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Abstract 
Stress and exposure to stressful life events are some of the strongest risk factors for the 

development of psychiatric disorders.1 While it is known that genetic factors play an important 

role in one’s response to stress, the genetic variants driving differences in the stress response have 

yet to be determined. Using an expression trait quantitative loci (eQTL) approach, previous 

research from our group identified over 3600 genetic variants associated with altered 

transcriptional activity upon activation of the glucocorticoid receptor (GR),2 a key transcription 

factor in the stress response system. These variants (GR-eQTLs) were enriched in GR binding sites 

and putative regulatory elements, and predicted case-control status for major depressive disorder, 

as well as amygdala activity in an emotional reactivity task. However, due to linkage 

disequilibrium, the functional variants driving these transcriptional changes remain unidentified. 

In order to identify which of the GR-eQTLs had a functional effect on GR mediated 

transcription, we performed STARR-sequencing, an approach allowing thousands of DNA 

sequences to be assessed for regulatory element activity in parallel. This allowed us to determine 

the effect of each GR-eQTL on transcriptional activity at baseline and after GR activation with 

dexamethasone (dex) in GR18 and U138MG cells. STARR-seq revealed that 1220 variants were 

located in active regulatory elements, either at baseline or after dex. Of these, 547 variants show 

differential transcriptional activity after dex treatment (DREs). These were enriched in GR-binding 

sites determined by ChIP-seq, as well as chromatin loop anchor points. Next, DREs with allele 

dependent activity at baseline and after dex were identified. We found 165 DREs to show allele 

dependent activity at baseline, and 172 DREs after dex. Both the baseline and dex functional 

variants showed a significant overlap with variants nominally associated with psychiatric disorders 

from the latest psychiatric cross disorder meta-analysis GWAS.3 Furthermore, using Mendelian 

Randomization, nineteen and eleven DREs with allele-dependent activity in the dex and veh 

condition, respectively, were identified to have a putative causal effect on psychiatric disorders. 

These results suggest that the loci modulating the transcriptomic response to stress are putatively 

causally associated with psychopathology.   
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1. Introduction  
1.1. An overview of the role of genetics in psychiatry 

1.1.1. Genetics of psychiatric disorders 
 Psychiatric disorders are a primary cause of disability worldwide, currently comprising 12% 

of all disability adjusted life years.4 Despite their significant social and economic costs, the 

molecular mechanisms underlying psychiatric disorders remain poorly understood. It is well 

established that risk for psychiatric disorders are partially mediated by genetic factors, with sibling 

heritability estimates ranging from 0.3 for major depressive disorder (MDD) to over 0.8 for 

schizophrenia (SCZ).5 For example, a meta-analysis on the heritability of MDD quantified this 

increased risk as an odds ratio (OR) of 2.84 (95% CI = 2.31-3.49) for first-degree relatives of 

subjects with MDD.6 In more recent years, advances made in high-throughput sequencing 

technology have enabled researchers to move beyond family based heritability studies of 

psychiatric disorders to identify disease-associated susceptibility loci using methods such as whole 

exome sequencing, microarrays, and whole-genome sequencing. These advances have allowed 

both small effect size common variants and larger effect size rare variants to be detected. While a 

number of larger effect size loci have been detected in some psychiatric disorders, such as copy 

number variations (CNV) in autism spectrum disorder (ASD)7, 8 and SCZ,9 these findings are rare, 

and few or no robust large effect size loci have been identified for the majority of psychiatric 

disorders.10 On the other hand, genome-wide associations studies (GWAS) have been successful 

in identifying genetic loci with small effect sizes involved in many psychiatric disorders. GWAS 

identify genetic loci associated with a specific phenotype by genotyping both a large cohort of 

individuals displaying the phenotype, as well as a control cohort. By comparing the cases to 

controls, genetic markers associated with a trait can be identified, even when a single genetic locus 

has a small effect. What has become clear from these studies is that in most cases, psychiatric 

disorders are polygenic disorders, with multiple loci being involved, but each of small effect. 

Single disease GWAS have identified between zero (obsessive-compulsive disorder (OCD) and 

post-traumatic stress disorder (PTSD)) to 155 (SCZ) loci associated with psychiatric disorders.11 

Furthermore, there is evidence that some genetic loci have pleiotropic effects, and thus play a role 

in multiple psychiatric disorders. A meta-analysis of eight psychiatric traits (bipolar disorder 

(BPD), MDD, attention deficit hyperactivity disorder (ADHD), anorexia nervosa (AN), OCD, 
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SCZ, Tourette’s Syndrome (TS), and ASD) found 109 loci that were associated with more than 

one of these disorders,3 suggesting that there may be underlying genetic mechanisms common 

across disorders. Furthermore, of the 109 loci, 33 were novel, likely due to the increased sample 

size enabled by the meta-analysis approach, which allows for loci with smaller effect sizes to be 

detected. As sample sizes for GWAS increase, the number of associated loci and their effect sizes 

are projected to increase.  

 

1.1.2.  Using functional genomic approaches in psychiatry 
 While GWAS and other high-throughput techniques have enabled genetic variants involved 

in various psychiatric disorders to be identified, their functional role in the underlying biological 

processes governing these disorders remains elusive. The majority of GWAS loci are located 

within non-coding genomic regions, far from genes, and exhibit high linkage disequilibrium 

(LD).12,13 This LD, which refers to the non-random association between two alleles located at 

different loci, makes it difficult to identify the variants that have a causal role in disease, and which 

variants are only associated with the causal variant. Better functional fine-mapping of GWAS loci 

is required in order to pinpoint which variants play a functional role, and how they contribute to 

psychiatric disorders. 

 Although the majority of GWAS loci are located in non-coding regions, they can still exert 

a functional effect on gene expression via modulation of regulatory element (RE) activity. REs, 

such enhancers and silencers, are genomic regions that regulate the expression of one or 

occasionally, multiple genes. They are located within non-coding regions, and can regulate nearby 

(<1Mb) (cis-REs) or distant (trans-REs) genes.14 Enhancers are REs that typically increase 

transcription at their target gene(s), which can be located as far as millions of base pairs away.15 

Enhancers generally exert their effect by binding transcription factors (TFs), thereby promoting 

chromatin looping that brings the enhancer into proximity with its target gene. Though certain 

chromatin states and histone marks are associated with enhancer regions,16,17 there is no consensus 

enhancer sequence, making their identification challenging. Therefore, the first step in identifying 

functional GWAS loci located in non-coding regions is to determine whether they are located 

within REs and if so, the target genes which they regulate. To this end, various approaches, both 

experimental and computational, can be employed and integrated. Xiao et al. has proposed a 
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framework in which risk variants located in non-coding regions of the genome can be functionally 

prioritized by integrating various genomic datasets and experimental methods.18 

 According to Xiao et al., the first step in this functional prioritization is to determine which 

genes are associated with the genetic variants by combining genotype and transcriptomic data. 

With these two datasets and a sufficient sample size, an expression quantitative trait loci (eQTL) 

analysis can be performed. eQTLs are genetic variants that affect, to differing degrees, the 

expression of a transcript.19 This approach prioritizes genetic variants that have an effect on gene 

expression, and maps the genetic variant to (a) specific gene(s). By mapping the variants to specific 

genes, downstream gene-level analyses can be performed which may provide insight into the 

biological processes and pathways underlying the GWAS trait. Given the cell-specificity of gene 

expression, brain specific transcriptomic data is especially important when investigating the 

pathology of psychiatric disorders. In more recent years, consortia have generated brain-specific 

eQTL databases, which map genetic variants to changes in gene expression in the brain.20, 21, 22 

Although eQTL analyses link genetic variants with changes in gene expression, it does not address 

the challenge posed by LD.  

 The output from GWAS and eQTL analyses provide only indirect associations which are not 

sufficient to confirm whether a genetic variant is indeed located within a RE and whether it is 

functional. For this, one must directly assess the activity of the putative REs using reporter assays. 

Traditional reporter assays allow for the activity of only one putative RE to be assessed at a time. 

For example, in a luciferase assay, the putative RE modulates the activity of the luciferase gene, 

whose product emits light in the presence of a substrate that can be quantified when expressed. 

Therefore, the amount of light emitted is proportional to the strength of the RE.23 However, these 

low-throughout approaches are not compatible with probing thousands of putative REs. 

Fortunately, in recent years, next-generation sequencing techniques have been used to develop 

high throughput assays that allow thousands of putative REs to be assessed in parallel. To date, 

two different approaches have been developed; massively parallel enhancer assays (MPRA) and 

self-transcribing active regulatory region sequencing (STARR-seq). Both approaches involve 

synthesizing the putative REs and cloning these oligonucleotide fragments in parallel into a 

plasmid that contains a basal promoter and an open reading frame (ORF). In MPRA, each fragment 

in the oligonucleotide fragment library contains a unique barcode which is located upstream of a 

polyadenylated tail and downstream of the ORF, so that the barcode is transcribed. The library is 
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transfected into the cells of interest, mRNA is isolated, and cDNA synthesized. The barcodes are 

sequenced before transfection to determine the composition of the input oligonucleotide fragment 

library, and to associate each putative RE with its respective barcodes. The difference between the 

enrichment of the barcodes pre- and post-transfection is proportional to the strength of the RE. In 

principle STARR-seq is very similar except no barcodes are used. Instead, the oligonucleotide 

fragments are cloned downstream of a minimal promoter meaning the mRNA transcribed is the 

sequence of the RE itself. Rather than using barcodes, the mRNA is quantified, as it contains the 

sequence of the RE. Therefore, the strength of a single RE is proportional to its enrichment pre- 

vs. post-transfection, as strong REs will induce transcription of mRNA fragments containing its 

own sequence when transfected into cells.24 Both these high throughput methods allow the allele 

effects on RE activity to be tested, but also the effects of different conditions such as hypoxia or a 

drug treatment.25,26 To date, few studies have employed these high throughout techniques to assess 

psychiatric disorder GWAS variants. A study in 2019 assessed 1049 variants that were in LD with 

64 SCZ associated GWAS loci and identified 53 and 148 functional REs with allele-dependent 

activity in a neuroblastoma and chronic myelogenous leukemia lymphoblast cell line, 

respectively.27 This provides support that these high throughput methods are capable of both 

identifying functional REs and detecting the effects of single psychiatric disorder associated 

variants on transcriptional activity.  

 While high-throughput functional assays allow for functional REs to be identified, they need 

to be mapped to downstream effects to gain a better understanding of how they regulate gene 

expression, thereby providing insight into the mechanisms by which they exert their effects.  To 

gain better insight into the regulatory mechanisms of these variants, other approaches are required. 

Fortunately, there exists publicly available datasets and corresponding computational tools that 

can aid with this task. These tools allow for genetic variants to be functionally annotated in silico 

and across various tissues types. Since REs are associated with certain features, such as specific 

histone marks, open chromatin states, and TF binding, these marks can be used to predict the 

location of REs within different tissues and cell types. Current large datasets include the 

Encyclopedia of DNA Elements (ENCODE) which contains nearly 5000 human datasets,28 and 

the Roadmap Epigenomics Mapping Consortium (REMC). Various tools that integrate data from 

these publicly available datasets have been developed to functionally annotate the genome, such 

as ChromHMM, a tool that uses a multivariate Hidden Markov Model to predict chromatin states 
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and identify REs across the genome.29 However, as useful as these computational tools are, they 

are still limited in the cell types and tissues that they probe, and include only a subset of TFs and 

histone marks. Furthermore, co-localization approaches can only indicate which putative 

mechanisms may be involved, but cannot test them directly.  Therefore, additional experimental 

assays, such as ATAC-seq and ChIP-seq, using the cell types and genomic features of interest are 

often necessary. With these datasets and a sufficient sample size, QTL analyses such as ChIP-

QTLs or chromatin-QTLs can be performed, providing better mechanistic insight into how genetic 

variants may exert their effects, such as by disrupting TF binding or modulating chromatin states. 

However, to move beyond association studies, which are provided by QTL and co-localization 

approaches, direct approaches are required, such as SNP-editing of isogenic cell lines.  

 While GWAS provide valuable information on genetic loci implicated in psychiatric 

disorders, alone they provide little information on functionality. While eQTL analyses, in silico 

functional modelling, and other experimental approaches can help prioritize putatively functional 

variants and even bring us closer to identifying the implicated genes and putative mechanisms 

involved in these disorders, they only provide associations between risk variants and a molecular 

phenotype. To validate these associations, direct assessment of the risk variants is required. 

Integration of the above-mentioned datasets, as well as harnessing the potential of recent genome 

editing technology will not only provide new insights into which variants play a functional role, 

but also illuminate the biological pathways underlying these diseases, which could be exploited to 

develop better diagnostic tools and identify novel therapeutic targets.  

 

1.1.3. Gene x environment interactions in psychiatric disorders 
 While there exists strong evidence from both family-based heritability studies and GWAS 

that genetic risk factors play an integral role in psychiatric disorders, it is also clear from these 

studies that other factors also mediate the risk for these disorders. Indeed, it has been well 

established that environmental factors, such as pre- and postnatal environment, socioeconomic 

status, and stress,30,31,32 contribute to risk for psychiatric disorders. For example, a meta-analysis 

of 26 studies found that childhood trauma, especially neglect and emotional abuse, was 

significantly associated with MDD in adulthood (OR 2.78 and 2.75, respectively).33 However, 

these two factors, genetics and environment, are not independent, and they have been shown to 

interact. Gene by environment (GxE) interactions refer to the influence of environmental and 
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genetic factors on a measured phenotype, in this case, psychiatric disorders. However, in GxE 

interactions, the magnitude of the environmental influence on the phenotype depends on the 

genotype of the individual. Many examples of GxE interactions exist within medicine, such as the 

interaction between alcohol exposure and genetic variants regulating N-glycosylation genes, 

which predicts the severity of fetal alcohol disorder,34 or the interaction between diet and genetic 

variants in type 2 diabetes.35 While GxE interactions have been studied and replicated in a number 

of somatic disorders, the results from GxE interaction studies in psychiatry have not been so 

conclusive. For example, many studies that have focused on the interaction between the serotonin 

receptor transporter gene, 5-HTTLPR, and stressful live events have found a significant effect of 

the GxE interaction on various psychopathologies.36,37,38 However, results from other studies have 

failed to replicate these findings, such as two recent metanalyses focusing on the effect of this 

interaction on depression which have reported negative results.39 These inconsistent results may 

be the result of differences in study design, including how stressful life events and the outcome 

variable, in this case MDD, are defined and diagnosed.  

However, there are some GxE interactions in psychiatry that have been well-studied and 

appear to be more robust. One such well-studied GxE interaction is the interaction between a 

genetic variant (rs1360780) located in an enhancer region within FK506 binding protein 5 gene 

(FKBP5) and childhood trauma. FKBP5 is an important mediator of the hypothalamus pituitary 

adrenal (HPA) axis and is involved in a negative feedback loop to terminate the stress response. 

In one study where exposure to physical childhood abuse was found to be associated with MDD, 

the association was significantly elevated in exposed individuals carrying the risk allele (T/T) 

compared to exposed individuals carrying the reference allele (C/C or C/T).40 In another study, this 

variant, along with three others in FKBP5 was shown to interact with child abuse to predict 

symptom severity of post-traumatic stress disorder (PTSD).41  This interaction between childhood 

trauma and the T/T genotype, has also been studied on a mechanistic level. Klengel et al.42 found 

that methylation of the locus was associated with childhood trauma in carriers of the risk allele, 

but not those with childhood trauma carrying the reference allele. Using a series of experiments, 

the authors propose the following model: the risk allele of rs1360780 causes differential 

interactions between the enhancer and the transcription start site upon GR activation induced via 

child abuse, resulting in transcriptional induction of FKBP5. Persistent overexpression of FKBP5 

results in an impaired termination of the stress response, including prolonged GR activation. The 
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genotype dependent changes in chromatin structure, along with prolonged GR activity, cause DNA 

demethylation at CpGs located within and proximal to GREs. During certain developmental 

periods, the demethylation is stable, and thus results in long-term transcriptional changes of 

FKBP5 upon GR activation. GR-dependent changes in methylation of CpGs in FKBP5 after acute 

GR activation has since been validated.43,44  

As psychiatric disorders typically involve many genetic variants each contributing a small 

effect, it is reasonable to assume that when studying GxE interactions, more insight might be 

gained by considering multiple risk variants by employing a polygene x environment interaction 

model, rather than using a single candidate gene. Polygenic risk scores (PRS), for example, 

consider multiple risk variants and represent the additive effect of the individual variants, which 

are typically weighed by their effect sizes to generate a single score. In polygene x environment 

interactions, a PRS can operationalize the integration of multiple genetic loci with environmental 

variables. Indeed, a few studies have examined the interaction between PRS for depression and 

childhood trauma which, as with the candidate gene studies, yielded conflicting results45,46,47, likely 

due in part to inconsistencies in defining the exposure and outcome phenotype, and insufficient 

power. In general, the results from both polygene and gene x environment studies in psychiatry 

highlight the need to carefully define the environmental exposures and clinical phenotypes to 

include, and to ensure the study has sufficient power. 

 

1.1.4. Stress as a model for polygene x environment interactions  
The challenge of defining environmental factors and outcome phenotypes in psychiatry can 

be partly circumvented by using more reductionistic models and studying well-characterized 

endophenotypes. The findings enabled by these models can then be integrated with findings from 

other datasets, such as clinical cohort data. Endophenotypes are intermediate traits with a genetic 

component more directly related to the underlying biological processes than the clinical phenotype 

itself.48 Using endophenotypes generally increases statistical power, as endpoint clinical 

phenotypes are likely a result of multiple aberrant biological processes converging, which is less 

pronounced in intermediate traits.49 Endophenotypes are especially useful in psychiatry, where 

diagnoses are mainly based on symptom clusters assessed by a clinician, and relatively little on 

biological or genetic markers. As stress is a strong risk factor for multiple psychiatric disorders, I 

have chosen to study the transcriptional response to stress, and how common genetic variants 
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mediate this response. In this case, the environmental factor, stress, is induced pharmacologically, 

allowing for the environmental factor to be precisely and uniformly applied. The endophenotype, 

the transcriptomic response to stress, is quantifiable, and is driven by molecular mechanisms that 

can be investigated. These factors allow for polygene x E interactions to be investigated with 

sufficient power, even with a smaller sample size. 

 

1.2. Stress 

1.2.1. The stress response - Hypothalamus Pituitary Adrenal Axis 
The stress response is a highly dynamic process that helps humans assess and adapt to the 

environment, deal with stressful events and threats, and to anticipate future challenging situations. 

Exposure to stress results in physiological changes that are mediated by two main systems; the 

hypothalamic-pituitary-adrenal (HPA) axis, which is a neuroendocrine system, and the autonomic 

sympathetic adrenomedullary system (SAM). The SAM system responds immediately (within 

seconds) and results in the rapid release of catecholates which prepares the body for the “flight or 

fight” response.50  The HPA axis, on the other hand, is somewhat slower and culminates with the 

release of glucocorticoids (GCs) that have both non-genomic and genomic effects,51 with the latter 

being the focus of this thesis.  

As the name implies, the HPA axis starts with the hypothalamus. Within minutes of being 

exposed to stress, the hypophysiotropic neurons of the periventricular nucleus of the hypothalamus 

are activated and synthesize corticotrophin-releasing hormone (CRH). CRH is released into the 

hypophyseal portal system, and transported to the pituitary gland. In the anterior pituitary gland, 

CRH binds to CRHR receptor 1, inducing the release of adrenocorticotrophic hormone (ACTH), 

which enters the circulatory system. ACTH largely targets the melanocortin type 2 receptors in the 

adrenal cortex, resulting in GC synthesis and release.52 Cortisol is the most abundant circulating 

natural GC in humans and controls a number of physiological processes. The lipophilic nature of 

GCs allow them to translocate across the brain blood barrier and cell membranes without 

additional carriers, enabling them to access every organ system in the body.53 Within a cell, they 

exert their effect by binding two nuclear hormone receptors, the mineralocorticoid and 

glucocorticoid receptors (MR, GR, respectively). MR has a greater affinity for cortisol, meaning 

that at basal cortisol levels, it is nearly saturated.54 Conversely, GR is not significantly occupied in 
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basal conditions, but rather only binds GCs upon activation of the HPA axis or during cortisol 

peaks in the circadian cycle.54,55 This means that GR plays a more dynamic role in responding to 

environmental stressors or threats than MR. In experimental models, the activity of GR, and not 

MR, can be assessed by applying a ligand with a much high affinity for GR compared to MR. 

Dexamethasone (dex), a synthetic GC, is a potent ligand of GR that has a high affinity for GR but 

a very low affinity for MR,56 making it an appropriate ligand for studying GR. 

 

1.2.2. The Glucocorticoid Receptor: Function and binding  
GR is encoded by the nuclear receptor subfamily 3, group C, member 1 (NR3C1) gene, 

located on chromosome 5. In the absence of ligand, GR resides in the cytosol, existing as a complex 

with a number of proteins, including FKBP5. Upon activation by GCs, GR dimerizes and 

translocates from the cytoplasm to the nucleus. Within the nucleus, the GR-complex interacts with 

glucocorticoid response elements (GREs), two hexameric DNA sequences separated by three base 

pairs, to modulate the expression of a number of genes, many of which are involved in the stress 

response. For example, GR upregulates FKBP5, which is involved in the termination of the stress 

response, thus creating a negative feedback loop.52  However, GCs regulate the expression of genes 

involved in many other integral physiological processes, including  those involved with immune, 

metabolic, developmental, and cognitive functions.51  

  Binding of GR does not occur at all GREs. Accordingly, the presence of GREs alone cannot 

predict GR-complex occupancy. It has generally been hypothesized that additional factors such as 

histone post-translational modifications, and chromatin accessibility influence GR-complex 

occupancy at GREs.57  Although the majority (95%) of GR binding has been reported to occur in 

regions of accessible chromatin prior to dex treatment,  for a subset of GR binding sites, the 

presence of dex results in chromatin remodeling, making the chromatin landscape conducive to 

GR binding.58  Furthermore, GR does not exclusively bind to GREs, but can tether to other TFs,59 

complexifying the model of GR binding further. GR binding has been reported to occur 

predominantly in regions containing active enhancer marks and in regions distal to its target 

genes.60  In line with this, GR has been found to be involved in chromatin looping, bringing the 

enhancer in spatial proximity with the promoter of the target gene. Interestingly, the majority of 

the chromatin loops have been reported to be pre-established prior to dex treatment, and are 

involved in both GR-mediated transcriptional activation and repression.61  Overall, the exact 
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mechanisms governing GR binding remains elusive. What is clear, is that a multitude of factors, 

including chromatin and TF landscapes, play an important role. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Overview of the main constituents of the hypothalamus pituitary adrenal axis (HPA axis) 
and activity of the glucocorticoid receptor (GR).  A) The HPA axis is activated in response to an 
environmental stressor which stimulates hypophysiotropic neurons in the PVN to secrete CRH into the 
hypophyseal portal vessels. CRH is transported to the pituitary gland where it binds to receptors, 
triggering the secretion of ACTH. ACTH exits the CNS and binds to the adrenal cortex, leading to the 
secretion of GCs into circulatory system. GCs bind to GRs (and MRs) which modulate the expression 
many target genes, some of which are involved in a negative feedback loop of the HPA axis.  B) At the 
cellular level, GR resides in the cytoplasm as part of a multiprotein complex.  Once bound to its ligand, 
GR dimerizes and translocates into the nucleus. GR binds to DNA, acting as a TF, and regulates the 
expression of many genes.  
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1.2.3. Evidence for role of stress in psychiatric disease 
Exposure to stress and stressful life events is one of the most robust risk factors for 

psychiatric disorders.1 Ample evidence has implicated dysregulation of the HPA axis in stress 

related psychiatric disorders, such as MDD and PTSD. One of the most robust findings is 

hyperactivity of the HPA axis in MDD. Consequently, increased CRH transmission62 and elevated 

basal and stimulated cortisol release has been observed,63,64, 65 although not in all cohorts of MDD 

subjects.66,67 Accordingly, some evidence exists that the negative feedback mechanisms 

responsible for terminating the stress response is blunted,64 but again, this has not been replicated 

in other cohorts.68 In PTSD, cortisol levels have generally been observed to be reduced,69,70 likely 

due to an enhanced feedback mechanism,71 but as with MDD, these findings are not consistent.72 

Aberrant HPA axis functioning in other psychiatric disorders, including BPD and SCZ, have also 

been observed, further highlighting the cross-diagnosis relevance of studying dysregulation the 

HPA axis as an endophenotype in psychiatry.  

 

1.2.4. Genetic variants modulating the stress response  
In this thesis, the functional role of genetic variants moderating the molecular stress response 

is investigated. This builds upon the work of a previous study that identified genetic variants 

mediating the transcriptomic response to stress.73 This study employed a stimulated eQTL 

approach, meaning genetic variants associated with differential gene expression were identified at 

baseline but also after activation of GR. For this eQTL study, 93 controls and 71 subjects with 

MDD were treated with 1.5 mg of oral dex. Blood was drawn at baseline (18:00) and three hours 

post administration (21:00). RNA was extracted from the whole blood samples and gene 

expression for these two conditions was measured using a microarray. Genotyping was performed 

on all individuals. By integrating the genotype and transcriptomic data, eQTLs could be mapped 

at baseline and post-dex treatment, allowing genetic variants influencing gene expression at 

baseline and importantly, after dex to be identified. In total, 3662 variants were identified, each 

modulating the expression of a target gene upon dex stimulation (GR-eQTLs). These variants were 

enriched in GR binding sites and in genomic regions defined by an in silico analysis as being 

enhancers,  consistent with previous findings on GR binding patterns at enhancers.60 Interestingly, 

they were found to be especially enriched in enhancer regions in fetal brain. Furthermore, the GR-

eQTLs were associated with inappropriate amygdala activity in an emotional reactivity task, and 
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were enriched for variants associated with MDD and SCZ, highlighting their relevance in 

psychopathology. 

 

 

 

 

 

 

 

 

 

 
 
Figure 2. Schematic of a representative GR-eQTL. Prior to dex, basal transcription is low, 
therefore the variant exerts little or no significant effect. However, upon dex treatment, 
transcription is induced by GR binding. The variant, by perturbing the GRE, causes transcriptional 
repression. Therefore, only after dex, is allele-dependent transcriptional activity detectable.   
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Figure 3. Schematic summarizing the study identifying GR-eQTLs. Genome-wide expression 
data was generated from peripheral blood from 160 male MDD cases and controls at baseline and 3 
hours post-dex administration. These data were integrated with genotyping data from these 
individuals to identify 3662 GR-eQTLs. These GR-eQTLs were enriched in GR binding sites and 
putative enhancers, and associated with inappropriate amygdala reactivity. Furthermore, they were 
enriched in variants associated with MDD and SCZ.  
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1.3. Technological background for functional genomics 

1.3.1.  STARR-seq  
STARR-seq was employed to test which GR-eQTLs identified by Arloth et al. were located 

within REs and if they were, the effect of the GR-eQTLs on RE activity. To this end, each of the 

GR-eQTLs, along with a 100bp flanking region on either side, was cloned into a STARR-seq 

vector. 

 

 
Figure 4. Schematic illustrating the STARR-seq fragment generation and generation of the 
plasmid library.  

 

The activity of each fragments harboring the GR-eQTLs were tested at baseline and upon 

stimulation with dex. If the GR-eQTL was indeed dex-responsive and functional, the following 

was observed; a transcriptional activation or repression upon stimulation with dex, and a difference 

in RE activity between the fragments containing the two alleles. Since in STARR-seq the strength 

of the REs is reflected by the abundance of mRNA molecules containing its own sequence, the 

strength of the RE and the effect of the GR-eQTL could be quantified using sequencing, with 

higher abundant transcripts reflecting stronger REs. 

 

3662 SNPs x 2 alleles
100bp around SNP

Between minimal-promoter
driven GFP and a downstream 
polyA sequence
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1.3.2. Mendelian Randomization  
Due to the law of independent segregation which states that alleles are randomly distributed 

at conception independent of environmental confounders, one can use a statistical framework, 

termed Mendelian Randomization (MR), to estimate putatively causal relationships between two 

variables; the instrument and outcome, using a third variable, the exposure. Although MR has 

typically been used in the field of epidemiology, in recent years, MR has been applied in the field 

of functional genomics to determine causal relationships between genetic variants and complex 

traits.74,75 In these studies, genetic variants (the instrumental variable) are used to estimate the 

causal effect of a molecular QTL (exposure variable), such as eQTLs, on a complex trait (outcome 

variable). However, in order for the estimates to be valid, the instrumental variable must meet the 

following conditions: 

(1) The instrument must be associated with the exposure. 

(2) The instrument must not be associated with confounding variables of the exposure-

outcome relationship. 

(3) Instrument must only be associated with the outcome through the exposure.  

The third condition, also known as the “no pleiotropy” rule, has been especially problematic as it 

is difficult to exhaustively determine how a genetic variant may exert its effect, and to rule out 

additional pathways not mediated by the exposure. Fortunately sensitivity tests have been 

developed and can be applied to model pleiotropy.76  

Although MR has been most conventionally employed in the field of epidemiology to 

estimate the effect of a risk factor on an outcome using genetic variants that associate with the risk 

factor,77 as mentioned, in recent years it has also been applied to estimate causal effects of 

molecular QTLs on complex traits. For example, a study in 2019 used summary statistics from 

multiple GWAS of complex traits as well as multiple eQTL databases and identified over 2300 

genes causally associated with one or more phenotypes. In this study, 36% of the MR significant 

genes did not reach genome-wide level significance in the GWAS, highlighting the ability of this 

approach to identify novel genes or molecular phenotypes causally associated with diseases, even 

when they are undetectable by more conventional approaches, such as GWAS, due to power 

limitations. Within the field of psychiatry, the few studies that have implemented MR have 

uncovered novel causal relationships. For example, a study in 2020 identified a causal association 

between increased signaling of an inflammatory marker, IL-6 and suicidality,78 and another MR 
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study found glycemic traits were causally associated with AN.79  However, to my knowledge, no 

MR study has used molecular QTLs on exclusively psychiatric phenotypes. Given that the stress 

response is highly implicated in psychiatric disorders, we used MR to investigate whether the 

stress-modulating functional genetic variants were causally involved in psychopathology. This 

framework is especially advantageous as the direct and reductionistic setup of the STARR-seq (i.e. 

directly testing the effect of a variant on RE activity) decreases the confounding effect of 

pleiotropy and ensures the causal estimates are valid. 

 

Figure 5. Overview of Mendelian Randomization. Using information about the effect between 
the instrument and outcome (from GWAs) and the instrument and exposure, the causal exposure-
outcome relationship can be assessed, reducing the effect of confounders.  

 

 

 

Created with BioRender.com 
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2.  Objectives of research  
The overarching aim of this work was to functionally fine-map and characterize REs involved in 

the genetic moderation of the molecular stress response and to better understand how they relate 

to psychopathology. 

 

2.1. Identification of functional variants involved in the transcriptomic response to 

stress  
In the first part of this work, I employ a high throughout reporter assay to test 3662 variants located 

in putative REs in order to identify those that are functional. Firstly, I identify dex responsive REs 

(DREs). From these DREs, I determine which of these DREs harbor functional genetic variants.  

 

2.2. Characterization of regulatory elements modulating the stress response 
The second objective of this work was to characterize the REs by integrating GR ChIP-seq, 

chromatin conformation assays, and in silico modelling to better understand the genomic and 

epigenomic landscape surrounding the stress-moderating functional variants. 

 

2.3. Causal relationship between stress-mediating variants and psychiatric traits 
The first objectives focus primarily on identifying functional variants and understanding the 

mechanisms by which the stress response is mediated. However, given the strong relationship 

between stress exposure and psychiatric disorders, I aimed to determine whether the same genetic 

variants involved moderating the transcriptomic stress response are also causally involved in 

psychopathology. To this end, I use GWAS identified psychiatric risk loci to perform enrichments 

analyses. To estimate a causal effect, I employ two-sample MR.  
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3. Material and Methods  
3.1. Material 

3.1.1. Cell lines 

• U138MG cells (German Collection of Microorganisms and Cell Cultures GmbH, ACC 

291) 

• Lymphoblastoid cell line from B-Lymphocyte (Coriell Institute, GM18516)  

• GR18 cells (gift from Dr, Sebastiaan Meijsing, Max Planck Institute of Molecular 

Genetics)  

 

3.1.2. Bacterial Cells 

• MegaX DH10B T1R Electrocompetent Cells (Invitrogen, C6400-03) 

• Stellar Competent E. coli HST08 Cells (Takara Bio, 636763)  

• One Shot ccdB Survival 2T1 (Invitrogen, A10460) 

 

3.1.3. Plasmids (see Table S2) 

• pSTARR-seq_human backbone (gift from Dr. Sebastiaan Meijsing, Addgene #71509) 

• pSTARR-seq_human with CMV (gift from Dr. Sebastiaan Meijsing, see Table S2) 

• pSTARR-seq_human scr sequence (gift from Dr. Sebastiaan Meijsing, Addgene #71509)  

• pSTARR-seq_human with FKBP5 binding site (gift from Dr. Sebastiaan Meijsing, 

Addgene #71509)  

 

3.1.4. Antibodies 

• Anti-glucocorticoid receptor (Proteintech, 24050-1-AP) 

• Anti-histone H3 (Cell Signaling, 4499T) 

• Anti-GAPDH (Millipore CB1001) 

• Anti-beta actin (Cell Signaling, 3700) 

• HRP-conjugated secondary antibody anti-rabbit (Cell Signaling, 7074) 
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3.1.5. Restriction Enzymes 

• SalI-HF (New England Biolabs, R3138S) 

• AgeI-HF (New England Biolabs, R3138S) 

• HindII-HF (New England Biolabs, R3104) 

• EcoRI-HF (New England Biolabs, R3101) 

 

3.1.6. Reagents and other materials 

• Minimum Essential Medium Eagle (Gibco, 31095-029) 

• Sodium pyruvate (ThermoFisher, 11360070)  

• Antibiotic-antimycotic (ThermoFisher, 15240-062) 

• RMPI medium (Biochrom, FG 1385) 

• Fetal bovine serum (Thermo Fisher, 10270-106) 

• Dexamethasone (Sigma-Aldrich, D4902,) resuspended in 100% ethanol 

• Ethanol (VWR, 1.00983.1011) 

• Cell Fractionation Kit (Cell Signaling, 9038) 

• Protease inhibitor cocktail (Sigma-Aldrich, P2714)  

• Qiazol Lysis reagent (Qiagen, 79306) 

• RNeasy Mini Kit (Qiagen, 74104) 

• UltraPure™ Phenol:Chloroform:Isoamylalcohol 25:24:1 (ThermoFisher, 15593031) 

• QuantiTect Reverse Transcriptase kit (Qiagen, 20531) 

• Methanol-free 16% Formaldehyde Ampules (ThermoFisher, 28908) 

• ECL Western Blotting Substrate (Pierce, Pier32106) 

• Phosphate Buffered Saline tablets (Merck, P4417)  

• Qubit Protein Assay kit (ThermoFisher, Q33212) 

• 12-230 kDa Jess or Wes Separation Module, 8 x 25 capillary cartridges (ProteinSimple, 

SM-W004) 

• Anti-Mouse Detection Module (ProteinSimple, DM-002) 

• Anti-Rabbit Detection Module (ProteinSimple, DM-001) 

• Protan 0.45um nitrocellulose Cytiva, 15259794)  
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• Taqman Fast Advanced Master Mix (4444964, ThermoFisher) 

• TapeStation d5000 Reagents (Agilent Technologies, 5067-5589) 

• TapeStation d5000 ScreenTape (Agilent Technologies, 5067-5588) 

• Dynabeads M-280 Sheep Anti-Rabbit IgG, (Thermofisher, 11203D) 

• Bovine Serum Albumin (Sigma Aldrich, 05482-25G)  

• Powdered Milk (Roth, 68514-61-4) 

• LiCl (Roth, 3739) 

• TRIS (Roth, 77-86-1) 

• Igepal CA-630 ( Sigma Aldrich, I8896) 

• Sodium deoxycholate (Sigma Aldrich, D6750) 

• Sodium bicarbonate (Sigma Aldrich, S5761-500G)  

• Sodium n-Dodecyl Sulfate, 20% Solution (Sigma Aldrich, 05030) 

• RNAse A (Merck Millipore, 70856) 

• Proteinase K (Merck Millipore, 70663) 

• QIAquick PCR Purification Kit (Qiagen, 28104) 

• Qubit dsDNA HS Assaykit (Invitrogen, Q32851) 

• LightCycler® 480 SYBR Green I Master (Roche, 04707516001) 

• NEB Next Ultra II Library Preparation kit (New England Biolabs, E7645L) 

• NEBNext Multiplex Oligos for Illumina Index Primers Set 1-3, 96 Index Primers (E7335S, 

E7500S, E7710S, E6609S, New England Biolabs) 

• KAPA Library Quantification Kits (Roche, 07960140001) 

• llumina Free Adapter Blocking Reagent (Illumina, 20024145) 

• Novaseq 6000 S1 Reagent V1.5 (300 cycles) (Illumina, 20028317) 

•  In-Fusion HD Cloning Plus kit (Takara Bio, 638910) 

• Kappa HiFi HotStart ReadyMix (Roche, KK2601) 

• Agencourt AMPure XP beads (Beckman Coulter, 10453438) 

• Sodium chloride (Sigma Aldrich, S7653) 

• Bactotryptone (Thermo Fisher, 211701) 

• Yeast extract (Merck Millipore, 70161) 
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• NucleoBond Xtra Maxi (Macherey Nagel, 740414.50) 

• MiSeq Micro Reagent Kit V2 (300 cycles) (Illumina, MS-102-2002) 

• Cell Line Nucleofector Kit (Amaxa, VCA-1003 

• Lipofectamine 3000 Transfection Reagent (ThermoFisher, L3000015)  

• Opti-MEM I Reduced Serum Media (Gibco, 31985062) 

• RNAeasy Midi Kit (Qiagen, 75144 

• RNA ScreenTape (Agilent, 5067-5576) 

• RNA ScreenTape Ladder (Agilent, 5067-5577) 

• RNA ScreenTape Sample Buffer(Agilent, 5067-5578) 

• Dynabeads mRNA Purification Kit (ThermoFisher, 61006) 

• TurboDNase (ThermoFisher, AM2238) 

• RNAClean XP (Beckman Coulter, A63987) 

• SuperScript III Reverse Transcriptase (ThermoFisher, 18080051) 

• Noveseq 6000 SP Reagent Kit v1.5 (300 cycles) (Illumina, 20028400) 

• PeqGold Agarose (VWR, 732-2789) 

• RotiGelStain (Carl Roth, 3865.1) 

• LB Broth (Lennox) (Roth, X964.1) 

• LB Agar  (Thermo Fisher, 22700025) 

• Bromophenol Blue Sodium Salt (Sigma Aldrich, 114405) 

• Glycerol (Roth, 56-81-5) 

• Betamercaptoethanol (Roth, 60-24-2) 

• Q5 High Fidelity 2X MasterMix (New Engand Biolabs, M0492) 

• EvaGreen 20X (Biotium, 31000-T) 

3.1.7. Instruments 

• Bioruptor Pico (Diagenode) 

• Nanodrop 2000 spectrophotometer (NanoDrop Technologies) 

• Luna Automated Cell Counter (Logos, Biosystems) 

• LightCycler 480 Instrument II (Roche, Mannheim) 

• Tapestation 2200 (Agilent Technologies) 
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• Qubit 1.0 Fluorometer (Invitrogen) 

• NovaSeq 6000 (Illumina) 

• Illumina MiSeq (Illumina) 

• Amaxa Nucleofector IIB (Lonza Bioscience, AAB-1001) 

• ProteinSimple Wes automated Western Blotting machine (ProteinSimple) 

• ChemiDoc MP system (Biorad, 17082) 

• LifeEco Thermal Cycler (Bioer, BYQ6078) 

• Gene Pulser Xcell (Biorad, 1652660) 

• E-Box VX2 Complete Imaging System (Vilber Lourmat) 
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3.2. Methods 

3.2.1. Cell culture 
 U138MG cells were purchased from the German Collection of Microorganisms and Cell 

Cultures GmbH. Cells were cultured in Minimum Essential Medium Eagle supplemented with 

10% fetal bovine serum, 1% sodium pyruvate and 1% antibiotic-antimycotic, and were passged 

every 5-7 days. GR18 cells were provided as a gift from Dr. Sebastiaan Meijsing from the Max 

Planck Institute of Molecular Genetics and were cultured in Dulbecco's Modified Eagle Medium 

with high glucose supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic, and 

were passaged every 2-3 days. LCLs were cultured in RMPI media supplemented with 10% fetal 

bovine serum and 1% antibiotic-antimycotic, and passaged every 3-4 days. All cells were 

incubated at 37°C and 5% CO2.  

 

3.2.2. Pharmacological activation of GR 
 To activate GR, cells were treated with dex. For all experiments involving dex, cells were 

treated with either 100nM dex or 0.001% ethanol as a vehicle control (veh) for 4 hours, unless 

stated otherwise.  

 

3.2.3. Characterization of GR in model cell lines 

3.2.3.1. Fractionation 
 To assess the translocation of GR upon ligand binding, dex and veh treated GR18 and 

U138MG cells were split into three distinctive fractions; whole cell, nuclear/cytoskeleton, and 

cytoplasm using a cell fractionation kit (Cell Signaling). The fractionation was performed 

according to the manufacturer’s instructions except for the following two changes: from the 

resuspended cell pellet, 100uL was removed for the whole cell fraction and centrifuged at 350g at 

4°C and for 5 minutes. The resulting pellet was resuspended in 100uL RIPA buffer (50 mM Tris 

pH 8.0, 150 mM NaCl, 1% Igepal, 0.5% sodium deoxycholate, and 0.1% SDS)  

with 1x protease inhibitor and constituted the whole cell fraction. Secondly, the sonification steps 

were performed on the Bioruptor Pico using 5 cycles (30s on/30s off). Fractions were quantified 

using the Qubit Protein Assay Kit on the Qubit 1.0 Fluorometer. 
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3.2.3.2. Analysis of subcellular protein fractions  
 To assess the translocation of GR into the nucleus upon stimulation with dex, GR expression 

in the subcellular fractions were analyzed on the ProteinSimple Wes automated Western Blot 

system according to the manufacturer’s instructions, using 0.5ug of protein per sample and the 

following antibody dilutions: GR (1:100), H3 (1:100), GAPDH (1:200), and beta-Actin (1:50). 

The appropriate secondary antibody modules were purchased from ProteinSimple (anti-mouse and 

anti-rabbit) and used according to the protocol.  

 

3.2.3.3. Quantification of GR target gene expression  
 Two million of both GR18 and U138MG cells were treated with dex or veh. After four hours, 

the cells were collected and pelleted by centrifugation at 2000rpm for 5 minutes at 4 °C. Cells 

pellets were lysed in 750µL of Qiazol lysis reagent and stored at -80°C until RNA was extracted. 

Total RNA was extracted using the RNeasy mini kit. Briefly, samples were thawed on ice before 

100µL of Phenol-Chloroform-Isoamyl mixture was added. Samples were shaken for 15 seconds, 

incubated for 2-3 minutes, and centrifuged for 15 minutes at 15 000g at 4°C for phase separation. 

The aqueous phase was extracted and washed with 70% ethanol before being transferred to a spin 

column. Columns were washed with RWI and RPE, according to the protocol. RNA was eluted in 

30µL of RNase free water, and quantified using the Nanodrop 2000 spectrophotometer.   

 Using the Quantitect Reverse Transcriptase kit, 1ug of RNA was used to synthesize cDNA 

according to the manufacturer’s protocol. To confirm the activation of GR, the induction of three 

GR target genes after treatment with dex was quantified. To this end, qPCR was performed in 

technical triplicates using gene specific IDT Taqman probes for FKBP5, SGK1, TSC22D3 and the 

housekeeping gene, YWHAZ (see Table S1, primers 1-4). Each reaction contained 2uL of diluted 

cDNA (1:10 dilution), 5uL of Taqman Fast Advanced Master Mix, 1ul of the gene specific probe, 

2uL of water. The reaction was amplified on the LightCycle 480 with the cycling conditions 

summarized in Table 1.  
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Table 1. Cycling conditions for PrimeTime gene expression analysis LightCycler 480 Instrument 

II (Roche, Mannheim, Germany)  

UNG Incubation 50 ˚C  2 mins   

Polymerase activation 95˚C  20s   

Denature 60°C  15s   

65 cycles Anneal/Elongation 72°C  30s  

  

The fold change of FKBP5 expression in the dex condition compared to the veh control was 

calculated using the following formula: 

 

2(FKBP5 dex - FKBP5 veh )- (YWHAZ dex - YWHAZ veh) 

 

3.2.4. GR binding in model cell lines 

3.2.4.1. Validation of the GR antibody for ChIP-seq 
 As outlined by the ENCODE TF ChIP-sequencing guidelines80, the antibody used for the 

GR-ChIP was validated using two independent methods in the LCL cell line. As a primary 

validation method, the specificity of the antibody was assessed by Western Blotting. As a 

secondary validation method, a motif analysis was performed on data generated from a pilot ChIP-

sequencing experiment using the same GR antibody. 

 

3.2.4.1.1. Western Blotting 
 Frozen LCL cells pellets (2 million cells) were lysed in 100uL of RIPA buffer containing 

protease inhibitor. Lysates were sonified for 5 cycles (30s on/30s off) on the Bioruptor Pico. 4x 

loading buffer (250 mm Tris–HCl (pH 6.8), 8% SDS, 0.2% bromophenol blue, 40% glycerol, 20% 

β-mercaptoethanol) was added to the protein sample (10ug), for a final 1x concentration. The 

samples were heated at 95°C for 5 minutes. Proteins were separated on a 10% acrylamide gel for 

65 minutes at 140V in 1x running buffer (25 mM Tris-HCl, 0.1% SDS, 190mM glycine) and 

electrotransferred onto a 0.45um nitrocellulose membrane using the Mini Trans-Blot 

Electrophoretic Transfer Cell and 1x transfer buffer (90% 1x running buffer, 10% methanol) for 

90 minutes at 100V. Membranes were blocked in 5% low-fat milk in TBST buffer (137mM NaCl, 
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3mM KCl, 25M Tris-HCl, 0.1% Tween-20) for 1 hour at room temperature, rinsed three times for 

10 minutes with TBST, and incubated with primary antibodies overnight (1:2000 GR, diluted in 

TBST, 1:10000 GAPDH) at 4°C. The next day, the blot was rinsed three times for 10 minutes with 

TBST and incubated with the secondary antibodies for 1 hour at room temperature. The blot was 

rinsed an additional three times for 10 minutes with TBST before being probed with 1mL of ECL 

Western Blotting Substrate according to the manufacturer’s instructions. Membranes were 

visualized using the ChemiDoc MP system.  

 

3.2.4.1.2. Motif analyses 
 To validate the GR antibody, a pilot GR ChIP-sequencing dataset was generated using LCLs. 

Data was processed as described Section 3.2.4.5. A motif analysis was performed on peaks (FDR 

<0.05), using the web tool “MEME-ChIP Suite” (meme-suite.org/tools/meme-chip). The classic 

analysis mode using the vertebrate motif library with standard settings was applied.  A motif 

analysis on the STARR-seq DREs was performed using the online tool, “TRAP (Transcription 

Factor Affinity Prediction)”. The “multiple DNA sequence analysis” was performed using the 

transfac 2010 vertebrate database and human promoters for the background model. 

 

3.2.4.2.  GR ChIP 
 The GR-ChIP in the U138MG cells was performed in biological triplicates. Each triplicate 

was stimulated independently. After the dex stimulation, 20 million cells per condition were 

collected and crosslinked on a rotating platform for 10 minutes in 1% formaldehyde at room 

temperature. Crosslinking was quenched by adding cold glycine to a final concentration of 0.125M 

for 5 minutes on the rotating platform. Cells were centrifuged for 5 minutes at 400g at 4°C and 

washed twice with cold PBS. The cell pellet was snap frozen in liquid nitrogen and stored at -80°C 

until ChIP was performed.  

 Once the triplicate samples were collected, the crosslinked cell pellets were thawed on ice 

and chromatin was sheared according to the NEXSON protocol.81 Briefly, nuclei were extracted 

in cell lysis buffer (0.01M Tris-HCl, 0.01M NaCl, 0.2% Igepal, and 1x protease inhibitor) by 

sonicating for 10 cycles (5s on/30 off) on the Bioruptor Pico Sonifier. Nuclei were pelleted by 

centrifugation at 2000rpm for 5 minutes at 4°C and washed once with cell lysis buffer. Nuclei 
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pellets were resuspended in 1mL of shearing buffer (0.01M Tris-HCl, 0.1% SDS, and 0.001M 

EDTA, 1x protease inhibitor). Extracted nuclei were quantified using the Luna Automated Cell 

Counter and 10 million nuclei were suspended in 600µL of shearing buffer. Nuclei were sonicated 

in 3x 200µL aliquots in the Bioruptor Pico Sonifier for 20 x 2 cycles (30s on/30s off). To assess 

size distribution, 10uL of sheared sample was reverse crosslinked at 95°C for 15 minutes with 

NaCl at a final concentration of 0.2M. Sheared chromatin samples were treated for 15 minutes 

with RNAse A at 37°C. To asses size distribution, reverse cross-linked samples were run on the 

Tapestation 2200 with the DNA d5000 kit. If necessary, chromatin samples were sheared for an 

additional 1-12 cycles, to ensure that the majority of fragments were 100-300bp. Chromatin was 

stored overnight at 4°C. For each IP sample, 200uL of Dynabeads M-280 Sheep anti-rabbit IgG 

beads were washed twice with cold bovine serum albumin (5mg/mL) and blocked overnight on a 

rotator at 4°C. The following day, 5µg of anti-GR antibody was incubated with the blocked beads 

for 2 hours at 4°C. Chromatin samples were cleared by centrifugation for 15 minutes, 13000rpm 

at 4°C. 10µL of each sample was extracted and stored at -20°C to use as an input control. The 

antibody-bead conjugate was washed twice with cold PBS/bovine serum albumin before 500µL 

of sample was added. Samples were rotated for 1 hour at room temperature, followed by 1 hour at 

4°C. Samples were washed 5 times with LiCL buffer (0.1M Tris (pH 7.5), 0.5M LiCl, 1% NP-40, 

1% sodium deoxycholate) for 3 minutes and once with TE buffer (0.01mM Tris-HCl (pH 7.5), 

0.0001M EDTA) for 1 minute at 4°C. Samples were eluted in 200uL elution buffer (1% SDS, 

0.1M NaHCO3) and placed on a 65°C heating block for 30 minutes, shaking at 1200rpm. To 

reverse the crosslinking, the supernatant and input controls were treated with NaCl at a final 

concentration of 0.2M overnight on a heating block at 65°C. Samples were digested with 

0.050µg/µL of RNAse A for 30 minutes at 37°C, followed by 0.2µg/µL of Proteinase K for 1 hour 

at 55°C. Samples were purified using a PCR Cleanup Kit and eluted in 50µL of EB buffer. Samples 

were quantified using the Qubit high sensitivity dsDNA Assay kit and stored at -80°C until qPCR 

or library preparation. 

 

3.2.4.3. qPCR to quantify GR ChIP enrichment 
 Using the ChIP and input control samples, qPCR was performed to assess the efficiency of 

the ChIP before continuing with sequencing. To this end, two primers were used. One primer, the 

positive primer, was chosen to amplify a known binding site of the GR (FKBP5 intron 5). The 
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other primer, the negative control, amplified an intergenic region where the GR has not been shown 

to bind (TULP-FKBP5). Each qPCR reactions contained 1uL of the ChIP or input samples, 5uL 

LightCycler 480 SYBR Green I Master, 0.5uL of both the forward and reverse 10uM primers 

(Table S1, primers 5-8), and 3uL of water. qPCR was performed on the LightCycler 480 

Instrument II, using the cycling conditions summarized in Table 2.  

 

Table 2. Cycling conditions for ChIP-qPCR on the LightCycler 480 Instrument II  

Preincubation 95˚C  5 mins   

Denaturation  95˚C  10s   

Annealing 60°C  10s   

45 cycles Elongation 72°C  10s  

 

Melting Curve 

95°C  5s   

60°C  1 min   

97°C  -   

Cooling 40°C  10s   

 

 To calculate ChIP efficiency, the percent input for both dex and veh samples was calculated 

using the following formula, where Ct represents the cycle threshold for detection. Since only 1% 

of the input control was collected, the Ct value was corrected.  

 

100	 × 2^ΔCt(Ct Input –6.64 - Ct ChIP) 

 

Then, the resulting percent inputs from the dex and veh treated samples for both the positive and 

negative primers were compared.  

 

3.2.4.4. Library generation 
 To generate ChIP-libraries for sequencing, 1ng of each ChIP sample and the corresponding 

input control were used. Libraries were generated using the NEB Next Ultra II Library Preparation 

kit according to the manufacturer’s protocol, with the following changes: adaptors were diluted 

1:40 with Tris-HCl (pH 8.0) and the resulting adaptor ligated DNA was not size selected. PCR 

was performed using NEBNext Multiplex Oligos for Illumina (Index Primers Set 1-3) using 15 
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cycles. After the final elution, individual libraries were quantified using the Qubit high sensitivity 

dsDNA Assay Kit and the molarity assessed using the Bioanalyzer DNA High Sensitivity Assay. 

Individual libraries were multiplexed based on the molarity of the fragments between 200-1000bp. 

The multiplexed library was then quantified with the KAPA Library Quantification Kit according 

to the manufacturer’s protocol using the LightCycler 480 Instrument II Finally, the multiplex 

library was treated with 30uL of the Illumina Free Adaptor Blocking Reagent according to the 

manufacturer’s protocol.  

 

3.2.4.5. Sequencing and data analysis 
 The U138MG GR-ChIP libraries were sequenced at the Sequencing Core facility of the Max 

Planck Institute of Molecular Genetics, Berlin on the Illumina NovaSeq 6000 platform. Paired-

end sequencing reads of 50bp were generated using an S1 flowcell. The LCL GR-ChIP libraries 

were sequenced on the Illumina HiSeq 4000 platform with 50 bp paired-end sequencing. For both 

libraries, paired end reads were trimmed for adapters using cutadapt. Afterwards, sequenced reads 

were aligned to hg19 (LCLs) and hg38 (U138MG) with Bowtie2. Duplicate reads mapping to the 

same genomic positions were filtered using Picard (MarkDuplicates). Peak-calling was performed 

with MACS2 (q-value cutoff <0.05) on the remaining non-redundant reads. Blacklist regions were 

removed using bedtools and the ENCODE blacklist regions for the appropriate assembly (hg19 or 

hg38). Peaks on mitochondrial genes and unassigned contigs were removed. For the U138MG 

ChIP-seq data, only peaks that were present in two (of three) replicates were included in the 

consensus peak set.  

 

3.2.4.6. ChIP-seq for GR18 cells 
 GR ChIP-seq sequencing data for the GR18 cell lines treated with 1uM dex for 90 minutes 

were publicly available from the sequencing read archive (Replicate 1: SRA accession 

SRX256867/SRX256891;82 Replicate 2: ArrayExpress accession E-MTAB-961683). Sequencing 

data were processed as described previously and were provided by the research group of Dr. 

Sebstiaan Meijsing (Max Planck Institute of Molecular Genetics, Berlin Germany).84  Briefly, 

reads were mapped to hg19 with Bowtie2 and duplicates were removed using Picard 

(MarkDuplicates). Reads with filtered with SAMTools to only include reads with a mapping 
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quality of >10. Bigwig files were generated using command bamCoverage from deepTools and 

normalized with RPKM. Paired end reads were trimmed for adapters using cutadapt. Peak-calling 

was performed with MACS2 (q-value cutoff <0.01) on the remaining non-redundant reads. 

Blacklist regions were removed using bedtools and the ENCODE blacklist regions for hg19. Peaks 

on mitochondrial genes and unassigned contigs were removed.  

 

3.2.5. Hi-C analysis 
 Processed Hi-C data (interaction frequencies, insulator regions, and TAD boundaries) which 

was performed on thymidine synchronized U2OS (parental GR18 cells) cells were provided by the 

research group of Dr. Martin Hetzer (Salk Institute of Biological Studies, University of California 

San Diego). Data were acquired and processed as described previously.85 Only data generated from 

Hi-C experiments performed 360-minutes post-thymidine treatment were analyzed to ensure that 

the 3D structure had completely recovered from the treatment. A consensus interaction set was 

generated by creating a union set of regions from both biological replicates using the R package 

LoopRig 0.1.1.  

 

3.2.6. STARR-seq  

3.2.6.1. Generation of the STARR-seq input library 
 DNA fragments for integration into the human STARR-seq plasmid were designed by using 

the hg19 genomic coordinates of the GR-SNPs73 and extending them by 100bp up and down stream 

to generate 201bp fragments. On either side of the fragment, sequences compatible with the P5 

and P7 Illumina adaptors (Figure 6, red) and In-Fusion HD Cloning Plus kit (Figure 6, orange) 

were added. Additionally,  

the following positive and negative controls were included; known positive dex responsive REs 

defined by previous STARR-seq experiments86 located near H3K27me ChIP peaks, randomly 

selected genomic regions and random sequences generated using a Markov Model. The controls 

fragments were also 201bp in size. 
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Figure 6. In-Fusion HD cloning (orange) and Illumina (red) compatible fragment design for 
integration of the GR-SNPs into the human STARR-seq plasmid. 

 
An oligo pool, containing all the fragments and controls, was ordered from Twist Biosciences and 

resuspended in low TE for a final concentration of 10ng/uL. 10ng of the oligo pool was amplified 

using the Kappa HiFi HotStart ReadyMix PCR kit and primers complementary to the synthesized 

fragments (Table 1, primers 9-10) using the following program: 
 

Table 3. Cycling conditions for STARR-seq plasmid library amplification 

Initial denaturation   95˚C  3 mins   

Denaturation   98˚C  20s   

Annealing   60°C  15s  12 cycles 

Elongation   72°C  30s   

Final Elongation   72°C  1 min   

 

 The PCR product was purified using the NucleoSpin Gel and PCR purification kit 

(Macherey-Nagel) and eluted in 30uL of TE buffer. The purified oligo pool was then cloned into 

the gel-purified STARR-seq vector which was linearized with SalI-HF and AgeI-HF at 37°C for 

3 hours. Cloning was performed according to the In-Fusion HD Cloning Plus kit protocol. Briefly, 

ten parallel reactions were performed, each containing 100ng of linearized STARR-seq vector, 

25ng of the oligo pool, and 2uL 5x In-Fusion HD Enzyme Premix, in a total reaction volume of 

10uL. The reactions were heated to 50°C for 15 and immediately placed on ice. Reactions were 

pooled before being purified using a 1.8:1 ratio of Agencourt AMPure XP beads and eluted in 

25uL of water.  

 For the bacterial transformation, ten parallel reactions were performed each containing 20ul 

MegaX DH10B T1R Electrocompetent Cells and 2uL of the purified STARR-seq oligo plasmid 

pool. Bacterial cells were electroporated using 1.5V on the Gene Pulser Xcell. Five transformants 

were pooled and each pool was added to 500mL of LB medium (10g/L sodium chloride, 10g/L 
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bactotryptone, 5g/L yeast extract) containing 100ug/mL of ampicillin and cultured overnight at 

37°C and shaking at 190rpm. The next morning, the cultures were evenly divided into three 

reactions and the STARR-seq plasmid pool was isolated using the NucleoBond Xtra Maxi kit 

according to the manufacturer’s instructions using an elution volume of 600uL. The supernatants 

were pooled, and the pool was quantified using the Nanodrop 2000 spectrophotometer. The size 

distribution was assessed using the Bioanalyzer DNA High Sensitivity Kit.  

 

3.2.6.2. Preparation of the STARR-seq input plasmid library 
 To determine the representation of the individual fragments within the input library, the 

plasmid library was sequenced. To prepare the plasmid library for sequencing, five parallel PCR 

reactions were performed using 5ng of the plasmid pool, 25uL of Kapa Hifi HotStart ReadyMix, 

1.5uL of each of two primers (Table S1, 11-12) complementary to the STARR plasmid, and 

enough water for a total reaction volume of 50uL.  

 

Table 4. PCR conditions to amplify the STARR-seq plasmid DNA pool 

Initial denaturation   98˚C  45s   

Denaturation   98˚C  15s   

Annealing   65°C  30s  8 cycles 

Elongation   72°C  30s   

Cooling   4°C  forever   

 

The PCR reactions were combined and purified using Ampure XP beads with a 1:1 ratio of PCR 

reaction volume to bead volume, and eluted in 50uL of water. The concentration was measured 

using the Qubit dsDNA HS Assaykit. To make the plasmid pool compatible for Illumina 

sequencing, five parallel PCR reactions were performed each containing 5ng of purified plasmid 

DNA, 1.5uL of NEB Universal Primer, 1.5uL of NEBNext Oligo #5, 25uL of Kapa HiFi HotStart 

ReadyMix, and enough water for a total volume of 50uL, using the following amplification 

conditions: 
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Table 5. PCR Conditions for adaptor ligation to the amplified STARR-seq DNA plasmid pool 

Initial denaturation   98˚C   45s     
Denaturation  98˚C  15s   

Annealing  65°C  30s  10 cycles 
Elongation   72°C   70s     
Cooling  4°C  forever   

 

The PCR reactions were combined and purified using Ampure XP beads with a 1:1 ratio of PCR 

reaction volume to bead volume, and eluted in 50uL of water. 

 

3.2.6.3. Sequencing of the STARR-seq input library 
 The resultant plasmid library was sequenced on the Illumina MiSeq platform. Since the SNPs 

of interest were located directly in the center of the fragments, 150bp paired end sequencing was 

performed, using the MiSeq Micro Reagent Kit V2 (300 cycles). Reads were assessed using 

FastQC and trimmed using the tool, Cutadapt according to the adaptor sequence and quality of the 

read. The sequences of the ordered fragments were used as the reference for alignment, which was 

performed using the tool bwa. Since the effect of a single variant was to be assessed in the STARR-

seq assay, only reads that perfectly matched the reference sequences were included. The reads per 

fragments were summed and the distribution was assessed to ensure that the majority of the 

fragments were represented and no single fragments was majorly overrepresented. A count table 

was generated and used for downstream analyses.  

 

3.2.6.4. Transfection of GR18 cells with the STARR-seq input library 
 GR18 cells were transfected with the input STARR-seq library using Amaxa Nucleofector 

II Kit V and program X-001. Five million cells were transfected with 5ug of input STARR library 

and transferred to a 15cm cell culture plate, for a total of 6 plates (3 dex, 3 veh). The next morning, 

the cells were treated with dex or the veh control. 

 

3.2.6.5. Transfection of U138MG cells with the STARR-seq input library 
 U138MG cells were transfected with the STARR input library using Lipofectamine 3000. 

24 hours before transfection, 5 million cells were plated in a 15cm cell culture plate, for a total of 
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6 plates. The next day, each plate was transfected with 15ug STARR-seq plasmid library according 

to the manufacturer’s protocol for a 6-well plate and 5uL of Lipofectamine, but all volumes were 

scaled by a factor of 15, as 15-cm plates were used. Eighteen hours following the transfection, 3 

plates were treated with dex and 3 plates with a veh control.  

 

3.2.6.6. RNA isolation and STARR-seq library preparation 
 After 4 hours of treatment, the cells were collected in 2ml of RLT buffer by scraping, 

followed by homogenization by vigorous pipetting. Total RNA was isolated using the RNAeasy 

Midi Kit, as per the manufacturer’s instructions, with the following changes: no DNA digest was 

performed on the columns and RNA was eluted twice in 150uL of RNAse free water. Extracted 

RNA was quantified using the Nanodrop 2000 Spectrophotometer and the RNA integrity number 

was assessed on the Tapestation 2200 using the RNA ScreenTape Assay. To isolate the mRNA, 

the Dynabeads mRNA Purification Kit was used according to the manufacturer’s instructions with 

75ug of total RNA used as input. The mRNA was eluted in 45uL of RNAse-free water. The mRNA 

was treated with 1uL of TurboDNase (2U/uL) in 5uL of the supplied 10x reaction buffer for 30 

minutes at 37°C. Following the treatment, RNA was purified using RNAClean XP magnetic beads 

with a 1:1.8 ratio of mRNA volume to bead volume and according to the manufacturer’s protocol. 

Purified mRNA was eluted in 30uL of RNAse free-water and quantified on the Nanodrop 2000 

spectrophotometer. 

 To generate cDNA, SuperScript III Reverse Transcriptase was used. For each of the mRNA 

samples, the mRNA was split into 3-5 identical reactions (depending on quantity of mRNA 

available in a given experiment). In the first step of cDNA synthesis, each reaction contained 

500ng of mRNA, 1uL of a primer with a random unique molecular identifier (UMI, 2uM) (Table 

S1, primer 13), 2uL of a dNTP mix (2mM), and enough RNAse free water was added for the 

reaction for a total volume of 14uL. The reaction was heated to 65°C for 5 minutes, before being 

placed on ice. In the second step, the 14uL of the reaction from the first step was combined with 

5uL of the 5x first-strand buffer, 1uL of 0.1M DTT, and 1uL of Superscript III reverse 

transcriptase. This reaction was heated to 50°C for 60 minutes, followed by 70°C for 15 minutes.  

 Reactions for the same sample were then pooled and treated with 1uL of RNAse A 

(10mg/mL) per 100uL of reaction volume for 30 minutes at 37°C. Following the treatment, cDNA 

was purified using RNAClean XP magnetic beads with a 1:1.8 ratio of cDNA volume to bead 
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volume according to the manufacturer’s protocol. Purified cDNA was eluted in 30uL of RNAse 

free-water and quantified on the Nanodrop 2000 Spectrophotometer. 

To generate the STARR-seq libraries, 25ng of the cDNA was used per reaction. Therefore 

depending on the cDNA concentration, each sample was divided into 3-5 reactions. Each reaction 

contained 25ng cDNA, 1.5uL of one of a unique index (Table S1, 15-26), 1.5uL of a universal 

adaptor (Table S1, primer 14), 25uL of KAPA Hifi HotStart Ready Mix, and enough water for a 

final volume of 50uL. Table 6 summarizes the amplification conditions, which were performed in 

an LifeEco Thermal Cycler.  

 

Table 6. PCR conditions for STARR-seq library amplification  

Initial denaturation   98˚C  45s   

Denaturation   98˚C  15s   

Annealing   65°C  30s  17 cycles 

Elongation   72°C  30s   

Hold   4°C    ∞ 
 

  

 PCR reactions for an individual sample were combined and purified using a 1:1 ratio of 

pooled PCR reaction volume to Agencourt AMPure XP beads according to the manufacturer’s 

instructions. Libraries were eluted in 25uL of water and quantified using the Bioanalyzer DNA 

High Sensitivity kit. Individual libraries were multiplexed based on the molarity of the fragments 

at the expected size (350 bp). The multiplexed library was then quantified with the KAPA Library 

Quantification Kit according to the manufacturer’s protocol using the LightCycler 480 Instrument 

II. Finally, the multiplexed library was treated with 30uL of the Illumina Free Adaptor Blocking 

Reagent according to the manufacturer’s protocol.  

 

3.2.6.7. Sequencing and data analysis 
 The STARR libraries were sequenced at the Sequencing Core facility of the Max Planck 

Institute of Molecular Genetics, Berlin on the Illumina NovaSeq 6000 platform. Paired-end 

sequencing reads of 150bp were generated using the Noveseq 6000 SP Reagent Kit v1.5 (300 

cycles). Sequencing quality was assessed using FastQC. The forward and reverse reads were 
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stitched together using the tool, FLASH 1.2.11. Only stitched reads that had exactly 99 overlapping 

base pairs (Figure 7) were included.  

 

 

 

 

Figure 7. Schematic of read stitching for STARR-seq sequencing reads. 

 

 After the forward and reverse reads were stitched together, sequences that contained the 

same UMI were deduplicated to prevent amplification bias that may have been introduced during 

the PCR library amplification step. The remaining reads were aligned to the reference sequences 

(i.e., ordered sequences from Twist Biosciences) and the reads per fragment were summed to 

generate a count table. Again, only reads that perfectly matched the sequences of the reference 

fragments were included.  

 Count tables were imported into RStudio 3.6.2.  To assess the correlation between the 

replicates, the Pearson correlation coefficient on the log-transformed counts was calculated. The 

fragments were filtered for a minimum read count of ten. For the downstream analysis, we used 

the R package MPRAnalyze 1.5.1, an R package specifically designed to analyze massively 

parallel enhancer screen data. It uses both RNA count tables and DNA counts from the DNA 

plasmid library for normalization. Fragments were normalized for sequencing depth using the total 

sum scaling method (TSS), using the function estimateDepthFactors. The normalized count tables 

were then used to identify which of the fragments were active REs. To this end, the 155 negative 

control fragments were used to generate a null model. Then, using a generalized linear model, the 

transcriptional activity of each fragment was quantified based on this null distribution using the 

function analyzeQuantification and the likelihood ratio test. Next, the REs with differential activity 

after dex were identified using the command analyzeComparative. All normalized fragments were 

included in the model, but only those identified as being both active REs and showing significantly 

different (FDR <0.1) activity between dex and veh were considered to be dex responsive REs 

(DREs). Lastly, regulatory elements with allele-dependent activity (variant-DREs) were identified 

using the MPRAnalyze command analyzeComparative. Since allele effect on DRE activity was to 

be estimated in each condition, a new model was required where the reference and alternative 
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alleles were compared independently in the veh and dex conditions. The results were filtered post-

hoc to include only those considered DREs in at least one allele. For this analysis, the Wald test 

was performed and an FDR cutoff of <0.1 was implemented.  

 

3.2.7. Validation of STARR-seq results  
 To validate the results from the STARR-sequencing, the activity of individual fragments was 

tested to determine whether they showed the same direction of effects when tested individually as 

was observed in the STARR-seq data. In total, twelve fragments were tested in the GR18 cell lines; 

two dex inducible control REs, two STARR-seq identified DREs, two negative controls (no/little 

transcriptional activity) and six STARR-seq identified variant-DREs (three putative regulatory 

elements x two alleles). 

 

3.2.7.1. Cloning 
 The twelve individual fragments were ordered as “Gene Fragments” from Twist Biosciences. 

Identical to the fragments ordered for the STARR-seq experiment, the region of interest of each 

fragment was 201bp long. On either side of the fragment, sequences compatible with the P5 and 

P7 Illumina adaptors (Figure 7, red) and In-Fusion HD Cloning kit (Figure 7, orange) were added, 

as well as an additional 21 bp adaptor required for synthesis by Twist Biosciences. The individual 

fragments were resuspended in low TE buffer to a final concentration of 10ng/uL. Using the 1x 

Kapa HiFi HotStart polymerase, along with 1uL of 25mM MgCl2, 5uL of 5x Kapa HiFi HotStart 

5X Buffer, 1.5uL of 10mM dNTPs, and 0.75uL of the both the 10uM forward and reverse primers 

complementary to the adaptors (Table 1, 27-28), 10ng of the individual fragment was amplified 

using the following conditions on the LifeEco Thermal Cycler.  

 

Table 7. PCR conditions for amplification of individual putative RE DNA fragments 

Initial denaturation   95˚C  3 mins   

Denaturation   98˚C  20s   

Annealing   60°C  15s  18 cycles 

Elongation   72°C  30s   

Final Elongation   72°C  1 min   
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The amplified fragments were run on a 2% agarose gel stained with RotiGelStain at 80V for 

60 minutes. The ~300bp band was excised and purified using the gel purification kit supplied in 

the In-Fusion HD Cloning Kit, according to the manufacturer’s protocol and eluted in 30uL of 

water. The purified fragments were quantified on the Nanodrop 2000 Spectrophotometer. The 

purified PCR products were then cloned into the STARR-seq vector which was linearized with 

SalI-HF and AgeI-HF (NEB) at 37°C for 3 hours and gel purified. Cloning was performed using 

the In-Fusion Cloning Kit according to the manufacturer’s protocol, with the following changes: 

a 10:1 ratio of linearized plasmid: insert fragment was used, corresponding to 100ng of the 

linearized plasmid and 10ng of the fragment. For the bacterial transformation, 2.5uL of the cloning 

reaction were added to 50uL of Stellar Competent cells and incubated on ice for 30 minutes. After 

the 30 minutes, the cells were shocked by incubation at 42°C for 45s. Immediately following the 

heat shock, cells were placed on ice for 2 minutes before 450uL of prewarmed SOC media were 

added. The transformed cells recovered in the SOC media by shaking at 160rpm for 1 hour at 

37°C. Following this recovery, 20uL of the culture were streaked onto agar plates containing 

100ug/mL of ampicillin, and the plates were incubated overnight at 37°C.  

The following day, single colonies were selected and placed in 3mL of LB medium 

containing 100ug/mL of ampicillin for 8 hours at 37°C, shaking at 160rpm. After 8 hours, 200uL 

of the culture were added to 200mL of LB Lennox medium containing 100ug/mL of ampicillin 

and cultured overnight at 37°C, shaking at 190rpm. The next morning, the plasmids were isolated 

using the NucleoBond Xtra Maxi kit according to the manufacturer’s instructions with an elution 

volume of 500uL and quantified using the Nanodrop. For cloning quality control, 500ng of the 

cloned product were digested with 1) no restriction enzyme 2) HindIII and 3) HindIII and EcoRI 

for 3 hours at 37°C and the products were run on a 1% agarose gel for 1 hour at 80V. If bands of 

the expected size were visible, the cloning products were sequenced using the Eurofins DNA 

Sanger sequencing service, using a single primer (Table S1, Primer 35). 

3.2.7.2. Transfection with the individual fragments and RNA/DNA extraction 
Two million GR18 cells were transfected with 2ug of the STARR-seq vector containing the 

individual fragment using the Nucleofector IIB, Kit V and program X-001. In addition to the 12 

transfections with the STARR-seq plasmids containing the individual fragments, the cells were 

also transfected with three control constructs; a positive control plasmid containing the CMV 
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enhancer, a negative control plasmid containing a scrambled CMV enhancer sequence, and a dex-

inducible enhancer located in a GR binding site in FKBP5 (see Table S2).  

 Sixteen to twenty hours following the transfection, the cells were stimulated with dex or the 

veh (1 well dex; 1 well veh) for 4 hours. The cells were lysed with RLT Plus buffer and RNA and 

DNA were extracted using the AllPrep RNA/DNA Extraction Kit according the instructions for 

adherent cell lines. Extracted nucleic was quantified on the Nanodrop 2000 spectrophotometer. 

From the extracted RNA, 1ug was reverse transcribed to cDNA using the Quantitect Reverse 

Transcriptase kit following the manufacturer’s instructions except two gene specific primers, GFP 

and Rpl19 (Table S1, 29-30), were used rather than the random hexamers. Since the fragments 

were cloned downstream of a GFP sequence, the transcriptional activity of the putative REs could 

be quantified by measuring mRNA containing the GFP sequence (Figure 8). RPL19 was included 

as a housekeeping gene for normalization purposes. The cDNA was diluted 1:3 (GFP) and 1:10 

(RPL19) with water before being used in qPCR. 

3.2.7.3. qPCR 
Quantitative PCR for RPL19 and GFP was performed using 2.5uL of the diluted cDNA, 5uL 

of Q5 High-Fidelity 2x MaterMix, 1uL of both the 2uM gene specific forward and reverse primers, 

and 0.5uL of 20X Evagreen Dye. The following amplification conditions were used on the 

LightCycler 480 Instrument II.  

 

 

 

 

 

 

 
 

 

Figure 8. Schematic of quantification method for activity of single putative regulatory 
elements using qPCR. 

Created with BioRender.com 
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Table 8. qPCR cycling conditions for the quantification of individual putative RE activity 

Initial denaturation   95 ˚C 30s   

Denaturation   98˚C 10s   

Annealing   60°C 30s  45 cycles 

Elongation   72°C 20s   

Cooling   37°C 30s   

Hold   4°C ∞   

 

 For each of the primers, qPCR reactions were done in technical triplicates. The experiment was 

performed in biological triplicates. 

 

To quantify the RE activity after dex, the following formula for fold change was used: 

2^ΔΔCt 

 Where ΔΔCt was equal to (Ct GFP dex – Ct GFP veh) – (Ct Rpl9 dex – Ct Rpl9 veh). The 

ΔΔCt values for the dex inducible controls and DREs were compared to the negative controls and 

tested for significance using an unpaired student t-test. For the variant-DRE analysis, the ΔΔCt 

for the reference was compared to the alternative. An unpaired student t-test was used to test 

whether the allele effect was significant.  

 

3.2.8. Enrichment analysis for variants associated with psychiatric traits 
 Variant-DREs were overlapped with variants found to be associated (p-value <0.05) with 

psychiatric traits in a GWAS meta-analysis.3 To determine whether these variant-DREs were 

enriched for psychiatric trait variants, an enrichment analysis was performed. To this end, the GR-

eQTLs not identified as being allele-dependent by STARR-seq were permutated into sets (of the 

same size as the variant-DRE set) and overlapped with the psychiatric trait variants. The number 

of overlapping variants were counted. This was performed 1000 times to generate a null 

distribution. An enrichment p-value was calculated using the following formula: 

p-value = (r+1) / (1000+1) 
 
where r is the number of times the background GR-eQTL set contains the same or more 

overlapping variants than the number observed in the set of interest.  
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3.2.9. Annotation of DREs and variant-DREs with ChromHMM states  
 STARR-seq identified DREs and variant-DREs were annotated using the R package 

HaploReg 4.0.2 using the core 15-state model. Fifteen different broad tissue categories were 

included to assess whether these variants had regulatory activity in other tissues. To assess whether 

these variants were active REs in tissues more relevant to psychiatric disorders, a sub-analysis was 

performed, which functionally annotated these variants in all available brain regions. 

 

3.2.10. Mendelian Randomization 
 To determine whether there was a causal effect of the differential DRE activity (driven by 

the variant-DREs) on psychiatric traits, a two-sample MR approach was employed using the R 

package “TwoSampleMR”. The instrumental variable was set as all variant-DREs and the log-fold 

change between the two alleles was used as the beta estimate. The exposure variables were the 

corresponding DREs showing allele-dependent activity, and the GWAS summary statistics for the 

PGC cross-disorder variants were used to define the outcome variables. A FDR threshold of <0.05 

was used to define differential DRE activity with a significant causal effect on psychiatric traits.  
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4. Results  
In this dissertation, I identified dex responsive REs (DREs) using the high throughout 

reporter assay, STARR-seq. From these DREs, I determined those displaying allele dependent 

activity in the veh and dex conditions (variant-DREs). Furthermore, I integrated the STARR-seq 

data with functional genomic data to better understand the genomic and epigenomic context in 

which these variant-DREs reside, using both experimental and in silico approaches. Lastly, I 

explore the relationship between these variant-DREs and psychiatric disorders.  

 

4.1. Characterization of GR function in GR18 and U138MG cells  
 In order to identify functional genetic variants modulating the transcriptional response to 

stress, it was first necessary to confirm the presence of a functional GR; i.e., to ensure that GR 

translocated from the cytosol into the nucleus upon ligand binding, where it could modulate 

transcription via DNA binding. It was especially important to characterize GR activity in both of 

the cell lines used for STARR-seq and other downstream experiments, as both the expression of 

GR,87 and its translocation efficiency are cell type specific.88  

 

4.1.1. Dex treatment induces nuclear translocation of GR in GR18 and U138MG 

cells 
 To confirm GR translocation into the nucleus after activation, both GR18 and U138MG cells 

were stimulated with dex and separated into cytoplasmic and nuclear fractions. Purity of the 

fractions was confirmed on the ProteinSimple, an automated Western Blotting system, using 

known cytoplasmic and nuclear markers, GAPDH and H3, respectively. GR translocation was 

assessed by quantifying GR expression in each of the fractions at baseline (veh) and after dex. In 

the U138MG and GR18 cells, there was a 3.8 and 2.4 fold increase of GR in the nuclear fraction 

after dex when compared to veh, whereas in the cytoplasm there was 0.21 and 0.47 fold change 

for the U138MG and GR18 cells, respectively.  
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Figure 9. Subcellular fractionation of GR18 and U138MG cells. The fold change of GR 
expression in the dex condition compared to the veh condition for the whole cell, 
cytoplasmic and nuclear fractions normalized to actin, H3, and GADPH, respectively in A) 
GR18 and B) U138MG cells. ProteinSimple blots for the subcellular fractions in C) GR18 
and D) U138MG cells.   
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4.1.2. Dex treatment induces a transcriptional response at GR target genes in GR18 

and U138MG cells 

 To ensure GR was able to induce a transcriptional response in GR18 and U138MG cells 

upon dex treatment, I quantified the expression of three known canonical GR target genes using 

gene specific TaqMan qPCR probes. The experiment was performed in biological triplicates. The 

induction after dex treatment was calculated and compared to a housekeeping gene, YWHAZ, 

which is not dex responsive. All three genes were induced upon dex treatment in both cell lines. 

In the GR18 cells, FKBP5, SGK1, and TSC22D3 had mean ΔΔCt values of -1.4 (SD = 0.2), -1.2 

(SD = 0.6), and -3.5 (SD = 0.5), corresponding to mean fold changes of 3.7, 3.1, and 15.5 when 

comparing expression of dex treated to veh treated cells. In the U138MG cells, the induction was 

weaker for SGK1 and TSC22D3 compared to the GR18 cells, but all three genes were still 

significantly induced by dex, with mean ΔΔCt values of -1.7 (SD = 0.5), -0.9 (SD = 0.2), and -2.8 

(SD = 0.2), corresponding to mean fold changes of 3.3, 3.1, and 7.0 for FKBP5, SGK1, and 

TSC22D3, respectively. 

 

 

 

 

 

 

 

 

 

Figure 10. Induction of three dex responsive genes in GR18 (A) and U138MG (B) cell lines using 
quantitative PCR. Ct values were compared to YWHAZ. Cells were treated for 4 hours with 
100nM of dex or 0.001% ethanol (veh). Dex had a significant effect on gene expression for all 
genes tested in A) GR18 cells (F(3,6) = 82.71, P < 0.0001) B) in U138MG cells (F(3,6) = 115.7, 
P < 0.0001) using a two-way ANOVA analysis.  
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4.2. Quality control of the synthetic STARR-seq input library  
 To detect functional variants located within REs regulating the stress response, the 3662 

regions containing the eQTLs previously identified to modulate the stress response were tested 

using STARR-seq. For each of the 3662 eQTLs, two 200bp fragments encompassing the eQTL 

and a flanking region (100bp up- and downstream of each eQTL) were synthesized, one fragment 

harboring the reference allele at position 101, and the other the alternative. Additionally, 131 

random genomic regions, and 59 known dex-inducible REs were synthesized as negative and 

positive controls, respectively. All fragments were cloned in parallel into a STARR-seq vector to 

create a DNA input library. To determine the efficiency of this cloning and the composition of the 

DNA input library, it was sequenced with 150bp paired-end reads. Since STARR-seq was used to 

determine the effect of a single genetic variant, only reads that perfectly matched the sequence of 

the ordered fragments were considered. Nearly 4M of the 5.3M reads met this criterium, which 

provided sufficient coverage of the input library. One potential issue in high throughput reporter 

assays is generating a highly biased input library due to factors such as differences in cloning 

efficiency between fragments or PCR bias, which results in insufficient sequence representation, 

or a library highly biased to single fragments.89 Fortunately, the distribution of the fragments in 

the input library was normally distributed and did not majorly favor a few highly expressed 

fragments (Figure 11). Furthermore, 99.7% of the fragments were represented. The mean coverage 

per fragment was 523 reads, with a range from 2-5020.  
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4.3. STARR-seq in GR18 cells  

4.3.1. Quality control of STARR-seq in GR18 cells  
 After having assessed the quality and composition of the input library, the STARR-seq 

experiment was performed in biological triplicates. After transfection of the DNA input library, 

cells were treated with dex or a veh for 4 hours, after which RNA was collected. Libraries were 

prepared, pooled, and sequenced as described (see Methods). After sequencing, the forward and 

reverse reads were stitched together to generate one sequence per read. Consistent with the analysis 

of the DNA input library, only reads perfectly aligning to the synthesized sequences were included. 

Additionally, a unique molecular identifier (UMI) added in the library amplification step allowed 

PCR duplicates to be removed during the preprocessing, an amendment to the original STARR-

seq protocol that eliminates PCR amplification bias which decreases accuracy.89 Table 9 

summarizes the number of surviving reads after read filtering, stitching, and PCR deduplication 

per sample. Note that despite having sufficient reads, the number of remaining reads after 

deduplication for replicate 1 dex (R1_dex) is considerably lower than for replicate 2 (R2_dex) and 
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Figure 11. Distribution of DNA fragments in the STARR-seq DNA input library, quantified 
by 150bp paired-end DNA sequencing. 
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replicate 3 (R3_dex), indicating a high percentage of PCR duplicates. Due to this low read count, 

which was accompanied by a low correlation to R2_dex and R3_dex, (Pearson’s R2 < 0.8), which 

were highly correlated to one another (Figure 12B), R1 (both dex and veh) was excluded from the 

downstream analyses.  

 

Figure 12. Quality control of GR18 STARR-seq. A) Principal component analysis of the three 
biological replicates for dex and veh. B) Pearson’s R2 between log-transformed counts of veh 
treated R2 and R3 C) Pearson’s R2 between log-transformed counts of dex treated R2 and R3.  
 

Table 9. Number of reads prior and post-deduplication for each of the six STARR-seq samples.  

Sample Stitched Reads  Reads remaining post PCR deduplication 

R1_dex 24.2 0.39M 

R2_dex 22.5 0.81M 

R3_dex 40.1 0.90M 

R1_veh 22.7 0.49M 

R2_veh 27.2 0.54M 

R3_veh 21.9 0.51M 
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4.3.2. STARR-seq identifies active REs in GR18 cells  
 To identify active REs, the R package MPRAnalyze was employed. MPRAnalyze estimates 

putative RE activity by using the negative controls fragments (n = 131) included in the STARR-

seq library which have no or minimal RE activity. These negative controls are leveraged to 

generate a null distribution, allowing an estimate of transcriptional activity, termed α, to be 

generated. Fragments are classified as active or non-active based on the median absolute deviation 

(MAD) p-values, a measure similar to z-scores but more robust to outliers.90 Importantly, 

MPRAnalyze considers the abundance of each fragment in the input DNA library and corrects for 

this in the model. Overall, 991 (27%) and 1023 (28%) of the putative RE fragments were active in 

the veh and dex conditions, respectively, and 1131 in the union of dex and veh. A fragment was 

considered active if it had a MAD FDR <0.1 in at least one of the alleles (reference or alternative). 

All (100%) of the dex-inducible positive controls were active in the dex condition, but only 53% 

were active in the veh, confirming the ability of the STARR-seq to identify DREs. Only 5% of the 

negative controls were classified as active in both the veh and dex conditions. 
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Figure 13. Active REs in GR18 cells. A) Alpha estimates for each negative control, dex-inducible 
positive control, and putative RE fragments. A higher alpha is associated with higher 
transcriptional activity. B) Percentage of negative controls, dex-inducible positive controls, and 
putative RE fragments classified as active (MAD FDR < 0.1).  
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4.3.3. STARR-seq identifies DREs in GR18 cells  
 Given our aim of identifying functional variants modulating the transcriptional response to 

stress, we next needed to identify which of the active REs were responsive to dex. To this end, we 

compared the activity of a single fragment in the dex and veh conditions using the 

analyzeComparative function from MPRAnalyze, which identifies REs that are differentially 

active between conditions. In total, 508 (14.1%) REs were dex-responsive (DREs). An active RE 

was considered a DRE if it showed significant (FDR <0.1) differential activity upon dex treatment 

in either of the alleles. Although dex caused both transcriptional activation (52% of DREs) and 

repression (48% of the DREs) the magnitude of change was nearly twice as great in DREs 

exhibiting transcriptional activation compared to those exhibiting transcriptional repression, with 

mean log2 fold changes of 0.61 [0.013, 4.09] and -0.34 [-1.22, -0.010], respectively. All (100%) 

dex inducible positive controls were classified as dex-responsive, and 5% of the negative controls. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Dex-responsive REs in GR18 cells. A) Percentage of negative controls, dex-inducible 
positive controls, and putative REs classified as dex-responsive (FDR < 0.1). B) Volcano plot 
showing the log2 fold change (x-axis) and statistical significance (y-axis; -log10 FDR) of all active 
REs. Those is orange show significant dex responsiveness (n=508).  
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4.3.4. A subset of the DREs display allele dependent activity in GR18  cells 
 Finally, from the DREs (i.e. active REs showing significant dex-responsiveness) we 

identified those exhibiting allele-dependent activity. Again, we used the analyzeComparative 

function from MPRAnalyze. This required a new model to be computed where the activity of the 

REs containing the reference allele are compared to the same REs harboring the alternative allele. 

This analysis was performed for both the veh and dex conditions, generating a list of DREs 

displaying allele-dependent activity at baseline (veh variant-DREs) and after dex stimulation (dex 

variant-DREs). Although all fragments were included in this model, the results were filtered post-

hoc to include only DREs. Of the 508 dex-REs, 154 were veh variant-REs and 164 dex variant-

DREs. 92 of these RE-variants overlapped in the dex and veh condition, whereas 73 exclusively 

showed allele-dependent activity in the dex condition and 62 exclusively in veh. There was no 

significant difference between the magnitude of the differential activity the veh variant-REs and 

the dex variant-DREs.  
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Figure 15. Allele-dependent DREs in GR18 cells. 73 DREs exhibited allele-dependent activity 
exclusively in the dex condition and 62 exclusively in the veh condition. 92 DREs with allele-
dependent activity both in the veh and dex conditions were identified. A representative example of 
each of these three types of variant-DREs are displayed. Activity of the enhancers are displayed as 
RNA/DNA ratios.  

Created with BioRender.com 
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4.4. STARR-seq in U138MG cells 
 Given the cell-type specificity of GR activity91,92 we performed STARR-seq in a second cell 

line, U138MG cells, a glioblastoma cell line. The same input DNA library (containing the GR-

eQTLs) was used, as the aim of identifying functional variants modulating the stress response was 

the same. Initially, a neuroblastoma cell line (SH-SY5Y) was selected as the second cell line for 

the STARR-seq, however due to an insufficient response to dex (1.3 fold change of FKBP5 control 

enhancer activity after dex), likely caused by a low expression of GR87, it was not an appropriate 

model for the STARR-seq. U138MG cells, on the other hand, have a high endogenous expression 

of GR87, which translocates into the nucleus upon dex treatment, as displayed in Section 4.1.  

 

4.4.1. Quality control of STARR-seq data in U138MG cells 
 The STARR-seq was performed in biological duplicates and processed using the same 

analysis pipeline as the GR18 cells. Due to practical considerations, the library was sequenced to 

a greater depth than the GR18 STARR-seq library with 3.7 to 6.9 million reads remaining after 

preprocessing (Table 10). Biological duplicates were highly correlated with one another (Pearson 

correlation coefficient > 0.99, Figure 16B). However, unlike in the GR18 cell lines, the Pearson 

correlation coefficient between dex and veh samples were also very high (>0.97), indicating the 

dex treatment had a lesser global effect on the samples compared to what was observed in the 

GR18 cells. This is also demonstrated by the principal component analysis which displays no 

clustering of replicates into distinct treatment groups which was observed in the GR18 cells. 

 

Table 10. Number of reads prior and post-deduplication for each of the six STARR-seq samples. 
Sample Stitched Reads  Reads remaining post PCR deduplication 

R1_dex 32.7 3.7M 

R2_dex 43.6 5.7M 

R1_veh 34.1 6.9M 

R2_veh 32.2 2.7M 
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Figure 16. Quality control of U138MG STARR-seq. A) Principal component analysis of the 
two biological replicates for dex and veh. B) Pearson’s R2 between log-transformed counts of veh 
treated R1 and R2 C) Pearson’s R2 between log-transformed counts of dex treated R1 and R2.  
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4.4.2.   STARR-seq identifies active REs in U138MG cells  
 As with the GR18 cells, the first step was to identify active REs using the negative controls 

to generate a null distribution. Using the same function as that used in the GR18 cells, 870 (23.9%) 

and 872 (23.9%) of the putative REs were classified as being active in the dex and veh condition, 

respectively. The union set of the active REs was 894 indicating that the majority of the active REs 

were active in both conditions. 62.7% of the dex-inducible controls were active in the dex 

condition, and 37.3% in the veh.  This was likely due to the fact that these controls were selected 

by overlapping the most dex-responsive REs identified from previous STARR-seq experiments 

with regions flanked by histone marks indicative of active enhancers, both of which were done in 

GR18 cells, and not U138G cells. Few negative controls (1.5% for both dex and veh) were 

classified as active, as expected.  

 
 
Figure 17. Active REs in U138MG cells. A) Alpha estimates for each negative control, dex-
inducible positive control, and putative RE fragment. B) Percentage of negative controls, dex-
inducible positive controls, and putative RE fragments classified as active (FDR < 0.1).  
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4.4.3.  STARR-seq identifies DREs in U138MG cells 
 From all putative REs, only 66 were both active and displayed significant dex-

responsiveness (DREs)(FDR< 0.1), corresponding to 1.8% of all fragments. Only 44.1% of the 

dex-inducible controls were dex responsive, compared to 100% in the GR18 cells, which is again 

likely due to the cell-type restricted selection method of these controls (see section 4.3.2). Again, 

the magnitude of the log2 fold change in DREs showing transcriptional activation upon dex 

treatment was over twice those displaying transcriptional repression upon dex treatment (0.3 

[0.085, 1.6] and -0.14 [-0.40, -0.04], respectively).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18. Dex-responsive REs in U138MG cells. A) Percentage of negative controls, dex-
inducible positive controls, and RE fragments classified as dex-responsive (FDR < 0.1). B) 
Volcano plot showing the log2 fold change (x-axis) and statistical significance (y-axis; -log10 
FDR) of all active REs. Those is orange show significant dex responsiveness. In total, 66 active 
REs were dex-responsive. 
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4.4.4.  A subset of the DREs display allele dependent activity in U138MG cells 
 The 66 DREs were tested to determine which were variant-DREs (i.e. showing allele-

dependent activity). Two of the 66 DREs were veh variant-DREs and ten were dex variant-DREs. 

Both of the veh variant-DREs overlapped with dex variant-REs, meaning there were no variant-

DREs exclusive to the veh condition. Again, no significant difference in the magnitude of the 

differential allele-dependent activity was observed between the dex variants-DREs and the veh 

variant-DREs.  

 

 

 

 

 

 

 

 

 

 

4.5. Validation of individual STARR-seq identified REs in GR18 cells 
 To validate the findings from the STARR-seq, individual fragments were tested for activity 

with qPCR in GR18 cells. To measure RE activity, the individual fragments were cloned into the 

STARR-seq vector, downstream of a GFP sequence. GR18 cells were transfected with individual 

constructs and treated with dex or a veh control for 4 hours. RNA was extracted and cDNA was 

synthesized using a primer specific for the GFP sequence, and a primer specific to a housekeeping 

gene, RPL19, for normalization. Since stronger RE induced transcription of the GFP sequence, RE 

strength could be measured by GFP quantification via qPCR. In total, two negative controls, two 

positive DRE controls, two STARR-seq identified DREs and three dex variant-DREs (two alleles 

per RE) were tested (n=12). The experiment was performed in biological triplicates. The induction 

after dex was quantified and compared to the negative controls, which were not dex-inducible 

Figure 19. Overlapping variant-DREs in U138MG cells. Ten DREs displayed allele dependent 
activity in the dex condition (dex variant-DREs), and only two in veh (veh variant-DREs).  

8 2 0 
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(average log2 fold change of 1.0 (SD = 0.15) and 0.9 (SD= 0.03)). All DREs were significantly 

induced by dex treatment, as compared to the negative controls (paired t-test on the ΔΔCt values), 

with mean ΔΔCt values of -2.7 (SD=0.4), -3.7 (SD=2.4), -2.7 (SD = 0.3), -5.6 (SD = 0.3) for the 

two DRE controls and two STARR-seq identified DREs, respectively, corresponding to fold 

changes of 30, 14, 3, and 33 when comparing activity of dex to veh treated cells. For the dex 

variant-DREs, the log2 fold changes in activity between the dex and veh conditions were quantified 

for the reference and alternative allele fragments. The induction after dex treatment in the variant-

DRE containing the reference allele was compared to that harboring the alternative allele. The dex 

variant-DREs rs382964 and 9525228 showed significant differences in dex responsiveness 

between the two alleles, both in the direction observed in the STARR-seq data. The third dex-

variant, rs9274181 showed no significant difference. It should be noted that the difference to be 

detected in this variant-DRE was minimal (dex/veh fold change of 1.1 and 1.2 for reference and 

alternative alleles, respectively) meaning that more power may be required to detect such small 

differences. Lastly, the magnitude of the log2 fold-changes of all individual REs (including 

controls) from the validation assays were compared to the magnitudes observed in the STARR-

seq data. The log2 fold changes calculated by each method were significantly correlated, with a 

Pearson Correlation Coefficient of 0.98. Overall, the validation experiments in the GR18 cell lines 

indicated that the results from the STARR-seq were robust, with the majority of the constructs 

displaying activity patterns congruent with the direction and even relative magnitude of the 

STARR-seq data. One variant-DRE (rs9274181) did not show a significant allele effect, which 

may be due to the small effect size attempted to be detected.  
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Figure 20. Validation of STARR-seq results using qPCR. Individual fragments were tested for 
activity in dex and veh conditions. A) The activity of three allele dependent REs (variant-DREs) 
were quantified. Two of the three variant-DREs displayed significant allele dependent differences in 
the dex condition. B) The dex-induced activity for two DRE controls and two STARR-seq identified 
DREs were tested. All showed significant differences in dex responsiveness compared to negative 
controls in the direction observed in the STARR-seq. C) The correlation between the magnitude of 
log2 fold changes observed in the qPCR validation was compared to those observed in the STARR-
seq data. *P < 0.05; **P < 0.01; ***P< 0.001. Paired t-test, multiple comparison test.  
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4.6. A subset of STARR-seq functional REs overlap between GR18 and U138MG 

cells  
 Given the cell-specific activity of GR, the results from the STARR-seq in the GR18 cells 

were compared to those in the U138MG cells. Firstly, all active REs were compared between the 

two cell lines. Interestingly, the majority of the active REs were overlapping, with only 25% and 

5% being exclusive to the GR18 and U138MG cells, respectively. Next, the DREs were compared 

between the two cell lines. Of the 66 DREs in the U138MG cells, 41% were overlapping with 

GR18 DREs, indicating that, to a certain extent, the functional effect of the DREs are not 

exclusively cell-type specific, but a subset may act as functional DREs across tissues. Lastly, the 

overlap of the variant-DREs between the GR18 and U138MG cells were compared. As expected, 

due to the overall limited number of variant-DREs in the U138MG cells (2 and 10 for veh and dex 

variant-DREs, respectively), there were only two overlapping dex variant-DREs and no 

overlapping veh variant-DREs between the GR18 and U138MG cells.  
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Figure 21. Overlapping functional elements identified by STARR-seq in GR18 and U138MG 
cells. A) The number of overlapping active REs in the GR18 and U138MG cells. The majority of 
the identified active REs overlapped between the two cell lines. B) Overlapping dex responsive 
REs (DREs) between GR18 and U138MG cells. Although far fewer DREs were identified in the 
U138MG cells, 41% overlapped with those identified in GR18 cells. C) Overlapping DREs 
displaying allele dependent activity in the veh condition (veh variant-DREs, C) and in the dex 
condition (dex variant-DREs, D). Due to the limited number of DREs identified in the U138MG, 
there were few overlapping variant-DREs.  
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4.7. Functional annotation of STARR-seq DREs and variant-DREs 
 Having identified DREs and variant-DREs, I next sought to better understand the epigenetic 

and TF landscapes surrounding these functional elements, and compare these landscapes to the 

GR-eQTLs not identified by STARR-seq as being functional (non-functional GR-eQTLs). Note, 

that this GR-eQTL background set was already found to be enriched for various functional 

annotations, such as TF binding sites, disease-associated loci, and chromatin states associated with 

enhancer states. We used this highly enriched GR-eQTL background set to determine whether the 

STARR-seq, a direct experimental approach, could improve the functional fine-mapping when 

compared to the eQTL and in silico approaches.  

 

4.7.1.  The GR ChIP antibody fulfills ENCODE antibody characterization criteria 
We first sought to determine whether the DREs were enriched in binding sites of GR. 

However, in order to fulfill the ENCODE ChIP-seq guidelines, we validated the GR used for ChIP 

using two different methods. For the primary validation, we performed immunoblotting on whole 

cell-lysate from the LCL cell line, GM18516. The following criteria outlined by ENCODE were 

used to assess whether the antibody was suitable for ChIP-seq: 1) The major band must be within 

20% of the size predicted by the size of the coding region 2) The major band corresponds to >50% 

of all bands on the gel.80 Both criteria were met as the Western Blot clearly showed one single 

band at the expected size (100kD) (Figure 22A). For the secondary validation method, we 

performed a motif analysis on pilot ChIP-seq data from the dex-treated LCL cell line. Compared 

to an IgG control, 2578 peaks were identified. A motif analysis using MEME Suite’s MEME-ChIP 

was performed, an online tool that scans ChIP-seq data and identifies enriched TF motifs.93 In the 

GR ChIP-seq pilot data, the GRE motif was significantly enriched (FDR < 0.0038)(Figure 22C). 

Furthermore, manual scanning of the peaks tracks displayed strong ChIP-seq peaks at canonical 

GR binding sites (Figure 22B).  

 

 
  

 

 



 75 

 
Figure 22. Validation of GR Antibody for ChIP seq. A) The Western Blot using the ChIP-seq 
GR antibody and whole cell lysate from LCLs resulted in a single band at the expected size. B) 
Example of a ChIP-seq peak in a known binding site of GR located in FKBP5. C) A motif analysis 
revealed the GRE motif as being highly enriched within the ChIP-seq data generated. 

 

4.7.2. DREs are enriched in GR binding sites  
Firstly, we wanted to determine whether the DREs were enriched within in or near binding 

sites of the GR, as bound GR is known to recruit co-activators and repressors, as well as other 

coregulators, that ultimately influence transcription at GR-target genes.94,95 Indeed, in both the 

GR18 and in the U138MG cells, the DREs were enriched in binding sites of GR after dex 

treatment. In the U138MG cells, 2 (of 66) dex-REs overlapped with a GR binding site. To establish 

whether this was significant, a null distribution was generated by permutating the non-functional 

GR-eQTLs into sets of the same size (66), and counting the overlap with GR ChIP peaks. This 

was performed 1000 times (without replacement). In the null distribution, the mean number of 

GR-eQTLs overlapping with a GR-ChIP peak was 0.4, meaning the dex-REs had an enrichment 
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of over 4-fold in GR ChIP binding sites, but this was not significant (permutation p-value 0.1). For 

the GR18 cells, 23 dex-REs overlapped with GR ChIP peaks, representing a 1.6-fold enrichment 

(permutation p-value = 0.04).  

 

 

4.7.3. Dex variant-DREs are enriched in GR binding sites in GR18 cells 
Next we assessed whether the variant-DREs were enriched in GR binding sites, as it is well-

established that genetic variants can exert a functional effect by disrupting TF binding sites, thus 

modulating TF binding affinity.96,97 This has been observed with GR, specifically with variants 

located within or directly adjacent to GREs, resulting in transcriptional changes.98 To determine 

whether this may represent a mechanism by which the variant-DREs exert their transcriptional 

effects, they were colocalized with GR ChIP-seq binding data from GR18 and U138MG cells. 

Indeed, dex variant-DREs were enriched in GR binding sites, when compared to a randomly 

selected GR-eQTL background set of the same size (without replacement), with a 5.5 fold-

enrichment (permutation p-value 0.008). Though the veh variant-DREs were also enriched (2.9 

fold), this was not significant (p-value = 0.15). In the U138MG cells, none of the variant-DREs in 

Figure 23. DREs are enriched in GR binding sites in GR18 but not U138MG cells. A) 
Distribution of overlapping non-functional GR-eQTLs and GR binding sites in GR18 (green) 
and U138MG (purple) cells with vertical lines denoting the number of observed overlaps 
between the DREs and GR binding sites.  
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neither the dex nor veh condition overlapped with a binding site of GR. Given the few dex and veh 

variant-DREs (10 and 2, respectively), this was not surprising. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Dex variant-DREs are enriched in GR binding sites. A) Two veh variant-DREs were 
located in GR binding sites, which is not significant over the background B) Four dex variant-DREs 
were located GR binding sites, which is a significant enrichment over the background.  
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4.7.4. DREs are enriched in chromatin loops in GR18 cells  
 Previous data has shown that GR binding regions are involved in chromatin looping to 

promoter regions of genes both upregulated and downregulated by dex.61 Interestingly, these the 

majority of these interactions already primarily exist at baseline (i.e. prior to dex), but the strength 

of the interactions are modified by dex, likely due to GR binding, which recruits co-activators, 

resulting in transcriptional activation. The picture is less clear for GR-mediated transcriptional 

repression, but recent evidence has also implicated chromatin looping involving in dex induced 

transcriptional repression.61 Therefore, since chromatin interactions are involved in modulating 

transcriptional activity in response to dex, I examined whether the DREs were enriched in anchor 

points of chromatin loops.. To this end, we analyzed Hi-C data, a chromatin conformation assay 

that captures chromatin interactions across the genome, which was available in the parental GR18 

cell lines, U2OS. The two available biological replicates were merged to create a union set. Using 

this union set, an enrichment analysis was performed using randomly chosen non-functional GR-

eQTLs for the null distribution. Of the GR-REs, ~10% were located within anchor regions of 

chromatin loops in GR18 cells. This was significantly enriched over the non-functional GR-

eQTLs, where ~5% of regions were located within anchor points (fold enrichment = 1.86, p-value 

= 0.002). 

 

 

 

 

 

 

 

 

 

 

  

 

 
Figure 25. DREs are enriched in regions involved in chromatin looping.  
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Next we determined whether the variant-DREs were enriched in the chromatin anchor 

regions, as this would also represent a mechanism by which these functional variants could exert 

their effect, namely by interfering with chromatin interaction frequency at these sites and thus alter 

transcriptional activity. We found that both the veh and dex variant-DREs were highly enriched in 

these interaction regions, with a fold enrichment of 2.8 and 2.6 for veh and dex variant-DREs, 

respectively. This translates to ~15% of the variant-REs being located within these regions, 

considerably higher than the ~5% for the GR-eQTLs and even high than the 10% for the DREs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Variant-DREs are enriched in regions involved in chromatin looping. Both GR18 
veh variant-DREs (A) and dex variant-REs are (B) are enriched in anchor points of chromatin loops 
in GR18 cells.  
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4.7.5.  DREs are enriched in enhancer regions across tissues 
 Given that both GR activity99 and REs100,101 are highly cell-type specific, I performed an in 

silico analysis to annotate the DREs and variant-DREs across different cell types to determine 

whether they were predicted to be functional in other tissues. Using HaploReg 4.0.2, an R package 

that integrates multiple levels of publicly available functional data to annotate the noncoding 

genome across multiple tissues, I assessed whether the dex and veh variant-DREs were enriched 

within predicted enhancer regions across tissues. Firstly, since the GR-eQTLS were discovered in 

blood samples and given my interest in psychiatric disorders, I annotated each variant-DRE across 

all available blood and brain tissues (Figure 27A). Visual scanning reveals that many of the variant-

REs colocalized with active regulatory regions in brain and blood tissue. I then assessed broader 

tissue categories and quantified this enrichment, using sets of randomly chosen eQTLs from the 

GTEx dataset20 to generate a null distribution (n permutations = 100). Interestingly, both the veh 

and dex variant-DREs were enriched in active enhancer regions across all 15 tissues tested (Figure 

27B), indicating that the variant-DREs identified within the cell line models have regulatory 

potential across tissues.  Then, I quantified the enrichment across all available specific brain 

regions to assess whether there were areas of the brain that were more highly enriched. From the 

eight regions, dex and veh variant-DREs were both significantly (permutation FDR <0.05) 

enriched in two regions (angular gyrus and middle hippocampus), and dex variant-DREs were 

exclusively significantly (permutation FDR <0.05) enriched in a further two, the cingulate gyrus, 

an area which has been implicated in psychopathology102 and the germinal matrix, a region 

responsible for neural and glia cell production during development.103 
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Figure 27. Variant-REs are located within active regulatory regions across tissues. A) 
Predicted chromatin state for all variant-REs (both dex and veh in GR18 and U138MG, each 
horizontal line on y-axis = 1 variant-DRE ) across all available blood and brain tissues (x-axis = 
tissues EID, see Table S3  for descriptions of each EID). B) Enrichment of variant-DREs predicted 
to be located within enhancer regions across 15 broad tissue classes. C) Enrichment of veh and 
dex variant-DREs predicted to be located within enhancer regions across specific brain regions. * 
FDR < 0.05; ** FDR< 0.01; permutation FDR.  

 



 82 

4.8. DRE regulated transcripts are enriched in neuronal terms 
 

The DREs and variant-DREs were mapped to the 320 transcripts identified in the GR-eQTL 

analysis.2 The 547 DREs from the union the DREs in the GR18 and U138MG cells were found to 

regulate 122 of the 320 transcripts. To better understand pathways that the DREs may regulate, a 

functional enrichment analysis on these target transcripts was performed using the Reactome 

Biological Processes Enrichment Analysis Tool.104 As expected, terms related to stress were highly 

enriched, such as “cellular response to stress”. Other more general cellular processes, such as 

rRNA processing and translation were also enriched. However, despite the GR18 and U138MG 

cells being non-neuronal, the most significantly enriched term was “regulation of expression of 

ROBO and SLITs”, proteins integral to axon guidance during neural development.105 An additional 

three brain related terms; signaling by ROBO receptors, axon guidance, and nervous system 

development were within the top 15 terms (Figure 28).  The variant-DREs were also mapped to 

the transcripts, with 59 and 61 transcripts being regulated by the veh and dex variant-DREs, 

respectively.  Table 11 summarizes the number of DREs and veh and dex-variant DREs regulating 

the transcripts. The transcripts not regulated by any DRE are not included.  

 

Figure 28. Top 15 reactome terms enriched in the DRE target transcripts. 
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Table 11.  Number of DREs or variant-DREs regulating a predicted transcript. Variant-transcript 
pairs were derived from the GR-eQTL analysis from Arloth et al.2 

Transcript DRE Dex-variant Veh-variant Transcript DRE Dex-variant Veh-variant 

ABHD5 2 1 0 TMEM176A 3 1 0 

ACPL2 3 2 0 TPST1 46 18 16 

ACTR2 1 1 1 ZAP70 18 8 8 

ACYP1 2 1 2 ZNF641 12 2 3 

AK024143 1 1 0 ANXA11 4 0 1 

AK026751 10 2 0 C20orf3 3 0 1 

ANXA2 1 1 0 CD96 1 0 1 

ATP5F1 3 1 0 CKLF 2 0 1 

C19orf35 2 1 1 CLDN14 1 0 1 

C7orf44 23 10 5 CR617556 1 0 1 

CD47 1 1 0 DPM2 3 0 2 

CDC16 9 2 2 ERV3 13 0 2 

CLEC4C 7 2 2 GNLY 2 0 1 

COX5A 3 1 0 KDM3B 3 0 2 

CR1 4 1 1 MTMR15 1 0 1 

CST7 13 2 5 RBM4 1 0 1 

CYBRD1 3 1 1 RPL7A 1 0 1 

DDOST 2 2 1 SLC7A7 2 0 1 

DNM2 4 2 2 ST6GAL0C4 3 0 2 

F2RL1 2 1 1 SULF2 1 0 1 

FOXC1 1 1 0 WDR1 2 0 1 

FZD2 3 2 3 AI445566 1 0 0 

GART 1 1 1 AI970822 1 0 0 

GPX1 1 1 0 AL137655 1 0 0 

HIGD1A 5 2 2 ALPL 1 0 0 

HIST2H2AA3,HIS

T2H2AA4 

23 8 7 BTNL3 1 0 0 

HLA-DRB4 25 5 6 CD74 2 0 0 

HLA-DRB5 57 17 12 CLC 1 0 0 

IL27RA 1 1 0 CORO1A 1 0 0 

IMP3 2 1 0 COX17 1 0 0 

KLF4 3 2 1 EXTL3 1 0 0 

LAMP1 9 2 2 FAM117B 1 0 0 

LCN2 1 1 0 FYN 1 0 0 

LGALS2 2 1 0 GMIP 3 0 0 

MAK 5 2 1 GRB10 1 0 0 

MAP3K2 4 2 1 GTPBP8 1 0 0 

MFN2 11 2 2 HACL1 1 0 0 

MRPL24 11 6 4 HIST2H3D 1 0 0 

NUAK2 1 1 0 KRT72 1 0 0 

OAS2 5 2 0 LOC401497 1 0 0 

PAAF1 1 1 1 LSM5 1 0 0 

PAICS 5 3 3 MAGEL2 1 0 0 

PAM 42 17 15 MAGT1 1 0 0 

PHACTR1 6 2 2 MPZL1 1 0 0 

PPM1A 2 1 1 MSRB2 3 0 0 
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PRKAA1 1 1 0 PARP8 1 0 0 

PRKCB 4 2 1 POLR2I 2 0 0 

RBM38 10 6 6 PPID 1 0 0 

RBP7 2 2 1 PTEN 2 0 0 

RFX5 13 3 4 RPL23AP64 1 0 0 

RNASE6 2 1 1 RPL35A 2 0 0 

RNF149 2 1 0 RPLP1 2 0 0 

RPL14 17 3 7 SEC14L1 1 0 0 

RPL26 4 2 0 SLC25A37 1 0 0 

RPS2 1 1 0 STAMBPL1 1 0 0 

RPS25 8 3 2 TIMM23 1 0 0 

SIRPB1 5 2 3 TOB1 1 0 0 

SLCO3A1 1 1 1 TTC31 1 0 0 

SUMO2 1 1 0 UBE2G2 6 0 0 

TBX1 2 1 0 UBR2 1 0 0 

TCIRG1 1 1 1 UBTD1 1 0 0 

 
 
 
4.9. Variant-DREs are enriched for psychiatric disease associated variants  

So far, I have identified functional REs modulating the transcriptomic response to stress and 

have demonstrated that they are enriched in GR binding sites, chromatin loops, and enhancer 

regions across tissues compared to those non-functional GR-eQTLs. Given the association 

between dysregulation of the HPA axis and psychiatric disorders, we next sought to identify 

whether the variant-DREs were also variants associated with psychiatric disorders. To this end, 

we overlapped the variant-DREs with variants nominally associated with psychiatric disorders, 

from a cross-disorder GWAS meta-analysis of eight psychiatric traits (BPD, MDD, ADHD, AN, 

OCD, SCZ, TS, ASD).3 As a background, the non-functional GR-eQTLs were permutated into 

1000 SNP sets of the size as the number of variant-DREs, and those which overlapped with 

psychiatric disorder-associated variants were counted to generate a null distribution. Note the GR-

eQTLs themselves were highly enriched for variants associated with MDD and SCZ2, two of the 

disorders included in the meta-analysis. Of the 165 unique (union set of the U138MG and GR18) 

veh variant-DREs, 30 (19.3%) were associated with psychiatric traits, which was not a significant 

enrichment over the background GR-eQTLs. On the other hand, the dex variant-DREs were 

significantly enriched in variants associated with psychiatric disorders (permutation p-value = 

0.008), with 39 (22.6%) overlapping variants, translating to a 1.78 fold enrichment over the GR-

eQTLs, which themselves were significantly enriched for variants nominally associated with MDD 

and SCZ (fold enrichment values of 1.29 and 1.22 for SCZ and MDD, respectively).73 Both the 
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veh and dex variant-DREs were significantly enriched in variants associated with psychiatric 

disorders compared to randomly selected eQTLs from the GTEx database (fold enrichments of 1.5 

and 1.9 for veh and dex variant-DREs, respectively). The psychiatric disorder variants overlapping 

with the variant-DREs were then separated into two groups; those present both veh and dex 

variant-DREs, those exclusive to dex variant-DREs, and those exclusive to veh variant-REs (Table 

12).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 29. Dex variant-DREs are enriched for loci associated with psychiatric disorders. The 
consensus set of veh and dex variant-DREs from GR18 and U138MG cells were overlapped with 
variants associated with psychiatric traits. Veh variant-DREs were not enriched over the background 
non-functional GR-eQTLs. In contrast, the dex variant-DREs were significantly enriched. 
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Table 12. Variant-DREs overlapping with variants associated with psychiatric traits. Cross 
disorder meta-analysis beta and p-values were derived from the meta-GWAS summary statistics.3 
Genes refers to transcripts regulated by the variant-DRE, as defined by a GR-eQTL analysis.2 
Associated disorder refers to those disorders with a high confidence association to the variant 
within the meta-GWAS. 
 

Variant-DRE Beta-
value P-Value Alt Ref Gene Associated 

disorder 
Exclusive Veh Variant-REs 

rs11788797 -0.02 1.66E-04 G C ST6GALNAC4 SCZ,BIP,MDD,AUT 
rs11788797 -0.02 1.66E-04 G C DPM2 SCZ,BIP,MDD,AUT 
rs2263658 0.07 1.94E-03 C T SIRPB1 ADD 
rs258145 -0.09 4.50E-02 G A PAM TS 

rs34928543 0.06 1.04E-02 G C HLA-DRB4 SCZ 
rs447531 0.1 6.70E-03 C T PAM TS 

rs45585631 0.03 5.64E-05 C T DPM2 SCZ,BIP,MDD,AUT 
rs45585631 0.03 5.64E-05 C T ST6GALNAC4 SCZ,BIP,MDD,AUT 
rs4850875 -0.05 1.51E-02 G A ZAP70 BIP,OCD 
rs4851136 -0.05 1.41E-02 T A ZAP70 BIP,OCD 

rs55900716 0.05 1.86E-02 G A ZAP70 BIP,OCD 
Exclusive Dex Variant-REs 

rs11901568 -0.05 1.83E-02 C T ZAP70 BIP,OCD 
rs2278212 -0.05 1.54E-02 C T ZAP70 BIP,OCD 

rs35288741 -0.04 7.80E-03 G A NUAK2 SCZ,TS,OCD 
rs35375092 0.04 5.36E-03 G A GPX1 BIP,ADD 
rs3754888 -0.05 1.35E-02 C T ZAP70 BIP,OCD 
rs3754893 0.05 2.34E-02 T A ZAP70 BIP,OCD 

rs3826440 0.03 1.46E-03 C T RPL26 MDD,AUT,ADD,TS,O
CD 

rs382964 -0.11 4.51E-03 C T PAM TS 
rs4768230 0.1 4.11E-02 G A AK026751 ANO 

rs56125600 0.08 1.28E-11 C T HIST2H2AA3,HIST2H2AA4 SCZ,BIP,OCD 

rs6771365 -0.03 2.24E-04 T A ABHD5 SCZ,MDD,ADD,TS,O
CD 

rs6888677 0.1 7.73E-03 G C PAM TS 
rs7194275 -0.1 1.98E-02 C T RPS2 ANO,OCD 
rs809972 0.02 4.31E-02 G T RBP7 MDD,AUT,ADD,TS 

rs9270858 -0.04 1.67E-03 C T HLA-DRB5 SCZ,AUT 
rs9271076 -0.04 2.99E-03 G A HLA-DRB5 SCZ,AUT 
rs9271171 -0.06 6.93E-04 C T HLA-DRB5 SCZ 
rs9271687 0.05 2.94E-02 G A HLA-DRB5 SCZ 
rs9288853 0.06 7.21E-03 C T CD47 ADD,TS 

rs9890920 0.03 9.43E-04 C T RPL26 MDD,AUT,ADD,TS,O
CD 

Both veh and dex REs 
rs11205362 -0.08 4.02E-08 G A HIST2H2AA3,HIST2H2AA4 SCZ,BIP,OCD 
rs11588837 0.09 1.23E-09 G A HIST2H2AA3,HIST2H2AA4 SCZ,BIP,OCD 
rs11589922 -0.09 1.16E-11 C A HIST2H2AA3,HIST2H2AA4 SCZ,BIP,OCD 
rs12193156 -0.08 2.98E-02 G A PHACTR1 TS,OCD 

rs168926 -0.09 4.04E-02 C T PAM TS 
rs2243603 0.06 3.88E-03 G C SIRPB1 ADD,TS 
rs2422604 0.07 3.39E-03 G A SIRPB1 ADD 
rs258146 0.09 4.05E-02 T A PAM TS 
rs369099 0.11 4.98E-03 G A PAM TS 

rs3754884 0.05 1.84E-02 C T ZAP70 BIP,OCD 
rs3754885 0.05 1.81E-02 G T ZAP70 BIP,OCD 
rs3769743 0.05 1.36E-02 C T ZAP70 BIP,OCD 
rs419099 0.11 4.46E-03 G A PAM TS 

rs521199 0.02 2.10E-02 G A MAK BIP,MDD,ADD,TS,A
NO,OCD 

rs9270678 -0.06 2.12E-04 T A HLA-DRB5 SCZ 
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4.10. Variant-DREs are causally associated with psychiatric disorders 
Since the variant-DREs were enriched in psychiatric disorder associated variants, we 

employed MR, a statistical framework (see Section 1.3.2) that estimates the causal effect of an 

exposure variable on an outcome variable. In this case, MR allowed the causal effect of the 

differential DRE activity (driven by the variants-DREs) on psychiatric disorders to be estimated. 

In total, 21 variant-DREs were found to be significantly (FDR < 0.05) putatively causally 

associated with the psychiatric traits. Eleven veh variant-DREs were significantly associated, and 

had an OR between 0.78 and 1.29. From the dex variant-REs, 19 were significantly causally 

associated with psychiatric disorders with an OR ranging from 0.78 to 1.52. Ten of these 19 were 

exclusive dex variant-DREs. Additionally, MR was performed on the variant-DREs using the 

summary statistics from GWAS of extreme height106 and fracture risk107. Only one and zero 

variant-DREs were found to be significantly causally associated with these traits, respectively, a 

marked decrease from the 21 variant-DREs implicated in psychiatric disorders. It should be noted 

that both these GWAS were somewhat smaller than that for the psychiatric cross disorders, with 

37,857 cases and 227,116 controls (fracture) and 183,727 (height) compared to the 232,964 cases 

and 494,162 controls used in the psychiatric disorder meta-GWAS. 
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Figure 30. Mendelian Randomization results that estimate the causal effect of allele-driven 
differential RE activity on psychiatric disorders. Nine veh variant-DREs had a significant 
effect on psychiatric disorders whereas 19 of the dex variant-DREs had a significant effect.  
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5. Discussion  
One of the strongest environmental risk factors for psychiatric disorders is exposure to stress 

and stressful life events.108 Yet it is clear that not every individual exposed to these environments 

develops a psychiatric disorder, indicating that other factors are modulating the risk.109 Evidence 

suggests that genetic variants interact with environmental risk factors in a complex interplay, 

termed G x E interactions. Yet, while evidence for an interaction between genetic predisposition 

and stress exists, the mechanisms governing this interaction remain elusive. Examining the HPA 

axis and its molecular mediators, specifically GR, can provide a deeper understanding of how 

genetic variants and stress converge in the regulation - and dysregulation of this system.  

A study in 2015 by Arloth et al. used a stimulated GR-eQTL approach to identify over 3600 

genetic variants that modulate the transcriptomic response to stress. However, this eQTL approach 

did not allow direct identification of individual functional genetic variants, but only associations 

between genetic variants in LD and transcripts responsive to treatment with dex. In this thesis, I 

followed-up on this study and tested all GR-eQTLs for their regulatory function using a high-

throughput reporter assay in two cell lines. This identified 547 DREs mediating the GR-effects. 

Furthermore, by directly testing all SNP sequences, I determined that ~ 25% of these DREs display 

allele-dependent activity (variant-DREs). Experimental and in silico approaches revealed that 

these DREs were located within genomic regions enriched in TFBSes, including GREs, and 

chromatin loop anchor points. Lastly, I explored the relationship between the variant-DREs and 

psychiatric disorders and found evidence that the genomic loci modulating the transcriptomic 

response to stress have a putatively causal effect on psychiatric disorders.  

 
5.1. Using STARR-seq to improve the resolution of functional fine-mapping and to 

identify putative mechanisms of regulation 
In order to transition from identifying associations between variants and a phenotype (e.g. the 

stress response) to actually understanding the function of the variants, they need to be functional 

annotated and ultimately directly tested for activity. In this thesis, I started with a set of GR-eQTLs 

identified by a stimulated eQTL analysis. Using STARR-seq to directly test the functionality of 

each GR-eQTL SNPs in two cell lines, I determined that 165 and 172 variants located within the 

DREs display allele-dependent activity in the veh and dex conditions, respectively (variant-DREs). 
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Although the exact mechanisms by which the variant-DREs exert their effects remain elusive, I 

propose below putative mechanisms by which the variant-DREs may exert their effects, given the 

genomic and epigenomic context in which they reside.  

 

5.1.1.  Features associated with activating vs. repressive DREs 
To date, a number of studies have used STARR-seq to investigate DREs and to better 

understand dex mediated transcriptional patterns.110, 86, 83, 26 Interestingly, one of these studies 

reported a lack of DREs that were repressive in response to dex treatment,110 and another study 

was unable to validate the STARR-seq identified repressive DREs.86 However, in my STARR-seq 

experiment, I showed that nearly half (~45%) of the identified DREs are repressive. To ensure this 

was a robust finding, I included one repressive DRE in the validation experiment using qPCR, and 

was able to confirm the finding. Furthermore, my findings on repressive-DREs are in line with the 

observations Johnson et al. made in a recent study that investigated genome-wide DREs using 

STARR-seq. They found that 62% of the DREs were inductive, while 38% were repressive in 

response to dex.26 Comparison of the inductive vs. repressed DREs in this study revealed that the 

inductive DREs displayed a 1.2 - 1.5-fold greater response to dex compared to the repressive 

DREs. Interestingly, I also observe a greater magnitude of responsiveness in the inductive DREs 

compared to the repressive DREs, with a 1.2 greater fold change in the inductive DREs in the 

GR18 cells, and 1.1 in the U138MG.  

Given that both my STARR-seq data and those of Johnson et al. provide evidence for 

repressive DREs, it is likely a robust finding. Furthermore, this is congruent with multiple RNA-

seq and expression microarray datasets that have demonstrated that dex treatment results in both 

upregulation and downregulation at target genes,111,112, 113 providing further evidence that repressive 

DREs exist. One possible reason that may explain either 1) the lack of repressive DREs identified 

by STARR-seq in some studies, or 2) the relatively small magnitude of fold-change identified in 

repressive DREs, is that the design of STARR-seq is better suited to detect inductive REs rather 

than repressive REs. Since STARR-seq uses a minimal promotor, there is low basal activity. 

Therefore, the repressive potential of STARR-seq REs may be limited, as baseline activity is 

already low and repressing it much further is impossible. This could result in a decreased ability 

to detect repressive REs but also limit the magnitude of repression possible to detect. Therefore, it 

cannot be determined whether the reduced magnitude of repression observed in my results are the 
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result of technical limitations of the STARR-seq method, or whether it is truly specific to GR-

mediated repression, and thereby biological meaningful. Providing support for the latter are the 

results from the colocalization of the STARR-seq data with other functional datasets, as well as 

conclusions made by other studies. Together, these data lend support that GR-mediated repression 

and induction are governed by unique mechanisms, both of which are discussed below. 

 

5.1.2.  Putative mechanisms governing inductive DREs 
Various models of GR-mediated transcriptional induction have proposed. Most involve GR 

binding at canonical GREs, although it has been reported that a large proportion (42%) of GR 

binding occurs at alternative sequences.114 In this study, I demonstrated that the DREs are enriched 

in binding sites of GR, especially when considering only inductive DREs. However, despite this 

enrichment, only a small proportion of the DREs (~6%) overlapped with GR bindings sites in 

GR18 cells, suggesting other GR-mediated mechanisms must be involved. This may also, in part, 

be a result of the cell-type specificity of GR binding, which is largely dependent on underlying 

chromatin accessibility. Since STARR-seq is episomal and therefore independent of chromatin 

accessibility, it may have identified DREs located within chromatin contexts not conducive to GR 

binding in the GR18 cells, but conducive in other cell types. Supporting this hypothesis is that the 

majority (72%) of the DREs contained a GRE, indicating GR binding might be possible in another 

cellular context. Another possibility is that GR does not bind directly to the DNA, but rather 

interacts with a co-factor, which would not be detected using classical ChIP crosslinking 

approaches.115 In fact, this mode of GR binding has even been reported to be more common than 

direct DNA binding.116, 117 

Also thought to be involved in GR-mediated activation, are chromatin loops. In 2018 

D’Ippolito et al. showed that the vast majority of GR target genes are involved in chromatin loops 

that are pre-established prior to dex treatment.61 Dex, by activating GR, increases the strength of 

the interactions, either by binding GR directly to the DNA or tethering to another TF, thereby 

activating transcription. Using HiC data from the parental GR18 cells (U2OS) without dex 

treatment, I showed that the DREs are enriched in chromatin loop anchor points which is consistent 

with this model of GR-mediated activation. In fact, the number of DREs that are located within 

these anchors is nearly double the number of DREs located within GR binding sites, supporting 
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the hypothesis that both GR directly bound to DNA, and tethered GR are involved in chromatin 

looping. 

 

5.1.3. Putative mechanisms governing repressive DREs 
The mechanisms of GR-mediated repression remain more elusive, and numerous putative 

mechanisms have been postulated, including negative GREs,118 and tethering to repressive TFs.119 

However, in recent years, the majority of these mechanisms have been disputed, and no consensus 

mechanism has been identified. The so-called negative GREs have been found nearly as frequently 

at activated compared to repressed genes,115 and while tethering likely plays a role in GR-mediated 

repression, binding partners exclusive to repression have not been identified,115,120 making both of 

these unlikely widespread mechanisms of GR-mediated repression.  

 In my results, a comparison of inductive vs. repressive DREs revealed that repressive DREs, 

unlike inductive DREs, were not enriched in GR binding sites. In fact, in the GR18 cells, over 

twice the number of inductive DREs were located within or proximal to a GR binding site 

compared to repressive DREs. This is consistent with what was reported by Johnston et al., who 

found a depletion of GR binding sites within repressive DREs.26 Moreover, in my data, the 

repressive DREs, unlike the inductive DREs, were not enriched in the GR binding motif, an 

observation also made by Johnson et al. who performed this analysis in a different cell line. This 

suggests that the lack of GR binding at repressive-DREs is not specific to the GR18 cells, but 

rather represents a broader pattern of dex-mediated repression. However, similar to GR-mediated 

induction, GR could still exert its effects by tethering to other TFs, which has been reported. 

Further investigations to determine the tethering partners of GR need to be performed to better 

understand how the depletion of GR binding can still result in GR-mediated repression. 

Despite the lack of GR binding at repressive DREs, I found that the repressive DREs were 

enriched in chromatin anchor points at a level comparable to that in inductive DREs. This is 

consistent with a study that reported that both genes induced and repressed by dex are involved in 

chromatin looping to DREs. In this study, they found that repressed genes loop to transcriptionally 

silent components, unlike induced genes, which loop to transcriptionally active components.61 

However, no concrete mechanism for this repressive looping was proposed in this study. One 

mechanism proposed by a recent study suggested that tethered GR at repressive DREs competes 

with inductive REs located within the chromatin compartment for CBP/Ep300. In this model, the 
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depletion of Ep300 impairs the inductive activity of the RE, thereby repressing its target gene.121 

If this is indeed a mechanism of GR-mediated repression, then chromatin interactions, which 

would bring the competing REs into proximity with one another, may increase the sequestering 

ability of the repressive DRE. However, this putative mechanism needs to be further studied.  

 

5.1.4. Putative mechanisms of variant-DREs 
Given these putative models for both of inductive and repressive DREs, the mechanisms by 

which the variant-DREs function can be postulated. It is well-established that variants within 

TFBSes can modulate the affinity of TF binding to DNA.97,96 Specific to GR, previous studies have 

demonstrated that single base pair variations within GREs,122 or regions directly flanking this 

sequence86 can modulate GR’s activity by inducing minor conformational changes in DNA 

structure, influencing the strength and persistence of GR  binding. This mechanism would likely 

be more prominent in inductive DREs, as I, and others, show that repressive DREs are not enriched 

in GR binding sites nor GRE motifs. For the sites where GR is not directly bound to the DNA, the 

same principal could apply (i.e., by changing the binding affinity of a TF) but involve the 

disruption of DNA binding of another TF, and therefore, alter the ability of GR to tether. This is 

supported by the results of the motif search on variant-DREs which shows known tethering 

partners of GR (AP-1,123,117 CEBPB,124 STAT5125) as being highly enriched in the variant-DREs. 

In both (directly-bound or tethered GR), changes in GR binding affinity could modulate the 

strength of chromatin looping, resulting in differential DRE activity, either by increasing or 

decreasing the frequency of interactions. In the case of repressive DREs, increased interactions 

would result in transcriptional repression, and in the case of inductive-DREs, in transcriptional 

induction. 

For the veh variant-DREs, a number of the principles outlined above may still apply, given 

that the majority of GR-regulated genes are basally expressed, and dex only either up or 

downregulates their expression.111 Therefore, TFBS disruption by TFs involved in basal expression 

remains a possible mechanism by which the veh variant-DREs could exert their effect. Likewise, 

since the large majority of chromatin loops involving GR target genes are formed prior to dex, the 

veh variant-DREs might perturb interaction frequencies, leading to differential gene expression in 

the veh condition.  
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5.2. The value of identifying small effect size variants 
The mean dex-induced fold change of the DREs was 1.4 [-2.3, 17.0] and approximately 90% 

of the DREs had fold-changes of less than two. This is in line with what has been observed in a 

previous STARR-seq experiment investigating DREs, which found that 84% of the identified 

DREs had a less than two-fold change in activity upon dex treatment.110 The effect size of the 

variant-DREs was also modest, (mean fold change 1.5 [1.12, 5.8]), which is consistent with the 

effects observed in other parallel enhancer screen (STARR-seq and MPRA).126,127 Such modest 

effects are not surprising given that complex traits, such as the stress response, are typically 

modulated by many common variants located within noncoding genomic regions. Moreover, 

psychiatric and mental health related phenotypes have been found to be especially polygenic with 

effect sizes smaller than many other complex traits.128 Yet, loci with small effect sizes do not 

necessarily make them trivial. For example, identifying disease-associated loci, even when they 

have small effects, can help identify novel molecules and biological pathways that can provide 

insight into disease mechanisms and identify new therapeutic targets, especially when multiple, 

small effect-size loci converge onto common biological pathways or molecules.  

Furthermore, in common traits, individuals typically harbor multiple common variants, each 

contributing a small effect.129 Therefore, the additive effects of small-effect size variants need to 

be considered. The additive effects of common variants can be captured by calculating PRSes 

which provide quantitative estimates of the genetic burden of risk loci, and therefore risk for 

disease. For example, individuals with a SCZ PRS in the top decile, have a threefold increased risk 

for developing psychosis.130 By generating a PRS, the additive effect of the variant-DREs could 

be summarized to generate a “stress sensitivity score”. In fact, in the GR-eQTL study, a PRS for 

stress sensitivity was calculated. This score was associated with dysregulation of amygdala 

reactivity, risk for MDD,2 and the hemodynamic response to stress in a second neuroimaging 

study.131 Given that STARR-seq filtered the GR-eQTLS to identify only those that were functional 

which yielded a subset more enriched in variants associated with psychiatric disorders, a PRS 

approach using only variant-DREs would likely provide even more predictive power and insight 

into the systems they regulate. Especially interesting would be to generate a PRS including only 

those variant-DREs recognized by MR as having a significant putatively causal effect on 

psychiatric disorders and weighing each variant-DRE by the OR. 
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5.3. Choosing appropriate models for high-throughput functional reporter assays 

for understand neuropsychiatric disorders 
A recent review on functional genomics approaches used in neuropsychiatric disorders 

highlighted the need to functionally annotate GWAS variants using high-throughput functional 

assays, such as MPRA or STARR-seq. However, the review also highlighted the need to 

interrogate these variants in neuropsychiatric disorder relevant cellular models. Specifically, 

reprogramming of peripheral cells into induced-pluripotent stem cells (IPSCs) and then 

differentiating them into specific neuronal or astrocytic subtypes specifically relevant to the 

disease of interest was proposed as the optimal approach.132 Given that RE activity and GR binding 

is cell-type specific,58 this approach would be superior to using the cell lines used in my STARR-

seq experiments in order to better understand the regulation of stress in a neuronal context. Indeed, 

I did assess the suitability of IPSC-derived neurons (iNeurons) for STARR-seq however, they 

proved not to be an appropriate model for stress research. Specifically, the iNeurons, which were 

generated by a collaborating research group, did not show a robust response to dex, with no 

significantly differentially expressed genes identified by RNA-seq after dex treatment. To validate 

these findings, qPCR was performed on GR target genes, and only FKBP5 showed a minimal 

response, with a 1.5-fold increase in FKBP5 expression after dex, which was far less than the cell 

lines ultimately chosen, which showed a ~4 fold increase (see Figure S1). Although this lack of 

response is surprising, this is consistent with another study that identified no differential expressed 

genes after dex treatment in primary mouse neurons compared to astrocytes133, and a study of the 

expression of FKBP5 in human iPSC-derived iNeurons which found a minimal (1.23 fold) 

induction upon dex stimulation.134  Furthermore, immunohistochemistry and WB analyses showed 

no evidence of GR translocating into the nucleus upon dex treatment in our iNeurons. Together, 

these data indicate that the iNeurons generated were not an appropriate model for studying the 

stress response. Yet, only one iNeuron subtype (glutamatergic forebrain iNeurons) was assessed, 

and other specific subtypes of iNeurons may elicit a sufficient response to GR, given GR’s critical 

role in certain brain regions, such as the hippocampus,135 and amygdala,136  although even within 

specific brain regions, there is evidence for a neuronal subtype specific response to dex.137 

Furthermore, single-cell RNA-seq data from brain organoids exposed to dex demonstrate a cell-

type specific response to dex.92 Therefore, before employing STARR-seq in iNeurons as suggested 
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by Townsley et al., an appropriate iNeuron model showing a sufficient transcriptomic response to 

dex needs to be identified.  

Despite the advantages enabled by performing functional assays in iNeurons, I would argue 

that especially when performing episomal, rather than genome integrated, high-throughput 

methods, using models that are not disease-relevant can still provide valuable information. This is 

especially true for my STARR-seq experiments which focus on GR. Given that GR binding events 

are highly dependent on chromatin accessibility, performing episomal STARR-seq in disease-

relevant models may not have provided much additional information, given that chromatin 

conformation has a defining role in determining DRE activity.  Therefore, I would argue it is 

imperative that either an genome integrated version of STARR-seq or MPRA is performed in the 

appropriate neuronal model, or that episomal STARR-seq data is integrated with functional data 

from disease-relevant tissues to predict whether the STARR-seq identified features were located 

within regions conducive to activity. Such integration approaches are highlighted by Townsley 

who argues that loci identified by high-throughput reporter assays need to be contextualized by 

integrating these loci with data on the chromatin and epigenomic landscapes surrounding the loci. 

In fact, a study is highlighted that contextualizes SCZ MPRA loci identified in non-neuronal cell 

lines, by performing RNA-seq and ATAC-seq on three different iNeurons subtypes derived from 

20 individuals heterozygous at the risk loci of interest. This allowed the loci to be understood in 

an endogenous context that was relevant to the diseases of interest.138 However, contextualizing 

variants identified by high-throughput reporter assays does not necessarily need to involve 

iNeurons.  

Using HaploReg, I annotated the DREs and variant-DREs to the 15 ChromHMM chromatin 

states and found that they were highly enriched in regions predicted to be active enhancers across 

all 15 tissues I assessed. I further analyzed all individual brain regions available from HaploReg. 

From the eight regions, dex and veh variant-DREs were both significantly enriched in two regions 

(angular gyrus and middle hippocampus), and dex variant-REs were exclusively enriched in a 

further two, including the cingulate gyrus and the germinal matrix. Both the hippocampus and 

cingulate gyrus, which are components of the limbic system, have been implicated in various 

psychiatric disorders, such as decreases in hippocampal volume in MDD,139 and hypoactivity of 

the cingulate gyrus in SCZ.140 Further integration of the variant-DREs could be performed, for 
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example using functional data from post-mortem brains, brain organoids, or dex-responsive 

iNeurons.  

One interesting finding from the motif search on the variant-DREs was that the second most 

highly enriched motif in the dex variant-DREs was OTX. OTX is family of TFs that are essential 

in brain development.141 Moreover, OTX2 has been shown to play a critical role in the 

transcriptional programming of stress. In one study, a knockdown of Otx2 in mice was shown to 

mimic early life stress by increasing stress vulnerability, whereas the opposite effect was seen 

when it was overexpressed. This led the authors to conclude that OTX2 is the mediator of long-

term transcriptional programming in the ventral tegmental area that encodes stress susceptibility. 
142 The fact that this motif was highly enriched in the dex variant-DREs not only provides more 

insight into how the dex variant-DREs may function, but also lends support that the STARR-seq 

findings from cell lines can identify brain-relevant biological processes, in this case, long-term 

encoding of stress sensitivity. 

 
5.4. Using a networks approach to better understand variant-DRE effects 

The 3662 GR-eQTLs that were identified by Arloth et al.2 regulated the expression of 320 

transcripts. STARR-seq identified DREs that harbored GR-eQTLs associated with the expression 

of 122 of these transcripts, meaning that nearly 40% of the transcripts were represented. 

Interestingly, a pathway enrichment analysis on these 122 transcripts revealed nervous system 

development and axon guidance as two of the significantly enriched terms. Considering the initial 

GR-eQTL analysis was performed in blood and the STARR-seq in two cell lines, having enriched 

neuronal development terms strengthens my suggestion that the STARR-seq approach, even when 

performed in non-neuronal models, can provide valuable insight into diseases that affect the brain. 

Nervous system development was especially interesting, as there is evidence that exposure to 

stress, especially during development, can cause long-lasting effects on neuronal function and 

lifelong susceptibility to stress.142 A study that assessed 65 GR-eQTLs-regulated transcripts 

associated with MDD and SCZ from the Arloth et al. study, found them to form an interconnected 

GR responsive co-expression network in mice brains.143 Exposure to social stress or a positive 

environment was found to significantly alter the network structure in a brain-region and 

developmental stage specific manner, suggesting distinct early-life environments may promote 

differential network formation, especially in the hypothalamus and hippocampus, two regions 
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crucial to the stress response. Given this tight co-expression network, differential expression of 

single transcripts could cause perturbations that extend beyond the differential expression of a 

single gene, but rather shift the entire stress response network. It is then plausible that the variant-

DREs that modulate the expression of these transcripts could cause shifts in the brain’s response 

to stress. Indeed, the veh and dex variant-DREs harbored GR-eQTLs associated with 26% and 

33% of these 65 transcripts, respectively. Since only the GR-eQTL associated MDD and SCZ 

genes were included in this network analysis, further investigation including all variant-DRE 

regulated transcripts associated with psychiatric disorders (from the meta-analysis GWAS) is 

warranted to determine whether additional transcripts are involved in this stress co-expression 

network. 

While a better understanding of the variant-DRE regulated transcripts involved in the stress 

network is crucial, to confirm the role of the variant-DREs in a stress responsive network, and 

moreover, to link them to stress-related behaviors and phenotypes, direct approaches are required. 

For example, SNP-editing or RE knockouts using Crispr/Cas in iNeurons or brain organoids could 

be used to determine whether variant-REs could cause neuronal phenotypes known to be 

associated with stress, such as reduced spine density or altered spine morphology.144,145 Recent 

methodological advances  makes these strategies possible in humanized animal models,146,147 

which would shed light onto the effects of the variant-DREs on stress-related behavior, 

psychiatric-relevant phenotypes, and neurocircuitry.  

 

5.5. Using massively parallel reporter assays in psychiatry  
GWAS in psychiatry have identified genetics variants associated with multiple psychiatric 

disorders. Due to efforts such as the Psychiatric Genetics Consortium, higher powered studies are 

being conducted, enabling variants with smaller effect sizes to be identified.11 Yet, in order for the 

potential of these findings to be fully harnessed, follow-up studies investigating the functionality 

of these variants need to be performed in order to both further prioritize variants for follow-up 

experiments, and to better understand the biological pathways and mechanisms governing these 

disorders. Although psychiatry-specific resources exist that allow for functional annotation of 

these variants, such as PyschEncode,148 very few studies have employed parallel reporter assays to 

directly test the effect of genetic variants on regulatory activity. A study from Myint et al.  which 

tested 1049 loci associated with SCZ and 30 loci associated with Alzheimer’s disease, found that 
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148 of the variants displayed allele-dependent effects  in two cell lines.27 A second study which 

performed a GWAS on ASD followed by MPRA, identified a functional locus on DDHD2, which 

colocalized with a prenatal and adult brain eQTL.149 While this thesis does not use STARR-seq to 

directly test GWAS identified genetic variants, it does test variants that are associated with the 

stress response, which is an important endophenotype in psychiatry. This approach, to map 

variants to endophenotypes, rather than directly to disorders, is a bottom-up approach that has 

advantages over directly searching for associations between variants and diseases, especially when 

studying psychiatric disorders, which rely on diagnostic tools mainly based on symptoms, and not 

on biological or genetic markers. Therefore, mapping variants to endophenotypes is an important 

first step in gaining a better understanding of the underlying systems involved in psychopathology. 

Mechanistic insights generated from this approach could then be harnessed and applied to 

understand the psychiatric disorders themselves. In this thesis, I focused on understand the genetic 

variants modulating the transcriptomic stress response, an important endophenotype in psychiatry. 

In fact, dysregulation of the stress response on the transcriptomic level has been implicated in 

various psychiatric disorders, meaning it may act as a cross-diagnostic endophenotype. For 

example, in MDD, a study by Menke et al. found differences in GR-stimulated gene expression in 

patients with MDD. Using these GR-stimulated gene expression profiles as a classifier for case vs. 

control status resulted in 77% of individuals being correctly classified, as opposed to only 41.6% 

correctly classified using baseline gene expression.150 Another study on GR-stimulated gene 

expression identified unique expression profiles in PTSD patients vs. controls after stimulation of 

peripheral blood mononuclear cells with dex.151 Consistent with these results, the functional 

variants identified by STARR-seq that modulate the transcriptomic stress response were highly 

enriched for variants identified in a GWAS meta-analysis of eight psychiatric traits. Together, this 

suggests that a better understanding of the stress response, an endophenotype, and the mechanisms 

by which it is governed, may provide valuable insight not only relevant to single psychiatric 

disorders, but more broadly applicable to general psychopathology. 

 

5.6. Moving from association to causality and the implications for psychiatry  
The fact that the variant-DREs were enriched in variants associated with psychiatric disorders 

provided indication that the genomic loci modulating the transcriptomic response to stress were also 

those involved in psychopathology. However, the enrichment analysis was limited as it could only 
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reveal an association between the variant-DREs and psychiatric disorders. I wanted to move in the 

direction of causality to probe whether there might be a causal relationship between the differential 

enhancer activity driven by the variant-DREs and psychiatric disorders. Therefore, I employed MR. 

This revealed that variant-DREs are not only associated with psychiatric disorders, but also putatively 

play a causal role in psychopathology. A large subset of both the veh (7%) and dex (11%) variant-

DREs were found to be putatively causally associated to psychiatric traits. Interestingly, a larger 

proportion of the dex variant-DREs were found to have a significant effect on the disorders.  

Comparing these results to  those from an MR study that estimated the causal effect of differential 

gene expression on 43 complex traits,75 the proportion of significant exposure variables in my analysis 

is notably higher than in all 43 traits assessed. This may be partially be due to the fact that in my MR 

analysis only functional variants were included, whereas in the above-mentioned study all eQTLs 

available from a large database were included, many of which were likely non- functional. To my 

knowledge, this is the first study that has implemented a high throughput functional assays to select 

instrumental variables for MR. This may be a useful approach to better detect exposures with small 

effects, which is especially relevant when studying psychiatric disorders. 

 

5.7.  Conclusions and future directions 
Psychiatric disorders are complex disorders with a very high burden of disease, affecting nearly 

30% of the population within a lifetime.152 To date, diagnostic tools rely on clinical assessment of 

symptom clusters, and many individuals respond insufficiently to available treatments. In order to 

develop better diagnostic tools, a better understanding of the genetics and molecular hallmarks of 

these disorders is required. In order to develop new treatments, the implicated pathways and networks 

need to be identified. While this work has fine-mapped functional variants modulating the stress 

response, some of which are putatively causally implicated in psychopathology, follow-up studies are 

required to gain a better mechanistic understanding of these variants. However, to my knowledge, 

this is the first study that has implicated the same genomic loci involved in modulating the stress 

response in being putatively causally associated with psychiatric disorders. This knowledge could 

already be used to support interventions and preventative strategies targeted to vulnerable 

populations, such as those with a high burden of stressful life events.  
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7.  Supplementary Tables 
 
Table S1. Primer information and sequences (when available) used in this thesis. 
 

IDT TaqMan Probes for analyzing GR activation 

ID Description IDT ID  

1 FKBP5  Hs.PT.58.20523859 

2 YWHAZ  Hs.PT.39a.22214858  
 

3 SGK1 Hs.PT.58.19153459.gs  
 

4 TSC22D3  
 

Hs.PT.58.4331913  
 

GR ChIP-qPCR Primers 
 
ID Description Sequence (5’-3’)  

5 Intergenic (FKBP5_TULP)_neg forward CGGCCCAGACTTGACTTTCA 

6 Intergenic (FKBP5_TULP) neg reverse CCTTGCCCAGCCCCAAATAA 

7 FKBP5 (intron 5) positive forward ACTGCCCTAGAGCAATTTTGTTT 

8 FKBP5 (intron 5) positive reverse TGTCAGCACATCGAGTTCATGT 

STARR plasmid DNA amplification primers 

9 plasmid_pool_1 TAGAGCATGCACCGGACACTCTTTCCCTACACGAC 

10 plasmid_pool_2 GGCCGAATTCGTCGAGTGACTGGAGTTCAGACGTG 

STARR-seq plasmid DNA library Illumina 

11 Plasmid_library_Illumina_1 TATCATGTCTGCTCGAAGCGG 

12 Plasmid_library_Illumina_2 GGATTTGATATTCACCTGGC  

STARR-seq library preparation 

13 STARR-seq for RT with barcode CAAGCAGAAGACGGCATACGAGATnnnnnnnnGTGACTGGAGTTCAGACGTGTG
CTCTTCCGATCT 

14 Universal primer CAAGCAGAAGACGGCATACGA 

15 2nd_strand-i501 AATGATACGGCGACCACCGAGATCTACACTAGATCGCACACTCTTTCCCTAC
ACGACGCTC 

16 2nd_strand-i502 AATGATACGGCGACCACCGAGATCTACACCTCTCTATACACTCTTTCCCTACA
CGACGCTC 

17 2nd_strand-i503 AATGATACGGCGACCACCGAGATCTACACTATCCTCTACACTCTTTCCCTACA
CGACGCTC 

18 2nd_strand-i504 AATGATACGGCGACCACCGAGATCTACACAGAGTAGAACACTCTTTCCCTAC
ACGACGCTC 
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19 2nd_strand-i505 AATGATACGGCGACCACCGAGATCTACACGTAAGGAGACACTCTTTCCCTAC
ACGACGCTC 

20 2nd_strand-i506 AATGATACGGCGACCACCGAGATCTACACACTGCATAACACTCTTTCCCTAC
ACGACGCTC 

21 2nd_strand-i507 AATGATACGGCGACCACCGAGATCTACACAAGGAGTAACACTCTTTCCCTAC
ACGACGCTC 

22 2nd_strand-i508 AATGATACGGCGACCACCGAGATCTACACCTAAGCCTACACTCTTTCCCTAC
ACGACGCTC 

23 2nd_strand-i517 AATGATACGGCGACCACCGAGATCTACACGCGTAAGAACACTCTTTCCCTAC
ACGACGCTC 

24 2nd_strand-i510 AATGATACGGCGACCACCGAGATCTACACCGTCTAATACACTCTTTCCCTAC
ACGACGCTC 

25 2nd_strand-i511 AATGATACGGCGACCACCGAGATCTACACTCTCTCCGACACCTTTCCCTACAC
GACGCTC 

26 2nd_strand-i518 AATGATACGGCGACCACCGAGATCTACACCTATTAAGACACTCTTTCCCTAC
ACGACGCTC 

Primers for STARR-seq Validation 

27 Gene fragment amplification forward TAGAGCATGCACCGGACACTCTTTCCCTACACGAC 

28 Gene fragment amplification reverse GGCCGAATTCGTCGAGTGACTGGAGTTCAGACGTG 

29 mRNA STARR-seq  CAAACTCATCAATGTATCTTATCATG 

30 mRNA_Rpl19 GAGGCCAGTATGTACAGACAAAGTGG 

31 hRPL19 forward ATGTATCACAGCCTGTACCTG 

32 hRPL19 reverse TTCTTGGTCTCTTCCTCCTTG 

33 GFP forward GGCCAGCTGTTGGGGTGTC 

34 GFP reverse TTGGGACAACTCCAGTGAAGA 

Sanger sequencing of individual STARR-seq fragments 

35 STARR_sanger GCATTCTAGTTGTGGTTTGTCCA 
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Table S2. Regulatory regions of individual STARR-seq constructs.  
 

ID Description Reference Sequence 
STARR-FKBP5 STARR-seq vector with known dex-

inducible binding site on FKBP5  
 
Fragment inserted between Age1 and 
Sal1  

98 TAGAGCATGCACCGGACACTCTTTCCCT
ACACGACGCTCTTCCGATCTAGCGAAA
GAACATCCTGTGCCCGTCGCCGGATGC
GCGCGGGGGGAGGAGGTAGTCCGGGG
AGGGAGAGCAAGACCGGGGGAGGCCC
GGGACGGGGAAAGGCGCGGCCTCCTTC
CCCCCGCCGCAACCTCCTCCTCTGGGGG
CGCTGGCCCCCTCTGCTCCCCGCGCCTT
AGGCTGAGCTACCCGGAGGCCCCAGGA
TCTGGTTCCTGGGCAAGATCGGAAGAG
CACACGTCTGAACTCCAGTCACTCGAC
GAATTCGGCC 
 

STARR-CMV STARR-seq vector with CMV 
enhancer that is constitutively active 
 
Fragment inserted between Age1 and 
Sal1 

98 TAGAGCATGCACCGGACACTCTTTCCCT
ACACGACGCTCTTCCGATCTTCAATATT
GGCCATTAGCCATATTATTCATTGGTTA
TATAGCATAAATCAATATTGGCTATTGG
CCATTGCATACGTTGTATCTATATCATA
ATATGTACATTTATATTGGCTCATGTCC
AATATGACCGCCATGTTGGCATTGATTA
TTGACTAGTTATTAATAGTAATCAATTA
CGGGGTCATTAGTTCATAGCCCATATAT
GGAGTTCCGCGTTACATAACTTACGGTA
AATGGCCCGCCTGGCTGACCGCCCAAC
GACCCCCGCCCATTGACGTCAATAATG
ACGTATGTTCCCATAGTAACGCCAATA
GGGACTTTCCATTGACGTCAATGGGTG
GAGTATTTACGGTAAACTGCCCACTTGG
CAGTACATCAAGTGTATCATATGCCAA
GTCCGCCCCCTATTGACGTCAATGACGG
TAAATGGCCCGCCTGGCATTATGCCCA
GTACATGACCTTACGGGACTTTCCTACT
TGGCAGTACATCTACGTATTAGTCATCG
CTATTACCATGGTGATGCGGTTTTGGCA
GTACACCAATGGGCGTGGATAGCGGTT
TGACTCACGGGGATTTCCAAGTCTCCAC
CCCATTGACGTCAATGGGAGTTTGTTTT
GGCACCAAAATCAACGGGACTTTCCAA
AATGTCGTAACAACTAGATCGGAAGAG
CACACGTCTGAACTCCAGTCACTCGAC
GAATTCGGCC 
 
 

STARR-scr STARR-seq vector with scrambled 
version of a fragment of known dex-
inducible binding site on FKBP5 
 
Insert fragment between Age1 and 
Sal1 

98 TAGAGCATGCACCGGACACTCTTTCCCT
ACACGACGCTCTTCCGATCTCAGCGAA
AGAAACTCCGTTGCCCGTCGCTAGATC
GGAAGAGCACACGTCTGAACTCCAGTC
ACTCGACGAATTCGGCC 
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Table S3. Descriptions for EIDs. 
 

EID Tissue Description 

E062 Blood & T-cell Primary mononuclear cells from peripheral blood 

E034 Blood & T-cell Primary T cells from peripheral blood 

E045 Blood & T-cell Primary T cells effector/memory enriched from peripheral blood 

E033 Blood & T-cell Primary T cells from cord blood 

E044 Blood & T-cell Primary T regulatory cells from peripheral blood 

E043 Blood & T-cell Primary T helper cells from peripheral blood 

E039 Blood & T-cell Primary T helper naive cells from peripheral blood 

E041 Blood & T-cell Primary T helper cells PMA-I stimulated 

E042 Blood & T-cell Primary T helper 17 cells PMA-I stimulated 

E040 Blood & T-cell Primary T helper memory cells from peripheral blood 1 

E037 Blood & T-cell Primary T helper memory cells from peripheral blood 2 

E048 Blood & T-cell Primary T CD8+ memory cells from peripheral blood 

E038 Blood & T-cell Primary T helper naive cells from peripheral blood 

E047 Blood & T-cell Primary T CD8+ naive cells from peripheral blood 

E029 HSC & B-cell Primary monocytes from peripheral blood 

E031 HSC & B-cell Primary B cells from cord blood 

E035 HSC & B-cell Primary hematopoietic stem cells 

E051 HSC & B-cell Primary hematopoietic stem cells G-CSF-mobilized Male 

E050 HSC & B-cell Primary hematopoietic stem cells G-CSF-mobilized Female 

E036 HSC & B-cell Primary hematopoietic stem cells short term culture 

E032 HSC & B-cell Primary B cells from peripheral blood 

E046 HSC & B-cell Primary Natural Killer cells from peripheral blood 

E030 HSC & B-cell Primary neutrophils from peripheral blood 

E071 Brain Brain Hippocampus Middle 

E074 Brain Brain Substantia Nigra 

E068 Brain Brain Anterior Caudate 

E069 Brain Brain Cingulate Gyrus 

E072 Brain Brain Inferior Temporal Lobe 

E067 Brain Brain Angular Gyrus 

E073 Brain Brain_Dorsolateral_Prefrontal_Cortex 

E070 Brain Brain Germinal Matrix 

E082 Brain Fetal Brain Female 

E081 Brain Fetal Brain Male 
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8. Supplementary Figures 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S1. Transcriptional response to dex in GR target genes. Fold changes of expression for 
three GR-target genes after dex treatment in two different cell lines, GR18 and U138MG. Fold 
changes of expression for IPSCs, and neural precursor cells (NPCs) and iNeurons derived from 
IPSCs from two individuals are displayed below. 
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