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1 Introduction 

1.1 Energetic Materials 

1.1.1 Classification of high energy density materials (HEDMs)  

The research in the field of high energy density materials (HEDMs) with improved 

properties for various applications is an ongoing project in many research groups 

around the globe. The definition of a HEDM is “a compound or mixture of substances, 

which contains both the fuel and oxidizer and which reacts readily under the release of 

energy and gas”.[1] The subgroup of explosives is further defined as “A material in a 

metastable state, which has the potential for a fast chemical reaction, which releases 

a large amount of energy, heat, and pressure. No external reaction partners are 

required for this reaction, which starts under the influence of an external stimulus such 

as impact, friction, spark, shock, flame or heating”.[1] Depending on the desired 

application of an energetic material, the research is always focused on the 

improvement of various key characteristics, which differ for each application. 

Therefore, HEDMs are categorized into five major classes with multiple subclasses 

(Figure 1).[1,2]  

 

Figure 1. Categories and important subclasses of HEDMs. 

Primary explosives, also known as “primers” are almost exclusively applied to 

generate an initial shock wave for the subsequent initiation of booster explosives, 

secondary explosives, or high explosives.[1-4] For this purpose, primary explosives 

need to undergo a very rapid deflagration to detonation transition to guarantee a safe 

initiation of the less sensitive materials. Primary explosives are significantly more 

sensitive towards external stimuli (i.e. heat, impact, friction, electrostatic discharge) 

than secondary explosives and in general, they show a lower performance when 

compared to secondary and high explosives (i.e. detonation velocity, detonation 

pressure, detonation temperature).[1-4] 
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Secondary explosives are significantly less sensitive to external stimuli such as 

impact, friction, electrostatic discharge or heat, but exhibit a higher performance than 

primary explosives.[1,2,4] They are applied as main charges and/or booster explosives 

to initiate almost or completely insensitive high explosives. The research in the field of 

secondary explosives is focused on the following key areas: an increase of the 

performance of explosives, the development of heat-resistant explosives, and the 

development of low sensitivity explosives and more eco-friendly materials.[1,4]
 

High explosives, also known as blasting agents – are a category of explosives that 

are almost or completely insensitive towards external stimuli like impact, friction, or 

electrostatic discharge. They require a booster charge (i.e. PETN) to enhance the 

shockwave of a primary explosive for successful initiation.[1-4] This category of 

explosives exhibits a relatively large critical diameter and can therefore not be applied 

in small charges.[2] They are mainly applied in large-scale mining and construction 

operations or special sectors like oil drilling or stage separation in space applications. 

Examples are ammonium nitrate fuel mixtures (ANFO), slurry explosives, and special 

materials like HNS, NONA, or TATB.[4,5] 

Propellants are applied for the acceleration of munition (gun propellants) or for the 

production of thrust in rocket applications (rocket propellants).[1,2,4] For those desired 

effects a controlled sub-sonic deflagration/decomposition of the material is required 

and a detonation is not desired.[1,2,4] In contrast to explosives which are mostly 

homogenous compounds that combine oxidizer and fuel in one molecule, most 

propellant formulations are heterogenic mixtures of various components (oxidizer, fuel, 

binder, additives, etc.). Depending on the number of components and the individual 

composition of the formulation propellants can be further divided into different 

subcategories (i.e. multi-base powders and composite propellants). 

Pyrotechnics are energetic compositions that are applied to generate a wide range of 

various effects such as heat, light, sound, gas, or smoke.[1,2,4] Usually they undergo 

subsonic deflagration/decomposition and detonations are unwanted for this class of 

HEDM.[1,2,4] Similar to propellants, most pyrotechnic formulations are heterogenic 

mixtures of various components, which are required to achieve the desired effect. 

However, all pyrotechnic mixtures comprise an oxidizer and at least one fuel to sustain 

the thermal decomposition of the formulation.  

Further details on the requirements for the HEDM classes covered by the research and 

results within this dissertation are given in the following sections as well as in the 

introductions of the individual publications.  
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1.1.2 Thermostable secondary explosives & booster explosives 

As stated in the short introduction, the four general goals for the development of new 

secondary explosives are improvements regarding performance, thermal stability, 

“green” chemistry, and sensitivity.[1,6]
 The optimal material would combine all the goals 

in one molecule. However, especially the combination of higher performance and a low 

sensitivity proves to be a challenge, as these properties often are contradictory.[7] 

Figure 2. The key requirements for the development of new secondary explosives. 

Regarding the performance of a new material for the application as a thermostable 

secondary explosive or booster explosive the following requirements should be met: 

• detonation velocity ≥8500 m s–1 

• detonation pressure ≥340 kbar 

• heat of formation ≥6000 kJ kg-1 

• thermal stability ≥150 °C (booster); ≥250 °C (thermostable) 

• low sensitivities (IS ≥7 J, FS ≥120 N, ESD ≥200 mJ) 

• convenient, scalable & cost-effective synthesis with less than 6 synthetic steps 

• hydrolytic stability 

• compatibility with conventional binders and other explosives 

In recent times, the environmental and toxicological aspects in terms of “green” 

chemistry gain more and more relevance. The state-of-the-art materials all exhibit 

various drawbacks regarding toxicity and environmental compatibility. One of the most 

commonly applied secondary explosives RDX has been proven to be a carcinogenic 

material according to EPA.[8]
 In addition, its decomposition products are highly toxic 

towards plants, microorganisms, and smaller organisms.[9-11]
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Another very common secondary explosive is TNT, which is applied as a melt-castable 

explosive. It exhibits similar problems to RDX, as it is also carcinogenic and the 

decomposition products are toxic and associated with problems regarding the liver and 

the blood system.[12] Another very important secondary explosive is pentaerythritol 

tetranitrate (PETN). Due to its rather low sensitivity (IS: 4 J, FS: 73 N, ESD: 30 mJ) it 

is applied as a booster explosive for the initiation of completely insensitive high 

explosives like TATB or HNS.[12-16] It is applied because of an easy synthesis and good 

performance, however, the material exhibits a rather low melting point of 142 °C and it 

is considered toxic and causes problems for the blood system.[12-17] To mitigate the 

problems regarding sensitivity, PETN is often applied in a mixture with TNT 

(pentolite).[1] The research regarding new booster explosives is focused on new 

materials, which show lower sensitivities and higher thermal stability while maintaining 

the ability to transfer the weak initial shockwave of a primary explosive to an inert high 

explosive. 

 

Figure 3. The chemical structure for the most important secondary explosive materials of the past. 

Newer developments in the field of secondary explosives follow two main strategies. 

The first strategy is the introduction of caged compounds which contain ring-strain 

energy that contributes to the energy released upon detonation (i.e. CL-20 or 

ONC).[1,18-19] However, the synthesis of those caged compounds comprises multiple 

reaction steps and therefore they are very expensive and not very common in 

application. The second strategy focuses on the application of nitrogen-rich energetic 

heterocycles (i.e. LLM116, TKX50, or TKX55).[20-22] Those materials offer the 

advantage of a more facile synthesis and therefore a lower price, in combination with 

similar performance and low sensitivity values. 
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Figure 4. Overview of recent developments in the field of secondary explosives. 

Despite the progress already made in the last 50 years, the strife for better secondary 

explosives for the application as booster explosives, main charges, and high 

thermostable materials is an ongoing process.  

1.1.3 High energy density oxidizers (HEDOs) for propellants 

Since the early 1940s, the cheap, accessible, and well-performing material ammonium 

perchlorate (AP) has been applied as the most important high energy-dense oxidizer 

(HEDO) for solid rocket composite propellants. The material has maintained relevance 

until today, as even the newly developed p120 rocket booster for Ariane 6 and Vega E 

and C are based on AP.[23-25]
 Despite its various advantages for application, the 

negative effects on the environment became a focal point for research around the 

globe. AP is considered to be carcinogenic, mutagenic, and toxic upon long-term 

exposure.[1, 26-27] Another enormous problem is the fact, that the perchlorate anion itself 

can compete with iodine for the uptake into the thyroid gland at the sodium/iodide 

symporter.[28-30]
 The subsequent interaction with the thyroid hormone synthesis proved 

to be a problem because it is a crucial mechanism for the development of vertebrates, 

including unborn and small children.[31-32]
 Various detrimental effects of AP on aquatic 

organisms, i.e. an uncommon pigmentation and the delay of the metamorphosis of 

amphibian embryos was observed in correlation with perchlorate contaminated 

water.[33]
 Because the material exhibits a very high solubility, chemical stability, and 

persistence it is assumed to be widely distributed within groundwater systems,[32] which 

is directly correlated to the application and release of AP predominately by military 

operations, aerospace programs, and defense companies.[34-35] This leads to 

enormous costs of several billion dollars per year to remediate surface and 

groundwater in the USA.[36] 
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Figure 5. Lift-off picture of the Ariane 5 utilizing AP-based booster rockets.[37] 

The United States Environmental Protection Agency (EPA) released fact sheets 

regarding the perchlorate levels in drinking water and set a reference of 0.7 μg L-1 per 

kg as the allowed maximum contamination in 2014.[26] 

For the European Union and its REACh regulation program (Registration, Evaluation, 

Authorization, and Restriction of Chemicals), AP has been registered since 2011 with 

annual production ranging between 1000 t and 10000 t.[38] Since AP is under 

assessment as an endocrine disruptor it has been listed in the Community Rolling 

Action Plan (CoRAP) by the Public Activities Coordination Tool (PACT), which 

coordinates the evaluation of concerning substances.[38-40]
 The combustion of common 

AP-based composite solid rocket propellants generates a large quantity of gaseous 

products, especially CO, CO2, H2, H2O, Al2O3 and HCl are produced and emitted into 

the environment.[1]
 The corrosive gas HCl is one of the main reasons for the formation 

of acid rain as well as for the ozone layer depletion.[41]
  

Multiple research programs have been conducted in the past to substitute AP with a 

sustainable, chlorine-free alternative. At the moment the two materials ammonium 

nitrate (AN) and ammonium dinitramide (ADN) are regarded as the most promising AP 

replacements for HEDO applications.[1] However, both materials exhibit their own 

drawbacks i.e. hygroscopicity and phase transitions within the desired temperature 

range for applications in the case of AN and a low decomposition point of 133°C and 

a detrimental incompatibility with HTPB for ADN.[42-44]
 Recent projects, therefore, 

investigated the possibility to combine both HEDOs and achieved some promising 

results.[23]
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Despite being chlorine-free and more eco-friendly, novel HEDOs for composite rocket 

propellants need to fulfil further requirements:[1,45]
 

• high density, best case ≥2 g cm−3 

• high oxygen balance, ΩCO ≥34% (AP) 

• high thermal stability, melting point ≥150 °C 

• lower sensitivity towards external stimuli than PETN (IS > 4 J, FS > 80 N) 

• low vapor pressure 

• convenient, cost-effective synthesis with a minimum number of synthetic steps 

• compatibility with various binders (GAP, HTPB, etc.) 

• high enthalpy of formation 

• long term stable and storable (high shelf-life). 

Further research in the field of HEDOs is necessary to match those requirements for a 

replacement of AP, which is still the most important and most commonly applied 

oxidizer for composite propellants. Hopefully less toxic and more environmentally 

benign alternatives can be developed in the future. One potential replacement which 

is currently under investigation is the compound tris(2,2,2-trinitroethyl) orthoformate 

TNEF.  

1.2 Hirshfeld Surface Analysis 

1.2.1 Hirshfeld Surface Analysis (HSA) – A short Introduction 

Based on Hirshfelds Stockholder partitioning scheme a novel concept for the definition 

and visualization of a molecule in a crystal structure was developed and communicated 

in 1997 by Spackmann et al..[46-47] Subsequently their definition was applied as a new 

method for crystal analysis and crystal engineering and after further refinements, it was 

officially named ”Hirshfeld Surface Analysis” (HSA) in 1998.[48] By applying this 

partitioning model the crystal structure of a molecule is separated into promolecules 

and procrystals based on the respective electron densities for each region of each 

molecule in the structure. This creates filled sections as well as voids, which correlate 

with the distances between the individual atoms of the molecule and its neighbors. This 

can be visualized with a 3D Isosurface, that represents all interactions between the 

individual promolecules and therefore the position of all close contacts between all 

atoms of the crystal. The method is based on experimental crystal structure 

measurements and offers valuable insight into intermolecular interactions and the 

distribution and intensity of close contact interactions in the respective crystal structure.  
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Figure 6. Representation of the Hirshfeld surface of PicADNP. 

After the initial success and spread of the method within the crystal engineering 

community, the complicated 3D Surface provided by HSA was complemented with 2D 

Fingerprint plot analysis in 2002, which significantly improved and simplified the 

visualization of intermolecular close contacts in a crystal.[49] By plotting the distance (in 

Å) of any atom at any point on the calculated Hirshfeld surface towards the next internal 

neighbor (di) against the distance of the same spot towards the next external neighbor 

(de) a 2D “heatmap” of the surface – the so-called “Fingerprint plot” can be generated. 

This visualization resembles every spot of the calculated surface, but it has the 

advantage, that it can be represented in printed form. Besides, it is a fast and easy tool 

for the assessment of intermolecular interactions, their quantity, and their relative 

strength. 

 

Figure 7. Visualization of di and de for a hydrogen-bonded dimer of urea[49]                                                                                        

and the 2D Fingerprint plot of PicADNP. 

In the next step, the development of a software package for both forms of analysis was 

undertaken by the group of Spackmann et. al. between 2004 and 2005.The result of 

this work is the Crystal Explorer software, which has been continuously improved since 

then. It can be utilized for close contact analysis.[50] By applying the current version of 
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Crystal Explorer to a fully solved .cif-file, various important interactions in the crystal 

can be easily visualized and quantified. The software includes useful features like 

crystal surface mapping and close contact analysis and therefore resembles a valuable 

tool for crystal engineering and material design.[51] 

The first application of Hirshfeld surface and Fingerprint plot analysis for the analysis 

and development of energetic materials took place in 2014 when Zhang et. al. 

introduced the method to the energetic materials community.[52] In recent times various 

groups and authors like Gozin[53], Klapötke[54], and Shreeve[55] started using the Crystal 

Explorer software and the general methodology for the investigation and design of new 

energetic materials. One common goal of the mentioned groups is a deeper 

understanding of the structure-property relationships of energetic materials, especially 

concerning sensitivity towards mechanical and thermal stability, which is directly 

correlated to the close-contacts in the crystal structure. A better understanding of those 

interactions could lead to the detection of advantageous motifs and/or building blocks 

and therefore to an improvement for the design of new high energetic materials 

concerning performance and safety. A key advantage of the HSA method is the fact, 

that one single crystal of material is sufficient to perform the analysis, as the method is 

solely based on the crystal structure. This increases the safety of energetic material 

researchers and could lower the cost for research, as no large quantities of new 

material have to be prepared to get the first idea of a material's sensitivity towards 

external stimuli.  

1.2.2 Safety assessment of energetic materials via HSA 

The initial works of Zhang et. al.[52,55] as well as the more recent works of Klapötke[54,56], 

Shreeve[55], and Gozin[53] have shown first general trends for various subgroups of 

energetic materials regarding their structure-property relationships. One common 

denominator for all sensitive energetic materials is a Hirshfeld surface exhibiting red 

dots (representing close-contacts), which are not arranged in a slideable plane, but in 

a 3D network between the individual layers. When a material with such characteristics 

is exposed to an external mechanical stimulus like friction or impact the stabilizing 

interlayer interactions are destroyed. This results in strains, destabilization, and 

interlayer repulsion, which can subsequently result in the decomposition of the material 

when the generated strain energy surpasses the energy required to break the weakest 

bond in the molecule.  

Regarding the 2D Fingerprint plots, different categories for stabilizing, destabilizing, 

and “neutral” interactions could be established for molecules containing energetic 

moieties like nitro-, nitramino- or azido-groups. Depending on their relative strength 

and occurrence an assessment of the sensitivity of a material is possible, especially in 

comparison to other representatives of the respective molecular group (i.e. 

heterocycles, trinitrobenzenes, etc.). Oxygen-oxygen, nitrogen-nitrogen, nitrogen-

oxygen, and hydrogen-hydrogen interactions are considered destabilizing, and 
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therefore a high occurrence and/or a high relative strength in a crystal is indicative for 

a sensitive material. In contrary, hydrogen-oxygen and hydrogen-nitrogen interactions 

(hydrogen bonds) are considered stabilizing and therefore a high occurrence and/or a 

high relative strength of those interactions is indicative of a less sensitive or insensitive 

energetic material. Carbon-carbon interactions can be stabilizing in case of π-π or π-

C interactions between different layers of molecules in the crystal (π-stacking).  

By applying the mentioned methods to further subgroups of energetic materials and 

subsequent analysis of the HSA results with a global database, an even deeper insight 

into structure-property-relationships could be gained in the future. Hopefully, this will 

enable further improvements regarding the search for advantageous structural motifs 

and for the molecular and crystal design of novel energetic materials. 

1.3 Motivation and Objectives 

The main objectives of this thesis are the synthesis, characterization, and scale-up of 

the manufacturing process for materials of different HEDM-classes. The prepared 

compounds were investigated as potential replacements for state-of-the-art materials 

of the corresponding HEDM-class like ammonium perchlorate (HEDO), PETN (Booster 

Explosive), and TNT (Secondary Explosive). For the development and scale-up of 

syntheses for energetic materials, it is of great importance to focus on compounds that 

combine the desired properties for application with a cost-effective, high-yielding, and 

a more environmentally benign manufacturing process.  

There is a great need for methods, which can be used for the preliminary testing of 

promising energetic materials on a small scale for both safety and cost reasons. 

Therefore, it was another key objective of this thesis to establish Hirshfeld surface 

analysis (HSA) and 2D Fingerprint plotting as a tool for the assessment of sensitivities 

for new energetic materials. HSA is a feasible process for the identification, 

quantification, and comparison of favorable structural motifs for energetic materials 

research. This goal is especially important because a better insight into structure-

property relationships of energetic materials will lead to a better material design in the 

future. 

  



Chapter 1 

 

- 11 - 

 

1.4 References 

[1] T. M. Klapötke, Chemistry of High-Energy Materials, 5th ed., De Gruyter, Berlin, Germany, 2019. 

[2] J. P. Agrawal, High Energy Materials Propellants, Explosives and Pyrotechnics, 1st ed., Wiley-

VCH, Weinheim, Germany, 2010. 

[3] R. Matyáš, J. Pachmáň, Primary Explosives, Springer, Berlin, Germany, 2013. 

[4] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th ed., Wiley-VCH, Weinheim, Germany, 2016. 

[5] E. G. Mahadevan, Ammonium Nitrate Explosives for Civil Applications: Slurries, Emulsions and 

Ammonium Nitrate Fuel Oils, Wiley-VCH, Weinheim, Germany, 2013. 

[6] D. Fischer, T. M. Klapötke, M. Reymann, J. Stierstorfer, Chem. Eur. J. 2014, 20, p. 6401−6411. 

[7] H.-H. Licht, Propellants, Explos., Pyrotech. 2000, 25, p. 126–132. 

[8] United States Environmental Protection Agency (EPA), Technical Fact Sheet - Hexahydro-1,3,5-

trinitro-1,3,5-triazine (RDX), 2014. 

[9] Ageny for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for RDX, 2012. 

[10] P. Y. Robidoux, J. Hawari, G. Bardai, L. Paquet, G. Ampleman, S. Thiboutot, G. I. Sunahara, 

Arch. Environ. Contam. Toxicol. 2002, 43, p. 379–388. 

[11] E. L. Etnier, Regul. Toxicol. Pharmacol. 1989, 9, p. 147–157. 

[12] United states States Environmental Protection Agency (EPA), Technical Fact Sheet - 2,4,6-

Trinitotoluene(TNT), 2012. 

[13] T. M. Klapötke, Energetic Materials Encyclopedia; De Gruyter: Berlin/Boston, Germany/USA, 

2018. 

[14] T. M. Klapötke, G. Lemarchand, T. Lenz, M. Mühlemann, J. Stierstorfer, R. Weber, In PETN - a 

sensitivity study, New Trends in Research of Energetic Materials, Pardubice, 2020. 

[15] J. Šelešovsky, J. Pachmaň, M. Hanus, M. In Proceedings of the Sixth Seminar New Trends in 

Research of Energetic Materials, New Trends in Research of Energetic Materials, Pardubice, 2003, p. 

309–321. 

[16] R.K. Wharton, J. A: Harding, J. Energ. Mater. 1993, 11 (1), p. 51-65. 

[17] https://gestis.dguv.de/data?name=490092 (accessed 17.03.21). 

[18] A. T. Nielsen, A. P. Chafin, S. L. Christian, D. W. Moore, M. P. Nadler, R. A. Nissan, D. J. 

Vanderah, R. D. Gilardi, C. F. George, J. L. Flippen-Anderson, Tetrahedron 1998, 54, 39, p. 11793-

11812. 

[19] M.-X. Zhang, P. E. Eaton, R. Gilardi, Angew. Chem., Int. Ed. 2000,39, 2, p. 1433-7851. 

[20] S. Ek, N. V. Latypov, J. Heterocyclic Chem. 2014, 51, 6, p. 1621-1627 

[21] N. Fischer, D. Fischer, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, J. Mater. Chem. 2012, 22, p. 

20418–20422. 

[22] T. M. Klapötke, T. G. Witkowski, ChemPlusChem 2016, 81, p. 357–360. 

https://gestis.dguv.de/data?name=490092


Chapter 1 

 

- 12 - 

 

[23] N. Wingborg, M. Skarstind, M. Sjoblom, A. Lindborg, M. Brantlind, J. Johansson, S. Ek, M. 

Liljedahl, J. Kjellberg, In 7th European Conference for Aeronautics and Space Sciences(EUCASS), 

EUCASS, Milan, 2017. 

[24] Davenas, Solid Rocket Propulsion Technology, Pergamon Press, Oxford (UK), 1993. 

[25] P120c static Fire Test, https://blogs.esa.int/ariane6/2018/07/25/p120c-static-fire-test/ (accessed 

17.03.21). 

[26] EPA.gov – United States Environmental Protection Agency, Technical Fact Sheet - Perchlorate, 

EPA 505-F-14-003 01.2014, (accessed 17.03.21). 

[27] C. M. Steinmaus, Curr. Environ. Health Rep. 2016, 3, p. 136–143. 

[28] A. Srinivasan, T. Viraraghavan, Int. J. Environ. Res. Public Health 2009, 6, p. 1418–1442. 

[29] Wolff, Pharmacol. Rev. 1998, 50, p. 89–105. 

[30] C. Portulano, M Paroder-Belenitsky, N. Carrasco, Endocr. Rev. 2014, 35, p. 106–149.  

[31] E. D. McLanahan, J. L. Campbell, Jr., D. C. Ferguson, B. Harmon, J. M. Hedge, K. M. Crofton, D. 

R. Mattie, L. Braverman, D. A. Keys, M. Mumtaz, J. W. Fisher, Toxicol. Sci. 2007, 97, p. 308–317. 

[32] EPA, Health Risk Reduction and Cost Analysis of the Proposed Perchlorate National Primary 

Drinking Water Regulation, 2019. 

[33] The Effects of Ammonium Perchlorate on Reproduction and Development of Amphibians, 

https://apps.dtic.mil/dtic/tr/fulltext/u2/a495519.pdf (accessed 17.03.21). 

[34] E. T. Urbansky, Environ. Sci. And Pollut. Res. 2002, 9, p. 187–192. 

[35] W. Trumpolt, M. Crain, G. D. Cullison, S. J. P. Flanagan, L. Siegel, S. Lathrop, Remediation 2005, 

16, p. 65–89. 

[36] P. Waldmann, The Wall Street Journal, Perchlorate Runoff Flows To Water Supply of Millions, 

New York, 2002 (accessed 17.03.21). 

[37] https://commons.wikimedia.org/wiki/File:Ariane5_VA221_liftoff2.jpg (accessed 17.03.21). 

[38] ECHA – European Chemicals Agency, https://echa.europa.eu/substance-information/-

/substanceinfo/100.029.305, (accessed 17.03.21). 

[39] ECHA – European Chemicals Agency, https://echa.europa.eu/information-on-

chemicals/evaluation/community-rolling-action-plan/corap-table/-/dislist/details/0b0236e1807e9ab1, 

(accessed 17.03.21). 

[40] ECHA – European Chemicals Agency, https://echa.europa.eu/pact, (accessed 17.03.21). 

[41] N. Kubota, Propellants and Explosives, Wiley-VCH, Weinheim (Germany), 2002. 

[42] A. Larsson, N. Wingborg, Green Propellants Based on Ammonium Dinitramide (ADN),INTECH 

Open Access Publisher, Rijeka (Croatia), 2011. 

[43] C. Oommen, S. R. Jain, J. Haz. Mater. 1999, 67, p. 253–281. 

[44] S. Lobbecke, H. H. Krause, A. Pfeil, Propellants, Explos., Pyrotech. 1997, 22, p. 184–188. 

[45] NATO, Manual of Data Requirements and Tests for the Qualification of Explosive Materials for 

Military Use, 2003. 

https://commons.wikimedia.org/wiki/File:Ariane5_VA221_liftoff2.jpg


Chapter 1 

 

- 13 - 

 

[46] F. L. Hirshfeld, Theoretica chimica acta 1977, 44, p. 129-138. 

[47] M. A. Spackman, P. G.  Byrom, Chem. Phys. Lett. 1997, 267, p. 215-220. 

[48] J. J. Mc Kinnon, A. S. Mitchell, M. A. Spackman, Chem. – Eur. J. 1998, 4, p. 2136-2141. 

[49] M. A. Spackman, J. J. McKinnon, CrystEngComm 2002, 4, p. 378-392. 

[50] J. J. McKinnon, M. A. Spackman, A. S. Mitchell, Acta Crystallogr, Sect. B: Struct. Sci. 2004, 60, p. 

627-668. 

[51] J. J. McKinnon, D. Jayatilaka, M. A. Spackman, Chem. Commun. 2007, 3814-3816. 

[52] Y. Ma, A. Zhang, X. Xue, D. Jiang, Y. Zhu, C. Zhang, Cryst. Growth & Des. 2014, 14, p. 6101-

6114.  

[53] H. Li, L. Zhang, N. Petrutik, K. Wang, Q. Ma, D. Shem-Tov, F. Zhao, M. Gozin, ACS Cent. Sci. 

2020, 6, p. 54-75. 

[54] M. Reichel M., D. E. Dosch, T. M. Klapötke, K. Karaghiosoff, J. Am. Chem. Soc. 2019, 141, p. 

19911-19916. 

[55] C. Zhang, C. Xue, Y. Cao, Y. Zhou, H. Li, J. Zhou, T. Gao, CrystEngComm 2013, p. 15, 6837. 

[56] D. E. Dosch, M. Reichel, M. Born, T. M. Klapötke, K. Karaghiosoff Crystal Growth & Design 2021, 

21, 1, p. 243-248. 

 

 



Chapter 2 

 

- 14 - 

 

2 Summary and Conclusion 
 

Chapters 3–7 have been published in peer-reviewed scientific journals. The content of 

these chapters is consistent with the list of publications in the Appendix I.[1-5] In order 

to fit the style of this thesis, the layout of the articles has been modified. A brief 

summary & conclusion of the results presented in this thesis is given in Chapter 2. 

2.1 An Optimized & Scaled-Up Synthetic Procedure for Trinitroethyl 

Formate TNEF 

An optimized and scaled-up synthesis for the high energy-dense oxidizer (HEDO) 

tris(2,2,2-trinitroethyl) orthoformate (TNEF) is presented. The target molecule was 

prepared by a FeCl3 catalyzed nucleophilic substitution reaction starting from 

trinitroethanol (TNE) (Scheme 1). 

 

Scheme 1. Reaction equation for the synthesis of TNEF. 

From the investigations presented in Chapter 3, it can be concluded, that the described 

process for the manufacturing of TNEF is suitable for a subsequent scale-up to a 

technical and/or an industrial scale in the future. With the implemented optimizations 

like the cheaper protective atmosphere and the improved purification step, a cost-

effective and greener synthesis of this high-performing, chlorine-free HEDO is 

achieved. This could lead to a broader application of TNEF as a HEDO in 

environmentally benign propellant formulations. 

 

2.2 Scalability of a Time- and Cost-Effective Procedure for the 

Synthesis of Picryl Bromide 

An optimized and scaled-up synthesis for the advanced energetic building block picryl 

bromide (MBTNB) is presented. Previous synthetic pathways towards this material 

either comprised of multiple reaction steps, started from expensive starting materials, 

or were very time-consuming, which are all detrimental factors for large-scale 

production of an energetic material. In the optimized protocol, the target molecule is 

prepared by one-pot nitration of bromobenzene using a 5:1 mixed acid consisting of 

oleum (30%) and white-fuming nitric acid (10 equivalents) and a reaction temperature 

of 130 °C (Scheme 1).  
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Scheme 1. Optimized synthetic route for MBTNB.[7] 

It can be concluded from the results of Chapter 4, that the proposed process for the 

manufacturing of MBTNB is a scalable, time- and cost-effective way to manufacture 

the target compound with good yields and high purity. The presented synthetic route 

is a significant improvement over the state-of-the-art methods and could lead to 

broader use of MBTNB as a building block for new energetic materials, for example in 

nucleophilic substitution reactions with energetic heterocycles. 

 

2.3 Correlation between Structure and Energetic Properties of Three 

Nitroaromatic Compounds: Bis(2,4-dinitrophenyl) Ether, Bis(2,4,6-

trinitrophenyl) Ether, and Bis(2,4,6-trinitrophenyl) Thioether 

A group consisting of Bis(2,4-dinitrophenyl) ether (1), Bis(2,4,6-trinitrophenyl) ether (2), 

and Bis(2,4,6-trinitrophenyl) thioether (3), which each comprise an ether or thioether 

bridge, was synthesized (Scheme 1). All three compounds were intensively 

characterized, including structure elucidation via single-crystal X-ray diffraction. 

 

Scheme 1. Reaction schemes for compounds (1)–(3). 
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It can be concluded from the results presented in Chapter 5, that the results of various 

older prediction models like bond dissociation enthalpy and electrostatic potential 

(BDE, ESP) for the three model compounds (sensitivity decreasing, 3 > 2 > 1) did not 

correspond with the experimentally found trends for the sensitivities (2 > 3 > 1). In 

contrast, the results for newer prediction models based on the crystal structure 

(Hirshfeld surface and Fingerprint plot analysis) represented the experimentally found 

trends for the three model compounds correctly. The application of these newer 

methods could lead to a better understanding and assessment of sensitivity values 

without the necessity to synthesize large amounts of new energetic materials, which 

leads to an increase in safety for HEDM researchers. 

 

2.4 Investigation of Structure-Property Relationships of Three 

Nitroaromatic Compounds: 1-Fluoro-2,4,6-trinitrobenzene, 2,4,6-

Trinitrophenyl methanesulfonate, and 2,4,6-Trinitrobenzaldehyde. 

A group consisting of 1-Fluoro-2,4,6-trinitrobenzene (1), 2,4,6-Trinitrophenyl 

methanesulfonate (2), and 2,4,6-Trinitrobenzaldehyde (3), was prepared according to 

optimized syntheses. All three compounds were intensively characterized, including 

structure elucidation via single-crystal X-ray diffraction (Scheme 1). 

Scheme 1. Single-crystal X-ray structure of the three title compounds. 

From the results presented in chapter 6, a deeper insight into structure-property 

relationships for derivatives of 1,3,5-trinitrobenzene could be gained. A key discovery 

is the fact, that a combination of very few but strong stabilizing interactions in a crystal 

can result in the same stability and therefore sensitivity as numerous but significantly 

weaker stabilizing interactions. The established trends regarding the distribution of 

stabilizing and destabilizing close-contacts from other publications regarding HSA 

could be confirmed. The investigated materials were categorized as secondary 
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explosives comparable to the state-of-the-art material TNT and the calculated EXPLO5 

values decrease from 1 over 3 to 2.  

2.5 A Study of 3,5-Dinitro-1-(2,4,6-trinitrophenyl)-1H-pyrazol-4-amine 

(PicADNP) as a New High Energy Density Booster Explosive 

Two improved fast, feasible, scalable, and economic synthetic protocols for the 

laboratory scale manufacturing of 3,5-Dinitro-1-(2,4,6-trinitrophenyl)-1H-pyrazol-4-

amine (PicADNP) are described (Schemes 1 & 2). The target molecule was prepared 

from a nucleophilic substitution reaction starting from potassium 4-amino-3,5-

dinitropyrazol-1-ide (KADNP) and a picrylation agent in acetonitrile at 70°C.  

 

Scheme 1. Reaction Scheme for Synthetic Protocol 1. 

 

Scheme 2. Reaction Scheme for Synthetic Protocol 2. 

From the investigations of Chapter 7, it can be concluded, that the optimized process 

for the manufacturing of PicADNP is a fast, feasible, and scalable procedure with 

excellent yields, which resembles an improvement over the state-of-the-art synthesis. 

The EXPLO5 calculations, SSRT, and booster tests show, that PicADNP resembles a 

safer alternative to PETN as a booster explosive. The material exhibits a comparable 

performance, and shows higher sensitivities towards external stimuli as well as an 

elevated decomposition temperature and therefore an increased handling safety when 

compared to PETN.  
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3 An Optimized & Scaled-Up Synthetic Procedure for 

Trinitroethyl Formate TNEF 
Accepted and prepublished in Propellants, Explos., Pyrotech. (doi: 10.1002/prep.202000323) 

 

3.1 Abstract  

Previous reports showed, that tris(2,2,2-trinitroethoxy)methane, also known as 

tris(2,2,2-trinitroethyl) orthoformate or trinitroethyl formate (TNEF), exhibits a very high 

potential for application due to its excellent energetic properties and compatibility with 

state-of-the-art binder systems for composite propellants. However, TNEF was never 

produced on a scale exceeding a few grams. In this work, a scaled and optimized 

synthetic procedure for the manufacturing of elemental analysis pure TNEF in a 100 g 

pre-technical scale is described. Applied optimizations focus on the cost of the 

synthesis and improvements regarding a greener purification process. Acceptable 

yields were achieved in the 100 g scale and the described synthetic procedure could 

be easily applied in the technical scale in the next step. This could stimulate a broader 

application of TNEF as an environmentally benign high energy density oxidizer for 

composite propellants. 

KEYWORDS: Oxidizer, Rocket Propellant, HEDO, Scale-up, Green Chemistry. 

 

3.2 Introduction 

One of the major research topics within the field of energetic materials research is the 

development of new high-energy dense oxidizers (HEDOs), especially for the 

application in composite rocket propellants.[1] Besides factors like good performance, 

safe handling, and a cost-effective synthesis another main goal is the replacement of 

the most widely used[2] but toxic[3] oxidizer ammonium perchlorate with more 

environmentally benign alternatives. Potential replacements that were discussed over 

the last twenty years are dinitramide salts as well as compounds utilizing the 

trinitromethyl or trinitroethyl moiety.[4] Various materials from the subsection of 

polynitrocarbamates and polynitroethers containing those motifs have been 

extensively studied as potential HEDOs by Frankel[5b] and in recent years by Klapötke 

et al.[1b, 1d, 4a, 5a]  

https://doi.org/10.1002/prep.202000323
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One of those molecules tris(2,2,2-trinitroethoxy)methane, also known as tris(2,2,2-

trinitroethyl) orthoformate or trinitroethyl formate (TNEF) shows a very high potential 

for application. This compound was first synthesized in 1967[6], but since then the 

material was never produced on a scale that exceeded a few grams per batch.[7] TNEF 

combines a good oxygen balance of 30.4% with regard to carbon monoxide, an 

acceptable decomposition point of 187–192 °C, moderate sensitivities towards 

external stimuli (IS: 5 J, FS: 96 N, ESD: 200 mJ), and a rather simple and scalable 

synthesis. Initial studies regarding formulations, compatibility, and storage stability 

were conducted between 2017 and 2018.[8] They confirmed its suitability as a HEDO 

for composite propellant formulations with state-of-the-art binder systems such as 

HTPB, nitrocellulose, or GAP.[8] Although prepared from trinitroethanol (TNE), which 

has some toxicity issues, TNEF offers the advantage of a chlorine-free, high-

performing oxidizer with less toxic combustion products, when compared to ammonium 

perchlorate. As the global demand for environmentally benign HEDOs in civil, space, 

and military applications increases, the development of a scalable and further 

optimized synthetic procedure for TNEF as well as an improved purification protocol 

utilizing a less toxic solvent system was mandatory. Therefore, we would like to 

communicate an optimized pre-technical 100 g scale synthesis for TNEF as well as an 

improved purification protocol, which is supposed to be further scalable towards a 

technical or industrial-scale synthetic procedure. 

 

3.3 Experimental Section 

General Information. HPLC grade chloroform was purchased from Fisher Chemicals. 

Anhydrous FeCl3 was purchased from Sigma-Aldrich. Trinitroethanol (TNE) was 

prepared according to a modified synthesis based on the literature procedure of 

Klapötke et. al., without the additional sublimation step for purification.[1c] 

 

NMR spectra were recorded on a Bruker Avance III spectrometer operating at 400.1 

MHz (1H), 100.6 MHz (13C), and 28.9 MHz (14N). Chemical shifts are referred to TMS 

(1H, 13C) and MeNO2 (14N). Raman spectra were recorded with a Bruker MultiRam FT 

Raman spectrometer using a neodymium-doped yttrium aluminum garnet (Nd:YAG) 

laser (λ = 1064 nm) with 1074 mW. The samples for Infrared spectroscopy were placed 

under ambient conditions onto an ATR unit using a Perkin Elmer Spectrum BX II FT-

IR System spectrometer. Melting and/or decomposition points were detected with a 

OZM DTA 552-Ex instrument. The scanning temperature range was set from 293 K to 

673 K at a scanning rate 5 of °C/min. DSC values were determined on a Mettler-Toledo 

DSC 822e with an Intracooler (Julabo FT900) and a heating rate of 5 °C/min. Elemental 

analysis was performed with a Vario EL instrument and a Metrohm 888 Titrando 

device.  
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Caution! The compound TNEF shows partly increased sensitivities toward various 

stimuli (e.g. higher temperatures, impact, friction, or electrostatic discharge). 

Therefore, proper safety precautions (safety glasses, Kevlar gloves, and earplugs) 

have to be applied while synthesizing and handling the described compounds.  

A one-liter round bottom flask was equipped with a magnetic stirrer, an aluminum 

heating block, and a reflux condenser with a bubble counter for nitrogen inlet. The 

apparatus was heated to 120 °C, flushed with nitrogen for 30 minutes, and then cooled 

to 25 °C. It was charged with HPLC grade chloroform (500 mL) and then 100 g 

trinitroethanol (552.3 mmol, 1 eq) was dispersed under constant stirring at 400 rpm. A 

total of 8.96 g of anhydrous FeCl3 (55.2 mmol, 10 mol%) was added in small portions, 

maintaining the temperature at 25 °C. The color of the mixture changed from red over 

brown to almost black. The temperature was set to 85 °C and the mixture was refluxed 

under nitrogen conditions for 6 days. The mixture was then cooled to 25 °C and split 

into two batches. Each batch was extracted with a total of 1.2 L of diethyl ether. The 

organic phase was washed 3 times with 200 mL of water and the combined aqueous 

phases were extracted with 200 mL of ether. The combined 1.4 L ether phase was 

dried over MgSO4 for 15 minutes, and then the solvent was removed in vacuo to give 

the crude product as a beige solid. The crude products of both batches were then 

dissolved in diethyl ether and filtered over a silica plug to remove any inorganic 

impurities. The product was precipitated by the addition of n-pentane as the 

precipitating solvent. Repeating this process three times with the obtained solid 

product afforded 48.7 g (49 %) of a beige-colored solid.   

1H NMR (CD3CN): 5.91 (1H, HC(OCH2R)3), 5.11 (6H, OCH2R) ppm; 13C{1H} NMR (CD3CN): 125.1 

C(NO2)3, 112.8 HC(OCH2R)3, 63.8 HC(OCH2R)3 ppm; 14N NMR (CD3CN): -34 ppm; IR (ATR): ṽ = 2986 

(vw), 2956 (vw), 2892 (vw), 1579 (vs, νas NO2), 1446 (m), 1401 (w), 1341 (w), 1294 (s, νs NO2), 1184 

(w), 1125 (s), 1105 (m), 1075 (s), 1032 (m), 1010 (m), 971 (m), 949 (m), 877 (m), 855 (s), 802 (vs), 778 

(s), 728 (m), 644 (m) cm-1; Raman (300 mW): ṽ = 2989 (14), 2956 (26), 1608 (16), 1448 (8), 1395 (10), 

1351 (18), 1308 (19), 1093 (5), 1070 (6), 1030 (5), 881 (6), 859 (51), 804 (5), 782 (8), 543 (22), 488 

(22), 400 (49), 374 (60), 268 (44), 204 (52), 103 (100). Elemental Analysis: Calculated: C, 15.20; H, 

1.28; N, 22.79 Experimental: C, 15.35; H, 1.37; N, 22.66; Sensitivities: Impact: 5 J (100–500 μm); 

Friction: 96 N (100–500 μm); ESD: 200 mJ (100–500 μm). T(phase transition) (DTA): 121.6 °C, T(melt) (DTA): 

127.0 °C, T(dec.) (DTA): 187.8 °C; T(phase transition) (DSC): 122.9 °C, T(melt) (DSC): 127.4 °C, T(dec.) (DSC): 

192.5 °C. 
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3.4 Results and Discussion 

3.4.1 Synthesis. Starting from trinitroethanol (as an intermediate available by a two-

step procedure from nitroform solution),[1c, 9], TNEF is formed within 6 days in a FeCl3 

catalyzed nucleophilic substitution reaction in chloroform under nitrogen atmosphere 

(Scheme 1). 

 

Scheme 1. Reaction equation for the synthesis of TNEF. 

The reaction was scaled in multiple steps from 2.5 g, and 10 g over 25 g to the final 

pre-technical scale of 100 g per batch. The yields for the smaller scales of the reaction 

varied between 32 and 65%, with the best yield observed for a 25 g scale reaction that 

proceeded for 5 days in a nitrogen atmosphere. The lowest yield of 32% was obtained 

for a 25 g scale reaction without protection atmosphere, which is not unexpected 

regarding the results of older publications. The change from argon to nitrogen for the 

protection atmosphere did not negatively influence the yields. For the 100 g scale 

reactions, elongation of the reaction time up to 10 days resulted in a diminished yield 

of only 30%. A shorter reaction time of 5 days led to a yield of 35%. Therefore, the 

chosen duration of 6 days is the perfect compromise between yield and consumed 

time for the 100 g scale synthesis of TNEF.  

The application of a nitrogen atmosphere in the 100 g scale, instead of the previously 

used argon atmosphere is a significant improvement over the older synthetic protocol. 

This change reduces the costs of the process due to the significantly lower price and 

the broader availability of nitrogen gas, which has to be considered when scaling this 

process to a technical scale. The older protocol involved a purification using 

dichloromethane[7a], which is toxic and was already banned for certain applications 

according to REACH and is under investigation by the EPA.[10] Therefore, a 

comparably fast and easy, but less toxic alternative had to be developed for the 

purification process. We found, that the best purification can be achieved by dissolving 

the crude material in diethyl ether and precipitation with n-alkanes such as pentane, 

hexane, or heptane. Subsequent regeneration of the solvents by distillation can 

facilitate an even more eco-friendly process. 

Analysis 

3.4.2 Spectroscopic Characterization and Elemental Analysis. The data obtained 

from NMR and vibrational spectroscopy, as well as elemental analysis, all agree well 

with those reported.[7a] 



Chapter 3 

 

- 22 - 

 

3.4.3 Sensitivity Assessment. With regard to the sensitivity towards external stimuli, 

a small difference was found for the friction sensitivity (96 N) when compared to the 

literature[7a] (92 N). Impact sensitivity (5 J), as well as sensitivity towards electrostatic 

discharge (200 mJ), are in agreement with the literature values. 

3.4.4 Thermal Analysis. For DTA a phase transition at 121.6 °C with a subsequent 

melting at 127.0 °C was observed and the TNEF decomposed at 187.8 °C (Figure 1). 

 

Figure 1. Differential thermal analysis at 5 °C/min heating rate. 

This result was reproduced in the DSC measurements, where a phase transition at 

122.9 °C with a subsequent melting at 127.4 °C was observed and the material 

decomposed at a temperature of 192.5 °C (Figure 2).  

 

Figure 2. Differential scanning calorimetry at 5 °C/min heating rate. 
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The values for melting and decomposition are in agreement with older literature values 

for DSC, however, the observed phase transition has not been described earlier.[6, 7a] 

Subsequent investigations of formulations with TNEF, as well as aging and long-term 

stability tests, should take this phase transition into account, as it could lead to 

problems regarding the shelf-life of industry products with TNEF as the oxidizer. 

3.4.5 Storage and Short Term Stability Test. A 10 g sample of TNEF from a batch 

that was synthesized following the optimized 100 g scale procedure, was stored in a 

screw-cap plastic container at 20–25 °C for 9 months in a storage room for energetic 

materials. Samples were taken in 4–6 week intervals and analyzed via NMR 

spectroscopy. After 6 months, a minor decomposition (formation of ~3% nitroform) was 

observed. However, after another recrystallization from diethyl ether/pentane, the 

material was stable for further 3 months (until submission of this manuscript). Further 

analysis of the long-term stability could be pursued by using the vacuum stability test 

(VST) or computational methods like a simulation with the AKTS Thermodynamics 

Software package, which is based on DSC measurements with scaling heating rates 

from 0.1 °C/min to 20 °C/min.[11] The long-term stability of the trinitroethyl building 

blocks in TNEF should be monitored for formulations, and in case of stability problems, 

suitable additives must be developed to overcome this issue. 

 

3.5 Conclusion 

The proposed optimized route for the synthesis and purification of TNEF is a scalable, 

cost-effective way to manufacture the target compound with good yields and high 

purity, which has been confirmed by analytic methods. The optimized purification 

protocol facilitates a greener synthesis of TNEF in a pure form by replacing 

dichloromethane with diethyl ether. By applying a nitrogen atmosphere instead of the 

previously used argon atmosphere costs for the process can be reduced. The 

presented synthetic procedure is a significant improvement and could stimulate a 

broader use of TNEF as an environmentally benign HEDO for composite propellants. 

In the next step, a technical scale synthesis and subsequently the industrial production 

could be pursued. 
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3.8 Supporting Information 

1 NMR Spectra 

1.1 1H NMR Spectrum of TNEF 
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1.2 13C{1H} NMR Spectrum of TNEF 

1.3 14N NMR Spectrum of TNEF 
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2. IR and Raman data of TNEF 

2.1 IR data of TNEF 

IR (ATR): ṽ = 2986 (vw), 2956 (vw), 2892 (vw), 1579 (vs, νas NO2), 1446 (m), 1401 (w), 1341 (w), 1294 

(s, νs NO2), 1184 (w), 1125 (s), 1105 (m), 1075 (s), 1032 (m), 1010 (m), 971 (m), 949 (m), 877 (m), 855 

(s), 802 (vs), 778 (s), 728 (m), 644 (m) cm-1. 

2.1 Raman data of TNEF 

Raman (300 mW): ṽ = 2989 (14), 2956 (26), 1608 (16), 1448 (8), 1395 (10), 1351 (18), 1308 (19), 1093 

(5), 1070 (6), 1030 (5), 881 (6), 859 (51), 804 (5), 782 (8), 543 (22), 488 (22), 400 (49), 374 (60), 268 

(44), 204 (52), 103 (100). 

3. Elemental analysis of TNEF 

Calculated for TNEF: C, 15.20; H, 1.28; N, 22.79 Experimental: C, 15.35; H, 1.37; N, 22.66. 

4. Sensitivity values of TNEF 

BAM drop hammer: 5 J; Friction tester: 96 N; ESD: 200 mJ (grain size: 100–500 μm). 

5. DSC and DTA data for TNEF 

 

T(phase transition) (DTA): 121.6 °C, T(melt.) (DTA): 127.0 °C, T(dec.) (DTA): 187.8 °C. 
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T(phase transition) (DSC): 122.9 °C,T(melt) (DSC): 127.4 °C, T(dec.) (DSC): 192.5 °C. 
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4 Scalability of a Time- and Cost-Effective Procedure for 

the Synthesis of Picryl Bromide 

Reproduced with permission from Org. Process Res. Dev. 2019, 23, 9, 2096–2098                  

(doi: 10.1021/acs.oprd.9b00313) Copyright 2019 American Chemical Society. 

 

4.1 Abstract  

An optimized synthetic procedure for the manufacturing of picryl bromide on a 300 g 

scale is described. Previous procedures had different drawbacks such as two or more 

separate nitration steps with varying mixed acids, a complicated workup and 

purification procedure, expensive starting materials, or very long reaction times. An 

optimized and time-efficient method on a laboratory scale was described in an earlier 

conference contribution. The one-pot nitration of bromobenzene using a 5:1 mixed 

acid, consisting of oleum (30%) and white-fuming nitric acid (ten equivalents) was 

developed to prove the technical scalability of the reaction. By applying the optimized 

reaction parameters to a large-scale environment, yields of up to 72% of crude picryl 

bromide can be achieved. The product contains only a minor picric acid impurity (2-

3%), which is formed during the aqueous workup step. It can be removed by a single 

recrystallization from boiling chloroform, to facilitate the target compound in pure form. 

This method combines the use of cheap materials with a time-efficient route of 

synthesis and a simple purification step, which is an improvement compared to the 

state-of-the-art methods. 

KEYWORDS: Picryl bromide, Energetic Materials, 1-Bromo-2,4,6-trinitrobenzene, 

Synthesis. 

 

4.2 Introduction 

Picrylbromide or 1-bromo-2,4,6-trinitrobenzene (MBTNB) is a versatile building block 

for the synthesis of various energetic materials. Because bromide represents an 

excellent leaving group, it can be used analogously to picryl chloride to transfer the 

picryl moiety within a wide variety of nucleophilic substitution reactions. Another 

relevant application for MBTNB is the manufacturing of highly thermostable explosives 

belonging to the group of polynitropolyphenylenes like 2,2',2'',4,4',4'',6,6',6''-nonanitro-

https://doi.org/10.1021/acs.oprd.9b00313
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1,1':3',1''-terphenyl (NONA) or 2,2',2'',2''',4,4',4'',4''',6,6',6'',6'''-dodecanitro-

1,1':3',1'':3'',1'''-quaterphenyl (DODECA). They utilize the copper-mediated Ullmann 

reaction for the formation of carbon-carbon bonds between polynitroarenes, which 

contain a halogen function as the leaving group.[1, 2] Another relevant use of MBTNB is 

its application in kinetic and mechanistic studies.[3] In the past various synthetic 

pathways towards MBTNB were developed and investigated. All of them show 

significant drawbacks for an industrial-scale application, with the key concerns being 

the price of the used materials[2, 4], problematic solvents[5],  the reaction time[6], or 

various additional purification steps, which complicate the manufacturing process of 

larger amounts of high purity MBTNB. The first route of synthesis uses expensive, 

toxic, and explosive picric acid as a starting material and PBr3 as bromination agent[2] 

to yield MBTNB. A mixed solvent system consisting of DMF and toluene is applied, 

which is problematic for large-scale productions because DMF is on the REACH 

candidate list.[5] A second synthetic pathway towards MBTNB starts from 

bromobenzene and a cheap mixed acid system involving two-step nitration. The 

combined reaction time of 29 hours and the necessity to isolate the intermediate 

dinitrobromobenzene isomers make this method very inefficient regarding time and 

workforce.[6] Another synthesis method starts from trinitroanisole, which is not 

commercially available in larger amounts, which is a disadvantage for large-scale 

synthesis. It is subjected to a two-step bromo-demethoxylation reaction, using KI/EtOH 

and PBr3 as the key reagents.[4] This pathway is therefore not suitable for synthesis 

exceeding the laboratory scale. The only competitive method for the synthesis of 

MBTNB starts from bromobenzene and utilizes potassium nitrate and oleum (30%) as 

the nitration agents at an elevated temperature of 125 °C. According to the literature, 

the overall yield is 60% and this reaction requires 6 hours and an additional purification 

step of recrystallization from boiling ethanol to remove byproducts.[2] When considering 

all the mentioned drawbacks, the development of an optimized and time-efficient 

synthesis of MBTNB on a technical scale is necessary, to facilitate and stimulate the 

use of this interesting starting material in the energetic materials community. 

 

4.3 Results and Discussion 

4.3.1 Synthetic Approach. To overcome the problems mentioned previously, the 

synthesis of MBTNB has been optimized according to Scheme 1 on a laboratory scale. 

After this procedure had been reproduced several times on a 25 g scale, it was scaled 

up to a 300 g scale to prove the scalability of the procedure. 
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Scheme 1. Optimized synthetic route for MBTNB7 

Earlier experiments during the optimization process showed unwanted byproducts like 

dinitrobenzene and multi-brominated benzene derivatives, which formed at 

temperatures over 140 °C.[7] Their formation is avoided by choosing a programmed 

temperature. The utilized 5:1 mixed acid is potent enough to introduce the first nitro 

group at 25 °C and the reaction temperature of 130 °C is optimal for the fast and 

selective introduction of the two remaining nitro groups. Following this temperature 

program, the manufacturing of highly pure MBTNB in a time and cost-efficient way with 

cheap starting materials and a good yield of 72% on a technical scale was realized. 

Compared to the laboratory scale, using a thermocouple and an aluminum heating-

block for temperature control,[7] the yield can be further increased by 9% during scale-

up using the 5-liter reactor. Hydrolysis of 2-3% of MBTNB during the workup procedure 

leads to minor picric acid impurities, which have to be removed by recrystallization from 

chloroform. No other impurities are formed during synthesis, which is another 

advantage of the new process.  

 

4.4 Conclusions 

It was shown, that the proposed optimized route for the synthesis of MBTNB is a 

scalable, time- and cost-effective way to manufacture the target compound with good 

yields and high purity. The presented synthetic route is a significant improvement and 

can lead to broader use of MBTNB as a building block for new energetic materials.  

 

4.5 Experimental Section 

General. Solvents, deuterated solvents for the NMR experiments, and all further 

chemicals were used as received from the suppliers, without further purification. The 

reactions were conducted in a Diehm 5 L jacketed glass reactor, equipped with a CAT 

R100C-T overhead stirrer and a Lauda Integral XT 250 W process thermostat. NMR 

spectra were recorded with a Bruker 400 or Bruker 400 TR at ambient temperature. 

The chemical shifts were determined with respect to external standards, Me4Si (1H 

399.8 MHz; 13C 100.5 MHz) and MeNO2 (14N 28.9 MHz). Infrared spectra were 
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measured with a PerkinElmer Spectrum BX-FTIR spectrometer equipped with a 

Smiths DuraSamplIR ATR device. Raman spectra were recorded in a glass tube with 

a Bruker MultiRAM FT-Raman spectrometer with ND:YAG laser with excitation up to 

1000 mW at 1064 nm in the range 4000–400 cm−1. All spectra were recorded at 

ambient temperature. The C/H/N content was determined with an Elementar vario EL 

or Elementar vario micro cube instrument. The sensitivities towards impact and friction 

were determined with a BAM drophammer[8] and a BAM friction tester.[9] The sensitivity 

towards electrostatic discharge was determined with an electric spark tester from OZM. 

The melting range was determined with an Büchi Melting Point B-540 device and a 

heating rate of 1 °C per minute. 

 

Caution! 1-bromo-2,4,6-trinitrobenzene (MBTNB, picryl bromide) itself is considered 

a sensitive material and therefore should be handled with caution during synthesis or 

manipulation, and additional protective equipment (leather jacket, face shield, ear 

protection, Kevlar gloves) is strongly recommended. 

4.5.1 300 g reactor scale: A 5 L glass jacketed reactor was charged with oleum (1.3 

L, 65% SO3), which was cooled to 5 °C with external cooling by a process thermostat. 

Then sulfuric acid (1.6 L, 96%) was added during one hour, whilst the temperature was 

kept below 40 °C. Afterward white fuming nitric acid (576 mL, 13.8 mol, 10 eq) was 

added in small portions while keeping the temperature below 25 °C. After cooling to 5 

°C, bromobenzene (143.2 mL, 1.38 mol, 1 eq) was slowly added to the mixture and 

the temperature was kept below 20 °C during the addition. The reaction mixture was 

then stirred at 25 °C for 45 minutes, followed by heating to 130 °C for two hours. The 

mixture was cooled to 20 °C and then quenched by adding a total of 5.7 kg of ice. The 

mixture was separated into five smaller batches and the solid white precipitate was 

removed by filtration. The product was washed with cold water until the precipitate runs 

acid-free. After drying, the crude product weighs 287 g (0.98 mol, 72%) with 2–3% of 

picric acid as a hydrolysis byproduct, which could be easily removed by 

recrystallization from boiling chloroform. 

1H-NMR: 8.75 ppm; 13C-NMR: 115.1, 122.2, 147.0, 152.1 ppm; 14N-NMR: -19.8, -24.0 ppm; Melting 

Point: 122–124 °C; IR (ATR): ṽ = 3082 (m), 1846 (w) 1599 (m), 1532 (s), 1411 (w), 1344 (s), 1197 (m), 

1047 (s), 925 (s), 824 (m), 743 (s), 716 (s), 491 (m), 413 (w) cm -1; Raman (300 mW): ṽ = 3090 (13), 

1596 (37), 1542 (16), 1381 (18), 1348 (100), 1199 (12), 1047 (36), 823 (26); Elemental Analysis: 

Calculated: C, 24.68; H, 0.69; N, 14.39 Experimental: C, 24.70; H, 0.75; N, 14.09; Sensitivities: BAM 

drop hammer: 40 J (<100 μm); Friction tester: >360 N (<100 μm); ESD: 0.5 J (<100 μm). 

Associated content 

Supporting Information  

The Supporting Information is available free of charge on the ACS Publications website. 

1H, 13C, 14N NMR spectra (PDF) 
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4.8 Supporting Information 

1H, 13C and 14N NMR data of (1) 
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5 Correlation between Structure and Energetic Properties 

of Three Nitroaromatic Compounds: Bis(2,4-dinitrophenyl) 

Ether, Bis(2,4,6-trinitrophenyl) Ether, and Bis(2,4,6-

trinitrophenyl) Thioether  

Reproduced with permission from J. Am. Chem. Soc. 2019, 141, 50, 19911–19916                 

(doi: 10.1021/jacs.9b11086) Copyright 2019 American Chemical Society. 

 

5.1 Abstract 

Decades after the initial discovery of is(2,4,6-trinitrophenyl) ether derivatives, the first 

single-crystal X-ray structures for three members of this compound class could finally 

be shown and the analytical data could be completed. This group of molecules is an 

interesting example that illustrates why older predictive models for the sensitivity 

values of energetic materials like bond dissociation enthalpy and electrostatic potential 

sometimes give results that deviate significantly from the experimentally determined 

values. By applying newer models like Hirshfeld surface analysis and Fingerprint plot 

analysis that utilize the crystal-structure of an energetic material, the experimentally 

found trend of sensitivities could be understood and the older models could be brought 

into a proper perspective. In the future, the prediction of structure-property 

relationships for energetic molecules starting from a crystal structure can be achieved 

and should be pursued. 

 

5.2 Introduction 

About 150 years ago, Alfred Nobel recognized, that the industrialization of “new” 

synthetic explosives must be accompanied by their safe handling. The development of 

dynamite was the first step in this direction.[1] Just a quarter of a century later, Dynamit 

Nobel AG focused on TNT, which replaced its predecessors due to its excellent 

handling safety and brisance.[2] Although nitroaromatic compounds are no longer the 

centerpiece of modern explosive investigations,[3] Alfred Nobel's fundamental aim of 

increased handling safety that was implemented with this group of materials continues 

to exist.[4] The insensitivity to external stimuli is one of the most important requirements 

https://doi.org/10.1021/jacs.9b11086
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for the synthesis of new HEDMs, next to other characteristics such as higher 

environmental compatibility, high density, high thermal stability, and higher detonation 

velocity/pressure.[3b, 5] The desired high performance of HEDMs can be achieved by 

using compounds with a high heat of formation, but these candidates tend to be more 

sensitive towards external stimuli.[4a] The contrary behavior of the desired parameters 

for HEDMs[4a, 6] leads to the conclusion, that not only the molecular design but also the 

crystallographic design has to be considered to find a balance between performance 

and safety for new energetic materials.[7] Better visualization and understanding of the 

sensitizing properties can be achieved by combining older prediction models - such as 

the calculation of h50 values, electrostatic surface potential (ESP) or EES values[3b, 4a] - 

with newer methods like Hirshfeld surface analysis and Fingerprint plot analysis.[8] After 

many years of uncertainty, a deeper insight into the energetic behavior of the title 

compounds bis(2,4-dinitrophenyl) ether (1), bis(2,4,6-trinitrophenyl) ether (2), and 

bis(2,4,6-trinitrophenyl) thioether (3), could be gained. This was achieved by combining 

theoretical methods with structural investigations of the HEDMs to understand the 

trends that were found for the experimental sensitivity values. 

 

5.3 Results and Discussion 

5.3.1 Spectroscopic Characterization. All three compounds were prepared 

according to modified and optimized methods (Scheme 1).[9]  

 

 

Scheme 1. Reaction schemes for compounds (1)–(3). 

Although some of these compounds have existed for almost a century and show some 

importance today, various fundamental analytical data such as NMR or vibrational 

spectroscopy are still missing.[9a, 10] Therefore all three compounds were characterized 
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through multinuclear NMR-, infrared-, Raman spectroscopy, elemental analysis, and 

single-crystal X-ray diffraction. The 1H NMR chemical shifts of the proton in ortho 

position between the NO2 groups (1: 8.9, 2: 8.6; 3: 9.1), correspond well with those of 

1-substituted trinitro derivatives such as TNT (8.8 ppm) or picric acid (9.0 ppm).[11] In 

the 13C NMR spectra, the corresponding chemical shifts are observed between 160 

ppm and 120 ppm. In the 14N NMR of 1, 2 and 3 the differently substituted NO2 groups 

are not distinct, due to the signal width of 316 Hz, 280 Hz, and 520 Hz. Characteristic 

infrared and Raman vibration modes could be assigned according to the literature[12] 

and are listed in Table 1.  

Table 1. Characteristic vibration modes of 1, 2, and 3. 

The substitution of the sulfur in 3 by the more electronegative oxygen in 2 and 1 causes 

a shift to higher wavenumbers, which is observed for the ν(C-N) vibration mode. This 

displacement can be regarded as a measure of the corresponding bond strength. The 

greater the shift to higher wavenumbers, the stronger the C-N bond. Thus, the bond 

strength correlates proportionally with the bond dissociation enthalpy (BDE), which – 

as many researchers have shown – is associated with the sensitivity of energetic 

materials.[13] According to this model 3 is expected to have the lowest BDE whereby 2 

and 1 should be in a similar range. 

In this work, the BDEs were calculated from their crystal structure data using the 

B3LYP/6-311G+(d,p) method, the found values are depicted in Figure 1.  

 

Figure 1. Calculated BDE Values of the weakest Bond in the molecule 1, 2 and 3, considering all X-C bonds (X: 

C, O, N, S) 

Since the values of the BDEs for the three compounds all range between RDX (161 kJ 

mol-1) and TATB (355 kJ mol-1), they can be categorized as sensitive.[14] The calculated 

trend of decreasing BDEs from 1 to 3 is consistent with the trend of experimental 

 1 2 

S 

3 

a  IR Raman IR Raman IR Raman 

ν(C-H) 3090 3106 3103 3107 3093 3094 

νas(NO2)  1530 

1342 

1543 1536 1543 1530 1545 

νs(NO2) 1342 1361 1339 1362 1332 1354 

ν(C-N) 913 940 913 941 911 936 

δ(NO2) 743 796 749 797 748 773 

νas/s asymmetric/ symmetric vibration mode;  δ: deformation vibration 
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observation of the shift to higher wavenumbers of the ν(C–N) vibration mode. As 

numerous studies have shown, BDEs are considered the most important factor in 

pyrogenic decomposition for the possible trigger binding that breaks first and can 

therefore be used to assess the sensitivity of a material.[7] Besides the calculation of 

h50 values or the determination of volume-based sensitivities, the electrostatic potential 

(ESP) is often used to understand changes in the sensitivities and to visualize the bond 

strength variation.[3b] 

 

Figure 2. ESP of 1 (left), 2 (center) and 3 (right), calculated on the 0.02 electron bohr-3 hypersurface. 

The visualization of the ESP for compounds (1)–(3) is shown in Figure 2. For all 

compounds, the positive range is larger than the negative range. All positive values 

are significantly stronger than the negative absolute values. In addition to the strongly 

positive center of the respective molecules, this is a general indication of their sensitive 

character.[3b-d] According to the BDEs and the ESP, the sensitivity of the compounds 

should increase from 1 to 3. However, a different trend is present in experimental 

observations (1 < 3 < 2). Thus, these older prediction models are insufficient to explain 

the actual sensitivities values that were obtained in experiments. In order to explain 

this, more modern methods that use the crystal structure and packaging effects have 

to be applied to correctly assess the structure-property relationships and therefore the 

sensitivities of this group of nitroaromatic compounds. 

5.3.2 Structure-property relationship. In the crystal, an external mechanical stimulus 

like impact or friction can cause a displacement of the layers, which generates internal 

strains. If this strain energy is below the lowest BDE, the molecular integrity is not 

destroyed. If the strain energy is higher than the energy required to break the weakest 

bond the material is destroyed.[8b] The strain caused by the sliding of the layers 

depends strongly on the stacking of the layers and other interactions in the crystal, 

such as hydrogen bridges.[15] It can be seen from the monomers a, b and c, that the 

phenyl residues in the molecules are twisted against each other to different degrees 

(Figure 3). This results in a different packing behavior in the crystal (d, e, f). The strain 

energy resulting from a mechanical stimulus should be the greatest for 2 since the 

gearing of the individual layers is the highest.  
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Figure 3. Single-crystal X-ray structure of 1 (a), 2 (b), 3 (c) and the crystal packing of 1 (d), 2 (e), 3 (f). 

This effect can reduce the slip barrier to such an extent that it becomes smaller than 

the BDE.[8b] In addition to the lower gearing of 3 versus 2, this effect is another 

indication for the higher sensitivity of compound 2 when compared with compound 3. 

In addition to crystal packing, intermolecular interactions contribute significantly to the 

height of the slide barrier and therefore to the sensitivity to external mechanical stimuli. 

A feature exhibited by insensitive molecules is, that the Hirshfeld surface on a plane 

has the most red dots representing close contacts.[15] In the present case, all 

compounds (1, 2, and 3) have red dots which point out of a plane (Figure 4). The close 

contacts are not arranged in a slideable plane, which results in interlayer repulsion that 

can be significantly increased by shifting the plane. 

The O∙∙∙O interaction is a very important close contact interaction. In most cases, a 

high frequency of O∙∙∙O contacts indicates a high sensitivity, because more nitro groups 

are exposed on the molecular surface and that increases the risk of explosion due to 

the exceeding repulsion via an interlayer sliding.[7, 8b, 14a, 15] Thus, graph d clearly shows 

that 2 is the most sensitive compound. With 37.9 % of O∙∙∙O contacts, 2 has the most 

of those contacts compared to 3 with 33.5 % and 1 with 16.6 %. This distribution can 

be retrieved from the 2D plot because the marked O∙∙∙O interactions decrease from a 
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via c to b in area and color intensity. Furthermore, O∙∙∙H and N∙∙∙H contacts, which 

generate an intermolecular 3D network, can make a compound more sensitive, since 

an interlayer slide strongly alters these stabilizing interactions. However, the 

replacement of hard O∙∙∙O interactions with softer N∙∙∙H or O∙∙∙H interactions often 

leads to better absorption of mechanical stimuli in a material.[14a] 

 

Figure 4. Two-dimensional Fingerprint plot in crystal stacking as well as the corresponding Hirshfeld surface 

(bottom right in 2D plot) of 1 (a), 2 (b), and 3 (c) (color coding: white, distance d equals VDW distance; blue, d 

exceeds VDW distance, red, d, smaller than VDW distance). The population of close contacts of 1, 2, and 3 in 

crystal stacking (d). 

Strong O∙∙∙H and N∙∙∙H interactions are often found in less sensitive compounds 

because the interlayers are more rigid and can absorb energy better without a shifting 

of the planes, which would induce a repulsion between the layers.[8b] The 2D 

Fingerprint plot exhibits two distinctive spikes for strong O∙∙∙H bonding.[15] With respect 

to di + de (di: distance from the Hirshfeld surface to the nearest atom interior; de: 

distance from the Hirshfeld surface to the nearest atom exterior), we can ascertain that 
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for 1 with a total of 44.3 % the most and strongest hydrogen bonds are present. For 2 

the 27.7 % of H-bridges are the fewest and weakest. With a total of 30.1 %, molecule 

3 forms more H-bridges than compound 2 but less than molecule 1 while showing 

similar strong H-bridges than compound 1. The interlayer contacts of C∙∙∙O show weak 

interactions (distances above 3.5 Å) and therefore can be neglected. This also applies 

to the N∙∙∙H and N∙∙∙O contacts.[15] According to this newer model, the frequencies of 

O∙∙∙O contacts and the strength and frequency of H-bridges are the most relevant 

indicator for the impact sensitivity of an explosive material and therefore the order of 

decreasing sensitivity for the discussed compounds should be 2 > 3 > 1. 

5.3.3 Heat of formation and detonation parameters. Density plays an important role 

in the performance of energetic materials and is a direct result of the packing in the 

crystal. With respect to 1, 2, and 3, crystal densities are observed to be 1.73, 1.84, and 

1.85 g cm-3 at 143 K, and the extrapolated values at room temperature are 1.69, 1.80, 

and 1.81 g cm-3. These values deviate significantly from the older literature values 1.70 

(2) and 1.61 g cm-3 (3).[2]. To gain accurate values for the heat of formation (HOF) it is 

important to use high precision theoretical methods, as experimental values are often 

inaccurate.[7] Therefore, the heat of formation was computed by ab initio calculations 

using the optimized geometry of molecules starting from the X-ray diffraction 

experiment. According to Trouton´s Rule, the heat of formation (HOF) was calculated 

by subtracting the enthalpy of sublimation from the HOF of the corresponding gas-

phase species.[16] The values for the HOF of the gas phase species were obtained by 

subtraction of the atomization energies from the total enthalpy of the molecule.[17] 

Calculations were performed using the CBS-4M level of theory in combination with the 

crystal structures. By using the specific densities and the EXPLO5 (V6.01) program, 

the detonation properties of 1, 2 and 3 could be estimated. They were calculated at the 

Chapman−Jouguet point (C-J point) with the help of the stationary detonation model 

using a modified Becker−Kistiakowski−Wilson state equation for gaseous detonation 

products and the Murnaghan equation of state for condensed products (compressible 

solids and liquids). By using the first derivative of the Hugoniot curve of the system the 

C-J point could be found.[18] Given the high density and heat of formation, it is not 

surprising that compound 2 exhibits a better performance than 1 and 3. Although 1 has 

a higher heat of formation, the influence of the increased density of 2 predominates so 

strongly that 2 has the best performance. As can be seen in Table 2, the oxygen 

balance for 1 is the lowest due to the lower number of NO2 groups. The substitution of 

the ether bridge in 2 by a sulfur atom deteriorates the oxygen balance from 2 to 3 as 

expected. With respect to the detonation velocity, the values of 2 and 3 exceed TNT 

(6881 m s-1) where 1 falls below it. 
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Table 2. Physical and Calculated detonation parameters of compounds 1, 2, and 3 using EXPLO5 computer code. 

 1 2 3 

EXPLO5 V 6.03    

[a] Impact sensitivity[14d] [b] friction sensitivity[14e] [c] nitrogen content [d] combined nitrogen and oxygen content 

[e] absolute oxygen balance assuming the formation of CO or CO2 [f] melting point from DTA [g] decomposition 

from DTA [h] density determined by X−ray experiment at 143 K [i] ambient temperature density, extrapolated 

from X-ray value [j] Heat of formation calculated at the CBS-4M level of theory for FMN, experimental determined 

for MN [k] detonation energy [l] detonation temperature [m] detonation pressure [n] detonation velocity [o] volume 

of detonation gases at standard temperature and pressure conditions 

 

5.4 Conclusions 

Bis(2,4-dinitrophenyl) ether, bis(2,4,6-trinitrophenyl) ether, and bis(2,4,6-trinitrophenyl) 

thioether have been synthesized and characterized. The structures of these three 

compounds were determined by single-crystal X-ray diffraction. The results of the older 

prediction models (BDE, ESP) for the sensitivities were compared with results for 

newer prediction models based on the crystal structure (Hirshfeld surface and 

Fingerprint plot analysis). The inaccurate trend for the sensitivities that was observed 

for the older models (3 > 2 > 1) could be corrected. The trend for the sensitivities shown 

by the experimental values (decreasing 2 > 3 > 1), could be verified by the newer 

formula 

Mr [g mol−1] 

IS[a] [J] 

FS[b] [N] 

ESD [mJ] 

N[c]  [%] 

N+O[d]  [%] 

ΩCO2
[e] [%] 

Tmelt
[f] [°C] 

Tdec
[g] 

 [°C] 

ρ143 K
[h]  [g cm−3] (X−ray) 

ρ298 K
[i]  [g cm−3] 

∆𝐻𝑓
° [j] [kJ mol−1] 

C12H6N4O9 

350.20 

>40 

>360 

50 

16.00 

57.12 

-82.24 

246.32 

336.73 

1.73 

1.68 

-168.1 

C12H4N6O13 

440.19 

9 

>360 

50 

19.09 

66.34 

-47.25 

--- 

256 

1.84 

1.80 

-132.9 

C12H4N6O12S 

456.25 

12.5 

>360 

50 

18.42 

60.50 

-56.11 

253 

310 

1.85 

1.81 

-20.3 

∆𝑈𝑓
° [k] [kJ kg−1] 

TC−J
[l] [K] 

PC−J
[m] [GPa] 

Vdet
[n] [ms−1] 

Vo
[o] [dm3 kg−1] 

-3934 

2958 

16.7 

6582 

582.5 

-4850 

3695 

24.9 

7634 

620.4 

-4689 

2740 

15.9 

6912 

427.5 
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predictive methods which are based on the crystal structure. The application of these 

newer methods could lead to a better understanding and assessment of sensitivity 

values without the necessity to synthesize large amounts of new energetic materials, 

which leads to an increase in safety. The performance of the compounds was 

calculated and it was found that it decreases from 2 to 3 to 1 with all three compounds 

showing similar values as TNT. 

 

5.5 Experimental Section 

General Information. Diphenylether, nitric acid, oleum, picryl chloride, and sodium 

thiosulfate were commercially available. For NMR spectroscopy the solvent DMSO-d6 

was dried using a 3 Å mole sieve. Spectra were recorded on a Bruker Avance III 

spectrometer operating at 400.1 MHz (1H), 100.6 MHz (13C), and 28.9 MHz (14N). 

Chemical shifts are referred to TMS (1H, 13C) and MeNO2 (14N). Raman spectra were 

recorded with a Bruker MultiRam FT Raman spectrometer using a neodymium-doped 

yttrium aluminum garnet (Nd:YAG) laser (λ = 1064 nm) with 1074 mW. The samples 

for Infrared spectroscopy were placed under ambient conditions onto an ATR unit using 

a Perkin Elmer Spectrum BX II FT-IR System spectrometer. Melting and/or 

decomposition points were detected with a OZM DTA 552-Ex instrument. The 

scanning temperature range was set from 293 K to 673 K at a scanning rate of 5 K 

min-1. Elemental analysis was done with a Vario EL instrument and a Metrohm 888 

Titrando device.  

 

Caution! All investigated compounds are explosives, which show partly increased 

sensitivities toward various stimuli (e.g. higher temperatures, impact, friction, or 

electrostatic discharge). Therefore, proper safety precautions (safety glass, Kevlar 

gloves, and earplugs) have to be applied while synthesizing and handling the 

described compounds. 

5.5.1 Bis(2,4-dinitrophenyl) ether. Diphenylether (2.15 g, 12.65 mmol) was added at 

0 °C to a mixed acid consisting of 1.15 mL sulfuric acid, 2.74 mL Oleum (65%), and 

white fuming nitric acid (2.7 mL, 63.26 mmol). The mixture was stirred for 45 min. After 

being warmed to room temperature, the solution was heated to 125 °C for 19 hours. 

The obtained reddish suspension was cooled to room temperature and poured into 

750 mL of ice water. The solid was filtered off and washed with water (3 × 100 mL). 

The filter cake was recrystallized from boiling ethyl acetate and the beige-red powder 

was dried under ambient conditions (1.4 g, yield: 32%). 

1H NMR (DMSO-d6, 400 MHz): δ 7.67 (d, 2H, J = 2.8 Hz), 8.60 (dd, 2H, J = 9.1, 2.8 Hz), 8.98 (s, 2H, J 

= 9.1 Hz) ppm. 13C NMR (DMSO-d6,100 MHz): δ 151.7, 143.8, 140.3, 130.2, 122.4, 122.3 ppm. 14N NMR 

(DMSO-d6, 29 MHz): δ -20 (s, NO2) ppm. FT-IR (ATR): ṽ 3365 (w), 3090 (w), 3076 (w), 2879 (w), 1592 

(m), 1530 (s), 1483 (m), 1472 (m), 1422 (w), 1342 (s), 1265 (s), 1155 (w), 1136 (w), 1122 (w), 1067 (s), 
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972 (w), 928 (m), 913 (s), 867 (s), 834 (s), 787 (w), 762 (w), 743 (s), 721 (s), 687 (w), 661 (m), 639 (m), 

603 (w), 521 (w), 499 (w), 458 (w), 435 (w). Raman (1064 nm, 300 mW): ṽ 3076 (w), 2263 (w), 2217 

(w), 2202 (w), 2157 (w), 2137 (w), 2062 (w), 1951 (w), 1611 (m), 1597 (w), 1547 (w), 1352 (s), 1270 (w), 

1213 (w), 1156 (w), 1137 (w), 1066 (w), 838 (m), 641 (w). Elemental Analysis calcd. (%) for C12H6N4O9: 

C 41.16, H 1.73, N 16.00; found: C 41.09, H 1.82, N 15.82. DTA: 246 °C (melting), 336 °C (dec.) IS: 

>40.0 J. FS: >360 N. ESD: 50 mJ.  

5.5.2 Bis(2,4,6-trinitrophenyl) ether. Diphenylether. (1.00 g, 5.88 mmol) was added 

at 0 °C successively to a mixed acid consisting of 22 mL oleum (30 %) and white fuming 

nitric acid (4.4 mL, 106 mmol). The mixture was stirred for 30 min. After being warmed 

to room temperature, the solution was heated to 150 °C for 4 d. The obtained white 

suspension was cooled to room temperature and poured into 750 mL of ice water. The 

solid was filtered off and washed with water (3 × 100 mL). The filter cake was 

recrystallized from boiling chloroform and the colorless powder was dried under 

ambient conditions (0.53 g, yield: 24%). 

1H NMR (DMSO-d6, 400 MHz): δ 8.60 (s, 4H) ppm. 13C NMR (DMSO-d6,100 MHz): δ 160.6, 141.8, 

125.2, 124.6 ppm. 14N NMR (DMSO-d6, 29 MHz): δ -11 (s, NO2) ppm. FT-IR (ATR): ṽ  3103 (m), 1612 

(m), 1601 (m), 1536 (s), 1455 (m), 1415 (m), 1339 (s), 1268 (s), 1212 (m), 1191 (m), 1085 (m), 944 (m), 

927 (m), 913 (m), 832 (m), 795 (m), 749 (m), 733 (m), 717 (s) 523 (m). Raman (1064 nm, 1074 mW): ṽ 

3107 (w), 1627 (m), 1559 (m), 1543 (m), 1362 (s), 1275 (w), 1214 (m), 1171 (w), 1083 (w), 941 (w), 829 

(m), 797 (w), 329 (w), 270 (w), 202 (w). Elemental Analysis calcd. (%) for C12H4N6O13: C 32.74, H 0.92, 

N 19.09; found: C 32.71, H 1.01, N 18.88. DTA: 256 °C (dec.) IS: 9.0 J. FS: 360 N. ESD: 50 mJ. 

5.5.3 Bis(2,4,6-trinitrophenyl) thioether. Sodium thiosulfate (0.498 g, 3.15 mmol) 

was added successively to a reflux heated suspension of picryl chloride (1.00 g, 4.04 

mmol) and magnesium carbonate (0.190 g, 2.26 mmol) in absolute ethanol (25 mL). 

The mixture was heated for 1 h. The mixture turned into a yellow suspension. After 

being cooled to room temperature the obtained suspension was filtered off and the 

filter cake washed with ethanol (3 × 15 mL), 1.0 M HCl (3 × 5 mL), and water (3 × 5 

mL). The yellow powder was dried under a nitrogen stream (1.1 g, yield: 60%). 

1H NMR (DMSO-d6, 400 MHz): δ 9.17 (s, 4H) ppm. 13C NMR (DMSO-d6,100 MHz): δ 151.6, 147.8, 

125.6, 124.4 ppm. 14N NMR (DMSO-d6, 29 MHz): δ -19 (s, NO2) ppm. FT-IR (ATR): ṽ 3093 (m), 2917 

(w), 2850 (w), 1598 (m), 1530 (s), 1392 (w), 1332 (s), 1169 (w), 1112 (w), 1047 (m), 931 (m), 911 (s), 

822 (m), 748 (m), 726 (s), 718 (s), 687 (m). Raman (1064 nm, 1074 mW): ṽ 3094 (w), 1601 (m), 1545 

(m), 1354 (s), 1301 (w), 1180 (m), 1059 (m), 936 (m), 825 (w), 773 (m), 433 (w), 370 (w), 331 (w), 287 

(w). Elemental Analysis calcd. (%) for C12H4N6O12S: C 31.59, H 0.88, N 18.42, S 7.03; found: C 31.48, 

H 0.94, N 18.34, S 7.17. DTA: 253 °C (mp), 310 °C (dec.) IS: 12.5 J. FS: 360 N. ESD: 50 mJ. 

5.5.4 X-Ray Measurements.  Bis(2,4,6-trinitrophenyl) ether and bis(2,4-dinitrophenyl) 

ether were solved in ethyl acetate and single crystals have been received after slow 

solvent evaporation. Single crystals of bis(2,4,6-trinitrophenyl) thioether have been 

received of the decomposition of fluoromethyl-(2,4,6)-trinitrobenzene sulfonate with 

triphenylphosphine sulfid in DCM after slow solvent evaporation. Data collection was 

performed with an Oxford Xcalibur3 diffractometer with a CCD area detector, equipped 

with a multilayer monochromator, a Photon 2 detector and a rotating-anode generator 
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were employed for data collection using Mo-Kα radiation (λ= 0.7107 Å). Data collection 

and reduction were carried out using the Crysalispro software.[19] The structures were 

solved by direct methods (SIR-2014)[20] and refined (SHELXLE)[21] by full-matrix least-

squares on F2 (ShelxL)([22][23]) and finally checked using the platon software[24] 

integrated with the WinGX software suite.[25] The non-hydrogen atoms were refined 

anisotropically and the hydrogen atoms were located and freely refined. All Diamond 

3 plots are shown with thermal ellipsoids at the 50% probability level and hydrogen 

atoms are shown as small spheres of arbitrary radius. 
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2 Detonation Parameter 

2.1 Compound 1 

 

C(12,000) H(6,000) N(4,000) O(9,000)  

 

       Molecular weight  = 350,19 

       Density of explosive = 1,689   g/cm3 

       Oxygen balance  = -82,23569  % 

       Enthalpy of formation = -480,02  kJ/kg 

       Internal energy of formation= -412,78  kJ/kg 

 

Detonation parameters (at the C-J point): 

-------------------------------------------------------------------------------------------------------- 

       Heat of detonation  = -3934,204   kJ/kg 

       Detonation temperature = 2958,848   K 

       Detonation pressure = 16,76195  GPa 

       Detonation velocity  = 6582,22   m/s 

       Particle velocity  = 1507,727   m/s 

       Sound velocity  = 5074,493   m/s 

       Density of  products = 2,190834   g/cm3 

       Volume of  products = 0,4564473  cm3/g 

       Exponent 'Gamma'  = 3,365658 

       Moles of gaseous products = 8,341371   mol/mol explosive 

       Moles of condensed products = 7,721982   mol/mol explosive 

       Volume of gas at STP  = 582,5294  dm3/kg 

       Mean molecular mass of gas. prod. = 30,86434  g/mol 

       Mean molecular mass of cond.prod.= 12,011  g/mol 

       Mean molecular mass of all prod.    = 21,80115  g/mol 

       Entropy of products   = 6,020409  kJ/kg K 

       Internal energy of products   = 5070,83   kJ/kg,  i.e.  8,564632  kJ/cm3 

       Compression energy   = 1136,627   kJ/kg,  i.e.  1,919762  kJ/cm3 

       Total heat energy    = -3934,204  kJ/kg, i.e.  -6,64487  kJ/cm3 
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Composition of detonation products: 

     Products mol/mol  mol/kg  Mol % 

------------------------------------------------------------------------------- 

      C(d) =  5,478155 15,64333 34,10344 

      C(gr) =  2,243827 6,407437 13,96861 

      H2O =  1,994153 5,694471 12,4143 

      N2 =  1,969661 5,624534 12,26183 

      CO2 =  1,95825 5,591948 12,19079 

      CO =  1,462114 4,175191 9,102175 

      CH2O2 =  0,8133489 2,322587 5,063383 

      H2 =  0,05551904 0,1585393 0,3456255 

      NH3 =  0,04892552 0,1397109 0,3045785 

      CH4 =  0,0221407 0,06322464 0,1378336 

      HCN =  0,01168588 0,03337 0,07274867 

      C2H4 =  0,002493494 0,007120383 0,01552287 

      C2H6 =  0,002478281 0,00707694 0,01542817 

      CH3OH =  0,0004634941 0,001323547 0,002885414 

      CH2O =  4,890695E-05 0,0001396579 0,0003044629 

      H =   3,28261E-05 9,373769E-05 0,000204354 

      NH2 =  2,222998E-05 6,347959E-05 0,0001383894 

      CHNO =  1,900792E-05 5,427872E-05 0,000118331 

      N2H4 =  1,040695E-05 2,971792E-05 6,478691E-05 

      CNO =  3,961135E-06 1,131136E-05 2,465946E-05 

      N =   4,6288E-08 1,321793E-07 2,88159E-07 

      N2O =  4,094651E-08 1,169262E-07 2,549064E-07 

      NO2 =  1,861445E-08 5,315513E-08 1,158815E-07 
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2.2 Compound 2 

 

C(12,000) H(4,000) N(6,000) O(13,000)  

 

       Molecular weight  = 440,19 

       Density of explosive = 1,799   g/cm3 

       Oxygen balance  = -47,24968  % 

       Enthalpy of formation = -301,92  kJ/kg 

       Internal energy of formation= -237,16  kJ/kg 

 

Detonation parameters (at the C-J point): 

------------------------------------------------------------------------------------------------ 

       Heat of detonation                      = -4850,189   kJ/kg 

       Detonation temperature               = 3695,919   K 

       Detonation pressure                   = 24,96996  GPa 

       Detonation velocity                     = 7634,488   m/s 

       Particle velocity                          = 1818,054   m/s 

       Sound velocity                            = 5816,435   m/s 

       Density of  products                    = 2,361317   g/cm3 

       Volume of  products                    = 0,4234925  cm3/g 

       Exponent 'Gamma'                         = 3,199264 

       Moles of gaseous products          = 11,16658   mol/mol explosive 

       Moles of condensed products        = 4,726592   mol/mol explosive 

       Volume of gas at STP                = 620,3951  dm3/kg 

       Mean molecular mass of gas. prod.= 34,33665  g/mol 

       Mean molecular mass of cond.prod.= 12,011  g/mol 

       Mean molecular mass of all prod.    = 27,69705  g/mol 

       Entropy of products                    = 6,145839  kJ/kg K 

       Internal energy of products        = 6502,856   kJ/kg,  i.e.  11,69864  kJ/cm3 

       Compression energy                   = 1652,667   kJ/kg,  i.e.  2,973148  kJ/cm3 

       Total heat energy                       = -4850,189  kJ/kg, i.e.  -8,725491  kJ/cm3 
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Composition of detonation products: 

     Products mol/mol  mol/kg  Mol % 

--------------------------------------------------------------------------------------- 

      C(d) =  4,726592 10,73769 29,73977 

      CO2 =  3,786484 8,601991 23,8246 

      N2 =  2,986187 6,783905 18,78912 

      CO =  2,392444 5,435062 15,05328 

      CH2O2 =  1,07583 2,44403 6,769136 

      H2O =  0,8826873 2,005255 5,553878 

      HCN =  0,01661758 0,03775118 0,104558 

      H2 =  0,013704 0,03113222 0,08622571 

      NH3 =  0,0108196 0,02457956 0,06807706 

      CH4 =  0,001098652 0,002495876 0,006912731 

      C2H4 =  0,0002984355 0,0006779744 0,00187776 

      CNO =  0,000100776 0,000228939 0,0006340835 

      CH3OH =  8,147198E-05 0,0001850849 0,0005126225 

      H =   7,172149E-05 0,0001629341 0,0004512724 

      C2H6 =  5,110326E-05 0,0001160944 0,0003215423 

      NH2 =  3,75623E-05 8,533259E-05 0,0002363424 

      CHNO =  2,574001E-05 5,847517E-05 0,0001619564 

      CH2O =  2,539377E-05 5,768858E-05 0,0001597778 

      N2H4 =  9,059019E-06 2,057993E-05 5,699944E-05 

      NO2 =  2,321328E-06 5,273503E-06 1,460582E-05 

      N =   2,160263E-06 4,907602E-06 1,359239E-05 

      N2O =  1,014494E-06 2,304689E-06 6,383209E-06 

      C(gr) =  7,000778E-10 1,59041E-09 4,404897E-09 
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2.3 Compound 3 

 

C(12,000) H(4,000) N(6,000) O(12,000) S(1,000)  

 

       Molecular weight                  = 456,25 

       Density of explosive             = 1,807   g/cm3 

       Oxygen balance                   = -56,10583  % 

       Enthalpy of formation           = -44,49  kJ/kg 

       Internal energy of formation = 15,27  kJ/kg 

 

Detonation parameters (at the C-J point) : 

---------------------------------------------------------------------------------------------------------------- 

       Heat of detonation                 = -4689,054   kJ/kg 

       Detonation temperature               = 2740,172   K 

       Detonation pressure                   = 15,89516  GPa 

       Detonation velocity                     = 6912,697   m/s 

       Particle velocity                          = 1272,505   m/s 

       Sound velocity                             = 5640,192   m/s 

       Density of  products                    = 2,214684   g/cm3 

       Volume of  products                    = 0,4515317  cm3/g 

       Exponent 'Gamma'                      = 4,432355 

       Moles of gaseous products          = 7,975057   mol/mol explosive 

       Moles of condensed products        = 8,691205   mol/mol explosive 

       Volume of gas at STP                 = 427,4786  dm3/kg 

       Mean molecular mass of gas. prod. = 33,33563  g/mol 

       Mean molecular mass of cond.prod. = 21,90806  g/mol 

       Mean molecular mass of all prod.    = 27,37632  g/mol 

       Entropy of products                      = 5,979245  kJ/kg K 

       Internal energy of products             = 5498,693   kJ/kg,  i.e.  9,936138  kJ/cm3 

       Compression energy                     = 809,639   kJ/kg,  i.e.  1,463018  kJ/cm3 

       Total heat energy                         = -4689,054  kJ/kg, i.e.  -8,473121  kJ/cm3 
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Composition of detonation products: 

     Products mol/mol  mol/kg  Mol % 

--------------------------------------------------------------------------------------- 

      C(gr) =  6,431299 14,09593 38,58873 

      N2 =  2,992699 6,55931 17,95663 

      CO2 =  2,735446 5,995472 16,41308 

      C(d) =  1,260495 2,762716 7,563151 

      CO =  1,250929 2,74175 7,505755 

      H2SO4(l) =  0,9994115 2,190481 5,996614 

      H2O =  0,6515798 1,428114 3,909574 

      CH2O2 =  0,3141219 0,6884832 1,884777 

      H2 =  0,01257659 0,02756501 0,07546138 

      NH3 =  0,00966649 0,02118673 0,05800035 

      HCN =  0,004917161 0,01077729 0,02950368 

      CH4 =  0,002191769 0,004803856 0,01315093 

      SO2 =  0,000304655 0,000667734 0,001827974 

      H2S =  0,0002471838 0,0005417704 0,001483139 

      C2H4 =  0,0001805352 0,0003956919 0,001083238 

      C2H6 =  8,194115E-05 0,0001795962 0,0004916589 

      CH3OH =  4,398813E-05 9,641191E-05 0,0002639352 

      SO =  2,075228E-05 4,548425E-05 0,0001245167 

      CH2O =  1,170198E-05 2,564806E-05 7,021358E-05 

      CHNO =  1,071673E-05 2,348863E-05 6,430196E-05 

      COS =  6,818645E-06 1,494491E-05 4,091286E-05 

      H =   6,454679E-06 1,414718E-05 3,872902E-05 

      S =   6,280336E-06 1,376506E-05 3,768293E-05 

      NH2 =  3,800892E-06 8,330684E-06 2,28059E-05 

      CNO =  1,85511E-06 4,065976E-06 1,113093E-05 

      N2H4 =  9,523343E-07 2,087299E-06 5,714144E-06 

      SO3 =  7,425338E-07 1,627464E-06 4,455311E-06 

      S2 =  7,166028E-07 1,570629E-06 4,299721E-06 

      NS =  3,485204E-07 7,638769E-07 2,091173E-06 

      H2SO4 =  2,421166E-07 5,306642E-07 1,452735E-06 
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      N2O =  2,917707E-08 6,394946E-08 1,750667E-07 

      N =   1,056298E-08 2,315164E-08 6,337945E-08 

      NO2 =  7,991626E-09 1,751581E-08 4,795092E-08 

      CS =  2,315313E-10 5,074636E-10 1,389222E-09 

      S(l) =  2,112241E-13 4,629548E-13 1,267375E-12 

      S8 =  2,032646E-18 4,455094E-18 1,219617E-17 
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3 Structure refinement data 

 

3.1 Compound 1 

 

Empirical formula  C12 H6 N4 O9 

Formula weight  350.21 

Temperature  150(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 7.9044(12) Å  

 b = 8.0845(11) Å  

 c = 11.3617(15) Å  

 α = 81.224(11)° 

 β = 69.815(13)° 

 γ = 84.647(12)° 

Volume 672.83(17) Å
3
 

Z 2 

Density (calculated) 1.729 mg/m
3
 

Absorption coefficient 0.152 mm
-1

 

F(000) 356 

Crystal size 0.2 x 0.04 x 0.04 mm
3
 

Theta range for data collection 2.552 - 28.282° 

Index ranges -10≤h≤10, -10≤k≤10, -15≤l≤15 

Reflections collected 6048 

Independent reflections 3342 [Rint = 0.0464] 

Data / restraints / parameters 3342 / 0 / 226 

Goodness-of-fit on F2 1.006 

Final R indices [I>2sigma(I)] R1 = 0.0644, wR2 = 0.1334 

R indices (all data) R1 = 0.1174, wR2 = 0.1603 

Largest diff. peak and hole 0.387 and -0.313 e.Å
-3
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3.2 Compound 2 

Empirical formula  C12 H4 N6 O13 

Formula weight  440.21 

Temperature  143(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21 

Unit cell dimensions a = 8.0043(3) Å  

 b = 8.7613(3) Å 

 c = 11.7424(5) Å  

 α = 90° 

 β = 105.700(4)° 

 γ = 90° 

Volume 792.75(5) Å
3
 

Z 2 

Density (calculated) 1.844 Mg/m
3
 

Absorption coefficient 0.172 mm
-1

 

F(000) 444 

Crystal size 0.4 x 0.2 x 0.05 mm
3
 

Theta range for data collection 3.521 - 30.504° 

Index ranges -11≤h≤11, -12≤k≤12, -16≤l≤16 

Reflections collected 15900 

Independent reflections 4833 [Rint = 0.0393] 

Data / restraints / parameters 4833 / 1 / 280 

Goodness-of-fit on F2 1.038 

Final R indices [I>2sigma(I)] R1 = 0.0388, wR2 = 0.0779 

R indices (all data) R1 = 0.0498, wR2 = 0.0835 

Absolute structure parameter -0.2(5) 

Largest diff. peak and hole   0.297 and -0.222 e.Å
-3 
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3.3 Compound 3 

 

Empirical formula  C12 H4 N6 O12 S 

Formula weight  456.27 

Temperature  298(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21 

Unit cell dimensions a = 10.9756(5) Å  

 b = 11.0066(4) Å  

 c = 14.0260(5) Å  

 α = 90° 

 β = 104.829(4)° 

 γ = 90° 

Volume 1637.96(12) Å3 

Z 4 

Density (calculated) 1.850 Mg/m3 

Absorption coefficient 0.288 mm-1 

F(000) 920 

Crystal size 0.2 x 0.05 x 0.05 mm3 

Theta range for data collection 4.172 - 28.278° 

Index ranges -14≤h≤14, -14≤k≤14, -18≤l≤10 

Reflections collected 15113 

Independent reflections 7871 [Rint = 0.0404] 

Data / restraints / parameters 7871 / 1 / 559 

Goodness-of-fit on F2 1.032 

Final R indices [I>2sigma(I)] R1 = 0.0424, wR2 = 0.0755 

R indices (all data) R1 = 0.0556, wR2 = 0.0817 

Largest diff. peak and hole 0.388 and -0.264 e.Å-3 
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4 Enlarged View of the Figures 

4.1 Figure 2  

 

Figure 2. ESP of 1 (left), 2 (center) and 3 (right), calculated on the 0.02 electron bohr-3 hypersurface. 

 

4.2 Figure 3 

 

Figure 3. Single-crystal X-ray structure of 1 (a), 2 (b), 3 (c) and the crystal packing of 1 (d), 2 (e), 3 (f). 
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6 Investigation of Structure-Property Relationships of 

Three Nitroaromatic Compounds: 1-Fluoro-2,4,6-

trinitrobenzene, 2,4,6-Trinitrophenyl methanesulfonate and 

2,4,6-Trinitrobenzaldehyde 

Reproduced with permission from Cryst. Growth Des. 2021, 21, 1, 243–248                                 

(doi: 10.1021/acs.cgd.0c01049) Copyright 2021 American Chemical Society. 

 

6.1 Abstract 

Recently the investigation of the correlation between the crystal structure and 

important properties like sensitivity and thermostability of energetic materials has 

gained more and more interest among experts in the field. To contribute to this 

development, several models for the sensitivity prediction of energetic materials have 

been applied to the title compounds. Very often, older models that focus on bond 

dissociation enthalpy or electrostatic potential result in values that differ significantly 

from values of actual measurements. However, more recent models like Hirshfeld 

surface analysis or Fingerprint plot analysis offer an improved correlation between 

prediction and practical tests. We compared these methods with the mentioned older 

models and gained further insight into the structure-property relationships of energetic 

materials. The accuracy of predictions of structure-property relationships which can be 

deduced from a crystal structure increases with the sample size over time. Therefore, 

this method should be pursued and applied to different energetic materials in the future, 

for a better understanding of those relationships. 

 

6.2 Introduction 

In 1997 Spackmann communicated a novel concept for the definition and visualization 

of a molecule in a crystal based on Hirshfelds Stockholder partitioning scheme.[1-2] This 

method for crystal analysis and crystal engineering was further refined and became 

famous as the Hirshfeld surface in 1998.[3] In 2002 McKinnon and Spackmann 

complemented their method with 2D Fingerprint plot analysis for improved visualization 

of intermolecular close contacts in a crystal.[4] This work was followed by the initial 

development of the Crystal Explorer software in 2004 and 2005, which has been 

https://doi.org/10.1021/acs.cgd.0c01049
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continuously improved since then.[5] With the current version of Crystal Explorer, 

various interactions in the crystal can be easily visualized and quantified, including 

features like crystal surface mapping and close contact analysis, which makes it a 

valuable tool for crystal engineering and material design.[6] In 2014, Hirshfeld surface 

and Fingerprint plot analysis found their way into the analysis and development of 

energetic materials for the first time.[7] Since then various authors like Gozin[8], 

Klapötke[9], and Shreeve[10] have utilized this methodology and the Crystal Explorer 

software for the investigation and design of new energetic materials with the goal to 

achieve a deeper insight into structure-property relationships, especially with regard to 

sensitivity and thermal stability. Regarding synthesis and design of new energetic 

materials, the insensitivity towards external stimuli is one of the most important 

requirements among other characteristics like improved environmental compatibility, 

higher density, and thermal stability as well as increased detonation velocity and 

pressure.[11-12] One strategy to achieve an increased performance of HEDMs is to use 

compounds with a high heat of formation, but this is often related to a higher sensitivity 

towards external stimuli.[13] Due to this contrary behavior,[13-15] the molecular design, 

as well as the crystallographic design, have to be considered when creating new 

materials, to achieve a suitable balance between safety and performance.[10] For this 

purpose, we applied a combination of various methods to all title compounds, which 

form a group of 1-substituted derivatives of 2,4,6-trinitrobenzene. Those molecules are 

interesting building blocks for the synthesis of more sophisticated energetic materials 

and serve as model compounds for the analysis of structure-property relationships. 

The applied set of methods comprises both preceding predictive models like the 

computation of BDE and ESP values – as well as newer methods like Hirshfeld surface 

analysis and Fingerprint plot analysis.[7-10,16] By comparing the results of different 

prediction models with experimental values, we hope to achieve a better understanding 

of the energetic behavior regarding the aforementioned compounds and also a deeper 

insight into structure-property relationships of energetic materials in general. 

 

6.3 Results and Discussion 

6.3.1 Spectroscopic Characterization. The three title compounds were prepared by 

modified and optimized methods and were intensively characterized by multinuclear 

NMR spectroscopy, vibrational spectroscopy (IR, Raman), elemental analysis as well 

as single-crystal X-ray diffraction. Found 1H NMR chemical shifts of aromatic protons  

(1: 9.20, 2: 9.24; 3: 9.16) are in good agreement with other known 1-substituted 

trinitrobenzene derivatives like TNT (8.8 ppm) or picric acid (9.0 ppm).[17-18] The 13C{1H} 

NMR spectra reveal the corresponding chemical shifts between 120 ppm and 190 ppm. 

Compound 1 shows two distinct signals for the nitro groups in ortho and para positions 

in the 14N NMR spectrum. In the case of molecules 2 and 3, no distinct signals for the 

nitro groups were found due to the rather large signal width of 440 Hz and 500 Hz. 
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Typical Raman- and infrared vibration modes were found in the corresponding spectra 

and assigned according to available literature (Table 1).[19]
  

Table 1. Characteristic vibration modes of 1, 2, and 3. 

All three compounds show very similar values for the symmetric-, asymmetric- and 

deformation modes of the nitro groups. The same applies to the C-H and C-N modes 

of the three title compounds, except for the Raman C-N mode of compound 2. It has 

been previously shown by other researchers, that the bond dissociation enthalpy 

(BDE), can be directly linked to the sensitivity of energetic materials.[20-21] All three 

compounds are expected to have very similar BDE values and therefore similar 

sensitivities towards external stimuli using this particular model. In this work, the BDEs 

were calculated based on the respective crystal structure data and the B3LYP/6-

311G+(d,p) method. According to various studies, the BDEs of a molecule can be 

considered as the most important factor in pyrogenic decomposition. The BDE 

correlates to a trigger bond which is first to break and can therefore be utilized to 

assess the sensitivity of a material.[10] 

 

Figure 1. Calculated BDE Values of the weakest Bond in the molecule 1, 2, and 3, considering all X-C bonds (X: 

C, O, N, F) 

The C-N bond of the ortho nitro group was identified as the weakest bond in all 

investigated compounds. All BDE values of compounds 1, 2, and 3 fall in a range 

between RDX (161 kJ mol-1) and TATB (355 kJ mol-1), which is the reason for 

categorizing them as sensitive.[15,22-28] The calculation-based trend of BDEs is 2 < 1 < 

3 but the relative difference is very small (<10 kJ mol-1). Based on this model, very 

similar sensitivity values would be expected. The electrostatic potential (ESP) can be 

 1 2 

 

3 

  IR Raman IR Raman IR Raman 

ν(C-H) 3063 3063 3095 3097 3096 3104 

νas(NO2)  1541 1548 1543 1547 1554 1553 

νs(NO2) 1342 1364 1343 1363 1343 1351 

ν(C-N) 923 940 919 1089 919 938 

δ(NO2) 737 817 730 823 729 826 

νas/s asymmetric/ symmetric vibration mode δ: deformation vibration 
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utilized for the visualization of the bond strength inside a molecule and therefore as an 

indicator for the potential sensitivity.[11] In addition, the calculation of h50 values or the 

acquisition of volume-based sensitivities based on ESP is possible.[11]  

 

Figure 2. ESP of 1 (left), 2 (center) and 3 (right), calculated on the 0.02 electron bohr-3 hypersurface. 

Regarding the ESP, all compounds show a significantly larger surface area in the 

positive range and the corresponding values are more pronounced in comparison to 

peak values of negative areas. This distribution and the strongly positive center of the 

investigated compounds is a typical indicator for sensitive materials.[26-28] The 

difference between the peak positive spot and the peak negative spot (1: +69 kJ mol-

1, 2: +66 kJ mol-1, 3: +69 kJ mol-1) is very similar for all three compounds. Therefore, a 

similar behavior towards external stimuli is expected. 

6.3.2 Structure-property relationship. Impact and friction resemble external 

mechanical stimuli which can cause the displacement of stabilizing layers in the crystal 

and therefore lead to internal strains. If the strain energy is below the lowest BDE, the 

integrity of the molecule is not affected. On the contrary, if the strain energy surpasses 

the energy necessary to break the weakest bond, the compound will decompose.[7] 

Besides the stacking and gearings of the individual layers, the strain caused by an 

interlayer slide also depends on other stabilizing interactions in the crystal, i.e. 

hydrogen bridges.[29] All three isolated molecules a, b and c show an almost planar 

benzene ring. When comparing the largest torsion angles of the ortho nitro groups (1: 

41°, 2: 45°, 3: 41°), a very similar twisting behavior can be identified. This can be 

explained by sterical effects as well as by electronic repulsion between the substituents 

at 1-position and the neighboring nitro groups. Despite those similarities, each 

compound exhibits a unique packing behavior in the unit-cell of the crystal (d, e, f) and 

therefore a difference in the gearing of the individual layers. Compound 1 exhibits a 

wave-like pattern with a moderate gearing between each layer. Compound 3 exhibits 

a wave-like pattern with a higher gearing of the individual layers and compound 2 

shows a layered structure with the lowest gearing of all investigated materials. For 

compound 3 the strain energy arising from mechanical stimuli is assumed to be the 

highest due to the high interlayer gearing and therefore the highest sensitivity is 

expected. Compound 2 exhibits the highest interlayer distance and therefore this 

material is expected to be the least sensitive towards mechanical stimuli, as it allows 

an easier sliding of adjacent layers without negative Oxygen-Oxygen repulsions or 

other detrimental interactions. 
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Figure 3. Single-crystal X-ray structure of 1 (a), 2 (b), 3 (c) and the crystal packing of 1 (d), 2 (e), 3 (f). 

When this effect is very pronounced, the slip barrier can be reduced significantly 

enough to become smaller than the bond dissociation energy.[7] Next to crystal 

packing, a significant contribution to the extent of the slide barrier is made up of 

intermolecular interactions which therefore directly correlate with the sensitivity of a 

compound towards mechanical stimuli. In general, insensitive molecules exhibit a 

Hirshfeld surface in which the plane features the most red dots representing close 

contacts and fewer red dots between the individual layers.[29] Compounds 1–3 exhibit 

red dots and therefore close contacts which point out of the molecular plane (Figure 

4) and can therefore be considered sensitive. Because none of these close contacts is 

arranged in a slidable plane, interlayer repulsion results from external stimuli, which is 

characteristic for sensitive materials. 



Chapter 6 

 

- 70 - 

 

 

Figure 4. Two-dimensional Fingerprint plot in crystal stacking as well as the corresponding Hirshfeld surface 

(bottom right in the 2D plot) of 1 (a), 2 (b), and 3 (c) (color coding: white, distance d equals VDW distance; blue, d 

exceeds VDW distance, red, d, smaller than VDW distance). The population of close contacts of 1, 2, and 3 in 

crystal stacking (d). 

The experimental sensitivity values for compounds 1–3 (IS: 9–10 J, FS: >360 N, ESD: 

50–160 mJ) are very similar and the same would be expected for the distribution and 

intensity of stabilizing and destabilizing close-contacts in the Hirshfeld surface and 

Fingerprint plot analysis of the crystal structures. The compounds show a 3D network 

regarding their close contacts, represented by red dots on the surface in all three 

dimensions, which is typical for sensitive materials. The analysis of the 2D Fingerprint 

plots shows very interesting results as the distribution and intensity of the close 

contacts in the model compounds are very different. Less sensitive energetic materials 

are often designated by numerous and/or strong O∙∙∙H and N∙∙∙H interactions as they 

facilitate more rigid interlayers, which absorb energy more easily and are hence less 

likely to cause a detrimental sliding of the planes that induces a repulsion of these 

layers.[10] Compound 1 shows very few O∙∙∙H contacts (22%) when compared to 

compound 2 (45%) and 3 (32%), but the number of strong O∙∙∙H contacts (<2.5 Å) is 

significantly higher for compound 1. Apparently, very few but strong O∙∙∙H close 
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contacts in compound 1 are capable of stabilizing the molecule to the same extent as 

significantly more but weaker interactions in compounds 2 and 3, as they show very 

similar sensitivities towards external stimuli. The stabilizing N∙∙∙H close-contacts can 

be neglected in all three cases as their occurrence is low (0–0.9 %) and they can be 

regarded as weak (>3 Å). The same is true for the stabilizing F∙∙∙H interactions (1.3%) 

in compound 1. The O∙∙∙O interaction is a particularly important close contact 

interaction, as a high occurrence of O∙∙∙O contacts implies a high sensitivity. Increased 

exposure of nitro groups on the molecular surface causes the risk of explosion to rise 

due to the increased repulsion in the case of interlayer sliding.[7,10,15,29] The title 

compounds show significant amounts of O∙∙∙O close-contacts (26–32%) and can 

therefore be considered sensitive. All O∙∙∙N and C∙∙∙N contacts are very weak (>3 Å), 

which is typical for sensitive materials.[29] The 2D Fingerprint plots exhibit two 

pronounced spikes that indicate strong O∙∙∙H bonding in all investigated compounds.[10] 

With respect to di + de (di: the distance between the Hirshfeld surface to the nearest 

atom interior; de: distance from the Hirshfeld surface to the nearest atom exterior), the 

trend for the number of hydrogen bonds is 2 > 3 > 1, but an inverse trend is found for 

the relative strength of the H-bonds. These results indicate, that not only the quantity 

but also the relative bond strength for stabilizing interactions must be considered when 

utilizing Hirshfeld surface and Fingerprint plot analysis for the sensitivity assessment 

of energetic materials. 

6.3.3 Heat of formation and detonation parameters. The performance of an 

energetic material depends directly on its density, which therefore is not only a decisive 

factor but most interestingly results from the packing behavior within the crystal. We 

observed the crystal densities of 1, 2, and 3 to be 1.89, 1.84, and 1.76 g cm-3 at 145 

K. Hence, the calculated densities under ambient conditions are 1.84, 1.80, and 1.72 

g cm-3. To calculate the heat of formation (HOF), extremely precise theoretical methods 

must be applied, since experimental values are often inaccurate.[10] The calculation of 

the HOF was therefore performed using ab-initio calculations which make use of the 

optimized molecule geometry obtained by refining the obtained geometry from the X-

ray diffraction experiment. According to Trouton´s Rule, the HOF was determined by 

the subtraction of the sublimation enthalpy from the HOF of the corresponding gas-

phase species.[11] To obtain the HOF of the corresponding gas-phase species, the 

atomization energies were subtracted from the total enthalpy of the molecules.[30-31] All 

calculations were carried out on a CBS-4M level of theory in combination starting from 

the respective crystal structures. Applying the specific densities and the EXPLO5 

(V6.05)[32] thermochemical code, the detonation properties of 1, 2, and 3 were 

determined and are given in Table 2. They were calculated at the Chapman−Jouguet 

point with the help of the stationary detonation model using a modified 

Becker−Kistiakowski−Wilson state equation for the system. The C−J point was found 

by the Hugoniot curve of the system by its first derivative.[32-33] 
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Table 2. Physical and calculated detonation parameters of compounds 1, 2, and 3 using the EXPLO5 computer 

code. 

[a] Impact sensitivity[22] [b] friction sensitivity[23] [c] nitrogen content [d] combined nitrogen and oxygen 

content [e] absolute oxygen balance assuming the formation of CO or CO2 [f] melting point from DTA [g] 

decomposition from DTA [h] calculated room temperature density [i] Heat of formation calculated at the 

CBS-4M level of theory for FMN, experimental determined for MN [j] detonation energy [k] detonation 

temperature [l] detonation pressure [m] detonation velocity [n] volume of detonation gases at standard 

temperature and pressure conditions 

The HOF of the compounds can be ordered 3 > 1 > 2 whilst the densities are ordered 

1 > 2 > 3. According to these results, similar values for the detonation pressure and 

the detonation velocity can be expected. However, the mesyl substituent in compound 

2 leads to a significantly lowered oxygen balance when compared to the other two 

compounds. It also exhibits significantly lower values for Vdet and PC-J. Regarding these 

values, compounds 1 and 3 slightly exceed TNT (6881 m s-1, 18.9 GPa), whilst 

molecule 2 is unable to compete.[26-28] 

 

 (1) (2) (3) 

formula 

Mr [g mol−1] 

IS[a] [J] 

FS[b] [N] 

ESD [mJ] 

N[c] [%] 

N+O[d] [%] 

ΩCO2
[e] [%] 

Tmelt
[f] [°C] 

Tdec
[g] [°C] 

ρ25°C[h] [g cm−3] 

∆𝐻𝑓
° [i] [kJ mol−1] 

C6H2N3O6F1 

231.09 

10 

>360 

160 

18.18 

59.72 

-48.5 

126.7 

350.6 

1.837 

-532.8 

C7H5N3O9S1 

307.19 

9 

>360 

50 

13.68 

60.55 

-39.1 

 139.4 

237.4 

1.795 

-386.1 

C7H3N3O7 

241.11 

10 

>360 

120 

17.43 

63.88 

-56.4 

101.6 

185.1 

1.721 

-163.2 

EXPLO5 V 6.05    

∆𝑈𝑓
° [j] [kJ kg−1] 

TC−J
[k] [K] 

PC−J
[l] [GPa] 

Vdet
[m] [ms−1] 

Vo
[n] [dm3 kg−1] 

-4070 

3301 

23.8 

7376 

606.9 

-3904 

2240 

12.6 

5863 

383.9 

-4391 

3361 

20.4 

7062 

616.1 
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6.4 Conclusions 

1-Fluoro-2,4,6-trinitrobenzene, 2,4,6-trinitrophenyl methanesulfonate, and 2,4,6-

trinitrobenzaldehyde have been prepared and intensively characterized. The molecular 

structures of all aforementioned compounds were elucidated by single-crystal X-ray 

diffraction. Older methods for the prediction of an energetic materials sensitivity (BDE, 

ESP) were compared with newer, current methods which are based on the crystal 

structure of a compound (Hirshfeld surface analysis & Fingerprint plot analysis). We 

found, that a combination of very few but strong stabilizing interactions in a crystal may 

result in the same sensitivity as numerous but significantly weaker stabilizing 

interactions. Another key result is the fact, that all investigated energetic materials had 

at least 25% of destabilizing O∙∙∙O interactions as well as close contacts between the 

individual layers. The broader application of Hirshfeld surface analysis could lead to 

deeper insight and understanding of the relationship between structure and sensitivity 

of an energetic material. Sensitivity values could be predicted or even determined 

without the need to prepare large amounts of energetic material. This is not only 

environmentally friendly but also leads to a significant safety increase. The calculation 

using the EXPLO5 code showed that the performance of the investigated compounds 

decreases from 1 over 3 to 2. Except for the latter compound, the values are 

comparable to TNT. 

 

6.5 Experimental Section 

General Information. 1-Fluoro-2,4-dinitrobenzene, pyridine, iodine N,N-dimethyl-p-

nitrosoaniline, methanesulfonic anhydride, perchloric acid, nitric acid, sulfuric acid, 

oleum, and potassium nitrate are commercially available. Potassium picrate and TNT 

were used from a group internal stockpile. 

For NMR spectroscopy the solvent DMSO-d6 was dried using a 3 Å mole sieve. 

Spectra were recorded on a Bruker Avance III spectrometer operating at 400.1 MHz 

(1H), 100.6 MHz (13C), and 28.9 MHz (14N). Chemical shifts are referred to TMS (1H, 
13C) and MeNO2 (14N). Raman spectra were recorded with a Bruker MultiRam FT 

Raman spectrometer using a neodymium-doped yttrium aluminum garnet (Nd:YAG) 

laser (λ = 1064 nm) with 1074 mW. The samples for Infrared spectroscopy were placed 

under ambient conditions onto an ATR unit using a Perkin Elmer Spectrum BX II FT-

IR System spectrometer. Melting and/or decomposition points were detected with a 

OZM DTA 552-Ex instrument. The scanning temperature range was set from 293 K to 

673 K at a scanning rate of 5 K min-1. Elemental analysis was performed with a Vario 

EL instrument and a Metrohm 888 Titrando device.  
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Caution! All investigated compounds are explosives, which show partly increased 

sensitivities toward various stimuli (e.g. higher temperatures, impact, friction, or 

electrostatic discharge). Therefore, proper safety precautions (safety glasses, Kevlar 

gloves, and earplugs) have to be applied while synthesizing and handling the 

described compounds. 

6.5.1 1-Fluoro-2,4,6-trinitrobenzene. 1-Fluoro-2,4-dinitrobenzene (13.6 g, 72.9 

mmol) was slowly added to a nitration mixture consisting of 61.9 mL sulfuric acid, 50.8 

mL Oleum (65%), and potassium nitrate (42.0 g, 415.4 mmol) at 0 °C. The reaction 

mixture was then stirred for 15 min at 0 °C and subsequently warmed to room 

temperature before the solution was finally heated to 125 °C for five days. The obtained 

suspension was allowed to cool to ambient temperature and afterward poured onto 

750 mL of iced water. The solid was collected by suction filtration and washed with 

water (3 × 200 mL) until the filtrate ran clear. The filter cake was dried and recrystallized 

from boiling tetrachlorocarbon to afford the product upon cooling as pale yellow crystals 

(9.7 g, yield: 57%). 

1H NMR (Chloroform-d1, 400 MHz): δ 9.20 (d, 2H, 4JFH = 5.6 Hz) ppm 13C{1H} NMR (Chloroform-d1, 100 

MHz): δ 154.2 (d, 1JFC = 292.0 Hz), 142.4 (s, broad), 139.4 (s, broad), 125.9 (d, 3JFC = 0.8 Hz) ppm. 14N 

NMR (Chloroform-d1, 29 MHz): δ -24 (s, NO2) ppm. 19F NMR (Chloroform-d1, 377 MHz): δ -113.2 (t, 4JFH 

= 5.6 Hz) ppm.  IR (ATR, cm-1): ̃ 3110 (w), 3089 (w), 3063 (m), 2887 (w), 1620 (s), 1541 (vs), 1482 (m), 

1421 (m), 1342 (vs), 1319 (s), 1280 (m), 1258 (m), 1202 (m), 1089 (s), 948 (w), 938 (m), 923 (s), 827 

(vw), 776 (w), 757 (w), 737 (s), 718 (s), 709 (vs), 672 (m), 649 (s), 551 (m), 519 (m), 481 (w), 462 (w), 

406 (w). Raman (1064 nm, 1000 mW, 25 °C, cm−1): ̃ 3063 (9), 2643 (2), 1621 (14), 1548 (36), 1364 

(100), 1347 (51), 1279 (14), 1187 (4), 1090 (6), 940 (11), 927 (7), 826 (21), 817 (12), 741 (3), 522 (2), 

377 (5), 354 (8), 333 (20), 313 (7), 205 (26), 149 (8), 105 (48), 90 (40). Elemental Analysis calcd (%) 

for C6H2FN3O6: C 31.18, H 0.87, F 8.22, N 18.18, O 41.54; found: C 31.42, H 1.13, N 18.23. DTA: 127 

°C (m.p.), 351 °C (dec.) IS: 10 J. FS: >360 N. ESD: 160 mJ.  

6.5.2 2,4,6-Trinitrophenyl methanesulfonate. Potassium picrate (10.0 g, 37.4 mmol, 

1.0 eq.) was suspended in 200 mL toluene. Methanesulfonic anhydride (6.5 g, 37.4 

mmol, 1.0 eq.) was added to the yellow suspension in small portions. After adding 

perchloric acid (60% solution in acetic acid, 10 drops) the reaction mixture was stirred 

for 4 h at 120 °C with a CaCl2 filled drying tube on top of the reflux condenser. After 

cooling to room temperature, the yellowish by-product potassium mesylate was 

separated by filtration and the filter residue was washed with ~150 mL toluene. The 

yellow filtrate phases were combined and the solvent was removed in vacuo. The 

resulting yellow-orange oil was treated with ~15 mL of ice-cold ether to precipitate the 

solid product. The solvents were removed in vacuo and a pale yellow solid was 

obtained. It was recrystallized from 150 mL chloroform to afford the product as a white 

solid 8.6 g (75%).  

1H NMR (Acetone-d6, 400 MHz): δ 9.24 (s, 2H), 3.69 (s, 3H) ppm 13C{1H} NMR (Acetone-d6, 100 MHz): 

δ 146.3, 145.8, 138.8, 126.0, 40.4. ppm. 14N NMR (Acetone-d6, 29 MHz): δ -22 (s, NO2) ppm. IR (ATR, 

cm-1): ̃ 3095 (w), 2163 (w), 2004 (w), 1614 (w), 1543 (m), 1373 (m), 1343 (s), 1243 (m), 1192 (m), 1169 

(m), 1087 (w), 969 (w), 919 (m), 847 (s), 823 (m), 792 (m), 775 (s), 730 (s), 716 (s), 668 (s), 634 (m), 
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560 (m), 536 (s), 505 (s). Raman (1064 nm, 1000 mW, 25 °C, cm−1): ̃ 3097 (18), 3035 (15), 2942 (46), 

1616 (55), 1547 (42), 1363 (100), 1245 (50), 1089 (25), 823 (31), 636 (37), 565 (21), 367 (23), 330 (33), 

250 (17). Elemental Analysis calcd (%) for C7H5N3O9S: C 27.37, H 1.64, S 10.44, N 13.68, O 46.87; 

found: C 27.34, H 1.69, N 13.60, S 10.99. DTA: 139 °C (m.p.), 237 °C (dec.) IS: 9 J. FS: >360 N. ESD: 

50 mJ. 

6.5.3 2,4,6-Trinitrobenzaldehyde. Trinitrotoluene (10.0 g, 44.0 mmol, 1 eq) and N,N-

dimethyl-p-nitrosoaniline (7.0 g, 47.0 mmol, 1.1 eq) were dissolved in 15 mL pyridine 

with 50 mg of iodine as a catalyst. The mixture was stirred for 7 days at 20–25 °C. The 

organic solid was separated by filtration and washed with cold acetone. The obtained 

crude product was dried in vacuo and then dissolved in 180 mL of aqueous HCl (36%) 

and stirred at 80 °C for two hours. The product was then separated by filtration and 

washed acid-free with water. This way 6.4 g (61%) of pure TNBA could be obtained as 

a black solid.  

1H NMR (DMSO-d6,400 MHz): δ 10.55 (s, 1H), 9.16 (s, 2H) ppm. 13C{1H} NMR (DMSO-d6,100 MHz): 

δ 188.1, 148.1, 147.7, 134.2, 124.7 ppm. 14N NMR (DMSO-d6, 29 MHz): δ -20 (s, NO2) ppm. IR (ATR, 

cm-1): ṽ 3096 (w), 2916 (vw), 1714 (m), 1605 (m), 1554 (s), 1535 (vs), 1452 (w), 1405 (w), 1343 (vs), 

1194 (m), 1185 (w), 1157 (m), 1075 (w), 979 (w), 935 (w), 919 (m), 839 (m), 826 (m), 772 (m), 742 (m), 

729 (s), 701 (m), 570 (w), 538 (w), 475 (w), 435 (m). Raman (1064 nm, 1000 mW, 25 °C, cm−1): ̃ 3104 

(8), 2911 (7), 2903 (8), 1713 (16), 1623 (15), 1553 (29), 1382 (32), 1351 (81), 1274 (10), 1197 (12), 981 

(8), 938 (7), 842 (13), 826 (18), 334 (22), 292 (8), 255 (7), 232 (19), 203 (34), 192 (26), 151 (36), 88 

(100).Elemental Analysis calcd (%) for C7H3N3O7: C 34.87, H 1.25, N 17.43; found: C 34.87, H 1.38, 

N 17.12. DTA: 102 °C (m.p.), 185 °C (dec.) IS: 10 J. FS: 360 N. ESD: 120 mJ. 

6.5.4 X-Ray Measurements. 1-Fluoro-2,4,6-trinitrobenzene and 2,4,6-

trinitrobenzaldehyde were solved in ethyl acetate and single crystals have been 

received after slow solvent evaporation. Single crystals of 2,4,6-trinitrophenyl 

methanesulfonate have been received after slow solvent evaporation of chloroform. 

Data collection was performed with an Oxford Xcalibur 3 diffractometer with a CCD 

area detector, equipped with a multilayer monochromator, a Photon 2 detector and a 

rotating-anode generator were employed for data collection using Mo-Kα radiation (λ= 

0.7107 Å). Data collection and reduction were carried out using the Crysalispro 

software.[34] The structures were solved by direct methods (SIR-2014)[35] and refined 

(SHELXLE)[36] by full-matrix least-squares on F2 (ShelxL)[37-38] and finally checked 

using the platon software[39] integrated with the WinGX software suite.[40] The non-

hydrogen atoms were refined anisotropically and the hydrogen atoms were located 

and freely refined. All Diamond 3 plots are shown with thermal ellipsoids at the 50% 

probability level and hydrogen atoms are shown as small spheres of arbitrary radius. 
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6.8 Supporting Information 

 

1 NMR Spectra 

1.1 Compound 1 
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1.2 Compound 2 
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1.3 Compound 3 
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2 Detonation Parameter 

2.1 Compound 1 

C(6,000) H(2,000) N(3,000) O(6,000) F(1,000)  

 

Molecular weight                    = 231,09 

Density of reactant                  = 1,837 g/cm3 

Initial pressure                          = 0,1  MPa 

Oxygen balance                      = -45,00052 % 

Enthalpy of formation             = -1670,75 kJ/kg 

Internal energy of formation   = -1603,71 kJ/kg 

 

Detonation parameters (at the C-J point): 

--------------------------------------------------------------------------------- 

Heat of detonation                             = -4070,915 kJ/kg 

Detonation temperature                     = 3301,012 K 

Detonation pressure                           = 23,86535 GPa 

Detonation velocity                             = 7376,067 m/s 

Particle velocity                                   = 1761,295 m/s 

Sound velocity                                     = 5614,772 m/s 

Density of  products                            = 2,413247 g/cm3 

Volume of  products                            = 0,4143794 cm3/g 

Exponent 'Gamma'                             = 3,187853 

Moles of gaseous products                = 5,734581 mol/mol explosive 

Moles of condensed products           = 2,679472 mol/mol explosive 

Volume of gas at STP                          = 606,8738 dm3/kg 

Mean molecular mass of gas. prod. = 34,6867 g/mol 

Mean molecular mass of cond.prod.= 12,011 g/mol 

Mean molecular mass of all prod.     = 27,46557 g/mol 

Entropy of products                             = 5,7983 kJ/kg K 

Internal energy of products                 = 5622,008 kJ/kg,  i.e.  10,32763  kJ/cm3 
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Compression energy                           = 1551,093 kJ/kg,  i.e.  2,849357  kJ/cm3 

Total heat energy                                = -4070,915 kJ/kg, i.e.  -7,478271  kJ/cm3 

 

Composition of detonation products (47): 

---------------------------------------------------------------------------------------------------------------------- 

     Products mol/mol EM                 mol/kg EM                Mol % Mass % 

------------------------------------------------------------------------------------ ----------------------------------- 

C(d) =              2,679472E+00 1,159473E+01   31,8452 13,9264 

CO2 =              2,142781E+00 9,272333E+00   25,4667 40,8075 

N2 =                 1,497698E+00 6,480902E+00   17,8000 18,1550 

CO =                 8,285554E-01 3,585361E+00   9,8473   10,0426 

HF =                  4,377052E-01 1,894057E+00   5,2021   3,7893 

CH2O2 =          2,990076E-01 1,293879E+00   3,5537   5,9551 

H2O =               2,876848E-01 1,244882E+00   3,4191   2,2427 

H2F2 =              1,844428E-01 7,981289E-01    2,1921   3,1938 

CF4 =                4,705893E-02 2,036354E-01    0,5593   1,7922 

H2 =                  2,905926E-03 1,257465E-02    0,0345   0,0025 

HCN =               2,566023E-03 1,110381E-02    0,0305   0,0300 

NH3 =               2,019898E-03 8,740591E-03    0,0240   0,0149 

H3F3 =              1,490167E-03 6,448316E-03    0,0177   0,0387 

CH2F2 =           2,035239E-04 8,806976E-04    0,0024   0,0046 

CFO =               1,582283E-04 6,846926E-04    0,0019   0,0032 

CH4 =               1,325425E-04 5,735436E-04    0,0016   0,0009 

F =                  1,046203E-04 4,527174E-04    0,0012   0,0009 

C2H4 =             1,832081E-05 7,927862E-05    0,0002   0,0002 

CNO =              1,054605E-05 4,563534E-05    0,0001   0,0002 

H =                  8,407203E-06 3,638002E-05    0,0001   0,0000 

H4F4 =               8,134671E-06 3,520070E-05    0,0001   0,0003 

CH3OH =           7,273919E-06 3,147602E-05    0,0001   0,0001 

NH2 =                 3,564576E-06 1,542479E-05    0,0000   0,0000 
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HCNO =            3,309321E-06 1,432024E-05    0,0000   0,0001 

CH2O =            2,676408E-06 1,158147E-05    0,0000   0,0000 

C2H6 =             2,567320E-06 1,110942E-05    0,0000   0,0000 

H2O2 =             8,090705E-07 3,501045E-06    0,0000   0,0000 

N2H4 =             6,373253E-07 2,757862E-06    0,0000   0,0000 

N =                    2,148729E-07 9,298074E-07    0,0000   0,0000 

N2O =               1,371812E-07 5,936165E-07    0,0000   0,0000 

F2 =                  6,305020E-08 2,728336E-07    0,0000   0,0000 

CFN =               5,508686E-08 2,383743E-07    0,0000   0,0000 

H6F6 =              4,275934E-08 1,850301E-07    0,0000   0,0000 

FO =                  3,661208E-08 1,584294E-07    0,0000   0,0000 

HFO =               3,420147E-08 1,479981E-07    0,0000   0,0000 

H5F5 =              1,061634E-08 4,593947E-08    0,0000   0,0000 

NF =                  8,485902E-09 3,672056E-08    0,0000   0,0000 

CF2 =                3,814907E-09 1,650803E-08    0,0000   0,0000 

CHF =               2,935616E-09 1,270312E-08    0,0000   0,0000 

NF3 =                1,007263E-09 4,358673E-09    0,0000   0,0000 

CF =                  2,293456E-10 9,924344E-10    0,0000   0,0000 

CHF3 =             2,278122E-10 9,857989E-10    0,0000   0,0000 

CF2O =             1,499837E-10 6,490161E-10    0,0000   0,0000 

F2O =               1,336626E-11 5,783905E-11    0,0000   0,0000 

CF3 =                2,299087E-12 9,948709E-12    0,0000   0,0000 

C(gr) =              7,169055E-17 3,102225E-16    0,0000   0,0000 

C2HF =             1,574275E-19 6,812273E-19    0,0000   0,0000 
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2.2 Compound 2 

C(7,000) H(5,000) N(3,000) O(9,000) S(1,000)  

 

Molecular weight  = 307.19 

Density of explosive  = 1.795 g/cm3 

Oxygen balance       = -49,47784 % 

Enthalpy of formation  = -1734,44 kJ/kg 

Internal energy of formation  = -1655,76 kJ/kg 

 

Detonation parameters (at the C-J point): 

--------------------------------------------------------------------------------- 

Heat of detonation                              = -3904,681 kJ/kg 

Detonation temperature                     = 2240,498 K 

Detonation pressure                           = 12,57338 GPa 

Detonation velocity                             = 5862,976 m/s 

Particle velocity                                  = 1194,72 m/s 

Sound velocity                                    = 4668,256 m/s 

Density of  products                            = 2,254384 g/cm3 

Volume of  products                            = 0,4435802 cm3/g 

Exponent 'Gamma'                             = 3,907376 

Moles of gaseous products                 = 4,82162 mol/mol explosive 

Moles of condensed products             = 5,870428 mol/mol explosive 

Volume of gas at STP                         = 383,86 dm3/kg 

Mean molecular mass of gas. prod.    = 31,24055 g/mol 

Mean molecular mass of cond.prod.   = 26,67034 g/mol 

Mean molecular mass of all prod.       = 28,73129 g/mol 

Entropy of products                             = 5,9155 kJ/kg K 

Internal energy of products                 = 4618,37 kJ/kg, i.e. 8,289973  kJ/cm3 

Compression energy                           = 713,688 kJ/kg, i.e. 1,281072  kJ/cm3 

Total heat energy                                = -3904,681 kJ/kg, i.e. -7,008902  kJ/cm3 
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Composition of detonation products: 

--------------------------------------------------------------------------------------------------------------------- 

Products              mol/mol       mol/kg                 Mol %             Mass % 

--------------------------------------------------------------------------------------------------------------------- 

C(gr) =              4,870561E+00 1,585526E+01   45,5531 19,0437 

N2 =                 1,487744E+00 4,843091E+00   13,9145 13,5670 

CO2 =              1,474806E+00 4,800973E+00   13,7935 21,1291 

H2O =              1,162167E+00 3,783232E+00   10,8695 6,8156 

H2SO4(l) =       9,998671E-01 3,254892E+00   9,3515   31,9237 

CO =                 3,860281E-01 1,256647E+00    3,6104   3,5199 

CH2O2 =          2,512905E-01 8,180321E-01    2,3503   3,7650 

NH3 =               2,342778E-02 7,626505E-02    0,2191   0,1299 

H2 =                  1,991075E-02 6,481597E-02    0,1862   0,0131 

CH4 =               1,371934E-02 4,466091E-02    0,1283   0,0716 

HCN =               1,079142E-03 3,512959E-03    0,0101   0,0095 

C2H6 =             9,113819E-04 2,966844E-03    0,0085   0,0089 

C2H4 =             2,912388E-04 9,480769E-04    0,0027   0,0027 

H2S =               1,155614E-04 3,761900E-04    0,0011   0,0013 

CH3OH =         1,012711E-04  3,296703E-04    0,0009   0,0011 

SO2 =                1,607743E-05 5,233724E-05    0,0002   0,0003 

CH2O =             6,274240E-06 2,042469E-05    0,0001   0,0001 

HCNO =            2,517524E-06 8,195359E-06    0,0000   0,0000 

H =                    8,063507E-07 2,624933E-06    0,0000   0,0000 

NH2 =               7,235816E-07 2,355493E-06    0,0000   0,0000 

N2H4 =             5,472519E-07 1,781483E-06    0,0000   0,0000 

COS =               5,225123E-07 1,700947E-06    0,0000   0,0000 

SO =                 4,870590E-07 1,585535E-06    0,0000   0,0000 

S =                    8,669488E-08 2,822200E-07    0,0000   0,0000 

CNO =              2,646984E-08 8,616794E-08    0,0000   0,0000 

H2SO4 =           1,779389E-08 5,792489E-08    0,0000   0,0000 
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H2O2 =             1,261897E-08 4,107885E-08    0,0000   0,0000 

SO3 =               1,161260E-08 3,780279E-08    0,0000   0,0000 

S2 =                  9,768153E-09 3,179851E-08    0,0000   0,0000 

NS =                  3,991198E-09 1,299265E-08    0,0000   0,0000 

N2O =               6,494896E-10 2,114300E-09    0,0000   0,0000 

N =                    8,409478E-11 2,737558E-10    0,0000   0,0000 

CS =                  2,622255E-12 8,536292E-12    0,0000   0,0000 

C(d) =                2,686988E-14 8,747018E-14    0,0000   0,0000 

S(l) =                 5,109685E-24 1,663368E-23    0,0000   0,0000 
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2.3 Compound 3 

C(7,000) H(3,000) N(3,000) O(7,000)  

 

Molecular weight                       = 241,11 

Density of reactant                     = 1,721 g/cm3 

Initial pressure                             = 0,1 MPa 

Oxygen balance                         = -56,40203 % 

Enthalpy of formation                 = -676,87 kJ/kg 

Internal energy of formation      = -602,33 kJ/kg 

 

Detonation parameters (at the C-J point): 

------------------------------------------------------------------------- 

Heat of detonation                                = -4391,028 kJ/kg 

Detonation temperature                        = 3361,192 K 

Detonation pressure                              = 20,43825 GPa 

Detonation velocity                                = 7062,668 m/s 

Particle velocity                                      = 1681,48 m/s 

Sound velocity                                        = 5381,188 m/s 

Density of  products                               = 2,258767 g/cm3 

Volume of  products                               = 0,4427193 cm3/g 

Exponent 'Gamma'                                = 3,200252 

Moles of gaseous products                   = 6,073771 mol/mol explosive 

Moles of condensed products               = 3,279312 mol/mol explosive 

Volume of gas at STP                             = 616,0655 dm3/kg 

Mean molecular mass of gas. prod.    = 33,21294 g/mol 

Mean molecular mass of cond.prod.   = 12,011 g/mol 

Mean molecular mass of all prod.        = 25,77926 g/mol 

Entropy of products                                = 6,1434 kJ/kg K 

Internal energy of products                   = 5804,73 kJ/kg, i.e. 9,989941 kJ/cm3 

Compression energy                              = 1413,702 kJ/kg, i.e. 2,432981 kJ/cm3 
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Total heat energy                                   = -4391,028 kJ/kg, i.e. -7,55696 kJ/cm3 

 

Composition of detonation products: 

----------------------------------------------------------------------------------------------------------------------- 

Products           mol/mol       mol/kg                 Mol %             Mass % 

----------------------------------------------------------------------------------------------------------------------- 

C(d) =              3,279251E+00 1,360059E+01   35,0606             16,3357 

CO2 =              1,841066E+00 7,635760E+00   19,6841 33,6050 

N2 =                 1,488687E+00 6,174281E+00    15,9165 17,2960 

CO =                1,249791E+00 5,183469E+00    13,3624 14,5189 

H2O =               8,341380E-01 3,459560E+00    8,9183    6,2325 

CH2O2 =          6,168757E-01 2,558472E+00    6,5954     11,7754 

H2 =                  1,720835E-02 7,137107E-02    0,1840    0,0144 

NH3 =               1,360286E-02 5,641740E-02    0,1454    0,0961 

HCN =               8,953327E-03 3,713363E-02    0,0957    0,1004 

CH4 =               2,576904E-03 1,068763E-02    0,0276    0,0171 

C2H4 =             4,559740E-04 1,891137E-03    0,0049    0,0053 

C2H6 =             1,652431E-04 6,853405E-04    0,0018    0,0021 

CH3OH =          1,227484E-04 5,090948E-04    0,0013    0,0016 

C(gr) =              6,114367E-05 2,535914E-04    0,0007    0,0003 

H =                  3,718788E-05 1,542355E-04    0,0004    0,0000 

CH2O =            2,582675E-05 1,071156E-04    0,0003    0,0003 

NH2 =               2,155524E-05 8,939968E-05    0,0002    0,0001 

CNO =              1,718879E-05 7,128993E-05    0,0002    0,0003 

HCNO =            1,710196E-05 7,092983E-05    0,0002    0,0003 

N2H4 =             6,513339E-06 2,701386E-05    0,0001    0,0001 

H2O2 =             2,417571E-06 1,002680E-05    0,0000    0,0000 

N =                  3,764218E-07 1,561197E-06    0,0000    0,0000 

N2O =               1,914663E-07 7,941001E-07    0,0000    0,0000 
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3 Structure refinement data 

3.1 Compound 1 

Empirical formula  C6 H2 F N3 O6 

Formula weight  231.11 

Temperature  123(2) K 

Wavelength  0.71073 Å 

Crystal system  Trigonal 

Space group  R-3 

Unit cell dimensions a = 21.7651(3) Å α = 90°. 

                             b = 21.7651(3) Å β = 90°. 

                             c = 8.9198(2) Å γ = 120°. 

Volume 3659.37(13) Å3 

Z 18 

Density (calculated) 1.888 Mg/m3 

Absorption coefficient 0.185 mm-1 

F(000) 2088 

Crystal size 0.400 x 0.400 x 0.300 mm3 

Theta range for data collection 2.526 to 30.502°. 

Index ranges -31<=h<=31, -31<=k<=31, -12<=l<=12 

Reflections collected 24440 

Independent reflections 2477 [R(int) = 0.0224] 

Completeness to theta = 25.242° 99.3 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.00000 and 0.89869 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2477 / 0 / 147 

Goodness-of-fit on F2 1.035 

Final R indices [I>2sigma(I)] R1 = 0.0316, wR2 = 0.0851 

R indices (all data) R1 = 0.0358, wR2 = 0.0885 

Extinction coefficient n/a 

Largest diff. peak and hole 0.456 and -0.177 e.Å-3 
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3.2 Compound 2 

Empirical formula  C7 H5 N3 O9 S 

Formula weight  307.20 

Temperature  143(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21 

Unit cell dimensions       a = 8.3195(6) Å α = 90°. 

                              b = 7.9947(5) Å β = 103.585(7)°. 

                              c = 8.5747(6) Å γ = 90°. 

Volume 554.36(7) Å3 

Z 2 

Density (calculated) 1.840 Mg/m3 

Absorption coefficient 0.349 mm-1 

F(000) 312 

Crystal size 0.450 x 0.400 x 0.050 mm3 

Theta range for data collection 3.531 to 28.275°. 

Index ranges -11<=h<=11, -10<=k<=10, -11<=l<=10 

Reflections collected 4825 

Independent reflections 2522 [R(int) = 0.0170] 

Completeness to theta = 25.242° 99.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.00000 and 0.69252 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2522 / 1 / 201 

Goodness-of-fit on F2 1.056 

Final R indices [I>2sigma(I)] R1 = 0.0267, wR2 = 0.0656 

R indices (all data) R1 = 0.0285, wR2 = 0.0678 

Absolute structure parameter 0.32(4) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.277 and -0.334 e.Å-3 



Chapter 6 

 

- 95 - 

 

3.3 Compound 3 

Empirical formula  C7 H3 N3 O7 

Formula weight  241.12 

Temperature  143(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pbcn 

Unit cell dimensions a = 10.5782(10) Å  α = 90°. 

                             b = 14.2749(16) Å               β = 90°. 

                             c = 12.0267(13) Å  γ = 90°. 

Volume 1816.1(3) Å3 

Z 8 

Density (calculated) 1.764 Mg/m3 

Absorption coefficient 0.162 mm-1 

F(000) 976 

Crystal size 0.200 x 0.100 x 0.050 mm3 

Theta range for data collection 4.151 to 28.281°. 

Index ranges -11<=h<=14, -19<=k<=18, -16<=l<=14 

Reflections collected 15402 

Independent reflections 2245 [R(int) = 0.0616] 

Completeness to theta = 25.242° 99.5 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.00000 and 0.90557 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2245 / 0 / 166 

Goodness-of-fit on F2 1.032 

Final R indices [I>2sigma(I)] R1 = 0.0432, wR2 = 0.0950 

R indices (all data) R1 = 0.0748, wR2 = 0.1110 

Extinction coefficient n/a 

Largest diff. peak and hole 0.247 and -0.208 e.Å-3 
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4 Enlarged View of the Figures 

4.1 Figure 2  

 

 

 

   

 

 

 

Figure 2. ESP of 1 (left), 2 (center) and 3 (right), calculated on the 0.02 electron bohr-3 hypersurface. 

4.2 Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Single-crystal X-ray structure of 1 (a), 2 (b), 3 (c) and the crystal packing of 1 (d), 2 (e), 3 (f). 
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4.3 Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Two-dimensional Fingerprint plot in crystal stacking as well as the corresponding Hirshfeld surface 

(bottom right in 2D plot) of 1 (a), 2 (b), and 3 (c) (color coding: white, distance d equals VDW distance; blue, d 

exceeds VDW distance, red, d, smaller than VDW distance). The population of close contacts of 1, 2, and 3 in 

crystal stacking (d). 
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7 A Study of 3,5-Dinitro-1-(2,4,6-trinitrophenyl)-1H-pyrazol-

4-amine (PicADNP) as a New High Energy Density Booster 

Explosive 

published in Eur. J. Org. Chem. 2021, 2021, 1964–1970. (doi: 10.1002/ejoc.202100159) 

 

7.1 Abstract 

Two improved fast, feasible, scalable, and economic synthetic protocols for the 

laboratory scale manufacturing of 3,5-dinitro-1-(2,4,6-trinitrophenyl)-1H-pyrazol-4-

amine (PicADNP) are described. The previous set of analytical data from an earlier 

publication could be verified and complemented by additional measurements. The 

material was fully characterized by multinuclear NMR, spectroscopic methods, 

elemental analysis, DSC and DTA as well as X-ray diffraction. The crystal structure 

was elucidated and Hirshfeld surface analysis, as well as 2D Fingerprint plot analysis 

for the assessment of sensitivities towards external stimuli was applied. The sensitivity 

towards shock, friction, and electrostatic discharge was also determined 

experimentally. The performance of the title compound was calculated by applying the 

EXPLO5 computer code and the theoretical results were compared with the results of 

SSRT and booster testing experiments. The title compound combines good energetic 

properties with improved safety characteristics and could find its way into an 

application as a new booster explosive to replace the state-of-the-art material PETN. 

The optimizations of the synthetic protocol comprise a greener solvent system, shorter 

reaction times, higher yields for the pure material, and a nontoxic byproduct to make 

the manufacturing process more attractive and better suitable for a subsequent scale 

up to the technical and industrial scale. 

KEYWORDS: HEDM, Booster Explosive, Green Chemistry, Hirshfeld surface analysis. 

 

7.2 Introduction 

Over the last decade, the development of new high energy density materials (HEDMs), 

which exhibit superior performance, a greener and economic synthesis, and an 

https://doi.org/10.1002/ejoc.202100159
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increased safety profile has been of major interest to the energetic materials 

community.[1-3] One specific area is the development of new materials for booster 

explosives, as the energy generated by the initiation of a small amount of a primary 

explosive like lead azide is often insufficient for the safe and proper initiation of various 

high explosives such as TATB or HNS.[4] A solution for this problem are booster 

explosives, which are applied to transfer and enhance the energy of the initial 

shockwave of a primary explosive for successful initiation of the respective high 

explosive.[1,3] For this application new energetic materials need to balance a shock 

sensitivity that is low enough for initiation via a primary explosive with sufficient 

explosive performance for the safe initiation of the high explosive while maintaining a 

safe application for the user.[1] Another important requirement for booster explosives is 

high thermal stability, especially for the application in insensitive munitions, deep-well 

drilling, and stage separation for space exploration.[1,3] Examples for developments in 

this area of HEDM research are polymer-bonded explosive formulations based on 

LLM-105[5] or CL-20/FOX-7[6], which have been published in recent years. However, 

since 1912[7] the most common component in booster charges has been PETN due to 

its high explosive performance and easy synthesis. The two main drawbacks of PETN 

are the high sensitivity (IS: 4 J, FS: 73 N, ESD: 30 mJ) and a comparably low melting 

point of 142 °C.[2,8-10] To mitigate those problems it can be applied in a formulation with 

TNT (“pentolite”).[1] To overcome the drawbacks of PETN and PETN-based formulation 

we started our research for a potential replacement material for PETN, which should 

combine high energetic performance with an increased safety profile for energy 

transfer applications.  

The title compound 3,5-dinitro-1-(2,4,6-trinitrophenyl)-1H-pyrazol-4-amine (PicADNP) 

was first synthesized via a nucleophilic substitution reaction of 4-amino-3,5-

dinitropyrazol (ADNP, LLM-116) with picryl chloride and sodium fluoride in NMP by 

Wang et al. in 2009.[11] However, the synthetic protocol proposed by the authors has 

various drawbacks for manufacturing exceeding the laboratory scale. The analytical 

data for PicADNP given in the publication of Wang et al. comprises 1H and 13C NMR, 

elemental analysis, melting point, and infrared spectroscopy.[11] 

This work proposes two new and optimized synthetic protocols for the manufacturing 

of PicADNP on a laboratory scale starting from potassium 4-amino-3,5-dinitropyrazol-

1-ide (KADNP) and picryl derivatives. Both protocols are scalable, time-efficient, and 

more environmentally benign. A complete characterization of the title compound was 

conducted and new results for thermal analysis, structural elucidation via X-ray, and 

calculated as well as experimental values for various energetic properties could be 

obtained. 
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7.3 Results and Discussion 

7.3.1 Optimization of the Synthesis. As mentioned in the introduction, the initial 

synthesis for PicADNP proposed by Wang et al. shows some significant drawbacks for 

manufacturing exceeding the laboratory scale. The synthetic protocol takes 16 h and 

only a comparably low yield of 53% is obtained in the process. The applied solvent N-

methyl-2-pyrrolidone (NMP) is considered toxic for reproduction and can damage the 

unborn child and is as such part of the REACH candidate list of “substances of very 

high concern for authorization”.[12] Also, the very toxic byproduct hydrogen fluoride is 

formed in the reaction process.[13] 

To overcome those drawbacks, a screening of various picrylating agents for the 

nucleophilic substitution of potassium 4-amino-3,5-dinitropyrazol-1-ide (KADNP) was 

performed in an initial study for this work. In addition, various solvents were evaluated 

to replace NMP with a more environmentally benign alternative. The best results were 

achieved when utilizing picryl chloride (PicCl) or picryl mesylate (PicMs) as the 

picrylation agents, HPLC grade acetonitrile as the solvent, and a temperature of 70 °C 

for the reaction. In a subsequent study, the reaction time was varied between 4 and 72 

h for the best two systems to further optimize the manufacturing process. The two most 

promising synthetic protocols for a fast, easy and scalable synthesis of PicADNP are 

depicted in Schemes 1 and 2.  

 

Scheme 1. Reaction Scheme for Synthetic Protocol 1. 

By following the first protocol, a yield of 88% could be realized within a reaction time of 

only 8 hours at 70 °C, starting from KADNP and PicCl. This resembles a significant 

improvement over the state-of-the-art synthesis proposed by Wang et al. because the 

synthesis is faster, cheaper, less toxic, and exhibits a higher yield. 

 

Scheme 2. Reaction Scheme for Synthetic Protocol 2. 
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For the second protocol utilizing KADNP and PicMs as the starting materials and 

cesium carbonate as a catalyst, a slightly lower yield of 76% was obtained however, 

the time required for the maximum yield at 70 °C could be lowered by another 25% to 

6 hours. Despite this improvement regarding reaction time, the second protocol has 

two minor drawbacks as the starting material picryl mesylate is very hygroscopic and 

not commercially available. 

Another improvement that was employed for both protocols is the cheap, feasible, and 

scalable workup process. The respective non-toxic byproduct (KMs, KCl) precipitates 

from the reaction mixture during the synthesis and can be easily separated by filtration. 

Adding an excess of water to the acetonitrile phase precipitates the product with high 

purity. 

7.3.2 Spectroscopic Characterization. The material obtained by both synthetic 

protocols was completely characterized by multinuclear NMR spectroscopy, vibrational 

spectroscopy (IR, Raman), and elemental analysis. No notable differences were found 

for the purified materials from both synthetic protocols. The chemical shifts found in 

the 1H NMR measurements (9.36, 7.89 ppm) are in good agreement with the previously 

reported signals of Wang et al. (9.36, 7.88 ppm). The same is true for the results of the 
13C{1H} NMR measurements, which revealed chemical shifts between 125 and 150 

ppm as expected. In the 14N NMR spectrum, no distinct signals for the nitro groups 

were found due to the rather large signal width of over 800 Hz. The values for the IR 

spectroscopy are in good agreement with the values given by Wang et al.. In Table 1 

an overview of various characteristic Raman- and infrared vibration modes is given. 

They were assigned according to the available literature.[14]  

Table 1. Characteristic vibration modes of PicADNP. 

νas/s: asymmetric/symmetric vibration mode δ: deformation vibration 

 
The results of the elemental analysis proof a successful synthesis of high purity 

PicADNP with very low deviations from the calculated values for the elemental 

composition of the title compound. 

 PicADNP 

 IR Raman 

ν(N-H) 3362 3364 

ν(C-H) 3096 3087 

νas(NO2) 1542 1556 

νs(NO2) 1337 1364 

ν(C-N) 912 824 

δ(NO2) 742 773 
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7.3.3 Thermal Analysis. The observed values for thermal analysis (DTA & DSC) are 

in good agreement with the melting range given by Wang et al. (234–236°C). In the 

DTA measurements, a melting point was observed at 234.6 °C as well as a subsequent 

decomposition starting at 238.2 °C (Figure 1). 

 

Figure 1. Differential thermal analysis at 5 K/min. 

In the DSC measurements, a melting point was observed at 233.6 °C as well as a 

subsequent decomposition starting at 237.5 °C (Figure 2). 

 

 

Figure 2. Differential scanning calorimetry at 5 K/min 
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7.3.4 Structure-property relationship. External mechanical stimuli like impact or 

friction can lead to a displacement of stabilizing crystal layers in a crystal, which 

subsequently results in internal strains. The energy of such strains can surpass the 

required energy to break the weakest bond of the molecule, which leads to the 

decomposition of a material.[15] The strain energy caused by an interlayer slide is not 

only dependent on factors like the stacking and gearing of the individual layers, but 

also on other stabilizing interactions like hydrogen bridges.[16] Therefore the 

combination of crystal structure analysis and the analysis of the close-contact 

population via Hirshfeld surface analysis is required for an assessment of the sensitivity 

towards external stimuli of an energetic material.  

Figure 3. Single-crystal X-ray structure and the layered crystal packing of PicADNP. 

In the crystal, PicADNP exhibits a planar benzene ring and a planar pyrazole ring, 

which is twisted out of the benzene plane by 78.2°. The ortho nitro groups of the 

benzene ring show torsion angles of 38.9° (C2-nitro) and 18.8° (C6-nitro), which is a 

very common observation for trinitrobenzene derivatives.[17,18] This behavior is usually 

explained by a combination of steric effects and electronic repulsion between the 

substituent at the 1-position and the ortho nitro groups.[17,18] For PicADNP, the 

discussed torsion of the substituents facilitates minimization of the repulsion between 

neighboring nitro groups and reduces the repulsion between the pyrazole ring and the 

C2-nitro group. The lowest intramolecular oxygen-oxygen distance is observed for 

O6∙∙∙O9 and is comparably high with 3.152 Å. The distance between the pyrazole ring 

and the ortho-nitro group is 2.940 Å (N5∙∙∙O1). All other intramolecular interactions are 

within typical ranges and as expected. The atypical and surprisingly strong twisting of 

the para-nitro group 31.8° (C4-nitro) can be explained by strong intermolecular 

hydrogen bonds between O4∙∙∙H71´ (2.387 Å) and two weaker hydrogen bonds 

between N2∙∙∙H71´ (2.927 Å) and O3∙∙∙H71´ (2.866 Å). These three interactions are 

also essential for the stabilization of the molecular structure and the unit-cell structure. 

PicADNP exhibits a layered structure in the unit-cell with little to no gearing and 

moderately strong, stabilizing interlayer hydrogen bonds i.e. H5∙∙∙O7´ (2.727 Å), 

H5∙∙∙O9´ (2.612 Å), H3∙∙∙O3´ (2.589 Å), and H3∙∙∙O6´ (2.793 Å). 
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However, if those stabilizing interactions are destroyed by external stimuli like impact 

or friction an easy interlayer slide is facilitated, which results in negative oxygen-oxygen 

repulsions and other detrimental interactions between the individual layers. When the 

resulting strain energies surpass the lowest bond dissociation energy (BDE) of the 

molecule the material will decompose.[15] Besides the discussed crystal packing effects 

the amount and intensity of stabilizing and destabilizing intermolecular interactions in 

each layer of the structure is important for the extend of the energy that is required for 

a decomposition of the structure, which correlates directly with the sensitivity of the 

material.[15] They can be assessed by applying a combined method of Hirshfeld surface 

analysis and 2D Fingerprint plotting. 

As a general trend for insensitive molecules, it was found, that the individual planes of 

their Hirshfeld surface feature red dots which represent close contacts that are located 

within the plane of the molecule and therefore in a stabilized layer.[15,17,18] On the 

contrary, an increased amount of red dots that point out of the molecular plane is typical 

for more sensitive materials.[15,17,18]
  

 

Figure 4. Two-dimensional Fingerprint plot in crystal stacking as well as the corresponding Hirshfeld surface 

(bottom right in the 2D plot) of PicADNP (color coding: white, distance d equals VDW distance; blue, d exceeds 

VDW distance; red, d smaller than VDW distance). 

PicADNP exhibits various of those red dots, which point out of the molecular plane 

(Figure 4) and therefore the material is considered sensitive. Due to the arrangement 

of those close contacts in a nonslidable plane, a loss of stabilization and a subsequent 
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interlayer repulsion will occur if the material is exposed to external stimuli, which is 

common for sensitive materials. The title compound shows a 3D network with regard 

to its close contacts, which are represented by red dots on the surface in all three 

dimensions. This is a characteristic pattern for sensitive materials. 

The analysis of the 2D Fingerprint plots shows very interesting results regarding the 

distribution as well as the intensity of those close contacts observed for PicADNP. A 

high occurrence and/or very strong stabilizing interactions, especially O∙∙∙H and N∙∙∙H 

interactions, lead to more rigid interlayers that are capable of higher energy absorption 

and therefore are found in less sensitive materials. Such compounds can be exposed 

to stronger external mechanical stimuli before they undergo an interlayer slide and the 

subsequent repulsion of the layers and decomposition occurs.[19] An overview of the 

complete population of all close contacts for PicADNP is given in Figure 5. 

 

Figure 5. Population of close contacts for PicADNP (color coding: green = stabilizing interaction, red = destabilizing 

interaction, black = neutral interaction). 

PicADNP shows a high amount of stabilizing O∙∙∙H contacts (30.0%) with a high relative 

strength ranging from 2.3–3.0 Å. The amount of stabilizing N∙∙∙H contacts is very low 

(3.4%) and weak (>3.3 Å) and can therefore be neglected. The same is true for the 

C∙∙∙C, C∙∙∙H, N∙∙∙N, N∙∙∙C, and H∙∙∙H interactions as they all range between 0 and 1.9%. 

Another particularly important close contact interaction for sensitivity assessment is 

the O∙∙∙O repulsion, as a high occurrence of this destabilizing interaction is typical for 

a material with a high sensitivity. The nitro groups of PicADNP are exposed on the 

molecular surface and the distance between the oxygen atoms is maximized in the 

layered crystal structure. However, when the layers slide after an exposure to external 

stimuli closer oxygen-oxygen contacts lead to a repulsion of the layers, which results 

in strains and subsequent decomposition.[15,16,19,20] The title compound shows a very 

high amount of destabilizing O∙∙∙O (31.3%) and N∙∙∙O close-contacts (12.6%), which is 

typical for a sensitive material.[16-18] 

The 2D Fingerprint plot of PicADNP (Figure 4) exhibits two pronounced spikes that 

represent the strongest O∙∙∙H bonds in the structure.[19] In this plot di + de (di: the 
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distance between the Hirshfeld surface to the nearest atom interior; de: distance from 

the Hirshfeld surface to the nearest atom exterior) combine to values between 2.2 and 

3.6 Å, which is a typical range for hydrogen bonds. The 2D plot of the oxygen-oxygen 

interactions reveals, that the majority of those destabilizing close contacts range from 

2.9 to 3.6 Å, which is a typical observation for sensitive materials. A similar observation 

is made for the destabilizing N∙∙∙O close contacts, which range from 3.0–3.6 Å in the 

2D plot. The majority of C∙∙∙O interactions range between 2.9–4 Å and can therefore 

be considered medium to weak. It can be stated, that the amount of destabilizing close-

contacts is higher than the amount of stabilizing interactions and PicADNP must be 

considered a sensitive material. 

7.3.5 Heat of formation and calculated detonation parameters. The performance 

of an energetic material is directly dependent on its density and the density of a solid 

material results from its packing behavior in the crystal. For PicADNP a crystal density 

of 1.876 g cm-3 was observed at 145 K. The calculated density for ambient conditions 

is 1.82 g cm-3 and exceeds the density of PETN (1.77 g cm-3).[2] A requirement for the 

exact calculation of the heat of formation (HOF) is the application of very precise 

theoretical methods because experimental values are often too inaccurate.[19] 

Therefore the calculation of the HOF is based on ab-initio calculations that utilized 

optimized molecular geometries which were obtained by refining the geometry that was 

obtained from the X-ray diffraction experiments in this work. Following Trouton´s rule, 

the subtraction of the sublimation enthalpy from the HOF of the corresponding gas-

phase species yields the HOF of the molecule.[1] The HOF of the gas-phase species 

was obtained by subtracting the atomization energies from the total enthalpy of the 

molecule.[21,22] Those calculations were carried out on a CBS-4M level of theory in 

combination with the crystal structures as starting points for the structure optimization. 

The detonation properties of PicADNP given in Table 2 were calculated with the 

EXPLO5 (V6.05)[23] computer code from the extrapolated room temperature densities. 

The properties were calculated at the Chapman−Jouguet point with the help of the 

stationary detonation model using a modified Becker−Kistiakowski−Wilson state 

equation for the system. The C−J point was found by the Hugoniot curve of the system 

by its first derivative.[23,24] 

The calculated energetic properties for PicADNP range between 82–93% of the values 

for PETN and therefore a similar explosive performance would be expected for both 

materials. The title compound exhibits a detonation energy of -4952 kJ kg-1 compared 

to the -5995 kJ kg-1 and the respective detonation temperatures are 3692 K and 3958 

K. Concerning detonation pressure PicADNP shows a value of 27.2 GPa, whilst PETN 

exhibits a value of 31.6 GPa. The respective detonation velocities are 7993 m s-1 and 

8525 m s-1, whilst their volume of formed gas is 654.5 dm3 kg-1 and 746 dm3 kg-1. 
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Table 2. Physical and calculated detonation parameters of PicADNP using the EXPLO5 computer code. 

Regarding the thermal stability of both materials, PicADNP surpasses PETN by over 

90 °C, as the title compound melts at 234.6 °C, whilst PETN already melts at 142 °C. 

The same trend is observed for the sensitivities towards external stimuli, as the title 

compound is less sensitive towards impact (7 J compared to 4 J), insensitive towards 

friction (>360 N compared to 73 N), and less sensitive towards electrostatic discharge 

(270 mJ compared to 30 mJ). Therefore, PicADNP is considered a suitable 

replacement for PETN for the application in booster explosives with an increased 

safety profile. 

 

 

 PicADNP PETN 

formula 

Mr [g mol−1] 

IS [a] [J] 

FS [b] [N] 

ESD [mJ] 

N[c] [%] 

N + O[d] [%] 

ΩCO2
[e] [%] 

Tmelt
[f] [°C] 

Tdec
[g]

 [°C] 

ρ25°C
[h] [g cm−3] 

∆𝐻𝑓
° [i] [kJ mol−1] 

C9H4N8O10 

384.18 

7 

>360 

270 

29.17 

70.81 

-41.6 

234.6 

238.2 

1.82 

119 

C5H8N4O12 

316.14 

4 

73 

30 

17.72 

78.45 

-10.12 

142 

210 

1.77 

-481 

EXPLO5 V 6.05   

∆𝑈𝑓
° [j] [kJ kg−1] 

TC−J
[k] [K] 

PC−J
[l] [GPa] 

Vdet
[m] [ms−1] 

Vo
[n] [dm3 kg−1] 

-4952 

3692 

27.2 

7993 

654.5 

-5995 

3958 

31.6 

8525 

746 

[a] Impact sensitivity[25] [b] friction sensitivity[26] [c] nitrogen content [d] combined nitrogen and oxygen content 

[e] absolute oxygen balance assuming the formation of CO or CO2 [f] melting point from DTA [g] decomposition 

from DTA [h] calculated room temperature density [i] heat of formation calculated at the CBS-4M level of theory 

for FMN, experimental determined for MN [j] detonation energy [k] detonation temperature [l] detonation 

pressure [m] detonation velocity [n] volume of detonation gases at standard temperature and pressure 

conditions. 
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7.3.6 Small-scale shock reactivity test and booster testing. For the evaluation of 

the explosive performance of PicADNP, a small-scale shock reactivity test (SSRT) was 

performed to compare it with PETN. This test is suitable for the assessment of the 

shock reactivity (explosiveness) of potential energetic materials, often even below the 

corresponding critical diameter.[27,28] For this purpose samples of PicADNP and PETN 

were pressed into perforated steel blocks with a specific volume (Vs) and a pressure 

of 3 tons for five seconds. The initiation of the evaluated material was performed by 

using a commercially available detonator (Figures 6 and 7). 

 

Figure 6. Details of the SSRT setup: schematic drawing (A); photograph of the test setup (B). 

 

Figure 7. The SSRT results for PicADNP (A) and PETN (B): dented aluminum blocks after initiation. 

The dent sizes were measured by filling them 30 times with finely powdered SiO2 and 

measuring the resulting average weight from both experiments for each material. The 

mass of explosive and the average mass of SiO2 required to fill the volumes of the 

dents are given in Table 3. 

Table 3. SSRT values for PicADNP and PETN. 

 

  

 SSRT Values 

 PicADNP PETN 

mE
[a] [mg] 491 482 

mSiO2
[b] [mg] 514 556 

 [a] Mass of the explosive: mE = Vs∙ρ∙0.95, (Vs = 284 mm3) [b] Mass of SiO2 
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The results of the small-scale shock reactivity test indicate, that PicADNP exhibits a 

slightly lower performance than PETN, which equals 92%. This result fits very well with 

the calculated EXPLO5 values for both materials.  

In a subsequent test, the suitability of PicADNP as a booster explosive was 

investigated. For this purpose, four copper tubes were each filled with 200 mg of 

2,2′,4,4′,6,6′-Hexanitrophenylethylen (HNS) that was pressed with 3 tons for 5 

seconds. The reference samples 1 and 2 were filled with 50 mg and 100 mg of non-

phlegmatized, unpressed lead azide. Samples 3 and 4 were filled with 50 and 100 mg 

of PicADNP, which was also pressed with 3 tons for 5 seconds. The top layers of 

samples 3 and 4 were 50 and 100 mg of non-phlegmatized, unpressed lead azide. The 

details of the experimental setup are depicted in Figure 8. 

 

Figure 8. Schematic drawing of the booster test setup. 

The reference samples 1 and 2 which contained no booster explosive show only a 

minor fragmentation and the witness plates are intact because the HNS could not be 

initiated. Sample 3 which contained 50 mg LA and 50 mg of PicADNP exhibits a 

significantly fragmented tube and a strong dent on the witness plate, which indicates a 

partial initiation of the pressed HNS. Sample 4 which contained 100 mg LA and 100 

mg PicADNP shows a complete destruction of the tube and the witness plate was 

perforated (C), which proves the successful initiation of the pressed HNS. The samples 

before (A) and after the initiation (B) are depicted in Figure 9. 

 

Figure 9. Filled copper tubes before the test (A); Copper tubes and witness plates after the test (B); Successful 

initiation for sample 4 (C). 
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The preparation of the samples for the booster testing shows, that PicADNP can be 

pressed and processed like PETN. Apparently, the material features no press dead 

point at 3 tons, which is an important feature for processing and application. The 

successful initiation of HNS in sample 4 proves the capability of PicADNP to replace 

PETN as a high-performing booster explosive with an increased safety profile. 

7.4 Conclusions 

It was shown, that the two proposed optimized synthetic protocols for the 

manufacturing of PicADNP are faster, greener, and scalable options for the synthesis 

of the target molecule. They facilitate excellent yields and a high purity among various 

other improvements over the previous synthesis. The older set of analytical data could 

be complemented with thermal analysis, Raman spectroscopy, sensitivity 

measurements, calculation of energetic properties, X-ray diffraction, and Hirshfeld 

surface analysis. The SSRT test revealed a performance similar to PETN and the 

sensitivities towards external stimuli are lower for PicADNP. Its thermal stability is over 

90 °C higher, which makes the material safer for handling. The booster test of the title 

compound revealed the capability to initiate pressed HNS. Therefore, PicADNP must 

be considered a potential replacement for PETN and a suitable candidate for future 

application as a booster explosive. 

 

7.5 Experimental Section 

General Information. 

HPLC grade Acetonitrile was purchased from Fisher Chemicals and 

Caesiumcarbonate was purchased from Merck Millipore. Picryl chloride, picryl 

mesylate, and KADNP were used from group internal stockpiles. 

For NMR spectroscopy the solvent DMSO-d6 was dried using a 3 Å mole sieve. 

Spectra were recorded on a Bruker Avance III spectrometer operating at 400.1 MHz 

(1H), 100.6 MHz (13C), and 28.9 MHz (14N). Chemical shifts are referred to TMS (1H, 
13C) and MeNO2 (14N). Raman spectra were recorded with a Bruker MultiRam FT 

Raman spectrometer using a neodymium-doped yttrium aluminum garnet (Nd:YAG) 

laser (λ = 1064 nm) with 1074 mW. The samples for Infrared spectroscopy were placed 

under ambient conditions onto an ATR unit using a Perkin Elmer Spectrum BX II FT-

IR System spectrometer. Melting and/or decomposition points were detected with a 

OZM DTA 552-Ex instrument. The scanning temperature range was set from 293 K to 

673 K at a scanning rate of 5 K min-1. DSC values were determined on a Mettler-Toledo 

DSC 822e with an Intracooler (Julabo FT900) and a heating rate of 5 K min-1. Elemental 

analysis was performed with a Vario EL instrument and a Metrohm 888 Titrando 

device.  
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Caution! All investigated compounds are explosives, which show partly increased 

sensitivities toward various stimuli (e.g. higher temperatures, impact, friction, or 

electrostatic discharge). Therefore, proper safety precautions (safety glasses, Kevlar 

gloves, and earplugs) have to be applied while synthesizing and handling the 

described compounds. 

7.5.1 Synthetic protocol 1 – Starting from picryl chloride. Potassium 4-amino-3,5-

dinitropyrazol-1-ide (1.00 g, 4.36 mmol) was added to a solution of 

picryl chloride (2.70 g, 10.91 mmol) in acetonitrile (150 mL). The reaction mixture was 

stirred at 70 °C for 8 h before it was allowed to cool to ambient temperature. The 

precipitated beige solid was filtered off and the dark red solution was poured into 

300 mL of ice water and stirred for 2 hours. The precipitated yellow solid was filtered 

off, washed with water until the filtrate was colorless, and dried under ambient 

conditions (1.47 g, yield: 88%).  

7.5.2 Synthetic protocol 2 – Starting from picryl mesylate. Potassium 4-Amino-3,5-

dinitropyrazol-1-ide (0.75 g, 3.26 mmol) was added to a solution of 

picryl mesylate (2.00 g, 6.51 mmol) in acetonitrile (150 mL). Cesium carbonate 

(0.11 g, 326 µmol, 10 mol-%) was added and the reaction mixture was stirred at 70 °C 

for 6 h before it was allowed to cool to ambient temperature. The precipitated beige 

solid was filtered off and the bright orange solution was poured into 250 mL of ice water 

and stirred until a yellow solid precipitated. The yellow solid was filtered off, washed 

with water until the filtrate was colorless, and dried under ambient conditions (966 mg, 

yield: 77%). 

1H NMR (DMSO-d6, 400 MHz): δ 9.24 (s, 2H), 7.89 (s, 2H) ppm. 13C{1H} NMR (DMSO-d6, 100 MHz): δ 

148.3, 145.9, 144.5, 132.5, 130.2, 128.7, 125.7 ppm. 14N NMR (DMSO-d6, 29 MHz): δ -23.5 (s, NO2) 

ppm. IR (ATR): ṽ = 3477 (w, NH2), 3362 (w, NH2), 3096 (w, Carom-H), 1644 (w, C=N), 1612 (w, C=Carom), 

1560 (m, C=Carom), 1542 (m, NO2), 1519 (m, NO2), 1459 (m, C=Carom), 1409 (w), 1395 (w), 1362 (w), 

1337 (m, C-NO2), 1318 (m, C-NO2), 1278 (m), 1226 (m), 1193 (m), 1169 (m), 1089 (w), 982 (w), 935 

(w), 912 (m, C-NO2), 865 (m), 820 (m), 786 (w), 772 (m), 754 (m), 742 (m), 724 (m), 715 (m), 685 (w), 

660 (m), 633 (w), 613 (w), 571 (w), 478 (m), 442 (m), 408 (m) cm -1. Raman (300 mW): ṽ = 3364 (3), 

3087 (3), 1643 (8), 1621 (16), 1556 (10), 1488 (10), 1410 (10), 1398 (28), 1364 (100), 1319 (5), 1277 

(20), 824 (27), 773 (11), 727 (6), 351 (7), 285 (7), 205 (5), 92 (49) cm-1. Elemental Analysis calcd (%) 

for C9H4N8O10: C 28.14; H 1.05; N 29.17 Experimental: C 28.08; H 1.04; N 29.16. DTA: 234.6 °C (m.p.), 

238.2 °C (dec.) DSC: 233.6 °C (m.p.), 237.5 °C (dec.) IS: 7 J. FS: >360 N. ESD: 270 mJ. 

 

7.5.3 X-Ray Measurements. Single crystals of 3,5-dinitro-1-(2,4,6-trinitrophenyl)-1H-

pyrazol-4-amine were obtained after slow solvent evaporation of acetone. Data 

collection was performed with an Oxford Xcalibur 3 diffractometer with a CCD area 

detector, equipped with a multilayer monochromator, a Photon 2 detector and a 

rotating-anode generator were employed for data collection using Mo-Kα radiation (λ 

= 0.7107 Å). Data collection and reduction were carried out using the Crysalispro 

software.[29] The structures were solved by direct methods (SIR-2014)[30] and refined 
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(SHELXLE)[31] by full-matrix least-squares on F2 (ShelxL)[32,33] and finally checked 

using the platon software[34] integrated with the WinGX software suite.[35] The non-

hydrogen atoms were refined anisotropically and the hydrogen atoms were located 

and freely refined. All Diamond 3 plots are shown with thermal ellipsoids at the 50% 

probability level and hydrogen atoms are shown as small spheres of arbitrary radius. 

The crystal structure of PicADNP has been deposited under CCDC number 2058636. 
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7.8 Supporting Information 

1 NMR spectra 

1.1 1H NMR spectrum of PicADNP 
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1.2 13C{1H} NMR spectrum of PicADNP 

 

1.3 14N{1H} NMR spectrum of PicADNP 
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2. IR and Raman data of PicADNP 

2.1 IR data of PicADNP 

IR (ATR): ṽ = 3477 (w, NH2), 3362 (w, NH2), 3096 (w, Carom-H), 1644 (w, C=N), 1612 (w, C=Carom), 1560 

(m, C=Carom), 1542 (m, NO2), 1519 (m, NO2), 1459 (m, C=Carom), 1409 (w), 1395 (w), 1362 (w), 1337 

(m, C-NO2), 1318 (m, C-NO2), 1278 (m), 1226 (m), 1193 (m), 1169 (m), 1089 (w), 982 (w), 935 (w), 912 

(m, C-NO2), 865 (m), 820 (m), 786 (w), 772 (m), 754 (m), 742 (m), 724 (m), 715 (m), 685 (w), 660 (m), 

633 (w), 613 (w), 571 (w), 478 (m), 442 (m), 408 (m) cm-1. 

2.1 Raman data of PicADNP 

Raman (300 mW): ṽ = 3364 (3), 3087 (3), 1643 (8), 1621 (16), 1556 (10), 1488 (10), 1410 (10), 1398 

(28), 1364 (100), 1319 (5), 1277 (20), 824 (27), 773 (11), 727 (6), 351 (7), 285 (7), 205 (5), 92 (49) cm-

1. 

3. Elemental analysis of PicADNP 

Calculated PicADNP: C 28.14; H 1.05; N 29.17 Experimental: C 28.08; H 1.04; N 29.16 (%). 

4. Sensitivity values of PicADNP 

BAM drop hammer: 7 J; Friction tester: >360 N; ESD: 270 mJ (grain size: 100–500 μm). 

 

5. DSC and DTA data of PicADNP 

5.1 DTA data of PicADNP 

 

T(melt) (DTA): 234.6 °C, T(dec.) (DTA): 238.2 °C. 
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5.2 DSC data of PicADNP 

 
T(melt) (DSC): 233.6 °C, T(dec.) (DSC): 237.5 °C 

 

6. Detonation Parameters of PicADNP 

  

Reactant information: 

------------------------ 

      1.  3,5-dinitro-1-(2,4,6-trinitrophenyl)-1H-pyrazol-4-amine (PicADNP), 100   % 

 

      C(9,000) H(4,000) N(8,000) O(10,000)  

 

       Molecular weight                      = 384,18 

       Density of reactant                   = 1,8212 g/cm3 

       Initial pressure                          = 0,1  MPa 

       Oxygen balance                       = -41,64498 % 

       Enthalpy of formation               = 309,75 kJ/kg 

       Internal energy of formation     = 387,18 kJ/kg 

 

  



Chapter 7 

 

- 119 - 

 

Detonation parameters (at the C-J point): 

------------------------------------------- 

       Heat of detonation                             = -4952,135 kJ/kg 

       Detonation temperature                    = 3692,85 K 

       Detonation pressure                          = 27,15533 GPa 

       Detonation velocity                            = 7993,311 m/s 

       Particle velocity                                  = 1865,388 m/s 

       Sound velocity                                   = 6127,923 m/s 

       Density of products                           = 2,375588 g/cm3 

       Volume of products                           = 0,4209485 cm3/g 

       Exponent 'Gamma'                             = 3,285054 

       Moles of gaseous products                = 10,28134 mol/mol explosive 

       Moles of condensed products            = 3,677468 mol/mol explosive 

       Volume of gas at STP                        = 654,4929 dm3/kg 

       Mean molecular mass of gas. prod.   = 33,0702 g/mol 

       Mean molecular mass of cond.prod.  = 12,011 g/mol 

       Mean molecular mass of all prod.      = 27,52212 g/mol 

       Entropy of products                            = 6,214 kJ/kg K 

       Internal energy of products                = 6691,984 kJ/kg, i.e. 12,18744 kJ/cm3 

       Compression energy                          = 1739,849 kJ/kg, i.e. 3,168613 kJ/cm3 

       Total heat energy                               = -4952,134 kJ/kg, i.e. -9,018827 kJ/cm3 
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Composition of detonation products  (23): 

------------------------------------------------------------------------------------------------------------------------ 

     Products mol/mol EM  mol/kg EM                Mol %      Mass % 

------------------------------------------------------------------------------------------------------------------------- 

      N2 =  3,986517E+00  1,037680E+01   28,5592 29,0685 

      C(d) =  3,677468E+00  9,572353E+00   26,3451 11,4974 

      CO2 =  2,733362E+00  7,114869E+00   19,5816 31,3125 

      CO =  1,562918E+00  4,068233E+00   11,1966 11,3951 

      CH2O2 =  1,011816E+00  2,633730E+00   7,2486   12,1217 

      H2O =  9,465551E-01  2,463858E+00   6,7811   4,4387 

      NH3 =  1,380082E-02  3,592318E-02    0,0989    0,0612 

      HCN =  1,300441E-02  3,385014E-02    0,0932    0,0915 

      H2 =  1,202942E-02  3,131227E-02    0,0862    0,0063 

      CH4 =  8,492831E-04  2,210662E-03    0,0061    0,0035 

      C2H4 =  1,773163E-04  4,615496E-04    0,0013    0,0013 

      CNO =  7,456259E-05  1,940845E-04    0,0005    0,0008 

      CH3OH =  5,756598E-05  1,498427E-04    0,0004    0,0005 

      H =                5,523641E-05  1,437789E-04    0,0004    0,0000 

      NH2 =  3,745026E-05  9,748205E-05    0,0003    0,0002 

      C2H6 =  3,572050E-05  9,297951E-05    0,0003    0,0003 

      N2H4 =  1,506050E-05  3,920210E-05    0,0001    0,0001 

      HCNO =  1,279110E-05  3,329489E-05    0,0001    0,0001 

      CH2O =  1,182619E-05  3,078325E-05    0,0001    0,0001 

      H2O2 =  7,112425E-06  1,851346E-05    0,0001    0,0001 

      N =       3,013166E-06  7,843193E-06    0,0000    0,0000 

      N2O =  1,016965E-06  2,647132E-06    0,0000    0,0000 

      C(gr) =  6,902717E-19  1,796759E-18    0,0000    0,0000 

 

Excluded products  (11): 

     C;  C(Liq.1);  C(Liq.2);  H2O(l);  N2O3;  NO;  

     NO2;  O;  O2;  O3;  OH;   
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7. Structure Refinement Data of PicADNP 

Empirical formula  C9 H4 N8 O10 

Formula weight  384.20 

Temperature  123(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 10.1535(6) Å α = 90°. 

 b = 9.6147(8) Å β = 91.842(5)°. 

 c = 13.9425(9) Å γ = 90°. 

Volume 1360.40(16) Å3 

Z 4 

Density (calculated) 1.876 Mg/m3 

Absorption coefficient 0.173 mm-1 

F(000) 776 

Crystal size 0.300 x 0.300 x 0.050 mm3 

Theta range for data collection 2.007 to 28.275°. 

Index ranges -13<=h<=12, -12<=k<=10, -18<=l<=17 

Reflections collected 9420 

Independent reflections 3162 [R(int) = 0.0492] 

Completeness to theta = 25.242° 99.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.00000 and 0.94650 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3162 / 0 / 254 

Goodness-of-fit on F2 1.039 

Final R indices [I>2sigma(I)] R1 = 0.0534, wR2 = 0.0912 

R indices (all data) R1 = 0.1047, wR2 = 0.1113 

Extinction coefficient n/a 

Largest diff. peak and hole 0.289 and -0.244 e.Å-3 
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8. Enlarged Figures from the Manuscript 

8.1 Enlarged Figures  

 

 

Enlarged Pictures for Figure 3. 
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8.2 Enlarged Hirshfeld surface picture & detailed 2D Fingerprint plot graphics

 

Enlarged Picture of the calculated Hirshfeld surface for PicADNP. Red dots represent close contacts. 

 

 

 

 

 

 

 

 

 

           Complete 2D Fingerprint plot of PicADNP.                         Fingerprint plot of the O∙∙∙H Interactions. 

 

 

 

 

 

 

 

 

 

 

           Fingerprint plot of the O∙∙∙O interactions.                           Fingerprint plot of the C∙∙∙O Interactions. 
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