass Spectrometry
- MTP Mitochondrial Trifunctional Protein
- NES Normalized Enrichment Score

NXN Nucleoredoxin

- **OAT** Ornithine Aminotransferase
- OGN Mimecan
- **OPLAH** 5-Oxoprolinase

**PC** Principal Component

PCA Principal Component Analysis

**PCNA** Proliferating Cell Nuclear Antigen

- PCOLCE Procollagen C-Endopeptidase Enhancer 1
- PCYOX Prenylcysteine Oxidase 1
- PDX1 Duodenal Homeobox 1

**PEF1** Peflin

- PHGDH D-3-Phosphoglycerate Dehydrogenase
- **PND** Permanent Neonatal Diabetes

- PRDM16 Positive Reg- RBX1 E3 Ubiquitinulatory Domain Containing 16
- PRKAR2A cAMP-Dependent Pro- $\text{II}-\alpha$ Subunit
- **PSM** Peptide Spectrum Match
- **PSMD5** 26S Proteasome Non-ATPase Regulatory Subunit 5
- Quadropole Mass QMF Filter
- QTL Quantitative Trait Locus
- **RA** Retinoic Acid
- RAR Retinoic Acid Receptor
- **RARE** Retinoic Acid Response Element

- Protein Ligase RBX1
- RDH16 Retinol Dehydrogenase 16
- tein Kinase Type **RNA** Ribonucleic Acid
  - Regulatory **ROS** Reactive Oxygen Species
    - **RPLC** Reversed Phase Liquid Chromatography
    - **RXR** Retinoic X Receptor
    - S100A1 Protein S100A1
    - SAX Strong-Anion Exchange
    - SCAT Subcutaneous Adipose Tissue
    - SCP2 Non-Specific Lipid–Transfer Protein 2
    - SCX Strong-Cation Exchange

- SDC Sodium Deoxycholate
- **SDS** Sodium Dodecyl Sulfate
- SILAC Stable Isotope Labeling by/with Amino acids in Cell culture
- STEAP4 Metalloreductase STEAP4
- **T1DM** Type 1 Diabetes Mellitus
- **T2DM** Type 2 Diabetes Mellitus

- Deoxy- **TFA** Trifluoroacetic Acid **TKT** Transketolase Dodecyl **TMT** Tandem Mass Tag **tRNA** Transfer RNA
  - UCHL3 Ubiquitin Carboxyl-Terminal Hydrolase 3
  - UCP1 Uncoupling Protein 1
  - **UPR** Unfolded Protein Response
  - VAT Visceral Adipose Tissue
- $\begin{array}{ccc} \mathbf{TCA} & \operatorname{Trichloroacetic} \\ \operatorname{Acid} & \mathbf{WAT} \ \mathrm{White} \ \mathrm{Adipose} \ \mathrm{Tis} \\ \mathbf{TCEP} \ \mathrm{Tris}(2\text{-}\mathrm{Carboxyethyl}) \mathrm{Phosphine} \end{array}$
- **TF** Transcription factor **WT** Wildtype

# Chapter 1 Introduction

Diabetes mellitus (DM) is a metabolic syndrome with impaired glucose homeostastis caused by defective insulin action or pancreatic  $\beta$ -cell insulin secretion. DM is one of the biggest global health challenges, with worldwide prevalence numbers increasing. The number of people diagnosed with DM is expected to reach 629 million by 2045, similarly the cost for treating these patients is also predicted to increase (?). Therefore, there is a need to study the different forms of DM and to develop and test new forms of efficient treatments for the different subclasses. The two major forms of DM are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). T1DM is caused by autoimmune destruction of the pancreatic  $\beta$ -cells, disrupting insulin secretion, and is the most common DM form in children and adolescents. Most T1DM patients must be treated with lifelong insulin therapy (?). T2DM is the most prevalent type of DM and it is characterized by insulin resistance, which increases the demand for insulin in target tissues. The increased demand for insulin can lead to progressive  $\beta$ -cell destruction. T2DM is often linked to obesity and metabolic syndrome (?).

Animal models allow researchers to control genetic and environmental factors *in vivo* that influences the progression of DM, giving researchers essential new insights to complications and treatment of the disease in human patients. As such, animal models have provided researchers with invaluable contributions to the understanding of the pathogenesis and treatment of DM (?). The most commonly used animal models for studying DM are mice and rat models, but other animals with human-like characteristics have also been used (???). There are significant differences between rodents and humans (e.g. size and metabolism) and data derived from rodent models can be insufficient in translating scientific findings from the animal model to human pathologies (?).

Therefore, focus has been shifting to larger animal models including *Sus scrofa* in order to bridge the translational gap between rodent models and humans (?). This shift has been enabled by the sequencing of the pig genome and advances in new gene editing tools such as zinc finger nucleases and CRISPR/CAS method (?). Pigs are relevant models for translational research in different medical fields, as pigs share many similarites with human anatomy, physiology and metabolism; e.g. similarites in pancreas morphology and metabolic regulation makes pigs suitable for diabetes research (?). Furthermore, pigs have a relatively short generation span, early sexual maturity, and on average 10 offspring per litter (?), which is beneficial for effective biomedical research.

Proteomics is the study of all the proteins that control and catalyse all cellular processes at a given time (?). Nowadays mass spectrometry is the most commonly used method for studying the proteome of cells and tissues. As mRNA and protein expression levels do not always show perfect correlation (?), it is necessary to study the proteome in order to get a complete picture of the functional state of the tissue. As such, proteomics as emerged as a powerful tool that has provided insights into complex biological processes and phenotypes (?).

In this doctoral thesis, proteomic differences between treated diabetic pigs and control groups in selected metabolic tissues have been studied using mass spectrometry in order to better understand the effects of diabetes treatments and to establish pigs as a suitable animal model for translational diabetes research.

In the first study, proteomic differences in mesenteric and subcutaneous adipose tissue between suboptimally insulin treated two year old female MIDY (a large animal model of neonatal diabetes) and WT pigs have been compared. An increase in expression of retinol dehydrogenase 16 (RDH16) in both types of adipose tissue was observed in MIDY pigs, suggesting that retinol metabolism and retinoic acid induced transcriptional regulation is an important adaptation to low insulin levels.

In the second study, transgenic pigs, a large animal model for T2DM, carrying a dominant-negative mutation in the glucose-dependent insulinotropic polypeptide receptor (GIPR<sup>*dn*</sup> pigs) have been used to study the effects of liraglutide (a glucagon-like peptide 1 (GLP1) receptor agonist). Liraglutide stimulates üancreatic  $\beta$ cell insulin secretion (?) and the GIPR<sup>*dn*</sup> pigs were treated with either liraglutide or placebo, and the proteome differences between the two treatment groups were examined. Mitochondrial hydroxymethylglutaryl-CoA synthase (HMGCS2) was detected as less abundant in liver from liraglutide treated pigs. HMGCS2 is the rate-limiting enzyme for ketogenesis (?), suggesting that liraglutide induced insulin secretion inhibits ketogenesis in diabetic pigs.

### Chapter 2

### Literature Review

### 2.1 Diabetes

In 2017, 425 million people were estimated to be affected by diabetes and the prevalence of diabetes is expected to increase by 48% until 2045 (?). Similarly the cost of treating diabetes is also predicted to increase in the near future (?) there is thus a need to develop more effective and efficient treatments.

Hyperglycemia, high concentrations of blood sugar, is the fundamental hallmark of diabetes, a highly heterogeneous disease, that is caused by relative or absolute loss of insulin. The American Diabetes Association (ADA) divides diabetes into four subgroups based on the etiological characterization of the disease (?):

- Class I is type 1 diabetes mellitus (T1DM), which is characterized by an absolute loss of insulin production due to autoimmune-mediated destruction of the pancreatic β -cells. Type 1 diabetes accounts for 5-10% of diabetic patients.
- Class 2 is type 2 diabetes mellitus (T2DM), the most common form of the disease. Type 2 diabetes is not an autoimmune disorder, instead it is usually caused by insulin resistance coupled with a relative insulin deficiency due to a progressive loss of pancreatic β-cells. This form of diabetes is often linked with obesity.
- Class 3 is gestational diabetes, which is diabetes diagnosed during the second or third trimester of diabetes.
- Class 4 is other specific types of diabetes. This class covers a wide range of different causes in-

cluding genetic defects causing lower insulin secretion or insulin action, diseases in the exocrine pancreas, drug or chemical induced diabetes, and  $\beta$ -cell destruction caused by virus infections. Monogenic diabetes belongs to this class, which accounts for 1-5% of all diabetes cases (?).

Other ways of classifying the different diabetic diseases exist as well, where T1DM and T2DM can be further classified into subgroups based on severity of the disease, the time of disease onset, etc (?). Here, permanent neonatal diabetes (PND) and T2DM will be described in more detail as they are of primary concern for this thesis.

#### 2.1.1 Obesity, metabolic syndrome, and type 2 diabetes mellitus

Obesity has consistently increased over the last decades, and in 2015, 604 million adults were considered to suffer from obesity (?). Obesity may now be the leading cause of premature mortality in the world (?). Visceral obesity is linked to metabolic disorders such as insulin resistance and dyslipidemia, and obese individuals are more prone to other adverse health effects such as T2DM and cancer (?). The metabolic syndrome, which is defined as having 3 or more of the risk factors obesity, high triglycerides, high cholesterol, hyperglycemia, and hypertension, is correlated with increased risk of cardiovascular disease (??).

Subcutaneous adipose tissue (SCAT) depots are generally protective against the metabolic syndrome, whereas visceral adipose tissue (VAT) depots are associated with the metabolic syndrome (?).

#### 2.1.1.1 Treatments of diabetes

T1DM needs to be treated with lifelong insulin injections together with blood glucose monitoring (??). Unlike T1DM, there are many different ways to treat T2DM beyond insulin injections (?). Treatment options vary by severity of the diseases and range from lifestyle changes (such as changes to diet and exercise) and treatment of obesity to treatments with for example metformin (decreases fasting blood sugar levels), sulfonylureas (stimulates pancreatic  $\beta$ -cell insulin secretion) and insulin injections (??).

Glucagon-like peptide 1 (GLP1) receptor agonists have been identified as an effective treatment of T2DM (??). GLP1 is a peptide hormone that is secreted from the intestine in response to food intake (?) and stimulates pancreatic insulin secretion while inhibiting pancreatic glucagon release, which reduces blood sugar levels (?). The use of GLP1 is limited by its short half-life (1-2 min), therefore many GLP1 receptor agonists have been developed that mimic the effects of the hormone while having a longer action duration (?). There are short term and long term GLP1 receptor agonists (??). One long lasting GLP1 receptor agonist is liraglutide, which has a 97% homology to GLP1, which should be administered daily by subcutaneous injections (?). Compared to other treatments, treatment with GLP1 receptor agonists reduces blood glucose levels while having a reduced risk of hypoglycemia (?).

## 2.1.2 Monogenic causes of diabetes

As mentioned above, diabetes of class 3 includes a wide variety of mechanisms that cause diabetes. Maturity onset diabetes of the young (MODY) is a form of class 3 diabetes that is caused by monogenic defects in pancreatic  $\beta$ -cell function. Mutations in many different genes are known to cause MODY of varying degrees of severity and it is inherited in an autosomal dominant heterozygous fashion (??). They are characterized by dysfunctional insulin secretion often with no effect on insulin action (??). Patients with MODY are defined by early onset of the disease and normally lack features of the metabolic syndrome or autoimmunity (??). Common genes with mutations known to cause MODY include: glucokinase (*GCK*) genes, transcription factors (TFs), hepatocyte nuclear factor 1A and 4A (*HNF1A* and *HNF4A*) and pancreatic and duodenal homeobox 1 (*PDX1*) (??).

Another type of monogenic diabetes is permanent neonatal diabetes (PND). Permanent neonatal diabetes is defined by an extremely early onset of diabetes, often within the first months of life (?). Mutations in either the sulfonylurea receptor/Kir6.2 complex or in the insulin gene are the primary causes of permanent neonatal diabetes(?). The latter form is called Mutant *INS*-gene induced Diabetes of youth (MIDY) and is caused by mutations in the proinsulin gene resulting in an accumulation of misfolded insulin and endoplasmic reticulum(ER) stress, which ultimately leads to the destruction of the pancreatic  $\beta$ -cells (??).

Because many genes causing monogenic diabetes have also found to be implicated in T1DM or T2DM (or both), the study of monogenic diabetic pathologies can also give valuable insight about the more common and complex variants of the diabetic condition (?).

#### 2.1.2.1 Insulin folding and ER stress

Protein misfolding and ER stress were also found to be a factor for developing T1DM and T2DM (?). Up to 50% of total protein synthesis in pancreatic  $\beta$ -cells is made up of insulin production and a higher requirement for synthesis and folding of proinsulin makes the  $\beta$ -cell sensitive to ER stress (?). Proper folding and post-translational modification of the insulin protein is thus essential for proper cell functionality (??).

The insulin gene encodes a single transcript called preproinsulin which consists of four different domains. Upon translocation to the ER membrane, proinsulin is created by cleavage of the signal peptide of the preproinsulin mRNA. Next, proinsulin undergoes conformational change in the ER lumen, where three disulphide bridges are formed between specific cysteine amino acids in the protein (??). The formation of these three disulphide bridges are essential for the protein's bioactivity (?). Upon correct folding, proinsulin is transported to the Golgi apparatus where the C-peptide is removed by prohormone convertases and insulin gets its mature state and are stored in granules until they are ready to be secreted (?).

Several studies have shown that proinsulin misfolding and ER stress caused by genetic mutations in the insulin (*INS*) gene or adverse ER folding conditions can lead to  $\beta$ -cell failure and onset of diabetes (reviewed in (?)). Disturbance of the post-translational ER machinery leads to the initiation of the unfolded protein response (UPR) in order to limit the accumulation of misfolded proteins inside the ER. UPR activation leads to a slower translation rate, increased ER membrane surface area and an increase in expression of chaperonins. If this doesn't help to alleviate the ER stress, prolonged UPR activation leads to apoptosis (?).

#### 2.1.2.2 Mutations leading to MIDY

Mutations in the *INS* gene can cause many different forms of the diabetic condition (?). At least 30 different autosomal dominant mutations have been found that are known to cause the MIDY syndrome by affecting proinsulin folding in the ER and 15 of these mutations have been experimentally determined to do so (?). More than half of the mutations generates free, unpaired cysteine residues, either by mutating an existing native cysteine or by changing a non-cysteine residue with a cysteine (?).

Similarly, Stoy and coworkers reported 10 autosomaldominant mutations in the insulin gene causing MIDY in 16 different probands (?). Of these, six mutations either remove a cysteine or add an addional cysteine residue, these mutations are predicted to disrupt normal folding of proinsulin and lead to activation of the unfolded protein response (UPR) in the ER, ultimately leading to destruction of  $\beta$ -cells in a similar fastion as mutations in *Ins2* in the Akita and Munich mice (?).

Liu, et al (2010) found that exposed cysteine residues in proinsulin facilitates the formation of abnormal disulfidelinked protein complexes. This leads to non-canonical pairing of cysteine residues and formation of protein aggregates, and this perturbation initiates the pathogenesis of MIDY (?).

## 2.2 Animal models

Animal models have been used for a long time in biomedical research to gain insights about human biology as well as to test novel treatments for human diseases such as cancer and diabetes (?). Different animal models have their own benefits and disadvantages, therefore the animal model should be chosen with care in order to use the best model for a given research topic.

Mus musculus is for many reasons the most popular model organism for studying human diseases, including low maintenance costs, short generation time, high ethical acceptance and well established genome modification methods (?). However, therapeutic findings in mouse models are not always predictive of therapeutic results in humans because of differences in size, anatomy and metabolism. Hence, animal models more similar to human patients are need to better test the efficacy and safety of novel treatments in translational research.

Recently, Sus scrofa has gained popularity as a large animal model in translational research that is used to bridge the gap between rodents and humans (???). Pigs share many physiological, anatomical, and metabolic similarities with humans (??) and genetic analyses indicates that pigs are more closely related to humans than rodents

(?). While rodent models in general are cheaper to develop and maintain, pigs are generally a good model candidate where translational research in mouse models are limited by differences in size or life span, or where mouse models don't accurately mimic the characteristics of the human disease in question(?). Compared to non-human primates, pigs are less expensive and more ethically acceptable (?). Many genetic methods have been established for *Sus scrofa* (?), for example for diseases such as cystic fibrosis (?), Duchenne muscular dystrophy (?), and Huntington's disease (?).

Many different animal models have been developed to study different types of diabetes, both rodent and non-rodent models (?). Pigs are generally considered to be a good animal model for the different types of diabetes, helping bridging the gap between mice and humans in translational and comparative research (??).

Here, two previously established swine models that were used for the work in this thesis will be described:

- Munich GIPR<sup>dn</sup> pigs, a model for studying effects of incretin-based T2DM therapies.
- The Munich MIDY pig, a transgenic pig carrying a mutation in the insulin gene that makes it prone to misfolding, which is a large animal model for PND.

## 2.2.1 Transgenic dominant-negative glucosedependent insulinotropic polypeptide receptor pigs

Based on the function of the incretin glucose-dependent insulinotropic polypeptide (GIP) is impaired in patients with T2DM (whereas the incretin hormone glucagonlike peptide 1 (GLP1) retains its effects in diabetic patients), a transgenic pig model was created, carrying a dominant-negative GIP receptor (GIPR<sup>dn</sup>) to study the role of the impaired GIP function in translational research (??). The mutant pig carries a GIPR copy that has an 8 amino acid deletion and an alanine to glutamine substitution at position 340, which is essential for signal transduction, controlled by the rat insulin 2 promoter (?).

These pigs have been shown to have reduced glucose tolerance and progressive  $\beta$ -cell destruction and impaired insulin secretion, hallmarks of T2DM. These results were similar to the results seen in a GIPR<sup>*dn*</sup> mouse mutant that the transgenic pigs were based on (?). The GIPR<sup>*dn*</sup> pig is an attractive model for developing new incretin-based diabetes therapies given the similarities between human and pig physiology and pathogenesis (?). In fact, treatment of GIPR<sup>*dn*</sup> pigs with the GLP1 receptor antagonist liraglutide had similar effects to what has been seen in human patients, like reduced body mass and improved glycemic control (?).

## 2.2.2 Transgenic $INS^{C94Y}$ pigs an animal model for human permanent neonatal diabetes

Renner and colleagues (?) have previously established the Munich MIDY (Mutant *INS* gene-induced Diabetes of Youth) pig as an animal model for studying long term effect of diabetes and hyperglycemia. The Munich MIDY-Pig biobank (??) consists of samples from different tissues and body fluids of 4 two-year-old female MIDY pigs and 5 wild-type littermate controls. Thus, the MIDY-Pig biobank is a unique resource that provides the scientific community with samples that can be used to study organ crosstalk within a multiomics framework.

The Munich MIDY pig is based on the Akita mouse, a diabetic mouse model of insulin dependent diabetes mellitus (IDDM), that exhibits progressive hyperglycemia,  $\beta$ -cell dysfunction, and impaired insulin secretion (??). The Akita mice carries a missense mutation in the *Ins2* gene, C96Y, changing a cysteine to tyrosine affecting a disulfide bond, disrupting folding of the proinsulin gene (??). This corresponds to the C96Y mutation found in the insulin gene in a human patient with MIDY syndrome (?). In the MIDY pigs the corresponding mutation in the insulin gene is C94Y.

The MIDY pigs develop a progressive diabetic phenotype that after a few months show significantly lower body mass,  $\beta$ -cell mass, and insulin levels when compared to non-diabetic litter mates (?). The MIDY pigs exhibit a stable diabetic phenotype that can be rescued by treatment with insulin, and are a suitable model for testing therapies such as  $\beta$ -cell transplantation in a human sized model organism (?).

## 2.3 Metabolism

Glucose homeostasis is primarily regulated by insulin and glucagon, and it involves several different organs (?). In response to elevated plasma glucose levels (such as after food intake), insulin is secreted to plasma from  $\beta$ -cells in the pancreas (??). Insulin's main action is to stimulate glucose removal, and it does so by having different effects on different target organs (?). In peripheral tissues, such as skeletal muscle and adipose tissue, insulin promotes glucose uptake, usage, and storage (?). In liver, insulin inhibits gluconeogenesis and glycogenolysis, and promotes glycogen synthesis from glucose (??). Furthermore, insulin also inhibits secretion of glucagon from pancreatic  $\alpha$ -cells (?).

In response to low blood glucose levels, glucagon is released from pancreatic  $\alpha$ -cells. Glucagon promotes hepatic gluconeogenesis, production of glucose from hepatic glycogen, and glucose secretion. This raises the blood sugar to normal levels. In diabetic patients, the absence of insulin thus leads to a hyperglycemic state since there is no feedback mechanism to counteract the effects of glucagon (??).

There are other hormones beyond insulin and glucagon that also regulate glucose homeostasis, for example leptin and adiponectin that is released from fat cells (??).

## 2.3.1 Liver metabolism

The liver is an essential metabolic organ, and hepatic metabolic activity is regulated by insulin and other hormones. Glucose enters the hepatocytes via plasma membrane glucose transporters (GLUT)s, glucose is then phosphorylated by glucokinase into glucose-6-phosphate (G6P). G6P is the precursor molecule for glycogen synthesis after feeding, it can also be converted into pyruvate and ATP through glycolysis and the citric acid cycle respectively. Pyruvate can also be used as a precursor for lipogenesis, the production of fatty acids (?).

During short-term fasting, glycogen is converted into glucose, which is then secreted from liver and transported to other tissues. Whereas during longterm fasting when the glycogen storages are depleted, the liver produces glucose through gluconeogenesis from lactate, amino acids and glycerol (waste products from skeletal muscle and adipose tissue respectively) (?).

## 2.3.2 Adipose tissue metabolism

White adipose tissue (WAT) is no longer considered to be a static organ that only stores fatty acids (??). In fact adipose tissue AT is an endocrine organ that is responsible for the production and secretion of a plurality of different hormones, impacting a wide variety of biological functions (?).

The accumulation of fat in WAT is governed by two processes: (i) the synthesis of fat (lipogenesis), and (ii) fatty acid oxidation (lipolysis). Lipogenesis produces triglycerides for energy storage and occurs preferentially in adipose tissue, although it can also occur in the liver (?).

Lipogenesis is stimulated by a high intake of carbohydrates, whereas fasting and high levels of polyunsaturated fatty acids inhibits triglyceride generation by lipogenesis

(?). This regulation of lipogenesis is partly facilitated by hormones, e.g. leptin inhibits lipogenesis while insulin and angiotensin promotes it (??). Insulin promotes lipogenesis by: (i) increasing glucose uptake in adipose tissue, (ii) activating lipogenic and glycolytic enzymes, and (iii) inducing expression of lipogenic genes (?).

Breakdown of fat (lipolysis) occurs in adipose tissue during times of metabolic stress, such as fasting, when the fat storages are hydrolysed into glycerol and free fatty acids (FFAs) (?). The fatty acids are then secreted to the blood and transported to other tissues to be used as a source for energy generation (?). FFAs can be converted into ketone bodies in the mitochondria of the liver through fatty acid  $\beta$ -oxidation, ketone bodies are important energy substrates for extrahepatic tissue (?)

#### 2.3.2.1 Differences between visceral and subcutaneous adipose tissue

It has been known for a long time that obesity has a higher correlation with body fat distribution than to total body fat mass (?). Visceral adipose tissue (VAT) is present mainly in the mesentery and omentum, and an excess abundance of VAT is linked to T2DM and cardiovascular diseases (?).

Adipocytes in VAT have a higher metabolic activity than adipocytes in subcutaneous adipose tissue (SCAT), which is reflected in a higher rate of lipolytic activity (?). Unlike SCAT, visceral fat is directly connected to the liver through the portal vein (??) giving secreted hormones and FFAs from VAT immediate access to the liver (?).

## 2.3.3 Retinoid metabolism

Retinoids (Vitamin A derivatives) have two physiological roles, (i) 11-cis-retinal is the chromophore of visual pigments in the eye, and (ii) all-trans- and 9-cisretinoic acid (RA) are responsible for regulating gene expression through the two nuclear receptors, retinoic acid receptors (RARs) and retinoid X receptors (RXRs) (??). Here, I will focus on the latter function of the hormonal role of retinoids.

During fasting the active retinoid precursor, all-trans-retinol (Vitamin A), is transported in plasma (?). After all-trans-retinol is imported by the target cells, it is converted in two steps into all-trans-retinoic acid (atRA, **Figure 2.1**). Retinol dehydrogenase 16 (RDH16) is one of many enzymes that catalyses the first oxidation step of this conversion, from all-trans-retinol into all-trans-retinal

(?). Retinol dehydrogenases catalyses the rate-limiting step of RA metabolism (?).

AtRA and 9-cis-RA regulate the expression of many different genes (??). Both atRA and 9-cis-RNA can bind to RARs, whereas 9-cis-RA is the only RA that binds to RXRs (?). To activate transciption, RARs and RXRs bind to retinoic acid response elements (RAREs) as heterodimers, RAREs are genomic elements that are composed of tandem repeats of 5'-(A/G)G(G/T)TCA-3' (?), most frequently as direct repeats (DRs) with two hexameric motifs interspersed by 1, 2, or 5 base-

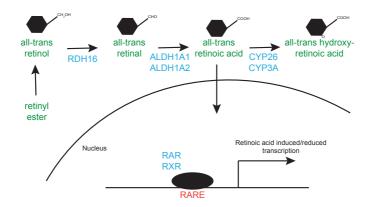



Figure 2.1. Schematic representation of retinol metabolism. RDH16 catalyzes the reaction from alltrans retinol to all-trans retinal, then the aldehyde dehydrogenase 1 protein family (ALDH1A) enzymes convert all-trans retinal to atRA. AtRA enters the nucleus and binds to the transcription factors RAR or RXR and activates them. RAR and RXR regulate transcription by binding promoter regions as either homodimers or as heterodimers with each other or other transcription factors. AtRA can also be converted into all-trans hydroxy-retinoic acid by cytochrome P450 enzymes. Metabolites are colored in green, proteins in blue, and DNA elements in red. All proteins named are examples of enzymes that catalyses the specific reaction.

pairs (DR1, DR2, and DR5 respectively) (?). Other non-canonical spacings can also occur.

Studies of the association between retinoid metabolism and diabetes in humans have shown that serum retinol levels are higher in type 2 diabetes and lower in type 1 diabetic patients respectively (?). RA has also been shown to affect the function of pancreatic  $\beta$ -cells by increasing insulin production and secretion (?).

AtRA inhibits preadipocyte differentiation into WAT (?), and atRA also stimulate lipolysis, decreases triacylglycerol concentration and increases fatty acid oxidation (?). Interestingly, Ziouzenkova and colleagues (?) have shown that retinal have distinct functions in adipose tissue of rodents, independent of its conversion to RA. Furthermore, they showed that retinal can interact with RARs and RXRs and that retinal and RA have different effects on adiposity in mice. All-transretinal was shown in the study to inhibit adipogenesis, and peroxisome proliferator-activated receptor and RXR signalling (?).

## 2.4 Proteomics

The proteome is the entire set of proteins that control and catalyse all processes in the cell in conjunction with other proteins or biomolecules at specific times and cellular locations, determining the functional state and phenotype of the cell (?). Because of this, and since mRNA and protein levels don't show perfect correlations

(?), the study of the proteome is important for giving us a complete picture to the inner workings of cells. Here, mass spectrometry (MS)-based proteomics will be described in greater detail. Briefly, purified proteins are digested into peptides by a peptidase followed by injection onto a liquid chromatography system where the peptides are separated by for example hydrophobicity. The peptides are then eluted and enter the mass spectrometer as ionized ions, where the precursor ions mass-to-charge (m/z) ratios are measured. Then selected ions are fragmented and the fragment spectra are collected. The peptides and proteins are identified and quantified using the precursor and fragment ion spectra together with a protein database, bioinformatic analysis is then performed in order to for example detect differentially abundant proteins between two samples.

## 2.4.1 Sample preparation

Because MS analysis of intact proteins is inadequate for protein identification, the protein samples first have to be digested into smaller peptides using a peptidase (??). This is because sequence information is needed, and mass spectrometers are better equiped to obtain sequence information from peptides of sizes < 20 amino acids than from intact proteins (?). The most common peptidase used in proteomics is trypsin, which cleaves the polypeptide backbone after arginine and lysine residues (???). Other peptidases can also be used (??), e.g. digestion with the protease LysC, which cuts after lysine residues, can be performed in highly solubilizing conditions (e.g. 8 M urea) (?). Digestion with LysC followed by trypsin digestion has been reported to be more efficient than only using trypsin alone (?).

Since many proteins have a compact tertiary structure and hydrophobic properties (?), proteins must be denatured before being trypsinated. One common way to denature proteins is to use high concentrations of urea, since it can bind to proteins and compete with native bonds between the amino acids (?). A benefit of using urea is that it is compatible with electrospray ionization (ESI)-MS since it doesn't interact with commonly used liquid chromatography columns and is thus eluted from the column before any of the peptides (?). Other denaturants can be used as well, such as sodium dodecyl sulfate SDS and sodium deoxycholate SDC. SDC can in contrast to urea be used at high concentrations without impacting trypsin's protease activity (?). But unlike urea these denaturants are not compatible with LC-ESI-MS, and have to be removed prior to chromatagraphic separation (?). This can easily be done for SDC using either a acid precipitation method or a phase transfer method (??). SDC has been found to increase the performance of detecting peptides derived from membrane proteins (?), zebrafish liver tumors (?), and proteins from AT (?).

To enhance the digestion of the proteins, the samples are also treated with dithiothreitol (DTT) and tris(2-carboxyethyl)phosphine (TCEP) to reduce disulphide bridges between cysteine residues. The free cysteine amino acids are then alkylated with iodoacetamide to prevent the cysteine residues to form new disulphide bridges (?).

## 2.4.2 Liquid chromatography

Due to the different functional groups of peptides (hydrophilic, hydrophobic, basic, acidic), many options exist to choose from when choosing a separation technique

(?). The most popular separation methods use reversed phase liquid chromatography (RPLC), strongcation exchange (SCX), strong-anion exchange (SAX), and hydrophilic interaction liquid chromatography (HILIC). Of these, RPLC is the most popular for HPLC proteomics, due to its robustness, separation efficiency, and selectivity(?). In RPLC, the columns are packed with a hydrophobic stationary phase, of which octadecyl carbon chain (C18)-bound silica is the most common (??), and for the mobile phase, water together with an organic solvent such as acetonitrile or methanol is used (?). Furthermore, the RPLC method's eluents are fully compatible with peptide ionization methods (??).

The peptides generated by protein digestion are injected onto a high performance liquid chromatography (HPLC) micro capillary column (RPLC) that is directly coupled to the mass spectrometer. The peptides are eluted from the column using a solvent gradient of increasing organic content and enter the mass spectrometer according to their hydrophobicity, hydrophilic peptides elute first and hydrophobic peptides elute later (?). Since the sensitivity of the LC-MS analysis is directly proportional to the peptide concentrations eluting from the chromatography column, the chromatography is performed at very low flow-rates. This is achieved by using capillary columns with small inner diameters, usually on the scale of 50-150  $\mu$ m, which allow for flow rates as low as 500 nl min<sup>-1</sup> (?).

## 2.4.3 Mass spectrometry

A mass spectrometer consists of an ion source, a mass analyser that computes the mass-to-charge ratios (m/z) of the ions of interest, and an ion detector that for each m/z value counts the number of ions (?).

#### 2.4.3.1 Electrospray ionization

There are two methods, which define the ion source, to ionize the peptides before entering the mass spectrometer, ESI and matrix-assisted laser desorption/ionization (MALDI) (??). ESI has now become the state of the art method for comprehensive study of the proteome, due to its compatibility with HPLC methods (??). Recent research has shown that overlap of identified peptides between the two methods are quite low and that they are complementary to each other (?).

In ESI, charged (mostly protonated) peptides are eluted in droplets from the spray needle, which is held at a high electrical potential with respect to the inlet of the mass spectrometer. As the droplets travel towards the mass spectrometry inlet, the solvent evaporates, which increases the charge concentration on the droplets' surface area. Single, naked charged peptides are generated either (i) by the fission of the droplets or (ii) single ions can be emitted from the droplet when the electrical field is sufficiently high on the surface of the droplets (??). The charged, single peptides then enters the vacuum of the mass spectrometer ready to be measured.

#### 2.4.3.2 Mass spectrometry and mass analysers

There are different ways a mass spectrometer can operate. In the data-dependent acquisition (DDA, which is the most common mode of operation for proteomics), the mass spectrometer records the intensity signals for all ions' m/z ratio, thus generating a mass spectrum (at the MS<sup>1</sup> level) (??). Because each ion signal consists of a cluster of isotope peaks, the charge state of the peptides can easily be determined by the shape of the ion signal. The mass of a peptide can thus be derived from the detected m/z ratio and the peptide charge (?).

Since primary structure (sequence) information is needed to unambiguously identify a protein, peptides are fragmented by collision with an inert gas (such as nitrogen, helium or argon) (?). The most common type of product ions generated from the precursor ion by collision-induced disassociation (CID) are derived from breakage of the peptide bond, b and y ions, depending on which side retains the proton (??). The tandem-MS (MS/MS or MS<sup>2</sup>) spectrum is then obtained. Throughout a LC-MS run, the mass spectrometer cycles between obtaining MS<sup>1</sup> and MS<sup>2</sup> spectras. Once the gradient finishes, peptides are identified and quantified by a computational analysis.

Several different types of mass analysers exist, and each come with their own strengths and weaknesses that make them suitable for different applications. Examples of different mass spectrometers include: linear ion traps (LIT), quadropole mass filters (QMF), timeof-flight instruments, and high-resolution Orbitraps.

LIT mass analysers use four quadropolar rods that are segmented into three parts each. AC is applied to pairs of electrodes at opposite sign to trap ions using electromagnetic forces in the radial dimension, whereas the ions are trapped axially by a potential well generated by applying different DC currents to the three different segments of the rods. Ion motion within the trap is proportional to the amplitude of the applied AC current and the size of the ions, with higher amplitude and larger size leading to larger motions. Ions are then scanned by a process called resonance ejection. Resonance ejection works by that an additional, increasing AC current is applied to the exit rods, and when ions are in resonance with the main AC current they exit through slits in the rods. The increasing AC current ensures that ions with lower m/z values are

#### ejected first (?).

Similarly to LITs, ions in QMFs are radially confined by AC. What differentiates the QMF to the LIT is that a DC current is applied to each rod pair with opposite sign, this produces a complex electric field that allows for ion motion both radially and axially. In a scan, both electrical currents are increasing (while the proportion of the currents are kept the same) so that ions of increasing mass pass through the QMF (?).

Orbitraps measure mass-to-charge ratios from the ion's oscillatory motion frequency using Fourier transformation. In an Orbitrap mass analyser, ions are oscillating around a spindle electrode, and axial oscillating movements are detected by electrodes as transients. Transients are the frequencies of oscillations, and are unique for each m/z value. The transients are then transformed into m/z values using Fourier transformation. Unlike quadropole based mass analysers, all ions are detected simultaneously in an Orbitrap and no electric ramp is required (???).

These different types of mass analysers can be used alone, or together in hybrid instruments that takes advantage of the strengths of each type of mass analyser. For example, the high speed and sensitivity of LITs can be combined with quadropoles enhanced capabilities for precursor isolation to create a hybrid instrument with increased dynamic range (?). Another example of a hybrid instrument is the Q Exactive (Thermo Fisher Scientific) family series of instruments that compines a QMF with an Orbitrap (???). The quadropole-Orbitrap hybrids have been proven to be very powerful for mass spectrometry based proteomics, significantly increasing the number of identified proteins per hour in DDA

(?).

DDA-MS has seen striking developments in both computational and sample preparation methods, as well as in instrument performance during the last couple of years, with the complete yeast proteome being obtained (??) and over 10,000 proteins have been identified in human cell line samples (??). Tissue proteomics presents its own challenges due to the heterogeneous cellular composition and dynamic protein concentration range of most tissues. Each tissue has its own particular challenge for proteomics, for example the high dynamic range of skeletal muscle (?), the high levels of proteases in the pancreas (?), and the high concentrations of lipids and hydrophobic proteins in adipose tissue (?).

# 2.4.4 Computational and bioinformatic analysis

Computational proteomics concerns the mathematical and statistical algorithms used to identify peptide and protein identification as well as their quantification, whereas the bioinformatic analysis concerns the downstream functional analysis that leads to biologically relevant and interpretable results (?).

## 2.4.4.1 Identifying peptides: from spectra to proteins

Peptide sequence can be deduced from the distances between neighbouring peaks in the  $MS^2$  spectra, since each fragment ion differs from its neighbour by one amino acid. But the advent of whole-genome sequencing made it possible to match peptide-fragmentation spectras to theoretical spectras derived from sequencing databases, turning the issue of peptide identification into a database matching problem (??). Computationally this is more efficient since only a fraction of all possible amino acid combinations have to be considered (?).

The goal of a tandem-MS database search is to detect the best matching sequence to each fragment spectrum. Four general methods for performing and scoring peptide database searches: descriptive, interpretative, stochastic, and statistical and probability based modelling (?). Here, I will focus on probability based methods and describe this method in more detail.

Probability based modelling was popularized by the commercial Mascot software

(??). A probability based approach relates features sequences to the spectra, for example the frequency of matches of b and y ions are calculated and used to calculate a identification probability (?).

The free software MaxQuant is one of the most popular data analysis programs for handling MS-based proteomics data (??). MaxQuant uses it's own probability based peptide search enginge called Andromeda (?). Andromeda's peptide search algorithm first calculates the n number of theoretical fragment ions and the k number of matches between the spectrum and the theoretical fragment ions, the higher k is relative to n the higher the probability is that these matches were not due to random chance. Andromeda uses this information to calculate an approximate p-value for the null hypothesis that there is no similarity between the theoretical and observed fragment ion masses. A successful match is called a peptide spectrum match (PSM) (?).

Due to the vast amount of hypotheses being evaluated and that many of the acquired spectra might be due to chemical and electrical noise, many of the PSMs might be due to random chance and thus be false positives (???). To alleviate this, the detected PSMs should be corrected with a false discovery method (FDR) that limits the number of false positives while containing as many of the true positives as possible. In proteomics, FDR values are usually calculated from a decoy database (?). There are many ways to construct a decoy database, of which a reversed proteins database is the simplest and most commonly used (?).

A reversed decoy database is created by reversing the protein FASTA sequences used for obtaining the theoretical peptides. Using the reversed method yields a decoy database with similar features to the target database (in respect to number of proteins and peptides, protein length, and sequence redundancy) (?). The number of positive hits in the decoy database is used to estimate the false positives of the target database, assuming that the probability of finding false PSMs is equal for the two databases (?).

Identified peptides are then matched to the proteins in the target database. The proteome contain a high degree of sequence redundancy, which is due to different evolutionary processes and that a single protein can have multiple isoforms, this leads to difficulties in assigning a peptide to one single origin protein. To solve this, Maxquant merges all proteins that can't be distinguished by the identified peptides into protein groups (??). An FDR filter then applied in order to filter out false positives. An FDR threshold of 1% is usually applied in proteomics, both for peptide and protein identifications (???).

### 2.4.4.2 Quantitative proteomics

There are two general approaches to quantitate proteins in DDA-MS, labelled or label-free quantification. Both of these techniques are relative quantification methods, meaning that two or more sample groups are compared (??).

Label-based quantification, uses stable isotope labels such as C13 and N15. These stable isotopes are chemically more or less identical to the most abundant isotopes. Thus, labelling with stable isotopes ensures that the mass spectrometer can distinguish between proteins that are eluted in parallel but derived from different samples. Label-based approaches includes: (i) metabolic (such as SILAC), (ii) isotopic (ICAT), and (iii) isobaric (ITRAQ and TMT) labeling. The labeling step can be performed at the peptide or protein level depending on the method used (?). The advantage of using a label-based approach is that they can be more accurate than label-free methods, whereas disadvantages can include (depending on the method) that the number of samples that can be labeled is limited, variability in labeling efficiency, and that additional sample preparation steps are included where loss of proteins/peptides can occur (??).

Label-free quantification is a cheap and easy method for relative protein quantification and two major strategies exist: spectral counting or peptide peak intensity measurements (??). They also have the advantage of having a higher dynamic range than label-based approaches (?). Spectral counting methods infer protein abundance from the number of PSMs detected for each protein, whereas peak intensity methods use the peptide's intensity, which is derived from integration of chromatographic peaks, for quantification (?). Generally, ion intensity methods perform better than spectral counting methods as it more robustly quantitates low intensity peptides (?) and offer in general better performance than spectral counting (?).

MaxQuant uses its own quantification algorithm based on peptide intensity quantification called MaxLFQ (?). MaxLFQ first calculates protein intensity ratios from the median of the peptide intensity ratios between all samples that share a predetermined number of peptides (default is 2 shared peptides). The protein intensities for each sample are then solved by a least-squares analysis that will satisfy all viable protein ratios between the samples to calculate the optimal abundance profile for the protein (?).

There are many R (?) packages developed by the proteomics research community, both for bioinformatic analyses and data visualization (??), of which for example DEP is a package developed specifically for com-

parative proteomics (?).

#### 2.4.4.3 Missing value imputation

Typically, global proteomic experiments generally suffer from a large degree of missing values(???). There are many reasons why a peptide could be missing in the dataset, both experimental and bioinformatic mechanisms can lead to missing peptides and the underlying cause are often unknown and complex (??). There are three categories of missing values: missing completely at random (MCAR), missing at random (MAR), and missing not at random MNAR. MCAR values are usually derived from small measurement errors or stochastic fluctuations whereas MNAR values are derived from targeted effects (such as the instrument detection limit or that the protein doesn't exist in the sample) (?). Since ignoring missing values would dramatically reduce the size of the data and that many statistical tools need complete datasets (?), missing value imputation and/or combined with missing value filtering is usually applied to the datasets.

Choosing which imputation method to use is not trivial, as it can affect how the data is interpreted. There are many available imputation methods, but no single approach is consistently better than other approaches (??). This is probably due to that different methods are developed for different scenarios, for example a probabilistic minimum imputation methods, that imputes missing values from the lower part of normal distribution, generally performs well for MNAR values but not for MCAR values (??). Ideally, the type of missing value should guide the use of the imputation method to use, but in practice it is difficult to determine whether a missing value observation is stochastic or deterministic in nature (?).

## 2.5 Statistics

Comparative studies where the researchers compare the outcomes of two different scenarios, e.g.: mutant versus wildtype, or placebo versus treated, are among the most common types of experiments in the life sciences.

#### 2.5.1 Statistical hypothesis testing

Statistical hypothesis testing is thus performed in order to detect differences between the study groups (?). When performing a statistical test we assume that there is no difference between the groups (the null hypothesis), and after the test the hypothesis is either accepted or rejected based on the test statistic.

A two-sample t-test compares the means of the 2 groups relative to the standard deviation of the samples and returns a p-value. If the p-value is larger than a predetermined threshold,  $\alpha$  (usually set to 0.05), then we accept the null hypothesis that there is no difference between the 2 groups. Contrary, if the p-value is smaller than  $\alpha$  then the null hypothesis is rejected and the other hypothesis is accepted that there is a difference between the two groups (?).

A two-sample t-test has three assumptions (?):

- 1. The sample populations should be normally distributed.
- 2. The sample populations should have the same variance.
- 3. The sample populations should be uncorrelated.

#### 2.5.1.1 Different outcomes of statistical testing

When performing a statistical test, there are four different potential outcomes

(?). These are illustrated in **Table 2.1**, two of these outcomes are correct whereas the other two are incorrect (errors). There are two different types of errors, type I errors and type II errors. When a type I error is made, a difference is deemed significant even though there is no true difference between the groups (and vice versa for a type II error). In the scenario when one statistical test is performed with a significance level of  $\alpha$ -level = 0.05, there's a 5% chance that a significant outcome will be wrong 5% of the time. That is 1 out of 20 times, we will accept that we get a type I error (or in other words yield a false positive result) (??).

An important factor to take into consideration is the statistical power, which is the probability of detecting a true difference between the two groups (??). With increasing statistical power, the likelihood of doing a type II error decreases. Thus, statistical power determines the ability of the test to find true significant differences between the groups. Sample size is a

|                  |                 | TRUTH          |     |  |
|------------------|-----------------|----------------|-----|--|
|                  |                 | Difference     | No  |  |
| RESULT OF        | Significant     | True positive  | Fal |  |
| STATISTICAL TEST | Not significant | False positive | Tru |  |

**Table 2.1.** The four outcomes of a statistical test. Correctly identified outcomes are colored in blue, whereas incorrectly identified outcomes are colored in red.

major factor that influences the statistical power of a study, the statistical power increases with increasing sample size (??).

### 2.5.2 Multiple hypotheses testing

When performing multiple statistical tests at the same time (as in most omics experiments) p-values are misleading since they only inform us about a singular outcome. Consider an experiment with 10000 statistical tests and an  $\alpha$ -level of 0.05, then 500 of these tests will be deemed significant by random chance even if there's no true difference between the samples (?). Therefore, p-values will have to be adjusted and reinterpreted, which is done by using different multiple hypotheses correction methods.

The simplest multiple hypotheses correction method, is the Bonferroni's. The Bonferroni method controls the family-wise error rate (FWER, that is the probability of detecting one false positive) by multiplying the p-values with the number of tests. This greatly reduces the false positive rate (FPR, the probability of inferring an effect even though no effect is present) and the statistical power, and increases the yield of false negatives (?).

Instead, a more appropriate method for the analysis of proteomics datasets is the Benjamini-Hochberg method that controls the false discovery rate (FDR, the proportion of false positives to all significant tests) (?). The benefit of methods that controls FDR instead of the FWER, is that they maintain statistical power and limits the number of false positives (?). An FDR of 0.05 means that of all significant tests 5% will be false positives.

A useful method for controlling the FDR has been developed by Storey, 2002. This method controls the FDR by using the fact that non-significant p-values are uniformly distributed whereas lower, significant pvalues are enriched for values close to 0. Storey's method incorporates an estimation of the fraction of tests for which the null hypothesis is true to adjust the p-values and yield q-values (?).

### 2.5.3 Analysis of variance, linear models and *post hoc* tests

For experimental studies that includes more than two sample groups or more than one factor, the t-test is obsolete. In fact, the t-test is a distinct case of an analysis of variance (ANOVA) test, and ANOVA has the same requirements as the t-test. The null hypothesis for an ANOVA is that all samples are derived from the same distribution and have the same means, and when the null hypothesis is rejected it is concluded that all means are not equal and further tests are needed to find out which means are not equal (if the number of groups > 2) (??).

An ANOVA is based on linear models. A linear model tries to fit a known function in order to find the "best" line through the data by minimizing the sum of squares of the residuals. In an ANOVA the predicted values are the factor level means and the sum of squares represent the variation that is not accounted for by the factor (?).

If there are more than two groups (factor levels), one most use a *post hoc* test in order to investigate which group means that are significantly different from each other. One of the most common methods for follow up tests on ANOVA is Tukey's Honest Significant Differences (HSD) (?). Tukey's HSD method compares all pairwise comparisons and calculates pvalues for each comparison that are adjusted for multiple hypotheses testing using FWER to limit the type 1 error rate. Important to note is that when we have many features (as in most omics experiments), Tukey's method applies correction for multiple hypotheses on each feature separately.

#### 2.5.4 Principal component analysis

Principal component analysis (PCA) is an unsupervised statistical method that reduces dimensions of complex, high-dimensional data (such as omics data with multiple genes/proteins) while preserving trends and patterns of the data. PCA does so by projecting the high-dimensional data onto a series one dimensional principal components (PC). The first PC is chosen to minimise the sum of the squared distances between the data points and PC, this have the effect that the variance of the projected points is maximized. The second PC (and all following PCs) is selected in a similar way with the additional constraint that it must be orthogonal to first PC, PCA is most often used in order to easier visualize the high-dimensional data (?).

#### 2.5.5 Gene set enrichment analysis

The Gene Ontology GO database was created to construct a consistent and curated language for functional annotation of proteins (???). Three different types of GO categories exists: molecular funcion (GOMF), biological process (GOBP), and cellular compartment (GOCC). GO categories are strictly hierarchical, most classes thus have both parent and child terms that describe protein functionality at different levels of detail (?).

Gene set enrichment analysis (GSEA) is a method for detecting functional enrichments in biological datasets (?). A GSEA algorithm performs a statistical test to see whether more genes/proteins are associated with a gene set (e.g. a GO class) than by random chance (?). This can be done in different ways. First, a list of significantly more abundant genes (as determined by a statistical test) can be tested for enrichments of gene sets. This is the method of bioinformatic tools such as STRING (?) and DAVID (?). The second method doesn't need any prefiltering of significant features, instead it takes into account all genes/proteins in a dataset together with a quantitative measurement (e.g. expression levels, L2FC, and p-values). This is reflecting that a smaller change in expression among a subset of genes sharing a similar function or belonging to the same molecular pathway might be more biologically important than a large change in one gene (?). This is the method of the software GSEA. Other types of databases for GSEA can also be used such as pathway information (Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein domains (Interpro) (??).

Due to the hierarchical structure of the GO database, GSEA will often find enriched categories at different depths from the same hierarchical paths (?). Methods have been developed to remove redundant GO terms from a GO list to make it easier to interpret, e.g. GO trimming that removes redundant term based on the number of shared proteins between the two classes (?).

# Chapter 3 Materials and methods

## 3.1 Adipose tissue from the Munich MIDY pig biobank

5 WT and 5 MIDY female littermates were maintained for two years. MIDY pigs started receiving treatment with both long-lasting (Lantus  $\mathbb{R}$ ; Sanofi) and shortacting insulin (NovoRapid  $\mathbb{R}$ ; NovoNordisk) at the age of two months, in order to mimic suboptimal diabetes

treatment (moderately hyperglycemic). To remove effects from estrous cycle, the 2 year old pigs were estrus synchronized and inseminated 12 days before necropsy. A clinical examination was performed the day before necropsy to record data about the general well-being of the pigs. Pigs were fasted overnight before necropsy, and tissue samples were collected according to standardized sampling procedures (described in Surma, *et al* (2015) (?). Tissue samples for further molecular studies were shock frozen within 20 min of acquirement and stored in -80°C.

### 3.1.1 Proteomic sample preparation

Two tissue samples from different locations were obtained from each pig and AT type (4 MIDY pigs and 5 WT pigs, SCAT and MAT) from the Munich MIDY pig biobank (**Table 3.1**, the harvesting of the samples have been described in (??)). The two tissue samples from each pig and tissue group were pooled (see **Table 3.2** for the outline of experimental design, and approximately 100 mg tissue were collected from each pooled sample. Each pooled sample was suspended in a solution containing 1% SDC and 50 mM

**Table 3.1.** Characteristics of the pigs and adiposetissue samples from the MIDY-pig biobank.

| Animal ID | Date of birth | Genotype | Section number | E |
|-----------|---------------|----------|----------------|---|
| 1861      | 25/10/2012    | WT       | S 736/14       |   |
| 1857      | 25/10/2012    | MIDY     | S 737/14       |   |
| 1885      | 14/11/2012    | WT       | S 738/14       |   |
| 1856      | 25/10/2012    | MIDY     | S 739/14       |   |
| 1859      | 25/10/2012    | MIDY     | S 740/14       |   |
| 1877      | 07/11/2012    | WT       | S 741/14       |   |
| 1875      | 07/11/2012    | WT       | S 743/14       |   |
| 1886      | 07/11/2012    | MIDY     | S 744/14       |   |
| 1878      | 07/11/2012    | WT       | S 745/14       |   |
|           |               |          |                |   |

 $ABC^1$ . The samples were homogenized using a homogenizer (ART-MicraD8, ART Prozess- & Labortechnik, Müllheim, Germany) at 23,500 rpm for  $2 \times 1$  min. Samples were kept on ice for 30 min and were then centrifuged for 5 min at  $16,000 \times g$ , 4°C. The aqueous layer beneath the lipid layer was harvested and transferred to new Eppendorf tubes. Protein concentration was measured with a NanoDrop ND-1000 spectrophotometer (Marshall Scientific), using the A280 method for proteins/peptides.

|                |              | Genotype   |          |
|----------------|--------------|------------|----------|
|                |              | MIDY       | WT       |
| Adipose tissue | Mesenteric   | MIDY, MAT  | WT, MAT  |
|                | Subcutaneous | MIDY, SCAT | WT, SCAT |

Table 3.2. The multifactorial experimental design for MIDY AT study showing the two independent variables (genotype and AT source) and the four subsequent 2-factor groups.

50  $\mu {\rm g}$  of protein in 50  $\mu {\rm l}$  1%, 50 mM ABC were diluted to 100  $\mu {\rm l}$  0.5% SDC, 50 mM ABC. The cys-

 $<sup>^1\</sup>mathrm{all}$  water used were HPLC grade

teine residues were reduced with DTT and TCEP at a final concentration of 4 and 2 mM respectively for 30 min at 56 °C and cysteine residues were blocked using iodoacetamide for 30 min at a final concentration of 8 mM in the dark. DTT was added to a final concentration of 10 mM and the samples were incubated for 15 min before protein digestion. Proteins were first digested with 1  $\mu$ g LysC (Wako) for 4 hours followed by digestion with 1  $\mu$ g trypsin (Promega) for 16 hours at 37°C.

SDC was removed using the acid precipitation method (???). The digests were acidified to a final concentration of 1% TFA and incubated on ice for 5 min, before the samples were centrifuged at  $16,000 \times \text{g}$  for 15 min. The supernatant were transferred to a new Eppendorf tube and evaporated in a vacuum centrifuge (Bachhofer). The samples were stored at -20°C until sequencing by mass spectrometry. The samples were resuspended in 0.1 % FA, and 1.5  $\mu$ g peptides in 15  $\mu$ l were injected into the LC-MS/MS system.

# 3.1.2 Mass spectrometry and proteomic analysis

The nano-LC-MS/MS analysis was performed using a Q-exactive HF-X mass spectrometer coupled to an Ultimate 3000 nano-LC system (Thermo Scientific) as described in (?). Briefly, 1.5  $\mu$ g peptides were separated at 200 nl/min using sequential linear gradients from 1% to 5% solvent B (0.1% FA in acetonitrile, whereas solvent A was 0.1% FA, 1% acetonitrile) for 10 min, followed by 5% to 25% B for 115 min, and lastly 25% to 50% B in 20 min. Spectra were acquired using a precursor ion scan at a resolution of 120,000 from 380 to 2000 m/z, followed by MS/MS scans of the 24 peaks with highest intensity at a resolution of 15,000.

Peptides and proteins were identified (FDR < 0.01) using MaxQuant 1.6.3.4 (??) with the NCBI RefSeq Sus scrofa proteome database (version 20180313) and quantified using MaxLFQ with the match between run feature enabled (?). For details about parameters used see **Supplementary Table C.1**.

### 3.1.3 Bioinformatics

The bioinformatic analysis was done in R 3.6.0 (?). Gene names were identified based on the NCBI RefSeq identifiers using bioDBnet (?) and BioMart (?) using the biomaRt package in R (?). The proteins LFQ intensity values were  $\log_2$  transformed. Proteins were filtered using 75% valid values in at least one group (i.e. only one missing value allowed in at least one group). Additional normalization (variance stabilizing transformation) and imputation were performed using the DEP package (?). The missing proteins were imputed using random draws from a left shifted Gaussian distribution with parameters: scale = 0.3 and shift =1.8 (scale defines the width of the Gaussian distribution relative to the standard deviation of the data, and shift defines how much the distribution that the random values are drawn from are shifted downwards). For statistical analysis R's base functions were used together with the tidyverse suite of packages (??). Multiple hypotheses correction was performed using the false discovery rate method provided by the R qualue package (?).

Significant proteins (q-value < 0.05) were uploaded

to the STRING database (version 11.0) (?) separately for each group. Default parameters were used, except for minimum interaction score (0.15 for significant proteins in genotype categories and 0.4 for significant proteins in tissue categories). Selected enriched gene sets were selected and highlighted on the protein networks.

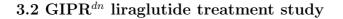
Independently for both the genotype and tissue factors, the p-values for each factor from the 2-way ANOVA were transformed to  $-log_{10}$  format. The  $-log_{10}(p$ values) were then assigned to be negative if the L2FC were negative and vice versa, and the proteins were than ordered according to these transformed values. The preranked protein sets were analysed using GSEA 3.0 (?) using the GSEA preranked method with KEGG pathways and all three GO categories. The preranked GSEA was run with default parameters except for the min size parameter which was set to 10.

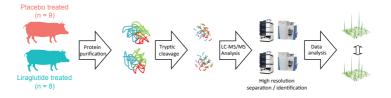
GOtrim 2.0 (?) was used to trim GO enrichments (with default parameters) independently for each group. REVIGO (?) and the Cluego 3.7.1 app (?) Enrichment Map 3.2.1 (?) were used to visualize GSEA enrichment results.

## 3.2 GIPR<sup>dn</sup> liraglutide treatment study

 $\operatorname{GIPR}^{dn}$  treatment and sample acquisition, has been described previously by Streckel, et al, (2015) (?). Briefly, 18 heterozygous  $\text{GIPR}^{dn}$  pigs were randomly assigned to be treated with liraglutide or placebo. Pigs were subcutaneously injected with pre-filled pens once daily for 90 days with either linglutide (Victoza $(\hat{R})$ , 6 mg/ml, Novo Nordisk A/S) or placebo (0.9% NaCl, B. Braun). Liraglutide doses were based on human dosages (0.6-1.2 mg per day) and corrected for pig body mass. Pigs received treatment between the age of 2-5 months. At the age of 2 months,  $\text{GIPR}^{dn}$  pigs had impaired oral glucose tests and delayed insulin secretion. Pigs were fed a standard diet and other living conditions were the same between the two treatment groups. Following the end of the treatment period, pigs were euthanized and selected organs were weighed. Tissue samples were shock frozen and stored at -80°C.

One piece of flash frozen liver sample was obtained from each pig in the  $\text{GIPR}^{dn}$  liraglutide treatment study (**Table 3.3**, see **Figure 3.1** for a visual summarization


of the methodology), resulting in sample groups consisting of 8 LT and 9 PT GIPR<sup>*dn*</sup> pigs respectively. Approximately 30-50 mg of tissue were taken from each sample tube, and 15  $\mu$ l 8 M urea, 400 mM ABC per mg liver tissue. The tissues were lysed using a homogenizer (ART-MicraD8, ART Prozess- & Labortechnik, Müllheim, Germany) at 23,500 rpm for 30 seconds. The lysates were then centrifuged through a QIA-gen shredder device (Qiagen, Hilden, Germany) for 30 second at max speed. The samples were then stored at -20°C until the next step.


The protein concentration was determined using a Pierce ( $\widehat{\mathbb{R}}$ ) 660 nm Protein Assay (Thermo Scientific) and a DU ( $\widehat{\mathbb{R}}$ ) 640 spectrophotometer (Beckman Coulter). The bovine serum albumin (BSA, Thermo Scientific) standard dilution series was as following: 0, 50, 100, 250, 500, 750, 1000, 1500, and 2000 mg/ml. The liver samples mean protein concentrations were measured using a 1/10 and 1/20 dilution. After the protein concentrations were determined, they were adjusted to 2 mg/ml by adding 8 M urea, 400 mM ABC independently for each sample.

100  $\mu g$  of protein (50  $\mu l$  lysate) were reduced using a final concentration of 4 mM DTT and 2 mM TCEP

ID Treatment Gender Birthdate Sampli Genotype 1311 GIPRdn Placebo male 07/07/2011 19/121312 GIPRdn Liraglutide 07/07/2011 19/12female GIPRdn 07/07/2011 1313 Liraglutide female 19/121315 GIPRdn 07/07/2011 Placebo female 20/12Placebo 1316 GIPRdn female 07/07/2011 20/121317 GIPRdn Placebo female 07/07/2011 21/121323 GIPRdn Placebo male 08/07/2011 21/121326 GIPRdn Liraglutide 08/07/2011 20/12male 1331 GIPRdn Liraglutide female 08/07/2011 21/12GIPRdn male 1488 Liraglutide 17/11/2011 02/0!GIPRdn Liraglutide 1492male 17/11/201102/0!female 17/11/2011 1497 GIPRdn Placebo 02/0!GIPRdn Placebo male 17/11/2011 150103/0!17/11/2011 1502 GIPRdn Placebo male 03/0!1503GIPRdn Liraglutide male 17/11/2011 03/0!1505GIPRdn Placebo female 17/11/2011 02/0!GIPRdn 1506Liraglutide female 17/11/2011 03/0!

Table 3.3. Characteristics of pigs and liver samples from the GIPRdn ligglutide treatment study.





**Figure 3.1.** Experimental outline. Liver samples from liraglutide (n = 8) and placebo (n = 9) treated GIPR<sup>dn</sup> pigs were independently analysed using label free quantification (LFQ). Proteins were digested into peptides using LysC followed by trypsin. Peptides were detected using a Q-Exactive HF-X instrument coupled to a 50 cm nano-LC column without prefractionation. Peptides and proteins were identified and quantified using MaxQuant and label free quantification (LFQ). The bioinformatic analysis was performed to find significant, relative proteome differences between the two treatment group

#### $3.2 \ \mathrm{GIPR}^{dn}$ liraglutide treatment study

for 30 min at 56°C. Following the reduction, cysteine residues were blocked using a final concentration of 8 mM IAA for 30 min at room temperature and in the dark. DTT was added to a final concentration of 10 mM and the samples were incubated for 15 min at room temperature. The proteins were first digested with LysC at an enzyme to protein ratio of 1/50 for 4 hours at 37°. 419  $\mu$ l H20 were added to each sample to reduce the urea concentration to below 1 M. Trypsin was added at an enzyme to protein ratio of 1/50 for 16 hours at 37°C. 5  $\mu$ l FA was added to each sample to reduce the pH to below 3 in order to stop the trypsin protein digestion.

# 3.2.1 Mass spectrometry and proteomic analysis

The nano-LC-MS/MS analysis were performed using a Q Exactive HF-X mass spectrometer coupled to an Ultimate 3000 nano-LC system (Thermo Scientific) as described in (?). Briefly, 2  $\mu$ g peptides were separated at 200 nl/min using sequential linear gradients from 1% to 5% solvent B (0.1% FA in acetonitrile, whereas

solvent A was 0.1% FA, 1% accetonitrile) for 10 min, followed by 5% to 25% B for 115 min, and lastly 25%to 50% B in 20 min. Spectra were acquired using a precursor ion scan at a resolution of 120,000 from 380 to 2000 m/z, followed by MS/MS scans of the 24 peaks with highest intensity at a resolution of 15,000.

Peptides and proteins were identified (FDR < 0.01) using MaxQuant 1.6.1.0 (??) with the NCBI RefSeq Sus scrofa proteome database (version 20180313) and quantified using MaxLFQ and with the match between run feature enabled (?). Apart from MaxQuant version number used, the parameters used were the same as for the study of AT in MIDY pigs. For details about parameters used see C.1.

#### 3.2.2 Bioinformatics

The following bioinformatic analysis was done in R 3.6.0 (?). Gene names were identified based on the NCBI RefSeq identifiers using a custom R script together with the BioMart database (?) using the biomaRt package in R (?). All proteins LFQ intensity values were  $\log_2$  transformed. Proteins were filtered using 55% valid values in at least one group (i.e. allowing

for 3 or 4 missing values at least one group, depending on the group (since n is different for the two treatment groups). Additional normalization (variance stabilizing transformation) and imputation were performed using the DEP package (?). The missing proteins were imputed using a random draws from a left shifted Gaussian distribution with parameters: scale = 0.3and shift = 1.8 (scale defines the width of the Gaussian distribution relative to the standard deviation of the data, and shift defines how much the distribution that the random values are drawn from are shifted downwards. A linear model was used with LFQ intensity as the dependent variable and gender as a independent variable 3.3 in order to filter out the effects of gender on the protein LFQ intensities. For all downstream analysis the resulting residuals from the linear model was used. For further statistical analysis R's base functions were used together with the tidyverse suite of packages (??). Multiple hypotheses correction was performed using the false discovery rate method provided by the R qualue package (?).

Significant proteins (q-value < 0.05) were uploaded to the STRING database (version 11.0) (?) separately for each group with default parameters. Selected en-

riched gene sets were selected among the significantly enriched gene sets and highlighted on the protein network maps.

The residuals from the linear model together with the gene names for all proteins (whether significant or non-significant) were uploaded to GSEA 4.0.1 (?). GSEA analysis was performed using GOBP, GOCC, GOMF, and KEGG gene sets. Gene sets larger than 500 proteins or smaller than 15 were excluded from the analysis. The following parameters were used: permutation type was set to gene\_set, metric for ranking gene sets were set to Ttest, and collapse dataset to gene symbols was set to false. Default settings were used if not specified elsewhere.

# Chapter 4

# Results

# 4.1 Differential proteome analysis of adipose tissue from the Munich MIDY pig biobank

In order to investigate how hypoinsulenemia in the MIDY pigs effects the proteome in adipose tissue, two different types of adipose tissue were selected from the Munich MIDY pig biobank (?), for both wildtype (WT, n = 5) and MIDY pigs (n = 4): (i) abdominal

subcutaneous adipose tissue and (ii) mesenteric adipose tissue (MAT) (a type of visceral adipose tissue).

During previous studies of MIDY liver tissue, it was detected that one of the MIDY samples didn't cluster very well with the other transgenic pigs (data not shown). It was later discovered that this pig had an insulinoma in the pancreas that was able to produce insulin. For this reason, this pig was not used in the study of the liver (?), and it was not used in this study of MIDY AT for this reason either.

The purified peptides from respective sample were analysed using a Q-Exactive HF-X mass spectrometer. Protein intensity quantification was made using MaxQuant's label free quantification (LFQ) method (?). Across all samples, a total of 2779 proteins were identified using this approach. Identifications were filtered for proteins with only one missing value in one sample group (a sample group is defined as one adipose tissue type plus the genotype of the samples, in total there are four groups). This filter only keeps the proteins that have been quantified with high confidence, limiting the number of uses of missing value imputation and increasing the robustness of the downstream statistical tests.

As can be seen in the principal component analysis (PCA) of the two first principal components (PCs) in **Figure 4.1**, the samples can be separated into two clusters containing the samples that originated from mesenteric and subcutaneous adipose tissue (SCAT) respectively. Moreover, clusters between MIDY and WT within each AT cluster can be detected, but they are not as well defined as between the two tissue types.

To alleviate the small sample size of the Munich MIDY pig biobank, linear modelling using a 2-way ANOVA was performed in order to detect global proteomic changes in adipose tissue derived from diabetic and non-diabetic pigs. This approach will also be used to detect protein abundance changes between the second factor group, adipose tissue type, as well as the interaction effect between the genotype and adipose tissue factors.

As can be seen in the p-value histograms (using the p-values derived from the ANOVA) **Figure 4.2A**, there is an enrichment of low p-values for the adipose tissue factor and a smaller enrichment of low p-values for the genotype factor. Contrary, the pvalue histogram for the interaction factor is almost uniformly distributed, meaning that we don't expect

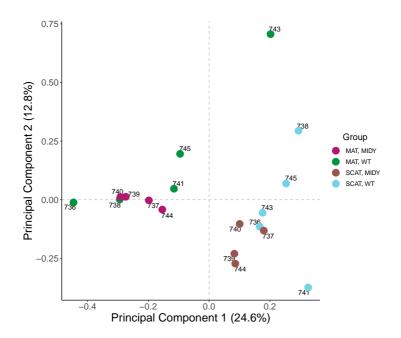



Figure 4.1. First two principal components of the adipose tissue MIDY pigs PCA. The percentages are the proportion of variance explained by each principal component.

to find many proteins to be significant for the interaction effect after multiple hypotheses testing. After pooling all p-values together, there's still a pronounced enrichment of low p-values (**Figure 4.2B**), telling us that there are an enrichment of small p-values among all tested hypotheses and that FDR correction can be applied to the grouped set of p-values.

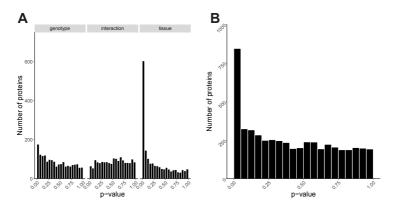



Figure 4.2. P-value histograms with p-values from the 2-way ANOVA. (A) Separate p-value histograms for each 2-way ANOVA factor (genotype, interaction, and tissue), (B) pooled p-value histogram using all pvalues derived from the 2-way ANOVA.

### 4.1.1 Genotype effects

The 2-way ANOVA in conjunction with multiple hypotheses correction (using the qvalue (?) package in R) approach found 14 proteins to be significantly (FDR < 0.05) more abundant and 9 to be significantly less abundant in adipose tissue from MIDY pigs (Figure 4.3A).

14 proteins were found to be upregulated in the adipose tissue of MIDY pigs, however one protein, tetratricopeptide repeat protein 38 (TTC38), also had a significant interaction effect (FDR = 0.01). Thus, TTC38 will be considered for its significant Genotype x Tissue interaction effect.

Note that the log2 fold changes used here are not derived from the 2-way ANOVA's linear model, they are calculated from the original imputed dataset and should serve as a tool to elucidate the direction of the effect for a significant difference detected by the 2-way ANOVA.

Among the significant proteins with the highest abundance increase in MIDY adipose tissue were retinol dehydrogenase 16 (RDH16, l2fc = 4.84, FDR = 0.000007), carboxyl esterase 1 (CES1, L2FC = 2.21, FDR = 0.03),

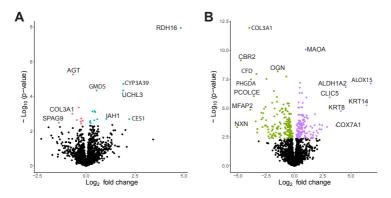



Figure 4.3. MIDY 2-way ANOVA volcano plot. (A) Volcano plot showing the results for the genotype factor, significant proteins (q-value < 0.05) enriched in AT of MIDY and WT pigs are colored in green and red respectively. (B) Volcano plot showing the results for the tissue factor, significant proteins (q-value < 0.05) are colored in purple for MAT and in yellow for SCAT.

cytochrome P450 3A39 (CYP3A39, l2fc = 1.90, FDR = 0.002), and ubiquitin carboxyl-terminal hydrolase 3(UCHL3, l2fc = 1.89, FDR = 0.003) (see **Table 4.1** for all proteins significantly more abundant in MIDY pigs).

RDH16 was identified in all MIDY samples (both from SCAT and VAT), but was only detected in one WT sample (derived from SCAT) at a lower intensity level. This explains the high log2 fold change and high significance (low FDR value) of RDH16, since LFQ values in WT adipose tissue were not quantified and had to be imputed at lower intensity levels (**Figure 4.4**). RDH16 has previously been found to be significantly more abundant in the liver of MIDY pigs (?).

The two subunits of the mitochondrial trifunctional protein (MTP), trifunctional enzyme subunit alpha, mitochondrial (HADHA, l2fc = 0.47, FDR = 0.02) and trifunctional enzyme subunit beta, mitochondrial (HADHB, l2fc = 0.42, FDR = 0.01) were also detected to be significantly more abundant in adipose tissue from MIDY pigs.

The proteins that had the significantly highest abundance decrease in MIDY adipose tissue were angiotensinogen (AGT, l2fc = -0.67, FDR = 0.0008), fructose-1,6-

**Table 4.1.** Significant proteins upregulated in adiposetisuee from MIDY pigs.

| Gene name | Protein name                                                      | p-value | C |
|-----------|-------------------------------------------------------------------|---------|---|
| RDH16     | retinol dehydrogenase 16                                          | 1.1E-08 | 7 |
| CES1      | liver carboxylesterase precursor                                  | 0.0020  |   |
| CYP3A39   | cytochrome P450 3A39                                              | 1.9E-05 |   |
| UCHL3     | ubiquitin carboxyl-terminal hydrolase                             | 4.5E-05 |   |
| IAH1      | isoamyl acetate-hydrolyzing<br>esterase 1 homolog                 | 0.0020  |   |
| AK2       | adenylate kinase 2, mitochondrial                                 | 0.0021  |   |
| GMDS      | GDP-mannose 4,6 dehydratase                                       | 4.6E-05 |   |
| HADHA     | trifunctional enzyme subunit<br>alpha, mitochondrial              | 8.0E-04 |   |
| HADHB     | trifunctional enzyme subunit<br>beta, mitochondrial               | 6.9E-04 |   |
| ACOT4     | acyl-coenzyme A thioesterase 1-like                               | 0.0024  |   |
| PSMD5     | 26S proteasome non-ATPase<br>regulatory subunit 5                 | 7.5E-04 |   |
| TTC38     | tetratricopeptide repeat protein 38                               | 0.0034  |   |
| PRKAR2A   | cAMP-dependent protein kinase type<br>II-alpha regulatory subunit | 0.0026  |   |
| GALM      | aldose 1-epimerase                                                | 0.0031  |   |

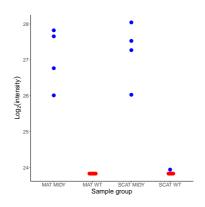



Figure 4.4. Distribution of observed values for RDH16. Intensity values are colored blue if RDH16 was detected in a sample and red if it was missing. Missing values were imputed by a constant value of 10% of the mean for all samples.

bisphosphatase 1 (FBP1, l2fc = -0.47, FDR = 0.03), hexokinase 1 (HK1, l2fc = -0.38, FDR = 0.01) and elongation factor 1-delta (EEF1D, l2fc = -0.28, FDR = 0.04) (**Table 4.2**).

**Table 4.2.** Significant proteins downregulated in adi-pose tisuee from MIDY pigs.

| Gene name | Protein name                                            | p-value |
|-----------|---------------------------------------------------------|---------|
| SPAG9     | C-Jun-amino-terminal kinase-interacting<br>protein 4    | 0.0032  |
| COL3A1    | collagen alpha-1(III) chain precursor                   | 0.0010  |
| AGT       | angiotensinogen                                         | 5.5E-06 |
| FBP1      | fructose-1,6-bisphosphatase 1                           | 0.0023  |
| HK1       | hexokinase-1                                            | 0.0004  |
| EEF1D     | elongation factor 1-delta                               | 0.0028  |
| ATOX1     | copper transport protein                                | 0.0037  |
| EIF3C     | eukaryotic translation initiation factor<br>3 subunit C | 0.0019  |
| HSP90AA1  | heat shock protein HSP 90-alpha                         | 0.0025  |
|           |                                                         |         |

# 4.1.1.1 Gene Ontology enrichment analysis using the STRING database

Gene ontology and KEGG pathway enrichment analysis was performed using STRING, (?) and functional annotations from *Homo sapiens* and the significantly differentially expressed proteins. The resulting Proteomaps are shown in **Figure 4.5**.

For the protein set that were upregulated in AT of MIDY pigs, CYP3A39 were replaced with its human paralog CYP3A4, since CYP3A39 doesn't exist in *H. sapiens*. Porcine CYP3A39 and human CYP3A4 share 77.4% identity (BLAST (?), a multiple sequences alignment is shown in **Supplementary Figure A.1**) and the two proteins share high homology in key active sites (?), it is thus probable that they have similar functions in the two different organisms. In the text I will still refer to the protein as CYP3A39.

Proteins that are significantly more abundant in MIDY pigs are involved in fatty acid (ACOT4, CES1, CYP3A4, HADHA, and HADHB) and lipid metabolic processes (ACOT4, CES1, CYP3A4, HADHA, HADHB, IAH1, and RDH16). RDH16 and CYP3A4 are both annotated as being part of the KEGG retinol metabolism

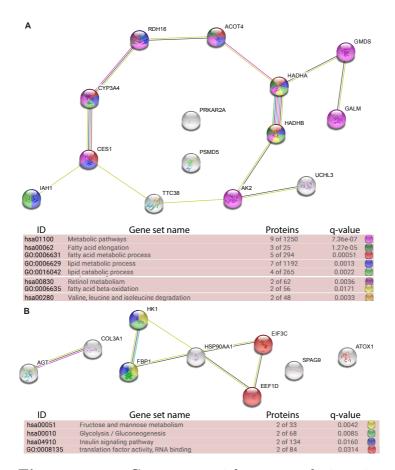
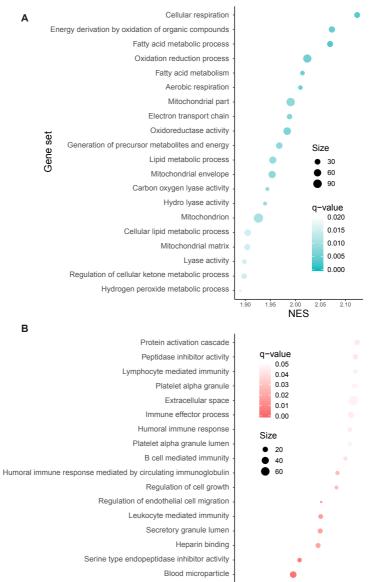



Figure 4.5. Gene set enrichment analysis using the STRING database. (A) GSEA using the significant proteins more abundant in AT from MIDY pigs and (B) WT pigs. Proteins belonging to gene set are colored according to the table, edges between proteins indicates that there is an interaction between the two proteins (an interaction score of 0.15 was used). The Proteins column indicates how many proteins in the

pathway, which is enriched in MIDY pigs according to the STRING analysis.

Interestingly, valine, leucine and isoleucine metabolism was also found to be enriched in MIDY pigs, as both MTP subunits were annotated as being involved in this KEGG pathway. The high confidence of a functional interaction between HADHA and HADHB is not surprising since they are both subunits of the same protein complex (?).

In the smaller protein set of proteins that were downregulated in MIDY pigs, both FBP1 and HK1 are annotated by KEGG to be part of fructose and mannose metabolism, glycolysis/gluconeogenesis and the insulin signalling pathway. Both EEF1D and EIF3C have translation factor activity and both proteins bind to mRNA.


#### 4.1.1.2 Gene set enrichment analysis

The proteins were ranked according to their  $-log_{10}$  pvalues, and the log-transformed p-values were assigned a minus sign if the L2FC was negative or a plus sign if it was positive. A preranked GSEA analysis (?) using 1734 gene sets (minimum gene set size = 10 and maxi-

mum size = 500) found that 54 gene sets were enriched for MIDY pigs (Figure 4.6 A, Supplementary table A.3) and 25 gene sets were enriched for WT at q-value < 0.05 (Figure 4.6 B, Supplementary table A.4, Figure 4.7).

Among the 54 gene sets enriched in MIDY pigs were 6 GOCC categories related to mitochondria (mitochondrial part, mitochondrial envelope, mitochondrion, mitochondrial matrix, inner mitochondrial membrane protein complex, and mitochondrial protein complex), 5 gene sets related to fatty acid metabolism (fatty acid metabolic process, fatty acid metabolism, fatty acid catabolic process, regulation of fatty acid metabolic process, and fatty acid  $\beta$ -oxidation), as well as 5 GOBP gene sets involved in lipid metabolic processes (lipid metabolic process, cellular lipid metabolic process, lipid oxidation, cellular lipid catabolic process, and lipid modification).

The enriched GO classes were then trimmed to remove mainly redundant classes using the software GO trimming (?). After trimming, 31 GO classes remained (21 GOBP, 8 GOCC, and 6 GOMF respectively) for enrichments in MIDY pigs. Among the enriched GOBP classes (**Figure 4.8**) there are a 16 dif-



Glycosaminoglycan binding

Vesicle lumen

Gene set

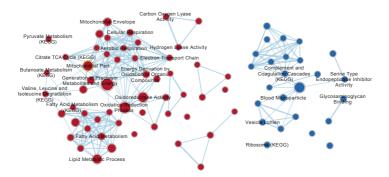



Figure 4.7. Network map showing significant (q-value < 0.05) GO ontology and KEGG categories enriched in MIDY (red) and WT (blue) pigs using GSEA. Annotated categories were either KEGG pathways or GO cateories significant at q-value < 0.01. The size of the nodes reflect the gene set size and the size of the edges reflects similarity between the two gene sets. Network map was made using the Cytoscape plugin Enrichment Map.

ferent clusters. There are two major clusters, of which the first includes lipid metabolic process, cellular respiration, and oxidation-reduction process and the second includes fatty acid metabolic process, organic acid metabolic process, primary alcohol metabolic process, and tricarboxylic acid metabolic process. Two smaller clusters include processes regulating fatty acid and ketone metabolism and anion transport. 5 gene sets doesn't belong to a single cluster, they include response to hydrogen peroxide, positive regulation of canonical Wnt signaling pathway, generation of precursor metabolites and energy, hydrogen peroxide catabolic process, and reactive oxygen species metabolic process.

Interestingly, 21 proteasomal subunits were found to be included in at least one enriched category (including PSMD5 that were found to be significant in the 2-way ANOVA). These proteins were mainly found in GO categories such as positive regulation of wnt signaling and in regulation of ketone metabolism. Cellular respiration was found to be enriched, as well as gene sets that involved response and breakdown of hydrogen peroxide and processes related to reactive oxygen species (ROS).

If one looks beyond categories that were enriched

at q-value < 0.05, additional categories of interest can also be found to be enriched in MIDY pigs such as response to insulin that was enriched at q-value = 0.076 and lipid catabolic process (q-value = 0.050).

There were also 5 KEGG pathways that were detected to be enriched in AT from MIDY pigs, they were: fatty acid metabolism, citrate cycle TCA cycle, valine, leucine and isoleucine degradation, butanoate metabolism, and propanoate metabolism .

After trimming the 23 GO gene sets enriched in AT from WT pigs, 8 GOBP, 4 GOCC, and 3 GOMF classes remained. For biological processes there was an enrichment of gene sets related to immunological responses, and regulation of cell migration, cell growth, wounding, and protein maturation. Enriched cellular compartments included vesicle lumen and extracellular space. There were two KEGG pathways among the enriched gene sets, ribosome and complement and coagulation cascade.

# 4.1.2 Tissue effects

The distribution of observed proteins in the four different sample groups is shown in **Figure 4.9**. As can

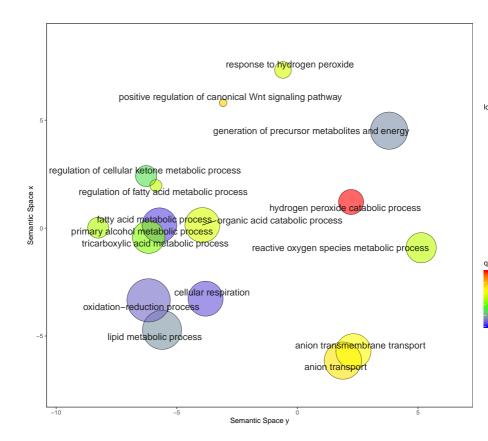



Figure 4.8. Significant GOBP categories in MIDY after trimming away redundant categories. The size of the circles are the log percentages of genes annotated with the GO term in the Uniprot database. The colors are q-values. The distance between two terms are a relative to the how semantically similar the two terms are, i.e. the closer two terms are the more similar they are.

be seen there aren't many proteins that are observed in one genotype group but not in the other, whereas there are considerably more that is only found in one of the tissue groups. Thus, we expect more statistical significant differences in the tissue factor in the 2-way ANOVA analysis.

The 2-way ANOVA found 302 proteins to be significantly differentially expressed after multiple hypotheses testing for the adipose tissue factor at FDR < 0.05. Of these, 141 proteins had a l2fc > 0, meaning that they were more abundant in mesenteric adipose tissue. Conversely, 161 of the significant proteins had a negative l2fc (**Figure 4.3B**, indicating that they had a higher expression in subcutaneous adipose tissue). Here, I will describe the most significantly altered proteins for each adipose tissue group (tables with all significantly altered proteins can be found in the **Supplementary Tables A.1** and **A.2**).

As can be seen in the volcano plot (Figure 4.3B, there are considerably more proteins that have larger l2fc (> 3) than in the genotype comparison. Among the proteins significantly more abundant in MAT with the highest l2fc inludes arachidonate 15-lipoxygenase (ALOX15, l2fc = 6.73, FDR = 0.000026), cytoskele-

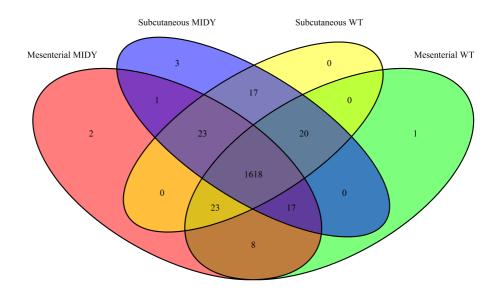



Figure 4.9. Venn diagram showing number of observed proteins in each group. The data were filtered allowing for 1 missing value in at least one group. A protein counts as observed if it has been detected in at least one sample in a group.

tal keratine type I 19 (KRT19, l2fc = 6.38, q-value = 0.00077), Aldehyde dehydrogenase 1 family, member A2 (ALDH1A2, l2fc = 4.54, FDR = 0.000049), keratin type II cytoskeletal 8 (KRT8, l2fc = 4.11, q-value = 0.0015), cytochrome c oxidase subunit 7A1, mitochondrial precursor (COX7A1, l2fc = 3.69, q-value = 0.0099), and chloride intracellular channel protein 5 (CLIC5, l2fc = 3.12, q-value = 0.00023).

Table 4.3 shows the 15 proteins with most significant FDR values among the significant proteins that had a positive l2fc (more abundant in mesenteric adipose tissue). Among these proteins, the most significant proteins were amine oxidase [flavine containing] A (MAOA, l2fc = 1.00, FDR = 0.00000016), heat shock protein HSP 90-alpha (HSP90AA1, l2fc = 0.49, FDR = 0.000025), ALOX15 (l2fc = 6.73, q-value = 2.64E-05), ALDH1A2 (l2fc = 4.54, q-value = 4.90E-05), and component of 2-oxoglutarate dehydrogenase complex, mitochondrial precursor DLST, l2fc = 0.47, q-value = 4.99E-05).

Interestingly, five proteins that were significantly more abundant in MIDY pigs were also significantly more abundant in mesenteric adipose tissue (AK2, ACOT4, HADHA, HADHB, and PSMD5). Four of these pro-

**Table 4.3.** Top 15 most significant proteins moreabundant in mesenteric adipose tissue.

| Gene name | Protein name                                    | p-  |
|-----------|-------------------------------------------------|-----|
| MAOA      | amine oxidase [flavin-containing] A             | 8.5 |
| HSP90AA1  | heat shock protein HSP 90-alpha                 | 6.5 |
| ALOX15    | arachidonate 15-lipoxygenase                    | 7.5 |
| ALDH1A2   | aldehyde dehydrogenase 1 family, member A1      |     |
|           | dihydrolipoyllysine-residue succinyltransferase |     |
| DLST      | component of 2-oxoglutarate dehydrogenase       | 1.6 |
|           | complex, mitochondrial precursor                |     |
| HSP90AB1  | heat shock protein HSP 90-beta                  | 5.0 |
| SUCLG2    | succinate–CoA ligase                            | 4.8 |
| CLIC5     | chloride intracellular channel protein 5        | 1.1 |
| SOD2      | superoxide dismutase 2, mitochondrial           | 1.2 |
| CCT2      | T-complex protein 1 subunit beta                | 3.1 |
| PRDX5     | peroxiredoxin-5, mitochondrial                  | 3.4 |
| KRT19     | keratin, type I cytoskeletal 19                 | 5.8 |
| ALDH9A1   | 4-trimethylaminobutyraldehyde dehydrogenase     | 8.2 |
| IVD       | isovaleryl-CoA dehydrogenase, mitochondrial     | 8.6 |
| PSME1     | proteasome activator complex subunit 1          | 8.8 |
|           |                                                 |     |

teins (all except PSMD5) are involved in metabolic processes (**Figure 4.5**). HSP90AA1 was also found to be significant for the genotype factor, but were more abundant in WT pigs.

Nucleoredoxin (NXN, l2fc = -5.07, q-value = 0.011), carbonyl reductase [NADPH] 2 (CBR2, l2fc = -4.75, FDR = 0.0000010, collagen alpha-1(III) chain (COL3A1, l2fc = -3.99, FDR = 0.0000000044), microfibrillar-associated protein 2 (MFAP2, l2fc = -3.90, q-value = 0.0013), D-3-phosphoglycerate dehydrogenase (PHGDH, l2fc = -3.84, q-value = 1.40E-05), procollagen C-endopeptidase enhancer 1 (PCOLCE, l2fc = -3.59, q-value = 0.00021), and complement factor D (CFD, l2fc = -3.36, q-value = 7.33E-06) were the the most significantly abundant proteins in SCAT (**Figure 4.3**).

Table 4.4 shows the 15 proteins with the most significant FDR values among the significant proteins that had a negative l2fc (more abundant in subcutaneous adipose tissue). In this group, COL3A1, CBR2, mimecan (OGN, l2fc = -1.48, FDR = 0.0000064) and CFD were the proteins with the most significant q-values .

Three proteins (AGT, COL3A1, EIF3C) found to be significantly more abundant in subcutaneous tissue

**Table 4.4.** Top 15 most significant proteins moreabundant in subcutaneous adipose tissue.

| Gene name | Protein name                               | p-va  |
|-----------|--------------------------------------------|-------|
| COL3A1    | collagen alpha-1(III) chain precursor      | 1.15I |
| CBR2      | carbonyl reductase [NADPH] 2               | 7.56I |
| OGN       | mimecan isoform X1                         | 6.641 |
| CFD       | complement factor D                        | 1.14I |
| FERMT2    | fermitin family homolog 2                  | 1.82I |
| MMP2      | 72 kDa type IV collagenase precursor       | 3.06I |
| PHGDH     | D-3-phosphoglycerate dehydrogenase         | 3.291 |
| SDR16C5   | epidermal retinol dehydrogenase 2          | 3.33I |
| PCOLCE    | procollagen C-endopeptidase enhancer 1     | 9.33I |
| DCN       | decorin precursor                          | 1.10I |
| LUM       | lumican precursor                          | 2.841 |
| SGCA      | alpha-sarcoglycan precursor                | 3.411 |
| TUBB      | tubulin beta chain                         | 3.98I |
| SNX3      | sorting nexin-3                            | 4.05I |
| SORBS1    | sorbin and SH3 domain-containing protein 1 | 4.891 |
|           |                                            |       |

were also found to be significantly enriched in WT pigs.

### 4.1.2.1 GSEA: gene sets enriched in different AT depots

A similar preranked GSEA analysis was performed using the p-values for the AT factor of the 2-way ANOVA. 154 gene sets were enriched in MAT and 174 gene sets were enriched in SCAT (q-value < 0.05) (**Supplementary** tables A.5 and A.6).

Among the 154 enriched gene sets in pig MAT included 102 GOBP, 18 GOCC, 22 GOMF, and 11 KEGG gene sets (**Table A.5**). Figure 4.10A shows the top 20 most enriched gene sets in MAT. It can be seen that a majority of the top 20 most enriched gene sets are involved in metabolism and energy derivation or located in mitochondria. The most significantly enriched gene sets were mitochondrial part, mitochondrial matrix, cellular respiration, generation of precursor metabolites and energy, and energy derivation by oxidation of organic compounds.

Among the enriched GOBP categories were process involved in respiration and energy generation, such as cellular and aerobic respiration and electron transport

chain. Metabolic gene sets enriched in MAT were categories such as several gene sets related to fatty acid metabolism and lipid metabolism. Also the gene sets glucose and branched-chain amino acid metabolism were enriched in MAT. Other GOBP categories included categories involved in processes such as protection against oxidative damage, cofactor metabolic process, oxidation-reduction process, tricarboxylic acid metabolic process, and protein polyuqibuitination. Among the 18 GOCC categories enriched in MAT, 8 gene sets were related to mitochondria. Other GOCC categories of note were two proteasome related categories and respiratory chain complex.

The 11 KEGG pathways that were also enriched in MAT were mainly involved in metabolism and energy generation. These inluded TCA cycle, fatty acid metabolism, oxidative phosphorylation, butanoate, propanoate, and pyruvate metabolism, and valine, isoleucine, and leucine amino acid degradation. The KEGG pathways proteasome and peroxisome were also significantly enriched in pig MAT.

The MIDY and MAT significantly enriched categories share a large overlap with each other, with 46 out of 54 categories enriched in MIDY pigs also be-

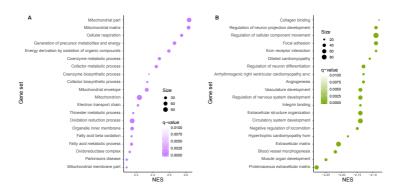



Figure 4.10. Top 20 most enriched gene sets from the tissue GSEA. (A) The top 20 most enriched gene sets in MAT and (B) the top 20 most enriched gene sets in SCAT. Gene sets are ordered according to their normalized enrichment score (NES). Size is the number of proteins detected in each gene set.

ing enriched in MAT at a FDR level of 0.05. The eight gene sets that were only enriched in MIDY but not MAT included: the KEGG pathway butanoate metabolism, and the GOBP categories primary alcohol metabolic process and regulation of fatty acid metabolic process.

The the top 20 most enriched gene sets in SCAT can be seen in (**Figure 4.10**). The most significantly enriched gene sets are collagen binding, regulation of neuron projection development, regulation of cellular component movement, focal adhesion, and ECM receptor interaction. Among the 174 gene sets enriched in SCAT, several gene sets related to the extracellular matrix was detected to be enriched here, as well as gene sets related to blood and angiogenesis. Gene sets related to the cytoskeleton were also enriched in SCAT, such as actin binding and actomyosin. Other features include gene sets involved in neuron and muscle development, integrin binding, cell adhesion, and skin development.

Among the 11 KEGG pathways significantly enriched in SCAT, were gene sets related to heart and muscle tissue, ECM receptor interaction, focal adhesion and gap junction, and endocytosis. There were

also two KEGG pathways related to cancer that were enriched in SCAT.

Only four out of the 25 gene sets enriched WT adipose tissue were detected as significantly enriched in SCAT. These four gene sets were glycosaminoglycan binding, secretory granule lumen, heparin binding, and extracellular space. This is considerably smaller than the overlap between the enriched gene sets detected in MIDY adipose tissue and MAT.

# 4.1.3 Interaction effects

As predicted from the p-value histograms (**Figure 4.2**) there were considerably fewer proteins significant for the Genotype x Tissue interaction factor than the noninteraction factors. Only five proteins were found to be significant for the interaction effect between genotype and adipose tissue after multiple hypotheses correction with FDR correction. The five proteins were were proliferating cell nuclear antigen (PCNA), RNA-binding protein with multiple splicing (RBPMS), non-specific lipid-transfer protein 2 (SCP2), TTC38, and vacuolar protein sorting-associated protein 29 (glsvps29).

Of these, PCNA and RBPMS were heavily imputed

(15 and 7 missing values respectively) and, when identified and quantified in a sample, were lowly expressed. RBPMS is involved in the processing of RNA and was significantly more abundant in MIDY MAT than in WT MAT. It was detected in all MIDY MAT samples, but only one WT MIDY sample (at a similar LFQ intensity as the MIDY samples). Since I can't find any information that links RBPMS to adipose tissue and diabetes (and that it was detected in all sample groups), it's possible that this significant difference is an artefact from quantification and missing value imputation. Contrary, SCP2, TTC38, and VPS29 were detected in all samples.

To elucidate which comparisons were significant for these 3 proteins, a Tukey's honest significant differences (HSD) test was performed. Tukey's HSD test compares the means of the different factor levels and adjusts p-values for multiple hypotheses by using familywise error rate (FWER) within each group. We will focus on significant differences between comparable groups.

Table 4.5 shows the results of Tukey's HSD test, 7 comparisons were found to be significant at an adjusted p-value < 0.05 and meeting the above criteria. PCNA was significant in all comparisons includ-

ing MAT from MIDY samples. SCP2 was more significantly abundant in the SCAT from WT pigs when compared to SCAT from MIDY pigs (l2fc = 0.49, adjusted p-value = 0.0028) and it was also significantly less abundant SCAT when compared to MAT in MIDY pigs (l2fc = -0.40, adjusted p-value = 0.021). TTC38 was less significantly abundant in WT pigs when compared to MIDY pigs in SCAT (l2fc = -0.51, adjusted p-value = 0.00037) and VPS29 was less abundant in SCAT when compared to MAT in MIDY pigs (l2fc =-0.44, adjusted p-value = 0.00045).

# 4.2 GIPR pigs

In order to study the effects of liraglutide treatment on T2DM pigs, liver samples were investigated from 8  $\operatorname{GIPR}^d n$  pigs treated with liraglutide and 9  $\operatorname{GIPR}^d n$ pigs treated with placebo, in order to understand how liraglutide treatment affect the liver proteome of T2DM pigs. The samples were digested and the subsequent peptides were analysed using a Q Exactive HF-X mass spectrometer.

A total of 3404 protein groups were identified after

Table 4.5. Significant comparisons for the 5 proteins that were significant for the interaction factor in the 2-way ANOVA (q-value < 0.05). All significant comparisons with adjusted p-values from the Tukey HSD test are shown (adjusted p-value < 0.05).

| Protein | Comparison     | Adjusted p-value | Log 2 fold cha |
|---------|----------------|------------------|----------------|
| PCNA    | midy:sc-midy:m | 0.000018         | -2.41          |
| PCNA    | wt:m-midy:m    | 0.00011          | -1.93          |
| PCNA    | wt:sc-midy:m   | 0.000282991      | -1.77          |
| TTC38   | wt:sc-midy:sc  | 0.000372538      | -0.51          |
| VPS29   | midy:sc-midy:m | 0.000453679      | -0.44          |
| SCP2    | wt:sc-midy:sc  | 0.002782554      | 0.49           |
| SCP2    | midy:sc-midy:m | 0.021274227      | -0.40          |
| VPS29   | midy:sc-wt:m   | 0.021551092      | -0.26          |
| TTC38   | wt:sc-wt:m     | 0.023981781      | -0.29          |
| RBPMS   | wt:m-midy:m    | 0.035444865      | -1.45          |
| VPS29   | wt:sc-midy:m   | 0.035633954      | -0.24          |
| SCP2    | midy:sc-wt:m   | 0.04432736       | -0.33          |

filtering out potential contaminants and reverse hits without any prefractionation. Of these 2611 proteins could be quantified in at least 5 samples in at least one group, and missing values were imputed from the lower end of a normal distribution.

As the treatment groups included both male and female pigs (**Table 3.3**), an initial statistical test using a 3-way ANOVA was carried out to see how different factors affected differential protein expression. As can be seen in **Figure 4.11**, there were considerably more proteins found to be significant for the treatment factor after multiple hypotheses correction at a q-value <0.05 than for any other factor or interaction between factors. Based on this, it was decided to focus on the differences observed between the LT and PT treated GIPR<sup>d</sup>n pigs. To increase the statistical power of the study, a linear model was applied to the protein LFQ intensities in order to filter out gender effects from the different proteins' expression values.

Comparing PCA made on the original LFQ intensities and the residuals from the linear model, it was seen that the linear model increased the proportion of variance explained by the principal components of the PCA (data not shown). As can be seen in the

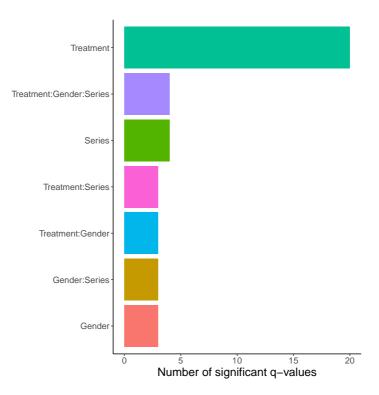



Figure 4.11. Number of proteins significantly altered in abundance after multiple hypotheses correction for the different factors and interactions. 3-way ANOVA was used to get p-values for each comparison. The series factor reflects the time when the experiments were performed.

PCA, the two first principal components separates the two different treatment groups into two separate clusters that defines the two different treatments (Figure 4.12).

After performing an equal variance Student's ttest on the resulting residuals from the linear model and adjusting the hypotheses using multiple hypotheses correction, a total of 127 proteins were identified as being differentially abundant at a significance level of q-value < 0.05 (Figures 4.13, 4.14).

# 4.2.1 Proteins and gene sets significantly enriched in liraglutide treated pigs

64 proteins were detected to be significantly more abundant in liver samples from liraglutide treated GIPR<sup>dn</sup> pigs (**Supplementary Table B.1**). E3 ubiquitinprotein ligase RBX1 (RBX1) was the protein with highest fold change that was significant in liraglutide pigs (l2fc = 1.69, q-value = 0.0012). Other significant proteins with large log2 fold changes in liver from LT GIPR<sup>dn</sup> pigs (**Table 4.6**) were the antiapoptotic protein anamorsin (CIAPIN1, l2fc = 1.28, q-value =

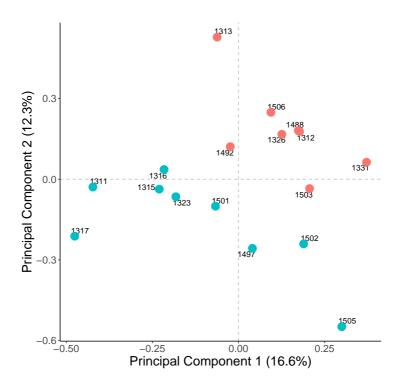



Figure 4.12. Dimension reduced visualization of the proteomic data from the lingulutide (red) and placebo (green) treated  $GIPR^dn$  pigs using PCA. The plot shows the two first principal components.



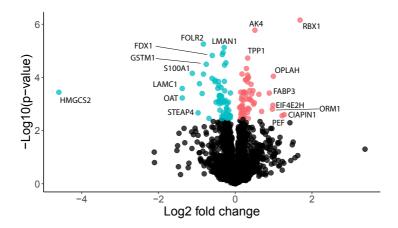



Figure 4.13. Volcano plot using the residual l2fc and p-values from the t-test using the residuals. Significant proteins (q-value < 0.05) are colored in red for proteins enriched in the liver of liraglutide treated pigs and green for proteins enriched in placebo treated pigs. Selected proteins are labelled.



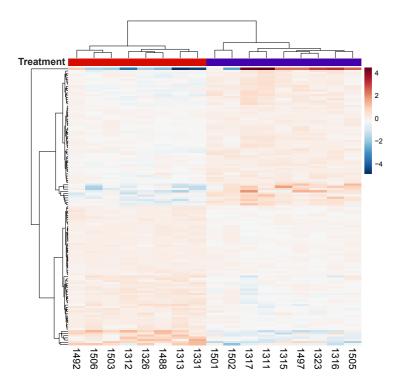



Figure 4.14. Heatmap showing LFQ values of proteins significantly altered in abundance between liver from LT and PL treated  $\text{GIPR}^{dn}$  pigs, residuals from the gender linear model and the ward.D2 clustering methods were used. Treatment annotation row: blue = PT and red = LT

0.042), the calcium binding protein peflin (PEF1, l2fc = 1.22, q-value = 0.044), 5-oxoprolinase (OPLAH, l2fc = 0.99, q-value = 0.0092), and eukaryotic translation iniation factor 4E type 2 (EIF4E2, l2fc = 0.98, q-value = 0.025).

**Table 4.6.** Top 10 significantly more abundant proteins in liver samples from liraglutide treated GIPR<sup>dn</sup> pigs (q-value < 0.05).

| Gene name | Protein name                                              | l2fc | p-value  |
|-----------|-----------------------------------------------------------|------|----------|
| RBX1      | E3 ubiquitin-protein ligase<br>RBX1                       | 1.69 | 6.98E-07 |
| CIAPIN1   | anamorsin                                                 | 1.28 | 0.0025   |
| PEF1      | peflin                                                    | 1.22 | 0.0028   |
| OPLAH     | 5-oxoprolinase                                            | 0.99 | 9.05E-05 |
| EIF4E2    | eukaryotic translation initiation<br>factor 4E type 2     | 0.98 | 0.0011   |
| ORM1      | alpha-1-acid glycoprotein                                 | 0.97 | 0.0016   |
| FABP3     | fatty acid-binding protein, heart                         | 0.89 | 3.90E-04 |
| GPAM      | TRPM8 channel-associated factor 2-like                    | 0.69 | 0.0019   |
| ABCB1     | ATP-binding cassette, sub-family<br>B (MDR/TAP), member 1 | 0.62 | 4.30E-04 |

#### 111

**Table 4.6.** Top 10 significantly more abundant proteins in liver samples from liraglutide treated GIPR<sup>dn</sup> pigs (q-value < 0.05).

| Gene name | Protein name                         | l2fc | p-value  |
|-----------|--------------------------------------|------|----------|
| AK4       | adenylate kinase 4,<br>mitochondrial | 0.51 | 1.68E-06 |
| GARS      | glycine–tRNA ligase                  | 0.5  | 9.00E-04 |

The 64 proteins enriched in liraglutide treated GIPR<sup>dn</sup> were submitted to the STRING database to detect correlation between the proteins and GO and KEGG gene set enrichments (**Figure 4.15**). As can be seen in **Figure 4.15** the majority (41 proteins) of the enriched proteins were annotated as being cytosolic according to GOCC, there were also 11 proteins that were from the mitochondrial part. Interestingly, 6 enriched proteins were part of the chaperonin-containing ring-complex, which mediates protein folding.

Moreover, 15 proteins were annotated as being part of the translation GOBP gene set. Of these 15 proteins 10 were various aminoacyl-tRNA ligases. The majority of the proteins are involved in various metabolic

processes, such as the GOBP gene sets: cellular amide metabolic process (22 proteins) and protein metabolic process (29 proteins). 4 proteins (RBX1, EIF4E2, PDHB, and ENO1) were part of the hypoxia-induced factor 1 (HIF1) signalling pathway from the KEGG annotation database.

# 4.2.2 Proteins and gene sets significantly enriched in placebo treated pigs

In placebo treated GIPR<sup>*dn*</sup> pigs, 63 proteins were found to be significantly more abundant in the liver (**Supplementary Table B.2**). The most significantly differentially expressed proteins was hydroxymethylglutaryl-CoA synthase, mitochondrial (HMGCS2, l2fc = -4.60, q-value = 0.015). HMGCS2 had the highest absolute log2 fold change of all proteins (**Figure 4.13**). Other proteins that were among the most significantly enriched proteins in placebo treated GIPR<sup>*dn*</sup> were laminin subunit gamma-1 (LAMC1, l2fc = -1.38, q-value = 0.014), ornithine aminotransferase (OAT, l2fc = -1.38, q-value = 0.018), probable calcium ion signal transducer protein S100A1 (S100A1, l2fc = -1.12, q-value = 0.0087),

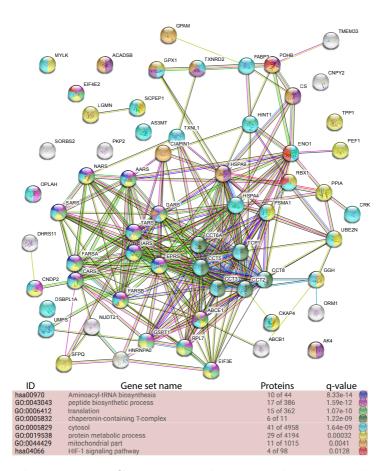



Figure 4.15. Gene set enrichment analysis using the STRING database for proteins enriched in the liver of LT GIPR<sup>dn</sup> pigs. Proteins belonging to a gene set are colored according to the table, edges between proteins indicates that there is an interaction between the two proteins (an interaction score of 0.4 was used). The Proteins column indicates the number of proteins in the given dataset detected for a given gene set.

and metalloreductase STEAP4 (STEAP4, l2fc = -0.97, q-value = 0.037).

**Table 4.7.** Top 10 significantly more abundant proteins in liver samples from placebo treated  $\text{GIPR}^{dn}$  pigs (q-value < 0.05).

| Canada    | Ductoin none                                         | 101-  |          |
|-----------|------------------------------------------------------|-------|----------|
| Gene name | Protein name                                         | l2fc  | p-value  |
| HMGCS2    | hydroxymethylglutaryl-CoA<br>synthase, mitochondrial | -4.60 | 3.60E-04 |
| LAMC1     | precursor<br>laminin subunit gamma-1<br>precursor    | -1.38 | 2.60E-04 |
| OAT       | ornithine aminotransferase,<br>mitochondrial         | -1.38 | 5.90E-04 |
| S100A1    | protein S100-A1                                      | -1.12 | 7.02E-05 |
| STEAP4    | metalloreductase STEAP4                              | -0.97 | 0.0022   |
| DHRS7     | dehydrogenase/reductase SDR<br>family member 7       | -0.93 | 1.70E-04 |
| GNMT      | glycine N-methyltransferase                          | -0.86 | 4.00E-04 |
| FOLR2     | folate receptor 2                                    | -0.83 | 5.57E-06 |
| GATM      | glycine amidinotransferase,<br>mitochondrial         | -0.83 | 7.53E-05 |
| GSTM1     | glutathione S-transferase Mu $1$                     | -0.75 | 3.19E-05 |
|           |                                                      |       |          |

#### 115

**Table 4.7.** Top 10 significantly more abundant proteins in liver samples from placebo treated  $\text{GIPR}^{dn}$  pigs (q-value < 0.05).

#### Gene name Protein name l2fc p-value

To find enrichments and correlations among the proteins enriched in the placebo treated group, the 63 proteins enriched were uploaded to the STRING database. However, no corresponding human gene called CYP2C33 was found. To include the finding when performing GSEA with STRING, the closest human homolog was included CYP2C8 (the two proteins share > 60% homology).

The majority of the proteins were, similarly to the proteins more abundant in the liraglutide group, part of metabolic processes (53 proteins). Enriched GOBP gene sets included oxididation-reduction process (21 proteins), cellular amino acid metabolic (11 proteins) and catabolic processes (6 proteins) (**Figure 4.16**). 4 GOBP gene sets related to lipid and fatty acid metabolic processes were also significant, they were lipid metabolic process, lipid biosynthetic process, cellular lipid catabolic

process, and long-chain fatty acid biosynthetic process.

Also among this set of proteins cytoplasmic part was also a common GOCC (60 proteins). But 49 proteins also had a GOCC annotation named organelle part, including 16 proteins annotated as being located in the mitochondrion and 17 proteins as being located in the ER.

Among significantly enriched KEGG pathways were metabolic pathways (23 proteins) and endocytosis (5 proteins). There were four KEGG gene sets that were involved in amino acid metabolism that were enriched in the liver of placebo treated pigs. They were glycine, serine, and threenine metabolism (7 proteins), arginine and proline metabolism (4 proteins), biosynthesis of amino acids (4 proteins), and histidine metabolism (2 proteins). 5 proteins upregulated in placebo treated pigs were enriched in the KEGG pathway endocytosis. Other KEGG pathways of note were carbon metabolism (AMT, FBP1, TKT, and PHGDH), retinol metabolism (CYP1A2, CYP2C8, and DHRS4), terpenoid backbone biosynthesis (HMGCS2 and PCYOX), linoleic acid metabolism (CYP1A2 and CYP2C8), and pentose phophate pathway (FBP1 and TKT).



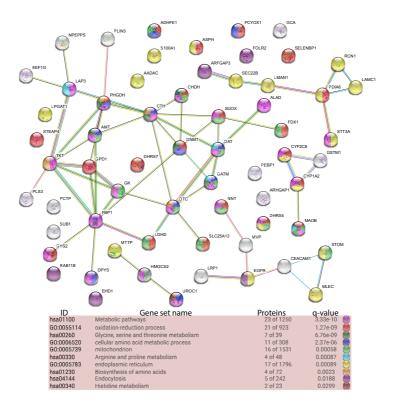



Figure 4.16. Gene set enrichment analysis using the STRING database for proteins significantly enriched in placebo treated pigs. Proteins belonging to a gene set are colored according to the table, edges between proteins indicates that there is an interaction between the two proteins (an interaction score of 0.4 was used). The Proteins column indicates the number of proteins detected in a given gene set. Gene sets are either from the GOBP, GOCC or KEGG databases.

### 4.2.3 GSEA analysis using all proteins quantified in the pig liver

A GSEA analysis was also performed using all proteins and their respective residual values using GSEA 4.0.1. The GSEA analysis found 189 gene sets to be enriched in the liver of liraglutide treated  $\text{GIPR}^{dn}$  pigs and 20 gene sets that were enriched in placebo treated  $\text{GIPR}^{dn}$  pigs (**Supplementary Figure B.1, Supplementary Tables B.3 and B.4**).

The top 21 most enriched gene sets in LT pigs can be seen in **Figure 4.17A**). Similarly to the STRING database analysis, the KEGG pathway aminoacyl tRNA biosynthesis was the most significantly enriched gene set in liver from liraglutide treated GIPR<sup>*dn*</sup> pigs (NES = 2.60, q-value = 0, **Figure 4.17A**, **Supplementary Table B.3**). As can be seen in **Figure 4.18** the expression of the amino acid tRNA ligases are heavily skewed towards the liraglutide group. Other enriched KEGG pathways in liraglutide treated pigs included proteasome (NES = 2.27, q-value = 0), also other GO gene sets related to the proteasome and ubiquitination), lysosome (NES = 1.96, q-value = 0.002), spliceosome (NES = 1.86, q-value = 0.009), oocyte meiosis

(NES = 1.75, q-value = 0.02), and WNT signaling pathway (NES = 1.67, q-value = 0.04).

Since there were so many gene sets enriched in this group, I will briefly summarise the results here. There were many gene sets involved in regulation of cell cycle and/or cell cycle transition. Other "housekeeping" gene sets enriched in liraglutide treated pigs included RNA metabolic process (NES = 2.36, q-value = 0) and several other related gene sets (including both metabolism of non coding and mRNA), as well as gene sets involved in translation initiation and translation. Gene sets related to respiration and electron transport chain were also found to be enriched in liraglutide treated pigs.

There were a few different signaling pathways enriched in the liraglutide group, e.g. interleukin 1 mediated signaling pathway (NES = 2.36, q-value = 0), innate immune response activating cell surface receptor signaling pathway (NES = 2.24, q-value = 0), and different Wnt signaling pathways. The interleukin 1 mediated signaling pathway included the most differentially expressed protein in the liraglutide group, RBX1.

Among the 20 gene sets that were enriched in livers from placebo treated  $\text{GIPR}^{dn}$  pigs, the most enriched

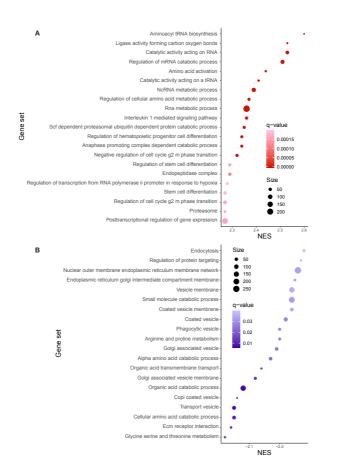



Figure 4.17. The most enriched gene sets in the GSEA analysis for each treatment group. (A) Top 21 most enriched gene sets in LT pig livers. (B) Top 20 most enriched gene sets in PT pig livers. Size = the number of proteins detected in the given gene set, color = q-value significance, and NES = normalized enrichment score.

#### 121



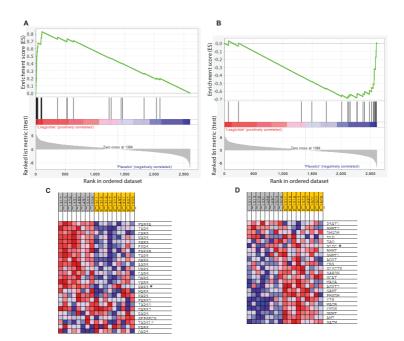



Figure 4.18. Examples of the most enriched gene sets in liraglutide and placebo treated  $\text{GIPR}^{dn}$  pigs. (A) Aminoacyl tRNA biosynthesis (KEGG) the most significantly enriched gene set in liver from liraglutide treated pigs and (**B**) glycine, serine, and threenine metabolism (KEGG), the most significantly enriched gene set in placebo treated pigs. Green line is the running ES score, black lines indicates a protein belonging to the gene set (a hit), and grey line is the ranking metric score. Heatmaps showing the quantified proteins belonging to the aminoacyl tRNA biosynthesis  $(\mathbf{C})$  and glycine, serine, and threenine metabolism (**D**). Heatmap colors indicates protein expression values, where red means high values and blue means low values. The esterick indicates the first protein that is

gene set were the KEGG pathway glycine, serine, and threenine metabolism (NES = -2.18, q-value = 0.017) Figure 4.17B, Supplementary Table B.4). Proteins that are annotated as being part of the metabolism of the glycine, serine, and threenine amino acids are having L2FC values that show higher expression in the placebo group (Figure 4.18B). The KEGG pathway arginine and proline metabolism (NES = -2.00, q-value = 0.026) was also enriched in liver of placebo treated pigs. Other related metabolic gene sets that were enriched in placebo treated pigs were the GO categories: cellular amino acid catabolic process (NES = -2.15, q-value = 0.01), organic acid catabolic process (NES = -2.12, q-value = 0.007), alpha amino acid catabolic process (NES = -2.03, q-value = 0.023), and small molecule catabolic process (NES = -1.96, q-value = 0.032). Other amino acid metabolic pathways were enriched at lower levels of significance, such as tyrosine metabolism (NES = -1.85, g-value = 0.063). Lipid catabolic process were also enriched at a lower level (NES = -1.81, q-value = 0.069).

Two other KEGG pathways were enriched in placebo treated pigs, extracellular matrix (ECM) receptor interaction (NES = -2.16, q-value = 0.012) and endocy-

tosis (NES = -1.92, q-value = 0.039). There were also 9 gene sets related to vesicle transmembrane transport and vesicles enriched in placebo treated pigs at q-value < 0.05. In the vesicle related gene sets ADP ribosylation factor GTPase activating protein 3 (ARF-GAP3) was the most enriched protein. Finally, 3 gene sets related to transmembrane protein transport and protein localization was also detected to be enriched in placebo treated pigs (ER Golgi intermediate compartment membrane (NES = -1.95, q-value = 0.032), nuclear outer membrane ER membrane network (NES = -1.94, q-value = 0.033), and regulation of protein targeting (NES = -1.93, q-value = 0.037). In these 3 gene sets lectin mannose binding 1 (LMAN1) was the most enriched protein.

### Chapter 5

### Discussion

### 5.1 Differential proteome analysis of MIDY pig AT

Here, the proteome differences between littermate transgenic MIDY and WT pigs in two different AT depots, MAT and SCAT, were analyzed using mass spectrometry. In total 2779 protein groups were identified, a reasonable high number comparable to other proteomic studies using AT for mass spectrometry-based proteomics (?).

| 5.1            | Differential  | $\operatorname{proteome}$ | analysis | of MIDY |     |
|----------------|---------------|---------------------------|----------|---------|-----|
| $\mathbf{pig}$ | $\mathbf{AT}$ |                           |          |         | 126 |

### 5.1.1 Proteomic differences between MAT and SCAT

There were considerably more significant differences found between MAT and SCAT than the number of significant differences between the two genotypes, reflecting the findings from both the p-value histograms (**Figure 4.2**) and that the two AT types were better separated in the PCA (**Figure 4.1**). This probably reflects differences in physiology and function between the two different AT depots.

#### 5.1.1.1 Genes with large log2 fold changes

I will focus on significant proteins with large absolute l2fc values, as they are probably more linked to each AT types specialized characteristics. ALOX15 plays a role in the inflammatory response and has been found to have functions in adipogenesis and adipocyte differentiation with links to PPAR $\gamma$ , the adipocyte differentiation master regulator, activation (?). Dobrian and colleagues have previously described that ALOX15 was detected at high levels in human omental fat (VAT) and low levels in SCAT (?). Similarly, ALOX15 was

detected at high levels in all MAT samples, but only at a low level in one SCAT sample in the MIDY pigs. So ALOX15

Together KRT19 and KRT8 help link the contractile apparatus to dystrophin in muscles (?). KRT19 has been detected in VAT in rats (?), and at higher levels in omental AT than in SCAT in human men using DNA microarray (?) and in obese women using real-time PCR (?). KRT19 is a mesothelial marker protein (?). KRT8 is also a mesothelial biomarker and has been detected in VAT from mice using single cell RNA-sequencing (?).

ALDH1A2 converts retinal to at RA. Similar to the pigs in this study, ALDH1A2 mRNA expression is higher in VAT than in SCAT in humans

(???). The expression of ALDH1A2 is controlled by the mesothelial development and transcription factor Wilms tumor protein (?).

COX7A1 is a marker for brown/beige adipocytes (??). COX7A1 was only detected in MAT but only in seven out of nine MAT samples. Suggesting that pig MAT is more metabolically active than SCAT. RA increases COX7A1 expression in brown adipocytes (?). However, no significant differences were detected be-

tween the two genotypes in MAT, which could be due to low sample size.

NXN controls redox homeostasis in cells, and is important for adjocyte differentiation via the Wnt/ $\beta$ catenin pathway (?). Overexpression of NXN leads to WAT lipid accumulation (?). Why NXN was detected in more SCAT than MAT samples remains unclear at this point.

CBR2 is an ortholog of mouse CBR2, a protein that doesn't seem to exist in humans (BLAST, data not shown). In mice, CBR2 is primarily expressed in lung and at lower levels in AT (?). CBR2 is tetrameric form unlike the monomeric carbonyl reductase forms, CBR1 and CBR3, that exist in humans as well (?). CBR2 is part of arachidonic acid metabolism, and is important for the synthesis of prostaglandins (?). CBR2 levels have previously been detected to be increased in peripheral blood in pregnant pigs (?). CBR2 was only detected in SCAT samples whereas CBR3 was detected in all samples, suggesting that CBR2 is important for SCAT metabolism. Interestingly, as mentioned above ALOX15 is also part of arachidonic acid metabolic pathway.

MFAP2 is an ECM protein that is involved in reg-

ulating energy expenditure in SCAT cells in both humans and mice, and MFAP2 transcript levels are higher in SCAT than in BAT (?). MFAP2 deficient mice have increased TGF- $\beta$  activity, leading to reduced activity of BAT differentiation regulators PPAR $\gamma$  and PRDM16, and ultimately lower UCP1 expression in SCAT (?). However, no significant differences were detected between the genotypes which could be due to the study design since many samples had imputed intensity values.

#### 5.1.1.2 Gene sets involved in metabolism and energy derivation were significantly upregulated in MAT

There were many significant gene sets related to metabolism and energy derivation in MAT when compared to SCAT. Gene sets related to lipid metabolism were enriched in MAT. It is known that MAT is more lipolytically active than SCAT, and MAT is aksi known to contribute more to the FFA plasma levels than SCAT (?). In obese individuals this difference is even more apparent, where increased lipolytic activity is linked to an upregulation of leptin and downregulation of adiponectin in

MAT (?). This could be a possible explanation for the upregulation seen in MIDY AT too, since MIDY also have an impaired glucose metabolism. But leptin was not detected in the proteomic study, so this can't be confirmed in this study.

Mitochondria are essential for fatty acid metabolism, with more than 98% of fatty acid oxidation occurring in mitochondria (?). It is known that VAT adipocytes have more mitochondria than SCAT adipocytes in both rats and humans (??). This explains the enrichment of gene sets related to fatty acid metabolism, mitochondria and cellular respiration seen in MAT.

That gene sets related to ROS and hydrogen peroxide metabolism were enriched in both MAT and MIDY can probably be explained by the higher metabolic activity in those groups than in their comparisons (SCAT and WT respectively). Mitochondrial hydrogen peroxide production is higher when fatty acids are used as substrates instead of carbohydrates (?). This might be an explanation for the increase in ROS related gene sets enriched in MIDY AT too.

Gene sets related to branched-chain (valine, leucine, and isoleucine) amino acids (BCAA) were enriched in both MAT and MIDY AT. VAT is known to catabo-

lize BCAA in mice (?), and BCAA ratios influence AT lipid metabolism in pigs

(?). BCAA has also been suggested to play a part in adipocyte differentiation (?). PPAR $\gamma$  is major regulator of plasma level BCAA and BCAA catabolism in both WAT and BAT in mice (?).

#### 5.1.1.3 Gene sets upregulated in SCAT

Gene sets related to collagen and ECM were enriched in SCAT. Both of these categories have previously been found to be enriched in SCAT in a microarray and histological study comparing SCAT and WAT in rats, and SCAT might play a role in ECM development and maintenance via production of ECM proteins (?).

Many gene sets related to cytoskeleton, actin, myosins and cellular movement were also enriched in SCAT. Other gene sets included classes related to development/differentiation of different tissues, such as neurons and the nervous system, blood and the vasculature system, skin, and muscle. This might be explained by the location of SCAT near connective tissue and thus close to other tissues such as skin and muscle tissue.

#### 5.1.2 Genotype effects

We decided to use a 2-way ANOVA as t-tests for each individual tissue group didn't yield any significantly, differentially expressed proteins after correcting for multiple hypotheses (at a level of q-value < 0.05). This is may be due to the limited number of available samples. preventing the detection of weaker abundance alterations in the analyzed proteomes. RDH16 was found to be significantly more abundant in MIDY pigs for both tissue groups when using the t-test method (at a lower significance threshold of q-value < 0.1), but it was the only protein that passed this more relaxed significance threshold. With a bigger sample size (e.g. 10 MIDY versus 10 WT pigs) a two-sample t-test would probably have yielded more significant results for each AT source at q-value < 0.05 as the statistical power would increase.

The 2-way ANOVA essentially doubles the statistical power of the study yielding groups with sample groups with 8-10 samples depending on the factor and group. In this case it seemed to have worked well, as we are detecting global proteomic changes in AT caused by the MIDY syndrome.

| 5.1 | Differential  | $\operatorname{proteome}$ | analysis | of MIDY | •   |
|-----|---------------|---------------------------|----------|---------|-----|
| pig | $\mathbf{AT}$ |                           |          |         | 133 |

Another explanation for the relatively few observed differentially expressed proteins could be that the MIDY pigs were treated with insulin (?). The insulin treatment would potentially make the two pig cohorts more similar, which would result in fewer detected significant proteins. However, the diabetic pigs would probably not survive 2 years without insulin treatment. Even though this approach might have yielded fewer significant differentially expressed proteins, this approach gives insight into how insulin treatment affects diabetic patients.

Thirdly, it is probable that MIDY affects liver more than AT. Thus, it would be more likely to detect statistically significant differences between the sample groups in liver than in AT. This assumption seems to be correct given the data from Backman, *et al* (2019) (?). This method would probably find more significant differences in AT when comparing T2DM with WT pigs, since T2DM is more closely linked to obesity which affects AT more than T1DM and MIDY.

Assigning significance at a level of q-value < 0.1 could also be an alternative, with the drawback that 10% of the significant proteins would be false positives instead of 5%. For exploratory studies, this could be

an acceptable number of false positives in my opinion. However, the FDR level that is deemed significant should be decided during the experimental planning of the study and has to be decided on a case by case basis.

#### 5.1.2.1 RDH16 is upregulated in AT in MIDY pigs and potential links to BAT

RDH16 was both the most significant differentially expressed protein upregulated in MIDY AT and had the largest L2FC, since it was detected in all MIDY samples but only in one WT sample (Figure 4.4). RDH16 catalyses the conversion of all-trans-retinol into alltrans-retinal (?). RDH16 has previously been found to be upregulated in liver tissue in MIDY pigs (?). Backman and colleagues also detected that the concentrations of retinal and retinoic acid was increased in the liver of MIDY pigs when compared to WT pigs (?). A transcriptomic analysis of four different ATs in MIDY pigs detected that RDH16 was the only protein consistently upregulated in MIDY AT (Backman, unpublished data). This suggests that RDH16 might be globally upregulated in MIDY pigs. However, more tissues from the Munich-MIDY pig biobank need to

| 5.1 | Differential  | $\operatorname{proteome}$ | analysis | of MIDY |     |
|-----|---------------|---------------------------|----------|---------|-----|
| pig | $\mathbf{AT}$ |                           |          |         | 135 |

be analysed to establish this, especially other organs important in the context of diabetes such as skeletal muscle and intestine. Similarly to the Backman, *et al.* study (?), it would also be of great interest to confirm if all-trans-retinal and atRA are also more abundant in MIDY AT tissue. A similar metabolic method as the one established in the liver study to measure alltrans-retinol derivatives could be used.

Obrochta, *et al*, found that insulin suppresses RDH16 expression in a hepatoma cell line through inhibition of FOXO1 (?). Thus, insulin seems to be an important negative regulator in both AT and liver. Both atRA and all-trans-retinal are known to interact with RXR and RAR transcription factors (?), and atRA is known to affect the gene expression of a multitude of different genes (???). There are many links between retinoid metabolism and diabetes (?). Furthermore, retinal present in rodent AT inhibits adipogenesis (?), which may partially explain why RDH16 is more abundant in AT from MIDY pigs. But further studies would be needed to elucidate this.

Recently, Krois and colleagues discovered that RDH16 suppresses obesity in mice by increasing the amount of BAT present in AT (?). Furthermore, loss of RDH16

| 5.1 | Differential  | $\operatorname{proteome}$ | analysis | of MIDY | -   |
|-----|---------------|---------------------------|----------|---------|-----|
| pig | $\mathbf{AT}$ |                           |          |         | 136 |

affected the expression of over 400 different gene transcripts, leading to changes in whole-body metabolism. They also found that RDH16 was expressed in tissues with high metabolic activity, such as liver and brown adipose tissue (BAT), but not in epididymal WAT. The ablation of RDH16 leads to decreased lipid metabolic activity, abnormal mitochondria function, and lower respiration rates. An RDH16 KO pig model would be of interest to see if the effects of RDH16 deletion seen in mice would also be translated into pigs. Similarly, proteomic and transcriptomic analysis of important diabetic tissues from the Akita mice would also be of interest to establish whether the effects seen on RDH16 in MIDY pigs also occurs in the mouse model.

In mice, transplantation of BAT has been shown to improve glucose homeostasis and reverse the T1DM phenotype (?). The link between RDH16 and BAT is interesting (?), since the question whether pigs have BAT (unlike many other mammals) is a contested research topic. In the 80s, morphological studies showed evidence for BAT or browning of WAT in pigs (?). However, with the advent of genomic methods it was discovered that pigs lack a functional uncoupling pro-

| 5.1 | Differential  | $\operatorname{proteome}$ | analysis | of MIDY | -   |
|-----|---------------|---------------------------|----------|---------|-----|
| pig | $\mathbf{AT}$ |                           |          |         | 137 |

tein 1 UCP1, which is a biomarker for BAT (??). UCP1 is known to be regulated by atRA (?). Despite the lack of UCP1, pigs has been proposed to be valuable animal model for human energy expenditure since adults and obese humans have low expression of UCP1 compared to mice (?). Even though pigs don't have a functional UCP1 gene, the GSEA analysis of the MIDY pigs indicates that similar metabolic changes occurred in the AT of MIDY pigs as were observed by Krois, et al in mice (?). This includes an increase of proteins in MIDY pigs involved in lipid and fatty acid metabolism, cellular respiration, and an increase of mitochondrial proteins (Figure 4.8). So atRA might regulate genes involved in these processes in the AT of pigs, increasing fatty acid metabolism and respiration, independently of UCP1.

RA has been found to induce mouse WAT browning (?). In mice, positive regulatory domain containing 16 (*PRDM16*) gene is the dominant transcriptional regulator of the browning of white adipocytes (???), and RA increases PRDM16 transcription in mice (?). Even though pig lacks the UCP1 gene, it has been shown that overexpression of PRDM16 in porcine preadipocytes inhibited differentiation into WAT and induced tran-

scription of genes responsible for lipolysis and fatty acid oxidation (?). E.g., the UCP1 homolog UCP3 was upregulated in porcine preadipocytes with overexpressed PRDM16 (?). Cold resistant pig strains have been shown to have non-shivering thermogenesis that is dependent on increasing expression of UCP3 and browning of WAT (?). Chen and Yu (?) found that bone morphogenetic protein 7 (BMP7) can trigger differentiation into "brown-like" adipocytes in pigs, with an increase of PRDM16, UCP2, and UCP3 expression, as well as an increase of the number of mitochondria in differentiated "brown-like" adipocytes. WAT of UCP1 knock-in pigs have lower fat content linked to a higher rate of lipolysis (?). The UCP1-3 genes have all been reported to be upregulated by retinoic acids (??). Whether PRDM16, UCP2 or UCP3 are upregulated in AT in MIDY pigs would need to be further studied to clarify if this could be an explanation for the RDH16 upregulation detected in MIDY pigs and if "browning" occurs. BAT contains more mitochondria than WAT and instead of single, large lipid droplet, BAT have many smaller lipid droplets (?). Thus histological analysis to study if there is an increase in mitochondria or more smaller lipid droplets in AT cells from

MIDY pigs or fluorescence studies targeting the UCP proteins or PRDM16 would be interesting to carry out.

#### 5.1.2.2 Proteomic changes in proteins involved in fatty acid and lipid metabolism

CES1, CYP3A39, HADHA, HADHB, and ACOT4 were annotated as being part of the GOBP fatty acid metabolism gene set. Of these, carboxylesterase 1 (CES1) was found to be significantly more abundant in the adipose tissue from MIDY pigs and was the second significantly more abundant protein in MIDY AT after RDH16. Carboxylesterases are abundantly expressed in liver and AT (?), and are located primarily in the ER of many tissues where they are responsible for hydrolysing both endogenous and xenobiotic compounds (?), e.g. caboxylesterases have been proposed to hydrolyse retinyl esters, the precursors of all-trans-retinol (??). The mouse paralog CES1d is known to have triglyceride lipase activity in WAT (?), and human CES1 is also thought to be a part of lipid catabolic processes. CES1 expression is higher in adipose tissue from obese individuals than adipose tissue from lean

individuals in human subjects (????), but there were no significant expression differences detected between different adipose tissue depots

(?). Yang and colleagues (?), have recently shown that insulin suppresses transcription of *CES1 in vitro*. It has previously been shown that CES1 is significantly differentially regulated in BAT from non-obese and obese male rats (?). *In vitro* glucose restriction leads to an upregulation of CES1 in adipocytes (?). The CES1 mouse homolog CES1d is highly expressed in both WAT and BAT (?).

CYP3A39 was the third most significantly upregulated protein in MIDY AT. The cytochrome P450 superfamily comprises of known catabolic enzymes that can oxidize atRA, primarily CYP26 isoforms (??). Other cytochromes also have atRA oxidative activity, such as the CYP3A4

(??). Since pig CYP3A39 is highly homologous to human CYP3A4, there's a reason to believe that CYP3A39 may also have a role in the catabolism of retinoic acid. CYP3A activity in AT has previously been described, and cytochrome P450 enzyme activity and expression in pigs is generally similar to human physiology (?). Retinoids, including atRA, have been found to increase

the expression of CYP3A4 *in vitro* (??). CYP3A4 expression was induced by treating hepatocytes with diabetic rat serum (?) and CYP3A has been implicated in obesity in mice (?).

Both subunits of the mitochondrial trifunctional protein (MTP), trifunctional enzyme subunit alpha and subunit beta (HADHA and HADHB respectively), were detected as being more abundant in adipose tissue from MIDY pigs. The MTP protein complex is composed of four alpha subunits and four beta subunits, and is responsible for catalysing three out of four steps of chain-shortening reactions in mitochondrial  $\beta$ oxidation of fatty acids (?). Ageing mice carrying a heterozygous loss-of-function mutation for both subunits develop insulin resistance (??). HADHA transcription has previously been shown to be upregulated during fasting in pigs, mice and rats (?). A study in mice using hadh KOs showed that HADH is important for adaptive thermogenesis, body weight maintenance and pancreatic  $\beta$ -cell insulin secretion (?). HADHA has previously been described as being regulated by RA (?) and both proteins are considered to be markers for beige and brown adipocytes (?). HADHB correlates with an increase in BAT mass in ground squirrels

during hibernation (?).

ACOT4 is an acyl-CoA thioesterase that hydrolyses various acyl-CoAs into FFAs and coenzyme A, and its function may be to promote peroxisomal  $\beta$ oxidation

(?). The annotation for this protein group identifies the peptides as coming from either ACOT1 or ACOT4. Low expression of ACOT1 and ACOT4 has been detected in WAT, with higher expression of ACOT4 seen in BAT (?). The increased expression of ACOT4 may be explained by that fatty acid oxidation is increasingly important during diabetes (?). ACOT4 transcripts has previously been found to be upregulated in WAT from obese humans (?).

Of these proteins together with RDH16, 3 proteins (RDH16, CES1, and CYP3A39) have a function related to retinol metabolism. And a majority of these genes seems to have a connection to browning/beigeing of adipocytes.

IAH1 together with RDH16 and the 5 proteins mentioned above were found to be part of the MIDY enriched gene set lipid metabolic process. IAH1 is a lipase that is responsible for hydrolysing esters in *Saccharomyces cerevisiae* (??), but not much is known

| 5.1 | Differential  | $\operatorname{proteome}$ | analysis | of MIDY |     |
|-----|---------------|---------------------------|----------|---------|-----|
| pig | $\mathbf{AT}$ |                           |          |         | 143 |

about IAH1 protein in mammalians. It was identified in a quantitative trait locus QTL for fatty liver disease in mice, and it was subsequently shown that *in vitro* overexpression of IAH1 suppressed genes involved in triglyceride synthesis and lipid metabolism (?).

In the genotype GSEA analysis, the many gene sets related to mitochondria, respiration, metabolism, and oxidation in MIDY AT might suggest that there was an increase of mitochondria in MIDY AT cells, as well as an increase in respiratory and oxidative activity, features that are reflective of BAT.

#### 5.1.2.3 Other proteins significantly more abundant in MIDY AT

UCHL3 has been shown to promote insulin signaling and is important for AT differentiation in mice, and UCHL3 deficient mice had less VAT relative to WT mice (?). Suzuki *et al* (?), also proposed that UCHL3 not only regulates AT differentiation by regulating insulin signaling, but also by regulating PPAR $\gamma$  activity, the master regulator of adipocyte differentiation, by deubiquitination of PPAR $\gamma$ . PPAR $\gamma$  is known to be degraded by the proteasome (??). UCHL3 has been

found to be upregulated in BAT during winter hibernation in ground squirrels (?).

The proteasomal subunit PSMD5 was significantly upregualted in MIDY AT, and 21 proteasomal subunits were detected to be detected in least one leading edge in gene sets enriched in MIDY AT. Alterations in the ubiquitin-proteasome pathway are important for adipocyte differentiation (???) and are linked to increased oxidative stress in AT (?), proteins involved in insulin signaling are also affected by the ubiquitinproteasome pathway (?). NRF1 induced proteasome activity is important for BAT function (?) and RA is known to regulate proteasomal degradation activity (???).

AK2 is a mitochondrial enzyme that produces 2 ADP molecules from one ATP and one AMP molecule. AK2 is markedly induced during adipocyte and  $\beta$ -cell differentiation, and inhibition of AK2 leads to lower adiponectin secretion and activation of UPR during differentiation (?). AK2 is important for mitochondrial function and oxidation (?). Taken together, these results could indicate that there is indeed adipocyte differentiaton occuring MIDY AT and strengthen the case that there might be "browning" of the AT in

MIDY pigs. However, further studies is needed to establish this.

GDP-mannose-4,6-dehydratase GMDS is responsible for converting GDP-D-mannose to GDP-4-dehydro-6-deoxy-D-mannose. Recently, it was shown that giving mice oral supplements of D-mannose can suppress T1DM (??). The supplementation of D-mannose induces T-cell differentiation, and it was also observed that D-mannose increased ROS and fatty acid oxidation (?), processes that were significantly enriched in AT in MIDY pigs in the GSEA (Figure 4.8). It might be possible that GMDS has a role to play in this process, but further studies would be needed to determine this.

cAMP-dependent protein kinase type II- $\alpha$  regulatory subunit (PRKAR2A) was identified to be associated with adiponectin, a hormone produced in AT that increases insulin sensitivity and fatty acid oxidation (?), levels in an exome quantitative trait locus study (?). AtRA has been demonstrated to stimulate the cAMP/PKA signaling pathway (??). *Prkar2a* KO mice resist diet-induced obesity and related metabolic alterations (?). If fatty acid oxidation levels are increased in MIDY AT remains to be seen, but it would

be consistent with other findings and might support the theory of a "browning" of MIDY AT.

Aldose 1-epimarase (GALM) catalyses the reaction  $\alpha$ -D-glucose or  $\alpha$ -D-galactose to  $\beta$ -D-glucose or  $\beta$ -D-galactose. AtRA is known induce the transcription of GALM and other galactose-related genes (?). GALM was detected to be important for insulin signaling in mouse (pre)adipocytes in a multiomics study (?). Galactose intake may protect against adiposity and improve metabolic and overall health in female mice (?). Increased expression of GALM could be a response to a greater need for improved insulin signaling in MIDY pigs.

#### 5.1.2.4 Gene sets enriched in MIDY but not MAT

Of the eight gene sets enriched in MIDY but not in MAT, six gene sets were similar or related to one or more gene sets detected to be significantly enriched in both MIDY and MAT. The two gene sets with a unique process enriched in MIDY were primary alcohol metabolic process and butanoate metabolism.

Primary alcohol metabolic process included other

proteins together with RDH16 involved in retinol metabolism, e.g. aldehyde dehydrogenase 1 family, member A1 (ALDH1A1) that catabolizes the conversion of all-transretinal to atRA and dehydrogenase/reductase SDR family member 4 (DHRS4) that can catalyse both the conversion from retinol to retinal and retinal to RA. This further strengthens the hypothesis that retinol metabolism and RA regulated gene expression might be important for diabetic adaption in MIDY pigs.

Proteins involved in the KEGG pathway butanoate metabolism were enriched in MIDY pigs. Butanoate supplement has been shown to increase lipolysis, as well as mitochondrial protein expression in WAT in mice (?). Butanoate supplement also increases oxidation of fat and activates BAT (??) and butyrate treatment increases the thermogenic capacity in mice (?). Similar increases in fatty acid oxidation and lipolysis has been seen in pigs following butanoate supplement (?).

Treatment with sodium butanoate alleviates adipocyte inflammation in mice

(?). This could potentially explain why there are gene sets related to immune responses enriched in WT AT, but this would have to be verified in more detailed

studies.

#### 5.1.2.5 Angiotensinogen is downregulated in MIDY AT

AGT was the most significantly enriched protein in AT from WT pigs. In both humans and animal models, AGT is highly expressed in AT as well as inherently secreted from adipocytes (?). AGT is also known to stimulate lipogenesis

(?). Lemieux and colleagues have previously shown that Agt-KO mice had reduced AT inflammation and increased metabolic activity (?). Furthermore, they also found that Agt-KO mice had increased gene expression of genes involved in fatty acid metabolism and glucose uptake, as well as increased mitochondrial respiration in Agt-KO mice. Overexpression of AGT in AT induces adipose inflammation, decreased glucose tolerance, and insulin resistance (?). This is in line with the results from the GSEA analysis, where many gene sets involved in fatty acid metabolism, respiration, and mitochondria were enriched in MIDY pigs that had lower AGT expression. Furthermore, gene sets involved in glucose uptake were enriched in AT of

MIDY pigs at q-value < 0.1. Also, the GOBP regulation of inflammatory response were enriched in AT from WT pigs, which had a higher expression of AGT.

The renin-angiotensin aldosterone system is affected by atRA, as evidenced by that angiotensin can be downregulated by atRA in kidneys from rats with nephritis

(?) or glomerulosclerosis (?). AT expresses all components of the renin-angiotensin system that are necessary to produce the active angiotensin II

(??). Angiotensin II upregulates lipogenesis and downregulates lipolysis in AT via the angiotensin receptors (?). It has previously been shown that insulin increases AGT expression in subcutaneous adipocytes (?). In mice, AT derived AGT is important for AT development and the endocrine system

(?), as 30% of plasma AGT levels originates from AT. It has also been reported that active forms of AGT (such as angiotensin II and angotensin 1-7) stimulate browning of WAT and brown adipocyte differentiation (??), and AGT plays a role in general adipocyte differentiation

(?). One could speculate whether the downregulation of AGT seen in MIDY AT is caused by higher cleav-

age of AGT into active forms or due to a lower translation of the AGT protein. However, none of AGT's derivatives were detected in the proteomic analysis so if there are changes in expression of e.g. angiotensin II is not known. AGT was also detected to be significantly more abundant in SCAT than in MAT, potentially highlighting that it is more important for SCAT function, and angiotensin-converting enzyme 2 (ACE2) was significantly more abundant in MAT.

#### 5.1.2.6 Glycolytic enzymes were upregulated in WT adipose tissue

Both FBP1 and HK1 were significantly enriched in WT pigs. Both enzymes are linked to diabetes since they are involved in glycolysis and insulin signaling. FBP1 is responsible for the reversible reaction fructose-1,6-bisphosphate to fructose-6-phospate in glycolysis/gluconeogenesis FBP1 has a RARE in its promoter region and can thus be regulated by atRA (?).

HK1 phosporylates glucose to yield glucose-6-phosphate, the first step of glycolysis. Hexokinase was detected to be downregulated in AT from diabetic mice (?). If there is less available glucose for the AT cells due to

impaired insulin signaling in diabetic pigs, a consequence of this would probably be that glycolytic enzymes would be downregulated in AT as insulin is important for regulating these genes (?).

#### 5.1.2.7 Immune response proteins were more abundant in WT

The genotype GSEA analysis revealed that there were a few GO gene sets related to immunological responses enriched in WT AT, this effect was also seen in the liver study of the MIDY pigs (?). Backman, *et al.* argued that a decreased AKT activation by insulin in MIDY pigs could confine Toll-like receptor mediated PI3K-AKT-mTOR signaling and affect immune homeostasis.

The collagen COL3A1 was detected to be more abundant in both WT (for the genotype factor) and SCAT (for the tissue factor). This is in agreement with a study that detected decreased COL3A1 levels in SCAT from T2DM subjects linking it to a lower rate of AT fibrosis (?). COL3A1 has immune response regulatory properties (?) and has previously been found to be regulated by atRA in skin (?). Hyperinsuline-

mia is known to induce transcriptional changes of the COL3A1 gene in different tissues from rats (?), which might be comparable to the findings present here since COL3A1 was more abundant in WT AT with normal insulin production.

#### 5.1.2.8 Other proteins upregulated in WT adipose tissue

Copper transport protein ATOX1 (ATOX1) was significantly enriched in WT AT, copper is known to have an important role in cell proliferation. ATOX1 is involved in the insulin signaling in vascular tissue (?). ATOX1 also acts as an antioxidant against hydrogen peroxide, and the protein has been suggested to be a thereapetical target in diabetes (?).

Both EEF1D and EIF3C have functions involved in translation. The EEF1D protein has been found to be downregulated by RA in cell cultures (?) and elongation factor activity are known to be stimulated by insulin (?). Many translation initiation factors are stimulated by insulin (?), and EIF3C binds to EIF4G when mTOR is stimulated by insulin and increases translation by increasing translation initiation (?). Since

insulin is known to stimulate proteins synthesis (?), these results could mean that the translation rate in MIDY pig AT is lower due to the lack of endogenous insulin. The GSEA analysis also revealed that several gene sets, such as the KEGG pathway ribosome, related to translation and protein synthesis were enriched in WT AT.

HSP90AA1 is a heat shock protein and important for protein folding during stress, and it is regulated by atRA and retinoid receptors *in vitro* and in sheep (??). Inhibition of HSP90 improved insulin signaling in diabetic mice (?) and amplified AKT insulin induced phosphorylation in cell cultures (?).

The significance of SPAG9, the significant protein in WT with the highest l2fc, might be an artifact of the missing value imputation since it was imputed in 11 samples and detected at the lower end of the intensity distribution. The relative low q-value (= 0.042) might support this hypothesis.

| 5.1            | Differential  | $\mathbf{proteome}$ | analysis | of MIDY | 7   |
|----------------|---------------|---------------------|----------|---------|-----|
| $\mathbf{pig}$ | $\mathbf{AT}$ |                     |          |         | 154 |

### 5.1.3 Overlap between enriched gene sets between genotype and tissue

The two GSEA analyses also revealed that there was a considerable overlap between the gene sets enriched between MIDY and MAT. This could imply that the diabetic phenotype of the MIDY pigs manifests itself more in MAT than in SCAT. The transcriptomic analysis also supports this since the most significant differences between MIDY and WT were detected in MAT when compared to other within tissue comparisons. However, to prove if this is the case for the proteome as well one would need to perform further studies with higher statistical power.

In contrast, the overlap between enriched gene sets in WT and SCAT were much lower. Only four out of 25 enriched gene sets in WT were found to be significantly enriched in SCAT as well. This indicates that even though many gene sets enriched in MIDY and MAT were the same, the underlying comparison that was tested was different.

| 5.1 | Differential  | $\operatorname{proteome}$ | analysis | of MIDY |     |
|-----|---------------|---------------------------|----------|---------|-----|
| pig | $\mathbf{AT}$ |                           |          |         | 155 |

### 5.1.4 Only a few proteins had significant Genotype x Tissue interaction effects

There were only five proteins detected that had a significant Genotype x Tissue interaction effect. Of these five proteins, three were detected in every sample (TTC38, SCP2, VPS29). The relative low number of significant hits might indicate that the MIDY syndrome doesn't affect the majority of proteins from the two AT source types differently.

Of these five proteins, PCNA is probably the most interesting protein. PCNA was detected in three out of four MIDY MAT samples and not in any other sample group, and was significant in all three comparisons with other sample groups that only had missing values (**Figure 4.5**). PCNA has roles in housekeeping functions such as DNA replication and interaction with DNA polymerase  $\delta$  (?). Nuclear PCNA is a marker for cell proliferation, whereas cytoplasmic PCNA is impacting energy metabolism (??). PCNA is important for correct DNA replication in eukaryotes (?). PCNA has been found to correlate with cell

proliferation and expression of PPAR $\gamma$  expression levels during BAT differentiation in human fetuses (?). PCNA correlates with BAT hyperplasia induced by cold exposure or metformin treatment in rodents but were not detected in WAT (???). However, it is worth noting that PCNA has also been detected in proliferating white adipocytes in obese rats (?). Since MIDY pigs don't exhibit obesity and with the other proteomic data that might suggest browning of AT, the expression of PCNA might suggest the presence of proliferative brown/beige adipocytes. To confirm the role of PCNA in MIDY AT it would be interesting to stain for PCNA and to study the localization and expression levels of PCNA in the two AT types. PCNA regulates retinoid receptors by direct protein-protein inteaction (?).

TTC38 was significantly upregulated in MIDY SCAT versus WT SCAT and WT MAT versus WT SCAT. However, TTC38 is a protein with unknown function.

VPS29 was significantly differentially abundant in three comparisons, of which the upregulation in the MIDY SCAT versus MIDY MAT comparison was the most significant. VPS29 is part of the retromer protein compelex which is responsible for transport from

endosomes to the Golgi apparatus (?). There might be possible connection between the retromer and diabetes (?), and the retromer is important for GLUT4 translocation to the plasma membrane in adipocytes and AT cell differentiation (?). However, no significant intra-tissue differences were observed between the genotypes.

SCP2 was detected at signicantly lower levels in MIDY SCAT than in the other three sample groups. SCP2 has previously been found to be differentially regulated in diabetic rats (?), and is important for regulating the composition of lipid droplets (?).

### 5.1.5 Conclusions and further studies

The most significant result from the comparison between AT between MIDY and WT pigs, was the upregulation of RDH16 in both AT types examined in this study. This together with an enrichment of proteins involved in lipid and fatty acid metabolism in MIDY AT suggests that one adaptation to the MIDY syndrome could be a shift to a more metabolically active AT and perhaps a "browning" of AT in MIDY pigs, especially in MAT. However, for this to be established

this would have to be examined in further studies. For example, the expression of BAT protein markers or mitochondrial content using histological analysis could be studied in MIDY AT.

The benefit of working with pigs is that it is a more relevant translational animal model when compared to for example rodent models, while at the same time cost and time limits the number of samples that can be obtained. Doubling the number of pigs in each sample group in the MIDY study would most likely lead to a discovery of more significant proteome differences between MIDY and WT pigs since the statistical power would be greater. However, I think it is more beneficial to focus further studies based on the findings presented here, as RDH16 is a largely unstudied protein in both pigs and humans.

Now that both the liver (?) and AT from the Munich MIDY pig biobank have been profiled by proteomics and transcriptomics, I propose that other relevant tissues from the biobank should be studied. Particularly, to study if RDH16 is more abundant in other tissues in MIDY pigs as well. This could answer wheter this is a global effect or limited to these two metabolically active tissue. In my opinion, the most interesting

tissues would be skeletal muscle, pancreas, and intestine. These are all relevant tissues that are affected by diabetes.

As can be seen in this study, a 2-way ANOVA can be used to elucidate differences in protein expression in AT even when the statistical power is low.

Another important question is whether the upregulation of RDH16 in the diabetic pigs is limited to this porcine diabetic model or if humans and other model organisms also exhibit this adaptation. A good place to start would be to study if Akita mice (the mouse model that MIDY pigs are based on) have a similar upregulation of RDH16 in liver and AT. In humans, proteomic and transcriptomic profiling of liver and AT biopsies could be used to test if the upregulation of RDH16 observed here occurs in T1DM diabetic patients as well.

In order to get a better understanding of RDH16's protein function, a RDH16 deficient pig model (similar to the mouse model studied by (?), *et al*) would be interesting to study. An INS<sup>C94Y</sup> and RDH16 KO double mutants might also be interesting to study.

Furthermore, there seems to be a shift in metabolic activity in the AT in the diabetic pigs. Fatty acid and

lipid metabolic proteins and pathways were upregulated in AT from MIDY pigs, while glycolytic enzymes were detected to have higher expression levels in WT AT. Further research is required in order to elucidate whether retinol signaling is part of regulating this shift in protein expression.

The differences between MAT and SCAT in pigs suggests that the visceral AT type is more metabolically active while structural proteins are more highly expressed in SCAT. This is likely an effect of their location relative to other tissues, e.g. MAT is close to the liver whereas SCAT is located near skin and ECM.

# Chapter 6 Summary

In this thesis, the effects of diabetes treatments on the proteome of selected tissues have been examined using mass spectrometry and relative protein quantification.

In the first study, the proteome differences between MIDY pigs, a large animal model for mutant INS geneinduced diabetes of youth, and WT littermates in two types of adipose tissue (AT) were investigated. In total 2779 proteins were detected in the AT samples and using a 2-way ANOVA, taking into account the factors group (diabetic vs. non-diabetic) and type of AT (subcutaneous vs. mesenterial), significantly differentially expressed proteins were detected. Among the significantly differentially expressed proteins, retinol dehydrogenase 16 (RDH16) was detected to be the significantly most abundant protein in AT and enriched in MIDY AT. As all-trans retinoic acid is important for regulating transcript levels, this suggests that retinol is involved in the adaptation to diabetes in AT of the MIDY pigs. The presence of RDH16 in the AT of MIDY pigs might also indicate that a form of "browning" of the fat cells has occurred, as RDH16 is only expressed in BAT in rodent models. However, this would require further studies to elucidate.

Other proteins that were significantly more abundant in MIDY AT were proteins involved in fatty acid and lipid metabolic processes such as carboxylesterase 1 (CES1) and mitochondrial trifunctional enzyme subunit alpha and beta (HADHA and HADHB), whereas the glycolytic enzymes fructose-1,6 bisphosphatase 1 (FBP1) and hexokinase 1 (HK1) were significantly more abundant in WT AT. This could indicate that there is a shift in metabolic activity in AT as a response to the insulin deficiency. Whether retinol signaling is involved in regulating this metabolic shift remains unclear and further studies are required to understand this better.

The results from the 2-way ANOVA also showed that mesenterial AT (MAT) is more metabolically active than subcutaneous AT (SCAT), as MAT expressed more proteins involved in various metabolic pathways. On the other hand, SCAT expressed more structural proteins such as proteins related to collagen and extracellular matrix (ECM). This can probably be explained by the location of the two tissue types, as MAT is situated close to the liver and SCAT is located near skin and ECM.

The second study used pigs carrying a dominant negative mutation in the glucose-dependent insulinotropic polypeptide receptor (GIPR<sup>*dn*</sup>), a type 2 diabetes mellitus (T2DM) large animal model, to study what effect treatment with the glucagon-like peptide 1 (GLP1) receptor agonist liraglutide has on the proteome of the liver of GIPR<sup>*dn*</sup> pigs and compare these results to placebo treated GIPR<sup>*dn*</sup> pigs. In total 3404 protein groups were detected in the livers of GIPR<sup>*dn*</sup> pigs, of these 127 proteins were found to be significantly differentially expressed after multiple hypotheses correction (q-value < 0.05). Of these, mitochondrial hydroxymethylglutaryl-CoA synthase (HMGCS2) was detected at lower expression levels in liraglutide treated pigs and with the largest absolute log2 fold change. This suggests that increased insulin secretion stimulated by the liraglutide treatment inhibits ketogenesis in diabetic pigs, as HMGCS2 is the rate-limiting enzyme for ketogenesis.

The liraglutide treatment also induced changes in amino acid metabolism, as proteins involved in glycine, serine, and threonine metabolism and arginine and proline metabolism were enriched in placebo treated pigs. Expression of proteins involved in translation and protein folding, as translation factors and tRNA ligases, were significantly higher in liraglutide treated pigs.

These results show that the pig is a suitable large animal model for translational and proteomic research for research into diabetes and diabetes treatments, that can bridge the gap between findings in mice and human patients.

### Chapter 7

### Zusammenfassung

#### Proteomische Charakterisierung von porzinen Diabetesmodellen – Behandlungseffekte auf metabolische Gewebe

Im Rahmen dieser Dissertation wurden an zwei verschiedenen Schweinemodellen für die translationale Diabetesforschung an ausgewählten Geweben mit Relevanz für den Stoffwechsel Proteomuntersuchungen mittels Massenspektrometrie und relativer Proteinquantifizierung durchgeführt. In einer ersten Studie wurden die Proteomprofile von subkutanem und mesenterialem Fettgewebe zwischen MIDY-Schweinen, einem Großtiermodell für mutant INS gene-induced diabetes of youth, und gesunden Geschwistertieren verglichen. Insgesamt wurden in dieser Studie 2779 Proteine detektiert und hinsichtlich ihrer Abundanzen mittels ANOVA auf die Beeinflussung durch Gruppe (diabetisch vs. nicht-diabetisch) und Fettgewebstyp (subkutan vs. mesenterial) untersucht. Das in beiden Fettgewebstypen bei den diabetischen Schweinen am meisten abundanzvermehrte Protein war die Retinol-Dehydrogenase 16 (RDH16), die für die Synthese von all-trans Retinsäure (atRA) eine entscheidende Rolle spielt. Nachdem atRA die Expression von zahlreichen Genen reguliert, könnte die vermehrte Abundanz von RDH16 eine Anpassung des Fettgewebes an die diabetische Stoffwechsellage reflektieren. Die Anwesenheit von RDH16 im Fettgewebe von diabetischen Schweinen könnte auch als Hinweis auf browning gewertet werden, da RDH16 bei Mäusen nur im braunen Fettgewebe exprimiert wird. Dies bedarf weiterer Untersuchungen. Neben RDH16 waren im Fettgewebe der diabetischen Schweine Enzyme aus dem Fettsäure- und Fettstoffwechsel abundanzvermehrt. Beispiele sind die Carboxylesterase 1 (CES1) sowie die alpha- und beta-Untereinheiten des mitochondrialen trifunktionalen Enzyms (HADHA und HADHB),

dagegen waren die Konzentrationen der Enzyme Fructose-1,6-Bisphosphatase 1 (FBP1) und Hexokinase 1 (HK1) im Fettgewebe der Kontrollschweine höher als bei den diabetischen Tieren. Dies weist auf metabolische Veränderungen im Fettgewebe als Folge eines chronischen Insulinmangels hin. Ob Veränderungen im Retinolstoffwechsel dafür eine Rolle spielen, ist gegenwärtig unklar und Gegenstand weiterer Untersuchungen. Neben den Unterschieden zwischen diabetischen und nicht-diabetischen Tieren zeigte die ANOVA deutliche Unterschiede zwischen den zwei untersuchten Fettgewebstypen. So lagen im mesenterialen Fettgewebe vor allem Proteine aus verschiedenen metabolischen Pathways in höherer Abundanz vor als im subkutanen Fettgewebe, was auf eine höhere metabolische Aktivität des mesenterialen Fettgewebes hinweist. Umgekehrt waren im subkutanen Fettgewebe vor allem Kollagene und andere extrazelluläre Matrixproteine in höherer Konzentration vorhanden als im mesenterialen Fettgewebe. Diese Befunde spiegeln die klaren strukturellen und funktionellen Unterschiede der beiden Fettgewebstypen auf molekularer Ebene wider. Die zweite Studie beschäftigt sich mit einem Schweinemodell, das einen dominantnegativen Rezeptor für das Glukose-abhängige insulinotrope

Polypeptid (GIP) exprimiert und Charakteristika des Diabetes Typ 2 zeigt. Hier war die Fragestellung, welche Proteomveränderungen in der Leber die Behandlung mit dem GLP1-Rezeptor Agonisten Liraglutide im Vergleich zu einer Placebo-Behandlung induziert. In dieser Studie konnten insgesamt 3404 Proteine identifiziert werden, von denen nach Korrektur auf multiples Testen 127 Proteine in ihrer Abundanz signifikant (q-value ; 0.05) unterschiedlich zwischen den beiden Behandlungsgruppen waren. Davon war die mitochondriale Hydroxymethylglutaryl-CoA Synthase (HMGCS2) durch die Liraglutide-Behandlung am stärksten abundanzvermindert. Die HMGCS2 ist das Schlüsselenzym der Ketogenese. Die verminderte Expression ist durch die vermehrte Insulinfreisetzung nach Liraglutide-Behandlung und die hemmende Wirkung von Insulin auf die Expression der HMGCS2 erklärbar. Darüber hinaus induzierte die Liraglutide-Behandlung Abundanzveränderungen von Proteinen aus dem Funktionsbereich Aminosäure-Stoffwechsel. So waren Proteine aus dem Glycin-, Serinund Threonin-Stoffwechsel sowie Proteine aus dem Argininund Prolin-Metabolismus in der Leber der Liraglutidebehandelten Tiere in ihrer Konzentration vermehrt. Gleiches gilt für Proteine, die bei der Translation bzw.

Proteinfaltung eine Rolle spielen, sowie für bestimmte tRNA-Ligasen Diese Ergebnisse zeigen, dass Proteomstudien an klinisch relevanten Großtiermodellen für die Diabetesforschung molekulare Einblicke in Krankheitsmechanismen und Therapiewirkungen geben können, die helfen, die translationale Lücke zwischen Untersuchungen an Nagermodellen und klinischen Studien zu schließen.

## Appendix A

# Supplementary material for MIDY adipose tissue analysis

Table A.1. All significant proteins more abun in mesenteric adipose tissue in the 2-way ANOVA value < 0.05).

| Gene name | Protein name  | p-v  |
|-----------|---------------|------|
| MAOA      | amine oxidase | 8.58 |

| 171 |
|-----|
| 171 |

| Gene name | Protein name                                                                                                                        | p-v       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|
| HSP90AA1  | heat shock protein HSP 90-alpha                                                                                                     | 6.50      |
| ALO5      | arachidonate 15-lipoxygenase                                                                                                        | 7.5'      |
| ALDH1A2   | aldehyde dehydrogenase 1 family, member<br>A2                                                                                       | $1.5_{-}$ |
| DLST      | dihydrolipoyllysine-residue<br>succinyltransferase component of<br>2-oxoglutarate dehydrogenase complex,<br>mitochondrial precursor | 1.69      |
| HSP90AB1  | heat shock protein HSP 90-beta                                                                                                      | 5.00      |
| SUCLG2    | succinate–CoA ligase                                                                                                                | 4.8'      |
| CLIC5     | chloride intracellular channel protein 5                                                                                            | 1.18      |
| SOD2      | superoxide dismutase                                                                                                                | 1.2       |
| CCT2      | T-complex protein 1 subunit beta                                                                                                    | 3.10      |
| PRD       | peroxiredoxin-5, mitochondrial                                                                                                      | 3.40      |
| KRT14     | keratin, type I cytoskeletal 19                                                                                                     | 5.82      |
| ALDH9A1   | 4-trimethylaminobutyraldehyde<br>dehydrogenase                                                                                      | 8.28      |
| IVD       | isovaleryl-CoA dehydrogenase,<br>mitochondrial                                                                                      | 8.60      |
| PSME1     | proteasome activator complex subunit 1                                                                                              | 8.89      |
| GSTO1     | glutathione S-transferase omega-1                                                                                                   | 9.13      |
| KRT8      | keratin, type II cytoskeletal 8                                                                                                     | 1.80      |
| FASN      | fatty acid synthase                                                                                                                 | 3.38      |
|           | -                                                                                                                                   |           |

172

| _ |              |                                                                                                                             |           |
|---|--------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|
| _ | Gene name    | Protein name                                                                                                                | p-v       |
|   | SLC25A4      | ADP/ATP translocase 1                                                                                                       | 3.73      |
|   | PRD          | peroxiredoxin-2                                                                                                             | 3.81      |
|   | PGAM1        | phosphoglycerate mutase 1                                                                                                   | 3.80      |
|   | ACADVL       | very long-chain specific acyl-CoA<br>dehydrogenase, mitochondrial                                                           | 3.96      |
|   | PRD          | thioredoxin-dependent peroxide reductase,<br>mitochondrial                                                                  | 4.19      |
|   | HSD17B10     | 3-hydroxyacyl-CoA dehydrogenase type-2                                                                                      | 4.24      |
|   | HSPE1        | 10 kDa heat shock protein, mitochondrial                                                                                    | $5.1_{-}$ |
|   | HSD11B1      | corticosteroid 11-beta-dehydrogenase<br>isozyme 1 2                                                                         | 6.28      |
|   | ECH1         | delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial                                                                  | 6.27      |
|   | ME1          | NADP-dependent malic enzyme                                                                                                 | 8.01      |
|   | PDHB         | pyruvate dehydrogenase E1 component<br>subunit beta, mitochondrial                                                          | 9.37      |
|   | HSPB1        | heat shock protein beta-1                                                                                                   | 9.80      |
|   | DLAT         | dihydrolipoyllysine-residue acetyltransferase<br>component of<br>pyruvate dehydrogenase complex,<br>mitochondrial precursor | 0.0       |
|   | LMAN2        | vesicular integral-membrane protein VIP36                                                                                   | 0.0       |
|   | NP_001172070 | ornithine aminotransferase, mitochondrial                                                                                   | 0.0       |
|   |              |                                                                                                                             |           |

| Gene name      | Protein name                                                            | p-v |
|----------------|-------------------------------------------------------------------------|-----|
| ACSS2          | acetyl-coenzyme A synthetase, cytoplasmic                               | 0.0 |
| ITIH1          | inter-alpha-trypsin inhibitor heavy chain H1 precursor                  | 0.0 |
| TXN            | thioredoxin                                                             | 0.0 |
| MDH2           | malate dehydrogenase, mitochondrial                                     | 0.0 |
| CYP2B22        | cytochrome P450 2B4-like                                                | 0.0 |
| ST13           | hsc70-interacting protein                                               | 0.0 |
| NDUFS1         | NADH-ubiquinone oxidoreductase 75 kDa<br>subunit, mitochondrial         | 0.0 |
| AIFM1          | apoptosis-inducing factor 1, mitochondrial                              | 0.0 |
| ETFB           | electron transfer flavoprotein subunit beta                             | 0.0 |
| UGP2           | UTP–glucose-1-phosphate<br>uridylyltransferase                          | 0.0 |
| CCT8           | T-complex protein 1 subunit theta                                       | 0.0 |
| SLC25A22       | mitochondrial glutamate carrier 1                                       | 0.0 |
| A2M            | alpha-2-macroglobulin                                                   | 0.0 |
| ACO2           | aconitate hydratase, mitochondrial precursor                            | 0.0 |
| CACYBP         | calcyclin-binding protein                                               | 0.0 |
| ACADS          | short-chain specific acyl-CoA<br>dehydrogenase, mitochondrial precursor | 0.0 |
| S100A12        | protein S100-A12                                                        | 0.0 |
| $\mathbf{EZR}$ | ezrin                                                                   | 0.0 |
|                |                                                                         |     |

| 174 |  |
|-----|--|
|-----|--|

| Gene name | Protein name                                                      | p-v |
|-----------|-------------------------------------------------------------------|-----|
| NPEPPS    | puromycin-sensitive aminopeptidase                                | 0.0 |
| COX7A1    | cytochrome c oxidase subunit 7A1,<br>mitochondrial precursor      | 0.0 |
| ATP5F1D   | ATP synthase subunit delta, mitochondrial                         | 0.0 |
| HSPA9     | stress-70 protein, mitochondrial                                  | 0.0 |
| ACO       | peroxisomal acyl-coenzyme A oxidase 1                             | 0.0 |
| PCBD2     | pterin-4-alpha-carbinolamine dehydratase 2                        | 0.0 |
| SLC25A5   | ADP/ATP translocase 2                                             | 0.0 |
| HSPD1     | 60 kDa heat shock protein, mitochondrial                          | 0.0 |
| STIP1     | stress-induced-phosphoprotein 1                                   | 0.0 |
| PTGES3    | prostaglandin E synthase 3                                        | 0.0 |
| ITIH2     | inter-alpha-trypsin inhibitor heavy chain H2 precursor            | 0.0 |
| ATP5ME    | ATP synthase subunit e, mitochondrial                             | 0.0 |
| COA       | cytochrome c oxidase subunit 5A,<br>mitochondrial                 | 0.0 |
| PSME2     | proteasome activator complex subunit 2                            | 0.0 |
| SQOR      | sulfide:quinone oxidoreductase,<br>mitochondrial                  | 0.0 |
| PCNA      | proliferating cell nuclear antigen                                | 0.0 |
| SLC2A4    | solute carrier family 2, facilitated glucose transporter member 4 | 0.0 |
| SLC2A4    |                                                                   | 0.0 |

|                                             | p-v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aspartate aminotransferase, mitochondrial   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| precursor                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3-ketoacyl-CoA thiolase, peroxisomal        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| adenylate kinase 2, mitochondrial           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| aspartate aminotransferase, cytoplasmic     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NADH dehydrogenase                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| proteasome subunit beta type-3              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| leucyl-cystinyl aminopeptidase              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| acyl-protein thioesterase 1                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| acyl-CoA synthetase family member 2,        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mitochondrial                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| prostaglandin reductase 1                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ES1 protein homolog, mitochondrial          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| lactotransferrin precursor                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| guanine nucleotide-binding protein          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| G(I)/G(S)/G(O) subunit gamma-7              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| vacuolar protein sorting-associated protein | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 29                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| sterol 26-hydroxylase, mitochondrial        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| pregnancy zone protein                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 26S protease regulatory subunit 6A          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| subunit 5                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                             | 3-ketoacyl-CoA thiolase, peroxisomal<br>adenylate kinase 2, mitochondrial<br>aspartate aminotransferase, cytoplasmic<br>NADH dehydrogenase<br>proteasome subunit beta type-3<br>leucyl-cystinyl aminopeptidase<br>acyl-protein thioesterase 1<br>acyl-CoA synthetase family member 2,<br>mitochondrial<br>prostaglandin reductase 1<br>ES1 protein homolog, mitochondrial<br>lactotransferrin precursor<br>guanine nucleotide-binding protein<br>G(I)/G(S)/G(O) subunit gamma-7<br>vacuolar protein sorting-associated protein<br>29<br>sterol 26-hydroxylase, mitochondrial<br>pregnancy zone protein<br>26S protease regulatory subunit 6A<br>26S proteasome non-ATPase regulatory |

|   | Gene name           | Protein name                                        | p-v |
|---|---------------------|-----------------------------------------------------|-----|
| - | TCP1                | T-complex protein 1 subunit alpha                   | 0.0 |
|   | NDUFB10             | NADH dehydrogenase                                  | 0.0 |
|   | G6PD                | glucose-6-phosphate 1-dehydrogenase                 | 0.0 |
|   | SDHB                | succinate dehydrogenase                             | 0.0 |
|   | ACLY                | ATP-citrate synthase                                | 0.0 |
|   | PSMA2               | proteasome subunit alpha type-2                     | 0.0 |
|   | ACSL1               | long-chain-fatty-acid–CoA ligase 1                  | 0.0 |
|   | SYPL1               | synaptophysin-like protein 1                        | 0.0 |
|   | SLC25A3             | phosphate carrier protein, mitochondrial            | 0.0 |
|   | GYG2                | glycogenin-2                                        | 0.0 |
|   | ATP5B               | ATP synthase subunit beta, mitochondrial            | 0.0 |
|   | PXN                 | paxillin X7                                         | 0.0 |
|   | ACE2                | angiotensin-converting enzyme 2                     | 0.0 |
|   | UQCRC1              | cytochrome b-c1 complex subunit 1,<br>mitochondrial | 0.0 |
|   | NNT                 | NAD(P) transhydrogenase, mitochondrial              | 0.0 |
|   | NDUFA8              | NADH dehydrogenase                                  | 0.0 |
|   | TGM2                | protein-glutamine<br>gamma-glutamyltransferase 2    | 0.0 |
|   | HADHB               | trifunctional enzyme subunit beta,<br>mitochondrial | 0.0 |
|   | $\operatorname{CS}$ | citrate synthase, mitochondrial                     | 0.0 |
|   | BLVRB               | flavin reductase (NADPH)                            | 0.0 |
|   |                     |                                                     |     |

|                                             | p-v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T-complex protein 1 subunit eta             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MICOS complex subunit MIC60                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| methylcrotonoyl-CoA carboxylase subunit     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>-</b> <i>i</i>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>0</b>                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| acyl-coenzyme A thioesterase 1-like         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| heat shock 70 kDa protein 4                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| programmed cell death 6-interacting protein | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| elongation factor Tu, mitochondrial         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MICOS complex subunit MIC19                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| pyruvate dehydrogenase protein X            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| component, mitochondrial                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| prohibitin-2                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mitochondrial dicarboxylate carrier         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| acyl-CoA synthetase short-chain family      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| member 3, mitochondrial                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| hypoxanthine-guanine                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| phosphoribosyltransferase                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ADP/ATP translocase 3                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| tricarboxylate transport protein,           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mitochondrial                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -                                           | MICOS complex subunit MIC60<br>methylcrotonoyl-CoA carboxylase subunit<br>alpha, mitochondrial<br>leucine-rich PPR motif-containing protein,<br>mitochondrial<br>acyl-coenzyme A thioesterase 1-like<br>heat shock 70 kDa protein 4<br>programmed cell death 6-interacting protein<br>elongation factor Tu, mitochondrial<br>MICOS complex subunit MIC19<br>pyruvate dehydrogenase protein X<br>component, mitochondrial<br>prohibitin-2<br>mitochondrial dicarboxylate carrier<br>acyl-CoA synthetase short-chain family<br>member 3, mitochondrial<br>hypoxanthine-guanine<br>phosphoribosyltransferase<br>ADP/ATP translocase 3<br>tricarboxylate transport protein, |

| _ |           |                                           |     |
|---|-----------|-------------------------------------------|-----|
| _ | Gene name | Protein name                              | p-v |
|   | SLC25A13  | calcium-binding mitochondrial carrier     | 0.0 |
|   |           | protein Aralar2                           |     |
|   | RPE       | ribulose-phosphate 3-epimerase            | 0.0 |
|   | PSMD2     | 26S proteasome non-ATPase regulatory      | 0.0 |
|   |           | subunit 2                                 |     |
|   | ATP5H     | ATP synthase subunit d, mitochondrial     | 0.0 |
|   | FKBP4     | peptidyl-prolyl cis-trans isomerase FKBP4 | 0.0 |
|   | NPG1      | protegrin-1-like                          | 0.0 |
|   | ECHDC1    | ethylmalonyl-CoA decarboxylase            | 0.0 |
|   | ATP5F1A   | ATP synthase subunit alpha, mitochondrial | 0.0 |
|   | HADHA     | trifunctional enzyme subunit alpha,       | 0.0 |
|   | IIADIIA   | mitochondrial                             | 0.0 |
|   | HBB       | hemoglobin subunit beta                   | 0.0 |
|   | UQCRFS1   | cytochrome b-c1 complex subunit Rieske,   | 0.0 |
|   | 0QUIT 51  | mitochondrial                             | 0.0 |
|   | CHP1      | calcineurin B homologous protein 1        | 0.0 |
|   | ACACA     | acetyl-CoA carboxylase 1                  | 0.0 |
|   | BCKDHA    | 2-oxoisovalerate dehydrogenase subunit    | 0.0 |
|   |           | alpha, mitochondrial                      | 0.0 |
|   | NAMPT     | nicotinamide phosphoribosyltransferase    | 0.0 |
|   | SDHA      | succinate dehydrogenase                   | 0.0 |
|   | GPM6A     | neuronal membrane glycoprotein M6-a       | 0.0 |
|   | C3        | complement C3                             | 0.0 |
|   |           |                                           |     |

| Gene name | Protein name       | p-v |
|-----------|--------------------|-----|
| NDUFB4    | NADH dehydrogenase | 0.0 |

Table A.2. All significant proteins more abunin subcutaneous adipose tissue in the 2-way AN (q-value < 0.05).

| Gene name            | Protein name                           | p-v       |
|----------------------|----------------------------------------|-----------|
| COL3A1               | collagen alpha-1(III) chain precursor  | 1.1       |
| CBR2                 | carbonyl reductase                     | 7.50      |
| OGN                  | mimecan                                | 6.64      |
| $\operatorname{CFD}$ | complement factor D                    | $1.1^{4}$ |
| FERMT2               | fermitin family homolog 2              | 1.82      |
| MMP2                 | 72 kDa type IV collagenase precursor   | 3.00      |
| PHGDH                | D-3-phosphoglycerate dehydrogenase     | 3.29      |
| SDR16C5              | epidermal retinol dehydrogenase 2      | 3.33      |
| PCOLCE               | procollagen C-endopeptidase enhancer 1 | 9.33      |
| DCN                  | decorin precursor                      | 1.10      |
| LUM                  | lumican precursor                      | $2.8^{2}$ |
| SGCA                 | alpha-sarcoglycan precursor            | 3.4       |
| TUBB                 | tubulin beta chain                     | 3.98      |
| SNX3                 | sorting nexin-3                        | 4.05      |
|                      |                                        |           |

|                                         | p-v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01                                      | 4.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1-phosphatidylinositol 4,5-bisphosphate | 6.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| phosphodiesterase delta-1               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| inhibitor of nuclear factor kappa-B     | 7.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| kinase-interacting protein              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tensin-1                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| pigment epithelium-derived factor       | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| prolargin                               | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| olfactomedin-like protein 1             | 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| coagulation factor XIII A chain         | 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| dihydropyrimidinase-related protein 2   | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| microfibrillar-associated protein 2     | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| thymosin beta-4                         | 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| heat shock-related 70 kDa protein $2$   | 1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| angiotensinogen                         | 1.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| UDP-glucose 6-dehydrogenase             | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LEM domain-containing protein 2         | 2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| myocilin precursor                      | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C-type mannose receptor 2               | 2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| talin-1                                 | 2.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| synaptobrevin homolog YKT6              | 3.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| integrin beta-1 precursor               | 3.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         | phosphodiesterase delta-1<br>inhibitor of nuclear factor kappa-B<br>kinase-interacting protein<br>tensin-1<br>pigment epithelium-derived factor<br>prolargin<br>olfactomedin-like protein 1<br>coagulation factor XIII A chain<br>dihydropyrimidinase-related protein 2<br>microfibrillar-associated protein 2<br>thymosin beta-4<br>heat shock-related 70 kDa protein 2<br>angiotensinogen<br>UDP-glucose 6-dehydrogenase<br>LEM domain-containing protein 2<br>myocilin precursor<br>C-type mannose receptor 2<br>talin-1<br>synaptobrevin homolog YKT6 |

| TOT |
|-----|
|-----|

| Gene name    | Protein name                                      | p-v  |
|--------------|---------------------------------------------------|------|
| RENBP        | N-acylglucosamine 2-epimerase                     | 3.48 |
| DMD          | dystrophin3                                       | 3.52 |
| ASPN         | asporin                                           | 5.20 |
| CYB5R3       | NADH-cytochrome b5 reductase 3-like               | 6.38 |
| GNB4         | guanine nucleotide-binding protein subunit beta-4 | 6.77 |
| ECM1         | extracellular matrix protein 1 isoform X3         | 6.79 |
| PPIB         | peptidyl-prolyl cis-trans isomerase B             | 7.01 |
| ARHGDIA      | rho GDP-dissociation inhibitor 1                  | 9.48 |
| KP_005655478 | olfactomedin-like protein 3                       | 9.43 |
| CD276        | CD276 antigen                                     | 9.72 |
| ADD1         | alpha-adducin                                     | 0.0  |
| SCP2.1       | podocan                                           | 0.0  |
| TWF2         | twinfilin-2                                       | 0.0  |
| SPTBN1       | spectrin beta chain, non-erythrocytic 1           | 0.0  |
| AKAP12       | A-kinase anchor protein 12                        | 0.0  |
| COL1A2       | collagen alpha-2(I) chain precursor               | 0.0  |
| XP_020938403 | glutathione S-transferase P-like isoform X3       | 0.0  |
| EPB41L2      | band 4.1-like protein 2                           | 0.0  |
| ILK          | integrin-linked protein kinase                    | 0.0  |
| SPTAN1       | spectrin alpha chain, non-erythrocytic 1          | 0.0  |
| PI16         | peptidase inhibitor 16 precursor                  | 0.0  |
| LGALS1       | galectin-1                                        | 0.0  |
|              | 0                                                 | 5.   |

| Gene name    | Protein name                                 | p-v |
|--------------|----------------------------------------------|-----|
| KANK2        | KN motif and ankyrin repeat                  | 0.0 |
|              | domain-containing protein 2                  | 0.0 |
| SEPTIN9      | septin-9                                     | 0.0 |
| SNX2         | sorting nexin-2                              | 0.0 |
| PEPD         | xaa-Pro dipeptidase                          | 0.0 |
| SNCG         | gamma-synuclein                              | 0.0 |
| KDELC2       | KDEL motif-containing protein 2 isoform      | 0.0 |
| NDDD02       | X9                                           | 0.0 |
| DDAH2        | N(G), N(G)-dimethylarginine                  | 0.0 |
|              | dimethylaminohydrolase 2                     |     |
| PARVA        | alpha-parvin                                 | 0.0 |
| IGFBP6       | insulin-like growth factor-binding protein 6 | 0.0 |
|              | precursor                                    |     |
| VPS26C       | Down syndrome critical region protein 3      | 0.0 |
| HMGB1        | high mobility group protein B1               | 0.0 |
| IFI30        | gamma-interferon-inducible-lysosomal thiol   | 0.0 |
|              | reductase precursor                          |     |
| ITGA7        | integrin alpha-7                             | 0.0 |
| RSU1         | ras suppressor protein 1 isoform X3          | 0.0 |
| XP_020943699 | eukaryotic translation initiation factor 3   | 0.0 |
|              | subunit C                                    | 0.0 |

| Gene name    | Protein name                                 | p-v |
|--------------|----------------------------------------------|-----|
|              | LIM and senescent cell                       |     |
| XP_020941305 | antigen-like-containing domain protein 1     | 0.0 |
|              | isoform X8                                   |     |
| RUFY1        | RUN and FYVE domain-containing protein       | 0.0 |
|              | 1                                            | 0.0 |
| LIMCH1       | LIM and calponin homology                    | 0.0 |
|              | domains-containing protein 1                 | 0.0 |
| TLN2         | talin-2                                      | 0.0 |
| DNM2         | dynamin-29                                   | 0.0 |
| DNAJC13      | dnaJ homolog subfamily C member 13           | 0.0 |
| AP2A2        | AP-2 complex subunit alpha-2                 | 0.0 |
| GBE1         | 1,4-alpha-glucan-branching enzyme            | 0.0 |
| TUBB4B       | tubulin beta-4B chain                        | 0.0 |
| CRYM         | ketimine reductase mu-crystallin             | 0.0 |
| FKBP9        | peptidyl-prolyl cis-trans isomerase FKBP9    | 0.0 |
| FKDI 9       | precursor                                    | 0.0 |
| ASPA         | aspartoacylase                               | 0.0 |
| ITIH5        | inter-alpha-trypsin inhibitor heavy chain H5 | 0.0 |
| ITGA5        | integrin alpha-5                             | 0.0 |
| NXN          | nucleoredoxin                                | 0.0 |
| CORO1B       | coronin-1B                                   | 0.0 |
| COL1A1       | collagen alpha-1(I) chain isoform X3         | 0.0 |
| CIRBP        | cold-inducible RNA-binding protein           | 0.0 |
|              |                                              |     |

| Gene name | Protein name                                                  | p-v |
|-----------|---------------------------------------------------------------|-----|
| INPP1     | inositol polyphosphate 1-phosphatase                          | 0.0 |
| SULT1A3   | sulfotransferase 1A3                                          | 0.0 |
| ABI3BP    | target of Nesh-SH39                                           | 0.0 |
| EMD       | emerin                                                        | 0.0 |
| LAMA5     | laminin subunit alpha-5                                       | 0.0 |
| HNMT      | histamine N-methyltransferase                                 | 0.0 |
| FBLN2     | fibulin-2                                                     | 0.0 |
| SH3GLB2   | endophilin-B21                                                | 0.0 |
| SERPINH1  | serpin H1 precursor                                           | 0.0 |
| LAMB2     | laminin subunit beta-2                                        | 0.0 |
| CACNA2D1  | voltage-dependent calcium channel subunit<br>alpha-2/delta-19 | 0.0 |
| FAP       | prolyl endopeptidase FAP                                      | 0.0 |
| RAP1A     | ras-related protein Rap-1A                                    | 0.0 |
| ITGAV     | integrin alpha-V isoform X3                                   | 0.0 |
| MAPK1     | mitogen-activated protein kinase 1                            | 0.0 |
| FN1       | fibronectin                                                   | 0.0 |
| KDSR      | 3-ketodihydrosphingosine reductase                            | 0.0 |
| COL6A3    | collagen alpha-3(VI) chain                                    | 0.0 |
| EHD4      | EH domain-containing protein 4                                | 0.0 |
| FNDC1     | fibronectin type III domain-containing<br>protein 1           | 0.0 |
| VCAN      | versican core protein precursor                               | 0.0 |
|           |                                                               |     |

| Gene name         | Protein name                                             | p-v |
|-------------------|----------------------------------------------------------|-----|
| LRP1              | prolow-density lipoprotein receptor-related<br>protein 1 | 0.0 |
| LGALS3            | galectin-3                                               | 0.0 |
| XP_003132938      | phosphatidylethanolamine-binding protein 1               | 0.0 |
| PDIA5             | protein disulfide-isomerase A5                           | 0.0 |
| DYNC1H1           | cytoplasmic dynein 1 heavy chain 1                       | 0.0 |
| PFKP              | ATP-dependent 6-phosphofructokinase, platelet type       | 0.0 |
| DBN1              | drebrin isoform X3                                       | 0.0 |
| ERLIN2            | erlin-2                                                  | 0.0 |
| AOX1              | aldehyde oxidase                                         | 0.0 |
| XP_020938158      | collagen alpha-2(VI) chain                               | 0.0 |
| RTN4.1            | reticulon-4 isoform X3                                   | 0.0 |
| MYH14             | myosin-14                                                | 0.0 |
| $XP_{-}020926755$ | collagen alpha-1(VI) chain                               | 0.0 |
| VWF               | von Willebrand factor                                    | 0.0 |
| CD163             | scavenger receptor cysteine-rich type 1<br>protein M130  | 0.0 |
| CREG1             | protein CREG1 isoform X3                                 | 0.0 |
| SH3GLB1           | endophilin-B1                                            | 0.0 |
| XP_005667226      | mth938 domain-containing protein                         | 0.0 |
| SGCD              | delta-sarcoglycan                                        | 0.0 |
| HPX               | hemopexin precursor                                      | 0.0 |
|                   |                                                          |     |

| 186 |
|-----|
|-----|

| Gene name    | Protein name                                               | p-v |
|--------------|------------------------------------------------------------|-----|
| MYO1B        | unconventional myosin-Ib                                   | 0.0 |
| THBS4        | thrombospondin-4                                           | 0.0 |
| RHOG         | rho-related GTP-binding protein RhoG                       | 0.0 |
| FSTL1        | follistatin-related protein 1                              | 0.0 |
| KP_020922632 | membrane primary amine oxidase                             | 0.0 |
| KPNB1        | importin subunit beta-1                                    | 0.0 |
| CYP2A19      | cytochrome P450 2A19                                       | 0.0 |
| COPA         | coatomer subunit alpha                                     | 0.0 |
| NAXD         | ATP-dependent (S)-NAD(P)H-hydrate<br>dehydratase isoform 2 | 0.0 |
| APOE         | apolipoprotein E precursor                                 | 0.0 |
| MYOF         | myoferlin                                                  | 0.0 |
| CTSB         | cathepsin B                                                | 0.0 |
| UAP1         | UDP-N-acetylhexosamine<br>pyrophosphorylase isoform X3     | 0.0 |
| COPG1        | coatomer subunit gamma-1                                   | 0.0 |
| RRAS         | ras-related protein R-Ras                                  | 0.0 |
| NP_001230809 | PRA1 family protein 2                                      | 0.0 |
| XP_020921390 | BTB/POZ domain-containing protein<br>KCTD12                | 0.0 |
| ENOSF1       | mitochondrial enolase superfamily member<br>1              | 0.0 |
| CTTN         | src substrate cortactin                                    | 0.0 |
|              |                                                            |     |

| Gene name | Protein name                                               | p-v |
|-----------|------------------------------------------------------------|-----|
| BGN       | biglycan                                                   | 0.0 |
| ARCN1     | coatomer subunit delta                                     | 0.0 |
| PGM3      | phosphoacetylglucosamine mutase                            | 0.0 |
| SNX6      | sorting nexin-6                                            | 0.0 |
| NPTN      | neuroplastin                                               | 0.0 |
| PDIA3     | protein disulfide-isomerase A3 precursor                   | 0.0 |
| HSPB6     | heat shock protein beta-6                                  | 0.0 |
| FAM129A   | protein Niban                                              | 0.0 |
| MYDGF     | myeloid-derived growth factor                              | 0.0 |
| UAP1L1    | UDP-N-acetylhexosamine<br>pyrophosphorylase-like protein 1 | 0.0 |
| DHDH      | trans-1,2-dihydrobenzene-1,2-diol<br>dehydrogenase         | 0.0 |
| DPT       | dermatopontin                                              | 0.0 |
|           |                                                            |     |

Table A.3. GSEA: Significantly enriched gene sets is adipose tissue from MIDY pigs (q-value < 0.05).

| Category | Name                         | $\mathbf{Size}^1$ | $\mathbf{NES}^2$ | p- |
|----------|------------------------------|-------------------|------------------|----|
| GO       | Fatty acid metabolic process | 34                | 2.07             | (  |
| GO       | Cellular respiration         | 33                | 2.12             | (  |

| 1 | .88 |
|---|-----|
|   |     |

| Category            | Name                                                   | $Size^{3}$ | $\mathbf{NES}^4$ | p- |
|---------------------|--------------------------------------------------------|------------|------------------|----|
| GO                  | Energy derivation by oxidation<br>of organic compounds | 39         | 2.07             | (  |
| $\operatorname{GO}$ | Aerobic respiration                                    | 15         | 2.01             | (  |
| $\operatorname{GO}$ | Oxidation reduction process                            | 83         | 2.02             | (  |
| KEGG                | Fatty acid metabolism                                  | 16         | 2.01             | (  |
| GO                  | Oxidoreductase activity                                | 66         | 1.98             | (  |
| $\operatorname{GO}$ | Electron transport chain                               | 26         | 1.99             | (  |
| GO                  | Mitochondrial part                                     | 86         | 1.99             | (  |
| GO                  | Generation of precursor<br>metabolites and energy      | 43         | 1.97             | (  |
| GO                  | Mitochondrial envelope                                 | 58         | 1.95             | (  |
| $\operatorname{GO}$ | Lipid metabolic process                                | 55         | 1.95             | (  |
| GO                  | Carbon oxygen lyase activity                           | 10         | 1.94             | (  |
| $\operatorname{GO}$ | Hydro lyase activity                                   | 10         | 1.94             | (  |
| GO                  | Mitochondrion                                          | 112        | 1.93             | (  |
| GO                  | Regulation of cellular ketone<br>metabolic process     | 26         | 1.90             | (  |
| GO                  | Mitochondrial matrix                                   | 36         | 1.90             | (  |
| GO                  | Cellular lipid metabolic process                       | 47         | 1.90             | (  |
| GO                  | Lyase activity                                         | 18         | 1.90             | (  |
| GO                  | Hydrogen peroxide metabolic<br>process                 | 4          | 1.89             | (  |
| GO                  | Organelle inner membrane                               | 47         | 1.88             | (  |

| Name                                                                                      | $Size^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{NES}^4$                                                                                                                                                                                                                                                                                                                                                | p-                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oxidative phosphorylation                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.89                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Lipid oxidation                                                                           | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.87                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Citrate cycle tca cycle                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.86                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Tricarboxylic acid metabolic process                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.86                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Monocarboxylic acid metabolic process                                                     | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.84                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Electron carrier activity                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.84                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Oxidoreductase activity acting<br>on the ch oh group of donors nad<br>or nadp as acceptor | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.84                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Primary alcohol metabolic process                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.84                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Inner mitochondrial membrane<br>protein complex                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.83                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fatty acid catabolic process                                                              | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.83                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Reactive oxygen species<br>metabolic process                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.83                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Regulation of fatty acid<br>metabolic process                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.82                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Respiratory chain                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.82                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fatty acid beta oxidation                                                                 | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.81                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                           | Lipid oxidation<br>Citrate cycle tca cycle<br>Tricarboxylic acid metabolic<br>process<br>Monocarboxylic acid metabolic<br>process<br>Electron carrier activity<br>Oxidoreductase activity acting<br>on the ch oh group of donors nad<br>or nadp as acceptor<br>Primary alcohol metabolic<br>process<br>Inner mitochondrial membrane<br>protein complex<br>Fatty acid catabolic process<br>Reactive oxygen species<br>metabolic process<br>Regulation of fatty acid<br>metabolic process<br>Respiratory chain | Oxidative phosphorylation20Lipid oxidation18Citrate cycle tca cycle14Tricarboxylic acid metabolic13process13Monocarboxylic acid metabolic47process25Oxidoreductase activity acting20or the ch oh group of donors nad20or nadp as acceptor8Inner mitochondrial membrane20protein complex19Reactive oxygen species10Regulation of fatty acid10Respiratory chain20 | Oxidative phosphorylation201.89Lipid oxidation181.87Citrate cycle tca cycle141.86Tricarboxylic acid metabolic131.86process131.86Monocarboxylic acid metabolic471.84process251.84Oxidoreductase activity acting01.84or nadp as acceptor201.84Primary alcohol metabolic81.84Inner mitochondrial membrane201.83protein complex191.83Reactive oxygen species101.83Regulation of fatty acid101.82Respiratory chain201.82 |

| Category            | Name                                                       | $Size^{3}$ | $\mathbf{NES}^4$ | p- |
|---------------------|------------------------------------------------------------|------------|------------------|----|
|                     | Valine leucine and isoleucine                              |            |                  | T  |
| KEGG                | degradation                                                | 14         | 1.81             | (  |
| GO                  | Oxidoreductase complex                                     | 24         | 1.80             | (  |
| GO                  | Organic acid catabolic process                             | 29         | 1.80             | (  |
| GO                  | Positive regulation of wrt<br>signaling pathway            | 27         | 1.81             | (  |
| GO                  | Response to hydrogen peroxide                              | 3          | 1.81             | (  |
| GO                  | Cellular lipid catabolic process                           | 23         | 1.81             | (  |
| $\operatorname{GO}$ | Lipid modification                                         | 19         | 1.81             | (  |
| GO                  | Oxidoreductase activity acting<br>on ch oh group of donors | 20         | 1.79             | (  |
| GO                  | Anion transmembrane transport                              | 9          | 1.79             | (  |
| GO                  | Anion transport                                            | 18         | 1.78             | (  |
| GO                  | Positive regulation of canonical<br>wnt signaling pathway  | 26         | 1.78             | (  |
| GO                  | Anion transmembrane<br>transporter activity                | 8          | 1.77             | (  |
| KEGG                | Pyruvate metabolism                                        | 10         | 1.77             | (  |
| KEGG                | Butanoate metabolism                                       | 9          | 1.75             | (  |
| GO                  | Mitochondrial protein complex                              | 22         | 1.75             | (  |
| GO                  | Cellular response to reactive<br>oxygen species            | 6          | 1.74             | (  |
| GO                  | Microbody                                                  | 17         | 1.74             | (  |

| 191 |
|-----|
|-----|

| Category | Name                          | $\mathbf{Size}^3$ | $\mathbf{NES}^4$ | p- |
|----------|-------------------------------|-------------------|------------------|----|
| GO       | Hydrogen peroxide catabolic   | 4                 | 1 74             | (  |
|          | process                       | т                 | 1.11             | ,  |
| GO       | Monocarboxylic acid catabolic | 19                | 1.74             | ſ  |
|          | process                       | 15                | 1.14             | ,  |

Table A.4. GSEA: Significantly enriched gene sets i adipose tissue from WT pigs (q-value < 0.05).

| Category            | Name                                            | $\mathbf{Size}^5$ | $\mathbf{NES}^{6}$ | p- |
|---------------------|-------------------------------------------------|-------------------|--------------------|----|
| KEGG                | Complement and coagulation cascades             | 24                | -2.38              | 1  |
| $\operatorname{GO}$ | Glycosaminoglycan binding                       | 22                | -2.27              | (  |
| GO                  | Vesicle lumen                                   | 23                | -2.28              | (  |
| $\operatorname{GO}$ | Blood microparticle                             | 33                | -2.17              | (  |
| GO                  | Serine type endopeptidase<br>inhibitor activity | 13                | -2.15              | (  |
| GO                  | Regulation of endothelial cell migration        | 7                 | -2.07              | (  |
| GO                  | Leukocyte mediated immunity                     | 15                | -2.07              | (  |

<sup>3</sup>Number of proteins in leading edge. <sup>4</sup>Normalized enrichment score.

192

| Category            | Name                             | $\mathbf{Size}^5$ | $\mathbf{NES}^{6}$ | p- |
|---------------------|----------------------------------|-------------------|--------------------|----|
| GO                  | Secretory granule lumen          | 17                | -2.07              | (  |
| $\operatorname{GO}$ | Heparin binding                  | 17                | -2.08              | (  |
|                     | Humoral immune response          |                   |                    |    |
| GO                  | mediated by circulating          | 12                | -2.00              | (  |
|                     | immunoglobulin                   |                   |                    |    |
| $\operatorname{GO}$ | Regulation of cell growth        | 11                | -2.01              | (  |
| GO                  | B cell mediated immunity         | 12                | -1.97              | (  |
| $\operatorname{GO}$ | Fibrinolysis                     | 10                | -1.92              | (  |
| GO                  | Regulation of protein maturation | 15                | -1.92              | (  |
| $\operatorname{GO}$ | Peptidase inhibitor activity     | 20                | -1.94              | (  |
| GO                  | Negative regulation of response  | 18                | -1.91              | ſ  |
| GO                  | to wounding                      | 10                | -1.91              | (  |
| KEGG                | Ribosome                         | 21                | -1.93              | (  |
| $\operatorname{GO}$ | Protein activation cascade       | 20                | -1.93              | (  |
|                     | Adaptive immune response         |                   |                    |    |
|                     | based on somatic recombination   |                   |                    |    |
| $\operatorname{GO}$ | of immune receptors built from   | 12                | -1.91              | (  |
|                     | immunoglobulin superfamily       |                   |                    |    |
|                     | domains                          |                   |                    |    |
| GO                  | Humoral immune response          | 14                | -1.96              | (  |

Table A.4. GSEA: Significantly enriched gene sets is adipose tissue from WT pigs (q-value < 0.05).

193

Table A.4. GSEA: Significantly enriched gene sets is adipose tissue from WT pigs (q-value < 0.05).

| Category            | Name                         | $\mathbf{Size}^5$ | $\mathbf{NES}^6$ | p- |
|---------------------|------------------------------|-------------------|------------------|----|
| GO                  | Immune effector process      | 25                | -1.95            | (  |
| GO                  | Lymphocyte mediated immunity | 12                | -1.94            | (  |
| $\operatorname{GO}$ | Extracellular space          | 74                | -1.94            | (  |
| GO                  | Platelet alpha granule       | 17                | -1.94            | (  |
| GO                  | Platelet alpha granule lumen | 15                | -1.96            | (  |

Table A.5. GSEA: Significantly enriched gene sets : MAT in pigs (q-value < 0.05).

| Category            | Name                                                   | $Size^7$ | $\mathbf{NES}^8$ | p- |
|---------------------|--------------------------------------------------------|----------|------------------|----|
| GO                  | Mitochondrial part                                     | 88       | 2.62             |    |
| $\operatorname{GO}$ | Mitochondrial matrix                                   | 54       | 2.62             |    |
| $\operatorname{GO}$ | Cellular respiration                                   | 37       | 2.57             |    |
| GO                  | Generation of precursor<br>metabolites and energy      | 49       | 2.53             |    |
| GO                  | Energy derivation by oxidation<br>of organic compounds | 42       | 2.50             |    |
| $\operatorname{GO}$ | Coenzyme metabolic process                             | 37       | 2.44             |    |
| GO                  | Cofactor metabolic process                             | 41       | 2.42             |    |

| 1 | 9 | 4 |
|---|---|---|
|---|---|---|

| Category            | Name                                  | Size | NES  | p- |
|---------------------|---------------------------------------|------|------|----|
| GO                  | Coenzyme biosynthetic process         | 14   | 2.38 |    |
| GO                  | Cofactor biosynthetic process         | 18   | 2.37 |    |
| GO                  | Mitochondrial envelope                | 57   | 2.36 |    |
| $\operatorname{GO}$ | Mitochondrion                         | 118  | 2.32 |    |
| GO                  | Electron transport chain              | 23   | 2.31 |    |
| GO                  | Thioester metabolic process           | 19   | 2.28 |    |
| $\operatorname{GO}$ | Oxidation reduction process           | 98   | 2.28 |    |
| GO                  | Organelle inner membrane              | 52   | 2.28 |    |
| GO                  | Fatty acid beta oxidation             | 19   | 2.27 |    |
| $\operatorname{GO}$ | Fatty acid metabolic process          | 36   | 2.27 |    |
| GO                  | Oxidoreductase complex                | 23   | 2.26 |    |
| KEGG                | Parkinsons disease                    | 21   | 2.24 |    |
| $\operatorname{GO}$ | Mitochondrial membrane part           | 17   | 2.24 |    |
| KEGG                | Citrate cycle tca cycle               | 18   | 2.23 |    |
| $\operatorname{GO}$ | Mitochondrial protein complex         | 25   | 2.22 |    |
| $\operatorname{GO}$ | Aerobic respiration                   | 19   | 2.21 |    |
| GO                  | Mitochondrion organization            | 29   | 2.21 |    |
| GO                  | Monocarboxylic acid metabolic process | 53   | 2.18 |    |
| GO                  | Lipid oxidation                       | 20   | 2.17 |    |
| KEGG                | Oxidative phosphorylation             | 17   | 2.15 |    |
| GO                  | Fatty acid catabolic process          | 19   | 2.15 |    |
| GO                  | Thioester biosynthetic process        | 11   | 2.14 |    |

| Category            | Name                             | Size | NES  | p- |
|---------------------|----------------------------------|------|------|----|
| Category            | Inner mitochondrial membrane     | 5120 | 1110 | Р- |
| GO                  |                                  | 21   | 2.13 |    |
|                     | protein complex                  |      |      |    |
| GO                  | Tricarboxylic acid metabolic     | 18   | 2.13 |    |
| 00                  | process                          | 10   | 2.10 |    |
| GO                  | Oxidoreduction coenzyme          | 19   | 2.12 |    |
| GO                  | metabolic process                | 19   | 2.12 |    |
| $\operatorname{GO}$ | Oxidoreductase activity          | 80   | 2.11 |    |
| GO                  | Oxidative phosphorylation        | 17   | 2.11 |    |
| GO                  | Respiratory chain                | 17   | 2.09 |    |
| GO                  | Nucleobase containing small      | 41   | 2.09 |    |
|                     | molecule metabolic process       |      |      |    |
| ~ ~                 | Tumor necrosis factor mediated   | 25   | 2.09 |    |
| $\operatorname{GO}$ | signaling pathway                |      |      |    |
|                     | Monocarboxylic acid catabolic    |      |      |    |
| GO                  | process                          | 25   | 2.07 |    |
| GO                  | Cellular lipid catabolic process | 28   | 2.07 |    |
|                     |                                  |      |      |    |
| GO                  | Proteasome complex               | 25   | 2.07 |    |
| GO                  | Positive regulation of ligase    | 22   | 2.02 |    |
| 0.0                 | activity                         |      |      |    |
| GO                  | Oxidoreductase activity acting   | 13   | 2.02 |    |
|                     | on the ch ch group of donors     | 10   | 2.02 |    |
| GO                  | Lipid modification               | 21   | 2.02 |    |
| GO                  | Envelope                         | 66   | 2.02 |    |
|                     | -                                |      |      |    |

| Category            | Name                             | Size | NES  | p         |
|---------------------|----------------------------------|------|------|-----------|
|                     |                                  |      |      | <u>p-</u> |
| KEGG                | Fatty acid metabolism            | 16   | 2.02 | 0         |
| $\operatorname{GO}$ | Regulation of ligase activity    | 22   | 2.01 |           |
| KEGG                | Huntingtons disease              | 23   | 2.00 |           |
| $\operatorname{GO}$ | Protein polyubiquitination       | 25   | 1.99 | ļ         |
| 00                  | Nucleoside monophosphate         | 0.9  | 1.00 | ļ         |
| GO                  | metabolic process                | 23   | 1.99 | l         |
|                     | Positive regulation of protein   |      |      | į         |
| GO                  | modification by small protein    | 23   | 1.98 | l         |
|                     | conjugation or removal           |      |      | ļ         |
| GO                  | Nik nf kappab signaling          | 23   | 1.98 | ļ         |
| 00                  | Nucleoside triphosphate          | 0.4  | 1.00 | I         |
| GO                  | metabolic process                | 24   | 1.98 | l         |
| GO                  | Fatty acyl coa binding           | 9    | 1.97 | ļ         |
| 00                  | Monosaccharide biosynthetic      | 14   | 1.00 | l         |
| GO                  | process                          | 14   | 1.96 | ļ         |
| GO                  | Fatty acyl coa metabolic process | 9    | 1.96 | ļ         |
| 00                  | Anaphase promoting complex       | 01   | 1.05 | ļ         |
| GO                  | dependent catabolic process      | 21   | 1.95 | ļ         |
| GO                  | Fatty acid biosynthetic process  | 8    | 1.95 | l         |
| KEGG                | Proteasome                       | 19   | 1.95 | l         |
|                     | Organophosphate metabolic        |      |      | l         |
| GO                  | 0 1 1                            | 47   | 1.94 | l         |
|                     | process                          |      |      | J         |

\_

| 197 |
|-----|
|-----|

| ~                   | 2.7                                                                                                     | ~.   | NIRC |    |
|---------------------|---------------------------------------------------------------------------------------------------------|------|------|----|
| Category            | Name                                                                                                    | Size | NES  | p- |
| GO                  | Mitochondrial respiratory chain complex assembly                                                        | 13   | 1.94 |    |
| $\operatorname{GO}$ | Cofactor binding                                                                                        | 40   | 1.94 |    |
| $\operatorname{GO}$ | Lyase activity                                                                                          | 18   | 1.94 |    |
| KEGG                | Peroxisome                                                                                              | 12   | 1.94 |    |
| $\operatorname{GO}$ | Protein tetramerization                                                                                 | 9    | 1.92 |    |
| GO                  | Oxidoreductase activity acting<br>on nad p h quinone or similar<br>compound as acceptor                 | 13   | 1.92 |    |
| GO                  | Mitochondrial respiratory chain<br>complex i biogenesis                                                 | 13   | 1.92 | 0  |
| GO                  | Regulation of protein<br>ubiquitination involved in<br>ubiquitin dependent protein<br>catabolic process | 23   | 1.92 |    |
| GO                  | Innate immune response<br>activating cell surface receptor<br>signaling pathway                         | 22   | 1.91 |    |
| GO                  | Dicarboxylic acid metabolic process                                                                     | 19   | 1.91 |    |
| GO                  | Carbon oxygen lyase activity                                                                            | 12   | 1.90 | 0  |
| GO                  | Ligase activity forming carbon<br>sulfur bonds                                                          | 8    | 1.90 |    |

| Category            | Name                                                      | Size | NES  | p- |
|---------------------|-----------------------------------------------------------|------|------|----|
| KEGG                | Propanoate metabolism                                     | 15   | 1.90 | 0  |
| GO                  | Regulation of cellular ketone<br>metabolic process        | 23   | 1.89 |    |
| GO                  | Fatty acid beta oxidation using<br>acyl coa dehydrogenase | 9    | 1.89 |    |
| GO                  | Protein ubiquitination                                    | 30   | 1.89 |    |
| GO                  | Hydro lyase activity                                      | 12   | 1.89 |    |
| $\operatorname{GO}$ | Myelin sheath                                             | 36   | 1.88 |    |
| GO                  | Flavin adenine dinucleotide<br>binding                    | 14   | 1.88 | 0  |
| GO                  | Carbohydrate biosynthetic process                         | 17   | 1.88 |    |
| GO                  | Nadh dehydrogenase complex                                | 12   | 1.87 |    |
| GO                  | Heat shock protein binding                                | 11   | 1.87 |    |
| GO                  | Acyl coa dehydrogenase activity                           | 7    | 1.87 | 0  |
| GO                  | Branched chain amino acid<br>metabolic process            | 9    | 1.87 |    |
| $\operatorname{GO}$ | Organic acid metabolic process                            | 78   | 1.86 |    |
| GO                  | Cellular response to reactive<br>oxygen species           | 6    | 1.85 |    |
| GO                  | Cellular protein complex<br>assembly                      | 21   | 1.85 |    |
| GO                  | Anion transmembrane transport                             | 7    | 1.85 |    |

| Category            | Name                              | Size       | NES  | p- |
|---------------------|-----------------------------------|------------|------|----|
| KEGG                | Valine leucine and isoleucine     | 18         | 1.84 | 0  |
| MLGG                | degradation                       | 10         | 1.04 | 0  |
| GO                  | Proteasome accessory complex      | 10         | 1.84 | 0  |
| GO                  | Lipid catabolic process           | 30         | 1.84 |    |
| GO                  | Nucleoid                          | 7          | 1.82 | 0  |
| GO                  | Response to tumor necrosis        | 28         | 1.81 | 0  |
| GO                  | factor                            | 20         | 1.01 | 0  |
| GO                  | Glycosyl compound metabolic       | 25         | 1.81 |    |
|                     | process                           | $\Delta 0$ | 1.01 |    |
| GO                  | Proteasomal protein catabolic     | 23         | 1.81 |    |
| GO                  | process                           | 2 <b>0</b> | 1.01 |    |
| GO                  | Glyoxylate metabolic process      | 9          | 1.80 |    |
| GO                  | Glucose metabolic process         | 15         | 1.80 |    |
| GO                  | Protein homotetramerization       | 6          | 1.80 | 0  |
| $\operatorname{GO}$ | Mitochondrial transport           | 16         | 1.80 |    |
| KEGG                | Pyruvate metabolism               | 12         | 1.80 | 0  |
| GO                  | Regulation of cellular amino acid | 21         | 1.80 |    |
| GU                  | metabolic process                 | <i>4</i> 1 | 1.00 |    |
| GO                  | Regulation of cellular amine      | 21         | 1.79 | 0  |
| GU                  | metabolic process                 | <i>4</i> 1 | 1.19 | 0  |
| $\operatorname{GO}$ | Organic acid catabolic process    | 33         | 1.79 |    |
| GO                  | Small molecule metabolic process  | 106        | 1.79 |    |
| $\operatorname{GO}$ | Coenzyme binding                  | 29         | 1.79 | 0  |
|                     | · · ·                             |            |      |    |

## $\mathbf{200}$

| <u>a</u> +          | ът                               | <b>a</b> . | NIDC  |    |
|---------------------|----------------------------------|------------|-------|----|
| Category            | Name                             | Size       | NES   | p- |
| $\operatorname{GO}$ | Apoptotic mitochondrial changes  | 5          | 1.79  | 0  |
|                     | Regulation of protein            |            |       |    |
| GO                  | modification by small protein    | 24         | 1.78  | 0  |
|                     | conjugation or removal           |            |       |    |
| GO                  | Regulation of cofactor metabolic | 7          | 1.78  |    |
| GO                  | process                          | 1          | 1.70  |    |
| GO                  | 2 oxoglutarate metabolic process | 6          | 1.78  | 0  |
| GO                  | Microbody                        | 17         | 1.78  | 0  |
| GO                  | Nadp metabolic process           | 6          | 1.78  |    |
| GO                  | Positive regulation of protein   | 6          | 1 70  |    |
|                     | localization to nucleus          | 0          | 1.78  |    |
| GO                  | Nad metabolic process            | 10         | 1.77  | 0  |
| GO                  | Cellular lipid metabolic process | 46         | 1.77  |    |
| 00                  | Cellular response to oxidative   | -          | 1 70  |    |
| GO                  | stress                           | 7          | 1.76  |    |
| GO                  | Lipid metabolic process          | 57         | 1.76  |    |
| GO                  | Electron carrier activity        | 25         | 1.76  |    |
| GO                  | Response to toxic substance      | 14         | 1.75  | 0  |
| 00                  | Hydrogen peroxide metabolic      | F          |       | 0  |
| GO                  | process                          | 5          | 1.75  | 0  |
| GO                  | Lipid biosynthetic process       | 18         | 1.75  |    |
| 00                  | Mitochondrial membrane           | -          | 1 7 4 |    |
| GO                  | organization                     | 7          | 1.74  |    |
|                     | -                                |            |       |    |

| Category | Name                                                      | Size | NES  | p- |
|----------|-----------------------------------------------------------|------|------|----|
| GO       | Hydrogen transport                                        | 7    | 1.74 | 0  |
| GO       | Hydrogen ion transmembrane<br>transport                   | 6    | 1.73 | (  |
| GO       | Hydrogen peroxide catabolic process                       | 5    | 1.73 | (  |
| GO       | T cell receptor signaling pathway                         | 23   | 1.72 | 0  |
| GO       | Monocarboxylic acid<br>biosynthetic process               | 13   | 1.72 | 0  |
| GO       | Protein localization to<br>mitochondrion                  | 10   | 1.72 | (  |
| GO       | Oxidoreductase activity acting<br>on peroxide as acceptor | 8    | 1.71 | 0  |
| GO       | Fertilization                                             | 7    | 1.71 | 0  |
| GO       | Regulation of RNA stability                               | 26   | 1.70 |    |
| GO       | Lipid homeostasis                                         | 12   | 1.70 | 0  |
| GO       | Glutathione metabolic process                             | 9    | 1.70 | (  |
| GO       | Unfolded protein binding                                  | 14   | 1.70 | 0  |
| GO       | Transmembrane transport                                   | 18   | 1.70 |    |
| KEGG     | Alzheimers disease                                        | 19   | 1.69 | 0  |
| GO       | Protein targeting to<br>mitochondrion                     | 9    | 1.69 | 0  |
| GO       | Purine containing compound<br>metabolic process           | 25   | 1.68 |    |

## $\mathbf{202}$

| ~                   | ~~~                                                                                                 | ~    |      |    |
|---------------------|-----------------------------------------------------------------------------------------------------|------|------|----|
| Category            | Name                                                                                                | Size | NES  | p- |
| GO                  | Microbody part                                                                                      | 10   | 1.68 | (  |
| GO                  | Antigen receptor mediated signaling pathway                                                         | 23   | 1.68 | 0  |
| GO                  | Oxidoreductase activity acting<br>on the aldehyde or oxo group of<br>donors nad or nadp as acceptor | 12   | 1.68 | 0  |
| GO                  | Unsaturated fatty acid metabolic process                                                            | 8    | 1.67 | (  |
| GO                  | Oxidoreductase activity acting<br>on nad p h                                                        | 16   | 1.67 | 0  |
| GO                  | Small molecule biosynthetic process                                                                 | 31   | 1.67 |    |
| GO                  | Steroid hormone receptor<br>binding                                                                 | 5    | 1.67 | (  |
| GO                  | Nucleoside phosphate<br>biosynthetic process                                                        | 5    | 1.66 | (  |
| GO                  | Protein stabilization                                                                               | 13   | 1.66 | 0  |
| $\operatorname{GO}$ | Nadh metabolic process                                                                              | 9    | 1.66 | (  |
| GO                  | Protein modification by small<br>protein conjugation or removal                                     | 36   | 1.65 | 0  |
| GO                  | Ligase activity                                                                                     | 18   | 1.65 | 0  |
| GO                  | Carbon carbon lyase activity                                                                        | 6    | 1.65 | (  |
|                     |                                                                                                     |      |      |    |

| Category            | Name                             | Size | NES  | p- |
|---------------------|----------------------------------|------|------|----|
| GO                  | Anion transmembrane              | 7    | 1.65 |    |
| GO                  | transporter activity             | 1    | 1.00 | U  |
| CO                  | Reactive oxygen species          | 11   | 164  | 0  |
| GO                  | metabolic process                | 11   | 1.64 | U  |
| GO                  | Hexose metabolic process         | 15   | 1.64 |    |
|                     | Antigen processing and           |      |      |    |
| $\operatorname{GO}$ | presentation of exogenous        | 17   | 1.64 | 0  |
|                     | peptide antigen via mhc class i  |      |      |    |
| GO                  | Positive regulation of canonical | 00   | 1.00 |    |
|                     | wnt signaling pathway            | 22   | 1.63 | (  |
|                     |                                  |      |      |    |

Table A.6. GSEA: Significantly enriched gene sets SCAT in pigs (q-value < 0.05).

| Category            | Name                                  | $\mathbf{Size}^9$ | $\mathbf{NES}^{10}$ | p |
|---------------------|---------------------------------------|-------------------|---------------------|---|
| GO                  | Proteinaceous extracellular<br>matrix | 62                | -2.28               |   |
| GO                  | Muscle organ development              | 32                | -2.25               |   |
| GO                  | Blood vessel morphogenesis            | 40                | -2.22               |   |
| $\operatorname{GO}$ | Extracellular matrix                  | 81                | -2.21               |   |
| KEGG                | Hypertrophic cardiomyopathy<br>hcm    | 22                | -2.18               |   |

 $\mathbf{204}$ 

| Category            | Name                             | Size | NES             | p        |
|---------------------|----------------------------------|------|-----------------|----------|
| 0 0                 | Negative regulation of           | 2120 | 1,10            | <u>ч</u> |
| GO                  | locomotion                       | 32   | -2.15           |          |
|                     |                                  |      |                 |          |
| GO                  | Extracellular structure          | 71   | -2.14           |          |
|                     | organization                     |      |                 |          |
| GO                  | Regulation of nervous system     | 64   | -2.14           |          |
|                     | development                      | 0 -  | <b>-</b> •• + + |          |
| $\operatorname{GO}$ | Integrin binding                 | 26   | -2.14           |          |
| GO                  | Circulatory system development   | 82   | -2.14           |          |
| GO                  | Vasculature development          | 52   | -2.14           |          |
| VECC                | Arrhythmogenic right ventricular | 24   | -2.13           |          |
| KEGG                | cardiomyopathy arvc              |      |                 |          |
| $\operatorname{GO}$ | Angiogenesis                     | 33   | -2.13           |          |
| GO                  | Regulation of neuron             | 50   | -2.13           |          |
| GO                  | differentiation                  | 30   | -2.15           |          |
| KEGG                | Dilated cardiomyopathy           | 24   | -2.11           |          |
| KEGG                | Ecm receptor interaction         | 26   | -2.09           |          |
| 00                  | Regulation of neuron projection  | 4.1  | 0.00            |          |
| GO                  | development                      | 41   | -2.09           |          |
| KEGG                | Focal adhesion                   | 58   | -2.09           |          |
| ~~                  | Regulation of cellular component | ~ -  |                 |          |
| GO                  | movement                         | 97   | -2.09           |          |
| GO                  | Collagen binding                 | 19   | -2.08           |          |
| uu                  | Conagon oniung                   | 10   | -2.00           |          |

\_

#### $\mathbf{205}$

|                     |                                                              | ~    |       | - |
|---------------------|--------------------------------------------------------------|------|-------|---|
| Category            | Name                                                         | Size | NES   | p |
| GO                  | Integrin mediated signaling<br>pathway                       | 21   | -2.07 |   |
| GO                  | Regulation of cell differentiation                           | 128  | -2.04 |   |
| GO                  | Regulation of cellular response<br>to growth factor stimulus | 29   | -2.04 |   |
| GO                  | Regulation of cell development                               | 88   | -2.04 |   |
| GO                  | Muscle structure development                                 | 55   | -2.01 |   |
| GO                  | Skeletal system development                                  | 35   | -2.00 |   |
| GO                  | Actin binding                                                | 93   | -2.00 |   |
| $\operatorname{GO}$ | Response to mechanical stimulus                              | 21   | -2.00 |   |
| GO                  | Positive regulation of neuron differentiation                | 26   | -1.98 |   |
| GO                  | Regulation of stat cascade                                   | 12   | -1.97 |   |
| GO                  | Positive regulation of neuron<br>projection development      | 24   | -1.97 |   |
| GO                  | Regulation of peptidyl tyrosine phosphorylation              | 25   | -1.97 |   |
| GO                  | Cell adhesion molecule binding                               | 40   | -1.96 |   |
| GO                  | Positive regulation of cell<br>differentiation               | 82   | -1.96 |   |
| GO                  | Cell substrate junction                                      | 162  | -1.95 |   |
| GO                  | Cell substrate adhesion                                      | 38   | -1.95 |   |

#### $\mathbf{206}$

| Catamar             | Nomo                                                 | Sino | NEC   |   |
|---------------------|------------------------------------------------------|------|-------|---|
| Category            | Name                                                 | Size | NES   | p |
| GO                  | Positive regulation of nervous                       | 33   | -1.95 |   |
| GO                  | system development<br>Extracellular matrix component | 38   | -1.94 |   |
|                     | _                                                    |      |       |   |
| GO                  | Anchoring junction                                   | 168  | -1.94 |   |
| GO                  | Positive regulation of cell                          | 52   | -1.93 |   |
| 0.0                 | development                                          |      | 1.00  |   |
| GO                  | Regulation of ras protein signal                     | 17   | -1.92 |   |
| 00                  | transduction                                         | 11   | -1.92 |   |
| $\operatorname{GO}$ | Cell projection organization                         | 90   | -1.92 |   |
| GO                  | Movement of cell or subcellular                      | 159  | 1.09  |   |
| GO                  | component                                            | 153  | -1.92 |   |
| GO                  | Cell matrix adhesion                                 | 30   | -1.92 |   |
| $\operatorname{GO}$ | Cell cell junction                                   | 56   | -1.91 |   |
| CO                  | Sulfur compound catabolic                            | 11   | 1.01  |   |
| GO                  | process                                              | 11   | -1.91 |   |
| $\operatorname{GO}$ | Glycosaminoglycan binding                            | 36   | -1.91 |   |
| GO                  | Negative regulation of                               | 70   | -1.90 |   |
| GO                  | developmental process                                | 10   | -1.90 |   |
| 00                  | Carbohydrate derivative                              | 95   | 1.00  |   |
| GO                  | catabolic process                                    | 25   | -1.90 |   |
| CO                  | Positive regulation of peptidyl                      | 17   | 1.00  |   |
| GO                  | tyrosine phosphorylation                             | 17   | -1.89 |   |
| GO                  | Cell part morphogenesis                              | 64   | -1.88 |   |
|                     |                                                      |      |       |   |

-

| Category            | Name                                                        | Size | NES   | p |
|---------------------|-------------------------------------------------------------|------|-------|---|
| GO                  | Cell junction                                               | 207  | -1.88 |   |
| GO                  | Extracellular matrix structural constituent                 | 19   | -1.88 |   |
| $\operatorname{GO}$ | Biological adhesion                                         | 107  | -1.88 |   |
| GO                  | Positive regulation of<br>developmental process             | 108  | -1.88 |   |
| $\operatorname{GO}$ | Skin development                                            | 18   | -1.88 |   |
| $\operatorname{GO}$ | Cell junction assembly                                      | 33   | -1.87 |   |
| $\operatorname{GO}$ | Cell junction organization                                  | 37   | -1.87 |   |
| $\operatorname{GO}$ | Regulation of cell morphogenesis                            | 76   | -1.87 |   |
| GO                  | Aminoglycan biosynthetic process                            | 12   | -1.87 |   |
| GO                  | Regulation of cell projection organization                  | 65   | -1.86 |   |
| $\operatorname{GO}$ | Neurogenesis                                                | 129  | -1.86 |   |
| $\operatorname{GO}$ | Neuron projection development                               | 60   | -1.86 |   |
| GO                  | Regulation of<br>phosphatidylinositol 3 kinase<br>signaling | 12   | -1.86 |   |
| GO                  | Actin filament bundle                                       | 24   | -1.86 |   |
| GO                  | Anatomical structure formation<br>involved in morphogenesis | 82   | -1.85 |   |
|                     |                                                             |      |       |   |

#### $\mathbf{208}$

| Category            | Name                                                            | Size | NES   | p |
|---------------------|-----------------------------------------------------------------|------|-------|---|
| GO                  | Substrate adhesion dependent<br>cell spreading                  | 10   | -1.85 |   |
| GO                  | Actomyosin                                                      | 24   | -1.85 |   |
| $\operatorname{GO}$ | Collagen trimer                                                 | 15   | -1.85 |   |
| GO                  | Calmodulin binding                                              | 25   | -1.84 |   |
| GO                  | Cell morphogenesis involved in differentiation                  | 56   | -1.84 |   |
| GO                  | Extracellular matrix binding                                    | 20   | -1.84 |   |
| $\operatorname{GO}$ | Lamellipodium                                                   | 41   | -1.84 |   |
| $\operatorname{GO}$ | Response to growth factor                                       | 54   | -1.83 |   |
| $\operatorname{GO}$ | Golgi lumen                                                     | 16   | -1.82 |   |
| $\operatorname{GO}$ | Protein complex binding                                         | 167  | -1.82 |   |
| GO                  | Regulation of cell morphogenesis<br>involved in differentiation | 47   | -1.82 |   |
| GO                  | Cytoskeleton organization                                       | 115  | -1.82 |   |
| GO                  | Regulation of extent of cell growth                             | 13   | -1.82 |   |
| GO                  | Cellular component<br>morphogenesis                             | 91   | -1.81 |   |
| $\operatorname{GO}$ | Regulation of axonogenesis                                      | 20   | -1.81 |   |
| GO                  | Regulation of cell substrate adhesion                           | 35   | -1.81 |   |

#### $\mathbf{209}$

|          | NT                               |      | NTD C |   |
|----------|----------------------------------|------|-------|---|
| Category | Name                             | Size | NES   | p |
| GO       | Skeletal muscle organ            | 14   | -1.81 |   |
|          | development                      |      |       |   |
| GO       | Aminoglycan catabolic process    | 12   | -1.80 |   |
| GO       | Cell development                 | 129  | -1.80 |   |
| GO       | Synapse                          | 71   | -1.80 |   |
| GO       | Negative regulation of cellular  | 101  | -1.80 |   |
|          | component organization           | 101  | -1.00 |   |
| GO       | Collagen fibril organization     | 11   | -1.79 |   |
| GO       | Regulation of rho protein signal | 11   | -1.79 |   |
| 00       | transduction                     | ΤŢ   | 1.13  |   |
| GO       | Negative regulation of           | 103  | -1.79 |   |
|          | multicellular organismal process |      |       |   |
| GO       | Heparin binding                  | 30   | -1.78 |   |
| GO       | Plasma membrane receptor         | 15   | -1.78 |   |
| 00       | complex                          | 10   | 1.10  |   |
| GO       | Cellular response to mechanical  | 13   | -1.78 |   |
|          | stimulus                         | -    |       |   |
| GO       | Muscle tissue development        | 31   | -1.78 |   |
| GO       | Multicellular organismal         | 17   | -1.77 |   |
|          | macromolecule metabolic process  | 11   |       |   |
| GO       | Glial cell differentiation       | 21   | -1.77 |   |
| GO       | Actin filament based process     | 86   | -1.77 |   |
| GO       | Gastrulation                     | 19   | -1.77 |   |

| ົ | 1 | n |
|---|---|---|
| 4 | т | υ |

| Category            | Name                              | Size | NES   | n |
|---------------------|-----------------------------------|------|-------|---|
| Category            |                                   | DIZE |       | p |
| GO                  | Positive regulation of cell       | 40   | -1.77 |   |
|                     | projection organization           |      |       |   |
| GO                  | Regulation of extrinsic apoptotic | 21   | -1.76 |   |
|                     | signaling pathway                 |      |       |   |
| GO                  | Platelet degranulation            | 38   | -1.76 |   |
| $\operatorname{GO}$ | Single organism cell adhesion     | 54   | -1.76 |   |
| GO                  | Transforming growth factor beta   | 15   | -1.76 |   |
| GU                  | receptor signaling pathway        | 10   | -1.70 |   |
| GO                  | Regulation of cell adhesion       | 77   | -1.76 |   |
| GO                  | Positive regulation of locomotion | 51   | -1.75 | ( |
| KEGG                | Regulation of actin cytoskeleton  | 51   | -1.75 |   |
| KEGG                | Viral myocarditis                 | 15   | -1.75 | ( |
| 00                  | Negative regulation of cell       | 9F   | 1 75  |   |
| GO                  | adhesion                          | 25   | -1.75 | ( |
| GO                  | Macromolecular complex binding    | 198  | -1.75 |   |
| GO                  | Cytoskeletal protein binding      | 157  | -1.74 |   |
| 00                  | Neuron projection                 | 47   | 1 - 4 |   |
| GO                  | morphogenesis                     | 47   | -1.74 |   |
| GO                  | Cell projection part              | 117  | -1.74 |   |
| GO                  | Cardiocyte differentiation        | 11   | -1.74 | ( |
| GO                  | Heart development                 | 42   | -1.74 |   |
| GO                  | Neuron development                | 69   | -1.74 |   |
| GO                  | Adherens junction organization    | 15   | -1.73 |   |
|                     | - random Janonom or gamzanom      | 10   | 1.10  |   |

| 2 | 1 | 1 |
|---|---|---|
| - | - | - |

|                                                       | Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regulation of synaptic plasticity                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Positive regulation of cell<br>substrate adhesion     | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cellular response to amino acid stimulus              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Gliogenesis                                           | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cell activation                                       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Formation of primary germ layer                       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Peptidyl serine modification                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Secretion by cell                                     | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Endodermal cell differentiation                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cell projection                                       | 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cilium morphogenesis                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Small cell lung cancer                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Plasma membrane protein<br>complex                    | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cell cell adhesion                                    | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Regulation of multicellular<br>organismal development | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cell growth                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Endometrial cancer                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Lymphocyte differentiation                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Platelet activation                                   | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                       | Positive regulation of cell<br>substrate adhesion<br>Cellular response to amino acid<br>stimulus<br>Gliogenesis<br>Cell activation<br>Formation of primary germ layer<br>Peptidyl serine modification<br>Secretion by cell<br>Endodermal cell differentiation<br>Cell projection<br>Cilium morphogenesis<br>Small cell lung cancer<br>Plasma membrane protein<br>complex<br>Cell cell adhesion<br>Regulation of multicellular<br>organismal development<br>Cell growth<br>Endometrial cancer<br>Lymphocyte differentiation | Regulation of synaptic plasticity11Positive regulation of cell27substrate adhesion27Cellular response to amino acid13stimulus13Gliogenesis28Cell activation58Formation of primary germ layer15Peptidyl serine modification13Secretion by cell67Endodermal cell differentiation10Cell projection216Cilium morphogenesis13Small cell lung cancer11Plasma membrane protein<br>complex68Cell cell adhesion52Regulation of multicellular<br>organismal development176Cell growth20Endometrial cancer10Lymphocyte differentiation10 | Regulation of synaptic plasticity11-1.73Positive regulation of cell<br>substrate adhesion27-1.73Cellular response to amino acid<br>stimulus13-1.73Gliogenesis28-1.73Cell activation58-1.72Formation of primary germ layer15-1.72Peptidyl serine modification13-1.71Endodermal cell differentiation10-1.71Cell projection216-1.71Cilium morphogenesis13-1.71Small cell lung cancer11-1.71Plasma membrane protein<br>complex68-1.71Cell cell adhesion52-1.71Regulation of multicellular<br>organismal development176-1.71Cell growth20-1.70Endometrial cancer10-1.70Lymphocyte differentiation10-1.70 |

|                     |                                | ~•   |       |   |
|---------------------|--------------------------------|------|-------|---|
| Category            | Name                           | Size | NES   | р |
| GO                  | Vacuolar part                  | 118  | -1.70 |   |
| KEGG                | Endocytosis                    | 30   | -1.70 |   |
| GO                  | Endoderm development           | 11   | -1.70 |   |
| GO                  | Endoderm formation             | 10   | -1.69 |   |
| GO                  | Positive regulation of cell    | 54   | -1.69 |   |
|                     | adhesion                       | 01   | 1.00  |   |
|                     | Positive regulation of cell    |      |       |   |
| GO                  | morphogenesis involved in      | 29   | -1.69 |   |
|                     | differentiation                |      |       |   |
| GO                  | Secretory granule lumen        | 28   | -1.69 | ( |
| $\operatorname{GO}$ | Glial cell development         | 13   | -1.69 |   |
| $\operatorname{GO}$ | Secretion                      | 82   | -1.69 |   |
| GO                  | Negative regulation of nervous | 29   | -1.69 |   |
|                     | system development             |      |       |   |
| $\operatorname{GO}$ | Basement membrane              | 27   | -1.69 |   |
| GO                  | Locomotion                     | 115  | -1.69 |   |
| $\operatorname{GO}$ | Tissue remodeling              | 14   | -1.69 |   |
| $\operatorname{GO}$ | Cell leading edge              | 71   | -1.68 |   |
| GO                  | Regulation of small gtpase     | 24   | -1.68 |   |
|                     | mediated signal transduction   | ∠'±  | -1.00 |   |
| $\operatorname{GO}$ | Cell cell adherens junction    | 16   | -1.68 |   |
| $\operatorname{GO}$ | Extracellular space            | 206  | -1.68 |   |
| $\operatorname{GO}$ | Head development               | 65   | -1.68 | ( |
|                     |                                |      |       |   |

## $\mathbf{213}$

| ~                   |                                                     | ~.   |       |   |
|---------------------|-----------------------------------------------------|------|-------|---|
| Category            | Name                                                | Size | NES   | p |
| $\operatorname{GO}$ | System process                                      | 126  | -1.68 |   |
| GO                  | Single organism behavior                            | 28   | -1.68 |   |
| GO                  | Early endosome membrane                             | 18   | -1.67 |   |
| GO                  | Behavior                                            | 37   | -1.67 |   |
| GO                  | Response to transforming growth factor beta         | 22   | -1.67 |   |
| $\operatorname{GO}$ | Response to wounding                                | 101  | -1.67 |   |
| KEGG                | Gap junction                                        | 20   | -1.67 |   |
| GO                  | Telencephalon development                           | 18   | -1.66 |   |
| $\operatorname{GO}$ | Exocytosis                                          | 54   | -1.66 |   |
| GO                  | Negative regulation of epithelial cell migration    | 10   | -1.66 |   |
| $\operatorname{GO}$ | Calcium ion binding                                 | 82   | -1.66 |   |
| $\operatorname{GO}$ | Regulated exocytosis                                | 46   | -1.66 |   |
| $\operatorname{GO}$ | Aminoglycan metabolic process                       | 16   | -1.66 |   |
| GO                  | Regulation of sodium ion<br>transmembrane transport | 10   | -1.65 |   |
| GO                  | Sensory perception of light stimulus                | 14   | -1.65 |   |
| GO                  | Negative regulation of cell<br>differentiation      | 44   | -1.65 |   |
| GO                  | Regulation of dendrite<br>development               | 13   | -1.65 |   |
|                     |                                                     |      |       |   |

| Category            | Name                                                                     | Size | NES   | p |
|---------------------|--------------------------------------------------------------------------|------|-------|---|
| GO                  | Negative regulation of cellular<br>response to growth factor<br>stimulus | 17   | -1.65 |   |
| $\operatorname{GO}$ | Plasma membrane region                                                   | 92   | -1.65 |   |
| GO                  | Regulation of protein kinase b<br>signaling                              | 10   | -1.65 |   |
| GO                  | Cell substrate junction assembly                                         | 14   | -1.65 |   |

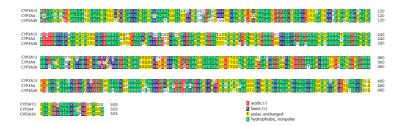



Figure A.1. Cytochrome p450 3A proteins have a high sequence homology between pig, human, and mouse proteins. CYP3A13 is a mouse protein, CYP3A4 is a human protein, and CYP3A39 is a pig protein. Color shows the polarity of each amino acid. The multiple sequence alignment was made with the R package msa ? using the ClustalOmega method.

# Appendix B

# Supplementary materials for GIPR<sup>dn</sup> pigs liraglutide treatment study

Table B.1. Significantly more abundant proteins in liver samples from liraglutide treated  $\text{GIPR}^{dn}$  pigs (q-value < 0.05).

| Gene name | Protein name                                              | l2fc | p-value  |
|-----------|-----------------------------------------------------------|------|----------|
| RBX1      | E3 ubiquitin-protein ligase<br>RBX1                       | 1.69 | 6.98E-07 |
| CIAPIN1   | anamorsin                                                 | 1.28 | 0.0025   |
| PEF1      | peflin                                                    | 1.22 | 0.0028   |
| OPLAH     | 5-oxoprolinase                                            | 0.99 | 9.05E-05 |
| EIF4E2    | eukaryotic translation initiation<br>factor 4E type 2     | 0.98 | 0.0011   |
| ORM1      | alpha-1-acid glycoprotein                                 | 0.97 | 0.0016   |
| FABP3     | fatty acid-binding protein, heart                         | 0.89 | 3.90E-04 |
| GPAM      | TRPM8 channel-associated factor 2-like                    | 0.69 | 0.0019   |
| ABCB1     | ATP-binding cassette, sub-family<br>B (MDR/TAP), member 1 | 0.62 | 4.30E-04 |
| AK4       | adenylate kinase 4,<br>mitochondrial                      | 0.51 | 1.68E-06 |
| GARS      | glycine–tRNA ligase                                       | 0.5  | 9.00E-04 |
| CNDP2     | cytosolic non-specific dipeptidase                        | 0.48 | 0.001    |
| SARS      | serine–tRNA ligase, cytoplasmic                           | 0.46 | 3.20E-04 |
|           |                                                           |      |          |

## $\mathbf{218}$

| Gene name | Protein name                                                              | l2fc | p-value  |
|-----------|---------------------------------------------------------------------------|------|----------|
| TARS      | threonine–tRNA ligase,<br>cytoplasmic                                     | 0.43 | 4.20E-04 |
| GGH       | gamma-glutamyl hydrolase                                                  | 0.42 | 7.50E-04 |
| CARS      | cysteine–tRNA ligase,<br>cytoplasmic                                      | 0.41 | 1.80E-04 |
| GPAM      | glycerol-3-phosphate<br>acyltransferase 1, mitochondrial                  | 0.38 | 6.70E-04 |
| NARS      | asparagine–tRNA ligase,<br>cytoplasmic                                    | 0.38 | 3.10E-04 |
| ACADSB    | short/branched chain specific<br>acyl-CoA dehydrogenase,<br>mitochondrial | 0.37 | 6.40E-04 |
| TMEM33    | transmembrane protein 33                                                  | 0.36 | 0.0016   |
| DHRS11    | dehydrogenase/reductase SDR<br>family member 11                           | 0.34 | 1.00E-04 |
| CKAP4     | cytoskeleton-associated protein 4                                         | 0.34 | 0.0035   |
| AARS      | alanine–tRNA ligase,<br>cytoplasmic                                       | 0.33 | 0.0014   |
| IARS      | isoleucine–tRNA ligase,<br>cytoplasmic                                    | 0.33 | 1.10E-04 |
| TPP1      | tripeptidyl-peptidase 1                                                   | 0.32 | 1.87E-05 |
| TXNL1     | thioredoxin-like protein 1                                                | 0.32 | 8.14E-05 |

| <b>2</b> | 1 | 9 |
|----------|---|---|
|----------|---|---|

| Gene name     | Protein name                                                          | l2fc | p-value  |
|---------------|-----------------------------------------------------------------------|------|----------|
| HINT1         | histidine triad nucleotide-binding<br>protein 1                       | 0.32 | 1.50E-04 |
| SCPEP1        | retinoid-inducible serine<br>carboxypeptidase                         | 0.32 | 0.0021   |
| $\mathbf{CS}$ | citrate synthase, mitochondrial                                       | 0.3  | 6.50E-04 |
| FARSA         | phenylalanine–tRNA ligase<br>alpha subunit                            | 0.29 | 4.61E-05 |
| NUDT21        | tubulin alpha-1C chain                                                | 0.29 | 1.20E-04 |
| LGMN          | legumain                                                              | 0.28 | 4.30E-04 |
| HNRNPA0       | heterogeneous nuclear<br>ribonucleoprotein A0                         | 0.27 | 0.0016   |
| CRK           | adapter molecule crk                                                  | 0.26 | 1.20E-04 |
| FARSB         | phenylalanine–tRNA ligase beta<br>subunit                             | 0.25 | 3.60E-04 |
| SORBS2.1      | sorbin and SH3<br>domain-containing protein 2                         | 0.24 | 3.60E-04 |
| TXNRD2        | thioredoxin reductase 2,<br>mitochondrial                             | 0.24 | 3.80E-04 |
| CNPY2         | protein canopy homolog 2                                              | 0.23 | 0.0021   |
| PDHB          | pyruvate dehydrogenase E1<br>component subunit beta,<br>mitochondrial | 0.23 | 0.0029   |
| AS3MT         | arsenite methyltransferase                                            | 0.23 | 0.0032   |

#### $\mathbf{220}$

| Gene name | Protein name                                                            | l2fc | p-value  |
|-----------|-------------------------------------------------------------------------|------|----------|
| CCT3      | T-complex protein 1 subunit gamma                                       | 0.22 | 3.50E-04 |
| EPRS      | bifunctional<br>glutamate/proline–tRNA ligase                           | 0.21 | 3.80E-04 |
| CCT6A     | T-complex protein 1 subunit zeta                                        | 0.21 | 7.20E-04 |
| CCT5      | T-complex protein 1 subunit<br>epsilon                                  | 0.2  | 0.0016   |
| OSBPL1A   | oxysterol-binding protein-related protein 1                             | 0.19 | 0.0017   |
| PPIA      | peptidyl-prolyl cis-trans<br>isomerase A                                | 0.19 | 0.0019   |
| TCP1      | T-complex protein 1 subunit<br>alpha                                    | 0.19 | 0.0034   |
| CCT2      | T-complex protein 1 subunit<br>beta                                     | 0.19 | 0.0011   |
| GPX1      | glutathione peroxidase 1                                                | 0.18 | 0.0024   |
| EIF3E     | eukaryotic translation initiation<br>factor 3 subunit E                 | 0.18 | 7.44E-05 |
| GSPT1     | eukaryotic peptide chain release<br>factor GTP-binding subunit<br>ERF3A | 0.18 | 5.30E-04 |
| HSPA9     | stress-70 protein, mitochondrial                                        | 0.18 | 0.0013   |

 $\mathbf{221}$ 

| Gene name | Protein name                                                 | l2fc | p-value  |
|-----------|--------------------------------------------------------------|------|----------|
| ABCE1     | ATP-binding cassette sub-family<br>E member 1                | 0.17 | 0.0012   |
| NUDT21    | cleavage and polyadenylation<br>specificity factor subunit 5 | 0.17 | 0.0035   |
| CCT8      | T-complex protein 1 subunit<br>theta                         | 0.17 | 0.0037   |
| ENO1      | alpha-enolase                                                | 0.16 | 6.60E-04 |
| UMPS      | uridine 5-monophosphate<br>synthase                          | 0.16 | 0.0019   |
| UBE2N     | ubiquitin-conjugating enzyme E2<br>N                         | 0.16 | 0.0032   |
| PSMA1     | proteasome subunit alpha type-1                              | 0.16 | 0.0033   |
| MYLK      | myosin light chain kinase,<br>smooth muscle                  | 0.15 | 0.0036   |
| PKP2      | plakophilin-2                                                | 0.15 | 0.0024   |
| HSPA4     | heat shock 70 kDa protein 4 $$                               | 0.14 | 3.60E-04 |
| SFPQ      | splicing factor, proline- and glutamine-rich                 | 0.13 | 0.0013   |
| RPL7      | 60S ribosomal protein L7                                     | 0.11 | 0.0014   |

**Table B.2.** Significantly more abundant proteins in liver samples from placebo treated  $\text{GIPR}^{dn}$  pigs (q-value < 0.05).

| Gene name | Protein name                   | l2fc  | p-value  |
|-----------|--------------------------------|-------|----------|
|           | hydroxymethylglutaryl-CoA      |       |          |
| HMGCS2    | synthase, mitochondrial        | -4.60 | 3.60E-04 |
|           | precursor                      |       |          |
| LAMC1     | laminin subunit gamma-1        | -1.38 | 2.60E-04 |
| LAMUI     | precursor                      | -1.99 | ∠.00E-04 |
| OAT       | ornithine aminotransferase,    | -1.38 | 5.90E-04 |
| UAI       | mitochondrial                  | -1.99 | J.YUE-U4 |
| S100A1    | protein S100-A1                | -1.12 | 7.02E-05 |
| STEAP4    | metalloreductase STEAP4        | -0.97 | 0.0022   |
| DHRS7     | dehydrogenase/reductase SDR    | 0.02  | 1 70도 04 |
| DURSI     | family member 7                | -0.93 | 1.70E-04 |
| GNMT      | glycine N-methyltransferase    | -0.86 | 4.00E-04 |
| FOLR2     | folate receptor 2              | -0.83 | 5.57E-06 |
| GATM      | glycine amidinotransferase,    | 0 02  | 7 59ፑ ሰና |
| GAIM      | mitochondrial                  | -0.83 | 7.53E-05 |
| GSTM1     | glutathione S-transferase Mu 1 | -0.75 | 3.19E-05 |
| PCTP      | phosphatidylcholine transfer   | 0 60  | 0 0055   |
| готр      | protein                        | -0.68 | 0.0035   |
| SUOX      | sulfite oxidase, mitochondrial | -0.60 | 1.10E-04 |
|           |                                |       |          |

| Gene name | Protein name                                                 | l2fc  | p-value  |
|-----------|--------------------------------------------------------------|-------|----------|
| FDX1      | adrenodoxin, mitochondrial precursor                         | -0.60 | 1.50E-05 |
| AADAC     | arylacetamide deacetylase-like                               | -0.53 | 1.30E-04 |
| FBP1      | fructose-1,6-bisphosphatase 1                                | -0.53 | 1.40E-04 |
| LDHD      | probable D-lactate<br>dehydrogenase, mitochondrial           | -0.50 | 8.60E-04 |
| CEACAM1   | carcinoembryonic antigen-related<br>cell adhesion molecule 1 | -0.45 | 2.60E-04 |
| CYP2C33   | cytochrome P450 2C33                                         | -0.44 | 7.90E-04 |
| AMT       | aminomethyltransferase,<br>mitochondrial                     | -0.44 | 1.40E-04 |
| PLS3      | plastin-3                                                    | -0.43 | 2.00E-04 |
| MVP       | major vault protein                                          | -0.41 | 5.30E-04 |
| CYP1A2    | cytochrome P450 1A2                                          | -0.41 | 7.40E-04 |
| GK        | glycerol kinase                                              | -0.41 | 4.70E-04 |
| OTC       | ornithine carbamoyltransferase,<br>mitochondrial             | -0.41 | 9.80E-04 |
| MAOB      | amine oxidase [flavin-containing]<br>B                       | -0.40 | 0.0017   |
| CHDH      | choline dehydrogenase,<br>mitochondrial                      | -0.39 | 5.00E-04 |
| EHD1      | EH domain-containing protein $1$                             | -0.39 | 4.80E-04 |
|           |                                                              |       |          |

| Gene name | Protein name                                                        | l2fc  | p-value  |
|-----------|---------------------------------------------------------------------|-------|----------|
| DHRS4     | dehydrogenase/reductase SDR<br>family member 4                      | -0.39 | 8.00E-04 |
| PLIN3     | perilipin-3                                                         | -0.36 | 2.40E-04 |
| GYS2      | glycogen [starch] synthase, liver acyl-                             | -0.36 | 5.10E-04 |
| LPGAT1    | CoA:lysophosphatidylglycerol<br>acyltransferase 1                   | -0.35 | 6.20E-04 |
| SELENBP1  | selenium-binding protein 1                                          | -0.35 | 9.10E-04 |
| RCN1      | reticulocalbin-1                                                    | -0.35 | 0.0036   |
| EGFR      | epidermal growth factor receptor precursor                          | -0.34 | 0.0029   |
| SLC25A13  | calcium-binding mitochondrial<br>carrier protein Aralar2            | -0.34 | 1.38E-05 |
| NNT       | NAD(P) transhydrogenase,<br>mitochondrial                           | -0.32 | 1.16E-05 |
| DPYS      | dihydropyrimidinase                                                 | -0.31 | 0.0031   |
| MTTP      | microsomal triglyceride transfer<br>protein large subunit precursor | -0.31 | 0.0021   |
| STOM      | erythrocyte band 7 integral<br>membrane protein                     | -0.31 | 8.00E-04 |
| LMAN1     | protein ERGIC-53                                                    | -0.29 | 7.46E-06 |
| GCA       | grancalcin                                                          | -0.29 | 8.40E-04 |
|           |                                                                     |       |          |

## 

| Protein name                                                   | l2fc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| aspartyl/asparaginyl                                           | -0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.40E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| · · ·                                                          | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| •                                                              | -0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.44E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0017.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                | -0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.20E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                | -0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.30E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| •                                                              | -0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.30E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                | -0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| dehydrogenase $[NAD(+)],$                                      | -0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.81E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| cytoplasmic                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| cystathionine gamma-lyase                                      | -0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| delta-aminolevulinic acid                                      | -0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| dehydratase                                                    | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| phosphatidylethanolamine-                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| binding protein                                                | -0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| malectin                                                       | -0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| prenylcysteine oxidase 1                                       | -0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.60E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| activated RNA polymerase II<br>transcriptional coactivator p15 | -0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                | aspartyl/asparaginyl<br>beta-hydroxylase9<br>ADP-ribosylation factor<br>GTPase-activating protein 3<br>urocanate hydratase<br>D-3-phosphoglycerate<br>dehydrogenase<br>cytosol aminopeptidase<br>hydroxyacid-oxoacid<br>transhydrogenase, mitochondrial<br>glycerol-3-phosphate<br>dehydrogenase [NAD(+)],<br>cytoplasmic<br>cystathionine gamma-lyase<br>delta-aminolevulinic acid<br>dehydratase<br>phosphatidylethanolamine-<br>binding protein<br>1<br>malectin<br>prenylcysteine oxidase 1<br>activated RNA polymerase II | aspartyl/asparaginyl<br>beta-hydroxylase9-0.28ADP-ribosylation factor<br>GTPase-activating protein 3<br>urocanate hydratase-0.27D-3-phosphoglycerate<br>dehydrogenase-0.25cytosol aminopeptidase-0.25hydroxyacid-oxoacid<br>transhydrogenase, mitochondrial<br>glycerol-3-phosphate-0.25dehydrogenase [NAD(+)],<br>cytoplasmic-0.23delta-aminolevulinic acid<br>dehydratase-0.23phosphatidylethanolamine-<br>binding protein-0.221-0.22malectin<br>prenylcysteine oxidase 1-0.21activated RNA polymerase II-0.20 |  |

 $\mathbf{226}$ 

| Gene name | Protein name                    | l2fc  | p-value   |  |
|-----------|---------------------------------|-------|-----------|--|
|           | dolichyl-                       |       |           |  |
| STT3A     | diphosphooligosaccharide-       | -0.18 | 8.60E-04  |  |
| DIIJA     | protein glycosyltransferase     | -0.10 | 0.0012-04 |  |
|           | subunit STT3A                   |       |           |  |
| ARHGAP1   | rho GTPase-activating protein 1 | -0.17 | 0.0027    |  |
| PDIA6     | protein disulfide-isomerase A6  | -0.17 | 0.0028    |  |
|           | precursor                       | -0.17 | 0.0020    |  |
| RAB11B    | ras-related protein Rab-11B     | -0.17 | 0.0018    |  |
| EEF1G     | elongation factor 1-gamma       | -0.16 | 0.0026    |  |
| LRP1      | prolow-density lipoprotein      | -0.14 | 0.0030    |  |
|           | receptor-related protein 1      | -0.14 | 0.0000    |  |
| SEC22B    | vesicle-trafficking protein     | -0.13 | 0.0033    |  |
| SEC22D    | SEC22b                          | -0.10 | 0.0000    |  |
| TKT       | transketolase                   | -0.13 | 3.90E-04  |  |
| NPEPPS    | puromycin-sensitive             | -0.12 | 0.0028    |  |
|           | aminopeptidase                  | -0.12 | 0.0028    |  |
|           |                                 |       |           |  |

**Table B.3.** GSEA: Significantly enriched gene set in linguluide treated in  $\text{GIPR}^{dn}$  pig livers (q-value < 0.05).

|--|

| Category | Name                                                                          | Size | NES  | p-v |
|----------|-------------------------------------------------------------------------------|------|------|-----|
| KEGG     | Aminoacyl tRNA biosynthesis                                                   | 25   | 2.6  |     |
| GO       | Ligase activity forming carbon<br>oxygen bonds                                | 26   | 2.53 |     |
| GO       | Catalytic activity acting on RNA                                              | 63   | 2.53 |     |
| GO       | Regulation of mRNA catabolic process                                          | 79   | 2.51 |     |
| GO       | Amino acid activation                                                         | 29   | 2.44 |     |
| GO       | Catalytic activity acting on a tRNA                                           | 30   | 2.41 |     |
| GO       | NcRNA metabolic process                                                       | 88   | 2.39 |     |
| GO       | Regulation of cellular amino acid metabolic process                           | 44   | 2.37 |     |
| GO       | Interleukin 1 mediated signaling<br>pathway                                   | 48   | 2.36 |     |
| GO       | Rna metabolic process                                                         | 237  | 2.36 |     |
| GO       | Scf dependent proteasomal<br>ubiquitin dependent protein<br>catabolic process | 45   | 2.35 |     |
| GO       | Regulation of hematopoietic<br>progenitor cell differentiation                | 43   | 2.34 |     |
| GO       | Anaphase promoting complex<br>dependent catabolic process                     | 43   | 2.34 |     |
|          |                                                                               |      |      |     |

| GO                  | Negative regulation of cell cycle<br>g2 m phase transition                               | 47  | 2.32 |
|---------------------|------------------------------------------------------------------------------------------|-----|------|
| $\operatorname{GO}$ | Endopeptidase complex                                                                    | 50  | 2.29 |
| GO                  | Regulation of stem cell<br>differentiation                                               | 45  | 2.29 |
| GO                  | Regulation of transcription from<br>RNA polymerase ii promoter in<br>response to hypoxia | 45  | 2.28 |
| GO                  | Stem cell differentiation                                                                | 60  | 2.27 |
| KEGG                | Proteasome                                                                               | 38  | 2.27 |
| GO                  | Regulation of cell cycle g2 m<br>phase transition                                        | 68  | 2.27 |
| GO                  | Posttranscriptional regulation of gene expression                                        | 182 | 2.27 |
| GO                  | Protein modification by small<br>protein removal                                         | 72  | 2.26 |
| GO                  | Cell cycle g2 m phase transition                                                         | 76  | 2.26 |
| GO                  | Innate immune response<br>activating cell surface receptor<br>signaling pathway          | 45  | 2.24 |
| GO                  | Hematopoietic stem cell<br>differentiation                                               | 43  | 2.24 |
| GO                  | Hematopoietic progenitor cell<br>differentiation                                         | 50  | 2.22 |

 $\mathbf{228}$ 

|                     |                                                    | 229 |      |     |
|---------------------|----------------------------------------------------|-----|------|-----|
|                     |                                                    |     |      |     |
| $\operatorname{GO}$ | Protein polyubiquitination                         | 63  | 2.21 | (   |
| GO                  | Negative regulation of wnt<br>signaling pathway    | 57  | 2.21 |     |
| GO                  | Negative regulation of cell cycle process          | 69  | 2.21 |     |
| GO                  | Regulation of chromosome organization              | 47  | 2.2  | 0.0 |
| GO                  | TRNA metabolic process                             | 46  | 2.2  | (   |
| GO                  | Canonical wnt signaling pathway                    | 72  | 2.2  | (   |
| GO                  | Ribonucleoprotein complex                          | 261 | 2.2  | (   |
| GO                  | Rna localization                                   | 71  | 2.2  | (   |
| GO                  | Translation initiation factor<br>activity          | 30  | 2.18 |     |
| GO                  | Response to interleukin 1                          | 66  | 2.18 | (   |
| GO                  | Ribonucleoprotein complex<br>biogenesis            | 118 | 2.18 |     |
| GO                  | Non canonical wnt signaling<br>pathway             | 55  | 2.16 | 0   |
| GO                  | Negative regulation of cell cycle phase transition | 57  | 2.16 | (   |
| GO                  | Tumor necrosis factor mediated signaling pathway   | 52  | 2.16 | (   |

\_\_\_\_\_

|                     | Regulation of DNA templated                               |     |      |
|---------------------|-----------------------------------------------------------|-----|------|
| GO                  | transcription in response to                              | 52  | 2.16 |
|                     | stress                                                    |     |      |
| $\operatorname{GO}$ | Chromosome organization                                   | 126 | 2.15 |
| GO                  | Regulation of establishment of                            | 52  | 2.15 |
|                     | planar polarity                                           |     |      |
| GO                  | Positive regulation of protein<br>localization to nucleus | 29  | 2.14 |
| GO                  | Peptide biosynthetic process                              | 230 | 2.14 |
| 00                  | Regulation of telomere                                    | 200 | 2.14 |
| GO                  | maintenance via telomere                                  | 18  | 2.14 |
|                     | lengthening                                               |     |      |
| GO                  | Fc epsilon receptor signaling                             | 47  | 2.13 |
| GO                  | pathway                                                   | 41  | 2.10 |
| GO                  | Regulation of wnt signaling                               | 78  | 2.13 |
|                     | pathway                                                   |     |      |
| GO                  | Rna catabolic process                                     | 176 | 2.13 |
| GO                  | Regulation of morphogenesis of                            | 57  | 2.13 |
|                     | an epithelium<br>Regulation of telomere                   |     |      |
| GO                  | maintenance                                               | 21  | 2.13 |
|                     | Positive regulation of                                    |     |      |
| GO                  | chromosome organization                                   | 32  | 2.13 |
|                     | 0                                                         |     |      |

 $\mathbf{230}$ 

| GO | Rna dependent DNA<br>biosynthetic process                                  | 21  | 2.12 |
|----|----------------------------------------------------------------------------|-----|------|
| GO | Catalytic complex                                                          | 301 | 2.12 |
| GO | Positive regulation of telomere<br>maintenance via telomere<br>lengthening | 15  | 2.12 |
| GO | Rna splicing via<br>transesterification reactions                          | 109 | 2.12 |
| GO | Mitochondrial respiratory chain complex i                                  | 36  | 2.11 |
| GO | Negative regulation of mitotic cell cycle                                  | 64  | 2.11 |
| GO | Telomere maintenance via<br>telomere lengthening                           | 22  | 2.11 |
| GO | Positive regulation of wnt<br>signaling pathway                            | 56  | 2.11 |
| GO | Nadh dehydrogenase activity                                                | 33  | 2.09 |
| GO | Threonine type peptidase<br>activity                                       | 17  | 2.08 |
| GO | Positive regulation of telomere<br>maintenance                             | 17  | 2.08 |
| GO | Rna splicing                                                               | 125 | 2.08 |
| GO | Nik nf kappab signaling                                                    | 59  | 2.08 |

 $\mathbf{231}$ 

| GO | Regulation of cellular ketone<br>metabolic process              | 55  | 2.07 |   |
|----|-----------------------------------------------------------------|-----|------|---|
| GO | Positive regulation of canonical<br>wnt signaling pathway       | 53  | 2.07 | ( |
| GO | MRNA metabolic process                                          | 130 | 2.07 | ( |
| GO | Regulation of protein<br>localization to nucleus                | 34  | 2.06 | ( |
| GO | Peptidase complex                                               | 55  | 2.04 | ( |
|    | Proteasomal ubiquitin                                           |     |      |   |
| GO | independent protein catabolic                                   | 17  | 2.04 | ( |
|    | process                                                         |     |      |   |
| GO | T cell receptor signaling pathway                               | 60  | 2.04 | ( |
| GO | Ribonucleoprotein granule                                       | 58  | 2.04 | ( |
| GO | Protein modification by small<br>protein conjugation or removal | 156 | 2.02 | ( |
| GO | Cytoplasmic stress granule                                      | 23  | 2.02 | ( |
| GO | Telomere organization                                           | 28  | 2.02 | ( |
| GO | Amide biosynthetic process                                      | 267 | 2.02 | ( |
| GO | Dna metabolic process                                           | 103 | 2.02 | ( |
| GO | MRNA binding                                                    | 82  | 2.02 | ( |
|    | Antigen processing and                                          |     |      |   |
| GO | presentation of exogenous                                       | 47  | 2.01 | ( |
|    | peptide antigen via mhc class i                                 |     |      |   |
| GO | Chaperone complex                                               | 16  | 2.01 | ( |
|    |                                                                 |     |      |   |

 $\mathbf{232}$ 

| GO   | Nadh dehydrogenase complex<br>assembly                                        | 36  | 2.01 |
|------|-------------------------------------------------------------------------------|-----|------|
| GO   | Antigen receptor mediated signaling pathway                                   | 60  | 2    |
| GO   | Protein modification by small<br>protein conjugation                          | 133 | 2    |
| GO   | Mitochondrial electron transport<br>nadh to ubiquinone                        | 37  | 2    |
| GO   | Cell cell signaling by wnt                                                    | 105 | 2    |
| GO   | Translation factor activity RNA binding                                       | 45  | 1.99 |
| GO   | Translation regulator activity<br>nucleic acid binding                        | 53  | 1.98 |
| GO   | Morphogenesis of a polarized<br>epithelium                                    | 58  | 1.97 |
| GO   | Proteasome accessory complex                                                  | 22  | 1.97 |
| GO   | Regulation of cellular amine<br>metabolic process                             | 49  | 1.96 |
| KEGG | Lysosome                                                                      | 43  | 1.96 |
| GO   | Regulation of cellular amide<br>metabolic process                             | 102 | 1.96 |
| GO   | Cell surface receptor signaling<br>pathway involved in cell cell<br>signaling | 109 | 1.96 |

| GO | Proteasome core complex                                      | 18  | 1.95 | 0.0 |
|----|--------------------------------------------------------------|-----|------|-----|
| GO | TRNA binding                                                 | 23  | 1.95 | 0.0 |
| GO | Proteasomal protein catabolic process                        | 111 | 1.95 | (   |
| GO | Ribonucleoprotein complex subunit organization               | 86  | 1.94 | (   |
| GO | Translation regulator activity                               | 61  | 1.94 | (   |
| GO | Dna biosynthetic process                                     | 34  | 1.93 | (   |
| GO | Nucleobase containing small<br>molecule biosynthetic process | 31  | 1.93 | 0.0 |
| GO | Negative regulation of cellular<br>amide metabolic process   | 39  | 1.92 | (   |
| GO | Ligase activity                                              | 73  | 1.92 | (   |
| GO | Regulation of cell cycle phase transition                    | 94  | 1.92 | (   |
| GO | Ribonucleoprotein complex<br>binding                         | 47  | 1.92 |     |
| GO | Regulation of animal organ<br>morphogenesis                  | 63  | 1.92 |     |
| GO | Negative regulation of cell cycle                            | 108 | 1.91 | (   |
| GO | Single stranded RNA binding                                  | 32  | 1.9  | (   |
| GO | Positive regulation of DNA biosynthetic process              | 22  | 1.89 | 0.0 |

 $\mathbf{234}$ 

|      | Modification dependent                              |     |      |     |
|------|-----------------------------------------------------|-----|------|-----|
| GO   | macromolecule catabolic process                     | 127 | 1.88 | (   |
| GO   | Regulation of translational initiation              | 24  | 1.88 | 0.0 |
| GO   | Cytoplasmic translational initiation                | 18  | 1.87 | (   |
| GO   | Spliceosomal complex                                | 68  | 1.87 | (   |
| GO   | Regulation of cell cycle process                    | 132 | 1.86 | (   |
| GO   | Purine ntp dependent helicase<br>activity           | 16  | 1.86 | 0.0 |
| GO   | Mitochondrial respiratory chain<br>complex assembly | 43  | 1.85 | (   |
| KEGG | Spliceosome                                         | 60  | 1.85 | 0.0 |
| GO   | NcRNA processing                                    | 58  | 1.85 | 0.0 |
| GO   | Catalytic step 2 spliceosome                        | 45  | 1.84 | (   |
| GO   | Dna geometric change                                | 18  | 1.84 | 0.0 |
| GO   | Translational initiation                            | 115 | 1.83 | (   |
| GO   | Catalytic activity acting on DNA                    | 16  | 1.83 | 0.0 |
| GO   | Cellular macromolecule catabolic process            | 314 | 1.83 | (   |
| GO   | Negative regulation of RNA catabolic process        | 15  | 1.83 | 0.0 |
| GO   | Atp synthesis coupled electron transport            | 55  | 1.82 | (   |
|      |                                                     |     |      |     |

 $\mathbf{235}$ 

| GO | Protein stabilization                         | 56  | 1.82 | (   |
|----|-----------------------------------------------|-----|------|-----|
| GO | Regulation of steroid<br>biosynthetic process | 26  | 1.81 | 0.0 |
| GO | MRNA 3 utr binding                            | 23  | 1.81 | 0.0 |
| GO | Regulation of DNA metabolic process           | 46  | 1.81 | (   |
| GO | Helicase activity                             | 20  | 1.81 | (   |
| GO | Respiratory chain complex                     | 49  | 1.8  | 0.0 |
| GO | Regulation of DNA biosynthetic process        | 25  | 1.8  | 0.0 |
| GO | Regulation of cell cycle                      | 185 | 1.79 | (   |
| GO | Nucleoplasm part                              | 136 | 1.79 | (   |
| GO | Protein localization to nucleus               | 67  | 1.79 | (   |
| GO | Cell cycle phase transition                   | 116 | 1.79 | 0.0 |
|    | Regulation of nucleobase                      |     |      |     |
| GO | containing compound metabolic                 | 103 | 1.78 | (   |
|    | process                                       |     |      |     |
| GO | Cell recognition                              | 22  | 1.78 | (   |
| GO | Cellular amide metabolic process              | 334 | 1.78 | (   |
| GO | Activation of innate immune response          | 89  | 1.77 | (   |
| GO | Lysosomal lumen                               | 43  | 1.77 | (   |
| GO | Single fertilization                          | 18  | 1.77 | 0.0 |
| GO | Macromolecule catabolic process               | 370 | 1.76 | (   |
|    |                                               |     |      |     |

 $\mathbf{236}$ 

| GO   | Regulation of innate immune response           | 117 | 1.7  |
|------|------------------------------------------------|-----|------|
| GO   | Fertilization                                  | 21  | 1.7  |
| GO   | Regulation of alcohol<br>biosynthetic process  | 23  | 1.76 |
| GO   | Regulation of cholesterol biosynthetic process | 22  | 1.75 |
| GO   | Regulation of mitotic cell cycle               | 122 | 1.75 |
| KEGG | Oocyte meiosis                                 | 25  | 1.75 |
| GO   | Ribosome biogenesis                            | 59  | 1.75 |
|      | Negative regulation of                         |     |      |
| GO   | nucleobase containing compound                 | 29  | 1.74 |
|      | metabolic process                              |     |      |
| GO   | Fc receptor signaling pathway                  | 68  | 1.74 |
| GO   | Unfolded protein binding                       | 56  | 1.74 |
| GO   | Cellular response to DNA<br>damage stimulus    | 88  | 1.73 |
| GO   | Cellular response to oxygen<br>levels          | 77  | 1.73 |
| GO   | Response to tumor necrosis factor              | 76  | 1.73 |
| GO   | Nuclear body                                   | 117 | 1.72 |
| GO   | Rna helicase activity                          | 15  | 1.72 |
|      |                                                |     |      |

 $\mathbf{237}$ 

|    |                                                                          | <b>238</b> |      |     |
|----|--------------------------------------------------------------------------|------------|------|-----|
|    |                                                                          |            |      |     |
| GO | Nucleoside phosphate catabolic process                                   | 22         | 1.71 | 0.0 |
| GO | Regulatory region nucleic acid<br>binding                                | 52         | 1.71 |     |
| GO | Negative regulation of RNA<br>metabolic process                          | 18         | 1.71 | 0.0 |
| GO | Positive regulation of DNA<br>metabolic process                          | 34         | 1.71 | 0.0 |
| GO | Regulation of cellular catabolic process                                 | 214        | 1.71 | (   |
| GO | Dna repair                                                               | 59         | 1.71 | 0.0 |
| GO | Atpase activity coupled                                                  | 80         | 1.7  | (   |
| GO | Respirasome                                                              | 53         | 1.69 | 0.0 |
| GO | Nucleic acid phosphodiester<br>bond hydrolysis                           | 35         | 1.69 | 0.0 |
| GO | Cytoplasmic translation                                                  | 50         | 1.68 | 0.0 |
| GO | AlteRNAtive mRNA splicing via spliceosome                                | 25         | 1.68 | 0.0 |
| GO | Immune response regulating cell<br>surface receptor signaling<br>pathway | 87         | 1.68 | (   |
| GO | Transcription factor binding                                             | 80         | 1.68 | 0.0 |
|    |                                                                          |            |      |     |

\_

|      | Positive regulation of nucleobase |     |      |     |
|------|-----------------------------------|-----|------|-----|
| GO   | containing compound metabolic     | 54  | 1.67 | 0.0 |
|      | process                           |     |      |     |
| GO   | Positive regulation of defense    | 117 | 1.67 |     |
| uu   | response                          | 111 | 1.07 |     |
| KEGG | Wnt signaling pathway             | 20  | 1.67 | 0.0 |
| GO   | Negative regulation of growth     | 23  | 1.67 | 0.0 |
| GO   | Cell cycle                        | 267 | 1.67 | (   |
| GO   | Covalent chromatin modification   | 37  | 1.66 | 0.0 |
| GO   | Protein kinase c binding          | 16  | 1.66 | 0.0 |
| GO   | Oxidative phosphorylation         | 74  | 1.66 | (   |
| GO   | Dna conformation change           | 36  | 1.66 | 0.0 |
|      | Oxidoreductase activity acting    |     |      |     |
| GO   | on nad p h quinone or similar     | 42  | 1.66 | 0.0 |
|      | compound as acceptor              |     |      |     |
| GO   | Microtubule cytoskeleton          | 176 | 1.66 | (   |
| GO   | Transcription coupled nucleotide  | 15  | 1.65 | 0.0 |
| 00   | excision repair                   | 10  | 1.05 | 0.0 |
| GO   | Cell cycle process                | 204 | 1.65 | (   |
| GO   | Organic cyclic compound           | 253 | 1.64 |     |
| 00   | catabolic process                 | 200 | 1.04 |     |
| GO   | Mitotic cell cycle                | 170 | 1.64 | (   |
| GO   | RRNA metabolic process            | 39  | 1.64 | 0.0 |
| GO   | Transferase complex               | 84  | 1.64 | 0.0 |
|      |                                   |     |      |     |

 $\mathbf{239}$ 

|    |                                      | $\underline{240}$ |      |     |
|----|--------------------------------------|-------------------|------|-----|
| GO | Cellular ketone metabolic<br>process | 82                | 1.64 | 0.0 |

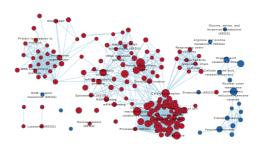



Figure B.1. Network map showing significant (q-value < 0.05) GO ontology and KEGG categories enriched in LT (red) and PT (blue) pigs using GSEA. Annotated categories were either KEGG pathways or GO cateories significant at q-value < 0.01. The size of the nodes reflect the gene set size and the size of

**Table B.4.** GSEA: Significantly enriched gene sets in placebo treated in GIPR<sup>dn</sup> pigs (q-value < 0.05).

| Category            | Name                                                                                          | Size | NES   | p-v |
|---------------------|-----------------------------------------------------------------------------------------------|------|-------|-----|
| KEGG                | Glycine serine and threonine<br>metabolism                                                    | 23   | -2.18 |     |
| KEGG                | Ecm receptor interaction                                                                      | 23   | -2.16 | (   |
| GO                  | Cellular amino acid catabolic process                                                         | 63   | -2.15 |     |
| $\operatorname{GO}$ | Transport vesicle                                                                             | 74   | -2.15 | (   |
| GO                  | Copi coated vesicle                                                                           | 15   | -2.14 | (   |
| GO                  | Organic acid catabolic process                                                                | 161  | -2.12 | (   |
| GO                  | Golgi associated vesicle<br>membrane                                                          | 38   | -2.08 |     |
| GO                  | Organic acid transmembrane<br>transport                                                       | 19   | -2.06 |     |
| GO                  | Alpha amino acid catabolic<br>process                                                         | 55   | -2.03 |     |
| GO                  | Golgi associated vesicle                                                                      | 56   | -2.01 | (   |
| GO                  | Phagocytic vesicle                                                                            | 34   | -2    | (   |
| KEGG                | Arginine and proline metabolism                                                               | 32   | -2    | (   |
| $\operatorname{GO}$ | Coated vesicle                                                                                | 84   | -1.98 | (   |
| $\operatorname{GO}$ | Vesicle membrane                                                                              | 169  | -1.96 | (   |
| $\operatorname{GO}$ | Coated vesicle membrane                                                                       | 59   | -1.96 | 0.0 |
| $\operatorname{GO}$ | Small molecule catabolic process                                                              | 212  | -1.96 | (   |
| GO                  | Endoplasmic reticulum golgi<br>intermediate compartment<br>membrane<br>Nuclear outer membrane | 26   | -1.95 | (   |
| GO                  | endoplasmic reticulum<br>membrane network                                                     | 264  | -1.94 |     |
| GO                  | Regulation of protein targeting                                                               | 18   | -1.93 | 0.0 |

# Appendix C

# Additional materials and methods

Table C.1. All parameters used in the prote analysis in Maxquant.

| Parameter            |      |
|----------------------|------|
| Version              |      |
| User name            |      |
| Machine name         | E    |
| Date of writing      | 02/0 |
| Include contaminants |      |

### $\mathbf{244}$

# Parameter PSM FDR PSM FDR Crosslink Protein FDR Site FDR Use Normalized Ratios For Occupancy Min. peptide Length Min. score for unmodified peptides Min. score for modified peptides Min. delta score for unmodified peptides Min. delta score for modified peptides Min. unique peptides Min. razor peptides Min. peptides Use only unmodified peptides and Modifications included in protein quantification Oxidation (M); Peptides used for protein quantification Discard unmodified counterpart peptides Label min. ratio count Use delta score iBAQ iBAQ log fit Match between runs Matching time window [min]

 $\mathbf{245}$ 

## Parameter

Alignment time window [min] Find dependent peptides Fasta file GCF\_000003025. Decoy mode Include contaminants Advanced ratios Fixed and romed a index folder Temporary folder Combined folder location Second peptides Stabilize large LFQ ratios Separate LFQ in parameter groups Require MS/MS for LFQ comparisons Calculate peak properties Main search max. combinations Advanced site intensities Write msScans table Write msmsScans table Write ms3Scans table Write allPeptides table Write mzRange table Write pasefMsmsScans table Write accumulatedPasefMsmsScans table

#### $\mathbf{246}$

#### Parameter

Max. peptide mass [Da] Min. peptide length for unspecific search Max. peptide length for unspecific search Razor protein FDR Disable MD5 Max mods in site table Match unidentified features Epsilon score for mutations Evaluate variant peptides separately Variation mode MS/MS tol. (FTMS) Top MS/MS peaks per Da interval. (FTMS) Da interval. (FTMS) MS/MS deisotoping (FTMS) MS/MS deisotoping tolerance (FTMS) MS/MS deisotoping tolerance unit (FTMS) MS/MS higher charges (FTMS) MS/MS water loss (FTMS) MS/MS ammonia loss (FTMS) MS/MS dependent losses (FTMS) MS/MS recalibration (FTMS) MS/MS tol. (ITMS) Top MS/MS peaks per Da interval. (ITMS)

### $\mathbf{247}$

#### Parameter

Da interval. (ITMS)

MS/MS deisotoping (ITMS)

MS/MS deisotoping tolerance (ITMS)

MS/MS deisotoping tolerance unit (ITMS)

MS/MS higher charges (ITMS)

MS/MS water loss (ITMS)

MS/MS ammonia loss (ITMS)

MS/MS dependent losses (ITMS)

MS/MS recalibration (ITMS)

MS/MS tol. (TOF)

Top MS/MS peaks per Da interval. (TOF)

Da interval. (TOF)

MS/MS deisotoping (TOF)

MS/MS deisotoping tolerance (TOF)

MS/MS deisotoping tolerance unit (TOF)

MS/MS higher charges (TOF)

- MS/MS water loss (TOF)
- MS/MS ammonia loss (TOF)
- MS/MS dependent losses (TOF)

MS/MS recalibration (TOF)

MS/MS tol. (Unknown)

Top MS/MS peaks per Da interval. (Unknown)

Da interval. (Unknown)

### $\mathbf{248}$

## Parameter

MS/MS deisotoping (Unknown)

MS/MS deisotoping tolerance (Unknown)

MS/MS deisotoping tolerance unit (Unknown)

MS/MS higher charges (Unknown)

MS/MS water loss (Unknown)

MS/MS ammonia loss (Unknown)

MS/MS dependent losses (Unknown)

MS/MS recalibration (Unknown)

Site tables

Oxidati

# Acknowledgements

First of all I would like to thank Prof. Dr. Eckhard Wolf for supervising my doctoral thesis, and for his advise and help during my time at the Gene Center.

Thank you to the people of the Arnold/Fröhlich lab for housing me. Special thanks to Dr. Thomas Fröhlich and Dr. George Arnold for all help I have received in matters of science and proteomics. Similarly, thank you to Dr. Florian Flenkenthaler for advice regarding all things proteomics.

Thank you to the graduate school Quantitative Biosciences Munich (QBM) for funding my PhD and giving me this opportunity. I would like to give a special thanks to Prof. Dr. Ulrike Gaul for creating this programme. Thank you all members of the QBM team for all help I have received throughout my years in Munich, and for organizing courses and scientific gatherings. Thanks to all friends I have made in QBM and for making my time in Munich enjoyable!

Thank you to Mattias Backman for many interesting discussions regarding the science of our parallel projects and many other topics!

I would like to thank my family and friends for their support during these last four years.

Por último y no menos importante, gracias a mi novia Daniela por su apoyo.

250