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Chapter 1

Introduction

Diabetes mellitus (DM) is a metabolic syndrome with
impaired glucose homeostastis caused by defective in-
sulin action or pancreatic β-cell insulin secretion. DM
is one of the biggest global health challenges, with
worldwide prevalence numbers increasing. The num-
ber of people diagnosed with DM is expected to reach
629 million by 2045, similarly the cost for treating
these patients is also predicted to increase (?). There-
fore, there is a need to study the different forms of DM
and to develop and test new forms of efficient treat-
ments for the different subclasses.
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The two major forms of DM are type 1 diabetes
mellitus (T1DM) and type 2 diabetes mellitus (T2DM).
T1DM is caused by autoimmune destruction of the
pancreatic β-cells, disrupting insulin secretion, and is
the most common DM form in children and adoles-
cents. Most T1DM patients must be treated with life-
long insulin therapy (?). T2DM is the most prevalent
type of DM and it is characterized by insulin resis-
tance, which increases the demand for insulin in target
tissues. The increased demand for insulin can lead to
progressive β-cell destruction. T2DM is often linked
to obesity and metabolic syndrome (?).

Animal models allow researchers to control genetic
and environmental factors in vivo that influences the
progression of DM, giving researchers essential new in-
sights to complications and treatment of the disease
in human patients. As such, animal models have pro-
vided researchers with invaluable contributions to the
understanding of the pathogenesis and treatment of
DM (?). The most commonly used animal models for
studying DM are mice and rat models, but other an-
imals with human-like characteristics have also been
used (???). There are significant differences between
rodents and humans (e.g. size and metabolism) and
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data derived from rodent models can be insufficient in
translating scientific findings from the animal model
to human pathologies (?).

Therefore, focus has been shifting to larger ani-
mal models including Sus scrofa in order to bridge the
translational gap between rodent models and humans
(?). This shift has been enabled by the sequencing
of the pig genome and advances in new gene editing
tools such as zinc finger nucleases and CRISPR/CAS
method (?). Pigs are relevant models for translational
research in different medical fields, as pigs share many
similarites with human anatomy, physiology and metabolism;
e.g. similarites in pancreas morphology and metabolic
regulation makes pigs suitable for diabetes research
(?). Furthermore, pigs have a relatively short gener-
ation span, early sexual maturity, and on average 10
offspring per litter (?), which is beneficial for effective
biomedical research.

Proteomics is the study of all the proteins that con-
trol and catalyse all cellular processes at a given time
(?). Nowadays mass spectrometry is the most com-
monly used method for studying the proteome of cells
and tissues. As mRNA and protein expression levels
do not always show perfect correlation (?), it is neces-
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sary to study the proteome in order to get a complete
picture of the functional state of the tissue. As such,
proteomics as emerged as a powerful tool that has pro-
vided insights into complex biological processes and
phenotypes (?).

In this doctoral thesis, proteomic differences be-
tween treated diabetic pigs and control groups in se-
lected metabolic tissues have been studied using mass
spectrometry in order to better understand the effects
of diabetes treatments and to establish pigs as a suit-
able animal model for translational diabetes research.

In the first study, proteomic differences in mesen-
teric and subcutaneous adipose tissue between sub-
optimally insulin treated two year old female MIDY
(a large animal model of neonatal diabetes) and WT
pigs have been compared. An increase in expression
of retinol dehydrogenase 16 (RDH16) in both types of
adipose tissue was observed in MIDY pigs, suggest-
ing that retinol metabolism and retinoic acid induced
transcriptional regulation is an important adaptation
to low insulin levels.

In the second study, transgenic pigs, a large animal
model for T2DM, carrying a dominant-negative muta-
tion in the glucose-dependent insulinotropic polypep-
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tide receptor (GIPRdn pigs) have been used to study
the effects of liraglutide (a glucagon-like peptide 1 (GLP1)
receptor agonist). Liraglutide stimulates üancreatic β-
cell insulin secretion (?) and the GIPRdn pigs were
treated with either liraglutide or placebo, and the pro-
teome differences between the two treatment groups
were examined. Mitochondrial hydroxymethylglutaryl-
CoA synthase (HMGCS2) was detected as less abun-
dant in liver from liraglutide treated pigs. HMGCS2 is
the rate-limiting enzyme for ketogenesis (?), suggest-
ing that liraglutide induced insulin secretion inhibits
ketogenesis in diabetic pigs.



Chapter 2

Literature Review

2.1 Diabetes

In 2017, 425 million people were estimated to be af-
fected by diabetes and the prevalence of diabetes is
expected to increase by 48% until 2045 (?). Similarly
the cost of treating diabetes is also predicted to in-
crease in the near future (?) there is thus a need to
develop more effective and efficient treatments.

Hyperglycemia, high concentrations of blood sugar,
is the fundamental hallmark of diabetes, a highly het-
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erogeneous disease, that is caused by relative or abso-
lute loss of insulin. The American Diabetes Associa-
tion (ADA) divides diabetes into four subgroups based
on the etiological characterization of the disease (?):

• Class I is type 1 diabetes mellitus (T1DM), which
is characterized by an absolute loss of insulin pro-
duction due to autoimmune-mediated destruc-
tion of the pancreatic β -cells. Type 1 diabetes
accounts for 5-10% of diabetic patients.

• Class 2 is type 2 diabetes mellitus (T2DM), the
most common form of the disease. Type 2 di-
abetes is not an autoimmune disorder, instead
it is usually caused by insulin resistance coupled
with a relative insulin deficiency due to a pro-
gressive loss of pancreatic β-cells. This form of
diabetes is often linked with obesity.

• Class 3 is gestational diabetes, which is diabetes
diagnosed during the second or third trimester
of diabetes.

• Class 4 is other specific types of diabetes. This
class covers a wide range of different causes in-
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cluding genetic defects causing lower insulin se-
cretion or insulin action, diseases in the exocrine
pancreas, drug or chemical induced diabetes, and
β-cell destruction caused by virus infections. Mono-
genic diabetes belongs to this class, which ac-
counts for 1-5% of all diabetes cases (?).

Other ways of classifying the different diabetic dis-
eases exist as well, where T1DM and T2DM can be
further classified into subgroups based on severity of
the disease, the time of disease onset, etc (?). Here,
permanent neonatal diabetes (PND) and T2DM will
be described in more detail as they are of primary con-
cern for this thesis.

2.1.1 Obesity, metabolic syndrome, and
type 2 diabetes mellitus

Obesity has consistently increased over the last decades,
and in 2015, 604 million adults were considered to suf-
fer from obesity (?). Obesity may now be the leading
cause of premature mortality in the world (?). Vis-
ceral obesity is linked to metabolic disorders such as
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insulin resistance and dyslipidemia, and obese indi-
viduals are more prone to other adverse health effects
such as T2DM and cancer (?). The metabolic syn-
drome, which is defined as having 3 or more of the risk
factors obesity, high triglycerides, high cholesterol, hy-
perglycemia, and hypertension, is correlated with in-
creased risk of cardiovascular disease (??).

Subcutaneous adipose tissue (SCAT) depots are
generally protective against the metabolic syndrome,
whereas visceral adipose tissue (VAT) depots are as-
sociated with the metabolic syndrome (?).

2.1.1.1 Treatments of diabetes

T1DM needs to be treated with lifelong insulin in-
jections together with blood glucose monitoring (??).
Unlike T1DM, there are many different ways to treat
T2DM beyond insulin injections (?). Treatment op-
tions vary by severity of the diseases and range from
lifestyle changes (such as changes to diet and exercise)
and treatment of obesity to treatments with for exam-
ple metformin (decreases fasting blood sugar levels),
sulfonylureas (stimulates pancreatic β-cell insulin se-
cretion) and insulin injections (??).
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Glucagon-like peptide 1 (GLP1) receptor agonists
have been identified as an effective treatment of T2DM
(??). GLP1 is a peptide hormone that is secreted from
the intestine in response to food intake (?) and stimu-
lates pancreatic insulin secretion while inhibiting pan-
creatic glucagon release, which reduces blood sugar
levels (?). The use of GLP1 is limited by its short
half-life (1-2 min), therefore many GLP1 receptor ag-
onists have been developed that mimic the effects of
the hormone while having a longer action duration (?).
There are short term and long term GLP1 receptor ag-
onists (??). One long lasting GLP1 receptor agonist
is liraglutide, which has a 97% homology to GLP1,
which should be administered daily by subcutaneous
injections (?). Compared to other treatments, treat-
ment with GLP1 receptor agonists reduces blood glu-
cose levels while having a reduced risk of hypoglycemia
(?).

2.1.2 Monogenic causes of diabetes

As mentioned above, diabetes of class 3 includes a wide
variety of mechanisms that cause diabetes. Maturity
onset diabetes of the young (MODY) is a form of class
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3 diabetes that is caused by monogenic defects in pan-
creatic β-cell function. Mutations in many different
genes are known to cause MODY of varying degrees
of severity and it is inherited in an autosomal domi-
nant heterozygous fashion (??). They are character-
ized by dysfunctional insulin secretion often with no
effect on insulin action (??). Patients with MODY are
defined by early onset of the disease and normally lack
features of the metabolic syndrome or autoimmunity
(??). Common genes with mutations known to cause
MODY include: glucokinase (GCK) genes, transcrip-
tion factors (TFs), hepatocyte nuclear factor 1A and
4A (HNF1A and HNF4A) and pancreatic and duode-
nal homeobox 1 (PDX1) (??).

Another type of monogenic diabetes is permanent
neonatal diabetes (PND). Permanent neonatal diabetes
is defined by an extremely early onset of diabetes, of-
ten within the first months of life (?). Mutations in
either the sulfonylurea receptor/Kir6.2 complex or in
the insulin gene are the primary causes of permanent
neonatal diabetes(?). The latter form is called Mu-
tant INS -gene induced Diabetes of youth (MIDY) and
is caused by mutations in the proinsulin gene resulting
in an accumulation of misfolded insulin and endoplas-
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mic reticulum(ER) stress, which ultimately leads to
the destruction of the pancreatic β-cells (??).

Because many genes causing monogenic diabetes
have also found to be implicated in T1DM or T2DM
(or both), the study of monogenic diabetic pathologies
can also give valuable insight about the more common
and complex variants of the diabetic condition (?).

2.1.2.1 Insulin folding and ER stress

Protein misfolding and ER stress were also found to
be a factor for developing T1DM and T2DM (?). Up
to 50% of total protein synthesis in pancreatic β-cells
is made up of insulin production and a higher require-
ment for synthesis and folding of proinsulin makes the
β-cell sensitive to ER stress (?). Proper folding and
post-translational modification of the insulin protein
is thus essential for proper cell functionality (??).

The insulin gene encodes a single transcript called
preproinsulin which consists of four different domains.
Upon translocation to the ER membrane, proinsulin
is created by cleavage of the signal peptide of the pre-
proinsulin mRNA. Next, proinsulin undergoes confor-
mational change in the ER lumen, where three disul-



2.1 Diabetes 13

phide bridges are formed between specific cysteine amino
acids in the protein (??). The formation of these three
disulphide bridges are essential for the protein’s bioac-
tivity (?). Upon correct folding, proinsulin is trans-
ported to the Golgi apparatus where the C-peptide is
removed by prohormone convertases and insulin gets
its mature state and are stored in granules until they
are ready to be secreted (?).

Several studies have shown that proinsulin misfold-
ing and ER stress caused by genetic mutations in the
insulin (INS) gene or adverse ER folding conditions
can lead to β-cell failure and onset of diabetes (re-
viewed in (?)). Disturbance of the post-translational
ER machinery leads to the initiation of the unfolded
protein response (UPR) in order to limit the accumu-
lation of misfolded proteins inside the ER. UPR acti-
vation leads to a slower translation rate, increased ER
membrane surface area and an increase in expression
of chaperonins. If this doesn’t help to alleviate the
ER stress, prolonged UPR activation leads to apopto-
sis (?).
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2.1.2.2 Mutations leading to MIDY

Mutations in the INS gene can cause many different
forms of the diabetic condition (?). At least 30 differ-
ent autosomal dominant mutations have been found
that are known to cause the MIDY syndrome by af-
fecting proinsulin folding in the ER and 15 of these
mutations have been experimentally determined to do
so (?). More than half of the mutations generates free,
unpaired cysteine residues, either by mutating an ex-
isting native cysteine or by changing a non-cysteine
residue with a cysteine (?).

Similarly, Stoy and coworkers reported 10 autosomal-
dominant mutations in the insulin gene causing MIDY
in 16 different probands (?). Of these, six mutations
either remove a cysteine or add an addional cysteine
residue, these mutations are predicted to disrupt nor-
mal folding of proinsulin and lead to activation of the
unfolded protein response (UPR) in the ER, ultimately
leading to destruction of β-cells in a similar fastion as
mutations in Ins2 in the Akita and Munich mice (?).

Liu, et al (2010) found that exposed cysteine residues
in proinsulin facilitates the formation of abnormal disulfide-
linked protein complexes. This leads to non-canonical
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pairing of cysteine residues and formation of protein
aggregates, and this perturbation initiates the patho-
genesis of MIDY (?).

2.2 Animal models

Animal models have been used for a long time in biomed-
ical research to gain insights about human biology as
well as to test novel treatments for human diseases
such as cancer and diabetes (?). Different animal mod-
els have their own benefits and disadvantages, there-
fore the animal model should be chosen with care in
order to use the best model for a given research topic.

Mus musculus is for many reasons the most pop-
ular model organism for studying human diseases, in-
cluding low maintenance costs, short generation time,
high ethical acceptance and well established genome
modification methods (?). However, therapeutic find-
ings in mouse models are not always predictive of ther-
apeutic results in humans because of differences in size,
anatomy and metabolism. Hence, animal models more
similar to human patients are need to better test the
efficacy and safety of novel treatments in translational
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research.
Recently, Sus scrofa has gained popularity as a

large animal model in translational research that is
used to bridge the gap between rodents and humans
(???). Pigs share many physiological, anatomical, and
metabolic similarities with humans (??) and genetic
analyses indicates that pigs are more closely related to
humans than rodents
(?). While rodent models in general are cheaper to
develop and maintain, pigs are generally a good model
candidate where translational research in mouse mod-
els are limited by differences in size or life span, or
where mouse models don’t accurately mimic the char-
acteristics of the human disease in question(?). Com-
pared to non-human primates, pigs are less expensive
and more ethically acceptable (?). Many genetic meth-
ods have been established for Sus scrofa (?), for ex-
ample for diseases such as cystic fibrosis (?), Duchenne
muscular dystrophy (?), and Huntington’s disease
(?).

Many different animal models have been developed
to study different types of diabetes, both rodent and
non-rodent models (?). Pigs are generally considered
to be a good animal model for the different types of di-
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abetes, helping bridging the gap between mice and hu-
mans in translational and comparative research (??).

Here, two previously established swine models that
were used for the work in this thesis will be described:

• Munich GIPRdn pigs, a model for studying ef-
fects of incretin-based T2DM therapies.

• The Munich MIDY pig, a transgenic pig carry-
ing a mutation in the insulin gene that makes
it prone to misfolding, which is a large animal
model for PND.

2.2.1 Transgenic dominant-negative glucose-
dependent
insulinotropic polypeptide recep-
tor pigs

Based on the function of the incretin glucose-dependent
insulinotropic polypeptide (GIP) is impaired in pa-
tients with T2DM (whereas the incretin hormone glucagon-
like peptide 1 (GLP1) retains its effects in diabetic pa-
tients), a transgenic pig model was created, carrying
a dominant-negative GIP receptor (GIPRdn) to study
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the role of the impaired GIP function in translational
research (??). The mutant pig carries a GIPR copy
that has an 8 amino acid deletion and an alanine to
glutamine substitution at position 340, which is es-
sential for signal transduction, controlled by the rat
insulin 2 promoter (?).

These pigs have been shown to have reduced glu-
cose tolerance and progressive β-cell destruction and
impaired insulin secretion, hallmarks of T2DM. These
results were similar to the results seen in a GIPRdn

mouse mutant that the transgenic pigs were based on
(?). The GIPRdn pig is an attractive model for de-
veloping new incretin-based diabetes therapies given
the similarities between human and pig physiology and
pathogenesis (?). In fact, treatment of GIPRdn pigs
with the GLP1 receptor antagonist liraglutide had sim-
ilar effects to what has been seen in human patients,
like reduced body mass and improved glycemic control
(?).
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2.2.2 Transgenic INSC94Y pigs an ani-
mal model for human permanent
neonatal diabetes

Renner and colleagues (?) have previously established
the Munich MIDY (Mutant INS gene-induced Dia-
betes of Youth) pig as an animal model for studying
long term effect of diabetes and hyperglycemia. The
Munich MIDY-Pig biobank (??) consists of samples
from different tissues and body fluids of 4 two-year-old
female MIDY pigs and 5 wild-type littermate controls.
Thus, the MIDY-Pig biobank is a unique resource that
provides the scientific community with samples that
can be used to study organ crosstalk within a multi-
omics framework.

The Munich MIDY pig is based on the Akita mouse,
a diabetic mouse model of insulin dependent diabetes
mellitus (IDDM), that exhibits progressive hyperglycemia,
β-cell dysfunction, and impaired insulin secretion (??).
The Akita mice carries a missense mutation in the Ins2
gene, C96Y, changing a cysteine to tyrosine affecting
a disulfide bond, disrupting folding of the proinsulin
gene (??). This corresponds to the C96Y mutation
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found in the insulin gene in a human patient with
MIDY syndrome (?). In the MIDY pigs the corre-
sponding mutation in the insulin gene is C94Y.

The MIDY pigs develop a progressive diabetic phe-
notype that after a few months show significantly lower
body mass, β-cell mass, and insulin levels when com-
pared to non-diabetic litter mates (?). The MIDY
pigs exhibit a stable diabetic phenotype that can be
rescued by treatment with insulin, and are a suitable
model for testing therapies such as β-cell transplanta-
tion in a human sized model organism (?).

2.3 Metabolism

Glucose homeostasis is primarily regulated by insulin
and glucagon, and it involves several different organs
(?). In response to elevated plasma glucose levels (such
as after food intake), insulin is secreted to plasma from
β-cells in the pancreas (??). Insulin’s main action is
to stimulate glucose removal, and it does so by having
different effects on different target organs (?). In pe-
ripheral tissues, such as skeletal muscle and adipose
tissue, insulin promotes glucose uptake, usage, and
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storage (?). In liver, insulin inhibits gluconeogenesis
and glycogenolysis, and promotes glycogen synthesis
from glucose (??). Furthermore, insulin also inhibits
secretion of glucagon from pancreatic α-cells (?).

In response to low blood glucose levels, glucagon is
released from pancreatic α-cells. Glucagon promotes
hepatic gluconeogenesis, production of glucose from
hepatic glycogen, and glucose secretion. This raises
the blood sugar to normal levels. In diabetic patients,
the absence of insulin thus leads to a hyperglycemic
state since there is no feedback mechanism to counter-
act the effects of glucagon (??).

There are other hormones beyond insulin and glucagon
that also regulate glucose homeostasis, for example
leptin and adiponectin that is released from fat cells
(??).

2.3.1 Liver metabolism

The liver is an essential metabolic organ, and hepatic
metabolic activity is regulated by insulin and other
hormones. Glucose enters the hepatocytes via plasma
membrane glucose transporters (GLUT)s, glucose is
then phosphorylated by glucokinase into glucose-6-phosphate
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(G6P). G6P is the precursor molecule for glycogen syn-
thesis after feeding, it can also be converted into pyru-
vate and ATP through glycolysis and the citric acid
cycle respectively. Pyruvate can also be used as a pre-
cursor for lipogenesis, the production of fatty acids
(?).

During short-term fasting, glycogen is converted
into glucose, which is then secreted from liver and
transported to other tissues. Whereas during long-
term fasting when the glycogen storages are depleted,
the liver produces glucose through gluconeogenesis from
lactate, amino acids and glycerol (waste products from
skeletal muscle and adipose tissue respectively) (?).

2.3.2 Adipose tissue metabolism

White adipose tissue (WAT) is no longer considered
to be a static organ that only stores fatty acids (??).
In fact adipose tissue AT is an endocrine organ that is
responsible for the production and secretion of a plu-
rality of different hormones, impacting a wide variety
of biological functions (?).

The accumulation of fat in WAT is governed by
two processes: (i) the synthesis of fat (lipogenesis),
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and (ii) fatty acid oxidation (lipolysis). Lipogenesis
produces triglycerides for energy storage and occurs
preferentially in adipose tissue, although it can also
occur in the liver (?).

Lipogenesis is stimulated by a high intake of car-
bohydrates, whereas fasting and high levels of polyun-
saturated fatty acids inhibits triglyceride generation
by lipogenesis
(?). This regulation of lipogenesis is partly facilitated
by hormones, e.g. leptin inhibits lipogenesis while in-
sulin and angiotensin promotes it (??). Insulin pro-
motes lipogenesis by: (i) increasing glucose uptake in
adipose tissue, (ii) activating lipogenic and glycolytic
enzymes, and (iii) inducing expression of lipogenic genes
(?).

Breakdown of fat (lipolysis) occurs in adipose tis-
sue during times of metabolic stress, such as fasting,
when the fat storages are hydrolysed into glycerol and
free fatty acids (FFAs) (?). The fatty acids are then
secreted to the blood and transported to other tissues
to be used as a source for energy generation (?). FFAs
can be converted into ketone bodies in the mitochon-
dria of the liver through fatty acid β-oxidation, ketone
bodies are important energy substrates for extrahep-
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atic tissue (?)

2.3.2.1 Differences between visceral and sub-
cutaneous adipose tissue

It has been known for a long time that obesity has a
higher correlation with body fat distribution than to
total body fat mass (?). Visceral adipose tissue (VAT)
is present mainly in the mesentery and omentum, and
an excess abundance of VAT is linked to T2DM and
cardiovascular diseases (?).

Adipocytes in VAT have a higher metabolic ac-
tivity than adipocytes in subcutaneous adipose tissue
(SCAT), which is reflected in a higher rate of lipolytic
activity (?). Unlike SCAT, visceral fat is directly con-
nected to the liver through the portal vein (??) giving
secreted hormones and FFAs from VAT immediate ac-
cess to the liver (?).

2.3.3 Retinoid metabolism

Retinoids (Vitamin A derivatives) have two physiolog-
ical roles, (i) 11-cis-retinal is the chromophore of vi-
sual pigments in the eye, and (ii) all-trans- and 9-cis-
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retinoic acid (RA) are responsible for regulating gene
expression through the two nuclear receptors, retinoic
acid receptors (RARs) and retinoid X receptors (RXRs)
(??). Here, I will focus on the latter function of the
hormonal role of retinoids.

During fasting the active retinoid precursor, all-
trans-retinol (Vitamin A), is transported in plasma
(?). After all-trans-retinol is imported by the target
cells, it is converted in two steps into all-trans-retinoic
acid (atRA, Figure 2.1). Retinol dehydrogenase 16
(RDH16) is one of many enzymes that catalyses the
first oxidation step of this conversion, from all-trans-
retinol into all-trans-retinal
(?). Retinol dehydrogenases catalyses the rate-limiting
step of RA metabolism (?).

AtRA and 9-cis-RA regulate the expression of many
different genes (??). Both atRA and 9-cis-RNA can
bind to RARs, whereas 9-cis-RA is the only RA that
binds to RXRs (?). To activate transciption, RARs
and RXRs bind to retinoic acid response elements (RAREs)
as heterodimers, RAREs are genomic elements that
are composed of tandem repeats of 5’-(A/G)G(G/T)TCA-
3’ (?), most frequently as direct repeats (DRs) with
two hexameric motifs interspersed by 1, 2, or 5 base-
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Figure 2.1. Schematic representation of retinol
metabolism. RDH16 catalyzes the reaction from all-
trans retinol to all-trans retinal, then the aldehyde
dehydrogenase 1 protein family (ALDH1A) enzymes
convert all-trans retinal to atRA. AtRA enters the nu-
cleus and binds to the transcription factors RAR or
RXR and activates them. RAR and RXR regulate
transcription by binding promoter regions as either ho-
modimers or as heterodimers with each other or other
transcription factors. AtRA can also be converted into
all-trans hydroxy-retinoic acid by cytochrome P450 en-
zymes. Metabolites are colored in green, proteins in
blue, and DNA elements in red. All proteins named
are examples of enzymes that catalyses the specific re-
action.
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pairs (DR1, DR2, and DR5 respectively) (?). Other
non-canonical spacings can also occur.

Studies of the association between retinoid metabolism
and diabetes in humans have shown that serum retinol
levels are higher in type 2 diabetes and lower in type
1 diabetic patients respectively (?). RA has also been
shown to affect the function of pancreatic β-cells by
increasing insulin production and secretion
(?).

AtRA inhibits preadipocyte differentiation into WAT
(?), and atRA also stimulate lipolysis, decreases tria-
cylglycerol concentration and increases fatty acid oxi-
dation (?). Interestingly, Ziouzenkova and colleagues
(?) have shown that retinal have distinct functions in
adipose tissue of rodents, independent of its conversion
to RA. Furthermore, they showed that retinal can in-
teract with RARs and RXRs and that retinal and RA
have different effects on adiposity in mice. All-trans-
retinal was shown in the study to inhibit adipogene-
sis, and peroxisome proliferator-activated receptor and
RXR signalling (?).
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2.4 Proteomics

The proteome is the entire set of proteins that control
and catalyse all processes in the cell in conjunction
with other proteins or biomolecules at specific times
and cellular locations, determining the functional state
and phenotype of the cell (?). Because of this, and
since mRNA and protein levels don’t show perfect cor-
relations
(?), the study of the proteome is important for giving
us a complete picture to the inner workings of cells.
Here, mass spectrometry (MS)-based proteomics will
be described in greater detail. Briefly, purified proteins
are digested into peptides by a peptidase followed by
injection onto a liquid chromatography system where
the peptides are separated by for example hydropho-
bicity. The peptides are then eluted and enter the mass
spectrometer as ionized ions, where the precursor ions
mass-to-charge (m/z) ratios are measured. Then se-
lected ions are fragmented and the fragment spectra
are collected. The peptides and proteins are identi-
fied and quantified using the precursor and fragment
ion spectra together with a protein database, bioinfor-
matic analysis is then performed in order to for ex-
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ample detect differentially abundant proteins between
two samples.

2.4.1 Sample preparation

Because MS analysis of intact proteins is inadequate
for protein identification, the protein samples first have
to be digested into smaller peptides using a peptidase
(??). This is because sequence information is needed,
and mass spectrometers are better equiped to obtain
sequence information from peptides of sizes< 20 amino
acids than from intact proteins (?). The most com-
mon peptidase used in proteomics is trypsin, which
cleaves the polypeptide backbone after arginine and ly-
sine residues (???). Other peptidases can also be used
(??), e.g. digestion with the protease LysC, which cuts
after lysine residues, can be performed in highly solu-
bilizing conditions (e.g. 8 M urea) (?). Digestion with
LysC followed by trypsin digestion has been reported
to be more efficient than only using trypsin alone (?).

Since many proteins have a compact tertiary struc-
ture and hydrophobic properties (?), proteins must be
denatured before being trypsinated. One common way
to denature proteins is to use high concentrations of
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urea, since it can bind to proteins and compete with
native bonds between the amino acids (?). A benefit
of using urea is that it is compatible with electrospray
ionization (ESI)-MS since it doesn’t interact with com-
monly used liquid chromatography columns and is thus
eluted from the column before any of the peptides (?).
Other denaturants can be used as well, such as sodium
dodecyl sulfate SDS and sodium deoxycholate SDC.
SDC can in contrast to urea be used at high concen-
trations without impacting trypsin’s protease activity
(?). But unlike urea these denaturants are not com-
patible with LC-ESI-MS, and have to be removed prior
to chromatagraphic separation (?). This can easily be
done for SDC using either a acid precipitation method
or a phase transfer method (??). SDC has been found
to increase the performance of detecting peptides de-
rived from membrane proteins (?), zebrafish liver tu-
mors (?), and proteins from AT (?).

To enhance the digestion of the proteins, the sam-
ples are also treated with dithiothreitol (DTT) and
tris(2-carboxyethyl)phosphine (TCEP) to reduce disul-
phide bridges between cysteine residues. The free cys-
teine amino acids are then alkylated with iodoacetamide
to prevent the cysteine residues to form new disulphide
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bridges (?).

2.4.2 Liquid chromatography

Due to the different functional groups of peptides (hy-
drophilic, hydrophobic, basic, acidic), many options
exist to choose from when choosing a separation tech-
nique
(?). The most popular separation methods use re-
versed phase liquid chromatography (RPLC), strong-
cation exchange (SCX), strong-anion exchange (SAX),
and hydrophilic interaction liquid chromatography (HILIC).
Of these, RPLC is the most popular for HPLC pro-
teomics, due to its robustness, separation efficiency,
and selectivity(?). In RPLC, the columns are packed
with a hydrophobic stationary phase, of which octade-
cyl carbon chain (C18)-bound silica is the most com-
mon (??), and for the mobile phase, water together
with an organic solvent such as acetonitrile or methanol
is used (?). Furthermore, the RPLC method’s eluents
are fully compatible with peptide ionization methods
(??).

The peptides generated by protein digestion are
injected onto a high performance liquid chromatog-
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raphy (HPLC) micro capillary column (RPLC) that
is directly coupled to the mass spectrometer. The
peptides are eluted from the column using a solvent
gradient of increasing organic content and enter the
mass spectrometer according to their hydrophobicity,
hydrophilic peptides elute first and hydrophobic pep-
tides elute later (?). Since the sensitivity of the LC-
MS analysis is directly proportional to the peptide
concentrations eluting from the chromatography col-
umn, the chromatography is performed at very low
flow-rates.This is achieved by using capillary columns
with small inner diameters, usually on the scale of 50-
150 µm, which allow for flow rates as low as 500 nl
min-1 (?).

2.4.3 Mass spectrometry

A mass spectrometer consists of an ion source, a mass
analyser that computes the mass-to-charge ratios (m/z)
of the ions of interest, and an ion detector that for each
m/z value counts the number of ions (?).
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2.4.3.1 Electrospray ionization

There are two methods, which define the ion source, to
ionize the peptides before entering the mass spectrom-
eter, ESI and matrix-assisted laser desorption/ionization
(MALDI) (??). ESI has now become the state of the
art method for comprehensive study of the proteome,
due to its compatibility with HPLC methods (??). Re-
cent research has shown that overlap of identified pep-
tides between the two methods are quite low and that
they are complementary to each other (?).

In ESI, charged (mostly protonated) peptides are
eluted in droplets from the spray needle, which is held
at a high electrical potential with respect to the inlet
of the mass spectrometer. As the droplets travel to-
wards the mass spectrometry inlet, the solvent evapo-
rates, which increases the charge concentration on the
droplets’ surface area. Single, naked charged peptides
are generated either (i) by the fission of the droplets or
(ii) single ions can be emitted from the droplet when
the electrical field is sufficiently high on the surface of
the droplets (??). The charged, single peptides then
enters the vacuum of the mass spectrometer ready to
be measured.



2.4 Proteomics 34

2.4.3.2 Mass spectrometry and mass analysers

There are different ways a mass spectrometer can oper-
ate. In the data-dependent acquisition (DDA, which is
the most common mode of operation for proteomics),
the mass spectrometer records the intensity signals for
all ions’ m/z ratio, thus generating a mass spectrum
(at the MS1 level) (??). Because each ion signal con-
sists of a cluster of isotope peaks, the charge state of
the peptides can easily be determined by the shape
of the ion signal. The mass of a peptide can thus be
derived from the detected m/z ratio and the peptide
charge (?).

Since primary structure (sequence) information is
needed to unambiguously identify a protein, peptides
are fragmented by collision with an inert gas (such as
nitrogen, helium or argon) (?). The most common
type of product ions generated from the precursor ion
by collision-induced disassociation (CID) are derived
from breakage of the peptide bond, b and y ions, de-
pending on which side retains the proton (??). The
tandem-MS (MS/MS or MS2) spectrum is then ob-
tained. Throughout a LC-MS run, the mass spectrom-
eter cycles between obtaining MS1 and MS2 spectras.
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Once the gradient finishes, peptides are identified and
quantified by a computational analysis.

Several different types of mass analysers exist, and
each come with their own strengths and weaknesses
that make them suitable for different applications. Ex-
amples of different mass spectrometers include: linear
ion traps (LIT), quadropole mass filters (QMF), time-
of-flight instruments, and high-resolution Orbitraps.

LIT mass analysers use four quadropolar rods that
are segmented into three parts each. AC is applied
to pairs of electrodes at opposite sign to trap ions
using electromagnetic forces in the radial dimension,
whereas the ions are trapped axially by a potential
well generated by applying different DC currents to the
three different segments of the rods. Ion motion within
the trap is proportional to the amplitude of the applied
AC current and the size of the ions, with higher am-
plitude and larger size leading to larger motions. Ions
are then scanned by a process called resonance ejec-
tion. Resonance ejection works by that an additional,
increasing AC current is applied to the exit rods, and
when ions are in resonance with the main AC current
they exit through slits in the rods. The increasing AC
current ensures that ions with lower m/z values are
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ejected first (?).
Similarly to LITs, ions in QMFs are radially con-

fined by AC. What differentiates the QMF to the LIT
is that a DC current is applied to each rod pair with op-
posite sign, this produces a complex electric field that
allows for ion motion both radially and axially. In a
scan, both electrical currents are increasing (while the
proportion of the currents are kept the same) so that
ions of increasing mass pass through the QMF (?).

Orbitraps measure mass-to-charge ratios from the
ion’s oscillatory motion frequency using Fourier trans-
formation. In an Orbitrap mass analyser, ions are os-
cillating around a spindle electrode, and axial oscil-
lating movements are detected by electrodes as tran-
sients. Transients are the frequencies of oscillations,
and are unique for each m/z value. The transients are
then transformed into m/z values using Fourier trans-
formation. Unlike quadropole based mass analysers,
all ions are detected simultaneously in an Orbitrap and
no electric ramp is required
(???).

These different types of mass analysers can be used
alone, or together in hybrid instruments that takes ad-
vantage of the strengths of each type of mass analyser.
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For example, the high speed and sensitivity of LITs can
be combined with quadropoles enhanced capabilities
for precursor isolation to create a hybrid instrument
with increased dynamic range (?). Another example of
a hybrid instrument is the Q Exactive (Thermo Fisher
Scientific) family series of instruments that compines
a QMF with an Orbitrap (???). The quadropole-
Orbitrap hybrids have been proven to be very powerful
for mass spectrometry based proteomics, significantly
increasing the number of identified proteins per hour
in DDA
(?).

DDA-MS has seen striking developments in both
computational and sample preparation methods, as
well as in instrument performance during the last cou-
ple of years, with the complete yeast proteome be-
ing obtained (??) and over 10,000 proteins have been
identified in human cell line samples (??). Tissue pro-
teomics presents its own challenges due to the het-
erogeneous cellular composition and dynamic protein
concentration range of most tissues. Each tissue has
its own particular challenge for proteomics, for exam-
ple the high dynamic range of skeletal muscle (?), the
high levels of proteases in the pancreas (?), and the



2.4 Proteomics 38

high concentrations of lipids and hydrophobic proteins
in adipose tissue (?).

2.4.4 Computational and bioinformatic
analysis

Computational proteomics concerns the mathematical
and statistical algorithms used to identify peptide and
protein identification as well as their quantification,
whereas the bioinformatic analysis concerns the down-
stream functional analysis that leads to biologically
relevant and interpretable results (?).

2.4.4.1 Identifying peptides: from spectra to
proteins

Peptide sequence can be deduced from the distances
between neighbouring peaks in the MS2 spectra, since
each fragment ion differs from its neighbour by one
amino acid. But the advent of whole-genome sequenc-
ing made it possible to match peptide-fragmentation
spectras to theoretical spectras derived from sequenc-
ing databases, turning the issue of peptide identifica-
tion into a database matching problem (??). Compu-
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tationally this is more efficient since only a fraction of
all possible amino acid combinations have to be con-
sidered (?).

The goal of a tandem-MS database search is to
detect the best matching sequence to each fragment
spectrum. Four general methods for performing and
scoring peptide database searches: descriptive, inter-
pretative, stochastic, and statistical and probability
based modelling (?). Here, I will focus on probabil-
ity based methods and describe this method in more
detail.

Probability based modelling was popularized by
the commercial Mascot software
(??). A probability based approach relates features
sequences to the spectra, for example the frequency of
matches of b and y ions are calculated and used to
calculate a identification probability (?).

The free software MaxQuant is one of the most
popular data analysis programs for handling MS-based
proteomics data (??). MaxQuant uses it’s own proba-
bility based peptide search enginge called Andromeda
(?). Andromeda’s peptide search algorithm first cal-
culates the n number of theoretical fragment ions and
the k number of matches between the spectrum and
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the theoretical fragment ions, the higher k is relative
to n the higher the probability is that these matches
were not due to random chance. Andromeda uses this
information to calculate an approximate p-value for
the null hypothesis that there is no similarity between
the theoretical and observed fragment ion masses. A
successful match is called a peptide spectrum match
(PSM) (?).

Due to the vast amount of hypotheses being eval-
uated and that many of the acquired spectra might
be due to chemical and electrical noise, many of the
PSMs might be due to random chance and thus be false
positives (???). To alleviate this, the detected PSMs
should be corrected with a false discovery method (FDR)
that limits the number of false positives while con-
taining as many of the true positives as possible. In
proteomics, FDR values are usually calculated from
a decoy database (?). There are many ways to con-
struct a decoy database, of which a reversed proteins
database is the simplest and most commonly used (?).

A reversed decoy database is created by reversing
the protein FASTA sequences used for obtaining the
theoretical peptides. Using the reversed method yields
a decoy database with similar features to the target
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database (in respect to number of proteins and pep-
tides, protein length, and sequence redundancy) (?).
The number of positive hits in the decoy database
is used to estimate the false positives of the target
database, assuming that the probability of finding false
PSMs is equal for the two databases (?).

Identified peptides are then matched to the pro-
teins in the target database. The proteome contain a
high degree of sequence redundancy, which is due to
different evolutionary processes and that a single pro-
tein can have multiple isoforms, this leads to difficul-
ties in assigning a peptide to one single origin protein.
To solve this, Maxquant merges all proteins that can’t
be distinguished by the identified peptides into pro-
tein groups (??). An FDR filter then applied in order
to filter out false positives. An FDR threshold of 1%
is usually applied in proteomics, both for peptide and
protein identifications (???).

2.4.4.2 Quantitative proteomics

There are two general approaches to quantitate pro-
teins in DDA-MS, labelled or label-free quantification.
Both of these techniques are relative quantification
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methods, meaning that two or more sample groups
are compared (??).

Label-based quantification, uses stable isotope la-
bels such as C13 and N15. These stable isotopes are
chemically more or less identical to the most abundant
isotopes. Thus, labelling with stable isotopes ensures
that the mass spectrometer can distinguish between
proteins that are eluted in parallel but derived from
different samples. Label-based approaches includes:
(i) metabolic (such as SILAC), (ii) isotopic (ICAT),
and (iii) isobaric (ITRAQ and TMT) labeling. The la-
beling step can be performed at the peptide or protein
level depending on the method used (?). The advan-
tage of using a label-based approach is that they can be
more accurate than label-free methods, whereas disad-
vantages can include (depending on the method) that
the number of samples that can be labeled is limited,
variability in labeling efficiency, and that additional
sample preparation steps are included where loss of
proteins/peptides can occur (??).

Label-free quantification is a cheap and easy method
for relative protein quantification and two major strate-
gies exist: spectral counting or peptide peak intensity
measurements (??). They also have the advantage of
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having a higher dynamic range than label-based ap-
proaches (?). Spectral counting methods infer protein
abundance from the number of PSMs detected for each
protein, whereas peak intensity methods use the pep-
tide’s intensity, which is derived from integration of
chromatographic peaks, for quantification (?). Gener-
ally, ion intensity methods perform better than spec-
tral counting methods as it more robustly quantitates
low intensity peptides (?) and offer in general better
performance than spectral counting (?).

MaxQuant uses its own quantification algorithm
based on peptide intensity quantification called MaxLFQ
(?). MaxLFQ first calculates protein intensity ratios
from the median of the peptide intensity ratios be-
tween all samples that share a predetermined number
of peptides (default is 2 shared peptides). The pro-
tein intensities for each sample are then solved by a
least-squares analysis that will satisfy all viable pro-
tein ratios between the samples to calculate the opti-
mal abundance profile for the protein (?).

There are many R (?) packages developed by the
proteomics research community, both for bioinformatic
analyses and data visualization (??), of which for ex-
ample DEP is a package developed specifically for com-
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parative proteomics (?).

2.4.4.3 Missing value imputation

Typically, global proteomic experiments generally suf-
fer from a large degree of missing values(???). There
are many reasons why a peptide could be missing in the
dataset, both experimental and bioinformatic mecha-
nisms can lead to missing peptides and the underlying
cause are often unknown and complex (??). There are
three categories of missing values: missing completely
at random (MCAR), missing at random (MAR), and
missing not at random MNAR. MCAR values are usu-
ally derived from small measurement errors or stochas-
tic fluctuations whereas MNAR values are derived from
targeted effects (such as the instrument detection limit
or that the protein doesn’t exist in the sample) (?).
Since ignoring missing values would dramatically re-
duce the size of the data and that many statistical
tools need complete datasets (?), missing value impu-
tation and/or combined with missing value filtering is
usually applied to the datasets.

Choosing which imputation method to use is not
trivial, as it can affect how the data is interpreted.
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There are many available imputation methods, but no
single approach is consistently better than other ap-
proaches (??). This is probably due to that different
methods are developed for different scenarios, for ex-
ample a probabilistic minimum imputation methods,
that imputes missing values from the lower part of nor-
mal distribution, generally performs well for MNAR
values but not for MCAR values (??). Ideally, the
type of missing value should guide the use of the im-
putation method to use, but in practice it is difficult
to determine whether a missing value observation is
stochastic or deterministic in nature (?).

2.5 Statistics

Comparative studies where the researchers compare
the outcomes of two different scenarios, e.g.: mutant
versus wildtype, or placebo versus treated, are among
the most common types of experiments in the life sci-
ences.
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2.5.1 Statistical hypothesis testing

Statistical hypothesis testing is thus performed in or-
der to detect differences between the study groups (?).
When performing a statistical test we assume that
there is no difference between the groups (the null hy-
pothesis), and after the test the hypothesis is either
accepted or rejected based on the test statistic.

A two-sample t-test compares the means of the 2
groups relative to the standard deviation of the sam-
ples and returns a p-value. If the p-value is larger than
a predetermined threshold, α (usually set to 0.05),
then we accept the null hypothesis that there is no dif-
ference between the 2 groups. Contrary, if the p-value
is smaller than α then the null hypothesis is rejected
and the other hypothesis is accepted that there is a
difference between the two groups (?).

A two-sample t-test has three assumptions (?):

1. The sample populations should be normally dis-
tributed.

2. The sample populations should have the same
variance.

3. The sample populations should be uncorrelated.
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2.5.1.1 Different outcomes of statistical test-
ing

When performing a statistical test, there are four dif-
ferent potential outcomes
(?). These are illustrated in Table 2.1, two of these
outcomes are correct whereas the other two are incor-
rect (errors). There are two different types of errors,
type I errors and type II errors. When a type I error
is made, a difference is deemed significant even though
there is no true difference between the groups (and vice
versa for a type II error). In the scenario when one
statistical test is performed with a significance level of
α-level = 0.05, there’s a 5% chance that a significant
outcome will be wrong 5% of the time. That is 1 out
of 20 times, we will accept that we get a type I error
(or in other words yield a false positive result) (??).

An important factor to take into consideration is
the statistical power, which is the probability of de-
tecting a true difference between the two groups (??).
With increasing statistical power, the likelihood of do-
ing a type II error decreases. Thus, statistical power
determines the ability of the test to find true signifi-
cant differences between the groups. Sample size is a
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TRUTH
Difference No difference

RESULT OF
STATISTICAL TEST

Significant True positive False positive
Not significant False positive True negative

Table 2.1. The four outcomes of a statistical test.
Correctly identified outcomes are colored in blue,
whereas incorrectly identified outcomes are colored in
red.

major factor that influences the statistical power of a
study, the statistical power increases with increasing
sample size (??).

2.5.2 Multiple hypotheses testing

When performing multiple statistical tests at the same
time (as in most omics experiments) p-values are mis-
leading since they only inform us about a singular out-
come. Consider an experiment with 10000 statistical
tests and an α-level of 0.05, then 500 of these tests will
be deemed significant by random chance even if there’s
no true difference between the samples (?). Therefore,
p-values will have to be adjusted and reinterpreted,
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which is done by using different multiple hypotheses
correction methods.

The simplest multiple hypotheses correction method,
is the Bonferroni’s. The Bonferroni method controls
the family-wise error rate (FWER, that is the prob-
ability of detecting one false positive) by multiplying
the p-values with the number of tests. This greatly
reduces the false positive rate (FPR, the probability
of inferring an effect even though no effect is present)
and the statistical power, and increases the yield of
false negatives (?).

Instead, a more appropriate method for the analy-
sis of proteomics datasets is the Benjamini-Hochberg
method that controls the false discovery rate (FDR,
the proportion of false positives to all significant tests)
(?). The benefit of methods that controls FDR instead
of the FWER, is that they maintain statistical power
and limits the number of false positives (?). An FDR
of 0.05 means that of all significant tests 5% will be
false positives.

A useful method for controlling the FDR has been
developed by Storey, 2002. This method controls the
FDR by using the fact that non-significant p-values
are uniformly distributed whereas lower, significant p-
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values are enriched for values close to 0 . Storey’s
method incorporates an estimation of the fraction of
tests for which the null hypothesis is true to adjust the
p-values and yield q-values (?).

2.5.3 Analysis of variance, linear mod-
els and post hoc tests

For experimental studies that includes more than two
sample groups or more than one factor, the t-test is
obsolete. In fact, the t-test is a distinct case of an anal-
ysis of variance (ANOVA) test, and ANOVA has the
same requirements as the t-test. The null hypothesis
for an ANOVA is that all samples are derived from the
same distribution and have the same means, and when
the null hypothesis is rejected it is concluded that all
means are not equal and further tests are needed to
find out which means are not equal (if the number of
groups > 2) (??).

An ANOVA is based on linear models. A linear
model tries to fit a known function in order to find
the ”best” line through the data by minimizing the
sum of squares of the residuals. In an ANOVA the
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predicted values are the factor level means and the sum
of squares represent the variation that is not accounted
for by the factor (?).

If there are more than two groups (factor levels),
one most use a post hoc test in order to investigate
which group means that are significantly different from
each other. One of the most common methods for
follow up tests on ANOVA is Tukey’s Honest Signif-
icant Differences (HSD) (?). Tukey’s HSD method
compares all pairwise comparisons and calculates p-
values for each comparison that are adjusted for mul-
tiple hypotheses testing using FWER to limit the type
1 error rate. Important to note is that when we have
many features (as in most omics experiments), Tukey’s
method applies correction for multiple hypotheses on
each feature separately.

2.5.4 Principal component analysis

Principal component analysis (PCA) is an unsuper-
vised statistical method that reduces dimensions of
complex, high-dimensional data (such as omics data
with multiple genes/proteins) while preserving trends
and patterns of the data. PCA does so by project-
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ing the high-dimensional data onto a series one di-
mensional principal components (PC). The first PC is
chosen to minimise the sum of the squared distances
between the data points and PC, this have the effect
that the variance of the projected points is maximized.
The second PC (and all following PCs) is selected in a
similar way with the additional constraint that it must
be orthogonal to first PC, PCA is most often used in
order to easier visualize the high-dimensional data (?).

2.5.5 Gene set enrichment analysis

The Gene Ontology GO database was created to con-
struct a consistent and curated language for functional
annotation of proteins (???). Three different types of
GO categories exists: molecular funcion (GOMF), bi-
ological process (GOBP), and cellular compartment
(GOCC). GO categories are strictly hierarchical, most
classes thus have both parent and child terms that de-
scribe protein functionality at different levels of detail
(?).

Gene set enrichment analysis (GSEA) is a method
for detecting functional enrichments in biological datasets
(?). A GSEA algorithm performs a statistical test to
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see whether more genes/proteins are associated with
a gene set (e.g. a GO class) than by random chance
(?). This can be done in different ways. First, a list
of significantly more abundant genes (as determined
by a statistical test) can be tested for enrichments of
gene sets. This is the method of bioinformatic tools
such as STRING (?) and DAVID (?). The second
method doesn’t need any prefiltering of significant fea-
tures, instead it takes into account all genes/proteins
in a dataset together with a quantitative measurement
(e.g. expression levels, L2FC, and p-values). This is
reflecting that a smaller change in expression among a
subset of genes sharing a similar function or belonging
to the same molecular pathway might be more bio-
logically important than a large change in one gene
(?). This is the method of the software GSEA. Other
types of databases for GSEA can also be used such
as pathway information (Kyoto Encyclopedia of Genes
and Genomes (KEGG) and protein domains (Interpro)
(??).

Due to the hierarchical structure of the GO database,
GSEA will often find enriched categories at different
depths from the same hierarchical paths (?). Methods
have been developed to remove redundant GO terms
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from a GO list to make it easier to interpret, e.g. GO
trimming that removes redundant term based on the
number of shared proteins between the two classes (?).



Chapter 3

Materials and
methods

3.1 Adipose tissue from the Mu-

nich MIDY pig biobank

5 WT and 5 MIDY female littermates were maintained
for two years. MIDY pigs started receiving treatment
with both long-lasting (Lantus®; Sanofi) and short-
acting insulin (NovoRapid®; NovoNordisk) at the age
of two months, in order to mimic suboptimal diabetes
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treatment (moderately hyperglycemic). To remove ef-
fects from estrous cycle, the 2 year old pigs were estrus
synchronized and inseminated 12 days before necropsy.
A clinical examination was performed the day before
necropsy to record data about the general well-being of
the pigs. Pigs were fasted overnight before necropsy,
and tissue samples were collected according to stan-
dardized sampling procedures (described in Surma, et
al (2015) (?). Tissue samples for further molecular
studies were shock frozen within 20 min of acquire-
ment and stored in -80◦C.

3.1.1 Proteomic sample preparation

Two tissue samples from different locations were ob-
tained from each pig and AT type (4 MIDY pigs and
5 WT pigs, SCAT and MAT) from the Munich MIDY
pig biobank (Table 3.1, the harvesting of the sam-
ples have been described in (??)). The two tissue
samples from each pig and tissue group were pooled
(see Table 3.2 for the outline of experimental design,
and approximately 100 mg tissue were collected from
each pooled sample. Each pooled sample was sus-
pended in a solution containing 1% SDC and 50 mM
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Table 3.1. Characteristics of the pigs and adipose
tissue samples from the MIDY-pig biobank.

Animal ID Date of birth Genotype Section number Body mass (kg) Time of death
Abdominal

SCAT samples
MAT samples

1861 25/10/2012 WT S 736/14 244.0 05/08/14, 9:18 #2, #3 #1, #2
1857 25/10/2012 MIDY S 737/14 215.0 06/08/14, 9:06 #2, #3 #1, #2
1885 14/11/2012 WT S 738/14 224.5 07/08/14, 8:55 #2, #3 #1, #2
1856 25/10/2012 MIDY S 739/14 185.0 08/08/14, 8:47 #2, #3 #1, #2
1859 25/10/2012 MIDY S 740/14 184.0 13/08/14, 9:00 #2, #3 #1, #2
1877 07/11/2012 WT S 741/14 237.5 14/08/14, 8:52 #2, #3 #1, #2
1875 07/11/2012 WT S 743/14 247.0 20/08/14, 8:45 #2, #3 #1, #2
1886 07/11/2012 MIDY S 744/14 217.0 21/08/14, 8:38 #2, #3 #1, #2
1878 07/11/2012 WT S 745/14 238.0 22/08/14, 8:50 #2, #3 #1, #2
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ABC1. The samples were homogenized using a homog-
enizer (ART-MicraD8, ART Prozess- & Labortech-
nik, Müllheim, Germany) at 23,500 rpm for 2×1 min.
Samples were kept on ice for 30 min and were then
centrifuged for 5 min at 16,000×g, 4◦C. The aqueous
layer beneath the lipid layer was harvested and trans-
ferred to new Eppendorf tubes. Protein concentration
was measured with a NanoDrop ND-1000 spectropho-
tometer (Marshall Scientific), using the A280 method
for proteins/peptides.

Genotype
MIDY WT

Adipose tissue
Mesenteric MIDY, MAT WT, MAT

Subcutaneous MIDY, SCAT WT, SCAT

Table 3.2. The multifactorial experimental design for
MIDY AT study showing the two independent vari-
ables (genotype and AT source) and the four subse-
quent 2-factor groups.

50 µg of protein in 50 µl 1%, 50 mM ABC were
diluted to 100 µl 0.5% SDC, 50 mM ABC. The cys-

1all water used were HPLC grade



3.1 Adipose tissue from the Munich MIDY pig
biobank 59

teine residues were reduced with DTT and TCEP at a
final concentration of 4 and 2 mM respectively for 30
min at 56 ◦C and cysteine residues were blocked using
iodoacetamide for 30 min at a final concentration of 8
mM in the dark. DTT was added to a final concen-
tration of 10 mM and the samples were incubated for
15 min before protein digestion. Proteins were first
digested with 1 µg LysC (Wako) for 4 hours followed
by digestion with 1 µg trypsin (Promega) for 16 hours
at 37◦C.

SDC was removed using the acid precipitation method
(???). The digests were acidified to a final concentra-
tion of 1% TFA and incubated on ice for 5 min, be-
fore the samples were centrifuged at 16,000×g for 15
min. The supernatant were transferred to a new Ep-
pendorf tube and evaporated in a vacuum centrifuge
(Bachhofer). The samples were stored at -20◦C until
sequencing by mass spectrometry. The samples were
resuspended in 0.1 % FA, and 1.5 µg peptides in 15 µl
were injected into the LC-MS/MS system.
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3.1.2 Mass spectrometry and proteomic
analysis

The nano-LC-MS/MS analysis was performed using a
Q-exactive HF-X mass spectrometer coupled to an Ul-
timate 3000 nano-LC system (Thermo Scientific) as
described in (?). Briefly, 1.5 µg peptides were sepa-
rated at 200 nl/min using sequential linear gradients
from 1% to 5% solvent B (0.1% FA in acetonitrile,
whereas solvent A was 0.1% FA, 1% acetonitrile) for
10 min, followed by 5% to 25% B for 115 min, and
lastly 25% to 50% B in 20 min. Spectra were acquired
using a precursor ion scan at a resolution of 120,000
from 380 to 2000 m/z, followed by MS/MS scans of
the 24 peaks with highest intensity at a resolution of
15,000.

Peptides and proteins were identified (FDR < 0.01)
using MaxQuant 1.6.3.4 (??) with the NCBI RefSeq
Sus scrofa proteome database (version 20180313) and
quantified using MaxLFQ with the match between run
feature enabled (?). For details about parameters used
see Supplementary Table C.1.
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3.1.3 Bioinformatics

The bioinformatic analysis was done in R 3.6.0 (?).
Gene names were identified based on the NCBI RefSeq
identifiers using bioDBnet (?) and BioMart (?) using
the biomaRt package in R (?). The proteins LFQ in-
tensity values were log2 transformed. Proteins were
filtered using 75% valid values in at least one group
(i.e. only one missing value allowed in at least one
group). Additional normalization (variance stabilizing
transformation) and imputation were performed using
the DEP package (?). The missing proteins were im-
puted using random draws from a left shifted Gaussian
distribution with parameters: scale = 0.3 and shift =
1.8 (scale defines the width of the Gaussian distribu-
tion relative to the standard deviation of the data,
and shift defines how much the distribution that the
random values are drawn from are shifted downwards).
For statistical analysis R’s base functions were used to-
gether with the tidyverse suite of packages (??). Mul-
tiple hypotheses correction was performed using the
false discovery rate method provided by the R qvalue
package (?).

Significant proteins (q-value < 0.05) were uploaded
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to the STRING database (version 11.0) (?) separately
for each group. Default parameters were used, except
for minimum interaction score (0.15 for significant pro-
teins in genotype categories and 0.4 for significant pro-
teins in tissue categories). Selected enriched gene sets
were selected and highlighted on the protein networks.

Indenpendently for both the genotype and tissue
factors, the p-values for each factor from the 2-way
ANOVA were transformed to −log10 format. The −log10(p−
values) were then assigned to be negative if the L2FC
were negative and vice versa, and the proteins were
than ordered according to these transformed values.
The preranked protein sets were analysed using GSEA
3.0 (?) using the GSEApreranked method with KEGG
pathways and all three GO categories. The preranked
GSEA was run with default parameters except for the
min size parameter which was set to 10.

GOtrim 2.0 (?) was used to trim GO enrichments
(with default parameters) independently for each group.
REVIGO (?) and the Cluego 3.7.1 app (?) Enrich-
ment Map 3.2.1 (?) were used to visualize GSEA en-
richment results.
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3.2 GIPRdn liraglutide treatment

study

GIPRdn treatment and sample acquisition, has been
described previously by Streckel, et al, (2015) (?). Briefly,
18 heterozygous GIPRdn pigs were randomly assigned
to be treated with liraglutide or placebo. Pigs were
subcutaneously injected with pre-filled pens once daily
for 90 days with either liraglutide (Victoza®, 6 mg/ml,
Novo Nordisk A/S) or placebo (0.9% NaCl, B. Braun).
Liraglutide doses were based on human dosages (0.6-
1.2 mg per day) and corrected for pig body mass. Pigs
received treatment between the age of 2-5 months. At
the age of 2 months, GIPRdn pigs had impaired oral
glucose tests and delayed insulin secretion. Pigs were
fed a standard diet and other living conditions were the
same between the two treatment groups. Following the
end of the treatment period, pigs were euthanized and
selected organs were weighed. Tissue samples were
shock frozen and stored at -80◦C.

One piece of flash frozen liver sample was obtained
from each pig in the GIPRdn liraglutide treatment study
(Table 3.3, see Figure 3.1 for a visual summarization
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of the methodology), resulting in sample groups con-
sisting of 8 LT and 9 PT GIPRdn pigs respectively. Ap-
proximately 30-50 mg of tissue were taken from each
sample tube, and 15 µl 8 M urea, 400 mM ABC per
mg liver tissue. The tissues were lysed using a homog-
enizer (ART-MicraD8, ART Prozess- & Labortechnik,
Müllheim, Germany) at 23,500 rpm for 30 seconds.
The lysates were then centrifuged through a QIA-gen
shredder device (Qiagen, Hilden, Germany) for 30 sec-
ond at max speed. The samples were then stored at
-20◦C until the next step.

The protein concentration was determined using
a Pierce®660 nm Protein Assay (Thermo Scientific)
and a DU®640 spectrophotometer (Beckman Coul-
ter). The bovine serum albumin (BSA, Thermo Scien-
tific) standard dilution series was as following: 0, 50,
100, 250, 500, 750, 1000, 1500, and 2000 mg/ml. The
liver samples mean protein concentrations were mea-
sured using a 1/10 and 1/20 dilution. After the protein
concentrations were determined, they were adjusted to
2 mg/ml by adding 8 M urea, 400 mM ABC indepen-
dently for each sample.

100 µg of protein (50 µl lysate) were reduced using
a final concentration of 4 mM DTT and 2 mM TCEP
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Table 3.3. Characteristics of pigs and liver samples
from the GIPRdn liraglutide treatment study.

ID Genotype Treatment Gender Birthdate Sampling date
1311 GIPRdn Placebo male 07/07/2011 19/12/2011
1312 GIPRdn Liraglutide female 07/07/2011 19/12/2011
1313 GIPRdn Liraglutide female 07/07/2011 19/12/2011
1315 GIPRdn Placebo female 07/07/2011 20/12/2011
1316 GIPRdn Placebo female 07/07/2011 20/12/2011
1317 GIPRdn Placebo female 07/07/2011 21/12/2011
1323 GIPRdn Placebo male 08/07/2011 21/12/2011
1326 GIPRdn Liraglutide male 08/07/2011 20/12/2011
1331 GIPRdn Liraglutide female 08/07/2011 21/12/2011
1488 GIPRdn Liraglutide male 17/11/2011 02/05/2012
1492 GIPRdn Liraglutide male 17/11/2011 02/05/2012
1497 GIPRdn Placebo female 17/11/2011 02/05/2012
1501 GIPRdn Placebo male 17/11/2011 03/05/2012
1502 GIPRdn Placebo male 17/11/2011 03/05/2012
1503 GIPRdn Liraglutide male 17/11/2011 03/05/2012
1505 GIPRdn Placebo female 17/11/2011 02/05/2012
1506 GIPRdn Liraglutide female 17/11/2011 03/05/2012
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Figure 3.1. Experimental outline. Liver samples
from liraglutide (n = 8) and placebo (n = 9) treated
GIPRdn pigs were independently analysed using label
free quantification (LFQ). Proteins were digested into
peptides using LysC followed by trypsin. Peptides
were detected using a Q-Exactive HF-X instrument
coupled to a 50 cm nano-LC column without prefrac-
tionation. Peptides and proteins were identified and
quantified using MaxQuant and label free quantifica-
tion (LFQ). The bioinformatic analysis was performed
to find significant, relative proteome differences be-
tween the two treatment group
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for 30 min at 56◦C. Following the reduction, cysteine
residues were blocked using a final concentration of 8
mM IAA for 30 min at room temperature and in the
dark. DTT was added to a final concentration of 10
mM and the samples were incubated for 15 min at
room temperature. The proteins were first digested
with LysC at an enzyme to protein ratio of 1/50 for 4
hours at 37◦. 419 µl H20 were added to each sample to
reduce the urea concentration to below 1 M. Trypsin
was added at an enzyme to protein ratio of 1/50 for 16
hours at 37◦C. 5 µl FA was added to each sample to
reduce the pH to below 3 in order to stop the trypsin
protein digestion.

3.2.1 Mass spectrometry and proteomic
analysis

The nano-LC-MS/MS analysis were performed using
a Q Exactive HF-X mass spectrometer coupled to an
Ultimate 3000 nano-LC system (Thermo Scientific) as
described in (?). Briefly, 2 µg peptides were separated
at 200 nl/min using sequential linear gradients from
1% to 5% solvent B (0.1% FA in acetonitrile, whereas
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solvent A was 0.1% FA, 1% acetonitrile) for 10 min,
followed by 5% to 25% B for 115 min, and lastly 25%
to 50% B in 20 min. Spectra were acquired using a
precursor ion scan at a resolution of 120,000 from 380
to 2000 m/z, followed by MS/MS scans of the 24 peaks
with highest intensity at a resolution of 15,000.

Peptides and proteins were identified (FDR < 0.01)
using MaxQuant 1.6.1.0 (??) with the NCBI RefSeq
Sus scrofa proteome database (version 20180313) and
quantified using MaxLFQ and with the match between
run feature enabled (?). Apart from MaxQuant ver-
sion number used, the parameters used were the same
as for the study of AT in MIDY pigs. For details about
parameters used see C.1.

3.2.2 Bioinformatics

The following bioinformatic analysis was done in R
3.6.0 (?). Gene names were identified based on the
NCBI RefSeq identifiers using a custom R script to-
gether with the BioMart database (?) using the biomaRt
package in R (?). All proteins LFQ intensity values
were log2 transformed. Proteins were filtered using
55% valid values in at least one group (i.e. allowing
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for 3 or 4 missing values at least one group, depending
on the group (since n is different for the two treatment
groups). Additional normalization (variance stabiliz-
ing transformation) and imputation were performed
using the DEP package (?). The missing proteins
were imputed using a random draws from a left shifted
Gaussian distribution with parameters: scale = 0.3
and shift = 1.8 (scale defines the width of the Gaussian
distribution relative to the standard deviation of the
data, and shift defines how much the distribution that
the random values are drawn from are shifted down-
wards. A linear model was used with LFQ intensity
as the dependent variable and gender as a indepen-
dent variable 3.3 in order to filter out the effects of
gender on the protein LFQ intensities. For all down-
stream analysis the resulting residuals from the linear
model was used. For further statistical analysis R’s
base functions were used together with the tidyverse
suite of packages (??). Multiple hypotheses correction
was performed using the false discovery rate method
provided by the R qvalue package (?).

Significant proteins (q-value < 0.05) were uploaded
to the STRING database (version 11.0) (?) separately
for each group with default parameters. Selected en-
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riched gene sets were selected among the significantly
enriched gene sets and highlighted on the protein net-
work maps.

The residuals from the linear model together with
the gene names for all proteins (whether significant
or non-significant) were uploaded to GSEA 4.0.1 (?).
GSEA analysis was performed using GOBP, GOCC,
GOMF, and KEGG gene sets. Gene sets larger than
500 proteins or smaller than 15 were excluded from the
analysis. The following parameters were used: per-
mutation type was set to gene set, metric for ranking
gene sets were set to Ttest, and collapse dataset to
gene symbols was set to false. Default settings were
used if not specified elsewhere.



Chapter 4

Results

4.1 Differential proteome anal-

ysis of adipose tissue from

the Munich MIDY pig biobank

In order to investigate how hypoinsulenemia in the
MIDY pigs effects the proteome in adipose tissue, two
different types of adipose tissue were selected from
the Munich MIDY pig biobank (?), for both wildtype
(WT, n = 5) and MIDY pigs (n = 4): (i) abdominal
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subcutaneous adipose tissue and (ii) mesenteric adi-
pose tissue (MAT) (a type of visceral adipose tissue).

During previous studies of MIDY liver tissue, it
was detected that one of the MIDY samples didn’t
cluster very well with the other transgenic pigs (data
not shown). It was later discovered that this pig had
an insulinoma in the pancreas that was able to produce
insulin. For this reason, this pig was not used in the
study of the liver (?), and it was not used in this study
of MIDY AT for this reason either.

The purified peptides from respective sample were
analysed using a Q-Exactive HF-X mass spectrome-
ter. Protein intensity quantification was made using
MaxQuant’s label free quantification (LFQ) method
(?). Across all samples, a total of 2779 proteins were
identified using this approach. Identifications were fil-
tered for proteins with only one missing value in one
sample group (a sample group is defined as one adipose
tissue type plus the genotype of the samples, in total
there are four groups). This filter only keeps the pro-
teins that have been quantified with high confidence,
limiting the number of uses of missing value imputa-
tion and increasing the robustness of the downstream
statistical tests.
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As can be seen in the principal component analysis
(PCA) of the two first principal components (PCs) in
Figure 4.1, the samples can be separated into two
clusters containing the samples that originated from
mesenteric and subcutaneous adipose tissue (SCAT)
respectively. Moreover, clusters between MIDY and
WT within each AT cluster can be detected, but they
are not as well defined as between the two tissue types.

To alleviate the small sample size of the Munich
MIDY pig biobank, linear modelling using a 2-way
ANOVA was performed in order to detect global pro-
teomic changes in adipose tissue derived from diabetic
and non-diabetic pigs. This approach will also be used
to detect protein abundance changes between the sec-
ond factor group, adipose tissue type, as well as the
interaction effect between the genotype and adipose
tissue factors.

As can be seen in the p-value histograms (using
the p-values derived from the ANOVA) Figure 4.2A,
there is an enrichment of low p-values for the adi-
pose tissue factor and a smaller enrichment of low
p-values for the genotype factor. Contrary, the p-
value histogram for the interaction factor is almost
uniformly distributed, meaning that we don’t expect
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to find many proteins to be significant for the inter-
action effect after multiple hypotheses testing. After
pooling all p-values together, there’s still a pronounced
enrichment of low p-values (Figure 4.2B), telling us
that there are an enrichment of small p-values among
all tested hypotheses and that FDR correction can be
applied to the grouped set of p-values.
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Figure 4.2. P-value histograms with p-values from
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4.1.1 Genotype effects

The 2-way ANOVA in conjunction with multiple hy-
potheses correction (using the qvalue (?) package in
R) approach found 14 proteins to be significantly (FDR
< 0.05) more abundant and 9 to be significantly less
abundant in adipose tissue from MIDY pigs (Figure
4.3A).

14 proteins were found to be upregulated in the adi-
pose tissue of MIDY pigs, however one protein, tetra-
tricopeptide repeat protein 38 (TTC38), also had a sig-
nificant interaction effect (FDR = 0.01). Thus, TTC38
will be considered for its significant Genotype x Tissue
interaction effect.

Note that the log2 fold changes used here are not
derived from the 2-way ANOVA’s linear model, they
are calculated from the original imputed dataset and
should serve as a tool to elucidate the direction of the
effect for a significant difference detected by the 2-way
ANOVA.

Among the significant proteins with the highest
abundance increase in MIDY adipose tissue were retinol
dehydrogenase 16 (RDH16, l2fc = 4.84, FDR = 0.000007),
carboxyl esterase 1 (CES1, L2FC = 2.21, FDR = 0.03),
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Figure 4.3. MIDY 2-way ANOVA volcano plot. (A)
Volcano plot showing the results for the genotype fac-
tor, significant proteins (q-value < 0.05) enriched in
AT of MIDY and WT pigs are colored in green and
red respectively. (B) Volcano plot showing the results
for the tissue factor, significant proteins (q-value <
0.05) are colored in purple for MAT and in yellow for
SCAT.
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cytochrome P450 3A39 (CYP3A39, l2fc = 1.90, FDR
= 0.002), and ubiquitin carboxyl-terminal hydrolase
3(UCHL3, l2fc = 1.89, FDR = 0.003) (see Table 4.1
for all proteins significantly more abundant in MIDY
pigs).

RDH16 was identified in all MIDY samples (both
from SCAT and VAT), but was only detected in one
WT sample (derived from SCAT) at a lower intensity
level. This explains the high log2 fold change and high
significance (low FDR value) of RDH16, since LFQ val-
ues in WT adipose tissue were not quantified and had
to be imputed at lower intensity levels (Figure 4.4).
RDH16 has previously been found to be significantly
more abundant in the liver of MIDY pigs (?).

The two subunits of the mitochondrial trifunctional
protein (MTP), trifunctional enzyme subunit alpha,
mitochondrial (HADHA, l2fc = 0.47, FDR = 0.02)
and trifunctional enzyme subunit beta, mitochondrial
(HADHB, l2fc = 0.42, FDR = 0.01) were also detected
to be significantly more abundant in adipose tissue
from MIDY pigs.

The proteins that had the significantly highest abun-
dance decrease in MIDY adipose tissue were angiotensino-
gen (AGT, l2fc = -0.67, FDR = 0.0008), fructose-1,6-
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Table 4.1. Significant proteins upregulated in adipose
tisuee from MIDY pigs.

Gene name Protein name p-value q-value l2fc
RDH16 retinol dehydrogenase 16 1.1E-08 7.3E-06 4.84
CES1 liver carboxylesterase precursor 0.0020 0.03 2.21

CYP3A39 cytochrome P450 3A39 1.9E-05 0.0016 1.90
UCHL3 ubiquitin carboxyl-terminal hydrolase 4.5E-05 0.0027 1.89

IAH1
isoamyl acetate-hydrolyzing

esterase 1 homolog
0.0020 0.03 1.03

AK2 adenylate kinase 2, mitochondrial 0.0021 0.03 0.57
GMDS GDP-mannose 4,6 dehydratase 4.6E-05 0.0027 0.53

HADHA
trifunctional enzyme subunit

alpha, mitochondrial
8.0E-04 0.02 0.47

HADHB
trifunctional enzyme subunit

beta, mitochondrial
6.9E-04 0.01 0.42

ACOT4 acyl-coenzyme A thioesterase 1-like 0.0024 0.03 0.41

PSMD5
26S proteasome non-ATPase

regulatory subunit 5
7.5E-04 0.02 0.32

TTC38 tetratricopeptide repeat protein 38 0.0034 0.04 0.23

PRKAR2A
cAMP-dependent protein kinase type

II-alpha regulatory subunit
0.0026 0.04 0.21

GALM aldose 1-epimerase 0.0031 0.04 0.19
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Figure 4.4. Distribution of observed values for
RDH16. Intensity values are colored blue if RDH16
was detected in a sample and red if it was missing.
Missing values were imputed by a constant value of
10% of the mean for all samples.
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bisphosphatase 1 (FBP1, l2fc = -0.47, FDR = 0.03),
hexokinase 1 (HK1, l2fc = -0.38, FDR = 0.01) and
elongation factor 1-delta (EEF1D, l2fc = -0.28, FDR
= 0.04) (Table 4.2).

Table 4.2. Significant proteins downregulated in adi-
pose tisuee from MIDY pigs.

Gene name Protein name p-value q-value l2fc

SPAG9
C-Jun-amino-terminal kinase-interacting

protein 4
0.0032 0.042 -1.39

COL3A1 collagen alpha-1(III) chain precursor 0.0010 0.019 -0.71
AGT angiotensinogen 5.5E-06 0.00075 -0.67
FBP1 fructose-1,6-bisphosphatase 1 0.0023 0.033 -0.47
HK1 hexokinase-1 0.0004 0.011 -0.38

EEF1D elongation factor 1-delta 0.0028 0.038 -0.28
ATOX1 copper transport protein 0.0037 0.045 -0.26

EIF3C
eukaryotic translation initiation factor

3 subunit C
0.0019 0.029 -0.25

HSP90AA1 heat shock protein HSP 90-alpha 0.0025 0.036 -0.18
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4.1.1.1 Gene Ontology enrichment analysis us-
ing the STRING database

Gene ontology and KEGG pathway enrichment analy-
sis was performed using STRING, (?) and functional
annotations from Homo sapiens and the significantly
differentially expressed proteins. The resulting Pro-
teomaps are shown in Figure 4.5.

For the protein set that were upregulated in AT
of MIDY pigs, CYP3A39 were replaced with its hu-
man paralog CYP3A4, since CYP3A39 doesn’t exist
in H. sapiens. Porcine CYP3A39 and human CYP3A4
share 77.4% identity (BLAST (?), a multiple sequences
alignment is shown in Supplementary Figure A.1)
and the two proteins share high homology in key ac-
tive sites (?), it is thus probable that they have similar
functions in the two different organisms. In the text I
will still refer to the protein as CYP3A39.

Proteins that are significantly more abundant in
MIDY pigs are involved in fatty acid (ACOT4, CES1,
CYP3A4, HADHA, and HADHB) and lipid metabolic
processes (ACOT4, CES1, CYP3A4, HADHA, HADHB,
IAH1, and RDH16). RDH16 and CYP3A4 are both
annotated as being part of the KEGG retinol metabolism
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Figure 4.5. Gene set enrichment analysis using
the STRING database. (A) GSEA using the signif-
icant proteins more abundant in AT from MIDY pigs
and(B) WT pigs. Proteins belonging to gene set are
colored according to the table, edges between proteins
indicates that there is an interaction between the two
proteins (an interaction score of 0.15 was used). The
Proteins column indicates how many proteins in the
given dataset that were detected in a given gene set.
Gene sets are either GO or KEGG categories.
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pathway, which is enriched in MIDY pigs according to
the STRING analysis.

Interestingly, valine, leucine and isoleucine metabolism
was also found to be enriched in MIDY pigs, as both
MTP subunits were annotated as being involved in this
KEGG pathway. The high confidence of a functional
interaction between HADHA and HADHB is not sur-
prising since they are both subunits of the same pro-
tein complex (?).

In the smaller protein set of proteins that were
downregulated in MIDY pigs, both FBP1 and HK1 are
annotated by KEGG to be part of fructose and man-
nose metabolism, glycolysis/gluconeogenesis and the
insulin signalling pathway. Both EEF1D and EIF3C
have translation factor activity and both proteins bind
to mRNA.

4.1.1.2 Gene set enrichment analysis

The proteins were ranked according to their −log10 p-
values, and the log-transformed p-values were assigned
a minus sign if the L2FC was negative or a plus sign if
it was positive. A preranked GSEA analysis (?) using
1734 gene sets (minimum gene set size = 10 and maxi-
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mum size = 500) found that 54 gene sets were enriched
for MIDY pigs (Figure 4.6 A, Supplementary ta-
ble A.3) and 25 gene sets were enriched for WT at
q-value < 0.05 (Figure 4.6 B, Supplementary ta-
ble A.4, Figure 4.7).

Among the 54 gene sets enriched in MIDY pigs
were 6 GOCC categories related to mitochondria (mi-
tochondrial part, mitochondrial envelope, mitochon-
drion, mitochondrial matrix, inner mitochondrial mem-
brane protein complex, and mitochondrial protein com-
plex), 5 gene sets related to fatty acid metabolism
(fatty acid metabolic process, fatty acid metabolism,
fatty acid catabolic process, regulation of fatty acid
metabolic process, and fatty acid β-oxidation), as well
as 5 GOBP gene sets involved in lipid metabolic pro-
cesses (lipid metabolic process, cellular lipid metabolic
process, lipid oxidation, cellular lipid catabolic pro-
cess, and lipid modification).

The enriched GO classes were then trimmed to
remove mainly redundant classes using the software
GO trimming (?). After trimming, 31 GO classes re-
mained (21 GOBP, 8 GOCC, and 6 GOMF respec-
tively) for enrichments in MIDY pigs. Among the en-
riched GOBP classes (Figure 4.8) there are a 16 dif-



4.1 Differential proteome analysis of adipose
tissue from the Munich MIDY pig biobank 86

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

1.90 1.95 2.00 2.05 2.10

NES

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●Hydrogen peroxide metabolic process

Regulation of cellular ketone metabolic process

Lyase activity

Mitochondrial matrix

Cellular lipid metabolic process

Mitochondrion

Hydro lyase activity

Carbon oxygen lyase activity

Mitochondrial envelope

Lipid metabolic process

Generation of precursor metabolites and energy

Oxidoreductase activity

Electron transport chain

Mitochondrial part

Aerobic respiration

Fatty acid metabolism

Oxidation reduction process

Fatty acid metabolic process

Energy derivation by oxidation of organic compounds

Cellular respiration

1.901.952.002.052.10
NES

G
en

e 
se

t

Size
●

●
●

30
60
90

0.000

0.005

0.010

0.015

0.020
q−value

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●Hydrogen peroxide metabolic process

Regulation of cellular ketone metabolic process

Lyase activity

Mitochondrial matrix

Cellular lipid metabolic process

Mitochondrion

Hydro lyase activity

Carbon oxygen lyase activity

Mitochondrial envelope

Lipid metabolic process

Generation of precursor metabolites and energy

Oxidoreductase activity

Electron transport chain

Mitochondrial part

Aerobic respiration

Fatty acid metabolism

Oxidation reduction process

Fatty acid metabolic process

Energy derivation by oxidation of organic compounds

Cellular respiration

1.901.952.002.052.10
NES

G
en

e 
se

t

Size
●

●
●

30
60
90

0.000

0.005

0.010

0.015

0.020
q−value

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●Hydrogen peroxide metabolic process

Regulation of cellular ketone metabolic process

Lyase activity

Mitochondrial matrix

Cellular lipid metabolic process

Mitochondrion

Hydro lyase activity

Carbon oxygen lyase activity

Mitochondrial envelope

Lipid metabolic process

Generation of precursor metabolites and energy

Oxidoreductase activity

Electron transport chain

Mitochondrial part

Aerobic respiration

Fatty acid metabolism

Oxidation reduction process

Fatty acid metabolic process

Energy derivation by oxidation of organic compounds

Cellular respiration

1.901.952.002.052.10
NES

G
en

e 
se

t

Size
●

●
●

30
60
90

0.000

0.005

0.010

0.015

0.020
q−value

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2.3 −2.2 −2.1 −2.0

NES

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Complement and coagulation cascades

Vesicle lumen

Glycosaminoglycan binding

Blood microparticle

Serine type endopeptidase inhibitor activity

Heparin binding

Secretory granule lumen

Leukocyte mediated immunity

Regulation of endothelial cell migration

Regulation of cell growth

Humoral immune response mediated by circulating immunoglobulin

B cell mediated immunity

Platelet alpha granule lumen

Humoral immune response

Immune effector process

Extracellular space

Platelet alpha granule

Lymphocyte mediated immunity

Peptidase inhibitor activity

Protein activation cascade

−2.3−2.2−2.1−2.0
NES

G
en

e 
se

t

0.00
0.01
0.02
0.03
0.04
0.05

q−value

Size
●

●
●

20
40
60

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Complement and coagulation cascades

Vesicle lumen

Glycosaminoglycan binding

Blood microparticle

Serine type endopeptidase inhibitor activity

Heparin binding

Secretory granule lumen

Leukocyte mediated immunity

Regulation of endothelial cell migration

Regulation of cell growth

Humoral immune response mediated by circulating immunoglobulin

B cell mediated immunity

Platelet alpha granule lumen

Humoral immune response

Immune effector process

Extracellular space

Platelet alpha granule

Lymphocyte mediated immunity

Peptidase inhibitor activity

Protein activation cascade

−2.3−2.2−2.1−2.0
NES

G
en

e 
se

t

0.00
0.01
0.02
0.03
0.04
0.05

q−value

Size
●

●
●

20
40
60

A

B

Figure 4.6. Top 20 most enriched gene sets from
the genotype GSEA. (A) The top 20 most enriched
gene sets in MIDY and (B) the top 20 most enriched
gene sets in WT. Gene sets are ordered according to
their normalized enrichment score (NES). Size is the
number of proteins detected in each gene set.
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Figure 4.7. Network map showing significant (q-
value < 0.05) GO ontology and KEGG categories en-
riched in MIDY (red) and WT (blue) pigs using GSEA.
Annotated categories were either KEGG pathways or
GO cateories significant at q-value < 0.01. The size
of the nodes reflect the gene set size and the size of
the edges reflects similarity between the two gene sets.
Network map was made using the Cytoscape plugin
Enrichment Map.
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ferent clusters. There are two major clusters, of which
the first includes lipid metabolic process, cellular res-
piration, and oxidation-reduction process and the sec-
ond includes fatty acid metabolic process, organic acid
metabolic process, primary alcohol metabolic process,
and tricarboxylic acid metabolic process. Two smaller
clusters include processes regulating fatty acid and ke-
tone metabolism and anion transport. 5 gene sets
doesn’t belong to a single cluster, they include re-
sponse to hydrogen peroxide, positive regulation of
canonical Wnt signaling pathway, generation of pre-
cursor metabolites and energy, hydrogen peroxide catabolic
process, and reactive oxygen species metabolic process.

Interestingly, 21 proteasomal subunits were found
to be included in at least one enriched category (in-
cluding PSMD5 that were found to be significant in the
2-way ANOVA). These proteins were mainly found in
GO categories such as positive regulation of wnt signal-
ing and in regulation of ketone metabolism. Cellular
respiration was found to be enriched, as well as gene
sets that involved response and breakdown of hydro-
gen peroxide and processes related to reactive oxygen
species (ROS).

If one looks beyond categories that were enriched
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at q-value < 0.05, additional categories of interest can
also be found to be enriched in MIDY pigs such as re-
sponse to insulin that was enriched at q-value = 0.076
and lipid catabolic process (q-value = 0.050).

There were also 5 KEGG pathways that were de-
tected to be enriched in AT from MIDY pigs, they
were: fatty acid metabolism, citrate cycle TCA cycle,
valine, leucine and isoleucine degradation, butanoate
metabolism, and propanoate metabolism .

After trimming the 23 GO gene sets enriched in
AT from WT pigs, 8 GOBP, 4 GOCC, and 3 GOMF
classes remained. For biological processes there was an
enrichment of gene sets related to immunological re-
sponses, and regulation of cell migration, cell growth,
wounding, and protein maturation. Enriched cellular
compartments included vesicle lumen and extracellu-
lar space. There were two KEGG pathways among
the enriched gene sets, ribosome and complement and
coagulation cascade.

4.1.2 Tissue effects

The distribution of observed proteins in the four dif-
ferent sample groups is shown in Figure 4.9. As can
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be seen there aren’t many proteins that are observed
in one genotype group but not in the other, whereas
there are considerably more that is only found in one
of the tissue groups. Thus, we expect more statistical
significant differences in the tissue factor in the 2-way
ANOVA analysis.

The 2-way ANOVA found 302 proteins to be signif-
icantly differentially expressed after multiple hypothe-
ses testing for the adipose tissue factor at FDR < 0.05.
Of these, 141 proteins had a l2fc > 0, meaning that
they were more abundant in mesenteric adipose tis-
sue. Conversely, 161 of the significant proteins had
a negative l2fc (Figure 4.3B, indicating that they
had a higher expression in subcutaneous adipose tis-
sue). Here, I will describe the most significantly al-
tered proteins for each adipose tissue group (tables
with all significantly altered proteins can be found in
the Supplementary Tables A.1 and A.2).

As can be seen in the volcano plot (Figure 4.3B,
there are considerably more proteins that have larger
l2fc (> 3) than in the genotype comparison. Among
the proteins significantly more abundant in MAT with
the highest l2fc inludes arachidonate 15-lipoxygenase
(ALOX15, l2fc = 6.73, FDR = 0.000026), cytoskele-
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Figure 4.9. Venn diagram showing number of ob-
served proteins in each group. The data were filtered
allowing for 1 missing value in at least one group. A
protein counts as observed if it has been detected in
at least one sample in a group.
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tal keratine type I 19 (KRT19, l2fc = 6.38, q-value =
0.00077), Aldehyde dehydrogenase 1 family, member
A2 (ALDH1A2, l2fc = 4.54, FDR = 0.000049), ker-
atin type II cytoskeletal 8 (KRT8, l2fc = 4.11 , q-value
= 0.0015), cytochrome c oxidase subunit 7A1, mito-
chondrial precursor (COX7A1, l2fc = 3.69, q-value =
0.0099), and chloride intracellular channel protein 5
(CLIC5, l2fc = 3.12, q-value = 0.00023).

Table 4.3 shows the 15 proteins with most signif-
icant FDR values among the significant proteins that
had a positive l2fc (more abundant in mesenteric adi-
pose tissue). Among these proteins, the most signifi-
cant proteins were amine oxidase [flavine containing] A
(MAOA, l2fc = 1.00, FDR = 0.00000016), heat shock
protein HSP 90-alpha (HSP90AA1, l2fc = 0.49, FDR
= 0.000025), ALOX15 (l2fc = 6.73, q-value = 2.64E-
05), ALDH1A2 (l2fc = 4.54, q-value = 4.90E-05), and
component of 2-oxoglutarate dehydrogenase complex,
mitochondrial precursor DLST, l2fc = 0.47, q-value =
4.99E-05).

Interestingly, five proteins that were significantly
more abundant in MIDY pigs were also significantly
more abundant in mesenteric adipose tissue (AK2, ACOT4,
HADHA, HADHB, and PSMD5). Four of these pro-



4.1 Differential proteome analysis of adipose
tissue from the Munich MIDY pig biobank 94

Table 4.3. Top 15 most significant proteins more
abundant in mesenteric adipose tissue.

Gene name Protein name p-value q-value l2fc
MAOA amine oxidase [flavin-containing] A 8.58E-11 1.64E-07 1.00

HSP90AA1 heat shock protein HSP 90-alpha 6.56E-08 2.51E-05 0.49
ALOX15 arachidonate 15-lipoxygenase 7.57E-08 2.64E-05 6.73

ALDH1A2 aldehyde dehydrogenase 1 family, member A1 1.54E-07 4.90E-05 4.54

DLST
dihydrolipoyllysine-residue succinyltransferase
component of 2-oxoglutarate dehydrogenase

complex, mitochondrial precursor
1.69E-07 4.99E-05 0.47

HSP90AB1 heat shock protein HSP 90-beta 5.06E-07 0.00012 0.67
SUCLG2 succinate–CoA ligase 4.87E-07 0.00012 0.46
CLIC5 chloride intracellular channel protein 5 1.18E-06 0.00023 3.12
SOD2 superoxide dismutase 2, mitochondrial 1.21E-06 0.00023 1.06
CCT2 T-complex protein 1 subunit beta 3.16E-06 0.00055 0.37

PRDX5 peroxiredoxin-5, mitochondrial 3.46E-06 0.00055 0.74
KRT19 keratin, type I cytoskeletal 19 5.82E-06 0.00077 6.38

ALDH9A1 4-trimethylaminobutyraldehyde dehydrogenase 8.28E-06 0.0010 0.66
IVD isovaleryl-CoA dehydrogenase, mitochondrial 8.60E-06 0.0010 0.65

PSME1 proteasome activator complex subunit 1 8.89E-06 0.0010 0.43
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teins (all except PSMD5) are involved in metabolic
processes (Figure 4.5). HSP90AA1 was also found to
be significant for the genotype factor, but were more
abundant in WT pigs.

Nucleoredoxin (NXN, l2fc = -5.07, q-value = 0.011),
carbonyl reductase [NADPH] 2 (CBR2, l2fc = -4.75,
FDR = 0.0000010, collagen alpha-1(III) chain (COL3A1,
l2fc = -3.99, FDR = 0.0000000044), microfibrillar-associated
protein 2 (MFAP2, l2fc = -3.90, q-value = 0.0013), D-
3-phosphoglycerate dehydrogenase (PHGDH, l2fc = -
3.84, q-value = 1.40E-05), procollagen C-endopeptidase
enhancer 1 (PCOLCE, l2fc = -3.59, q-value = 0.00021),
and complement factor D (CFD, l2fc = -3.36, q-value
= 7.33E-06) were the the most significantly abundant
proteins in SCAT (Figure 4.3).

Table 4.4 shows the 15 proteins with the most
significant FDR values among the significant proteins
that had a negative l2fc (more abundant in subcuta-
neous adipose tissue). In this group, COL3A1, CBR2,
mimecan (OGN, l2fc = -1.48, FDR = 0.0000064) and
CFD were the proteins with the most significant q-
values .

Three proteins (AGT, COL3A1, EIF3C) found to
be significantly more abundant in subcutaneous tissue
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Table 4.4. Top 15 most significant proteins more
abundant in subcutaneous adipose tissue.

Gene name Protein name p-value q-value l2fc
COL3A1 collagen alpha-1(III) chain precursor 1.15E-12 4.41E-09 -3.99

CBR2 carbonyl reductase [NADPH] 2 7.56E-10 9.65E-07 -4.75
OGN mimecan isoform X1 6.64E-09 6.36E-06 -1.48
CFD complement factor D 1.14E-08 7.33E-06 -3.36

FERMT2 fermitin family homolog 2 1.82E-08 9.99E-06 -0.72
MMP2 72 kDa type IV collagenase precursor 3.06E-08 1.40E-05 -2.47

PHGDH D-3-phosphoglycerate dehydrogenase 3.29E-08 1.40E-05 -3.84
SDR16C5 epidermal retinol dehydrogenase 2 3.33E-07 9.12E-05 -1.81
PCOLCE procollagen C-endopeptidase enhancer 1 9.33E-07 0.00021 -3.59

DCN decorin precursor 1.10E-06 0.00023 -1.55
LUM lumican precursor 2.84E-06 0.00052 -1.54
SGCA alpha-sarcoglycan precursor 3.41E-06 0.00055 -1.97
TUBB tubulin beta chain 3.98E-06 0.00060 -0.50
SNX3 sorting nexin-3 4.05E-06 0.00060 -0.62

SORBS1 sorbin and SH3 domain-containing protein 1 4.89E-06 0.00069 -0.97
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were also found to be significantly enriched in WT pigs.

4.1.2.1 GSEA: gene sets enriched in different
AT depots

A similar preranked GSEA analysis was performed us-
ing the p-values for the AT factor of the 2-way ANOVA.
154 gene sets were enriched in MAT and 174 gene sets
were enriched in SCAT (q-value< 0.05) (Supplementary
tables A.5 and A.6).

Among the 154 enriched gene sets in pig MAT
included 102 GOBP, 18 GOCC, 22 GOMF, and 11
KEGG gene sets (Table A.5). Figure 4.10A shows
the top 20 most enriched gene sets in MAT. It can be
seen that a majority of the top 20 most enriched gene
sets are involved in metabolism and energy derivation
or located in mitochondria. The most significantly en-
riched gene sets were mitochondrial part, mitochon-
drial matrix, cellular respiration, generation of precur-
sor metabolites and energy, and energy derivation by
oxidation of organic compounds.

Among the enriched GOBP categories were process
involved in respiration and energy generation, such as
cellular and aerobic respiration and electron transport
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chain. Metabolic gene sets enriched in MAT were cat-
egories such as several gene sets related to fatty acid
metabolism and lipid metabolism. Also the gene sets
glucose and branched-chain amino acid metabolism
were enriched in MAT. Other GOBP categories in-
cluded categories involved in processes such as protec-
tion against oxidative damage, cofactor metabolic pro-
cess, oxidation-reduction process, tricarboxylic acid metabolic
process, and protein polyuqibuitination. Among the
18 GOCC categories enriched in MAT, 8 gene sets were
related to mitochondria. Other GOCC categories of
note were two proteasome related categories and res-
piratory chain complex.

The 11 KEGG pathways that were also enriched
in MAT were mainly involved in metabolism and en-
ergy generation. These inluded TCA cycle, fatty acid
metabolism, oxidative phosphorylation, butanoate, propanoate,
and pyruvate metabolism, and valine, isoleucine, and
leucine amino acid degradation. The KEGG pathways
proteasome and peroxisome were also significantly en-
riched in pig MAT.

The MIDY and MAT significantly enriched cate-
gories share a large overlap with each other, with 46
out of 54 categories enriched in MIDY pigs also be-
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Figure 4.10. Top 20 most enriched gene sets from
the tissue GSEA. (A) The top 20 most enriched gene
sets in MAT and (B) the top 20 most enriched gene
sets in SCAT. Gene sets are ordered according to their
normalized enrichment score (NES). Size is the number
of proteins detected in each gene set.
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ing enriched in MAT at a FDR level of 0.05. The
eight gene sets that were only enriched in MIDY but
not MAT included: the KEGG pathway butanoate
metabolism, and the GOBP categories primary alcohol
metabolic process and regulation of fatty acid metabolic
process.

The the top 20 most enriched gene sets in SCAT
can be seen in (Figure 4.10). The most significantly
enriched gene sets are collagen binding, regulation of
neuron projection development, regulation of cellular
component movement, focal adhesion, and ECM re-
ceptor interaction. Among the 174 gene sets enriched
in SCAT, several gene sets related to the extracellu-
lar matrix was detected to be enriched here, as well
as gene sets related to blood and angiogenesis. Gene
sets related to the cytoskeleton were also enriched in
SCAT, such as actin binding and actomyosin. Other
features include gene sets involved in neuron and mus-
cle development, integrin binding, cell adhesion, and
skin development.

Among the 11 KEGG pathways significantly en-
riched in SCAT, were gene sets related to heart and
muscle tissue, ECM receptor interaction, focal adhe-
sion and gap junction, and endocytosis. There were
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also two KEGG pathways related to cancer that were
enriched in SCAT.

Only four out of the 25 gene sets enriched WT adi-
pose tissue were detected as significantly enriched in
SCAT. These four gene sets were glycosaminoglycan
binding, secretory granule lumen, heparin binding, and
extracellular space. This is considerably smaller than
the overlap between the enriched gene sets detected in
MIDY adipose tissue and MAT.

4.1.3 Interaction effects

As predicted from the p-value histograms (Figure 4.2)
there were considerably fewer proteins significant for
the Genotype x Tissue interaction factor than the non-
interaction factors. Only five proteins were found to be
significant for the interaction effect between genotype
and adipose tissue after multiple hypotheses correction
with FDR correction. The five proteins were were pro-
liferating cell nuclear antigen (PCNA), RNA-binding
protein with multiple splicing (RBPMS), non-specific
lipid-transfer protein 2 (SCP2), TTC38, and vacuolar
protein sorting-associated protein 29 (glsvps29).

Of these, PCNA and RBPMS were heavily imputed
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(15 and 7 missing values respectively) and, when iden-
tified and quantified in a sample, were lowly expressed.
RBPMS is involved in the processing of RNA and was
significantly more abundant in MIDY MAT than in
WT MAT. It was detected in all MIDY MAT samples,
but only one WT MIDY sample (at a similar LFQ
intensity as the MIDY samples). Since I can’t find
any information that links RBPMS to adipose tissue
and diabetes (and that it was detected in all sample
groups), it’s possible that this significant difference is
an artefact from quantification and missing value im-
putation. Contrary, SCP2, TTC38, and VPS29 were
detected in all samples.

To elucidate which comparisons were significant for
these 3 proteins, a Tukey’s honest significant differ-
ences (HSD) test was performed. Tukey’s HSD test
compares the means of the different factor levels and
adjusts p-values for multiple hypotheses by using family-
wise error rate (FWER) within each group. We will fo-
cus on significant differences between comparable groups.

Table 4.5 shows the results of Tukey’s HSD test,
7 comparisons were found to be significant at an ad-
justed p-value < 0.05 and meeting the above crite-
ria. PCNA was significant in all comparisons includ-
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ing MAT from MIDY samples. SCP2 was more sig-
nificantly abundant in the SCAT from WT pigs when
compared to SCAT from MIDY pigs (l2fc = 0.49, ad-
justed p-value = 0.0028) and it was also significantly
less abundant SCAT when compared to MAT in MIDY
pigs (l2fc = -0.40, adjusted p-value = 0.021). TTC38
was less significantly abundant in WT pigs when com-
pared to MIDY pigs in SCAT (l2fc = -0.51, adjusted
p-value = 0.00037) and VPS29 was less abundant in
SCAT when compared to MAT in MIDY pigs (l2fc
=-0.44, adjusted p-value = 0.00045).

4.2 GIPR pigs

In order to study the effects of liraglutide treatment
on T2DM pigs, liver samples were investigated from 8
GIPRdn pigs treated with liraglutide and 9 GIPRdn
pigs treated with placebo, in order to understand how
liraglutide treatment affect the liver proteome of T2DM
pigs. The samples were digested and the subsequent
peptides were analysed using a Q Exactive HF-X mass
spectrometer.

A total of 3404 protein groups were identified after
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Table 4.5. Significant comparisons for the 5 proteins
that were significant for the interaction factor in the
2-way ANOVA (q-value < 0.05). All significant com-
parisons with adjusted p-values from the Tukey HSD
test are shown (adjusted p-value < 0.05).

Protein Comparison Adjusted p-value Log 2 fold change
PCNA midy:sc-midy:m 0.000018 -2.41
PCNA wt:m-midy:m 0.00011 -1.93
PCNA wt:sc-midy:m 0.000282991 -1.77
TTC38 wt:sc-midy:sc 0.000372538 -0.51
VPS29 midy:sc-midy:m 0.000453679 -0.44
SCP2 wt:sc-midy:sc 0.002782554 0.49
SCP2 midy:sc-midy:m 0.021274227 -0.40
VPS29 midy:sc-wt:m 0.021551092 -0.26
TTC38 wt:sc-wt:m 0.023981781 -0.29
RBPMS wt:m-midy:m 0.035444865 -1.45
VPS29 wt:sc-midy:m 0.035633954 -0.24
SCP2 midy:sc-wt:m 0.04432736 -0.33
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filtering out potential contaminants and reverse hits
without any prefractionation. Of these 2611 proteins
could be quantified in at least 5 samples in at least
one group, and missing values were imputed from the
lower end of a normal distribution.

As the treatment groups included both male and
female pigs (Table 3.3), an initial statistical test using
a 3-way ANOVA was carried out to see how different
factors affected differential protein expression. As can
be seen in Figure 4.11, there were considerably more
proteins found to be significant for the treatment fac-
tor after multiple hypotheses correction at a q-value <
0.05 than for any other factor or interaction between
factors. Based on this, it was decided to focus on the
differences observed between the LT and PT treated
GIPRdn pigs. To increase the statistical power of the
study, a linear model was applied to the protein LFQ
intensities in order to filter out gender effects from the
different proteins’ expression values.

Comparing PCA made on the original LFQ inten-
sities and the residuals from the linear model, it was
seen that the linear model increased the proportion
of variance explained by the principal components of
the PCA (data not shown). As can be seen in the
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Figure 4.11. Number of proteins significantly altered
in abundance after multiple hypotheses correction for
the different factors and interactions. 3-way ANOVA
was used to get p-values for each comparison. The
series factor reflects the time when the experiments
were performed.
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PCA, the two first principal components separates the
two different treatment groups into two separate clus-
ters that defines the two different treatments (Figure
4.12).

After performing an equal variance Student’s t-
test on the resulting residuals from the linear model
and adjusting the hypotheses using multiple hypothe-
ses correction, a total of 127 proteins were identified
as being differentially abundant at a significance level
of q-value < 0.05 (Figures 4.13, 4.14).

4.2.1 Proteins and gene sets significantly
enriched in liraglutide treated pigs

64 proteins were detected to be significantly more abun-
dant in liver samples from liraglutide treated GIPRdn

pigs (Supplementary Table B.1). E3 ubiquitin-
protein ligase RBX1 (RBX1) was the protein with
highest fold change that was significant in liraglutide
pigs (l2fc = 1.69, q-value = 0.0012). Other signifi-
cant proteins with large log2 fold changes in liver from
LT GIPRdn pigs (Table 4.6) were the antiapoptotic
protein anamorsin (CIAPIN1, l2fc = 1.28, q-value =
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(green) treated GIPRdn pigs using PCA. The plot
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proteins enriched in the liver of liraglutide treated pigs
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0.042), the calcium binding protein peflin (PEF1, l2fc
= 1.22, q-value = 0.044), 5-oxoprolinase (OPLAH, l2fc
= 0.99, q-value = 0.0092), and eukaryotic translation
iniation factor 4E type 2 (EIF4E2, l2fc = 0.98, q-value
= 0.025).

Table 4.6. Top 10 significantly more abundant pro-
teins in liver samples from liraglutide treated GIPRdn

pigs (q-value < 0.05).

Gene name Protein name l2fc p-value q-value

RBX1
E3 ubiquitin-protein ligase
RBX1

1.69 6.98E-07 0.0012

CIAPIN1 anamorsin 1.28 0.0025 0.042
PEF1 peflin 1.22 0.0028 0.044

OPLAH 5-oxoprolinase 0.99 9.05E-05 0.0092

EIF4E2
eukaryotic translation initiation
factor 4E type 2

0.98 0.0011 0.025

ORM1 alpha-1-acid glycoprotein 0.97 0.0016 0.031
FABP3 fatty acid-binding protein, heart 0.89 3.90E-04 0.015

GPAM
TRPM8 channel-associated
factor 2-like

0.69 0.0019 0.035

ABCB1
ATP-binding cassette, sub-family
B (MDR/TAP), member 1

0.62 4.30E-04 0.015
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Table 4.6. Top 10 significantly more abundant pro-
teins in liver samples from liraglutide treated GIPRdn

pigs (q-value < 0.05).

Gene name Protein name l2fc p-value q-value

AK4
adenylate kinase 4,
mitochondrial

0.51 1.68E-06 0.0014

GARS glycine–tRNA ligase 0.5 9.00E-04 0.021

The 64 proteins enriched in liraglutide treated GIPRdn

were submitted to the STRING database to detect cor-
relation between the proteins and GO and KEGG gene
set enrichments (Figure 4.15). As can be seen in Fig-
ure 4.15 the majority (41 proteins) of the enriched
proteins were annotated as being cytosolic according to
GOCC, there were also 11 proteins that were from the
mitochondrial part. Interestingly, 6 enriched proteins
were part of the chaperonin-containing ring-complex,
which mediates protein folding.

Moreover, 15 proteins were annotated as being part
of the translation GOBP gene set. Of these 15 proteins
10 were various aminoacyl-tRNA ligases. The major-
ity of the proteins are involved in various metabolic
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processes, such as the GOBP gene sets: cellular amide
metabolic process (22 proteins) and protein metabolic
process (29 proteins). 4 proteins (RBX1, EIF4E2,
PDHB, and ENO1) were part of the hypoxia-induced
factor 1 (HIF1) signalling pathway from the KEGG
annotation database.

4.2.2 Proteins and gene sets significantly
enriched in placebo treated pigs

In placebo treated GIPRdn pigs, 63 proteins were found
to be significantly more abundant in the liver (Supplementary
Table B.2). The most significantly differentially ex-
pressed proteins was hydroxymethylglutaryl-CoA syn-
thase, mitochondrial (HMGCS2, l2fc = -4.60, q-value
= 0.015). HMGCS2 had the highest absolute log2 fold
change of all proteins (Figure 4.13). Other proteins
that were among the most significantly enriched pro-
teins in placebo treated GIPRdn were laminin subunit
gamma-1 (LAMC1, l2fc = -1.38, q-value = 0.014), or-
nithine aminotransferase (OAT, l2fc = -1.38, q-value
= 0.018), probable calcium ion signal transducer pro-
tein S100A1 (S100A1, l2fc = -1.12, q-value = 0.0087),
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Figure 4.15. Gene set enrichment analysis using the
STRING database for proteins enriched in the liver
of LT GIPRdn pigs. Proteins belonging to a gene set
are colored according to the table, edges between pro-
teins indicates that there is an interaction between the
two proteins (an interaction score of 0.4 was used).
The Proteins column indicates the number of proteins
in the given dataset detected for a given gene set.
Gene sets are either from the GOBP, GOCC or KEGG
databases.
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and metalloreductase STEAP4 (STEAP4, l2fc = -0.97,
q-value = 0.037).

Table 4.7. Top 10 significantly more abundant pro-
teins in liver samples from placebo treated GIPRdn

pigs (q-value < 0.05).

Gene name Protein name l2fc p-value q-value

HMGCS2
hydroxymethylglutaryl-CoA
synthase, mitochondrial
precursor

-4.60 3.60E-04 0.015

LAMC1
laminin subunit gamma-1
precursor

-1.38 2.60E-04 0.014

OAT
ornithine aminotransferase,
mitochondrial

-1.38 5.90E-04 0.018

S100A1 protein S100-A1 -1.12 7.02E-05 0.0087
STEAP4 metalloreductase STEAP4 -0.97 0.0022 0.037

DHRS7
dehydrogenase/reductase SDR
family member 7

-0.93 1.70E-04 0.011

GNMT glycine N-methyltransferase -0.86 4.00E-04 0.015
FOLR2 folate receptor 2 -0.83 5.57E-06 0.0032

GATM
glycine amidinotransferase,
mitochondrial

-0.83 7.53E-05 0.0087

GSTM1 glutathione S-transferase Mu 1 -0.75 3.19E-05 0.0054
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Table 4.7. Top 10 significantly more abundant pro-
teins in liver samples from placebo treated GIPRdn

pigs (q-value < 0.05).

Gene name Protein name l2fc p-value q-value

To find enrichments and correlations among the
proteins enriched in the placebo treated group, the
63 proteins enriched were uploaded to the STRING
database. However, no corresponding human gene called
CYP2C33 was found. To include the finding when per-
forming GSEA with STRING, the closest human ho-
molog was included CYP2C8 (the two proteins share
> 60% homology).

The majority of the proteins were, similarly to the
proteins more abundant in the liraglutide group, part
of metabolic processes (53 proteins). Enriched GOBP
gene sets included oxididation-reduction process (21
proteins), cellular amino acid metabolic (11 proteins)
and catabolic processes (6 proteins) (Figure 4.16). 4
GOBP gene sets related to lipid and fatty acid metabolic
processes were also significant, they were lipid metabolic
process, lipid biosynthetic process, cellular lipid catabolic
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process, and long-chain fatty acid biosynthetic process.
Also among this set of proteins cytoplasmic part

was also a common GOCC (60 proteins). But 49 pro-
teins also had a GOCC annotation named organelle
part, including 16 proteins annotated as being located
in the mitochondrion and 17 proteins as being located
in the ER.

Among significantly enriched KEGG pathways were
metabolic pathways (23 proteins) and endocytosis (5
proteins). There were four KEGG gene sets that were
involved in amino acid metabolism that were enriched
in the liver of placebo treated pigs. They were glycine,
serine, and threonine metabolism (7 proteins), argi-
nine and proline metabolism (4 proteins), biosynthesis
of amino acids (4 proteins), and histidine metabolism
(2 proteins). 5 proteins upregulated in placebo treated
pigs were enriched in the KEGG pathway endocytosis.
Other KEGG pathways of note were carbon metabolism
(AMT, FBP1, TKT, and PHGDH), retinol metabolism
(CYP1A2, CYP2C8, and DHRS4), terpenoid back-
bone biosynthesis (HMGCS2 and PCYOX), linoleic
acid metabolism (CYP1A2 and CYP2C8), and pen-
tose phophate pathway (FBP1 and TKT).
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Figure 4.16. Gene set enrichment analysis using the
STRING database for proteins significantly enriched
in placebo treated pigs. Proteins belonging to a gene
set are colored according to the table, edges between
proteins indicates that there is an interaction between
the two proteins (an interaction score of 0.4 was used).
The Proteins column indicates the number of proteins
detected in a given gene set. Gene sets are either from
the GOBP, GOCC or KEGG databases.
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4.2.3 GSEA analysis using all proteins
quantified in the pig liver

A GSEA analysis was also performed using all pro-
teins and their respective residual values using GSEA
4.0.1. The GSEA analysis found 189 gene sets to be
enriched in the liver of liraglutide treated GIPRdn pigs
and 20 gene sets that were enriched in placebo treated
GIPRdn pigs (Supplementary Figure B.1, Supple-
mentary Tables B.3 and B.4).

The top 21 most enriched gene sets in LT pigs can
be seen in Figure 4.17A). Similarly to the STRING
database analysis, the KEGG pathway aminoacyl tRNA
biosynthesis was the most significantly enriched gene
set in liver from liraglutide treated GIPRdn pigs (NES
= 2.60, q-value = 0, Figure 4.17A, Supplementary
Table B.3). As can be seen in Figure 4.18 the ex-
pression of the amino acid tRNA ligases are heavily
skewed towards the liraglutide group. Other enriched
KEGG pathways in liraglutide treated pigs included
proteasome (NES = 2.27, q-value = 0), also other GO
gene sets related to the proteasome and ubiquitina-
tion), lysosome (NES = 1.96, q-value = 0.002), spliceo-
some (NES = 1.86, q-value = 0.009), oocyte meiosis
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(NES = 1.75, q-value = 0.02), and WNT signaling
pathway (NES = 1.67, q-value = 0.04).

Since there were so many gene sets enriched in this
group, I will briefly summarise the results here. There
were many gene sets involved in regulation of cell cy-
cle and/or cell cycle transition. Other ”housekeeping”
gene sets enriched in liraglutide treated pigs included
RNA metabolic process (NES = 2.36, q-value = 0)
and several other related gene sets (including both
metabolism of non coding and mRNA), as well as gene
sets involved in translation initiation and translation.
Gene sets related to respiration and electron trans-
port chain were also found to be enriched in liraglutide
treated pigs.

There were a few different signaling pathways en-
riched in the liraglutide group, e.g. interleukin 1 medi-
ated signaling pathway (NES = 2.36, q-value = 0), in-
nate immune response activating cell surface receptor
signaling pathway (NES = 2.24, q-value = 0), and dif-
ferent Wnt signaling pathways. The interleukin 1 me-
diated signaling pathway included the most differen-
tially expressed protein in the liraglutide group, RBX1.

Among the 20 gene sets that were enriched in livers
from placebo treated GIPRdn pigs, the most enriched
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Figure 4.17. The most enriched gene sets in the
GSEA analysis for each treatment group. (A) Top
21 most enriched gene sets in LT pig livers. (B) Top
20 most enriched gene sets in PT pig livers. Size =
the number of proteins detected in the given gene set,
color = q-value significance, and NES = normalized
enrichment score.
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Figure 4.18. Examples of the most enriched gene
sets in liraglutide and placebo treated GIPRdn pigs.
(A) Aminoacyl tRNA biosynthesis (KEGG) the most
significantly enriched gene set in liver from liraglutide
treated pigs and (B) glycine, serine, and threonine
metabolism (KEGG), the most significantly enriched
gene set in placebo treated pigs. Green line is the run-
ning ES score, black lines indicates a protein belong-
ing to the gene set (a hit), and grey line is the rank-
ing metric score. Heatmaps showing the quantified
proteins belonging to the aminoacyl tRNA biosynthe-
sis (C) and glycine, serine, and threonine metabolism
(D). Heatmap colors indicates protein expression val-
ues, where red means high values and blue means low
values. The asterisk indicates the first protein that is
not found in the leading edge of the gene set (aminoa-
cyl tRNA biosynthesis) or last protein that is not de-
tected in the leading edge of the gene set (glycine,
serine, and threonine metabolism).



4.2 GIPR pigs 123

gene set were the KEGG pathway glycine, serine, and
threonine metabolism (NES = -2.18, q-value = 0.017)
Figure 4.17B, Supplementary Table B.4). Pro-
teins that are annotated as being part of the metabolism
of the glycine, serine, and threonine amino acids are
having L2FC values that show higher expression in the
placebo group (Figure 4.18B). The KEGG pathway
arginine and proline metabolism (NES = -2.00, q-value
= 0.026) was also enriched in liver of placebo treated
pigs. Other related metabolic gene sets that were en-
riched in placebo treated pigs were the GO categories:
cellular amino acid catabolic process (NES = -2.15,
q-value = 0.01), organic acid catabolic process (NES
= -2.12, q-value = 0.007), alpha amino acid catabolic
process (NES = -2.03, q-value = 0.023), and small
molecule catabolic process (NES = -1.96, q-value =
0.032). Other amino acid metabolic pathways were en-
riched at lower levels of significance, such as tyrosine
metabolism (NES = -1.85, q-value = 0.063). Lipid
catabolic process were also enriched at a lower level
(NES = -1.81, q-value = 0.069).

Two other KEGG pathways were enriched in placebo
treated pigs, extracellular matrix (ECM) receptor in-
teraction (NES = -2.16, q-value = 0.012) and endocy-
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tosis (NES = -1.92, q-value = 0.039). There were also
9 gene sets related to vesicle transmembrane trans-
port and vesicles enriched in placebo treated pigs at
q-value < 0.05. In the vesicle related gene sets ADP
ribosylation factor GTPase activating protein 3 (ARF-
GAP3) was the most enriched protein. Finally, 3 gene
sets related to transmembrane protein transport and
protein localization was also detected to be enriched
in placebo treated pigs (ER Golgi intermediate com-
partment membran (NES = -1.95, q-value = 0.032),
nuclear outer membrane ER membrane network (NES
= -1.94, q-value = 0.033), and regulation of protein
targeting (NES = -1.93, q-value = 0.037). In these 3
gene sets lectin mannose binding 1 (LMAN1) was the
most enriched protein.



Chapter 5

Discussion

5.1 Differential proteome anal-

ysis of MIDY pig AT

Here, the proteome differences between littermate trans-
genic MIDY and WT pigs in two different AT depots,
MAT and SCAT, were analyzed using mass spectrom-
etry. In total 2779 protein groups were identified,
a reasonable high number comparable to other pro-
teomic studies using AT for mass spectrometry-based
proteomics (?).
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5.1.1 Proteomic differences between MAT
and SCAT

There were considerably more significant differences
found between MAT and SCAT than the number of
significant differences between the two genotypes, re-
flecting the findings from both the p-value histograms
(Figure 4.2) and that the two AT types were better
separated in the PCA (Figure 4.1). This probably
reflects differences in physiology and function between
the two different AT depots.

5.1.1.1 Genes with large log2 fold changes

I will focus on significant proteins with large absolute
l2fc values, as they are probably more linked to each
AT types specialized characteristics. ALOX15 plays a
role in the inflammatory response and has been found
to have functions in adipogenesis and adipocyte differ-
entiation with links to PPARγ, the adipocyte differen-
tiation master regulator, activation (?). Dobrian and
colleagues have previously described that ALOX15 was
detected at high levels in human omental fat (VAT)
and low levels in SCAT (?). Similarly, ALOX15 was
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detected at high levels in all MAT samples, but only
at a low level in one SCAT sample in the MIDY pigs.
So ALOX15

Together KRT19 and KRT8 help link the contrac-
tile apparatus to dystrophin in muscles (?). KRT19
has been detected in VAT in rats (?), and at higher
levels in omental AT than in SCAT in human men us-
ing DNA microarray (?) and in obese women using
real-time PCR (?). KRT19 is a mesothelial marker
protein (?). KRT8 is also a mesothelial biomarker and
has been detected in VAT from mice using single cell
RNA-sequencing (?).

ALDH1A2 converts retinal to atRA. Similar to the
pigs in this study, ALDH1A2 mRNA expression is
higher in VAT than in SCAT in humans
(???). The expression of ALDH1A2 is controlled by
the mesothelial development and transcription factor
Wilms tumor protein (?).

COX7A1 is a marker for brown/beige adipocytes
(??). COX7A1 was only detected in MAT but only in
seven out of nine MAT samples. Suggesting that pig
MAT is more metabolically active than SCAT. RA in-
creases COX7A1 expression in brown adipocytes (?).
However, no significant differences were detected be-
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tween the two genotypes in MAT, which could be due
to low sample size.

NXN controls redox homeostasis in cells, and is
important for adipocyte differentiation via the Wnt/β-
catenin pathway (?). Overexpression of NXN leads to
WAT lipid accumulation (?). Why NXN was detected
in more SCAT than MAT samples remains unclear at
this point.

CBR2 is an ortholog of mouse CBR2, a protein that
doesn’t seem to exist in humans (BLAST, data not
shown). In mice, CBR2 is primarily expressed in lung
and at lower levels in AT (?). CBR2 is tetrameric form
unlike the monomeric carbonyl reductase forms, CBR1
and CBR3, that exist in humans as well (?). CBR2
is part of arachidonic acid metabolism, and is impor-
tant for the synthesis of prostaglandins (?). CBR2
levels have previously been detected to be increased
in peripheral blood in pregnant pigs (?). CBR2 was
only detected in SCAT samples whereas CBR3 was
detected in all samples, suggesting that CBR2 is im-
portant for SCAT metabolism. Interestingly, as men-
tioned above ALOX15 is also part of arachidonic acid
metabolic pathway.

MFAP2 is an ECM protein that is involved in reg-
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ulating energy expenditure in SCAT cells in both hu-
mans and mice, and MFAP2 transcript levels are higher
in SCAT than in BAT (?). MFAP2 deficient mice
have increased TGF-β activity, leading to reduced ac-
tivity of BAT differentiation regulators PPARγ and
PRDM16, and ultimately lower UCP1 expression in
SCAT (?). However, no significant differences were
detected between the genotypes which could be due
to the study design since many samples had imputed
intensity values.

5.1.1.2 Gene sets involved in metabolism and
energy derivation were significantly up-
regulated in MAT

There were many significant gene sets related to metabolism
and energy derivation in MAT when compared to SCAT.
Gene sets related to lipid metabolism were enriched in
MAT. It is known that MAT is more lipolytically ac-
tive than SCAT, and MAT is aksi known to contribute
more to the FFA plasma levels than SCAT (?). In
obese individuals this difference is even more apparent,
where increased lipolytic activity is linked to an upreg-
ulation of leptin and downregulation of adiponectin in
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MAT (?). This could be a possible explanation for the
upregulation seen in MIDY AT too, since MIDY also
have an impaired glucose metabolism. But leptin was
not detected in the proteomic study, so this can’t be
confirmed in this study.

Mitochondria are essential for fatty acid metabolism,
with more than 98% of fatty acid oxidation occurring
in mitochondria (?). It is known that VAT adipocytes
have more mitochondria than SCAT adipocytes in both
rats and humans (??). This explains the enrichment of
gene sets related to fatty acid metabolism, mitochon-
dria and cellular respiration seen in MAT.

That gene sets related to ROS and hydrogen perox-
ide metabolism were enriched in both MAT and MIDY
can probably be explained by the higher metabolic ac-
tivity in those groups than in their comparisons (SCAT
and WT respectively). Mitochondrial hydrogen per-
oxide production is higher when fatty acids are used
as substrates instead of carbohydrates (?). This might
be an explanation for the increase in ROS related gene
sets enriched in MIDY AT too.

Gene sets related to branched-chain (valine, leucine,
and isoleucine) amino acids (BCAA) were enriched in
both MAT and MIDY AT. VAT is known to catabo-
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lize BCAA in mice (?), and BCAA ratios influence AT
lipid metabolism in pigs
(?). BCAA has also been suggested to play a part in
adipocyte differentiation (?). PPARγ is major regu-
lator of plasma level BCAA and BCAA catabolism in
both WAT and BAT in mice (?).

5.1.1.3 Gene sets upregulated in SCAT

Gene sets related to collagen and ECM were enriched
in SCAT. Both of these categories have previously been
found to be enriched in SCAT in a microarray and
histological study comparing SCAT and WAT in rats,
and SCAT might play a role in ECM development and
maintenance via production of ECM proteins (?).

Many gene sets related to cytoskeleton, actin, myosins
and cellular movement were also enriched in SCAT.
Other gene sets included classes related to develop-
ment/differentiation of different tissues, such as neu-
rons and the nervous system, blood and the vascu-
lature system, skin, and muscle. This might be ex-
plained by the location of SCAT near connective tissue
and thus close to other tissues such as skin and muscle
tissue.
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5.1.2 Genotype effects

We decided to use a 2-way ANOVA as t-tests for each
individual tissue group didn’t yield any significantly,
differentially expressed proteins after correcting for mul-
tiple hypotheses (at a level of q-value < 0.05). This is
may be due to the limited number of available samples,
preventing the detection of weaker abundance alter-
ations in the analyzed proteomes. RDH16 was found
to be significantly more abundant in MIDY pigs for
both tissue groups when using the t-test method (at
a lower significance threshold of q-value < 0.1), but it
was the only protein that passed this more relaxed sig-
nificance threshold. With a bigger sample size (e.g. 10
MIDY versus 10 WT pigs) a two-sample t-test would
probably have yielded more significant results for each
AT source at q-value < 0.05 as the statistical power
would increase.

The 2-way ANOVA essentially doubles the statis-
tical power of the study yielding groups with sample
groups with 8-10 samples depending on the factor and
group. In this case it seemed to have worked well,
as we are detecting global proteomic changes in AT
caused by the MIDY syndrome.
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Another explanation for the relatively few observed
differentially expressed proteins could be that the MIDY
pigs were treated with insulin (?). The insulin treat-
ment would potentially make the two pig cohorts more
similar, which would result in fewer detected signifi-
cant proteins. However, the diabetic pigs would prob-
ably not survive 2 years without insulin treatment.
Even though this approach might have yielded fewer
significant differentially expressed proteins, this ap-
proach gives insight into how insulin treatment affects
diabetic patients.

Thirdly, it is probable that MIDY affects liver more
than AT. Thus, it would be more likely to detect statis-
tically significant differences between the sample groups
in liver than in AT. This assumption seems to be cor-
rect given the data from Backman, et al (2019) (?).
This method would probably find more significant dif-
ferences in AT when comparing T2DM with WT pigs,
since T2DM is more closely linked to obesity which
affects AT more than T1DM and MIDY.

Assigning significance at a level of q-value < 0.1
could also be an alternative, with the drawback that
10% of the significant proteins would be false positives
instead of 5%. For exploratory studies, this could be
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an acceptable number of false positives in my opin-
ion. However, the FDR level that is deemed significant
should be decided during the experimental planning of
the study and has to be decided on a case by case basis.

5.1.2.1 RDH16 is upregulated in AT in MIDY
pigs and potential links to BAT

RDH16 was both the most significant differentially ex-
pressed protein upregulated in MIDY AT and had the
largest L2FC, since it was detected in all MIDY sam-
ples but only in one WT sample (Figure 4.4). RDH16
catalyses the conversion of all-trans-retinol into all-
trans-retinal (?). RDH16 has previously been found
to be upregulated in liver tissue in MIDY pigs (?).
Backman and colleagues also detected that the con-
centrations of retinal and retinoic acid was increased
in the liver of MIDY pigs when compared to WT pigs
(?). A transcriptomic analysis of four different ATs
in MIDY pigs detected that RDH16 was the only pro-
tein consistently upregulated in MIDY AT (Backman,
unpublished data). This suggests that RDH16 might
be globally upregulated in MIDY pigs. However, more
tissues from the Munich-MIDY pig biobank need to
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be analysed to establish this, especially other organs
important in the context of diabetes such as skeletal
muscle and intestine. Similarly to the Backman, et al.
study (?), it would also be of great interest to confirm
if all-trans-retinal and atRA are also more abundant
in MIDY AT tissue. A similar metabolic method as
the one established in the liver study to measure all-
trans-retinol derivatives could be used.

Obrochta, et al, found that insulin suppresses RDH16
expression in a hepatoma cell line through inhibition
of FOXO1 (?). Thus, insulin seems to be an impor-
tant negative regulator in both AT and liver. Both
atRA and all-trans-retinal are known to interact with
RXR and RAR transcription factors (?), and atRA is
known to affect the gene expression of a multitude of
different genes (???). There are many links between
retinoid metabolism and diabetes (?). Furthermore,
retinal present in rodent AT inhibits adipogenesis (?),
which may partially explain why RDH16 is more abun-
dant in AT from MIDY pigs. But further studies would
be needed to elucidate this.

Recently, Krois and colleagues discovered that RDH16
suppresses obesity in mice by increasing the amount of
BAT present in AT (?). Furthermore, loss of RDH16
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affected the expression of over 400 different gene tran-
scripts, leading to changes in whole-body metabolism.
They also found that RDH16 was expressed in tis-
sues with high metabolic activity, such as liver and
brown adipose tissue (BAT), but not in epididymal
WAT. The ablation of RDH16 leads to decreased lipid
metabolic activity, abnormal mitochondria function,
and lower respiration rates. An RDH16 KO pig model
would be of interest to see if the effects of RDH16
deletion seen in mice would also be translated into
pigs. Similarly, proteomic and transcriptomic analy-
sis of important diabetic tissues from the Akita mice
would also be of interest to establish whether the ef-
fects seen on RDH16 in MIDY pigs also occurs in the
mouse model.

In mice, transplantation of BAT has been shown
to improve glucose homeostasis and reverse the T1DM
phenotype (?). The link between RDH16 and BAT is
interesting (?), since the question whether pigs have
BAT (unlike many other mammals) is a contested re-
search topic. In the 80s, morphological studies showed
evidence for BAT or browning of WAT in pigs (?).
However, with the advent of genomic methods it was
discovered that pigs lack a functional uncoupling pro-
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tein 1 UCP1, which is a biomarker for BAT (??).
UCP1 is known to be regulated by atRA (?). Despite
the lack of UCP1, pigs has been proposed to be valu-
able animal model for human energy expenditure since
adults and obese humans have low expression of UCP1
compared to mice (?). Even though pigs don’t have
a functional UCP1 gene, the GSEA analysis of the
MIDY pigs indicates that similar metabolic changes
occurred in the AT of MIDY pigs as were observed by
Krois, et al in mice (?). This includes an increase of
proteins in MIDY pigs involved in lipid and fatty acid
metabolism, cellular respiration, and an increase of mi-
tochondrial proteins (Figure 4.8). So atRA might
regulate genes involved in these processes in the AT of
pigs, increasing fatty acid metabolism and respiration,
independently of UCP1.

RA has been found to induce mouse WAT brown-
ing (?). In mice, positive regulatory domain contain-
ing 16 (PRDM16) gene is the dominant transcriptional
regulator of the browning of white adipocytes (???),
and RA increases PRDM16 transcription in mice (?).
Even though pig lacks the UCP1 gene, it has been
shown that overexpression of PRDM16 in porcine preadipocytes
inhibited differentation into WAT and induced tran-
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scription of genes responsible for lipolysis and fatty
acid oxidation (?). E.g., the UCP1 homolog UCP3
was upregulated in porcine preadipocytes with overex-
pressed PRDM16 (?). Cold resistant pig strains have
been shown to have non-shivering thermogenesis that
is dependent on increasing expression of UCP3 and
browning of WAT (?). Chen and Yu (?) found that
bone morphogenetic protein 7 (BMP7) can trigger dif-
ferentiation into ”brown-like” adipocytes in pigs, with
an increase of PRDM16, UCP2, and UCP3 expres-
sion, as well as an increase of the number of mitochon-
dria in differentiated ”brown-like” adipocytes. WAT of
UCP1 knock-in pigs have lower fat content linked to a
higher rate of lipolysis (?). The UCP1-3 genes have all
been reported to be upregulated by retinoic acids (??).
Whether PRDM16, UCP2 or UCP3 are upregulated in
AT in MIDY pigs would need to be further studied to
clarify if this could be an explanation for the RDH16
upregulation detected in MIDY pigs and if ”brown-
ing” occurs. BAT contains more mitochondria than
WAT and instead of single, large lipid droplet, BAT
have many smaller lipid droplets (?). Thus histological
analysis to study if there is an increase in mitochon-
dria or more smaller lipid droplets in AT cells from
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MIDY pigs or fluorescence studies targeting the UCP
proteins or PRDM16 would be interesting to carry out.

5.1.2.2 Proteomic changes in proteins involved
in fatty acid
and lipid metabolism

CES1, CYP3A39, HADHA, HADHB, and ACOT4 were
annotated as being part of the GOBP fatty acid metabolism
gene set. Of these, carboxylesterase 1 (CES1) was
found to be significantly more abundant in the adi-
pose tissue from MIDY pigs and was the second sig-
nificantly more abundant protein in MIDY AT after
RDH16. Carboxylesterases are abundantly expressed
in liver and AT (?), and are located primarily in the
ER of many tissues where they are responsible for hy-
drolysing both endogenous and xenobiotic compounds
(?), e.g. caboxylesterases have been proposed to hy-
drolyse retinyl esters, the precursors of all-trans-retinol
(??). The mouse paralog CES1d is known to have
triglyceride lipase activity in WAT (?), and human
CES1 is also thought to be a part of lipid catabolic
processes. CES1 expression is higher in adipose tissue
from obese individuals than adipose tissue from lean
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individuals in human subjects (????), but there were
no significant expression differences detected between
different adipose tissue depots
(?). Yang and colleagues (?), have recently shown that
insulin suppresses transcription of CES1 in vitro. It
has previously been shown that CES1 is significantly
differentially regulated in BAT from non-obese and
obese male rats (?). In vitro glucose restriction leads
to an upregulation of CES1 in adipocytes (?). The
CES1 mouse homolog CES1d is highly expressed in
both WAT and BAT (?).

CYP3A39 was the third most significantly upregu-
lated protein in MIDY AT. The cytochrome P450 su-
perfamily comprises of known catabolic enzymes that
can oxidize atRA, primarily CYP26 isoforms (??). Other
cytochromes also have atRA oxidative activity, such as
the CYP3A4
(??). Since pig CYP3A39 is highly homologous to hu-
man CYP3A4, there’s a reason to believe that CYP3A39
may also have a role in the catabolism of retinoic acid.
CYP3A activity in AT has previously been described,
and cytochrome P450 enzyme activity and expression
in pigs is generally similar to human physiology (?).
Retinoids, including atRA, have been found to increase
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the expression of CYP3A4 in vitro (??). CYP3A4 ex-
pression was induced by treating hepatocytes with di-
abetic rat serum (?) and CYP3A has been implicated
in obesity in mice (?).

Both subunits of the mitochondrial trifunctional
protein (MTP), trifunctional enzyme subunit alpha
and subunit beta (HADHA and HADHB respectively),
were detected as being more abundant in adipose tis-
sue from MIDY pigs. The MTP protein complex is
composed of four alpha subunits and four beta sub-
units, and is responsible for catalysing three out of four
steps of chain-shortening reactions in mitochondrial β-
oxidation of fatty acids (?). Ageing mice carrying a
heterozygous loss-of-function mutation for both sub-
units develop insulin resistance (??). HADHA tran-
scription has previously been shown to be upregulated
during fasting in pigs, mice and rats (?). A study in
mice using hadh KOs showed that HADH is important
for adaptive thermogenesis, body weight maintenance
and pancreatic β-cell insulin secretion (?). HADHA
has previously been described as being regulated by
RA (?) and both proteins are considered to be mark-
ers for beige and brown adipocytes (?). HADHB corre-
lates with an increase in BAT mass in ground squirrels
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during hibernation (?).
ACOT4 is an acyl-CoA thioesterase that hydrol-

yses various acyl-CoAs into FFAs and coenzyme A,
and its function may be to promote peroxisomal β-
oxidation
(?). The annotation for this protein group identifies
the peptides as coming from either ACOT1 or ACOT4.
Low expression of ACOT1 and ACOT4 has been de-
tected in WAT, with higher expression of ACOT4 seen
in BAT (?). The increased expression of ACOT4 may
be explained by that fatty acid oxidation is increas-
ingly important during diabetes (?). ACOT4 tran-
scripts has previously been found to be upregulated in
WAT from obese humans (?).

Of these proteins together with RDH16, 3 proteins
(RDH16, CES1, and CYP3A39) have a function re-
lated to retinol metabolism. And a majority of these
genes seems to have a connection to browning/beigeing
of adipocytes.

IAH1 together with RDH16 and the 5 proteins men-
tioned above were found to be part of the MIDY en-
riched gene set lipid metabolic process. IAH1 is a li-
pase that is responsible for hydrolysing esters in Sac-
charomyces cerevisiae (??), but not much is known
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about IAH1 protein in mammalians. It was identified
in a quantitative trait locus QTL for fatty liver disease
in mice, and it was subsequently shown that in vitro
overexpression of IAH1 suppressed genes involved in
triglyceride synthesis and lipid metabolism (?).

In the genotype GSEA analysis, the many gene sets
related to mitochondria, respiration, metabolism, and
oxidation in MIDY AT might suggest that there was
an increase of mitochondria in MIDY AT cells, as well
as an increase in respiratory and oxidative activity,
features that are reflective of BAT.

5.1.2.3 Other proteins significantly more abun-
dant in MIDY AT

UCHL3 has been shown to promote insulin signaling
and is important for AT differentiation in mice, and
UCHL3 deficient mice had less VAT relative to WT
mice (?). Suzuki et al (?), also proposed that UCHL3
not only regulates AT differentiation by regulating in-
sulin signaling, but also by regulating PPARγ activity,
the master regulator of adipocyte differentiation, by
deubiquitination of PPARγ. PPARγ is known to be
degraded by the proteasome (??). UCHL3 has been
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found to be upregulated in BAT during winter hiber-
nation in ground squirrels (?).

The proteasomal subunit PSMD5 was significantly
upregualted in MIDY AT, and 21 proteasomal sub-
units were detected to be detected in least one leading
edge in gene sets enriched in MIDY AT. Alterations in
the ubiquitin-proteasome pathway are important for
adipocyte differentiation (???) and are linked to in-
creased oxidative stress in AT (?), proteins involved
in insulin signaling are also affected by the ubiquitin-
proteasome pathway (?). NRF1 induced proteasome
activity is important for BAT function (?) and RA
is known to regulate proteasomal degradation activity
(???).

AK2 is a mitochondrial enzyme that produces 2
ADP molecules from one ATP and one AMP molecule.
AK2 is markedly induced during adipocyte and β-cell
differentiation, and inhibition of AK2 leads to lower
adiponectin secretion and activation of UPR during
differentiation (?). AK2 is important for mitochon-
drial function and oxidation (?). Taken together, these
results could indicate that there is indeed adipocyte
differentiaton occuring MIDY AT and strengthen the
case that there might be ”browning” of the AT in
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MIDY pigs. However, further studies is needed to es-
tablish this.

GDP-mannose-4,6-dehydratase GMDS is responsi-
ble for converting GDP-D-mannose to GDP-4-dehydro-
6-deoxy-D-mannose. Recently, it was shown that giv-
ing mice oral supplements of D-mannose can suppress
T1DM (??). The supplementation of D-mannose in-
duces T-cell differentiation, and it was also observed
that D-mannose increased ROS and fatty acid oxida-
tion (?), processes that were significantly enriched in
AT in MIDY pigs in the GSEA (Figure 4.8). It might
be possible that GMDS has a role to play in this pro-
cess, but further studies would be needed to determine
this.

cAMP-dependent protein kinase type II-α regula-
tory subunit (PRKAR2A) was identified to be asso-
ciated with adiponectin, a hormone produced in AT
that increases insulin sensitivity and fatty acid oxida-
tion (?), levels in an exome quantitative trait locus
study (?). AtRA has been demonstrated to stimulate
the cAMP/PKA signaling pathway (??). Prkar2a KO
mice resist diet-induced obesity and related metabolic
alterations (?). If fatty acid oxidation levels are in-
creased in MIDY AT remains to be seen, but it would
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be consistent with other findings and might support
the theory of a ”browning” of MIDY AT.

Aldose 1-epimarase (GALM) catalyses the reac-
tion α-D-glucose or α-D-galactose to β-D-glucose or
β-D-galactose. AtRA is known induce the transcrip-
tion of GALM and other galactose-related genes (?).
GALM was detected to be important for insulin sig-
naling in mouse (pre)adipocytes in a multiomics study
(?). Galactose intake may protect against adiposity
and improve metabolic and overall health in female
mice (?). Increased expression of GALM could be a
response to a greater need for improved insulin signal-
ing in MIDY pigs.

5.1.2.4 Gene sets enriched in MIDY but not
MAT

Of the eight gene sets enriched in MIDY but not in
MAT, six gene sets were similar or related to one or
more gene sets detected to be significantly enriched
in both MIDY and MAT. The two gene sets with a
unique process enriched in MIDY were primary alcohol
metabolic process and butanoate metabolism.

Primary alcohol metabolic process included other
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proteins together with RDH16 involved in retinol metabolism,
e.g. aldehyde dehydrogenase 1 family, member A1
(ALDH1A1) that catabolizes the conversion of all-trans-
retinal to atRA and dehydrogenase/reductase SDR fam-
ily member 4 (DHRS4) that can catalyse both the
conversion from retinol to retinal and retinal to RA.
This further strengthens the hypothesis that retinol
metabolism and RA regulated gene expression might
be important for diabetic adaption in MIDY pigs.

Proteins involved in the KEGG pathway butanoate
metabolism were enriched in MIDY pigs. Butanoate
supplement has been shown to increase lipolysis, as
well as mitochondrial protein expression in WAT in
mice (?). Butanoate supplement also increases oxida-
tion of fat and activates BAT (??) and butyrate treat-
ment increases the thermogenic capacity in mice (?).
Similar increases in fatty acid oxidation and lipolysis
has been seen in pigs following butanoate supplement
(?).

Treatment with sodium butanoate alleviates adipocyte
inflammation in mice
(?). This could potentially explain why there are gene
sets related to immune responses enriched in WT AT,
but this would have to be verified in more detailed
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studies.

5.1.2.5 Angiotensinogen is downregulated in
MIDY AT

AGT was the most significantly enriched protein in AT
from WT pigs. In both humans and animal models,
AGT is highly expressed in AT as well as inherently
secreted from adipocytes (?). AGT is also known to
stimulate lipogenesis
(?). Lemieux and colleagues have previously shown
that Agt-KO mice had reduced AT inflammation and
increased metabolic activity (?). Furthermore, they
also found that Agt-KO mice had increased gene ex-
pression of genes involved in fatty acid metabolism and
glucose uptake, as well as increased mitochondrial res-
piration in Agt-KO mice. Overexpression of AGT in
AT induces adipose inflammation, decreased glucose
tolerance, and insulin resistance (?). This is in line
with the results from the GSEA analysis, where many
gene sets involved in fatty acid metabolism, respira-
tion, and mitochondria were enriched in MIDY pigs
that had lower AGT expression. Furthermore, gene
sets involved in glucose uptake were enriched in AT of
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MIDY pigs at q-value < 0.1. Also, the GOBP regu-
lation of inflammatory response were enriched in AT
from WT pigs, which had a higher expression of AGT.

The renin-angiotensin aldosterone system is affected
by atRA, as evidenced by that angiotensin can be
downregulated by atRA in kidneys from rats with nephri-
tis
(?) or glomerulosclerosis (?). AT expresses all com-
ponents of the renin-angiotensin system that are nec-
essary to produce the active angiotensin II
(??). Angiotensin II upregulates lipogenesis and down-
regulates lipolysis in AT via the angiotensin receptors
(?). It has previously been shown that insulin in-
creases AGT expression in subcutaneous adipocytes
(?). In mice, AT derived AGT is important for AT
development and the endocrine system
(?), as 30% of plasma AGT levels originates from AT.
It has also been reported that active forms of AGT
(such as angiotensin II and angotensin 1-7) stimulate
browning of WAT and brown adipocyte differentiation
(??), and AGT plays a role in general adipocyte dif-
ferentiation
(?). One could speculate whether the downregulation
of AGT seen in MIDY AT is caused by higher cleav-
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age of AGT into active forms or due to a lower trans-
lation of the AGT protein. However, none of AGT’s
derivatives were detected in the proteomic analysis so
if there are changes in expression of e.g. angiotensin
II is not known. AGT was also detected to be signif-
icantly more abundant in SCAT than in MAT, po-
tentially highlighting that it is more important for
SCAT function, and angiotensin-converting enzyme 2
(ACE2) was significantly more abundant in MAT.

5.1.2.6 Glycolytic enzymes were upregulated
in WT adipose tissue

Both FBP1 and HK1 were significantly enriched in
WT pigs. Both enzymes are linked to diabetes since
they are involved in glycolysis and insulin signaling.
FBP1 is responsible for the reversible reaction fructose-
1,6-bisphosphate to fructose-6-phospate in glycolysis/gluconeogenesis.
FBP1 has a RARE in its promoter region and can thus
be regulated by atRA (?).

HK1 phosporylates glucose to yield glucose-6-phosphate,
the first step of glycolysis. Hexokinase was detected
to be downregulated in AT from diabetic mice (?). If
there is less available glucose for the AT cells due to
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impaired insulin signaling in diabetic pigs, a conse-
quence of this would probably be that glycolytic en-
zymes would be downregulated in AT as insulin is im-
portant for regulating these genes (?).

5.1.2.7 Immune response proteins were more
abundant in WT

The genotype GSEA analysis revealed that there were
a few GO gene sets related to immunological responses
enriched in WT AT, this effect was also seen in the liver
study of the MIDY pigs (?). Backman, et al. argued
that a decreased AKT activation by insulin in MIDY
pigs could confine Toll-like receptor mediated PI3K-
AKT-mTOR signaling and affect immune homeosta-
sis.

The collagen COL3A1 was detected to be more
abundant in both WT (for the genotype factor) and
SCAT (for the tissue factor). This is in agreement
with a study that detected decreased COL3A1 levels
in SCAT from T2DM subjects linking it to a lower rate
of AT fibrosis (?). COL3A1 has immune response reg-
ulatory properties (?) and has previously been found
to be regulated by atRA in skin (?). Hyperinsuline-
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mia is known to induce transcriptional changes of the
COL3A1 gene in different tissues from rats (?), which
might be comparable to the findings present here since
COL3A1 was more abundant in WT AT with normal
insulin production.

5.1.2.8 Other proteins upregulated in WT adi-
pose tissue

Copper transport protein ATOX1 (ATOX1) was sig-
nificantly enriched in WT AT, copper is known to have
an important role in cell proliferation. ATOX1 is in-
volved in the insulin signaling in vascular tissue (?).
ATOX1 also acts as an antioxidant against hydrogen
peroxide, and the protein has been suggested to be a
thereapetical target in diabetes (?).

Both EEF1D and EIF3C have functions involved in
translation. The EEF1D protein has been found to be
downregulated by RA in cell cultures (?) and elonga-
tion factor activity are known to be stimulated by in-
sulin (?). Many translation initiation factors are stim-
ulated by insulin (?), and EIF3C binds to EIF4G when
mTOR is stimulated by insulin and increases trans-
lation by increasing translation iniation (?). Since
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insulin is known to stimulate proteins synthesis (?),
these results could mean that the translation rate in
MIDY pig AT is lower due to the lack of endogenous
insulin. The GSEA analysis also revealed that sev-
eral gene sets, such as the KEGG pathway ribosome,
related to translation and protein synthesis were en-
riched in WT AT.

HSP90AA1 is a heat shock protein and important
for protein folding during stress, and it is regulated by
atRA and retinoid receptors in vitro and in sheep (??).
Inhibition of HSP90 improved insulin signaling in di-
abetic mice (?) and amplified AKT insulin induced
phosphorylation in cell cultures
(?).

The significance of SPAG9, the significant protein
in WT with the highest l2fc, might be an artifact of the
missing value imputation since it was imputed in 11
samples and detected at the lower end of the intensity
distribution. The relative low q-value (= 0.042) might
support this hypothesis.
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5.1.3 Overlap between enriched gene
sets between genotype and tis-
sue

The two GSEA analyses also revealed that there was
a considerable overlap between the gene sets enriched
between MIDY and MAT. This could imply that the
diabetic phenotype of the MIDY pigs manifests itself
more in MAT than in SCAT. The transcriptomic anal-
ysis also supports this since the most significant differ-
ences between MIDY and WT were detected in MAT
when compared to other within tissue comparisons.
However, to prove if this is the case for the proteome
as well one would need to perform further studies with
higher statistical power.

In contrast, the overlap between enriched gene sets
in WT and SCAT were much lower. Only four out of
25 enriched gene sets in WT were found to be signif-
icantly enriched in SCAT as well. This indicates that
even though many gene sets enriched in MIDY and
MAT were the same, the underlying comparison that
was tested was different.
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5.1.4 Only a few proteins had signifi-
cant Genotype x Tissue interac-
tion effects

There were only five proteins detected that had a sig-
nificant Genotype x Tissue interaction effect. Of these
five proteins, three were detected in every sample (TTC38,
SCP2, VPS29). The relative low number of significant
hits might indicate that the MIDY syndrome doesn’t
affect the majority of proteins from the two AT source
types differently.

Of these five proteins, PCNA is probably the most
interesting protein. PCNA was detected in three out
of four MIDY MAT samples and not in any other
sample group, and was significant in all three com-
parisons with other sample groups that only had miss-
ing values (Figure 4.5). PCNA has roles in house-
keeping functions such as DNA replication and inter-
action with DNA polymerase δ (?). Nuclear PCNA
is a marker for cell proliferation, whereas cytoplasmic
PCNA is impacting energy metabolism (??). PCNA
is important for correct DNA replication in eukary-
otes (?). PCNA has been found to correlate with cell
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proliferation and expression of PPARγ expression lev-
els during BAT differentiation in human fetuses (?).
PCNA correlates with BAT hyperplasia induced by
cold exposure or metformin treatment in rodents but
were not detected in WAT (???). However, it is worth
noting that PCNA has also been detected in prolifer-
ating white adipocytes in obese rats (?). Since MIDY
pigs don’t exhibit obesity and with the other proteomic
data that might suggest browning of AT, the expres-
sion of PCNA might suggest the presence of prolifer-
ative brown/beige adipocytes. To confirm the role of
PCNA in MIDY AT it would be interesting to stain
for PCNA and to study the localization and expression
levels of PCNA in the two AT types. PCNA regulates
retinoid receptors by direct protein-protein inteaction
(?).

TTC38 was significantly upregulated in MIDY SCAT
versus WT SCAT and WT MAT versus WT SCAT.
However, TTC38 is a protein with unknown function.

VPS29 was significantly differentially abundant in
three comparisons, of which the upregulation in the
MIDY SCAT versus MIDY MAT comparison was the
most significant. VPS29 is part of the retromer pro-
tein compelex which is responsible for transport from
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endosomes to the Golgi apparatus (?). There might
be possible connection between the retromer and dia-
betes (?), and the retromer is important for GLUT4
translocation to the plasma membrane in adipocytes
and AT cell differentiation (?). However, no signifi-
cant intra-tissue differences were observed between the
genotypes.

SCP2 was detected at signicantly lower levels in
MIDY SCAT than in the other three sample groups.
SCP2 has previously been found to be differentially
regulated in diabetic rats (?), and is important for
regulating the composition of lipid droplets (?).

5.1.5 Conclusions and further studies

The most significant result from the comparison be-
tween AT between MIDY and WT pigs, was the upreg-
ulation of RDH16 in both AT types examined in this
study. This together with an enrichment of proteins
involved in lipid and fatty acid metabolism in MIDY
AT suggests that one adaptation to the MIDY syn-
drome could be a shift to a more metabolically active
AT and perhaps a ”browning” of AT in MIDY pigs,
especially in MAT. However, for this to be established
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this would have to be examined in further studies. For
example, the expression of BAT protein markers or mi-
tochondrial content using histological analysis could be
studied in MIDY AT.

The benefit of working with pigs is that it is a more
relevant translational animal model when compared to
for example rodent models, while at the same time cost
and time limits the number of samples that can be
obtained. Doubling the number of pigs in each sample
group in the MIDY study would most likely lead to
a discovery of more significant proteome differences
between MIDY and WT pigs since the statistical power
would be greater. However, I think it is more beneficial
to focus further studies based on the findings presented
here, as RDH16 is a largely unstudied protein in both
pigs and humans.

Now that both the liver (?) and AT from the
Munich MIDY pig biobank have been profiled by pro-
teomics and transcriptomics, I propose that other rele-
vant tissues from the biobank should be studied. Par-
ticularly, to study if RDH16 is more abundant in other
tissues in MIDY pigs as well. This could answer wheter
this is a global effect or limited to these two metaboli-
cally active tissue. In my opinion, the most interesting
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tissues would be skeletal muscle, pancreas, and intes-
tine. These are all relevant tissues that are affected by
diabetes.

As can be seen in this study, a 2-way ANOVA can
be used to elucidate differences in protein expression
in AT even when the statistical power is low.

Another important question is whether the upreg-
ulation of RDH16 in the diabetic pigs is limited to
this porcine diabetic model or if humans and other
model organisms also exhibit this adaptation. A good
place to start would be to study if Akita mice (the
mouse model that MIDY pigs are based on) have a
similar upregulation of RDH16 in liver and AT. In hu-
mans, proteomic and transcriptomic profiling of liver
and AT biopsies could be used to test if the upregula-
tion of RDH16 observed here occurs in T1DM diabetic
patients as well.

In order to get a better understanding of RDH16’s
protein function, a RDH16 deficient pig model (simi-
lar to the mouse model studied by (?), et al) would
be interesting to study. An INSC94Y and RDH16 KO
double mutants might also be interesting to study.

Furthermore, there seems to be a shift in metabolic
activity in the AT in the diabetic pigs. Fatty acid and
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lipid metabolic proteins and pathways were upregu-
lated in AT from MIDY pigs, while glycolytic enzymes
were detected to have higher expression levels in WT
AT. Further research is required in order to elucidate
whether retinol signaling is part of regulating this shift
in protein expression.

The differences between MAT and SCAT in pigs
suggests that the visceral AT type is more metaboli-
cally active while structural proteins are more highly
expressed in SCAT. This is likely an effect of their lo-
cation relative to other tissues, e.g. MAT is close to
the liver whereas SCAT is located near skin and ECM.



Chapter 6

Summary

In this thesis, the effects of diabetes treatments on the
proteome of selected tissues have been examined using
mass spectrometry and relative protein quantification.

In the first study, the proteome differences between
MIDY pigs, a large animal model for mutant INS gene-
induced diabetes of youth, and WT littermates in two
types of adipose tissue (AT) were investigated. In to-
tal 2779 proteins were detected in the AT samples and
using a 2-way ANOVA, taking into account the factors
group (diabetic vs. non-diabetic) and type of AT (sub-
cutaneous vs. mesenterial), significantly differentially
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expressed proteins were detected. Among the signif-
icantly differentially expressed proteins, retinol dehy-
drogenase 16 (RDH16) was detected to be the signif-
icantly most abundant protein in AT and enriched in
MIDY AT. As all-trans retinoic acid is important for
regulating transcript levels, this suggests that retinol
is involved in the adaptation to diabetes in AT of the
MIDY pigs. The presence of RDH16 in the AT of
MIDY pigs might also indicate that a form of ”brown-
ing” of the fat cells has occurred, as RDH16 is only
expressed in BAT in rodent models. However, this
would require further studies to elucidate.

Other proteins that were significantly more abun-
dant in MIDY AT were proteins involved in fatty acid
and lipid metabolic processes such as carboxylesterase
1 (CES1) and mitochondrial trifunctional enzyme sub-
unit alpha and beta (HADHA and HADHB), whereas
the glycolytic enzymes fructose-1,6 bisphosphatase 1
(FBP1) and hexokinase 1 (HK1) were significantly more
abundant in WT AT. This could indicate that there
is a shift in metabolic activity in AT as a response
to the insulin deficiency. Whether retinol signaling is
involved in regulating this metabolic shift remains un-
clear and further studies are required to understand



163

this better.
The results from the 2-way ANOVA also showed

that mesenterial AT (MAT) is more metabolically ac-
tive than subcutaneous AT (SCAT), as MAT expressed
more proteins involved in various metabolic pathways.
On the other hand, SCAT expressed more structural
proteins such as proteins related to collagen and ex-
tracellular matrix (ECM). This can probably be ex-
plained by the location of the two tissue types, as MAT
is situated close to the liver and SCAT is located near
skin and ECM.

The second study used pigs carrying a dominant
negative mutation in the glucose-dependent insulinotropic
polypeptide receptor (GIPRdn), a type 2 diabetes mel-
litus (T2DM) large animal model, to study what effect
treatment with the glucagon-like peptide 1 (GLP1)
receptor agonist liraglutide has on the proteome of
the liver of GIPRdn pigs and compare these results
to placebo treated GIPRdn pigs. In total 3404 protein
groups were detected in the livers of GIPRdn pigs, of
these 127 proteins were found to be significantly differ-
entially expressed after multiple hypotheses correction
(q-value< 0.05). Of these, mitochondrial hydroxymethylglutaryl-
CoA synthase (HMGCS2) was detected at lower ex-
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pression levels in liraglutide treated pigs and with the
largest absolute log2 fold change. This suggests that
increased insulin secretion stimulated by the liraglu-
tide treatment inhibits ketogenesis in diabetic pigs, as
HMGCS2 is the rate-limiting enzyme for ketogenesis.

The liraglutide treatment also induced changes in
amino acid metabolism, as proteins involved in glycine,
serine, and threonine metabolism and arginine and
proline metabolism were enriched in placebo treated
pigs. Expression of proteins involved in translation
and protein folding, as translation factors and tRNA
ligases, were significantly higher in liraglutide treated
pigs.

These results show that the pig is a suitable large
animal model for translational and proteomic research
for research into diabetes and diabetes treatments, that
can bridge the gap between findings in mice and hu-
man patients.



Chapter 7

Zusammenfassung

Proteomische Charakterisierung von porzinen
Diabetesmodellen – Behandlungseffekte auf metabolis-
che Gewebe

Im Rahmen dieser Dissertation wurden an zwei ver-
schiedenen Schweinemodellen für die translationale Di-
abetesforschung an ausgewählten Geweben mit Rele-
vanz für den Stoffwechsel Proteomuntersuchungen mit-
tels Massenspektrometrie und relativer Proteinquan-
tifizierung durchgeführt. In einer ersten Studie wur-
den die Proteomprofile von subkutanem und mesente-
rialem Fettgewebe zwischen MIDY-Schweinen, einem
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Großtiermodell für mutant INS gene-induced diabetes
of youth, und gesunden Geschwistertieren verglichen.
Insgesamt wurden in dieser Studie 2779 Proteine de-
tektiert und hinsichtlich ihrer Abundanzen mittels ANOVA
auf die Beeinflussung durch Gruppe (diabetisch vs.
nicht-diabetisch) und Fettgewebstyp (subkutan vs. mesen-
terial) untersucht. Das in beiden Fettgewebstypen bei
den diabetischen Schweinen am meisten abundanzver-
mehrte Protein war die Retinol-Dehydrogenase 16 (RDH16),
die für die Synthese von all-trans Retinsäure (atRA)
eine entscheidende Rolle spielt. Nachdem atRA die
Expression von zahlreichen Genen reguliert, könnte die
vermehrte Abundanz von RDH16 eine Anpassung des
Fettgewebes an die diabetische Stoffwechsellage reflek-
tieren. Die Anwesenheit von RDH16 im Fettgewebe
von diabetischen Schweinen könnte auch als Hinweis
auf browning gewertet werden, da RDH16 bei Mäusen
nur im braunen Fettgewebe exprimiert wird. Dies be-
darf weiterer Untersuchungen. Neben RDH16 waren
im Fettgewebe der diabetischen Schweine Enzyme aus
dem Fettsäure- und Fettstoffwechsel abundanzvermehrt.
Beispiele sind die Carboxylesterase 1 (CES1) sowie
die alpha- und beta-Untereinheiten des mitochondri-
alen trifunktionalen Enzyms (HADHA und HADHB),
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dagegen waren die Konzentrationen der Enzyme Fructose-
1,6-Bisphosphatase 1 (FBP1) und Hexokinase 1 (HK1)
im Fettgewebe der Kontrollschweine höher als bei den
diabetischen Tieren. Dies weist auf metabolische Veränderungen
im Fettgewebe als Folge eines chronischen Insulinman-
gels hin. Ob Veränderungen im Retinolstoffwechsel
dafür eine Rolle spielen, ist gegenwärtig unklar und
Gegenstand weiterer Untersuchungen. Neben den Un-
terschieden zwischen diabetischen und nicht-diabetischen
Tieren zeigte die ANOVA deutliche Unterschiede zwis-
chen den zwei untersuchten Fettgewebstypen. So la-
gen im mesenterialen Fettgewebe vor allem Proteine
aus verschiedenen metabolischen Pathways in höherer
Abundanz vor als im subkutanen Fettgewebe, was auf
eine höhere metabolische Aktivität des mesenterialen
Fettgewebes hinweist. Umgekehrt waren im subkuta-
nen Fettgewebe vor allem Kollagene und andere ex-
trazelluläre Matrixproteine in höherer Konzentration
vorhanden als im mesenterialen Fettgewebe. Diese
Befunde spiegeln die klaren strukturellen und funk-
tionellen Unterschiede der beiden Fettgewebstypen auf
molekularer Ebene wider. Die zweite Studie beschäftigt
sich mit einem Schweinemodell, das einen dominant-
negativen Rezeptor für das Glukose-abhängige insulinotrope
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Polypeptid (GIP) exprimiert und Charakteristika des
Diabetes Typ 2 zeigt. Hier war die Fragestellung,
welche Proteomveränderungen in der Leber die Be-
handlung mit dem GLP1-Rezeptor Agonisten Liraglu-
tide im Vergleich zu einer Placebo-Behandlung induziert.
In dieser Studie konnten insgesamt 3404 Proteine iden-
tifiziert werden, von denen nach Korrektur auf multi-
ples Testen 127 Proteine in ihrer Abundanz signifikant
(q-value ¡ 0.05) unterschiedlich zwischen den beiden
Behandlungsgruppen waren. Davon war die mitochon-
driale Hydroxymethylglutaryl-CoA Synthase (HMGCS2)
durch die Liraglutide-Behandlung am stärksten abun-
danzvermindert. Die HMGCS2 ist das Schlüsselenzym
der Ketogenese. Die verminderte Expression ist durch
die vermehrte Insulinfreisetzung nach Liraglutide-Behandlung
und die hemmende Wirkung von Insulin auf die Ex-
pression der HMGCS2 erklärbar. Darüber hinaus in-
duzierte die Liraglutide-Behandlung Abundanzveränderungen
von Proteinen aus dem Funktionsbereich Aminosäure-
Stoffwechsel. So waren Proteine aus dem Glycin-, Serin-
und Threonin-Stoffwechsel sowie Proteine aus dem Arginin-
und Prolin-Metabolismus in der Leber der Liraglutide-
behandelten Tiere in ihrer Konzentration vermehrt.
Gleiches gilt für Proteine, die bei der Translation bzw.
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Proteinfaltung eine Rolle spielen, sowie für bestimmte
tRNA-Ligasen Diese Ergebnisse zeigen, dass Proteom-
studien an klinisch relevanten Großtiermodellen für die
Diabetesforschung molekulare Einblicke in Krankheitsmech-
anismen und Therapiewirkungen geben können, die
helfen, die translationale Lücke zwischen Untersuchun-
gen an Nagermodellen und klinischen Studien zu schließen.



Appendix A

Supplementary
material for MIDY
adipose tissue analysis

Table A.1. All significant proteins more abundant
in mesenteric adipose tissue in the 2-way ANOVA (q-
value < 0.05).

Gene name Protein name p-value q-value l2fc
MAOA amine oxidase 8.58E-11 1.64E-07 1.00



171

Gene name Protein name p-value q-value l2fc
HSP90AA1 heat shock protein HSP 90-alpha 6.56E-08 2.51E-05 0.49

ALO5 arachidonate 15-lipoxygenase 7.57E-08 2.64E-05 6.73

ALDH1A2
aldehyde dehydrogenase 1 family, member
A2

1.54E-07 4.90E-05 4.54

DLST

dihydrolipoyllysine-residue
succinyltransferase component of
2-oxoglutarate dehydrogenase complex,
mitochondrial precursor

1.69E-07 4.99E-05 0.47

HSP90AB1 heat shock protein HSP 90-beta 5.06E-07 0.00012 0.67
SUCLG2 succinate–CoA ligase 4.87E-07 0.00012 0.46
CLIC5 chloride intracellular channel protein 5 1.18E-06 0.00023 3.12
SOD2 superoxide dismutase 1.21E-06 0.00023 1.06
CCT2 T-complex protein 1 subunit beta 3.16E-06 0.00055 0.37
PRD peroxiredoxin-5, mitochondrial 3.46E-06 0.00055 0.74

KRT14 keratin, type I cytoskeletal 19 5.82E-06 0.00077 6.38

ALDH9A1
4-trimethylaminobutyraldehyde
dehydrogenase

8.28E-06 0.00099 0.66

IVD
isovaleryl-CoA dehydrogenase,
mitochondrial

8.60E-06 0.00100 0.65

PSME1 proteasome activator complex subunit 1 8.89E-06 0.0010 0.43
GSTO1 glutathione S-transferase omega-1 9.15E-06 0.0010 0.33
KRT8 keratin, type II cytoskeletal 8 1.80E-05 0.0015 4.11
FASN fatty acid synthase 3.38E-05 0.0024 1.83
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Gene name Protein name p-value q-value l2fc
SLC25A4 ADP/ATP translocase 1 3.73E-05 0.0024 0.76

PRD peroxiredoxin-2 3.81E-05 0.0024 0.42
PGAM1 phosphoglycerate mutase 1 3.80E-05 0.0024 0.36

ACADVL
very long-chain specific acyl-CoA
dehydrogenase, mitochondrial

3.96E-05 0.0025 0.59

PRD
thioredoxin-dependent peroxide reductase,
mitochondrial

4.19E-05 0.0025 1.08

HSD17B10 3-hydroxyacyl-CoA dehydrogenase type-2 4.24E-05 0.0025 0.68
HSPE1 10 kDa heat shock protein, mitochondrial 5.14E-05 0.0029 0.77

HSD11B1
corticosteroid 11-beta-dehydrogenase
isozyme 1 2

6.28E-05 0.0034 1.09

ECH1
delta(3,5)-Delta(2,4)-dienoyl-CoA
isomerase, mitochondrial

6.27E-05 0.0034 0.90

ME1 NADP-dependent malic enzyme 8.01E-05 0.0041 1.19

PDHB
pyruvate dehydrogenase E1 component
subunit beta, mitochondrial

9.37E-05 0.0047 0.84

HSPB1 heat shock protein beta-1 9.80E-05 0.0047 0.75

DLAT

dihydrolipoyllysine-residue acetyltransferase
component of
pyruvate dehydrogenase complex,
mitochondrial precursor

0.00012 0.0055 0.76

LMAN2 vesicular integral-membrane protein VIP36 0.00012 0.0055 0.39
NP 001172070 ornithine aminotransferase, mitochondrial 0.00012 0.0055 0.47
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Gene name Protein name p-value q-value l2fc
ACSS2 acetyl-coenzyme A synthetase, cytoplasmic 0.00014 0.0060 0.91

ITIH1
inter-alpha-trypsin inhibitor heavy chain H1
precursor

0.00014 0.0060 0.91

TXN thioredoxin 0.00015 0.0061 0.49
MDH2 malate dehydrogenase, mitochondrial 0.00015 0.0061 0.54

CYP2B22 cytochrome P450 2B4-like 0.00019 0.0075 0.79
ST13 hsc70-interacting protein 0.00020 0.0077 0.35

NDUFS1
NADH-ubiquinone oxidoreductase 75 kDa
subunit, mitochondrial

0.00020 0.0077 0.46

AIFM1 apoptosis-inducing factor 1, mitochondrial 0.00021 0.0078 0.62
ETFB electron transfer flavoprotein subunit beta 0.00024 0.0083 0.48

UGP2
UTP–glucose-1-phosphate
uridylyltransferase

0.00024 0.0083 0.31

CCT8 T-complex protein 1 subunit theta 0.00024 0.0083 0.26
SLC25A22 mitochondrial glutamate carrier 1 0.00027 0.0088 2.22

A2M alpha-2-macroglobulin 0.00027 0.0088 0.82

ACO2
aconitate hydratase, mitochondrial
precursor

0.00027 0.0088 0.68

CACYBP calcyclin-binding protein 0.00027 0.0088 0.55

ACADS
short-chain specific acyl-CoA
dehydrogenase, mitochondrial precursor

0.00029 0.0094 0.48

S100A12 protein S100-A12 0.00031 0.0096 2.44
EZR ezrin 0.00031 0.0096 1.78
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Gene name Protein name p-value q-value l2fc
NPEPPS puromycin-sensitive aminopeptidase 0.00032 0.0099 0.21

COX7A1
cytochrome c oxidase subunit 7A1,
mitochondrial precursor

0.00033 0.0099 3.69

ATP5F1D ATP synthase subunit delta, mitochondrial 0.00032 0.0099 0.66
HSPA9 stress-70 protein, mitochondrial 0.00035 0.010 0.62
ACO peroxisomal acyl-coenzyme A oxidase 1 0.00035 0.010 1.06

PCBD2 pterin-4-alpha-carbinolamine dehydratase 2 0.00038 0.011 1.43
SLC25A5 ADP/ATP translocase 2 0.00037 0.011 0.62
HSPD1 60 kDa heat shock protein, mitochondrial 0.00038 0.011 0.61
STIP1 stress-induced-phosphoprotein 1 0.00040 0.011 0.32

PTGES3 prostaglandin E synthase 3 0.00044 0.011 2.87

ITIH2
inter-alpha-trypsin inhibitor heavy chain H2
precursor

0.00047 0.012 0.96

ATP5ME ATP synthase subunit e, mitochondrial 0.00048 0.012 0.68

COA
cytochrome c oxidase subunit 5A,
mitochondrial

0.00048 0.012 0.63

PSME2 proteasome activator complex subunit 2 0.00048 0.012 0.46

SQOR
sulfide:quinone oxidoreductase,
mitochondrial

0.00047 0.012 0.38

PCNA proliferating cell nuclear antigen 0.00049 0.012 0.98

SLC2A4
solute carrier family 2, facilitated glucose
transporter member 4

0.00052 0.012 1.57
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Gene name Protein name p-value q-value l2fc

GOT2
aspartate aminotransferase, mitochondrial
precursor

0.00051 0.012 0.42

ACAA1 3-ketoacyl-CoA thiolase, peroxisomal 0.00052 0.012 0.89
AK2 adenylate kinase 2, mitochondrial 0.00054 0.013 0.67

GOT1 aspartate aminotransferase, cytoplasmic 0.00056 0.013 0.39
NDUFS3 NADH dehydrogenase 0.00058 0.013 0.58
PSMB3 proteasome subunit beta type-3 0.00059 0.013 0.47
LNPEP leucyl-cystinyl aminopeptidase 0.00062 0.014 0.50
LYPLA1 acyl-protein thioesterase 1 0.00063 0.014 0.50

ACSF2
acyl-CoA synthetase family member 2,
mitochondrial

0.00064 0.014 0.51

PTGR1 prostaglandin reductase 1 0.00066 0.014 0.67
HES1 ES1 protein homolog, mitochondrial 0.00067 0.014 0.26
LTF lactotransferrin precursor 0.00067 0.014 2.20

GNG7
guanine nucleotide-binding protein
G(I)/G(S)/G(O) subunit gamma-7

0.00070 0.014 2.37

VPS29
vacuolar protein sorting-associated protein
29

0.00090 0.018 0.22

CYP27A1 sterol 26-hydroxylase, mitochondrial 0.00094 0.018 1.96
PZP pregnancy zone protein 0.00096 0.019 0.86

PSMC3 26S protease regulatory subunit 6A 0.00096 0.019 0.31

PSMD5
26S proteasome non-ATPase regulatory
subunit 5

0.00098 0.019 0.31
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Gene name Protein name p-value q-value l2fc
TCP1 T-complex protein 1 subunit alpha 0.00098 0.019 0.24

NDUFB10 NADH dehydrogenase 0.0010 0.019 0.40
G6PD glucose-6-phosphate 1-dehydrogenase 0.0010 0.019 0.71
SDHB succinate dehydrogenase 0.0010 0.019 0.42
ACLY ATP-citrate synthase 0.0011 0.020 1.31

PSMA2 proteasome subunit alpha type-2 0.0011 0.021 0.37
ACSL1 long-chain-fatty-acid–CoA ligase 1 0.0012 0.021 0.87
SYPL1 synaptophysin-like protein 1 0.0012 0.021 0.33

SLC25A3 phosphate carrier protein, mitochondrial 0.0012 0.022 0.54
GYG2 glycogenin-2 0.0012 0.022 0.68
ATP5B ATP synthase subunit beta, mitochondrial 0.0012 0.022 0.38
PXN paxillin X7 0.0013 0.023 1.68
ACE2 angiotensin-converting enzyme 2 0.0014 0.024 2.07

UQCRC1
cytochrome b-c1 complex subunit 1,
mitochondrial

0.0014 0.025 0.61

NNT NAD(P) transhydrogenase, mitochondrial 0.0015 0.025 0.42
NDUFA8 NADH dehydrogenase 0.0015 0.025 0.42

TGM2
protein-glutamine
gamma-glutamyltransferase 2

0.0015 0.025 1.12

HADHB
trifunctional enzyme subunit beta,
mitochondrial

0.0015 0.025 0.38

CS citrate synthase, mitochondrial 0.0016 0.026 0.59
BLVRB flavin reductase (NADPH) 0.0016 0.026 0.96
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Gene name Protein name p-value q-value l2fc
CCT7 T-complex protein 1 subunit eta 0.0018 0.029 0.30
IMMT MICOS complex subunit MIC60 0.0019 0.029 0.25

MCCC1
methylcrotonoyl-CoA carboxylase subunit
alpha, mitochondrial

0.0019 0.029 0.62

LRPPRC
leucine-rich PPR motif-containing protein,
mitochondrial

0.0019 0.030 1.43

ACOT4 acyl-coenzyme A thioesterase 1-like 0.0020 0.030 0.42
HSPA4 heat shock 70 kDa protein 4 0.0020 0.031 0.18

PDCD6IP programmed cell death 6-interacting protein 0.0021 0.031 0.24
TUFM elongation factor Tu, mitochondrial 0.0021 0.032 0.33

CHCHD3 MICOS complex subunit MIC19 0.0022 0.032 1.63

PDHX
pyruvate dehydrogenase protein X
component, mitochondrial

0.0023 0.033 0.53

PHB2 prohibitin-2 0.0024 0.034 0.32
SLC25A10 mitochondrial dicarboxylate carrier 0.0025 0.036 1.95

ACSS3
acyl-CoA synthetase short-chain family
member 3, mitochondrial

0.0025 0.036 0.92

HPRT1
hypoxanthine-guanine
phosphoribosyltransferase

0.0027 0.037 0.22

SLC25A6 ADP/ATP translocase 3 0.0028 0.038 0.25

SLC25A1
tricarboxylate transport protein,
mitochondrial

0.0029 0.039 0.97
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Gene name Protein name p-value q-value l2fc

SLC25A13
calcium-binding mitochondrial carrier
protein Aralar2

0.0030 0.039 0.48

RPE ribulose-phosphate 3-epimerase 0.0032 0.041 0.23

PSMD2
26S proteasome non-ATPase regulatory
subunit 2

0.0032 0.041 0.22

ATP5H ATP synthase subunit d, mitochondrial 0.0032 0.042 0.38
FKBP4 peptidyl-prolyl cis-trans isomerase FKBP4 0.0034 0.043 0.36
NPG1 protegrin-1-like 0.0034 0.043 1.65

ECHDC1 ethylmalonyl-CoA decarboxylase 0.0034 0.043 1.51
ATP5F1A ATP synthase subunit alpha, mitochondrial 0.0035 0.043 0.34

HADHA
trifunctional enzyme subunit alpha,
mitochondrial

0.0037 0.045 0.38

HBB hemoglobin subunit beta 0.0038 0.046 0.99

UQCRFS1
cytochrome b-c1 complex subunit Rieske,
mitochondrial

0.0038 0.046 0.49

CHP1 calcineurin B homologous protein 1 0.0039 0.047 1.48
ACACA acetyl-CoA carboxylase 1 0.0039 0.047 0.86

BCKDHA
2-oxoisovalerate dehydrogenase subunit
alpha, mitochondrial

0.0040 0.048 1.10

NAMPT nicotinamide phosphoribosyltransferase 0.0041 0.048 1.62
SDHA succinate dehydrogenase 0.0041 0.048 0.41

GPM6A neuronal membrane glycoprotein M6-a 0.0042 0.049 1.46
C3 complement C3 0.0042 0.049 0.88
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Gene name Protein name p-value q-value l2fc
NDUFB4 NADH dehydrogenase 0.0042 0.049 0.43

Table A.2. All significant proteins more abundant
in subcutaneous adipose tissue in the 2-way ANOVA
(q-value < 0.05).

Gene name Protein name p-value q-value l2fc
COL3A1 collagen alpha-1(III) chain precursor 1.15E-12 4.41E-09 -3.99

CBR2 carbonyl reductase 7.56E-10 9.65E-07 -4.75
OGN mimecan 6.64E-09 6.36E-06 -1.48
CFD complement factor D 1.14E-08 7.33E-06 -3.36

FERMT2 fermitin family homolog 2 1.82E-08 9.99E-06 -0.72
MMP2 72 kDa type IV collagenase precursor 3.06E-08 1.40E-05 -2.47

PHGDH D-3-phosphoglycerate dehydrogenase 3.29E-08 1.40E-05 -3.84
SDR16C5 epidermal retinol dehydrogenase 2 3.33E-07 9.12E-05 -1.81
PCOLCE procollagen C-endopeptidase enhancer 1 9.33E-07 0.00021 -3.59

DCN decorin precursor 1.10E-06 0.00023 -1.55
LUM lumican precursor 2.84E-06 0.00052 -1.54
SGCA alpha-sarcoglycan precursor 3.41E-06 0.00055 -1.97
TUBB tubulin beta chain 3.98E-06 0.00060 -0.50
SNX3 sorting nexin-3 4.05E-06 0.00060 -0.62
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Gene name Protein name p-value q-value l2fc

SORBS1
sorbin and SH3 domain-containing protein
13

4.89E-06 0.00069 -0.97

PLCD1
1-phosphatidylinositol 4,5-bisphosphate
phosphodiesterase delta-1

6.54E-06 0.00084 -0.50

IKBIP
inhibitor of nuclear factor kappa-B
kinase-interacting protein

7.83E-06 0.00097 -2.55

XP 020930866 tensin-1 1.06E-05 0.0011 -0.78
SERPINF1 pigment epithelium-derived factor 1.09E-05 0.0011 -1.07

PRELP prolargin 1.10E-05 0.0011 -1.75
XP 020917965 olfactomedin-like protein 1 1.12E-05 0.0011 -2.69

F13A1 coagulation factor XIII A chain 1.24E-05 0.0012 -1.14
DPYSL2 dihydropyrimidinase-related protein 2 1.40E-05 0.0013 -0.78
MFAP2 microfibrillar-associated protein 2 1.41E-05 0.0013 -3.90

TMSB4X thymosin beta-4 1.56E-05 0.0014 -0.76
HSPA2 heat shock-related 70 kDa protein 2 1.73E-05 0.0015 -1.29
AGT angiotensinogen 1.89E-05 0.0016 -0.60

UGDH UDP-glucose 6-dehydrogenase 2.08E-05 0.0017 -1.02
LEMD2 LEM domain-containing protein 2 2.43E-05 0.0019 -1.08
MYOC myocilin precursor 2.49E-05 0.0019 -2.91

XP 020923800 C-type mannose receptor 2 2.77E-05 0.0021 -2.75
TLN1 talin-1 2.90E-05 0.0021 -0.46
YKT6 synaptobrevin homolog YKT6 3.18E-05 0.0023 -0.31
ITGB1 integrin beta-1 precursor 3.33E-05 0.0024 -0.44
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Gene name Protein name p-value q-value l2fc
RENBP N-acylglucosamine 2-epimerase 3.48E-05 0.0024 -0.90
DMD dystrophin3 3.52E-05 0.0024 -1.53
ASPN asporin 5.20E-05 0.0029 -1.78

CYB5R3 NADH-cytochrome b5 reductase 3-like 6.38E-05 0.0034 -0.75

GNB4
guanine nucleotide-binding protein subunit
beta-4

6.77E-05 0.0036 -0.89

ECM1 extracellular matrix protein 1 isoform X3 6.79E-05 0.0036 -2.79
PPIB peptidyl-prolyl cis-trans isomerase B 7.01E-05 0.0036 -0.48

ARHGDIA rho GDP-dissociation inhibitor 1 9.48E-05 0.0047 -0.43
XP 005655478 olfactomedin-like protein 3 9.43E-05 0.0047 -2.91

CD276 CD276 antigen 9.72E-05 0.0047 -0.62
ADD1 alpha-adducin 0.00010 0.0048 -0.55
SCP2.1 podocan 0.00011 0.0052 -2.50
TWF2 twinfilin-2 0.00012 0.0055 -0.47

SPTBN1 spectrin beta chain, non-erythrocytic 1 0.00014 0.0060 -0.38
AKAP12 A-kinase anchor protein 12 0.00014 0.0060 -0.47
COL1A2 collagen alpha-2(I) chain precursor 0.00014 0.0060 -3.43

XP 020938403 glutathione S-transferase P-like isoform X3 0.00015 0.0060 -0.71
EPB41L2 band 4.1-like protein 2 0.00015 0.0061 -0.47

ILK integrin-linked protein kinase 0.00016 0.0063 -0.61
SPTAN1 spectrin alpha chain, non-erythrocytic 1 0.00016 0.0065 -0.37

PI16 peptidase inhibitor 16 precursor 0.00017 0.0065 -1.29
LGALS1 galectin-1 0.00022 0.0080 -0.48



182

Gene name Protein name p-value q-value l2fc

KANK2
KN motif and ankyrin repeat
domain-containing protein 2

0.00022 0.0080 -0.90

SEPTIN9 septin-9 0.00023 0.0082 -0.78
SNX2 sorting nexin-2 0.00023 0.0083 -0.54
PEPD xaa-Pro dipeptidase 0.00024 0.0083 -0.71
SNCG gamma-synuclein 0.00023 0.0083 -1.22

KDELC2
KDEL motif-containing protein 2 isoform
X9

0.00025 0.0085 -0.73

DDAH2
N(G),N(G)-dimethylarginine
dimethylaminohydrolase 2

0.00027 0.0088 -0.40

PARVA alpha-parvin 0.00026 0.0088 -0.47

IGFBP6
insulin-like growth factor-binding protein 6
precursor

0.00026 0.0088 -1.74

VPS26C Down syndrome critical region protein 3 0.00032 0.0099 -2.60
HMGB1 high mobility group protein B1 0.00032 0.0099 -0.68

IFI30
gamma-interferon-inducible-lysosomal thiol
reductase precursor

0.00033 0.0099 -2.50

ITGA7 integrin alpha-7 0.00034 0.010 -0.47
RSU1 ras suppressor protein 1 isoform X3 0.00034 0.010 -0.61

XP 020943699
eukaryotic translation initiation factor 3
subunit C

0.00036 0.010 -0.30
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Gene name Protein name p-value q-value l2fc

XP 020941305
LIM and senescent cell
antigen-like-containing domain protein 1
isoform X8

0.00038 0.011 -0.55

RUFY1
RUN and FYVE domain-containing protein
1

0.00038 0.011 -1.40

LIMCH1
LIM and calponin homology
domains-containing protein 1

0.00038 0.011 -1.97

TLN2 talin-2 0.00039 0.011 -0.46
DNM2 dynamin-29 0.00041 0.011 -0.32

DNAJC13 dnaJ homolog subfamily C member 13 0.00041 0.011 -1.89
AP2A2 AP-2 complex subunit alpha-2 0.00041 0.011 -0.44
GBE1 1,4-alpha-glucan-branching enzyme 0.00042 0.011 -0.57

TUBB4B tubulin beta-4B chain 0.00044 0.011 -0.32
CRYM ketimine reductase mu-crystallin 0.00043 0.011 -2.37

FKBP9
peptidyl-prolyl cis-trans isomerase FKBP9
precursor

0.00044 0.011 -2.82

ASPA aspartoacylase 0.00045 0.011 -0.60
ITIH5 inter-alpha-trypsin inhibitor heavy chain H5 0.00045 0.011 -0.83
ITGA5 integrin alpha-5 0.00045 0.011 -1.49
NXN nucleoredoxin 0.00045 0.011 -5.07

CORO1B coronin-1B 0.00048 0.012 -0.47
COL1A1 collagen alpha-1(I) chain isoform X3 0.00055 0.013 -1.49
CIRBP cold-inducible RNA-binding protein 0.00055 0.013 -1.56
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Gene name Protein name p-value q-value l2fc
INPP1 inositol polyphosphate 1-phosphatase 0.00059 0.013 -1.23

SULT1A3 sulfotransferase 1A3 0.00062 0.014 -0.76
ABI3BP target of Nesh-SH39 0.00064 0.014 -3.28

EMD emerin 0.00066 0.014 -0.37
LAMA5 laminin subunit alpha-5 0.00067 0.014 -1.51
HNMT histamine N-methyltransferase 0.00068 0.014 -1.93
FBLN2 fibulin-2 0.00070 0.014 -2.32

SH3GLB2 endophilin-B21 0.00075 0.015 -0.48
SERPINH1 serpin H1 precursor 0.00078 0.016 -0.56

LAMB2 laminin subunit beta-2 0.00087 0.017 -0.60

CACNA2D1
voltage-dependent calcium channel subunit
alpha-2/delta-19

0.00091 0.018 -0.45

FAP prolyl endopeptidase FAP 0.00091 0.018 -1.99
RAP1A ras-related protein Rap-1A 0.00092 0.018 -0.29
ITGAV integrin alpha-V isoform X3 0.00098 0.019 -0.64
MAPK1 mitogen-activated protein kinase 1 0.0011 0.020 -0.29

FN1 fibronectin 0.0011 0.020 -0.62
KDSR 3-ketodihydrosphingosine reductase 0.0012 0.022 -2.31

COL6A3 collagen alpha-3(VI) chain 0.0013 0.022 -0.83
EHD4 EH domain-containing protein 4 0.0013 0.023 -0.48

FNDC1
fibronectin type III domain-containing
protein 1

0.0013 0.023 -1.64

VCAN versican core protein precursor 0.0013 0.023 -3.30
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Gene name Protein name p-value q-value l2fc

LRP1
prolow-density lipoprotein receptor-related
protein 1

0.0014 0.024 -0.38

LGALS3 galectin-3 0.0014 0.024 -0.92
XP 003132938 phosphatidylethanolamine-binding protein 1 0.0015 0.025 -0.23

PDIA5 protein disulfide-isomerase A5 0.0016 0.026 -1.40
DYNC1H1 cytoplasmic dynein 1 heavy chain 1 0.0016 0.026 -0.14

PFKP
ATP-dependent 6-phosphofructokinase,
platelet type

0.0016 0.026 -1.26

DBN1 drebrin isoform X3 0.0016 0.026 -1.84
ERLIN2 erlin-2 0.0017 0.027 -0.33
AOX1 aldehyde oxidase 0.0017 0.027 -0.79

XP 020938158 collagen alpha-2(VI) chain 0.0017 0.028 -0.78
RTN4.1 reticulon-4 isoform X3 0.0018 0.029 -0.39
MYH14 myosin-14 0.0018 0.029 -0.40

XP 020926755 collagen alpha-1(VI) chain 0.0018 0.029 -0.82
VWF von Willebrand factor 0.0018 0.029 -0.30

CD163
scavenger receptor cysteine-rich type 1
protein M130

0.0019 0.029 -2.14

CREG1 protein CREG1 isoform X3 0.0019 0.029 -1.31
SH3GLB1 endophilin-B1 0.0020 0.030 -0.34

XP 005667226 mth938 domain-containing protein 0.0020 0.030 -1.84
SGCD delta-sarcoglycan 0.0021 0.032 -0.64
HPX hemopexin precursor 0.0022 0.032 -0.52
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Gene name Protein name p-value q-value l2fc
MYO1B unconventional myosin-Ib 0.0022 0.033 -1.70
THBS4 thrombospondin-4 0.0023 0.033 -1.98
RHOG rho-related GTP-binding protein RhoG 0.0023 0.033 -0.37
FSTL1 follistatin-related protein 1 0.0023 0.033 -1.19

XP 020922632 membrane primary amine oxidase 0.0026 0.036 -0.41
KPNB1 importin subunit beta-1 0.0026 0.037 -0.19

CYP2A19 cytochrome P450 2A19 0.0027 0.037 -1.72
COPA coatomer subunit alpha 0.0027 0.037 -0.19

NAXD
ATP-dependent (S)-NAD(P)H-hydrate
dehydratase isoform 2

0.0027 0.037 -0.21

APOE apolipoprotein E precursor 0.0027 0.037 -0.43
MYOF myoferlin 0.0027 0.037 -2.29
CTSB cathepsin B 0.0028 0.038 -0.38

UAP1
UDP-N-acetylhexosamine
pyrophosphorylase isoform X3

0.0028 0.038 -1.65

COPG1 coatomer subunit gamma-1 0.0029 0.038 -0.18
RRAS ras-related protein R-Ras 0.0030 0.039 -0.30

NP 001230809 PRA1 family protein 2 0.0030 0.040 -1.98

XP 020921390
BTB/POZ domain-containing protein
KCTD12

0.0031 0.041 -0.45

ENOSF1
mitochondrial enolase superfamily member
1

0.0033 0.042 -0.35

CTTN src substrate cortactin 0.0033 0.042 -0.51
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Gene name Protein name p-value q-value l2fc
BGN biglycan 0.0034 0.043 -1.29

ARCN1 coatomer subunit delta 0.0035 0.043 -0.37
PGM3 phosphoacetylglucosamine mutase 0.0035 0.044 -0.31
SNX6 sorting nexin-6 0.0036 0.044 -0.33
NPTN neuroplastin 0.0036 0.044 -2.05
PDIA3 protein disulfide-isomerase A3 precursor 0.0037 0.045 -0.21
HSPB6 heat shock protein beta-6 0.0038 0.046 -0.49

FAM129A protein Niban 0.0040 0.048 -2.22
MYDGF myeloid-derived growth factor 0.0041 0.048 -1.87

UAP1L1
UDP-N-acetylhexosamine
pyrophosphorylase-like protein 1

0.0041 0.049 -0.66

DHDH
trans-1,2-dihydrobenzene-1,2-diol
dehydrogenase

0.0042 0.049 -0.35

DPT dermatopontin 0.0043 0.050 -0.88

Table A.3. GSEA: Significantly enriched gene sets in
adipose tissue from MIDY pigs (q-value < 0.05).

Category Name Size1 NES2 p-value q-value
GO Fatty acid metabolic process 34 2.07 0.000 0.003
GO Cellular respiration 33 2.12 0.000 0.004
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Category Name Size3 NES4 p-value q-value

GO
Energy derivation by oxidation
of organic compounds

39 2.07 0.000 0.004

GO Aerobic respiration 15 2.01 0.000 0.005
GO Oxidation reduction process 83 2.02 0.000 0.005

KEGG Fatty acid metabolism 16 2.01 0.000 0.005
GO Oxidoreductase activity 66 1.98 0.000 0.006
GO Electron transport chain 26 1.99 0.000 0.007
GO Mitochondrial part 86 1.99 0.000 0.008

GO
Generation of precursor
metabolites and energy

43 1.97 0.000 0.008

GO Mitochondrial envelope 58 1.95 0.000 0.008
GO Lipid metabolic process 55 1.95 0.000 0.008
GO Carbon oxygen lyase activity 10 1.94 0.000 0.009
GO Hydro lyase activity 10 1.94 0.000 0.009
GO Mitochondrion 112 1.93 0.000 0.011

GO
Regulation of cellular ketone
metabolic process

26 1.90 0.000 0.014

GO Mitochondrial matrix 36 1.90 0.000 0.015
GO Cellular lipid metabolic process 47 1.90 0.000 0.015
GO Lyase activity 18 1.90 0.000 0.015

GO
Hydrogen peroxide metabolic
process

4 1.89 0.000 0.015

GO Organelle inner membrane 47 1.88 0.000 0.015
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Category Name Size3 NES4 p-value q-value
GO Oxidative phosphorylation 20 1.89 0.002 0.016
GO Lipid oxidation 18 1.87 0.000 0.018

KEGG Citrate cycle tca cycle 14 1.86 0.000 0.020

GO
Tricarboxylic acid metabolic
process

13 1.86 0.000 0.022

GO
Monocarboxylic acid metabolic
process

47 1.84 0.000 0.024

GO Electron carrier activity 25 1.84 0.001 0.024

GO
Oxidoreductase activity acting
on the ch oh group of donors nad
or nadp as acceptor

20 1.84 0.000 0.025

GO
Primary alcohol metabolic
process

8 1.84 0.003 0.025

GO
Inner mitochondrial membrane
protein complex

20 1.83 0.000 0.026

GO Fatty acid catabolic process 19 1.83 0.000 0.026

GO
Reactive oxygen species
metabolic process

10 1.83 0.001 0.027

GO
Regulation of fatty acid
metabolic process

10 1.82 0.002 0.027

GO Respiratory chain 20 1.82 0.003 0.027
GO Fatty acid beta oxidation 17 1.81 0.003 0.028
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Category Name Size3 NES4 p-value q-value

KEGG
Valine leucine and isoleucine
degradation

14 1.81 0.000 0.029

GO Oxidoreductase complex 24 1.80 0.000 0.029
GO Organic acid catabolic process 29 1.80 0.000 0.029

GO
Positive regulation of wnt
signaling pathway

27 1.81 0.003 0.029

GO Response to hydrogen peroxide 3 1.81 0.005 0.029
GO Cellular lipid catabolic process 23 1.81 0.001 0.030
GO Lipid modification 19 1.81 0.000 0.030

GO
Oxidoreductase activity acting
on ch oh group of donors

20 1.79 0.001 0.033

GO Anion transmembrane transport 9 1.79 0.003 0.033
GO Anion transport 18 1.78 0.000 0.036

GO
Positive regulation of canonical
wnt signaling pathway

26 1.78 0.002 0.037

GO
Anion transmembrane
transporter activity

8 1.77 0.002 0.040

KEGG Pyruvate metabolism 10 1.77 0.000 0.041
KEGG Butanoate metabolism 9 1.75 0.002 0.046

GO Mitochondrial protein complex 22 1.75 0.003 0.049

GO
Cellular response to reactive
oxygen species

6 1.74 0.010 0.049

GO Microbody 17 1.74 0.002 0.049
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Category Name Size3 NES4 p-value q-value

GO
Hydrogen peroxide catabolic
process

4 1.74 0.007 0.050

GO
Monocarboxylic acid catabolic
process

19 1.74 0.001 0.050

Table A.4. GSEA: Significantly enriched gene sets in
adipose tissue from WT pigs (q-value < 0.05).

Category Name Size5 NES6 p-value q-value

KEGG
Complement and coagulation
cascades

24 -2.38 0.000 0.000

GO Glycosaminoglycan binding 22 -2.27 0.000 0.001
GO Vesicle lumen 23 -2.28 0.000 0.002
GO Blood microparticle 33 -2.17 0.000 0.004

GO
Serine type endopeptidase
inhibitor activity

13 -2.15 0.000 0.006

GO
Regulation of endothelial cell
migration

7 -2.07 0.000 0.015

GO Leukocyte mediated immunity 15 -2.07 0.003 0.016

3Number of proteins in leading edge.
4Normalized enrichment score.
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Table A.4. GSEA: Significantly enriched gene sets in
adipose tissue from WT pigs (q-value < 0.05).

Category Name Size5 NES6 p-value q-value
GO Secretory granule lumen 17 -2.07 0.000 0.018
GO Heparin binding 17 -2.08 0.000 0.019

GO
Humoral immune response
mediated by circulating
immunoglobulin

12 -2.00 0.000 0.027

GO Regulation of cell growth 11 -2.01 0.000 0.028
GO B cell mediated immunity 12 -1.97 0.000 0.039
GO Fibrinolysis 10 -1.92 0.005 0.040
GO Regulation of protein maturation 15 -1.92 0.000 0.042
GO Peptidase inhibitor activity 20 -1.94 0.003 0.042

GO
Negative regulation of response
to wounding

18 -1.91 0.005 0.042

KEGG Ribosome 21 -1.93 0.000 0.043
GO Protein activation cascade 20 -1.93 0.003 0.043

GO

Adaptive immune response
based on somatic recombination
of immune receptors built from
immunoglobulin superfamily
domains

12 -1.91 0.003 0.043

GO Humoral immune response 14 -1.96 0.000 0.043
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Table A.4. GSEA: Significantly enriched gene sets in
adipose tissue from WT pigs (q-value < 0.05).

Category Name Size5 NES6 p-value q-value
GO Immune effector process 25 -1.95 0.000 0.044
GO Lymphocyte mediated immunity 12 -1.94 0.000 0.045
GO Extracellular space 74 -1.94 0.000 0.046
GO Platelet alpha granule 17 -1.94 0.003 0.046
GO Platelet alpha granule lumen 15 -1.96 0.000 0.046

Table A.5. GSEA: Significantly enriched gene sets in
MAT in pigs (q-value < 0.05).

Category Name Size7 NES8 p-value q-value
GO Mitochondrial part 88 2.62 0 0
GO Mitochondrial matrix 54 2.62 0 0
GO Cellular respiration 37 2.57 0 0

GO
Generation of precursor
metabolites and energy

49 2.53 0 0

GO
Energy derivation by oxidation
of organic compounds

42 2.50 0 0

GO Coenzyme metabolic process 37 2.44 0 0
GO Cofactor metabolic process 41 2.42 0 0
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Category Name Size NES p-value q-value
GO Coenzyme biosynthetic process 14 2.38 0 0
GO Cofactor biosynthetic process 18 2.37 0 0
GO Mitochondrial envelope 57 2.36 0 0
GO Mitochondrion 118 2.32 0 0
GO Electron transport chain 23 2.31 0 0
GO Thioester metabolic process 19 2.28 0 0
GO Oxidation reduction process 98 2.28 0 0
GO Organelle inner membrane 52 2.28 0 0
GO Fatty acid beta oxidation 19 2.27 0 0
GO Fatty acid metabolic process 36 2.27 0 0
GO Oxidoreductase complex 23 2.26 0 4.54E-05

KEGG Parkinsons disease 21 2.24 0 4.31E-05
GO Mitochondrial membrane part 17 2.24 0 4.09E-05

KEGG Citrate cycle tca cycle 18 2.23 0 3.90E-05
GO Mitochondrial protein complex 25 2.22 0 3.72E-05
GO Aerobic respiration 19 2.21 0 3.56E-05
GO Mitochondrion organization 29 2.21 0 3.41E-05

GO
Monocarboxylic acid metabolic
process

53 2.18 0 3.27E-05

GO Lipid oxidation 20 2.17 0 3.15E-05
KEGG Oxidative phosphorylation 17 2.15 0 3.03E-05

GO Fatty acid catabolic process 19 2.15 0 2.92E-05
GO Thioester biosynthetic process 11 2.14 0 8.46E-05
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Category Name Size NES p-value q-value

GO
Inner mitochondrial membrane
protein complex

21 2.13 0 1.68E-04

GO
Tricarboxylic acid metabolic
process

18 2.13 0 1.62E-04

GO
Oxidoreduction coenzyme
metabolic process

19 2.12 0 2.10E-04

GO Oxidoreductase activity 80 2.11 0 2.03E-04
GO Oxidative phosphorylation 17 2.11 0 1.97E-04
GO Respiratory chain 17 2.09 0 1.92E-04

GO
Nucleobase containing small
molecule metabolic process

41 2.09 0 2.32E-04

GO
Tumor necrosis factor mediated
signaling pathway

25 2.09 0 2.26E-04

GO
Monocarboxylic acid catabolic
process

25 2.07 0 2.84E-04

GO Cellular lipid catabolic process 28 2.07 0 2.77E-04
GO Proteasome complex 25 2.07 0 2.90E-04

GO
Positive regulation of ligase
activity

22 2.02 0 7.09E-04

GO
Oxidoreductase activity acting
on the ch ch group of donors

13 2.02 0 7.32E-04

GO Lipid modification 21 2.02 0 7.15E-04
GO Envelope 66 2.02 0 7.56E-04
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Category Name Size NES p-value q-value
KEGG Fatty acid metabolism 16 2.02 0.0024 7.57E-04

GO Regulation of ligase activity 22 2.01 0 9.04E-04
KEGG Huntingtons disease 23 2.00 0 9.39E-04

GO Protein polyubiquitination 25 1.99 0 0.0014

GO
Nucleoside monophosphate
metabolic process

23 1.99 0 0.0015

GO
Positive regulation of protein
modification by small protein
conjugation or removal

23 1.98 0 0.0015

GO Nik nf kappab signaling 23 1.98 0 0.0015

GO
Nucleoside triphosphate
metabolic process

24 1.98 0 0.0015

GO Fatty acyl coa binding 9 1.97 0 0.0017

GO
Monosaccharide biosynthetic
process

14 1.96 0 0.0020

GO Fatty acyl coa metabolic process 9 1.96 0 0.0021

GO
Anaphase promoting complex
dependent catabolic process

21 1.95 0 0.0022

GO Fatty acid biosynthetic process 8 1.95 0 0.0024
KEGG Proteasome 19 1.95 0 0.0025

GO
Organophosphate metabolic
process

47 1.94 0 0.0029
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Category Name Size NES p-value q-value

GO
Mitochondrial respiratory chain
complex assembly

13 1.94 0 0.0030

GO Cofactor binding 40 1.94 0 0.0030
GO Lyase activity 18 1.94 0 0.0030

KEGG Peroxisome 12 1.94 0 0.0030
GO Protein tetramerization 9 1.92 0 0.0034

GO
Oxidoreductase activity acting
on nad p h quinone or similar
compound as acceptor

13 1.92 0 0.0034

GO
Mitochondrial respiratory chain
complex i biogenesis

13 1.92 0.0022 0.0033

GO

Regulation of protein
ubiquitination involved in
ubiquitin dependent protein
catabolic process

23 1.92 0 0.0035

GO
Innate immune response
activating cell surface receptor
signaling pathway

22 1.91 0 0.0036

GO
Dicarboxylic acid metabolic
process

19 1.91 0 0.0037

GO Carbon oxygen lyase activity 12 1.90 0.0021 0.0041

GO
Ligase activity forming carbon
sulfur bonds

8 1.90 0 0.0042
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Category Name Size NES p-value q-value
KEGG Propanoate metabolism 15 1.90 0.0025 0.0041

GO
Regulation of cellular ketone
metabolic process

23 1.89 0 0.0046

GO
Fatty acid beta oxidation using
acyl coa dehydrogenase

9 1.89 0 0.0047

GO Protein ubiquitination 30 1.89 0 0.0047
GO Hydro lyase activity 12 1.89 0 0.0046
GO Myelin sheath 36 1.88 0 0.0052

GO
Flavin adenine dinucleotide
binding

14 1.88 0.0022 0.0054

GO
Carbohydrate biosynthetic
process

17 1.88 0 0.0055

GO Nadh dehydrogenase complex 12 1.87 0 0.0055
GO Heat shock protein binding 11 1.87 0 0.0055
GO Acyl coa dehydrogenase activity 7 1.87 0.0044 0.0061

GO
Branched chain amino acid
metabolic process

9 1.87 0 0.0061

GO Organic acid metabolic process 78 1.86 0 0.0061

GO
Cellular response to reactive
oxygen species

6 1.85 0 0.0072

GO
Cellular protein complex
assembly

21 1.85 0 0.0071

GO Anion transmembrane transport 7 1.85 0 0.0074
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Category Name Size NES p-value q-value

KEGG
Valine leucine and isoleucine
degradation

18 1.84 0.0024 0.0078

GO Proteasome accessory complex 10 1.84 0.0023 0.0082
GO Lipid catabolic process 30 1.84 0 0.0082
GO Nucleoid 7 1.82 0.0068 0.010

GO
Response to tumor necrosis
factor

28 1.81 0.0025 0.011

GO
Glycosyl compound metabolic
process

25 1.81 0 0.011

GO
Proteasomal protein catabolic
process

23 1.81 0 0.011

GO Glyoxylate metabolic process 9 1.80 0 0.012
GO Glucose metabolic process 15 1.80 0 0.012
GO Protein homotetramerization 6 1.80 0.0023 0.011
GO Mitochondrial transport 16 1.80 0 0.011

KEGG Pyruvate metabolism 12 1.80 0.0022 0.012

GO
Regulation of cellular amino acid
metabolic process

21 1.80 0 0.012

GO
Regulation of cellular amine
metabolic process

21 1.79 0.0022 0.013

GO Organic acid catabolic process 33 1.79 0 0.013
GO Small molecule metabolic process 106 1.79 0 0.013
GO Coenzyme binding 29 1.79 0.0026 0.013
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Category Name Size NES p-value q-value
GO Apoptotic mitochondrial changes 5 1.79 0.0023 0.013

GO
Regulation of protein
modification by small protein
conjugation or removal

24 1.78 0.0024 0.014

GO
Regulation of cofactor metabolic
process

7 1.78 0 0.014

GO 2 oxoglutarate metabolic process 6 1.78 0.0023 0.014
GO Microbody 17 1.78 0.0024 0.014
GO Nadp metabolic process 6 1.78 0 0.014

GO
Positive regulation of protein
localization to nucleus

6 1.78 0 0.014

GO Nad metabolic process 10 1.77 0.0067 0.016
GO Cellular lipid metabolic process 46 1.77 0 0.016

GO
Cellular response to oxidative
stress

7 1.76 0 0.017

GO Lipid metabolic process 57 1.76 0 0.017
GO Electron carrier activity 25 1.76 0 0.017
GO Response to toxic substance 14 1.75 0.0027 0.018

GO
Hydrogen peroxide metabolic
process

5 1.75 0.0063 0.019

GO Lipid biosynthetic process 18 1.75 0 0.019

GO
Mitochondrial membrane
organization

7 1.74 0 0.020
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Category Name Size NES p-value q-value
GO Hydrogen transport 7 1.74 0.0043 0.020

GO
Hydrogen ion transmembrane
transport

6 1.73 0.012 0.023

GO
Hydrogen peroxide catabolic
process

5 1.73 0.011 0.023

GO T cell receptor signaling pathway 23 1.72 0.0047 0.025

GO
Monocarboxylic acid
biosynthetic process

13 1.72 0.0023 0.026

GO
Protein localization to
mitochondrion

10 1.72 0.011 0.026

GO
Oxidoreductase activity acting
on peroxide as acceptor

8 1.71 0.0092 0.026

GO Fertilization 7 1.71 0.0022 0.027
GO Regulation of RNA stability 26 1.70 0 0.028
GO Lipid homeostasis 12 1.70 0.0048 0.028
GO Glutathione metabolic process 9 1.70 0.013 0.028
GO Unfolded protein binding 14 1.70 0.0049 0.029
GO Transmembrane transport 18 1.70 0 0.029

KEGG Alzheimers disease 19 1.69 0.0047 0.030

GO
Protein targeting to
mitochondrion

9 1.69 0.0066 0.030

GO
Purine containing compound
metabolic process

25 1.68 0 0.033
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Category Name Size NES p-value q-value
GO Microbody part 10 1.68 0.016 0.033

GO
Antigen receptor mediated
signaling pathway

23 1.68 0.0072 0.034

GO
Oxidoreductase activity acting
on the aldehyde or oxo group of
donors nad or nadp as acceptor

12 1.68 0.0023 0.035

GO
Unsaturated fatty acid metabolic
process

8 1.67 0.016 0.035

GO
Oxidoreductase activity acting
on nad p h

16 1.67 0.0069 0.036

GO
Small molecule biosynthetic
process

31 1.67 0 0.036

GO
Steroid hormone receptor
binding

5 1.67 0.011 0.036

GO
Nucleoside phosphate
biosynthetic process

5 1.66 0.012 0.038

GO Protein stabilization 13 1.66 0.0066 0.040
GO Nadh metabolic process 9 1.66 0.015 0.040

GO
Protein modification by small
protein conjugation or removal

36 1.65 0.0026 0.041

GO Ligase activity 18 1.65 0.0025 0.042
GO Carbon carbon lyase activity 6 1.65 0.015 0.042
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Category Name Size NES p-value q-value

GO
Anion transmembrane
transporter activity

7 1.65 0.020 0.041

GO
Reactive oxygen species
metabolic process

11 1.64 0.0089 0.043

GO Hexose metabolic process 15 1.64 0 0.045

GO
Antigen processing and
presentation of exogenous
peptide antigen via mhc class i

17 1.64 0.0070 0.045

GO
Positive regulation of canonical
wnt signaling pathway

22 1.63 0.015 0.048

Table A.6. GSEA: Significantly enriched gene sets in
SCAT in pigs (q-value < 0.05).

Category Name Size9 NES10 p-value q-value

GO
Proteinaceous extracellular
matrix

62 -2.28 0 0

GO Muscle organ development 32 -2.25 0 0
GO Blood vessel morphogenesis 40 -2.22 0 0
GO Extracellular matrix 81 -2.21 0 0

KEGG
Hypertrophic cardiomyopathy
hcm

22 -2.18 0 0
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Category Name Size NES p-value q-value

GO
Negative regulation of
locomotion

32 -2.15 0 7.99E-05

GO
Extracellular structure
organization

71 -2.14 0 8.61E-05

GO
Regulation of nervous system
development

64 -2.14 0 9.33E-05

GO Integrin binding 26 -2.14 0 1.02E-04
GO Circulatory system development 82 -2.14 0 1.12E-04
GO Vasculature development 52 -2.14 0 1.19E-04

KEGG
Arrhythmogenic right ventricular
cardiomyopathy arvc

24 -2.13 0 1.24E-04

GO Angiogenesis 33 -2.13 0 1.25E-04

GO
Regulation of neuron
differentiation

50 -2.13 0 1.33E-04

KEGG Dilated cardiomyopathy 24 -2.11 0 1.40E-04
KEGG Ecm receptor interaction 26 -2.09 0 1.41E-04

GO
Regulation of neuron projection
development

41 -2.09 0 1.50E-04

KEGG Focal adhesion 58 -2.09 0 1.60E-04

GO
Regulation of cellular component
movement

97 -2.09 0 1.87E-04

GO Collagen binding 19 -2.08 0 2.26E-04
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Category Name Size NES p-value q-value

GO
Integrin mediated signaling
pathway

21 -2.07 0 2.68E-04

GO Regulation of cell differentiation 128 -2.04 0 6.10E-04

GO
Regulation of cellular response
to growth factor stimulus

29 -2.04 0 6.37E-04

GO Regulation of cell development 88 -2.04 0 6.66E-04
GO Muscle structure development 55 -2.01 0 0.001167
GO Skeletal system development 35 -2.00 0 0.001169
GO Actin binding 93 -2.00 0 0.001242
GO Response to mechanical stimulus 21 -2.00 0 0.001247

GO
Positive regulation of neuron
differentiation

26 -1.98 0 0.001762

GO Regulation of stat cascade 12 -1.97 0 0.001783

GO
Positive regulation of neuron
projection development

24 -1.97 0 0.001933

GO
Regulation of peptidyl tyrosine
phosphorylation

25 -1.97 0.0018 0.001958

GO Cell adhesion molecule binding 40 -1.96 0 0.002002

GO
Positive regulation of cell
differentiation

82 -1.96 0 0.002027

GO Cell substrate junction 162 -1.95 0 0.002085
GO Cell substrate adhesion 38 -1.95 0 0.002111
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Category Name Size NES p-value q-value

GO
Positive regulation of nervous
system development

33 -1.95 0 0.002147

GO Extracellular matrix component 38 -1.94 0 0.002303
GO Anchoring junction 168 -1.94 0 0.002621

GO
Positive regulation of cell
development

52 -1.93 0 0.002864

GO
Regulation of ras protein signal
transduction

17 -1.92 0 0.003154

GO Cell projection organization 90 -1.92 0 0.003203

GO
Movement of cell or subcellular
component

153 -1.92 0 0.003212

GO Cell matrix adhesion 30 -1.92 0 0.003368
GO Cell cell junction 56 -1.91 0 0.004151

GO
Sulfur compound catabolic
process

11 -1.91 0 0.004168

GO Glycosaminoglycan binding 36 -1.91 0 0.004183

GO
Negative regulation of
developmental process

70 -1.90 0 0.004473

GO
Carbohydrate derivative
catabolic process

25 -1.90 0 0.00468

GO
Positive regulation of peptidyl
tyrosine phosphorylation

17 -1.89 0 0.005712

GO Cell part morphogenesis 64 -1.88 0 0.005842
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Category Name Size NES p-value q-value
GO Cell junction 207 -1.88 0 0.005852

GO
Extracellular matrix structural
constituent

19 -1.88 0 0.005854

GO Biological adhesion 107 -1.88 0 0.00588

GO
Positive regulation of
developmental process

108 -1.88 0 0.005947

GO Skin development 18 -1.88 0.0018 0.005954
GO Cell junction assembly 33 -1.87 0 0.005973
GO Cell junction organization 37 -1.87 0 0.006041
GO Regulation of cell morphogenesis 76 -1.87 0 0.006494

GO
Aminoglycan biosynthetic
process

12 -1.87 0.0019 0.006614

GO
Regulation of cell projection
organization

65 -1.86 0 0.006727

GO Neurogenesis 129 -1.86 0 0.006764
GO Neuron projection development 60 -1.86 0 0.006765

GO
Regulation of
phosphatidylinositol 3 kinase
signaling

12 -1.86 0 0.006818

GO Actin filament bundle 24 -1.86 0.0036 0.006887

GO
Anatomical structure formation
involved in morphogenesis

82 -1.85 0 0.007651
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Category Name Size NES p-value q-value

GO
Substrate adhesion dependent
cell spreading

10 -1.85 0 0.007802

GO Actomyosin 24 -1.85 0.0018 0.007903
GO Collagen trimer 15 -1.85 0 0.007986
GO Calmodulin binding 25 -1.84 0.0034 0.008883

GO
Cell morphogenesis involved in
differentiation

56 -1.84 0 0.008915

GO Extracellular matrix binding 20 -1.84 0 0.009194
GO Lamellipodium 41 -1.84 0 0.00929
GO Response to growth factor 54 -1.83 0 0.009419
GO Golgi lumen 16 -1.82 0.0055 0.010869
GO Protein complex binding 167 -1.82 0 0.011813

GO
Regulation of cell morphogenesis
involved in differentiation

47 -1.82 0 0.011947

GO Cytoskeleton organization 115 -1.82 0 0.012004

GO
Regulation of extent of cell
growth

13 -1.82 0 0.012055

GO
Cellular component
morphogenesis

91 -1.81 0 0.01208

GO Regulation of axonogenesis 20 -1.81 0 0.012116

GO
Regulation of cell substrate
adhesion

35 -1.81 0 0.012261
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Category Name Size NES p-value q-value

GO
Skeletal muscle organ
development

14 -1.81 0 0.012301

GO Aminoglycan catabolic process 12 -1.80 0 0.013399
GO Cell development 129 -1.80 0 0.013533
GO Synapse 71 -1.80 0 0.013574

GO
Negative regulation of cellular
component organization

101 -1.80 0 0.014706

GO Collagen fibril organization 11 -1.79 0.0036 0.015509

GO
Regulation of rho protein signal
transduction

11 -1.79 0 0.015537

GO
Negative regulation of
multicellular organismal process

103 -1.79 0 0.016016

GO Heparin binding 30 -1.78 0 0.016659

GO
Plasma membrane receptor
complex

15 -1.78 0.0071 0.016892

GO
Cellular response to mechanical
stimulus

13 -1.78 0.0018 0.017872

GO Muscle tissue development 31 -1.78 0.0017 0.018004

GO
Multicellular organismal
macromolecule metabolic process

17 -1.77 0 0.018347

GO Glial cell differentiation 21 -1.77 0.0017 0.01854
GO Actin filament based process 86 -1.77 0 0.018708
GO Gastrulation 19 -1.77 0.0018 0.018738
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Category Name Size NES p-value q-value

GO
Positive regulation of cell
projection organization

40 -1.77 0.0017 0.019363

GO
Regulation of extrinsic apoptotic
signaling pathway

21 -1.76 0.0037 0.020394

GO Platelet degranulation 38 -1.76 0 0.020731
GO Single organism cell adhesion 54 -1.76 0 0.020802

GO
Transforming growth factor beta
receptor signaling pathway

15 -1.76 0.0052 0.02088

GO Regulation of cell adhesion 77 -1.76 0 0.021124
GO Positive regulation of locomotion 51 -1.75 0.0017 0.022272

KEGG Regulation of actin cytoskeleton 51 -1.75 0 0.022399
KEGG Viral myocarditis 15 -1.75 0.0053 0.022947

GO
Negative regulation of cell
adhesion

25 -1.75 0.0071 0.023128

GO Macromolecular complex binding 198 -1.75 0 0.023198
GO Cytoskeletal protein binding 157 -1.74 0 0.023415

GO
Neuron projection
morphogenesis

47 -1.74 0 0.023883

GO Cell projection part 117 -1.74 0 0.025101
GO Cardiocyte differentiation 11 -1.74 0.0018 0.025187
GO Heart development 42 -1.74 0.0034 0.025235
GO Neuron development 69 -1.74 0 0.025428
GO Adherens junction organization 15 -1.73 0.0036 0.0271
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Category Name Size NES p-value q-value
GO Regulation of synaptic plasticity 11 -1.73 0.0018 0.027166

GO
Positive regulation of cell
substrate adhesion

27 -1.73 0.0069 0.027198

GO
Cellular response to amino acid
stimulus

13 -1.73 0.0038 0.027667

GO Gliogenesis 28 -1.73 0 0.028036
GO Cell activation 58 -1.72 0.0017 0.02823
GO Formation of primary germ layer 15 -1.72 0.0054 0.029096
GO Peptidyl serine modification 13 -1.72 0 0.029215
GO Secretion by cell 67 -1.71 0 0.031412
GO Endodermal cell differentiation 10 -1.71 0.0091 0.031457
GO Cell projection 216 -1.71 0 0.031492
GO Cilium morphogenesis 13 -1.71 0.0038 0.031529

KEGG Small cell lung cancer 11 -1.71 0.0038 0.031572

GO
Plasma membrane protein
complex

68 -1.71 0.0017 0.031624

GO Cell cell adhesion 52 -1.71 0.0033 0.031795

GO
Regulation of multicellular
organismal development

176 -1.71 0 0.031876

GO Cell growth 20 -1.70 0.0055 0.033845
KEGG Endometrial cancer 10 -1.70 0.0019 0.034411

GO Lymphocyte differentiation 10 -1.70 0.0019 0.035272
GO Platelet activation 35 -1.70 0.0036 0.035293
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Category Name Size NES p-value q-value
GO Vacuolar part 118 -1.70 0 0.03531

KEGG Endocytosis 30 -1.70 0.0035 0.03533
GO Endoderm development 11 -1.70 0.0057 0.035432
GO Endoderm formation 10 -1.69 0 0.036105

GO
Positive regulation of cell
adhesion

54 -1.69 0 0.036417

GO
Positive regulation of cell
morphogenesis involved in
differentiation

29 -1.69 0.0036 0.03733

GO Secretory granule lumen 28 -1.69 0.0068 0.037366
GO Glial cell development 13 -1.69 0.016 0.03737
GO Secretion 82 -1.69 0 0.037381

GO
Negative regulation of nervous
system development

29 -1.69 0.0036 0.037449

GO Basement membrane 27 -1.69 0.0018 0.037509
GO Locomotion 115 -1.69 0.0032 0.037619
GO Tissue remodeling 14 -1.69 0 0.037748
GO Cell leading edge 71 -1.68 0 0.038832

GO
Regulation of small gtpase
mediated signal transduction

24 -1.68 0.0053 0.03891

GO Cell cell adherens junction 16 -1.68 0.011 0.039093
GO Extracellular space 206 -1.68 0 0.040395
GO Head development 65 -1.68 0.0017 0.040504
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Category Name Size NES p-value q-value
GO System process 126 -1.68 0 0.040541
GO Single organism behavior 28 -1.68 0.0068 0.040734
GO Early endosome membrane 18 -1.67 0.018 0.040864
GO Behavior 37 -1.67 0.010 0.041235

GO
Response to transforming growth
factor beta

22 -1.67 0.0037 0.041404

GO Response to wounding 101 -1.67 0.0016 0.042758
KEGG Gap junction 20 -1.67 0.0091 0.043946

GO Telencephalon development 18 -1.66 0.016 0.04521
GO Exocytosis 54 -1.66 0.0017 0.045331

GO
Negative regulation of epithelial
cell migration

10 -1.66 0.016 0.046561

GO Calcium ion binding 82 -1.66 0.0016 0.046736
GO Regulated exocytosis 46 -1.66 0.0017 0.046921
GO Aminoglycan metabolic process 16 -1.66 0.0057 0.047131

GO
Regulation of sodium ion
transmembrane transport

10 -1.65 0.013 0.04843

GO
Sensory perception of light
stimulus

14 -1.65 0.021 0.049013

GO
Negative regulation of cell
differentiation

44 -1.65 0.0017 0.049279

GO
Regulation of dendrite
development

13 -1.65 0.018 0.049359
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Category Name Size NES p-value q-value

GO
Negative regulation of cellular
response to growth factor
stimulus

17 -1.65 0.0078 0.049384

GO Plasma membrane region 92 -1.65 0 0.049563

GO
Regulation of protein kinase b
signaling

10 -1.65 0.014 0.049588

GO Cell substrate junction assembly 14 -1.65 0.013 0.049672
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MDL I PNFSMETWMLLATSLVLLYLYGTHSHGI FKKLGI PGPKPLPFLGTI LAYQKGFWECDI QCHKKYGKMWGLYDGRQPVLAI TDPDI I KTVLVKECYSTFTNRRRFGPVGI LKKAI S I 120
MAL I PDLAMETWLLLAVSLVLLYLYGTHSHGLFKKLGI PGPTPLPFLGNI LSYHKGFCMFDMECHKKYGKVWGFYDGQQPVLAI TDPDMI KTVLVKECYSVFTNRRPFGPVGFMKSAI S I 120
MDL I PGFSTETWVLLATSLVLLYLYGTYSHGLFKKLGI PGPRPLPYFGNI LGYRKGVDHFDKKCFQQYGKMWGFFDGRQPVLAI TDPDMI KTVLVKECYSVFTNRRSFGPRGAMRTALSL 120

SENEEWKRI RALLSPTFTSGRLKEMFPI I NQFTDVLVRNMRQGLGEGKPTSMKDI FGAYSMDVI TATSFGVNI DSLNNPQDPFVEKI KKLLKFDI FDPLFLSVTLFPFLTPVFDALNVSL 240
AEDEEWKRLRSLLSPTFTSGKLKEMVPI I AQYGDVLVRNLRREAETGKPVTLKDVFGAYSMDVI TSTSFGVNI DSLNNPQDPFVENTKKLLRFDFLDPFFLS I TVFPFL I PI LEVLNI CV 240
AEDEEWKRI RTLLSPTFTSGKLKEMFPI I SHYGDLLVSNLRKEAEKGKPVTMKDI FGAYSMDVI TSTAFGVNTDFLNNPQDPFVENSKKLLKFSFFSPLFLS I I FFPFLTPI LEVLNVTL 240

FPRDVI SFFTTSVERMKENRMKEKEKQRVDFLQLMI NSQNYKTKESHKALSDVEI VAQSVI F I FAGYETTSSALSFALYLLAI HPDVQKKLQDEI DAALPNKAPATYDTLLQMEYLDMVV 360
FPREVTNFLRKSVKRMKESRLEDTQKHRVDFLQLMI DSQNSKETESHKALSDLELVAQSI I F I FAGYETTSSVLSF I MYELATHPDVQQKLQEEI DAVLPNKAPPTYDTVLQMEYLDMVV 360
FPKSVVNFFMRSI KRMKESRLKDKQTHRVDFLQLMI NSQNSKETDTHKGLSDEELVAQGVFF I FAGYETTSSSLSLLVYELATHPDVQQKLQEEI DATFPSKALPSYDALAQMEYLDMVV 360

NETLRLYPI AGRLERVCKTDVEI NGLF I PKGTVVMI PTFALHKDPKYWPEPEEFRPERFSKKNQDSI NPYMYLPFGSGPRNCI GMRFAL I NMKVALVRVLQNFTVQPCKETE I PLKLSKQ 480
NETLRLFPI AMRLERVCKKDVEI NGMFI PKGVVVMI PSYALHRDPKYWTEPEKFLPERFSKKNKDNI DPYI YTPFGSGPRNCI GMRFALMNMKLAL I RVLQNFSFKPCKETQI PLKLSLG 480
NEI LRLYPI AARLERVCKKDVEI HGVSVPKGTVMMVPVFSI HRDPELWPEPEEFRPERFSKKNKDSI NPYTYLPFGTGPRNCI GMRFALMNMKLALVRVLQNFSFKPCKETQTPLKLSSQ 480
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Figure A.1. Cytochrome p450 3A proteins have
a high sequence homology between pig, human, and
mouse proteins. CYP3A13 is a mouse protein,
CYP3A4 is a human protein, and CYP3A39 is a pig
protein. Color shows the polarity of each amino acid.
The multiple sequence alignment was made with the
R package msa ? using the ClustalOmega method.
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Table B.1. Significantly more abundant proteins in
liver samples from liraglutide treated GIPRdn pigs (q-
value < 0.05).

Gene name Protein name l2fc p-value q-value

RBX1
E3 ubiquitin-protein ligase
RBX1

1.69 6.98E-07 0.0012

CIAPIN1 anamorsin 1.28 0.0025 0.042
PEF1 peflin 1.22 0.0028 0.044

OPLAH 5-oxoprolinase 0.99 9.05E-05 0.0092

EIF4E2
eukaryotic translation initiation
factor 4E type 2

0.98 0.0011 0.025

ORM1 alpha-1-acid glycoprotein 0.97 0.0016 0.031
FABP3 fatty acid-binding protein, heart 0.89 3.90E-04 0.015

GPAM
TRPM8 channel-associated
factor 2-like

0.69 0.0019 0.035

ABCB1
ATP-binding cassette, sub-family
B (MDR/TAP), member 1

0.62 4.30E-04 0.015

AK4
adenylate kinase 4,
mitochondrial

0.51 1.68E-06 0.0014

GARS glycine–tRNA ligase 0.5 9.00E-04 0.021
CNDP2 cytosolic non-specific dipeptidase 0.48 0.001 0.023
SARS serine–tRNA ligase, cytoplasmic 0.46 3.20E-04 0.015
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Gene name Protein name l2fc p-value q-value

TARS
threonine–tRNA ligase,
cytoplasmic

0.43 4.20E-04 0.015

GGH gamma-glutamyl hydrolase 0.42 7.50E-04 0.02

CARS
cysteine–tRNA ligase,
cytoplasmic

0.41 1.80E-04 0.011

GPAM
glycerol-3-phosphate
acyltransferase 1, mitochondrial

0.38 6.70E-04 0.019

NARS
asparagine–tRNA ligase,
cytoplasmic

0.38 3.10E-04 0.015

ACADSB
short/branched chain specific
acyl-CoA dehydrogenase,
mitochondrial

0.37 6.40E-04 0.019

TMEM33 transmembrane protein 33 0.36 0.0016 0.031

DHRS11
dehydrogenase/reductase SDR
family member 11

0.34 1.00E-04 0.0093

CKAP4 cytoskeleton-associated protein 4 0.34 0.0035 0.049

AARS
alanine–tRNA ligase,
cytoplasmic

0.33 0.0014 0.029

IARS
isoleucine–tRNA ligase,
cytoplasmic

0.33 1.10E-04 0.0093

TPP1 tripeptidyl-peptidase 1 0.32 1.87E-05 0.004
TXNL1 thioredoxin-like protein 1 0.32 8.14E-05 0.0088
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Gene name Protein name l2fc p-value q-value

HINT1
histidine triad nucleotide-binding
protein 1

0.32 1.50E-04 0.0094

SCPEP1
retinoid-inducible serine
carboxypeptidase

0.32 0.0021 0.037

CS citrate synthase, mitochondrial 0.3 6.50E-04 0.019

FARSA
phenylalanine–tRNA ligase
alpha subunit

0.29 4.61E-05 0.0066

NUDT21 tubulin alpha-1C chain 0.29 1.20E-04 0.0094
LGMN legumain 0.28 4.30E-04 0.015

HNRNPA0
heterogeneous nuclear
ribonucleoprotein A0

0.27 0.0016 0.031

CRK adapter molecule crk 0.26 1.20E-04 0.0094

FARSB
phenylalanine–tRNA ligase beta
subunit

0.25 3.60E-04 0.015

SORBS2.1
sorbin and SH3
domain-containing protein 2

0.24 3.60E-04 0.015

TXNRD2
thioredoxin reductase 2,
mitochondrial

0.24 3.80E-04 0.015

CNPY2 protein canopy homolog 2 0.23 0.0021 0.037

PDHB
pyruvate dehydrogenase E1
component subunit beta,
mitochondrial

0.23 0.0029 0.045

AS3MT arsenite methyltransferase 0.23 0.0032 0.048
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Gene name Protein name l2fc p-value q-value

CCT3
T-complex protein 1 subunit
gamma

0.22 3.50E-04 0.015

EPRS
bifunctional
glutamate/proline–tRNA ligase

0.21 3.80E-04 0.015

CCT6A T-complex protein 1 subunit zeta 0.21 7.20E-04 0.02

CCT5
T-complex protein 1 subunit
epsilon

0.2 0.0016 0.031

OSBPL1A
oxysterol-binding protein-related
protein 1

0.19 0.0017 0.032

PPIA
peptidyl-prolyl cis-trans
isomerase A

0.19 0.0019 0.035

TCP1
T-complex protein 1 subunit
alpha

0.19 0.0034 0.049

CCT2
T-complex protein 1 subunit
beta

0.19 0.0011 0.024

GPX1 glutathione peroxidase 1 0.18 0.0024 0.041

EIF3E
eukaryotic translation initiation
factor 3 subunit E

0.18 7.44E-05 0.0087

GSPT1
eukaryotic peptide chain release
factor GTP-binding subunit
ERF3A

0.18 5.30E-04 0.017

HSPA9 stress-70 protein, mitochondrial 0.18 0.0013 0.029
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Gene name Protein name l2fc p-value q-value

ABCE1
ATP-binding cassette sub-family
E member 1

0.17 0.0012 0.027

NUDT21
cleavage and polyadenylation
specificity factor subunit 5

0.17 0.0035 0.049

CCT8
T-complex protein 1 subunit
theta

0.17 0.0037 0.05

ENO1 alpha-enolase 0.16 6.60E-04 0.019

UMPS
uridine 5-monophosphate
synthase

0.16 0.0019 0.035

UBE2N
ubiquitin-conjugating enzyme E2
N

0.16 0.0032 0.048

PSMA1 proteasome subunit alpha type-1 0.16 0.0033 0.048

MYLK
myosin light chain kinase,
smooth muscle

0.15 0.0036 0.049

PKP2 plakophilin-2 0.15 0.0024 0.041
HSPA4 heat shock 70 kDa protein 4 0.14 3.60E-04 0.015

SFPQ
splicing factor, proline- and
glutamine-rich

0.13 0.0013 0.027

RPL7 60S ribosomal protein L7 0.11 0.0014 0.029
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Table B.2. Significantly more abundant proteins in
liver samples from placebo treated GIPRdn pigs (q-
value < 0.05).

Gene name Protein name l2fc p-value q-value

HMGCS2
hydroxymethylglutaryl-CoA
synthase, mitochondrial
precursor

-4.60 3.60E-04 0.015

LAMC1
laminin subunit gamma-1
precursor

-1.38 2.60E-04 0.014

OAT
ornithine aminotransferase,
mitochondrial

-1.38 5.90E-04 0.018

S100A1 protein S100-A1 -1.12 7.02E-05 0.0087
STEAP4 metalloreductase STEAP4 -0.97 0.0022 0.037

DHRS7
dehydrogenase/reductase SDR
family member 7

-0.93 1.70E-04 0.011

GNMT glycine N-methyltransferase -0.86 4.00E-04 0.015
FOLR2 folate receptor 2 -0.83 5.57E-06 0.0032

GATM
glycine amidinotransferase,
mitochondrial

-0.83 7.53E-05 0.0087

GSTM1 glutathione S-transferase Mu 1 -0.75 3.19E-05 0.0054

PCTP
phosphatidylcholine transfer
protein

-0.68 0.0035 0.049

SUOX sulfite oxidase, mitochondrial -0.60 1.10E-04 0.0093
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Gene name Protein name l2fc p-value q-value

FDX1
adrenodoxin, mitochondrial
precursor

-0.60 1.50E-05 0.0037

AADAC arylacetamide deacetylase-like -0.53 1.30E-04 0.0094
FBP1 fructose-1,6-bisphosphatase 1 -0.53 1.40E-04 0.0094

LDHD
probable D-lactate
dehydrogenase, mitochondrial

-0.50 8.60E-04 0.021

CEACAM1
carcinoembryonic antigen-related
cell adhesion molecule 1

-0.45 2.60E-04 0.014

CYP2C33 cytochrome P450 2C33 -0.44 7.90E-04 0.020

AMT
aminomethyltransferase,
mitochondrial

-0.44 1.40E-04 0.0094

PLS3 plastin-3 -0.43 2.00E-04 0.012
MVP major vault protein -0.41 5.30E-04 0.017

CYP1A2 cytochrome P450 1A2 -0.41 7.40E-04 0.020
GK glycerol kinase -0.41 4.70E-04 0.016

OTC
ornithine carbamoyltransferase,
mitochondrial

-0.41 9.80E-04 0.023

MAOB
amine oxidase [flavin-containing]
B

-0.40 0.0017 0.032

CHDH
choline dehydrogenase,
mitochondrial

-0.39 5.00E-04 0.016

EHD1 EH domain-containing protein 1 -0.39 4.80E-04 0.016
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Gene name Protein name l2fc p-value q-value

DHRS4
dehydrogenase/reductase SDR
family member 4

-0.39 8.00E-04 0.020

PLIN3 perilipin-3 -0.36 2.40E-04 0.013
GYS2 glycogen [starch] synthase, liver -0.36 5.10E-04 0.016

LPGAT1
acyl-
CoA:lysophosphatidylglycerol
acyltransferase 1

-0.35 6.20E-04 0.019

SELENBP1 selenium-binding protein 1 -0.35 9.10E-04 0.021
RCN1 reticulocalbin-1 -0.35 0.0036 0.049

EGFR
epidermal growth factor receptor
precursor

-0.34 0.0029 0.045

SLC25A13
calcium-binding mitochondrial
carrier protein Aralar2

-0.34 1.38E-05 0.0037

NNT
NAD(P) transhydrogenase,
mitochondrial

-0.32 1.16E-05 0.0037

DPYS dihydropyrimidinase -0.31 0.0031 0.047

MTTP
microsomal triglyceride transfer
protein large subunit precursor

-0.31 0.0021 0.037

STOM
erythrocyte band 7 integral
membrane protein

-0.31 8.00E-04 0.020

LMAN1 protein ERGIC-53 -0.29 7.46E-06 0.0032
GCA grancalcin -0.29 8.40E-04 0.021
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Gene name Protein name l2fc p-value q-value

ASPH
aspartyl/asparaginyl
beta-hydroxylase9

-0.28 1.40E-04 0.0094

ARFGAP3
ADP-ribosylation factor
GTPase-activating protein 3

-0.28 3.44E-05 0.0054

UROC1 urocanate hydratase -0.27 3.20E-04 0.015

PHGDH
D-3-phosphoglycerate
dehydrogenase

-0.25 0.0025 0.042

LAP3 cytosol aminopeptidase -0.25 7.30E-04 0.020

ADHFE1
hydroxyacid-oxoacid
transhydrogenase, mitochondrial

-0.25 0.0033 0.048

GPD1
glycerol-3-phosphate
dehydrogenase [NAD(+)],
cytoplasmic

-0.24 2.81E-05 0.0054

CTH cystathionine gamma-lyase -0.23 0.0022 0.038

ALAD
delta-aminolevulinic acid
dehydratase

-0.23 0.0016 0.031

PEBP1
phosphatidylethanolamine-
binding protein
1

-0.22 0.0033 0.048

MLEC malectin -0.22 0.0014 0.029
PCYOX1 prenylcysteine oxidase 1 -0.21 9.60E-04 0.022

SUB1
activated RNA polymerase II
transcriptional coactivator p15

-0.20 0.0034 0.049
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Gene name Protein name l2fc p-value q-value

STT3A

dolichyl-
diphosphooligosaccharide–
protein glycosyltransferase
subunit STT3A

-0.18 8.60E-04 0.021

ARHGAP1 rho GTPase-activating protein 1 -0.17 0.0027 0.044

PDIA6
protein disulfide-isomerase A6
precursor

-0.17 0.0028 0.044

RAB11B ras-related protein Rab-11B -0.17 0.0018 0.033
EEF1G elongation factor 1-gamma -0.16 0.0026 0.043

LRP1
prolow-density lipoprotein
receptor-related protein 1

-0.14 0.0030 0.046

SEC22B
vesicle-trafficking protein
SEC22b

-0.13 0.0033 0.048

TKT transketolase -0.13 3.90E-04 0.015

NPEPPS
puromycin-sensitive
aminopeptidase

-0.12 0.0028 0.044

Table B.3. GSEA: Significantly enriched gene sets
in liraglutide treated in GIPRdn pig livers (q-value <
0.05).
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Category Name Size NES p-value q-value
KEGG Aminoacyl tRNA biosynthesis 25 2.6 0 0

GO
Ligase activity forming carbon
oxygen bonds

26 2.53 0 0

GO Catalytic activity acting on RNA 63 2.53 0 0

GO
Regulation of mRNA catabolic
process

79 2.51 0 0

GO Amino acid activation 29 2.44 0 0

GO
Catalytic activity acting on a
tRNA

30 2.41 0 0

GO NcRNA metabolic process 88 2.39 0 0

GO
Regulation of cellular amino acid
metabolic process

44 2.37 0 0

GO
Interleukin 1 mediated signaling
pathway

48 2.36 0 0

GO Rna metabolic process 237 2.36 0 0

GO
Scf dependent proteasomal
ubiquitin dependent protein
catabolic process

45 2.35 0 0

GO
Regulation of hematopoietic
progenitor cell differentiation

43 2.34 0 0

GO
Anaphase promoting complex
dependent catabolic process

43 2.34 0 0
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GO
Negative regulation of cell cycle
g2 m phase transition

47 2.32 0 0

GO Endopeptidase complex 50 2.29 0 1.11E-04

GO
Regulation of stem cell
differentiation

45 2.29 0 1.57E-04

GO
Regulation of transcription from
RNA polymerase ii promoter in
response to hypoxia

45 2.28 0 1.95E-04

GO Stem cell differentiation 60 2.27 0 1.84E-04
KEGG Proteasome 38 2.27 0 1.74E-04

GO
Regulation of cell cycle g2 m
phase transition

68 2.27 0 1.66E-04

GO
Posttranscriptional regulation of
gene expression

182 2.27 0 1.58E-04

GO
Protein modification by small
protein removal

72 2.26 0 1.51E-04

GO Cell cycle g2 m phase transition 76 2.26 0 1.44E-04

GO
Innate immune response
activating cell surface receptor
signaling pathway

45 2.24 0 1.38E-04

GO
Hematopoietic stem cell
differentiation

43 2.24 0 1.33E-04

GO
Hematopoietic progenitor cell
differentiation

50 2.22 0 1.60E-04



229

GO Protein polyubiquitination 63 2.21 0 1.85E-04

GO
Negative regulation of wnt
signaling pathway

57 2.21 0 1.78E-04

GO
Negative regulation of cell cycle
process

69 2.21 0 1.72E-04

GO
Regulation of chromosome
organization

47 2.2 0.0017 1.94E-04

GO TRNA metabolic process 46 2.2 0 1.88E-04
GO Canonical wnt signaling pathway 72 2.2 0 1.82E-04
GO Ribonucleoprotein complex 261 2.2 0 1.76E-04
GO Rna localization 71 2.2 0 1.71E-04

GO
Translation initiation factor
activity

30 2.18 0 1.90E-04

GO Response to interleukin 1 66 2.18 0 2.08E-04

GO
Ribonucleoprotein complex
biogenesis

118 2.18 0 2.25E-04

GO
Non canonical wnt signaling
pathway

55 2.16 0 3.28E-04

GO
Negative regulation of cell cycle
phase transition

57 2.16 0 3.19E-04

GO
Tumor necrosis factor mediated
signaling pathway

52 2.16 0 3.53E-04
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GO
Regulation of DNA templated
transcription in response to
stress

52 2.16 0 3.45E-04

GO Chromosome organization 126 2.15 0 3.36E-04

GO
Regulation of establishment of
planar polarity

52 2.15 0 3.29E-04

GO
Positive regulation of protein
localization to nucleus

29 2.14 0 3.21E-04

GO Peptide biosynthetic process 230 2.14 0 3.14E-04

GO
Regulation of telomere
maintenance via telomere
lengthening

18 2.14 0 3.26E-04

GO
Fc epsilon receptor signaling
pathway

47 2.13 0 3.19E-04

GO
Regulation of wnt signaling
pathway

78 2.13 0 3.12E-04

GO Rna catabolic process 176 2.13 0 3.06E-04

GO
Regulation of morphogenesis of
an epithelium

57 2.13 0 3.00E-04

GO
Regulation of telomere
maintenance

21 2.13 0 2.94E-04

GO
Positive regulation of
chromosome organization

32 2.13 0 3.04E-04
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GO
Rna dependent DNA
biosynthetic process

21 2.12 0 3.30E-04

GO Catalytic complex 301 2.12 0 3.55E-04

GO
Positive regulation of telomere
maintenance via telomere
lengthening

15 2.12 0 3.63E-04

GO
Rna splicing via
transesterification reactions

109 2.12 0 3.57E-04

GO
Mitochondrial respiratory chain
complex i

36 2.11 0 3.51E-04

GO
Negative regulation of mitotic
cell cycle

64 2.11 0 3.59E-04

GO
Telomere maintenance via
telomere lengthening

22 2.11 0 3.82E-04

GO
Positive regulation of wnt
signaling pathway

56 2.11 0 3.75E-04

GO Nadh dehydrogenase activity 33 2.09 0 4.51E-04

GO
Threonine type peptidase
activity

17 2.08 0 5.11E-04

GO
Positive regulation of telomere
maintenance

17 2.08 0 5.16E-04

GO Rna splicing 125 2.08 0 5.08E-04
GO Nik nf kappab signaling 59 2.08 0 5.40E-04
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GO
Regulation of cellular ketone
metabolic process

55 2.07 0 6.34E-04

GO
Positive regulation of canonical
wnt signaling pathway

53 2.07 0 0.000649

GO MRNA metabolic process 130 2.07 0 6.65E-04

GO
Regulation of protein
localization to nucleus

34 2.06 0 7.03E-04

GO Peptidase complex 55 2.04 0 9.80E-04

GO
Proteasomal ubiquitin
independent protein catabolic
process

17 2.04 0 0.001

GO T cell receptor signaling pathway 60 2.04 0 0.0011
GO Ribonucleoprotein granule 58 2.04 0 0.0011

GO
Protein modification by small
protein conjugation or removal

156 2.02 0 0.0012

GO Cytoplasmic stress granule 23 2.02 0 0.0012
GO Telomere organization 28 2.02 0 0.0012
GO Amide biosynthetic process 267 2.02 0 0.0012
GO Dna metabolic process 103 2.02 0 0.0012
GO MRNA binding 82 2.02 0 0.0013

GO
Antigen processing and
presentation of exogenous
peptide antigen via mhc class i

47 2.01 0 0.0014

GO Chaperone complex 16 2.01 0 0.0014
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GO
Nadh dehydrogenase complex
assembly

36 2.01 0 0.0014

GO
Antigen receptor mediated
signaling pathway

60 2 0 0.0015

GO
Protein modification by small
protein conjugation

133 2 0 0.0015

GO
Mitochondrial electron transport
nadh to ubiquinone

37 2 0 0.0016

GO Cell cell signaling by wnt 105 2 0 0.0016

GO
Translation factor activity RNA
binding

45 1.99 0 0.0018

GO
Translation regulator activity
nucleic acid binding

53 1.98 0 0.0022

GO
Morphogenesis of a polarized
epithelium

58 1.97 0 0.0023

GO Proteasome accessory complex 22 1.97 0 0.0023

GO
Regulation of cellular amine
metabolic process

49 1.96 0 0.0024

KEGG Lysosome 43 1.96 0 0.0025

GO
Regulation of cellular amide
metabolic process

102 1.96 0 0.0025

GO
Cell surface receptor signaling
pathway involved in cell cell
signaling

109 1.96 0 0.0025
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GO Proteasome core complex 18 1.95 0.0019 0.0027
GO TRNA binding 23 1.95 0.0018 0.0027

GO
Proteasomal protein catabolic
process

111 1.95 0 0.0027

GO
Ribonucleoprotein complex
subunit organization

86 1.94 0 0.003

GO Translation regulator activity 61 1.94 0 0.0031
GO Dna biosynthetic process 34 1.93 0 0.0035

GO
Nucleobase containing small
molecule biosynthetic process

31 1.93 0.0017 0.0036

GO
Negative regulation of cellular
amide metabolic process

39 1.92 0 0.0036

GO Ligase activity 73 1.92 0 0.0036

GO
Regulation of cell cycle phase
transition

94 1.92 0 0.0036

GO
Ribonucleoprotein complex
binding

47 1.92 0 0.0038

GO
Regulation of animal organ
morphogenesis

63 1.92 0 0.0039

GO Negative regulation of cell cycle 108 1.91 0 0.0042
GO Single stranded RNA binding 32 1.9 0 0.005

GO
Positive regulation of DNA
biosynthetic process

22 1.89 0.0018 0.0058
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GO
Modification dependent
macromolecule catabolic process

127 1.88 0 0.0066

GO
Regulation of translational
initiation

24 1.88 0.0052 0.0066

GO
Cytoplasmic translational
initiation

18 1.87 0 0.0071

GO Spliceosomal complex 68 1.87 0 0.0073
GO Regulation of cell cycle process 132 1.86 0 0.0077

GO
Purine ntp dependent helicase
activity

16 1.86 0.002 0.0076

GO
Mitochondrial respiratory chain
complex assembly

43 1.85 0 0.0084

KEGG Spliceosome 60 1.85 0.0017 0.0085
GO NcRNA processing 58 1.85 0.0018 0.0094
GO Catalytic step 2 spliceosome 45 1.84 0 0.0098
GO Dna geometric change 18 1.84 0.0018 0.0098
GO Translational initiation 115 1.83 0 0.01
GO Catalytic activity acting on DNA 16 1.83 0.0037 0.01

GO
Cellular macromolecule catabolic
process

314 1.83 0 0.01

GO
Negative regulation of RNA
catabolic process

15 1.83 0.0036 0.011

GO
Atp synthesis coupled electron
transport

55 1.82 0 0.012
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GO Protein stabilization 56 1.82 0 0.012

GO
Regulation of steroid
biosynthetic process

26 1.81 0.0056 0.012

GO MRNA 3 utr binding 23 1.81 0.0018 0.013

GO
Regulation of DNA metabolic
process

46 1.81 0 0.013

GO Helicase activity 20 1.81 0 0.013
GO Respiratory chain complex 49 1.8 0.0018 0.014

GO
Regulation of DNA biosynthetic
process

25 1.8 0.0037 0.014

GO Regulation of cell cycle 185 1.79 0 0.015
GO Nucleoplasm part 136 1.79 0 0.015
GO Protein localization to nucleus 67 1.79 0 0.016
GO Cell cycle phase transition 116 1.79 0.0017 0.016

GO
Regulation of nucleobase
containing compound metabolic
process

103 1.78 0 0.017

GO Cell recognition 22 1.78 0 0.017
GO Cellular amide metabolic process 334 1.78 0 0.017

GO
Activation of innate immune
response

89 1.77 0 0.017

GO Lysosomal lumen 43 1.77 0 0.018
GO Single fertilization 18 1.77 0.0055 0.018
GO Macromolecule catabolic process 370 1.76 0 0.019
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GO
Regulation of innate immune
response

117 1.76 0 0.019

GO Fertilization 21 1.76 0.0036 0.019

GO
Regulation of alcohol
biosynthetic process

23 1.76 0.0088 0.02

GO
Regulation of cholesterol
biosynthetic process

22 1.75 0.0088 0.02

GO Regulation of mitotic cell cycle 122 1.75 0 0.02
KEGG Oocyte meiosis 25 1.75 0 0.02

GO Ribosome biogenesis 59 1.75 0.0018 0.021

GO
Negative regulation of
nucleobase containing compound
metabolic process

29 1.74 0.0037 0.022

GO Fc receptor signaling pathway 68 1.74 0 0.023
GO Unfolded protein binding 56 1.74 0.0018 0.023

GO
Cellular response to DNA
damage stimulus

88 1.73 0 0.025

GO
Cellular response to oxygen
levels

77 1.73 0 0.025

GO
Response to tumor necrosis
factor

76 1.73 0.0034 0.025

GO Nuclear body 117 1.72 0.0017 0.026
GO Rna helicase activity 15 1.72 0.0091 0.027
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GO
Nucleoside phosphate catabolic
process

22 1.71 0.0113 0.028

GO
Regulatory region nucleic acid
binding

52 1.71 0 0.028

GO
Negative regulation of RNA
metabolic process

18 1.71 0.0125 0.029

GO
Positive regulation of DNA
metabolic process

34 1.71 0.0075 0.029

GO
Regulation of cellular catabolic
process

214 1.71 0 0.029

GO Dna repair 59 1.71 0.0018 0.03
GO Atpase activity coupled 80 1.7 0 0.031
GO Respirasome 53 1.69 0.0018 0.033

GO
Nucleic acid phosphodiester
bond hydrolysis

35 1.69 0.0074 0.034

GO Cytoplasmic translation 50 1.68 0.0018 0.036

GO
AlteRNAtive mRNA splicing via
spliceosome

25 1.68 0.023 0.037

GO
Immune response regulating cell
surface receptor signaling
pathway

87 1.68 0 0.037

GO Transcription factor binding 80 1.68 0.0034 0.037
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GO
Positive regulation of nucleobase
containing compound metabolic
process

54 1.67 0.0105 0.04

GO
Positive regulation of defense
response

117 1.67 0 0.04

KEGG Wnt signaling pathway 20 1.67 0.0125 0.04
GO Negative regulation of growth 23 1.67 0.0072 0.04
GO Cell cycle 267 1.67 0 0.04
GO Covalent chromatin modification 37 1.66 0.0071 0.04
GO Protein kinase c binding 16 1.66 0.0115 0.041
GO Oxidative phosphorylation 74 1.66 0 0.041
GO Dna conformation change 36 1.66 0.0091 0.041

GO
Oxidoreductase activity acting
on nad p h quinone or similar
compound as acceptor

42 1.66 0.0073 0.041

GO Microtubule cytoskeleton 176 1.66 0 0.042

GO
Transcription coupled nucleotide
excision repair

15 1.65 0.0156 0.043

GO Cell cycle process 204 1.65 0 0.046

GO
Organic cyclic compound
catabolic process

253 1.64 0 0.046

GO Mitotic cell cycle 170 1.64 0 0.048
GO RRNA metabolic process 39 1.64 0.0151 0.047
GO Transferase complex 84 1.64 0.0051 0.047
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GO
Cellular ketone metabolic
process

82 1.64 0.0018 0.048
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Figure B.1. Network map showing significant (q-
value < 0.05) GO ontology and KEGG categories en-
riched in LT (red) and PT (blue) pigs using GSEA.
Annotated categories were either KEGG pathways or
GO cateories significant at q-value < 0.01. The size
of the nodes reflect the gene set size and the size of
the edges reflects similarity between the two gene sets.
Network map was made using the Cytoscape plugin
Enrichment Map.
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Table B.4. GSEA: Significantly enriched gene sets in
placebo treated in GIPRdn pigs (q-value < 0.05).

Category Name Size NES p-value q-value

KEGG
Glycine serine and threonine
metabolism

23 -2.18 0 0.0171

KEGG Ecm receptor interaction 23 -2.16 0 0.0116

GO
Cellular amino acid catabolic
process

63 -2.15 0 0.0101

GO Transport vesicle 74 -2.15 0 0.0076
GO Copi coated vesicle 15 -2.14 0 0.0066
GO Organic acid catabolic process 161 -2.12 0 0.0069

GO
Golgi associated vesicle
membrane

38 -2.08 0 0.013

GO
Organic acid transmembrane
transport

19 -2.06 0 0.015

GO
Alpha amino acid catabolic
process

55 -2.03 0 0.023

GO Golgi associated vesicle 56 -2.01 0 0.025
GO Phagocytic vesicle 34 -2 0 0.026

KEGG Arginine and proline metabolism 32 -2 0 0.026
GO Coated vesicle 84 -1.98 0 0.028
GO Vesicle membrane 169 -1.96 0 0.035
GO Coated vesicle membrane 59 -1.96 0.0021 0.034
GO Small molecule catabolic process 212 -1.96 0 0.032

GO
Endoplasmic reticulum golgi
intermediate compartment
membrane

26 -1.95 0 0.032

GO
Nuclear outer membrane
endoplasmic reticulum
membrane network

264 -1.94 0 0.033

GO Regulation of protein targeting 18 -1.93 0.0022 0.037
KEGG Endocytosis 44 -1.92 0 0.039



Appendix C

Additional materials
and methods

Table C.1. All parameters used in the proteomic
analysis in Maxquant.

Parameter Value
Version 1.6.3.4
User name Erik
Machine name ERIK-PC
Date of writing 02/05/2019 23:08
Include contaminants TRUE
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Parameter Value
PSM FDR 0.01
PSM FDR Crosslink 0.01
Protein FDR 0.01
Site FDR 0.01
Use Normalized Ratios For Occupancy TRUE
Min. peptide Length 7
Min. score for unmodified peptides 0
Min. score for modified peptides 40
Min. delta score for unmodified peptides 0
Min. delta score for modified peptides 6
Min. unique peptides 0
Min. razor peptides 1
Min. peptides 1
Use only unmodified peptides and TRUE
Modifications included in protein quantification Oxidation (M);Acetyl (Protein N-term)
Peptides used for protein quantification Razor
Discard unmodified counterpart peptides TRUE
Label min. ratio count 2
Use delta score FALSE
iBAQ FALSE
iBAQ log fit FALSE
Match between runs TRUE
Matching time window [min] 0.7
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Parameter Value
Alignment time window [min] 20
Find dependent peptides FALSE
Fasta file GCF 000003025.6 Sscrofa11.1 protein.faa
Decoy mode revert
Include contaminants TRUE
Advanced ratios TRUE
Fixed andromeda index folder
Temporary folder
Combined folder location
Second peptides TRUE
Stabilize large LFQ ratios TRUE
Separate LFQ in parameter groups FALSE
Require MS/MS for LFQ comparisons TRUE
Calculate peak properties FALSE
Main search max. combinations 200
Advanced site intensities TRUE
Write msScans table FALSE
Write msmsScans table TRUE
Write ms3Scans table TRUE
Write allPeptides table TRUE
Write mzRange table TRUE
Write pasefMsmsScans table TRUE
Write accumulatedPasefMsmsScans table TRUE
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Parameter Value
Max. peptide mass [Da] 4600
Min. peptide length for unspecific search 8
Max. peptide length for unspecific search 25
Razor protein FDR TRUE
Disable MD5 FALSE
Max mods in site table 3
Match unidentified features FALSE
Epsilon score for mutations
Evaluate variant peptides separately TRUE
Variation mode None
MS/MS tol. (FTMS) 20 ppm
Top MS/MS peaks per Da interval. (FTMS) 12
Da interval. (FTMS) 100
MS/MS deisotoping (FTMS) TRUE
MS/MS deisotoping tolerance (FTMS) 7
MS/MS deisotoping tolerance unit (FTMS) ppm
MS/MS higher charges (FTMS) TRUE
MS/MS water loss (FTMS) TRUE
MS/MS ammonia loss (FTMS) TRUE
MS/MS dependent losses (FTMS) TRUE
MS/MS recalibration (FTMS) FALSE
MS/MS tol. (ITMS) 0.5 Da
Top MS/MS peaks per Da interval. (ITMS) 8
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Parameter Value
Da interval. (ITMS) 100
MS/MS deisotoping (ITMS) FALSE
MS/MS deisotoping tolerance (ITMS) 0.15
MS/MS deisotoping tolerance unit (ITMS) Da
MS/MS higher charges (ITMS) TRUE
MS/MS water loss (ITMS) TRUE
MS/MS ammonia loss (ITMS) TRUE
MS/MS dependent losses (ITMS) TRUE
MS/MS recalibration (ITMS) FALSE
MS/MS tol. (TOF) 40 ppm
Top MS/MS peaks per Da interval. (TOF) 10
Da interval. (TOF) 100
MS/MS deisotoping (TOF) TRUE
MS/MS deisotoping tolerance (TOF) 0.01
MS/MS deisotoping tolerance unit (TOF) Da
MS/MS higher charges (TOF) TRUE
MS/MS water loss (TOF) TRUE
MS/MS ammonia loss (TOF) TRUE
MS/MS dependent losses (TOF) TRUE
MS/MS recalibration (TOF) FALSE
MS/MS tol. (Unknown) 0.5 Da
Top MS/MS peaks per Da interval. (Unknown) 8
Da interval. (Unknown) 100
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Parameter Value
MS/MS deisotoping (Unknown) FALSE
MS/MS deisotoping tolerance (Unknown) 0.15
MS/MS deisotoping tolerance unit (Unknown) Da
MS/MS higher charges (Unknown) TRUE
MS/MS water loss (Unknown) TRUE
MS/MS ammonia loss (Unknown) TRUE
MS/MS dependent losses (Unknown) TRUE
MS/MS recalibration (Unknown) FALSE
Site tables Oxidation (M)Sites.txt
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Fröhlich and Dr. George Arnold for all help I have re-
ceived in matters of science and proteomics. Similarly,
thank you to Dr. Florian Flenkenthaler for advice re-
garding all things proteomics.

Thank you to the graduate school Quantitative
Biosciences Munich (QBM) for funding my PhD and
giving me this opportunity. I would like to give a spe-
cial thanks to Prof. Dr. Ulrike Gaul for creating this
programme. Thank you all members of the QBM team



250

for all help I have received throughout my years in Mu-
nich, and for organizing courses and scientific gather-
ings. Thanks to all friends I have made in QBM and
for making my time in Munich enjoyable!

Thank you to Mattias Backman for many inter-
esting discussions regarding the science of our parallel
projects and many other topics!

I would like to thank my family and friends for
their support during these last four years.

Por último y no menos importante, gracias a mi
novia Daniela por su apoyo.


	List of Figures
	List of Tables
	Index of Abbreviations
	Introduction
	Literature Review
	Diabetes
	Obesity, metabolic syndrome, and type 2 diabetes mellitus
	Treatments of diabetes

	Monogenic causes of diabetes
	Insulin folding and ER stress
	Mutations leading to MIDY


	Animal models
	Transgenic dominant-negative glucose-dependent  insulinotropic polypeptide receptor pigs
	Transgenic INSC94Y pigs an animal model for human permanent neonatal diabetes

	Metabolism
	Liver metabolism
	Adipose tissue metabolism
	Differences between visceral and subcutaneous adipose tissue

	Retinoid metabolism

	Proteomics
	Sample preparation
	Liquid chromatography
	Mass spectrometry
	Electrospray ionization
	Mass spectrometry and mass analysers

	Computational and bioinformatic analysis
	Identifying peptides: from spectra to proteins
	Quantitative proteomics
	Missing value imputation


	Statistics
	Statistical hypothesis testing
	Different outcomes of statistical testing

	Multiple hypotheses testing
	Analysis of variance, linear models and post hoc tests
	Principal component analysis
	Gene set enrichment analysis


	Materials and methods
	Adipose tissue from the Munich MIDY pig biobank
	Proteomic sample preparation
	Mass spectrometry and proteomic analysis
	Bioinformatics

	GIPRdn liraglutide treatment study
	Mass spectrometry and proteomic analysis
	Bioinformatics


	Results
	Differential proteome analysis of adipose tissue from the Munich MIDY pig biobank
	Genotype effects
	Gene Ontology enrichment analysis using the STRING database
	Gene set enrichment analysis

	Tissue effects
	GSEA: gene sets enriched in different AT depots

	Interaction effects

	GIPR pigs
	Proteins and gene sets significantly enriched in liraglutide treated pigs
	Proteins and gene sets significantly enriched in placebo treated pigs
	GSEA analysis using all proteins quantified in the pig liver


	Discussion
	Differential proteome analysis of MIDY pig AT
	Proteomic differences between MAT and SCAT
	Genes with large log2 fold changes
	Gene sets involved in metabolism and energy derivation were significantly upregulated in MAT
	Gene sets upregulated in SCAT

	Genotype effects
	RDH16 is upregulated in AT in MIDY pigs and potential links to BAT
	Proteomic changes in proteins involved in fatty acid  and lipid metabolism
	Other proteins significantly more abundant in MIDY AT
	Gene sets enriched in MIDY but not MAT
	Angiotensinogen is downregulated in MIDY AT
	Glycolytic enzymes were upregulated in WT adipose tissue
	Immune response proteins were more abundant in WT
	Other proteins upregulated in WT adipose tissue

	Overlap between enriched gene sets between genotype and tissue
	Only a few proteins had significant Genotype x Tissue interaction effects
	Conclusions and further studies


	Summary
	Zusammenfassung
	Supplementary material for MIDY adipose tissue analysis
	Supplementary materials for GIPRdn pigs liraglutide treatment study
	Additional materials and methods
	Acknowledgements

