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2 Abbreviations 

Csoil,I  Average concentration of a radionuclide i in the ingested soil 

CT  Computed tomography 

DCi  Effective dose coefficient of an ingestion radionuclide i 

DF  Bioaccessibility; the fraction of uranium, which is soluble in the alimentary tract and 

therefore potentially available for absorption 

E  Committed effective dose 

ED  Duration of the exposure period 

fA; f1 Bioavailability; the fraction of ingested uranium which is absorbed from the 

alimentary tract into the circulatory system; data on bioavailability taken from the 

literature are denoted as f1, bioavailability data received by this thesis are denoted as fA 

fA
sol Expression of the relation between bioaccessibility and bioavailability of soil-derived 

uranium 

GM   Geometric mean 

GUM  Guide to the Expression of Uncertainty in Measurement 

HT,female; HT,male Committed equivalent dose of an organ or tissue of the reference female or male 

ICP-MS Inductively coupled plasma mass spectrometry 

ICRP  International Commission on Radiological Protection 

Isoil  Average daily amount of the soil ingested during the exposure period 

LOQ  Limit of quantification 

U  Expanded uncertainty 

u(y)  Standard uncertainty of a quantity y 

uc(y)  Combined standard uncertainties  
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3 Abstract 

The main objective of this thesis was the development of a method to estimate the bioavailability of 

ingested soil-derived uranium and the resulting internal dose to humans. 

The ingestion of small amounts of soil by humans occurs involuntarily and deliberately. For the 

involuntary ingestion of soil, for example via food, the amount of soil ingestion differs between 

10 mg/day and 100 mg/day for adults and children, respectively. For the deliberate ingestion of soil, 

e.g. healing soil, amounts of up to 40 g/day over several weeks are reported. Uranium is ubiquitous in 

soil, and involuntary or deliberate soil ingestion is therefore accompanied by the ingestion of uranium. 

This leads to an increase of the internal dose due to the ionizing radiation from the radioactive decay 

of ingested uranium and its progeny. 

To estimate the internal dose after ingestion of soil-derived uranium, its bioavailability must be 

known. However, when work on this PhD started, no method was available to reliably determine the 

bioavailability of uranium for such a scenario. Therefore, a new method was developed. First, an 

already established in vitro solubility assay was used to determine the bioaccessibility (DF) of uranium 

of an edible soil low in uranium. Second, the actual bioavailability (fA) of uranium of this soil was 

determined by means of a human study. In this study, ten human volunteers ingested a specific amount 

of this soil and the bioavailability (fA) of uranium was estimated for all ten volunteers from their 

urinary excretion. By determining bioaccessibility (DF) and bioavailability (fA), it was possible to 

calculate the fA
sol factor, which is the ratio of fA and DF, and which describes the transfer of soluble 

uranium to the circulatory system. The fA
sol factor was calculated to be 0.53% (GM) ranging from 

0.06% (2.5th percentile) to 4.43% (97.5th percentile). Knowing fA
sol it is possible to obtain realistic data 

on the bioavailability (fA) of uranium from virtually any soil, without the need of further human 

studies. Only the same in vitro solubility assay, which was applied in the current study, has to be 

performed for any soil of interest to determine its specific bioaccessibility (DF). The corresponding 

bioavailability (fA) is thereafter simply calculated by adopting the fA
sol factor determined earlier. 

The fA
sol factor obtained was compared to values from the literature and found to be in good 

agreement. It can therefore be assumed that the fA
sol factor does not depend on the duration of 

exposure or the amount of ingested uranium. In other words, it can be used for acute as well as chronic 

ingestion scenarios with high and low amounts of soil-derived uranium. Thus, in the course of this 
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thesis a robust method was developed to estimate the bioavailability and the resulting internal dose for 

different ingestion scenarios with different amounts of soil-derived uranium. 

Finally, this newly developed method was applied on highly uranium-contaminated soils, i.e., on 

original soils from former uranium mining sites located in Eastern Germany. The bioavailability of 

uranium from these soils was determined and used to calculate internal doses after an assumed realistic 

scenario of soil ingestion. Based on the assumed exposure scenario a committed effective dose of 

0.6 µSv (GM) ranging from 0.3 µSv (2.5th percentile) to 3.0 µSv (97.5th percentile) was estimated for 

the most uranium-contaminated soil. It is concluded that this ingestion of soil-derived uranium does 

not imply any major health risk to humans due to the additional internal dose.  
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4 Zusammenfassung 

Ziel dieser Dissertation war die Entwicklung einer Methode zur Abschätzung der Bioverfügbarkeit 

von ingestierten, uranhaltigen Erden/Böden und der damit verbundenen internen Strahlenexposition 

des Menschen. 

Menschen nehmen bewusst und unbewusst kleine Mengen Erde auf. Unbewusst werden dabei 

zwischen 10 mg/Tag und 100 mg/Tag Erde durch Erwachsene bzw. Kinder aufgenommen. Auch die 

bewusste Ingestion von bis zu 40 g/Tag Heilerde ist dokumentiert. Da Uran in allen Erden/Bodenarten 

vorkommt, geht sowohl die beabsichtigte als auch die unbeabsichtigte Ingestion von Erde mit einer 

gewissen Ingestion von Uran einher. Im Ergebnis führt dies aufgrund des radioaktiven Zerfalls von 

Uran und dessen Folgeprodukten zu einer Erhöhung der internen Strahlendosis. 

Um die interne Strahlendosis, die sich aus der Ingestion von uranhaltigen Erden/Böden ergibt, 

abschätzen zu können, muss deren Bioverfügbarkeit bekannt sein. Da es für deren Bestimmung bisher 

keine verlässliche Methode gab, wurde in dieser Dissertation dafür eine neue Methode entwickelt. 

Dabei wurde in einem ersten Schritt, mit Hilfe eines bereits etablieren in vitro Löslichkeitstests, 

die Biozugänglichkeit (DF, bioaccessibility) des Urans einer mäßig uranhaltigen Erde bestimmt. 

Anschließend wurde in einer Humanstudie die tatsächliche Bioverfügbarkeit (fa, bioavailability) des 

Urans in dieser Erde ermittelt. Anhand dieser zwei Parameter, Biozugänglichkeit (DF) und 

Bioverfügbarkeit (fa), konnte der fA
sol-Faktor, welcher das Verhältnis aus fa und DF darstellt, ermittelt 

werden. Dieser beträgt 0,53% (GM) und reicht von 0,06% (2,5tes Perzentil) bis 4,43% (97,5tes 

Perzentil). Bei Kenntnis dieses fA
sol-Faktors ist es möglich, realistische Daten zur Bioverfügbarkeit 

von nahezu jeder Erde/Bodenart zu erhalten, ohne dafür weitere Humanstudien durchführen zu 

müssen. Lediglich der in dieser Studie benutzte in vitro Löslichkeitstest wird zur Bestimmung der 

Biozugänglichkeit einer beliebigen Erde herangezogen. Die dazugehörige Bioverfügbarkeit wird dann 

mit Hilfe des bereits bestimmten fA
sol-Faktors berechnet. 

Der in dieser Dissertation ermittelte fA
sol-Faktor stimmt gut mit vergleichbaren Literaturdaten überein. 

Dies deutet darauf hin, dass der hier bestimmte fA
sol-Faktor unabhängig von der Dauer der Ingestion 

und der Menge des aufgenommenen Urans ist. Dieser Faktor ist somit für Ingestionsszenarien mit 

akuter oder chronischer Ingestion von kleinen oder großen Mengen uranhaltiger Erde geeignet. Die 

hier entwickelte Methode liefert damit erstmals die Möglichkeit, die Bioverfügbarkeit und die damit 
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verbundene interne Strahlendosis für verschiedene Ingestionsszenarien mit verschiedenen Mengen 

uranhaltiger Erde verlässlich zu bestimmen. 

Im Weiteren wurde diese Methode auf verschiedene, stark uranhaltige Bodenproben von ehemaligen 

Uranabbaugebieten aus Ostdeutschland angewandt. Die Bioverfügbarkeit des Urans in diesen Proben 

wurde bestimmt, um damit die interne Strahlendosis zu berechnen, die sich aus einem angenommen 

Ingestionsszenario ergeben würde. Für die am stärksten mit Uran kontaminierte Bodenprobe wurde 

eine interne Strahlendosis bzw. effektive Folgedosis von 0,6 µSv, mit einem Bereich von 

0,3 µSv (2,5tes Perzentil) bis 3,0 µSv (97,5tes Perzentil), bestimmt. Die Ergebnisse wurden mit 

Literaturdaten vergleichen. Aus den Ergebnissen kann geschlussfolgert werden, dass von der zu 

erwartenden erhöhten internen Strahlendosis kein nennenswertes Gesundheitsrisiko ausgeht. 
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5 Introduction 

The main objective of this thesis was to study the bioavailability of uranium from ingested soils in 

humans and to estimate the resulting internal dose. In the following, the basic concept of the thesis is 

introduced. 

5.1 Soil ingestion 

The ingestion of small amounts of soil by humans, either involuntarily or deliberately, occurs 

worldwide. For instance, soil is an important constituent of house dust (Abrahams 2002), which can be 

found in virtually every dwelling. The ingestion of this form of dust takes place mainly indirectly, in 

particular by inhalation, followed by mucociliary clearance of the lung and swallowing of the dust 

particles. Thus, the ingestion of very small quantities of soil cannot be avoided and is characteristic for 

all humans. Additional scenarios of involuntary soil ingestion by humans are via food products, which 

are not properly washed, and via outdoor (sports) activities. For children aged between 1 and 5 years, 

increased soil ingestion is reported due to increased outdoor activities (van Wijnen et al. 1990). 

In 2007, a meta-analysis reported for children aged below 11 years an indoor hand-to-mouth frequency 

of up to 28.0 contacts/hour and an outdoor hand-to-mouth frequency of up to 14.5 contacts/hour, 

respectively (Xue et al. 2007). Hence, hand-to-mouth activities by young children might be the main 

route of soil ingestion. 

Geophagy, the deliberate ingestion of soil, can also be found around the world (Sing and Sing 2010). 

In Africa the ingestion of soil is a common practice among pregnant women (Njiru et al. 2011), but is 

also reported for men and children (Golden et al. 2012). In Germany geophagy is practiced to cure 

moderate alimentary tract related symptoms like acid reflux. For this purpose so-called healing soil or 

medical soil is ingested (Höllriegl et al. 2010). 

For the involuntary ingestion of soil, which is the most common form of soil ingestion, the amount of 

ingested soil differs between 10 mg/day and 100 mg/day for adults and children, respectively. For the 

deliberate ingestion of soil, amounts of up to 40 g/day over several weeks are reported (Stanek III et 

al. 1997; Höllriegl et al. 2010; UNSCEAR 2013). 

Soil ingestion can be accompanied by different health effects. Healing soil is a medical product by 

which acid-induced gastric disorders like pyrosis or diarrhea are treated. Beside its anti-diarrheal 

effects, some soils are also acting as detoxifying agents by absorbing glycoalkaloids and other toxic 
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compounds, and also as a possible source of nutritive minerals (Sing and Sing 2010). Negative health 

effects of soil ingestion might be due to the ingestion of pathogenic organisms like endogenous 

parasites, heavy metals and radioisotopes like uranium, which is the subject of the present study. 

Uranium is ubiquitous in soil and its ingestion, whether involuntarily or deliberately, is therefore 

accompanied by the ingestion of uranium. Accordingly, it is also accompanied by an increase of the 

internal dose due to the ionizing radiation from the radioactive decay of uranium and its progeny. 

5.2 Radiation exposure 

Humans are exposed to artificial and natural sources of radiation. For example, in Germany the public 

is exposed to artificial sources of radiation resulting in an annual effective dose of about 1.9 mSv/a, 

and to natural sources of radiation radiation resulting in an annual effective dose of about 2.1 mSv/a, 

respectively. The effective dose is a dosimetric quantity by which the radiation exposure of humans is 

related to radiation risk. It takes into account different biological effectiveness of different radiation 

types and differences of the sensitivities of organs and tissues to stochastic health effects like cancer. 

Today, artificial sources of radiation are mainly medical diagnostic applications (1.9 mSv/a) like CT 

(computed tomography) scans, while the nuclear accident of Chernobyl from 1986, for example, 

contributes less than 0.011 mSv/a (BfS 2015). The chest CT scan of a patient typically results in a 

dose of about 10 mSv (Grupen 2008). Natural sources of radiation include cosmic radiation 

(0.3 mSv/a) and terrestrial radiation (1.8 mSv/a). Besides, numerous so-called cosmogenic 

radionuclides are produced by cosmic radiation. In terms of public exposure, the isotope 14C is the 

most relevant of such radionuclides and adds about 12 µSv/a by internal exposure. Terrestrial radiation 

is caused by internal radiation sources and by external radiation sources like 40K, 238U, 232Th, and its 

progeny, which are present in trace amounts in the human body and in soils (UNSCEAR 2008). 

Internal radiation exposure results mainly from inhalation and ingestion of radionuclides, which 

virtually cannot be avoided. The main contributor is 222Rn and its progeny which contribute about 

1.1 mSv/a (BfS 2015). The human body contains also an activity of about 9,000 Bq, mainly 40K 

(4,200 Bq) and 14C (3,800 Bq) (Grupen 2008). From incorporated 40K the resulting annual equivalent 

dose is about 0.185 mSv and 0.165 mSv for children and adults, respectively. Due to the more or less 

uniform distribution of 40K within the body, the same values are considered to be appropriate for the 

effective dose (UNSCEAR 2008). Ingestion of radionuclides adds about 0.3 mSv/a (BfS 2015). 

The average daily intake of uranium is about 1.25 µg. This intake results from uranium in food and 

liquids, which was estimated for milk products (1 mBq/kg), meat products (2 mBq/kg), grain products 

(20 mBq/kg), leafy vegetables (20 mBq/kg), root vegetables and fruits (3 mBq/kg), fish products 

(30 mBq/kg), and drinking water (1 mBq/kg), respectively (UNSCEAR 2000). Accordingly, the 

retention of ingested 238U in liver (3 mBq/kg), kidney (30 mBq/kg), bone (100 mBq/kg), muscle and 

other tissues (5 mBq/kg) were estimated (UNSCEAR 2000). The resulting masses of uranium in liver 

(0.435 µg), kidney (0.75 µg), bone (44.3 µg), muscle and other tissues (7.75 µg) were also calculated 
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based on anatomical data provided by ICRP (International Commission on Radiological Protection) 

(Li et al. 2005). Eventually, for 238U the average daily intake of uranium from food and liquids results 

in a committed effective dose of about 0.25 µSv (UNSCEAR 2000). The committed effective dose is a 

dosimetric quantity by which the radiation exposure from incorporated radionuclides and its progeny 

is related to radiation risk. It takes into account different biological effectiveness of different radiation 

types and differences of the sensitivities of organs and tissues to stochastic health effects. The 

commitment period is taken to be 50 years for adults and 70 years for children (ICRP 2007). Note that 

238U accounts for 99.27% of ingested uranium in terms of percentages by mole fraction; 0.0054% and 

0.72% account for 234U and 235U, respectively (Berglund and Wieser 2011). The committed effective 

dose of 234U and 235U is about 0.28 µSv and 0.011 µSv, respectively. Accordingly, the committed 

effective dose of uranium (234U, 235U, and 238U) from intake of food and liquids accumulates to about 

0.5 µSv (UNSCEAR 2000). 

5.3 Uranium and toxicity 

Naturally occurring uranium comprises the three radioisotopes 234U, 235U, and 238U. All three 

radioisotopes are alpha-particle-emitting heavy metal with half-lives of 245,500 (234U), 

704,000,000 (235U), and 4,468,000,000 years (238U) (ICRP 2008). In nature, 234U, 235U, and 238U occur 

with percentages by mole fraction of 0.0054, 0.72, and 99.27%, respectively (Berglund and Wieser 

2011).  

The naturally occurring radionuclides 238U and 234U belong to the radium series whereas 235U belongs 

to the actinium series. The radium series starts with the primordial alpha emitter 238U followed by the 

beta emitters 234Th and 234Pa with short half-lives below one month. The series is continued by the two 

alpha emitters 234U and 230Th with half-lives of at least 75,000 years. The actinium series starts with 

the alpha emitter 235U followed by the beta emitter 231Th with a half-life of 25.52 hours and is followed 

by the alpha emitter 231Pa with a half-life of about 33,000 years. Both the radium series and the 

actinium series are continued by numerous alpha and beta emitters and are ending with the stable 

isotopes 206Pb and 207Pb, respectively (ICRP 2008; Krieger 2012). For dosimetric consideration of 

ingested 234U, 235U, 238U, and its subsequent internally arising progeny, the respective decay chain can 

be truncated at 234U, 231Th, and 234Pa, respectively (ICRP 1983). Compared to the human life span, the 

half-lives of the decay daughters of 234U, 231Th, and 234Pa are extremely long and therefore do not add 

a noticeable amount to the calculated internal dose. 

The concentration of naturally occurring uranium in soil is about 3 mg/kg but can be artificially 

increased (Bleise et al. 2003). Agriculture activities are the main source of uranium contamination of 

cultivated soils due to an increased amount of uranium in phosphate fertilizer. Thereby between 1951 

and 2011 a cumulative application of 1 kg uranium per hectare on agriculture land was estimated on 

average for Germany (Schnug and Lottermoser 2013). In some regions, uranium contamination of 

soils is also a result of uranium mining. Uranium production was ceased in Germany in 1990 but 
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remediating of former uranium mining sites is still ongoing. However, due to natural processes like 

capillary rise re-contamination of already remediated areas was reported (Langella et al. 2014). Since 

global uranium production has still increased over the last years to 60,000 tons in 2013, further 

uranium contamination of soil can be expected (WNA 2014). Elevated uranium concentrations of soils 

can also be due to nuclear incidents like the Chernobyl accident in 1986 or the Fukushima Daiichi 

incident in 2011 (Shinonaga et al. 2014). The military use of depleted uranium (DU) is another source 

for soil contamination (Bleise et al. 2003). 

Naturally occurring uranium comprises chemical and radiological toxicity. The chemical toxicity of 

uranium is similar to the chemical toxicity of nickel and chromium and is the primary concern 

regarding environmental health hazard. Chemical toxic effects of uranium generally occur at 

concentrations whereas radiological effects are still small, because of the low specific activity of 

uranium. From animal studies and human epidemiology various health effects of uranium like 

developmental and reproductive defects and DNA damage are known (Brugge and Buchner 2011). 

Notably, only a very few publications used different isotopic compositions of uranium (depleted and 

enriched uranium), in order to distinguish chemical from radiological effects. Thereby, for different 

isotopic compositions of uranium, different patterns of brain pro-/anti-oxidant activity have been 

shown for rats (Lestaevel et al. 2009). The influence of the isotopic composition of uranium on its 

genotoxic profile has also been demonstrated (Darolles et al. 2010).  

5.4 Biokinetics of uranium 

The uptake, distribution, and deposition of radionuclides in tissues and organs and their excretion from 

these tissues, organs, and the whole body can be simulated by biokinetic models. These biokinetic 

models consist of several compartments which represent functional units (e.g. “soft tissue”), entire 

organs (e.g. “stomach”) or even certain cell types (e.g. “red bone marrow”). The transport of 

radionuclides between these compartments is assumed to follow first-order kinetics, is individually 

quantified and is referred to as transfer rate. For uranium ICRP provides a biokinetic model that has a 

structure which is based on the generic model structure of the alkaline earth metals (ICRP 1992, 

1995a). The corresponding transfer rates are based on human data or, if human data are not available, 

on animal data. The human data are based on studies on several human individuals who were 

intravenously injected with uranium. The administered uranium mass per body mass ranged from 

6.3 µg/kg to 1 mg/kg. Blood, excretion, and postmortem measurements were performed up to 

566 days after the injection of uranium whereas most samples were taken within several days or 

weeks. Most human individuals involved in those studies were patients who suffered from various 

diseases or who were in terminal phases of diseases of the central nervous system. These studies are 

referred to as the Boston study, the Bassett study, and the Terepka study (Leggett 1994). Data on 

long-term distribution of uranium in the human body were received from several other postmortem 

measurements of uranium in tissues of occupationally and environmentally exposed human subjects. 
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Various aspects of the biokinetics of uranium have also been received from animal data involving 

baboons, dogs, rabbits, rats, and other species. Transfer rates were later estimated in the awareness of 

the health status of the human subjects. For animal data, preference was generally given to baboons 

and dogs over other animals and preference was generally given to data from relatively low uranium 

uptake (Leggett 1994). 

The biokinetic model of uranium comprises kidney, liver, skeleton, and blood. Remaining organs and 

tissues are assigned to several soft tissue compartments. For the alimentary tract a separate biokinetic 

model is provided by ICRP (ICRP 2006). For quantification of the uptake of uranium from the 

alimentary tract into the blood numerous human studies mostly using drinking water with high 

concentrations of soluble uranium were considered. From these data an f1 value of 0.02 is assumed for 

adults (ICRP 1995a). Since no sufficient experimental data are available for children of one year or 

older, the f1 value for adults was adopted. For the 3 month old infant a f1 value of 0.04 is assumed. 

The bioavailability (f1) of uranium is defined here as the fraction of ingested uranium which is 

absorbed from the alimentary tract into the circulatory system. In this thesis data on bioavailability 

taken from the literature are denoted as f1 while bioavailability data received by this thesis are denoted 

as fA. This was done in compliance with ICRP, which recently changed the notation of the 

bioavailability from f1 to fA (ICRP 2006; Ruby et al. 1999). In adults the transfer of uranium from 

blood to kidney, liver, skeleton, and other soft tissues is about 8%, 1%, 10%, and 35%, respectively. 

About two-thirds of uranium are excreted via urine within three days after ingestion. For infants the 

transfer of uranium from blood to kidney, liver, and other soft tissues is similar, in particular 5%, 1%, 

and 33%, respectively. The transfer of uranium from blood to skeleton is simulated to be about 31% 

for infants (ICRP 1995a). 

5.5 Internal dosimetry 

Involuntary or deliberate ingestion or inhalation of radionuclides, the contamination of wounds by 

radionuclides, and the injection of radionuclides is always accompanied by a certain internal radiation 

exposure. The purpose of internal dosimetry is to quantify the received dose from this internal 

radiation exposure by means of calculation. The current study focused on the internal exposure from 

ingested soil-derived uranium. 

For a scenario by which soil-derived radionuclides are ingested the committed effective dose is 

calculated by Eq. 1 (Simon 1998). 

���� ����,� ���� �
�

 
 

1 

Thereby ����,� is the average concentration of a radionuclide i in the ingested soil (Bq/g), ���� is the 

average daily ingestion of this soil during the exposure period (g/day), and  is the exposure duration 
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(day). � is the ingestion effective dose coefficient of a radionuclide i (Sv/Bq), which quantifies the 

effective dose per activity intake of a radionuclide i. 

ICRP provides ingestion dose coefficients for several radionuclides. These ingestion dose coefficients 

are based on certain predefined bioavailabilities. For uranium the bioavailability (f1 value) is assumed 

to be 2% (ICRP 1995a), assuming soluble uranium. 

It is emphasized here that the purpose of the current study was to estimate soil-specific 

bioavailabilities by which sample-specific ingestion effective dose coefficients and finally the 

sample-specific internal dose can be calculated. Accordingly, the effective dose coefficients for 

ingestion were determined as follows. 

The ingestion effective dose coefficients of a radionuclide i ( �) is derived from Eq. 2. 

�
�

 

 

2 

 is the committed effective dose (Sv) and � the activity of the ingested radionuclide (Bq). 

The committed effective dose ( ) is calculated by Eq. 3. 

�

�,���	 �,
	���	

�

 
 

3 

The committed equivalent dose of an organ or tissue of the reference male (HT,male) is averaged with 

the committed equivalent dose of an organ or tissue of the reference female (HT,female) (ICRP 2007). 

The radiation sensitivity of certain organs and tissues is taken into account by the tissue weight factor 

(wT) (ICRP 1991).  

The committed equivalent dose of an organ or tissue of the reference male ( �,���	) or reference 

female ( �,
	���	) is calculated by Eq. 4. 

�,�	� � 
� � � �
���

 4 

� 
�  is the cumulated activity of a radionuclide or progeny ( ) in a source region ( �). 

For male or female ( ) � 
�  is calculated over 50 years ( 
�). � 
�  is derived 

from biokinetic models. 

Mathematically, biokinetic models are described by systems of first-order linear ordinary differential 

equations and are based on experimental animal and human data. By these models the uptake, 

distribution, and deposition of certain radionuclides in organs and tissues and their excretion from 

these organs, tissues, and the whole body are simulated. For internal dosimetry the biokinetic 

simulations are performed for a period of 50 years for adults and 70 years for children, respectively. 

The purpose of these calculations is to derive the cumulated activity of the source regions ( �). 
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To simulate the ingestion of uranium, the systemic model of uranium is combined with the human 

alimentary tract model (HATM) (ICRP 2006). The resulting combined model was built for the 

radioisotopes 234U, 235U, and 238U (ICRP 1995a). The systemic models and the alimentary tract models 

were connected by the bioavailability values obtained in this thesis, rather than by the ICRP pre-

defined bioavailability of 2%. The built models were further expanded by their radiologically relevant 

progeny thorium, protactinium, and protactinium (meta) (ICRP 1979, 1995b). The decay constants by 

which the parent nuclide is connected with its relevant progeny were used accordingly (ICRP 2008). 

The biokinetic models were numerically solved by using the SAAM II software (Barrett et al. 1998). 

� � �  is the sex-specific ( ) radiation-weighted S factor, which is calculated for a 

radionuclide or progeny by Eq. 5.  

� � � � � � �
�

 5 

� � �  is the specific energy of a radiation type R ( �), which is absorbed in a target 

region ( �) emitted from a source region ( �), per nuclear transformation of a radionuclide or its 

progeny ( ). It is multiplied with the appropriate radiation-weighting factor ( �) as suggested by 

ICRP (ICRP 1991).  

The SW values (formerly SEE values) were provided by the current SEECAL software which was 

developed at Oak Ridge National Laboratory. SEECAL is used worldwide for dose estimations 

concerning the incorporation of radionuclides into the human body. Thereby, SW values are still based 

on the ORNL mathematical phantoms, not on the voxel based SW values, which are not yet officially 

published by ICRP. 

5.6 Estimating the absorption of soil-derived uranium 

The internal dose caused by the ingestion of a certain amount of uranium cannot be determined 

directly but is estimated by means of tabulated radiological information and biokinetic models. Using 

these mathematical models the uptake of uranium as well as its distribution and deposition in the 

human body is simulated. Information concerning the excretion rate of ingested uranium can be also 

obtained from these biokinetic models. ICRP has published appropriate biokinetic models, which were 

used in the current thesis (ICRP 1995a, 1995b, 2006). Beside information on the distribution of 

uranium within the human body another very important parameter is provided by the ICRP for these 

biokinetic models. This is the bioavailability (f1) of uranium. Data on the bioavailability of uranium in 

the human body published by ICRP are based on experimental evidence using drinking water, i. e. 

data are based on soluble uranium in drinking water. However, unlike uranium in drinking water, 

soil-derived uranium is just partially soluble in the human gastro intestinal tract, which results in a 

decreased bioavailability compared to soluble uranium from drinking water. Therefore, bioavailability 

data published by ICRP are not applicable on the ingestion of soil-derived uranium. 
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However, so far no method was available to determine the bioavailability of soil-derived uranium. 

For this reason, a method was needed to determine the bioavailability of uranium for a scenario by 

which soil-derived uranium was ingested. Different in vitro solubility assays are published in the 

literature by which the bioavailability (fA) can be determined at least indirectly via determining first 

the bioaccessibility (DF). The bioaccessibility (DF) of uranium is defined here as the fraction of 

uranium, which is soluble in the alimentary tract and therefore potentially available for absorption. 

However, the different available in vitro solubility assays are known to provide different results on the 

bioaccessibility even for the very same soil. This was exemplary reported in 2002 for the soil 

contaminates As, Cd, and Pb by applying five different in vitro solubility assays and, for example, 

bioaccessibility values for Cd between 6% and 99% were found for the very same soil (Oomen et al. 

2002). Different bioaccessibility values were also reported for soil-derived uranium and thorium based 

on two different in vitro solubility assays. Thereby bioaccessibility values for uranium between 10% 

and 14% were found (Höllriegl et al. 2010). Beside these different results, which obviously depend on 

the performed in vitro solubility assays, several methods can be found in the literature by which 

bioavailability (fA) is derived from bioaccessibility (DF). As an example, Frelon et al. 2007 proposed 

that 100% of bioaccessible uranium is absorbed by the gastro intestinal tract and therefore they equate 

bioaccessibility with bioavailability (Frelon et al. 2007). In contrast, Höllriegl et al. 2010 assumed 

only 0.2% to 5% of bioaccessible uranium to be absorbed by the gastro intestinal tract and is therefore 

bioavailable (Höllriegl et al. 2010). Both of the described problems were solved by the concept 

developed in the present thesis.  

In this thesis an in vitro solubility assay was used to determine the bioaccessibility (DF) of an edible 

soil low in uranium. The applied in vitro solubility assay was already established in the lab and was 

chosen out of several assays, due to its realistic physiological properties. The same edible soil was also 

used to determine the actual bioavailability (fA) of uranium of this soil by a human study. This study 

included ten human volunteers who ingested a specific amount of this edible soil. The bioavailability 

(fA) of uranium of all ten volunteers was estimated from their urinary excretion. By determining these 

two parameters, bioaccessibility (DF) and bioavailability (fA), it was possible to calculate the 

fA
sol factor (“sol” abbreviates “soluble”). The fA

sol factor describes the relation between the 

bioaccessibility and the bioavailability of soil-derived uranium. It is expressed by Eq. 6: 

�
��� �

 

 

6 

Again, the obtained fA
sol factor describes the relation between the bioaccessibility (DF) of soil-derived 

uranium in the alimentary tract obtained by the applied in vitro solubility assay, and the bioavailability 

(fA) of soil-derived uranium in the human body obtained by the performed human study. Once this 

fA
sol factor is determined for a specific in vitro solubility assay it is possible to make use of the actual 

advantage of this proposed concept, which is receiving realistic data on the bioavailability (fA) 
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of uranium of virtually any soil, without the need of further human studies. Only the same 

in vitro solubility assay, which was applied in the current thesis, has to be performed for any soil of 

interest to determine its specific bioaccessibility (DF). The corresponding bioavailability (fA) is 

thereafter simply calculated by adopting the fA
sol factor (Eq. 7). 

� �
��� 7 

By using this method, especially soil samples from uranium mining sites, which are chemically 

processed and highly contaminated with uranium and further heavy metals and radionuclides, can be 

investigated without hesitation. Thereby realistic data on the bioavailability of soil-derived uranium 

from even those soils can be received. 

5.7 Measurement of 238U by ICP-MS 

For the current thesis a measurement technique was needed to determine 238U in several urine, 

artificial gastrointestinal fluid, and microwave-assisted digested soil samples, at low concentrations. 

In theory, radioisotopes can be detected by the radiation emitted after radioactive decay. As an alpha 

emitter with energies between 4.038 and 4.198 keV 238U can be measured by alpha-spectroscopy. 

However, beside the very long half-life of 238U, for alpha-spectroscopy of trace elements, 

comprehensive and therefore time-consuming and error-prone sample preparations have to be 

performed. Therefore, alpha-spectroscopy is not the proper application for routine analysis of 238U as a 

trace element. Gamma-spectroscopy is also not a proper application because of similar disadvantages. 

Besides, 238U emits only low energy gamma rays of about 50 and 114 keV with low yields of about 

0.06 and 0.01%, respectively (IAEA 2017). In principal, indirect measurement of 238U by 

gamma-spectroscopy could be performed e.g. via its progeny 234Pa. 

For measurements of trace elements like 238U in liquid samples ICP-MS is frequently chosen and no 

specific time-consuming or error-prone sample preparations have to be performed (Heitland and 

Koster 2006a, b; Oeh et al. 2007; Höllriegl et al. 2010; Callan et al. 2013). Instead, urine or artificial 

gastrointestinal fluid samples only have to be diluted on a routine base. An internal standard like 103Rh 

or 193Ir of a known concentration and of a similar element mass and ionization energy like the 

investigated radionuclide is added, to correct for potential matrix effects. For the determination of 238U 

in urine, calibration can be done by applying the standard addition method. By this method the matrix 

of the standard and the matrix of the sample are the same, which further minimizes uncertainties 

(Träber et al. 2014). 

In principle, ICP-MS measurements can also be affected by polyatomic and isobaric interferences. 

Isobaric interferences are not expected for measurements of 238U because it is the only naturally 

occurring isotope with an atomic mass of 238U. Polyatomic interferences would be of interest if 

uranium isotope ratios like 235U/238U are analyzed by ICP-MS (Gwiazda et al. 2004; Xiao et al. 2014). 
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Yet in this thesis isotopic ratios of uranium were not analyzed by ICP-MS. Solely the concentration of 

238U was determined by ICP-MS. 

Like for the urine and the artificial gastrointestinal fluid samples measured in the present thesis, 

uranium in the soil-samples was also measured via ICP-MS. For these samples a microwave-assisted 

digestion with HF was performed to dissolve the whole soil sample, in order to determine the total 

amount of 238U in these soils (Träber et al. 2015). 

5.8 Measurement uncertainty 

A measurement value of a measurand cannot be exactly known, because of various reasons like finite 

instrument resolution, imperfect realization of the definition of the measurand or limited measurement 

capability of the measurement system. The measurement value is therefore only an approximation or 

estimate of the measurand. The guide to the expression of uncertainty in measurement (GUM) 

provides guidance to estimate the uncertainty which is associated to the result of a measurement 

(JCGM 2008). The measurement uncertainty is a parameter which characterizes the dispersion of the 

measurement values of a measurand. It gives a range within the true measurement value of a 

measurand is found with a certain level of confidence.  

According to the concept of GUM there are two different ways of evaluating uncertainty components 

which are denoted as Type A and Type B. Type A standard uncertainty is obtained by statistical means 

and therefore from repeated measurements; Type B standard uncertainty is obtained from available 

knowledge like previous measurement data, manufacturer's specifications or experience or general 

knowledge. Both types are based on probability distributions. The Type A standard uncertainty u(y) of 

a quantity y is expressed as the standard deviations of the mean s( ) of n individual observations qk 

(Eq. 8). 

�
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For measurement result obtained from the values of a number of uncorrelated quantities, the combined 

standard uncertainty is used. Thereby the standard uncertainties of these uncorrelated quantities are 

used to calculate the combined standard uncertainties uc(y) (Eq. 9). 

�
�
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From the combined uncertainty the expanded uncertainty (U) can be obtained by multiplying the 

coverage factor (k) with the combined uncertainty. In the current study the level of confidence is about 

68% which corresponds to a coverage factor of 1. 
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6 Introduction to the publications 

The aim of the thesis was  

1. to set up a method by which reliable data on the bioavailability of uranium from ingested soils 

are received and  

2. to apply this method to estimate the internal dose for ingested and highly 

uranium-contaminated soils from former uranium mining sites. 

This effort resulted in two publications (Träber et al. 2014; Träber et al. 2015). In the first publication 

the newly developed method which allows to obtain reliable data on the bioavailability of soil-derived 

uranium by means of a simple in vitro solubility assay is presented. This method was developed by 

combining an in vitro solubility assay and a human study, using the same edible healing soil for both 

studies. By the in vitro solubility assay and the human study the bioaccessibility (DF) and the 

bioavailability (fA) were determined, respectively. By combining the results of both studies it was 

possible to calculate the fA
sol factor (see Eq. 6). Using fA

sol factor and the mentioned 

in vitro solubility assay, the bioavailability of uranium from any other soil can be obtained (see Eq. 7). 

Thereby, this method eliminates the need for further human soil-ingestion studies to receive reliable 

data on the bioavailability of soil-derived uranium. The fA
sol factor was compared with data from the 

literature. From this comparison it can be concluded that the developed method can be applied on soils 

slightly or highly contaminated with uranium. Thereby it is also irrelevant whether the intake of 

uranium-contaminated soils is acute and chronic. The published method therefore provides a robust 

possibility to determine the bioavailability and the resulting internal dose for different ingestion 

scenarios with different amounts of uranium in various types of soil. The method was developed based 

on adult volunteers and, therefore, the results are only valid for adults. 

In the second publication the application of the developed method on soil highly contaminated with 

uranium is presented. Original soils from former uranium mining sites were investigated; one soil 

sample was from a heap of a former uranium mining site near Dresden, Germany. The bioavailability 

of uranium from these soils was determined and used to calculate the resulting internal doses. This 

was done by applying the biokinetic models published by ICRP. A conceivable ingestion scenario was 

assumed by which a reasonable amount of the investigated uranium-contaminated soils would have 

been ingested. The results were compared with data from the literature.  



 22 

 

7 Träber et al. 2014: Estimating the Absorption 

of Soil-Derived Uranium in Humans 

The aim of the first part of this thesis was to set up a method by which reliable data on the 

bioavailability of uranium from ingested soils are received. The method was developed by combining 

an in vitro solubility assay and a human study, using the same edible healing soil for both studies, to 

obtain the fA
sol factor (see Chapter 5.6). 

The applied in vitro solubility assay based on the German method DIN 19738 (DIN 2000), which 

provides guidance on how to simulate the human gastrointestinal tract. This assay was once developed 

to estimate the bioaccessibility of different pollutants from contaminated soils. Here this 

in vitro solubility assay was used to determine the bioaccessibility (DF) of uranium for the used 

healing soil. The conducted human study was an ingestion study on ten human volunteers who 

ingested the same healing soil as it was also used for the in vitro solubility assay. The bioavailability 

(fA) of healing soil-derived uranium was determined based on the urinary excretion of uranium. 

7.1 In vitro solubility assay 

Determination of bioaccessibility (DF) 

To determine the bioaccessibility (DF) of uranium of the used healing soil, an in vitro solubility assay 

based on the German method DIN 19738 was performed. By this assay, the human gastrointestinal 

tract is simulated using artificial gastric and intestinal fluids and physiological incubation times and 

temperature. In practice, 2 g of healing soil were incubated in artificial gastric fluid for 2 hours at 

37 °C ± 1 °C. The gastric pH was adjusted to pH 2.0 ± 0.2. After 2 hours artificial intestinal fluid was 

added. The pH status was adjusted to 7.5 ± 0.2 for another 6 hours at 37 °C ± 1 °C. Thereafter, a 

fraction of the suspension was centrifuged, filtered at 0.2 µm and stored at 4 °C until measurement by 

ICP-MS was performed. The bioaccessibility (DF) of the used healing soil was 7.7% ± 0.2% 

(mean ± SD). The result was applied to Eq. 6. 
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7.2 Human study 

Determination of bioavailability (fA) 

The human study was conducted on healthy volunteers according to the principles of the Declaration 

of Helsinki, under the ethical authorization of the competent review boards (Technical University 

Munich, Germany, Ethical Commission), and with patients’ written consent. Six female and four male 

volunteers aged between 22 and 55 years participated. The author of this thesis participated three times 

and his results were averaged to avoid overrepresentation. The study was conducted over six days and 

all ten volunteers had to collect their complete 24-h-urine. Urine was collected starting with first void 

urine in the morning until the following day without first void urine. Soil ingestion took place at day 

four at around 8:00 a.m. after a 10 hours overnight fast. After 2.5 hours the volunteers were provided 

with a standard breakfast and were thereafter allowed to eat and drink ad libitum. All ten volunteers 

ingested 20 g of healing soil mixed in 400 mL water which contained about 52 µg of 238U. For 

comparison, adults are instructed to ingest up to 40 g/day of healing soil to cure health problems 

(Höllriegl et al. 2010). Note also that the average daily intake of uranium by food and drinking is 

1.25 µg (UNSCEAR 2000).  

To estimate the bioavailability (fA) for all ten volunteers the urinary soil-derived uranium excretions 

were determined. Thereafter the individual bioavailability was estimated based on the systemic 

biokinetic compartmental model for uranium (ICRP 1995a). 

Total 238U excretion (mte) after ingestion of healing soil was determined by subtracting the amount of 

excreted 238U cumulated over three days before healing soil ingestion (mb) from the amount of 

excreted 238U cumulated over three days after healing soil ingestion (ma) (see Eq. 10). 

�	 � � 10 

Incidentally, the daily urinary uranium excretion over three days before healing soil ingestion ranged 

from 11.4 ng/day to 12.7 ng/day (median values). These blank values of unexposed volunteers are in 

good agreement with a study on another 113 German unexposed volunteers which showed a daily 

urinary uranium excretion of 14.4 ng/day (median). 

The total urinary systemic excretion of 238U over three days after ingestion amounts to 68.5% (ICRP 

1995a). Accordingly, the total amount of absorbed healing soil-derived 238U (mta) was calculated by 

Eq. 11. 

��
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The bioavailability (fA) was calculated by Eq. 12 with mti as the amount of ingested healing 

soil-derived 238U, which was 51.8 µg.  
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The bioavailability (fA) was calculated for each volunteer. For one female volunteer a negative 

bioavailability of -0.01% was calculated due to a relatively high urinary blank value at day 1. 

Therefore this result was not included in further calculations. Based on the already mentioned study of 

urinary uranium excretion from 113 German unexposed volunteers, a log-normal distribution was 

assumed for the current human study (Oeh et al. 2007). Hence, the geometric mean (GM) and the 

geometric standard deviation (GSD) were calculated. The 95% confidence interval was considered by 

calculating the 2.5th percentile (Q2.5th) and the 97.5th percentile (Q97.5th) by Eq. 13 and Eq. 14, 

respectively. 

�.
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The bioavailability (fA) expressed as geometric mean was calculated to be 0.04%, the 2.5th percentile 

and the 97.5th percentile were calculated to be 0.0049% and 0.34%, respectively. The results of the 

bioavailability (fA) which were obtained by the human study were applied to Eq. 6. 

7.3 Calculation of the fA
sol factor, options, and limitations 

FA
sol was determined based on in vivo data of the human study and on in vitro data of the solubility 

assay. The two data sets are connected because the same edible healing soil was used for both 

experiments. The results which were obtained by the in vitro solubility assay (DF) and the 

human study (fA) were applied to Eq. 6. This resulted in a fA
sol of 0.53% (GM) ranging from 0.06% 

(2.5th percentile) to 4.43% (97.5th percentile). By the fA
sol factor and the used in vitro solubility assay 

the bioavailability of uranium from any other soil can be determined. Thereby, this method avoids the 

need for any further human soil-ingestion studies to receive reliable data on the bioavailability of any 

soil-derived uranium. 

This advantage is not only of importance for ordinary soils, which may contain human pathogenic 

organisms, but especially for uranium-contaminated soils of uranium mining sites. These soils not 

only contain uranium but also various heavy metals which might be more bioavailable due to chemical 

and mechanical processing compared to ordinary soils. Therefore, human studies with these soils 

should be avoided and replaced by an in vitro solubility assay. 

It should be noted that the bioavailability (fA) determined in the current human study is assumed to be 

a log-normal distribution whereas the bioaccessibility (DF) is assumed to be a normal distribution. The 

log-normal distribution of the bioavailability (fA) is a relatively wide distribution of over three orders 

of magnitude. In contrast, the bioaccessibility (DF) is characterized by a relatively narrow distribution. 
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Therefore, the bioaccessibility (DF) was approximated as an absolute term for the calculation of fA
sol. 

Accordingly fA
sol was assumed to also be log-normally distributed. 

Data on the bioavailability of uranium as found in most of the available literature are based on the 

ingestion of drinking water which contains only soluble uranium. In contrast, in the current thesis the 

bioavailability was not determined from drinking water but from ingested soil-derived uranium which 

contains only a fraction of soluble uranium. Consequently, the available data from the literature were 

compared with the calculated fA
sol

 factor results, because equal to drinking water fA
sol represents only 

the soluble fraction of soil-derived uranium, which is absorbed by the alimentary tract into the 

circulatory system. In the literature, for an acute ingestion of up to 270 µg of uranium or a chronic 

ingestion of uranium of 0.37 to 2775 µg/day over at least 15 days bioavailabilities between 0 and 7% 

are reported (Wrenn et al. 1989; Harduin et al. 1994; Leggett and Harrison 1995; Karpas et al. 1998; 

Limson Zamora et al. 2003; Karpas et al. 2005). This data are in good agreement with those obtained 

in this thesis for fA
sol of 0.53% (GM) ranging from 0.06% (2.5th percentile) to 4.43% 

(97.5th percentile). Based on these data it is assumed that the fA
sol factor does not depend on the 

duration of exposure or the amount of ingested uranium, and that it can be used for acute as well as 

chronic ingestion scenarios with high amounts of soil-derived uranium. 

In the present thesis, the fA
sol factor was determined based on the German method DIN 19738. This is 

of importance since soil contaminants like As, Cd, Pb, and U are reported to result in different 

bioaccessibilities depending on the performed in vitro solubility assays. Bioaccessibility values 

between 6% and 99% were reported for soil contaminates of the same sample (Oomen et al. 2002; 

Höllriegl et al. 2010). Accordingly, for applying the fA
sol factor determined in the present thesis on 

other soils the in vitro solubility assay developed in the present thesis has to be performed. Otherwise 

the bioaccessibility values obtained would probably result in misleading bioavailability values. 

In the current human study female and male volunteers aged between 22 and 55 years participated. 

The resulting fA
sol values might therefore by representative for the majority of the population. It is 

noted that the participants of the human study were adult volunteers, but children and pregnant 

women, and therefore unborn children, were not considered. The results of the current thesis must 

therefore not be directly applied to these vulnerable groups. Compared to adults, children exhibit 

higher soil ingestion rates. In particular, small children exhibit hand-to-mouth behavior by which 

small amounts of soils might directly be ingested. Higher soil ingestion rates by children compared to 

adults are also likely due to different outdoor activities. These higher soil ingestion-rates could be 

considered using Eq. 1. Additionally, children are also assumed to exhibit higher uranium absorption 

rates compared to adults. Hence, a higher fraction of uranium is absorbed from the pediatric intestine 

into the circulatory system. This is not be accounted for in the current thesis. Beside the increased 

absorption of uranium, children are also reported to exhibit uranium net retention, meaning uranium 

intake exceeds uranium excretion. This might be especially pronounced during periods of growth 
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(Leggett and Harrison 1995; Harrison et al. 2001; Chen et al. 2011). Like for the previous aspect this 

is not considered in the present thesis. 

The study is described in detail in Träber et al. 2014 (see Chapter 8). 
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SUPPORTING INFORMATION

Estimating the absorption of soil-derived uranium in humans

Stephan C. Träber, Vera Höllriegl
, *

, W.B. Li, Uta Czeslik, Werner Rühm, Uwe Oeh, Bernhard 

Michalke

Section S.1:

For the analysis of 
238

U an Element 1 ICP-SF-MS instrument (Thermo, Bremen, Germany) in 

low resolution mode was used. The samples of the solubility assay were diluted 1:2 with diluted 

nitric acid (5%, final concentration). The sample of the microwave-assisted digested healing soil 

was diluted 1:2 with diluted nitric acid (1%, final concentration). An internal standard solution (1 

µg/L 
193

Ir, final concentration) was added to each sample to correct for matrix interferences. For 

each sample three replicates were measured. Sample transport to nebulizer was realized by a 

peristaltic pump at a flow rate of 0.5 mL/min. Sample introduction to ICP-MS was performed by 

a Meinhard nebulizer fitting into a cyclone spray chamber. Uranium was determined at m/z = 

238. RF power was 1200 W, nebulizer gas (Ar) was daily optimized and usually set to 0.8 L/min. 

Plasma gas: Ar, 15 L/min. Auxiliary gas: 0.8 L/min. runs: 3 patterns: 3, 12 samples per peak.

The instrument was calibrated using a 7 point calibration between blank and 2000 ng/L. After ten 

measurements regularly three blank determinations and a control determination of a certified 

standard were performed. Calculation of results was carried out on a computerized lab-data 

management system, relating the sample measurements to calibration curves, blank 

determinations and control standards. The detection limit, calculated as blank + 3 times the blank 

standard deviation (SD) was 1.5 ng/L, the limit of quantification (LOQ) calculated as blank + 10 

x SD was 4.5 ng/L.

Section S.2:

58



The determination of urinary 
238

U was carried out according to the DIN EN ISO 17294-2 by 

inductively coupled plasma mass spectrometry on an Element 2 (Thermo Scientific).
1

For the 

determination of the 
238

U concentration in urine, the calibration and data evaluation were carried 

out by applying the standard addition method. Thus, the elimination of disturbing influences was 

assured as far as possible by the usage of the same matrix as the real sample. For the standard 

addition six aliquots of one urine sample were diluted with 1.5% nitric acid in a 1:10 ratio. In 

five dilutions, uranium was added to yield concentrations from 0.005-0.025 µg/L. The resulting 

calibration curve was checked with the reference material SeroNorm Trace Elements Urine. 

Subsequently, the real samples were diluted with 1.5% nitric acid in a 1:10 ratio and measured 

several times. 
103

Rh was used as the internal standard.

REFERENCES

1. DIN, Water quality - Application of inductively coupled plasma mass spectrometry (ICP-

MS) - Part 2: Determination of 62 elements (ISO 17294-2:2003); German version EN ISO 

17294-2:2004. In 2005-02; Vol. DIN EN ISO 17294-2:2005-02.
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Correction to Estimating the Absorption of Soil-Derived Uranium in
Humans

Stephan C. Trab̈er, Vera Höllriegl,* W. B. Li, Uta Czeslik, Werner Rühm, Uwe Oeh,
and Bernhard Michalke

Environ. Sci. Technol. 2014, 48, 14721−14727; DOI: 10.1021/es504171r

In the text, at page 14725, right column, line 19 and 20, the
units are incorrectly given (μg/day instead of ng/day). The
amended sentence is
“Thereby, the daily urinary excretion values of 238U over 3

days before healing soil ingestion were 3.9 ng/day ±1.5 ng/day,
8.1 ng/day ±0.6 ng/day and 9.0 ng/day ±1.2 ng/day (mean ±

SD).”

Published: January 20, 2015

Addition/Correction

pubs.acs.org/est

© 2015 American Chemical Society 1982 DOI: 10.1021/acs.est.5b00177
Environ. Sci. Technol. 2015, 49, 1982−1982

D
o
w

n
lo

ad
ed

 v
ia

 8
8
.6

7
.1

8
2
.2

3
6
 o

n
 S

ep
te

m
b
er

 1
0
, 
2
0
1
8
 a

t 
2
0
:1

1
:2

2
 (

U
T

C
).

 
S

ee
 h

tt
p
s:

//
p
u
b
s.

ac
s.

o
rg

/s
h
ar

in
g
g
u
id

el
in

es
 f

o
r 

o
p
ti

o
n
s 

o
n
 h

o
w

 t
o
 l

eg
it

im
at

el
y
 s

h
ar

e 
p
u
b
li

sh
ed

 a
rt

ic
le

s.
 



61 

9 Träber et al. 2015: Calculation of internal 

dose from ingested soil-derived uranium in 

humans: Application of a new method 

The aim of the second part of this thesis was to estimate the internal dose for ingested and highly 

uranium-contaminated soils from former uranium mining sites by applying the previously developed 

method (see Chapter 7). 

Two soils and additionally one fertilizer contaminated with uranium were investigated. The 

sample-specific bioaccessibilities and subsequently the corresponding bioavailabilities were 

determined. The bioavailability results were included into biokinetic models of uranium. Finally, the 

results were used to estimate the internal dose for a conceivable ingestion scenario. 

The committed effective dose for a specific ingestion scenario is calculated by Eq. 1. Accordingly, the 

following information is needed:  

 the average daily amount of the soil ingested during the exposure period ( ����; see Chapter 9.1),

 the duration of the exposure period ( ; see Chapter 9.1),

 the average concentration of a radionuclide i in the ingested soil ( ����,�; see Chapter 9.2),

 the effective dose coefficient of an ingested radionuclide i ( �; see Chapter 9.4). 

9.1 Amount (Isoil) and duration (ED) of soil ingestion 

For the exposure scenario explored here, a ingestion of 10 mg/day of soil ( ����) lasting one year ( ) 

was assumed. Daily ingestion of 10 mg of soil is based on the average soil ingestion experimentally 

determined in a study on adults, aged between 22 and 45 years (Stanek III et al. 1997). In comparison, 

soil ingestion of children is higher and is estimated to vary from 26 mg/day to 100 mg/day, due to 

hand-to-mouth, outdoor and other activities (van Wijnen et al. 1990; Xue et al. 2007; Stanek III et al. 

2012; UNSCEAR 2013). For this exposure scenario, the entire daily ingested amount of soil was 

assumed to be uranium-contaminated soil. While this assumption seems to be a worst-case scenario, it 

should kept in mind that uranium mining can actually take place near inhabited regions. As an 

example, the E1 sample was from a heap of a former uranium mining site near Dresden, Germany. 

Since mining and milling processes are accompanied by the formation of dust, the assumed ingestion 

of 10 mg/day of soils over one year might even be a realistic rather than a worst-case scenario. 
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9.2 Concentration (Csoil,i) of uranium in the samples 

Two original uranium-contaminated soil samples were used for the present thesis. Note that no soil 

samples artificially spiked with uranium were used, to reflect the original characteristics of 

uranium-contaminated soils resulting from mining and milling processes and to describe a realistic 

scenario. One sample named “Gauern” was taken at a former uranium mining site in the eastern part of 

Thuringia, Germany. The second soil sample named “E1” was taken from a heap of a former uranium 

mining site near Dresden, Germany. Additionally, one phosphate fertilizer named “Fertilizer” was 

investigated, since phosphate fertilizers are known to be often contaminated by uranium and therefore 

agriculture activities are the main source of uranium contamination of cultivated soils (Schnug and 

Lottermoser 2013). 

The concentrations of 238U of the three samples Gauern, E1, and Fertilizer were determined by 

ICP-MS after a microwave assisted acid digestion. Uranium concentrations of the soil samples 

Gauern, E1, and Fertilizer were 553 ± 9 mg/kg, 456 ± 3 mg/kg, and 23.3 ± 0.5 mg/kg (mean ± SD), 

respectively. Concerning the two soil samples Gauern and E1, this is an increase of about two orders 

of magnitude compared to the average concentration of uranium in soils which is only about 3 mg/kg 

(Bleise et al. 2003). Therefore the samples are considered as highly uranium-contaminated. 

Based on the experimentally determined concentrations of 238U of the three samples, the 

concentrations of 234U and 235U were deduced from literature data on typical isotopic ratios (Berglund 

and Wieser 2011). Therefore, the average concentrations of all three radionuclides (234U, 235U, and 

238U) of the ingested soils were available ( ����,�).

The concentrations of 234U and 235U could be derived from literature data since all samples, while 

physically and chemically processed, still kept the natural abundance of the uranium isotopes. 

9.3 Determination of bioaccessibility (DF) and bioavailability (fA) 

Like for the original healing soil sample (see Chapter 7.1) the bioaccessibilities for the three 

uranium-contaminated samples were determined in accordance to the German method DIN 19738. 

The bioaccessibilities of 238U of the healing soil was about 10%, whereas the bioaccessibilities of 238U 

of the three samples Gauern, E1, and Fertilizer were about 53% ± 3%, 33% ± 3%, and 24% ± 3% 

(mean ± SD), respectively. 

The high bioaccessibility of the two soils from uranium mining sites might be due to the intensive 

chemical (leaching) processing, which had been applied to maximize the dissolution of uranium from 

soils. Another reason for an increased bioaccessibility might be the mechanical processing (milling) of 

theses soils. Thereby the average grain size of the soil particles is reduced. Thus, the surface area of 

the particles is increased which results in a higher accessibility of uranium for dissolution and 

therefore in an increased bioaccessibility (Jovanovic et al. 2012). As mentioned the examined soil 
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samples originated from uranium mining sites and were not artificially spiked with uranium. 

Therefore, the results plausibly suggest a general elevated bioaccessibility of uranium from processed 

soils, as compared to natural soils. 

The experimentally determined bioaccessibilities (DF) and the previously determined fA
sol factor were 

applied to Eq. 7 to calculate the bioavailabilities (fA) of each investigated soil. Hence, for the samples 

Gauern, E1, and Fertilizer, bioavailabilities of 0.28, 0.18, and 0.13% (GM) were determined. The 

corresponding 2.5th percentile and 97.5th percentile of the bioavailability for these samples were 

determined to be 0.03 to 2.34%, 0.02 to 1.48%, and 0.01 to 1.07%, respectively. 

9.4 Committed effective dose coefficients (DCi) 

Based on the calculated bioavailabilities of the three samples Gauern, E1, and Fertilizer (see Chapter 

9.3), the committed effective dose coefficients ( �) were calculated for all three samples by Eq. 2 as 

explained in Chapter 5.5. For each sample, all three isotopes 234U, 235U, 238U, and their radiologically 

relevant progeny were taken into account. For naturally occurring uranium in soils almost half of the 

activity accounts for 238U (48.6%). The remaining sum of activity of naturally occurring uranium 

accounts for 234U (49.2%) and 235U (2.2%) (Mkandawire 2013). 

9.5 Committed effective dose 

The committed effective doses were calculated for all three samples for the same exposure scenario. 

Therefore, resulting committed effective doses only differ because of two parameters; the average 

concentration of a radionuclide i in the ingested soil ( ����,�) and the committed effective dose 

coefficient of an ingested radionuclide i ( �). Among the three samples, Gauern is characterized by 

the highest concentration of uranium and also by the highest committed effective dose coefficient, 

which resulted from the highest bioaccessibility among all three samples. Consequently, the highest 

committed effective dose was calculated for the sample Gauern and therefore only this result is 

discussed below. 

For the Gauern sample a committed effective dose of about 0.6 µSv (GM) ranging from 

0.3 (2.5th percentile) to 3.0 µSv (97.5th percentile) was calculated, based on the assumed exposure 

scenario. This resulting committed effective dose, here presented as geometric mean and 

97.5th percentile, can be classified as very low. Accordingly, this also applies for the committed 

effective doses deduced for the remaining two samples. 

In comparison, the effective dose from the average daily intake of 1.25 µg of uranium by food and 

drinking water is estimated to be about 0.5 µSv/a for adults, based on a bioavailability of 2% 

(UNSCEAR 2000). This is in good agreement even with the 97.5th percentile of the by this study 

assumed scenario, which is 3.0 µSv/a. This 6-fold increase is mainly due to the different uranium 

intakes. For the exposure scenario considered here, a daily ingestion of 10 mg of the Gauern soil for 
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one year was assumed which equals a daily ingestion of 5.57 µg of uranium. This is about five times 

higher compared to the daily intake of 1.25 µg uranium from food and drinking. In addition, in 

comparison to the 2% bioavailability which is assumed by the ICRP, the 97.5th percentile was 

calculated based on a bioavailability of about 2.34%. Finally, the estimated effective dose for the daily 

intake of 1.25 µg of uranium was rounded to only one significant figure, which further increases the 

deviation.  

The calculated annual dose of 3.0 µSv/a (97.5th percentile) is about three orders of magnitude lower 

than the annual effective dose by which the public is exposed on average (2.4 mSv), due to natural 

radiation (UNSCEAR 2008). 

The study is described in detail in Träber et al. 2015 (see Chapter 10). 
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Calculation of internal dose from ingested soil-derived uranium in humans – Application of a new method 1 

 2 

S. C. Träber
1,*

, W.B. Li
1,*

, V. Höllriegl
1
, K. Nebelung

2
, B. Michalke

3
, W. Rühm

4
 , U. Oeh

1 
3 

 4 

1
Research Unit Medical Radiation Physics and Diagnostics, Helmholtz Zentrum München, German Research Center 5 

for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany 6 

2
Institute of Geosciences, Friedrich Schiller University of Jena, Burgweg 11, 07749 Jena, Germany 7 

3
Research Unit BioGeoChemistry and Analytics, Helmholtz Zentrum München, German Research Center for 8 

Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany 9 

4
Institute of Radiation Protection, Helmholtz Zentrum München, German Research Center for Environmental 10 

Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany 11 

 12 

KEYWORDS 13 

Uranium; biokinetic modeling; internal dosimetry; humans; soil 14 

 15 

CONCISE AND INFORMATIVE TITLE 16 

Internal dose from ingested soil-derived uranium in humans 17 

 18 

*Corresponding authors: 19 

S. Träber and W.B. Li 20 

stephan.traeber@helmholtz-muenchen.de and wli@helmholtz-muenchen.de 21 

Tel: 0049 89 3187 3314, Fax: 0049 89 3187 2517  22 

����������

����.	����	��	����	���.��	����������

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



2 

 

ABSTRACT 23 

The aim of the present study was to determine the internal dose in humans after the ingestion of soil highly 24 

contaminated with uranium. Therefore, an in vitro solubility assay was performed to estimate the bioaccessibility of 25 

uranium for two types of soil. Based on the results, the corresponding bioavailabilities were assessed by using a 26 

recently published method. Finally, these bioavailability data were used together with the biokinetic model of 27 

uranium to assess the internal doses for a hypothetical but realistic scenario characterized by a daily ingestion of 10 28 

mg of soil over 1 year. The investigated soil samples were from two former uranium mining sites of Germany with 29 

238
U concentrations of about 460 mg/kg and 550 mg/kg. For these soils, the bioavailabilities of 

238
U were quantified 30 

as 0.18% and 0.28% (geometric mean) with 2.5
th

 percentiles of 0.02% and 0.03%, and 97.5
th

 percentiles of 1.48% 31 

and 2.34%, respectively. The corresponding calculated annual committed effective doses for the assumed scenario 32 

were 0.4 µSv and 0.6 µSv (GM) with 2.5
th

 percentiles of 0.2 µSv and 0.3 µSv, and 97.5
th
 percentiles of 1.6 µSv and 33 

3.0 µSv, respectively. These annual committed effective doses are similar to those from natural uranium intake by 34 

food and drinking water, which is estimated to be 0.5 µSv. Based on the present experimental data and the selected 35 

ingestion scenario, the investigated soils - although highly contaminated with uranium - are not expected to pose any 36 

major health risk to humans related to radiation.  37 
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3 

 

INTRODUCTION 38 

Uranium is the heaviest naturally occurring element. It occurs ubiquitously in soils at concentrations of about 3 39 

mg/kg (Bleise et al. 2003) and comprises three isotopes with percentages by mole fraction of 0.0054% (
234

U), 0.72% 40 

(
235

U) and 99.27% (
238

U) (Berglund and Wieser 2011). All three isotopes are alpha emitters with half-lives of 41 

245,500 years (
234

U), 704,000,000 years (
235

U) and 4,468,000,000 years (
238

U) (ICRP 2008), respectively. The 42 

corresponding percentages by radioactivity of naturally occurring uranium are about 49.2% (
234

U), 2.2% (
235

U) and 43 

48.6% (
238

U), respectively (Mkandawire 2013). 44 

Elevated uranium concentrations in soils are mostly of anthropogenic nature. In agriculture, for example, uranium-45 

contaminated phosphate fertilizers are the main source of uranium contamination of soils. About 14,000 tons of 46 

uranium were deposited between 1951 and 2011 on agricultural land in Germany, which equals about 1 kg of 47 

uranium per hectare (Schnug and Lottermoser 2013). Uranium mining is another source of potential uranium 48 

contamination of soils (Brugge and Buchner 2011). The global uranium production has increased from about 36,000 49 

tons in 2002 to 60,000 tons in 2013, whereby the top five uranium producers in 2013 were Kazakhstan, Canada, 50 

Australia, Niger, and Namibia (WNA 2014). Even for remediated former uranium mining sites elevated uranium 51 

concentrations are reported, since these sites are re-contaminated due to natural processes like capillary rise of 52 

contaminated ground water (Langella et al. 2014). A third notable source of environmental uranium contamination is 53 

by the military use of depleted uranium (DU) penetrators, leading to DU dust formation after impact (Bleise et al. 54 

2003).  55 

The unintended ingestion of small amounts of soils by humans via various routes is observed all over the world 56 

(Abrahams 2002, Sing and Sing 2010) Thereby, the average ingestion rate of soil by adults is assumed to be about 57 

10 mg/day (Stanek et al. 1997). Since uranium ubiquitously occurs in soil, soil ingestion is always accompanied by 58 

the ingestion of uranium. To estimate the resulting internal dose, the bioavailability (f1) of soil-derived uranium has 59 

to be assessed. The bioavailability (f1) is the fraction of uranium which is absorbed from the human alimentary tract 60 

into the circulatory system. In practice, the bioavailability of uranium from highly contaminated soils is not directly 61 

assessed by human soil ingestion studies, but is indirectly assessed by in vitro solubility assays. However, by these 62 

assays only the bioaccessibility (DF) of soil-derived uranium can directly be estimated. The bioaccessibility (DF) 63 

quantifies the fraction of soil-derived uranium in human alimentary tract, which is soluble and therefore potentially 64 
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available for absorption. Consequently, the bioavailability is usually estimated based on bioaccessibility data. 65 

However, there are different solubility assays and different estimation methods described in the literature which can 66 

lead to varying estimated bioavailabilities for one particular soil of up to three orders of magnitude (Träber et al. 67 

2014). In response to that, Träber et al. 2014 recently reported a solubility assay-specific factor (fA
sol

) (Fig. 1), which 68 

was based on a human study and by which more reliable data on the bioavailability of soil-derived uranium can be 69 

deduced from the bioaccessibility data. Using this method, only a solubility assay has to be performed e.g. for a 70 

highly uranium-contaminated soil to receive more reliable data on its bioavailability. 71 

The aim of the present study was to estimate the internal dose in humans after a potential ingestion of soils highly 72 

contaminated with uranium by applying the recently published method (Träber et al. 2014). Two types of soil highly 73 

contaminated with uranium and additionally one pure fertilizer were investigated. Thereby more reliable data on the 74 

uptake of uranium in humans were obtained from highly contaminated soils than previously available. 75 

Consequently, more reliable data on the internal dose enhancement can be obtained for the risk assessment of 76 

potential ingestion scenarios.  77 
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MATERIALS AND METHODS 78 

Samples 79 

In the present study, two types of soil and additionally one fertilizer were analyzed. The soil sample “Gauern” was 80 

selected from a former uranium mining site in the east of Thuringia, Germany. It was taken from the surface (0-10 81 

cm) of a hot spot, a supposed former ore terminal, near the former heap “Gauernhalde”. The soil sample “E1” was 82 

taken from a heap of a former uranium mining site (Coschütz/Gittersee) near Dresden in Saxony, Germany. Both 83 

soil samples were sieved at 2 mm. The fertilizer “Blaukorn NovaTec“ (COMPO Gesellschaft GmbH & Co. KG, 84 

Germany), with an indicated mass fraction of P2O5 of 7%, was bought at retail. 85 

For the analyses of total soil-derived 
238

U 250.0 mg of each soil was mixed with 1.5 mL of HNO3
 
(65%), 4.5 mL of 86 

HCl (30%) and 1 mL HF (40%). The mixture was digested in a Multiwave 3000 microwave device (Anton Paar, 87 

Austria); power: ramp for 5 min up to 1400 W, hold for 30 min at 1400 W and cooling down for 20 min. Thereafter 88 

6 mL of H3BO3 were added to neutralize free fluorides and the solution was placed a second time in the Multiwave 89 

system; power: ramp for 5 min up to 1400 W, hold for 15 min and cooling down for 15 min. For the analyses of 90 

total fertilizer-derived 
238

U 118.1 mg fertilizer was mixed with 1.0 mL of HNO3
 
(65%) and heated at 160 °C 91 

overnight under pressure (Schramel et al. 1980). All solutions were stored at 4 °C until measurement of 
238

U by 92 

using inductively coupled plasma mass spectrometry (ICP-MS, see below). 93 

Determination of bioaccessibility (DF) and bioavailability (fA) 94 

The bioaccessibility (DF) of the soil-derived 
238

U and of the fertilizer-derived 
238

U in the relevant part of the 95 

alimentary tract, which is the intestine (Frelon et al. 2007), was estimated by an in vitro solubility assay. In 96 

accordance to the previous study, the same in vitro solubility assay based on the German DIN 19738 (DIN 2000) 97 

was performed; the assay is described in detail elsewhere (Träber et al. 2014). 98 

Briefly, 2 g of soil or fertilizer was incubated under physiological conditions, using an artificial gastric fluid with a 99 

pH of 2 followed by the addition of an artificial intestinal fluid with a pH of 7.5. After 8 h of incubation an aliquot 100 

was withdrawn, centrifuged at 5000 rpm (Hettich Universal 32R) and filtered at 0.2 µm (sterile filter, Millipore). All 101 

experiments were repeated three times independently. The solutions were stored at 4 °C until measurement of 
238

U 102 

using ICP-MS (see below). 103 
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The bioaccessibility (DF) was calculated as the percentage of soluble 
238

U based on the total concentration of soil-104 

derived 
238

U or fertilizer-derived 
238

U. 105 

The sample-specific bioavailabilities were calculated for the two soil samples and the fertilizer by the previously 106 

published relation Eq. (1) (Höllriegl et al. 2010). 107 

f� = f����DF  (1) 108 

Note that for the current study the bioavailability is denoted as fA, since the notation of the bioavailability has 109 

changed by the International Commission on Radiological Protection (ICRP) from f1 to fA (ICRP 2006). DF was 110 

derived from the applied solubility assay whereas the fA
sol

 factor was directly adopted from the previous work being 111 

0.53% (geometric mean, GM) and ranging from 0.06% (2.5
th

 percentile) to 4.43% (97.5
th
 percentile) (Träber et al. 112 

2014). The fA
sol

 factor quantifies the fraction of bioaccessible uranium which is absorbed into the circulatory system. 113 

It is emphasized here again that the data on fA
sol

 are based on human data. 114 

Measurement of 
238

U by ICP-MS 115 

For the analysis of 
238

U a NexIon ICP-MS instrument (Perkin-Elmer, Rodgau-Jügesheim, Germany) in standard 116 

mode was used. The samples of the solubility assay were diluted between 1:2 and 1:100 with diluted nitric acid (5%, 117 

final concentration). The samples of the microwave-assisted digested soils were diluted 1:2 with diluted nitric acid 118 

(3 %, final concentration). An internal standard solution (1 µg/L 
193

Ir, final concentration) was added to each sample 119 

to correct for matrix interferences. For each sample three replicates were measured. Sample transport to nebulizer 120 

was realized by a peristaltic pump at a flow rate of 0.5 mL/min. Sample introduction to ICP-MS was performed by a 121 

Meinhard nebulizer fitting into a cyclone spray chamber. A uranium stock standard solution of 1 g/L purchased and 122 

certified by SPEX (USA) was used for calibration. Uranium was determined at m/z = 238. RF power was 1250 W, 123 

nebulizer gas (Ar) was daily optimized and usually set to 0.92 L/min. Plasma gas: Ar, 15 L/min. Auxiliary gas: 0.8 124 

L/min, dwell time 300 ms, 3 readings per replicate. The instrument was calibrated using a 7-point calibration 125 

between blank and 2000 ng/L. After ten measurements regularly three blank determinations and a control 126 

determination of a certified standard were performed. Calculation of results was carried out on a computerized lab-127 

data management system, relating the sample measurements to calibration curves, blank determinations and control 128 
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standards. The detection limit, calculated as blank + 3 times the blank standard deviation (SD) was 1.5 ng/L, the 129 

limit of quantification (LOQ) calculated as blank + 10 x SD was 4.5 ng/L. 130 

Biokinetic model 131 

To model the biokinetics of ingested soil-derived 
238

U, the systemic model for uranium (ICRP 1995a) and the human 132 

alimentary tract model (HATM) (ICRP 2006) were coupled. These two models were connected by the alimentary 133 

tract transfer rate, which was quantified in the present study for two soils and one fertilizer. For internal dose 134 

assessment of 
238

U, the radiologically relevant progeny 
234

Th, 
234

Pa, and 
234m

Pa were also taken into account (ICRP 135 

1979). Similar to the parent 
238

U, the systemic models of thorium, protactinium and protactinium (meta) as decay 136 

products, which were published by ICRP in Publication 71 in Annex C (ICRP 1995b), were also coupled to the 137 

human alimentary tract model. Thereby, each systemic model of a progeny was connected to one human alimentary 138 

tract model. The corresponding alimentary tract transfer rates were adopted from ICRP Publication 100 (ICRP 139 

2006). The resulting four ingestion models (Fig. 2) were interconnected in accordance with the 
238

U decay series by 140 

the corresponding decay constants (ICRP 2008). 141 

As the biokinetic models of different radionuclides are independent, their transfer rates and especially their 142 

compartment structures are not necessarily identical. For a proper interconnection of biokinetic models with varying 143 

compartment structures, like the biokinetic model of uranium and the biokinetic model of thorium as a progeny, two 144 

approaches are proposed by ICRP (ICRP 1995b). By the first approach the biokinetics of a radionuclide of a chain 145 

are calculated by using the biokinetic descriptions given by ICRP (ICRP 1995b). Thereafter, necessary, non-existing 146 

compartments representing source regions receive a portion of nuclear transformations which are partitioned by 147 

mass fraction from the so-called “Other” tissue. This “Other” tissue represents all systemic tissues, which are not 148 

explicitly specified in a biokinetic model. In the present work, however, the second approach was applied because 149 

this approach will be adopted by the forthcoming ICRP Publications on “Occupational Intakes of Radionuclides, 150 

Part 1”. By this approach, prior to biokinetic modeling, the biokinetic model of a radionuclide of a chain is expanded 151 

for the necessary, non-existing compartments and transfer rates, respectively. In the present work, only the 152 

biokinetic model for uranium had to be expanded for the compartments gonads, cortical marrow, and trabecular 153 

marrow, to match with its progeny biokinetic model of thorium. The structures and transfer rates of the protactinium 154 
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model and the protactinium (meta) model were assigned to the biokinetic model of thorium (ICRP 1995a, ICRP 155 

1995b). 156 

As an example, for the biokinetic model of 
238

U the transfer rate from the blood compartment to the newly created 157 

cortical marrow compartment is calculated from the corresponding transfer rate of the so-called “Other” tissue 158 

compartment by its mass-fraction. The transfer rate from the blood compartment to the “Other” tissue compartment 159 

is reduced accordingly. Since the uranium model contains three soft tissue compartments with different transfer 160 

rates, three new cortical marrow compartments were integrated into the uranium model. As a part of a decay series, 161 

all three cortical marrow compartments were connected to the single cortical marrow compartment of thorium by 162 

their decay constant. Finally, nine additional compartments were integrated into the biokinetic model of the parent 163 

radionuclide 
238

U. 164 

Beside the transfer rates of the systemic model, the transfer rates for “total diet” of the HATM model were adopted 165 

from ICRP (ICRP 2006) for male and female, which resulted in two sex-specific biokinetic models for 
238

U. In 166 

addition, sex-specific biokinetic models for 
234

U and 
235

U with their corresponding progeny were implemented. 167 

Thereby the radiologically relevant progeny of 
235

U is only 
231

Th, whereas 
234

U has no progeny with relevant 168 

dosimetric contribution (ICRP 1979). 169 

With these six models, the sex-specific biokinetics of the three naturally occurring isotopes of uranium and their 170 

progeny are described by a system of first-order linear ordinary differential equations, which were numerically 171 

solved by using the commercially available software SAAM II (Barrett et al. 1998) (The Epsilon Group VA, USA). 172 

For internal dose assessment of adults, the integrated activity of the ingested uranium and its progeny in all 173 

compartments over a 50-year period was calculated. 174 

Calculation of the committed effective dose 175 

The committed equivalent dose (��) and the committed effective dose (�) were calculated based on the time-176 

integrated activity (	
) in so-called source regions (��) and radiation-weighted factors (
�) and the appropriate tissue-177 

weighting factors (��) (Bolch et al. 2009, ICRP 1989). In the present calculation, only adults were considered for 178 

the internal dose calculation because only the fA
sol

 value for adults was established (Träber et al. 2014). 179 
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The committed equivalent dose (��,���) for female and male was calculated by Eq. (2) as the sum of a radionuclide 180 

and its progeny (�): 181 

��,��� = ∑ ∑ 	
(��, ���, ���, �)
�(�� ← ��, ���, �)���   (2) 182 

Where 	
(��, ���, ���, �) is the cumulated activity (	
) of a radionuclide or progeny (�) in a source region (��) over 183 

50 years (���), which is sex-specific (���); 	
 was calculated by the biokinetic models as described above. 184 


�(�� ← ��, ���, �) is the radiation-weighted S factor calculated for a radionuclide or progeny for both sexes (���) 185 

by Eq. (3). 186 


�(�� ← ��, ���, �) = ∑ ��
(�� ← ��, �� , ���, �)�    (3) 187 

Where �� is the radiation weighting factor and 
(�� ← ��, �� , ���, �) is the specific energy of a radiation type R 188 

(��), which is absorbed in a target organ (��) emitted from a source region (��), per nuclear transformation of a 189 

radionuclide or its progeny (�). 
� was calculated as the sum of all radiation types per nuclear transformation of a 190 

radionuclide or its progeny (�) by using the SEECAL program (Oak Ridge National Laboratory, Oak Ridge, TN, 191 

USA). Since Sw factors are not yet available for a few organs like the prostate, the “splitting rule” in the treatment 192 

for remainder tissues was applied in the current work as recommended in ICRP Publication 60 (ICRP 1991). 193 

Accordingly, the appropriate radiation weighting factors (��) and tissue weighting factors (��) were adopted from 194 

ICRP Publication 60 (ICRP 1991). 195 

Finally the committed effective dose (�) was calculated by Eq. (4) by averaging the effective dose of male and 196 

female (ICRP 2007): 197 

� = ∑ ��  
!",#$%&'!",*&#$%&

+ -�      (4) 198 

Dose calculation for ingestion scenarios 199 

By the introduced committed effective dose calculation (see above), sample-specific ingestion effective dose 200 

coefficients were assessed by adopting the corresponding sample-specific alimentary tract transfer rates to the 201 

biokinetic models and assuming a single uptake of 1 Bq of 
234

U, 
235

U or 
238

U. 202 
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Based on the sample-specific ingestion effective dose coefficients the committed effective dose can be simply 203 

obtained for different ingestion scenarios by Eq. (5) (Simon 1998). 204 

.�/01 = ∑ 2�/01,0 × 3�/01 × �. × .200     (5) 205 

.�/01  committed effective dose from soil-derived radionuclides (Sv) 206 

2�/01,0 average concentration of radionuclide i in soil (Bq/g) 207 

3�/01  average daily ingestion of soil during the exposure period (g/day) 208 

�. exposure duration (d) 209 

.20 ingestion effective dose coefficients of radionuclide i (Sv/Bq)  210 
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RESULTS AND DISCUSSION 211 

Concentration of 
238

U in samples 212 

The concentration of 
238

U in the three samples “Gauern”, “E1” and “Fertilizer” was determined (see Table 1). The 213 

soil samples “Gauern” and “E1” revealed elevated concentrations for 
238

U of about two orders of magnitude 214 

compared to the average concentration of 
238

U in soils of about 3 mg/kg (Bleise et al. 2003). 215 

Bioavailability (fA) of soil and fertilizer samples
 

216 

To calculate the sample-specific fA values for 
238

U, first the bioaccessibilities (DF) for 
238

U of all three samples were 217 

determined by the mentioned solubility assay. The results are given in Fig. 3 based on the corresponding total 218 

concentrations of 
238

U (Table 1). 219 

The sample “Fertilizer” showed the lowest bioaccessibility for 
238

U of about 24%, while the two soil samples 220 

revealed higher bioaccessibilities of about 33% and 53%, respectively. In comparison, the bioaccessibility of the 221 

previously examined healing soil with a uranium concentration of about 2.6 mg/kg was below 10% (Träber et al. 222 

2014). The different bioaccessibilities among the healing soil and the here investigated soil samples might be a 223 

result of the different mining processes. Whereas healing soil is a pure natural product, soils from uranium mining 224 

sites are intensively chemically processed (leaching) to dissolve more uranium. This might also increase the 225 

bioaccessibility of uranium of these processed soils. Apart from that, different particle sizes of soil samples may also 226 

explain different bioaccessibilities; for samples with similar uranium concentrations, smaller particle sizes are 227 

accompanied by a larger total surface by which more uranium is accessible for dissolution (Jovanovic et al. 2012). 228 

Based on the determined bioaccessibilities (DF), the sample-specific bioavailabilities (fA) were calculated by Eq. 229 

(1). The results are given in Table 2 and reveal bioavailabilities between 0.13% and 0.28% (GM). These data are 230 

similar to ICRP data, by which a bioavailability of uranium of 0.2% for relatively insoluble compounds is assumed 231 

(ICRP 2006). In Table 2 the 2.5
th

 percentile and the 97.5
th

 percentile of the bioavailabilities are also given to cover a 232 

95% confidence interval. 233 

Committed effective doses 234 
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The committed effective dose was estimated by Eq. (5) for all three samples, for a conceivable exposure scenario by 235 

which 10 mg of soil or fertilizer are daily ingested over one year. For that, besides the average daily ingestion (3�/01) 236 

of soil or fertilizer and the exposure duration (�.), the sample-specific ingestion dose coefficients (.20) of the 237 

radionuclides 
234

U, 
235

U, and 
238

U are needed. Therefore, the sample-specific alimentary tract transfer rates (Table 3) 238 

were calculated from the sample-specific bioavailability data (Table 2) (ICRP 1997) and applied to the used 239 

biokinetic models. The resulting sample-specific ingestion effective dose coefficients (DCi) of the radionuclides 240 

234
U, 

235
U, and 

238
U are given in Table 4. For the dose calculation using Eq. 5, the data on the sample-specific 241 

average concentrations (csoil,i) of the radionuclides 
234

U, 
235

U and 
238

U are also needed. The sample-specific activities 242 

of 
238

U are based on our measurements (Table 1) whereas the proportional sample-specific activities of 
234

U and 
235

U 243 

are based on literature data (Berglund and Wieser 2011). The resulting sample-specific average concentrations 244 

(csoil,i) of the radionuclides 
234

U, 
235

U and 
238

U are given in Table 5. 245 

Our assumption of 10 mg of soil or fertilizer that are daily ingested over 1 year is assumed to be a realistic worst 246 

case scenario. The investigated uranium-contaminated soil sample E1, for example, was from a heap of a former 247 

uranium mining site nearby the city of Dresden, Germany. In the worst case scenario, the whole amount of daily 248 

ingested soil or fertilizer (10 mg) is assumed to be from a uranium or phosphate mining site. 249 

The sum of the calculated sample-specific annual committed effective doses of the isotopes 
234

U, 
235

U and 
238

U and 250 

their radiologically relevant progeny are given in Table 6. The soil sample “Gauern” revealed the highest total 251 

concentration of uranium (553 mg/kg, Table 1) as well as the highest bioaccessibility of uranium (53%, Fig. 3) and 252 

therefore the highest annual committed effective dose among all samples, with about 0.6 µSv (GM) ranging from 253 

0.3 µSv (2.5
th

 percentile) to 3.0 µSv (97.5
th
 percentile). Besides, a daily ingestion of 10 mg of the soil sample 254 

“Gauern” would equal a daily ingestion of 5.57 µg of uranium. These results are similar to those from the daily 255 

intake of 1.25 µg uranium by food and drinking water, which is estimated to be 0.5 µSv for adults (UNSCEAR 256 

2000). Furthermore, the calculated annual committed effective dose of about 3.0 µSv (97.5
th
 percentile) for the 257 

assumed scenario is about three orders of magnitude lower than the average annual natural background effective 258 

dose of 2.4 mSv (UNSCEAR 2008). 259 

The present results are not appropriate to be applied to children who are expected to exhibit a two- to tenfold 260 

increased soil ingestion rate compared to adults  (Stanek et al. 2012, UNSCEAR 2013). As reported by ICRP (ICRP 261 
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1995a), the committed effective dose coefficients of uranium for children are 1.5 to 2.7 times greater than that of 262 

adults; this increase is based on an assumed bioavailability of uranium of 2% for adults and children. Moreover, a 263 

2.4-fold increase of the bioavailability of uranium can be concluded from recent data for children aged between 1 264 

and 7 years compared to adults (Chen et al. 2011). Therefore, an increased effective dose of about one to two orders 265 

of magnitude might be considered for children. 266 

Quality assurance of dose calculations 267 

The calculated effective dose coefficients of the ingested naturally occurring isotopes 
234

U, 
235

U and 
238

U, and their 268 

radiologically relevant progeny, were compared with the effective dose coefficients given by ICRP (ICRP 1995a) 269 

(Table 7), based on an exemplary intake of 1 Bq of 
234

U, 
235

U or 
238

U and an alimentary tract transfer factor for 270 

uranium of 2% (ICRP 1995a). As reported by ICRP, the difference of both approaches for treatment of decay 271 

products in the dose calculation are less than 5% (ICRP 1995b). From Table 7 it is evident that the effective doses 272 

calculated in the present work are not more than 4% different, for all three isotopes, from those given by ICRP. It is 273 

implied that the present method of dose calculation is consistent with that proposed by ICRP.  274 
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CONCLUSION 275 

Based on the experimental data and the assumption of a daily soil or fertilizer ingestion of 10 mg over 1 year, 276 

neither the uranium-contaminated fertilizer nor the investigated highly uranium-contaminated soils are expected to 277 

pose any major health risk to humans related to radiation. It is worth to note that the present results are based on 278 

values for the fA
sol

 factor, which were derived from a study on healthy volunteers aged between 22 and 55 years 279 

(Träber et al. 2014). Therefore, the low health risk refers only to adults and not to children who are expected to 280 

exhibit an increased soil ingestion rate and a higher bioavailability for uranium as well as a higher committed 281 

effective dose coefficient. 282 
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 355 

Fig 1 Scheme of the relation of bioavailability (fA), bioaccessibility (DF) and the fA
sol

 factor. The figure is 356 

reprinted (adapted) with permission from Träber SC, Höllriegl V, Li WB, Czeslik U, Rühm W, Oeh U,  357 

Michalke B (2014). Estimating the Absorption of Soil-Derived Uranium in Humans. Environ Sci Technol 48  358 

(24):14721-14727. Copyright 2015 American Chemical Society  359 
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360 

Fig 2 Interconnection of the biokinetic models (for ingestion) of uranium and its radiologically relevant progeny 361 

234
Th, 

234
mPa and 

234
Pa (half-lives given in brackets)  362 
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 363 

Fig 3 Bioaccessibility (DF) of soil-derived (Gauern, E1) and fertilizer-derived (Fertilizer) 
238

U in artificial 364 

gastrointestinal fluid (mean ± SD, n=3)  365 
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Table 1 Concentration of 
238

U in soil samples (Gauern, E1) and fertilizer 366 

 Total concentration of 
238

U  

(mean ± SD) in mg/kg 

Gauern 553 ± 9  

E1 456 ± 3  

Fertilizer 23.3 ± 0.5  

SD - standard deviation of three measurements per sample   367 
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Table 2 Sample-specific bioavailabilities fA of 
238

U 368 

 GM (%)
A
 P2.5th (%)

B
 P97.5th (%)

C
 

Gauern 0.28 0.03 2.34 

E1 0.18 0.02 1.48 

Fertilizer 0.13 0.01 1.07 

A
Geometric mean, 

B
2.5

th
 percentile, 

C
97.5

th
 percentile  369 
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Table 3 Sample-specific alimentary tract transfer rates 370 

 GM (d
-1

)
A
 P2.5th (d

-1
)

B
 P97.5th (d

-1
)

C
 

Gauern 1.69×10
-2

 1.90×10
-3

 1.44×10
-1

 

E1 1.06×10
-2

 1.20×10
-3

 8.99×10
-2

 

Fertilizer 7.70×10
-3

 8.70×10
-4

 6.49×10
-2

 

A
Geometric mean, 

B
2.5

th
 percentile, 

C
97.5

th
 percentile  371 
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Table 4 Sample-specific committed effective dose coefficients (ingestion) 372 

 GM (Sv/Bq)
A
 P2.5th (Sv/Bq)

B
 P97.5th (Sv/Bq)

C
 

Gauern    

234
U 1.21×10

-8
 6.30×10

-9
 6.02×10

-8
 

235
U 1.15×10

-8
 6.18×10

-9
 5.61×10

-8
 

238
U 1.09×10

-8
 5.73×10

-9
 5.41×10

-8
 

E1    

234
U 9.68×10

-9
 6.03×10

-9
 4.00×10

-8
 

235
U 9.31×10

-9
 5.93×10

-9
 3.74×10

-8
 

238
U 8.76×10

-9
 5.48×10

-9
 3.60×10

-8
 

Fertilizer    

234
U 8.55×10

-9
 5.90×10

-9
 3.05×10

-8
 

235
U 8.26×10

-9
 5.81×10

-9
 2.86×10

-8
 

238
U 7.74×10

-9
 5.37×10

-9
 2.75×10

-8
 

A
Geometric mean, 

B
2.5

th
 percentile, 

C
97.5

th
 percentile  373 
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Table 5 Sample-specific activities of 
234

U, 
235

U and 
238

U 374 

 
234

U (Bq/g) 
235

U (Bq/g) 
238

U (Bq/g) 

Gauern 6.93 3.21×10
-1

 6.88 

E1 5.72 2.65×10
-1

 5.67 

Fertilizer 2.92×10
-1

 1.35×10
-2

 2.90×10
-1

 

A
Geometric mean, 

B
2.5

th
 percentile, 

C
97.5

th
 percentile375 
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Table 6 Sample-specific committed effective doses (ingestion of 0.01 g over 1 year) 376 

 GM (Sv)
A
 P2.5th (Sv)

B
 P97.5th (Sv)

C
 

Gauern    

234
U 3.06×10

-7
 1.59×10

-7
 1.52×10

-6
 

235
U 1.35×10

-8
 7.24×10

-9
 6.57×10

-8
 

238
U 2.74×10

-7
 1.44×10

-7
 1.36×10

-6
 

∑ 5.94×10
-7

 3.11×10
-7

 2.95×10
-6

 

E1    

234
U 2.02×10

-7
 1.26×10

-7
 8.34×10

-7
 

235
U 8.99×10

-9
 5.73×10

-9
 3.61×10

-8
 

238
U 1.81×10

-7
 1.14×10

-7
 7.45×10

-7
 

∑ 3.92×10
-7

 2.45×10
-7

 1.62×10
-6

 

Fertilizer    

234
U 9.12×10

-9
 6.29×10

-9
 3.25×10

-8
 

235
U 4.08×10

-10
 2.87×10

-6
 1.41×10

-9
 

238
U 8.20×10

-9
 5.68×10

-9
 2.91×10

-8
 

∑ 1.77×10
-8

 1.23×10
-8

 6.30×10
-8

 

A
Geometric mean, 

B
2.5

th
 percentile, 

C
97.5

th
 percentile, ∑ is the sum of the sample-specific committed effective doses 377 

of the isotopes 
234

U, 
235

U and 
238

U and their radiologically relevant progeny  378 
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Table 7 Committed effective dose coefficients (ingestion) 379 

 ICRP (ICRP 1995a) 

(Sv/Bq) 

Present method 

(Sv/Bq) 

234
U 5.0×10

-8
 5.2×10

-8
 

235
U 4.7×10

-8
 4.9×10

-8
 

238
U 4.5×10

-8
 4.7×10

-8
 

 380 
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11 Conclusion and outlook 

In the course of this thesis a general method was developed allowing for the quantification of the 

bioavailability of uranium from ingested soils. The first part of the thesis includes an 

in vitro solubility assay and a human study, to obtain the so-called fA
sol factor. By this factor and the 

mentioned in vitro solubility assay the bioavailability of uranium from any other soil can be obtained, 

without the need for any further human soil-ingestion studies. The results of the human study by 

which the fA
sol factor was deduced, were compared with literature data. From this comparison it is 

concluded that the developed method can be applied on soils slightly or highly contaminated with 

uranium. The results can be used both for acute and chronic ingestion. The developed method 

therefore offers a robust means to determine the bioavailability of uranium from theoretically or 

potentially ingested uranium-contaminated soils. 

The method developed here was applied to soils highly contaminated with uranium, in particular to 

original soils from former uranium mining sites. The bioavailability of uranium in these soils was 

determined and used to calculate the resulting internal committed effective doses. A conceivable 

ingestion scenario was assumed which would lead to the ingestion of a realistic amount of the 

investigated uranium-contaminated soils. The results were compared to data from the literature. Based 

on the results obtained for the corresponding internal radiation dose it is concluded that ingestion of 

these soils is not expected to pose any major health risk to humans. However, two aspects have to be 

kept in mind if these methods are applied. 

First, this thesis focused on the bioavailability of ingested soil-derived uranium and its subsequent 

resulting internal dose caused by uranium itself and its radiologically relevant progeny. Original soils 

from former uranium mining sites highly contaminated with uranium were investigated. However, 

soils of active and former uranium mining sites are not only contaminated with uranium but also with 

the respective progeny of the radium and the actinium series. Ingestion of uranium-contaminated soils 

is therefore accompanied by the ingestion of several additional radionuclides and, consequently, 

by additional sources of internal exposure. Clearly, investigation concerning the quality and quantity 

of the uptakes of these additional radionuclides and the corresponding contributions to dose are also of 

interest. The same strategy which was applied in this thesis to obtain reliable data on the 

bioavailability of uranium from ingested soils might be applicable to quantify the bioavailability of 

other radionuclides as well. 
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Second, the participants of the human study were adult volunteers. The results of this thesis can 

therefore be applied to the majority of the population. However, children, pregnant women, and the 

unborn child were not considered in this thesis, but of course are also of interest. For those individuals 

only limited data can be found in the literature, as discussed below. Note that a biokinetic model of 

uranium for pregnant women is not published by ICRP. 

In 2005, urine samples of 72 children and 87 adults were examined for 30 trace elements including 

uranium (Heitland and Koster 2006a). The urine samples were from unexposed inhabitants of the 

surrounding areas of Aachen, Erkelenz and Bremen, Germany. The mean measured concentrations of 

uranium were 4 ng/L and 5 ng/L with 95%-percentiles of 8 ng/L and 10 ng/L for children and adults, 

respectively. For these results no uncertainties were indicated, and about 80% of the 

uranium concentration values for children and adults were below the limit of quantification (LOQ), 

which was 4 ng/L in that study. Consequently, uranium concentrations below the LOQ were calculated 

as LOQ/2. Based on these very limited data, children appear to exhibit a lower urinary uranium 

concentration compared to adults. No information concerning diet, especially uranium uptake was 

given by the authors, wherefore an equal ingestion of uranium among all children and adults is 

assumed.  In general, the assumption is made that the daily urinary excretion of uranium is equal to the 

absorbed amount of daily ingested uranium (Leggett and Harrison 1995). A lower daily urinary 

excretion of uranium by children compared to adults might therefore support the assumption of a net 

retention of uranium by children (Leggett and Harrison 1995; Harrison et al. 2001). For the unborn, no 

information concerning the prenatal uranium absorption was found in the literature. However, as 

uranium qualitatively tends to follow the behavior of calcium, the demand of calcium by the unborn 

should be kept in mind when the quantitative behavior of uranium in the unborn is to be estimated 

(ICRP 1995a). The demand of calcium by the fetus accumulates to about 13 to 33 mg over pregnancy, 

wherefore the maternal bioavailability of calcium is increased among other physiological changes 

(Givens MH 1933; Naylor et al. 2000). Like for the unborn, this increased calcium absorption might 

be accompanied by a certain uranium accumulation by the pregnant woman. 

Like for children, only limited data concerning the biokinetics of uranium in pregnant women are 

available. A recent study reported on measured uranium concentrations in blood and urine of pregnant 

women (Callan et al. 2013). For blood a mean concentration of 70 ng/L with a 95-percentile of 

130 ng/L was found. In comparison, a study on 130 (non-pregnant) adults reported a measured mean 

concentration of < 3 ng/L with a 95-percentile of only 4 ng/L in blood (Heitland and Koster 2006b). 

Uranium concentrations below the LOQ were calculated by these authors again as LOQ/2. For 

uranium in urine a mean concentration of 13 ng/L with a 95-percentile of 40 ng/L was found for 

pregnant women (Callan et al. 2013). In comparison, a study on 87 (non-pregnant) adults found a 

mean concentration of 5 ng/L with a 95-percentile of only 10 ng/L (Heitland and Koster 2006a). Based 

on these limited data and compared to non-pregnant adults, pregnant women exhibit notably higher 
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uranium concentrations in blood, which are accompanied by relatively low urinary uranium 

concentrations. Like for children the mentioned blood and urine data seem to indicate an increased 

uranium retention by pregnant woman compared to the general adult population. 

Future studies on the biokinetics of uranium in pregnant women should also take into account possible 

variations of the biokinetics of uranium within the trimesters of pregnancy. Recently, a study on 

489 women found statistically significant differences of metal concentrations in urine between the first 

and the third trimester (Fort et al. 2014). These differences could be linked to physiological changes 

rather than to changes of metal ingestion. Increasing lead concentrations in blood taken close to the 

end of the pregnancy were also found (Gulson et al. 2004). This study revealed an increase of lead in 

blood by 10 to 50%, as compared to minimal values at the beginning of pregnancy. Placental transfer 

of lead from the maternal blood was also concluded from data on the isotopic lead ratio in maternal 

and cord blood. 

Based on the cited literature, further investigations on children, pregnant women and the unborn are 

necessary to gain reliable biokinetic data on uranium of these vulnerable groups.  
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