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V

A B S T R A C T

Low–dose imaging for particle therapy with fluence–modulated
proton computed tomography

Particle therapy for the curative treatment
of tumors with energetic charged particles
allows for the precise deposition of a ther-

apeutic dose in the cancerous tissue while spar-
ing surrounding healthy tissue. This exploits the
increased dose deposition of charged particles,
typically protons or carbon ions, at the end of
their range. The treatment planning with highly
conformal doses, however, requires a precise volu-
metric knowledge of the patients stopping power
relative to water (RSP). In current clinical prac-
tice, such images are acquired using x–ray com-
puted tomography, which measures the interac-
tion of photons with matter and is subsequently
converted to RSP. This conversion leads to er-
rors, which need to be considered as additional
margins around the tumor and necessarily lead
to a higher dose to healthy tissue. An imaging
modality suggested to reduce such errors is pro-
ton computed tomography (pCT), which directly
determines the RSP through measurements of the
energy loss of protons in the patient.

Within this work, methods for dynamic mod-
ulation of the imaging fluence field have been
established to reduce the imaging dose required
for pCT acquisitions. With fluence–modulated
pCT (FMpCT), the image is split into a region–
of–interest (ROI), where good image quality is
needed, and a non–ROI region, which is not used
for treatment planning. In the context of par-
ticle therapy, the ROI covers the vicinity of the
therapeutic beam. Outside of the ROI, imaging
noise can be increased and imaging dose reduced.
The calculation of modulated fluence patterns
requires a forward model, that predicts the ex-
pected image noise for a given fluence setting.
Such a forward model was realized using a Monte
Carlo model of a specific pCT scanner and val-
idated against experimental data. This allowed
to carefully disentangle single contributions to
pCT image noise, which was found to strongly

depend on the heterogeneity of the object. Us-
ing the forward model, two FMpCT optimization
algorithms were proposed: a simpler one, that
only takes into account image variance, and a
more sophisticated one, that considers both im-
age noise and imaging dose objectives. The FM-
pCT scans were realized both in simulations and
in experiments at the Chicago proton center us-
ing small fluence–modulated pencil beams, for
which an interface to the control system needed
to be established. Simulations were performed
using anonymized x–ray CTs of patients under-
going photon therapy, and corresponding proton
therapy treatment plans served for the definition
of the imaging ROI. The imaging dose outside
of the ROI could be reduced by 74% compared
to scans at uniform imaging fluence and at the
same peak noise level. The imaging dose to crit-
ical structures such as the eyes could further be
pushed down using the optimization and dose
savings up to 87% were achieved while maintain-
ing the accuracy for treatment plan optimization
on FMpCT images.

In addition, two methods for artifact reduction
with un–modulated pCT scans were developed,
with one directly addressing the physical reason
for artifacts by merging two datasets at differ-
ent incident energies. The second artifact cor-
rection method was purely empirical and made
no assumption on the origin of image artifacts.
It used a scan of a custom–built phantom with
known RSP and allowed to almost halve the mean
absolute RSP error of a prototype pCT scanner
by 46%.

In this work, the development and experimen-
tal realization of optimized FMpCT scans together
with the improved accuracy of pCT opened an
interesting perspective: towards adaptive particle
therapy with daily image guidance without ac-
cumulation of excessive patient doses in healthy
tissue.
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Z U S A M M E N FA S S U N G

Niedrigdosisbildgebung für die Partikeltherapie mit
fluenz–modulierter Protonen–Computertomographie

Partikeltherapie zur kurativen Behandlung von
Tumoren mit beschleunigten Ionen ermöglicht
die präzise Verabreichung der therapeutischen

Strahlendosis im Krebsgewebe während umliegendes,
gesundes Gewebe geschont wird. Dabei nutzt man
die erhöhte Dosisabgabe von geladenen Teilchen, typi-
scherweise Protonen oder Kohlenstoffionen, am En-
de ihrer Reichweite. Eine Bestrahlungsplanung mit
hoch–konformen Dosisverteilungen erfordert jedoch
eine präzise volumetrische Bildgebung des relativen
Bremsvermögens (RSP) des Patienten. In der derzeiti-
gen klinischen Praxis werden solche Schnittbilder mit-
tels Röntgen–Computertomographie erstellt, und nach-
folgend die dabei gemessene Interaktion von Photonen
mit Materie in RSP umgerechnet. Diese Umrechnung
führt zu Fehlern, welche bei der Bestrahlungsplanung
als zusätzliches Toleranzvolumen berücksichtigt wer-
den müssen und unumgänglich zu erhöhter Strahlen-
dosis im gesunden Gewebe führen. Ein Bildgebungs-
verfahren, welches diese Fehler reduzieren kann, ist
die Protonen–Computertomographie (pCT), bei der
das RSP direkt durch Messung des Energieverlusts von
Protonen im Patienten bestimmt wird.

In dieser Arbeit wurden Methoden zur dynamischen
Modulation der Bildgebungsfluenz etabliert, mit denen
die Dosis von pCT–Aufnahmen reduziert werden kann.
Für fluenz–modulierte pCT (FMpCT) wird das Bild
eingeteilt in eine Zielregion (ROI), in der hohe Bildqua-
lität benötigt wird, sowie das restliche Volumen, das
zur weiteren Bestrahlungsplanung nicht benötigt wird.
Im Kontext der Partikeltherapie entspricht die ROI
einer Umgebung um den therapeutischen Strahl. Au-
ßerhalb der ROI kann das Bildrauschen erhöht und die
Bildgebungsdosis reduziert werden. Die Berechnung
von modulierten Fluenzverteilungen wird ermöglicht
durch ein Modell des für eine gegebene Fluenzmo-
dulation zu erwartenden Bildrauschens. Ein solches
Modell wurde mit Hilfe einer Monte Carlo Simulati-
on eines spezifischen pCT Scanners erstellt und mit
experimentellen Daten validiert. Dadurch war es außer-
dem möglich, einzelne physikalische Beiträge zum pCT
Bildrauschen zu isolieren. Für den Rauschwert spielte
dabei die Heterogenität des Bildgebungsobjektes eine

entscheidende Rolle. Basierend auf dem Rauschmo-
dell wurden zwei FMpCT Optimierungsalgorithmen
entwickelt: ein vereinfachter, bei dem lediglich das
Bildrauschen berücksichtigt wird, und ein weiterent-
wickelter, mit dem sowohl gewünschte Bildrausch– als
auch Bildgebungsdosis–Verteilungen erzielt werden
können. FMpCT Aufnahmen wurden durch Modulati-
on der Fluenz kleiner Strahlbündel sowohl in Simula-
tionen als auch in Experimenten am Protonenzentrum
in Chicago realisiert. Für die Experimente musste ei-
ne Schnittstelle zum Kontrollsystem des Beschleuni-
gers etabliert werden. In Simulationen mit anonymi-
sierten Röntgen-CTs von Photonentherapie–Patienten
wurde die Bildgebungs–ROI basierend auf entsprechen-
den Protonen–Bestrahlungsplänen definiert. Die Bild-
gebungsdosis außerhalb der ROI wurde dabei um 74%
reduziert im Vergleich zu Aufnahmen bei gleichmäßi-
ger Fluenz und bei gleichem maximalen Rauschwert.
Die Bildgebungsdosis in kritischen Strukturen wie den
Augen konnte dabei im Rahmen der Optimierung wei-
ter verringert werden und Reduktionen von bis zu
87% waren möglich. Dabei wurde die Genauigkeit der
Bestrahlungsplanung nicht beeinträchtigt.

Zusätzlich wurden zwei Methoden zur Artefaktkor-
rektur in nicht–modulierten pCT Aufnahmen entwi-
ckelt. Dabei berücksichtigte eine Methode direkt die
physikalische Ursache von Bildgebungsartefakten und
führte selektiv zwei Datensätze bei unterschiedlichen
Protonenenergien zusammen. Die zweite Artefaktkor-
rektur war vollkommen empirisch und machte keine
Annahmen über die Ursache der Artefakte. Dabei wur-
de eine Aufnahme eines eigens herstellten Phantoms
mit bekanntem RSP genutzt. Mit der Methode wur-
de der mittlere absolute RSP–Fehler eines Prototypen–
pCT–Scanners um 47% reduziert.

Diese Arbeit hat mit der Entwicklung und experi-
mentellen Realisierung von optimierten FMpCT Auf-
nahmen zusammen mit der verbesserten Genauigkeit
von pCT eine interessante Perspektive eröffnet: hin zur
adaptiven Partikeltherapie mit täglicher Bildgebung
unter Vermeidung übermäßiger Dosisbelastung in ge-
sundem Gewebe.
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Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more so we may fear less.

— Marie Skłodowska Curie
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1 I N T R O D U C T I O N

This first chapter shall introduce a general framework within which this thesis oper-
ates. The challenges and advantages of modern image–guided particle therapy for

the treatment of tumors are discussed. It is laid out how proton computed tomography,
the main imaging modality used in this thesis, may help improve the accuracy of cancer
therapy with charged particles while decreasing the radiation dose administered to the
patient. Eventually, the use of fluence–modulation for proton computed tomography is
motivated and the aim and scope of this thesis are defined.

1.1 particle therapy

Healthy cells in the human body continuously reproduce at a controlled rate and with
an efficient system of detection and correction of errors. A malfunction of these processes,
initiated by external factors such as radiation or smoking, or due to systemic factors or
viruses, can cause an uncontrolled and malign proliferation of cells, which in general terms
is called cancer [1, 2] and can occur in any organ of the body. The rapid growth of cells is
initially localized in a primary tumor. However, systems to detect cell reproduction errors
become insufficient inside the tumor causing cell mutations which can eventually invade
healthy tissues or spread to other organs and form metastases. Cancer can have both local
effects due to the expansion of the tumor, as well as various systemic effects such as a loss
of weight or a disruption of the hormonal system. If untreated, the disease is fatal, in most
cases not due to the primary tumor, but due to disruption of organs from metastases. Cancer
is the second leading cause of death globally according to the World Health Organization
and over–proportionally affects low– and middle–income countries [3].

To prevent a fatal outcome, early diagnosis and efficient treatment are mandatory. Primary
tumors and metastases can be mainly treated in three ways [4]: (1) removal of the primary
tumor by surgery, (2) systemic treatment with chemotherapy or other therapies affecting
the patient’s immune or hormone system, and (3) eradication of tumor cells using radiation
therapy. This work will only focus on the treatment with radiation therapy assuming that
the other two options are used supplementally, or are exhausted, or not possible. While
radiation can be a cause of cancer itself, it can also be used to treat tumors. Due to their
insufficient repair mechanisms, tumor cells are often more susceptible to cell death induced
by radiation [5]. This allows to target cancerous cells by administering radiation dose either
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internally by bringing a radioactive source close to the tumor (brachytherapy) or by exposing
the patient to an external beam of ionizing radiation (external beam radiation therapy).
The most common sources of ionizing radiation for external beam radiation therapy are
x–ray photons, electrons, protons and carbon ions. Due to their relatively low cost and
good clinical outcomes, megavoltage x–ray beams generated by compact linear accelerators
(LINACs) [6] are most frequently used in oncological clinics today. The photon beams are
administered from various angles while focusing the fluence on the intersection with the
tumor using a multi–leaf collimator [7]. Thereby, the therapeutic dose can be concentrated
in the tumor volume and dose to healthy tissue is reduced [8]. This opens a therapeutic
window within which the tumor cells are eradicated and do not regrow while healthy tissue
is spared and can regenerate [9], ideally without severe side effects. The relevant physical
interaction processes of photons that lead to that dose deposition are described in section 2.2.

Treatment of cancer using protons and carbon ions, or in short particle therapy [11, 12],
is less frequently used due to the higher cost of machines accelerating ions compared to
LINACs. However, particle therapy shows more favorable clinical outcomes for many types
of cancer [13–15], due to the different mode of dose deposition, which is described in detail
in section 2.1. While the dose deposition of a single photon beam exponentially decreases
with depth, charged particles and in particular protons exhibit a so–called Bragg peak
within which the depth–dose curve rapidly increases when the particle’s energy decreases,
eventually bringing the particle to a halt. This effect can be exploited to carefully tailor
the proton’s incident energy such that the Bragg peak — and with it the maximum dose
deposition — occurs inside the tumor. Using many particle beams with different locations,
energies and intensities allows to uniformly cover the tumor volume with an approach
called pencil beam scanning (PBS). Since no dose is deposited after the stopping point of
the particle, cancer treatment using charged particles allows to better spare healthy tissue
and the treatment is generally more tolerable with less severe comorbidities [13], thereby
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widening the above–mentioned therapeutic window. Additionally, therapy with charged
particles also has biological advantages [16, 17]. While the vast majority of patients today are
still treated with photons, the number of facilities offering proton or carbon ion treatment
has grown dramatically within the last decade [10, 18], as shown in fig. 1.1. It can also be
seen that carbon ion therapy plays a minor role compared to proton therapy, which again is
mostly due to economic rather than clinical considerations [19]. While this ratio is different
in Germany — with two centers in Heidelberg and Marburg offering carbon ion and proton
therapy and three centers in Berlin, Essen and Dresden offering only proton therapy —
particle therapy with protons is still more common. Therefore, in this work, only proton
therapy is considered specifically.

1.2 treatment workflow of image–guided particle ther-
apy

The benefit of particle therapy, which is the precise targeting of the tumor using Bragg
peaks, is also its biggest challenge. Even small changes in the positioning of the patient or
the internal anatomy can cause Bragg peaks to fall outside of the tumor volume causing
damage to healthy tissue while leaving parts of the tumor untreated and allowing it to
regrow. In this worst case scenario the patient would suffer from severe side effects while
the tumor growth could not be stopped. To avoid this, and to ensure a safe and precise
delivery of the therapeutic dose, particle therapy relies heavily on frequent imaging [20,
21] using various imaging modalities both before [22, 23] and during the treatment [24,
25]. Specifically, during the treatment workflow of image–guided particle therapy, which is
illustrated in fig. 1.2, imaging is performed during the following steps and using various
imaging modalities.

MRI

CT imaging

delineation treatment planning
treatment delivery

plan adaptation

imaging

treatment preparation

treatment delivery

position imaging

Figure 1.2: Illustration of the treatment workflow of modern image–guided particle therapy.
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delineation Before any treatment planning can begin, the tumor volume and critical
organ structures need to be delineated [26, 27]. This task is performed based on computed
tomography (CT) and ideally also magnetic resonance imaging (MRI). While the good soft
tissue contrast of MRI allows to identify the tumor volume more easily, CT images ensure
the correct geometry which can be distorted with MRI. For this purpose, MRI is (deformably)
registered to the CT. In some cases, delineation can be complemented by nuclear imaging,
in particular positron emission tomography (PET) or single photon emission CT (SPECT).
Apart from the gross tumor volume (GTV), which is the visible extent of the tumor, the
clinical target volume (CTV) and planning target volume (PTV) are delineated. The CTV
extends the GTV to ensure that all suspected microscopic malignant diseases are covered that
are not visible with imaging. The PTV contains the CTV and an additional geometric margin
to ensure that the CTV is irradiated even under delivery uncertainties and considering errors
in the calculated particle range due to imaging inaccuracies. For definition of the PTV,
four–dimensional (time resolved) MRI or CT imaging can be used [28]. Moreover, organs at
risk (OARs) such as the brainstem are delineated to monitor and reduce treatment dose to
critical structures.

treatment planning When tumor and organ structures are delineated, a medical doctor
prescribes a therapeutic dose to the PTV which can be up to 70Gy for definitive treatment
of the tumor. Additionally, between one and typically up to four beam directions are
defined from which the tumor can be reached without crossing critical structures or very
heterogeneous tissue [17, 29]. Constraints are set to minimize dose to healthy tissue and in
particular to OARs while ensuring that the prescription in the PTV is met. This optimization
task is performed using a treatment planning system (TPS) operated by a medical physicist.
To date, the TPS solely relies on CT imaging for calculation of the particles’ ranges. To
achieve this, the CT image is passed through a calibration curve [30] to convert the linear
attenuation coefficient of x–ray photons to the stopping power of charged particles. This
process involves additional uncertainties which need to be considered in the PTV margin.

patient positioning To deliver the therapeutic dose, the patient needs to be positioned
on the treatment couch exactly as during the acquisition of the treatment planning CT. For
tumors of the head and neck region, this is often aided by using a personalized thermoplastic
mask that can be attached to the treatment couch. After an initial positioning of the patient, a
set of two–dimensional (planar) radiographs is taken and compared to digitally reconstructed
radiographs of the planning CT. Modern centers additionally use volumetric imaging using
cone–beam computed tomography (CBCT) to ensure a correct patient positioning [24].

plan adaptation If major anatomic changes, which are likely not to be covered by the
PTV margins, are detected during CBCT imaging prior to treatment or during a routine
MRI or CT scan in between treatment sessions, the treatment needs to be interrupted and
treatment planning needs to be performed again. Since CBCT imaging does not (yet) offer
sufficient image quality for treatment planning, a CT scan would need to be additionally
performed in this case. Due to good positioning using thermoplastic masks, generally large
PTV margins and infrequent MRI or CT scans in between scans, a plan adaptation is rare
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in current clinical practice. However, patients may benefit from more frequent volumetric
imaging and daily plan adaptation [25, 31], as indicated by the recent clinical availability
of MR–LINACs [32, 33], which allow MRI in treatment position right before or after the
treatment delivery, and online plan adaptation.

————

In conclusion, modern particle therapy would not be possible without the extensive use of
imaging before and during the treatment. At the same time, improvements in imaging are
key to increase treatment accuracy and safety [34]. Specifically, PTV margins [26] could be
reduced if the particle range calculation becomes more accurate due to improved imaging,
or if patient positioning [35] is more accurate and anatomical changes are detected reliably
due to frequent imaging in treatment position. In both cases, margin reductions would
directly translate into a reduced dose to healthy tissue which improves treatment tolerability
and further widens the therapeutic window of particle therapy.

1.3 proton computed tomography

An imaging modality suggested to improve accuracy of treatment planning is proton
computed tomography (pCT), which was initially proposed in 1963 by Cormack [36] and
later realized by Hanson et al. [37]. Instead of measuring the linear attenuation coefficient
of photons with x–ray CT and then converting it to proton stopping power, a process
which involves conversion errors, pCT directly measures the patient’s stopping power
relative to water (RSP) by determining the energy loss of protons traversing the patient.
The RSP can then be used in the TPS to calculate the range of protons in the patient. The
detection principle and the required technical instrumentation of pCT are described in
detail in sections 3.1 and 3.2. The general idea of pCT is to make use of the fact that
protons continuously lose energy in small steps when traversing a medium [38, 39]. For pCT
acquisitions, the initial proton energy is fixed and increased from what is typically used
for treatment (where protons stop inside the tumor), to typically 200MeV so that protons
can traverse at least an average adult head and exit with a reduced energy. A detector
then measures the protons’ residual energy, which can be converted to a water–equivalent
path length (WEPL). The WEPL is a line integral through RSP along the path of the proton
and as such can be used to reconstruct a volumetric image of the patient using dedicated
reconstruction algorithms such as the one described in section 3.5.3.

Early prototype pCT scanners were shown to be as accurate as state–of–the–art clinical
x–ray CT scanners [40, 41], and may outperform the standard of care with future technology
improvements [42, 43]. Apart from the improved accuracy, pCT scanners also administer
less radiological dose to the patient [44] compared to getting the equivalent information
using x–ray CT. With this, they could allow for frequent imaging prior to every treatment
session [34], which, as discussed before, could allow for daily adaptive particle therapy [25,
31]. Moreover, pCT scans employ protons through the treatment system and are therefore,
by design, acquired in treatment position and even using the same coordinate system. This
is beneficial to avoid a positioning mismatch between scans acquired in two different rooms.
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Consequently, pCT could supplement or replace many of the imaging modalities in
section 1.2 and fig. 1.2. It cannot replace MRI for structure delineation due to its low soft
tissue contrast, but it could be used instead of x–ray CT as a basis for treatment planning.
CBCT imaging could also be replaced by pCT allowing for a precise patient positioning as
well as an immediate plan adaptation.

1.4 aims & scope

The main focus of this work was to further reduce imaging dose of pCT by employing
modulated fluence fields during the tomographic acquisition. Fluence, and with it imaging
dose, is inversely related to noise in the image. The goal of fluence–modulated proton
computed tomography (FMpCT) [45, 46] is to achieve a low noise level only where this is
needed, namely inside a region–of–interest (ROI). In the context of particle therapy, this
ROI will be the vicinity of the treatment beam path, which typically only covers a fraction
of the imaged volume. In this work the ROI will be defined as the volume receiving at
least 10% of the treatment dose. Inside the ROI, the full radiological information will be
maintained, but outside of the ROI, fluence can be reduced and with it imaging dose. The
imaging dose saving outside of the ROI is particularly meaningful, since particle therapy, by
using Bragg peaks, has very little treatment dose outside of the treatment field. Or in other
words: FMpCT may allow to image the patient more frequently without compromising the
low–dose benefit of particle therapy. A major challenge of this work was to solve the inverse
problem of calculating imaging fluences that would result in a desired image noise and
imaging dose distribution. This was achieved using two different optimization algorithms
that needed to account for the noise characteristics of a prototype pCT scanner to allow for
subsequent experimental acquisitions.

Within this work the following objectives were pursued aiming to enable and experimen-
tally realize optimized FMpCT acquisitions and, at the same time, improve accuracy of pCT
in general.

objective i To understand and model pCT image noise to enable FMpCT. Controlling image
noise as part of a fluence optimization requires a complete understanding and the ability
to predict image noise for a given fluence setting. Monte Carlo simulations were used to
predict image noise contributions for a specific prototype pCT scanner and compared to
experimental scans of the same objects. In particular the impact of object heterogeneities
was studied.

objective ii To develop optimization algorithms for FMpCT and demonstrate their feasibility
using Monte Carlo simulations. With a detailed forward model of image noise in pCT, the task
of finding optimal fluence settings achieving a desired image noise distribution becomes an
inverse problem, which can be solved using optimization. The performance of the optimizer
was tested in Monte Carlo simulations which also allowed to estimate potential dose savings.



introduction 7

objective iii To show the experimental feasibility of FMpCT using a prototype pCT scanner.
Applying optimized fluence patterns in an experimental scan required to establish an
interface with the beam delivery system of a proton therapy facility. Resulting experimental
image noise maps were compared to the predictions from Monte Carlo simulations as well
as to the prescribed image noise.

objective iv To investigate the clinical applicability of FMpCT by using patient data and develop
a fast and flexible optimizer with clinically relevant optimization targets. Images of pediatric
patients undergoing cancer therapy were imported to a Monte Carlo pCT simulation to
apply FMpCT to plausible scenarios. For this, an improved optimization algorithm was
developed that does not only take into account image noise, but also imaging dose and in
particular imaging dose to critical structures such as OARs.

objective v To investigate and improve the accuracy of a prototype pCT scanner. Besides a
reduction of imaging dose, which is the main topic of this work, pCT could also benefit from
an improvement of image accuracy. In conjunction with the work on FMpCT, the accuracy
of pCT images in terms of the RSP was investigated and methods applied to improve it.

————

In chapter 2, this thesis will introduce the fundamental physical processes, the under-
standing of which allows us to treat patients with particle therapy and to perform x–ray
CT and pCT scans. In chapter 3, the concept of pCT imaging is detailed together with the
necessary technical instrumentation and reconstruction algorithms. Since this thesis makes
frequent use of Monte Carlo simulations, the computational models as well as the use of
patient data in simulations are described in chapter 4. After those fundamental chapters, the
first objective, the understanding of image noise, is discussed in chapter 5. In chapter 6, an
optimization algorithm for FMpCT is proposed and its performance assessed in a simulation
study, thereby covering the second objective. The third objective, the experimental realiza-
tion of FMpCT, is pursued in chapter 7. Based on the conclusions of chapters 6 and 7, the
optimization algorithm is re–designed and a novel optimizer with joint dose and variance
objectives is presented in chapter 8. It is applied to patient data and to clinically relevant
optimization targets, which discusses the fourth objective. Finally, chapter 9 puts forward
the fifth objective trying to improve image accuracy of pCT.





9

2 I N T E R A C T I O N O F P R OTO N S A N D P H OTO N S
W I T H M AT T E R

The understanding of the interaction of charged particles with matter is a key compo-
nent to allow for their usage to treat cancer patients. This chapter will summarize

the fundamental physical interactions that are relevant for proton therapy, but that also
enabled the development of pCT scanners. It is mainly based on the reviews of Newhauser
and Zhang [38], Lomax [39], and Durante and Paganetti [47]. To understand the benefits
of particle therapy over conventional x–ray radiotherapy, it is important to understand the
interaction of x–ray photons with matter, which is also discussed.

2.1 interaction of protons

2.1.1 Interaction mechanisms

While traversing a medium, protons interact with the atoms of the medium either via
the Coulomb field of their electrons or nucleus, or via nuclear interactions. With regards
to particle therapy and pCT, one is most interested to predict the energy loss and corre-
spondingly the dose deposited in each interaction. Additionally, directional changes of the
primary protons are relevant to predict the spatial distribution of the dose deposition for
particle therapy and to understand the proton’s curved trajectory in the case of pCT. Protons
used for particle therapy are accelerated to energies between 70MeV and up to 250MeV for
deep–seated tumors [39]. This puts them in the moderately relativistic range [47] with up
to β ≈ 0.6, where β is the particle speed relative to the speed of light. For pCT, energies
of 200MeV are the current standard [48] and are foreseen for cranial applications. In this
energy range, physical interaction mechanisms are well understood. They are Coulomb
interactions as well as inelastic nuclear interactions and emission of Bremsstrahlung, which
are briefly introduced in the following.

inelastic coulomb interaction The most frequent interaction of protons with matter
occurs when they come close to an electron of the atom’s shell and interact with its electric
field. Since the rest mass of a proton is much higher than the one of an electron, the electron
is removed from the shell and the proton loses a small fraction of its energy while its
direction of travel only changes negligibly. Repeated inelastic Coulomb interactions result
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in a quasi–continuous deceleration of the proton while the cumulative deflection can be
neglected due to the much larger mass of protons compared to electrons.

elastic coulomb scattering If the proton comes closer to the atom’s nucleus it can
interact with the Coulomb field of the nucleus resulting in a repulsive, but elastic scattering
of the proton. Due to the higher mass of the nucleus, the direction of travel of the proton
changes. Repeated elastic Coulomb scattering events are often referred to as multiple
Coulomb scattering (MCS) and cause a steady broadening of a proton beam as it penetrates
a medium. While this process is elastic (i. e. no energy is lost in the center–of–mass frame),
some energy is transferred from the proton to the nucleus. This becomes the dominant
energy loss mechanism for energies below 10 keV shortly before the proton comes to a halt.

inelastic nuclear interactions In case of a direct impact of the proton on the atom’s
nucleus, the primary proton is removed while creating secondary particles, including
secondary protons, neutrons and recoil nuclei. Photons can be emitted during the de–
excitation of the nucleus. Since the emission angle and energy of a secondary proton are only
loosely correlated to the angle and energy of the primary proton, they can cause spurious
signals in a pCT scan and need to be filtered out appropriately. Elastic nuclear interactions
are negligible for proton energies relevant for therapy and imaging.

bremsstrahlung While the generation of Bremsstrahlung through interactions with
nuclei is generally possible, it can be neglected for particle therapy and imaging applica-
tions [38].

————
While some conclusions for the development of particle therapy and particle imaging

applications can be drawn by the individual analytical description of these physical effects,
the most powerful application lies in the use of Monte Carlo simulations which take all
interactions into account. In sections 2.1.2 to 2.1.5 the most important analytical descriptions
of particle interaction with applications to therapy and imaging are summarized. Monte
Carlo simulations will be discussed in section 4.1.

2.1.2 Stopping power

The loss of a proton’s energy E is described by the material’s stopping power S, which is
defined as the ratio

S = −
dE
dx

, (2.1)

and thus as the negative energy variation (i. e. the energy loss) per unit step length in x.
Often, the stopping power is normalized to a material’s density ρ such that the mass stopping
power is calculated as Smass = S/ρ. For proton energies above 1MeV , the stopping power is
dominated by the quasi–continuous energy loss due to inelastic Coulomb interaction with
shell electrons (electronic stopping power or collision stopping power). Energy loss due
to elastic Coulomb scattering is referred to as nuclear stopping power and the radiative
stopping power describes the energy loss due to generation of Bremsstrahlung. The latter
two contributions are negligible for most relevant proton energies.
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Figure 2.1: (a) Stopping power S and (b) relative stopping power as a function of the proton energy.
Data source: PSTAR [53].

The (dominant) electronic stopping power of any particle can be estimated for energies
above 1MeV/u by a formula that is attributed to Bethe [49] and Bloch [50]. As a function of
the particle’s relativistic speed β, the stopping power is calculated as

S(β) = 4πr2emec
2ρe

Z2

β2

[
ln
(
2mec

2β2

〈I〉(1−β2)

)
−β2 −

C

Zm
−
δ

2

]
, (2.2)

where re and me are the classical electron radius and mass, Z is the atomic number of the
particle, and ρe and 〈I〉 are the electron density and mean excitation energy of the traversed
material. C and δ were not considered in the original formulation and are correction terms.
C/Zm with the atomic number of the material Zm is relevant for low energies when the
particle velocity approaches the shell electron velocity and it cannot be assumed that shell
electrons are at rest [51]. The density correction term δ considers the polarization of the
medium by the particle and is not relevant for clinical proton energies [38].

At energies below 1MeV/u the particle’s speed becomes comparable to the orbital velocity
of shell electrons (β ≈ 0.008). The positively charged ion then pulls the negatively charged
electrons with it causing a shielding of its charge. Barkas [52] described this shielding by
replacing the atomic number of the particle by an empirical effective charge

Zeff = Z ·
(
1− e−125βZ

− 2
3

)
, (2.3)

which goes to effectively zero for very low energies and reduces the stopping power.
The stopping power values for various elements and material compositions, including

approximations for human tissues, are tabulated for protons in the PSTAR database [53]. This
includes all relevant corrections and is validated against experimental data. The stopping
power of protons is plotted in fig. 2.1 (a) for muscle and bone tissue. Within the range
relevant for pCT, the stopping power changes by more than one order of magnitude and
peaks for low energies at the end of the proton beam’s range. This can be expected from
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eq. (2.2) due to its dependency on 1/β2 while considering that the Barkas effect is not
relevant for the plotted energies. However, this very pronounced peak of energy deposition
is not observed for realistic beams due to the stochastic nature of the energy loss described
in section 2.1.3.

Due to its strong dependency on the particle energy, which changes while the particle
traverses an object, the stopping power is not a good choice as a quantity for imaging or
treatment planning. Instead, pCT scanners measure the RSP, which is the stopping power of
the medium Sm divided by the stopping power of water Sw, and thus

RSP =
Sm

Sw . (2.4)

The RSP is mostly independent of the value of particle’s energy, which can be appreciated
by the approximation of eq. (2.2)

RSP(β) =
Sm(β)

Sw(β)
≈ ρ

m
e
ρw

e

(
f(β) − ln〈Im〉
f(β) − ln〈Iw〉

)
≈ ρ

m
e
ρw

e
≈ ρ

m

ρw (2.5)

with the functional dependency on β

f(β) = ln
(
2mec

2β2

1−β2

)
. (2.6)

This rough estimation ignores the two corrections, but shows that, if the logarithm of the
material’s excitation energy is similar to the one of water, the RSP is independent of β and
approximately equal to the ratio of the material’s electron or mass density divided by the
one of water. Indeed fig. 2.1 (b) shows the RSP of muscle and bone across the relevant
energies for imaging, which changes only little with the proton’s energy and mostly for low
energies. For muscle in particular, which has a RSP around one and thus is similar to water,
there is no relevant change with energy. Given the RSP of a material, one can calculate its
stopping power at any energy by multiplying the RSP with the tabulated stopping power of
water at that energy.

In some literature, the term stopping power ratio is used instead of relative stopping
power, but both refer to the same quantity.

2.1.3 Range & range straggling

For particle therapy it is important to be able to calculate the proton’s range in a material.
This quantity is linked to the material’s stopping power. However, due to the stochastic
nature of the energy loss and deflections, two protons of the same initial energy and
traversing the same material will never have the exact same range. A good assumption,
in particular for clinically relevant energies, is the so–called continuous slowing down
approximation (CSDA), which simply ignores random range fluctuations and deflections
and integrates the inverse stopping power. The CSDA range of a proton with incident energy
E0 in a material with stopping power S is calculated as

RCSDA(E0) =

RCSDA∫
0

dx =

0∫
E0

dE
(

dE
dx

)−1

= −

0∫
E0

dE
S

. (2.7)
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To account for (generally small) deflections an additional detour factor fdetour < 1 can
be considered to calculate the projected range Rproj. = fdetour · RCSDA, which is the average
depth to which the particles of a beam arrive projected on the initial direction of the beam.

Range straggling is defined as the spread (in terms of the standard deviation) of ranges
of protons with the same initial energy going through a medium. The precise analytical
description of range straggling is extensive and many, mostly empirical, theories exist. The
most comprehensive description which was applied to image noise of pCT by Schulte et al.
[54] is the straggling theory of Tschalär [55]. For many applications, however, it is sufficient
to assume that the range straggling σR is proportional to the range in the medium R. During
the design of a prototype pCT scanner, Bashkirov et al. [56] assumed

σR(R) = 1.1% · R (2.8)

for protons in materials relevant for pCT, which goes back to measurements of Janni [57].
Using this formula, a proton beam of 200MeV with a CSDA range of 259.6mm in water
according to eq. (2.7) would have a range spread of 2.9mm.

2.1.4 Deflection due to scattering

As a proton traverses a material it will frequently scatter on the Coulomb field of the
material’s nuclei, which is referred to as MCS. As a consequence, an initially localized and
parallel proton beam will widen up, the deeper it penetrates the medium. To describe MCS,
the notation of Schulte et al. [54] is adopted here. They describe the trajectory of a proton
along the coordinate d (see section 3.4 and fig. 3.5 for a sketch of the coordinates). Within
the u–d–plane, where u is a coordinate perpendicular to d, scattering can be described using
the parameter vector

y1 =

(
u1
θ1

)
, (2.9)

where θ1 is the angle of the proton’s direction of travel with the d–axis at a given depth
d1 and u1 is the proton’s u–coordinate at d1. According to Eyges [58] who used Fermi’s
scattering theory, the likelihood L of finding the proton with the parameters y1, given that it
entered the medium at u0 = θ0 = 0, can be modeled as a bivariate Gaussian

L

(
y1

∣∣∣∣y0 = (00
))

= exp
(
−
1

2
yT1Σ

−1
1 y1

)
, (2.10)

where Σ1 is the symmetric positive–definite scattering matrix. The scattering matrix describes
the variances and covariances of y1 and θ1, i. e. the spread that accumulated when the proton
traveled from d0 to d1. It can be written as

Σ1 =

(
σ2u1 σ2u1θ1
σ2u1θ1 σ2θ1

)
. (2.11)

There are several works calculating the elements of the scattering matrix, including the
one of Eyges [58] and Highland [59]. The most commonly used scattering theory for pCT is
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the one proposed by Lynch and Dahl [60], which was used by Schulte et al. [54] to estimate
the matrix elements as

σ2u1 = E
2
0 ·
(
1+ 0.038 ln

d1 − d0
X0

)2
·
d1∫
d0

dd
(d1 − d)

2

β2(d)p2(d)X0
, (2.12)

σ2θ1 = E
2
0 ·
(
1+ 0.038 ln

d1 − d0
X0

)2
·
d1∫
d0

dd
1

β2(d)p2(d)X0
, (2.13)

σ2u1θ1 = E
2
0 ·
(
1+ 0.038 ln

d1 − d0
X0

)2
·
d1∫
d0

dd
d1 − d

β2(d)p2(d)X0
. (2.14)

Here, E0 = 13.6MeV/c and 0.038 are empirical constants that were found to match exper-
imental data. X0 is the material’s radiation length, which for water is X0 = 361mm. The
speed β and momentum p of a proton at depth d depend on the initial energy and were
found by Schulte et al. [54] by fitting a polynomial to 1/β2(d)p2(d) from a Monte Carlo
simulation.

This description of the Gaussian spread of a particle in terms of a likelihood for the
coordinates u and θ will later be used in section 3.4 to estimate the proton’s most likely path
inside a medium given location and direction measurements of a pCT scanner.

2.1.5 Depth–dose curve of protons

The dose deposit D = dE/dm is defined as the energy dE absorbed in a medium per unit
mass dm. Using the mass stopping power Smass(E,~r) at a given point ~r, the dose deposit
D(~r) at that point from a proton beam with a fluence spectrum Φ(E,~r) at the same location
can be calculated as an energy integral

D(~r) =

∞∫
0

dE Φ(E,~r) · Smass(E,~r). (2.15)

As the proton beam penetrates a medium its mean energy decreases, which in turn increases
the medium’s mass stopping power experienced by the proton. At the same time, nuclear
interactions remove primary protons from the beam, which reduces the fluence. However, a
precise three–dimensional calculation of the dose deposition as needed for particle therapy
is complex and affected by range straggling, the removal of primary protons due to nuclear
interactions, the impact of secondary particles and deflections due to MCS. While the
equations presented here describe the individual quantities, the most complete picture can
be obtained using Monte Carlo simulations with toolkits such as GEANT4 [61].

Dose deposition maps of perfectly monoenergetic proton beams in water have been
calculated in fig. 2.2 (a) for eight different incident proton energies. Each beam consisted
of 10 000 particles with an initial Gaussian spatial distribution with a full width at half
maximum (FWHM) of 5.8mm, which is a typical beam size for PBS proton therapy although
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Figure 2.2: (a) Dose maps of proton beams in water at various incident energies and (b) corresponding
depth–dose curves laterally integrated across the beam. Data source: GEANT4 [61].

this may depend on the beam energy in reality. In fig. 2.2 (b) the corresponding depth–dose
curves obtained as laterally integrated profiles for each beam are displayed. It can be
observed that for the smallest incident energies the peak in the dose deposition, the so–called
Bragg peak, is very pronounced. As the energy, and with it the range in water, increases,
the Bragg peak is spread out due to range straggling. While a single proton within the
beam still experiences its highest energy loss at the end of the range, the physical location of
this dose deposition is less confined within a beam. Prior to the Bragg peak there is a dose
plateau which results from the slowly increasing stopping power at lower energies while
more and more primary particles are removed due to nuclear interactions. The beams of
the highest energies are considerably more spread out laterally compared to the low energy
beams at the end of their range due to more deflections over the longer penetration depth.
For protons with a range of 200mm about 20% of the primary particles are removed from
the beam by nuclear interactions prior to the Bragg peak [39].

2.2 interaction of photons

The interaction of x–ray photons with matter is conceptually different from the interaction
of charged particles. For sufficiently thin absorbers, a certain fraction of photons will pass
through without interacting with the object. The remaining photons are either absorbed or
scattered. This removal of photons from the primary beam is described by the attenuation
coefficient µ and the differential equation

dN = −µNdx, (2.16)
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where N is the number of photons and x is the depth in the absorber. This leads to an
exponential decay described by the Beer–Lambert law

N(x) = N0 · e−µx. (2.17)

The attenuation coefficient µ can be separated into contributions from different physical
effects, namely Rayleigh scattering (µRS), the photoelectric effect (µPE), Compton scattering
(µCS), and pair production (µPP), such that

µ = µRS + µPE + µCS + µPP. (2.18)

The four interaction processes are briefly summarized below and their individual contri-
butions for two different materials, water and bone, are shown in fig. 2.3.

rayleigh scattering If the photon interacts with a nucleus of a dimension that is
smaller than its wavelength, its energy can be temporarily absorbed by the atom’s shell
electrons followed by an emission of a photon of the same wavelength, but in an arbitrary
direction. Rayleigh scattering, therefore, is an elastic scattering process. While it is not a
dominant interaction it can still impact the quality of imaging setups if not accounted for.

photoelectric effect If the photon’s energy is sufficiently high, it can ionize atoms
of the material and remove one of the shell electrons [63]. The remaining photon energy is
converted to kinetic energy of the electron and the photon is absorbed completely. Eventually,
a relaxation can cause further emission of radiation. The photoelectric effect dominates for
low energies of up to 30 keV for water and 60 keV for bone.

compton scattering In addition to the photoelectric effect, photons can inelastically
scatter on weakly bound electrons of the absorbing material [64]. The photon transfers part
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Figure 2.3: Mass attenuation coefficient and its contributions for x–ray photons in (a) water and (b)
bone. The legend applies to both figures. Data source: NIST [62].
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of its energy to the electron and is emitted in a different direction. The energy loss of the
photon is directly linked to its scattering angle. Compton scattering is the dominant effect
for intermediate energies around 1MeV .

pair production In the vicinity of a nucleus or electron, and if the energy of a photon
exceeds 1022 keV and thus twice the rest mass of an electron, it can transfer its energy to an
electron–positron pair. The photon is absorbed and the remaining energy is transferred as
kinetic energy to the electron and the positron. Pair production becomes the dominant effect
at around 20MeV . Electron–positron pairs can also be produced in the vicinity of electrons,
in which case the process is referred to as triplet production.

————

The relevant energy ranges for x–ray CT are from 50 keV to 140 keV making the photo-
electric effect and Compton scattering the most dominant interaction processes. Rayleigh
scattering can also impact the image quality. Radiotherapy typically employs x–ray beams
with photons of few and up to 15MeV making Compton scattering and pair production the
most important processes of dose deposition. In both cases, the attenuation of the primary
photon beam is governed by an exponential decay described by the Beer–Lambert law in
eq. (2.17).

2.3 implications on the treatment workflow

2.3.1 Photon & particle therapy

The physical processes described in this chapter have important implications on the use of
ionizing radiation for radiation therapy in general, and in particular on the choice between
photons and charged particles for treatment delivery. The first and foremost goal of cancer
therapy is the eradication of the tumor and, therefore, the dependable deposition of the
prescribed dose. Secondly, the sparing of healthy tissue is required to ensure a safe and
tolerable treatment delivery. With their exponential decay of deposited dose described
by the Beer–Lambert law in eq. (2.17), photons do not seem an ideal candidate for this
task, in particular for deep–seated tumors. For a single photon beam, the highest dose
deposition will be close to the patient’s skin (after a small build–up region) and a tumor,
for example 100mm below the skin, will receive considerably less dose. However, this is
only a hypothetical problem and can be solved by exposing the patient to photon beams
from many angles using a treatment gantry and superimposing the dose inside the tumor
volume [6]. While the tumor receives dose from all angles, healthy tissue and in particular
tissue far away from the tumor, will only receive treatment dose when they are aligned with
the tumor volume. When OARs are aligned with the tumor, the intensity can be reduced
and OARs spared additionally. A modulated intensity can also be used to make the dose
distribution in the tumor flat and as close as possible to the prescribed dose.

Protons, on the other hand, allow us to place the point of the highest dose deposition,
the Bragg peak, inside the tumor. A combination of several incident energies allows to
have a flat dose deposition inside the tumor, even from a single gantry angle [65]. This



18 interaction of protons and photons with matter

(a) photon plan (b) proton plan

Figure 2.4: Exemplary dose maps of (a) a clinically delivered photon treatment and (b) a correspond-
ing proton treatment planned for the same patient. The PTV is indicated by a red line.
The photon plan is shown on top of an x–ray CT image while the proton plan is shown
on top of a pCT image explaining the different contrasts and resolution. Treatment plans:
photon plan and delineations from University Hospital, LMU Munich, proton plans
created with RayStation (RaySearch Laboratories AB, Stockholm, Sweden).

combination of Bragg peaks is referred to as spread–out Bragg peak. While the dose
deposition inside and close to the tumor volume can be comparable to the one with photons,
the big advantage of protons is that they deposit close to no dose behind the tumor and
considerable less dose before. Several spread–out Bragg peaks from various angles allow to
further push down dose in healthy tissue while maintaining the flat dose deposition in the
tumor. Even though attempts are made to employ proton therapy with a continuous rotation
[66] such as for photons, currently typically only up to three or four fields are superimposed.
Nevertheless, proton therapy has been shown to produce superior dose maps compared to
x–ray radiotherapy [14], in particular in the low–dose region. It has also been shown to have
superior clinical outcomes with less side effects for several clinical indications [13, 15].

Figure 2.4 (a) shows a clinically delivered photon plan for a pediatric patient with a central
brain tumor. The PTV is nicely covered with a sharp gradient, but a low–dose bath spans
the whole head, except for the eyes, which were additionally spared as they are OARs. In
contrast, fig. 2.4 (b) shows a corresponding proton treatment plan for the same patient and
with the same PTV. The dose gradient around the PTV is considerably sharper compared
to the photon plan. Three beam directions were used that contribute to a low–dose region
around the ears and at the back of the skull. Apart from that, the nose and specifically the
eyes receive close to zero dose during the treatment. The area covered by relevant treatment
doses is considerably smaller for the proton plan compared to the photon plan.
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2.3.2 Imaging for particle therapy

To optimize treatment plans for particle therapy, such as the one shown in fig. 2.4 (b), the
TPS depends on a volumetric map of the patient’s the RSP. However, this information is
not directly available in a clinical setting. Instead, x–ray CT images are used to obtain the
relevant information. From a physical perspective, such images show the photon attenuation
coefficient, which depends strongly on the photon energy and consequently on the CT
scanner’s spectrum, which varies between models and manufacturers and even between
scan protocols. For this reason, CT images are shown as CT values in the Hounsfield (HU)
scale, which involves a normalization forcing the attenuation coefficient of water to be at
0HU and that of air to be at −1000HU. As discussed in this chapter, both the energy loss
of protons and the attenuation processes of photons are related to shell electrons of the
absorbing material. In particular, the Bethe–Bloch equation in eq. (2.2) as well as the various
contributions to the photon attenuation coefficient in eq. (2.18) depend on the electron
density ρe. This makes it possible to establish a relationship between the RSP and the CT
values. In the state–of–the–art stoichiometric calibration [67], a phantom with inserts of
known RSP is scanned and a piecewise–linear calibration curve fitted to the data, relating
CT values to RSP. This method was shown to introduce proton range errors of up to 3% [68,
69].

More recently, spectral CT has become available for proton treatment planning [70]. Dual
energy computed tomography (DECT) scanners employ two different x–ray spectra or two
detectors with varying spectral sensitivity, allowing to probe the attenuation coefficient
at two different effective energies. Since the contributions of the attenuation coefficient
follow simple mathematical laws, a linear operation on the two resulting images enables
the calculation of estimated maps of the electron density ρe and an effective atomic number
Zm,eff of the material [71]. Zm,eff can then be converted to the material’s ionization potential
〈I〉 using a piece–wise linear function [72, 73]. From there, the Bethe–Bloch equation can
be used to calculate the RSP. Thereby, DECT can reduce the uncertainty of RSP maps to
around 1% [22, 30, 74–78]. In the future, DECT scanners are likely to be superseded by
photon–counting CT detectors [79], which directly measure the energy of incident photons
and may further improve accuracy of treatment planning [80].

Considering the uncertainties involved with imaging in particle therapy, in particular due
to the conversion of photon interaction to proton stopping power, it would be beneficial
to avoid the conversion step and directly employ protons for imaging of the RSP. The
following chapter 3 will describe in detail the concept of pCT and the required technical
instrumentation while referring back to this section for the underlying physical processes.
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3 P R OTO N C O M P U T E D TO M O G R A P H Y

Proton computed tomography is the main imaging modality under investigation in
this work. In this chapter, the detection principle of pCT, the necessary technical

instrumentation and important algorithms for data processing are discussed. Since this work
was strongly coupled to a specific prototype pCT scanner [56, 81, 82], the arguments will
focus on this scanner with generalizations to other systems, where required. The notation
introduced in this chapter will be carried on to the following chapters.

3.1 detection principle

3.1.1 The water–equivalent pathlength

PCT scanners make use of energy measurements to produce volumetric maps of the RSP.
As introduced in eq. (2.1), a material’s stopping power is defined as the negative energy
variation (i. e. the energy loss) per unit step length Sm = −dE/dx. For a proton with an
initial energy E0 traveling along a curved path C, this results in an energy loss of

∆E =

∫
C

dx Sm(x) = −

E1∫
E0

dE = E0 − E1, (3.1)

where E1 is the proton’s energy at the end of the path. The stopping power is a function of x
and can vary along the path. If instead of the stopping power the line integral is performed
on the RSP = Sm/Sw, the integral becomes

∫
C

dx RSP(x) =
∫
C

dx
Sm(x)

Sw(x)
= −

E1∫
E0

dE
Sw(E)

≡WEPL, (3.2)

where the right hand side of the equation is defined as the water–equivalent pathlength or
WEPL. The WEPL is measured in units of length can be understood as the length in water
that is required to cause the same energy loss.

While the RSP is not directly accessible to measurements, the WEPL can be determined
by measuring the energy of protons exiting an object. Assuming that the incident proton
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energy is constant at E0 = 200MeV and that the exit energy E1 was determined by a pCT
detector, the WEPL can be calculated as

WEPL(E1) = −

E1∫
200MeV

dE
Sw(E)

=

200MeV∫
E1

dE
Sw(E)

, (3.3)

where the stopping power of water Sw(E) is tabulated and could be approximated by a
polynomial. Since Sw(E) is strictly positive and E1 6 200MeV , a higher residual energy
E1 will always result in a smaller WEPL and vice versa, or in other words eq. (3.3) is a
monotonically decreasing function.

Experimentally, it is difficult to determine absolute energy measurements, which is
why detectors are typically directly calibrated to produce WEPL values as described in
section 3.2.3. Nevertheless, it is useful to think of the detection process as an energy
measurement. In fact, detectors are referred to as energy detectors.

To produce RSP maps of the patient, the integral in eq. (3.2) needs to be inverted. By
integrating over the spatial dependency of the RSP, information is lost, that is not encoded
in a single energy or WEPL measurement. However, it can be restored by measuring two–
dimensional maps of the WEPL from many directions. This restoration, which is called
reconstruction, is described in section 3.5.

Apart from protons, also helium ions [83–85] and carbon ions [86] can be used for
tomographic acquisitions, but are not covered in this thesis.

3.1.2 Single particle tracking proton CT

Keeping in mind the physical interaction processes of protons described in sections 2.1.3
and 2.1.4, the WEPL detection principle summarized in eq. (3.3) imposes several challenges
to pCT which are outlined in the following.

• While in theory a single proton would be sufficient to solve eq. (3.3), the stochastic
nature of the energy loss (range straggling) requires that at each point a set of protons
is measured to calculate an average WEPL in order to reduce image noise.

• Nuclear interactions cause spurious detector signals since they do not follow the
assumption of a continuous energy loss as described by the Bethe–Bloch formula in
eq. (2.2). To avoid distortions of the image, particles undergoing nuclear interactions
either in the object or in the detector are filtered out. Details of data filtration are
described in section 3.3.

• Due to MCS, the path C is not a straight line between the exit and entrance coordinate
and the exact path is not known. A straight path is an assumption for many recon-
struction algorithms for x–ray CT, but also curved paths can be taken into account
with dedicated algorithms for pCT, if they can be estimated. But even then will an
incorrect path assumption result in a blurred image. Therefore, ideally, a pCT scanner
measures the entrance and exit coordinates as well as the travel directions of each
proton individually, to best estimate the proton path and avoid image blurring. Details
of the path estimation are described in section 3.4.
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In particular the requirement for path estimation and data filtration demand that pCT
scanners record the WEPL and coordinates of individual protons (instead of the average
WEPL of a set of protons). Such scanners are referred to as single particle tracking pCT
scanners. This requires that the electronics is capable of particle detection at around 1MHz
or above to allow for reasonably low scan times of a few minutes. Such hardware has
become available in the last two decades, initiating the development of several prototype
scanners in academic [81, 87, 88] as well as early commercial environments [89]. Data from
single tracking detectors is often referred to as list mode data, since they consist of a list of
single proton measurements.

3.1.3 Integration mode proton CT

Single particle tracking pCT setups are very costly due to the requirements on electronics
and because the components are not available from mass production and need to be built
individually. Systems are typically also slow to operate due to the limited particle flux
that is dictated by the maximum possible particle detection rate. As an alternative, simple
and comparably cheap detectors can be utilized as WEPL detectors, such as x–ray flatpanel
detectors [90] or proton range detectors used for quality assurance [91]. Since such detectors
do not detect single particles, but instead integrate the WEPL over all protons incident to
a given pixel of the detector, they are referred to as integration mode pCT detectors. Thin
pixelated flatpanel detectors can be used by scanning the incident proton energy to locate
the Bragg peak which requires imaging doses that are considerably higher than those
of single particle tracking systems and are between 50mGy and up to several Gray per
tomography [92–94]. This limits the potential clinical applicability of integration mode
detectors. However, there may be applications in the context of small animal imaging [95,
96]. This thesis will focus exclusively on single particle tracking systems.

3.2 technical instrumentation of a prototype proton ct
scanner

In this work, the phase II prototype pCT scanner [56, 81, 82, 97, 98] developed at the
Loma Linda University (LLU) and the University of California Santa Cruz (UCSC) was used
extensively both for experiments and in simulations. The single particle tracking scanner
consists of two tracking detectors, one front tracker prior and one rear tracker after the object,
as well as a downstream energy detector. The incident proton energy is not measured and
assumed to be equal to the accelerator setting. Protons are emitted from a proton beamline
and the object to be scanned is mounted on a rotation stage. The experimental setup is
shown in fig. 3.1, where it is mounted in a treatment room at the Northwestern Medicine
Chicago proton center. A corresponding schematic drawing can be found in fig. 3.2, where
also the coordinate system used to describe the measurements is indicated.
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front tracker rear tracker

scintillating
detector

phantom

PBS nozzle
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Figure 3.1: Photograph of the prototype pCT scanner used in this work mounted in the Chicago
proton center. Abbreviations: PBS – pencil beam scanning. ³ Reproduced from Dickmann
et al. [99] under the CC BY 3.0 license.

3.2.1 Tracking detectors

Each of the two identical tracking modules [82], which can be seen in fig. 3.1 as aluminum
housings with a black opening window, measures the position of incident protons at two
distinct locations along the longitudinal coordinate d as indicated in fig. 3.2. The two
position detectors within each tracking module are interspaced by 50mm [97] and measure
the horizontal u– and the vertical v–coordinate. Each position detector consists of two stacked
silicon strip planes, which can determine either the u– or the v–coordinate. Each plane is
0.4mm thick. The strip pitch in both planes is 0.228mm with 1536 strips in the u–plane
and 384 strips in the v–plane [82]. The total area of each tracking plane is 352mm× 88mm.
Each tracking plane consists of four modules which are horizontally glued together with
an insensitive gap of 0.6mm. The tracking detectors are staggered to avoid that protons hit
more than one gap allowing to estimate the coordinates even if data are missing from one of
the eight planes. The total material budget of both tracking modules is 8 · 0.4mm = 3.2mm
of silicon which corresponds to an energy loss of approximately 2.8MeV at an incident
energy of 200MeV and 7.5MeV at 50MeV [53].

https://creativecommons.org/licences/by/3.0
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Figure 3.2: Schematic drawing of the prototype pCT scanner including the phantom used for calibra-
tion which consists of bricks and a double wedge. The illustration of Bragg peaks is not
to scale. The coordinates (u, v,d) are indicated below on the left, where the d–coordinate
goes into the plane and the origin of the coordinate system is at the center between the
two trackers, where the phantom is located. ³ Adapted from Dickmann et al. [100] under the
CC BY 3.0 license.

3.2.2 Energy detector

The setup’s energy detector [56] is located behind the rear tracker and consists of five
scintillating detectors, which are wrapped with reflective material and individually coupled
to a photomultiplier tube. Each scintillating detector is referred to as a stage and the whole
system is referred to as a five–stage energy detector. The segmented detector design has
been found to minimize WEPL noise and compromises between noise caused by range
straggling and by intrinsic noise of the scintillator.

The noise in a monolithic energy detector as a function of the WEPL W would be a sum
of the range straggling up to the detector and the intrinsic measurement uncertainty of
the detector. The water–equivalent range up to the detector is W + S0, where S0 accounts
for all materials except for the scanned object, like the tracking detector. The magnitude
of range straggling can be estimated using eq. (2.8). The detection noise of the detector
is proportional to the residual water–equivalent range in the detector R0 − S0 −W, where
R0 is the total water–equivalent range of protons at the initial energy. Bashkirov et al. [56]
empirically estimated this uncertainty as p · (R0−S0−W)δE, where p = 1.8 results from a fit
of the tabulated R versus E relationship [53] and δE = σE/E is the relative energy resolution
of the scintillator. This results in a total WEPL uncertainty of approximately

σW, monolith ≈
√
(1.1% · (W + S0))2 + (p · (R0 − S0 −W) · δE)2 (3.4)

https://creativecommons.org/licences/by/3.0
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for a monolithic detector. With an expected energy resolution of about δE = 2% [56], image
noise will be dominated by the detection noise and will be far from the range straggling
limit of σS = 1.1% · (W + S0), in particular for low WEPLs. To avoid this, Bashkirov et al.
[56] proposed a segmented design, for which the WEPL noise can be approximated by

σW, segmented ≈
√
(1.1% · (R0 − Ri))2 + (p · Ri · δE)2, (3.5)

where Ri is the residual water–equivalent range of the proton at the entrance of the final
stage Si, in which the proton stops. This stage is referred to as stopping stage. For an energy
resolution of δE = 2%, in total five stages were sufficient to reduce the WEPL uncertainty
below 3mm per proton for all WEPLs up to 260mm. This is just slightly above the energy
straggling limit, which means, that the second summand under the square root in eq. (3.5) is
small compared to the first.

The final detector [56] consists of five stages made from UPS–923A [101], which is a
polystyrene based scintillator material with optimized light output. The RSP of the material
is about 1.038 [56]. To cover the dynamic WEPL range of 260mm, each stage is 51mm
thick, which corresponds to a WEPL of 52.9mm. The lateral dimension of the scintillating
blocks is 100mm× 400mm with an additional trapezoidal light guide at the side of the
photomultipliers. Each stage is wrapped in a 65µm thick reflective film. The schematic
drawing in fig. 3.2 shows the segmentation and is approximately to scale.

3.2.3 Calibration

Each incident proton will trigger five energy measurements (one for each stage) in the
analog–to–digital converters (ADCs) attached to the photomultiplier tubes. These ADC
counts are converted to WEPL values in a two–step calibration procedure [56, 82, 102], based
on calibration measurements with a phantom of known geometry and RSP.

In a fist step an energy scale is established for each stage from ADC data acquired with
200MeV protons incident to the detector and with no absorber in place. Data in such an
acquisition will exhibit two peaks in a histogram of ADC counts of a single stage. The peak
at higher ADC counts corresponds to the expected mean energy deposition in that stage for
200MeV protons. The expected mean energy was estimated using a Monte Carlo simulation
modeling the full geometry of the setup [103] as

E
G4

n = {25.25, 28.01, 32.76, 42.62, 67.71}MeV, (3.6)

where n is the stage number. The second, much smaller peak corresponds to a zero energy
deposit and is called the pedestal. It can be caused by protons triggering the acquisition in
one stage, but then scattering out of the detector and not reaching the other stages. A noisy
reading or cosmic events can also cause a zero–energy reading. Using these two known
energies, a linear relationship can be established between the ADC count a and the energy E
deposited in a given stage. This gives

E(a) = g · (a− p), (3.7)

where g is the gain and p is the pedestal, which need to be determined for each stage. Due
to the geometric shape of the scintillating detector, the gain will vary as a function of the
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Figure 3.3: (a) Calibration histograms and (b) resulting calibration curves for the WEPL calibration
of the scanner.

lateral coordinates u and v. The coordinates for each proton are known from the tracking
detector and can be extrapolated along the d–coordinate to the center of each stage. Then,
the gain calibration is performed on subsets of the data with a grid size of 10mm× 10mm
resulting in a location dependent gain g = g(u, v).

A second step requires five acquisitions using a double wedge–shaped phantom with
known geometry and RSP. The phantom is illustrated in fig. 3.2 and a photograph is shown
in fig. 3.6 (e). The double wedge consists of polystyrene with an RSP of 1.030 and has a
physical thickness varying between 0mm and 50.8mm. By adding between zero and four
bricks of the same material and with a thickness of 50.8mm, the whole dynamic WEPL range
of the detector can be scanned. The bricks are shifted by 20mm with respect to the wedge’s
edge to prevent protons going through the wedge but exiting at the side of a brick. The
WEPL of an incident proton only depends on the energy deposit to the stopping stage. This
stage is defined as the furthest stage with an energy deposit of at least 1.0MeV or 1.5MeV ,
depending on the noise level in the detector. From the data of the calibration phantom, a
two–dimensional histogram is created based on the energy deposit to the stopping stage
calculated with eq. (3.7) and the WEPL of the corresponding proton. The WEPL can be
calculated by intersecting the known geometry of the calibration phantom with the trajectory
of the proton, which can be estimated from the tracking data. Such a histogram is shown
in fig. 3.3 (a), where the contributions of all stopping stages are summed. As expected, for
each stage, the energy deposit decreases as the WEPL increases. When the WEPL reaches
36mm, protons stop in stage 4 instead of stage 5 and the energy deposit increases rapidly.
This point is indicated by a dashed line and more stage transitions occur at 88mm, 139mm,
and 191mm. Stages 1 to 4 have a maximum energy deposit of approximately 70MeV . The
maximum energy deposit in stage 5 is lower, since 200MeV protons do not have sufficient
energy to fully penetrate all five stages. Stopping stage 1 has a minimum energy deposit of
20MeV . This is because an energy deposit of 20MeV to the first stage is used to trigger the
data acquisition. From the histograms, calibration curves as depicted in fig. 3.3 (b) can be
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found by fitting the most frequent WEPL for each energy deposit bin. Histograms for the
five stopping stages are treated individually resulting in five independent calibration curves.

For processing of subsequent proton data, first the energy of the proton is calculated
according to the gain attributed to the hit location and the pedestal. Then, the proton’s WEPL
is calculated by determining its stopping stage and applying the corresponding calibration
curve. After the calculation of the energy, data cuts can be applied to filter spurious detector
signals. Furthermore, the location–dependent gain can be proportionally re–adjusted on the
fly based on protons at the edge of the scanners field–of–view which are assumed to go
through air. This avoids that a change of the scanners temperature or other environmental
factors distort the results over time.

The list mode output of the scanner is a proton–by–proton list of five measurements: the
hit location and direction vector at the front tracker and at the rear tracker as well as the
WEPL.

3.2.4 Other prototype scanners

Apart from the prototype pCT scanner used in this work, several other groups have built
single particle tracking pCT systems. The specifics of the systems are briefly summarized in
the following. All scanners are named by the city in which the proton center where they
are operated is located while acknowledging that most of them have been built as part of
an international effort. Some of the listed scanners have not been completed yet, but first
experimental tests were reported. Historic efforts that are not operational anymore as well
as systems intended for radiography are not considered.

chicago, united states ProtonVDA Inc. built a pCT scanner [89, 104] employing a
single monolithic energy detector and using scintillating fibers for tracking. The system is
intended for commercialization and employs proton beams with varying incident energy to
allow for a compact and noise–efficient design of the energy detector. To allow for a smaller
dimension, the system only has a single tracking plane prior and after the object and does
not allow for direction measurements and instead estimates them from the incident beam
directions.

trento, italy The relatively small prototype system [88] with an aperture of 50mm×
200mm consists of two silicon strip tracking modules allowing for position and direction
measurement as well as a yttrium aluminum garnet scintillating detector. RSP accuracies
better than 1% were reported.

manchester, united kingdom The PRAVDA consortium developed a high–speed
tracking detector [105] capable of particle detection rates of 200MHz when particles are
uniformly distributed on the detector [87]. This is possible because each tracking module
consists of three silicon strip detectors rotated at 60 degrees to one another allowing one
detector to suffer from pile–up while the remaining two detectors still produce a usable
position reading. The scanner was first operated in South Africa, but has since been moved
to Manchester to build a follow–up scanner with the name OPTIMA.
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bergen, norway This scanner, which is currently in the final design phase [106, 107]
does not employ separate tracking detectors, but uses the known location and direction of a
proton pencil beam as entrance tracking and features a pixelated range telescope that can
both measure the proton’s position, direction and WEPL. This compact system will most
likely have an inferior spatial resolution [108], but could be more easily implementable in a
clinical environment due to its compact design. Experiments with subsystems are currently
performed elsewhere, but Bergen is expected to have a proton center by 2023.

wiener neustadt, austria This very early prototype pCT system [109] consists of
three silicon strip tracking planes prior and three after the object with an aperture of
25mm × 50mm and a plastic scintillator range telescope. The particle tracking rate is
currently at 500Hz, resulting in scan times of several hours per projection. The system is
intended for prototyping a larger functional system in the future.

————

It is worth noting that these systems have been built within the last five years, initiated by
promising results of the first prototype scanner of the United States pCT collaboration in
2012 [110, 111]. This prototype is no longer in operation and was the precursor of the phase
II scanner [81] used in this work.

3.3 data filtration

Nuclear interactions in the object or in the energy detector can cause spurious signals and
need to be filtered out to prevent a distortion of the pCT image. Such interactions violate
the assumption of a continuous energy loss and of small angle scattering. For this purpose,
the two scattering angles ϑ and ϕ are calculated as

ϑ = arccos
(

~ρin,u · ~ρout,u

|~ρin,u| · |~ρout,u|

)
, (3.8)

ϕ = arccos
(

~ρin,v · ~ρout,v

|~ρin,v| · |~ρout,v|

)
, (3.9)

where ~ρin/out,u is a two–dimensional vector with the u– and the d–component of the proton’s
direction vector at the front (in) and rear (out) tracker, respectively, and ~ρin/out,v is the
corresponding vector with the v– and the d–component. These scattering angles are used
here to filter data, but they can also be used to reconstruct images of the relative scattering
power [112].

Figure 3.4 (a) shows, for data of a homogeneous slab of 152mm water, distributions of
the WEPL and the two scattering angles. Note, that the histograms are displayed with
a logarithmic scale. Apart from the prominent central peak around a WEPL of 152mm,
a plateau is measured at WEPLs larger than the central peak. About 15% of the data
are outside of the central peak. For the two scattering angles, the distributions are more
Gaussian and even the 95th percentile is within the central peak.

To filter out nuclear interactions, the list mode data are grouped together based on
the front tracker hit location in a grid of typically 2mm× 2mm. Within each of these
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Figure 3.4: Histograms of WEPL and scattering angles ϑ and ϕ for a homogeneous slab of water (a)
before and (b) after data cuts. The 85th, 90th and 95th percentile of the distributions is
indicated by dashed lines. The histograms are displayed with a logarithmic scale for the
number of protons.

bins, the 30.85th percentile and the median of the WEPL and scattering angle data are
calculated. The difference between 30.85th percentile and the median corresponds to a 0.5–
standard–deviation interval, which better represents the central peak and is more robust to
outliers compared to a direct calculation of the standard deviation of the non–Gaussian data.
Subsequently, in each bin, protons are rejected that fall out of a three standard deviation
interval around the median value. For experimental data this removes about 20% of the
data in air and 15% in a homogeneous phantom [99].

Figure 3.4 (b) shows the WEPL and angle distributions after the data cuts. A dominant
filtration is observed for the WEPL data where data cuts efficiently removed all protons
outside of the main peak. The percentiles as indicated by dashed lines are now all inside
the main peak. For the angular data only minor changes are observed, in particular for the
location of the percentiles.

3.4 path estimation

An important subsystem of a pCT scanner is the tracking detector, which allows to
measure the protons’ position and direction both before and after the scanned object. With
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Figure 3.5: Schematic of the coordinates used in the most likely path estimation.

this information, the path of each proton can be estimated, which considerably improves
image resolution [113, 114]. In this work the original path estimation algorithm [54]
suggested for pCT was used. Since then, several other algorithms for path estimation have
been suggested [115–119], which all have only little impact on the spatial resolution and
mostly improve computation speed.

The most likely path (MLP) calculation suggested by Schulte et al. [54] makes use of the
scattering matrix defined in eq. (2.11) which describes the broadening in u–direction due to
scattering of a proton beam while traveling in water along a coordinate d, as depicted in
fig. 3.5. Using the parameter vector y1 = (u1, θ1)T with the lateral coordinate u1 and the
scattering angle θ1, this allows to model the likelihood of scattering from y0 = (0, 0)T to any
point y1 using eq. (2.10). This can be generalized to any entry point y0 using the coordinate
transform y ′1 = y1 − R0y0 with the rotation matrix

R0 =

(
1 d1 − d0
0 1

)
, (3.10)

which uses the small angle approximation sin θ = θ. With this, the likelihood to scatter from
y0 = (u0, θ0)T to y1 becomes

L(y1|y0) = exp
(
−
1

2

(
yT1 − y

T
0R
T
0

)
Σ−1
1 (y1 − R0y0)

)
. (3.11)

Analogously the likelihood of scattering from y1 to any y2 is defined by

L(y2|y1) = exp
(
−
1

2

(
yT2 − y

T
1R
T
1

)
Σ−1
2 (y2 − R1y1)

)
, (3.12)

R1 =

(
1 d2 − d1
0 1

)
, (3.13)
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with Σ2 defined analogously to Σ1.
For pCT, it is known from the tracking measurements that the proton passed through y0

and y2 and one would like to calculate the probability that it also passed through any point
y1 with d0 < d1 < d2. This can be expressed using the chain rule for joint probabilities as

L(y1 ∩ y2|y0) = L(y2|y1;y0) · L(y1|y0) = L(y2|y1) · L(y1|y0). (3.14)

Using eqs. (3.11) and (3.12) this yields

L(y1 ∩ y2|y0) = exp
(
−χ2

)
(3.15)

with

χ2 =
1

2

((
yT1 − y

T
0R
T
0

)
Σ−1
1 (y1 − R0y0) +

(
yT2 − y

T
1R
T
1

)
Σ−1
2 (y2 − R1y1)

)
. (3.16)

Differentiation of χ2 with respect to u1 and θ1 gives

∇χ2 =
(
Σ−1
1 + RT1Σ

−1
2 R1

)
y1 − Σ

−1
1 R0y0 − R

T
1Σ

−1
2 y2. (3.17)

This equation can be set to zero and solved for y1 yielding an analytical expression for the
MLP

yMLP =
(
Σ−1
1 + RT1Σ

−1
2 R1

)−1 (
Σ−1
1 R0y0 + R

T
1Σ

−1
2 y2

)
. (3.18)

Equation (3.18) can be used to estimate the MLP (i. e. the coordinate u1) at any depth d1
in between the trackers. The dependency on d1 is hidden inside the rotation and scattering
matrices. While for simplicity the derivation was restricted to one lateral coordinate within
the u–d–plane, the v coordinate is independent and can be treated analogously. Naturally,
this will not be the exact proton path, but merely a best guess based on the available
data. Investigations using Monte Carlo simulations have shown, that the true proton path
for trajectories without nuclear interactions is within the uncertainty envelope, which can
be calculated based on estimated uncertainties of the measurements y0 and y2 [54]. The
calculation of the scattering matrices can only account for the radiation length of one
scattering material, which typically is water. The formalism has been extended in other
works [119–121] to account for material heterogeneities based on a first reconstruction, but
the effect on the reconstructed image was reported to be small [121]. Additionally, the
accuracy of the MLP can be improved if the outer hull of the object is known or can be
estimated from a rough first reconstruction without path estimation. In that case the incident
direction vector and the exit direction vector are projected along a straight line to the object’s
hull, assuming that the proton will not scatter in air.

3.5 image reconstruction

Image reconstruction describes the mathematical process of calculating volumetric maps
of a quantity given line integrals through the quantity from different angles. This inversion
process can be performed directly using analytical equations or iteratively as part of an opti-
mization. In sections 3.5.1 and 3.5.2, the analytical equations for direct image reconstruction
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are derived assuming that line integrals are performed along straight lines. Section 3.5.3
generalizes the direct image reconstruction to curved proton paths and section 3.5.4 discusses
how image variance maps can be calculated from list mode pCT data.

All reconstruction operations used in this work were implemented using the Reconstruction
Toolkit (RTK) of Rit et al. [122], which itself is based on the Insight Toolkit (ITK) of McCormick
et al. [123].

3.5.1 Image reconstruction in parallel beam geometry

The simplest case of CT image reconstruction is the so called parallel beam geometry.
The image f(x,y) in that case is two–dimensional and the detection system measures line
integrals through f(x,y) along parallel straight lines, which are parameterized by

x cos θ+ y sin θ = ξ, (3.19)

where θ is the rotation angle of the CT system and ξ is the coordinate along the one–
dimensional detection system. The measurements p(θ, ξ) can then be described as

p(θ, ξ) =
∫

dxdy f(x,y)δ(x cos θ+ y sin θ− ξ), (3.20)

where δ(·) is the Dirac delta function, which describes a ray–line at rotation angle θ and
intersecting with the detector element ξ. The full set of measurements p(θ, ξ) is called
sinogram.

To invert the integral equation one can calculate the one–dimensional Fourier transform
of eq. (3.20) with respect to the coordinate ξ, which yields

P(θ,uξ) = (Fp)(θ,uξ) (3.21)

=

∫
dξ p(θ, ξ)e−2πiuξξ (3.22)

=

∫∫
dxdy f(x,y)e−2πiuξ(x cosθ+y sinθ), (3.23)

=

∫∫
dxdy f(x,y)e−2πi(uξ cosθx+uξ sinθy), (3.24)

where uξ is the spatial frequency associated to ξ.
At the same time, the two–dimensional Fourier transform of the image f(x,y) is

F(ux,uy) =
∫∫

dxdy f(x,y)e−2πi(uxx+uyy). (3.25)

By comparing eqs. (3.24) and (3.25), one can find the relationship

P(θ,uξ) = F(uξ cos θ,uξ sin θ), (3.26)

or in other words: the one–dimensional Fourier transform of the sinogram p(θ, ξ) along ξ is
equal to the two–dimensional Fourier transform of the image f(x,y) in polar coordinates.
This relationship is referred as the Fourier slice theorem. It would allow to reconstruct the
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image f(x,y) by filling its Fourier space in polar coordinates by calculating the Fourier
transform of lines of the sinogram p(θ, ξ). A resampling to Cartesian coordinates and an
inverse Fourier transform then unveils the image. However, this can cause artifacts due to
the resampling and is computationally expensive. Therefore, it is worthwhile to perform the
coordinate change analytically, as described in the following.

To achieve this, eq. (3.26) is transformed back to position space while performing the
coordinate transform ux = u cos θ and uy = u sin θ with duxduy = |u|dudθ, and thus

f(x,y) =

π∫
0

dθ

∞∫
−∞

du |u|P(θ,u)e−2πiu(x cosθ+y sinθ) (3.27)

=

π∫
0

dθ

∞∫
−∞

du K(u)P(θ,u)e−2πiuξ, (3.28)

where K(u) = |u| is the so called ramp kernel. In this form the integration along u can be
expressed as a convolution with the reconstruction kernel

k(ξ) = F−1K(u) =

∞∫
−∞

du |u|e−2πiuξ =
−1

2π2ξ2
, (3.29)

and yielding the reconstruction formula

f(x,y) =

π∫
0

dθ p(θ, ξ)~ k(ξ)

∣∣∣∣∣∣
ξ=x cosθ+y sinθ

. (3.30)

Equation (3.30) is called filtered backprojection. To reconstruct the image f(x,y), the measure-
ments p(θ, ξ) are first convolved with the reconstruction kernel k(ξ). This kernel amplifies
high frequencies. Subsequently, for each rotation angle θ, the filtered data are backprojected
(“smeared back”) into image space after rotating the data by the corresponding rotation
angle. This is repeated for all rotation angles in an interval from 0 to π.

For x–ray CT, the image shows the attenuation coefficient µ and, according to eq. (2.2),
the line integrals are defined as

p(θ, ξ) = − ln
N

N0
(3.31)

for a photon counting detector, or as intensities for an energy integrating detector. For pCT,
the image shows the RSP and, according to eq. (3.2), the line integrals are defined as

p(θ, ξ) = WEPL. (3.32)

The reconstruction algorithm in eq. (3.30) is typically discretized, which, following the
notation of Rädler et al. [124], results in

f(x,y) =
π

NP

NP∑
n=1

h(θn, x cos θn + y sin θn), (3.33)
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where NP is the total number of acquired projections, θn is the projection angle correspond-
ing to the n–th projection. The h(θ, ξ) are the filtered projection values with a discretized
detector location ξ = j∆ξ and

h(θn, j∆ξ) = ∆ξ
D/2−1∑
m=−D/2

p(θn,m∆ξ) · g((j−m)∆ξ), (3.34)

where g(ξ) is the discretized ramp filter and D ∈ 2N its finite extent. The most common
discretization is the one of Ramachandran and Lakshminarayanan [125], which is calculated
as

g(j∆ξ) =


(2∆ξ)−2 if j = 0,

0 if j even,

−(jπ∆ξ)−2 if j odd.

(3.35)

Equation (3.33) queries the filtered projections in eq. (3.34) at ξn = x cos θn + y sin θn, but
the reconstruction grid in x and y does not always coincide with the center of a detector
pixel in ξ (in fact, it only does for few angles). For this, an interpolation between adjacent
detector pixels at j∆ξ and (j+ 1)∆ξ is necessary. This interpolation is particularly important
in this work, since it affects image noise [126]. The final discretized filtered backprojection
formula becomes

f(x,y) =
π∆ξ

NP

NP∑
n=1

D/2−1∑
m=−D/2

p(θn,m∆ξ) ·
[
g((j−m)∆ξ) · (1− a)

+ g((j+ 1−m)∆ξ) · a
]

(3.36)

with the interpolation weights

a(ξn) =
ξn − j∆ξ

∆ξ
. (3.37)

3.5.2 Image reconstruction in cone beam geometry

If the rays between the source and the detector are not parallel as in the parallel beam
geometry, the reconstruction algorithm needs to be modified. In this work a cone beam
geometry will be considered, where the flat detector is two–dimensional and extends both
in the u and v direction. The rays are assumed to diverge from a common source point and
the opening angle in u direction is called the fan angle α, whereas the opening angle in v
direction is the cone angle γ. Images are then directly reconstructed into the volume with the
coordinates x, y and z instead of reconstructing the volume for each slice (for each value
of z) independently.

The Feldkamp–Davis–Kress (FDK) algorithm [127] generally uses eq. (3.36) for reconstruc-
tion with modifications to account for the cone–beam geometry. The fan angle can simply
be taken into account by resorting the raw data, since a ray from a projection with rotation
angle θ and a fan angle α is equivalent to a ray from rotation angle θ+α and no fan angle.
For the cone angle, an additional pre–factor cosγ needs to be considered, accounting for the
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fact that rays close to the source are more densely sampling the volume. In general, however,
it is often useful to think of the reconstruction process as if it were performed in parallel
beam geometry.

3.5.3 Image reconstruction using distance–driven binning

In this work FDK image reconstruction with distance–driven binning (FDK–DDB) was
used to produce volumetric pCT images from the WEPL data. The FDK–DDB algorithm
proposed by Rit et al. [113] extends the FDK algorithm to account for the curved path
of protons, which can be estimated from the tracking information. Depth in this context
refers to the depth coordinate d in between the trackers and along the beam direction and
binning describes the process of creating pixelated projection values p(θ, ξ,d) from the list
mode proton data. Again, this will be introduced in parallel beam geometry to simplify the
notation, with a subsequent extension to cone–beam geometries.

For each proton and each depth d, the protons lateral coordinate ξ can be calculated
by evaluating eq. (3.18). To calculate the projection values, for each projection angle θ a
two–dimensional virtual detection grid is established with bins of the size ∆ξ×∆d. This
pixel size can be chosen by the user. Each pixel in that grid is assigned a subset of the proton
list mode data to which all protons belong that intersect the virtual pixel at ξ = j∆ξ and
d = k∆d. For each bin, the projection value calculates as

p(θ, ξ,d) =
1

Nθ,ξ,d

Nθ,ξ,d∑
i=1

WEPLi , (3.38)

where Nθ,ξ,d is the number of protons intersecting the bin and WEPLi their WEPL value.
Assuming that the MLP best describes the true proton path, the projection values at distance
d produce a projection image which is least affected by blurring due to MCS for contrasts
located at depth d.

This can be considered in the filtered backprojection by assigning an optimal depth dDDB

to each combination of rotation angle θ and image pixel (x,y). The optimal depth is the
depth that a proton needs to travel to reach the pixel (x,y) given that it travels at a rotation
angle θ, and can be calculated as

dDDB = x sin θ+ y cos θ. (3.39)

With this, eqs. (3.33) and (3.34) become

f(x,y) =
π

NP

NP∑
n=1

h(θn, x cos θn + y sin θn, x sin θn + y cos θn), (3.40)

h(θn, j∆ξ,k∆d) = ∆ξ
D/2−1∑
m=−D/2

p(θn,m∆ξ,k∆d) · g((j−m)∆ξ). (3.41)

It is important to note, that the basic filtered backprojection algorithm is not modified, but
merely repeated at every binning depth. Additionally, a second interpolation is needed to
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query dDDB in steps k∆d. However, this interpolation is also omissible and can be replaced
by the nearest neighbor of the query point, since projection values only slowly change with
the depth d.

The extension of the FDK–DDB algorithm to a cone–beam geometry is comparable to
the extension of filtered backprojection to FDK. The projections for each rotation angle will
have three dimensions, namely u and v as lateral coordinates and d as the binning depth.
The proton’s MLP estimate will consequently also model a two–dimensional track with
coordinates u and v at every binning depth d. To account for the divergence of protons, the
virtual detector grid will need to be scaled in u and v direction with the binning depth d to
allow for a constant fluence at each depth. This can be done by setting ∆u(d) = ρ(d) ·∆u0
and ∆v(d) = ρ(d) ·∆v0 with reference voxel sizes ∆u0 and ∆v0 and

ρ(d) =
d+ SID

SDD
, (3.42)

where SID is the distance of the cone beam source to the image’s isocenter and SDD is the
distance between the source and the depth at which ∆u(d) = ∆u0, which typically is the
physical location of the rear tracker measurement.

In the initial study, Rit et al. [113] reported an improvement of the spatial resolution
which reduced the blurring around inserts from 3mm when assuming straight rays down
to 1.5mm when using FDK–DDB. The blurring in this case was measured for ideal data and
at the center of a 200mm diameter water phantom with aluminum inserts. Even though the
FDK–DDB is fairly simple and elegant, it showed competitive results in comparative studies
[114, 128]. Several other reconstruction algorithms have been proposed for pCT including
direct [129–131] and iterative [128, 132–135] algorithms.

3.5.4 Reconstruction of image variance

Within this work the reconstruction of image variance Var [f] is essential for the fluence
control algorithms to ensure that the variance level is at the desired level. The image
variance in a voxel (x,y, z) can be calculated by repeating an experiment or simulation and
the corresponding reconstructions N times, where N� 10, with a subsequent calculation of
the variance of RSP values voxel–by–voxel as

Var [f(x,y, z)] =
1

N

N∑
n=1

(fn(x,y, z) − µ(x,y, z))2 (3.43)

where fn are the statistically independent realizations of the image f and

µ(x,y, z) =
1

N

N∑
n=1

fn(x,y, z) (3.44)

is the expectation value. This method, however, is often not feasible due to the time
requirements for repeating a simulation or experiment N times and also running the
reconstruction algorithm for each of the datasets. To enable a fast optimization of imaging
fluence, variance is ideally calculated on a single dataset with a computation effort similar to
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a standard image reconstruction. This is possible using variance reconstruction [136], which
was originally proposed for x–ray CT early on [137].

Rädler et al. [124] applied variance reconstruction to pCT imaging, which again is intro-
duced here in parallel beam geometry with a subsequent generalization to the FDK–DDB
algorithm. The variance of the projection values, σ2p(θ, ξ) can directly be estimated from the
list mode data as the standard error of the mean

σ2p(θ, ξ) =
σ2WEPL(θ, ξ)
Nθ,ξ

, (3.45)

where σ2WEPL(θ, ξ) is the variance of the WEPL values of all protons intersecting the detector
element ξ at rotation angle θ andNθ,ξ is their number. This calculation makes no assumption
about the origin of the projection noise, but directly calculates it based on the available list
mode data.

To calculate the image variance, the projection values can be treated as independent
random variables. Equation (3.36) consequently is a weighted sum of M random variables
Xi, whose variance can be calculated, in general terms, as

Var

[
M∑
i=1

ciXi

]
=

M∑
i,i ′=1

cici ′Cov [Xi,Xi ′ ] , (3.46)

where Cov [Xi,Xi ′ ] is the covariance matrix, which for i = i ′ becomes Cov [Xi,Xi] = Var [Xi]
and ci and ci ′ are arbitrary prefactors.

For eq. (3.36) the random variable X are the projection values p. The sum over M elements
is expressed as three interleaved summations: the sum with the variable n over all rotation
angles, the sum with the variable m over the filter extent and then the interpolation sum
over just two summands denoted in square brackets in eq. (3.36).

In the following, it is assumed that there is no covariance between projection values and
between rotation angles. Then, the covariance matrix is

Cov
[
p(θ, ξ),p(θ ′, ξ ′)

]
=

{
σ2p(θ, ξ) if θ = θ ′ and ξ = ξ ′

0 otherwise
(3.47)

Note, that this does not mean that Cov [Xi,Xi ′ ] = 0 for i 6= i ′, since in eq. (3.46) two different
values of i and i ′ can refer to the same projection value. In fact, if eq. (3.36) is expressed
with eq. (3.46), each projection value p occurs twice in the sum over M summands: once
with the prefactor c↓ and once with the prefactor c↑, which are defined as

c↓ =
π∆ξ

NP
· g((j−m) ·∆ξ) · (1− a), (3.48)

c↑ =
π∆ξ

NP
· g((j+ 1−m)∆ξ) · a. (3.49)
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Consequently, each σ2p in eq. (3.47) then needs to be considered four times in eq. (3.46):
once with the prefactor c2↓, once with the prefactor c2↑ and two times with the prefactor
c↓ · c↑. With this, the image variance can be calculated as

Var [f(x,y)] =
Np∑
n=1

D/2−1∑
m=−D/2

{
c2↓ · σ2p(θn,m∆ξ)

+ 2 · c↓c↑ · σ2p(θn,m∆ξ) (3.50)

+ c2↑ · σ2p(θn,m∆ξ)
}

.

In full, this leads to the variance reconstruction formula

Var [f(x,y)] =
(
π∆ξ

NP

)2 NP∑
n=1

{
(1− a)2 · V(θn, j∆ξ)

+ 2(1− a)a ·C(θn, j∆ξ, (j+ 1)∆ξ) (3.51)

+ a2 · V(θn, (j+ 1)∆ξ)
}

,

where V and C are variance and covariance terms which are defined as

V(θn, j∆ξ) =
D/2−1∑
m=−D/2

g2((j−m)∆ξ) · σ2p(θn,m∆ξ), (3.52)

C(θn, j∆ξ, (j+ 1)∆ξ) =
D/2−1∑
m=−D/2

g((j−m)∆ξ)g((j+ 1−m)∆ξ) · σ2p(θn,m∆ξ). (3.53)

The expression in eq. (3.51) correctly considers the effect of interpolation on image variance
for each pixel separately. For example, a pixel located at the center of the image could always
be aligned with the central detector pixel and thus always be assigned a = 0. Its variance
would, therefore, be higher than another pixel where 0 < a < 1, since the covariance terms
C are always negative for the filter g defined in eq. (3.35).

Equation (3.52) is a convolution with the variance filter g2 (which is the square of the
ramp filter g) and as Wunderlich and Noo [136] suggest, eq. (3.53) can also be written as a
convolution using the covariance filter

gC(j∆ξ) = g(j∆ξ) · g((j+ 1)∆ξ), (3.54)

which then results in

C(θn, j∆ξ, (j+ 1)∆ξ) =
D/2−1∑
m=−D/2

gC((j−m)∆ξ) · σ2p(θn,m∆ξ). (3.55)

As Rädler et al. [124] suggest, it is instructive to ignore the local pattern caused by
interpolation and only consider the average effect of interpolation based on the average
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value of a over all pixels, which simplifies the reconstruction formula. For this, it is assumed
that the projection variance values σ2p are locally constant, which leads to the approximation

V(θn, j∆ξ) ≈ σ2p(θn, j∆ξ) ·
D/2−1∑
m=−D/2

g2(m∆ξ) ≈
σ2p(θn, j∆ξ)
12(∆ξ)4

, (3.56)

C(θn, j∆ξ, (j+ 1)∆ξ) ≈ σ2p(θn, j∆ξ) ·
D/2−1∑
m=−D/2

gC(m∆ξ) ≈ −
σ2p(θn, j∆ξ)
2π2(∆ξ)4

. (3.57)

The change of j and m to query the variances is allowed here, since it is equivalent to
convolve the projection with the filter or the filter with the projection. The second part
of each equation was found by assuming that m goes from −∞ to ∞, which is a valid
assumption since the filter g falls quickly to zero.

With that, eq. (3.51) can be factorized as

Var [f(x,y] =
(
π∆ξ

NP

)2 NP∑
n=1

σ2p(θn, j∆ξ)
12(∆ξ)4︸ ︷︷ ︸
V(θn,j∆ξ)

{
(1− a)2 + 2η(1− a)a+ a2

}︸ ︷︷ ︸
finterp(a)

, (3.58)

where

η =
C(θn, j∆ξ, (j+ 1)∆ξ)

V(θn, j∆ξ)
≈ −

12

2π2
. (3.59)

The part in curly brackets in eq. (3.58) is defined as finterp(a) and describes the effect of
interpolation on image noise. Assuming that a is distributed uniformly in the interval [0, 1],
the term can be reduced to a prefactor as

finterp =

1∫
0

da finterp(a) = 2/3− 2/π
2 ≈ 0.464. (3.60)

The variance reconstruction formula then simplifies to

Var [f(x,y)] = finterp

(
π∆ξ

NP

)2 NP∑
n=1

V(θn, j∆ξ) (3.61)

= finterp

(
π∆ξ

NP

)2 NP∑
n=1

D/2−1∑
m=−D/2

g2((j−m)∆ξ) · σ2p(θn,m∆ξ), (3.62)

where in eq. (3.62) the simplification of eq. (3.56) was undone by replacing V(θn, j∆ξ) by its
original definition in eq. (3.52). The covariance terms C(θn, j∆ξ, (j+ 1)∆ξ) did not vanish,
but were merely expressed as multiples of V(θn, j∆ξ) under the assumption of locally
constant variance values.

Interestingly, eq. (3.62) is very similar to eq. (3.36), apart from the different pre–factor
and the fact that the variance projection values are convolved with the squared elements
of the reconstruction filter in eq. (3.35). While a convolution with the reconstruction filter
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g(ξ) steepens edges in the image and amplifies high spatial frequencies, the variance
reconstruction filter g2(ξ) only has a mild blurring effect.

As a good approximation, the convolution can completely be disregarded and replaced by
a constant, resulting in the formula

Var [f(x,y)] = finterp · ffilter

(
π∆ξ

NP

)2 NP∑
n=1

σ2p(θn,m∆ξ), (3.63)

where the additional constant calculates as

ffilter =

∞∑
j=−∞g

2(j∆ξ) =
1

(2∆ξ)4
+

2

(π∆ξ)4
+

2

(3π∆ξ)4
+

2

(5π∆ξ)4
+ . . . ≈ 1.33

(2∆ξ)4
, (3.64)

and which is equivalent to the assumption in eq. (3.56). With this, the variance reconstruction
is a simple backprojection operation of the projection variance values. This particular
simplification was suggested for the work presented in chapter 8 and in Dickmann et al.
[138], but similar approaches were used in previous works [139]. If not otherwise stated,
variance in this work is reconstructed using eq. (3.62) and eq. (3.64) is only used in chapter 8.

The extension of eqs. (3.51), (3.62) and (3.63) to the FDK–DDB algorithm is straightforward.
The additional term for the cone angle must be squared, since it occurs both in c↓ and c↑.
The extension of the projection to three dimensions, including the binning depth, involves
another interpolation. However, Rädler et al. [124] suggest to consider the projection to be
constant with the binning depth (which is a good approximation since protons travel along
the binning depth) and perform a nearest neighbor interpolation, which does not need to be
considered with additional co–variance terms.

3.5.5 Image reconstruction parameters

Unless otherwise stated, all reconstructions presented in this work employed a projection
grid of 280× 80× 280 voxels for distance–driven binning with a uniform grid size of 1mm
in u, v and d. The reconstruction volume also had 280× 280× 80 voxels with a uniform
voxel size of 1mm in x, y and z, where z is the coordinate along slices which is aligned
with v. For data filtration, the list mode data was grouped in bins of 2mm× 2mm at the
front tracker. The number of projections was 90 in chapters 6 and 7 and 360 in chapters 5, 8

and 9. The reduced number of projections in chapters 6 and 7 was required to allow for a
feasible acquisition time in proof–of–concept experimental step–and–shoot acquisitions. It
may be possible to reduce the waiting time in between two projections in future acquisitions
as discussed in chapter 7, allowing for more projections to be acquired, which is beneficial
for image quality.

3.6 phantoms

Within this work several phantoms were used both for calibration of the scanner and
evaluation of its imaging performance. Details on the phantoms are given below as well as
in table 3.1. Images of all phantoms while mounted in the pCT scanner are shown in fig. 3.6.
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Table 3.1: Dimensions, materials and RSP values of all phantoms used in this work. RSP values
were determined by water–column measurements. Abbreviations: PMMA – polymethyl-
methacrylate/acrylic, PMP – polymethylpentene, LDPE – low–density polyethylene.

phantom shape & dimensions materials RSP

calibration double–wedge and bricks: RSP value from [56]:
– brick thickness 50.8mm – polystyrene 1.030
– brick width 320.0mm
– brick height 120.0mm

water PMMA cylinder with water filling: RSP values from [100]:
– outer diameter 150.5mm – purified water 1.000 a

– wall thickness 6.3mm – PMMA 1.170 b

– lid thickness 6.3mm
– height 40.0mm

CTP cylindrical body with inserts: RSP values from [103]:
– outer diameter 150.0mm – PMP 0.883
– insert diameter 12.0mm – LDPE 0.979
– height 25.0mm – polystyrene 1.024

– body/epoxy 1.144
– PMMA 1.160
– Delrin 1.359
– Teflon 1.790

head anatomical model of a five–year–old RSP values from [140]:
pediatric head using tissue– – soft tissue 1.032
equivalent materials – brain tissue 1.044

– spinal disc 1.069
– trabecular bone 1.111
– cortical bone 1.331
– tooth dentin 1.524
– tooth enamel 1.651

ellipse homogeneous elliptical body: RSP value from [141]:
– long axis 165.0mm – PMMA 1.160
– short axis 80.0mm
– height 80.0mm

a by definition, b estimated from a pCT scan
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Figure 3.6: Images of all phantoms used in this work: (a) head phantom, (b) CTP phantom, (c) water
phantom, (d) ellipse phantom, and (e) calibration phantom.

calibration phantom The calibration phantom consists of a double–wedge with addi-
tional bricks that can be added. It scans the dynamic WEPL range of the scanner and is used
for its calibration as described in section 3.2.3.

water phantom The water phantom is a polystyrene cylinder with a lid that contains
purified water. It can be used to verify the homogeneity of the detector response and its RSP
value is by definition equal to 1.

ctp phantom The CTP404 module of the Catphan®
600 phantom (Phantom Laboratory,

New York, USA) is referred to as CTP phantom within this work. It consists of a cylindrical
body with six cylindrical inserts of different materials as well as two air–filled inserts.
The body is made from epoxy and the inserts are polymethylpentene (PMP), low–density
polyethylene (LDPE), polystyrene, polymethylmethacrylate/acrylic (PMMA), Delrin and
Teflon.

head phantom The pediatric head phantom (ATOM®, Model 715 HN, CIRS Inc., Norfolk,
USA) is a commercial anthropomorphic phantom that mimics the head of a five–year old
child using tissue–equivalent materials.

ellipse phantom The ellipse phantom is a custom–built phantom made from PMMA
that was used in section 9.4 to reduce image artifacts of the pCT scanner.
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3.7 experimental acquisitions

For this work, several experimental acquisitions using the pCT prototype scanner were
undertaken, which are listed in table 3.2. All acquisitions took place in the Northwestern
Medicine Chicago proton center in Warrenville (Illinois), USA. The table indicates the date
of the data acquisition as well as the beam type and phantoms used. For fluence–modulated
scans, which will be used in chapters 6 to 8, data was acquired using a grid of small pencil
beams for which the intensity of each beam could be modulated. Typical pCT scans, however,
employ a broad beam with a FWHM of about 65mm, which scans across the field–of–view
of the scanner. This beam type was used for the investigations in chapters 5 and 9. The
beam energy typically is 200MeV , but was reduced in some beamtimes to 187.5MeV to
study image artifacts of the scanner. The beam current is usually fine–tuned to bring the
data acquisition rate below the 1MHz, which is viable for the scanner. To generally allow

Table 3.2: List of beamtimes for the experimental acquisition of data used in this work with indication
of the beam type and phantoms used. The chapter where data of the beamtimes was used
is indicated. Abbreviations: PB – pencil beam

date beam type energy current slit settings* chapter
& phantoms in MeV in nA in mm

2016-08-13
† broad beam 200 — — 5

water, head, CTP

2018-09-11 PB unit fluence 200 2.4 1.1/1.1/3.0/3.0 6

head

2018-09-12 PB unit fluence 200 2.4/5.0 1.1/1.1/3.0/3.0 6

water, CTP

2018-09-13 broad beam support for other beamtime

2019-07-25 PB modulated no scans, issue with tracking detector

2019-07-26 PB modulated test scans to fix issue with tracking detector

2019-07-27 PB modulated 200 1.3 2.0/2.0/3.0/3.0 7

water, head, CTP

2019-07-29 broad beam 187.5/200 2.5 1.7/1.5/5.0/5.0 9.3
water

2019-07-30 PB unit fluence 200 1.3 2.0/2.0/3.0/3.0 7

water

2020-10-29
‡ broad beam 187.5/200 1.75 1.5/1.5/5.0/5.0 9.4

ellipse, water, head, CTP

* horizontal/vertical divergence and horizontal/vertical momentum slit setting given in this order
† data used in this work came from an earlier beamtime, which the author did not attend

‡ the author attended the beamtime virtually via videoconference
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for such low proton fluences, both divergence slits and momentum slits of the accelerator
need to be closed to a setting beyond what is typically used for treatment. These settings
are also listed in table 3.2. Eventually, the table refers the reader to the chapter of this work
where the data of a given beamtime was used.
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4 C O M P U TAT I O N A L M O D E L S

Monte Carlo simulations are the gold standard for the in–silico investigation of the
performance of imaging setups and were used extensively in this work. In section 4.1,

a specific Monte Carlo code developed by Giacometti et al. [103] is discussed, that models
the full geometry of the prototype pCT scanner used in this work. Giacometti et al. [140]
also developed a voxelized version of the head phantom, which is presented in section 4.2.
The usage of patient data in pCT simulations as it was needed in chapter 8 and Dickmann
et al. [138] is detailed in section 4.3.

4.1 monte carlo simulations

Imaging setups, and in particular pCT systems, are very complex, making it challenging
to model their properties under realistic conditions using analytical equations as those
introduced in chapters 2 and 3. For this purpose, the gold standard is to use Monte Carlo
simulations, which help to solve the strongly coupled system of possible physical interactions
inside a pCT scanner. Monte Carlo codes for particle transport employ tabulated values
and analytical models of randomly sampled particle–matter interactions to simulate the
transport of individual particles within a user–defined geometry. The path and interaction
of secondary particles that are generated during the interactions of the primary particle
is subsequently simulated. The simulation is repeated for more primary particles until
sufficient statistics is generated for user–defined output variables, such as the dose to a given
volume or the charges deposited in it. One of the most widespread Monte Carlo codes used
in particle physics is GEANT4 [61], originally developed at CERN. Other common Monte
Carlo codes are FLUKA [142] as well as the two applications TOPAS [143] and GATE [144],
which themselves are based on GEANT4.

Giacometti et al. [103] have used GEANT4 to create a detailed model of the prototype pCT
scanner used in this work. The code models all components of the scanner, including the
tracking detectors and the energy detector. A rendering of the three–dimensional model is
shown in fig. 4.1. The individual silicon strips of the tracking detector are simulated and used
to digitize the position measurement. In the energy detector, the five stages are modeled as
individual volumes. To improve the computation speed of the simulation, light transport in
the scintillator is not simulated directly, but the energy deposited in each stage is converted to
realistic measurements using an analytical model. All output by the simulation is in the same
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Figure 4.1: Monte Carlo model [103] of the prototype pCT scanner with a cylindrical phantom in
place. One proton that underwent a nuclear interaction within the phantom is labeled.
The primary proton beam reaching the detector is broadened due to MCS occurring both
in the phantom and in the detector.

format as for the original scanner and is processed in the same way, including the calibration
using the double–wedge phantom. This allows for a highly realistic generation of synthetic
pCT data and was used in numerous studies to investigate the imaging performance of the
scanner, as summarized by Dedes et al. [102]. The simulation allows to place and rotate
digital phantoms modeling their physical counterparts. The phantoms are implemented
based on their known geometry and composition and using analytical shapes. All phantoms
in section 3.6 and more are implemented allowing to compare results to experiments. All
RSP values in table 3.1 are reproduced with an accuracy of better than 0.1% by fine–tuning
the mean ionization potential 〈I〉 of the respective materials. This material constant is
defined in eq. (2.2) and used to calculate the energy loss in the Monte Carlo simulation. The
ionization potential of water was set to 78.0 eV according to the latest recommendations of
the International Commission on Radiation Units and Measurements (ICRU).

To allow for a reasonable computation speed, the simulation code only accounts for
those physical processes and particle energies that are relevant for the application. The
physical processes are selected in GEANT4 by pre–defined physics lists. In particular,
for the simulation code of Giacometti et al. [103], the Livermore EM physics list is used
to model electromagnetic interactions. In addition, the G4HadronPhysicsQGSP_BIC_HP
and the G4HadronElasticPhysicsHP were enabled to model inelastic and elastic scattering
of hadrons using tabulated cross sections. The neutron high precision model was used
which is validated for neutron interactions from thermal neutrons and up to 20MeV . The
G4IonBinaryCascadePhysics list modeled ion hadronic interactions. To avoid calculating parti-
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cles that would not impact the scoring results (i. e. that would not reach the energy detector),
range cuts were set outside of the detector that prevented the production of particles with
a range of 10mm or less. In that case, the secondary’s energy is deposited locally instead.
This cut was reduced to 5µm in the detector.

4.2 model of the pediatric head phantom

Giacometti et al. [140] also realized a voxelized representation of the pediatric head
phantom, where an implementation with analytical shapes was not feasible due to the
complexity of the phantom. They scanned the phantom with a high–resolution protocol of a
clinical x–ray CT scanner. The CT image was thresholded to get connected regions belonging
to a list of known materials. For each material listed in table 3.1, the material composition
was known from the vendor of the head phantom and it could be implemented as a
material in GEANT4. After manual geometry corrections, this resulted in a three–dimensional
voxelized representation of the head phantom as shown in fig. 4.2 with known materials and
densities. The voxel size was 0.19mm× 0.19mm and the slice thickness 1.25mm. The voxel
size is considerably lower than the pCT scanner’s spatial resolution, but was yet required
to correctly reproduce experimental scans. The mean RSP error using the high–resolution
phantom was at only 0.7% [140].

a b

Figure 4.2: Volume rendering of the voxelized representation of the pediatric head phantom of
Giacometti et al. [140] displaying (a) the bone volume and (b) a cross–section in the
anterior–posterior plane.
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4.3 patient data in simulation studies

In chapter 8 and in Dickmann et al. [138], a simulation study was performed based on
x–ray CT images of patients that underwent radiotherapy. For those patients only CT values
in the HU scale were available. A simulation of pCT data using the Monte Carlo simulation
of Giacometti et al. [103], however, requires knowledge of a volumetric map of material
compositions and densities. Since CT values are correlated with the material density, it is
possible convert CT values to material densities using a piecewise–linear calibration curve
as shown in fig. 4.3 (a). In a subsequent calibration shown in fig. 4.3 (b), discrete bins of
material densities are assigned elemental compositions that are typically encountered in
human tissue of that density [145, 146]. This allowed to simulate pCT scans based on a
treatment planning x–ray CT.

The inverse calibration from RSP maps to CT values was required to use simulated pCT
scans in a TPS to verify their accuracy for proton range calculations. This was done in
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Figure 4.3: Calibration curves used to import x–ray CT data into the Monte Carlo simulation: (a)
the CT to density calibration, (b) the subsequent density to material calibration, and
(c) the inverse calibration of RSP to CT value including a smoothing to account for
discontinuities. Data source: Resch et al. [145].
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Dickmann et al. [138] by calculating the RSP values of a phantom containing random CT
values from −1000HU to 4000HU using the procedure described above. From this data,
an inverse mapping from RSP to CT value was created as shown in fig. 4.3 (c). Due to
the changes in elemental composition, this mapping had several discontinuities where a
fitting of splines was applied enforcing the RSP to CT value relationship to be bijective (see
enlarged sub–plot of fig. 4.3 (c)).

For the use of patient data in this work, please note the ethics statement on page 175.
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5 I M A G E N O I S E

The understanding and prediction of noise in images of a specific prototype pCT
scanner is a key requirement to enable the development of fluence control algorithms

for FMpCT. In this chapter, the different contributions to image noise are disentangled
using a realistic Monte Carlo simulation of the imaging setup. This required to improve the
modeling of the energy detector to consider the effect of light quenching, as well as a careful
reproduction of the proton beam profile and energy distribution. The precise modeling of
all noise contributions within the imaging chain allowed to match experimental noise levels
of the prototype scanner. By disentangling noise contributions, the impact of heterogeneities
in the phantom on the image noise was studied and was found to be a critical contribution,
which was not considered in previous works. The agreement of noise predictions and
experimental scans of the same phantoms was better than 7% for the three investigated
phantoms: the water, CTP and the head phantom. This was found to be a sufficiently good
agreement to allow for future experimental acquisitions of FMpCT scans optimized based
on noise predictions of the improved Monte Carlo simulation.

The results presented in this chapter were published in Physics in Medicine & Biology [100].
Parts of the results were presented at the PTCOG Meeting 2019 in Manchester, United
Kingdom [147] and at the Jagiellonian Symposium in Krakow, Poland [148].
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5.1 verification of variance reconstruction

materials & methods

To verify the use of variance reconstruction described in section 3.5.4 and in particular to
estimate if it is accurate enough to guide FMpCT scans, a first investigation was to compare
results of the variance reconstruction according to eq. (3.62) based on a single dataset to the
ground truth image noise based on independent simulations calculated according to eq. (3.43)
as detailed in the next paragraph. In particular, the variance reconstruction algorithm in
eq. (3.62) was used, which does not account for the pixel–by–pixel noise differences due to
interpolation. This was motivated by the need of a computationally efficient algorithm that
could be used in an FMpCT optimization, and considering interpolation only as a pre–factor
allowed to avoid two of the three convolutions in the reconstruction formula. In Rädler et al.
[124], the method was only applied to idealized data and using parallel proton beams. They
also compared results only to image variance evaluated in annular rings of a single object,
suggesting the need to revisit this in a verification study using ground truth noise from
repeated simulations.

To generate data for the investigation, the Monte Carlo simulation described in section 4.1
was used together with the water phantom. N = 40 statistically independent tomographic
acquisitions were simulated and individually reconstructed using the FDK–DDB algorithm.
Subsequently, the voxel–by–voxel image variance was calculated to generate a ground truth
noise map. This noise map was compared to the result of image variance reconstruction
based on a single dataset. Before comparison, both noise maps were converted to standard
deviations by taking the square root of the variance values.

results

Figure 5.1 (a) shows the RSP standard deviation of image voxels that was calculated as
the square root of the ground truth image variance over the 40 independent reconstructions.
Noise is reduced in the center and increases towards the edges. In particular, the edge of the

Figure 5.1: Comparison of (a) ground truth image noise maps to (b) the results of the variance
reconstruction algorithm including (c) the relative difference between (a) and (b) as well
as (d) diagonal profile plots at the center of the phantom. All data are shown at the
central slice of the volume. ³ Reproduced from Dickmann et al. [100] under the CC BY 3.0 license.

https://creativecommons.org/licences/by/3.0
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phantom is visible as a peak in image standard deviation. In addition, a fine star–shaped
pattern is visible that increases image noise in the center as well as along lines aligned with
the pixel grid and focused on the center. In comparison, fig. 5.1 (b) shows the square root
of the image variance reconstruction, which is in good agreement with the ground truth
image noise, but lacks the star–shaped pattern. In fig. 5.1 (c) the relative difference between
(a) and (b) is shown, which is dominated by a star–shaped under–representation of image
noise but, apart from that, shows only small errors. The mean error over the whole phantom
was −2.5% and the root–mean–square error 4.1%. Profile plots in fig. 5.1 (d) confirm the
slight under–representation, but a generally good agreement between the ground truth
image noise and the results of the variance reconstruction algorithm in terms of the standard
deviation is achieved.

 A discussion of these results can be found in section 5.7 on page 68.

5.2 non–linearities of the energy detector

materials & methods

The light production in scintillating detectors becomes non–linear for particles with a high
stopping power, such as protons. This effect of quenching was experimentally investigated
and described by Birks [149]. Light production in general, and such non–linearities in
particular were not modeled in the simulation platform and instead the light yield was
assumed to be proportional to the energy deposited in each stage. To allow for a direct
comparison between experiments and simulations, in particular in terms of noise, quenching
needed to be accounted for in the simulation. This is because quenching affects the calibration
curves described in section 3.2.3, which in turn impact how noise in the energy measurement
translates to noise in the WEPL. Quenching can be simulated using the theory of Birks [149],
which describes the distorted energy measurement E ′n in stage n for a proton with a residual
range Rn in the detector material as

E ′n(Rn) = Sn ·
0∫
Rn

dx
dE/dx

1+ kb · dE/dx
, (5.1)

where kb is the material–dependent empirical Birks’ factor, dE/dx is the stopping power of
protons in the energy detector and Sn is an additional scaling factor of each stage introduced
here to account for the calibration process of the pCT scanner and will be calculated in the
following. During the calibration, data of 200MeV protons in a degrader–free run is forced
to produce energy readings equal to the EG4

n defined in eq. (3.6), which were calculated
without considering quenching. This can be expressed as

E
G4

n = Sn ·
Rfn∫
Rin

dx
dE/dx

1+ kb · dE/dx
, (5.2)
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where Rin and Rfn are the initial range at the entrance and final range at the exit of stage n.
If lstage is the thickness of each stage and R0 is the range of protons at the entrance of the
energy detector without any absorber, then they can be calculated as

Rin = R0 − (n− 1) · lstage, (5.3)

Rfn = R0 −n · lstage. (5.4)

Consequently the scaling factors are dependent on kb and calculate as

Sn = E
G4

n ·

R
f
n∫
Rin

dx
dE/dx

1+ kb · dE/dx


−1

. (5.5)

The range Rn for a proton that additionally passed through a WEPL W inside the object
can be calculated as

Rn = Rin −W/RSPdet, (5.6)

where RSPdet = 1.038 is the RSP of the detector. With this, the distorted energy deposit can
be expressed as a function of the WEPL as

E ′n(W) = Sn ·
0∫

Rin−W/RSPdet

dx
dE/dx

1+ kb · dE/dx
, (5.7)

where the stopping power in the detector dE/dx was calculated using GEANT4 for the
theoretical material composition, for which the I–value was tweaked to produce the expected
RSP.

To calculate the material–specific Birks’ factor kb, we inspected experimental data of the
wedge–shaped calibration phantom, which was sampling the dynamic range of the detector
from zero up to 254mm and where each proton’s WEPL could be calculated from the hit
locations and the known geometry of the phantom. From the data, a two–dimensional
histogram was created of the measured energy deposit E∗n to stopping stage n and the
WEPL. The same histograms are shown in fig. 3.3 (a) and are used for the calibration of
the scanner. The relationship E∗n(W) was determined for each stage by finding the most
frequent energy deposit for each WEPL W.

The Birks’ factor kb as well as the quantities R0 and lstage were determined by optimization
as

kb,R0, lstage = arg min
kb,R0,lstage

∑
n

[∑
W

(
E ′n(W) − E∗n(W)

)]2
, (5.8)

where the sums are over all stages and all WEPL bins of the histogram. The optimization
was performed using the quasi–Newton method of Broyden [150]. While R0 and lstage could
also be estimated, they were intentionally left as optimization variables to avoid that small
errors in their estimation disturbed the correct estimation of kb.

In subsequent simulations, the optimal Birks’ factor kb was then used to distort each
incremental energy deposit of the simulation as

dADC
dx

∝ dE ′

dx
∝ dE/dx
1+ kb · dE/dx

, (5.9)
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where dADC is the incremental increase of the ADC number. The scaling factors Sn were
only important during the optimization and can be disregarded in the simulation due to the
arbitrary scaling of ADC numbers. The stopping power dE/dx at a given proton energy can
be queried directly in each calculation step of the GEANT4 simulation.

results

In fig. 5.2 (a) the histogram of the energy deposit to the stopping stage and the WEPL is
shown. This histogram is equivalent to the one shown in fig. 3.3 (a), except for a slightly
different arrangement of the bricks with respect to the wedge compared to what is shown in
fig. 3.2. During the acquisition for fig. 5.2 (a), the bricks were aligned with one edge of the
wedge, allowing protons to exit at the side of the brick. Such protons then had a smaller
WEPL than if they had fully penetrated all bricks. They were therefore missing for WEPLs
at multiples of the brick thickness of 52mm and occurred elsewhere in the histogram. This
is visible in fig. 5.2 as a sudden reduction of counts at around 65MeV for each stage. In
fig. 3.3 (a), the bricks were shifted by 20mm which reduced this effect. Nevertheless, a slight
change in statistics as observed here does not impact the subsequent evaluation, since each
WEPL bin was evaluated independently to find the maximum energy deposit.

In fig. 5.2 (b) the same histogram is shown for a simulation that did not account for the
effect of quenching. Energy deposits to the stopping stage are considerably higher for all
stages except for the fifth stage at the lowest WEPLs. The transitions in between stopping
stages occur at the same WEPL values as in the experiment.

Table 5.1 reports the fitting results for the three open parameters kb, R0 and lstage. Using
the Birks’ coefficient allowed to repeat the simulation of the histograms considering the
effect of quenching, which resulted in the data shown in fig. 5.2 (c). The energy deposits
for a given WEPL here agreed much better to the experiments in (a) compared to the data

Figure 5.2: Histograms of the energy deposit to the stopping stage and the corresponding WEPL
for (a) measurements, (b) simulations without the effect of quenching and (c) simulation
with the optimized quenching parameter. One line in each histogram corresponds to one
stopping stage, where the furthest stage is at the lowest WEPLs values. ³ Reproduced
from Dickmann et al. [100] under the CC BY 3.0 license.

https://creativecommons.org/licences/by/3.0
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Table 5.1: Fitting parameters for the optimization of the quenching model.

parameter fit estimate

Birks’ coefficient kb 0.0887mmMeV−1

residual range at entrance R0 237.9mm
stage thickness lstage 49.7mm

Figure 5.3: Calibration curves obtained from experiments and using simulations with and without
simulating the effect of quenching. ³ Reproduced from Dickmann et al. [100] under the CC BY 3.0
license.

that did not consider quenching. The only clearly visible remaining difference between
the histograms are WEPLs above 245mm, where the energy deposits are below 20MeV in
the first stage. In the experimental data this threshold is used to trigger the acquisition, as
described in section 3.2.3. This is not needed and also not reproduced in the simulation.

In fig. 5.3, the resulting calibration curves are shown that were calculated from the data in
fig. 5.2 and that are similar to those presented in section 3.2.3 and fig. 3.3. The calibration
curve of the experimental data agreed well with the simulation using the optimized Birks’
coefficient. The calibration curve for the simulation without the effect of quenching differed.
Curves agreed at the beginning of a stage, where the energy deposit to the stopping stage
was 0MeV and quenching had little effect, and an increasing difference built up towards
the end of a stage.

 A discussion of these results can be found in section 5.7 on page 68.

https://creativecommons.org/licences/by/3.0
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5.3 a more realistic beam model

materials & methods

Noise in the projection domain is inversely proportional to the number of particles incident
to the detector as described by eq. (3.45). For this reason, it is important to carefully model
the incident proton beam’s fluence when comparing simulations to experiments both in
terms of distributions of the initial positions and directions of the beam as well as for the
initial energy spread of protons.

Experimental data used in this chapter employed a broad beam as described in section 3.7.
The spatial and directional distribution of the incident proton beam could directly be
replicated in simulations by using the tracking information of an experimental scan. For this
purpose, the position of each detected proton was projected to a point at 400mm in front of
the isocenter and 232.8mm upstream of the front tracker. This was done by following its
direction information along a straight line and resulted in a list of positions and directions,
that could be used in a subsequent simulation to place primary protons. To prevent interplay
effects between the strips of the detector and the placement in the simulation, the location
information was blurred with random numbers with a standard deviation equal to the
distance between two strips of the detector. Since in the data available for this study the
beam profile was purposefully changed after the calibration, and no degrader–free runs
were available for the beam profiles used for the phantom scans, the beam model was based
on a scan of the water phantom. Since this suffered from a reduced fluence in the area of
the phantom due to attenuation, protons were randomly selected to be included in the beam
model with a probability anti–proportional to the transmittance, thereby undoing the effect
of attenuation. The transmittance was estimated from Monte Carlo simulations using a
homogeneous beam by comparing the detected protons to the initial number of protons.

The energy spread σbeam of the incident proton beam was determined indirectly by
calculating the spread of energy deposits to the fifth stage of the detector in an absorber–free
run. The spread was calculated by fitting a Gaussian function to histograms of the energy
deposits. This was done to prevent outliers distorting the calculation. The standard deviation
of energy deposits to the fifth stage, subsequently called σE5 , was compared to the spread
of E5 observed in a set of simulations with a varying beam energy spread σbeam. To do
so, σbeam was set in Monte Carlo simulations to values between 0.5MeV and 1MeV in
steps of 0.1MeV and the resulting σE5 as a function of σbeam was fitted with a second order
polynomial. The intersection of the polynomial with the experimental value of σbeam allowed
to determine a value of σbeam that produced the same noise in the last stage of the detector
as in an experiment. This of course assumes that the electronic noise is low compared
to the noise caused by energy straggling and the beam energy spread, which is a valid
assumption [56]. Another assumption is that the energy deposits to the stopping stage are
equal between measurements and simulations for all WEPL values, which was achieved
using the Birks’ model described in section 5.2.
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Figure 5.4: The spread of the energy deposit to the last stage σE5 as a function of the initial beam
energy spread σbeam. A fit on the simulated data was used to find a σbeam that matches
the experimental value. ³ Reproduced from Dickmann et al. [100] under the CC BY 3.0 license.

results

Figure 5.4 displays the spread of energy measurements σE5 in the last stage as a function
of the beam energy spread σbeam for a set of simulations. The data were fitted by a
quadratic model. To determine the beam energy spread that agreed with measurements,
the spread of energy deposits in the last stage was determined for experimental data as
σE5 = (3.47± 0.02)MeV . According to the polynomial fit, this corresponded to a beam
energy spread of σbeam = (0.66± 0.02)MeV which was used in subsequent simulations. The
uncertainty of σE5 was the uncertainty of the Gaussian histogram fit and the corresponding
uncertainty for σbeam was propagated through the quadratic function. Both uncertainties are
displayed as shaded ares in fig. 5.4.

 A discussion of these results can be found in section 5.7 on page 69.

5.4 contributions to projection noise

materials & methods

The modeling of quenching and the beam energy spread in sections 5.2 and 5.3 allowed
to directly compare simulated image noise with the noise in experimental data. This was
first done based on data of the wedge–shaped calibration phantom allowing to verify the
simulation model for the complete dynamic range of the detector. To allow for a comparison
with the results of Bashkirov et al. [56], the per–proton WEPL standard deviation was
calculated as

σWEPL = σP ·
√
N, (5.10)

https://creativecommons.org/licences/by/3.0
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where σP is the standard deviation expected for the mean WEPL of N protons as defined
in eq. (3.45) (standard error of the mean). The projection noise data was binned to WEPL
intervals in multiples of 1.5mm and in each of these bins the median value of σWEPL was
calculated.

Apart from comparing results to experiments, contributions to image noise in the projec-
tion domain could be disentangled with the help of Monte Carlo simulations. The following
contributions were hypothesized: scattering due to MCS, energy straggling in the object,
the uncertainty of tracking, the energy detection process, and the beam energy spread. To
disentangled these contributions, various scoring techniques were employed in the Monte
Carlo simulation, which are described in the following. For this purpose, two ideal scoring
planes were implemented that have no effect on the crossing particles, with one located
before and one after the object and both just inside the two tracking detectors. The noise
contributions were as follows.

wepl scoring In each calculation step of the Monte Carlo simulation, the step length
was multiplied with the current material’s RSP and summed for each proton to calculate
the exact WEPL. The exact coordinates and directions were recorded at the two scoring
planes. Noise in this case was only affected by scattering of protons with different histories
to the same distance–driven bin. Distance–driven binning forces protons in a given bin to
have the same location at a certain depth of interaction, but their paths from and to that bin
will differ due to MCS and they will experience different WEPLs, which results in a (noisy)
distribution of WEPLs in the distance–driven bin.

energy scoring At the two scoring planes, the proton’s exact energy, position and
direction were recorded. The energy was converted to WEPL with eq. (3.3). In addition to
noise from scattering, this scoring technique also considered energy straggling in the object
as a contribution.

energy scoring (realistic position) With scoring of the energy as before, the loca-
tion and direction were replaced by the values inferred from the simulation of the strips in
the tracking detector. This technique, therefore, also included noise caused by the tracking
process. While this contribution is expected to be small, a less accurate path estimate may
contribute to noise in a similar way that MCS does.

realistic scoring (no beam energy spread) The full detector simulation was em-
ployed, including the modeling of the energy detector and the corresponding calibration
process. The beam energy spread was set to σbeam = 0MeV . This scoring technique consid-
ered all sources of noise, except for the beam energy spread and in particular also noise
from energy straggling in the detector and the calibration process.

realistic scoring The full detector simulation was used with the beam energy spread
determined in section 5.3. This accounts for all hypothesized sources of noise.

————
The noise due to scattering was determined directly by the WEPL scoring technique.

Noise due to energy straggling in the object was determined as a difference between noise in
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the energy scoring and the WEPL scoring technique. Noise due to tracking was calculated as
the difference between the two energy scoring techniques. Noise due to the energy detection
process was equal to the difference of the realistic scoring technique without beam energy
spread and the energy scoring technique with realistic position measurements. Finally,
noise due to the beam energy spread was determined as a difference of the noise in the
two realistic scoring techniques. To calculate any of these differences, the variance values
needed to be considered instead of standard deviations. This is, because two sources of
(uncorrelated) variances add up linearly, while two standard deviations need to be added as
the square root of the sum of the squares.

results

Figure 5.5 (a) – (c) shows the standard deviation of the various scoring techniques based
on the data of the wedge–shaped calibration phantom. Data are shown at the front tracker,
at the isocenter and at the rear tracker. The WEPL scoring noise is negligibly small at
the front tracker, but considerably increases at the rear tracker. At multiples of the brick

Figure 5.5: Contributions to image variance and comparison of simulated and experimental data in
the projection. In (a) – (c) the standard deviation of the individual scoring techniques is
shown and in (d) – (f) the relative contributions to projection variance of the five noise
contributions. Data are evaluated for (a) and (d) at the front tracker, for (b) and (e) at the
isocenter, and for (c) and (f) at the rear tracker. Dashed lines indicate multiples of the
calibration phantom’s brick thickness. The term detection process only refers to detection
of the proton energy and not to tracking. ³ Reproduced from Dickmann et al. [100] under the
CC BY 3.0 license.

https://creativecommons.org/licences/by/3.0
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thickness (indicated by dashed lines) there is a sudden decrease of projection noise due to
scattering. The standard deviation in the energy scoring data is small for small WEPLs and
increases with for larger WEPLs. The use of energy scoring with realistic tracking only had
a minor impact on projection noise compared to energy scoring with ideal tracking. For
realistic scoring, the dependence on the WEPL became less severe. The standard deviation
per proton is between 3.1mm for large WEPLs and 3.8mm for the smallest WEPLs. The
agreement with the experimental data is good, even a minor increase of noise in the center
of each dataset is reproduced.

In fig. 5.5 (d) – (f) the corresponding contributions to image variance are shown and nor-
malized to the variance using realistic scoring. Scattering in this dataset can be disregarded,
except for at the rear tracker, where the contribution is about 20% for the largest WEPLs.
Variance due to tracking is not relevant for the dataset under investigation, independent of
the tracking plane. The sum of energy straggling in the object and the noise caused by the
energy detection process is approximately constant with energy detection noise prevailing
for low WEPLs and energy straggling prevailing for large WEPLs. The contribution of the
beam energy spread is about 20% for all tracking depths and across the complete WEPL
range.

 A discussion of these results can be found in section 5.7 on page 69.

5.5 comparison of simulated & experimental image noise
maps

materials & methods

To assess the accuracy of the Monte Carlo noise model, pCT scans were simulated for the
water phantom, the CTP phantom and the pediatric head phantom (see section 3.6) and image
noise maps were calculated using the variance reconstruction algorithm. The simulation
was performed using the realistic scoring technique. For the same phantoms, experimental
data was obtained from scans performed at the Northwestern Medicine Chicago proton
center with the prototype pCT scanner and image noise maps were calculated using variance
reconstruction. The voxel size for this study was uniformly 1mm in all dimensions. All
noise maps were normalized to an average projection fluence of f0 = 20mm−2 to match
experimental and simulated scans, which had slightly different particle numbers. For the
phantoms that were symmetric in z–direction (water and CTP), 16 slices were averaged. The
averaging of the noise maps was done after noise reconstruction, so that the map still refers
to the noise in a single slice before averaging. For the head phantom, three representative
slices were selected for evaluation.

In order to align the simulated and experimental noise maps, two corresponding slices in
the reconstructed RSP maps were selected and both slices were rigidly registered to each
other allowing a translation and a rotation. The determined registration was then applied to
the image noise maps allowing for a voxel–by–voxel comparison. For this, the evaluation
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only considered voxels inside the object’s hull, which was determined by an RSP threshold
of 0.15.

A voxel–wise map of the relative error was calculated as

∆σ =
σRSP, sim − σRSP, exp

σRSP, exp
, (5.11)

where σRSP is the square root of the variance reconstruction of simulated or experimental
data.

In the analysis of the data of heterogeneous phantoms, it turned out that the contribution
of scatter to image noise played a more important role compared to what could be expected
from the previous results using the homogeneous calibration phantom. To quantify the
noise contribution of scatter σscatter, the simulations were repeated using the WEPL scoring
technique. The non–scatter contribution, which is the expected noise level in the absence of
scattering, was determined as the difference

σnon–scatter =
√
σ2RSP − σ2scatter. (5.12)

Mean imaging doses in each slice were scored using the GEANT4 simulation to put the
noise levels into perspective with the required imaging dose.

results

In fig. 5.6 (a) RSP maps are shown for the three phantoms used in this investigation. For
the head phantom, three representative slices were selected: slice 1 with the ears and the
nasal cavity, slice 2 with the teeth and the spine and slice 3 with the eyes and the brain.
In particular in the water and the CTP phantom, ring artifacts distort the image. Those
ring artifacts are also seen in the head phantom, but mostly masked by the geometry of the
phantom. Ring artifacts are known to distort images of this pCT scanner [81] and are subject
to the works reported in this thesis in chapter 9.

Figure 5.6 (b) and (c) show the experimental and the corresponding simulated image noise
maps in terms of the standard deviation with (d) showing the relative difference between
both. There is a good agreement between the two noise maps with the absolute level of noise
agreeing and even subtle features of the noise maps being reproduced by the simulation.
For the water phantom, the image noise is low in the center and increases considerably
towards the edge of the phantom, as it was observed already in section 5.1. Increased noise
also occurs close to the air inserts of the CTP phantom as well as close to heterogeneities
of the head phantom, in particular in the area of the nasal cavity. The relative difference
seems to be slightly increased close to ring artifacts, which is visible in particular for the
water phantom. Table 5.2 summarizes the relative mean error as well as the relative root
mean square (RMS) error for all phantoms and slices. While the CTP and the water phantom
are both underrepresented by the simulation, the head phantom both contains slices with
negative and positive mean error. The RMS error is below 7% for all phantoms and slices.

Figure 5.6 (e) displays horizontal central line profiles through the variance maps of
experimental and simulated standard deviation maps. They confirm the good agreement
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Figure 5.6: (a) RSP and image noise for three different phantoms comparing (b) simulated to (c)
experimental standard deviation maps; (d) relative difference between simulation and
experiment and (e) horizontal profiles along a central line of the image noise maps as
well as the contribution from scattering. ³ Reproduced from Dickmann et al. [100] under the
CC BY 3.0 license.

Table 5.2: Mean error and root mean square (RMS) error for the comparison of simulated and
experimental image noise maps. The errors of the simulated versus the experimental
results are reported with relative to the experimental data.

phantom relative mean error relative RMS error

water phantom −2.9% 6.7%
CTP phantom −5.6% 6.4%
head phantom (slice 1) −4.6% 6.8%
head phantom (slice 2) −3.6% 5.3%
head phantom (slice 3) 3.2% 6.2%

https://creativecommons.org/licences/by/3.0
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Table 5.3: Standard deviation levels of a central circular region (diameter 40mm) of experimental
and simulated noise reconstructions and the corresponding mean imaging doses.

phantom noise level noise level imaging dose / mGy
simulation experiment simulation

water phantom 0.022± 0.001 0.024± 0.001 0.85± 0.04
CTP phantom 0.027± 0.001 0.029± 0.001 0.86± 0.04
head phantom (slice 1) 0.044± 0.003 0.046± 0.002 0.82± 0.04
head phantom (slice 2) 0.030± 0.001 0.030± 0.001 0.84± 0.04
head phantom (slice 3) 0.026± 0.001 0.027± 0.001 0.88± 0.04

that was already visible from the relative difference maps, but also highlight that differences
between experimental and simulated noise data are minor compared to the overall fluctuation
of image noise within a slice. The lowest image noise was observed in the center of the
water phantom as well as in the homogeneous region of slice 3 of the head phantom (both
around 0.025). In the CTP phantom and slice 2 of the head phantom, the lowest noise was at
around 0.03 while for the center of slice 1 the standard deviation increased to 0.05, which is
a two–fold increase of standard deviation compared to the homogeneous slice 1 of the same
phantom. A detailed analysis of noise levels in a circular central region with a diameter of
40mm is shown in table 5.3.

The scatter contribution to image noise is shown in fig. 5.6 (e) as a third profile. For the
water phantom and the homogeneous slice 3 of the head phantom the scatter contribution is
close to or at zero while for slice 1 of the head phantom it is above 0.025. For all phantoms
the scatter–only noise increases towards the edge, most prominently observed for the water
phantom. The non–scatter noise contribution according to eq. (5.12) is approximately
constant for all phantoms. In the central region of all phantoms it was σnon–scatter =

0.028± 0.004 with the uncertainty calculated over all phantoms and slices.
Imaging doses for the simulations are also reported in table 5.3 allowing for a comparison

of noise values reported here to other studies. Since pile–up in the detector was found to be
a negligible effect [46], imaging doses for the experimental scans are expected to be similar.

 A discussion of these results can be found in section 5.7 on page 70.

5.6 a bow–tie filter for proton ct

materials & methods

For diagnostic imaging it is desirable to have a constant imaging noise level throughout
the image. For this purpose, x–ray CT scanners employ a so–called bow–tie filter, a physical
device which attenuates the primary beam and thereby flattens the fluence at the detector,
which homogenizes image noise as described by Harpen [151] or Graham et al. [152]. This
approach, however, is not directly applicable to pCT, since different phenomena govern the
noise formation. For x–ray CT it is the attenuation of the object, which reduces the fluence
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incident to the detector. For pCT, attenuation plays a minor role and instead the noise
level is governed by the interplay of the heterogeneity of the object and MCS as shown in
section 5.5 and by Rädler et al. [124]. As a preliminary fluence modulation study, a fluence
profile was designed that would be the equivalent of a bow–tie filter for pCT, and which
makes noise at the detector level flat, and thereby also results in a homogeneous image noise.
This pCT–bow–tie would not be a physical device, but just a fluence profile.

The bow–tie–like fluence modulation profile was created based on simulated data of the
water phantom and subsequently applied to experimental data of the same phantom. To
apply the fluence modulation, protons of the experimental dataset were randomly accepted
or rejected with an acceptance probability p(u) which was defined as a function of the
lateral detector coordinate u (along the long side of the water phantom). No modulation
was required along v since the phantom is symmetric in this direction. The acceptance
probability was calculated as

p(u) = min

(
σ2p,sim(u)

σ20
, 1

)
, (5.13)

where σ2p,sim(u) is the simulated variance profile along u at the isocenter and σ20 is the
desired constant variance level. The acceptance probability was forced to be smaller than
1 by the min operator in the case that σp,sim(u) > σ0. This allowed to prescribe a desired
variance that was less than the maximum variance in the reference scan (at the edges of the
phantom) at the cost that the prescription would not be achieved in this region. In this study,
a projection standard deviation of σ0 = 5.48mm was prescribed, which corresponds to a
variance of σ20 = 30mm

2.

results

Figure 5.7 (a) shows the image noise of the water phantom which is equal to the one
in fig. 5.6 (b) and was obtained with a uniform fluence profile, which is shown in fig. 5.7
(d). Figure 5.7 (b) shows the image noise map for the same phantom acquired with the
bow–tie fluence modulation profile which is also shown in (d). The image noise is flat as

Figure 5.7: A first fluence modulation based on the image variance predictions: (a) image variance
for the water phantom without and (b) with a modulation forcing the image variance to
be constant; (c) horizontal profiles through the image noise maps and (d) corresponding
fluence profiles. ³ Reproduced from Dickmann et al. [100] under the CC BY 3.0 license.

https://creativecommons.org/licences/by/3.0
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intended with only an increase of image noise at the edge of the phantom. Figure 5.7 (c)
displays central profiles through the image standard deviations in (a) and (b). The noise
level in the modulated scan is considerably higher since protons could only be rejected in
this retrospective modulation. The profile is flat within the body of the phantom and in
particular compared to the profile of the original scan. The fluence profiles in fig. 5.7 (d)
follow opposite trends compared to the noise profiles: while in the original scan noise is low
in the center and fluence is constant, the modulated scan has constant noise in the image,
but a reduced fluence in the center. An analysis of the RSP values of the two scans showed
no degradation and changes in the mean RSP were less than the image noise level.

 A discussion of these results can be found in section 5.7 on page 71.

5.7 discussion

Verification of variance reconstruction

The use of variance reconstruction to calculate image noise from just a single dataset was
verified by comparing the reconstruction results to the variance of N = 40 independent
reconstructions of the same phantom. Differences of just a few percent mainly stem from
a star–shape noise increase due to effects of interpolation, which was purposefully not
considered and which is a systematic error that does not depend on the object shape or
dimension. In particular, for the relative comparisons performed in the rest of this chapter,
the disregarded star–shaped noise increase would not impact the results as it cancels out
in a relative comparison. For the purpose of guiding an FMpCT fluence optimization, the
noise reconstruction without the explicit modeling of interpolation effects appears to be well
suitable given that the star–shaped increase is only of a small amplitude and only affects a
thin region of the image. However, this is not relevant for fluence modulation due to the
finite size of proton pencil beams, which limits the spatial frequency at which image noise
can be modulated. Moreover, errors of just a few percent, compared to the ground truth
noise seem to be acceptable for FMpCT, given that modulation of noise just due to the object
shape were observed in this study that reached a factor of two in between phantoms and
within one phantom towards the edge. The error of variance reconstruction, therefore, is
small compared to the expected noise modulations.

Non–linearities of the energy detector

To model non–linearities of the energy detector, experimental data of the wedge–shaped
phantom was used to fit a Birks’ coefficient that allows to model the effect of light quenching
in subsequent simulations. For this, the initial range of protons at the detector entrance
as well as the thickness of each stage were left as open fit parameters. The initial range
of 200MeV protons is 250mm in polystyrene [53]. From this value, the range loss in the
tracking detector and in air, as well as in the entrance window of the energy detector would
need to be reduced. For this, the fit value of R0 = 237.9mm appears to be reasonable. Also
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the stage thickness, which physically is 51mm agrees within the expected uncertainty with
the fit value of lstage = 49.7mm. Potential errors in the estimate for the detector’s RSP
and also the impact of the stage wrapping could impact that value. The fact that both fit
parameters were close to the expected values, but not exactly equal, confirmed, that leaving
them as open parameters was a valid choice and that fixing them at the expected values may
have deteriorated the estimate for kb.

The Birks’ factor was estimated as

kb · ρPS = 9.4× 10−3 g

MeVcm3
, (5.14)

where ρPS = 1.06 gcm−3 is the density of polystyrene. This agrees well with values from
literature, which were reported to be kb · ρPS = 9× 10−3 gMeV−1cm−3 by Tretyak [153] and
kb · ρPS = 14× 10−3 gMeV−1cm−3 by Reichhart et al. [154].

With the correct modeling of quenching, calibration histograms for simulations and
experiments, as well as the calibration curves themselves, agreed considerably better. While
this agreement may also have been achievable by simulating the photon transport in the
GEANT4 code, the approach presented here is preferable since it comes at little computational
cost compared to a full simulation of the photon transport. While modeling quenching
was not crucial in the original work of Giacometti et al. [103], where the RSP fidelity was
the objective, in this thesis, quenching is more important since it impacts the slope of the
calibration curve and may, therefore, have an important impact for the prediction of image
noise levels using the Monte Carlo simulation. Additionally, it allowed to estimate the beam
energy spread in a subsequent investigation, which required to have equal energy deposits
for the same WEPL between experiments and the simulation.

A more realistic beam model

A precise model of the incident beam in an experiment was found by exploiting the
tracking information of the pCT scanner. By reading the information and correcting it for
the effect of attenuation, the experimental beam could be reproduced in the Monte Carlo
simulation. The beam energy spread was estimated to be about 0.3% of the beam energy
by comparing the spread of energy deposits in the detector’s final stage with experiments.
This value is lower than the value expected for clinical operation of the proton beam, which
typically is between 0.5% and 1% of the beam energy [155]. However, the operation of the
pCT scanner required to reduce the proton fluence considerably, so that the tracking rate was
below 1MHz and the scanner could operate without pileup. For this purpose, energy slits
of the accelerator needed to be closed beyond values that are commissioned for treatment.
More narrow energy slits, therefore, may explain the smaller energy spread observed in this
work.

Contributions to projection noise

Using the optimized Monte Carlo code allowed to disentangle contributions to image noise
in the projection of the wedge–shaped calibration phantom. The contribution of scattering
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was negligible for the front tracker but considerably increased at the rear tracker because
of the continuous opening of a proton beam due to MCS as it traverses the phantom. In
addition, the calibration phantom was positioned close to the front tracker, leaving an air
gap where the protons’ drift along straight trajectories (with strongly reduced MCS) and
which further increased the lateral beam spread. The scattering contribution at the rear
tracker suddenly decreased at multiples of the brick thickness. This was, because at this
point data with n bricks at the center of the wedge and with n+ 1 bricks at the thin side of
the wedge were merged. While in general a larger WEPL increases the noise due to MCS,
an additional brick reduces the air gap and consequently decreases the drift distance. This
abruptly also decreased the lateral beam spread until an even larger WEPL compensates for
the decrease.

Energy straggling was the dominating contribution to projection noise and was originating
both from straggling in the object and in the detector. For protons in air, straggling occurred
only in the detector. For an increasing WEPL, the path length in the detector decreased and
with it the noise caused by the energy detection process. At the same rate, noise due to
energy straggling in the object increased. Noise due to the energy detection process may also
be elevated due to the calibration curve, which is of varying slope and itself noisy as well as
from electronic noise and noise of the scintillating detector. However, their contributions
are small and the detector operates close to the energy straggling limit, as investigated by
Bashkirov et al. [56]. Remaining contributions may be covered by the estimation of the
beam energy spread. The beam energy spread contributed about 20% to the total projection
variance. This is a remarkable contribution considering that the spread was only 0.3% of the
initial beam energy. It, therefore, requires a careful modeling to predict correct noise values
with simulations.

The per–proton projection noise using the full simulation agreed well with the values
observed in experiments. The summed noise contributions were flat across the WEPL
dynamic range of the detector with a slight decrease for larger WEPLs. The per–proton
WEPL uncertainty agrees well with the values reported by Bashkirov et al. [56] for the same
scanner and using eq. (3.5).

Comparison of simulated & experimental image noise maps

Application of variance reconstruction to simulated and experimental data of three
phantoms allowed to quantify the accuracy of noise predictions in the image using Monte
Carlo simulations. The agreement between simulations and experiments in terms of the
standard deviation was better than 7% for all phantoms. In addition to the potential error
due to the use of variance reconstruction estimated in section 5.1 of a few percent, which
canceled out in this comparison, the expected noise prediction error will still be less than
10%. This is small compared to the modulation of image standard deviation that is expected
for even the homogeneous water phantom and which were up to a factor of two. Performing
an FMpCT optimization based on the predicted image noise should, therefore, be feasible.

An interesting observation in this study was that the noise level depended strongly on the
heterogeneity of the phantom. This effect was driven by the contribution of scattering noise,
which is close to zero in the center of the water phantom, but increased considerably towards
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the edges of the phantom. This caused the total noise in the water phantom to be lowest in
the center and increase towards the plastic hull. A considerable noise contribution of scatter
was also found for heterogeneous phantoms. For this reason, noise even in between two
non–adjacent slices of the same phantom, the head phantom, can change by up to a factor of
two. According to eq. (3.45), a noise increase in terms of the standard deviation by a factor
of two would need to be compensated by an incident fluence that is increased by a factor of
four, which consequently also increases imaging dose by a factor of four. For this reason,
the imaging dose advantage of pCT over x–ray CT, that was suggested by Schulte et al.
[44], may need to be revisited, since this was performed at the center of the water phantom,
which had the lowest noise level in this study and would not be representative of a clinical
usage of pCT. At the same time, the non–scatter contribution was similar for all phantoms,
which is consistent with section 5.4 and the observations of Bashkirov et al. [56], that the
per–proton noise is constant with the WEPL.

A bow–tie filter for proton CT

Using the noise prediction of the Monte Carlo simulation, a bow–tie like fluence modula-
tion was designed, which achieved flat noise in the image. At the same time, the accuracy of
RSP values was maintained. This is a first application for fluence modulation and shows
that it should be feasible to use noise predictions from Monte Carlo simulations to guide the
optimization of FMpCT. The fluence modulation profiles required for flat image noise in
pCT are fundamentally different from those employed by bow–tie filters in x–ray CT [151,
152]. While a bow–tie filter needs to attenuate less in the center to compensate for the
attenuation of the object, the fluence incident to the object in pCT needs to be elevated in
the center due to increased MCS and the noise related to that.

While in x–ray CT, bow–tie filters are a standard approach to reduce patient exposure,
a similar approach has not been used for pCT so far. A reason for that might be, that it
is not possible in pCT to design a modulation profile that is suitable for a wide range of
patients or objects. As this study showed, even two slices of the same phantom experience
considerably different noise levels and would, consequently, require different modulation
profiles. FMpCT will, therefore, be always a patient–specific approach that carefully needs
to model image noise in the specific patient to adapt the fluence accordingly. Nevertheless,
calculating a virtual bow–tie filter for the water phantom demonstrated the feasibility of
using Monte Carlo simulations to predict image noise and calculate fluence modulation
profiles that allow for a flat image noise distribution.

5.8 conclusions

In this chapter and originally in Dickmann et al. [100], an existing Monte Carlo code for
the simulation of pCT scans of a prototype scanner was improved in order to reproduce
image noise maps of experimental scans. For this purpose, a quenching model was imple-
mented and the corresponding Birks’ parameter was determined based on experimental
data. Moreover, a realistic beam model was established based on the tracking data of the
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scanner and the initial beam energy spread was estimated by an indirect comparison of the
spread of energies of the detector’s last stage measured in experiments and simulations.
This allowed to match experimental noise levels over the complete dynamic WEPL range of
the detector. Additionally, the Monte Carlo simulation could be used to quantify the relative
contributions to WEPL noise of the energy detection process, energy straggling in the object,
scattering, tracking and the initial beam energy spread. In particular the noise due to the
initial beam spread was considerable with a relative variance contribution of about 20%.
For three different phantoms, the image noise was calculated with the help of a variance
reconstruction algorithm, whose accuracy was verified within this study. Noise was shown
to considerably increase close to heterogeneities and this increase is driven by the noise
contribution caused by MCS.

In this first full simulation of all relevant contributions to image noise, an agreement to
experimental data of better than 7% in terms of the standard deviation was achieved. This
error was shown to be much smaller compared to the noise fluctuations expected for pCT
scans. Using the noise predictions for FMpCT, therefore, should be feasible. To further
motivate that, a modulation profile for the water phantom was calculated, that successfully
achieved constant noise in the image and thereby modeled the equivalent of a bow–tie
filter for pCT. However, the bow–tie modulation would need to be adapted for each patient,
underlining the need for patient–specific fluence modulation using FMpCT.
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6 F L U E N C E – M O D U L AT E D P R OTO N
C O M P U T E D TO M O G R A P H Y

By employing small proton pencil beams with modulated intensities or dwell times,
fluence–modulated pCT aims to achieve a task–specific distribution of image noise.

Such a spatially varying image quality is particularly meaningful in the context of particle
therapy, where good image quality for treatment planning, and thus low noise, is only
needed in the vicinity of the therapeutic proton beam (the ROI). Outside of this ROI, image
noise can be increased and imaging dose decreased accordingly.

In this chapter, an optimization algorithm is presented, that calculates fluence modulation
factors for each pencil beam, which achieve a desired image noise distribution. The algorithm
is based on a uniform fluence pCT Monte Carlo simulation of the object, that predicts
variance levels of a specific pCT scanner. It also makes use of a Gaussian pencil beam model,
which was established based on experimental data within this work. The performance of the
optimization algorithm is tested in a Monte Carlo simulation study based on three phantoms
and three different noise prescriptions. Resulting imaging dose savings are compared to the
uniform fluence case and to a simple, intersection–based reference method, that was used in
earlier works. By prescribing a constant image noise, the imaging dose to a homogeneous
water phantom could be reduced by 8.9% compared to an acquisition using a uniform
fluence and at the same peak noise level. For the heterogeneous head phantom, this dose
reduction increased to 16.0%. For two FMpCT imaging tasks with different ROI shapes, the
dose saving outside of the ROI was between 25.7% and 40.5% at the same peak noise level
inside the ROI. The imaging dose inside the ROI increased by between 9.2% and 19.2%.
The agreement between the prescribed and the achieved noise levels was satisfactory and
differences were small compared to the overall intended fluence modulation. The use of
a realistic pencil beam model and simulation of the scanner paved the way towards an
experimental realization reported in the next chapter.

The results presented in this chapter were published in Medical Physics [156]. Parts of the
results were presented at the AAPM conference in San Antonio, USA [157], at the DGMP
meeting in Stuttgart, Germany [158], and at the ESTRO conference in Vienna, Austria [159].

publications in this chapter

� [156] F J. Dickmann et al.: “An optimization algorithm for dose reduction with fluence-
modulated proton CT”. Medical Physics 47(4) (2020), 1895–1906. issn: 0094-2405. doi:
10.1002/mp.14084
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conference contributions in this chapter

9 [157] F J. Dickmann et al.: “Method for Fluence Field Optimization to Achieve Noncon-
vex Image Noise Prescriptions with Fluence-Modulated Proton CT”. Annual Meeting
of the American Association of Physicists in Medicine (AAPM), San Antonio, USA, pro-
ceedings published in Medical Physics 46(6) (2019), E477–E477. issn: 24734209. doi:
10.1002/mp.13589

9 [158] F J. Dickmann et al.: “Dosiseinsparung durch fluenzmodulierte Protonen-
Computertomographie mit Anwendung in der Protonentherapie”. Jahrestagung der
Deutschen Gesellschaft für Medizinische Physik (DGMP), Stuttgart, Germany (2019)

9 [159] F J. Dickmann et al.: “PO-1706: Low dose fluence-modulated proton CT: sim-
ulation study and first experimental results”. Conference of the European Society for
Radiotherapy and Oncology (ESTRO), Vienna, Austria (online), proceedings published in
Radiotherapy and Oncology 152(S1) (2020), S941. doi: 10.1016/S0167-8140(21)01724-2

6.1 fluence–modulation in x–ray ct

A standard fluence–modulation approach in clinical x–ray CT is the use of bow–tie filters
that follow the profile of an idealized patient and try to achieve constant noise in the image
[151, 152]. This is done by making the summed attenuation of patient and bow–tie filter
constant and thereby making the fluence incident to the patient homogeneous. The bow–tie
filter consequently needs to be changed if a different region of the patient is to be imaged.
Such systems can also under–perform, if the patient is not centered or exceptionally large or
small and the filter does not match the patient profile anymore [160]. They also do not allow
to focus the imaging dose to a non–central ROI.

To overcome these limitations the use of fluence modulation was suggested by Graham,
Siewerdsen, and Jaffray [161], for which several control algorithms [161–170] and corre-
sponding technical instrumentation [171–179] for dynamic modulation of the fluence field
have been proposed in the last decade. For x–ray CT scanners in particular, the techni-
cal implementation of a non–static filter is not trivial. The system of Szczykutowicz and
Mistretta [172] used wedges that were dynamically moved in front of the x–ray source for
fluence modulation. While this worked on a C–arm system with slow rotation speeds, an
implementation in a clinical scanner that rotates several times per second and that only has
limited space to accommodate a system, seems challenging. The system of Stayman et al.
[174] makes use of a more compact design that overlaps two gratings with a different spatial
frequency causing a Moiré pattern. Thereby, only a small movement of one of the gratings
is required for a relatively fast movement of the attenuation profile. Huck, Parodi, and
Stierstorfer [175] used a similar approach where a single grating, similar to an anti–scatter
grid, was centered on the source and small inclinations of the grating allowed a broadening
and shift of the attenuation profile.

https://doi.org/10.1002/mp.13589
https://doi.org/10.1016/S0167-8140(21)01724-2
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6.2 application of fluence–modulation to proton ct

For fluence modulation in x–ray CT the main challenge is the technical implementation
of the modulated fluence delivery. PCT scanners, instead, rely for the fluence delivery on
proton treatment systems that have been exactly designed for the precise and fast modulated
delivery of proton fluence for treatment. A crucial requirement for FMpCT, therefore, is
already solved. Dedes et al. [45] suggested the use of fluence modulation for pCT using
simulations and soon after also demonstrated a first experimental feasibility [46] of the
method. They used a proton fluence field generated by small pencil beams where central
pencil beams had an increased dwell time compared to off–center pencil beams. By this,
imaging dose at the periphery of a homogeneous phantom could be decreased in a central
circular ROI while maintaining image quality therein.

The initial works of Dedes et al. [45, 46] did not use optimization to calculate the intended
fluence field, but used a simple intersection–based approach that prescribed a high fluence to
pencil beams for which the center intersected a central ROI and reduced the fluence for non–
intersecting pencil beams. These fluence levels were arbitrarily chosen and not optimized for
a specific imaging task. Consequently, the fluence inside the ROI was homogeneous, which
would result in non–homogeneous image noise, as discussed in chapter 5. The challenge of
a further development of FMpCT, therefore, lies in the use of a patient– or object–specific
noise model to optimize a modulated fluence field achieving prescribed image noise levels.

6.3 modeling of pencil beams

materials & methods

6.3.1 Analytical model

To realistically model proton pencil beams for fluence modulation, an analytical pencil
beam model was established that matches the pencil beams at the Chicago proton center,
where the experimental data for the rest of this work were acquired. From the experimental
tracking data, so–called counts maps C(u, v,d) were calculated, that contained in each voxel
(u, v,d) the number of protons that intersected the pixel area around (u, v) at the binning
depth d. The counts maps only considered protons that were actually used for image
reconstruction and were, therefore, affected by data filtration and, in the case of phantom
scans, by attenuation. In contrast to that, maps of the actual proton fluence (without
attenuation and data filtration), are referred to as fluence maps F(u, v,d). For the description
of the pencil beam model, and also in the rest of this work, the point u = v = d = 0mm is
located at the isocenter of the scanner.

To separate single pencil beams in the experimental data, the timestamp information of the
proton tracking data was exploited, allowing to calculate a count rate in steps of 0.8ms. In
between two pencil beam spots, the count rate dropped to zero for a few milliseconds. This
short gap in time is used to adjust the scanning magnets of the PBS nozzle so that the next
pencil beam can be delivered at a different position. This allowed to separate single pencil
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beams. From this data, for each pencil beam b, counts maps Cb(u, v,d) were calculated and
fitted by the Gaussian model

G(u, v,d) =
N0

2πσ ′uσ
′
v

· exp
(
−
(u− u ′0(d))

2

2σ ′2u
−

(v− v ′0(d))
2

2σ ′2v

)
, (6.1)

where N0 was the total number of protons per pencil beam, (u ′0(d), v
′
0(d)) was the pencil

beam center at depth d. N0 was expected to be equal for all pencil beams, since the fluence
was not modulated in the experimental scan. The pencil beam center was assumed to diverge
with the binning depths, and thus

u ′0(d) = u0 · (1+ δu · d). (6.2)

v ′0(d) = v0 · (1+ δv · d), (6.3)

where (u0, v0) is the pencil beam center at depth d = 0mm and δu and δv are linear
magnification factors, that captured the divergence of the beam. With this model, the central
pencil beam with u0 = v0 = 0mm would be parallel to the d–axis and would not diverge.
The Gaussian spread in eq. (6.1) was modeled as

σ ′u = σu ·
√
1+ δ2uu

2
0, (6.4)

σ ′v = σv ·
√
1+ δ2vv

2
0, (6.5)

where σ ′u and σ ′v are the beam widths projected to a plane perpendicular to the d–axis, and
σu and σv are the beam widths in beam direction.

For each counts map Cb, the fit with eq. (6.1) resulted in a set of seven open fit coefficients
cfit = (N0,u0, v0,σu,σv, δu, δv), by minimization of the squared deviation as

cfit = arg min
cfit

∑
u,v,d

(Cb(u, v,d) −G(u, v,d))2 . (6.6)

After optimization of parameters for all pencil beams, σu, σv, δu, and δv were averaged
since they were not specific to a single pencil. N0, v0 and u0 instead, were overwritten in a
subsequent usage of the pencil beam as described later. The magnification factors δu and δv
may have also been estimated from the position of the scanning magnets of the PBS nozzle,
but it was chosen to leave them as open fit parameters to avoid that an incorrect assumption
distorts the other fit estimates.

6.3.2 Simulation of pencil beams

Each fluence field employed in this chapter was composed of a regular grid of proton
pencil beams interspaced by ∆PB,u = 12mm in the u–direction and ∆PB,v = 8mm in the
v–direction. To avoid that opposing pencil beams (for which the rotation angle differs by
180◦) were overlapping, the whole pencil beam grid was offset in u by ∆PB,u/4 = 3mm.
With this approach, which is similar to the quarter detector shift used in x–ray CT, the
number of pencil beams could be reduced without loss of modulation flexibility of the
algorithm by increasing the interspace ∆PB,u to a larger value compared to ∆PB,v. In the
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simulation, protons were initially placed at a plane at d0 = −400mm, which was located in
front of the scanner’s front tracker and was in agreement to section 5.3. The emission point
was at

~r0 =

u0 · (1+ δu · d0)v0 · (1+ δv · d0)
d0

+

rurv
0

 , (6.7)

where ru and rv were normally distributed random numbers with a standard deviation of
σu and σv, respectively. Protons within a single pencil beam were assumed to be parallel
along the direction vector

~ρ0 =

u0δuv0δv
1.

 (6.8)

The pencil beam centers (u0, v0) were chosen according to the regular grid described above.
Per pencil beam, N0 = N protons were simulated for unmodulated scans and N0 = mαbN
protons for pencil beams modulated with a modulation factor mαb (the parameters α and b
will be introduced later). The initial energy of protons was set to (200.00± 0.66)MeV , where
the spread was according to the investigation in section 5.3.

6.3.3 Pencil beam optimization

Apart from the simulation of pencil beams, the pencil beam model in eq. (6.1) also served
as basis function for the fluence modulation algorithm. This will be described in detail
in section 6.4, and the usage of the pencil beam model is introduced here to simplify the
notation in the following. For the pencil beam optimization, reference counts for pencil
beam b were calculated as

Fb(u, v,d) = G(u, v,d)
∣∣∣
N0=N,u0=ub,v0=vb

(6.9)

for a pencil beam at (u0, v0) according to the regular grid and a constant number of N
protons for each pencil beam. The basis functions Fb allowed to represent any arbitrary
counts field Cα(u, v,d) at a given rotation angle α by optimizing pencil beam weights wαb
such that Cα is expressed as a linear combination of the Fb. By minimization of the squared
deviation the weights can be found as

wαb(C
α) = arg min

wαb

∫∫
dudv

(
Cα(u, v, 0) −

∑
b

wαbFb(u, v, 0)

)2
, (6.10)

where the integration was performed over u and v and only at d = 0. The optimization
was performed using the method of Nelder and Mead [180]. Please keep in mind that C
are affected by attenuation while F are not. Consequently, the weights wαb are not yet the
modulation factors mαb applied in FMpCT scans, but need to be corrected for the effect of
attenuation, which will be described later in section 6.4.3.
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results

Based on experimental tracking data, the Gaussian spread of the pencil beam model
in eq. (6.1) were determined as σu = (4.04± 0.08)mm and σv = (5.24± 0.09)mm as an
average over all pencil beam fit values. The stated uncertainty is the standard deviation of
all values. The beam spread was considerably larger in the v–direction. The magnification
factors were found as δu = (5.2± 0.6)× 10−4mm−1 and δv = (5.8± 1.4)× 10−4mm−1.
The two magnification values agreed within the uncertainty bounds. They corresponded to
a locations of the scanning magnets at 1/δu = (1.9± 0.2)m and 1/δv = (1.7± 0.4)m from
the isocenter. These parameters were used together with eq. (6.1) in sections 6.4 and 6.5 to
simulate and optimize pencil beam weights.

 A discussion of these results can be found in section 6.6 on page 89.

6.4 an optimization algorithm for variance prescription

An optimal fluence field that best achieves a given image variance target Vtarget(x,y, z)
can be described with help of the pencil beam model from section 6.3 as a set of fluence
modulation factors mαb ∈ [0, 1] for pencil beam b at rotation angle α. In the following, an
optimization algorithm is described, that finds an optimal set of modulation factors mαb for
any given image variance target Vtarget(x,y, z). It thereby needs to overcome the challenge
that fluences and with them the modulation factors are defined in the projection domain

Figure 6.1: The workflow of the FMpCT optimization algorithm consists of three steps: (1) using a
Monte Carlo simulation, a stack of variance projections at unit fluence is simulated, (2)
an iterative approach calculates the target variance projections that yield the target image
variance, and (3) a pencil beam model is fitted to the ratio of the two variance quantities.
³ Reproduced from Dickmann et al. [156] under the CC BY 4.0 license.

https://creativecommons.org/licences/by/4.0
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(denoted by the coordinates (u, v,d) and the rotation angle α) while the variance target is
defined in the image domain (denoted by the coordinates (x,y, z)). A general workflow of
the proposed algorithm is depicted in fig. 6.1 and consists of three steps:

step i Find the variance projections Vαunit(u, v,d) that result from a simulation at unit
fluence with mαb = 1 for all pencil beams.

step ii Find the variance projections Vαtarget(u, v,d) that, when variance reconstruction is
applied to them, result in the image variance target Vtarget(x,y, z).

step iii Using Vαunit(u, v,d) and Vαtarget(u, v,d), calculate the pixel–wise counts target
Cαtarget. Then first optimize pencil beam weights wαb according to eq. (6.10), which are
affected by attenuation, and subsequently calculate pencil beam modulation factors mαb , for
which the effect of attenuation cancels out.

————
All three steps will be explained in detail in the following paragraphs. The proposed

method builds upon ideas developed for x–ray CT by Bartolac et al. [162] and Hsieh and
Pelc [164] and extends these approaches to allow for usage with pCT, by considering the
three–dimensional projections due to distance–driven binning [113] and the pCT noise
model [100, 124] described in chapter 5.

6.4.1 Step I: Variance at unit fluence

To calculate variance projections at unit fluence Vαunit(u, v,d), the Monte Carlo simulation
was employed with the Gaussian pencil beam model and all pencil beam modulation factors
set to mαb = 1, which results in a counts map of Cαunit(u, v,d). This step is specific to a
given phantom and the simulation needs a corresponding phantom model as described in
sections 4.1 and 4.2. Were the method to be applied to patient data, a corresponding digital
model could be created from a prior x–ray CT scan as described in section 4.3. If a prior pCT
scan is available, Vαunit(u, v,d) and Cαunit(u, v,d) can be calculated from the available data
and this step is omissible. Variance values from the simulated data were calculated based
on the list mode WEPL data and according to eq. (3.45). The corresponding unit fluence
image variance Vunit(x,y, z) can be calculated from this data using variance reconstruction
in eq. (3.62).

6.4.2 Step II: Iterative variance forward projection

Calculation of the target variance projections Vαtarget(u, v,d) that yield the desired image
noise target Vtarget(x,y, z) is an inverse problem with a large set of solutions. The problem
is similar to the well–understood forward projection operation, which can calculate a set
of projections that yield a given image. Indeed, a first guess Vα0 (u, v,d) can be obtained
by ray–tracing [181] (calculating line integrals) through Vtarget(x,y, z) along straight lines
of the known cone–beam geometry, which was then followed by a ramp filtration in the
u–direction. The need for the additional ramp filtration can be understood since variance
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Figure 6.2: Workflow of the iterative variance forward projection in the second step of the algorithm.

reconstruction is close to an unfiltered backprojection (see eq. (3.63)), and since ray–tracing
is the inverse operation of filtered backprojection, ray–tracing and ramp filtration can be an
inverse operation of variance reconstruction. An additional median filtration with a kernel
size of 4mm was applied to Vα0 (u, v,d) to reduce noise introduced by the ramp filtration.
Such a projection stack would yield an image variance with only small differences to the
prescription. However, this stack contained negative, and thus unphysical values due to
the ramp filtration and it was subsequently thresholded to positive values, introducing
discrepancies with the prescription.

Starting from Vα0 (u, v,d), an improved estimate for Vαtarget(u, v,d) was found iteratively
as illustrated in fig. 6.2. For this, variance reconstruction was applied to the i–th set of
variance projections Vαi (u, v,d), yielding the i–th variance volume Vi(x,y, z). The difference
to the target, Vtarget(x,y, z) −Vi(x,y, z) was forward–projected using ray–tracing, resulting
in an update projection that was added to Vαi (u, v,d) in the next iteration. Again, at every
iteration, Vαi (u, v,d) was forced to be strictly positive. Repeated application of these forward
projection and reconstruction operations will converge to physical (i. e. positive) variance
projections Vαtarget(u, v,d), that approach the image variance prescription Vtarget(x,y, z) when
variance reconstruction is applied to them.

6.4.3 Step III: Fluence optimization

Variance projection values are, according to the definition in eq. (3.45), inversely propor-
tional to the corresponding number of protons C. With this assumption, a counts target
(Vαunit/V

α
target) ·Cαunit could be calculated to fit pencil beam weights according to eq. (6.10).

However, this linear scaling of variance values with counts only holds true, if a sufficient
number of protons contribute to a pixel. If the mean proton number per pixel decreases,
the variance increases over–proportionally, as shown in fig. 6.3, where the image variance
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Figure 6.3: Over–proportional increase of image variance for very low proton numbers and modeling
using a Poisson assumption. The variance increase factor is defined as the actual
variance divided by the expected variance using the linear approximation. ³ Reproduced
from Dickmann et al. [156] under the CC BY 4.0 license.

for a mean proton number C per pixel is divided by the assumption using eq. (3.45). The
increase for low counts can be modeled by recognizing that the variance in a given pixel is
calculated from C protons on average, but C can vary and is Poisson distributed. This leads
to the correction function

k(C) = C ·
∞∑
n=1

PC(n) ·βn,C = C2 ·
∞∑
n=1

PC(n)

n
, (6.11)

where PC(n) = Cn exp(−C)/n! is the Poisson probability of detecting n protons instead of
the expected C, and βn,C = C/n is the relative variance change when detecting n protons
instead of C. The sum in k(C) converges and was calculated numerically by summing the
first 1000 summands. It is also plotted in fig. 6.3. Moreover, the function was thresholded to
return at least Cmin = 8 protons, which avoided detector elements with missing information.

With this, the target fluence could be calculated as

Cαtarget(u, v,d) = k

[
Vαunit(u, v,d)
Vαtarget(u, v,d)

·Cαunit(u, v,d)

]
, (6.12)

where Vαtarget > V
α
unit was enforced by thresholding, since modulation factors were searched

only in the interval [0, 1], thus only allowing fluence reductions with respect to the unit
fluence scan.

Both Ctarget and Cunit are affected by attenuation, and for both the pencil beam optimization
according to eq. (6.10) would result in reduced pencil beam weights wαb . For this reason,
pencil beam weights were calculated for both counts maps and the final fluence modulation
factors were found as the ratio

mαb =
wαb(C

α
target)

wαb(C
α
unit)

. (6.13)

This normalization effectively canceled out the effect of attenuation and the optimized
modulation factors mαb could be used to simulate FMpCT scans according to section 6.5. If
the factors were outside of the interval [0, 1], they were thresholded accordingly.

https://creativecommons.org/licences/by/4.0
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6.4.4 Reference approach

In addition to the algorithm above, a reference approach was implemented, that was used
in previous works of FMpCT [45, 46]. In this simple approach, pencil beam modulation
factors are assigned depending if their central axis intersected the ROI or not. This leads to
the expression

mαb =

{
1 if intersecting
γ otherwise

, (6.14)

where 0 < γ < 1 is the modulation strength, which in the following was chosen to be equal
to the contrast in Vtarget(x,y, z) of the proposed method.

6.5 evaluation of optimized fmpct scans

materials & methods

To test the performance of the proposed algorithm, the Monte Carlo simulation of the pCT
scanner was used, where pencil beams could be simulated according to section 6.3 with the
optimized modulation factors of section 6.4. For this purpose, modulation plans for three
different variance targets, as shown in fig. 6.4, were calculated and in each prescription, a
ROI region with low variance and, in two cases, a non–ROI region with high variance were
identified. The three prescriptions were

• a constant variance VROI throughout the entire volume,

• FMpCT prescription A with variance VROI in one quadrant of the image and 4 · VROI

outside, and

• FMpCT prescription B with variance VROI in a rectangular central region of the image
and 4 · VROI outside.

The variance contrast of four was chosen in agreement to chapter 5 to be higher than
the expected variations of a uniform fluence scan, but to still be reasonably low to avoid
distortions of the RSP values inside the ROI, which was observed by Dedes et al. [45] for
high binary modulations. The targets were slightly blurred to allow for a smooth transition
between the low– and high–noise regions.

The prescription of constant image variance was motivated by the fact that uniform fluence
pCT scans do not show uniform noise, as investigated in chapter 5 and by Rädler et al. [124].
With a constant noise prescription, imaging dose could be saved at the same peak noise level,
if the entire image is used diagnostically. Instead, prescriptions A and B model assume cases
of treatment planning, where the treatment beams could come from 90 and 180 degrees in A
and from 90 and 270 degrees in B. In the following, the terms constant, A, and B are used to
refer to the three prescriptions.

Simulations were performed for the water phantom, the CTP phantom and the head
phantom. Initially, a unit fluence scan with modulation factors mαb = 1 was generated, that
served as a reference and also to guide the FMpCT optimization. The number of protons per
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C/W = (2/4) VROI

constant variance prescription FMpCT prescription A FMpCT prescription B

Figure 6.4: Image variance prescriptions and indications of the ROI (green) and non–ROI (red)
volume for the three variance targets in this study. For the constant variance prescription,
the whole volume was the ROI. ³ Reproduced from Dickmann et al. [156] under the CC BY 4.0
license.

pencil beam N was chosen to yield an imaging dose of 1.4mGy in the unit fluence scans,
which is a typical value for pCT [82]. From these scans, the value of VROI was determined
for each phantom as the 95–th percentile value of the variance inside the object. This was

• VROI = 4.61× 10−4 for the water phantom (standard deviation 2.1%),

• VROI = 5.89× 10−4 for the CTP phantom (standard deviation 2.4%), and

• VROI = 11.96× 10−4 for the head phantom (standard deviation 3.4%),

which is consistent with chapter 5.
To allow for a fair comparison of image variance and imaging doses, the resulting pCT

and FMpCT scans were normalized based on the 95–th percentile variance value vROI
95

inside the ROI. Subsequently, for every acquisition, the imaging doses were multiplied by
η = vROI

95 /VROI and image variances were multiplied by 1/η. The choice of the 95th–percentile
value was chosen as a compromise between tolerating outliers and the requirement of
achieving the prescription dose VROI (or lower) inside the ROI. For the water phantom and
the CTP phantom only the central slice was evaluated, while for the head phantom the entire
volume was considered for the calculation of vROI

95 and VROI. For each phantom, the hull
was determined by a threshold on RSP of 0.5 which was subsequently eroded by 7mm and
values outside of the hull were disregarded. The erosion was used to avoid that increased
variance values at the edge of the phantom would cause an unreasonably high skin dose in
this region.

results

Figure 6.5 (a) shows the cost functions as a function of the iteration number for the iterative
variance forward projection in step II of the algorithm. It is shown for all three optimization
targets and is valid for all three phantoms, since step II does not depend on the phantom

https://creativecommons.org/licences/by/4.0
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prescription B. ³ Reproduced from Dickmann et al. [156] under the CC BY 4.0 license.
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counts. ³ Reproduced from Dickmann et al. [156] under the CC BY 4.0 license.

geometry. For the constant noise target, the cost function immediately drops to a minimum
close to zero. Instead, for variance prescriptions A and B the optimization takes more
iterations to converge. For both, the mean error reduces much more quickly than the RMS
error. In particular, prescription B required 60 iterations to bring the cost function down.
The RMS error was changed by less than 1% per iteration, when the iterative algorithm was
stopped for all prescriptions. Figure 6.5 (b) – (d) shows the intermediate variance estimate
Vi(x,y, z) for prescription B and at iterations 1, 20 and 60. While remaining errors persist,
the achieved contrast and gradient is satisfactory. There is a considerable improvement in
between the displayed iterations.

In fig. 6.6, fluence and variance sinograms are shown for the fluence optimization for
prescription A and the head phantom. The sinograms display the quantity at the central
slice and binning depth v = d = 0mm and for all rotation angles. Figure 6.6 (a) displays
the variance at unit fluence Vαunit(u, v,d), which is calculated in step I of the algorithm
and is elevated at the edge of the phantom as well as close to internal heterogeneities. A
slight modulation with the interspaced pencil beams is visible as vertical strips of increased
variance throughout the sinogram. In fig. 6.6 (b), the variance target Vαtarget(u, v,d) is shown,
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which is the output of step II of the optimization algorithm. Regions centrally intersecting
with the ROI generally require a low variance and regions not intersecting generally require
a high variance, but there is a smooth transition in between those regions. In fig. 6.6 (c), the
counts target Cαtarget(u, v,d) from eq. (6.12) is displayed, which calculates from (a) and (b).
Some parts of the sinogram are assigned a value of zero in (b) and consequently required
the unit fluence counts in (c). Eventually, fig. 6.6 (d) is the counts target in (c) as fitted by the
Gaussian pencil beam model in step III. The values in (d) can be calculated as∑

b

wαbFb(u, v,d). (6.15)

Slight differences to (c) are observed, apart from subtle features at the edge that could not
be resolved using the pencil beams which are larger than the counts grid pixel size.
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Figure 6.7: Simulation study for the fluence optimization algorithm and for the reference method
with the water phantom. In the first three rows, RSP and variance maps are shown with a
profile through the variance along the red dashed lines. In the last two rows the imaging
dose and counts sinograms are shown. For the counts sinograms the display setting was
C = 120,W = 240. ³ Reproduced from Dickmann et al. [156] under the CC BY 4.0 license.

https://creativecommons.org/licences/by/4.0


86 fluence–modulated proton computed tomography

R
SP

C/W = 1.13/0.20

(a) CTP/unit

va
ria
nc
e

C/W = (1/1) VROI

(50 0 50
0

1

2

va
ria
nc
e 
/ V

RO
I variance

prescripti n

d 
se
 / 
m
G
y

0.2 1.1 2.0

(50 0 50
p siti n / mm

c 
un
ts

C/W = 1.13/0.20

(b) CTP/A

(50 0 50
0

2

4

6

0.2 1.1 2.0

(50 0 50
p siti n / mm

C/W = 0.95/0.60

(c) head/unit

(50 0 50
0

1

2

0.2 1.1 2.0

(100 0 100
p siti n / mm

C/W = 0.95/0.60

(d) head/A

(50 0 50
0

2

4

6

0.2 1.1 2.0

(100 0 100
p siti n / mm

0

100

200

300

r 
t. 
an
gl
e 
/ d
eg
.

Figure 6.8: Simulation study for the fluence optimization algorithm and for the reference method
with the CTP and the head phantom. In the first three rows, RSP and variance maps
are shown with a profile through the variance along the red dashed lines. In the last
two rows the imaging dose and counts sinograms are shown. For the counts sinograms
the display setting was C = 120,W = 240. ³ Reproduced from Dickmann et al. [156] under the
CC BY 4.0 license.

Figures 6.7 and 6.8 show the results of the simulation study for the water phantom (fig. 6.7)
and the CTP and the head phantom (fig. 6.8). They display, row by row, the RSP maps,
image variance maps, profiles through the image variance maps along the red dashed line,
the imaging dose and, in the last row, fluence sinograms. Figure 6.7 (a) shows the water
phantom at the uniform unit fluence. The dose consequently is homogeneous, but variance
is reduced in the center of the phantom, as was observed before. The pencil beams are
visible in the fluence sinogram, but, summed over all projection angles, the fluence was
constant, and so was the imaging dose, since the pencil beam pattern was shifted by a
quarter interspace. Figure 6.7 (b) displays the water phantom optimized for a constant image
noise. While in the RSP map only minor differences can be observed, the variance map
and the corresponding profiles are flat as intended. At the same time, fluence and dose are
reduced in the center.
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The results for the fluence optimization for FMpCT task A are shown in fig. 6.7 (c). Already
the RSP maps features an increased noise level outside of the ROI. This is confirmed in the
variance map and the corresponding profile, which shows that the target variance agreed
well with the prescription inside the ROI, while outside variance fluctuated around the
desired value. In contrast to that, fig. 6.7 (d) shows the results of the reference approach,
which also resulted in a variance increase outside of the ROI, but failed to achieve the
prescription. In particular, noise is not flat inside the ROI and the variance increase is less
steep outside of it. The binary modulation of the reference approach can also be seen in
the counts sinogram. A similar trend can be seen in fig. 6.7 (e) and (f), where the fluence
modulation using the proposed method and the reference approach for FMpCT target B are
shown. For the proposed method, the variance increase is steeper and agreement with the
prescription is better. The imaging dose outside of the ROI is also lower. At the same time,
imaging doses using the proposed method inside the ROI are increased compared to the
unit fluence case and also compared to the reference method. In particular in fig. 6.7 (c) fine
streaks of high variance are seen that enter the otherwise flat noise level inside the ROI.

In fig. 6.8 the corresponding evaluations are shown for the CTP and the head phantom.
The CTP phantom in fig. 6.8 (a) and (b) has a sharp increase of variance also at the air
insert, which was included in the ROI. The variance contrast observed using the proposed
method is less steep as for the water phantom and variance in the ROI is slightly below
the prescription. Nevertheless, imaging dose is decreased considerably outside of the ROI
and slightly increased inside. The same can be observed for the head phantom in fig. 6.8 (c)
and (d), where the variance in the unit fluence scan was even more heterogeneous. Variance
is increased considerably outside of the ROI and the prescription is met inside. Imaging
dose again is decreased outside of the ROI, but increased inside. The fluence sinogram of
the head does not only follow the ROI structure, as for water and CTP phantom, but also
features clearly visible fluence increases that compensate for heterogeneities of the phantom.

For the CTP phantom, the RSP values of the two inserts inside the ROI and the body
were determined in the fluence modulated scan to be 1.776 (−0.8% error) for Teflon, 0.881
(−0.2% error) for PMP, and 1.143 (−0.1% error) for the body made from epoxy. In the unit
fluence scan, this was 1.776 (−0.8% error), 0.879 (−0.4% error), and 1.143 (−0.1% error).
These differences are small compared to the difference of both scans to the ground truth
values from table 3.1, which is reported as the error value in brackets.

Imaging doses for all evaluations are summarized in fig. 6.9. The dashed line indicates the
mean imaging dose over the whole phantom of the unit fluence scan, which was 1.4mGy
for the water phantom and which was slightly reduced in the two other phantoms due
to different material compositions. The unit fluence was equal in all scans. Prescribing a
constant image variance to the water phantom saved 8.9% of the imaging dose at equal
peak noise level. For both FMpCT targets, the mean imaging dose reduced when using the
proposed method. Inside the ROI, the imaging dose increased by between 9.2% and up to
19.2%. At the same time, the dose reduction outside of the ROI was between 35.4% and
up to 40.5% using the proposed method. The reference method did not increase the dose
inside the ROI, but dose reductions on average and in particular outside of the ROI were
less. Outside the ROI, the dose reduction was only between 13.2% and 29.2%.
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Figure 6.9: Imaging doses of the simulation study testing the performance of the optimization
algorithm. The dashed line indicates the unit fluence dose which changed slightly for
the three phantoms even though the corresponding fluence was equal. ³ Reproduced
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Figure 6.10 shows the head phantom in a (a), (c) sagittal and (b), (d) coronal view, where
(a) and (b) are the RSP, image variance and imaging dose for the unit fluence acquisition and
(c) and (d) were optimized for a constant variance target. Again, variances and doses were
normalized to the peak variance. The variance of the head phantom in the unit fluence scan
changes dramatically between the nasal cavity and the back of the head. This is partially
compensated in the fluence modulated scan, which allowed to decrease the imaging dose in
the region were image variance was low in the unit fluence scan. The dose over the whole
phantom changed from 1.37mGy to 1.15mGy, which is a reduction by 16%.

 A discussion of these results can be found in section 6.6 on page 89.
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6.6 discussion

Modeling of pencil beams

Based on experimental tracking data, a Gaussian pencil beam model could be established
that allows to describe realistic pencil beams with arbitrary fluences and at any location
within the scanner’s field of view. This was a prerequisite to allow for an optimization of
pencil beam modulation factors in step III of the proposed method, where the pencil beams
served as basis functions to produce the required fluence. They also allowed to perform
Monte Carlo simulations of scans with arbitrary fluence modulations.

The uncertainty of fits in the u–direction was smaller compared to the uncertainty in
the v–direction, since fit parameters were found as an average over all pencil beams and
the scanner’s aperture is larger in this direction. Interestingly, the beam spread σu was
considerably smaller than σv. Such an anisotropy is not expected for clinical operation of the
treatment system, but could be caused by the fact that energy and momentum slits needed
to be closed beyond what is commissioned for clinical operation in order to keep the fluence
low and viable for the scanner.

Evaluation of optimized FMpCT scans

The iterative variance forward projection in step II of the proposed algorithm was em-
ployed to calculate a stack of variance projections that best reproduce the target image
variance. Depending on the prescription, this required a different amount of iterations
and in particular many, if the initial forward calculation step resulted in negative variance
values, which needed to be corrected in the following iterations. The constant variance
prescription was the easiest case, since it did not require negative variance values (a constant
stack of variance projections would result in a constant image variance). The two FMpCT
prescriptions A and B required 40 and 60 iterations to reach a satisfactory agreement with
the variance target. Remaining discrepancies between the final variance projections stack
and the target in image space may impact the achievable variance contrast. They do not
impact the accuracy of the achieved variance in the ROI, since they could be linearly rescaled
such that VROI was achieved inside the ROI.

The fluence optimization in step III of the algorithm allowed to calculate pencil beam
modulation factors. For this step, only mαb 6 1, and consequently fluences less than or
equal to unit fluence, were allowed to avoid unreasonably high doses to the skin, which
would otherwise result from the elevated noise at the edge of phantoms as expected. An
increased noise at the very edge may be acceptable, since this is a limited area traversed by
a therapeutic proton beam. To avoid missing data, proton fluences were also forced to be
at least Cmin. Both thresholds may impact the achievable variance contrast, but again not
the accuracy of the resulting variances in the ROI due to the rescaling with the correction
factor η.

The proposed optimization algorithm was subsequently used in a simulation study with
three phantoms and and three different image noise targets. The first optimization was to
achieve constant image variance across the phantom. This assumes, that the entire volume is
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required and must be imaged with low image noise. When compared at equal peak noise
level to a uniform fluence scan, where noise is elevated at heterogeneities, this can result
in a dose saving. For the water phantom, this dose saving was estimated to be 8.9%. This
completes the first modulation attempt in fig. 5.7. For the head phantom, which contains
more heterogeneities, the dose saving was increased and estimated to be 16.0% compared
to a uniform fluence scan. This is equivalent to an improvement of the signal–to–noise ratio
by 35% at the same dose.

For the two FMpCT prescriptions, considerable dose savings between 25.7% and 40.5%
could be demonstrated outside of the ROI using three different phantoms. The dose saving
primarily depended on the shape of the variance prescription, with noise target A achieving
better dose savings compared to target B. At the same time, imaging dose was increased
inside the ROI. This could be caused by high variance streaks that entered the ROI and,
through the normalization with η, increased the dose. However, assuming that the ROI
agrees with the treatment beam path, this dose increase in the ROI, may be negligible, since
doses from treatment will be orders of magnitude higher compared to the imaging doses.
The dose saving outside of the ROI is more important, since particle therapy allows for
minimal doses outside of the therapeutic beam.

Using the sensitometric CTP phantom, the RSP accuracy of pCT and FMpCT scans was
shown to be comparable and differences were all below 1%, which is within the magnitude
expected for experimental pCT scans [41].

The performance of the proposed method was compared, in terms of achievable dose
reduction, to a simple intersection–based approach that was used in earlier works [45,
46]. For the reference method, the achieved variance was less conformal to the ROI and
dose savings were considerably lower. The prescription of constant image variance is, by
construction, not possible with this approach.

The proposed algorithm suffered from minor streaks of variance that entered the ROI
as well as a dose increase inside the ROI. This may have impaired an optimal usage of
the imaging fluence and could be related to the fact that the optimization just considered
variance values and only implicitly reduced imaging dose by increasing noise. In addition,
the optimization was projection–based and a violation of the target variance in one projection
could not be compensated by fluence from another projection. In chapter 8, an alternative
FMpCT optimization algorithm is presented, that optimizes pencil beam modulation factors
for both variance and dose objectives and thereby improves results. It also investigates the
dependency of the achievable dose saving on the shape of the ROI and the object by using
patient data and deriving the ROI shape from actual treatment plans.

6.7 conclusions

In this chapter and originally in Dickmann et al. [156], a three–step optimization algorithm
for FMpCT was developed. It makes use of an iterative variance forward projection technique
to transform the variance prescription from image space to projection space, where the
modulation factors are defined. With this, the subsequent optimization of pencil beams was
comparably simple and fast. The dose savings achievable with the proposed method were



fluence–modulated proton computed tomography 91

demonstrated in a simulation study, where the performance was superior to an intersection–
based reference method. In particular, the prescription of constant image variance allowed
to save dose while maintaining the peak variance level in the entire volume. The dose saving
achievable with specific FMpCT imaging tasks depends on the shape of the ROI and the
phantom, but was within 25.7% and 40.5% for two representative ROI shapes.
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7 E X P E R I M E N TA L R E A L I Z AT I O N O F F M P C T

The optimization algorithm presented in the last chapter paved the way towards
an experimental delivery of optimized fluence patterns for an experimental realiza-

tion of FMpCT. The pencil beam model, the realistic scanner simulation, and the use of
digital phantoms with physical counterparts allowed to apply the patterns optimized with
simulations in an acquisition with the prototype pCT scanner.

In this chapter, the beamline of the Chicago proton center was interfaced to deliver arbi-
trary fluence patterns with small, modulated pencil beams. The resulting acquisitions were
then compared to the planned scans in terms of achieved variance levels and RSP accuracy. A
spatial variation of the incident energy within a single pencil beam initially distorted the RSP
accuracy, but could be corrected in post–processing by fitting and subsequently subtracting
the energy dependence. Additionally, a slight misalignment of the fluence patterns, which
were purposefully shifted by a quarter pencil beam, impaired the fluence delivery and could
not be corrected in postprocessing. However, distortions were small compared to the overall
planned modulations. The performance of the optimization algorithm on experimental
scans was tested on three phantoms and by prescribing constant noise as well as a more
complex FMpCT image noise target. Overall, the agreement between the simulated and
the experimentally acquired data was satisfactory both in terms of image variance and RSP
accuracy. While improvements were suggested for future experimental FMpCT scans, the
feasibility of using modulated pencil beams to achieve task–specific image noise distributions
with FMpCT can be confirmed.

The results presented in this chapter were published in Physics in Medicine & Biology [99].
Parts of the results were presented at the joint meeting of AAPM & COMP in Vancou-
ver, Canada [182], at the CT–Meeting in Regensburg, Germany [183], and at the ESTRO
conference in Vienna, Austria [159].
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Annual Meeting of the American Association of Physicists in Medicine and the Canadian
Organization of Medical Physics (AAPM/COMP), Vancouver, Canada (online), proceedings
published in Medical Physics 47(6) (2020), 2580–2674. issn: 24734209. doi: 10.1002/mp.
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9 [183] F J. Dickmann et al.: “Dynamic Fluence Modulation using Proton CT for Low-
dose Imaging in Particle Therapy”. International Conference on Image Formation in X-Ray
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Radiotherapy and Oncology 152(S1) (2020), S941. doi: 10.1016/S0167-8140(21)01724-2

7.1 delivering fluence–modulated scans at the proton
center

materials & methods

The goal of this work was to experimentally employ the fluence patterns that were
optimized in chapter 6 using the prototype pCT scanner described in section 3.2 for the
same phantoms and image noise targets. In the following, these targets will be referred to as
noise plans in analogy to treatment plans that describe the delivery of the therapeutic dose
using a computational model of the patient. To deliver the plans, the control system of the
PBS beamline at the Northwestern Medicine Chicago proton center, where the scanner is
located, was interfaced. For this purpose, the coordinates of the pencil beam grid as well as
their relative weights needed to be transformed to machine instructions. A script, which was
specifically developed for this study, converted pencil beam coordinates to corresponding
currents of the beam deflecting magnets. This required proprietary beam line information
and was done by an employee of Ion Beam Applications SA (IBA, Louvain–la–Neuve, Belgium).
The relative spot intensities were realized by keeping the beam current constant at 1.3nA
and modulating the dwell time of each pencil beam spot. This strategy, which was already
successfully used by Dedes et al. [46], allows for the fastest delivery of the fluence pattern
and corresponds to the way the system is used during treatment.

The maximum dwell time, which corresponds to a relative weight of one, was chosen to
yield approximately four times the number of protons used in the corresponding simulations.
While the correct dwell time could have been fine–tuned on the spot, this conservative
approach of acquiring more data than necessary was chosen due to the limited available
beam time. To select the correct number of protons in postprocessing, the number of hits
in a central region of the front tracker in a scan without phantom was compared between
experiment and simulation and an acceptance ratio raccept was calculated. In subsequent
experimental scans, protons were randomly accepted with a probability equal to raccept to
match statistics between the experiment and the corresponding simulations.

https://doi.org/10.1002/mp.14315
https://doi.org/10.1002/mp.14315
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A direct communication between the PBS delivery system and the scanner was not possible
and yet the fluence patterns needed to be delivered in synchrony with the rotation angle and
acquisition of the pCT scanner. For this reason, the phantom was not rotated continuously,
but at fixed time intervals large enough to allow for a manual initiation of the corresponding
fluence pattern. This increased the acquisition time per tomography to around 90min, which
is considerably longer compared to the 6 to 10min, which are typically needed with this
scanner when the phantom is rotated continuously and the (broad) beam is always on.

A retrospective analysis of the acquired data showed a pattern of regularly spaced rings
in the reconstructed RSP images, which coincided with the spacing of the employed pencil
beam grid. These rings were attributed to a spatially varying energy distribution within a
single pencil beam. The proton energy incident to the object is not measured by the scanner
and assumed to be 200MeV . A spatially varying shift of the mean energy consequently
results in distorted WEPL measurements and can result in rings in the image, if pencil
beams are small and regularly spaced, as in this work.

The energy shift was isolated and subtracted in subsequent acquisitions. For this, data
without any absorber, for which an average WEPL of 0mm is expected, was split into
contributions from single pencil beams at the drop in count rate as described in section 6.3.
For each pencil beam p, the center of mass coordinate (up, vp) was calculated at the
front tracker. Then, for each proton within that pencil beam the coordinates (ũ, ṽ) =

(u− up, v− vp) relative to the pencil beam center were determined. The spatial distribution
of WEPLs of all protons of all pencil beams was fitted in coordinates relative to the respective
pencil beam center using the quadratic correction function

∆WEPL(ũ, ṽ) = a+ buũ+ bvṽ+ cuũ
2 + cvṽ

2, (7.1)

where cfit = (a,bu,bv, cu, cv) were the free fit parameters, which were determined as

cfit = arg min
cfit

N∑
n=1

(∆WEPL(ũn, ṽn) −Wn)
2 , (7.2)

where the sum is over all N protons, (ũn, ṽn) is the coordinate of proton n relative to the
corresponding pencil beam center, and Wn is the WEPL measured for proton n.

To correct subsequent scans, again pencil beams were isolated and center of mass coordi-
nates were calculated for each pencil beam. Subsequently, the WEPL W of a proton with
relative coordinates (ũ, ṽ) was replaced by W ′ =W −∆WEPL(ũ, ṽ).

To investigate the effect of the pencil beam correction, protons of all pencil beams were
binned to their relative coordinates (ũ, ṽ) to calculate a two–dimensional map of the proton
number and the WEPL. From the maps of the proton number, the FWHM was calculated
along both axes and is referred to as FWHMu,exp and FWHMv,exp.

results

Figure 7.1 (a) shows the number of hits at the front tracker in relative coordinates (ũ, ṽ)
summed for all pencil beams in an acquisition without absorber. The expectation value,
which is marked with a red cross is, by construction of the relative coordinates, at the center.
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Figure 7.1: Data used for the pencil beam spot WEPL correction: (a) proton counts in relative
coordinates summed for all pencil beams, (b) the average WEPL in a scan without
phantom, (c) the WEPL correction function, (d) profiles through the average WEPL
and the correction function as well as corresponding counts in arbitrary units, (e) an
uncorrected and (f) a corrected scan of the water phantom. In (a) – (c) the elliptical beam
spot is indicated as its full–width at half maximum in both directions and in (d) with
the counts profile as a projection to the ũ–axis. (b) and (c) share the same colorscale.
³ Reproduced from Dickmann et al. [99] under the CC BY 3.0 license.

The beam spot is not circular, but elliptical with the FWHM as indicated by the red dashed
line. The FWHM along both axes was determined as

FWHMu,exp = 8.6mm (7.3)

FWHMv,exp = 6.9mm (7.4)

and, therefore, is smaller in the ũ–direction compared to the ṽ–direction. Such an anisotropy
was already found in section 6.3. However, in these previous data which were used for
the fluence plan optimization, the FWHM was determined as FWHMu = 9.5mm and
FWHMv = 12.3mm. This is comparable in the ũ–direction, but considerably larger in ṽ.
Please note, that the standard deviations from section 6.3 were converted to FWHM here.

Figure 7.1 (b) and (c) show the WEPL map of the pencil beam spot as well as the
corresponding correction function ∆WEPL. WEPLs were larger for negative values of ũ
and decreased for positive values. The WEPL in the center of the beam spot was slightly
negative. The dependency of the WEPL in the ṽ–direction was weaker. The correction
function describes the spatial distribution of WEPL values well, with a good agreement

https://creativecommons.org/licences/by/3.0
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in particular inside of the beam spot. The fit parameters of the correction functions were
determined as

a = 0.956mm,

bu = 9.630× 10−2,

bv = −0.884× 10−2, (7.5)

cu = −2.080× 10−3mm−1,

cv = −1.520× 10−3mm−1.

In fig. 7.1 (d) profiles through the WEPL map and the WEPL correction function are
shown at the center of the beam spot and along the ũ–axis. Additionally, the corresponding
profile through the number of counts is plotted in arbitrary units. The agreement between
the correction function and the average WEPL was satisfactory and in particular good inside
the FWHM margins, which are indicated as lines with the counts profile. The WEPL in the
center of the beam spot was −1.0mm. The beam spot profile was slightly left–skewed: the
mode of the distribution was at ũ = 1mm while the expectation value was at ũ = 0mm.

Figure 7.1 (e) and (f) display two reconstructions of the water phantom at uniform fluence
before and after application of the beam spot WEPL correction. The rings visible in (e) occur
at a constant spacing, but are completely removed in by the correction in (f). Remaining
artifacts in (f) are known and caused by the calibration [41]. They will be discussed in
chapter 9. The average RSP value in the water region, where a RSP of 1.0 is expected, changed
from 0.990± 0.024 without correction to 0.993± 0.023 with correction. All reconstructions
shown in the subsequent investigations of this chapter used the correction function with the
parameters determined above.

The acceptance probability to match the number of counts in experimental acquisitions
and the corresponding plans using simulations was determined as

raccept = 25.62% (7.6)

by comparing an acquisition without phantom to the corresponding simulation. This value
is reasonable considering that it was planned to acquire about four times the data necessary.
All subsequent evaluations in this chapter only considered a random sample of measured
protons with an acceptance probability raccept.

 A discussion of these results can be found in section 7.6 on page 106.

7.2 experimental realization of fmpct

materials & methods

To demonstrate the feasibility of using FMpCT imaging plans optimized based on sim-
ulations in experimental scans, the fluence patterns in section 6.5 for a constant noise
prescription as well as FMpCT target A were used for scans of the water and the head
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phantom. The image noise target A mimics a potential application of FMpCT to imaging in
particle therapy, where the ROI follows two treatment beams at 90 and 180 degrees. As a
reference, uniform fluence scans were also done for both phantoms. All acquisitions were
done during the same beam time at the Northwestern Medicine Chicago proton center,
except for the unit fluence acquisition of the water phantom, which was performed three
days later (see table 3.2).

For the water phantom and the head phantom, RSP and image noise maps were recon-
structed and compared to the corresponding plans based on simulations as well as to the
prescriptions. All scans used the pencil beam spot WEPL correction described in section 7.1.
A detailed analysis of the RSP accuracy using data acquired with the CTP phantom was also
performed and is presented later in section 7.4.

results

Figure 7.2 displays the experimental fluence–modulated acquisitions for the water phan-
tom in (a) to (c) and the corresponding results from the simulation in (d). The uniform
fluence acquisitions in fig. 7.2 (a) shows an increased image noise close to the phantom’s
edge, as it was observed already in chapters 5 and 6. In fact, the variance profile across the
entire diameter agrees well with the expectation. The counts sinogram in the last row shows
the single pencil beam spots and also agrees with the results observed in section 6.5.

The scan applying a fluence pattern optimized for a constant variance target is shown in
fig. 7.2 (b) and, just as in (a), the RSP map showed no strong artifacts. The image variance
map of the scan, however, showed rings of increasing and decreasing image noise, which
seemed to coincide with the RSP rings seen in fig. 7.1 and which had been corrected. The
variance profile confirmed this fluctuation of the variance map. In a later analysis, these
rings could be linked to the smaller pencil beam size combined with a slight misalignment
of the fluence pattern, which will be discussed in section 7.6. Apart from the minor rings, a
good agreement with the planned image variance and the prescription was observed. The
fluence sinogram showed decreased fluence in the center of the phantom, as intended in the
planning study.

The RSP maps of the FMpCT target, for which experimental and simulated planned scans
are shown in fig. 7.2 (c) and (d), agreed well and a clear increase of image noise could already
be observed in the RSP image. The increased variance outside of the ROI is confirmed in the
image variance maps. Profiles along the image variance show a good agreement between
experiments and planned scans, in particular inside the ROI. Both were slightly below the
prescription, which was intended since the optimizer tried to achieve the prescription or
less inside the ROI. Outside of the ROI, the plan had a noise level above the prescription
while the experimental scan was mostly below the prescription. The fluence sinograms in
the last row reached good agreement between the planning study and what was delivered
experimentally.

Figure 7.3 shows the acquisitions using the head phantom, with the unit fluence acquisition
in (a) and the FMpCT scan together with the simulated planned acquisition in (b) and (c).
The agreement in terms of noise between the expected and the achieved variance was
satisfactory for the unit fluence scan. Again, minor rings can be observed in the variance
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Figure 7.2: Experimental fluence–modulated acquisitions with the water phantom, (a) at unit fluence,
(b) optimized for a constant noise target, (c) for the FMpCT noise target, and (d) the
planned scan for the FMpCT noise target. The rows of each dataset show the RSP map,
the image variance map, profiles through the image variance, the planned variance and
the prescription, and counts sinograms at the central slice and central binning depth.
The ROI of the noise prescription is displayed as a red dashed line in the RSP map. The
profile shown in the third column is taken along the line indicated in the second column.
The display settings for the counts sinogram were C = 140protons,W = 280protons, the
other display settings are given below the plots. ³ Reproduced from Dickmann et al. [99] under
the CC BY 3.0 license.

map of the unit fluence acquisition, but they are small compared to the overall modulations
seen across the phantom. The FMpCT scans also showed a good agreement in terms of
variance between plan and experiment. Noise inside the ROI conformed well and was
slightly below the prescription, as intended. Outside of the ROI, variance was elevated and
agreed between experiment and plan.

 A discussion of these results can be found in section 7.6 on page 108.
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Figure 7.3: Experimental fluence–modulated acquisitions with the head phantom, (a) at unit fluence,
(b) for the FMpCT noise target, and (c) the planned scan for the FMpCT noise target. The
rows of each dataset show the RSP map, the image variance map, profiles through the
image variance, the planned variance and the prescription, and counts sinograms at the
central slice and central binning depth. The ROI of the noise prescription is displayed as
a red dashed line in the RSP map. The profile shown in the third column is taken along
the line indicated in the second column. The display settings for the counts sinogram
were C = 140protons,W = 280protons, the other display settings are given below the
plots. ³ Reproduced from Dickmann et al. [99] under the CC BY 3.0 license.

7.3 precision of the fluence delivery

materials & methods

The fluence delivery using pencil beams with a pattern shifted by a quarter interspace
∆PB,u/4 = 3mm as described in section 6.3.2 relies on a precise delivery of this pattern in
experimental scans. A change in spot size as observed in section 7.1 and even small shifts of

https://creativecommons.org/licences/by/3.0
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the pattern with respect to the rotation axis of the scanner can result in a distorted fluence
delivery which manifests in distorted variance maps. In the worst case, if the pattern were
misaligned by yet another quarter of the pencil beam interspace (and thus in total by half a
pencil beam interspace), opposing beams would overlap (and so would opposing gaps in
between beams), causing severe rings in the variance maps.

To further investigate the origin of the rings in image variance in figs. 7.2 and 7.3 “fluence
sums” were calculated, which quantify the number of protons that contribute to the recon-
struction of each pixel. Such maps can be calculated from the counts maps Cn(u, v,d) for
the n–th projection at rotation angle αn, which were introduced in section 6.3. From this,
the three–dimensional fluence sums F(x,y, z) can be calculated by summing all projection
counts maps after rotating them according to their respective rotation angle as

F(x,y, z) =
N∑
n=1

Cn(x cosαn + y sinαn,−x sinαn + y cosαn, z), (7.7)

where N is the number of projections. To query Cn(u, v,d), a linear interpolation was
performed. Fluence sums were calculated both for experimental and simulated data.

To investigate the impact of the changed spot size, which was reported in eqs. (7.3)
and (7.4) and to test the robustness of the fluence patterns to small shifts, a Monte Carlo
simulation was employed using FWHMu,exp and FWHMv,exp in the beam model instead of
the values determined in section 6.3. From this data, fluence sums were calculated using a
modified version of eq. (7.7) that considers a small shift su of the pattern in the u–direction
and that calculate as

Fsu(x,y, z) =
N∑
n=1

Cn(x cosαn + y sinαn + su,−x sinαn + y cosαn, z), (7.8)

where su was varied in five steps in between su = −1.5mm and su = 1.5mm including
su = 0mm, for which eq. (7.8) becomes equal to eq. (7.7). The calculation of shifted fluence
sums was preferable since it did not require running Monte Carlo simulations for each
setting.

results

In fig. 7.4 (a) and (b) the fluence sums for the experimental acquisitions and the corre-
sponding plans are shown for all acquisitions. On the left of each column one slice of the
fluence sum is shown within the xy–plane. On the right of each column a perpendicular
view is shown along the white dashed line, which shows the z–coordinate along with a
linear combination of x and y, which is denoted as x ′. In general, summed fluences are at
the same level and modulations seen in the plans are reproduced in the experimental scans.
Discrepancies between the experiment and the plan occurred due to a smaller than planned
pencil beam size, in particular in the v–direction, which corresponds to the z–coordinate
here, and due to a shift of the fluence pattern in the u–direction with respect to the rotation
axis of the scanner. The smaller spot size can be best observed in the perpendicular view,
where there is a modulation in the z–direction for all experimental acquisitions where the
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Figure 7.4: Three–dimensional fluence sums shown for one slice and as a perpendicular view along
the indicated dashed line for (a) all experimental scans of the water and the head phantom
and (b) for the corresponding planned scans using the simulation. Fluence sums from a
Monte Carlo simulation replicating the smaller spot size and a variable shift of the fluence
pattern are shown in (c). � An interactive version of this figure is available on the journal’s website
at https://stacks.iop.org/PMB/65/195001/mmedia. ³ Reproduced from Dickmann et al. [99] under the
CC BY 3.0 license.

simulated plans show smooth fluence sums. A shift of the fluence pattern with respect to
its intended location would cause a modulation in the x ′ direction and a modulation of the
fluence sum in the xy–plane. The experimental unit fluence acquisition showed a smooth
fluence sum in the x ′–direction, which suggests that for this acquisitions the pattern was
well aligned. All other scans, however, show modulations in the x ′–direction as well as
fluence rings within a slice of the fluence sum. The constant scans of the water and head
phantom as well as the FMpCT scan of the water phantom exhibited a clear reduction of
the fluence at the center close to the rotation axis, while the FMpCT acquisition of the head
phantom showed an increase of the fluence, which suggests that the shift of the fluence
pattern was in the opposite direction.

These observations were confirmed by the simulated fluence sums in fig. 7.4 (c), where
the Monte Carlo simulation used the same spot size as in the experiment and an artificial
shift su was added to the fluence sums. Indeed, the smaller spot size results in a modulation
in the z–direction, which can be appreciated best for su = 0mm. A negative shift causes a
modulation in the x ′–direction, rings in the xy–plane, as well as a drop of fluence in close to
the rotation axis. A positive shift, however, causes similar modulations, but an increase of
the summed fluence close to the rotation axis. The extent of the modulations due to the shift
seen in the experimental scan is comparable to the shifts of su = ±0.5mm.

 A discussion of these results can be found in section 7.6 on page 107.

https://stacks.iop.org/PMB/65/195001/mmedia
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7.4 rsp accuracy of experimental fmpct scans

materials & methods

The RSP accuracy of a fluence–modulated scan compared to the corresponding unit
fluence scan was evaluated using data acquired for the CTP phantom. Both datasets were
reconstructed and the distribution of RSP values as well as the mean value was calculated
for all inserts and the body. In the fluence–modulated acquisition a part of the body and
the PMP and the Teflon insert were inside the ROI. The LDPE, polystyrene, acrylic and
Delrin inserts were outside of the ROI and were imaged with an increased noise level. The
diameter of the evaluation mask that was used to calculated distributions and mean values
was chosen in agreement to the work of Dedes et al. [41] as a cylinder with a radius of 5mm.
The inserts inside the ROI had the lowest and highest RSP values and with that the largest
expected RSP error. They were chosen such that this evaluation would serve as an upper
limit estimate for the expected magnitude of RSP errors in FMpCT scans. The RSP error was
quantified by the mean absolute percentage error (MAPE), which is defined as

MAPE =
100%
M

·
M∑
m=1

|RSPmean,m − RSPref.,m|

RSPref.,m
, (7.9)

and which averages the absolute error of all M inserts comparing their measured mean
value RSPmean,m to their ground truth value RSPref.,m as listed in table 3.1.

results

The RSP maps of the CTP phantom acquisition with unit fluence and the fluence modula-
tion are shown in fig. 7.5 (a) and (b). As indicated by the sketch in fig. 7.5 (c) only the PMP
and the Teflon insert were inside the ROI and were imaged with a low image variance. The
noise level outside the ROI is visibly elevated in the FMpCT scan.

Figure 7.5 (d) shows histograms of RSP values in the inserts and the body of the CTP
phantom both for the unit fluence and the FMpCT scan. The histograms for inserts outside
of the ROI are shown on the left and inserts inside the ROI are on the right. The body was
partially in and outside of the ROI. Inserts outside of the ROI experience a clear broadening
of the RSP distribution in the FMpCT compared to the unit fluence scan. For the inserts
in the ROI the width of the distribution stayed equal. The body only experienced a small
broadening of the distribution. A clear change of the mean value could not be observed for
any insert or the body.

The RSP accuracy is analyzed in detail in table 7.1 where the relative RSP error of all
inserts and the body of the CTP phantom is reported for the unit fluence scan and for the
fluence modulation. Results for both scans are reported both without and with the pencil
beam WEPL correction resulting in four values per insert. In addition, these results are
compared to the corresponding errors reported by Dedes et al. [41] in the last column of the
table. Uncertainties are given as the standard error of the mean of all RSP values. In the last
rows of table 7.1 the MAPE is calculated as the mean of all absolute relative values reported
in the table (MAPE–ALL) as well as only for the two inserts in the ROI (MAPE–ROI).
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Figure 7.5: Evaluation of the accuracy of experimental FMpCT scans using the CTP phantom with
(a) a unit fluence and a (b) FMpCT scan. The phantom’s inserts are sketched in (c) and
distributions of RSP values in the inserts and the body of the phantom are shown in (d)
for both the unit fluence and the FMpCT scan. ³ Reproduced from Dickmann et al. [99] under
the CC BY 3.0 license.

For the data acquired at unit fluence, all RSP errors improved when applying the pencil
beam WEPL correction, except for the PMP insert. With that, also the MAPE–ALL improved,
but the change was smaller than the associated uncertainty interval. For the FMpCT scan,
the WEPL correction improved the MAPE–ALL and deteriorated the MAPE–ROI, but both
changes were only a small fraction of the corresponding standard error. In particular, the
PMP insert in the ROI and the LDPE insert outside of the ROI increased their relative error
while all other inserts improved. For all inserts and both datasets, the RSP change caused by
the correction was less than the associated standard error of the mean, which can also be
seen in fig. 7.5 (d).

The fluence–modulated scan had a slightly increased MAPE–ROI compared to the cor-
responding value of the unit fluence scan. However, this change was again covered by the
uncertainty interval. Values for the corrected FMpCT scan inside the ROI agreed well with
the values reported by Dedes et al. [41]:

• for the PMP insert the relative error was 1.08% and for the corrected FMpCT 1.06%,

• for the Teflon insert the relative error was −1.31% and for the corrected FMpCT −1.32%.

https://creativecommons.org/licences/by/3.0
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Table 7.1: Evaluation of the RSP accuracy of unit fluence and fluence–modulated scans in experiments
with the CTP phantom: relative RSP errors are reported for all inserts and the body for
both scans and both with and without the pencil beam WEPL correction. In the last
column corresponding results from Dedes et al. [41] are presented. The mean absolute
percentage error is calculated for the two inserts inside the ROI (MAPE–ROI) and for
all inserts (MAPE–ALL). Uncertainties are given as the standard error of the mean in
each insert. Abbreviations: PMMA – polymethylmethacrylate/acrylic, LDPE – low–density
polyethylene, PMP – polymethylpentene.

uncorrected error in % corrected error in % error in %
insert RSP unit FMpCT unit FMpCT Dedes [41]

inside ROI

PMP 0.883 0.18± 0.31 0.79± 0.36 0.51± 0.31 1.06± 0.35 1.08± 0.11
Teflon 1.790 −1.31± 0.18 −1.49± 0.21 −1.16± 0.17 −1.32± 0.21 −1.31± 0.05
outside ROI

LDPE 0.979 −0.33± 0.32 0.24± 0.64 −0.12± 0.31 0.52± 0.65 −0.49± 0.11
polyst. 1.024 −0.12± 0.30 −0.25± 0.66 0.06± 0.29 −0.11± 0.67 −0.04± 0.10
body 1.144 −1.39± 0.02 −1.66± 0.03 −1.20± 0.02 −1.54± 0.03 —
PMMA 1.160 −0.80± 0.27 −0.80± 0.57 −0.54± 0.27 −0.63± 0.57 −0.30± 0.07
Delrin 1.359 −0.93± 0.21 −1.02± 0.45 −0.78± 0.21 −0.83± 0.45 −1.32± 0.21

MAPE–ALL 0.72± 0.09 0.89± 0.18 0.63± 0.09 0.86± 0.18 0.76± 0.05
MAPE–ROI 0.74± 0.18 1.14± 0.21 0.84± 0.18 1.19± 0.21 1.20± 0.06

Moreover, the MAPE–ROI agreed well between the corrected FMpCT scan and the previous
study.

 A discussion of these results can be found in section 7.6 on page 108.

7.5 acquisition time of fmpct scans

Data in this chapter were acquired in step–and–shoot mode which allowed enough time
in between the acquisition of two projections for a manual initiation of the next modulated
fluence pattern. An automated acquisition was not possible since there was no link between
the scanner and the beam control system. For this reason, the acquisition of a full tomography
took about 90min, which would not be feasible for the acquisition of patient data. However,
most of this time, the beam was off and the beam–on time was only 35.8min for unit fluence
tomographies and 20.3min for the fluence–modulated acquisition of the water phantom.
Considering that this study acquired four times the necessary data, the beam–on time
required to produce one of the acquisitions shown in figs. 7.2 and 7.3 was just 9.2min for
the unit fluence scan and 5.2min for the FMpCT scan. This is comparable to the typical
scan time of pCT using this scanner [82]. If a synchronization were established between the
scanner and the beam delivery system, the phantom could be rotated near–continuously
allowing to reduce the acquisition time considerably. Moreover, the acquisition rate was
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purposefully kept low in this study to avoid local pile–up at the tracker due the usage of
pencil beams. Dedes et al. [45] suggested, that it may be possible to further increase the
data acquisition rate by increasing the beam current without a loss of RSP accuracy, which
in turn would also reduce the acquisition time to a few minutes. Eventually, acquisition
rates in general need to be reduced for pCT scanners should the technology be used with
patients. This problem is currently addressed by the development of new prototype scanners
as discussed in section 3.2.4.

7.6 discussion

Delivering fluence–modulated scans at the proton center

In this chapter, fluence–modulated pCT data was acquired by using a grid of small
proton pencil beams and modulating the fluence of each beam. Due to the extreme settings
of divergence and momentum slits, which are required to keep the data acquisition rate
viable for the scanner, these pencil beams are not circular as in clinical routine, but have an
elliptical profile. This elliptical profile was modeled carefully in chapter 6 from previous
experimental data acquired in the scope of this thesis. However, in the acquisition for this
chapter, the pencil beam size was considerably smaller, in particular in the ṽ–direction,
where it was almost halved. The change in the spot size is likely to have occurred due to
maintenance work and an upgrade, which was performed on the beam line in between the
two acquisitions. In general, a smaller pencil beam spot size is favorable for FMpCT, since it
would allow for a finer modulation of the fluence. However, since the smaller pencil beam
size was not taken into account for the planning of the fluence patterns, this resulted in an
unintended modulation of the fluence across slices. A detailed analysis of this modulation
showed, that the modulation was small compared to the overall fluence modulation and a
repetition of the experiments did not seem justified given the overall satisfactory results.

In addition to the smaller spot size, a spatial dependency of the mean energy within a sin-
gle pencil beam was identified, which caused ring artifacts in the RSP maps of reconstructed
images. While this is not expected to have a relevant impact on the corresponding image
variance, it distorted RSP maps. A spatial dependency of the pencil beam is not expected for
clinical operation and is likely to occur due to the closing of the momentum slits beyond
settings commissioned for clinical use, which also degraded the beam profile. Based on data
without a phantom, single pencil beams were isolated and the spatial energy dependency
was fitted with an analytical function. This correction function could then be used in subse-
quent acquisitions to restore the expected quality of RSP maps. Previous studies using a
static fluence modulation with pencil beams [46] also experienced a spatial dependency of
the incident energy in a pencil beam, but noise masked this effect, as could be shown in a
retrospective analysis of the data using de–noising shown in fig. 7.6, where a reconstruction
of the water phantom from that dataset is shown together with line profiles and where the
ring–shaped pencil beam artifacts can be seen. The application of the correction may have a
minor impact on image variance due to a compression of the WEPL distribution in a pencil
beam. However, it is important to note that the correction brings back the noise level to what
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Figure 7.6: Evaluation of pencil beam artifacts present in the first experimental FMpCT study with a
static fluence field: (a) the reconstruction of the water phantom with a Gaussian blur with
σ = 0.6mm and (b) horizontal line profiles through the center of the phantom showing
ring–shaped pencil beam artifacts.

was initially assumed during planning and is therefore mandatory for a better agreement
with the simulation, where no energy shift was assumed.

Precision of the fluence delivery

Calculation of the number of protons intersecting a given voxel summed over all rotation
angles, which was referred to as fluence sum, allowed to investigate the effect of the smaller
pencil beam spot size as well as a misalignment of the fluence pattern with respect to the
rotation axis. The pencil beams were mostly smaller in the ṽ–direction, which caused a
modulation of the fluence sums in the corresponding z direction (across the slices). This
modulation is expected to be present also in the resulting variance maps.

In addition, misalignment of the fluence pattern with respect to the rotation axis, together
with the quarter–shifted design of the grid with a larger interspace in the u–direction, caused
rings of the fluence sums in the xy–plane (within one slice) for most of the scans. Only the
water phantom at unit fluence did not suffer from this and probably had a better alignment
of the pattern. This is plausible since the unit fluence data were acquired on a subsequent
day (see table 3.2), for which the scanner was re–mounted and the alignment process needed
to be repeated. By comparison of simulated data with an artificial shift, the shift present in
the other phantoms was estimated to be in the order of ±0.5mm. The rings in the fluence
sums were also visible in the variance maps, in particular for the water phantom optimized
for constant noise, but were much smaller than the modulations of variance achieved by
FMpCT.

Given that fluence sums agreed well with the simulated counterparts, apart from the
differences discussed above, the dose saving achieved in the experimental scans acquired for
this study, is expected to be comparable to the values reported in chapter 6, which were up
to 40.5% outside of the ROI.
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Experimental realization of FMpCT

Experimental unit fluence and FMpCT scans were reconstructed after correcting for
an incident energy dependence of the pencil beams. Modulated scans were performed
for three phantoms and for a constant noise target as well as an inhomogeneous image
noise distribution with an imaging ROI. All scans showed a satisfactory agreement to the
corresponding planning study. Distortions occurred only outside of the ROI, where noise
is elevated and both the plan and the experiment did not yield the prescription. This was
because the plan tried to achieve the variance target or less inside of the ROI at the cost of
a potentially decreased noise level (and decreased dose saving) outside of the ROI. These
effects were already discussed in section 6.6 and were found to be acceptable for FMpCT
scans.

Due to the smaller pencil beam shape and a slight misalignment, rings were visible in
the image noise maps, which were of a lesser extent compared to the overall modulation of
image variance, but in particular distorted the constant noise target, for which no modulation
of the image variance was intended. While this should be avoided in the future, it did
not impair the good agreement between achieved and planned image noise distributions
and the experimental realization of FMpCT scans was successful. In particular the use of a
quarter–shifted pattern with a larger interspace in the u–direction should not be followed
further, since it makes the correct fluence delivery more susceptible to even small movements.
Instead, each projection should have pencil beams close enough to uniformly cover the field
of view of the scanner. Small misalignments would then only shift the high and low noise
regions and not distort the variance maps with rings.

RSP accuracy of experimental FMpCT scans

The RSP accuracy of PBS pCT scans in general and FMpCT scans in particular was
investigated using the sensitometric CTP phantom. All relative RSP errors, with and without
the pencil beam correction, were within the order of magnitude expected for pCT scans with
broad beams, which is around 1% [41]. With the pencil beam correction, a slight degradation
compared to the unit fluence scan was observed for the two inserts that were within the ROI
of the FMpCT scan. However, the deterioration was small and covered by the uncertainty
intervals. Errors in the FMpCT scan also agreed well to a previous study using a broad
uniform beam [41]. The two inserts inside the FMpCT ROI were also the inserts with the
most extreme RSP values for which the largest errors were expected. The error estimates
found in table 7.1, therefore, serve as an upper limit. In general, previous studies [41, 45]
using idealized simulations and experiments showed that there is no degradation of the
RSP accuracy using FMpCT, even when much stronger modulation factors were applied
compared to this work. Since the errors found in this study were overall comparable to
previous experimental acquisitions using the same scanner, no general deterioration of the
RSP accuracy using FMpCT can be observed.
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7.7 conclusions

In this chapter, and originally in Dickmann et al. [99], fluence–modulated pCT scans
were employed experimentally. The dynamic fluence patterns were optimized based on
simulations with a detailed model of the phantoms and the pCT scanner. The fluence was
modulated by employing a grid of small pencil beams and modulating the relative weight
of each beam according to a previous optimization. The acquisition with pencil beams
was impaired by a spatial dependency of the mean energy within each pencil beam. This
distortion could be corrected by fitting the dependency and subtracting it in subsequent
scans. In addition, the pencil beam shape was smaller compared to the values assumed in
the plans and the pencil beam grid was slightly shifted. Both resulted in minor distortions of
the fluence delivery and showed up as modulations and rings in the achieved variance maps.
However, distortions were minor compared to the overall modulation of image variance and
can be avoided in the future by not employing a quarter–shifted pencil beam pattern. The
agreement between planned and experimentally achieved image variance was satisfactory
and no relevant distortion of the RSP accuracy was found to be caused by using FMpCT.
Hence, this is the first successful experimental implementation of FMpCT using optimized
object– and task–specific fluence patterns.
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8 F L U E N C E M O D U L AT I O N W I T H D O S E A N D
VA R I A N C E O B J E C T I V E S

Fluence–modulated proton CT tries to achieve an optimal trade–off between having
sufficient image quality for treatment planning inside the ROI and reducing imaging

dose elsewhere. In chapters 6 and 7, this trade–off was found via the image variance by
prescribing low and high image variance levels inside and outside of the ROI. Imaging dose
was treated only implicitly since an increased variance will also come with a reduced dose.
In addition, this approach was projection–based and violations of the target in one projection
could not be compensated by another projection.

In this chapter, a new optimization algorithm is described, that considers both dose and
variance objectives in a joint cost function. With this, an image variance target can be
achieved in the ROI while directly minimizing imaging dose outside. Stronger minimization
penalties can be enforced in OARs, which allows to further spare critical structures. To test
the performance of the new algorithm, FMpCT scans were optimized and simulated for
three pediatric cases with tumors in the head region, for which the clinical delineations
of OARs and the PTV were available. The ROI was set as the 10% iso–dose volume of a
proton treatment plan, which was optimized based on a ground truth RSP map using a
research version of a commercial TPS. Compared to uniform fluence pCT scans, which were
matched in terms of peak variance inside the ROI, the FMpCT scans allowed to reduce the
imaging dose outside of the ROI by on average 74% (from 1.2mGy to 0.3mGy). Doses to
OARs were reduced compared to their local vicinity. The optimized proton plans were then
re–calculated based on the pCT and FMpCT scans to evaluate their dosimetric accuracy. In a
direct comparison, the passing rate of FMpCT scans for a 1% criterion on the therapeutic
dose difference was above 98.3% (FMpCT/pCT) or above 88.5% (FMpCT/ground truth)
for all patients. For the corresponding proton ranges, the passing rate for a 1mm criterion
was better than 97.5% (FMpCT/pCT) and better than 95.3% (FMpCT/ground truth). This
suggests that the FMpCT scans optimized using the proposed algorithm maintain the
accuracy for proton dose calculation with only minor differences to uniform fluence pCT
scans, but with a considerably reduced imaging dose in healthy tissue.

The results presented in this chapter were published in Physics in Medicine & Biology [138].
An early version of the algorithm was presented at the IEEE Medical Imaging Conference in
Boston, USA [184].
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8.1 simulation and image reconstruction

In chapters 6 and 7, a grid of regularly spaced pencil beams was used to modulate the
imaging fluence. The interspace of the grid was increased in the u–direction with the whole
pattern shifted by a quarter interspace, allowing to reduce the number of pencil beams in
the optimization. Two problems with this approach were identified in section 7.1: a change
in the pencil beam spot size as well as even small shifts of the pattern with respect to the
scanner can deteriorate the fluence delivery. In this chapter, the spot size was adapted to the
values determined in chapter 7 and eqs. (7.3) and (7.4). A quarter–shifting of the pattern was
avoided, which required to reduce the interspace in the u–direction. To simulate FMpCT
scans, the pencil beam model in eq. (6.1) employed the standard deviations

σu = 3.7mm, (8.1)

σv = 2.9mm, (8.2)

and the grid consequently consisted of NPB,u = 51 columns interspaced by 5.6mm and
NPB,v = 21 rows interspaced by 4.5mm, which covered an area of 285.6mm× 94.5mm
with in total 1071 pencil beams per projection. The interspace between pencil beams was
chosen as 1.5 · σ to ensure that the summed fluence for equal pencil beam weights was
homogeneous. The divergence parameters δu and δv were equal to the values reported in
section 6.3.

Using this pencil beam grid, unit fluence pCT scans were simulated with N0 = 933

protons per pencil beam, which resulted in 360 million primary protons per tomography
with NP = 360 projections, distributed uniformly across the scanner’s aperture. This is an
incident fluence of 37mm−2 (26mm−2 after data cuts), which corresponds to an imaging
dose of 1.2mGy, which is comparable to the previous investigations and a standard pCT
scan [82]. Unit fluence scans will be referred to as pCT and modulated scans as FMpCT.

In contrast to section 3.5.5, the slice thickness was increased in this study to 3mm to
match the clinical x–ray CT scans that served as a patient model in the simulation study.
This applied both to the z–direction of the reconstruction grid as well as to the v–direction
of the distance–driven binned projections.

To facilitate the comparison of the algorithm proposed in this study and algorithms for
treatment plan optimization, the notation changed slightly in this chapter. Variance projec-
tions at rotation angle α are labeled vα(u, v,d) instead of Vα(u, v,d). Counts projections

https://doi.org/10.1088/1361-6560/abe3d2
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are labeled as fα(u, v,d) instead of Cα(u, v,d). In addition to those two quantities, the
imaging dose to a given voxel (x,y, z) for a single projection with rotation angle α is labeled
dα(x,y, z).

8.2 patient data & treatment planning

For this work, pCT and FMpCT scans were simulated based on the geometry of three
pediatric patients that underwent (photon) radiotherapy of the head. For each patient,
proton therapy plans were optimized based on the prescriptions and delineations of the
corresponding photon plans. Pediatric tumors of the head were chosen due to the limited
field–of–view and WEPL range of the prototype pCT scanner. Patients were also selected
such that the full PTV could be covered with a single pCT scan. Pediatric cases in particular
are most likely to benefit from a reduction of the imaging dose since they are more susceptible
to radiation induced damage due to their age. Table 8.1 lists clinical parameters, tumor sites
and dose prescriptions for the three patients used in this retrospective study. The tumor
sites cover typical cases and different tumor locations within the head were considered. All
plans employed 6MV photon beams. For patient 1 the prescription included a boost to
the primary tumor, which is why two dose levels are reported. This was realized as an
integrated boost for the proton plan.

To generate ground truth RSP maps for each patient, the x–ray CT scans used for radio-
therapy treatment planning were imported to the GEANT4 code as described in section 4.3
and exported as a voxelized map of RSP values for a reference proton energy of 150MeV .
These maps served as a ground truth to compare pCT and FMpCT scans to. The ground

Table 8.1: Clinical parameters of the photon radiotherapy for the three patients in the simulation
study. For patient 1, a sequential boost to the primary tumor was prescribed, which is
why two dose levels are reported. The last two rows list gantry angles used for the proton
therapy plans and the angle used for the range evaluation.

patient 1 patient 2 patient 3

photon plans

age at first radiotherapy 4.0 years 5.8 years 4.4 years
tumor site left orbit pons parotid gland

tumor type
embryonal
rhabdomyosarcoma

glioma
acute lymphatic
leukemia

prescription/Gy 50.4* / 36.0 54.0 20.0
fractions 28 30 8

fraction dose/Gy 1.8 1.8 2.5
radiotherapy intent curative curative palliative
proton plans

gantry angles/deg 30, 90 90, 180, 270 270, 315

gantry angle (range)/deg 90 180 270

* boost to primary tumor
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truth RSP map was then converted back to CT values using the piece–wise linear function
of section 4.3 to be able to import them to the TPS RayStation (RaySearch Laboratories AB,
Stockholm, Sweden). The conversion from CT values to material compositions and RSP and
back to CT values resulted in small differences between the original treatment planning
CT and the imported ground truth CT. However, this allowed to subsequently import pCT
and FMpCT scans to the TPS (using the same piece–wise linear function) and probe their
accuracy for proton dose calculations.

Figure 8.1: Dose–volume histograms for the photon and proton treatment plans for the three patients
used in this study. The prescription dose is indicated by a small triangle. Patient 1 had
a boost to the primary tumor and thus two prescriptions for the clinical target volume
(CTV). ³ Reproduced from the supplementary material of Dickmann et al. [138] under the CC BY 4.0
license.

https://creativecommons.org/licences/by/4.0


fluence modulation with dose and variance objectives 115

Based on the ground truth RSP maps, that were imported as CT values to the TPS, proton
treatment plans were optimized, following the delineations and dose prescriptions of the
original photon plans. For the proton plans, the CTV was used as the prescription volume
and two or three gantry angles as listed in table 8.1 were employed. In the TPS, a generic
treatment machine (RSL_IBA_DED) was used with an air gap of 100mm and a PMMA range
shifter with a water–equivalent thickness of 40mm. The grid size for dose calculations was
uniformly 3mm. Beam spots were interspaced laterally by 3mm and the adaptive energy
spacing of the TPS was used. For proton therapy, typically the CTV instead of the PTV
is used as the prescription volume for treatment planning and uncertainties of the proton
delivery are considered using a robust optimization. For this, a positional uncertainty of
3mm and a range uncertainty of 3% was used. Figure 8.1 shows dose–volume histograms
for all three patients and for both the delivered photon plans as well as the proton plans
generated for this study. For all OARs as well as the CTV a similar or better distribution
was achieved using protons with respect to the photon plans.

8.3 an algorithm for joint dose minimization and variance
optimization

materials & methods

In this chapter, a novel optimization algorithm for FMpCT is proposed, that takes into
account both imaging dose and image variance objectives. It calculates pencil beam weights
that achieve a given variance target in the ROI while minimizing imaging dose outside.
Non–zero imaging doses can be penalized with a spatially varying strength, allowing to
further reduce imaging dose in so–called imaging OARs. A workflow of the algorithm
summarizing all relevant quantities is shown in fig. 8.2. Details of the optimization will be
given in the following sections.

A first part of the optimization, depicted in fig. 8.2 (a) is based on an initial Monte Carlo
simulation at unit fluence. It assumes that the imaging fluence can be modulated within
small bixels. A bixel is a virtual detector element, which corresponds to a ray from the
detector and through the image volume. A modulation of the fluence within that bixel
would then only affect image voxels crossed by that ray. The parallel bixel rays are smaller
than pencil beams and do not overlap.

Using the concept of bixels, a forward model is created, that predicts image variance
and imaging dose distribution for a given set of bixel weights. With this, a bixel–wise
fluence optimization is possible, which uses concepts from early intensity–modulated
radiotherapy [185–187]. In a second step, the bixel–wise fluence modulation is translated
to pencil beam weights using the Gaussian pencil beam model of section 6.3 and a second
optimization depicted in fig. 8.2 (b). All equations in this section are formulated in parallel–
beam geometry and are used as such without generalization to a cone–beam geometry. This
makes the computation faster and is a fair assumption, given that pencil beams originate
from a virtual source (the position of the scanning magnets), which is approximately 1.8m
from the isocenter [156].
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Figure 8.2: Optimization workflow for the proposed method with an overview of all required
quantities: (a) the bixel–wise optimization, (b) the pencil beam optimization, and (c) the
relationship between bixels and voxels. The color coding of all quantities is given in the
legend. ³ Reproduced from Dickmann et al. [138] under the CC BY 4.0 license.

The dose and variance forward models employ a bixel grid as illustrated in fig. 8.2 (c)
with each bixel corresponding to a virtual detector element of the size 4mm× 4mm. All
bixels of all projections are numbered consecutively with the bixel index j ∈ {1, . . . ,M}.
This amounts to M = NP ·Nb,u ·Nb,v = 518 400 bixels, where NP = 360 is the number of
projections and Nb,u = 60 and Nb,v = 24 are the number of bixels in u– and v–direction
respectively. Each bixel is associated to a rotation angle αj, where Nb,u ·Nb,v = 1440 pencil
beams belong to one projection and share the same projection angle. The voxels of the image
reconstruction volume are also numbered consecutively with the voxel index i ∈ {1, . . . ,N}

with N = Nx ·Ny ·Nz = 86 400. Each bixel’s center is denoted as (uj, vj) and each voxel’s
center is denoted as (xi,yi, zi).

8.3.1 Forward models for dose & variance

imaging dose The first forward model used in the optimization calculates the imaging
dose Di to voxel i. It can be formulated as a matrix multiplication of the dose matrix Dij
with a bixel weight vector wj as

Di =

M∑
j=1

Dij ·wj, (8.3)

where the weight vector wj describes the relative fluence modulation of bixel j compared
to a reference fluence. A similar approach has been proposed by Scholz, Nill, and Oelfke
[8] for treatment planning. Equation (8.3) could have been written as D = D ·w, but the
explicit notation of the sum is chosen in the following for clarity. The dose matrix Dij can
be calculated from the dose dαji scored in a unit fluence Monte Carlo simulation for rotation

https://creativecommons.org/licences/by/4.0
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angle αj and voxel i. To achieve this, the dose of the full projection is sliced into contribution
of individual bixels and the dose matrix becomes

Dij = d
αj
i · δij, (8.4)

where δij defines the relationship between bixels of the fluence modulation and voxels in
the volume. In the simplest case, δij could be one if bixel j has an intersection with voxel
i and zero otherwise. For this, the non–zero elements of Dij for a given voxel i would be
the unit fluence doses (in Gray) of all bixels j intersecting the voxel. For a more accurate
forward calculation, an interpolation between the bixel and voxel grids is taken into account,
and thus

δij =


ηij if

⌊
(xi cosαj − yi sinαj − uj)/uj

⌋
= 0 and zi = vj

1− ηij if
⌈
(xi cosαj − yi sinαj − uj)/uj

⌉
= 0 and zi = vj

0 else
, (8.5)

where b·c is the floor operator, d·e is the ceil operator. The interpolation fraction ηij calculates
as

ηij = (xi cosαj − yi sinαj − uj)/uj −
⌊
(xi cosαj − yi sinαj − uj)/uj

⌋
. (8.6)

This interpolation is is illustrated in fig. 8.2 (c) with two bixels corresponding to one voxel.
The matrix Dij is sparse and has only two non–zero elements for every row or column.

image variance Similarly a forward model for image variance can be established that
calculates the image variance Vi in voxel i for a given bixel–wise fluence modulation wj as

Vi = c ·
M∑
j=1

Vij · w̃j, (8.7)

where c is an additional constant needed for variance reconstruction, which will be defined
later, Vij is the variance matrix and w̃j = 1/wj are the inverse of the fluence weights, which
are required since variance is inversely proportional to the fluence. The variance matrix Vij
can be calculated from a unit fluence dataset, from which distance–driven binned variance
projections in coordinates (u, v,d) can be calculated and which can be transformed to the
corresponding coordinates (xi,yi,yi) by a rotation with the corresponding rotation angle,
which also requires an interpolation. The rotated variance projections will be called vαji and
with them the variance matrix is defined as

Vij = v
αj
i · δij, (8.8)

where δij is defined in eq. (8.5). The additional constant c can be calculated by comparing
eqs. (3.63) and (8.7). To make both equations equal, the constant needs to be

c = finterp · ffilter ·
(
π∆u

NP

)2
, (8.9)

where the two factors are defined in eqs. (3.60) and (3.64). With this, eq. (8.7) becomes
equivalent to a variance reconstruction of the modulated variances vαji · w̃j according to the
simplified variance reconstruction formula in eq. (3.63), which ignores the pixel–by–pixel
effect of interpolation and also avoids the convolution with the filter kernel.
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8.3.2 Bixel–wise optimization

With eqs. (8.3) and (8.7) it is possible to calculate imaging dose and image variance
estimates for any arbitrary fluence modulation wj from which the corresponding w̃j can be
calculated. In the optimization the inverse problem of finding a suitable set of bixel weights
wj was solved such that a given imaging dose objective Dobj,i and a variance objective
Vobj,i are achieved in voxel i. The competing targets were assigned a dose penalty pD

i and
a variance penalty pV

i , which describe the relative strength with which a violation of the
objective is to be avoided. The objectives and penalties will be defined later in section 8.3.4
and all quantities are illustrated in fig. 8.2 (a).

The bixel weights wj were optimized by minimizing the cost function

C(w) =

N∑
i=1

pD
i (Di(w) −Dobj,i)

2 +

N∑
i=1

pV
i (Vi(w) − Vobj,i)

2, (8.10)

where Di and Vi depend on the weights wj. The gradient with respect to a single weight wj
then calculates as

∂

∂wj
C(w) = 2

N∑
i=1

pD
i (Di(w) −Dobj,i)Dij − 2

N∑
i=1

pV
i (Vi(w) − Vobj,i)

Vij

w2j
. (8.11)

With this, the optimized weights ŵj can be found as

ŵ = arg min
w

C(w) s.t. 0 < wmin 6 wj 6 wmax ∀ j, (8.12)

where the weights are forced to stay within the limits wmin and wmax to ensure that only
positive and finite weights are employed. Negative weights would correspond to negative
fluences which are unphysical and too extreme modulations are avoided to prevent unreason-
ably high local imaging doses. The optimization was performed with the limited–memory
BFGSB algorithm by Zhu et al. [188] using the implementation of the Insight Toolkit (ITK) [123].
Sparse matrix multiplication needed for the evaluation of the cost function were efficiently
implemented in C++ using the Eigen3 library [189].

8.3.3 Pencil beam optimization

While with the optimized ŵj a fluence modulation is already found, this cannot be used
experimentally, since fluence can only be modulated in small pencil beams and not with
bixels. To solve this, the bixel weights are first converted to a target counts map, which is
subsequently achieved with modulated pencil beam weights as depicted in fig. 8.2 (b). The
counts map for projection angle α, which results from a given fluence modulation wj, can
be calculated as

Fαi =
∑
j∈{jα}

Fij ·wj, (8.13)

where {jα} is the set containing all j for which αj = α. The three–dimensional counts map
f
αj
i describes the number of protons at unit fluence from projection angle αj contributing to

voxel i and with it the fluence matrix Fij can be defined as

Fij = f
αj
i · δij, (8.14)
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where δij is defined in eq. (8.5). With this, a target projection counts map F̂αi can be calculated
that corresponds to the optimized weights ŵj. The counts map fαji , and consequently Fij,
is subject to attenuation and only describes the number of protons contributing to image
reconstruction. This will be considered later.

To calculate a fluence modulation that takes into account the shape of the K = NP ·NPB,u ·
NPB,v = 385 560 pencil beams, a second optimization is required, that makes use of the
pencil beam model described in eq. (6.1). Using the model, the counts map Pik of pencil
beam k in voxel i can be calculated, where the normalization was such that the maximum
value was forced to be one. Each pencil beam was associated with a corresponding rotation
angle αk and a weight ωk. With that, a modulated counts projection for rotation angle α
could be calculated as

Pαi =
∑
k∈{kα}

Pik ·ωk, (8.15)

where {kα} is the set containing all k for which αk = α. The Greek notation of the pencil
beam weights ωk is intended to differentiate them from bixel weights wj. Pik was calculated
by querying the Gaussian pencil beam model on a fine grid of 1mm×1mm×1mm, rotating
the volume by αk and subsequently resampling it to the coarse grid with voxels i. Due to
this, the interpolation with δij as in eqs. (8.3), (8.7) and (8.13) was omissible. Unnecessary
calls to the Gaussian function were avoided by setting Pik to zero outside of three standard
deviations of the pencil beam.

Pencil beam weights could then be optimized using the cost function

CPB(ω) =

N∑
i=1

(Pαi (ω) − Fαi )
2 (8.16)

and the corresponding gradient

∂

∂ωk
CPB(ω) = 2

N∑
i=1

(Pαi (ω) − Fαi )Pik, (8.17)

resulting in pencil beam weights ωk of

ω̂ = arg min
ω

CPB(ω) s.t. 0 < ωmin 6 ωk 6 ωmax ∀ k ∈ {kα}, (8.18)

and using the bounds ωmin and ωmax which were equal to the bixel bounds wmin and wmax.
Weights for each rotation angle α are independent and their optimization can be parallelized.

Similar to eq. (6.13) in section 6.4, the optimization of pencil beam weights was subject to
attenuation due to the usage of fαji in eq. (8.13). For this reason the optimization in eq. (8.18)
must be performed twice. First, for the modulated target projection counts map F̂αi and
then for the reference counts map Ḟαi . The latter can be calculated using eq. (8.13) with all
weights wj = 1. This will result in two optimized sets of pencil beam weights ω̂ and ω̇,
which are subject to attenuation. The attenuation–corrected pencil beam weights Ωk can
then be found as the ratio

Ωk =
ω̂k
ω̇k

, (8.19)
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for which the effect of attenuation cancels out. Ωk is again forced to be in the interval
between ωmin and ωmax and thresholded otherwise. Fluence–modulated simulations can
then be performed using Ωk ·N0 instead of N0 particles for pencil beam k.

8.3.4 Optimization objectives

The ROI for FMpCT imaging was defined based on the ground truth treatment dose
distribution of each patient. All voxels receiving at least 10% of the prescription dose were
assumed to belong to the ROI. This threshold is in agreement to the recommendation of the
AAPM task group 119 for comparing treatment doses using gamma analysis [190, 191]. The
resulting ROI volumes are listed in table 8.2.

Since imaging dose was to be minimized, the imaging dose objective was set to Dobj,i =

Dobj = 0mGy throughout the volume. Also the variance was set to a constant value
Vobj,i = Vobj, which was defined as the 95th variance percentile of the corresponding unit
fluence scan inside the ROI. It was different for each patient and values are listed in table 8.2.

The dose and variance penalties pD
i and pV

i were both set to zero outside of the patient’s
skin, since both quantities are irrelevant there. The variance penalty pV

i was also set to zero
outside of the ROI, and to pV

i = 100 inside. The dose penalty pD
i instead was set to pD

i = 0.01
inside the ROI and to pD

i = 1 outside. Furthermore, each patient had between two and four
imaging OARs as listed in table 8.2 for which the dose penalty was increased to pD

i = 20.
These choices were made empirically to ensure that Vobj,i was achieved in the ROI and was
not impaired by the dose minimization and that pencil beams intersecting only with the ROI
would not result in unreasonably high doses.

The minimum weights were wmin = ωmin = 0.05, which made sure that at least four
protons per pixel were available for image reconstruction for an incident unit fluence of
26mm−2 and a pixel area of 3mm2. The maximum weights were wmax = ωmax = 10, which
again avoided unreasonably high doses in the ROI.

Table 8.2: ROI volumes and objectives for fluence–modulation and imaging OARs for all patients.
For the variance objective, the corresponding RSP standard deviation σobj is also given.
Abbreviations: ROI – region–of–interest, OAR – organ–at–risk, r – right, l – left.

patient 1 patient 2 patient 3

ROI volume / cm3 223 785 321

dose objective Dobj / mGy 0.0 0.0 0.0
variance objective Vobj 5.41× 10−4 6.09× 10−4 6.72× 10−4
σobj 0.023 0.025 0.026

imaging OARs
r. eye,

brainstem
r./l. eye,
r./l. optical nerve

r./l. eye,
spinal cord



fluence modulation with dose and variance objectives 121

8.3.5 Reference approach

To evaluate the performance of the proposed algorithm, results were compared to a simple
intersection–based approach for fluence modulation [46], which was also used in chapter 6

as a reference. Within the notation used in this chapter, this binary modulation can be
expressed using a target volume Ti, which was zero if pV

i was zero and one everywhere else
(i. e. in the ROI). Then, the binary weights can be calculated as a scalar product

Ωk =

1 for
N∑
i=1

PikTi > 0

ωmin else
. (8.20)

Since the Gaussian pencil beam model was zero outside a three standard deviation interval,
this will result in the full fluence, if a pencil beam intersects with the ROI within that interval,
and a minimum fluence equal to ωmin, if the pencil beam does not intersect. Such scans will
be labeled binary in the following.

results

In fig. 8.3 (a) – (c) the cost function values of the bixel–wise fluence optimization are
shown for all three patients. The cost function is split into contributions from the dose term

Figure 8.3: Cost function values for all patients and for each iteration of (a) – (c) the bixel–wise
fluence optimization and (d) – (f) the pencil beam (PB) optimization as an average over
all projections. ³ Reproduced from Dickmann et al. [138] under the CC BY 4.0 license.

https://creativecommons.org/licences/by/4.0
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(first summand in eq. (8.10)) and the variance term (second summand). The optimization ran
for 500 iterations, but reached a plateau already after 100 to 200 iterations. For patient 1, the
dose term is the largest contribution to the cost function while for patient 2 and patient 3 the
variance term dominates. Despite differences in magnitude between the two contributions,
both reduce considerably within the first 200 iterations.

Figure 8.3 (d) – (f) shows cost function values for the subsequent pencil beam optimization,
which are displayed as an average over all 360 projection angles. The convergence is much
quicker and a convergence plateau is reached within less than 10 iterations.

Fluence modulations were optimized on a computer with two Intel Xeon E5–2667 v4

processors (Intel Corporation, Santa Clara, CA, USA) with a clock frequency of 3.2GHz and
with in total 16 physical cores and 252GB of memory, which was required to store the dose

Figure 8.4: Sinograms for the three patients: (a,d,f) WEPL sinograms, (b,e,i) uniform fluence sino-
grams, (c,f,j) fluence–modulated fluence sinograms, and (g) a fluence sinogram for a
simple intersection–based binary modulation. Sinograms are shown at a v–coordinate
at the center of the ROI and at the central binning depth. The display settings are
C = 100mm,W = 200mm for WEPL sinograms and C = 100protons,W = 200protons
for fluence sinograms. ³ Reproduced from the supplementary material of Dickmann et al. [138] under
the CC BY 4.0 license.

https://creativecommons.org/licences/by/4.0


fluence modulation with dose and variance objectives 123

and variance matrices. For the bixel–wise optimization, a single evaluation of the optimizer’s
cost function took 54ms and one iteration on average 302ms. In total, the bixel–wise
optimization for patient 1 over all 500 iterations took 151 s. The pencil beam optimization
time was 238ms per projection and 86 s in total. The full optimization, including the creation
of the optimization matrices was 19min.

Figure 8.4 shows WEPL sinograms and fluence sinograms for all three patients and for
unit fluence as well as for the optimized fluence–modulations. The fluence sinograms only
consider protons used for image reconstruction and are therefore subject to attenuation.
Compared to the corresponding figures in chapters 6 and 7, the unit fluence sinograms
are more homogeneous and contributions of single pencil beams are not visible, since the
pencil beam grid was more dense in this chapter and no quarter–shift was employed. At two
distinct locations at the detector at ±70mm, increased or decreased counts were observed,
which is caused by small gaps in the tracking detector for which the proton coordinates are
interpolated. A careful inspection shows a slight effect of attenuation with reduced counts
for regions with larger WEPL. In comparison to that, the fluence–modulated scans show a
strong fluence modulation with regions outside of the ROI receiving a minimum fluence
and subtle modulations in the ROI that show similar features to the WEPL sinogram. In
particular at the edge of the patient, fluence is elevated over the level of the unit fluence–scan.
Figure 8.4 (g) shows the sinogram of a binary fluence–modulation, which is equal to the
unit fluence for pencil beams intersecting the ROI and reduced elsewhere.

 A discussion of these results can be found in section 8.5 on page 132.

8.4 evaluation of optimized fmpct scans

materials & methods

For all three patients, uniform fluence pCT scans were simulated and compared to the
corresponding optimized FMpCT scans. From the data, RSP maps were reconstructed
using the FDK–DDB algorithm and the mean RSP error inside the ROI with respect to the
ground truth RSP maps was calculated both for the pCT and the FMpCT scan. To assess the
accuracy of achieving Vobj,i inside the ROI, variance maps were reconstructed as described
in section 3.5.4 and compared to the desired value.

The dosimetric accuracy of pCT and FMpCT scans was evaluated by importing the two
RSP maps to the TPS as described in section 8.2. The therapeutic dose, which was optimized
on the ground truth RSP map was then re–calculated based on the two simulated images.
The resulting dose distribution was visually assessed for a slice at the center of the CTV.
Dose–volume histograms calculated by the TPS were also compared between the ground
truth dose and the dose re–calculated on the pCT and FMpCT scans. To quantify differences,
a passing rate for a relative dose difference criterion of 1% was calculated. For this, the
difference between the pCT or FMpCT dose distribution and the ground truth was divided
by the prescription dose. Dose voxels receiving less than 10% of the dose prescription were
disregarded.

The dosimetric accuracy was also evaluated in terms of the proton range. For this, a
second treatment plan with a uniform dose target was optimized based on the ground
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truth RSP map with just a single field and with a gantry angle as listed in table 8.1. This
single field dose was then re–calculated on the pCT and FMpCT scans with a finer dose
grid of 1mm× 1mm× 3mm. This allowed to calculate the range for each voxel in beam–
eye–view as the 80% dose–falloff. Linear interpolation between voxels was used to achieve
sub–millimeter resolution. To compare the resulting ranges to the ground truth, a passing
rate was calculated for a 1mm criterion on the range difference between pCT or FMpCT
and ground truth. For this, all rays intersecting the CTV (for patient 1 the low dose CTV)
were considered.

To assess the imaging dose saving, the simulation code was used to score and sum the dose
of each projection for both pCT and FMpCT scans. From this data, imaging dose–volume
histograms were calculated. Median doses were evaluated for all OARs as well as the ROI
and non–ROI volume. In addition to pCT and FMpCT scans, for patient 2, imaging doses
were also calculated for the binary fluence–modulation.

The accuracy of the forward models for variance and imaging dose was evaluated by
comparing the output of eqs. (8.3) and (8.7) for the converged set of bixel–weights to
variances and imaging doses calculated with the Monte Carlo simulation with the optimized
pencil beam weights. This quantifies inaccuracies due to assumptions of the forward model,
such as the modulation in small bixels instead of pencil beams, including the assumption
that parallel bixels are independent from each other, which is not strictly true for both dose
and variance, and the simplified variance reconstruction formula, which does not account
for distance–driven binning and the convolution.

results

Figure 8.5 shows image variance maps for pCT and the corresponding FMpCT scans.
For the unit fluence pCT scans in the first column, variance is not homogeneous: noise is
increased at the skin as well as close to heterogeneities such as the nasal cavity of patient 2

or the pharynx of patient 3. This is in agreement to expectations from chapters 5 to 7. In
the FMpCT scans in the second column the noise level is homogeneous inside the ROI,
even in regions that had elevated noise levels in the pCT scan. Outside of the ROI, image
variance increases sharply with just a small transition region of a few millimeters around
the ROI. These observations are confirmed in the third column, where line profiles along the
white dashed lines show a strong modulation inside the ROI, which is indicated as a green
shaded area. Variance for FMpCT scans is flat in the ROI and increases sharply outside. The
variance objective is met for all three patients with only small deviations. Peak noise for pCT
and FMpCT agrees at the hull of the patient, which can be outside of the slice for which the
profiles are displayed (in particular for patient 3). In most regions, pCT noise is intentionally
below the FMpCT noise level.

Table 8.3 lists the mean RSP values inside the ROI for the ground truth RSP and the two
pCT images. Absolute relative errors are all below 0.6% for the pCT scans and below 0.8%
for the FMpCT scans. This is within the magnitude expected for typical pCT scans and
agrees with results from previous chapters.

Figure 8.6 displays the treatment doses for all three patients: (a,e,i) as they were optimized
based on the ground truth RSP map, and re–calculated for (b,f,j) the pCT or (c,g,k) the
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Figure 8.5: Image variance maps for (a, d, g) the unit fluence pCT scans, (b, e, h) the fluence
modulated scans, and (c, f, i) profiles along the white dashed lines. The ROI is indicated
by a solid white line in the variance maps and as a green shaded area in the profile
plots. The variance maps are overlaid on top of the corresponding RSP maps to make the
anatomy visible. ³ Reproduced from Dickmann et al. [138] under the CC BY 4.0 license.

FMpCT scan. The treatment doses are shown on top of the corresponding RSP maps, where
for the FMpCT scan a clear increase of noise could be observed outside of the region covered
by the treatment dose. Treatment doses were not distinguishable visually. The dose volume
histograms in fig. 8.6 (d,h,l) were also in agreement and only for the left hippocampus of
patient 2, which was located close to the end of the range of one treatment beam, differences
between the ground truth dose and the dose calculated on the two pCT scans, were visible.
Even organs like the brain of patient 1, which were imaged with high image noise in the
FMpCT scan, showed a good agreement in the dose–volume histogram.

In table 8.4 passing rates are shown, which compare the re–calculated dose maps to the
dose maps that was optimized on the ground truth RSP. Evaluations are shown for a strict
1% criterion on the absolute difference. The largest discrepancy, and thus the lowest passing
rate was found for the comparison of FMpCT to the ground truth for patient 3, which was

https://creativecommons.org/licences/by/4.0
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Table 8.3: Evaluation of the mean RSP value inside the ROI and calculation of the relative error with
respect to the ground truth mean RSP value.

RSP map patient 1 patient 2 patient 3

ground truth 1.018 1.057 0.966
pCT 1.017 (error −0.1%) 1.051 (error −0.6%) 0.966 (error 0.0%)
FMpCT 1.026 (error 0.8%) 1.050 (error −0.7%) 0.962 (error −0.4%)

Table 8.4: Passing rates for a 1% criterion comparing the ground truth (GT) dose maps to those
re–calculated on the pCT and FMpCT scans.

comparison patient 1 patient 2 patient 3

pCT vs. GT passing rate / % 90.6 91.8 90.6
FMpCT vs. GT passing rate / % 91.3 93.1 88.5
FMpCT vs. pCT passing rate / % 98.3 99.7 98.9

Table 8.5: Passing rates for a 1mm, mean absolute difference, and mean difference for the range
analysis comparing the ground truth (GT) ranges to those evaluated on the pCT and
FMpCT scans.

quantity comparison patient 1 patient 2 patient 3

passing rate / % pCT vs. GT 97.4 100.0 95.3
FMpCT vs. GT 96.5 96.8 95.0
FMpCT vs. pCT 100.0 97.5 99.9

mean abs. diff. / mm pCT vs. GT 0.29 0.25 0.28
FMpCT vs. GT 0.31 0.32 0.32
FMpCT vs. pCT 0.15 0.17 0.05

mean diff. / mm pCT vs. GT 0.00 0.04 0.27
FMpCT vs. GT 0.15 0.20 0.31
FMpCT vs. pCT −0.15 −0.16 −0.05
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Figure 8.6: Treatment doses optimized on the (a,e,i) ground truth RSP map and re–calculated on
(b,f,j) pCT and (c,g,k) FMpCT images together with (d,h,l) dose–volume histograms.
Treatment doses are shown on top of the corresponding RSP maps. The color scale of
treatment doses is in percent of the prescription dose. The CTV and OAR contours use
the same colors as in the dose–volume histograms. In the histograms, the three dose
sets are mostly indistinguishable. Triangles on top of the histogram lines indicate the
corresponding prescriptions. ³ Reproduced from Dickmann et al. [138] under the CC BY 4.0 license.

still at 88.5%. All other passing rates were above 90% and in particular the passing rates
comparing FMpCT to pCT were above 98% for all patients.

Table 8.5 investigates the range accuracy of pCT and FMpCT images compared to the
ground truth and lists passing rates for a 1mm criterion. Passing rates for all comparisons
were above 95%. The best average agreement over all patients was between FMpCT and
pCT. The mean absolute difference and the mean difference between the evaluated ranges,
which is also shown in table 8.5, was well below 0.5mm for all three comparisons and all
patients.

Figure 8.7 shows the imaging dose for the pCT and the FMpCT scan, which were both
matched to the peak noise level inside the ROI. The imaging dose of the pCT scan was
homogeneous as expected, with slight reductions in bony structures due to the different
elemental composition. The imaging dose for the FMpCT scans was concentrated in the
ROI and drops further away from it. Imaging OARs, such as the right eye of patient 1 and
both eyes of patient 2 received less imaging dose compared to their local surrounding. In
particular the eye of patient 1 was at a higher dose level compared to the back of the brain,
but its imaging dose was considerably less compared to other tissue with a similar distance

https://creativecommons.org/licences/by/4.0
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Figure 8.7: Imaging doses of (a,d,g) the pCT and (b,e,h) the FMpCT scans, and (c,f,i) corresponding
imaging dose–volume histograms. ³ Reproduced from Dickmann et al. [138] under the CC BY 4.0
license.

to the ROI. Imaging dose inside the ROI was non–homogeneous and elevated at the edge
and in regions of elevated image noise for the uniform fluence scan (compare fig. 8.5). In
particular at the edge and for patients 1 and 2, imaging dose was increased compared to the
unit fluence scan.

The observations are confirmed in the imaging dose–volume histograms in fig. 8.7 (c,f,i).
The uniform fluence pCT dose was at around 1.2mGy for all three patients and all structures.
For limited volumes with different elemental composition (e. g. the jaw of patient 3), lower
doses also occurred, but all relevant doses were above 1.0mGy. Inside the ROI, peak dose
levels were elevated for FMpCT scans compared to the pCT scans. The dose increase reached
up to 1.8mGy, but was limited to about 10% of the total ROI volume. Most of the ROI
received a lower dose in the FMpCT scan compared to the pCT scan. All OARs and in
general the complete non–ROI volume received a considerably reduced imaging dose in the
FMpCT scans. The only exception for this is patient 2, where 2.5% of the non–ROI volume
received a dose above 1.2mGy.

https://creativecommons.org/licences/by/4.0
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Figure 8.8: Comparison of the imaging dose in mGy for patient 2 and (a) the pCT scan, (b) the
FMpCT scan, and (c) the scan with the simple binary fluence modulation, as well as
(d) the corresponding imaging dose–volume histograms. ³ Reproduced from Dickmann et al.
[138] under the CC BY 4.0 license.

In fig. 8.8 (c) the imaging dose of the binary fluence modulation in eq. (8.20) is shown
for patient 2 and compared to the corresponding pCT and FMpCT imaging doses, which
are shown again in (a) and (b). The dose of the binary modulation inside the ROI is, by
construction, equal to the dose in the uniform fluence pCT scan. Outside of the ROI, imaging
dose drops, but the decrease is much less dramatic compared to the FMpCT scan. Moreover,
the eyes are not spared additionally from imaging dose. This is confirmed in the imaging
dose–volume histograms in fig. 8.8 (d), where the binary fluence modulation shows a dose
reduction outside of the ROI, but for example the eyes are at approximately double the
imaging dose compared to the FMpCT scan.

Table 8.6 lists the median imaging doses for all three patients and for pCT, FMpCT, and
binary–modulated pCT scans. The uniform fluence doses were comparable for all patients
and structures and between 1.14mGy and 1.19mGy. For modulated scans, the percentage
dose saving is given in brackets. For all three patients, the FMpCT dose savings outside the
ROI and in particular in OARs was considerable and of comparable magnitude between the
three patients. Dose savings for some OARs are above 80%. The binary modulation had the
same imaging dose inside the ROI as the pCT scan and dose savings outside reached 29%,
but were all considerably less compared to the FMpCT scan.

Figure 8.9 displays image variance and imaging dose maps calculated from the Monte
Carlo simulation in the first column. Those maps are the same as shown in figs. 8.5 and 8.7.
The second column shows the corresponding predictions of the bixel–wise forward model
of eqs. (8.3) and (8.7). The third column shows line profiles along the white dashed lines

https://creativecommons.org/licences/by/4.0


130 fluence modulation with dose and variance objectives

Table 8.6: Median imaging doses for all patients and for pCT, FMpCT and binary modulated scans.
Doses are given for the ROI and all relevant OARs. Dose savings compared to the unit
fluence scan are given in parentheses. Abbreviations: ROI – region–of–interest, l – left,
r – right.

pCT FMpCT binary
region dose/mGy dose/mGy (saving/%) dose/mGy (saving/%)

patient 1 ROI 1.16 0.78 (−33) —
non–ROI 1.16 0.24 (−80) —
r. eye* 1.17 0.30 (−74) —
brainstem* 1.19 0.15 (−87) —
brain 1.19 0.19 (−84) —

patient 2 ROI 1.17 0.77 (−35) 1.17 ( 0)
non–ROI 1.16 0.34 (−71) 0.98 (−16)
l. eye* 1.17 0.28 (−76) 0.83 (−29)
r. eye* 1.17 0.28 (−76) 0.85 (−27)
l. optic nerve* 1.16 0.41 (−65) 1.07 (− 8)
r. optic nerve* 1.16 0.41 (−65) 1.08 (− 7)
brain 1.19 0.45 (−62) 1.17 (− 2)

patient 3 ROI 1.14 0.72 (−37) —
non–ROI 1.14 0.33 (−71) —
l. eye* 1.15 0.22 (−81) —
r. eye* 1.15 0.27 (−77) —
spinal cord* 1.16 0.25 (−78) —
brain 1.17 0.56 (−52) —
lower jaw 1.11 0.34 (−69) —

average ROI 1.16 0.76 (−35) 1.17 ( 0)
non–ROI 1.15 0.30 (−74) 0.98 (−16)

* imaging OAR

for both quantities as well as the variance objective for the variance profiles. The variance
predictions agree well with the values scored from the Monte Carlo data. Differences are
visible only outside of the patient. Variance predictions in the ROI are flatter compared
to the simulated values employing pencil beams. While for patient 1 the prediction and
simulation agree well, for patient 2 the model slightly overestimates and for patient 3

it slightly underestimates the simulated values. For the imaging doses, estimations and
simulations agree well visually. Also in the profiles, the predictions follow the Monte Carlo
values with only minor differences. Unlike the variance maps, the imaging dose profiles are
comparably smooth between prediction and simulation.

 A discussion of these results can be found in section 8.5 on page 133.
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Figure 8.9: Predictions of the optimizer’s forward model in the first column (a,d,g) and actual values
from the Monte Carlo simulation in the second column (b,e,h) for imaging dose (in mGy)
and image variance maps (dimensionless) of the converged fluence–modulations of all
three patients. The last column (c,f,i) shows line profiles along the white dashed lines.
The ROI is indicated as a green shaded area. ³ Reproduced from the supplementary material of
Dickmann et al. [138] under the CC BY 4.0 license.
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8.5 discussion

An algorithm for joint dose minimization and variance optimization

A novel optimization algorithm for FMpCT was proposed, which considers both image
variance and imaging dose objectives. It consists of a bixel–wise fluence optimization
followed by a pencil beam optimization to each projection fluence. Both optimizations
converged fast and reliably for all three patients. The bixel–wise optimization required
between 100 and 200 iterations to converge, but was run for 500 iterations to ensure optimal
results. The pencil beam optimization, which considered only a single projection fluence at a
time, converged more quickly within less than ten iterations. For the bixel–wise optimization,
the final cost function value was different for each patient, since they had different noise
targets and, more importantly, different ROI volumes. Typically, for treatment planning,
the penalties would be adjusted for each patient to ensure an optimal solution. This was
not done in this study to make results comparable between patients and to investigate the
robustness of the method. The cost function of patient 1 was dominated by the dose term,
while for the other two patients the variance term prevailed. This may be explained by
the different ROI volumes of the patients, where patient 1 had the smallest ROI volume
and patient 2 the largest. For a small ROI volume, less voxels contribute to the sum of the
variance term in eq. (8.10) and more contribute to the dose term, which, as a result, is higher.

The proposed method makes use of an initial bixel–wise optimization and only optimizes
pencil beams in a second step. The dose term could have been optimized end–to–end by
calculating the dose contribution to voxel i from pencil beam k (instead of bixel i). However,
this was not possible for the variance term due to the inverse relationship between fluence
and variance. The variance contribution of pencil beam k would be infinity for all voxels i
outside of the extent of the pencil beam. To solve this, parallel and mutually independent
bixels were introduced that allowed to reproduce the variance reconstruction formula with
the same bixel weights that could be used for the imaging dose forward calculation. The two–
step design of the algorithm, therefore, was required to correctly account for the variance
term. As a side effect, this also considerably reduced the computational cost of the dose
forward model, since the dose matrix with bixels is much sparser compared to a dose matrix
with pencil beams.

The evaluation of the cost function was implemented efficiently using sparse matrix
multiplications, which reduced the evaluation time to few hundred milliseconds. The dose
and variance matrices had in total N ·M ≈ 5× 1010 entries each, but most were zero. With
a sparse implementation of the matrices, only non–zero components are stored in memory
and used in multiplication operations. With the optimization itself being fast, most of the
computation time was attributed to the creation of the matrices, which involved reading
dose and variance projections from disk as well as querying the pencil beam model. For the
creation of the matrix Pik, the pencil beam model in eq. (6.1) was queried on a grid with
1mm3 voxels with each voxel requiring a computationally expensive call to the exponential
function (unless the voxel was outside of a three–standard–deviation interval). However,
the matrices Dij in eq. (8.3), Vij in eq. (8.7), Fij in eq. (8.13), and Pik in eq. (8.15) can be
calculated as soon as the uniform fluence pCT scan and the corresponding Monte Carlo



fluence modulation with dose and variance objectives 133

simulation are available. This could be done automatically before any user interaction
to reduce the optimization time to a few minutes if the matrices are readily available. If
calculation speed is crucial, the optimization time could be further reduced by stopping the
optimization already after 200 or even 100 iterations, which seems feasible with only a minor
degradation of the algorithm performance given the cost function values at these iterations.
This would bring the time down to few tens of seconds and could further be improved by
avoiding unnecessary calculations, such as variance values for voxels where the variance
weight is zero. Altogether, it appears reasonable that the algorithm is feasible time–wise to
be used in a clinical context with calculation times comparable to those of treatment plan
optimization.

The reduction of free parameters by quarter–shifting the pencil beam grid and increasing
the spacing in u–direction was avoided in this study and a denser pencil beam grid was used
instead. While the quarter shift has worked in simulations in chapter 6, it was concluded in
chapter 7 that it makes the fluence delivery susceptible to small setup shifts, which can occur
experimentally. This was not repeated in this study, potentially making a future delivery of
such patterns more robust.

Evaluation of optimized FMpCT scans

The performance of the proposed optimization algorithm for FMpCT was evaluated by
re–calculating treatment doses on simulated pCT and FMpCT scans. The agreement of
the resulting treatment doses with the dose optimized on a ground truth RSP map was
satisfactory — both in terms of the overall dose accuracy and in terms of the resulting range
error. Passing rates were calculated for a 1% criterion on the treatment dose and for a 1mm
criterion on the ranges. These are strict criteria compared to those used in literature, which
are typically 3%/3mm [192–194]. All passing rates were above 88% with respect to the
ground truth dose and range distributions. Passing rates for the comparison of pCT and
FMpCT images were considerably better and above 97%, which suggests that the driving
contribution of dose calculation errors is the use of pCT instead of the ground truth RSP
map, and not the application of fluence modulation. The RSP errors, which can lead to dose
calculation distortions, were quantified to be below 1% compared to the ground truth and
similar for pCT and FMpCT. An error of 1% is expected for the experimental operation
of the scanner [41], and also using the realistic simulation used in this study [103]. The
range errors introduced by FMpCT scans were also slightly higher compared to pCT scans,
but the differences were small compared to the variation in between patients. Therefore,
no significant deterioration by fluence modulation was found and the dosimetric accuracy
of modulated an un–modulated scans is equivalent. This is supported by the fact that
accuracy differences between the ground truth and the two pCT scans was much larger than
the difference in between pCT and FMpCT. Dosimetric and range errors using pCT were
comparable to values determined in a previous study by Meyer et al. [43].

In agreement to chapter 6, imaging doses were constant for the uniform fluence pCT scans,
but image variance was increased at the hull or close to heterogeneities. With FMpCT, it was
possible to invert this and achieve constant variance inside the ROI with an inhomogeneous
imaging dose distribution. Achieving a constant variance allowed to reduce the median
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imaging dose even in the ROI by 35% on average. This was possible, since pCT and FMpCT
scans were matched for peak variance in the ROI and an increase of variance was possible in
many regions of the ROI. This dose reduction, however, is not very relevant in reality, since
it is negligible compared to the treatment dose in this region.

Variance outside of the ROI was strongly increased in the FMpCT scans, in particular
further away from the ROI. This allowed to reduce the median imaging dose by on average
74% compared to uniform fluence scans. The dose saving was consistent between all three
patients and ranged from 71% to 80%, even though the ROI shapes and volumes differed
considerably in between patients. The largest dose saving was achieved for the patient with
the smallest ROI volume. Imaging doses to specific OARs were further reduced by the
optimizer and OAR dose savings reached up to 87%. The closer an OAR was to the ROI,
the smaller the possible dose saving was, which is why imaging doses to OARs need to be
compared that in their direct vicinity. The relative dose penalty of imaging OARs was fixed
in this study, but would need to be determined based on clinical factors and the available
imaging dose–volume metrics — if at all an imaging OARs is needed. A potential clinical
indication requiring to limit radiation exposure by imaging could be radiation–induced
cataract [195], which can occur in the eye and is particularly relevant for young patients.
Other imaging OARs used here, were chosen to showcase a potential application of the
algorithm and would eventually need to be defined by a physician.

In chapter 6 and in Dickmann et al. [156], dose savings of up to 40.5% were reported
outside of the ROI and compared to unit fluence scans while matching the peak variance
level. The results achieved with the novel optimization algorithm for dose and variance
objectives, are considerably improved by about a factor of two. This could be due to the
generally smaller ROI volumes used in this study compared to the large ROI used in
chapter 6. However, even for patient 2, for which the ROI in the central slice covered about
half of the patient’s cross section, a dose saving of over 70% was achieved. The improvement
compared to chapter 6 is, therefore, likely to stem from the optimizer’s ability to achieve a
given variance in the required regions while reducing imaging dose where this is beneficial
instead of implicitly reducing dose via the prescription of a higher variance. Moreover, the
prescription of a variance contrast of four in chapter 6 may not have been the optimal choice
and the novel optimizer was not restricted to any maximum variance level outside of the
ROI, apart from the minimum fluence needed in each pixel.

The relevance of imaging dose savings achieved using the proposed method must be
assessed by comparing it to the local treatment dose. If the dose from imaging is irrelevant
compared to the dose delivered during treatment, the effort of reducing imaging dose has no
impact. This is the case for the imaging dose inside the ROI, where a single fraction of the
treatment exposes the patient to doses between 1.8Gy and 2.5Gy (see table 8.1). Imaging
doses from pCT are only at 1.2mGy and therefore lower by three orders of magnitude. Dose
savings by FMpCT in the ROI are, therefore, not relevant. This applies also to the dose
increases that were observed for a small part of the ROI for FMpCT scans. The dose saving
outside of the ROI, however, which was on average 0.9mGy, may be relevant compared to
the treatment dose of a single fraction, which is at 180mGy to 250mGy at the hull of the ROI,
but quickly drops to zero due to the steep dose gradients achievable with proton therapy.
The treatment doses as determined by the TPS were in fact exactly zero for most imaging
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OARs. Nevertheless, it is known, that the low doses are not correctly determined in a TPS,
since they often do not consider dose from secondary neutrons. Neutrons can originate from
stray dose from the beam line elements or scattered from the room walls, or can be created in
the patient. Neutron doses are in the order of magnitude of a few milli–Sievert per fraction
according to Schneider and Hälg [196]. Assuming that pCT imaging is to be performed prior
to every treatment faction, the potential dose saving due to FMpCT appears to be relevant.
However, a precise study including the calculation of neutron dose is necessary to answer
this question definitively.

The predictions of the optimizer for image variance and imaging dose were compared to
the same quantities calculated from Monte Carlo simulations. While minor differences were
identified, the agreement between the prediction and the simulated value was satisfactory.
This would allow to directly employ optimized FMpCT fluence patterns without the need to
wait for an additional Monte Carlo simulation to verify the optimization result.

While this study used a realistic simulation of a prototype pCT scanner and patient data
to generate images, it did not investigate the potential impact of anatomical changes, which
can occur during proton therapy treatment, and which may impact the required fluence
modulation patterns. Translational and rotational errors are expected to be small for patients
of the head and neck region, since they can be precisely positioned using thermoplastic face
masks. However, internal anatomical changes due to weight loss or reduction of the tumor
volume need to be investigated carefully in future studies. It may be possible to update
the required fluence patterns just from the previous FMpCT scan. If this is not an option,
uniform fluence scans may need to be repeated when anatomical changes are suspected,
which would cause an additional imaging dose, but ensure a precise delivery of the imaging
fluence.

8.6 conclusions

In this chapter and originally in Dickmann et al. [138], a novel optimization algorithm
for FMpCT was proposed, that considers both image variance and imaging dose targets.
Conceptually, this is a step forward compared to the algorithm proposed in chapter 6 and
in Dickmann et al. [156], since it allows to directly optimize for the quantities that are
relevant in each voxel of the volume. It avoids the need to indirectly reduce imaging dose by
prescribing an arbitrarily chosen higher variance target. Moreover, the algorithm allows to
increase the dose penalty in pre–defined imaging OARs, where an additional dose saving
can be achieved. The performance of the algorithm was demonstrated in a Monte Carlo
simulation study using a realistic pCT scanner and proton beam model. For this purpose,
imaging data of three pediatric patients was used to simulate realistic patient geometries
and have ROI definitions based on actual proton therapy dose distributions. For the three
patients, which had different locations of the tumor within the head, an imaging dose saving
of 74% outside of the ROI was achieved, which clearly outperformed the optimization
algorithm in chapter 6 as well as a simple intersection–based fluence modulation. Based on
the low–dose FMpCT scans as well as uniform fluence pCT, ground truth treatment doses
were re–calculated on the simulated images. Passing rates for a 1% criterion on dose and a
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1mm criterion on proton range were all well above 90% when comparing FMpCT images
to the corresponding uniform fluence images. Range uncertainties were below 0.3mm. It is,
therefore, concluded that the usage of fluence modulation does not relevantly deteriorate the
dosimetric accuracy of pCT. Dose reductions achievable with FMpCT appear to be relevant
compared to the out–of–field treatment dose, which is generally low for particle therapy. In
conclusion, fluence–modulated pCT with dose and variance objectives allows to calculate
patient–specific fluence maps, that considerably reduce the imaging dose required to acquire
RSP maps with sufficient quality for treatment dose calculation and at imaging doses of only
0.3mGy per scan outside of the ROI. This opens an interesting perspective for image–guided
and adaptive particle therapy.
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9 I M A G E A C C U R A C Y O F A P R OTOT Y P E
S C A N N E R

Proton computed tomography was suggested by Cormack [36] in 1963 as an alternative
to x–ray CT. Today it is envisioned to improve the accuracy of particle therapy treatment

planning compared to x–ray based imaging modalities like DECT, which are already starting
to become available in clinics today. For this purpose, future pCT scanners need to be on par
with or outperform the accuracy achievable with DECT, for which RSP errors of 1% have
been reported [22, 68, 69, 78]. Current prototype pCT scanners appear to be performing
comparably well with expected errors better than 1.6% [87], 1.4% [140], or 0.74% [88]. A
first direct comparison between DECT and pCT using the same phantoms was performed
by Dedes et al. [41] in connection to the works presented in this thesis. They concluded that
the MAPE of pCT was on par with the performance of a state–of–the–art DECT scanner.

This comparison [41] identified artifacts resulting from limited distorted WEPL intervals
to degrade the performance of the pCT scanner under investigation. The WEPL intervals
were linked to interfaces between the five stages of the prototype scanner and could be
identified using a method developed by the author, which calculates heat–maps in image
space for given distorted WEPL intervals. This has led to the development of two alternative
artifact correction methods which are presented in this chapter.

The first method directly addresses the physical origin of artifacts and aims to avoid pro-
tons stopping close to stage interfaces by merging data at two incident beam energies. With
this energy modulation method, the amplitude of artifacts in an experimental acquisition
of the homogeneous water phantom was reduced. The inter–quartile range of RSP values,
which quantifies the extent of artifacts, decreased by a factor of two to three. A negative bias
in the image, which may be linked to systematic errors in the prototype scanner’s calibration
process, persisted and the average RSP remained underestimated by 1%.

The second method developed to address RSP artifacts of the pCT scanner is purely
empirical and makes no assumption on the origin of WEPL distortions. Instead, it uses a
scan of a phantom with known RSP to isolate artifacts in the image. A decomposition of
the RSP map into contributions from small–banded WEPL intervals, makes it possible to
find a WEPL correction function that can corrects for artifacts in subsequent scans. Using a
custom–built elliptical correction phantom, the method was applied to experimental scans of
the water phantom, the CTP phantom and the head phantom. In all phantoms, the negative
offset seen before and most RSP artifacts were removed. The MAPE calculated on the data
of the CTP phantom and the water phantom improved from 0.86% without the correction
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down to below 0.48% using the proposed method. This reduction by on average 47% is a
substantial improvement of pCT image accuracy.

Please note, that this chapter is organized differently compared to the previous chapters:
section 9.1 gives a short motivation, and sections 9.2 to 9.4 present independent, but
connected, investigations. Each section contains a consecutive presentation of materials &
methods, results and a discussion. A common conclusion of all investigations is presented
in section 9.5.

Some results presented in this chapter were published in Physica Medica [197] and other
results were submitted for publication [141]. The author also developed a method, which is
presented here and which was used in a publication in Physics in Medicine & Biology [41].
This specific method was presented at the MCMA conference in Montréal, Canada [198].
The author also contributed to a review article on the role of Monte Carlo simulation for
pCT, which was published in Zeitschrift für Medizinische Physik [102]. The corresponding
publications are stated explicitly at the beginning of sections 9.2 to 9.4.

publications in this chapter

� [197] F J. Dickmann et al.: “Proof of concept image artifact reduction by energy-
modulated proton computed tomography (EMpCT)”. Physica Medica 81 (2021), 237–244.
issn: 11201797. doi: 10.1016/j.ejmp.2020.12.012

� [141] F J. Dickmann et al.: “An empirical artifact correction for proton computed
tomography”. submitted for publication (2021)

conference contributions in this chapter

9 [198] F J. Dickmann et al.: “Understanding image artifacts for a prototype proton
computed tomography scanner via Monte Carlo simulations”. International Conference
on Monte Carlo Techniques for Medical Applications (MCMA), Montréal, Canada (2019)

publication contributions in this chapter

� [41] F G. Dedes, J. Dickmann et al.: “Experimental comparison of proton CT and dual
energy x-ray CT for relative stopping power estimation in proton therapy”. Physics
in Medicine & Biology 64(16) (2019), 165002. issn: 1361-6560. doi: 10 .1088/1361 -
6560/ab2b72

� [102] F G. Dedes, J. Dickmann et al.: “The role of Monte Carlo simulation in
understanding the performance of proton computed tomography”. Zeitschrift für
Medizinische Physik (available online, 2020). issn: 0939-3889. doi: 10.1016/j.zemedi.
2020.06.006

9.1 experimental comparison of proton ct and x–ray ct

The state–of–the–art for calculation of RSP maps for proton therapy range calculation
is the use of DECT scanners, that probe the x–ray attenuation coefficient at two different

https://doi.org/10.1016/j.ejmp.2020.12.012
https://doi.org/10.1088/1361-6560/ab2b72
https://doi.org/10.1088/1361-6560/ab2b72
https://doi.org/10.1016/j.zemedi.2020.06.006
https://doi.org/10.1016/j.zemedi.2020.06.006
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spectra and thereby allow for a better conversion to RSP. As discussed in section 2.3.2, they
allow for an RSP accuracy of 1%, which seems to be comparable to the accuracy achievable
with current prototype pCT scanners. While still only few clinics use DECT routinely for
proton range calculation [70], it is likely that they will supersede single energy CT in the
near future. Consequently, a direct comparison between the performance of clinical DECT
scanners and prototype pCT scanners is of high interest.

Dedes et al. [41] used the pCT prototype scanner, which was also used in this work, to scan
two phantoms with in total 13 tissue–equivalent inserts. For each of the inserts, a ground
truth RSP value was determined using water–column measurements. The same phantoms
were then also scanned at a clinical DECT scanner (SOMATOM Definition FORCE, Siemens
Healthinieers, Forchheim, Germany) and RSP maps were calculated using the state–of–the–art
DECT calibration of Saito and Sagara [199]. This allowed for a direct comparison of RSP
errors with respect to the ground truth values between the pCT and DECT scans. The
accuracy of each imaging modality was quantified by the MAPE over all inserts of both
phantoms. For DECT, this resulted in a MAPE of 0.67%. For pCT the MAPE was slightly
better at 0.55%. The pCT, performance was, therefore, concluded to be on par with the
DECT performance.

The study [41] also investigated intensively the sources of inaccuracies of the prototype
pCT scanner. In particular, artifacts at fixed WEPL intervals due to protons stopping close to
stage interfaces as well as due to the shape of the calibration phantom were suspected to
degrade imaging performance. The artifacts were studied by comparing the experimental
scans to realistic and idealized simulations of the imaging setup. A method for calculating
the impact of distorted WEPL intervals on the reconstructed volume was developed by
the author and is described in section 9.2. This method helped to identify sources of
image artifacts and Dedes et al. [41] conclude that their mitigation is critical for the further
improvement of pCT imaging performance.

9.2 identification of proton ct image artifacts

� The method presented in this section was developed by the author and used in Dedes et al. [41].

materials & methods

WEPL intervals at the stage interfaces were suspected to distort the pCT signal and
cause circular rings in the reconstruction of homogeneous cylindrical phantoms. This is
illustrated in fig. 9.1, where protons stopping at stage interfaces are indicated in red. For a
homogeneous cylindrical phantom, these protons will always fall in the same annulus over
the full rotation of the tomographic reconstruction. A distortion of protons stopping at stage
interfaces would, consequently, result in a ring–shaped artifact in the reconstructed image.
In addition, the WEPL calibration curve had irregularities at multiples of the calibration
phantom’s brick thickness (illustrated in fig. 3.2), which would result in similar rings, but
which are not considered in the following since they were of a minor magnitude.



140 image accuracy of a prototype scanner

five-stage energy detector

proton stopping
at stage interface

proton not stopping
at stage interface

resulting ring
artifact

homogeneous cylindrical phantom

rotat
ion fo

r

tomogra
phic a

cq
uisit

ion

Figure 9.1: Illustration of ring–shaped image artifacts resulting from stage transitions of the five–stage
energy detector for a homogeneous phantom.

Each voxel of an image is reconstructed from projection data potentially covering a broad
distribution of WEPLs from different rotation angles. To estimate the impact of a given
distorted WEPL interval, WEPL heat–maps were calculated, that, for each voxel of the image,
indicate the corresponding fraction of WEPLs from a suspected interval. For this purpose, a
ground truth RSP map was calculated from experimental data by thresholding a phantom’s
reconstruction to the nearest true (known) RSP value. This ground truth RSP map was
then forward projected in parallel beam geometry to calculate the sinogram s(ξ, θ), which
contains WEPL values. Subsequently, the sinogram was thresholded and a new sinogram
sthr was calculated as

sthr(ξ, θ) =

{
1 if s(ξ, θ) ∈ {w}

0 else
, (9.1)

where the set {w} contained all WEPLs from the suspected intervals. This sinogram was
then backprojected according to the same geometry to form the WEPL heatmap h as

h(x,y) =
1

N

N∑
n=1

sthr(x cos θn + y sin θn, θn), (9.2)
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where the sum was over N = 360 projection angles covering a full rotation. The interpo-
lation that was needed to query the ξ–coordinate was implemented as a nearest neighbor
interpolation.

The WEPL heat–maps result in a value of h(x,y) = 1 if the WEPL of every ray that inter-
sected the voxel at (x,y) came from the set {w} of suspected WEPLs and the corresponding
RSP value is expected to be distorted. When h(x,y) = 0, none of the corresponding WEPLs
was in the interval. For values in between, a relative fraction is calculated, which gives a
qualitative idea of the amount of distortion to be expected, but it is not to be taken quantita-
tively, since eq. (9.2) uses a parallel beam geometry and also disregards the reconstruction
filter. Nevertheless, the WEPL heat–maps can give a good first estimate of where in the
image distortions are to be expected for certain suspected WEPL intervals.

To demonstrate the use of WEPL heat–maps for the identification of distorted measure-
ments, experimental data of the water phantom acquired for the study [41] presented in
section 9.1, was analyzed. Artifacts were compared to a WEPL heat–map for the suspected
WEPL intervals at (36± 3)mm, (88± 3)mm, and (139± 3)mm, which correspond to pro-
tons stopping in between two stages of the energy detector (see fig. 9.1 and section 3.2.2)
and which were suspected to cause distortions. To demonstrate that the reconstruction
algorithm would correctly process un–distorted data, an idealized simulation was performed,
which did not model any detector effects and thus did not have distorted WEPLs intervals.
Idealized simulations do not model the scanner’s geometry, but simply score the energy of
protons prior and after the object. The two energies can be converted to WEPL according to
eq. (3.3).

results

Figure 9.2 (a) and (b) shows the experimental reconstruction as well as an ideal simulation
of the water phantom, for which an RSP of one is expected by definition. While the water

C/W = 1.0/0.15

(a) measurement

C/W = 1.0/0.15

(b) simulation (ideal) (c) distorted WEPL fraction in percent

0 15 30

Figure 9.2: RSP reconstructions of the water phantom for (a) experimental data, (b) idealized data
simulated without detector effects, and (c) the voxel–wise fraction in percent of WEPLs
originating from distorted WEPL intervals close to stage transitions of the pCT scanner.
Arrows in (a) and (c) are at the same locations with respect to the phantom.
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body is flat as intended for the idealized simulation, the experimental reconstruction is
distorted by two ring artifacts, which occur at different radii and which are marked with
arrows. For both rings, towards the center of the phantom RSP is decreased and it is
increased towards the hull. The location of the two rings is confirmed by the WEPL heat–
map in fig. 9.2 (c), where the rings occur at the same locations. An additional third ring
is visible, but is located at the PMMA hull of the water and not visible for this grayscale
setting. The central ring appears to be stronger in the WEPL heat–map despite the fact that
the RSP artifact itself is weaker. While the outer ring agrees precisely with the prediction of
the heat–map, the inner ring is slightly closer to the center in the reconstruction.

discussion

WEPL heat–maps were used to predict the location of distorted RSP images from stage
transitions of the prototype scanner’s energy detector. They agreed well with ring artifacts in
the experimental acquisition, in particular for the outer ring. As expected, heat–maps cannot
be taken quantitatively and the weaker ring artifact was represented by a higher fraction
of distorted WEPLs in the heat–map. Slight differences in the location of the predicted
rings may also be caused from the parallel beam geometry used for the calculation of the
heat–maps, which only roughly agrees with actual reconstruction geometry. Nevertheless,
the calculation of WEPL heat–maps provides a fast and simple method to investigate the
origin of ring artifacts in a pCT image. Dedes et al. [41] used this tool and also included
artifacts caused by the geometry of the wedge–shaped calibration phantom in the heat–maps,
which was required to reach a better agreement for some phantoms, but are not included
here.

9.3 accuracy improvement with energy–modulation

� The results presented in this section were published in Physica Medica [197].

materials & methods

9.3.1 Data acquisition

Having concluded that the performance of the prototype pCT scanner was mainly limited
by image artifacts that originate from well–defined intervals of WEPLs, a potential improve-
ment in accuracy may be achieved by avoiding such intervals during the acquisition. The
predominant origin of distortions was protons that stopped at or close to stage interfaces
of the five–stage energy detector [41]. Those are small intervals of WEPL that occur in
multiples of 52.9mm, which is the WEPL of each stage. In this chapter, data was acquired
at two incident energies, at 200MeV and at 187.5MeV . The range in water of protons
at these two energies is 260mm and 232mm, respectively [53]. The difference of 28mm
corresponds to approximately half the thickness of a stage plus the wrapping foil. Thereby,
a WEPL that makes protons stop at a stage interface for one dataset makes them stop in the
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center of the stage for the other dataset. Consequently, the two datasets can be combined
to completely cover the phantom while avoiding protons stopping close to stage interfaces.
This combined dataset will then produce an image with reduced artifacts. In the future,
such energy–modulated proton computed tomography (EMpCT) scans may be acquired
using small pencil beams such as for FMpCT. This would allow to scan the phantom while
alternating the beam energy such that protons never stop at stage interfaces. However, this
initial feasibility study employed twice the imaging dose and performed one complete scan
for each energy and merged the data in postprocessing.

Experimental data of the calibration phantom and the water phantom were acquired with
a broad beam using the prototype pCT scanner for the two incident energies. The two
datasets of the water phantom are referred to as low–E (187.5MeV) and high–E (200MeV) in
the following. After data filtration, 98.2 million protons were intersecting the reconstruction
volume for the high–E dataset and 99.5 million for the low–E dataset and 360 projections
were used for reconstruction. This corresponded to a single projection fluence of 15.7mm−2

and 15.8mm−2 respectively and to imaging doses of 0.72mGy and 0.75mGy for the high–E
and low–E datasets as estimated from corresponding simulations.

9.3.2 Dataset selection

In fig. 9.3 (a) and (b), calibration histograms are shown for the two incident energies. The
data for the high–E dataset in (b) agrees with fig. 3.3 and with what is expected for the
normal operation of the scanner at 200MeV . In contrast to that, the low–E data are shifted
towards lower WEPLs, since the same energy deposit to the stopping stage requires a lower
WEPL (with less energy loss) due to the initially lower energy.

Dashed lines in fig. 9.3 (a) and (b) indicate stage transitions, where, for an increasing
WEPL, the energy deposit to a given stage goes to zero and suddenly increases to the
maximum energy deposit, but to the previous stopping stage. The WEPLs corresponding
to these stage interfaces are listed in table 9.1. The difference between the stage transitions
of the two datasets, which is noted in the last column of the table, confirms that they are
indeed shifted by approximately half a stage thickness, which is 26mm.

To avoid protons stopping at stage interfaces to be used in the reconstruction, the two
datasets of the water phantom were merged in postprocessing. The selection, whether or
not a proton was to be included in the merged dataset, was made based on the WEPL.
Figure 9.3 (c) shows calibration curves for both datasets that resulted from the calibration
histograms in (a) and (b). The WEPL intervals for each dataset are indicated as solid lines
for the calibration curves and as bars on both sides of the plot. To determine the WEPL
interval used for the low–E dataset, the WEPLs of the stage transitions in table 9.1 of the
high–E dataset were reduced by 5mm to determine the start of the interval. The end of
the interval was then defined as the start of the interval of the high–E dataset, and thus
as the stage transition of the low–E dataset, minus 5mm. For example: the low–E dataset
was selected for WEPLs between 36mm− 5mm = 31mm and 61mm− 5mm = 56mm.
The high–E dataset was then selected between 56mm and 88mm− 5mm = 83mm and so
on. There was no overlap between datasets and the choice of 5mm was such that the used
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Figure 9.3: Calibration histograms for the (a) low energy and the (b) high energy dataset, and (c)
the resulting calibration curves for both datasets with an indication of intervals where
the two datasets were used. Dashed lines in (a) and (b) indicate transitions between
two stages of the energy detector. The color scale is shared between (a) and (b). In (c),
solid lines of the calibration curve and bars on both sides of the plot indicate if a given
WEPL was used in the merged dataset and the dashed calibration curve was still used
for single–energy datasets. < Reproduced with permission from Dickmann et al. [197].

intervals were approximately in the middle of each stage in terms of energy deposits, as can
be appreciated in fig. 9.3 (c).

Two different strategies were followed when deciding if a given proton was to be included
in the merged dataset:

• dataset selection A: for each proton, use its calibrated WEPL and check if it falls into the
accepted WEPL interval of the corresponding dataset, or

• dataset selection B: for each proton, use its tracking coordinates at the front tracker to
query the mean WEPL of protons within the same 1mm× 1mm pixel, and decide
based on this mean WEPL whether to include the proton or not.

Strategy A may be faster since it only requires knowledge of the individual proton’s
WEPL, strategy B may be more robust to noise, since it considers the average WEPL of
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Table 9.1: Stage interfaces of the high–E and the low–E datasets and corresponding WEPL values.
The furthest stage is marked as stage 5 and corresponds to the lowest WEPL. Differences
in WEPL between stage transitions are noted in the last column.

stages dataset WEPL/mm difference/mm

5→ 4 low–E 10 —
high–E 36 26

4→ 3 low–E 61 25

high–E 88 27

3→ 2 low–E 113 25

high–E 139 26

2→ 1 low–E 165 26

high–E 191 26

all surrounding protons. Since WEPL intervals were chosen without overlaps, the merged
datasets had the same number of protons compared to the original datasets.

To visualize the dataset distributions within a projection of the water phantom, protons
from a single projection were assigned a value of 1 if they came from the low–E dataset
and a value of 2 if they came from the high–E dataset. From this data, the average dataset
number was calculated in bins of 1mm× 1mm resulting in projection values of 1, if the
given pixel was exclusively reconstructed from the low dataset, and 2 if exclusively from the
high–dataset. For an exemplary value of 1.2, the fraction of protons from the low–E dataset
would be 20%. This evaluation was also done for two simulated projections of a pediatric
head for the data of patient 1 in chapter 8.

9.3.3 Evaluation of energy–modulated scans

Images of the water phantom were reconstructed for the two initial datasets as well as
for two merged datasets with dataset selection A and B. To evaluate the accuracy of these
two scans, for each voxel in the image, the distance to the rotation axis was calculated.
Then, the mean RSP value was calculated in radial bins, since distortions for the cylindrical
water phantom were expected to be ring–shaped. The radial bins were chosen such that the
spacing was unequal in terms of the radius, but each annulus covered a constant area of
A = 500mm2. This was achieved by rounding the voxels’ radii to the nearest radius of the
set {rn} with

r0 = 0mm, (9.3)

r1 =
√
A/π, (9.4)

rn+1 =
√
r21 + r

2
n. (9.5)

With this approach, the mean in each annulus was calculated over the same number of
voxels and, therefore, with a comparable uncertainty. In each radial bin, the mean RSP value
was calculated as a function of the radius. In addition, the median RSP of all bins as well as
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the inter–quartile range (IQR) from the 25th to the 75th quartile of all mean RSP values was
calculated. The median RSP represents the average accuracy and the IQR is representative
of the magnitude of rings present in the image.

results

Figure 9.4 (a) shows a projection of the water phantom for the high–E dataset, where the
top and bottom lids as well as the phantom holder can be seen in contrast to the central
water region. At the top edge of the water region, a small air bubble reduces the WEPL.
In fig. 9.4 (b), the corresponding average dataset number for dataset selection A is shown,
where the dataset was selected based on each proton’s WEPL. While certain regions with
predominant datasets can be identified, most pixels have average dataset numbers between
1 and 2, which indicates a relevant contribution from both datasets. In general, the dataset
map is noisy. Figure 9.4 (d) shows the same evaluation for dataset selection B, where the
average WEPL was used to choose the dataset. This map is much less noisy and most pixels
are at the values 1 or 2, except for regions close to the edges of the phantom. Those merged
regions occur because the dataset was selected at the front tracker at d = −167mm, while
the data shown here is at the isocenter at d = 0mm. The regions which are scanned with
a homogeneous energy dataset are approximately 10mm wide, except for the very edge
of the phantom, where both datasets are used even for dataset selection B. Figure 9.4 (c)
shows a histogram of WEPLs in the projection of the water phantom, where two peaks can
be identified: one peak around 150mm corresponding to the largest WEPL observed in the
water region and a second peak around 170mm corresponding to WEPLs at the lids and
the holder, which are made from a higher RSP material. Colors in the stacked histogram

Figure 9.4: Spatial distribution of the two energies in the energy–modulated scan in one projection of
the water phantom: (a) WEPL map of the high–E dataset, (b,d) average dataset number
for selection strategy A and B, and (c) a histogram of WEPLs in the projection with
the corresponding dataset selection. All data are shown at the isocenter binning depth
d = 0mm. < Reproduced with permission from Dickmann et al. [197].
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Figure 9.5: Spatial distribution of the two energies in the energy–modulated scan in one projection
of a pediatric head: (a,b) WEPL map at a rotation angle of 0 and 90 degrees, (c,d) the
corresponding dataset selection for selection strategy B. < Reproduced with permission
from Dickmann et al. [197].

indicate the distribution of WEPLs to the two datasets. The transition between two datasets
spans approximately a WEPL range of 5mm.

Figure 9.5 shows simulated WEPL maps as well as dataset maps for two projections of
a pediatric head scan and dataset selection B. While in particular in fig. 9.5 (c) around the
nasal cavity in the center, smaller features occur in the dataset map, most regions of uniform
dataset number are 10mm wide or larger.

Figure 9.6 (a) and (b) shows reconstructions of the experimental data of the water phantom
for the low–E and high–E dataset, and in (c) and (d) for the merged dataset using selection
strategies A and B. The original datasets at the two energies show ring artifacts at different
radii. Artifacts for the high–E dataset are stronger than those for the low–E dataset. This is
confirmed in the corresponding radial profiles in fig. 9.6 (e), where the modulation seen for
the high–E dataset is more prominent. Both datasets suffer from an offset of approximately
1% compared to the expected RSP for water of one. In particular the central radial bin is
affected by a negative offset.

The merged datasets in fig. 9.6 (c) and (d) as well as the corresponding line profiles in (f)
show considerably less rings, in particular when compared to the high–E dataset, which is
the current standard acquisition. In the profiles, data selection strategy B is slightly flatter
compared to strategy A, which can also be seen visually. Both merged datasets are also
offset by 1% and their central values are further reduced.

In table 9.2 the median RSP and the IQR from the 25th to the 75th percentile are listed for
all four datasets. The median values reflect the 1% bias, that was already seen in the profile
plots. The low–E dataset as well as the merged dataset with energy modulation B are closest
to the RSP of water and therefore produce the best results in terms of accuracy. The IQR is
highest in the high–E dataset, but also elevated in the low–E dataset. The energy–modulated
scan with selection B has the smallest IQR, which is three– to four–fold better than the
high–E dataset and about two–fold better than the low–E dataset.
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Figure 9.6: Reconstructions of the water phantom for the (a) low and the (b) high energy dataset as
well as (c,d) for the two merged datasets. Radial profiles through (a,b) are shown in (e)
and through (c,d) are shown in (f). < Reproduced with permission from Dickmann et al. [197].

Table 9.2: Evaluation of the median and the inter–quartile range (from the 25th to the 75th quartile)
of all radial bins of the water phantom for the high–E, the low–E and both merged datasets.
For both quantities the best value among the four datasets is indicated.

dataset median IQR (25/75)

low–E 0.990* 0.5%
high–E 0.988 0.7%
energy modulation A 0.988 0.4%
energy modulation B 0.990* 0.2%*

* best value among the four datasets

discussion

Ring artifacts stemming from detection inaccuracies of protons stopping close to stage
interfaces were considerably reduced in experimental acquisitions by merging the proton–
by–proton data of two scans at different energies in an EMpCT scan. The energies were
chosen such that their corresponding ranges differed by half the thickness of a stage, thereby
allowing a selection of protons that completely avoided stage interfaces.

While the design of the experiment as used here employed double the imaging dose
compared to a normal scan, it may be feasible in the future to acquire EMpCT scans with
small pencil beams with alternating energy avoiding to scan the patient twice at both energies.
Were an object to be scanned with energy–modulated pencil beams, its RSP map would
need to be known before the initial scan to plan the EMpCT acquisition using optimization,
similar to FMpCT. This RSP map may come from a prior x–ray CT scan and EMpCT scans
would be possible at little additional imaging dose. If such scan is not available, a full pCT



image accuracy of a prototype scanner 149

scan could be performed at one energy, which would allow to guide the acquisition of the
second energy only in regions where this is necessary to avoid artifacts. In that case, the
imaging dose would only be elevated by about 50%.

Calculation of dataset maps for a projection of the water phantom and two projections of
a pediatric head scan have shown that modulation features are approximately of the size of
10mm or above for most of the phantom. This would allow them to be scanned with energy–
modulated pencil beams of the extent determined in chapter 7, which was between 6mm
and 9mm (FWHM). At the transition regions as well as for very heterogeneous regions such
as the nasal cavity, more than one energy may be needed allowing to reject some protons,
which in turn would increase imaging dose. In principle, the use of energy–modulation with
more than two energies would allow to avoid the five–stage design of the energy detector
and directly build a monolithic detector with only one stage as done by DeJongh et al.
[89] and Ordoñez et al. [200]. This would additionally reduce image noise due to energy
straggling in the detector (see chapter 5), but may require longer scan times.

The comparison of the two dataset selection strategies showed that selection A, where the
selection of protons was made based on their individual WEPL was noisier in the dataset
maps and also resulted in worse results in terms of image accuracy. Acquisition of such
selection maps with small energy–modulated pencil beams would not be achievable due
to the mixing of datasets throughout the projection. On the other hand, dataset selection
B achieved better results in terms of RSP accuracy and also had clearly separated dataset
maps, which would be achievable with small pencil beams in most regions.

The acquisition of the low–E scan showed less severe image artifacts compared to the
high–E scan, which is the typical acquisition energy. Since the calibration phantom was not
moved in between the calibrations at the two energies, this difference cannot be explained by
a changing quality of the two calibrations. It may, however, be explained by the dimension of
the water phantom, for which the most frequent WEPLs are between 140mm and 155mm,
which is close to a stage interface for the high–E dataset and further away from an interface
for the low–E dataset. In addition, the low–E dataset only experienced two stage transitions
over the complete WEPL range of the water phantom, while for the high–E dataset this was
three. As shown by Dedes et al. [41], a different phantom size can indeed have an impact on
the magnitude of artifacts observed.

The merged datasets, and in particular the datasets with selection strategy B had a clear
visual reduction of ring artifacts compared to both single–energy datasets. All datasets
suffered from a bias of 1%, which may be caused by wrong assumptions on the RSP of the
wedge–shaped calibration phantom or other inaccuracies in the calibration. It is unlikely
to be caused by the reconstruction algorithm, which gives unbiased reconstructions for
ideal datasets [113]. The IQR, and therefore the magnitude of ring artifacts, was reduced
considerably using energy–modulation B. The median error with EMpCT was also the lowest
among all datasets using selection strategy B, but the accuracy is still to be improved given
the offset of 1%, which could by design not be addressed by EMpCT, since it merges two
datasets that both suffer from the bias.
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9.4 accuracy improvement with an empirical correction

� The results presented in this section were submitted for publication [141].

materials & methods

9.4.1 An empirical correction method for proton CT

The EMpCT acquisitions in the previous section allowed to reduce ring artifacts in pCT
images by avoiding the physical reason for their occurrence, which were protons stopping
close to stage interfaces. However, the method did not completely remove artifacts and
failed to correct for a systematic bias, that was present in the original data. In this section, an
empirical correction method is developed that makes use of a tomographic scan of a phantom
with known RSP to isolate and quantify WEPL distortions. With the distortion known,
a correction function can be found, that removes artifacts from subsequent experimental
scans. The proposed method is based on the empirical cupping correction of Kachelrieß,
Sourbelle, and Kalender [201], which was developed to reduce cupping artifacts in x–ray CT
images, and which was adapted here to the requirements of pCT. Unlike EMpCT, it makes
no assumption on the origin of artifacts and is purely empirical and based on the scan of a
custom–made elliptical phantom of known RSP, which was constructed specifically for this
work.

A schematic workflow of the proposed method is shown in fig. 9.7 and will be detailed
in the following. The notation in this section is adapted to the one of the original publi-
cation [201]. Let q(u, v) be the measured WEPL projection values at the isocenter binning
depth d = 0mm. In the following, the dependence on (u, v) will be dropped to simplify
the notation. Instead of using the FDK–DDB algorithm, a simple filtered backprojection
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Figure 9.7: Schematic for the optimization of the correction function with examples of all quantities
of the algorithm. The basis volumes fn are normalized to their maximum.
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is applied to reconstruct an image f from the projection values q, which allows to reduce
the computational cost of the method. A correction function P is defined, which calculates
corrected projection values p = P(q) from the measured ones. It is assumed, that P can be
expressed as a linear combination of N = 47 basis functions Pn(q) as

P(q) = q+

N∑
n=1

cnPn(q) = q+~c · ~P(q), (9.6)

where the coefficient vector ~c needs to be determined. An additional term q is added before
the sum compared to the original method, such that the weighted sum of basis functions
~c · ~P(q) only determines the WEPL error P(q) − q. In the original method, this was not
necessary, since q was one of the basis functions. The choice of N is motivated later.

Exploiting the linearity of the inverse Radon transform R−1, which denotes the recon-
struction operation, the corrected image f(~r) with ~r = (x,y, z) can be expressed as a linear
combination of basis images fn(~r), which can be calculated as

fn(~r) = R−1Pn(q), (9.7)

with 1 6 n 6 N. The corrected image then is

f(~r) = R−1p = R−1q+

N∑
n=1

cnfn(~r) = f0(~r) +~c · ~f(~r), (9.8)

were f0 = R−1q is the uncorrected image. All reconstructions were performed using the
FDK algorithm for distance–driven binned data at the central binning depth and using the
Reconstruction Toolkit of Rit et al. [122].

The basis functions were not chosen to be monomials as in the original publication [201],
but instead radial basis functions were used, that have been employed in the context
of machine learning to approximate arbitrary functional dependencies [202]. The basis
functions were Gaussian functions with a small standard deviation σ = 2mm and equally
spaced peaks, which were defined as

Pn(q) = A · exp

[
−

(
q− (n− 1) · s− s0√

2σ

)2]
, (9.9)

with an amplitude A = 1mm, a step size of s = 2σ = 4mm and a minimum WEPL of
s0 = 8mm. Since each basis function had an amplitude of 1mm, setting the weight cn of
basis function n to, for example, cn = 2, would result in the corresponding WEPL interval
around (n− 1) · s+ s0 being shifted up by 2mm.

The coefficients ~c were found by assuming that a ground truth RSP value of a given homo-
geneous correction phantom is known and a template t(~r) can be obtained by thresholding
f0(~r) to the true RSP value inside the phantom or zero outside the phantom. This makes no
assumptions on the actual shape or location of the correction phantom, and only its RSP
must be known. With this, the cost function

E2 =

∫
d3rw(~r) (f(~r) − t(~r))2 (9.10)
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is to be minimized, where w(~r) is a spatial weight, which is set to zero at the edges of
the correction phantom. This avoids distortions of the method due to the limited spatial
resolution of the scanner. As suggested in the original publication [201], the weights can be
found by solving the system of linear equations ~a = B ·~c for

ai =

∫
d3rw(~r)fi(~r)(t(~r) − f0(~r)), (9.11)

Bij =

∫
d3rw(~r)fi(~r)fj(~r), (9.12)

where 1 6 i, j 6 N. Equation (9.11) has an additional term f0(~r) here, due to the explicit
inclusion of q in eq. (9.6). The system was solved using the trust region reflective algorithm
with an implementation of the SciPy library [203].

Subsequent scans were then corrected by passing each of the WEPL values of the three–
dimensional distance–driven binned projections through the correction function P(q). The
projections were then reconstructed using the FDK–DDB algorithm.

The previous assumption that the correction phantom consists of a single material makes
the method simpler. However, this is not strictly required, since the template t(~r) can
represent any number and distribution of known RSP values as long as they can be clearly
identified by thresholding.

9.4.2 Evaluation of corrected proton CT scans

Experimental scans were performed using the prototype pCT scanner and with the water
phantom, the CTP phantom and the pediatric head phantom. Scans were performed at a
proton energy of 200MeV and at 187.5MeV , which effectively doubled the amount of test
cases since artifacts are expected to be different at different incident energies, as shown in
section 9.3. Scans at two energies, however, are not required for the proposed method to
work and most likely the method would be applied to a single energy only in the future. To
apply the correction method, the custom–made elliptical phantom shown in fig. 3.6 (d) was
also scanned at both energies. The correction phantom consisted of PMMA and had a height
of 80mm and diameters of 165mm and 80mm. The flat surface of the phantom was milled
to a flatness of better than 0.02mm allowing for a determination of the phantom’s RSP as

RSPref. = 1.160± 0.001 (9.13)

using a multi–layer ionization chamber and protons with an incident energy of 150MeV .
The RSP was determined and averaged at five distinct locations across the flat surface.

The elliptical shape of the phantom was chosen to have a smooth outer hull while covering
the widest possible WEPL range down to even small WEPL values. The phantom’s maximum
WEPL was 191mm, and thus larger than the maximum WEPL of all other phantoms, which
were 152mm for the water phantom, 173mm for the CTP phantom, and approximately
176mm for the head phantom. This also justifies the choice of N = 47 basis functions, which
cover WEPLs from smin = s0 = 8mm up to smax = (N− 1) · s+ s0 = 192mm, which is 1mm
more than the maximum WEPL of the correction function. The minimum WEPL was chosen
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according to the smallest non–zero WEPLs observed in the ellipse data, which is about 8mm
due to the pixel size of the projections.

The performance of the proposed correction method was evaluated by comparing corrected
and uncorrected reconstructions of the water and the ellipse phantom while averaging all
homogeneous slices of the two phantoms to reduce noise. For the CTP phantom, the MAPE
was calculated over all inserts and the body similar to chapter 7. The mean RSP for each
insert was determined within a radius of 3mm around its center, which was 50% of the
insert radius. The RSP of the body was calculated for a central circular ROI with a radius of
10mm. The mean RSP values were then compared to the reference values RSPref., resulting
in the relative error (RSPmean − RSPref.)/RSPref.. This allowed to calculate the MAPE from
all M inserts as

MAPE =
100%
M

·
M∑
m=1

|RSPmean,m − RSPref.,m|

RSPref.,m
, (9.14)

where the body of the CTP phantom and the water phantom were also considered as one of
theM values. Results of the accuracy analysis were put into perspective to results determined
by Dedes et al. [41], where the center of the CTP phantom as well as the accuracy of the
water phantom were re–evaluated for this study, since they were not reported there. The
MAPE reported here also differs from the original publication, since it contains values only
from one phantom, whereas the original publications considered more than one phantom.

Since the proposed method requires an additional scan for each beamtime, it was tested if
the application of the correction makes the original calibration omissible. For this, data of
the CTP phantom were calibrated using a calibration run acquired 15 months before the data
acquisition for this study. Subsequently the correction method was applied using data of the
ellipse phantom with the same, old calibration. Image accuracy was evaluated as described
before and compared to a run using the calibration of the day and the proposed method.

For the scan of the head phantom no ground truth RSP values were known, but the
phantom was expected to consist of piece–wise constant materials. Images were, therefore,
inspected visually, and, to isolate the effect of the correction function, difference images
between corrected and uncorrected scans were calculated.

results

Figure 9.8 displays the two correction functions that were found using the proposed
method for the two datasets at an initial energy of 200MeV and 187.5MeV . The functions
represent the WEPL error P(q) − q = ~c · ~P(q) as a function of the WEPL q. Both functions
were strictly positive, which was not enforced by the optimization, and appear to follow the
same linear trend with a positive slope of approximately 1.3%. They have a common feature
at around 130mm, where both corrections agree precisely. At around 40mm and 70mm
for the 200MeV function and at 80mm for the 187.5MeV function distinct features were
observed, where different corrections were applied to the two datasets. Since there was no
basis function support below 8mm and above 192mm, both correction functions drop to
zero outside of this interval.

In fig. 9.9 (a) and (b) uncorrected and corrected scans of the ellipse phantom are shown for
both incident energies. The uncorrected scans, based on which the correction function was
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Figure 9.8: Optimized correction functions P(q) − q = ~c · ~P(q) for the high and low energy dataset,
where q is the WEPL.

found exhibited clear artifacts, which had hyperbolic shapes. These artifacts were greatly
reduced, when the correction function was applied to the ellipse data as a consistency check.
A central dip remained in the center as well as minor artifacts in particular in the dataset at
200MeV . These observations are confirmed in the last row of the figure, where line profiles
are shown which were taken horizontally through the center of each phantom. Uncorrected
scans of the ellipse phantom at both energies had a bias which was outside of the ±1%
band shown as a shaded green area. Using the correction, this offset was removed and the
scans were on average at the reference value. The magnitude of ring artifacts as seen in the
profiles, was also considerably reduced.

Figure 9.9 (c) and (d) shows the same evaluation for the water phantom and using
the correction function that was found based on the ellipse data. Ring artifacts in the
uncorrected scans were strong, which can be seen both visually and in the line profiles. A
similar negative bias as for the uncorrected ellipse scans was observed. The magnitude of
maximum to minimum RSP value within the profiles was slightly above ±2%. Application of
the correction function reduced the ring artifacts substantially, with only subtle modulations
remaining. In the line profiles, all RSP values were within the ±1% band around the
reference RSP and their magnitude was reduced considerably.

The mean RSP in the ellipse phantom and the water phantom for both energies are
reported in table 9.3. The mean values across the entire phantom body confirmed the
negative bias of uncorrected scans that was already seen in the line profiles. Application
of the correction substantially improved the accuracy and reduces the bias. Results for the
ellipse phantom were slightly better than those for the water phantom, but all relative errors
of corrected scans were below 0.3%.

Figure 9.10 displays the scan of the CTP phantom at 200MeV without any correction in (a),
with the proposed correction method in (b), and in (c) the scan of the study of Dedes et al. [41]
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Figure 9.9: Corrected and uncorrected scans of (a,b) the ellipse and (c,d) the water phantom at both
energies. The last row shows horizontal line profiles along the center of the phantom
together with the reference RSP and a shaded area indicating a ±1% interval around that
value.

is shown again as a comparison. Artifacts visible in (a) and (c) were at similar locations and
of similar magnitude. They were not ring–shaped due to the heterogeneity of the phantom
as discussed in Dedes et al. [41]. The corrected data in (b) was visibly more homogeneous
and artifacts were reduced considerably. The RSP was also at a higher level compared to (a)
and (c).

In fig. 9.10 (d), the relative RSP errors of all inserts and the body are shown for the three
scans in (a) – (c). For the two uncorrected scans, errors were very similar and negative,
except for the PMP insert. The inserts are ordered by RSP and there was a tendency of a
stronger underestimation for higher RSP values. The relative errors of corrected scans were
in general closer to zero and all were within the ±1% interval, except for the PMP insert, for
which the lower uncertainty bound overlapped with the interval. While in general, errors
were reduced, the trend of overestimating low–RSP inserts and underestimating high–RSP
insets remained.

Table 9.4 lists relative errors for all inserts of the CTP phantom and the body of the water
phantom both for uncorrected and corrected scans at 200MeV and 187.5MeV . In addition,
the results of Dedes et al. [41] are reported in the last column, where the body of the CTP
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Table 9.3: Mean RSP values with and without the empirical correction for the water and the ellipse
phantom.

uncorrected corrected
phantom RSPref. energy / MeV RSP rel. error / % RSP rel. error / %

ellipse 1.160 200 1.145 −1.3 1.160 0.0
187.5 1.145 −1.3 1.159 0.1

water 1.000 200 0.990 −1.0 1.003 0.3
187.5 0.988 −1.2 1.002 0.2

Table 9.4: Relative RSP errors of all inserts and the body of the CTP phantom at the two incident
energies. In the last column relative errors from a previous study [41] are reported,
which were re–evaluated for this study. In the last row, the mean absolute percentage
error (MAPE) is calculated for all errors reported in the table. Abbreviations: PMP –
polymethylpentene, LDPE – low–density polyethylene.

rel. error in % uncorrected error corrected error Dedes [41]
material RSPref. 200MeV 187.5MeV 200MeV 187.5MeV 200MeV

CTP phantom

PMP 0.883 0.19± 0.10 −0.19± 0.12 1.16± 0.10 1.23± 0.12 1.08± 0.11
LDPE 0.979 −0.25± 0.08 −0.22± 0.10 0.87± 0.08 0.99± 0.11 −0.49± 0.11
polyst. 1.024 0.55± 0.08 −0.89± 0.10 0.32± 0.08 0.29± 0.10 0.04± 0.10
epoxy 1.144 −1.33± 0.00 −0.55± 0.00 −0.06± 0.00 0.37± 0.00 −1.20± 0.00*
acrylic 1.160 −0.81± 0.07 −0.96± 0.10 0.29± 0.07 0.24± 0.09 −0.30± 0.10
Delrin 1.359 −1.36± 0.06 −1.22± 0.08 0.06± 0.06 0.07± 0.08 −1.16± 0.09
Teflon 1.790 −1.56± 0.05 −1.66± 0.06 −0.38± 0.05 −0.49± 0.07 −1.31± 0.05
water phantom

water 1.000 −0.99± 0.00 −1.15± 0.00 0.35± 0.00 0.18± 0.00 −0.22± 0.00*
MAPE 0.87± 0.02 0.86± 0.03 0.44± 0.02 0.48± 0.03 0.72± 0.03

*data were re–evaluated for this study

phantom (epoxy) and the water phantom were re–evaluated for this study. The reference
RSP is given for each insert and inserts are ordered by RSP.

The MAPE was calculated over all values listed in the table and was at 0.87± 0.02 and
0.86± 0.03 for the two uncorrected scans. The re–evaluated MAPE of the previous study
was calculated to be 0.72± 0.03, which is different from the value reported in the original
publication, since here only the CTP and water phantom were considered. Using the
proposed correction method, the MAPE was reduced considerably to 0.44± 0.02 for the
200MeV dataset and 0.48± 0.03 for the 187.5MeV dataset. This is a reduction of 49% and
44% compared to the corresponding uncorrected scans.

Figure 9.11 shows the same evaluation as in fig. 9.10, but for the scan of the CTP phantom,
that was calibrated using a 15 months old calibration. The corresponding uncorrected image
in (a) was consequently distorted and the under–representations in (d) were larger than 2%.
Application of the proposed method to this distorted dataset in (b) restored the accuracy and
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Figure 9.10: Evaluation of the RSP accuracy of the (a) uncorrected and (b) corrected CTP phantom
acquired at 200MeV and (c) comparison to the data of Dedes et al. [41]; (d) the relative
RSP error for all inserts and datasets with the green area indicating a ±1% interval. The
RSP of inserts is given in brackets behind the name and inserts are sorted by RSP.

reduced ring artifacts. For comparison, in (c) the scan with the correct calibration and the
proposed method is shown and in (d) little differences were observed between the accuracy
of (b) and (c). The MAPE of the CTP phantom for the uncorrected scan was (1.94± 0.03)%.
Using the proposed method this was reduced to (0.32± 0.03)%, which is even slightly
better than the accuracy of the scan using the correct calibration and the proposed method.
However, accuracy values between the two corrected scans overlapped for all inserts within
the uncertainty interval.

In fig. 9.12 reconstructed data for the head phantom at both incident energies is shown
with and without the correction. In addition, difference maps were calculated between
the corrected and the uncorrected scans. Arrows indicate locations of visible artifacts and
are repeated at the same locations for the corrected scan and the difference map. For the
soft–tissue region of the phantom, the material was constant and no modulation is expected.
Modulations in the uncorrected scan could, therefore, be attributed to artifacts. For all
marked locations, the artifacts reduced considerably or were completely removed using the
proposed method. In the difference maps, a general underestimation could be observed for
the uncorrected phantom. Artifacts that were removed using the proposed method were in
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Figure 9.11: Evaluation of the RSP accuracy of the CTP phantom at 200MeV and (a) using the
calibration of another beamtime, (b) using the calibration of another beamtime and the
correction method, (c) using the the correct calibration and the correction method; (d)
the relative RSP error for all inserts and datasets with the green area indicating a ±1%
interval.

the order of magnitude of ±0.02 in terms of RSP. The scan at 187.5MeV expectedly had a
higher noise level, since less data were acquired for it.

discussion

An empirical artifact correction was adapted to the requirements of pCT and applied to
improve the accuracy of experimental scans using a prototype scanner. Based on data of
an elliptical phantom with known RSP, correction functions were found for two datasets
at different incident energies. Both functions had an approximate slope of 1.3%, which
corrected for a proportional under–representation of RSP values in uncorrected scans. This
bias was already observed in earlier experiments described in section 9.3 and could not
be corrected by EMpCT. It may stem from an incorrect measurement of the calibration
phantom’s RSP or geometry. In both datasets, the offset is captured and corrected by
the proposed empirical method in subsequent scans. In addition to that, the calibration
functions exhibited both common and distinct features, that corrected for small band WEPL
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Figure 9.12: Reconstructions of the head phantom at (a,b) the high and the (d,e) the low energy
with and without the correction method. In (c,f) absolute difference maps between
the corrected and the uncorrected scan are shown. Arrows mark locations of the most
visible artifacts in the uncorrected images.

inaccuracies. Distinct features are likely to be caused by stage interfaces and were already
improved by EMpCT. Common features, however, could not be improved by EMpCT and
may, again, result from an inaccurate manufacturing or knowledge of the geometry of the
wedge–shaped calibration phantom. The correction functions had, by design, no effect below
smin = 8mm or above smax = 192mm. These two values corresponded to the minimum
and maximum WEPL seen in the data of the ellipse phantom and smax was larger than the
maximum WEPL seen in any other phantom in this investigation.

The proposed method was applied to data of the ellipse phantom as a consistency check
as well as to data of the water phantom to test the performance on a homogeneous object. In
both cases, the initial bias as well as RSP artifacts were considerably reduced. Minor artifacts
remained also in the data of the ellipse phantom, but line profiles through the center of the
two homogeneous phantoms were within the intended ±1% interval around the ground
truth value. The magnitude of ring artifacts in the uncorrected images was more than 2%
(minimum to maximum) and merely a shift of the mean value would not have sufficed to
bring RSP values into the ±1% interval.

Application of the proposed method to data of the CTP phantom allowed to quantify
the RSP accuracy before and after the correction and compare values to data of a previous
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study. Ring artifacts as well as the negative bias were distorting the uncorrected scan as
well as the data of Dedes et al. [41]. Using the correction, both artifacts and the bias were
reduced and the MAPE of all inserts reduced by 49% and 44% in the two datasets, which
is a considerable improvement. On average, the MAPE of the two incident energies was at
0.46%, which clearly outperforms the results of the previous study on pCT RSP accuracy [41].
Nevertheless, a conclusion on the performance of artifact–corrected pCT scans with respect
to the state–of–the–art DECT requires a larger study with more phantoms and inserts. A
remaining trend of overestimated low–RSP inserts and underestimated high–RSP inserts
remains to be studied and is not understood. It cannot be caused by the spatial resolution
of the scanner, which is at 0.5 lp/mm for this prototype [204], and thus small compared
to the 3mm margin at the edge of each insert that was disregarded for the evaluation. It
may be beneficial to apply the proposed method to data of a phantom composed of several
RSP values. A homogeneous correction phantom was chosen in this study to avoid that
the heterogeneity in connection with the limited spatial resolution of the scanner distorts
correction results. However, a phantom consisting of two or three different RSP values may
help to reduce the remaining RSP trend and further improve accuracy.

An interesting implication of the correction method was studied by processing the data of
the CTP phantom with a 15 months old calibration and subsequently applying the proposed
method. The resulting scan had a MAPE which agreed with the MAPE of a scan that was
processed with the correct calibration and the proposed method. Consequently, the proposed
method makes daily calibration runs using the wedge–shaped calibration phantom omissible
and reduces the regular calibration effort to just one scan of the ellipse phantom. This may
be beneficial to reduce the time needed for calibrations in upcoming beamtimes, since a
calibration run typically takes 30min to 40min, while a single scan of the ellipse phantom
would be just 6min.

Application of the proposed method to data of the anthropomorphic head phantom
allowed to reduced visible ring artifacts considerably and to improve the homogeneity of
regions that are expected to be homogeneous from the design of the phantom. RSP errors of
up to ±0.02 were reduced, which is a considerable inaccuracy if not corrected appropriately.
While distinct WEPL artifacts (with positive and negative amplitude) may average out to a
certain extent for the proton range calculation, also the head phantom showed a negative
bias, which would proportionally result in biased range calculations. This bias, as for the
other phantoms, was corrected using the proposed method.

9.5 conclusions

In section 9.2, a method was presented to isolate ring artifacts in scans of the prototype
pCT scanner. With the method, rings could be linked to distinct WEPL regions of the
calibration curve. Thereby, protons stopping close to stage interfaces could be identified by
Dedes et al. [41] to cause spurious signals in the detector and distort the image. This has led
to two different attempts to tackle the problem of distortions in pCT scans. While EMpCT in
section 9.3 and originally in Dickmann et al. [197] directly addressed the physical reason
of artifacts and tried to avoid using protons stopping close to stage interfaces, it failed to
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correct for an inherent offset in the data. Therefore, in a second study in section 9.4 an
empirical method was applied, that makes no assumptions on the origin of artifacts, but just
tries to correct them in postprocessing using data of a phantom with known RSP.

The use of energy modulation on the homogeneous water phantom allowed to reduce the
magnitude of ring artifacts considerably and make the image visually more homogeneous.
Datasets were merged in postprocessing, but EMpCT was designed keeping in mind the
acquisition of data with small pencil beams at modulated energies. The use of two energies
was tailored for the specific prototype scanner under investigation, where it allowed to avoid
protons stopping close to stage interfaces. Using more than two energies would eventually
allow to change the design of the detector to contain just a single instead of five stages.
Using EMpCT, the IQR, which is a measure of the magnitude of ring artifacts, was reduced
by a factor of two to three. An offset of RSP values of about 1% could, by design, not be
corrected and remained in the merged data.

Using the empirical artifact correction, which adapted a method for x–ray CT to the
requirements of pCT, allowed to address the biased RSP values of pCT scans. A correction
function was found based on a scan of an elliptical homogeneous correction phantom and at
two incident energies. The two energies were utilized to increase the number of test cases
and a single energy is sufficient to apply the proposed method. The optimized correction
functions captured an offset of 1.3%, but also corrected for small–banded WEPL distortions,
with some of them common in both datasets and some distinct. Resulting corrected RSP
maps of the water phantom, the CTP phantom, and the head phantom were analyzed for
distortions and their accuracy. Images of the water phantom were more homogeneous and
the magnitude of remaining ring artifacts was small compared to those in the uncorrected
data. The MAPE of the CTP phantom improved by 47% on average and was below 0.48% for
both energies. Image artifacts in an anthropomorphic head phantom were clearly reduced.
Using this empirical method, therefore, allows to considerably improve accuracy of pCT
imaging.





163

10 C O N C L U S I O N S & P E R S P E C T I V E S

Imaging with proton computed tomography, and in particular the use of fluence mod-
ulation to reduce patient dose exposure, was the topic of investigation in this thesis. In

five chapters, scientific questions have been answered and novel algorithms were developed.
In chapter 5, contributions to image noise of a pCT scanner were investigated using Monte
Carlo simulations and compared to measurements. Chapter 6 proposed an algorithm for
optimizing FMpCT fluence patterns with a variance objective. These patterns were realized
experimentally using a prototype pCT scanner and a PBS beamline in chapter 7. In chap-
ter 8, a second optimization algorithm for FMpCT was developed, that applied concepts
of treatment planning and that could optimize fluences based on imaging dose and image
variance objectives. Lastly, the experimental operation of the prototype pCT scanner resulted
in the development of two artifact reduction methods presented in chapter 9, that allowed to
improve the accuracy of the prototype scanner. In the following, the main conclusions of
these five chapters are summarized and future perspectives are identified.

image noise Fluence modulation for pCT requires a precise model of the image noise
expected for a given fluence setting. For this, a Monte Carlo simulation with a detailed
model of the prototype pCT scanner was improved to model the effect of quenching in the
scintillator and the initial energy spread of the proton beam. Both effects were modeled based
on experimental data of the scanner. With this, a good agreement for noise prediction could
be obtained, with discrepancies between predicted and experimental noise of less than 7% in
terms of the standard deviation. The use of variance reconstruction allowed to estimate noise
not only at the detector level, but also within every voxel of the reconstructed volume. Since
the proposed approach does not require to evaluate noise in a small ROI with constant RSP
or many repetitions of the experiment or simulation, this is an important contribution for
the future investigation of pCT image noise in experiments with heterogeneous phantoms,
or patients.

Using variance reconstruction, image noise of the prototype pCT scanner was compared
between homogeneous phantoms like the water phantom and an anthropomorphic head
phantom. From considerations based on homogeneous media of Bashkirov et al. [56], the
noise of both phantoms, which had a similar diameter, should be the same and roughly
constant, since a WEPL uncertainty of 3mm independent of the WEPL is to be expected for
the prototype scanner. However, noise for the water phantom was increased considerably at
the edges and the standard deviation in the center of the head phantom was elevated by
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a factor of two compared to the center of the water phantom. Such differences were even
observed between two non–adjacent slices of the same scan of the head phantom. This is a
relevant observation, since image noise should ideally be constant if the entire image is to be
used for diagnostic purposes and, compensating for a factor of two difference in standard
deviation requires four times the patient dose exposure. To study this, the noise level of the
prototype scanner was disentangled into contributions from the energy detection process,
energy straggling in in the object, tracking, MCS and the initial beam energy spread. This
revealed that the noise increase seen in heterogeneous regions and at the outer hull of a
phantom was driven by MCS. The non–straight path of protons can make particles with
different WEPL histories scatter to the same location in the phantom, thereby increasing the
variance inside a pixel of the distance–driven binned projection. Since this is a physical effect,
it cannot be avoided and is an inherent noise contribution of pCT. Bashkirov et al. [56] only
considered data from the homogeneous calibration phantom, for which two scattered proton
trajectories always experience very similar WEPLs, since there are no material changes and
protons scattering out of the phantom were not considered. They were, therefore, right to
conclude a WEPL uncertainty of 3mm independent of the WEPL. However, this situation is
not representative of heterogeneous phantoms or at the edge of phantoms, where variance
due to MCS comes on top of the 3mm uncertainty from the detection process.

PCT image noise at a uniform fluence, therefore, is inherently non–uniform. However,
fluence modulation can be used to achieve constant image noise. At the same peak noise
level, this saves imaging dose in homogeneous regions where noise is reduced in a uniform
fluence scan. This first feature of FMpCT was demonstrated by calculating a fluence profile
that would yield constant noise in the image for the water phantom, which is the equivalent
of a bow–tie filter in x–ray CT. Calculating such profiles requires a precise model of pCT
image noise, which was established in this thesis for a specific prototype pCT scanner.

In future works, the dose efficiency of pCT may need to be revisited. While Schulte et al.
[44] concluded an advantage of pCT over x–ray–based imaging for requiring less dose at the
same noise level, this comparison was done at the center of a homogeneous water phantom,
where the noise contribution of MCS was negligible. However, pCT noise would increase in
heterogeneous regions and in particular in a patient scan of the head. Consequently, pCT
may require more dose at the same noise level in such regions and the dose efficiency benefit
may diminish. At the same time, it is interesting to study the impact of other particle types
such as helium–ions, which have been used for particle imaging [83]. On one hand, they
exhibit less noise due to reduced energy straggling and MCS because of their larger mass,
but fragmentation and increased nuclear interactions require a strict filtration of detected
particles [85], which reduces statistics and increases noise. The framework developed here
may also be used to optimize the design of future pCT detectors, in particular with respect to
image noise and comparable to the study of Krah et al. [108], who studied different scanner
designs in terms of spatial resolution.

fmpct with variance objectives Using the precise image variance model via Monte
Carlo simulation, an optimization algorithm was developed, that calculates fluence patterns
based on image variance objectives. The algorithm makes use of an iterative variance
forward projection, to transform the variance prescription from the image to the projections,
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where fluences can be independently optimized based on a pencil beam model. The forward
projection method was based on a ray–tracing operation on the prescription variance followed
by a ramp filtration. Since this caused negative and therefore unphysical variance values,
the variance projections needed to be thresholded to positive values, which introduced a
discrepancy to the prescription. This discrepancy was reduced iteratively, for which the
convergence speed depended on the shape of the prescription.

In a Monte Carlo simulation study based on three phantoms, for which physical coun-
terparts existed, three different fluence modulation targets were investigated. The bow–tie
filter calculation could be repeated using the optimization both for the water phantom,
where it resulted in a dose reduction of 8.9% and for the heterogeneous head phantom,
where the dose reduction at equal peak noise level was 16.0%. In these two scans, the
image noise was aimed to be homogeneous, allowing to decrease imaging fluence and
dose in regions were noise was initially lower. Such fluence modulations are, in the form
of bow–tie filters, a standard component of almost every x–ray CT scanner. For pCT, a
corresponding implementation is more complicated since it requires a dynamic fluence
modulation and an initial knowledge of the patient’s geometry. A simple static fluence
modulation pattern would not be sufficient. This highlights the fact, that dynamic fluence
modulation is a required and essential component for pCT imaging to keep the patient dose
exposure low and to allow for a frequent repetition of imaging during the particle therapy
treatment. In fact, dose savings in the context of particle therapy can further be increased by
prescribing more sophisticated noise targets. In subsequent simulations, two FMpCT scans
were investigated, where the ROIs followed a typical shape of a proton therapy treatment
plan. With this, image quality can be maintained, precisely where it is needed to calculate
the therapeutic dose, and imaging dose can be reduced elsewhere. For the two FMpCT
scans, imaging dose savings between 25.7% and 40.5% were achieved outside of the ROI.
This is a substantial reduction and opens an interesting perspective for daily image guidance
and adaptive particle therapy.

While promising results were achieved using the proposed method, limitations, that were
addressed in following works of this thesis, were identified. The optimization algorithm
operated solely based on image variance. Imaging dose was only implicitly minimized by
prescribing higher variance outside of the ROI. This variance value was not optimized and
higher values and in particular inhomogeneous variance distributions outside of the ROI
may have resulted in better dose savings. In addition, the algorithm considered variances
from single projections independently and could not compensate for an increased variance
in one projection by a decreased variance in another projection. For this purpose, a second
algorithm based on variance and dose objectives was developed later. Moreover, this
simulation study was designed for the experimental realization of FMpCT. It, therefore, did
not include any patient data, but only phantoms, for which physical counterparts existed,
that could be used in a subsequent experimental acquisition.

experimental realization of fmpct The simulation study for the FMpCT optimiza-
tion with variance objectives was specifically designed to be applied in an experimental
scan. For this reason, it modeled the pencil beams of the PBS beamline in Chicago as well
as the entire scanner and phantom geometries. This allowed to directly use the optimized
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pencil beam weights in an experimental acquisition. The PBS delivery system was interfaced
to deliver modulated fluence patterns using a grid of regularly spaced pencil beams. In
the resulting scans, an unexpected spatial dependency of the initial energy within a single
pencil beam was identified, that distorted the RSP images. This dependency was isolated
and could be corrected in all scans. In addition, a small misalignment of the quarter–shifted
fluence pattern caused a distortion of the fluence delivery that resulted in inhomogeneous
image variance where homogeneous variance was expected. These modulations could not be
corrected, but they were only of a small extent compared to the overall variance modulation
that was achieved with FMpCT. In general, the agreement of the resulting image variance
with the planned image variance from simulations was satisfactory. No distortion of the
RSP accuracy was observed to be caused by the FMpCT acquisition. A good agreement of
fluence maps confirmed that the dose savings, although they were not measured, were com-
parable to those determined in the corresponding simulations. This is the first experimental
realization of optimized FMpCT scans using a prototype pCT scanner and completes the
proof–of–concept works of Dedes et al. [46].

Future experimental work should focus on the automation of the fluence delivery in
synchrony with the acquisition of the scanner. Due to a missing link between the PBS system
and the pCT scanner, acquisition times were increased because of the manual initiation of
each projection of the scan. The beam–on time just amounted to 26% of the total acquisition
time. Establishing a link may be possible with little modifications of the hardware and
would allow for a near–continuous delivery of the modulated imaging fluence, which in
turn would speed up acquisition times dramatically. In addition, the quarter–shifted pattern
is to be avoided in the future, since already minimal shifts of 0.5mm as for some scans in
this study can result in distortions of the fluence pattern. Moreover, automated alignment
procedures could be found that allow for a precise determination of the scanners coordinate
system with respect to the PBS nozzle.

fmpct with dose and variance objectives Despite its success in reducing the imag-
ing dose, the first optimization algorithm presented in this thesis had clear limitations in
particular due to the lack of a dose term in the cost function. For this purpose, a novel
optimizer for FMpCT with dose and variance objectives was developed. This directly opti-
mizes the two quantities, each in the region where it is relevant: variance can be maintained
in the ROI and outside of it, dose is minimized. The optimization algorithm employed
concepts of treatment planning for radiation therapy by using matrices that describe the dose
contribution of a given bixel to a given voxel. For variance, it was possible to replicate the
variance reconstruction formula using a similar matrix multiplication. This required to first
optimize fluences based on small independent bixels, and subsequently fit the pencil beam
model to calculate pencil beam weights. Due to its fast implementation on a multi–core
system and using dedicated libraries, the optimization was performed efficiently and fast.
Spatial weights in the dose term of the cost function could be used to further increase the
dose saving in pre–defined imaging OARs. In addition, the trade–off between achieving a
given image variance in the ROI and saving dose to critical structures can be decided by
the user based on medical considerations. This is similar to treatment planning, where a
trade–off between the conformity of the prescription dose with the PTV and the dose saving
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to OARs has to be made. The proposed algorithm is very flexible to adapt to arbitrary ROI
shapes and sizes, and task–specific dose and variance prescriptions as well as independently
weighted sparing of imaging OARs.

The performance of the algorithm was tested in a simulation study, which was based on
imaging data of three pediatric patients undergoing radiotherapy treatment of the head.
Proton therapy treatment plans were optimized for each patient based on the original
delineations and prescriptions. From these therapeutic dose distributions, the imaging ROI
was derived and FMpCT plans were optimized. Subsequently, the accuracy of pCT and
FMpCT scans was tested by re–calculating the optimized treatment doses. Passing rates for
strict criteria were satisfactory and distortions of the proton range calculations were below
0.3mm for all scans. No relevant deterioration of the dosimetric accuracy was observed. At
the same time, imaging doses for the three patients could be reduced by 74% outside of the
ROI, which is a considerable improvement compared to uniform fluence pCT scans, but
also compared to the previous optimization algorithm. The dose savings were similar for all
patients and thus comparable reductions are expected for similar cases of the head and neck
region. Such dose savings may pave the way towards daily adaptive particle therapy with
pCT image guidance.

In future works, the clinical applicability of optimized FMpCT scans may be investigated
by including larger cohorts of patients and studying limitations of using pCT in general
and FMpCT in particular. Such limitations could be the size of patients with respect to
the size of the scanner and its field–of–view. Limitations could also be with respect to the
treatment workflow and studies should investigate the time budget that daily pCT imaging
and FMpCT optimization would require and if or how it would fit into clinical routine.

image accuracy Dose reductions achievable with FMpCT have little value if inaccuracies
in the scans prevent their usage for the calculation of particle therapy treatment plans. For
this reason, the performance of pCT was compared to the state–of–the–art x–ray based
imaging modality DECT by Dedes et al. [41]. Within this work, to which the author
contributed, pCT was found to be on par with DECT in terms of RSP accuracy. Ring artifacts
due to distorted WEPL intervals have been identified to degrade the performance of the
prototype pCT scanner used in the context of this thesis. This initiated the development of
two correction algorithms that aimed to reduce image artifacts and improve the performance
of the prototype scanner in producing accurate RSP maps. The first algorithm used energy
modulation to avoid protons stopping close to interfaces of the scanner’s five–stage energy
detector. Such protons were suspected to cause distorted WEPL measurements and cause
ring–shaped artifacts in cylindrical phantoms. With EMpCT it was possible to avoid these
critical structures and artifacts were reduced considerably. However, an offset and minor
artifacts remained, which could not be corrected by the method. For this purpose, a second
empirical correction method was developed, that makes no assumption on the origin of
artifacts. It calculates a WEPL correction function based on the scan of a custom–built
phantom with known RSP. This function was applied to subsequent scans, which removed a
1.3% offset and considerably reduced image artifacts present in the uncorrected scans. The
performance of the method was tested on several phantoms, including the sensitometric
CTP phantom, for which the MAPE was reduced by 47% and thus almost to half of its value
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for uncorrected scans. The RSP accuracy was better than 0.48% for two scans at different
initial energies. In addition, artifacts in the anthropomorphic head phantom were clearly
reduced. The performance of the scanner was, therefore, improved considerably, without
the need for additional hardware. In addition, the proposed correction method made a daily
calibration of the scanner omissible, and, thereby, reduced the pre–scan preparation time of
future beamtimes with the prototype scanner.

While the results of the EMpCT study may help in the design of monolithic detectors with
only a single stage, where energy modulation is required, the empirical correction method
appears to be most promising to be applied in future scans of the particular prototype
pCT scanner, and other scanners. Future studies should investigate its impact on a direct
comparison with DECT with more phantoms than those used in this thesis. Such a future
comparative study could also include the use of DECT and corrected pCT for the calculation
of proton ranges. It would also be interesting to see such results for fresh meat samples as it
was already done for DECT by Niepel et al. [78].

————

Proton computed tomography, as first envisioned by Cormack [36] in 1963, has seen
considerable developments in recent years due to the availability of fast hardware that allows
for the acquisition of single–particle tracking pCT data. This has resulted in the development
of numerous prototype scanners, of which some still need to be realized. Proton CT seems
to be the natural choice as imaging modality used for particle therapy treatment planning,
since it measures the interaction of protons with matter directly: via the energy loss of
protons in matter. Thereby, it employs only little imaging dose and prototype scanners report
promising accuracies that can compete with the state–of–the–art in the clinics. This thesis
engaged with both: reducing the patient dose of pCT and improving its accuracy. Using
fluence–modulated proton CT an elegant method has been established — in simulations and
experiments — that saves imaging dose by avoiding to acquire data that is not needed for
treatment planning. The full workflow of fluence–modulated pCT was developed including
clinically relevant optimization targets and important aspects of its experimental realization.
At the same time, artifacts of the prototype pCT scanner were isolated and successfully
corrected, which improved the accuracy of the scanner. With these two contributions, proton
computed tomography has, hopefully, come a small step closer to the clinics.



169

A C K N O W L E D G M E N T S

� While this thesis only has one name on its cover, many of the works
presented in it were truly a team effort. It would not have been possible
without the contributions and clever ideas of many intelligent people
in Munich, Lyon, Chicago, Santa Cruz and Loma Linda. I am very

grateful for having had the opportunity to pursue my doctoral studies in this very
stimulating and international environment at the department of medical physics in
Munich and as part of a transatlantic proton CT collaboration.

I was in the uncommon situation of not only having one supervisor, but three:
Prof. Katia Parodi, Dr. George Dedes, and Prof. Guillaume Landry. I would like to
thank each one of you for making this constellation a success from which I benefited
a lot. Thank you, Katia, for your research effort in particle therapy, which gave
context to this project, for initiating it and establishing a collaboration which allowed
me to also work experimentally. You always provided guidance and help, but left
enough freedom also for new ideas to develop. Thank you Guillaume and George
for working together with me as a team, for supporting and criticizing me, for
initiating new ideas and letting me pursue my own. You were always available for
discussions and provided prompt feedback on my writing, including this thesis. I
am very grateful for this very productive and fun time, where we debugged code,
solved equations and tested the Münchner Biergärten. I will look back to good
memories from our trips to the US for conferences and beam times, and in particular
the last and very special beam time in which we all had to participate virtually.

I would also like to thank Philipp Wesp, Hubertus Drosten, and Stefanie Götz,
who contributed with clever ideas to the proton CT project with their bachelor’s
and master’s theses. I am very proud of your projects, which Stefanie and Hubertus
conducted completely virtually, and I am looking forward to meeting you in person
one day. I would also like to acknowledge the important work of Martin Rädler,
who, before I came to Munich, developed the variance reconstruction algorithm for
proton CT in his master’s thesis, which was an essential contribution to this project.

Prof. Marc Kachelrieß agreed to be second reviewer of this thesis for which I
am very thankful. I would also like to thank Prof. Barbara Ercolano, Prof. Otmar
Biebel, Prof. Marco Riboldi, and Prof. Paola Coan for being part of the thesis com-
mittee. I would like to acknowledge funding from the German Research Foundation
(DFG) under grant number #388731804 as well as the DFG’s cluster of excellence
“Munich Centre for Advanced Photonics” and the Bavaria–California Technology Cen-
ter (BaCaTec). The European Society for Radiotherapy and Oncology (ESTRO) is
acknowledged for a mobility grant.



170 acknowledgments

I am very grateful to Prof. Robert Johnson at the University of California in Santa
Cruz, whom I could visit at their beautiful campus in the redwood forest. You taught
me the operation of the prototype scanner and supported all of our beam times
personally or virtually. Thank you for contributing to building the scanner, actively
maintaining the data processing code and always helping when experimental data
did not look the way we expected. I would also like to thank Prof. Reinhard Schulte
at the Loma Linda University who initiated so many proton CT projects including
the construction of the most successful prototype scanner, which I had the honor to
use in my thesis. Thank you for contributing clever ideas to our project and making
the experimental realization possible. I am thankful to Prof. Vladimir Bashkirov of
the same university, who also contributed to building the scanner and initiated the
light quenching model that was developed within this project.

Outside of California, I would like to thank the team in Chicago for their invaluable
support during beam times. Thank you, Prof. Mark Pankuch for believing in proton
CT and making our beam times at the Northwestern Medicine Chicago proton center
possible, in which you also participated actively. My thanks also go to Prof. George
Coutrakon and Christina Sarosiek at the University of Illinois for supporting the
beam times and even completely managing them when we could only join remotely.
I would also like to thank Victor Rykalin, Fritz and Ethan DeJongh of ProtonVDA,
who supported our beam times. Nick Detrich of IBA is thankfully acknowledged
for technical help with delivering the proton fluence patterns. The simulation
platform used in this thesis was initially developed by Dr. Valentina Giacometti and
Dr. Pierluigi Piersimoni, for which I am thankful.

The proton CT reconstruction code came from Dr. Simon Rit at CREATIS and
Université de Lyon. Simon’s framework RTK was the basis for almost all code
developed within this work. I would like to thank Simon as well as his colleagues
Dr. Nils Krah and Dr. Feriel Khellaf for a very fruitful collaboration. Dr. Lennart Volz
at the German Cancer Research Center is gratefully acknowledged for interesting
discussions.

At the university hospital of Munich I thankfully acknowledge the support of
Dr. Florian Kamp who initiated the development of the second optimization algo-
rithm. I would like to thank PD Dr. Stefanie Corradini and Prof. Claus Belka for
supporting this study with patient data. Dr. Martin Hillband at the Kantonsspital
Graubünden helped us to optimize proton treatment plans, for which I am very
thankful.

In Garching, I would like to thank Dr. Jonathan Bortfeldt, Romy Knab and the team
of the workshop for their support in designing a phantom, which will hopefully be
used in the future. I am also thankful for interesting discussions with Dr. Chiara
Gianoli, Dr. Matthias Würl, and Dr. Prasanna Palaniappan.

In addition to Guillaume, George and Katia, I would like to acknowledge the help
of Dr. Giulia Buizza, Dr. Andreas Maier and Katrin Schnürle for proofreading and
checking parts of this thesis.



acknowledgments 171

While in the last year our office was at home, I was lucky to share for two years an
office in Garching with Dr. Liheng Tian, Katharina Niepel, Michael Stanislawski, Ze
Huang, Lourival Beltrão Martins, and Philipp Wesp and would like to thank you for
your support and friendship. I would also like to thank my colleagues and friends
at the department, in particular Katrin Schnürle who was always there when coffee
was needed, Henning Schmitz and Sascha Huck for always interesting discussions,
Ronaldo Kalunga who is the best chef, Giulio Lovatti who has drawn the beautiful
illustration on page IX and also was my flatmate, Juliana Martins who always joined
to eat Krapfen, and Franz Englbrecht who tried to explain Bavaria to me.

I would like to thank my parents, my brother Marcel and Oma Karin for their
support. And last but definitely not least, I want to thank Giulia for having shared
with me a wonderful time with countless adventures to come.





173

P U B L I C AT I O N S

publications in scientific journals

� [100] F J. Dickmann et al.: “Prediction of image noise contributions in proton computed
tomography and comparison to measurements”. Physics in Medicine & Biology 64(14)
(2019), 145016. issn: 1361-6560. doi: 10.1088/1361-6560/ab2474

� [156] F J. Dickmann et al.: “An optimization algorithm for dose reduction with fluence-
modulated proton CT”. Medical Physics 47(4) (2020), 1895–1906. issn: 0094-2405. doi:
10.1002/mp.14084

� [99] F J. Dickmann et al.: “Experimental realization of dynamic fluence field optimiza-
tion for proton computed tomography”. Physics in Medicine & Biology 65(19) (2020),
195001. doi: 10.1088/1361-6560/ab9f5f

� [138] F J. Dickmann et al.: “Fluence-modulated proton CT optimized with patient-
specific dose and variance objectives for proton dose calculation”. Physics in Medicine
& Biology 66(6) (2021), 064001. doi: 10.1088/1361-6560/abe3d2

� [197] F J. Dickmann et al.: “Proof of concept image artifact reduction by energy-
modulated proton computed tomography (EMpCT)”. Physica Medica 81 (2021), 237–244.
issn: 11201797. doi: 10.1016/j.ejmp.2020.12.012

� [141] F J. Dickmann et al.: “An empirical artifact correction for proton computed
tomography”. submitted for publication (2021)

contributions to publications

� [41] F G. Dedes, J. Dickmann et al.: “Experimental comparison of proton CT and dual
energy x-ray CT for relative stopping power estimation in proton therapy”. Physics
in Medicine & Biology 64(16) (2019), 165002. issn: 1361-6560. doi: 10 .1088/1361 -
6560/ab2b72

� [102] F G. Dedes, J. Dickmann et al.: “The role of Monte Carlo simulation in
understanding the performance of proton computed tomography”. Zeitschrift für
Medizinische Physik (available online, 2020). issn: 0939-3889. doi: 10.1016/j.zemedi.
2020.06.006

https://doi.org/10.1088/1361-6560/ab2474
https://doi.org/10.1002/mp.14084
https://doi.org/10.1088/1361-6560/ab9f5f
https://doi.org/10.1088/1361-6560/abe3d2
https://doi.org/10.1016/j.ejmp.2020.12.012
https://doi.org/10.1088/1361-6560/ab2b72
https://doi.org/10.1088/1361-6560/ab2b72
https://doi.org/10.1016/j.zemedi.2020.06.006
https://doi.org/10.1016/j.zemedi.2020.06.006


174 publications

conference contributions

9 [147] F J. Dickmann et al.: “Modelling of contributions to image variance in proton
CT for application in low-dose fluence-modulated imaging”. Conference of the Particle
Therapy Cooperative Group (PTCOG), Manchester, United Kingdom (2019)

9 [157] F J. Dickmann et al.: “Method for Fluence Field Optimization to Achieve Noncon-
vex Image Noise Prescriptions with Fluence-Modulated Proton CT”. Annual Meeting
of the American Association of Physicists in Medicine (AAPM), San Antonio, USA, pro-
ceedings published in Medical Physics 46(6) (2019), E477–E477. issn: 24734209. doi:
10.1002/mp.13589

9 [198] F J. Dickmann et al.: “Understanding image artifacts for a prototype proton
computed tomography scanner via Monte Carlo simulations”. International Conference
on Monte Carlo Techniques for Medical Applications (MCMA), Montréal, Canada (2019)

9 [158] F J. Dickmann et al.: “Dosiseinsparung durch fluenzmodulierte Protonen-
Computertomographie mit Anwendung in der Protonentherapie”. Jahrestagung der
Deutschen Gesellschaft für Medizinische Physik (DGMP), Stuttgart, Germany (2019)

9 [148] F J. Dickmann et al.: “Monte Carlo study of image noise contributions of a proto-
type proton computed tomography scanner”. Jagiellonian Symposium on Fundamental
and Applied Subatomic Physics, Krakow, Poland (2019)

9 [159] F J. Dickmann et al.: “PO-1706: Low dose fluence-modulated proton CT: sim-
ulation study and first experimental results”. Conference of the European Society for
Radiotherapy and Oncology (ESTRO), Vienna, Austria (online), proceedings published in
Radiotherapy and Oncology 152(S1) (2020), S941. doi: 10.1016/S0167-8140(21)01724-2

9 [182] F J. Dickmann et al.: “Prescribing Image Noise Using Dynamic Fluence Field
Optimization: Experimental Results Using a Pre-Clinical Proton CT Scanner”. Joint
Annual Meeting of the American Association of Physicists in Medicine and the Canadian
Organization of Medical Physics (AAPM/COMP), Vancouver, Canada (online), proceedings
published in Medical Physics 47(6) (2020), 2580–2674. issn: 24734209. doi: 10.1002/mp.
14315

9 [183] F J. Dickmann et al.: “Dynamic Fluence Modulation using Proton CT for Low-
dose Imaging in Particle Therapy”. International Conference on Image Formation in X-Ray
Computed Tomography (CT Meeting), Regensburg, Germany (online) (2020)

9 [184] F J. Dickmann et al.: “Joint Dose Minimization and Variance Optimization for
Fluence-Modulated Proton CT”. IEEE Nuclear Science Symposium and Medical Imaging
Conference (NSS/MIC), Boston, USA (online) (2020)

https://doi.org/10.1002/mp.13589
https://doi.org/10.1016/S0167-8140(21)01724-2
https://doi.org/10.1002/mp.14315
https://doi.org/10.1002/mp.14315


175

E T H I C S S TAT E M E N T

The use of patient imaging data in this retrospective study was exempt from requir-
ing ethics approval. Bavarian state law (Bayerisches Krankenhausgesetz/Bavarian
Hospital Law §27 Absatz 4 Datenschutz (data protection)) allows the use of patient

data for research, provided that any person’s related data are kept anonymous. German
radiation protection laws request a regular analysis of outcomes in the sense of quality
control and assurance, thus in the case of purely retrospective studies no additional ethical
approval is needed under German law.





177

B I B L I O G R A P H Y

[1] D. Hanahan and R. A. Weinberg: “Hallmarks of cancer: The next generation”. Cell
144(5) (2011), 646–674. issn: 00928674. doi: 10.1016/j.cell.2011.02.013.

[2] T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissmann: “Stem cells, cancer, and
cancer stem stells”. Nature 414 (2001), 105–111. doi: 10.1038/35102167.

[3] B. Steward and C. Wild: World Cancer Report 2014. Ed. by B. Steward and C. Wild.
International Association for Research and Cancer, 2014. isbn: 9789283204299.

[4] R. Goldbrunner, G. Minniti, M. Preusser, M. D. Jenkinson, K. Sallabanda, E. Houdart,
A. V. Deimling, P. Stavrinou, F. Lefranc, M. Lund-Johansen, E. Cohen, J. Moyal,
D. Brandsma, R. Henriksson, R. Soffi, and M. Weller: “EANO guidelines for the
diagnosis and treatment of meningiomas”. Lancet Oncology 17(9) (2016), E383–E391.
doi: 10.1016/S1470-2045(16)30321-7.

[5] K. D. Held, H. Kawamura, T. Kaminuma, A. E. S. Paz, Y. Yoshida, Q. Liu, H. Willers,
and A. Takahashi: “Effects of Charged Particles on Human Tumor Cells”. Frontiers in
Oncology 6 (2016). issn: 2234-943X. doi: 10.3389/fonc.2016.00023.

[6] D. A. Jaffray: “Image-guided radiotherapy: from current concept to future perspec-
tives”. Nature Reviews Clinical Oncology 9(12) (2012). issn: 1759-4774. doi: 10.1038/
nrclinonc.2012.194.

[7] J. M. Galvin, A. R. Smith, and B. Lally: “Characterization of a multileaf collimator
system”. International Journal of Radiation Oncology*Biology*Physics 25(2) (1993). issn:
03603016. doi: 10.1016/0360-3016(93)90339-W.

[8] C. Scholz, S. Nill, and U. Oelfke: “Comparison of IMRT optimization based on a
pencil beam and a superposition algorithm”. Medical Physics 30(7) (2003), 1909–1913.
issn: 00942405. doi: 10.1118/1.1586452.

[9] F. Tommasino, A. Nahum, and L. Cella: “Increasing the power of tumour control and
normal tissue complication probability modelling in radiotherapy: Recent trends and
current issues”. Translational Cancer Research 6 (2017), S807–S821. issn: 22196803. doi:
10.21037/tcr.2017.06.03.

[10] W. P. Levin, H. Kooy, J. S. Loeffler, and T. F. DeLaney: “Proton beam therapy”. British
Journal of Cancer 93(8) (2005), 849–854. issn: 00070920. doi: 10.1038/sj.bjc.6602754.

[11] M. Durante, R. Orecchia, and J. S. Loeffler: “Charged-particle therapy in cancer:
clinical uses and future perspectives”. Nature Reviews Clinical Oncology 14(8) (2017).
issn: 1759-4774. doi: 10.1038/nrclinonc.2017.30.

[12] M. Durante and J. Flanz: “Charged particle beams to cure cancer: Strengths and chal-
lenges”. Seminars in Oncology 46(3) (2019). issn: 00937754. doi: 10.1053/j.seminoncol.
2019.07.007.

https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1038/35102167
https://doi.org/10.1016/S1470-2045(16)30321-7
https://doi.org/10.3389/fonc.2016.00023
https://doi.org/10.1038/nrclinonc.2012.194
https://doi.org/10.1038/nrclinonc.2012.194
https://doi.org/10.1016/0360-3016(93)90339-W
https://doi.org/10.1118/1.1586452
https://doi.org/10.21037/tcr.2017.06.03
https://doi.org/10.1038/sj.bjc.6602754
https://doi.org/10.1038/nrclinonc.2017.30
https://doi.org/10.1053/j.seminoncol.2019.07.007
https://doi.org/10.1053/j.seminoncol.2019.07.007


178 bibliography

[13] D. C. Weber, R. Schneider, G. Goitein, T. Koch, C. Ares, J. H. Geismar, A. Schertler,
A. Bolsi, and E. B. Hug: “Spot Scanning-Based Proton Therapy for Intracranial
Meningioma: Long-Term Results From the Paul Scherrer Institute”. International
Journal of Radiation Oncology*Biology*Physics 83(3) (2012), 865–871. issn: 03603016. doi:
10.1016/j.ijrobp.2011.08.027.

[14] J. Park, Y. Park, S. U. Lee, T. Kim, Y.-K. Choi, and J.-Y. Kim: “Differential dosimetric
benefit of proton beam therapy over intensity modulated radiotherapy for a variety
of targets in patients with intracranial germ cell tumors”. Radiation Oncology 10(1)
(2015), 135. issn: 1748-717X. doi: 10.1186/s13014-015-0441-5.

[15] K. Nakajima, H. Iwata, H. Ogino, Y. Hattori, S. Hashimoto, K. Hayashi, T. Toshito,
K. Akita, M. Iwana, F. Baba, K. Nakamae, Y. Shibamoto, and J. Mizoe: “Clinical
Outcomes of Image-Guided Proton Therapy for Stage I Non–small Cell Lung Cancer”.
International Journal of Radiation Oncology*Biology*Physics 99(2) (2017), E483–E484. issn:
03603016. doi: 10.1016/j.ijrobp.2017.06.1759.

[16] D. Schardt, T. Elsässer, and D. Schulz-Ertner: “Heavy-ion tumor therapy: Physical
and radiobiological benefits”. Reviews of Modern Physics 82(1) (2010), 383–425. issn:
00346861. doi: 10.1103/RevModPhys.82.383.

[17] R. Mohan, C. R. Peeler, F. Guan, L. Bronk, W. Cao, and D. R. Grosshans: “Radio-
biological issues in proton therapy”. Acta Oncologica 56(11) (2017), 1367–1373. issn:
1651226X. doi: 10.1080/0284186X.2017.1348621.

[18] C. Grau, M. Durante, D. Georg, J. A. Langendijk, and D. C. Weber: “Particle therapy
in Europe”. Molecular Oncology 14(7) (2020), 1492–1499. issn: 18780261. doi: 10.1002/
1878-0261.12677.

[19] J. B. Farr, J. B. Flanz, A. Gerbershagen, and M. F. Moyers: “New horizons in particle
therapy systems”. Medical Physics 45(11) (2018), e953–e983. issn: 00942405. doi: 10.
1002/mp.13193.

[20] D. A. Jaffray, S. Das, P. M. Jacobs, R. Jeraj, and P. Lambin: “How Advances in
Imaging Will Affect Precision Radiation Oncology”. International Journal of Radiation
Oncology*Biology*Physics 101(2) (2018). issn: 03603016. doi: 10.1016/j.ijrobp.2018.01.
047.

[21] A. Bolsi, M. Peroni, D. Amelio, A. Dasu, M. Stock, I. Toma-Dasu, P. W. Nyström,
and A. Hoffmann: “Practice patterns of image guided particle therapy in Europe: A
2016 survey of the European Particle Therapy Network (EPTN)”. Radiotherapy and
Oncology 128(1) (2018), 4–8. issn: 18790887. doi: 10.1016/j.radonc.2018.03.017.

[22] N. Hudobivnik, F. Schwarz, T. Johnson, L. Agolli, G. Dedes, T. Tessonnier, F. Verhae-
gen, C. Thieke, C. Belka, W. H. Sommer, K. Parodi, and G. Landry: “Comparison of
proton therapy treatment planning for head tumors with a pencil beam algorithm
on dual and single energy CT images”. Medical Physics 43(1) (2016), 495–504. issn:
00942405. doi: 10.1118/1.4939106.

[23] M. Wedenberg, C. Beltran, A. Mairani, and M. Alber: “Advanced Treatment Planning”.
Medical Physics 45(11) (2018). issn: 0094-2405. doi: 10.1002/mp.12943.

https://doi.org/10.1016/j.ijrobp.2011.08.027
https://doi.org/10.1186/s13014-015-0441-5
https://doi.org/10.1016/j.ijrobp.2017.06.1759
https://doi.org/10.1103/RevModPhys.82.383
https://doi.org/10.1080/0284186X.2017.1348621
https://doi.org/10.1002/1878-0261.12677
https://doi.org/10.1002/1878-0261.12677
https://doi.org/10.1002/mp.13193
https://doi.org/10.1002/mp.13193
https://doi.org/10.1016/j.ijrobp.2018.01.047
https://doi.org/10.1016/j.ijrobp.2018.01.047
https://doi.org/10.1016/j.radonc.2018.03.017
https://doi.org/10.1118/1.4939106
https://doi.org/10.1002/mp.12943


bibliography 179

[24] G. Landry and C.-H. Hua: “Current state and future applications of radiological
image guidance for particle therapy”. Medical Physics 45(11) (2018), e1086–e1095. issn:
00942405. doi: 10.1002/mp.12744.

[25] L. Nenoff, M. Matter, J. H. Lindmar, D. C. Weber, A. J. Lomax, and F. Albertini: “Daily
adaptive proton therapy – the key to innovative planning approaches for paranasal
cancer treatments”. Acta Oncologica 58(10) (2019), 1423–1428. doi: 10.1080/0284186X.
2019.1641217.

[26] A.-C. Knopf, D. Boye, A. Lomax, and S. Mori: “Adequate margin definition for
scanned particle therapy in the incidence of intrafractional motion”. Physics in
Medicine & Biology 58(17) (2013). issn: 0031-9155. doi: 10.1088/0031-9155/58/17/6079.

[27] S. K. Vinod, M. G. Jameson, M. Min, and L. C. Holloway: “Uncertainties in volume
delineation in radiation oncology: A systematic review and recommendations for
future studies”. Radiotherapy and Oncology 121(2) (2016), 169–179. issn: 18790887. doi:
10.1016/j.radonc.2016.09.009.

[28] G. Meschini, A. Vai, C. Paganelli, S. Molinelli, G. Fontana, A. Pella, L. Preda, V. Vitolo,
F. Valvo, M. Ciocca, M. Riboldi, and G. Baroni: “Virtual 4DCT from 4DMRI for the
management of respiratory motion in carbon ion therapy of abdominal tumors”.
Medical Physics 47(3) (2020), 909–916. issn: 00942405. doi: 10.1002/mp.13992.

[29] W. Cao, G. Lim, L. Liao, Y. Li, S. Jiang, X. Li, H. Li, K. Suzuki, X. R. Zhu, D. Gomez,
and X. Zhang: “Proton energy optimization and reduction for intensity-modulated
proton therapy”. Physics in Medicine & Biology 59(21) (2014), 6341–6354. issn: 13616560.
doi: 10.1088/0031-9155/59/21/6341.

[30] P. Wohlfahrt, C. Möhler, K. Stützer, S. Greilich, and C. Richter: “Dual-energy CT
based proton range prediction in head and pelvic tumor patients”. Radiotherapy and
Oncology 125(3) (2017), 526–533. issn: 01678140. doi: 10.1016/j.radonc.2017.09.042.

[31] E. G. Troost, D. Thorwarth, and W. J. Oyen: “Imaging-based treatment adaptation
in radiation oncology”. Journal of Nuclear Medicine 56(12) (2015), 1922–1929. issn:
2159662X. doi: 10.2967/jnumed.115.162529.

[32] C. Kontaxis, G. H. Bol, J. J. Lagendijk, and B. W. Raaymakers: “A new methodology
for inter- and intrafraction plan adaptation for the MR-linac”. Physics in Medicine &
Biology 60(19) (2015), 7485–7497. issn: 13616560. doi: 10.1088/0031-9155/60/19/7485.

[33] C. Kurz, G. Buizza, G. Landry, F. Kamp, M. Rabe, C. Paganelli, G. Baroni, M. Reiner,
P. J. Keall, C. A. V. D. Berg, and M. Riboldi: “Medical physics challenges in clinical
MR-guided radiotherapy”. Radiation Oncology 15(1) (2020). issn: 1748717X. doi: 10.
1186/s13014-020-01524-4.

[34] J. Thariat, J. Hérault, A. Beddok, L. Feuvret, D. Dauvergne, M. Gérard, J. Balosso,
G. Noël, and S. Valable: “Imaging issues specific to hadrontherapy (proton, carbon,
helium therapy and other charged particles) for radiotherapy planning, setup, dose
monitoring and tissue response assessment”. Cancer/Radiothérapie 24(5) (2020), 429–
436. issn: 17696658. doi: 10.1016/j.canrad.2020.01.010.

https://doi.org/10.1002/mp.12744
https://doi.org/10.1080/0284186X.2019.1641217
https://doi.org/10.1080/0284186X.2019.1641217
https://doi.org/10.1088/0031-9155/58/17/6079
https://doi.org/10.1016/j.radonc.2016.09.009
https://doi.org/10.1002/mp.13992
https://doi.org/10.1088/0031-9155/59/21/6341
https://doi.org/10.1016/j.radonc.2017.09.042
https://doi.org/10.2967/jnumed.115.162529
https://doi.org/10.1088/0031-9155/60/19/7485
https://doi.org/10.1186/s13014-020-01524-4
https://doi.org/10.1186/s13014-020-01524-4
https://doi.org/10.1016/j.canrad.2020.01.010


180 bibliography

[35] R. Ricotti, A. Pella, B. Tagaste, G. Elisei, G. Fontana, M. Bonora, M. Ciocca, F. Valvo,
R. Orecchia, and G. Baroni: “Long-time clinical experience in patient setup for
several particle therapy clinical indications: management of patient positioning and
evaluation of setup reproducibility and stability”. The British Journal of Radiology
93(1107) (2020), 20190595. doi: 10.1259/bjr.20190595.

[36] A. M. Cormack: “Representation of a Function by Its Line Integrals, with Some
Radiological Applications”. Journal of Applied Physics 34(9) (1963), 2722–2727. issn:
0021-8979. doi: 10.1063/1.1729798.

[37] K. M. Hanson, J. N. Bradbury, T. M. Cannon, R. L. Hutson, D. B. Laubacher, R Macek,
M. A. Paciotti, and C. A. Taylor: “Application of protons to computer tomography”.
Nuclear Science Symposium (1977).

[38] W. D. Newhauser and R. Zhang: “The physics of proton therapy”. Physics in Medicine
& Biology 60(8) (2015), R155–R209. issn: 0031-9155. doi: 10.1088/0031-9155/60/8/
R155.

[39] A. J. Lomax: “Charged Particle Therapy: The Physics of Interaction”. The Cancer
Journal 15(4) (2009), 285–292. doi: 10.1097/PPO.0b013e3181af5cc7.

[40] D. C. Hansen, J. Seco, T. S. Sørensen, J. B. B. Petersen, J. E. Wildberger, F. Verhaegen,
and G. Landry: “A simulation study on proton computed tomography (CT) stopping
power accuracy using dual energy CT scans as benchmark”. Acta Oncologica 54(9)
(2015), 1638–1642. issn: 0284-186X. doi: 10.3109/0284186X.2015.1061212.

[41] G. Dedes, J. Dickmann, K. Niepel, P. Wesp, R. P. Johnson, M. Pankuch, V. Bashkirov,
S. Rit, L. Volz, R. W. Schulte, G. Landry, and K. Parodi: “Experimental comparison
of proton CT and dual energy x-ray CT for relative stopping power estimation in
proton therapy”. Physics in Medicine & Biology 64(16) (2019), 165002. issn: 1361-6560.
doi: 10.1088/1361-6560/ab2b72.

[42] N. Arbor, D. Dauvergne, G. Dedes, J. M. Létang, K. Parodi, C. T. Quiñones, E. Testa,
and S. Rit: “Monte Carlo comparison of x-ray and proton CT for range calculations of
proton therapy beams”. Physics in Medicine & Biology 60(19) (2015), 7585–7599. issn:
0031-9155. doi: 10.1088/0031-9155/60/19/7585.

[43] S. Meyer, F. Kamp, T. Tessonnier, A. Mairani, C. Belka, D. J. Carlson, C. Gianoli, and
K. Parodi: “Dosimetric accuracy and radiobiological implications of ion computed
tomography for proton therapy treatment planning”. Physics in Medicine & Biology
64(12) (2019), 125008. issn: 1361-6560. doi: 10.1088/1361-6560/ab0fdf.

[44] R. W. Schulte, V. Bashkirov, M. C. Klock, T. Li, A. J. Wroe, I. Evseev, D. C. Williams,
and T. Satogata: “Density resolution of proton computed tomography”. Medical
Physics 32(4) (2005), 1035–1046. issn: 00942405. doi: 10.1118/1.1884906.

[45] G. Dedes, L. De Angelis, S. Rit, D. Hansen, C. Belka, V Bashkirov, R. P. Johnson,
G. Coutrakon, K. E. Schubert, R. W. Schulte, K. Parodi, and G. Landry: “Application
of fluence field modulation to proton computed tomography for proton therapy
imaging”. Physics in Medicine & Biology 62(15) (2017), 6026–6043. issn: 1361-6560. doi:
10.1088/1361-6560/aa7734.

https://doi.org/10.1259/bjr.20190595
https://doi.org/10.1063/1.1729798
https://doi.org/10.1088/0031-9155/60/8/R155
https://doi.org/10.1088/0031-9155/60/8/R155
https://doi.org/10.1097/PPO.0b013e3181af5cc7
https://doi.org/10.3109/0284186X.2015.1061212
https://doi.org/10.1088/1361-6560/ab2b72
https://doi.org/10.1088/0031-9155/60/19/7585
https://doi.org/10.1088/1361-6560/ab0fdf
https://doi.org/10.1118/1.1884906
https://doi.org/10.1088/1361-6560/aa7734


bibliography 181

[46] G. Dedes, R. P. Johnson, M. Pankuch, N. Detrich, W. M. A. Pols, S. Rit, R. W. Schulte,
K. Parodi, and G. Landry: “Experimental fluence-modulated proton computed to-
mography by pencil beam scanning”. Medical Physics 45(7) (2018), 3287–3296. issn:
00942405. doi: 10.1002/mp.12989.

[47] M. Durante and H. Paganetti: “Nuclear physics in particle therapy: A review”. Reports
on Progress in Physics 79(9) (2016). issn: 00344885. doi: 10.1088/0034-4885/79/9/
096702.

[48] R. P. Johnson: “Review of medical radiography and tomography with proton beams”.
Reports on Progress in Physics 81(1) (2018), 016701. issn: 0034-4885. doi: 10.1088/1361-
6633/aa8b1d.

[49] H. Bethe: “Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Ma-
terie”. Annalen der Physik 397(3) (1930), 325–400. doi: https://doi.org/10.1002/andp.
19303970303.

[50] F. Bloch: “Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie”.
Annalen der Physik 408(3) (1933), 285–320. doi: https ://doi .org/10 .1002/andp.
19334080303.

[51] U. Fano: “Penetration of Protons, Alpha Particles, and Mesons”. Annual Review of
Nuclear Science 13(1) (1963), 1–66. doi: 10.1146/annurev.ns.13.120163.000245.

[52] W. Barkas, J. Dyer, and H. Heckman: “Resolution of the Σ−-Mass Anomaly”. Physical
Review Letters 11(1) (1963), 26–undefined. doi: 10.1103/PhysRevLett.11.26.

[53] M. Berger, J. Coursey, M. Zucker, and J. Chang: ESTAR, PSTAR, and ASTAR: Computer
Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and
Helium Ions (version 1.2.3). 2005. url: https://physics.nist.gov/PhysRefData/Star/
Text/PSTAR.html.

[54] R. W. Schulte, S. N. Penfold, J. T. Tafas, and K. E. Schubert: “A maximum likelihood
proton path formalism for application in proton computed tomography”. Medical
Physics 35(11) (2008), 4849–4856. issn: 00942405. doi: 10.1118/1.2986139.

[55] C. Tschalär: “Straggling distributions of large energy losses”. Nuclear Instruments and
Methods 61(2) (1968), 141–156. issn: 0029-554X. doi: 10.1016/0029-554X(68)90535-1.

[56] V. A. Bashkirov, R. W. Schulte, R. F. Hurley, R. P. Johnson, H. F.-W. Sadrozinski, A
Zatserklyaniy, T. Plautz, and V. Giacometti: “Novel scintillation detector design and
performance for proton radiography and computed tomography”. Medical Physics
43(2) (2016), 664–674. issn: 00942405. doi: 10.1118/1.4939255.

[57] J. Janni: “Proton range-energy tables, 1 keV-10GeV”. Atomic Data and Nuclear Data
Tables 27 (1982), 341–529.

[58] L. Eyges: “Multiple Scattering with Energy Loss”. Physical Review 74(10) (1948), 1534–
1535. doi: 10.1103/PhysRev.74.1534.

[59] V. L. Highland: “Some practical remarks on multiple scattering”. Nuclear Instruments
and Methods 129(2) (1975), 497–499. issn: 0029-554X. doi: 10.1016/0029-554X(75)90743-
0.

https://doi.org/10.1002/mp.12989
https://doi.org/10.1088/0034-4885/79/9/096702
https://doi.org/10.1088/0034-4885/79/9/096702
https://doi.org/10.1088/1361-6633/aa8b1d
https://doi.org/10.1088/1361-6633/aa8b1d
https://doi.org/https://doi.org/10.1002/andp.19303970303
https://doi.org/https://doi.org/10.1002/andp.19303970303
https://doi.org/https://doi.org/10.1002/andp.19334080303
https://doi.org/https://doi.org/10.1002/andp.19334080303
https://doi.org/10.1146/annurev.ns.13.120163.000245
https://doi.org/10.1103/PhysRevLett.11.26
https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
https://doi.org/10.1118/1.2986139
https://doi.org/10.1016/0029-554X(68)90535-1
https://doi.org/10.1118/1.4939255
https://doi.org/10.1103/PhysRev.74.1534
https://doi.org/10.1016/0029-554X(75)90743-0
https://doi.org/10.1016/0029-554X(75)90743-0


182 bibliography

[60] G. R. Lynch and O. I. Dahl: “Approximations to multiple Coulomb scattering”. Nuclear
Instruments and Methods in Physics Research Section B: Beam Interactions with Materials
and Atoms 58(1) (1991), 6–10. issn: 0168-583X. doi: 10.1016/0168-583X(91)95671-Y.

[61] S. Agostinelli et al.: “Geant4 - a simulation toolkit”. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
506(3) (2003), 250–303. issn: 01689002. doi: 10.1016/S0168-9002(03)01368-8. arXiv:
1005.0727v1.

[62] J. Hubbell and S. Seltzer: NIST: X-Ray Mass Attenuation Coefficients. 1996. url: https:
//www.nist.gov/pml/x-ray-mass-attenuation-coefficients.

[63] A. Einstein: “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden
heuristischen Gesichtspunkt”. Annalen der Physik 322(6) (1905), 132–148. issn: 00033804.
doi: 10.1002/andp.19053220607.

[64] A. H. Compton: “A Quantum Theory of the Scattering of X-rays by Light Elements”.
Physical Review 21(5) (1923), 483–502. issn: 0031-899X. doi: 10.1103/PhysRev.21.483.

[65] M. Krämer, O. Jäkel, T. Haberer, G. Kraft, D. Schardt, and U. Weber: “Treatment
planning for heavy-ion radiotherapy: physical beam model and dose optimization”.
Physics in Medicine & Biology 45(11) (2000), 3299–3317. issn: 0031-9155. doi: 10.1088/
0031-9155/45/11/313.

[66] S. Warren, M. Partridge, A. Bolsi, A. J. Lomax, C. Hurt, T. Crosby, and M. A. Hawkins:
“An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric
Modulated Arc Therapy Plans and Spot Scanning Proton Planning”. International
Journal of Radiation Oncology*Biology*Physics 95(1) (2016). issn: 03603016. doi: 10.1016/
j.ijrobp.2016.01.044.

[67] C. Goma, I. P. Almeida, and F. Verhaegen: “Revisiting the single-energy CT calibration
for proton therapy treatment planning: A critical look at the stoichiometric method”.
Physics in Medicine & Biology 63(23) (2018). issn: 13616560. doi: 10 . 1088 / 1361 -
6560/aaede5.

[68] M. Yang, X. R. Zhu, P. C. Park, U. Titt, R. Mohan, G. Virshup, J. E. Clayton, and
L. Dong: “Comprehensive analysis of proton range uncertainties related to patient
stopping-power-ratio estimation using the stoichiometric calibration”. Physics in
Medicine & Biology 57(13) (2012), 4095–4115. issn: 0031-9155. doi: 10 .1088/0031 -
9155/57/13/4095. arXiv: NIHMS150003.

[69] H. Paganetti: “Range uncertainties in proton therapy and the role of Monte Carlo
simulations”. Physics in Medicine & Biology 57(11) (2012), R99–R117. issn: 0031-9155.
doi: 10.1088/0031-9155/57/11/R99. arXiv: 1510.03300.

[70] P. Wohlfahrt, C. Möhler, V. Hietschold, S. Menkel, S. Greilich, M. Krause, M. Baumann,
W. Enghardt, and C. Richter: “Clinical Implementation of Dual-energy CT for Proton
Treatment Planning on Pseudo-monoenergetic CT scans”. International Journal of
Radiation Oncology Biology Physics 97(2) (2017), 427–434. issn: 1879355X. doi: 10.1016/
j.ijrobp.2016.10.022.

https://doi.org/10.1016/0168-583X(91)95671-Y
https://doi.org/10.1016/S0168-9002(03)01368-8
https://arxiv.org/abs/1005.0727v1
https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients
https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients
https://doi.org/10.1002/andp.19053220607
https://doi.org/10.1103/PhysRev.21.483
https://doi.org/10.1088/0031-9155/45/11/313
https://doi.org/10.1088/0031-9155/45/11/313
https://doi.org/10.1016/j.ijrobp.2016.01.044
https://doi.org/10.1016/j.ijrobp.2016.01.044
https://doi.org/10.1088/1361-6560/aaede5
https://doi.org/10.1088/1361-6560/aaede5
https://doi.org/10.1088/0031-9155/57/13/4095
https://doi.org/10.1088/0031-9155/57/13/4095
https://arxiv.org/abs/NIHMS150003
https://doi.org/10.1088/0031-9155/57/11/R99
https://arxiv.org/abs/1510.03300
https://doi.org/10.1016/j.ijrobp.2016.10.022
https://doi.org/10.1016/j.ijrobp.2016.10.022


bibliography 183

[71] G. Landry, J. Seco, M. Gaudreault, and F. Verhaegen: “Deriving effective atomic
numbers from DECT based on a parameterization of the ratio of high and low linear
attenuation coefficients”. Physics in Medicine & Biology 58(19) (2013), 6851–6866. issn:
00319155. doi: 10.1088/0031-9155/58/19/6851.

[72] A. E. Bourque, J.-F. Carrier, and H. Bouchard: “A stoichiometric calibration method
for dual energy computed tomography”. Physics in Medicine & Biology 59(8) (2014).
issn: 0031-9155. doi: 10.1088/0031-9155/59/8/2059.

[73] A. E. Bourque, J. F. Carrier, and H. Bouchard: “Erratum: A stoichiometric calibration
method for dual energy computed tomography”. Physics in Medicine & Biology 59(18)
(2014), 5611–5612. issn: 13616560. doi: 10.1088/0031-9155/59/18/5611.

[74] M. Yang, G. Virshup, J. Clayton, X. R. Zhu, R. Mohan, and L. Dong: “Theoretical
variance analysis of single- and dual-energy computed tomography methods for
calculating proton stopping power ratios of biological tissues”. Physics in Medicine &
Biology 55(5) (2010), 1343–1362. issn: 00319155. doi: 10.1088/0031-9155/55/5/006.

[75] N. Hünemohr, B. Krauss, C. Tremmel, B. Ackermann, O. Jäkel, and S. Greilich:
“Experimental verification of ion stopping power prediction from dual energy CT
data in tissue surrogates”. Physics in Medicine & Biology 59(1) (2014), 83–96. issn:
00319155. doi: 10.1088/0031-9155/59/1/83.

[76] V. T. Taasti, G. J. Michalak, D. C. Hansen, A. J. Deisher, J. J. Kruse, B. Krauss, L. P.
Muren, J. B. Petersen, and C. H. McCollough: “Validation of proton stopping power
ratio estimation based on dual energy CT using fresh tissue samples”. Physics in
Medicine & Biology 63(1) (2018). issn: 13616560. doi: 10.1088/1361-6560/aa952f.

[77] E. Bär, A. Lalonde, R. Zhang, K. W. Jee, K. Yang, G. Sharp, B. Liu, G. Royle, H.
Bouchard, and H. M. Lu: “Experimental validation of two dual-energy CT methods
for proton therapy using heterogeneous tissue samples”. Medical Physics 45(1) (2018),
48–59. issn: 00942405. doi: 10.1002/mp.12666.

[78] K. B. Niepel, M. Stanislawski, M. Würl, F. Dörringer, M. Pinto, O. Dietrich, B. Ertl-
Wagner, A. Lalonde, H. Bouchard, E. Pappas, I. Yohannes, M. Hillbrand, G. Landry,
and K. Parodi: “Animal tissue-based quantitative comparison of dual-energy CT to
SPR conversion methods using high-resolution gel dosimetry”. Physics in Medicine &
Biology (2020). issn: 0031-9155. doi: 10.1088/1361-6560/abbd14.

[79] K. Taguchi and J. S. Iwanczyk: “Vision 20/20: Single photon counting x-ray detectors
in medical imaging”. Medical Physics 40(10) (2013), 100901. issn: 00942405. doi:
10.1118/1.4820371.

[80] V. T. Taasti, D. C. Hansen, G. J. Michalak, A. J. Deisher, J. J. Kruse, L. P. Muren, J. B.
Petersen, and C. H. McCollough: “Theoretical and experimental analysis of photon
counting detector CT for proton stopping power prediction”. Medical Physics 45(11)
(2018), 5186–5196. issn: 00942405. doi: 10.1002/mp.13173.

https://doi.org/10.1088/0031-9155/58/19/6851
https://doi.org/10.1088/0031-9155/59/8/2059
https://doi.org/10.1088/0031-9155/59/18/5611
https://doi.org/10.1088/0031-9155/55/5/006
https://doi.org/10.1088/0031-9155/59/1/83
https://doi.org/10.1088/1361-6560/aa952f
https://doi.org/10.1002/mp.12666
https://doi.org/10.1088/1361-6560/abbd14
https://doi.org/10.1118/1.4820371
https://doi.org/10.1002/mp.13173


184 bibliography

[81] H.-W. Sadrozinski, T. Geoghegan, E. Harvey, R. Johnson, T. Plautz, A. Zatserklyaniy,
V. Bashkirov, R. Hurley, P. Piersimoni, R. Schulte, P. Karbasi, K. Schubert, B. Schultze,
and V. Giacometti: “Operation of the preclinical head scanner for proton CT”. Nu-
clear Instruments and Methods in Physics Research Section A: Accelerators, Spectrom-
eters, Detectors and Associated Equipment 831 (2016), 394–399. issn: 01689002. doi:
10.1016/j.nima.2016.02.001.

[82] R. P. Johnson, V. Bashkirov, L. DeWitt, V. Giacometti, R. F. Hurley, P. Piersimoni, T. E.
Plautz, H. F. Sadrozinski, K. Schubert, R. Schulte, B. Schultze, and A. Zatserklyaniy:
“A Fast Experimental Scanner for Proton CT: Technical Performance and First Experi-
ence With Phantom Scans”. IEEE Transactions on Nuclear Science 63(1) (2016), 52–60.
issn: 0018-9499. doi: 10.1109/TNS.2015.2491918.

[83] P. Piersimoni, B. A. Faddegon, J. R. Méndez, R. W. Schulte, L. Volz, and J. Seco:
“Helium CT: Monte Carlo simulation results for an ideal source and detector with
comparison to proton CT”. Medical Physics 45(7) (2018), 3264–3274. issn: 0094-2405.
doi: 10.1002/mp.12942.

[84] L. Volz, C. A. Collins-Fekete, P. Piersimoni, R. P. Johnson, V. Bashkirov, R. Schulte,
and J. Seco: “Stopping power accuracy and achievable spatial resolution of helium
ion imaging using a prototype particle CT detector system”. Current Directions in
Biomedical Engineering 3(2) (2017), 401–404. issn: 23645504. doi: 10.1515/cdbme-2017-
0084.

[85] L. Volz, P. Piersimoni, V. A. Bashkirov, S. Brons, C.-A. Collins-Fekete, R. P. Johnson,
R. W. Schulte, and J. Seco: “The impact of secondary fragments on the image quality
of helium ion imaging”. Physics in Medicine & Biology 63(19) (2018), 195016. issn:
1361-6560. doi: 10.1088/1361-6560/aadf25.

[86] I. Rinaldi, S. Brons, J. Gordon, R. Panse, B. Voss, O. Jäkel, and K. Parodi: “Experimental
characterization of a prototype detector system for carbon ion radiography and
tomography”. Physics in Medicine & Biology 58(3) (2013), 413–427. issn: 0031-9155. doi:
10.1088/0031-9155/58/3/413.

[87] M. Esposito, C. Waltham, J. T. Taylor, S. Manger, B. Phoenix, T. Price, G. Poludniowski,
S. Green, P. M. Evans, P. P. Allport, S. Manolopulos, J. Nieto-Camero, J. Symons,
and N. M. Allinson: “PRaVDA: The first solid-state system for proton computed
tomography”. Physica Medica 55 (2018), 149–154. issn: 11201797. doi: 10.1016/j.ejmp.
2018.10.020.

[88] C. Civinini, M. Scaringella, M. Brianzi, M. Intravaia, N. Randazzo, V. Sipala, M.
Rovituso, F. Tommasino, M. Schwarz, and M. Bruzzi: “Relative stopping power
measurements and prosthesis artifacts reduction in proton CT”. Physics in Medicine &
Biology 65 (2020), 225012. issn: 0031-9155. doi: 10.1088/1361-6560/abb0c8.

[89] E. A. DeJongh, D. F. DeJongh, I. Polnyi, V. Rykalin, C. Sarosiek, G. Coutrakon, K. L.
Duffin, N. T. Karonis, C. E. Ordoñez, M. Pankuch, J. R. Winans, and J. S. Welsh:
“Technical Note: A fast and monolithic prototype clinical proton radiography system
optimized for pencil beam scanning”. Medical Physics (2020). issn: 0094-2405. doi:
10.1002/mp.14700.

https://doi.org/10.1016/j.nima.2016.02.001
https://doi.org/10.1109/TNS.2015.2491918
https://doi.org/10.1002/mp.12942
https://doi.org/10.1515/cdbme-2017-0084
https://doi.org/10.1515/cdbme-2017-0084
https://doi.org/10.1088/1361-6560/aadf25
https://doi.org/10.1088/0031-9155/58/3/413
https://doi.org/10.1016/j.ejmp.2018.10.020
https://doi.org/10.1016/j.ejmp.2018.10.020
https://doi.org/10.1088/1361-6560/abb0c8
https://doi.org/10.1002/mp.14700


bibliography 185

[90] R. Zhang, K. W. Jee, E. Cascio, G. C. Sharp, J. B. Flanz, and H. M. Lu: “Improvement
of single detector proton radiography by incorporating intensity of time-resolved
dose rate functions”. Physics in Medicine & Biology 63(1) (2018). issn: 13616560. doi:
10.1088/1361-6560/aa9913.

[91] N. Krah, L. D. Marzi, A. Patriarca, G. Pittá, and I. Rinaldi: “Proton radiography with
a commercial range telescope detector using dedicated post processing methods”.
Physics in Medicine & Biology 63(20) (2018). issn: 13616560. doi: 10 . 1088 / 1361 -
6560/aae043.

[92] S. Meyer: “On the Clinical Potential of Ion Computed Tomography with Different
Detector Systems and Ion Species”. Ludwig-Maximilians-Universität München, 2019.

[93] S. Meyer, C. Gianoli, L. Magallanes, B. Kopp, T. Tessonnier, G. Landry, G. Dedes,
B. Voss, and K. Parodi: “Comparative Monte Carlo study on the performance of
integration- and list-mode detector configurations for carbon ion computed tomog-
raphy”. Physics in Medicine & Biology 62(3) (2017), 1096–1112. issn: 0031-9155. doi:
10.1088/1361-6560/aa5602.

[94] C. Gianoli, S. Meyer, L. Magallanes, C. Paganelli, G. Baroni, and K. Parodi: “Analytical
simulator of proton radiography and tomography for different detector configura-
tions”. Physica Medica 59 (2019), 92–99. issn: 1724191X. doi: 10.1016/j.ejmp.2019.03.
002.

[95] K. Parodi, W. Assmann, C. Belka, J. Bortfeldt, D. A. Clevert, G. Dedes, R. Kalunga,
S. Kundel, N. Kurichiyanil, P. Lämmer, J. Lascaud, K. Lauber, G. Lovatti, S. Meyer,
M. Nitta, M. Pinto, M. J. Safari, K. Schnürle, J. Schreiber, P. G. Thirolf, H. P. Wieser,
and M. Würl: “Towards a novel small animal proton irradiation platform: the SIRMIO
project”. Acta Oncologica 58(10) (2019), 1470–1475. issn: 1651226X. doi: 10 .1080/
0284186X.2019.1630752.

[96] S. Meyer, J. Bortfeldt, P. L. mmer, F. S. Englbrecht, M. Pinto, K. Schnurle, M. Wurl,
and K. Parodi: “Optimization and performance study of a proton CT system for
pre-clinical small animal imaging”. Physics in Medicine & Biology 65(15) (2020). issn:
13616560. doi: 10.1088/1361-6560/ab8afc.

[97] H. F. Sadrozinski, R. P. Johnson, S. MacAfee, A. Plumb, D. Steinberg, A. Zatserklyaniy,
V. A. Bashkirov, R. F. Hurley, and R. W. Schulte: “Development of a head scanner for
proton CT”. 699. 2013, 205–210. doi: 10.1016/j.nima.2012.04.029.

[98] R. Johnson, V. Bashkirov, G. Coutrakon, V. Giacometti, P. Karbasi, N. Karonis, C.
Ordoñez, M. Pankuch, H.-W. Sadrozinski, K. Schubert, and R. Schulte: “Results from
a Prototype Proton-CT Head Scanner”. Physics Procedia 90(8) (2017), 209–214. issn:
18753892. doi: 10.1016/j.phpro.2017.09.060.

[99] J. Dickmann, C. Sarosiek, V. Rykalin, M. Pankuch, S. Rit, N. Detrich, G. B. Coutrakon,
R. P. Johnson, R. W. Schulte, K. Parodi, G. Landry, and G. Dedes: “Experimental
realization of dynamic fluence field optimization for proton computed tomography”.
Physics in Medicine & Biology 65(19) (2020), 195001. doi: 10.1088/1361-6560/ab9f5f.

https://doi.org/10.1088/1361-6560/aa9913
https://doi.org/10.1088/1361-6560/aae043
https://doi.org/10.1088/1361-6560/aae043
https://doi.org/10.1088/1361-6560/aa5602
https://doi.org/10.1016/j.ejmp.2019.03.002
https://doi.org/10.1016/j.ejmp.2019.03.002
https://doi.org/10.1080/0284186X.2019.1630752
https://doi.org/10.1080/0284186X.2019.1630752
https://doi.org/10.1088/1361-6560/ab8afc
https://doi.org/10.1016/j.nima.2012.04.029
https://doi.org/10.1016/j.phpro.2017.09.060
https://doi.org/10.1088/1361-6560/ab9f5f


186 bibliography

[100] J. Dickmann, P. Wesp, M. Rädler, S. Rit, M. Pankuch, R. P. Johnson, V Bashkirov,
R. W. Schulte, K. Parodi, G. Landry, and G. Dedes: “Prediction of image noise
contributions in proton computed tomography and comparison to measurements”.
Physics in Medicine & Biology 64(14) (2019), 145016. issn: 1361-6560. doi: 10.1088/1361-
6560/ab2474.

[101] A. Artikov, J. Budagov, I. Chirikov-Zorin, D. Chokheli, M. Lyablin, G. Bellettini, A.
Menzione, S. Tokar, N. Giokaris, and A. Manousakis-Katsikakis: “Properties of the
Ukraine polystyrene-based plastic scintillator UPS 923A”. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 555(1-2) (2005), 125–131. issn: 01689002. doi: 10.1016/j.nima.2005.09.021.

[102] G. Dedes, J. Dickmann, V. Giacometti, S. Rit, N. Krah, S. Meyer, V. Bashkirov, R.
Schulte, R. P. Johnson, K. Parodi, and G. Landry: “The role of Monte Carlo simulation
in understanding the performance of proton computed tomography”. Zeitschrift für
Medizinische Physik (available online, 2020). issn: 0939-3889. doi: 10.1016/j.zemedi.
2020.06.006.

[103] V. Giacometti, V. A. Bashkirov, P. Piersimoni, S. Guatelli, T. E. Plautz, H. F. Sadrozinski,
R. P. Johnson, A. Zatserklyaniy, T. Tessonnier, K. Parodi, A. B. Rosenfeld, and R. W.
Schulte: “Software platform for simulation of a prototype proton CT scanner”. Medical
Physics 44(3) (2017), 1002–1016. issn: 00942405. doi: 10.1002/mp.12107.

[104] D. F. DeJongh, E. A. DeJongh, V. Rykalin, G. DeFillippo, M. Pankuch, A. W. Best,
G. Coutrakon, K. L. Duffin, N. T. Karonis, C. E. Ordoñez, C. Sarosiek, R. W. Schulte,
J. R. Winans, A. M. Block, C. L. Hentz, and J. S. Welsh: “A Comparison of Proton
Stopping Power Measured with Proton CT and X-Ray CT in Fresh Post-Mortem
Porcine Structures” (2020). arXiv: 2012.06629 [physics.med-ph].

[105] J. T. Taylor, G Poludniowski, T Price, C Waltham, P. P. Allport, G. L. Casse, M Esposito,
P. M. Evans, S. Green, S Manger, S Manolopoulos, J. Nieto-Camero, D. J. Parker,
J Symons, and N. M. Allinson: “An experimental demonstration of a new type of
proton computed tomography using a novel silicon tracking detector”. Medical Physics
43(11) (2016), 6129–6136. issn: 00942405. doi: 10.1118/1.4965809.

[106] H. Pettersen, J. Alme, A. Biegun, A. van den Brink, M. Chaar, D. Fehlker, I. Meric,
O. Odland, T. Peitzmann, E. Rocco, K. Ullaland, H. Wang, S. Yang, C. Zhang, and
D. Röhrich: “Proton tracking in a high-granularity Digital Tracking Calorimeter for
proton CT purposes”. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 860 (2017), 51–61. issn:
01689002. doi: 10.1016/j.nima.2017.02.007. arXiv: 1611.02031.

[107] H. E. S. Pettersen, J. Alme, G. G. Barnaföldi, R. Barthel, A. van den Brink, M. Chaar,
V. Eikeland, A. García-Santos, G. Genov, S. Grimstad, O. Grøttvik, H. Helstrup, K. F.
Hetland, S. Mehendale, I. Meric, O. H. Odland, G. Papp, T. Peitzmann, P. Piersimoni,
A. Ur Rehman, M. Richter, A. T. Samnøy, J. Seco, H. Shafiee, E. V. Skjæveland,
J. R. Sølie, G. Tambave, K. Ullaland, M. Varga-Kofarago, L. Volz, B. Wagner, S.
Yang, and D. Röhrich: “Design optimization of a pixel-based range telescope for
proton computed tomography”. Physica Medica 63 (2019), 87–97. issn: 11201797. doi:
10.1016/j.ejmp.2019.05.026.

https://doi.org/10.1088/1361-6560/ab2474
https://doi.org/10.1088/1361-6560/ab2474
https://doi.org/10.1016/j.nima.2005.09.021
https://doi.org/10.1016/j.zemedi.2020.06.006
https://doi.org/10.1016/j.zemedi.2020.06.006
https://doi.org/10.1002/mp.12107
https://arxiv.org/abs/2012.06629
https://doi.org/10.1118/1.4965809
https://doi.org/10.1016/j.nima.2017.02.007
https://arxiv.org/abs/1611.02031
https://doi.org/10.1016/j.ejmp.2019.05.026


bibliography 187

[108] N. Krah, F. Khellaf, J. M. Létang, S. Rit, and I. Rinaldi: “A comprehensive theoretical
comparison of proton imaging set-ups in terms of spatial resolution”. Physics in
Medicine & Biology 63(13) (2018), 135013. issn: 1361-6560. doi: 10.1088/1361-6560/
aaca1f.

[109] F. Ulrich-Pur, T. Bergauer, A. Burker, S. Hatamikia, A. Hirtl, C. Irmler, S. Kaser, P.
Paulitsch, F. Pitters, and V. Teufelhart: “Imaging with protons at MedAustron”. Nuclear
Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 978 (2020). issn: 01689002. doi: 10.1016/j.nima.
2020.164407.

[110] R. F. Hurley, R. W. Schulte, V. A. Bashkirov, A. J. Wroe, A. Ghebremedhin, H. F.
Sadrozinski, V. Rykalin, G. Coutrakon, P. Koss, and B. Patyal: “Water-equivalent path
length calibration of a prototype proton CT scanner”. Medical Physics 39(5) (2012),
2438–2446. issn: 00942405. doi: 10.1118/1.3700173.

[111] G. Coutrakon, V. Bashkirov, F. Hurley, R. Johnson, V. Rykalin, H. Sadrozinski, and
R. Schulte: “Design and construction of the 1st proton CT scanner”. AIP Conference
Proceedings 1525 (2013), 327–331. issn: 0094243X. doi: 10.1063/1.4802343.

[112] N. Krah, C. T. Quiñones, J.-M. Letang, and S. Rit: “Scattering proton CT”. Physics
in Medicine & Biology 65(22) (2020), 225015. issn: 0031-9155. doi: 10 .1088/1361 -
6560/abbd18.

[113] S. Rit, G. Dedes, N. Freud, D. Sarrut, and J. M. Létang: “Filtered backprojection proton
CT reconstruction along most likely paths”. Medical Physics 40(3) (2013), 031103. issn:
00942405. doi: 10.1118/1.4789589.

[114] F. Khellaf, N. Krah, J.-M. Letang, C.-A. Collins-Fekete, and S. Rit: “A comparison of
direct reconstruction algorithms in proton computed tomography”. Physics in Medicine
& Biology 65(10) (2020), 105010. issn: 0031-9155. doi: 10.1088/1361-6560/ab7d53.

[115] C.-A. Collins-Fekete, S. Brousmiche, S. K. N. Portillo, L. Beaulieu, and J. Seco: “A
maximum likelihood method for high resolution proton radiography/proton CT”.
Physics in Medicine & Biology 61(23) (2016), 8232–8248. issn: 0031-9155. doi: 10.1088/
0031-9155/61/23/8232.

[116] C.-A. Collins-Fekete, L. Volz, S. K. N. Portillo, L. Beaulieu, and J. Seco: “A theoretical
framework to predict the most likely ion path in particle imaging”. Physics in Medicine
& Biology 62(5) (2017), 1777–1790. issn: 0031-9155. doi: 10.1088/1361-6560/aa58ce.
arXiv: 1610.05774.

[117] N. Krah, J.-M. Letang, and S. Rit: “Polynomial modelling of proton trajectories in
homogeneous media for fast most likely path estimation and trajectory simulation”.
Physics in Medicine & Biology 64(19) (2019). issn: 0031-9155. doi: 10 . 1088 / 1361 -
6560/ab3d0b.

[118] D. Lazos, C.-A. Collins-Fekete, P. M. Evans, and N. Dikaios: “Molière maximum
likelihood proton path estimation approximated by cubic Bézier curve for scatter
corrected proton CT reconstruction”. Physics in Medicine & Biology 65 (2020), 175003.
issn: 0031-9155. doi: 10.1088/1361-6560/ab9413.

https://doi.org/10.1088/1361-6560/aaca1f
https://doi.org/10.1088/1361-6560/aaca1f
https://doi.org/10.1016/j.nima.2020.164407
https://doi.org/10.1016/j.nima.2020.164407
https://doi.org/10.1118/1.3700173
https://doi.org/10.1063/1.4802343
https://doi.org/10.1088/1361-6560/abbd18
https://doi.org/10.1088/1361-6560/abbd18
https://doi.org/10.1118/1.4789589
https://doi.org/10.1088/1361-6560/ab7d53
https://doi.org/10.1088/0031-9155/61/23/8232
https://doi.org/10.1088/0031-9155/61/23/8232
https://doi.org/10.1088/1361-6560/aa58ce
https://arxiv.org/abs/1610.05774
https://doi.org/10.1088/1361-6560/ab3d0b
https://doi.org/10.1088/1361-6560/ab3d0b
https://doi.org/10.1088/1361-6560/ab9413


188 bibliography

[119] F. Khellaf, N. Krah, I. Rinaldi, J.-M. Létang, and S. Rit: “Effects of transverse hetero-
geneities on the most likely path of protons”. Physics in Medicine & Biology 65 (2019),
105010. issn: 0031-9155. doi: 10.1088/1361-6560/ab02a8.

[120] C.-A. Collins-Fekete, P. Doolan, M. F. Dias, L. Beaulieu, and J. Seco: “Developing a
phenomenological model of the proton trajectory within a heterogeneous medium
required for proton imaging”. Physics in Medicine & Biology 60(13) (2015), 5071–5082.
issn: 0031-9155. doi: 10.1088/0031-9155/60/13/5071.

[121] M. D. Brooke and S. N. Penfold: “An inhomogeneous most likely path formalism
for proton computed tomography”. Physica Medica 70 (2020), 184–195. issn: 11201797.
doi: 10.1016/j.ejmp.2020.01.025. arXiv: 1808.00122.

[122] S. Rit, M. V. Oliva, S. Brousmiche, R. Labarbe, D. Sarrut, and G. C. Sharp: “The
Reconstruction Toolkit (RTK), an open-source cone-beam CT reconstruction toolkit
based on the Insight Toolkit (ITK)”. Journal of Physics: Conference Series 489 (2014).
issn: 1742-6588. doi: 10.1088/1742-6596/489/1/012079.

[123] M. McCormick, X. Liu, J. Jomier, C. Marion, and L. Ibanez: “ITK: enabling re-
producible research and open science”. Frontiers in Neuroinformatics 8 (2014). issn:
1662-5196. doi: 10.3389/fninf.2014.00013.

[124] M. Rädler, G. Landry, S. Rit, R. W. Schulte, K. Parodi, and G. Dedes: “Two-dimensional
noise reconstruction in proton computed tomography using distance-driven filtered
back-projection of simulated projections”. Physics in Medicine & Biology 63(21) (2018),
215009. issn: 1361-6560. doi: 10.1088/1361-6560/aae5c9.

[125] G. N. Ramachandran and A. V. Lakshminarayanan: “Three-dimensional Reconstruc-
tion from Radiographs and Electron Micrographs: Application of Convolutions
instead of Fourier Transforms”. Proceedings of the National Academy of Sciences 68(9)
(1971), 2236–2240. issn: 0027-8424. doi: 10.1073/pnas.68.9.2236.

[126] A. C. Kak and M. Slaney: “Principles of Tomographic Imaging” (1987).

[127] L. A. Feldkamp, L. C. Davis, and J. W. Kress: “Practical cone-beam algorithm”. Journal
of the Optical Society of America A 1(6) (1984), 612–619. doi: 10.1364/JOSAA.1.000612.

[128] D. C. Hansen, T. Sangild Sørensen, and S. Rit: “Fast reconstruction of low dose proton
CT by sinogram interpolation”. Physics in Medicine & Biology 61(15) (2016), 5868–5882.
issn: 0031-9155. doi: 10.1088/0031-9155/61/15/5868.

[129] G. Poludniowski, N. M. Allinson, and P. M. Evans: “Proton computed tomography
reconstruction using a backprojection-then-filtering approach”. Physics in Medicine &
Biology 59(24) (2014), 7905–7918. issn: 0031-9155. doi: 10.1088/0031-9155/59/24/7905.

[130] S. Rit, R. Clackdoyle, J. Hoskovec, and J. M. Letang: “List-mode proton CT reconstruc-
tion using their most likely paths via the finite Hilbert transform of the derivative of
the backprojection”. Proceedings of Fully3D (2015), 324–327.

[131] F. Khellaf, N. Krah, J. M. Létang, and S. Rit: “2D directional ramp filter”. Physics in
Medicine & Biology 65(8) (2020). issn: 13616560. doi: 10.1088/1361-6560/ab7875.

https://doi.org/10.1088/1361-6560/ab02a8
https://doi.org/10.1088/0031-9155/60/13/5071
https://doi.org/10.1016/j.ejmp.2020.01.025
https://arxiv.org/abs/1808.00122
https://doi.org/10.1088/1742-6596/489/1/012079
https://doi.org/10.3389/fninf.2014.00013
https://doi.org/10.1088/1361-6560/aae5c9
https://doi.org/10.1073/pnas.68.9.2236
https://doi.org/10.1364/JOSAA.1.000612
https://doi.org/10.1088/0031-9155/61/15/5868
https://doi.org/10.1088/0031-9155/59/24/7905
https://doi.org/10.1088/1361-6560/ab7875


bibliography 189

[132] S. N. Penfold, A. B. Rosenfeld, R. W. Schulte, and K. E. Schubert: “A more accurate
reconstruction system matrix for quantitative proton computed tomography”. Medical
Physics 36(10) (2009), 4511–4518. issn: 00942405. doi: 10.1118/1.3218759.

[133] S. N. Penfold, R. W. Schulte, Y. Censor, and A. B. Rosenfeld: “Total variation superi-
orization schemes in proton computed tomography image reconstruction”. Medical
Physics 37(11) (2010), 5887–5895. issn: 00942405. doi: 10 .1118/1 .3504603. arXiv:
1010.1663.

[134] B. Schultze, Y. Censor, P. Karbasi, K. E. Schubert, and R. W. Schulte: “An Improved
Method of Total Variation Superiorization Applied to Reconstruction in Proton
Computed Tomography”. IEEE Transactions on Medical Imaging 39(2) (2020), 294–307.
doi: 10.1109/TMI.2019.2911482.

[135] D. F. DeJongh and E. A. DeJongh: “An Iterative Least Squares Method for Proton CT
Image Reconstruction” (2020). arXiv: 2009.14263 [physics.med-ph].

[136] A. Wunderlich and F. Noo: “Image covariance and lesion detectability in direct
fan-beam x-ray computed tomography”. Physics in Medicine & Biology 53(10) (2008),
2471–2493. issn: 0031-9155. doi: 10.1088/0031-9155/53/10/002.

[137] J. C. Gore and P. S. Tofts: “Statistical limitations in computed tomography”. Physics in
Medicine & Biology 23(6) (1978), 1176–1182. doi: 10.1088/0031-9155/23/6/014.

[138] J. Dickmann, F. Kamp, M. Hillbrand, S. Corradini, C. Belka, R. W. Schulte, K. Parodi,
G. Dedes, and G. Landry: “Fluence-modulated proton CT optimized with patient-
specific dose and variance objectives for proton dose calculation”. Physics in Medicine
& Biology 66(6) (2021), 064001. doi: 10.1088/1361-6560/abe3d2.

[139] S. S. Hsieh and N. J. Pelc: “The piecewise-linear dynamic attenuator reduces the
impact of count rate loss with photon-counting detectors”. Physics in Medicine &
Biology 59(11) (2014), 2829–2847. issn: 0031-9155. doi: 10.1088/0031-9155/59/11/2829.

[140] V. Giacometti, S. Guatelli, M. Bazalova-Carter, A. Rosenfeld, and R. Schulte: “Develop-
ment of a high resolution voxelised head phantom for medical physics applications”.
Physica Medica 33 (2017), 182–188. issn: 11201797. doi: 10.1016/j.ejmp.2017.01.007.

[141] J. Dickmann, C. Sarosiek, S. Götz, M. Pankuch, G. Coutrakon, R. P. Johnson, R. W.
Schulte, K. Parodi, G. Landry, and G. Dedes: “An empirical artifact correction for
proton computed tomography”. submitted for publication (2021).

[142] G. Battistoni, J. Bauer, T. T. Boehlen, F. Cerutti, M. P. W. Chin, R. D. S. Augusto,
A. Ferrari, P. G. Ortega, W. Kozłowska, G. Magro, A. Mairani, K. Parodi, P. R.
Sala, P. Schoofs, T. Tessonnier, and V. Vlachoudis: “The FLUKA Code: An Accurate
Simulation Tool for Particle Therapy”. Frontiers in Oncology 6 (2016). issn: 2234-943X.
doi: 10.3389/fonc.2016.00116.

[143] J. Perl, J. Shin, J. Schümann, B. Faddegon, and H. Paganetti: “TOPAS: An innovative
proton Monte Carlo platform for research and clinical applications”. Medical Physics
39(11) (2012), 6818–6837. issn: 00942405. doi: 10.1118/1.4758060.

https://doi.org/10.1118/1.3218759
https://doi.org/10.1118/1.3504603
https://arxiv.org/abs/1010.1663
https://doi.org/10.1109/TMI.2019.2911482
https://arxiv.org/abs/2009.14263
https://doi.org/10.1088/0031-9155/53/10/002
https://doi.org/10.1088/0031-9155/23/6/014
https://doi.org/10.1088/1361-6560/abe3d2
https://doi.org/10.1088/0031-9155/59/11/2829
https://doi.org/10.1016/j.ejmp.2017.01.007
https://doi.org/10.3389/fonc.2016.00116
https://doi.org/10.1118/1.4758060


190 bibliography

[144] S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier,
M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F.
Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick,
C. J. Groiselle, D. Guez, P. F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M.
Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D.
Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez,
U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y.
Song, J. M. Vieira, D. Visvikis, R. V. de Walle, E. Wieërs, and C. Morel: “GATE: A
simulation toolkit for PET and SPECT”. Physics in Medicine & Biology 49(19) (2004),
4543–4561. issn: 00319155. doi: 10.1088/0031-9155/49/19/007.

[145] A. Resch, G. Landry, F. Kamp, G. Cabal, C. Belka, J. Wilkens, K. Parodi, and G. Dedes:
“Quantification of the uncertainties of a biological model and their impact on variable
RBE proton treatment plan optimization”. Physica Medica 36 (2017), 91–102. issn:
11201797. doi: 10.1016/j.ejmp.2017.03.013.

[146] S. Schmid, G. Landry, C. Thieke, F. Verhaegen, U. Ganswindt, C. Belka, K. Parodi, and
G. Dedes: “Monte Carlo study on the sensitivity of prompt gamma imaging to proton
range variations due to interfractional changes in prostate cancer patients”. Physics
in Medicine & Biology 60(24) (2015), 9329–9347. issn: 0031-9155. doi: 10.1088/0031-
9155/60/24/9329.

[147] J. Dickmann, G. Landry, P. Wesp, S. Rit, M. Pankuch, R. Johnson, V. Bashkirov, R.
Schulte, K. Parodi, and G. Dedes: “Modelling of contributions to image variance in
proton CT for application in low-dose fluence-modulated imaging”. Conference of the
Particle Therapy Cooperative Group (PTCOG), Manchester, United Kingdom (2019).

[148] J. Dickmann, G. Landry, P. Wesp, S. Rit, M. Pankuch, R. Johnson, V. Bashkirov, R.
Schulte, K. Parodi, and G. Dedes: “Monte Carlo study of image noise contributions
of a prototype proton computed tomography scanner”. Jagiellonian Symposium on
Fundamental and Applied Subatomic Physics, Krakow, Poland (2019).

[149] J. B. Birks: “Scintillations from Organic Crystals: Specific Fluorescence and Relative
Response to Different Radiations”. Proceedings of the Physical Society. Section A 64(10)
(1951), 874–877. issn: 0370-1298. doi: 10.1088/0370-1298/64/10/303.

[150] C. G. Broyden: “The Convergence of a Class of Double-rank Minimization Algo-
rithms”. IMA Journal of Applied Mathematics 6(3) (1970), 222–231. issn: 0272-4960. doi:
10.1093/imamat/6.3.222.

[151] M. D. Harpen: “A simple theorem relating noise and patient dose in computed
tomography”. Medical Physics 26(11) (1999), 2231–2234. issn: 00942405. doi: 10.1118/
1.598778.

[152] S. A. Graham, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray: “Compensators for
dose and scatter management in cone-beam computed tomography”. Medical Physics
34(7) (2007), 2691–2703. issn: 00942405. doi: 10.1118/1.2740466.

[153] V. I. Tretyak: “Semi-empirical calculation of quenching factors for ions in scintillators”.
Astroparticle Physics 33(1) (2010), 40–53. doi: 10.1016/j.astropartphys.2009.11.002.
arXiv: 0911.3041.

https://doi.org/10.1088/0031-9155/49/19/007
https://doi.org/10.1016/j.ejmp.2017.03.013
https://doi.org/10.1088/0031-9155/60/24/9329
https://doi.org/10.1088/0031-9155/60/24/9329
https://doi.org/10.1088/0370-1298/64/10/303
https://doi.org/10.1093/imamat/6.3.222
https://doi.org/10.1118/1.598778
https://doi.org/10.1118/1.598778
https://doi.org/10.1118/1.2740466
https://doi.org/10.1016/j.astropartphys.2009.11.002
https://arxiv.org/abs/0911.3041


bibliography 191

[154] L. Reichhart, D. Y. Akimov, H. M. Araújo, E. J. Barnes, V. A. Belov, A. A. Burenkov, V.
Chepel, A. Currie, L. Deviveiros, B. Edwards, V. Francis, C. Ghag, A. Hollingsworth,
M. Horn, G. E. Kalmus, A. S. Kobyakin, A. G. Kovalenko, V. N. Lebedenko, A. Lindote,
M. I. Lopes, R. Lüscher, P. Majewski, A. S. J. Murphy, F. Neves, S. M. Paling, J. P. D.
Cunha, R. Preece, J. J. Quenby, P. R. Scovell, C. Silva, V. N. Solovov, N. J. Smith, P. F.
Smith, V. N. Stekhanov, T. J. Sumner, C. Thorne, and R. J. Walker: “Quenching factor
for low-energy nuclear recoils in a plastic scintillator”. Physical Review C - Nuclear
Physics 85(6) (2012). issn: 1089490X. doi: 10.1103/PhysRevC.85.065801.

[155] J. M. Schippers: “Beam-Transport Systems for Particle Therapy”. Proceedings of the
CAS-CERN Accelerator School: Accelerators for Medical Applications (2017), 241–252. doi:
10.23730/CYRSP-2017-001.241.

[156] J. Dickmann, S. Rit, M. Pankuch, R. P. Johnson, R. W. Schulte, K. Parodi, G. Dedes, and
G. Landry: “An optimization algorithm for dose reduction with fluence-modulated
proton CT”. Medical Physics 47(4) (2020), 1895–1906. issn: 0094-2405. doi: 10.1002/mp.
14084.

[157] J. Dickmann, P. Wesp, S. Rit, M. Pankuch, R. P. Johnson, V. A. Bashkirov, R. W.
Schulte, K. Parodi, G. Dedes, and G. Landry: “Method for Fluence Field Optimization
to Achieve Nonconvex Image Noise Prescriptions with Fluence-Modulated Proton
CT”. Annual Meeting of the American Association of Physicists in Medicine (AAPM), San
Antonio, USA, proceedings published in Medical Physics 46(6) (2019), E477–E477. issn:
24734209. doi: 10.1002/mp.13589.

[158] J. Dickmann, P. Wesp, S. Rit, M. Pankuch, R. Johnson, V. Bashkirov, R. Schulte, K.
Parodi, G. Dedes, and G. Landry: “Dosiseinsparung durch fluenzmodulierte Protonen-
Computertomographie mit Anwendung in der Protonentherapie”. Jahrestagung der
Deutschen Gesellschaft für Medizinische Physik (DGMP), Stuttgart, Germany (2019).

[159] J. Dickmann, C. Sarosiek, G. Coutrakon, S. Rit, N. Detrich, V. Rykalin, M. Pankuch,
R. P. Johnson, R. W. Schulte, K. Parodi, G. Dedes, and G. Landry: “PO-1706: Low
dose fluence-modulated proton CT: simulation study and first experimental results”.
Conference of the European Society for Radiotherapy and Oncology (ESTRO), Vienna, Austria
(online), proceedings published in Radiotherapy and Oncology 152(S1) (2020), S941. doi:
10.1016/S0167-8140(21)01724-2.

[160] T. Toth, Z. Ge, and M. P. Daly: “The influence of patient centering on CT dose and
image noise”. Medical Physics 34(7) (2007), 3093–3101. issn: 00942405. doi: 10.1118/1.
2748113.

[161] S. A. Graham, J. H. Siewerdsen, and D. A. Jaffray: “Intensity-modulated fluence
patterns for task-specific imaging in cone-beam CT”. Proceedings of SPIE 6510 (2007).
Ed. by J. Hsieh and M. J. Flynn, 651003. doi: 10.1117/12.713724.

[162] S. Bartolac, S. Graham, J. Siewerdsen, and D. Jaffray: “Fluence field optimization for
noise and dose objectives in CT”. Medical Physics 38(7) (2011), S2–S17. issn: 00942405.
doi: 10.1118/1.3574885.

https://doi.org/10.1103/PhysRevC.85.065801
https://doi.org/10.23730/CYRSP-2017-001.241
https://doi.org/10.1002/mp.14084
https://doi.org/10.1002/mp.14084
https://doi.org/10.1002/mp.13589
https://doi.org/10.1016/S0167-8140(21)01724-2
https://doi.org/10.1118/1.2748113
https://doi.org/10.1118/1.2748113
https://doi.org/10.1117/12.713724
https://doi.org/10.1118/1.3574885


192 bibliography

[163] S. Bartolac and D. Jaffray: “Compensator models for fluence field modulated com-
puted tomography”. Medical Physics 40(12) (2013), 121909. issn: 00942405. doi: 10.
1118/1.4829513.

[164] S. S. Hsieh and N. J. Pelc: “Control algorithms for dynamic attenuators”. Medical
Physics 41(6) (2014), 061907. issn: 00942405. doi: 10.1118/1.4875727.

[165] G. J. Gang, J. H. Siewerdsen, and J. W. Stayman: “Task-Driven Optimization of Fluence
Field and Regularization for Model-Based Iterative Reconstruction in Computed
Tomography”. IEEE Transactions on Medical Imaging 36(12) (2017), 2424–2435. issn:
0278-0062. doi: 10.1109/TMI.2017.2763538.

[166] G. J. Gang and J. W. Stayman: “Joint optimization of fluence field modulation and
regularization for multi-task objectives”. Proceedings of SPIE 10573 (2018), 1057313.
doi: 10.1117/12.2294950.

[167] A. Mao, J. W. Stayman, W. Shyr, and G. J. Gang: “Dynamic beam filtering for
miscentered patients”. Proceedings of SPIE 10573 (2018), 105730U. doi: 10.1117/12.
2293696.

[168] J. W. Stayman, A. Mathews, and R. Levinson: “Method for optimizing radiation beam
intensity profile shape using dual multiple aperture devices”. U.S. Patent Application
No. 15/639,044 (2018).

[169] G. J. Gang, A. Mao, W. Wang, J. H. Siewerdsen, A. Mathews, S. Kawamoto, R.
Levinson, and J. W. Stayman: “Dynamic fluence field modulation in computed
tomography using multiple aperture devices”. Physics in Medicine & Biology 64(10)
(2019), 105024. issn: 1361-6560. doi: 10.1088/1361-6560/ab155e.

[170] W. Wang, G. J. Gang, J. H. Siewerdsen, and J. W. Stayman: “Volume-of-interest
imaging using multiple aperture devices”. Proceedings of SPIE 10948 (2019), 1094823.
doi: 10.1117/12.2513427.

[171] T. P. Szczykutowicz and C. A. Mistretta: “Design of a digital beam attenuation system
for computed tomography. Part I. System design and simulation framework”. Medical
Physics 40(2) (2013), 21905. issn: 00942405. doi: 10.1118/1.4773880.

[172] T. P. Szczykutowicz and C. A. Mistretta: “Experimental realization of fluence field
modulated CT using digital beam attenuation”. Physics in Medicine & Biology 59(5)
(2014), 1305–1326. issn: 00319155. doi: 10.1088/0031-9155/59/5/1305.

[173] T. P. Szczykutowicz, J. Hermus, M. Geurts, and J. Smilowitz: “Realization of fluence
field modulated CT on a clinical TomoTherapy megavoltage CT system”. Physics
in Medicine & Biology 60(18) (2015), 7245–7257. issn: 13616560. doi: 10.1088/0031-
9155/60/18/7245.

[174] J. W. Stayman, A. Mathews, W. Zbijewski, G. Gang, J. Siewerdsen, S. Kawamoto,
I. Blevis, and R. Levinson: “Fluence-field modulated x-ray CT using multiple aperture
devices”. Proceedings of SPIE 9783 (2016), 97830X. issn: 16057422. doi: 10.1117/12.
2214358. arXiv: 15334406.

https://doi.org/10.1118/1.4829513
https://doi.org/10.1118/1.4829513
https://doi.org/10.1118/1.4875727
https://doi.org/10.1109/TMI.2017.2763538
https://doi.org/10.1117/12.2294950
https://doi.org/10.1117/12.2293696
https://doi.org/10.1117/12.2293696
https://doi.org/10.1088/1361-6560/ab155e
https://doi.org/10.1117/12.2513427
https://doi.org/10.1118/1.4773880
https://doi.org/10.1088/0031-9155/59/5/1305
https://doi.org/10.1088/0031-9155/60/18/7245
https://doi.org/10.1088/0031-9155/60/18/7245
https://doi.org/10.1117/12.2214358
https://doi.org/10.1117/12.2214358
https://arxiv.org/abs/15334406


bibliography 193

[175] S. M. Huck, K. Parodi, and K. Stierstorfer: “First Experimental Validation of a Novel
Concept for Dynamic Beam Attenuation in CT”. Proceedings of the 5th International
Conference on Image Formation in X-ray Computed Tomography. 2018, 24–27.

[176] S. M. Huck, G. S. K. Fung, K. Parodi, and K. Stierstorfer: “Technical Note: Sheet-based
dynamic beam attenuator – A novel concept for dynamic fluence field modulation in
x-ray CT”. Medical Physics 46(12) (2019), 5528–5537. doi: 10.1002/mp.13690.

[177] S. Huck, G. Fung, K. Parodi, and K. Stierstorfer: “Optimized intensity modulation
for a dynamic beam attenuator in x-ray computed tomography”. Proceedings of SPIE
10948 (2019), 1094824. doi: 10.1117/12.2511704.

[178] P. Shunhavanich, N. J. Pelc, S. S. Hsieh, and N. R. Bennett: “Implementation of a
piecewise-linear dynamic attenuator”. Proceedings of SPIE 10573 (2018), 105730T. doi:
10.1117/12.2293525.

[179] P. Shunhavanich, S. S. Hsieh, and N. J. Pelc: “Fluid-filled dynamic bowtie filter:
Description and comparison with other modulators”. Medical Physics 46(1) (2019),
127–139. issn: 00942405. doi: 10.1002/mp.13272.

[180] J. A. Nelder and R. Mead: “A Simplex Method for Function Minimization”. The
Computer Journal 7(4) (1965), 308–313. issn: 0010-4620. doi: 10.1093/comjnl/7.4.308.

[181] P. M. Joseph: “An Improved Algorithm for Reprojecting Rays through Pixel Images”.
IEEE Transactions on Medical Imaging 1(3) (1982), 192–196. issn: 0278-0062. doi: 10.
1109/TMI.1982.4307572.

[182] J. Dickmann, C. Sarosiek, V. Rykalin, M. Pankuch, S. Rit, N. Detrich, G. Coutrakon,
R. Johnson, R. W. Schulte, K. Parodi, G. Landry, and G. Dedes: “Prescribing Image
Noise Using Dynamic Fluence Field Optimization: Experimental Results Using a
Pre-Clinical Proton CT Scanner”. Joint Annual Meeting of the American Association of
Physicists in Medicine and the Canadian Organization of Medical Physics (AAPM/COMP),
Vancouver, Canada (online), proceedings published in Medical Physics 47(6) (2020), 2580–
2674. issn: 24734209. doi: 10.1002/mp.14315.

[183] J. Dickmann, C. Sarosiek, G. Coutrakon, S. Rit, N. Detrich, V. Rykalin, M. Pankuch,
R. P. Johnson, R. W. Schulte, K. Parodi, G. Landry, and G. Dedes: “Dynamic Fluence
Modulation using Proton CT for Low-dose Imaging in Particle Therapy”. International
Conference on Image Formation in X-Ray Computed Tomography (CT Meeting), Regensburg,
Germany (online) (2020).

[184] J. Dickmann, F. Kamp, R. Schulte, K. Parodi, G. Dedes, and G. Landry: “Joint Dose
Minimization and Variance Optimization for Fluence-Modulated Proton CT”. IEEE
Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Boston, USA
(online) (2020).

[185] T. Bortfeld: “Optimized Planning Using Physical Objectives and Constraints”. Semi-
nars in Radiation Oncology 9(1) (1999), 20–34. doi: 10.1016/S1053-4296(99)80052-6.

[186] J. Markman, D. A. Low, A. W. Beavis, and J. O. Deasy: “Beyond bixels: Generalizing
the optimization parameters for intensity modulated radiation therapy”. Medical
Physics 29(10) (2002), 2298–2304. issn: 00942405. doi: 10.1118/1.1508799.

https://doi.org/10.1002/mp.13690
https://doi.org/10.1117/12.2511704
https://doi.org/10.1117/12.2293525
https://doi.org/10.1002/mp.13272
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1109/TMI.1982.4307572
https://doi.org/10.1109/TMI.1982.4307572
https://doi.org/10.1002/mp.14315
https://doi.org/10.1016/S1053-4296(99)80052-6
https://doi.org/10.1118/1.1508799


194 bibliography

[187] F. Kamp, D. J. Carlson, and J. J. Wilkens: “Rapid implementation of the repair-
misrepair-fixation (RMF) model facilitating online adaption of radiosensitivity param-
eters in ion therapy”. Physics in Medicine & Biology 62(13) (2017), N285–N296. issn:
13616560. doi: 10.1088/1361-6560/aa716b.

[188] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal: “Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained optimization”. ACM Transactions on
Mathematical Software (TOMS) 23(4) (1997), 550–560.

[189] G. Guennebaud, B. Jacob, et al.: Eigen v3. 2010. url: http://eigen.tuxfamily.org.

[190] G. A. Ezzell, J. W. Burmeister, N. Dogan, T. J. Losasso, J. G. Mechalakos, D. Mihailidis,
A. Molineu, J. R. Palta, C. R. Ramsey, B. J. Salter, J. Shi, P. Xia, N. J. Yue, and Y. Xiao:
“IMRT commissioning: Multiple institution planning and dosimetry comparisons, a
report from AAPM Task Group 119”. Medical Physics 36 (11 2009), 5359–5373. issn:
00942405. doi: 10.1118/1.3238104.

[191] J. H. Song, M. J. Kim, S. H. Park, S. R. Lee, M. Y. Lee, D. S. Lee, and T. S. Suh:
“Gamma analysis dependence on specified low-dose thresholds for VMAT QA”.
Journal of Applied Clinical Medical Physics 16 (6 2015), 263–272. issn: 15269914. doi:
10.1120/jacmp.v16i6.5696.

[192] D. Mackin, X. R. Zhu, F. Poenisch, H. Li, N. Sahoo, M. Kerr, C. Holmes, Y. Li,
M. Lii, R. Wu, K. Suzuki, M. T. Gillin, S. J. Frank, D. Grosshans, and X. Zhang:
“Spot-Scanning Proton Therapy Patient-Specific Quality Assurance: Results from 309

Treatment Plans”. International Journal of Particle Therapy 1(3) (2014), 711–720. issn:
2331-5180. doi: 10.14338/ijpt-14-00017.1.

[193] L. Koivula, L. Wee, and J. Korhonen: “Feasibility of MRI-only treatment planning for
proton therapy in brain and prostate cancers: Dose calculation accuracy in substitute
CT images”. Medical Physics 43(8) (2016), 4634–4642. issn: 00942405. doi: 10.1118/1.
4958677.

[194] P. Yepes, A. Adair, D. Grosshans, D. Mirkovic, F. Poenisch, U. Titt, Q. Wang, and R.
Mohan: “Comparison of Monte Carlo and analytical dose computations for intensity
modulated proton therapy”. Physics in Medicine & Biology 63(4) (2018). issn: 13616560.
doi: 10.1088/1361-6560/aaa845.

[195] R. E. Shore: “Radiation and cataract risk: Impact of recent epidemiologic studies on
ICRP judgments”. Mutation Research/Reviews in Mutation Research 770 (2016), 231–237.
issn: 13835742. doi: 10.1016/j.mrrev.2016.06.006.

[196] U. Schneider and R. Hälg: “The Impact of Neutrons in Clinical Proton Therapy”.
Frontiers in Oncology 5 (2015). issn: 2234-943X. doi: 10.3389/fonc.2015.00235.

[197] J. Dickmann, C. Sarosiek, V. Rykalin, M. Pankuch, G. Coutrakon, R. P. Johnson, V.
Bashkirov, R. W. Schulte, K. Parodi, G. Landry, and G. Dedes: “Proof of concept image
artifact reduction by energy-modulated proton computed tomography (EMpCT)”.
Physica Medica 81 (2021), 237–244. issn: 11201797. doi: 10.1016/j.ejmp.2020.12.012.

https://doi.org/10.1088/1361-6560/aa716b
http://eigen.tuxfamily.org
https://doi.org/10.1118/1.3238104
https://doi.org/10.1120/jacmp.v16i6.5696
https://doi.org/10.14338/ijpt-14-00017.1
https://doi.org/10.1118/1.4958677
https://doi.org/10.1118/1.4958677
https://doi.org/10.1088/1361-6560/aaa845
https://doi.org/10.1016/j.mrrev.2016.06.006
https://doi.org/10.3389/fonc.2015.00235
https://doi.org/10.1016/j.ejmp.2020.12.012


bibliography 195

[198] J. Dickmann, P. Wesp, S. Rit, M. Pankuch, R. Johnson, V. Bashkirov, R. Schulte, K.
Parodi, G. Landry, and G. Dedes: “Understanding image artifacts for a prototype
proton computed tomography scanner via Monte Carlo simulations”. International
Conference on Monte Carlo Techniques for Medical Applications (MCMA), Montréal, Canada
(2019).

[199] M. Saito and S. Sagara: “A simple formulation for deriving effective atomic numbers
via electron density calibration from dual-energy CT data in the human body”.
Medical Physics 44(6) (2017), 2293–2303. issn: 00942405. doi: 10.1002/mp.12176.

[200] C. Ordoñez, N. Karonis, K. Duffin, W. J., E. DeJongh, D. DeJongh, G. Coutrakon,
N. Myers, M. Pankuch, and W. J.: “Fast in situ image reconstruction for proton
radiography”. Journal of Radiation Oncology 8(2) (2019), 185–198. doi: 10.1007/s13566-
019-00387-x.

[201] M. Kachelrieß, K. Sourbelle, and W. A. Kalender: “Empirical cupping correction: A
first-order raw data precorrection for cone-beam computed tomography”. Medical
Physics 33(5) (2006), 1269–1274. issn: 00942405. doi: 10.1118/1.2188076.

[202] J. Park and I. W. Sandberg: “Universal Approximation Using Radial-Basis-Function
Networks”. Neural Computation 3(2) (1991). issn: 0899-7667. doi: 10.1162/neco.1991.3.
2.246.

[203] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
bibinitperiodI. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R.
Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors: “SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python”. Nature Methods 17 (2020), 261–272.
doi: 10.1038/s41592-019-0686-2.

[204] T. E. Plautz, V. Bashkirov, V. Giacometti, R. F. Hurley, R. P. Johnson, P. Piersimoni,
H. F. Sadrozinski, R. W. Schulte, and A. Zatserklyaniy: “An evaluation of spatial
resolution of a prototype proton CT scanner”. Medical Physics 43(12) (2016), 6291–6300.
issn: 00942405. doi: 10.1118/1.4966028.

https://doi.org/10.1002/mp.12176
https://doi.org/10.1007/s13566-019-00387-x
https://doi.org/10.1007/s13566-019-00387-x
https://doi.org/10.1118/1.2188076
https://doi.org/10.1162/neco.1991.3.2.246
https://doi.org/10.1162/neco.1991.3.2.246
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1118/1.4966028


196

L I S T O F F I G U R E S

Figure 1.1 Number of particle therapy centers from 1954 to today . . . . . . . . 2

Figure 1.2 Treatment workflow of modern image–guided particle therapy . . . 3

Figure 2.1 Stopping power and relative stopping power as a function of the
proton energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.2 Dose maps and depth–dose curve of proton beams in water at various
incident energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.3 Mass attenuation coefficient and its contributions for x–ray photons
in water and bone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.4 Exemplary dose maps of a photon and a proton treatment . . . . . . 18

Figure 3.1 Photograph of the prototype pCT scanner used in this work . . . . . 24

Figure 3.2 Schematic drawing of the prototype pCT scanner . . . . . . . . . . . 25

Figure 3.3 Calibration histograms and resulting calibration curves for the WEPL
calibration of the scanner . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.4 Histograms of WEPL and scattering angles before and after data cuts 30

Figure 3.5 Schematic of the coordinates used in the most likely path estimation 31

Figure 3.6 Images of all phantoms used in this work . . . . . . . . . . . . . . . . 43

Figure 4.1 Monte Carlo model of the prototype pCT scanner . . . . . . . . . . . 48

Figure 4.2 Volume rendering of the voxelized representation of the pediatric
head phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.3 Calibration curves used to import x–ray CT data into the Monte Carlo
simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 5.1 Comparison of ground truth image noise maps to the results of the
variance reconstruction algorithm . . . . . . . . . . . . . . . . . . . . . 54

Figure 5.2 Histograms of the energy deposit to the stopping stage and the
corresponding WEPL for measurements and simulations used for the
calculation of the quenching parameter . . . . . . . . . . . . . . . . . 57

Figure 5.3 Calibration curves obtained from experiments and using simulations
with and without simulating the effect of quenching . . . . . . . . . 58

Figure 5.4 The spread of the energy deposit as a function of the initial beam
energy spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 5.5 Contributions to image variance and comparison of simulated and
experimental data in the projection . . . . . . . . . . . . . . . . . . . . 62

Figure 5.6 Image noise for three different phantoms comparing simulated to
experimental standard deviation maps . . . . . . . . . . . . . . . . . . 65

Figure 5.7 A first fluence modulation based on the image variance predictions . 67

Figure 6.1 Workflow of the optimization algorithm for FMpCT . . . . . . . . . . 78

Figure 6.2 Workflow of the iterative variance forward projection . . . . . . . . . 80

Figure 6.3 Over–proportional increase of image variance for very low proton
numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



list of figures 197

Figure 6.4 Image variance prescriptions and ROI indications used in the FMpCT
simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 6.5 Error values as a function of the iteration number and intermediate
results for the iterative variance optimization . . . . . . . . . . . . . . 84

Figure 6.6 Variance and counts sinograms as intermediate results of the fluence
optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 6.7 Simulation study for the fluence optimization algorithm and for the
reference method with the water phantom . . . . . . . . . . . . . . . 85

Figure 6.8 Simulation study for the fluence optimization algorithm and for the
reference method with the CTP and the head phantom . . . . . . . . 86

Figure 6.9 Imaging doses of the simulation study testing the performance of the
optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 6.10 Imaging dose for the head phantom with the fluence optimized to
achieve constant noise in the image . . . . . . . . . . . . . . . . . . . . 88

Figure 7.1 Pencil beam spots and their spatial WEPL distribution used to correct
ring artifacts in experimental acquisitions . . . . . . . . . . . . . . . . 96

Figure 7.2 Experimental fluence–modulated acquisitions with the water phantom 99

Figure 7.3 Experimental fluence–modulated acquisitions with the head phantom 100

Figure 7.4 Summed fluences for the experimental data and for simulated data
replicating the smaller spot size and a pattern shift . . . . . . . . . . 102

Figure 7.5 Evaluation of the accuracy of experimental FMpCT scans using the
CTP phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 7.6 Evaluation of pencil beam artifacts present in the first experimental
FMpCT study with a static fluence field . . . . . . . . . . . . . . . . . 107

Figure 8.1 Dose–volume histograms for the photon and proton treatment plans
for the three patients used in this study . . . . . . . . . . . . . . . . . 114

Figure 8.2 Workflow for the optimization algorithm using dose and variance
objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 8.3 Cost function values for the optimization with dose and variance
objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 8.4 Fluence sinograms for the three patients optimized for dose and
variance targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 8.5 Image variance maps for unit fluence pCT and fluence–modulated
scans for three patients . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 8.6 Treatment doses optimized on the ground truth RSP map and re–
calculated on pCT and FMpCT images together with dose–volume
histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 8.7 Imaging doses in mGy and imaging dose–volume histograms for pCT
and FMpCT scans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 8.8 Comparison of the imaging dose between FMpCT scans and binary
fluence modulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 8.9 Predictions of the optimizer’s forward model and actual values from
the Monte Carlo simulation for imaging dose and image variance maps131



198 list of figures

Figure 9.1 Illustration of ring–shaped image artifacts resulting from stage tran-
sitions of the five–stage energy detector for a homogeneous phantom 140

Figure 9.2 Voxel–wise fraction of WEPLs originating from measurements close
to stage transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Figure 9.3 Calibration histograms for the low and the high energy dataset and
resulting calibration curves . . . . . . . . . . . . . . . . . . . . . . . . 144

Figure 9.4 Spatial distribution of the two energies in the energy–modulated scan
in one projection of the water phantom . . . . . . . . . . . . . . . . . 146

Figure 9.5 Spatial distribution of the two energies in the energy–modulated scan
in one projection of a pediatric head . . . . . . . . . . . . . . . . . . . 147

Figure 9.6 Reconstructions of the water phantom for the low and the high energy
dataset as well as for the two merged datasets . . . . . . . . . . . . . 148

Figure 9.7 Schematic for the optimization of the correction function with exam-
ples of all quantities of the algorithm . . . . . . . . . . . . . . . . . . . 150

Figure 9.8 Optimized correction functions for the high and low energy dataset 154

Figure 9.9 Corrected and uncorrected scans of the ellipse and water phantom at
both energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Figure 9.10 Evaluation of the RSP accuracy of the corrected and uncorrected CTP
phantom at 200 MeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Figure 9.11 Evaluation of the RSP accuracy of the CTP phantom using the cali-
bration of another beamtime and the correction method . . . . . . . 158

Figure 9.12 Reconstructions of the head phantom at the high and the low energy
with and without the correction method . . . . . . . . . . . . . . . . . 159



199

L I S T O F TA B L E S

Table 3.1 Dimensions, materials and RSP values of all phantoms used in this
work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 3.2 List of beamtimes for the experimental acquisition of data used in
this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 5.1 Fitting parameters for the optimization of the quenching model . . . 58

Table 5.2 Mean error and root mean square error for the comparison of simu-
lated and experimental image noise maps . . . . . . . . . . . . . . . . 65

Table 5.3 Standard deviation levels of a central circular region of experimental
and simulated noise reconstructions and the corresponding mean
imaging doses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Table 7.1 Evaluation of the RSP accuracy of unit fluence and fluence–modulated
scans in experiments with the CTP phantom . . . . . . . . . . . . . . 105

Table 8.1 Clinical parameters of the photon radiotherapy for the three patients
in the simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Table 8.2 Objectives for fluence–modulation and imaging OARs for all patients 120

Table 8.3 Evaluation of the mean RSP value inside the ROI and calculation of
the relative error with respect to the ground truth mean RSP value . 126

Table 8.4 Passing rates comparing the ground truth dose maps to pCT and
FMpCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Table 8.5 Passing rates, mean absolute difference and mean difference for the
range analysis comparing ground truth ranges to pCT and FMpCT . 126

Table 8.6 Median imaging doses for all patients and for uniform fluence and
all fluence–modulated scans . . . . . . . . . . . . . . . . . . . . . . . . 130

Table 9.1 Stage interfaces of the high–E and the low–E datasets and correspond-
ing WEPL values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Table 9.2 Evaluation of the median and inter–quartile range for the water
phantom with and without energy modulation . . . . . . . . . . . . . 148

Table 9.3 Mean RSP values with and without the empirical correction for the
water and the ellipse phantom . . . . . . . . . . . . . . . . . . . . . . 156

Table 9.4 Relative RSP errors of all inserts and the body of the CTP phantom at
the two incident energies with and without correction . . . . . . . . . 156


	 Abstract
	 Zusammenfassung
	 List of abbreviations
	1 Introduction
	1.1 Particle therapy
	1.2 Treatment workflow of image–guided particle therapy
	1.3 Proton computed tomography
	1.4 Aims & scope

	2 Interaction of protons and photons with matter
	2.1 Interaction of protons
	2.1.1 Interaction mechanisms
	2.1.2 Stopping power
	2.1.3 Range & range straggling
	2.1.4 Deflection due to scattering
	2.1.5 Depth–dose curve of protons

	2.2 Interaction of photons
	2.3 Implications on the treatment workflow
	2.3.1 Photon & particle therapy
	2.3.2 Imaging for particle therapy


	3 Proton computed tomography
	3.1 Detection principle
	3.1.1 The water–equivalent pathlength
	3.1.2 Single particle tracking proton CT
	3.1.3 Integration mode proton CT

	3.2 Technical instrumentation of a prototype proton CT scanner
	3.2.1 Tracking detectors
	3.2.2 Energy detector
	3.2.3 Calibration
	3.2.4 Other prototype scanners

	3.3 Data filtration
	3.4 Path estimation
	3.5 Image reconstruction
	3.5.1 Image reconstruction in parallel beam geometry
	3.5.2 Image reconstruction in cone beam geometry
	3.5.3 Image reconstruction using distance–driven binning
	3.5.4 Reconstruction of image variance
	3.5.5 Image reconstruction parameters

	3.6 Phantoms
	3.7 Experimental acquisitions

	4 Computational models
	4.1 Monte Carlo simulations
	4.2 Model of the pediatric head phantom
	4.3 Patient data in simulation studies

	5 Image noise
	5.1 Verification of variance reconstruction
	5.2 Non–linearities of the energy detector
	5.3 A more realistic beam model
	5.4 Contributions to projection noise
	5.5 Comparison of simulated & experimental image noise maps
	5.6 A bow–tie filter for proton CT
	5.7 Discussion
	5.8 Conclusions

	6 Fluence–modulated proton computed tomography
	6.1 Fluence–modulation in x–ray CT
	6.2 Application of fluence–modulation to proton CT
	6.3 Modeling of pencil beams
	6.3.1 Analytical model
	6.3.2 Simulation of pencil beams
	6.3.3 Pencil beam optimization

	6.4 An optimization algorithm for variance prescription
	6.4.1 Step I: Variance at unit fluence
	6.4.2 Step II: Iterative variance forward projection
	6.4.3 Step III: Fluence optimization
	6.4.4 Reference approach

	6.5 Evaluation of optimized FMpCT scans
	6.6 Discussion
	6.7 Conclusions

	7 Experimental realization of FMpCT
	7.1 Delivering fluence–modulated scans at the proton center
	7.2 Experimental realization of FMpCT
	7.3 Precision of the fluence delivery
	7.4 RSP accuracy of experimental FMpCT scans
	7.5 Acquisition time of FMpCT scans
	7.6 Discussion
	7.7 Conclusions

	8 Fluence modulation with dose and variance objectives
	8.1 Simulation and image reconstruction
	8.2 Patient data & treatment planning
	8.3 An algorithm for joint dose minimization and variance optimization
	8.3.1 Forward models for dose & variance
	8.3.2 Bixel–wise optimization
	8.3.3 Pencil beam optimization
	8.3.4 Optimization objectives
	8.3.5 Reference approach

	8.4 Evaluation of optimized FMpCT scans
	8.5 Discussion
	8.6 Conclusions

	9 Image accuracy of a prototype scanner
	9.1 Experimental comparison of proton CT and x–ray CT
	9.2 Identification of proton CT image artifacts
	9.3 Accuracy improvement with energy–modulation
	9.3.1 Data acquisition
	9.3.2 Dataset selection
	9.3.3 Evaluation of energy–modulated scans

	9.4 Accuracy improvement with an empirical correction
	9.4.1 An empirical correction method for proton CT
	9.4.2 Evaluation of corrected proton CT scans

	9.5 Conclusions

	10 Conclusions & perspectives
	 Acknowledgments
	 Publications
	 Ethics statement
	 Bibliography
	 List of Figures
	 List of Tables

