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Summary 
 

The small molecule 5-hydroxytryptamine (5-HT) is best known as a 

neurotransmitter, yet it has many other functions. 5-HT has been found in many areas 

of the body and plays a role in many physiological and pathophysiological 

mechanisms. The 5-HT molecule acts both as a ligand for the 5-HT receptor family, 

comprised mainly of G protein-coupled receptors (GPCRs), and as a metabolic 

precursor of melatonin. The 5-HT1B receptor, currently a pharmacological target for 

treating migraines and cluster headaches, has been heavily studied, and its structure 

has been elucidated. However, the N-terminus of the receptor, which was truncated to 

obtain the receptor's crystal structure, was thought to be noncontributing to the ligand's 

action on the receptor. In this thesis, I showed that for the human 5-HT1B receptor, the 

N-terminus's glycans modulated the potency of 5-HT by over 20 fold, potentially via a 

fly-casting-like mechanism. The N-terminus captures 5-HT from the surrounding 

environment and relocates it closer to the receptor's binding site. 

Additionally, it was shown that this is a property of the primary amine functional 

group of 5-HT. The potencies of other agonists, sumatriptan and dihydroergotamine, 

were not affected by the removal of the N-terminal glycans of the receptor. While this 

receptor was hypothesized to be located in the human myoblast, it was not found in 

this work. However, the other 5-HT linked receptors 5-HT2A and 5-HT2B, along with the 

5-HT transporter SERT, were found to be expressed in immortalized human myoblast 

by Western blot analysis. In conjunction with a proliferation assay and a proteomic 

profiler assay, it was shown that 5-HT is involved in increasing myoblast numbers in 

culture over time. The proteomic profiler further hinted that proliferation might be 

triggered via the MAP kinase, the mTOR, or the Wnt pathways. It is clear from this 

work that 5-HT is involved in the skeletal muscle's metabolism, warranting further 

study. Together these works, on the 5-HT1B receptor and the identification of the 5-HT 

pathway in human skeletal muscle, provide information that can lead to the generation 

of more specific pharmacologics, lead to better treatments in skeletal muscle injuries, 

and help develop methods to accelerate the growth of cell-cultured meat.  



2 
 

Abbreviations 
 

Abbreviation Full Name 
5-HIAA  5-hydroxyindoleacetic acid 
5-HT  5-hydroxytryptamine; Serotonin 
5-HTP  5-hydroxy-L-tryptophan; Oxitriptan 
5-MIAA  5-methoxyindoleacetic acid 
AADC  L-amino acid decarboxylase 
AANAT  aralkylamine N-acetyltransferase 
AC  adenylate cyclase 
AChE  acetylcholinesterase 
ADHD  attention deficit hyperactivity disorder 
AKT  RAC-alpha serine/threonine-protein kinase 
ALDH2  aldehyde dehydrogenase 
ALS  amyotrophic lateral sclerosis 
AOFA  amine oxidase [flavin-containing] A 
AOFB  amine oxidase [flavin-containing] B 
AOXA  aldehyde oxidase 
ARR  arrestins 
ASMT  acetylserotonin O-methyltransferase 
cADP  cyclic adenosine diphosphate 
cAMP  cyclic adenosine monophosphate 
cAMPK α2  5'AMP-activated protein kinase subunit alpha 2 
CD11c  integrin alpha X 
CD86  cluster of differentiation 86 
CGenFF CHARMM general force field 
CHARMM chemistry at Harvard macromolecular mechanics 
CP1A1  cytochrome P450 1A1 
CP1A2  cytochrome P450 1A2 
CP1B1  cytochrome P450 1B1 
CREB  cyclic AMP-responsive element binding protein 
CYPIID6  cytochrome P450 2D6 
CV collective variables 
DAG  diacylglycerol 
DAMP damage-associated pattern 
DHE dihydroergotamine 
DM double mutant 
DMDF damage-myofiber-derived-factor 
ERK1/2  mitogen-activated protein kinase 3 /1 
ERK5  mitogen-activated protein kinase 7 
FDA The United States Food and Drug Administration 
FGF fibroblast growth factor 
FOXO4  forkhead box protein O4 
G-protein guanine nucleotide-binding protein 
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Abbreviation Full Name 
GAPS GTPase accelerating proteins 
GAPDH glyceraldehyde 3-phosphate dehydrogenase 
GDP guanosine diphosphate 
GEF guanine nucleotide exchange factor 
GENCI grand équipement national de calcul intensif 
GID  gastrointestinal disorders 
GPCR  G protein-coupled receptor 
GRK  G protein-coupled receptor kinase 
GSK-3α/β  glycogen synthase kinase-3 alpha/beta 
GTP guanosine triphosphate 
HGF hepatocyte growth factor 
HIAL  5-hydroxyindoleacetaldehyde 
HPC high performance computing 
Hsp27  heat-shock protein beta 1 
I23O2  indoleamine 2,3-dioxygenase 2 
IDPR intrinsically disordered protein region 
IDRIS Institut du développement et des ressources en informatique scientifique 
IGF-1 insulin-like growth factor I 
IL-6  interleukin 6 
IL-17  interleukin 17 
INMT  indolethylamine N-methyltransferase 
IP3  inositol 1,4,5-triphosphate 
IPF  idiopathic pulmonary fibrosis 
JAK janus kinase 
LB  lysogeny broth 
LCK  lymphocyte-specific protein tyrosine kinase 
LEF  lymphoid enhancer-binding factor 
LGICs  ligand-gated ion channels 
LINCS linear constraint solver 
LYN  lck/yes novel tyrosine kinase 
MAT monoamine transporters 
MD molecular dynamics 
MDD  major depression disorder 
MetaD metadynamics 
MEK5  dual specificity mitogen-activated protein kinase 5 
MPO  myeloperoxidase 
mTORC1  mammalian target of rapamycin complex 1 
Myf-5 myogenic factor 5 
Myf-6 myogenic factor 6 
MYOD  myoblast determination protein 
MYOG myogenin 
NDD  neurodegenerative disorders 
p70S6K  ribosomal protein S6 kinase beta-1 
Pax-3 paired box protein 3 
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Abbreviation Full Name 
Pax-7 paired box protein 7 
PbMetaD parallel bias metadynamics 
PFA  para-formaldehyde 
PFK  6-phosphofructo-1-kinase 
PIP2  phosphatidylinositol 4,5-bisphosphate 
PKC  protein kinase C 
PLCβ  phospholipase C, beta 
PLCδ1  phospholipase C, delta 1 
PLP  pyridoxal 5’-phosphate 
PMAT  plasma membrane monoamine transporter 
POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 
PRAS40  proline-rich Akt substrate of 40 kDa 
PSP  progressive supranuclear palsy 
Rab-3A  ras-related protein 3A 
Rab-4  ras-related protein 4 
Rab-27  ras-related protein 27 
RGS regulator of G protein signaling 
Rgyr radius of gyration 
RhoA  ras homolog gene family, member A 
RPS6  ribosomal protein S6 
RT  room temperature 
SC satellite cell 
SERT  serotonin transporter 
SM  skeletal muscle cell growth medium 
SNAT  serotonin N-acetyltransferase 
SOM Self-organizing map 
Spry-1 protein sprouty homolog 1 
STAT  signal transducer and activator of transcription 
STAT  signal transducer and activator of transcription 
SUM sumatriptan 
TAS2 taste receptor type 2 
TCF  transcription factor 
TIP3P transferable intermolecular potential with 3 points 
TPH1  tryptophan hydroxylase 1 
TPH2  tryptophan hydroxylase 2 
VMAT  vesicular monoamine transporter 
WNK1  lysine deficient protein kinase 
WT wild-type 
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1 Introduction 
 

The small monoamine 5-hydroxytryptamine (5-HT) is best known as the 

neurotransmitter serotonin. However, 5-HT is involved in many physiological 

processes, from bacteria to mammals. Receptors and other proteins involved in 5-HT 

biological processes are often targeted for pharmaceutical intervention. Infamously, 

serotonin-reuptake inhibitors (SSRI) are used to treat depression and other psychiatric 

pathologies. Additionally, the serotonin receptors are targeted to treat other conditions 

such as migraines, obesity, and constipation. 

 

Unpublished data from the Experimental Neuropathology Unit at the Institut 

Pasteur, where the experimental data for this thesis was performed, indicated that 

treatment of mice with the SSRI inhibitor fluoxetine increased post-lesional skeletal 

muscle regeneration efficiency. It was hypothesized that an increased amount of 

extracellular 5-hydroxy tryptamine (5-HT) in muscle was responsible for these 

observations. Hence, an investigation into the 5-HT receptors present in murine 

muscle was instigated. Data from qPCR experiments indicated active transcription of 

the gene coding for the 5-HT1B receptor in the tissue. The expression of the receptor 

was confirmed via Western blotting of whole murine skeletal muscle. It was observed 

in the Western blot that the bands for 5-HT1B presented broad and were running at a 

higher molecular weight than theorized. We gathered that the higher running of the 

bands might be linked with post-translation modifications of proteins. Specifically, 

glycosylation has been identified to cause bands to run higher than expected.  

 

From our observations, we began to question whether 5-HT is involved in 

human skeletal muscle regeneration and whether the glycosylation of the N-terminus 

of the 5-HT1B receptor has functional importance. We theorized several 5-HT1B 

receptor versions were present in this tissue due to the band's thickness on the western 

blot. Knowing that the N-linked glycosylation of a protein is dependent on the cell 

expressing the protein, we wondered if there was a significant variation of this receptor 

present in the tissue in our sample as there were multiple cell types present. 

Additionally, if the variations were present, we wondered if there were functional 

differences between the glycotypes. To get answers to these questions, we 
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investigated 5-HT in muscle proliferation and the function of the PTMs in the 5-HT1B. 

To get a molecular view of the interactions of 5-HT with 5-HT1B, we carried out in silico 

modeling of the interaction of the PTMs and specific domains of the 5-HT1B receptor 

with its ligands. The modeling was performed in the Structural Bioinformatics Unit at 

the Institut Pasteur. 

 

1.1 Historical perspective 
 

1.1.1 Discovery of Serotonin 
 

5-hydroxytryptamine (5-HT), serotonin, is an indole with an ethylamine at the 

three position and a hydroxide group at the five position (Figure 1.1). The compound 

5-HT is ubiquitous and has been found in Bacteria1, Eukaryota2, and proposed to exist 

in Archaea3. The high rate of conservation of 5-HT and its multi-functionality reflect its 

importance in life. The closer to metazoans one goes along the evolutionary tree, the 

more complex and ingrained the role of 5-HT becomes. A large amount of information 

is known about the role of 5-HT in humans. However, there is still much more to be 

discovered, including its involvement in human physiology or pathology. 

 

 

Figure 1.1. IUPAC Naming and numbering of serotonin. 5-hydroxytryptamine illustrated at 

physiological pH. 

 

5-HT was first discovered in 1937 by Vittorio Erspamer4. Erspamer purified 5-

HT, which he named "enteramine," from enterochromaffin cells. In 1948 the name 

"serotonin" was coined by Rapport et al. after they isolated a vasoconstricting 
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compound, 5-HT, from beef serum5. It was not until 1952 that Erspamer demonstrated 

that both enteramine and serotonin were the same molecule6. The following year in 

1953, 5-HT was discovered in the mammalian brain7. In 1954 5-HT was identified as 

the causative agent of the symptoms of carcinoid syndrome8. With the pinpointing of 

5-HT as the pathological agent, the work to determine how it functions mechanistically 

began.  

 

1.1.2 Discovery of 5-HT Receptors 
 

In 1957 two pharmacologically distinct 5-HT receptors were identified by 

Gaddum and Picarelli in the ileum of Guinea Pigs9. They termed the receptors as the 

M receptor and the D receptor. The names stem from one of the receptors being 

blocked by dibenzyline (the D receptor) and the other receptor by morphine (the M 

receptor). Today these two receptors are named 5-HT2 and 5-HT3, respectively. 

Gaddum and Picarrelli's discovery proceeded in the 1960s with the localization of 5-

HT receptors in rodents' brains. With the development of radio ligand binding assays, 

other areas of localization of 5-HT within the brain were demonstrated. In 1979 

Peroutka et al. showed that the brain had two separate 5-HT receptors and termed 

them as the 5-HT1 and 5-HT2 receptors. 

It took until 1984 for the first 5-HT receptor gene 5-HT1A to be cloned and 

identified. The identification of the 5-HT1A gene was followed by the identification of 

multiple 5-HT receptors throughout the 1990s, with the most recent being discovered 

in 2003. While the cloning of the specific receptors' genes did elucidate most of the 5-

HT receptors, it was not a straightforward process. The 5-HT1B receptor was initially 

thought to be only present in rodents. Due to its similarity in amino acid content (97 % 

shared) and a closely shared pharmacological profile (with the drugs available at the 

time) with the human 5-HT1D receptor, it was thought that the rodent 5-HT1B receptor 

was a homolog of the human 5-HT1Dβ receptor. At the time, it was believed that two 

subtypes of the human 5-HT1D receptor existed, 5-HT1Dα and 5-HT1Dβ. It was not until 

the rodent 5-HT1D gene was cloned that it was realized that 5-HT1Dβ was indeed a 

distinct receptor10. 

Eighteen receptors have been identified in the mouse or human genome and grouped 

by sequential homology into seven 5-HT family subtypes. The chronological discovery 

of the receptors' human genes except for the murine 5-HT5B gene, which is not found 
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in humans, can be found in Table 1.1. As the receptors' function was elucidated, some 

of the receptors were renamed to be grouped into the appropriate subfamily. As the 

receptors began to be identified, the work into defining their pharmacological profiles 

and their mechanistic actions started, and they continue to this day.  

 

Receptor Year Cloned Notes 

5-HT1A 198711,12  

5-HT1B 199213,14 Initially named 5-HT1Dβ 

5-HT1D 199115 Initially named 5-HT1Dα 

5-HT1E 199216 Not found in mice 

5-HT1F 199317  

5-HT2A 199018  

5-HT2B 199219 Initially named 5-HT2F 

5-HT2C 198820 Initially named 5-HT1C 

5-HT3A 199521  

5-HT3B 199922  

5-HT3C 200323  

5-HT3D 200323  

5-HT3E 200323  

5-HT4 199524  

5-HT5A 199425  

5-HT5B 199326 Not found in Humans 

5-HT6 199327–29  

5-HT7 199330–32  

 

Table 1.1. Chronological discovery of the 5-HT receptors genes. All of the genes are 

human except for 5-HT5B, which is murine. 
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1.2 GPCRs 
 

To better understand 5-HT receptors, one needs to understand the G-protein coupled 

receptor (GPCR) superfamily. All 5-HT receptors, except 5-HT3, belong to this 

superfamily. The GPCR superfamily contains over 70033 different receptors in humans 

alone and has been estimated to account for about 5 % of the human genome34. 

GPCRs are involved in multiple genetic diseases and cancers, Alzheimer's disease, 

atherosclerosis, neurodegeneration35, and others. The GPCR family is the largest 

pharmaceutical intervention target, with ~35 % of drugs on the market acting on a 

GPCR. All GPCRs fundamentally have seven transmembrane alpha-helices with an 

extracellular N-terminus and an intracellular C-terminus. Their structural similarities 

stem from an ancient common ancestor. 

 

1.2.1 GPCRs in nature 
 

GPCRs are found in most eukaryotic organisms, which can be attributed to the 

receptor's ancient origins. Even in bacteria, rhodopsin-like seven-transmembrane 

proteins are used to harvest energy from light and fix carbon36. In eukaryotes, the 

GPCR superfamily has evolved into five families. Each is structurally distinct from one 

other. Classically, all known GPCRs families are organized into six classes (A-F or 1-

6). The classes and their subfamilies names are listed in Table 1.2 below: 

Traditional Class Family Name 

A (1) Rhodopsin-like 

B (2) Secretin receptor family 

C (3) Metabotropic glutamate receptors 

D (4) Fungal mating pheromone receptors 

E (5) Cyclic AMP receptors 

F (6) Frizzled / Smoothened 

 

Table 1.2. Traditional Classification of GPCR families. GPCRs can be categorized into six 

different Classes A-F. 
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The GPCRs have been re-organized in vertebrates using the GRAFS 

(glutamate, rhodopsin, adhesion, frizzled/taste2, and secretin) classification system37. 

The GPCRs are further subdivided within each of the GPCR classes into subfamilies.  

 

1.2.2 Structural and functional diversification 

 

The differentiation of GPCRs has been broad over time and is utilized by the 

human body to perform many functions. Each class of GPCR has a distinct functional 

mechanism. The rhodopsin class is the largest GPCR family containing 19 subfamilies, 

with most GPCR falling in this subfamily. This family also exists in the GRAFS 

organizational scheme as "R." The rhodopsin-like subfamilies vary significantly in what 

the receptors sense. The stimulating agent for the receptors are broad and include 

photons, lipids, peptides, stretch, and small molecules. Although they sense various 

ligands, all of the rhodopsin-like GPCR are similar in amino acid sequence38.  

The Class B or secretin family is the second most stratified GPCR family with 

three subfamilies. Secretin GPCRs respond to peptide hormones of the glucagon 

family. The B1 subfamily is composed of receptors recognizing traditional hormones 

such as glucagon and secretin. The B1 subfamily constitutes the secreting class in 

GRAFS. The "S," the B2 subfamily, is also known as the adhesion GPCRs and are 

characterized by an autocatalytic adhesion domain in their N-termini39. In the GRAFS 

system, this subfamily is considered a separate class and represents the "A," which 

stands for adhesion. The final subfamily, B3, consists of GPCRs found only in 

invertebrates.  

Going further, class C consists of metabotropic glutamate receptors involved in 

neurotransmissions. The mammalian receptors are deeper organized into three 

groups, 1-3. Glutamate receptors are the "G" family in the GRAFS hierarchy. The D 

class GPCRs, the fungal mating pheromone receptors, and the E class, the cyclic amp 

receptors, contain only a few members and are not found in human beings37. The final 

class, class F, consists of the Frizzled related receptors. This class comprises 11 

receptors, which are integrated into three main pathways involving the Wnt β-catenin, 

the calcium pathway, and the planar cell polarity pathway40. In the GRAFs 

organizational scheme, the Frizzle receptors are joined by the taster receptor type 2 
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(Tas2), from class A, to form the "F" in the acronym. The GRAFS classification scheme 

can be visualized in Table 1.3 below. 

 

GRAFS Class Family Name Traditional Class 

G Glutamate C 

R Rhodopsin A 

A Adhesion / Cyclic AMP receptors B2 / E 

F Frizzled / Taste-2 F / A 

S Secretin B1 / B3 

 

Table 1.3. GRAFS Classification of GPCR families. A more recently proposed scheme to 

categories the GPCRs of vertebrates.  

 

1.2.3 GPCRs in the human body  
 

GPCRs are found in many different forms and throughout the human body. 

GPCRs are involved in the body's ability to observe the outside world. Rhodopsin 

GPCRs in the retina allow for photons to be detected in the eyes. Taste and olfactory 

receptors on the tongue detect small molecules. Sensory neurons use glutamate 

GPCRs to communicate with each other41. In the cochlea, Frizzled GPCRs are used 

to maintain the polarity of hair cells for hearing42. The GPCRs diversity is reflected by 

the comprehensive utilization of them in the human body. The expansiveness of 

GPCRs can be seen in the phylogenetic tree of human GPCRs in Figure 1.2. 
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Figure 1.2. Phylogenetic tree of human GPCRs. The phylogenetic tree of the human GPCRs 

according to the GRAFS system. The families are color-coded, and the number of receptors 

in each family is displayed in parentheses after the family name. The gene names of the 

receptors are labeled in grey. The Rhodopsin subfamilies are labeled α, β, γ, and δ. Four 

examples represent the 422 olfactory receptors. The red star marks the 5-HT1B receptor. The 

figure was adapted from Lv et al., Protein & Cell, 201643. 
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1.2.4 Pharmaceutical targeting 
 

 Due to their wide dispersal throughout the body, the involvement of GPCR in 

disease and disease prevention is not surprising. The GPCR superfamily is the most 

pharmaceutically targeted receptor type. One hundred thirty-four of GPCRs are 

targeted by an estimated 700 approved drugs44. Over 200 non-olfactory GPCRs have 

not yet been pharmacologically targeted despite being potential therapeutic targets. 

Thus it's likely that the number of drugs acting on GPCRs will increase45. Examples of 

drugs that target most of the GPCRs can be seen in Table 2 in Annex I. 

 

1.2.5 Intercommunication/signal cross-talk 
 

 The structural similarities between GPCRs cause drugs to cross-talk with 

GPCRs of various subfamilies. Cross-talk is a significant concern during drug 

development and can potentially cause serious side effects. While a ligands' lack of 

specificity is a source for cross-talk, other factors must be considered when dealing 

with GPCRs, as cross-talk in GPCRs does not stop with the ligand of the GPCR. 

GPCRs have been reported to dimerize both in a homogenous and heterogeneous46 

fashion. While in vivo dimerization is still disputed47, synergistic effects from cross-talk 

between receptors and their interacting partners, for which heterodimerization is a 

likely explanation, have been reported48,49. GPCRs have also been known to indirectly 

interact with other types of receptors, especially tyrosine kinase receptors50. Cross-talk 

can also occur in the lower levels of the secondary messenger cascades that are 

triggered by GPCRs. The signals can amplify or inhibit the cascade either through 

direct inhibition on the activated enzymes51 or by regulating the GPCRs availability at 

the plasma membrane52. Cross-talk in GPCRs is poorly understood and can be very 

complex. However, due to GPCRs clinical and pharmacological significance, GPCR 

cross-talk is an area that needs further exploration. 

 

1.2.6 Relationships with arrestin/ GIRK /Spatial-temporal relation 
 

 In the canonical pathway, the GPCR is activated by its ligand or activating 

stimulus, driving the receptor to favor the active conformational state. The active state 
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of the receptor recruits the G protein complex. The receptor acts as a guanine 

nucleotide exchange factor (GEF), promoting the release of GDP and the binding of 

GTP to the Gα subunit of the G protein-GPCR complex. Upon GTP binding, the Gα 

and Gβγ subunits dissociate. The G protein subunits go on to activate secondary 

messenger pathways. The cytosolic domain of the GPCR is recognized by a G protein-

coupled receptor kinase (GRK), which phosphorylates the domain. The 

phosphorylated domain is identified by β-arrestins and, with adapter proteins’ help, 

initiate clathrin-based endocytoses. Thereby deactivating the receptor and recycling or 

destroying it. It is important to note that several canonical pathway variations have 

been observed, which differ based on the exact GPCR and G proteins involved in the 

pathway. 

 

1.2.7 G proteins 
 

 The guanine nucleotide-binding proteins (G proteins) in the GPCR complexes 

constitute a heterotrimeric protein complex that propagates secondary messengers 

upon activation. The G proteins consist of alpha, beta, and a gamma subunit. Each of 

the subunits have diversified over time and are found as various paralogs with different 

functions. To date, in humans, there are four families of Gα subunits made up of 18 

unique proteins, 5 Gβ subunits, and 12 Gγ subunits53. Additionally to the G protein 

subunits, another superfamily of G proteins exists. The small G-protein superfamily, 

monomeric GTPases, bind to and hydrolyze guanosine triphosphate (GTP) to 

guanosine diphosphate (GDP). The superfamily comprises the five families Arf, Rab, 

Ran, Ras, and Rho, consisting of over 150 members54. 

 The G protein subunits propagate a GTPase cycle. When dormant, the Gα 

subunit is bound to a GDP, the Gβγ complex, and in some instances with a GPCR. 

When a ligand or other activating stimulus activates the GPCR conformation, it acts as 

a guanine nucleotide exchange factor and promotes the Gα subunit to release the GDP. 

With the release of GDP, the binding pocket in Gα binds to GTP, which has a higher 

intercellular concentration than GDP55. The binding causes a major conformational 

shift in the switch I and switch II regions of Gα56, causing Gα to disassociate from the 

Gβγ complex and the GPCR. The separated G protein complexes regulate different 

secondary messengers such as cyclic AMP, IP3, and Ca2+. The Gα protein bound to 
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GTP is considered to be in its active state and binds to other proteins based on the 

particular Gα subtype. For example, GSα –GTP binds to adenylyl cyclase. The Gα 

subunit hydrolyzes the GTP to GDP, deactivating the subunit. The kinetics of 

hydrolyzation are impacted by proteins termed GAPS, GTPase accelerating proteins, 

which are a type of RGS, regulator of G protein signaling. GAPSs have been 

demonstrated to accelerate the hydrolysis of GTP to GDP by more than 103 times57. 

After the Gα subunit is rebound to GDP after hydrolyzation, the subunit rebinds to the 

Gβγ complex and, if applicable, a GPCR and returns to the inactive form, ready for 

another cycle. 

  



16 
 

1.2.8 Structural features of GPCRs 
 

 

Figure 1.3. A GPCR with various domains highlighted. The 5-HT1B receptor in blue nested in 

a field of lipids in tan by heteroatom coloring. The extracellular N-terminus is highlighted in 

cyan, and the intracellular C-terminus is marked in purple. The extracellular loops are colored 

in pink and intracellular loops are colored in dark green. Theoretical glycans on the N-terminus 

are colored in green by heteroatom coloring. 

 

Although a wide variety of GPCRs exist, the receptors maintain some standard 

features. GPCRs have seven transmembrane alpha-helices with three extracellular 
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and three intracellular loops. Generally, the N-terminus is extracellular, and the C-

terminus is intracellular. The receptors sit in the plasma membrane in a barrel shape, 

with the barrel's top being the entrance site to the active site (Figure 1.3). Each of the 

receptor's domains can be involved in the function of the GPCR, allowing for significant 

variation in the receptor's function.  

The extracellular loops and the N-terminus may play a role in the ligand's access 

to the active site. The N-terminus can have multiple functions. Including being a ligand-

binding site (as in the class C GPCRs), it can have an autoproteolytic site, acts as a 

dimerization site, or be involved in plasma membrane targeting. The extracellular loops 

may affect ligand-receptor interaction through electrostatics, regulate ligand access, or 

change the geometry of the seven-transmembrane barrel58. The intracellular loops are 

involved in binding arrestins, G-proteins, kinases, and scaffolding proteins59. The C-

terminus is heavily involved in the regulation of GPCRs. The C-terminus is involved in 

binding to the G protein heterotrimer, contains the target sites for GRKs and 

subsequent arrestins, and includes an area that anchors the lipid into the plasma 

membrane60. Many of the functions of these regions mentioned above are due to post-

translational modifications (PTM). 

 

1.2.9 Mechanosensation 
 

The mechanosensation of GPCR is another of the many sensing mechanisms 

of these receptors. The observation of the direct involvement of GPCRs with 

mechanosensation is a recent development. Two receptor domains have been 

identified: the N-terminus61 and helix 8 near the C-terminus of the receptor62. The 

glycans attached to the β2 androgen receptor's N-terminus have been shown to sense 

traction forces and trigger β-arrestin signaling. Traction sense was confirmed when a 

chimera of the angiotensin II receptor, with a β2 adrenoreceptor N-terminus, was 

activated by traction force61. On the other end of GPCRs helix 8, a short alpha-helix 

between transmembrane helix 7 and the C-terminus has been shown to act as the 

receptors' mechanosensory region. In gain of function experiments, the addition of 

helix 8 from the mechanosensitive histamine H1 receptor to mechano-insensitive 

gonadotropin-releasing hormone receptor conferred agonist independent 

mechanosensing abilities. The helix, which lies on the intracellular side of the 
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membrane, was shown to be crucial to the sensing of force, as point mutations 

breaking the helical motif dampened mechanosensation. Through these experiments, 

it was suggested that helix 8 might act as constant force spring62. However, further 

work would need to be performed to confirm this theory. Mechanosensation appears 

to be another one of the many inputs GPCRs recognize and demonstrates that areas 

outside of the active site can stimulate the receptor. 

 

1.2.10 Intrinsically disordered protein regions 
 

While GPCRs are known for their seven-transmembrane helical structure, they 

also contain domains that do not have an ordered structure. In general, the intrinsically 

disordered protein region (IDPR) can be classified into the following five types of fold 

segments: foldons, unfoldons, non-foldons, semi-foldons, and inducible foldons. The 

IDPR can, respectively, spontaneously fold, unfold with an interacting partner, remain 

unfolded, maintained in a semi-folded state, or fold with an interacting binding 

partner63. These foldons are mostly observed in GPCRs in the non-transmembrane 

segments of the receptors. The IDPRs of GPCRs vary between the families of GPCR. 

They are primarily found in the N-terminus, intercellular loop 3, and the C-terminus of 

GPCRs64. At the familial level, the different GPCR IDPR patterns appear to reflect the 

variation of each GPCR family's overall structure. 

For the R or the rhodopsin family of GPCRs, the terminal residues and the loops 

between the transmembrane helices are generally unordered, except for helix 8. The 

extracellular loops, in general, have been associated with ligand binding and receptor 

activation. In comparison, the intracellular loops interact with the G-proteins and other 

GPCR binding partners65. The N-terminus IDPR is generally glycosylated with 

unverified consequences, and its involvement with ligand binding is unclear. The third 

intracellular loop that varies in length is usually an IDPR and a phosphorylation site. 

G-proteins and other kinases recognize the phosphorylated IDPR sites. The C-

terminus is palmitoylated, anchoring the C-terminus to the membrane and creating a 

4th intracellular loop. The 4th intracellular loop can also be phosphorylated. The C-

terminus IDPR region is recognized by β-arrestin and G proteins. The IDPRs of GPCRs 

allows multiple binding partners to interact with GPCRs in the receptors' various states. 

Unfortunately, the knowledge of IDPRs of GPCRs are only at the beginning of being 
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studied, and more work is needed to understand the roles of IDPR in GPCR signaling 

fully. 

 

1.2.11 Post-translational modifications of GPCRs 
 

GPCRs contain multiple PTMs of various types and with different functions. The 

receptors are glycosylated, phosphorylated, lipidated, and ubiquitinated (Figure 1.4). 

While some of the functions of the PTMs of GPCRs have been determined, many are 

still not understood. It is known that phosphorylation of the intracellular loops and the 

C-terminus is involved in recruiting binding partners of GPCRs. β-arrestins are one of 

these binding partners that recognize the multiple phosphorylation sites of the GPCR. 

The multiple phosphorylations of GPCRs have been said to occur in patterns with 

different functions and labeled by the term "phospho-barcoding." Based on the 

phospho-barcode, the GPCR-β-arrestin complex will be favored in a particular 

conformation leading to one of several outcomes66. The complex can desensitize and 

internalize the receptor or act as a scaffold for other kinase cascades such as the Raf-

MEK-ERK or ASK-MKK4/7-JNK complexes67. Due to phosphorylation leading to the 

desensitization and internalization of the receptors, these sites act as input points for 

other pathways to regulate GPCR activity68. Once internalized, the GPCRs may be 

adorned with another PTM, ubiquitin, leading to trafficking and the receptor's 

degradation. In addition to ubiquitination and phosphorylation, other PTMs also have 

diverse effects on GPCRs. 

The lipidation of GPCRs is predominately seen in the C-terminus of the 

receptors. Typically, the C-terminus is palmitoylated at a cysteine via a thioester bond. 

GPCRs have also been shown to be palmitoylated in the intracellular loops of the 

receptor69. The function of palmitoylation has been theorized to be two-fold. 

Palmitoylation has been suggested to be involved in receptor trafficking, and due to its 

transient nature, in signaling69,70. The signaling mechanism of GPCRs may stem from 

an induced tertiary shape. The palmitoylation of the C-terminus anchors the 

intracellular tail to the membrane, creating a fourth intracellular loop71. This fourth 

intracellular loop may be recognized by kinases that, in turn, phosphorylate the C-

terminus, leading to β-arrestin signaling.  
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 The effects of glycosylation on GPCRs are less well understood. Glycosylation 

has been observed to occur on the extracellular domains of GPCRs. The N-terminus 

and the extracellular loops, usually the second extracellular loop, can both be 

glycosylated. The purpose of the extracellular loops' glycosylation has been theorized 

to stabilize it and orient it away from the entrance to the binding pocket58. The function 

of glycosylation of the N-terminus has been studied more extensively. Removal of the 

glycosylation site in the N-terminus caused reduce surface expression in several 

GPCRs. These include the β2 adrenoceptor, angiotensin II type 1 receptor, and the 

melanocortin 2 receptor72. Additionally, N-terminus glycosylation's role is involved in 

the dimerization of β2 adrenoceptor73. While some knowledge has been acquired about 

the function of GPCR glycosylation, much is still unknown.  
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Figure 1.4. Post-translational modification sites of GPCR. An example of post-translational 

modification was found on a Rhodopsin α GPCR. The N-terminus is often glycosylated, circled 

in red, and the C-terminus is mostly palmitoylated, circled in green. The third intracellular loop 

(ICL3) and the C-terminus are sites for phosphorylation and ubiquitination, in magenta and 

blue dashed oval. Extracellular loops are labeled as ECL, transmembrane helices are labeled 

TM, and intracellular loops are labeled ICL. 

 

1.3 5-HT Receptors  

 

 The receptors of 5-HT are composed of two different protein families; the G 

protein-coupled receptors (GPCRs) and the ligand-gated ion channels (LGICs). All of 

the subfamilies of the 5-HT receptors are GPCRs except the 5-HT3 family, which are 

LGICs. As to date, not counting isoforms, there are seventeen known 5-HT receptors 

in humans, twelve are GPCRs, and five are LGICs. All of the 5-HT receptors are found 

on the plasma membrane, and some have been found on the mitochondrial 
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membrane74. While named and grouped due to their response to 5-HT, the GPCRs 

and the LGICs receptors are very different. 

 

1.3.1 GPCRs - G protein-coupled receptors 

 

 The 5-HT GPCRs subclass GPCRA19 is composed of the 5-HT1, 5-HT2, and 5-

HT4-7 receptors. All of the GPCRA19 receptors follow a canonical pathway. Which 

canonical pathway the receptors follow is based on which G protein complex interacts 

with the specific receptor. The 5-HT1 and 5-HT5 receptors, coupled to the Gαi protein, 

inhibit adenylyl cyclase (AC) when the receptors are activated. For the 5-HT2 

subfamily, which interacts with the Gαq/11 G protein complex, phospholipase C beta 

(PLCβ) is stimulated during receptor agitation. The remaining subfamilies of the 5-HT 

receptors, 5-HT4-7, interact with the GαS protein, which leads to AC activation when the 

receptors bind to 5-HT. An example of the GPCR canonical action is illustrated in 

Figure 1.5A. Aside from their canonical functions, the 5-HT GPCRs also have some 

non-canonical functions.  

The non-canonical G protein signaling has been observed to act via β-arrestin 

recruitment. The recruitment of the β-arrestin proteins to GPCRs has been shown to 

lead to the desensitization75 and internalization of the receptors76. When the 5-HT 

GPCRs bind 5-HT and conform to the receptor's active conformation, GPCR kinases 

recognize the 5-HT GPCR and phosphorylate the receptor. The phosphorylated form 

of the 5-HT GPCR is identified and complexed by β-arrestin 1 or β-arrestin 2. The 

arrestins sterically block G proteins from binding to the 5-HT GPCR77. The 5-HT GPCR 

- β-arrestin complex can be recognized by clathrins, which have a high affinity towards 

the beta-arrestin76 complex, leading to the receptors' internalization via clathrin-

mediated endocytosis. Once internalized, the receptors are delivered to the sorting 

endosome. In the endosome, they are either further transported to the lysosome for 

destruction or end up back in the plasma membrane via the recycling endosome78 

(Figure 1.5B). Clathrin-mediated endocytosis is not the only way the receptors are 

internalized. Caveolae and dynamin-mediated endocytosis have also been described 

as an internalization mechanism of 5-HT receptors79. Internalization of the receptors is 

just one of the aspects which govern receptors surface density and may vary based 

on the 5-HT GPCR subtype involved.  



23 
 
  



24 
 

Figure 1.5. Activation of 5-HT GPCRs canonical and non-canonical pathways. 

The canonical pathway (A): ① 5-HT binds to the 5-HT GPCR and induces a conformational 

change in the receptor (the exact conformational change is unknown, the structure of a ligand 

unbound 5-HT GPCR has not been solved). The G protein complex displaces the guanosine 

diphosphate (GDP). ② The G protein complex binds guanosine triphosphate (GTP) at the 

alpha subunit. ③ the G protein receptor complex dissociates. ④ The G protein alpha subunit 

binds to adenylate cyclase (AC). The formation of cyclic adenine monophosphate (cAMP) from 

adenine triphosphate (ATP) is catalyzed. The non-canonical pathway (B): ① and ② are the 

same as in A. After the G protein receptor complex dissociates ③, the GRK phosphatase 

recognizes the GPCR. ④ The G protein-coupled receptor kinase (GRK) phosphorylates the 

GPCR. The arrestins (ARR) recognize and bind the phosphorylated GPCR. ⑤ Along with 

adapter protein 2 (AP2), clathrins and other factors initiate clathrin-mediated endocytosis. ⑥ 

The clathrin coat sheds and ⑦ receptors are shuttled to the recycling endosome via the early 

endosome for further sorting. The receptors are ⑧ returned to the plasma membrane, after 

dephosphorylation and ligand removal, from the early or recycling endosomes. The receptor 

is alternatively ⑨ degraded in the lysosomes via the late endosome. 

 

In addition to internalization, the receptors' synthesis and degradation into the 

receptor surface density at the plasma membrane. Unfortunately, not much has been 

done in identifying the dynamics of the synthesis or degradation of the human 5-HT 

GPCRs. In rats, a limited amount of work has shown that the 5-HT GPCR surface 

density varies between 5-HT1A, 5-HT1B, and 5-HT2A. It was uncovered that the steady-

state of the surface density of the 5-HT GPCRs are governed by different total kinetic 

rates of synthesis and degradation. Additionally, it was discovered that this variation in 

rates is more significant between 5-HT receptor families than within interfamily 

subtypes80. Further work on the kinetics of the 5-HT receptors is needed to understand 

the overall function of 5-HT in the body. While kinetics differ, the similarity in the 

functions of the 5-HT GPCRs stems from their comparable tertiary structures. 

All 5-HT GPCRs have the same general structure. Additionally, the receptors 

have several conserved structural motives that are a hallmark of GPCRs; they include 

the DRY, NPxxY, and P-I-F motifs. The DRY motif contains a salt bridge between the 

D and R residues, which is indicative of the resting state of the receptor, which is 

broken when the receptor is in the activated, ligand-bound conformation. The NPxxy 

motif acts as a lever on the transmembrane helices. It is responsible for the G protein's 
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engagement and disengagement to the ligand-free and ligand-bound conformation of 

the receptor81. Finally, the P-I-F motif located at the bottom of the binding pocket is 

involved in the transmembrane helices' conformational movement during the activation 

of the 5-HT GPCRs when the ligand binds82. These structural motifs are illustrated in 

Figure 1.6. The structural similarities between the receptors and their known self-

interactions make it none too surprising that the various receptors may interact. 

 

Figure 1.6. A GPCR G protein complex demonstrating the common GPCR structural 

motifs. 

A truncated (residues 45-385) version of human 5-HT1B (390 a.a.) bound to the agonist 

donitriptan (red) and bound to the mini Go complex consisting of the truncated G protein 

trimeric heterocomplex of a modified Gαo subunit, and unmodified Gβ and Gγ. The 5-HT1B 

protein is in cyan, the Gαo subunit is in green, the Gβ subunit is in purple, and the Gγ subunit is 

in grey. The conserved GPCR motifs DRY, P-I-F, and NPxxy are in yellow, blue, and magenta, 

respectively. Arrows indicating the general direction of the 5-HT1B extracellular N-terminus and 

intracellular C-terminus are in cyan. Part of a transmembrane helix of 5-HT1B has been hidden, 

seen as dashed cyan marks, to aid in the visualization of the conserved motifs. The figure was 

generated based on the cryo-EM data (PDB: 6G79) gathered by García-Nafría and co-

authors83. 
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It has been reported that these receptors dimerize both homogeneously and 

heterogeneously84–86. Even dimerization with other non-5-HT GPCRs such as the 

dopamine 2 long-form receptor87 has been shown. These interactions can lead to the 

receptors' regulation and open up the broader question of the roles of receptor interplay 

in the GPCR pathways. Some work has indeed shown that the 5-HT GPCRs regulate 

each other. The 5-HT1B receptor, when agonized with receptor-specific agonist, has 

been shown to cause the internalization of the 5-HT2B receptors52.  

 

1.3.2 LGICs - Ligand-gated ion channels 

 

The 5-HT3 subfamily is the only subfamily of the receptors that are LGICs. They 

are structurally similar to the nicotinic acetylcholine receptors and bear no resemblance 

to the 5-HT GPCRs. Due to their structural composition, they are classified with the 

cation-selective Cys-loop receptor family. The 5-HT3 receptors require a pentameric 

superstructure for the receptor to function88. The receptors exist in an inhibited, active 

closed, active open, and two intermediate states89. At rest, the receptors' pore is 

closed, and when 5-HT binds to the active closed receptor, the channel conforms to 

the active open state. The active open channel allows monovalent cations, such as 

sodium and potassium, and some divalent cations to flux into the cell. The drug 

tropisetron, given as an anti-nausea medication, was shown to stabilize the inhibited 

conformation of the receptor89. The receptors are known to be desensitized to 

activation by calcium cations90and 5-HT91, but the mechanism behind this is unclear. 

The work to elucidate these receptors' mechanisms is ongoing but may require the 

development of new technologies. 

 

1.3.3 Ligands 

 

Although most of the 5-HT GPCRs are structurally similar, they have structural 

variance, allowing for the synthesis of receptor-specific ligands. Due to the structural 

similarities, many compounds have cross-reactivity with several of the 5-HT receptors. 

It is important to note that inter-species variation between the homologs of the 5-HT 

receptors can cause ligand action to be different between the species. It has been 

clearly demonstrated that in the 5-HT1B, a single variation in residue 355 (351 in rats) 
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between the human (T) and the rat (N) version of 5-HT1B causes the difference in these 

receptors' pharmacological profile. When the human 5-HT1B receptor was point 

mutated at T355N, the receptor became drastically sensitive to propranolol and 

desensitized to sumatriptan92. The interspecies and intraspecies similarities of the 5-

HT receptors provide a challenge. Their similarities must be kept in mind when 

designing and testing novel therapeutics. Many agonists and antagonists of the 5-HT 

receptors have cross-reactivity between the 5-HT receptors and even with other 

GPCRs. A list of human 5-HT subtype-specific agonists and antagonists is presented 

in Table 1.4.  
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Receptor Agonist Antagonist 

5-HT1A F-1559993, LY29328494 Robalzotan10 

5-HT1B L-694,24710* SB-21664195 

5-HT1D L-694,24710* BRL-15,57296 

5-HT1E BRL 5444397* N.S.M 

5-HT1F LY-33437010 N.S.M 

5-HT2A DOI98* 5-I-R9115099 

5-HT2B BW-723C86100* RS‐127445101 

5-HT2C CP‐80910193, WAY‐163909102 RS-102221103 

5-HT3A-E SR 57227A104 Tropisetron104**

5-HT4 GR-113808105 SB-204070106 

5-HT5A N.S.M SB-699551107 

5-HT5B N.S.M N.S.M 

5-HT6 WAY-208466108 SB-258585109 

5-HT7 AS19110 N.S.M 

 

Table 1.4. Available specific human 5-HT subtype receptor molecules.  

* Cross-reactive with other 5-HT receptors 

** Cross-reactive with the 5-HT3 subfamily 

N.S.M - No specific molecule available 

 

1.3.4 The PTMs of 5-HT receptors 

 

For a broader review of the PTMs of GPCRs, see section 1.2.11. 

 

While the secondary structure of proteins plays a substantial role in the final 

three-dimensional protein structure, other factors also contribute. In particular, PTMs, 

a covalent modification of proteins occurring after translation, are being discovered as 
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having an ever-expanding role in proteins' function. PTMs come in various forms, such 

as acetylation, phosphorylation, glycosylation, lipidation, sumoylation, serotonylation, 

and many others. PTMs are known to be involved in multiple functions, for example 

protein folding, cellular signaling, protein stabilization, protein destruction, membrane 

anchoring, and others. PTMs have been described in several families of GPCRs. In 

particular, some work was performed elucidating the role of glycosylation of the N-

terminus of GPCRs111–113. The glycosylation at the receptors' N-terminus has been 

described as involved in regulating expression, protein folding, and conformational 

state stabilization114. Several 5-HT receptors are known to have PTMs. In particular, it 

is known that phosphorylation, glycosylation, and lipidation all occur in the 5-HT 

receptors. More specifically, it has been shown that glycosylation can be found in the 

extracellular N-terminus.  

 When comparing the N-terminus amino acid sequences of all of the known 5-

HT receptors, the presence of putative glycosylation sites is observed in all of the 5-

HTR subfamilies (Figure 1.7). Of interest is that glycosylation can provide a source of 

structural variation of the receptor. This variation is based on the glycosylation program 

of the cell that is expressing the gene. This point of difference may be exploitable in 

drug design and may open up designing tissue-specific pharmaceuticals. It also draws 

the question of what the functions of these extracellular glycosylations are in these 5-

HT receptors. 
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Residue No.  1        10        20        30        40        50          

P08908|5HT1A MDVLSPGQGNNTTSPPAPFETGGNTTGISDVTVSYQVITSLLLGTLIFCAVLGNACVVAA 

P28222|5HT1B MEEPGAQCAPPPPAGSETWVPQANLSSAPSQNCSAKDYIYQDSISLPWKVLLVMLLALIT 

P28221|5HT1D MSPLNQSAEGLPQEASNRSLNATETSEAWDPRTLQALKISLAVVLSVITLATVLSNAFVL 

P28566|5HT1E MNITNCTTEASMAIRPKTITEKMLICMTLVVITTLTTLLNLAVIMAIGTTKKLHQPANYL 

P30939|5HT1F MDFLNSSDQNLTSEELLNRMPSKILVSLTLSGLALMTTTINSLVIAAIIVTRKLHHPANY 

P28223|5HT2A MDILCEENTSLSSTTNSLMQLNDDTRLYSNDFNSGEANTSDAFNWTVDSENRTNLSCEGC 

P41595|5HT2B MALSYRVSELQSTIPEHILQSTFVHVISSNWSGLQTESIPEEMKQIVEEQGNKLHWAALL 

P28335|5HT2C MVNLRNAVHSFLVHLIGLLVWQCDISVSPVAAIVTDIFNTSDGGRFKFPDGVQNWPALSI 

P46098|5HT3A MLLWVQQALLALLLPTLLAQGEARRSRNTTRPALLRLSDYLLTNYRKGVRPVRDWRKPTT 

O95264|5HT3B MLSSVMAPLWACILVAAGILATDTHHPQDSALYHLSKQLLQKYHKEVRPVYNWTKATTVY 

Q8WXA8|5HT3C MEGGWPARQSALLCLTVSLLLQGRGDAFTINCSGFDQHGVDPAVFQAVFDRKAFRPFTNY 

Q70Z44|5HT3D MQKHSPGPPALALLSQSLLTTGNGDTLIINCPGFGQHRVDPAAFQAVFDRKAIGPVTNYS 

A5X5Y0|5HT3E MEGSWFHRKRFSFYLLLGFLLQGRGVTFTINCSGFGQHGADPTALNSVFNRKPFRPVTNI 

Q13639|5HT4R MDKLDANVSSEEGFGSVEKVVLLTFLSTVILMAILGNLLVMVAVCWDRQLRKIKTNYFIV 

P47898|5HT5A MDLPVNLTSFSLSTPSPLETNHSLGKDDLRPSSPLLSVFGVLILTLLGFLVAATFAWNLL 

P50406|5HT6R MVPEPGPTANSTPAWGAGPPSAPGGSGWVAAALCVVIALTAAANSLLIALICTQPALRNT 

P34969|5HT7R MMDVNSSGRPDLYGHLRSFLLPEVGRGLPDLSPDGGADPVAGSWAPHLLSEVTASPAPTW 

 

Figure 1.7. Alignment of the N-terminus of all known human 5-HT receptors. Theoretical 

N-glycosylation sites (N-X-S/T) are highlighted in yellow. 

 

1.4 The Serotogenic lifecycle 
 

1.4.1 Anabolism 

 

 5-HT is synthesized throughout the body, with a vast majority of it being 

synthesized by the gut's enterochromaffin cells. The next highest 5-HT synthesizing 

cells are the brain's neurons, with the remainder of the total 5-HT being produced by a 

variety of cells throughout the body. 5-HT is biosynthesized from the essential amino 

acid L-tryptophan via a two-step process. L-tryptophan is catalytically hydroxylated at 

position 5, becoming 5-hydroxy-L-tryptophan (5-HTP) via a tryptophan hydroxylase 1 

or 2 TPH1/2 enzyme, a biopterin (BH4) co-factor, a ferrous ion, and an oxygen gas 

molecule (see Scheme 1.1). This first step of the pathway is the rate-limiting reaction 

of the biosynthesis of 5-HT. Although this is the rate-limiting step of the reaction 
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generally, the enzymatic activity of TPH-1 is known to not saturate under normal 

physiological conditions115. 5-HTP is catalyzed further by aromatic amino acid 

decarboxylase (AADC), with the coenzyme pyrisoxalphophate (Vitamin B6) to make 5-

HT.  

 

 

 

Scheme 1.1. Human biosynthesis of serotonin at physiological pH. The two-step catalysis 

of serotonin (5-HT) from L-tryptophan (A). In the first step, L-tryptophan is catalyzed to 5-

hydroxy-L-tryptophan (5-HTP) by tryptophan hydroxylase 1 or 2, the coenzyme 

tetrahydrobiopterin (BH4), an oxygen molecule, and a ferrous ion. This reaction also yields a 

water molecule and a quinoid dihydropterin (qBH2) molecule. In the second step, 5-HTP is 

catalyzed to 5-HT and a CO2 molecule by the aromatic amino acid decarboxylase (AADC) 

enzyme and the coenzyme pyrisoxalphophate (PLP). The coenzyme reaction in the TPH1/2 

catalysis is shown in B. Enzymatic modifications are highlighted in red. 

 

1.4.2 Catabolism 

 

5-HT is metabolized further in the human body, generating many other 

compounds. One of the metabolites includes the sleep hormone melatonin. Melatonin 

is synthesized from 5-HT via a two-step mechanism. The serotonin N-acetyl-

transferase enzyme (SNAT) acetylates 5-HT at the primary amine to make the N-acetyl 

serotonin intermediate. Next, the acetylserotonin O-methyltransferase enzyme 
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(ASMT) methylates the hydroxide at the 5 position of the intermediate to make 

melatonin. Melatonin can be further metabolized into formy-N-acetyl-5-

methoxykynurenamine, and 6-hydroxymelatonin (see Scheme 1.2).  

Besides melatonin, 5-HT is also metabolized into 5-hydroxyindoleacetaldehyde 

(HIAL), formyl-5-hydroxy-kynurenamine, and N-methylserotonin. HIAL, which is 

catalyzed from 5-HT by the monoamine oxidase A or B enzymes (MAOA and MAOB, 

respectively), is further metabolized to 5-hydroxyindoleacetic acid (5-HIAA) by the 

aldehyde oxidase 1 or aldehyde dehydrogenase 2 enzymes. Further, 5-HIAA can be 

catalyzed by the acetylserotonin O-methyltransferase enzyme to 5-

methoxyindoleacetic acid (5-MIAA)116–118 (See Scheme 2). The metabolites of 5-HT 

can be used to monitor the 5-HT levels in the body to help with clinical diagnoses. For 

example, to check for excess 5-HT in the body, a biomarker of carcinoid tumors and 

carcinoid syndrome119, the levels of the 5-HIAA metabolite are measured. 

 

1.4.3 Regulation 

 

As 5-HT is utilized throughout the body, the control of its synthesis is important. 

The stability of 5-HT varies based on where in the body the molecule is located. It has 

been shown that in rabbits, 5-HT is stable for up to two days in platelets, while in the 

brain, it is stable for minutes120. The variance in half-life, outside of metabolic activity, 

can be attributed to the storage of 5-HT into storage vesicles. In platelets, 5-HT is 

stored in acidified dense granules121, which stabilize and may aid in shielding 5-HT 

from oxidation. In the brain's neurons, 5-HT is stored in storage vesicles along with 

serotonin binding proteins (SBP). SBPs were originally thought to bind and protect 5-

HT and reduce the osmotic pressure within the vesicles122. However, work by Jimenez 

del Rio et al. brought into doubt the true functions of SBPs122, which remains 

unresolved. The low half-life of 5-HT in the brain can be attributed to the tight regulation 

of free 5-HT from 5-HT's neurotransmitter activities. This regulation is mainly 

metabolic, involving the reuptake, degradation, and synthesis of 5-HT. These three 

parameters governing the concentration of 5-HT throughout the body are themselves 

systematically regulated. 

The biosynthesis of 5-HT is regulated on multiple levels. Due to high interest in 

5-HT's as a neurotransmitter, the regulation of 5-HT biosynthesis is mostly limited to 
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the biosynthesis in neurons. The exception being the bacterial regulation in the gut-

brain axis signaling model115. Much of the biosynthesis regulation occurs around the 

first rate-limiting step of the biosynthesis pathway, the conversion of L-tryptophan to 5-

HTP. All parts of this reaction can be involved in the regulation of the biosynthesis of 

5-HT. Starting with the beginning reagent L-tryptophan, where higher concentrations 

of the amino acid yield greater amounts of the 5-HTP product123. It has been stated 

that the co-factor of the reaction BH4 is the limiting reagent in this part of the pathway. 

Increasing its concentration in vivo causes an increase in 5-HTP production124. Hence, 

the BH4 metabolism plays a critical role in the regulation of 5-HT synthesis. 

Additionally, it has been shown that O2 levels in neurons are below the saturation levels 

of this reaction125. This observation shows that O2 concentrations also play a role in 

the synthesis rates. Finally, the enzymes TPH1/2 (peripherally/ neuronally expressed) 

are themselves regulated. 
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Scheme 1.2. The human biocatabolism of 5-HT at physiological pH. Enzymatic 

modifications to the reagents are highlighted in red. The alternative melatonin synthesis 

pathway modifications are highlighted in blue. The enzymes involved are the following: 

acetylcholinesterase (AChE); aldehyde dehydrogenase (ALDH2); amine oxidase [flavin-
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containing] A (AOFA); amine oxidase [flavin-containing] B (AOFB); aldehyde oxidase (AOXA); 

acetylserotonin O-methyltransferase (ASMT); cytochrome P450 1A1 (CP1A1); cytochrome 

P450 1A2 (CP1A2); cytochrome P450 1B1 (CP1B1); cytochrome P450 2D6 (CYPIID6) 

indoleamine 2,3-dioxygenase 2 (I23O2); indolethylamine N-methyltransferase (INMT); 

myeloperoxidase (MPO) serotonin N-acetyltransferase (SNAT). 

The TPH1/2 activities have been shown to be dependent on the ferric iron ion. 

If the ion is oxidized or lost, the TPH1/2 enzymes are reversibly inhibited. Interestingly, 

it is known that the TPH2 enzyme has a stronger affinity for ferric iron ions, which 

makes it less likely to be inactivated when compared to TPH1124. Thus, the iron 

metabolism can also play a regulatory role in the biosynthesis of 5-HT. The divergence 

of the hydrolases goes further in terms of regulation. TPH2, when phosphorylated at 

S19, has been shown to have an increase in the 5-HT production kinetics126,127. In 

contrast, phosphorylation in TPH1 leads to its ubiquitination and proteasomal 

degradation128. This goes along with the higher turnover of TPH1, which has a half-life 

of 15-60 minutes129 compared to the half-life of 2.5 days of TPH2130. Together all these 

factors play a role in regulating the synthesis of 5-HT. 

MAOA and MAOB mostly govern the degradation of 5-HT in the mitochondrial 

membranes. In the periphery, most 5-HT is degraded by the liver131, and most of the 

rest of the 5-HT is metabolized in the lungs132, while in the brain, 5-HT is directly 

degraded in the neurons. Thus, regulation of the MAOs impacts the degradation of 5-

HT. MAOs are regulated through endogenous inhibitors such as tribulins133, a naturally 

occurring indole derivative compound, and expression regulators such as vitamin D134. 

Outside of the synthesis and degradation of 5-HT, its trafficking also influences its 

regulation. 

At physiological pH, 5-HT is protonated, making it energetically unfavorable to 

pass through the lipid membrane's non-polar portion. To overcome this physical 

limitation, 5-HT is actively transported through membranes by monoamine transporters 

(MAT) such as the serotonin transporter (SERT), the plasma membrane monoamine 

transporter (PMAT), and the vesicular monoamine transporter (VMAT). The MATs 

have also been shown to be regulated135,136, adding another layer of regulation to the 

5-HT related pathways. MATs are regulated in multiple manners, including 5-HT 

regulating SERTs. In platelets, 5-HT covalently binds to Rab-4 under high cellular 5-
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HT concentrations. Serotonylation promotes the activation and binding of Rab-4 to 

SERT, inhibiting SERT trafficking to the plasma membrane to further 5-HT uptake135. 

All of the various regulation mechanisms that influence 5-HT levels reflect its broad 

application in the body and point to its critical role in normal physiological functions.  

1.5 Cellular Functions 

1.5.1 Receptor mediated actions 

At the cellular level, the function of 5-HT is both receptor and non-receptor-

mediated. The receptor-mediated response varies based on which 5-HT receptors are 

expressed by the cell. Once activated by the binding of 5-HT, the receptor undergoes 

a conformational change. This change causes an additional conformational shift in the 

bound G protein complexes. The conformational change increases the affinity to GTP 

on the G protein complex, causing the complex to disassociate once GTP binds and 

freeing the Gα subunit to interact with other proteins. Based on which Gα protein (Gαi,

Gq/11, or Gαs) was released by the active form of the 5-HT receptor, various secondary 

messenger cascades are activated. 

When 5-HT binds to any of the 5-HT1 or 5-HT5 subfamily receptors, it activates 

the Gαi adenylyl cyclase inhibiting cascade, which leads to a decrease of cAMP 

concentration within the cell by binding and inhibiting AC. The activation of Gαi has also 

been associated with an increase in inositol 1, 4, 5-trisphosphate (IP3) and 

diacylglycerol (DAG) formation. The increase stems from the cleavage of 

phosphatidylinositol 4,5-bisphosphate (PIP2) via Phospholipase C, delta 1 (PLCδ1) 137. 

5-HT5A has also been shown to decrease cyclic adenosine diphosphate (cADP) 

concentration by inhibiting ADP-ribosyl cyclase activity 138. Finally, the G protein-

coupled inwardly rectifying potassium channel (GIRK) has also been demonstrated to 

be activated by this family of 5-HT receptors139. 

The 5-HT2 subfamily of receptors releases the bound Gq/11 proteins in the active, 

ligand-bound conformation. The released Gq/11 protein binds and activates 

Phospholipase C, beta 1 (PLCβ1), thereby increasing IP3 and DAG production. The 5-

HT4-7 receptors, when activated, release the bound Gαs protein, which binds to AC, 

forming an active complex and initiating the production of cAMP. A summary of the 
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various pathways of the 5-HT receptors and their pathway modulations can be seen in 

Figure 1.8. 

Figure 1.8. The activation of the 5-HT receptors regulates secondary messenger 

pathways. Where 5-HTx is the 5-hydroxytryptamine receptor family. Once 5-HT binds to the 

receptor, it releases a Gα protein subunit, listed under the G-Protein categories heading, 

activating several pathways. Acronyms:  adenylate cyclase (AC);  ADP-ribosyl cyclase activity 

(ADPR); cyclic adenosine diphosphate (cADP); cyclic adenosine monophosphate (cAMP); 

diacylglycerol (DAG); G protein-coupled inwardly rectifying potassium channel (GIRK) 1,4,5-

trisphosphate (IP3); phospholipase C, beta (PLCβ); Phospholipase C, delta 1 (PLCδ1). * Not 

found in humans 
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1.5.2 Non-receptor mediated actions 
 

Apart from its receptor-mediated functions, 5-HT also has non-receptor-

mediated actions. These include serotonylation, radical scavenging, and modulating 

the melatonin metabolism. Within the last decade, the discovery of serotonylation, the 

transamination of 5-HT to a protein's glutamine residue, has evolved the view of the 

function of 5-HT. Serotonylation has been identified to be involved in a host of 

processes. Some of the proteins which have been discovered to be serotonylated 

include ras-related protein 4 (Rab-4) and ras homolog gene family, member A (RhoA) 

in platelet activation140, ras-related protein 3A (Rab-3A), and ras-related protein 27 

(Rab-27) in beta cells during insulin release141, and Rab-4 in neuronal SERT 

internalization. Aside from acting as a PTM, 5-HT has been shown to scavenge free 

radicals142 and along with its metabolite melatonin scavenging reactive species such 

as nitric oxide143. Finally, 5-HT, being a precursor for melatonin, has been identified as 

the rate-limiting compound in the biosynthesis pathway of melatonin144 and may 

regulate its biosynthesis. 

 

1.6 Physiological Properties 

 

1.6.1 5-HT Locations 

 

While 5-HT was originally isolated from the enterochromaffin cells in the gut, 

most of the research on 5-HT focused on its neurological properties. The classical 

understanding of 5-HT's physiological role in the body was based on its function in the 

brain and the gut. In the brain, 5-HT is highly involved in many processes. The 

synthesis of 5-HT mainly occurs in the neurons located in the raphe nucleus in the 

brainstem's midline. Most of the brain is innervated with serotonergic fibers, and 5-HT 

has been implicated in many behavioral disorders and other brain functions145. Due to 

its gross involvement in human behavior, the brain's 5-HT neurons constitute a 

significant pharmaceutical intervention target. Behavior linked to 5-HT signaling has 

recently been connected to 5-HT in the gut. 
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In the gut, both the enterochromaffin cells and the enteric neurons synthesize 

5-HT via TPH1 and TPH2, respectively. Through knockout mice models, it was 

concluded that the 5-HT synthesized by the enterochromaffin cells, which synthesize 

a majority of the body's 5-HT, is most likely used as a hormone throughout the body 

and that the 5-HT made by the enteric neurons are involved in gut motility146. The gut 

has also been linked to being communicative with the brain. This relationship allows 

for inter-kingdom signaling, via 5-HT, where the gut microbiome directly communicates 

with the brain115. The newly uncovered and still poorly understood brain-gut 

relationship is another example of the growing understanding of 5-HT in physiology 

and pathophysiology. 

Outside of the brain and the gut, 5-HT has a broad range of functions throughout 

the body. Besides homeostatic physiological processes, 5-HT has been implicated in 

development and stem cell proliferation147. 5-HT signaling has been described in: the 

arteries, blood, bone, genitourinary tissues, heart, liver, lungs, mammary, and 

others145,146. While the multiple actions of 5-HT have been studied in many tissues 

throughout the body, not much is known about 5-HT's function in skeletal muscle. 

The role of 5-HT in skeletal muscle has been barely explored. What is known 

so far is that 5-HT has been identified in rat myoblasts, myotubes, and whole muscle. 

It was demonstrated in myotubes and whole muscle to regulate glucose uptake via 

GLUTs and the 5-HT2A receptor148. Further, it was shown that 5-HT, via the same 

receptor, modulates the activity of 6-phosphofructo-1-kinase (PFK) in skeletal 

muscle149 and the Janus Kinase (Jak)/ signal transducer and activator of transcription 

(STAT) pathway in myoblasts150. While the Jak/STAT pathways are implicated with 

proliferation and differentiation151, this has not been exhibited in skeletal muscle cells. 

Finally, there is minimal evidence present in the literature on the role of 5-HT in human 

skeletal muscles. Through its broad distribution throughout the body, it is clear that 5-

HT plays a fundamental role in normal physiology. 

 

 

1.6.2 Development 

 

5-HT is present at the beginning of development as SERT152, TPH2146, and 5-

HT itself have been found in murine oocytes and two-cell embryos. 5-HT is critical in 
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determining the asymmetry of the embryo. In frog and chicken embryos, it has been 

shown that 5-HT is distributed in a concentration gradient throughout the 16 cell 

embryo153. The embryo cells are linked by gap junctions allowing the positively charged 

5-HT to travel throughout the embryo driven via an electrochemical gradient 

established by asymmetrically expressed cation expelling pumps. The variation in the 

5-HT concentration leads to left-right specific gene expression154.  

Further down the path in development, 5-HT has been closely associated with 

neuronal development. 5-HT has been linked to multiple facets of brain development. 

Development is driven starting with 5-HT neurons and then progressing with 5-HT 

target tissues' development once the 5-HT neurons have reached those tissues155. 

Outside of the brain, it has been shown, in mice, that 5-HT is crucial for heart 

development. Mice with a deficiency in 5-HT or mice lacking the 5-HT2B receptor 

showed congenital heart defects156. While some correlative evidence exists in humans 

between the 5-HT related genes and behavioral disorders, very little has been proven 

in how 5-HT affects human development. 

 

1.6.3 Signaling Classifications 

 

The broad scope of signaling of 5-HT, which can act as an autocrine, endocrine, 

or a paracrine, diversify and embellishes the function of this molecule. 5-HT is locally 

synthesized and used for auto/paracrine signaling in multiple organs and tissues. For 

example, 5-HT allows beta cells to inhibit the release of glucagon by alpha cells in the 

pancrease157. In the lung, it is used by pulmonary arterial endothelial cells to govern 

the growth of pulmonary arterial smooth muscle cells158, and it restrains milk production 

by acting on the mammary epithelial cells during lactation159. 5-HT also has major 

functions as an endocrine factor, such as in liver regenerations via the 5-HT2B 

receptor160, the regulation of homeostasis of the extracellular matrix of cardiac 

tissues161, and signal for T cell activation162. While the function of 5-HT can be divided 

into signaling categories, the reality of the action of this compound is more complicated. 

In many parts of the body, 5-HT acts on multiples axes, a local signal 

auto/paracrine signal, and a hormone. Platelets interact with 5-HT on multiple facets. 

Platelets use 5-HT as an autocrine to initiate the reuptake of 5-HT via the 5-HT2A 

receptor and release 5-HT as a paracrine when stimulated163. In the placenta, 5-HT 
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plays a critical hormonal role in the neuronal development of the fetus164 and acts as 

a paracrine involved in trophoblast maintenance. Overexposure to 5-HT causes 

trophoblast to go through apoptosis165. Finally, in smooth muscle cells, 5-HT induces 

cell migration and cytoskeleton reorganization via the 5-HT4 receptor166. While already 

extensive, the known way 5-HT functions and the depth of its utilization by the body is 

still not fully explored. 

 

1.7 Pathophysiology 

 

With its broad physiological action, it is not surprising that 5-HT and its receptors 

are involved in various pathophysiologies. 5-HT has been implicated in cancers, 

diabetes, fibrosis, gastrointestinal disorders, inflammation, obesity, osteoporosis, 

neurodegenerative diseases, and pulmonary disease. Generally, most pathologies can 

be linked to either overexpression or repression of 5-HT related proteins. A summary 

of examples can be found in Table 1.5 at the end of this section. 

 

1.7.1 Overexpression of 5-HT related components 

 

 Several cancers have been linked with the dysregulation of 5-HT related 

elements. Glioblastomas have been shown to grow in response to 5-HT7 receptor 

stimulation via interleukin 6 (IL-6) and Mitogen-activated protein kinase 3 /1 (ERK1/2) 

mediated proliferation167. Along with glioblastomas, hepatocellular cancer proliferation 

has also been linked with 5-HT. Starved hepatocellular cancer cell lines treated with 5-

HT showed increased proliferation, and mouse models where 5-HT signaling was 

inhibited showed tumor growth inhibition168. Additionally, patient samples from the 

same study revealed an increased expression of the 5-HT2B receptor, which stimulated 

proliferation through the upregulation of ribosomal protein S6 kinase beta-1 (p70S6K). 

The excess expression of 5-HT related proteins has been linked to other pathologies 

with overgrowth. 

 

 Several works demonstrated that conditions with excess proliferation such as 

valvulopathy, cardiac hypertrophy, and fibrosis were linked to the exuberant 

expression of 5-HT signaling components. In the heart, it was shown that valvulopathy 

was caused by the overexpression of the 5-HT2B receptor169. This pathology is 
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infamous for its discovery. Norfenfluramine is a metabolite of the weight loss 

medication fenfluramine/phentermine, which caused valvulopathies in patients via the 

5-HT2B receptor. It was promptly banned by the U.S. Food and Drug Administration 

(FDA), and now pharmaceuticals are screened for 5-HT2B activity. In another related 

cardiac pathology, overexpression of 5-HT2B was shown in mouse models to cause 

cardiac hypertrophy with increased cell number, cell size, and proliferation of 

mitochondria170. Besides the heart, excessive expression of 5-HT receptors has been 

linked to dermal, liver, and idiopathic lung fibrosis. The upregulation of the 5-HT2B 

receptor has been linked to all three171–173 of the mentioned fibrosis. The dermal 

fibrosis was shown to have a 5-HT2B receptor-mediated increase in the extracellular 

matrix expression observed via qPCR171. In liver fibrosis, it was shown that in rats with 

diseased livers, treatment with 5-HT2B antagonist stalled proliferation and increased 

the rate of apoptosis in the liver172. Finally, in idiopathic lung fibrosis, quantitative 

western blotting showed an increase in AKT signaling, mediated by 5-HT2B, which was 

abated by chronic exercise173. Aside from pathologies involving proliferative 

dysregulation, pathologies involving inflammation have also been implicated with 

stimulus from excess 5-HT. 

 

 Pathologies involving inflammation: irritable bowel syndrome (IBS), Crohn’s 

disease, and neuroinflammation have been correlated with an increase in 5-HT 

receptors. In IBS, which has been linked with inflammation174, postprandial plasma 5-

HT levels were identified to be elevated in IBS with diarrhea174. Additionally, 

antagonizing the 5-HT3 receptors counters the IBS pathology175. In Crohn’s disease, 

an increase in the 5-HT7 receptor expression in integrin alpha X (CD11c) and cluster 

of differentiation 86 (CD86) positive dendritic cells was seen in both a mouse model of 

colitis and in samples of inflamed intestines from patients176. The same receptor, 5-

HT7, is expressed in microglial cells outside of the gut. This receptor is believed to drive 

inflammation from experiments that showed that it increased the release of the pro-

inflammatory cytokine IL-6 after antagnization177. While the overexpression of 5-HT 

related proteins is involved in several inflammatory pathologies, it has also been shown 

to occur in various other diseases. 

 

 Outside of driving cancers, proliferation, and inflammation, positive miss-

regulation of 5-HT has been seen in many other pathophysiologies. 5-HT has been 
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implicated in osteoporosis, progressive supranuclear palsy, and pulmonary 

hypertension. 5-HT has been proposed to be linked via the 5-HT1B receptor178, 

inhibiting osteoblast bone formation in osteoporosis. The active 5-HT1B receptor 

prevents the activation of the transcription factor CREB via the hampering of cAMP 

synthesis. In the neurodegenerative disease, progressive supranuclear palsy, 

overexpression of the 5-HT2A receptor179 was seen in the brain’s substantia nigra 

region, which is involved in movement. Finally, in pulmonary hypertension, the 5-HT2B 

receptor is overexpressed in pulmonary arteries stimulating elastase production and 

remodeling156.  

 

1.7.2 Repression of 5-HT related components 

 

 It is clear that 5-HT is involved in many pathologies. The overexpression of 5-

HT components can have a variety of effects. However, the impact of miss-regulation 

of the 5-HT signaling pathways is not limited to overexpression; its repression also 

plays a role in many pathologies. Several pathologies exhibit repression of 5-HT linked 

elements. Repression of 5-HT related proteins has been reported in cancer. A study 

on patient samples of ovarian tumors showed increased repression of the 5-HT2B 

receptor with the dissemination of ovarian cancer180. Besides cancers, reports of 

repression of 5-HT affiliated entities were observed in inflammatory and gut diseases. 

In rheumatoid arthritis, a TPH1 knockout mouse model showed an increase in arthritic 

markers, linked to a decrease in interleukin 17 (IL-17) and inhibition of T-regulatory 

cells181. These conditions were ameliorated ex vivo with the antagonism of the 5-HT2A 

and 5-HT2B receptors. In chronic constipation, agonism of the 5-HT4 receptor has been 

demonstrated to relieve this pathology182. The activated receptor initiates gut motility 

via the release of acetylcholine in the presynaptic cholinergic enteric neurons, causing 

the contraction of colonic longitudinal smooth muscles and relaxation of rectal circular 

smooth muscles. In diabetes, the 5-HT2C receptor stimulation was shown to better 

glucose tolerance and lower insulin concentrations in the plasma of diabetic mouse 

model183. A decrease in 5-HT receptors can be seen outside of inflammatory and gut-

related pathologies. 

 

 Repression of 5-HT signaling parts in neurons has been demonstrated in 

multiple neurogenic diseases. In both Alzheimer’s disease and amyotrophic lateral 
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sclerosis (ALS), the 5-HT1A receptor was shown to be expressed in lower cell densities 

in positron emission tomography (PET) scans of the brains of patients exhibiting these 

pathologies184,185. In both diseases, the raphe nuclei showed a decrease in this 

receptor. There was also a marked decrease in the binding potential of a 5-HT1A 

marker in the hippocampal region for Alzheimer’s patients. In contrast, ALS patients 

exhibited a marked decrease in receptor density in the cortex. In behavioral conditions 

such as ADHD, genetic studies have linked a deleterious mutant of the 5-HT2A receptor 

to this pathology186. Aside from ADHD, other behavioral conditions such as generalized 

anxiety disorder and major depressive disorder are believed to involve 5-HT. While 

several pathophysiological theories exist for these two diseases, the exact pathology 

has yet to be elucidated for either. Even so, these pathologies are treated with 

medications that alter the 5-HT distribution in the brain, with serotonin-specific 

reuptake inhibitors (SSRI) compounds being the primary treatment strategy. 

Neurological pathologies have been heavily linked with the under and overexpression 

of 5-HT components. However, much work remains to be done to understand the role 

of 5-HT in neurological pathologies. While covering a broad range of physiological 

areas, these pathologies are a sample of the numerous 5-HT associated diseases. 
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Pathology Examples 5-HT entity implicated 

Cancer Glioblastoma; HCC; Prostate 5-HT7167; 5-HT2B168; 5-HT1A/B180 

Cardiomyopathy Valvulopathy; Hypertrophy 5-HT2B169; 5-HT2B170 

Diabetes Mellitus Neurohormonal dysregulation 5-HT2C183 

Fibrosis Dermal; Liver; Placenta 5-HT2B171; 5-HT2B172; SERT165 

GID IBS; Constipation; CD 5-HT3, SERT175; 5-HT4182; 5-HT7176 

Inflammation Neuroinflammation; AA 5-HT7177; 5-HT2A/B181 

Obesity Neurohormonal dysregulation 5-HT2C187 

Osteoporosis Neurohormonal dysregulation 5-HT1B188 

Mood disorders Anxiety; ADHD; MDD 
5-HT1A184,189; 5-HT1B,2A186,190; 

5-HT1A/B,2A-2C,3A,4,5,6,793 

NDD Alzheimer’s; ALS; PSP 5-HT1A/B184; 5-HT1A185; 5-HT2A179 

Pulmonary disease Pulmonary hypertension; IPF 5-HT2B156; 5-HT2B173 

 

Table 1.5. A table listing several 5-HT linked pathologies and the receptors implicated. 

AA - autoimmune arthritis; ADHD - attention deficit hyperactivity disorder; ALS - amyotrophic 

lateral sclerosis; CD - Crohn’s Disease; GID - gastrointestinal disorders; HCC - hepatocellular 

carcinoma IPF - idiopathic pulmonary fibrosis; MDD - major depression disorder; NDD - 

neurodegenerative disorders; PSP - progressive supranuclear palsy 

 

1.8 Pharmaceuticals targeting 5-HT receptors 

 

Although the 5-HT receptors are broadly implicated in many diseases, 

therapeutics that specifically target them are limited. Currently, only five out of the 

seventeen receptors have a therapeutic that specifically targets them (5-HT1A, 1B, 2C, 3, 

4). The 5-HT1 family has two major pharmacological targets, 5-HT1A and 5-HT1B. 

Buspirone, an azapirone family small molecule, is used in the treatment of GAD. The 

compound targets pre and postsynaptic neurons. There is evidence that it inhibits the 

presynaptic neurons in the raphe nuclei, repressing the firing of 5-HT neurons and 

halting 5-HT synthesis191. However, the exact mechanism by which buspirone treats 
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GAD is unknown. The other targeted 5-HT1 family receptor, 5-HT1B, is agonized to treat 

both migraines and cluster headaches. While the exact mechanism has not been 

proven for either, it is believed that, for migraines, agonized 5-HT1B receptors trigger 

vasoconstriction of painfully dilate cranial arteries192. In cluster headaches, it is thought 

that the agonists inhibit the activation of the trigeminovascular system193. Aside from 

the 5-HT1 subfamily of 5-HT receptors, other subfamilies are also targets for 

pharmacological intervention.  

The other 5-HT receptor families are pharmacologically targeted to modulate a 

variety of gastrointestinal dysfunctions grossly. The 5-HT2C receptor is agonized by the 

benzazepine class molecule, lorcaserin, to promote satiety in the treatment of 

obesity102. Lorcaserin agonizes the receptor in pro-opiomelanocortin neurons located 

in the arcuate nucleus stimulating them to excrete alpha-melanocortin-stimulating 

hormone. This hormone suppresses appetite by activating melanocortin-4 receptors of 

the neurons found in the paraventricular nucleus194. The 5-HT3 receptor, the only LGIC 

among the 5-HT receptors, is pharmacologically inhibited to prevent vomiting and 

nausea, mainly in conjunction with chemotherapy. The exact mechanism of action is 

unclear. However, it is believed to act on the 5-HT3 receptors located in the peripheral 

and central nervous system195. Finally, the 5-HT4 receptor is pharmacologically 

agonized with prucalopride, a benzofuran class compound, to alleviate chronic 

constipation. The agonist stimulates the receptor of enteric neurons controlling the long 

and circular smooth muscles of the colon, promoting spontaneous bowel 

movements196. A summary of the clinical compounds targeting 5-HT receptors can be 

seen in Table 1.6.  
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Receptor Compound Class Examples Action Clinical Usage 

5-HT1A Azapirone Buspirone191 Partial Agonist GAD 

5-HT1B/D 
Ergotamine;  

Tryptamine 

DHE197; 

Sumatriptan197 
Agonist; Agonist 

Migraine;            

Cluster headache 

5-HT2C Benzazepine Lorcaserin102 Agonist Promote satiety 

5-HT3 Setron Tropisetron89 Antagonist Antiemetic 

5-HT4 Benzofuran Prucalopride198 Agonist Chronic constipation 

 

Table 1.6. 5-HT receptors in medicine. Pharmaceuticals that are approved for medicinal 

use by the European Medicines Agency that target a 5-HT receptor. DHE is 

dihydroergotamine, and GAD is generalized anxiety disorder. 

 

While some of the receptors are already being targeted for certain pathologies, 

they may be involved in other, yet untreated, pathologies. For example, the 5-HT1B 

receptor has been linked to multiple pathologies other than migraines. Some of the 

pathologies include cancers199–201, degenerative movement disorders189,202, mood 

disorders203–206, and osteoporosis. 

With their involvement in multiple pathologies and pharmaceuticals that target 

this receptor, the 5-HT1B agonists present themselves as a good target for drug 

repurposing. However, the agonists on the market are not specific for the 5-HT1B 

receptor but have cross-reactivity with other 5-HT receptors, mainly of the 5-HT1 

subfamily. Cross-reactivity causes undesired effects and is a concern when designing 

therapeutic strategies. The ability to create therapeutics specific to one receptor 

subtype, or the niche of receptors expressed in a particular cell type, is critical in 

developing medications with low side effects. Understanding how the receptors vary 

from cell type to cell type by studying post-translational modifications that are 

functionally active in the receptors would make next-generation therapeutics hyper-

specific for receptors in specific cell types. Additionally, gaining a more profound 

knowledge of the presence and function of 5-HT receptors throughout the body, such 

as skeletal muscles, may lead to novel treatments for currently untreatable diseases. 
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1.9 Skeletal Muscles 
 

Skeletal muscles are one of the three muscle types that compose the muscular 

system found in invertebrates. Compared to the other muscle types, cardiac and 

smooth, skeletal muscle tissues are distinct in their appearance, molecular 

composition, and neurological control.  

Skeletal muscles have many functions in vertebrate organisms. The skeletal 

muscles contract providing the force in controlled locomotion and regulate the 

movement of substances in the other organismal tracts, such as the digestive tract. 

Additionally, they provide support to the structure of the organism and internal organs, 

stabilize joints, aid in thermoregulation through the generation of heat via ATP 

hydrolysis. Additionally, skeletal muscles protect by acting as a barrier to external 

forces, are a storage compartment for amino acids, and a source of emergency energy 

during starvation. 

 

1.9.1 Gross anatomy 
 

Skeletal muscles are fibrous organs connected to bones via tendons. The 

skeletal muscle is attached at the beginning of the organ by the proximal tendon named 

the “origin” and by the distal tendon termed the “insertion” at the end of the organ. The 

axis of force generation is a theoretical line drawn from the origin through the muscle 

to the insertion207. Skeletal muscles are categorized by their muscle architecture, which 

is defined by how the muscle fascicles lie in relation to the axis of force generation. 

The different muscle architectures allow for variations of force generations of fascicles 

of varying lengths.  

In humans, muscles are broadly categorized into being either longitudinal, 

pennate, or multipennate. Where longitudinal muscles have fascicles that are parallel 

to the axis of force generation, pennate muscles have fascicles that are at an angle 

not parallel to the axis (usually 1 ° to 30 ° from the axis). Multipennate muscles have 

fascicles that are at multiple angles non-parallel to the axis208. When the constituent 

fascicles of muscles are in line with the direction of the origin and insertion and the axis 

of force generation, as in longitudinal muscle architecture, the maximum force of the 

movement is produced when the fascicles contract207. Pennate and multipennate 
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muscles contain fascicles that are not aligned with the axis of force generation, yet 

they can generate more force than a comparable longitudinal muscle. The greater force 

is created by packing more, shorter fascicles in the same volume, thus increasing the 

physiological cross-sectional area, which overcomes the reduction of force from being 

off-angle with the axis of force generation209. Pennate muscle architecture allows for 

more compact muscles in areas where the size of longitudinally arranged fascicles 

would get in the way of the desired movement207. Muscle architecture is the grander 

layout of the highly organized composition of skeletal muscle anatomy. 

Skeletal muscles are composed of nested fibers, each enveloped by connective 

tissues (Figure 1.9). The skeletal muscle organ, enclosed by a layer of connective 

tissue called the epimysium, comprises multiple muscle fascicles. The muscle 

fascicles, encased by the perimysium connective tissue layer, are composed of muscle 

fibers and loose connective tissue. The loose connective tissue, the endomysium, 

packs the inter-muscle fiber space. The sarcolemma, a specialized plasma membrane 

coated with a glycocalyx, surrounds the muscle fibers. The muscle fibers are the 

contracting cells that compose muscle tissues and are made of multiple myofibrils. 

Each myofibril contains repeating units of sarcomeres, which are functionally 

contracting entities that allow muscles to contract and relax210. 
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Figure 1.9. The anatomical organization of skeletal muscle. Skeletal muscles are 

composed of myofibrils nested in sarcolemma encased muscle fibers. They are bundled into 

muscle fascicles surrounded by connective tissue, the endomysium, and encased by the 

perimysium. Muscle fascicles are grouped by the epimysium, making up the skeletal muscle 

organ. This figure is adapted from Betts et al. (2013) OpenStax “Anatomy and Physiology210 

(CC BY 4.0). 
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1.9.2 Fiber types 
 

Muscle fibers have diversified to allow for different functions. Various 

transcription factors drive the diversification of fibers211. There have been numerous 

attempts at categorizing fiber types. However, there is no consensus. In general, there 

are three major ways to categorize the fibers either by their firing rate, their metabolism 

type, or by which myosin heavy chain is expressed in the fiber. The firing rate system 

splits the fibers into fast or slow-twitch fibers, and the metabolic system breaks fibers 

into oxidative or glycolytic. These ordering systems lead to the broad three fiber types: 

slow oxidative, fast oxidative, and fast glycolytic210. Due to the lack of specificity, this 

organizational system is often not used. 

 The most common classification system utilizes the isoforms of myosin heavy 

chain for identification. In this system, the labeling of slow-twitch fibers is type I, and 

fast-twitch fibers are either type IIa, IIb, or IIx. The metabolic profile of the fibers group 

type I and IIa as oxidative and IIb as glycolytic212. Type IIx fibers’ metabolic profile is 

dependent on their location213.  

There are a few complications with this naming system. The existent of 

heterogeneous fibers that express more than one form of myosin214 complicate the 

categorization. For example, under this system, the hybrid fiber types I/IIa, IIa/IIx, and 

IIb/IIx exist. Additionally, some fibers do not express any of these myosin isoforms and 

fall outside this classification system. These include embryonic, neonatal, head, and 

neck fibers214. Regardless of fibers’ typing, they play a role in muscle functionality and 

are linked to diseases such as obstructive pulmonary disease215, Ullrich disease216, 

and diabetes217. Thus, it is essential to understand how these fibers function. 

 

1.9.3 Microanatomy 
 

Muscle fibers continue the organization pattern observed in the muscle organ 

and underlying tissues. Each muscle fiber is composed of several myofibrils encased 

in the sarcoplasmic reticulum. Each fiber is composed of linearly connected 

sarcomeres, which are the individual contracting units driving the entire muscle organ's 

force generation.  
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The structure of the sarcomeres is made up of an actin (thin) filament, a myosin 

(thick) filament, and a titin (elastic) filament, bound together between the Z-disc and 

the M-band. These structured elements are packed in parallel and responsible for 

skeletal and heart muscles' striated appearance. A sarcomere unit is defined by a Z-

disk (Z-line) on either end of it. A Z-disk is a protein complex that anchors parallel, 

running actin filaments. Myosin fibers are in the middle of the sarcomere, centered on 

the M-band protein complex, flanked by two actin filaments (one above and one below) 

on each end, and bound to two titin fibers which span from the M-band to the Z-discs218. 

The length of the myosin fiber, the heavy fiber, constitutes the A-zone. The 

myosin protein contains actin and ATP binding sites, which bind to the actin during 

contraction. The gap between the two parallel actin fibers and the length of the myosin 

is named the H-zone. The I-band is the area of the actin filament before the overlap 

with myosin to the Z-disk, from one sarcomere to the neighboring sarcomere. The 

regions of the sarcomere are visualized in Figure 1.10. 

 

 

Figure 1.10. Sarcomere structures. A) An electron micrograph section of muscle showing 

sarcomeres with their corresponding structural features. B) A schematic representation of the 
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electron micrograph of panel A with labeled components of the sarcomere. Adapted from 

Lange et al. 2020 

 

1.9.4 Molecular mechanism contraction 
 

A fundamental function of skeletal muscle is to generate force, which is utilized 

for conscious movement. Force in muscle tissue is produced by the controlled 

contraction of the sarcomeres of myofibrils. Motor neurons, which innervate skeletal 

muscle, propagate their action potentials by releasing acetylcholine into the 

neuromuscular junction. Acetylcholine binds to nicotinic acetylcholine receptors found 

on the sarcoplasm side of the neuromuscular junction, stabilizing the receptor's open 

conformation. The receptor's open conformation allows positively charged ions to 

transverse the sarcoplasm, instigating a flux of sodium ions to enter the cell, triggering 

the depolarization of the cell membrane potential.  

The membrane’s depolarization (Figure 1.11A) is conducted from the 

neuromuscular junction via T-tubules, which run transversely across the myofibrils. 

The-tubules are bordered by two terminal cisternae of the sarcoplasmic reticulum, 

forming the triad. At the triad membrane interfaces, the T-tubule membrane 

depolarization wave triggers dihydropyridine receptors to foster the opening of the 

ryanodine receptor on the sarcoplasmic reticulum membrane. The open ryanodine 

channels allow for a calcium ion flux from the sarcoplasmic reticulum into the 

cytoplasm219.  

As the released calcium ions reach the sarcomere, they bind to the protein 

troponin. The binding of calcium causes a conformational change, which initiates a 

secondary conformational change in the tropomyosin protein. The conformational 

change in tropomyosin exposes the myosin head binding site on the actin filaments, 

allowing for the formation of a cross-bridge between the two filaments. The myosin 

heads release a phosphate ion upon actin binding and undergo a conformational 

change (head movement), which contracts the sarcomere. With the conformational 

change, an ATP binding site is exposed. The binding of ATP releases the myosin head 

from the actin filament, relaxing the sarcomere and completing the power stroke219 

(Figure 1.11B). 
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Figure 1.11. Mechanics of muscle contraction. Panels are displaying the relay of signal 

conductance from the neuromuscular junction to the sarcomere. After the neuron releases the 

neurotransmitter acetylcholine (ACh), ① ACh diffuses to the sarcolemma, where it binds the 

nicotinic acetylcholine receptor (nAChR). The binding of ACh causes the receptor’s channel to 

open, allowing a flux of sodium ions to enter the cell, initiating the action potential (A.P.) in the 

muscle cell. The sodium ion flux causes a reduction in negative electric potential, which is 

sensed by voltage-gated potassium channels (K+), ATP-sensitive potassium channel (K+
ATP), 

and chloride channels (Cl-). The channels open and further propagate the A.P. down the T-

tubule ②. The voltage change is sensed by the dihydropyridine receptor (DHPR), which is 

mechanically linked to the ryanodine receptor (RyR) located on the sarcoplasmic reticulum 

(S.R.) membrane. The change in voltage causes DHPR to open the RyR Channels releasing 

Ca2+ ions into the cytoplasm ③ where it diffuses to the sarcomere. ④ The calcium ATPases 
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(Ca2+ATPase) and sodium-potassium adenosine triphosphatases (Na+ / K+-ATPase) 

reestablish the concentration gradient in the S.R. and the cytoplasm, respectively. In panel B, 

Ca2+ ions bind to troponin, causing a conformational change on the protein that changes the 

shape of tropomyosin, exposing the myosin-binding site on actin ①. The myosin head 

attaches to the exposed actin-binding site ②. ATP is hydrolyzed to ADP and an inorganic 

phosphate ③ driving the power stroke, causing the myosin head to move, contracting the 

sarcomere by shifting the actin towards the middle of the sarcomere. ADP is released from the 

myosin head, now in its low energy state, vacating the binding pocket for ATP ④. ATP binds 

to the empty myosin head and releases the myosin head from the actin completing the power 

stroke cycle ⑤. 

 

1.9.5 Myogenesis 
 

Adult skeletal muscles have regenerative properties. The ability of skeletal 

muscle tissues to regenerate comes from a resident population of stem cells called 

satellite cells (SC). The SCs reside beneath the basal lamina on top of the sarcolemma 

of myofibers in a quiescent state. Upon activation, SCs begin to proliferate, with a 

fraction of cells maintaining quiescence to replenish the SCs population and a fraction 

differentiating to regenerate muscle fibers. The population of SCs fated for muscle fiber 

regeneration begins to multiply and then differentiates twice more to first, myoblasts, 

and then again to myocytes, before fusing with existing muscle fibers220. 

The paired box protein controls the SCs and their differentiation cascade (Figure 

1.12) (Pax) and the myogenic regulator family (MRFs) transcription factors. Dormant 

SCs are regulated by Pax-7 (additionally Pax-3 in embryonic SCs). Upon SC activation, 

myoblast determination protein 1 (MyoD) is expressed, the concentration of the already 

expressed myogenic factor 5 (Myf-5) increases, the concentration of Sprouty1 (Spry-

1) decreases, and Pax-7 expression is maintained. Experimental knockout mice 

models have shown that MyoD and Myf5 are redundant, but at least one is required 

for skeletal muscle generation221. A fraction of the population of SCs re-expresses 

Spry-1, returning themselves into a quiescent state222. After differentiation from SC to 

myoblast, the expression of Pax7 decreases, the expression of MyoD and Myf-5 

continues, and the expression of myogenic factor 4 (MyoG) begins. As the myoblast 

goes further down the differentiation pathway, the expression of Pax-7 stops 
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altogether, MyoD and Myf-5 expression decreases, and MyoG expression increases 

in myocytes. Myocytes go on to fuse to form myotubes with the rise in myogenic factor 

6 (Myf-6). Once formed, the tubes mature to myofibers and express the genes of 

skeletal muscle such as myosin heavy chains223.  

 

 

Figure 1.12. Transcription factor cascade of determining satellite cells. Once activated, 

quiescent satellite cells reduce their Spry-1 levels and begin to proliferate and differentiate. A 

population of satellite cells maintain Pax-7 expression and return to quiescence by expressing 

Spry-1. As Myf-5 and MyoD levels increase, activated satellite cells differentiate to myoblast 

and continue to proliferate. Myoblasts continue down the path of determination and 

differentiate to myocytes as Myf-5 and MyoD levels fall and MyoG levels rise. As Myf-6 levels 

increase and MyoG levels taper-off, myocytes fuse to form myotubes. Finally, Myotubes 

mature to myofibers with the expression of myosin heavy chains. (Inspired by Morgan et al.224) 

Physiologically, muscle repair is triggered by damage to the muscle fibers 

causing the release of warning signals, called damage-associated molecular patterns 

(DAMPs), from disrupted cells and extracellular matrices. Leukocytes contained in the 

muscle tissues recognize the DAMPs and initiate the inflammatory response via 
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cytokine signaling. The Inflammatory response removes the damaged cells and debris 

along with activating quiescent SCs. The SCs are activated via released hepatic growth 

factor (HGF) and, recently discovered, by the damage-myofiber-derived-factor (DMDF) 

and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)225. The SCs are driven to 

proliferate via HGF, Insulin-like growth factor 1 (IGF-1), fibroblast growth factor (FGF), 

Interleukin 6 (Il-6), and others226. 

SCs can also-self-activate when sensing mechanical stretching in the muscle 

fiber. The stretch in the fibers causes the release of HGF from the extracellular matrix, 

and the SCs themselves sense the mechanical force and release HGF as an autocrine. 

HGF is recognized by the c-met receptors of SCs, initiating a cascade that leads to the 

expression of Myf5 and the inhibition of MyoD227. Upon reprogramming the SCs by the 

transcription factors, the SCs become metabolically activated, allowing them to 

proliferate once signaled by IGF-1 and FGF226. The SCs daughter cells continue to 

differentiate with some daughter cells re-entering quiescence via the expression of 

Spry1, which inhibits tyrosine kinase cascades stimulated by HGF, FGF, and IGF-1, 

replenishing the SC population in the muscle. 

As the SC differentiate into myoblasts, they continue proliferating under the 

stimulus of IGF-1 and begin to differentiate by MyoD regulation triggering the 

expression of the MyoG determination factor. Opposingly, myostatin acts as an 

inhibitor of myoblast proliferation, arresting the cells in the G1 stage of the cell cycle 

and inhibiting MyoD and MyoG expression228. Myostatin, in turn, is negatively 

regulated by follistatin, which binds and neutralizes myostatin229. As myoblasts 

determine into myocytes, MyoD triggers MyoG expression. The understanding of the 

fusion of myocytes into myotubes needs more work. However, it is known that Myf6 

are the master regulators that coordinated the protein complexes, which lead to the 

formation of the myofibers that constitute the skeletal muscle tissue221. 

The signaling that controls the differentiation and proliferation from SC to 

myofibers is primarily mediated by mytokines, the cytokines of the muscle. The 

mytokines are recognized by membrane receptors that are of various receptor types. 

The tyrosine kinase receptor family’s involvement has been studied the most, including 

HGF, IGF-1, and FGF-2. However, other receptor families are involved as well. Some 

GPCRs (CRFR2, β2-AR, Fzd7, and others) have been found to play a role as well. The 

role of the 5-HT GPCRs has been studied minimally. 
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2 Part I 

 

Data from the experimental neuropathology laboratory indicated that treatment 

of mice with the SSRI inhibitor fluoxetine increased muscle regeneration. It was 

hypothesized that the increased amount of 5-HT was responsible for the observation. 

An investigation into the possible role and the presence of 5-HT receptors in murine 

muscle was initiated.  

Both genetic and proteomic data showed traces of a 5-HT pathway. Data from 

qPCR experiments indicated that the 5-HT1B receptor was present in the tissue, and 

this was confirmed via Western blotting of whole murine muscle. It was observed in 

the Western blot that the bands for 5-HT1B presented broad and were running at a 

higher molecular weight than theorized. We gathered that the higher running of the 

bands might be linked with post-translation modifications of proteins. Specifically, 

glycosylation has been associated with causing bands to run higher than expected.  

From our observation, we began to question the existence and functional 

importance of glycosylation of this receptor. We wondered if and how glycosylation or 

other transient PTMs of the receptor affect the potency of ligands. To understand our 

line of questioning, we investigated the purpose of the PTMs in the 5-HT1B receptors.  

Below we show how a multipronged approach was utilized to answer the above 

questions. Bioinformatics was used to identify potential and possibly significant 5–HT1B 

PTMs. Biochemical methods were used to verify the existence of PTMs and probe for 

their efficacy on the ligands' potency. Finally, computational methods were employed 

to help us understand a potential mechanism of action of the PTMs.  

 

We identified that glycosylation does occur in the N-terminus of the receptor. 

The glycosylation has an effect on potency. The impact on potency is ligand-specific 

and is observed with the native ligand, 5-HT. The mechanism by which the N-terminus 

affects the potency is potentially attracting the ligand from the extracellular milieu and 

releasing it near the binding pocket. Thereby, the ligand's concentration near the 

opening of the binding pocket and the effective potency of the ligand is increased. 
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2.1 Materials and Methods 

 

2.1.1 Bioinformatics on 5-HT1B 

 

2.1.1.1 Homology Alignment 
 

The protein amino acid sequences of eight species, including humans, were 

collected from UniProt 230. The sequences were truncated to the N-terminus of the 

receptor. The homology alignment was performed in UniProt using the Clustal Omega 

alignment algorithms231. Conserved areas of the N-terminus were identified and 

highlighted. 

 

2.1.1.2 Identifying potential phosphorylation sites  
 

 Sites for potential phosphorylation were identified using the NetPhos 3.1 

Server232 using the human 5-HT1B receptor's amino acid sequence. Serine, threonine, 

or tyrosine residues with a predicted score above 0.900 out of 1.000 were considered 

as likely phosphorylated. 

 

2.1.2 Creating the PRESTO-Tango mutant constructs 

 

The mutant constructs were made using the QuikChange Lightning Site-

Directed Mutagenesis Kit from Agilent Technologies (Santa Clara, CA, USA).  

 

2.1.2.1 Primer Design 

 

The primers were designed using the QuikChange Primer Design tool found 

online (https://www.agilent.com/store/primerDesignProgram.jsp) from Agilent 

Technologies. A set of primers were designed for the single point mutations of N24A, 

N32A, S34A, D129A, and C388A. The created primer sequences and their calculated 

melting points (Tm) can be found in Table 1 of Annex I. For the synthesis of the primers, 

0.01 mol of each primer was ordered from Eurofins Scientific (Luxembourg, 

Luxembourg) purified via salt-free purification, quality control checked by MALDI, and 
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diluted to a concentration of 100 µM. Once received, a tenfold dilution using distilled 

and deionized water (ddH2O) was made to a final volume of 100 µL of each primer to 

create a stock of the primers at working concentration. The primers were stored at 4 

°C for the short-term and -20 °C for the long-term. 

 

2.1.2.2 Generating and purifying the template plasma DNA 

 

The PRESTO-Tango HTR1B plasmid was ordered for the Addgene (Watertown, 

MA, USA) repository, Ref. 66405. The agarose stab was probed and streaked on a 

fresh, room temperature (RT), 100 µg/mL ampicillin lysogeny broth (LB) agar plate, 

and left to culture overnight in a 37 °C incubator. The following day an isolated colony 

was picked and used to inoculate a 5 mL LB media culture with 100 µg/mL ampicillin 

in a 14 mL round bottom flask. The inoculated culture was then incubated overnight in 

a shaker at 200 rpm and 37 °C. The following day 750 µL of the culture was mixed with 

the same volume of 50 % sterilized glycerol into a 2.0 mL cryogenic tube and stored 

at -80 °C to make the glycerol stock. The glycerol was prepared from ≥ 99 % pure 

glycerol, Ref. G5516 (Sigma-Aldrich, St. Louis, MO, USA), mixed with ddH2O and 

autoclaved. The remaining culture was centrifuged at 1789 x g for 10 minutes at 4 °C 

to pellet the bacteria.  

The LB media from the pelleted culture was gently decanted, and the tube was 

allowed to rest upside down on a paper towel. Using a QIAprep® Miniprep kit, Ref. 

27104, from Qiagen (Hilden, Germany), the DNA was purified from the bacteria. The 

cells were resuspended in 250 µL of pre-chilled (4 °C) P1 buffer via pipetting and 

moved to a 1.5 mL centrifuge tube. The cells were lysed by adding 250 µL of P2 buffer, 

and the tubes were inverted six times. After allowing the lysing reaction to occur for 5 

minutes, 350 µL of neutralizing buffer N3 was added to the tubes, and once again, the 

tubes were inverted six times. The solution was spun at 17,000 x g for 10 minutes at 

RT, and the supernatant was loaded onto a spin column.  

The spin-column was loaded by centrifuging the column and the lysate 

supernatant for 60 sec at 14,100 x g. The column was washed twice, once with 500 µL 

of PB buffer and once with 750 µL of PE buffer. A spin, as described previously, was 

performed after the addition of each wash buffer. After the final wash, a secondary spin 

was performed to dry the column’s membrane. To elute the DNA, the column was 
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moved to a clean 1.5 mL centrifuge tube, 30 µL of ddH2O was loaded on the column, 

and the column was allowed to rest for one minute at RT. After the minute, the same 

spin as previously was performed. After the spin, the collected volume was loaded 

again onto the membrane, and the last two steps were repeated. The DNA suspension 

was quality controlled and quantified using a NanoDrop spectrophotometer from 

ThermoFisher (Waltham, MA, USA). An absorption ratio of 260 nm over the 280 nm 

wavelengths of over 1.8 was assessed as pure DNA. 

 

2.1.2.3 Performing the mutagenesis reactions 

 

Using the QuikChange Lightning Site-Directed Mutagenesis Kit, a mutant for 

each point mutation was generated using the PRESTO-Tango HTR1B plasmid as a 

template. The mutagenesis was performed as per manufacturer instructions with some 

modifications. The PCR reactions were performed as half-reactions with a final volume 

of 25 µL. The mixes were made with 50 ng of HTR1B template DNA, 0.2 µM final 

concentration of primers, 0.5 µL of dNTPs, 2.5 µL of 10x buffer, 0.75 µL of 

QuickSolution reagent, and 0.5 µL Quick Change Lighting Enzyme brought up to final 

volume 25 µL with ddH2O. The PCR reaction was performed as instructed with an 

adjustment in the annealing temperature to 50 °C from 60 °C and an extension time of 

199 seconds. 

To remove the template after the PCR reaction, a Dpn I digest was performed 

on all PCR products for 20 minutes at 37 °C. The reaction was performed using 1 µL 

of the kit-supplied Dpn I enzyme. The enzyme recognizes methylated adenosines 

present in the template DNA and cleaves DNA after the methylated adenosine. 

Methylation of DNA occurs in the bacterium but not during the PCR reaction. This step 

destroys the template DNA and prevents the unwanted transformation of the template 

into the bacteria. This increases the probability of the mutated form of the plasmid 

being successfully transformed into the bacteria. 

The digested PCR products were transformed into XL10-Gold ultracompetent 

cells as per manufacturer instructions. LB broth was used instead of the NZY+ broth 

listed in the manufacturer’s instructions, and the supplied control reaction was not 

performed. The transformed cells were plated on RT 100 µg/mL ampicillin LB agar 

plates and incubated at 37 °C for 20 hours.  
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The following day, three colonies from each plate were identified and picked to 

inoculate a 5 mL LB media culture with 100 µg/mL ampicillin contained in a 14 mL 

round bottom flask for each colony. The cultures were incubated overnight in a shaker 

at 200 rpm and 37 °C. The next day, glycerol stocks were made, and the DNA was 

purified from each culture as described above using the QIAprep® Miniprep kit. The 

DNA was diluted to 100 ng/µL in ddH2O, and 15 µL of the sample was sent to Eurofins 

Scientific for sequencing using the common CMV Forward primer (5’–

CGCAAATGGGCGGTAGGCGTG–3’). Using the N24A mutated plasmid, the above 

procedure was repeated with the N32A primers to generate the N24A and N32A double 

mutant plasmid. 

 

2.1.2.4 Verification of expression of the mutated plasmids in the HTLA cells: 

additional Western blot information. 

 

To verify that the mutant constructs were expressed correctly in the HTLA cells, 

Western blot analysis was performed on plasmid transfected HTLA cells’ extracts. The 

HTLA cells are a derivative of HEK293 cells, reported as female233, which stably 

express a luciferase reporter, and a hybrid ß-arrestin2-TEV genes ad were gifted from 

Richard Axel’s laboratory. The HTLA cells were maintained in Dulbecco's Modified 

Eagle Medium Ref. 41965039 from ThermoFisher (Waltham, MA. USA) with 10 % 

Fetal Bovine Serum Ref. S1860 from Biowest (Nuaillé, FR), 100 U/mL Penicillin-

Streptomycin Ref. 15140 from Gibco (Waltham, MA. USA), 2 μg/mL Puromycin Ref. 

J67236 from Alfa Aesar (Haverhill, MA, USA) and 100 μg/mL Hygromycin B Ref. 

400052 from Millipore (Burlington, MA, USA).  

The cells were prepared the day before by seeding each of the wells of a 6 well 

culturing plate so that on the day of transfection, the wells were at 80 % confluency, 

about 8 x 105 cells. The transfections were performed using the TransIT-293 

transfection reagent Ref. MIR 2700 from Mirus Bio (Madison, WI, USA) per the 

manufacturer’s instructions in OptiMEM I medium Ref. 31985070 from Gibco. The cells 

were then placed in the incubator at 37 °C and 5 % CO2 for 48 hours. 

 The protein was harvested from the cells in the following manner. After 48 hours 

of transfection, the cells were washed in 0 °C Dulbecco's phosphate-buffered saline 

(DPBS) [composed of 2.7 mM KCl, 1.5 mM KH2PO4, 138 mM NaCl, and 8.1 mM 
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Na2HPO4 · 7H2O], scraped, and collected into a 1.5 mL centrifuge tube. Cells were 

spun down at 6,700 x g for 15 seconds. The supernatant was removed via pipetting. 

Cells were re-suspended in lysis buffer (20 mM Tris-HCl Ref. 3253 adjusted to pH 7.5, 

1 mM EDTA Ref. e5134, 1 % Triton X-100 Ref. T8787 from Sigma (St. Louis. MO, 

USA), with 150 mM NaCl Ref. 27810.295 from VWR (Radnor, PA, USA), and 1x 

cOmplete protease inhibitor cocktail Ref. 11873580001 from Roche (Basel, CH). The 

suspension was left to rest on 0 °C for 15 minutes. The suspension was then spun at 

21,000 x g for 15 min at 4 °C. The supernatant was finally collected for further 

processing. 

 

To determine the concentration of protein in the cell lysate, the amount of 

protein in the lysates, the protein suspensions were quantified using a Pierce BCA 

Protein Assay Kit Ref. 23227 from Thermo Fisher as per the manufacturer’s 

instructions. The 96 well plates were read on MultiSkan EX also from ThermoFisher 

at 570 nm. The data were analyzed using Microsoft Excel 2013 (Redmond, WA, USA) 

software.  

After quantifying the lysates' protein concentration, the samples were prepared 

using NuPAGE LDS Sample Buffer Ref. NP0007 and NuPAGE Sample Reducing 

Agent Ref. NP 0009 and brought to a final concentration of 1.7 mg/mL. SDS-PAGE 

separation was performed on a 1.0 mm 10 - well NuPAGE 4-12 % Bis-Tris gradient 

gel Ref. NP0321 in NuPAGE MES SDS Running Buffer Ref. NP0002 using the 

NuPAGE Novex system as per manufacturer’s instructions. All items were purchased 

from ThermoFisher.  

After HTLA cells were transfected, harvested for proteins, and separated by 

SDS PAGE, the gel was transferred to an activated PVDF membrane, Ref. 162-0184 

from BioRad (Hercules, CA, USA). The membrane was activated in a 100 % methanol, 

Ref. 10141720 from Fisher (Hampton, NH, USA) in a 50 mL conical centrifuge tube 

allowed to rotate on a tabletop rotator for 5 minutes. The membrane was gently 

transferred using flat-tipped tweezers to a Towbin buffer (10x Tris/Glycine Buffer Ref. 

1610771 from Bio-Rad (Hercules, CA, USA), and 20% pure ethanol in ddH2O) soaked 

piece of blotting filter paper which laid on top of a sponge. The membrane and filter 

paper were soaked with more buffer, and air bubbles trapped between the membrane 

and filter were removed using a Western blot roller. Afterward, the gel was gently 
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transferred on top of the membrane and washed with more buffer to remove the SDS-

PAGE transfer buffer and equilibrate the gel. Next, another piece of pre-wetted filter 

paper was placed on top of the gel. Air bubbles between the layers were removed 

using the roller, a sponge was placed on top, and the cassette was closed. The 

cassette was placed into the Western blot chamber, and an -20 °C ice pack and 4 °C 

chilled Towbin buffer were added to the chamber. The proteins were transferred by 

applying a constant 300 mA current to the chamber for 1 hour. 

After the protein transfer, the membrane was labeled with a ballpoint pen and 

placed in a 50 mL conical centrifuge tube using tweezers. The membrane was quickly 

washed three times with 30 mL of ddH2O and stained with 5 mL of Ponceau S, Ref. 

P7170 from Sigma, for 2 minutes. Staining was performed as the tube rotated on a 

MACSmix tube rotator from Miltenyi Biotec (Gladbach, Germany) at 16 rpm. After two 

minutes, the Ponceau S solution was removed, and the membrane was de-stained 

with 10 mL of ddH2O. The water was replaced several times until the protein bands 

were visible. The membrane was then imaged and returned to the tube for further 

destaining with 0.1 M NaOH, made by diluting 50 % NaOH Ref. 415413 from Sigma-

Aldrich in ddH2O. Afterward, the membrane was rinsed twice with 30 mL ddH2O and 

once with phosphate-buffered saline with TWEEN® 20 (PBS-T) to equilibrate the 

membrane. PBS-T consists of 1X DPBS and 0.05 % TWEEN® 20, Ref. P7949 from 

Sigma-Aldrich. 

After equilibrating the membrane, the PBS-T was removed, and 10 mL of 5 % 

Skim Milk in PBS-T was added to block the membrane. The tube was placed on the 

rotator and left to rotate for 40 minutes at 12 rpm. After the blocking of the membrane, 

the milk was removed, and 5 mL of the primary antibody anti-5-HT1B, Ref. MAB5858 

from R&D systems (Minneapolis, MN, USA) or 1:5000 anti-FLAG M2, Ref. F3165 from 

Sigma, antibodies in 5 % milk was added to the tube. The tube was put onto the rotator, 

set to 12 rpm, and was placed in the 4 °C refrigerator for overnight incubation. The 

next day, the primary antibody mix was collected and frozen, and the membrane was 

quickly rinsed with 30 mL of RT PBS-T. Following the quick rinse, three 10 mL PBS-T 

washes were performed in succession. For each wash, the membrane was washed for 

10 minutes at a time on the rotator set at 16 rpm. After the third wash, 5 mL of the 

secondary antibody, 1:10,000 anti-mouse-HRP Ref. 31430 from Invitrogen (Calsbad, 

CA, USA), in 5 % milk was added to the tube and left to rotate at 12 rpm for 30 minutes 
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at RT. Following the secondary antibody incubation, the milk was discarded and the 

identical wash procedure described after the primary incubation was performed. The 

membrane was then further processed for imaging. 

After the last wash, the membrane was gently removed with flat-tipped tweezers 

and placed on top of a clean paper towel to remove excess wash buffer. The 

membrane was then placed onto a plastic sheet, and 600 µL of FemtoWest, Ref. 34095 

from ThermoFisher, was distributed evenly over the membrane. The plastic sheet was 

then folded over the membrane spreading the FemtoWest over the entire membrane. 

Care was taken to remove any air bubbles between the sheets and the membrane. 

The plastic sheet with the membrane was then placed into a lightproof container and 

brought to a Gbox for imaging. The time between the FemtoWest incubation and 

imaging was 5-15 minutes. Once the Gbox was ready for imaging, the membrane was 

moved to a paper towel and excess Femto West was gently dabbed away from the 

membrane. The membrane was then inserted in between two dry plastic sheets and 

placed into the Gbox, from Syngene (Cambridge, UK), on top of a white background. 

The blot was imaged with the visual marker setting turned on and saved onto the lab 

server. The images of the Ponceau S staining and the blot were annotated in Inkscape.  

 

2.1.3 PRESTO-Tango 
 

2.1.3.1 Generating and purifying endotoxin-free plasmid DNA 
 

The PRESTO-Tango high throughput drug screening assay can be used to test 

for compound potency in any of the known human GPCRs234. Plasmids containing all 

of the GPCRs can be obtained from the Addgene depository either as a kit Ref. 

#1000000068, which contains all of the know GPCR receptors or on an individual 

basis. Once the stab containing the bacteria with the plasmid was obtained, or from 

the glycerol stock, an ampicillin (100 µg/mL) LB agar plate was streaked out with the 

bacteria. The plates were left to culture overnight at 37 °C in an incubator. The following 

day, a single colony was picked and used to inoculate 100 mL of LB media with 100 

µg/mL ampicillin. The culture was allowed to shake at 200 rpm at 37 °C overnight. The 

next day the culture was moved to two 50 mL conical centrifuge tubes and spun at 

2795 x g for 15 minutes at 4 °C. If the culture medium was clear with a tan-colored 

pellet on the bottom, the tubes were removed for endotoxin-free DNA extraction. If the 
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media was not clear, the tubes were centrifuged for another ten minutes at 2795 x g at 

4 °C. 

The endotoxin-free DNA purification was performed using a NucleoBond® Xtra 

Midi kit from Machery-Nagel GmbH & Co. (Düren, Germany). The LB media from the 

centrifuge tubes was gently decanted, and the tubes were placed upside down on a 

paper towel to collect any remaining LB media. The pellet from one of the centrifuge 

tubes was resuspended in 8 mL of buffer RES by stroking the bottom tip of the 50 mL 

conical centrifuge tube on a small centrifuge rack several times. Once resuspended, 

the solution was moved with a pipette boy and a serological pipette to the other 

centrifuge tube. The second pellet was resuspended in the same manner as described 

for the first pellet. The resuspended mix was then treated with 8 mL of buffer LYS for 

lysing, mixed by inverting the tube three to five times, and left at RT for five minutes. 

While waiting, the filter system was set up by installing the O shaped holder onto the 

filter tube and placing both on top of a 50 mL conical centrifuge tube held by a 

centrifuge tube rack. The 50 mL centrifuge tube was installed to collect the waste. The 

column tube filter was then equilibrated with 12 mL of equilibration buffer, buffer EQU, 

by slowly and evenly applying the buffer to the upper lip of the filter in a rotational 

manner. After the five minutes, to neutralize the lysing reaction, 8 mL of buffer NEU 

was added to the tube containing the lysate, and the tube was mixed by inverting it 

three to five times. After the neutralization, the lysate was loaded onto the top lip of the 

filter in a slow rotational manner. Once all of the liquid passed through the filter, 5 mL 

of buffer EQU was added to the filter in the same manner as the lysate was. Once the 

buffer EQU passed through the filter, the filter was raised out of the tube and gently 

handled, with gloved hands, to extract the remaining liquid into the column. The filter 

was discarded, and the 50 mL centrifuge tube for the waste was emptied at this point. 

The column was then washed by adding 8 mL of buffer WASH and allowing the buffer 

to run through the column. 

The column was then moved to a new clean 50 mL conical centrifuge, and then 

5 mL of elution buffer, buffer ELU, was added to the tube to elute the DNA. Once all of 

the buffer ran through the column, using a clean serological pipette, the collected buffer 

was placed back in the column and allowed to run through it a second time. After the 

elution, to precipitate the DNA 3.5 mL of RT 99.5 % isopropanol Ref. I9516, Sigma-

Aldrich was added to the eluted DNA, and the mix was evenly distributed into 2 mL 
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centrifuge tubes. The tubes were then spun at 17,000 x g for 30 minutes at 4 °C. After 

centrifugation, the supernatant was gently removed via pipetting. To wash and 

consolidate the DNA, 2 mL of 70 % ethanol (prepared from 99.9 % Ethanol Ref. 
10375842 from Fisher) was used to move the pellets from all of the 2.0 mL centrifuge 

tubes into a single 2.0 mL centrifuge tube. The single 2.0 mL centrifuge tube was then 

spun at 17,000 x g for five minutes at RT. The ethanol was gently removed from the 

tube by pipetting, and the pellet was allowed to air dry for 15 minutes. The DNA was 

resuspended by adding a 150 µL of ddH2O to the pellet and shaking the closed tube 

at 1100 rpm and 37 °C on a thermomixer for 30 minutes. The DNA suspension was 

qualified and quantified using a NanoDrop spectrophotometer using the same criteria 

as mentioned before. 

 

2.1.3.2 Performing PRESTO-Tango assays 
 

The PRESTO-Tango day experiments were performed over five days outlined 

in Figure 2.2. On the first day, the HTLA cells were seeded into 60 mm dishes to be 

transfected on the following day. In general, an 80 % to near confluent T75 flask of 

HTLA cells had around 1.2 x107 cells. After preparing the plates, the HTLA cell cultures 

in T75 flasks had their medium removed, were quickly washed with 5 mL of sterile RT 

DPBS, and had 2 mL of 0.05 % Trypsin added to them. The flask was then left to 

incubate for three to five minutes at 37 °C until most of the cells detached from the 

bottom of the flask. The trypsinization was quenched by adding 3 mL of DMEM with 

10 % FBS and 1% Pen-Strep (culture medium) to the flask. The cells were then 

transferred to a 15 mL conical centrifuge tube and spun down at 300 x g for 3 minutes. 

The supernatant was removed, and the cells were resuspended in 10 mL of culture 

medium. The cells were then counted using a KOVA® (Grove, CA, USA) Glasstic® 

Slide 10 with quantitative grid slide after diluting the cells 1:1 with trypan blue, Ref. 

P08-34100, from PAN-Biotech (Aidenbach, Germany). After counting 2 x 106 cells 

were placed into each of the 60 mm cell culture, Petri dishes and culture medium were 

added to bring up the final volume in each dish to 3.5 mL. The Petri dishes were left 

overnight in the incubator. This amount of cells lead to a confluence of 70-80 % after 

the overnight incubation, which allowed for good transfection efficiency. 

On the second day, the transfection was performed. All the reagents were 

allowed to warm up to RT before mixing them. The plasmid was incubated with 



68 
 

OptiMEM and the TransIT293 reagent and was left to sit at RT for 15-30 minutes. The 

medium was not changed before the transfection was performed. The mixes were 

evenly distributed into the medium of the appropriate dishes, and the dishes were tilted 

to facilitate mixing. The plates were then placed back into the incubator overnight. 

On the third day, to prepare for the assay, the clear bottom 96 well tissue-

cultured-treated plates, Ref. 3610 Corning, were treated with a 0.1 mg/mL poly-D-

lysine, Ref. P6407 from Sigma, in ddH2O. The plates were treated by, using aseptic 

technique, distributing 40 µL of RT poly-D-lysine solution per utilized well of the plate 

by transferring the solution from the reagent reservoirs to the plates with a 12-channel 

pipette. The plates were gently agitated to ensure that the bottom of each well was 

completely covered. The plates were allowed to sit in the solution for at least two 

minutes, after which the poly-D-lysine solution was removed and recovered for future 

use. The plates were then allowed to dry for at least ten minutes at RT. Coating the 

wells was critical for the assays as the cells would otherwise detach when changing 

the medium, making the assay unusable. 

After the coating, the Petri dishes were trypsinized and counted as described 

before, with some exceptions. After the trypsinization was quenched with the culture 

medium, the cells were washed with 10 mL of DPBS and resuspended in 10 mL of the 

5-HT free medium, Charcoal stripped Fetal Bovine Serum Ref. A3382101 from Gibco, 

for counting. The cells were diluted and mixed well into a reagent reservoir at a 

concentration of 50,000 cells per 150 µL (333 cells / µL). Using a 12 channel pipette, 

the cells were distributed to the plate’s wells. The layout of the plate for the ligand 

assays can be seen in Figure 2.1. It is important to note that when working with a 

GPCR known to have a slow turnover and an extracellular domain that is sensitive to 

trypsin cleavage, one must use an alternative method to detach the cells from the Petri 

dishes. This note was not a concern for 5-HT1B as the turnover for this protein is known 

to be very fast, and our data verified that this was not an issue. After the cells were 

transferred, the plates were placed back into the incubator to allow the cells to attach 

to the bottom of the wells. 
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Figure 2.1. A Plate layout of a typical PRESTO-Tango experiment. Wild-Types are wells 

with cells transfected with the PRESTO-Tango HTR1B plasmid, and Double Mutants are wells 

with cells transfected with the N24A and N32A mutated PRESTO-Tango HTR1B plasmid. 

 

On the fourth day, the cells were dosed with the probing compound(s). The 

compound(s) were serially diluted into the 5-HT free medium right before being 

distributed to the cells. If the compounds were light-sensitive, the serial dilution was 

performed in low light conditions (by turning off the biosafety cabinet light fixture). Once 

the serial dilutions were ready, the wells were emptied of their culture medium by gentle 

pipetting. Care was taken to remove all of the media from the wells and avoid cross-

contaminations of cells and compound dosages. Cross-contamination avoidance was 

achieved using a fresh reagent reservoir and a new set of pipette tips for every dosage. 

If the drug was suspended in DMSO, the control cells with the plasmid were given an 

equal final DMSO concentration in their culture medium. For the two-hour dosing 

experiment, the dosed mediums were aspirated after the cells were incubated with 

them for two hours at 37 °C and 5 % CO2. Each well was gently washed with 150 μL 

of HBSS at 37 °C and fresh medium without drugs and warmed to 37 °C was added to 

each well. The cells were then placed in the incubator for at least 18 hours. This period 

was the minimum time necessary to allow for the synthesis of the luciferase reporter 

enzyme. 



70 
 

The stock drugs were made with 5-hydroxytryptamine hydrochloride 

(Serotonin) Ref. H9523 and N,N-dimethyl-5-hydroxytryptamine (Bufotenine) in 

acetonitrile Ref. B-022 purchased from Merck. (5'α,10α)-9,10-Dihydro-12'-hydroxy-2'-

(1-methylethyl)-5'-(phenylmethyl)-ergotaman-3',6',18trione mesylate 

(dihydroergotamine) Ref. 0475, (RS)-1-[(1-Methylethyl)amino]-3-(1-naphthalenyloxy)-

2-propanol hydrochloride (propranolol) Ref. 0624, 1'-Methyl-5-[[2'-methyl-4'-(5-

methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6,7-tetrahydrospiro[furo[2,3-

f]indole-3,4'-piperidine hydrochloride (SB224289) Ref. 1221, and N-[3-[3-

(Dimethylamino)ethoxy]-4-methoxyphenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-

yl)-[1,1'-biphenyl]-4-carboxamide hydrochloride (SB216641) Ref. 1242 purchased 

from Tocris (Bristol, UK). 3-[2-(Dimethylamino)ethyl]-N-methyl-1H-indole-5-

methanesulfonamide (sumatriptan) Ref. A5294 purchased from Biotrend (Cologne, 

Germany). 3-(2-Aminoethyl)-N-methyl-1H-indole-5-methanesulfonamide 

(Didesmethyl sumatriptan) Ref. SC206590 purchased from Santa Cruz Biotechnology 

(Dallas, TX, USA). Fluoxetine Ref.MS5120 purchased from Eli Lilly (Indianapolis, IN, 

USA), Dihydroergotamine, sumatriptan, didesmethyl sumatriptan, and SB224289 

were dissolved in DMSO to make stock solutions. Bufotenine was suspended in 

DMSO after evaporating the acetonitrile with a rotary evaporator. The serotonin, 

fluoxetine, propranolol, and SB216641 were dissolved in distilled and deionized H2O 

to make the stock solution. Stock drug solutions were kept at - 20 °C and protected 

from light.  

 

On the fifth day, the plates were assayed. The plates were removed from the 

incubator and allowed to cool to RT (about 15 minutes when left sitting at RT). While 

waiting for the plates to cool down, fresh assay medium was made with newly thawed 

or mixed brightGlo reagent. The assay medium consisted of HBSS Ref. 55037C from 

Sigma, 20 mM HEPES, and 5 % Bright-Glo Luciferase Assay Ref. E2610 from 

Promega (Madison, WI, USA). The illuminometer was turned on at this time to allow it 

to warm up. It was important to give the illuminometer at least 30 minutes to warm up 

before taking any readings. Care was taken to protect the mix from light by wrapping 

the storage container holding the plates with aluminum foil. Once ready, the medium 

from the plates was fully removed via pipetting, and 100 µL of assay medium was 

distributed to each cell containing well. The plates were sealed with film, shaken at 

1500 rpm for 30 seconds on a plate shaker, and left to sit in the dark for 20 minutes. 
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After the incubation period, the plates were ready for the illuminometer reading on the 

Centro LB 960 Microplate Luminometer from Berthold Technologies (Bad Wildbad, 

DE). Right before the illumination reading, the plates had their film gently removed. On 

the illuminometer, the plates were shaken for 30 seconds on the double orbital setting 

with a diameter setting of 0.1, and then the plates were read with a counting time of 

0.30 seconds. Once read, the plates were discarded, and the data were exported to 

Microsoft Excel and analyzed in GraphPad Prism 7 software (San Diego, CA, USA) 

and R version 3.4.1 (Vienna, Austria). 

 

 

Figure 2.2. A diagram displaying the typical protocol for a PRESTO-Tango experiment. 

HTLA cells are seeded in medium on day one of the experiments in Petri dishes and allowed 

to culture overnight at 37 °C and 5 % CO2. The following day the cells are transfected with the 

target receptor(s) and incubated overnight. On Day 3, the transfected cells are moved to L-

Lysine treated 96-well plates and rested overnight. The plates are dosed with the drugs on 

Day 4 and are allowed to incubate for a minimum of 18 hours. On Day 5, the cells are treated 

with BrightGlo and assayed with the plate reading illuminometer.  

 

2.1.3.3 Data Analysis 

 

The data was extracted from excel sheets into the Prism software package. In 

Prism, dose-response curves (standard or variable slope) were fitted with outlier 

elimination at a confidence interval of 95 % for all experimental replicates. The dosage-

response curves used the following equation: 

 

𝑦 = 𝑚𝑖𝑛 + 
𝑚𝑎𝑥 − 𝑚𝑖𝑛

1 +   10(୪୭୥భబ ா஼ହ଴ି )×ு௜௟௟௦௟௢௣௘
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Where y is the luminescence, min is the minimum luminescence signal, max is 

the maximum luminescence signal, EC50 is the ligand concentration at half of the 

maximum luminescence signal, x is the ligand concentration, and the Hillslope is the 

slope of the curve. The Hillslope was fixed at 1 for the standard dose-response curve 

and remained variable for the variable slope (four-parameter) dose-response curve. 

 

Model selection was based on the Extra sum-of-squares F test with a max p-

value of 0.05. All curves were individually analyzed for EC50 values, and the EC50 

values were analyzed for outliers using the ROUT method with a Q = 1 %. The 

subsequent values were each individually analyzed against the EC50 values of the non-

mutated form of 5-HT1B using a Mann–Whitney U test with a two-sided hypothesis. The 

p-values were determined without accounting for multiplicity. Data were represented 

as medians with interquartile ranges. In R, fold change was calculated as a median 

ratio, and p-values were determined by between groups permutation resampling. The 

p values were calculated using a two-sided hypothesis against the double mutant. 

Differences were considered statistically significant for p-values below 0.05, and 

multiplicity was adjusted using the false discovery rate method 

 

Due to the nature of the assay, the only reliable measure from these curves was 

the EC50 values, which indicated a change in potency between the mutants and the 

wild-type 5-HT1B receptor. Generally, from a dosage curve, one can extrude several 

parameters, including the efficacy, the potency, and the mode of action of the ligand. 

These values are determined by the maximum value of the curve, the location of the 

curve along the x-axis, and the slope, respectively. The expected changes for these 

parameters can be seen in Figure 2.3. 
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Figure 2.3. Variations of dosage dependency curves. The right shift seen in the blue curve 

when compared to the red curve shows that the compound corresponding to the blue curve is 

less potent than the compound corresponding to the red curve. The molecule corresponding 

to the green curve had less efficacy (a lower maximum plateau) and had a different mechanism 

of action (different slope) than the other curves corresponding to the two other compounds. 

 

This limitation in PRESTO- Tango arises from the variability of the number of 

total receptors present in the assay. The fluctuations of the number of receptors stems 

from the true number of cells per well, the expression efficiency of the plasmid per 

transfection and per mutation, and the loss of cells when changing the medium. Due 

to these three factors, it was unreliable to look at the maximum efficacy of the 

compounds in the PRESTO-Tango assays. Hence, the study was focused on the 

potency of the drugs, which was quantified by looking at the EC50 values of each set 

of measurements. 

 

2.1.4 PNGase F digest of human 5-HT1B  
 

2.1.4.1 Generating 5-HT1B and PNGase F N-linked Glycosylation Digestion 
 

HTLA cells were seeded at a density of 6 x 106 cells in 8 mL of medium on 4 

separate 10 mm cell culture dishes. The cells were then incubated overnight at 37 °C 

and 5 % CO2. The following day the cells were transfected as in PRESTO-Tango 

experiment and allowed to incubate another day. The cells were then placed at 0 °C 

and washed with 5 mL of 0 °C DPBS after decanting the DMEM. Once the wash 
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medium was removed via decanting, 1 mL of 0 °C DPBS was added to the dish. The 

cells were gently scraped using a cell scraper and collected into a 0 °C chilled 1.5 mL 

centrifuge tube. The cells were briefly spun at 6,708 x g for 15 seconds to pellet the 

cells. The supernatant was then gently removed via decanting and pipetting. The cells 

were lysed using about 150 μL lysis buffer, the lysis buffer volume was adjusted based 

on the pellet size. The cells were resuspended in the buffer and rested at 0 °C for 20 

minutes. The tubes were then spun at 17,000 x g for 15 minutes at 4 °C. After 

centrifugation, the supernatant was collected, and the pellet was discarded. 1:10 

dilutions of the lysates were quantified using A BSA kit to determine the concentration 

of the cell lysates. 

The protein lysates were digested using Peptide -N-Glycosidase F (PNGase F) 

Ref. P0704L, purchased from NEB (Ipswich, MA, US), per manufactures instructions 

for denatured reaction conditions. Briefly, 200 µg of protein were denatured for 10 

minutes at 100 °C in glycoprotein denaturing buffer brought to a final volume of 100 µL 

with distilled and deionized water. 20 µL of Glycobuffer 2 (10x) and 10 % NP-40 with 

10 µL of PNGase F were added to the mix and incubated at 37 °C for one hour. 20 µL 

of NuPAGE LDS Sample Buffer was added to the digested sample before heating it 

for 5 minutes at 70 °C  

 

2.1.4.2 SDS-PAGE and Western blot 
 

The samples were prepared using NuPAGE LDS Sample Buffer and NuPAGE 

Sample Reducing Agent and brought to a final concentration of 1.7 mg/mL. SDS-

PAGE separation was performed on a 1.0 mm 10-well NuPAGE 4-12 % Bis-Tris 

gradient gel (Ref. NP0321) in NuPAGE MES SDS Running Buffer using the NuPAGE 

Novex system as per manufacturer’s instructions.  

The SDS-PAGE gels were transferred onto 20 µm pore PVDF membranes 

using a Criterion blotter from Bio-Rad as per the manufacturer’s instructions. The 

membranes were stained with Ponceau S for total protein transfer validation. After the 

Ponceau S destaining with distilled and deionized water, the membranes were blocked 

in 5 % skim milk for 40 minutes. The blots were incubated with either 1:5000 anti-FLAG 

M2 or 1:500 anti-GAPDH Ref. AF5718 from R&D systems in 5 % skim milk overnight 

at 4 °C. The secondary antibody incubations with 1:10,000 anti-mouse-HRP Ref. 
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31430 or 1:5,000 anti-goat-HRP Ref. 81-1620 purchased from Invitrogen conjugated 

antibodies in 5 % skim milk were performed for 30 minutes at room temperature. The 

blots were exposed with FemtoWest enhanced chemiluminescence as per the 

manufacturer’s instructions. The exposed membranes were imaged using Gbox 

imaging system. 

 

2.1.5 Molecular Dynamics Simulations of the 5-HT1B receptor 
 

The molecular dynamics (MD) simulations were performed utilizing the full-

length wild-type 5-HT1B receptor and a double mutant with an alanine substitution at 

residues N24 and N32. The receptors were placed into a simulated bilayer membrane 

composed of pure palmitoyl-oleoyl phosphatidylcholine (POPC) in the presence of 

either a single molecule of 5-hydroxytryptamine (5-HT), sumatriptan (SUM), 

dihydroergotamine (DHE), or no ligand. All of the simulations were at atomistic 

resolution and done using GROMACS 2020.4235 with the PLUMED 2.7236 plug-in. The 

simulation's sampling was enhanced, and the convergence of the simulation was 

accelerated using the metadynamics approach. The work was performed with the high 

performance computing (HPC) resources of the Institut du développement et des 

ressources en informatique scientifique (IDIRS) under the grant allocation 2020-

101592 given by the grand équipement national de calcul intensif (GENCI). 

 

2.1.5.1 Initial Models 
 

There are five know experimentally determined structures of the 5-HT1B 

receptor (Table 2.1). All of the structures are missing the N-terminal domain and have 

a thermostabilizing point mutation83 at L138W. The constructs used for X-ray 

crystallography structure determination were further modified by replacing intracellular 

loop 3 with a thermostabilizing protein, BRIL (apocytochrome b562 with mutations M7W, 

H102I, R106L)237. 

 

 

 



76 
 

PDB ID code Method Resolution (Å) Residues  Reference  

4IAQ X-ray  2.80 38-239 / 304-387  82 

4IAR X-ray 2.70 38-239 / 306-387 82 

5V54 X-ray 3.90 37-239 / 305-388 238 

7C61 X-ray 3.00 38-239 / 305-390 239 

6G79 Cryo-EM 3.78  45-240 / 305-385 83 

 

Table 2.1. Existing experimentally determined structures of 5-HT1B.  

 

The N-terminus (residues 1-40) is predicted to be disordered with high flexibility 

and glycosylation at N24 and N32. The full length, residues 1- 390, 5-HT1B receptor 

model, was generated with the I-TASSER online server240. The template used was 

PDB ID code 4IAQ leading to the creation of five models. Model three was selected as 

it was the only model that did not have the N-terminus folded into the transmembrane 

region. This criterion was used as the N-terminus's glycosylation would make the 

burring of the N-terminus into or through the membrane energetically unfavorable.  

 

2.1.5.2 Simulation setup, equilibration, and production 
 

The systems were prepared using the online CHARMM-GUI241 server and using 

the full-length 5-HT1B models as the input file. Individual models of the wild-type and 

the double mutant in the presence of known agonists were generated. The models are 

summarized in Table 2.2. To generate the wild-type glycans FA2G1 and FA2G2 

(Figure 2.4) were added at residues N24 and N32, respectively. 
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Figure 2.4. Structures of the glycans used in generating the models for MD simulations. 

 

A disulfide bond was indicated between residues Cys122 and Cys199. Lipids 

were added by selecting a rectangular box type with a water layer of 30 Å, an axis 

length of 120 Å, and POPC selected as the lipid type. These options generated a box 

with the x-y-z dimensions of 120 Å x 120 Å x 150 Å containing 194 POPC lipid 

molecules in both the upper and lower leaflets. Potassium and chloride ions were 

added to the system at a concentration of 0.15 M using the distance ion placing method 

to give the system charge neutrality. This setup yielded an initial model consisting of 

~247,000 atoms. 
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ID 5-HT1B 
N24 
Glycan  

N32 
Glycan  

Ligand 
POPC 
count 

K+/Cl- 
count 

H2O 
count 

Total 
atoms 

Time 
(µs) 

1 WT FA2G1 FA2G2 - 388 171/180 62587 246762 2 

2 WT FA2G1 FA2G2 5-HT 388 171/181 62562 246714 2 

3 WT FA2G1 FA2G2 SUM 388 171/181 62606 246862 2 

4 WT FA2G1 FA2G2 DHE 388 171/181 62622 246949 2 

5 AA - - - 388 172/181 62867 247151 2 

6 AA - - 5-HT 388 171/181 62822 247041 2 

7 AA - - SUM 388 171/181 62842 247117 2 

8 AA - - DHE 388 171/181 62802 247036 2 

 

Table 2.2. Simulations set-up details.  

 A single ligand was randomly placed above the lipid membrane's upper leaflet 

for simulations with a ligand. The force fields used for the ligand, lipids, and ions were 

CHARMM36f242, CHARMM General Force Field (CGenFF)243, and TIP3P244, 

respectively. The equilibrations were performed with the standard CHARMM-GUI 

protocol of multiple consecutive simulations in the NVT and NPT ensembles. 

Temperature (T) was set at 310 K, and the pressure (P) was set at 1 atm. The harmonic 

restraints on the position of the ligand, lipids, and protein atoms were gradually 

removed as the equilibration procedure progressed. The final equilibrations were 

performed for 50 ns in the NPT ensemble with no positional restraints. 

 The production simulations were performed with the Bussi-Donadio-Parrinello 

thermostat245 and the semi-isotropic Parrinello-Rahman barostat246 using the NPT 

ensemble. The time step was set to 2 fs, and H-bonds were constrained with a linear 

constraint solver for molecular simulations (LINCS)247. Van der Waals forces were 

gradually dampened at 10 Å and terminated at 12 Å. Direct electrostatic interactions 

we truncated at 12 Å and long-range interactions treated by using the particle-mesh 

Ewald method248. The sampling was accelerated with metadynamics during the 

production simulation. All of the simulations were performed using GROMACS 2020.4 

and PLUMED 2.7. 
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2.1.5.3 Metadynamics details 
 

The metadynamics (MetaD)249,250 approach utilized a newer method called 

Parallel Bias metadynamics (PBMetaD)250 that uses a greater amount of collective 

variables (CVs). An overview of metadynamics can be found in Annex II. For these 

simulations, the conformational landscape of the disordered, extracellular, N-terminal 

of 5-HT1B and the ligands' position relative to the lipid bilayer were used as the criterion 

to select the CVs. The N-terminal was defined as the first 40 residues of the receptor. 

The following 6CVs were used: 

1) The total α-helical content of the N-terminal quantified by the ALPAHARMSD 

keyword of PLUMED. The total α-helical contents were calculated by deriving a 

set of all possible regions of six consecutive residues in the system and 

comparing the root mean squared distance of each segment to an idealized α-

helical structure. 

 

2) The summation of the total parallel and anti-parallel β-sheet content within the 

N-terminal. The total parallel (anti-parallel) β-sheet contents were calculated 

using the PARABETARMSD (ANTIBETARMSD) keyword in PLUMED. The 

summations were computed by first generating all possible six residue 

groupings within the systems that can form a parallel (anti-parallel) β-sheet. 

They were then compared the root mean squared distance of each segment of 

an idealized parallel (anti-parallel) β-sheet structure. 

 
3) The radii of gyration were determined from the location of the Cα carbons of the 

N-terminal residues using the GYRATION keyword in PLUMED. 

 
4) The number of contacts in-between hydrophobic residues in the N-terminal of 

the receptor. The hydrophobic contacts were determined by counting the 

number of interactions, below 6 Å, in-between the Cβ atoms of alanines, 

isoleucines, leucines, methionines, phenylalanines, prolines, tryptophans, 

tyrosines, and valines. This calculation was achieved using the 

COORDINATION keyword in PLUMED. 

 
5) The occurrences of salt-bridges. Salt-bridges were identified by contacts within 

6 Å of the atoms of the COO- functional group of aspartic and glutamic acids 
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and the atoms of the –C(NH2)2+ functional group of arginines or the atoms of the 

NH3+ functional group of lysines in the N-terminal. These counts were 

determined using the COORDINATION keyword in PLUMED. 

 

6) Ligand location was identified in reference to the membrane. The ligands' 

positions were determined by measuring the distance, along the z-axis, 

between the geometric center of the ligands and phosphorus atoms of the upper 

leaflet of the POPC molecules of the membrane. 

 

The PBMetaD approach with the above CVs was used with a bias factor of 24, 

a deposition stride of 1 ps, and an initial Gaussian height equal to 1.2 kJ/mol. The 

Gaussian widths were set, respectively, to 0.5, 0.1, 0.1 nm, 2.0, 0.3, and 0.1 nm. The 

PBMetaD bias potentials were stored on a grid. The ligand molecules were restricted 

to the extracellular region with an upper harmonic wall added to CV #6 at 7 nm with a 

harmonic constant equal to 20,000 kJ/mol/nm2. All of the PLUMED input files and the 

GROMACS topology files were made available on PLUMED NEST (www.plummed-

nest.org)251 under the accession number plumID: 21.0YY. 

 

2.1.5.4 MD simulation data analysis 
 

MetaD trajectories do not allow one to calculate histograms or average 

quantities of desired observables directly. This limitation is due to the existence of a 

biasing potential that alters each frame's statistical weight. Removing the bias potential 

is performed by reweighting the system, achieved through various methods252–254. Our 

systems were reweighted using the MetaD bias potential calculated at the end of the 

simulation, assuming that the bias remained constant throughout the simulation 

duration. With this approximation, the weight w of each frame can be defined using the 

expression  𝑤 ∝ exp[𝑉 (𝑆, 𝑡 → ∞)/𝑘஻𝑇], similarly to the umbrella-sampling reweighting 

approach255. 

The first 5 PBMetaD CVs' distributions during the first and second half of each 

simulation were calculated to check for convergence of the PBMetaD simulations and 

characterize the N-terminus' conformational states of 5-HT1B receptor. The histograms 
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were computed using the reweighted systems mentioned above. After convergence, 

the distributions of each half of the simulation should be similar to the other half. 

The minimum distance dmin between the ligand's heavy atoms and the atoms of 

the N-terminus (residues 1-40), ECL2 (residues 188-204), or present glycans were 

calculated to determine the ligand's propensity to bind to the extracellular regions of 5-

HT1B. The binding of the ligand was defined by a dmin of less than 4 Å. The MD 

simulations were filtered for frames that included the ligand in the extracellular volume. 

The binding frequencies were determined by the weighted fraction of bound versus 

unbound conformations over the total number of frames. The atoms of the receptors 

nearest to the ligands (had the lowest dmin) were used to identify the binding frequency 

at specific residues or glycan moieties. Each specific binding event to a residue or a 

glycan moiety was then calculated over the total amount of binding events for each 

system to determine their occurrence frequency. 

We measured the distance of the ligand from the binding site, to get an 

understanding of ligands activity. The dmin was calculated, as above, from the 

geometric center of the binding site and of each ligand. The binding site was defined 

as residues D129, I130, C133, T134, A216, W327, F330, and F331. 

To identify potential stabilized conformations in the extracellular domains of the 

receptor, self-organizing maps (SOMs) were generated. The SOMs were generated 

as described in Mallet et al.256. The simulations were concatenated, and the trajectories 

of the Cα of the N-terminus and the ECL2 regions were extracted. A SOM of the N-

terminus and ECL2 for each simulation was then plotted. 

 

2.2 Results and Discussion 
 

2.2.1 PRESTO-Tango of 5-HT1B agonists and antagonists 
 

2.2.1.1 Fluoxetine toxicity 
 

Fluoxetine was tested using the PRESTO-Tango assay to rule out that 

fluoxetine does not directly interact with 5-HT1B. The assay, Figure 2.5A, revealed that 

fluoxetine appears to be inhibiting the self-activation of 5-HT1B. Self-activation can be 
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identified by the relative lower RLU seen in the assay. The RLU is about four-fold less 

in this instance where the maximum RLU of the self-activating 5-HT1B was ~4,000 

versus the RLU maximum of 16,000 when the 5-HT1B expressing cells were dosed with 

5 mM 5-HT. However, upon further analysis of the negative control cells that were 

dosed and were not transfected with the 5-HT1B PRESTO-Tango plasmid, Figure 2.5B, 

showed that the perceived inhibition was caused by cell death and not by inhibition of 

the receptor. 

 It appears that fluoxetine becomes toxic to HTLA cells at 100 nM range and 

leads to complete cell death at 100 µM after 18 hours of exposure. When co-dosed 

with 5-HT, Figure 2.5C, the HEK293 cells appeared to be more resilient to the toxic 

effects of fluoxetine, showing signs of toxicity near the 10 µM concentration rage. 

Complete cell death was observed when the concentration of fluoxetine reached 10 

mM. The early decrease in the signal may have been caused by protein synthesis 

inhibition induced by cell stress, preventing luciferase synthesis, causing the reduction 

in the signal from the assay. Repetition of these experiments where the cells were 

inspected for cell death before assays and a qualitative viability assay, visually 

checking for cell survivors, showed that fluoxetine led to complete lethality at the 100 

µM concentration for HEK 293 cells after 18 hours of exposure. These observations 

are consistent with previous experiments which also note the toxicity of fluoxetine to 

HEK293 cells257 from which the HTLA cells were derived from. 
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Figure 2.5. Dose 5-HT1B dependency curves of fluoxetine. The 5-HT1B dosage dependency 

curve of fluoxetine A in red shows a reduction of the self-activation signal at 100 nM with a 

complete reduction of the signal at 100 µM. In panel B, the control cells, in teal, which have 

not been transfected with the 5-HT1B plasmid, show complete loss of signal at 100 µM 

fluoxetine. When co-dosed with 5 mM 5-HT, C, a reduction of the signal from the 5-HT1B 

expressing cells, in red, is first observed at 10 µM fluoxetine and is completely extinguished at 

100 µM fluoxetine. In teal, panel D of the non-transfected cells shows a loss of signal starting 

at 100 µM. The HTLA cells (derived from HEK293 cells, containing a tTA-dependent luciferase 

reporter sequence and a stably expressing a β-arrestin2-TEV fusion gene) were transiently 

transfected with a 5-HT1B-tTA fusion gene (HTR1B-Tango). The curve is a fitted four-parameter 

dosage dependence curve (the equation can be found in the methods). Median measurements 

are displayed. All error bars are the interquartile range, RLU is relative light units, and the N = 

5 experimental replicates. 
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A PRESTO-Tango experiment where the cells were co-dosed with 5 mM 5-HT 

and fluoxetine for two hours, the recommended minimum for the assay to function, 

compared to the known antagonist SB224289 was performed to determine whether 

fluoxetine has some inhibitory effect on 5-HT1B outside of toxicity to the cells. Toxicity 

was still observed in the cells, starting near 1 µM concentration of fluoxetine, Figure 

2.6C. When comparing to SB224289, Figure 2.6A, the fluoxetine data points were 

noisier, and the points mimicked the non-5-HT1B expressing cells, Figure 2.6D. 

Whereas the antagonist, while still toxic at higher concentrations, had low noise, began 

to inhibit the signal at around 10 nM, and did not follow the non-expressing cells in 

Figure 2.6B. 

 

 

Figure 2.6. Dose 5-HT1B dependency curves of 2 hours of fluoxetine and SB224289. The 

SB224289 inhibition curve of 5-HT1B co-dosed with 5 mM 5-HT, in panel A. The signal begins 

to be inhibited near 10 nM and is completely inhibited near 30 µM SB24289. Panel B shows 
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the non-transfected cells decreasing starting at 1 µM of SB24289, indicating cell toxicity at 

higher concentrations. Cell exposed to fluoxetine for 2 hours, panel C, shows a reduced signal 

at 1 µM with a complete reduction of the signal at 3 mM. In panel D the control cells, which 

have not been transfected with the 5-HT1B plasmid, mirror the transfected cells at lower RLU 

with a complete loss of the signal at 100 µM fluoxetine. The HTLA cells (derived from HEK293 

cells, containing a tTA-dependent luciferase reporter sequence and a stably expressing a β-

arrestin2-TEV fusion gene) were transiently transfected with a 5-HT1B-tTA fusion gene 

(HTR1B-Tango). The curves are a fitted four-parameter dosage dependence curves (see 

methods). Median measurements are displayed. All error bars are the interquartile range, RLU 

is relative light units, and the N = 5 experimental replicates. 

 

These experiments and visual observations show that fluoxetine is likely toxic to HTLA 

cells, but to demonstrate this, further experiments need to be performed. It may be 

possible that the compounds themselves are quenching some of the photons as 

several of them contain cyclic aromatic compounds. Additionally, the compounds could 

be interfering with the signaling cascade within the reporter cells. These experiments 

highlight some of the limitations when interpreting results from PRESTO-Tango 

experiments. However, negative results from these assays can be useful. 

 

2.2.1.2 Propranolol negative result 
 

Propranolol is known as an antagonist of rodent 5-HT1B. The half-maximal 

inhibitory concentration of propranolol has been reported to be 50 mM13. It has been 

reported that the slight changes of amino acid residues found between the rodent and 

human 5-HT1B receptor homolog cause the receptors to react differently to agonists 

and antagonists. This variance is also true for propranolol, whose antagonistic 

properties are reduced in the human version of 5-HT1B. PRESTO-Tango experiments, 

Figure 2.7, with propranolol confirmed that there is no inhibition of auto-activation of 5-

HT1B.  
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Figure 2.7. PRESTO-Tango of 5-HT1B with propranolol.  The rodent 5-HT1B antagonist 

propranolol has no inhibitory effect on human 5-HT1B at physiologically relevant dosing 

concentration. The receptor-expressing cells, in red, show no variation other than random 

noise. The non-receptor-expressing cells, in teal, mimic the random noise seen in the 

expressing cells at a lower RLU. The HTLA cells (derived from HEK293 cells, containing a tTA-

dependent luciferase reporter sequence and a stably expressing a β-arrestin2-TEV fusion 

gene) were transiently transfected with a 5-HT1B-tTA fusion gene (HTR1B-Tango). Median 

measurements are displayed and all error bars are the interquartile range. The RLU is relative 

light units, and the N = 6 experimental replicates. 

These results correspond with the reported half-maximal inhibitory 

concentration of 3.2 M13 for human 5-HT1B. Further experimentation with co-dosage of 

5-HT and propranolol would further very this observation. PRESTO-Tango can be 

utilized outside of determining the properties of non- efficacious compounds. It can be 

utilized to study the receptors themselves. 

 

2.2.2 The N-terminus of 5-HT1B modulates the potency of serotonin 
 

2.2.2.1 The bioinformatics analysis of the 5-HT1B receptor N-terminus  
 

  The crystallization of the human 5-HT1B receptor was performed with a hybrid 

and N-terminally truncated version of the 5-HT1B receptor82. Radioligand studies on this 

construct from the same paper, with H3-LSD, concluded that the deletion of the N-
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terminus did not change the binding affinity of ergotamine and its derivatives when 

compared to the wild-type 5-HT1B receptor. However, homology alignment of the 5-

HT1B receptor between species revealed high homology in the N-terminus of the 

protein, suggesting a conserved function. The hallmark N-X-S/T glycosylation pattern 

was present in duplicate in the N-terminus of 5-HT1B receptor throughout mammals 

and was also found in species of Class Aves and Reptilia. Locations of the patterns 

can be seen in Figure 2.8. Additionally, S34, which was identified as a potential 

phosphorylation site by the Netphos 3.1, a phosphorylation prediction algorithm, was 

also highly conserved in the homologs. 

 

P28222| HUMAN         MEEPGAQCAPPPPAGSET-WVPQANLSSAPSQNCS-AKDYIY 40 

P60020| CHIMPANZEE    MEEPGAQCAPPPPAGSET-WVPQANLSSAPSQNCS-AKDYIY 40 

P49144| RABBIT        MEEPGAQCAPPLAAGSQI-AVPQANLSAAHSHNCS-AEGYIY 40 

P28334| MOUSE         MEEQGIQCAPPPPAASQT-GVPLTNL----SHNCS-ADGYIY 36 

P28564| RAT           MEEQGIQCAPPPPATSQT-GVPLANL----SHNCS-ADDYIY 36 

D3Y1H8| CHICKEN       MEPASP-----------CPAPLLPANDSYHGRNCS-AEEGIY 30 

G1KD63| AM. CHAMELEON MEQSSPLCQADQANLEVFPHQPFNASSSPSSPNCSWQESPVY 42 

B3DK14| ZEBRAFISH     MERSGYF-KPTPAHFE--------VLNSSTGTNVTLT-PKTD 32 

                      **  .                         . * :           

 

Figure 2.8. Homology alignment of the N-terminus of the 5-HT1B receptor. Shown here is the 

alignment of the 5-HT1B receptor N-terminus between humans and seven other species. The 

UniProt accession number for each species-specific protein is listed among the common 

names of the species. The conserved theoretical glycosylation sites are highlighted in yellow. 

“*” indicated full conservation of the amino acid, “:” indicates conservation of the amino acid 

with strongly similar properties, and “.” indicates conservation of the amino acid with weakly 

similar properties.  

 

To get an insight into the accessibility of the N-terminus amino acid residues 

that were identified as potentially being post-translational modification sites, a 

structural model of 5-HT1B receptor was generated with I-TASSLER240,258. Several 

models were generated using the crystalized structure of the modified hybrid BRIL- 5-

HT1B receptor (PDB 4iaq) as a template. The top-scoring model, with the highest C-

score, showed that residues N32 and S34 were freely accessible extracellularly while 
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N24 was buried in the membrane (data are not shown). C388 was also freely 

accessible intracellularly in this model. A lower scoring model showed that the 

asparagine residues at 24 and 32, the serine residue 34, and the cysteine residue 388 

to be available for transient post-translational modification (Figure 2.9). The lower 

scoring model was chosen as the top-scoring model had its N24 buried in the 

membrane, which is energetically unfavorable if the residue is glycosylated.  

 

 

Figure 2.9. Model of the 5-HT1B receptor showing the sites of point mutations. A computational 

model was generated with I-TASSER using the chimeric 5-HT1B-BRIL crystalized model (PDB 

ID: 4iaq) as a template. The N-terminus truncated in the crystallizations of 5-HT1B receptor is 

colored in cyan. The sites for glycosylation N24, and N32 are colored in green. The 

phosphorylation site at S34, the ligand recognizing aspartate at D129, and the palmitoylation 
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site at C388 are colored in orange, red, and yellow, respectively. The dashed line represents 

the edges of the cell membrane.  

 

2.2.2.2 Western blots of the mutagenic constructs 
 

To check for the successful transfection of the PRESTO-tango mutant plasmids 

and to identify electrophoretic variances between the mutations, Western blots were 

performed. Cell lysates from cells separately transfected with each of the PRESTO-

Tango alanine point mutations constructs, with a theoretical molecular weight of 84.4 

kDa, showed as bands near 80 kDa on anti-5-HT1B receptor Western blots. Both the 

N24A and the N24A/N32A mutant lysates were negative (Figure 2.10A) when 

incubated with the anti-5-HT1B receptor antibodies. A second anti-FLAG blot was 

performed to test if the negative bands resulted from a transfection issue or an antibody 

recognition problem. The anti-FLAG blot revealed bands in all of the lysates except 

D129A. Sequencing results revealed that the D129A construct had a point mutation in 

the FLAG tag sequence. The band from the double mutant lysate was found at a lower 

kDa and is sharper in resolution than all the other bands from all the other mutants 

(Figure 2.10B).  
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Figure 2.10. Western blot of lysate expressing the PRESTO-Tango point mutation constructs. 

Ponceau staining and exposure images of (A) anti-5-HT1B receptor and (B) anti-FLAG blots. 

The anti-5-HT1B receptor shows bands near 80 kDa corresponding to the PRESTO-Tango 

constructs with a calculated mass of 84 kDa. No bands are present in the lysate of non-

transfected HTLA cells, N24A, and the double mutant (DM). The anti-FLAG blot shows bands 

near 80 kDa. Bands are present in all wells except the non-transfected HTLA cell lysate and 

the lysate of D129A, which has a known nullifying point mutation in its FLAG tag. The band in 

the DM shows a clear downshift in electrophoretic mobility. WT is wild-type the unmodified 5-

HT1B construct. 
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2.2.2.3 PNGase F of 5-HT1B 
 

To identify if the N-terminus of the 5-HT1B receptor is glycosylated, a PNGase F 

digest was performed on the cell lysates of HTLA cells transfected with the 5-HT1B 

receptor construct and the double mutant construct. Western blotting demonstrated a 

shift between the digested and non-digested 5-HT1B receptor construct from around 77 

kDa to around 75 kDa (Figure 2.11). Conversely, the double mutant was not sensitive 

to PNGase activity as both the digested and non-digested lysates of the double mutant 

construct appear near 75 kDa. As expected, the GAPDH loading control bands near 

40 kDa showed no difference between the digested and non-digested lysates of either 

constructs or the negative control non-transfected sample (HTLA).  

 

 

Figure 2.11. Western blot of lysates expressing the PRESTO-Tango wild-type (WT) and 

double mutation (DM) constructs digested with PNGase F. The band of the wild-type PNGase 

digested lysate “+” is downshifted from the non-digested “-” lysate and closer in line with the 

bands from the double mutant lysates (A). No shift was observed in the double mutant between 

the digested and nondigested lysates. The loading control bands of GAPDH showed no shifts 

in any of the lysates (B). 
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2.2.2.4 PRESTO-Tango mutagenesis 
 

PRESTO-Tango drug dosage dependence curves for each mutant were 

performed to identify whether ligand potency was affected by the point mutations 

(Figure 2.12). The assays showed a significant difference between the EC50 values for 

the N24A and N32A mutants when assayed with serotonin against the wild-type 

receptor. 

 

 

Figure 2.12. PRESTO-Tango dose respond curves for the point mutants of the 5-HT1B 

receptor. The median EC50 values are listed in Table 2.3. Wild-type curves are in red and point 

mutants are in blue. The curves are fitted four-parameter dosage dependence curves (see 

methods). The HTLA cells (derived from HEK293 cells, containing a tTA-dependent luciferase 

reporter sequence and a stably expressing a β-arrestin2-TEV fusion gene) were transiently 

transfected with a 5-HT1B-tTA fusion gene (HTR1B-Tango). Median measurements are 
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displayed. All error bars are the interquartile range, and RLU is relative light units. The potency 

of serotonin in all mutants was analyzed with a minimum of N = 5 of experimental replicates. 

 

The median change was 36 nM with a p-value of 0.0070, and 38 nM with a p-

value of 0.0012 (Table 2.3), respectively. The respective fold changes were 2.4 with a 

p-value of 0.023, and 2.5 with a p-value of 0.023. Further study on the N24A/N32A 

double mutant showed an even larger shift in the EC50 values. A change in the median 

of 71 nM with a p-value of 0.017 (Table 2.4) was seen. The negative control point 

mutation D129A showed no ligand-receptor-dependent activity. The other point 

mutations S34A and C388A, showed no significant difference in the median EC50 

values (Table 2.3). The 5-HT potencies in all mutants were analyzed with a minimum 

of N = 5 of experimental replicates. The results from this assay instigated further 

investigation with other 5-HT1B receptor agonists. 

 

Mutant 
Median EC50 

[25 %, 75 %] (nM) 

Median Δ 

(nM) 
p- value Fold Change p - value 

WT 27 [12, 32] - - - - 

N24A 63 [41, 76] 36 0.007 2.4 0.023 

N32A 64 [57, 70] 38 0.0012 2.5 0.023 

S34A 37 [32, 47] 10 0.21 1.4 0.17 

D129A N.A. N.A. N.A. N.A. N.A. 

C388A 20 [15, 24] - 6 0.46 0.77 0.86 

 

Table 2.3. Changes observed in the EC50 values of point mutations of 5-HT1B receptor. 
Where N.A. is not applicable, no ligand-dependent receptor activity detected. 
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2.2.2.5 PRESTO-Tango wild-type to double mutant comparison studies 
 

Of all of the mutants, the double mutant was identified as having the greatest 

change in the median EC50 values, equaling to 74 nM, which represents over a twenty-

fold decrease in potency (Table 2.4). Thus, the double mutant was selected for further 

use to compare the effect of the mutations on other agonists of the receptor (Figure 

2.13).  

 

 

Figure 2.13. The chemical structures of the 5-HT1B receptor agonists. The molecular structure 

of serotonin, dihydroergotamine, and sumatriptan are illustrated in charge states 

corresponding to physiological conditions. The serotonin pharmacophore has been highlighted 

in blue in dihydroergotamine and sumatriptan.  

 

The comparative drug assay showed that only serotonin was sensitive to the 

double mutation. Curves can be seen in (Figure 2.14). The other pharmaceuticals, 

dihydroergotamine and sumatriptan, showed no gross changes in their EC50 values 

compared to the wild-type to the double mutant (Table 2.3) assays. They had a change 

in the median of 0.19 nM (1.2 fold change) and - 51 nM (0.65 fold change), respectively. 
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Figure 2.14. Dosage response curves for the 5-HT1B receptor agonists serotonin, 

dihydroergotamine, and sumatriptan. Serotonin (A) showed a right shift between the wild-type 

(red) and the double mutant (blue). No shift was observed between the wildtype and double 

mutant with dihydroergotamine (B) and a minor shift to the left in sumatriptan (C). The median 

EC50 values are listed in Table 2.4 for all of the compounds. The curves were fitted with four 

parameters (see methods).The HTLA cells (derived from HEK293 cells, containing a tTA-

dependent luciferase reporter sequence and a stably expressing a β-arrestin2-TEV fusion 

gene) were transiently transfected with a 5-HT1B-tTA fusion gene (HTR1B-Tango). Median 

measurements are displayed. All error bars are the interquartile range, and RLU is relative light 

units. All drug potencies were analyzed with a minimum of N = 6 of experimental replicates.  

2.2.2.6 PRESTO-Tango assays of serotonin analogs 
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 To understand why the 5-HT structurally similar compound sumatriptan was 

not responsive to the double mutation, the compounds bufotenine and didesmethyl 

sumatriptan were assayed (Figure 2.15). These compounds each contained a single 

R group of the two R groups, which differentiated serotonin from sumatriptan (Figure 

2.13).  

 

 

Figure 2.15. The chemical structures of the 5-HT1B receptor analogs. An Illustration showing 

the structural differences between Bufotenine and didesmethyl sumatriptan with serotonin. The 

structures are illustrated with charge states observed under physiological conditions. The 

pharmacophore of serotonin within both compounds is shown in blue.  

 

The assay revealed that the intermediate didesmethyl sumatriptan, with a 

sulfonamide R group replacing the hydroxide found in serotonin, showed a large and 

significant change in the EC50 values between the wild-type and the double mutant 

(Figure 2.16B). The median EC50 values changed by 410 nM with a p - value of 0.017 

(Table 2.4). With a tertiary amine replacing the primary amine found in serotonin 

(Figure 2.16A), Bufotenine did not show a large change in the EC50 values between 

the wild-type and the double mutant (Table 2.4). All drug potencies were analyzed with 

a minimum of N = 5 of experimental replicates. 
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Figure 2.16. Dosage response curves of the serotonin analogs. Bufotenine (A) showed no 

shift in dosage response curves between the wild-type (red) and the double mutant (blue). 

Didesmethyl sumatriptan (B) showed a right shift in the dosage response curve when 

comparing the wild-type (red) with the double mutant (blue). The median EC50 values are listed 

in Table 2.4 for both compounds. The curves were fitted with four parameters (see methods). 

The HTLA cells (derived from HEK293 cells, containing a tTA-dependent luciferase reporter 

sequence and a stably expressing a β-arrestin2-TEV fusion gene) were transiently transfected 

with a 5-HT1B-tTA fusion gene (HTR1B-Tango). Median measurements are displayed. All error 

bars are the interquartile range, and RLU is relative light units. All drug potencies were 

analyzed with a minimum of N = 5 of experimental replicates. 

 

Agonist 
WT Median EC50 

[25 %, 75 %] (nM) 

DM Median EC50 

[25 %, 75 %] (nM) 

Median 

Δ (nM) 
p - value 

Fold 

Change 
p - value 

5-HT  3.3 [0.91, 5.3]  74 [16, 490]  71 0.0173 23 0.043 

DHE  3.1 [2.7, 3.3]  3.8 [3.1, 6.1]  0.19 0.96 1.2 0.11  

SUM 150 [130, 170]  95 [83, 110]  - 51 0.0087 0.65 0.0065 

BUF 39 [20, 59]  32 [21, 42]  -7.1 0.59 0.82 0.57 

DMS  130 [65, 250]  540 [400, 770]  410 0.017 4.3 0.013 
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Table 2.4. Calculated EC50 values of agonistic compounds in the 5-HT1B wild-type receptor and 

the double mutant receptor. The p values were calculated using a two-sided hypothesis with a 

significance threshold of 0.05. DM is the double mutant N24A, N32A, WT is the unmodified 5-

HT1B PRESTO-Tango construct, DHE is Dihydroergotamine, SUM is Sumatriptan, BUF is 

Bufotenine, and DMS is Didesmethyl Sumatriptan. 

2.2.3 Molecular Dynamics simulations point to a fly-casting mechanism 
 

2.2.3.1 Characteristics of the N-terminus 
 

To understand the effects of the glycans on the N-terminus structure of the 5-

HT1B, we performed MD simulations of the entire wild-type and double mutant receptor. 

The simulations were executed in the presence of three different ligands serotonin, 

sumatriptan, and dihydroergotamine. The simulations were run until 2 μs were 

simulated. We then analyzed the simulations for the structural properties of the N-

terminus. 

We analyzed the N-terminal for secondary structural propensities, hydrophobic 

interactions, salt bridges, and the radii of gyration (Figure 2.17). The N-terminus had 

little to no alpha-helical tendencies in all simulations, except in the double mutant 

simulations with sumatriptan and dihydroergotamine. However, only a limited amount 

of alpha-helical formations were observed. The beta-sheet formations were little to 

non-existent in the N-terminus for all of the simulations. The wild-type and wild-type 

serotonin simulations showed the greatest amount of beta-sheet forming residues. 

With a count below two in these simulations, the beta-sheet formation was considered 

to be minimal.  

The radii of gyration indicated structural rearrangements. In particular, they 

showed that in the wild-type simulation, the N-terminus was extended and flexible. In 

contrast, in the double mutant simulation, the N-terminus became both less flexible 

and less extended. Additionally, in the wild-type simulation, the N-terminus’ radii of 

gyrations appeared to have a bimodal distribution and a unimodal distribution in the 

double mutant simulation. 

Interestingly, when the serotonin was included with the wild-type receptor, the 

observed radius of gyration maxima became unimodal, tightly packed. The left shift 

showed that once bound to the ligand, the N-terminus adopted a more condensed 
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ensemble of conformations. The contraction indicates that the N-terminus could be 

bringing the ligand closer to the binding site. This contraction is not observed in the 

double mutant with serotonin simulations, where the peak was slightly shifted and had 

a broader distribution. The double mutant simulation distribution appeared very similar 

to the histogram from the double mutant simulation with serotonin. Sumatriptan 

affected the radius of gyration similarly to serotonin.  

In the simulation with the wild-type, sumatriptan appeared to create a narrower 

distribution compared to the wild-type only simulation. In the double mutant with 

sumatriptan simulation, the distribution was similar to the double mutant only 

simulation distribution. Dihydroergotamine in both the wild-type and the double mutant 

simulations appeared to drive a bimodal and extended distribution of the N-terminus 

radii of gyrations. The distribution was more condensed and unimodal in the double 

mutant with dihydroergotamine simulation. 

Another indication of the compactness is the number of hydrophobic contacts. 

The number of contacts between hydrophobic residues was increased in the double 

mutant over the wild-type simulations. The higher number of contacts suggests greater 

compactness which was also seen when comparing the radii of gyration. These results 

indicated that the glycans extend the N-terminus. The extension was likely driven 

through the steric hindrance and the repulsion of hydrophobic residues by the glycans. 

With the ligands, serotonin in the wild-type receptor was similar to the wild-type 

with a narrower distribution. The more limited distribution of the number of hydrophobic 

residues interactions agreed with a reduction in the N-terminus flexibility observed in 

the radius of gyration. The opposite was seen with serotonin and the double mutation, 

where the number of hydrophobic contacts increased. The increase is in agreement 

with the lack of extensions of the N-terminus observed in this condition. 

An even more significant narrowing of the distribution of the hydrophobic contact 

was seen with sumatriptan. The narrow distribution suggested a reduced random 

motion of the N-terminus, which agreed with a reduced and narrowly distributed radius 

of gyration. In the double mutation with sumatriptan simulation, broader distribution 

and increased hydrophobic contacts were observed over the double mutant simulation.  

In the simulations with dihydroergotamine, the wild-type showed a generally 

reduced number of hydrophobic contacts. However, there was a distinct population 
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with a higher number of contacts. The two populations agreed with the bimodal 

distribution seen in the radius of gyration. In contrast, in the double mutant with 

dihydroergotamine simulation, the distribution was quite narrow and centered on ~15 

contacts, similar to the double mutant simulation. This behavior was not mirrored in the 

radius of gyration distribution, which showed an extended N-terminus. The difference 

between the two structural properties may have arisen from dihydroergotamine’s 

hydrophobicity, where the N-terminus interacted with the ligand instead of itself or 

ECL2. 

The number of salt-bridges in the wild-type simulations was bimodal with a 

distinct population devoid of salt-bridges and a population containing around three salt-

bridges. Sumatriptan was the exception where the population without salt-bridges was 

not observed, and the population with three salt-bridges was greater than in the ligand-

free simulation. Comparing the ligand-free simulation with the simulation containing 

serotonin, a distinct increase in the count of frames with around 3 salt-bridges was 

seen. In contrast to the radii of gyration and hydrophobic interactions, the number of 

salt-bridges in the N-terminus did not appear to change. Dihydroergotamine showed 

little to no difference compared to the just the wild-type simulation. The double mutation 

simulations showed minimal salt-bridge formation. The double mutation simulations 

with ligands showed a few frames with three salt-bridges, with sumatriptan containing 

the greatest amount. 
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Figure 2.17. N-terminus characteristics form MD simulations of 5-HT1B. Histograms of any 

neighboring six residues of the N-terminus in an alpha-helical conformation in red. No 

significant changes were seen except for sumatriptan (SUM) and dihydroergotamine (DHE) 

with the double mutant (DM-5-HT and DM-DHE), which showed more alpha-helical 

populations. Histograms of any neighboring six residues of the N-terminus in a parallel or anti-

parallel conformation in green. Minimal differences were observed between the different 

distributions. In blue, the population of radii of gyrations (Rgyr) of the N-terminus of each 

simulation is shown. The wild-type (WT) showed a bimodal distribution and was further 

extended than the unimodal double mutant (DM). Adding serotonin (5-HT) to the WT (WT-5-

HT) decreased the Rgyr and each population's amount, indicating increased flexibility. A 

decrease in the extended population was seen in DM-5-HT simulation compared to DM. SUM 

showed decreases in the Rgyr in the WT, but not the DM when compared to the respective 

ligand-free simulation. DHE showed and extended Rgyr in both the WT and DM, with the WT-

DHE showing bimodal distribution. In dark yellow, the number of hydrophobic interactions 

between hydrophobic residues. Between the WT and the DM, a slight increase of populations 

with higher hydrophobic interactions was observed. When the WT interacted with 5-HT, there 
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were similar amounts of hydrophobic contacts with a lower distribution of populations than the 

WT. In contrast, there were more hydrophobic contacts in 5-HT with the DM compared to the 

DM only simulation. With SUM, hydrophobic interactions remained the same with a lower 

distribution in both the WT and DM. DHE increased the number of hydrophobic contacts in the 

WT and had little change in the DM. In purple, the number of salt-bridges in the N-termini is 

displayed. The WT simulations showed a bimodal population with and without salt-bridges. 

Only sumatriptan with the WT was devoid of the major populations free of salt-bridges. The 

DM simulations show minimal slat-bridge activity. 

 

2.2.3.2 Ligand interactions with extracellular domains 
 

To better understand the N-terminus' role in modulating ligands' potency, we 

scanned the N-terminus areas, which interact (within 4 Å) with ligands during the MD 

simulations. In simulations of the wild-type receptor, serotonin interacted with the N-

terminus in 9.4 % of frames (Figure 2.18A) compared to less than 0.66 % of frames in 

the double mutant receptor without the glycans (Figure 2.18B). The number of 

interactions was reduced near fourteen-fold. With an interaction in 9.4 % of frames, 

serotonin exhibited weak binding. Of these frames, the majority occurred with the 

glycans and near the residues around the glycans. Without the glycans, the double 

mutant, the binding focused on the first few residues of the N-terminus and the amino 

acids of ECL2. The contrasting observations of binding frequency between the wild-

type and the double mutant were unique to serotonin. The other ligands behaved 

differently. 
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Figure 2.18. Binding events of serotonin to the extracellular domains of the wild-type and 

double mutant 5-HT1B receptor. The percentage of frames that have binding serotonin events 

with atoms of either the N-terminus of ECL2 in green. Of the bound frames, the percentage of 

frames binding at atoms of specific residues is in red. The percentage of frames with binding 

at atoms associated with glycans is in blue. About a six-fold decrease in total binding events 

was observed when the glycans are removed from the system. Binding events in the wild-type 

(A) occur in about 9.4% of frames indicating weak binding. The majority of the binding events 

occur with the glycan bound to N24. The binding events occurred in the N-terminus residues, 

mainly between residues 24-33. In the double mutant (B), the binding events that did occur 
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were concentrated in the first few residues of the N-terminus and ECL2 residues. Found on 

the figure's far-right a list of the amino acids of 5-HT1B with their corresponding positions. 

 

Sumatriptan, while structurally similar to serotonin, had very different 

interactions with the N-terminus. Sumatriptan demonstrated profound binding behavior 

in both the wild-type and the double mutant. Sumatriptan was bound to either the N-

terminus or the ECL2 in over 89 % of wild-type frames (Figure 2.19A) and over 92 % 

of the double mutant frames (Figure 2.19B). Of the bound frames in the wild-type 

simulation, sumatriptan is almost exclusively bound to the N-terminus residues 5 to 10 

and ECL2 residues 202 to 204. However, in the double mutant, most of the binding 

events occurred in residues 36 to 40 and residues 196 to 200 of ECL2. Regardless of 

the high binding rate of sumatriptan, the potency was not affected by the interactions. 

Dihydroergotamine, whose potency is also insensitive to glycosylation, behaved more 

like serotonin. 
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Figure 2.19. Binding events of sumatriptan to the extracellular domains of the wild-type and 

double mutant 5-HT1B receptor. In green, the percentage of frames that had binding events 

between sumatriptan and either the N-terminus or ECL2. Of the bound frames, in red, the 

percentage of frames bound to atoms of specific residues. The percentage of frames with 

binding at atoms associated with glycans is in blue. Sumatriptan bound consistently to the N-

terminus and the ECL2 in both the presence and absence of glycans, greater than 89 % for 

both systems. The binding events in the wild-type (A) occur in the N-terminus, mainly between 

residues 5 to 10 and in the ECL2 at residues 202 to 204. In the double mutant (B), the binding 

events were more frequent and appeared mostly near the base of the N –terminus at residues 
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36 to 40. The majority of binding events occurred with the ECL2 at residues 196 to 200. On 

the far right of the figure is a list of the amino acids of 5-HT1B with their corresponding positions. 

 

 Dihydroergotamine, a large polycyclic molecule with serotonin as a 

pharmacophore, showed interaction with the N-terminus or ECL2 in 21 % of the wild-

type and 15 % of the double mutant frames (Figure 2.20). Of those interactions, in the 

wild-type, the majority were with the glycans. Most interactions with the N-terminus 

occurred from residues 1 to 30, and no interaction with ECL 2 occurred. The double 

mutant differed as it had binding events with ECL2, generally between residues 188 to 

194. Interactions with the N-terminus appeared to be broad and centered on residues 

10 and 21. 
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Figure 2.20. Binding events of dihydroergotamine to the extracellular domains of the wild-type 

and double mutant 5-HT1B receptor. In green, the percentage of frames that had binding events 

with dihydroergotamine and the N-terminus or ECL2. Of the bound frames, in red, the 

percentage of frames bound to atoms of specific residues. The percentage of frames with 

binding at atoms associated with glycans is in blue. Dihydroergotamine bound weakly to the 

extracellular components of the receptor in both the presence and absence of glycans. Binding 

occurred in 20 % and 15 % of frames for both the wild-type and the double mutant, respectively. 

The binding events in the wild-type (A) occur in the N-terminus mainly between residues 1 to 

30 and with the glycans. In the double mutant (B), the binding events occurred similarly, but 
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centered around residues 10 and 21, both prolines. Additionally, binding did occur in the ECL2 

for the double mutant. On the far right of the figure a list of the amino acids of 5-HT1B with their 

corresponding positions. 

 

2.2.3.3 Ligand interactions with the binding site 

 

The distance between the ligand and the binding site's geometric center (Figure 

2.21) was measured in each frame of each of the simulations to check whether glycans 

could increase the receptor's activation. 

 

 

Figure 2.21 The binding site of 5-HT1B. The residues corresponding to the binding site are 

colored in purple. On the bottom left, a zoomed-out view of the entire receptor. The binding 

site area is boxed by a red square, the receptor residues are in grey, and glycans are in green. 
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For serotonin, there was a distinct population close to the binding site in the 

wild-type that was not present in the double mutant simulation (Figure 2.22). 

Additionally, a binding event that occurred during the wild-type simulation is indicated 

by the bar near zero. For sumatriptan, there were a high number of frames with the 

ligand near the binding site in both simulations. Additionally, sumatriptan found the, 

binding site and remained in it for a moderate duration. A binding event was not 

observed for dihydroergotamine in either simulation. However, in the wild-type 

simulation, a population of frames was present where dihydroergotamine was closer 

to the binding site than in the double mutant simulation. 

 

 

Figure 2.22 Histogram of the distance of the ligand from the binding site. In red, the count of 

frames with a specific distance of the ligand from the binding site's geometric mean. In the 

wild-type (WT), serotonin had the ligand in the binding site, which was not the case for the 

double mutant (DM). Sumatriptan had binding events in both simulations. Dihydroergotamine 

was closer to the binding site when the glycans were present, with the most populous distance 

from the binding site being between 1 and 2 nm. 

 

2.2.3.4 Self-organizing maps of the N-terminus and ECL2 

 

Self-organizing maps (SOMs) were utilized to determine if the glycans or the 

ligands drive formations of specific conformations in the IDPR of the N-terminus and 

ECL2. Overall, unique clusters were observed for each simulation, along with some 
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clusters that remained constant. However, no dominant specific conformation was 

identified in any simulation. The SOMs show that all of the ligands interacted with the 

extracellular domains and, along with the glycans, influenced the extracellular 

domain’s structure.  

In the wild-type simulation (Figure 2.23A), there is a clear cluster at (20, 15) that 

was absent in the double mutant. The double mutant showed small unique clusters at 

(20, 20), (25, 30), and (45, 40) that only appeared in the simulations with DM receptor, 

except for dihydroergotamine. The different clustering showed that the glycans 

affected the structure of the extracellular domains. The ligand simulations also showed 

unique clustering.  

In the serotonin simulations, there were distinct clusters at (15, 25) and at (20, 

35) in the wild-type simulation (Figure 2.23B). The double mutant had unique clusters 

at (25, 35) and near (35, 1) present in all double mutant simulations. In both simulations 

with serotonin, the interactions with ligand changed the conformational of the 

extracellular domains. This pattern continued with sumatriptan. 

In the sumatriptan simulation, there were distinct clusters. In the wild-type 

simulation (Figure 2.23C), there was a large cluster centered near (20, 45) and two 

smaller clusters at (15, 2) and (40, 2). These were not present in the double mutant 

simulation where there were distinct clusters at (30, 45) and (40, 45). Additionally, a 

small populated cluster was near (18, 18) and (26, 35). Like sumatriptan, 

dihydroergotamine also showed a stark difference between the two receptors. 

The dihydroergotamine SOMs showed a large difference between the wild-type 

and double mutant simulations. The wild-type simulation was similar to the wild-type 

with no ligand simulation. The exceptions were having a single-pixel populated cluster 

replacing the large cluster, seen in the no ligand simulation, at (20, 15) and a unique 

cluster (1, 49). The double mutant simulation showed a marked absence of clusters. 

There were three distinct populous clusters. Two small clusters at (1, 31) and (15, 30), 

and one large cluster centered near (35, 35). 
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Figure 2.23 Self-organizing maps (SOMs) of the wild-type (WT) and double mutant (DM) 

simulations with ligands. Simulations without ligands, in A, showed different clustering of 

conformations between the WT and DM simulation. The large cluster centered at (20, 15) in 

the WT was absent in the DM, and the DM had unique clusters at (20, 20), (25, 30), and (45, 

40). In B, SOMs of serotonin (5-HT) simulations showed a difference between WT and the DM 

simulations. Distinct clusters were seen at (15, 25) and at (20, 35) in the WT simulation. DM 

has unique clusters at (25, 35) and near (35, 1). In C, sumatriptan showed in WT a large cluster 

centered near (20, 45) and two smaller clusters at (15, 2) and (40, 2). The DM did not have 

these clusters, but had distinct clusters at (30, 45) and (40, 45), and small high count clusters 

near (18, 18) and (26, 35). In D, a single-pixel populated cluster was seen at (20, 15) and a 

unique cluster at (1, 49) in WT. The DM showed a void of clusters. Three distinct populous 

clusters were observed, two small ones at (1, 31) and (15, 30), and one large one centered 

near (35, 35). White pixels indicate no conformations were counted. 

 

2.2.3.5 Fly-casting-like mechanism of the N-terminus 
 

The above results tell us that serotonin and dihydroergotamine bound weakly to 

the glycans of the N-terminus of 5-HT1B. Additionally, sumatriptan did not show the 

same activity and had minimal interactions with the glycans. In conjunction with the 

analysis of the N-terminus structure, these observations hint towards ligand-specific 

interactions. Foremost it appears that all of the ligands caused the N-terminus to 

contract in some capacity, with serotonin having the greatest effect. Uniquely, 

dihydroergotamine caused a second extended population in the simulation, possibly 

by interacting with hydrophobic residues. 

In contrast, the ligands behaved differently on the extension of the N-terminus 

in the double mutant simulations. There were minimal differences between the no 

ligand simulations and the ligands' simulations, except for dihydroergotamine which 

again showed an extended N-terminus population. Dihydroergotamine’s observations 

may be due to the N-terminus' hydrophobic areas, especially the proline residues, 

interacting with dihydroergotamine. Dihydroergotamine is hydrophobic with a log P of 

2259. Studying if and which residues interacted with the ligands highlighted some key 

differences between the ligands.  
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Serotonin was sensitive to the presence of glycans on the N-terminus of the 

receptor. The number of binding events in the glycans' presence tells us that there 

were interactions of the N-terminus with serotonin, but their low-frequency points to 

them being weak interactions. Additionally, when the glycans were not present, binding 

events almost disappear, occurring at a near fourteen-fold lower rate. In the few 

observed binding events, serotonin is bound to different residues of the N-terminus 

and ECL2. In juxtaposition, sumatriptan did not interact with the glycans and was 

strongly bound to the N-terminus in both simulations. Sumatriptan facilitated the folding 

of the N-terminus onto itself and ECL2. In the sumatriptan double mutant simulations, 

the absence of the glycan’s steric hindrance likely favored a different N-terminus region 

to be involved in the fold reflected in other N-terminus residues interacting with the 

ligand.  

Finally, dihydroergotamine was also bound to the glycans and the N-terminus 

like serotonin. However, dihydroergotamine bound about twice as often as serotonin, 

and in the double mutation, the binding events only reduced by about 30 %. In the 

absence of the glycans, dihydroergotamine is bound to ECL2. Interestingly, the 

experimental data did not show any difference between the wild-type and the double 

mutant. The lack of a difference may be due to the ligand's preference to intercalate 

into the membrane. Through the membrane, the ligand may find access to the binding 

pocket opening, independent of the N-terminus. Further analysis on all of the 

simulations showed that the extracellular domains reacted to the ligands differently and 

were dependent on the N-terminal glycans. 

The SOMs showed unique conformational trajectories between the wild-type 

and the double mutant and between the different ligands. While unique conformations 

showed the interaction between ligand and the extracellular domains, they did not 

confer the binding activity's effect. The ligand's proximity to the binding site residues in 

the different simulations showed binding events for serotonin in wild-type simulation 

and both of the sumatriptan simulations. No binding events were observed in the 

dihydroergotamine simulation. Serotonin showed a population of frames with the ligand 

present within 2 nm of the binding site in the wild-type simulation that was not present 

in the double mutant simulation. 

This combination of data suggests a fly-casting-like260–262 mechanism of action 

for the N-terminus of 5-HT1B. Where in this mechanism, the free motioning N-terminus 
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attracts nearby floating serotonin molecules and brings them closer to the opening of 

the active site of the receptor by shuttling serotonin through the glycans and ECL2 

through weak interactions (Figure 2.25).  

 

 

Figure 2.25 MD simulations snapshots. In A, serotonin is briefly bound to residues E2 and E3 

of the N–terminus. In B, serotonin is bound to the glycan and swept toward ECL2, where it is 

bound to E198 (C). In D, serotonin moves toward the binding pocket, and the glycans behave 

as a cap, sterically hindering the escape of the ligand. The N-terminus is in cyan, ECL2 is in 

dark green, the transmembrane helices are in grey, the glycans are in green, and serotonin is 

magenta. 
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This mechanism acted to create locally increased concentration of serotonin, 

effectively increasing its potency. The weak interaction appeared to be critical. The 

stronger basic tertiary amine of sumatriptan caused the ligand to traps the N-terminus 

in a fold and eliminated its aggregation function (Figure 2.26). The glycans' presence 

changed the fold's specific residue interactions, but some folding still occurred in the 

glycan's absence. The larger hydrophobic ligand dihydroergotamine appeared to 

interact with the N-terminal and the glycans but appeared not to be closer to the binding 

site opening. 

 

 

Figure 2.26. Folded N-terminal structure in sumatriptan simulation. In both the wild-type (WT) 

and the double mutant (DM), the N-terminal folds onto itself when interacting with sumatriptan 

and ECL2. In A, the glycans' presence altered how the fold occurs, involving residues from the 

beginning of the N-terminus. In B, the DM simulations, the residues at the base are engaged 

in the N-terminus fold. The N-terminus is in cyan, ECL2 is in dark green, the transmembrane 

helices are in grey, the glycans are in green, and sumatriptan is purple. Residues that interact 

with sumatriptan are labeled. 

 

Discussion  

 

For the first time, we have demonstrated that the sites for post-translational 

modifications found in the N-terminus of 5-HT1B receptors play a role in modulating 

serotonin's potency. Specifically, we have observed that removing the two 
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glycosylation sites at N24 and N32 decreases the potency by over twentyfold. Of 

particular interest is that these residues are not at the active site, are located 

extracellularly, and code for some transiently modified PTMs. These facts make it 

logical to conclude that physiological responses that involve enzymatic activity may 

modify serotonin's potency on the 5-HT1B receptor. Additionally, it may be that different 

cell types with varying glycosylation programs make receptors with differing 

sensitivities to serotonin. These possibilities would need experimental verifications. 

These findings may open up the ability to target specific cell types expressing the same 

receptor using structurally specific molecules or biologics if valid. Additionally, we have 

shown that potency change relies on serotonin's primary amine, possibly via a fly-

casting mechanism. When substituted with a tertiary amine, the sensitivity to the 

double mutant dissipates. 

PRESTO-Tango, an open-source GPCRs drug screening assay that utilizes 

plasmid transfected into PRESTO, a cell line stably expressing luciferase, was adapted 

to identify whether sites for post-translation modifications play a role in the potency of 

5-HT1B receptors ligands. This method was selected as it was already verified to 

function for the wild-type 5-HT1B receptor. The N-terminus of the 5-HT1B receptor was 

of particular interest because it has several potential PTMs sites highly conserved 

between species. An N-terminus truncated version of the protein was assayed for 

binding affinity by the team who crystalized the receptor, demonstrating no change in 

affinity between the wild-type and the truncated receptor. However, the group only 

investigated ergotamine and its derivatives, not the receptor's natural ligand, serotonin. 

Our studies that looked at the ligands' potencies found that the glycosylation sites 

found in the N-terminus influenced the potency of serotonin on the 5-HT1B. 

The other residues with potential for PTM were observed not to affect the 

potency of the serotonin. The D129A mutant also interrupted receptor activity in our 

assay. This point mutation, located in the binding pocket that normally interacts with 

serotonin's primary amine, is known to abolish receptor activity. However, some 

luminescence increase with concentration was still observed. This observation may be 

an artifact from induced activation of the HT1B receptor caused by heterodimerizing 

with the 5-HT1D receptor84. This receptor is endogenously expressed in the HEK293 

cell line263, the parent cell line of HTLA cells. It is important to note that the S34A 

mutation, which is part of the N-X-S pattern for the glycosylation at N32, demonstrated 
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no change in the EC50 values nor showed a band shift in the Western blot. It appears 

that in this mutant, the N32 is still glycosylated. While rare, nonconsensus N-linked 

glycosylation sequences have been reported before264. Particularly, the inverse 

sequence S-X-N within three residues of flexible residues, such as the conditions 

present around N32 in 5-HT1B, has been demonstrated265 and explains why we still 

see glycosylation in the S34 construct. Finally, C388, which is palmitoylated but not 

vital for protein translocation to the membrane266, was a selected target for mutation 

due to the transient nature of palmitoylation267, making it a candidate for receptor 

activity modulation. Our results showed that palmitoylation did not affect the potency 

of the 5-HT1B receptor. Although negative, this result is interesting when taken into 

conjunction with the demonstration that palmitoylation is not crucial for membrane 

targeting of this receptor. It begs the question of the functional purpose of this PTM on 

the 5-HT1B receptor. 

When testing other 5-HT1B receptor agonists, including dihydroergotamine, we 

observed no change in potency between the wild-type and the double mutant receptor. 

This result agrees with the affinity studies reported by Wang et al. The ligand-

dependent variance in the double mutant responses leads one to believe that the 

glycosylation’s functional role is not one of global conformational stabilization of the 

receptor. It may indicate that the sugars of the N-terminus interact with the ligand. To 

further investigate the ligand’s structural group interacting with the N-terminus, we 

tested serotonin analogs, structurally lying between serotonin and sumatriptan (Figure 

2.15). Our experiments revealed that the primary amine of serotonin appears to be the 

interacting functional group. When the primary amine is changed to a tertiary amine, 

the large change in EC50 values observed between the double mutants and the 

receptor's wild-type form is lost. Both dihydroergotamine and sumatriptan have this 

amine in tertiary constructs in their pharmacophores. The tertiary amine may explain 

why they have no significant observed change in their EC50 values when tested in the 

double mutant. Although, dihydroergotamine’s polycyclic structure may also be 

responsible. 

Evidence from the observed band shifts in our Western blot of the PNGase F 

digest of transfected HTLA cells' lysate shows that these residues are indeed N-linked 

glycosylated. The slight shift observed between the PNGase F digested wild-type band 

and the double mutation band may be explained by the lack of other post-translational 
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modifications inhibited from conjugated when the glycans are not present. The 

inhibition, however, would need to be experimentally proven. Understanding the 

different glycosylation patterns that may decorate this receptor, based on which cell 

types the receptor is being expressed in, would give us an understanding if this is a 

site for cell type-specific regulation. Finally, while homology alignments suggest it, it 

would be interesting to see whether other species, specifically the common animal 

models, also have serotonin potency modulating factors in their N-terminal residues. 

Like in 5-HT1B, the N-terminus in other GPCRs has been demonstrated to have 

various functions, and several models have been proposed based on these functions72. 

Models of extracellular allosteric modulators of GPCRs signaling have been 

proposed268. Interestingly, PTMs themselves have been identified to be allosteric 

modulators269. The glycosylation of the N-terminus of 5-HT1B may yet be another 

example of this and maybe an interesting target for pharmaceutical interventions.  

Our MD simulations gave us a better understanding of a potential mechanism 

behind the N-terminus’ modulation of the potency of 5-HT. The MD simulations showed 

that the N-terminus is dynamic, very flexible, and probes the space around its radius 

of gyration. Additionally, 5-HT weakly binds to the N-terminus, causing its contraction 

(decrease in the radius of gyration) and flexibility. These observations taken together 

suggest the N-terminus is scavenging for 5-HT molecules and bringing them closer to 

the active site of the receptor in a fly-casting-like manner. However, instead of 

anchoring chemokine ligands like described in other GPCR with this mechanistic 

action261,262, the N-terminus potentially creates a locally increased concentration of 5-

HT at the opening of the binding pocket of 5-HT1B. Thereby it increases the potency of 

5-HT on 5-HT1B.  

The other ligands did not benefit from the fly-casting mechanism as their 

interaction with the receptor's N-terminus differed. Sumatriptan, containing a tertiary 

amine functional group, bound tightly to the N-terminus. Consequentially, the radius of 

gyration of the N-terminus was nearly halved. The smaller radius of gyration indicates 

potential induced unstructured folding of the N-terminus to a non-function 

conformation. In juxtaposition, dihydroergotamine interaction with the N-terminus 

hydrophobic residues did not influence the N-terminus' behavior. Nor did the potency 

of dihydroergotamine benefit. It appears that 5-HT binding affinity, likely stemming from 
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having primary amine instead of the tertiary amine as in sumatriptan, allows it to be 

gathered by the N-terminus and enables it to be released closer to the active site of 

the receptor. The affinity of 5-HT lies in a “sweet spot,” giving a potential area for 

physiological regulatory function via PTMs. Our work shows that the N-glycosylation in 

the N-terminus of 5-HT1B has a role, but the exact mechanism needs to be proven 

experimentally, whether it is a fly-casting or another. 

  This work's logical continuation would be to identify the glycans involved in 

these interactions and confirm that the receptor’s glycans vary between different cell 

types. Additionally, seeing if the N-terminal glycosylation tempers the ligand potency 

of other GPCRs is of interest. If glycosylation varies and we see a change in potency 

based on sugar composition, it may enable increased tissue specificity when designing 

molecular or biological therapeutics. We have demonstrated that the glycosylation in 

the N-terminus of the 5-HT1B receptor adjusts serotonin's potency. Our work identifies 

that the extracellular residues of 5-HT receptors can be a factor in the potency of 

ligands of the receptors, even outside of stabilizing specific protein conformations. The 

knowledge shown in this thesis opens up the possibility of identifying new 

pharmaceutical strategies in already well-studied receptors. 
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3 Part II 

 

Skeletal muscles are studied for multiple reasons. After the age of fifty muscle 

mass decreases at a rate of 1-2 % in humans, and this muscle loss can lead to an 

increased risk of frailty270. Additionally, skeletal muscles are involved in many 

diseases, including various myopathies and cachexia (muscle wasting) which is seen 

in up to half of all cancer patients271. From a biotechnological aspect, skeletal muscles 

are intensely studied in the pursuit of commercializing cell-cultured meat. All of the 

areas mentioned above of study look at the regenerative properties of skeletal muscle 

to better understand it and utilize them for their applications. 

 

Recently, data has shown that the serotonin pathway exists in murine skeletal 

muscles. Serotonin appeared to increase the proliferation of skeletal muscle cells in 

mouse models. However, the skeletal muscle proliferation mechanism is unclear, and 

the existence of the serotonin pathway in human skeletal muscles is unknown. 

We hypothesized that the serotonin pathway was present in precursor human 

skeletal muscle cells. Further, we believe that serotonin is involved in the proliferation 

of precursor muscle cells. We additionally wanted to understand by which receptor 

serotonin was acting to identify potential therapeutic targets. Finally, we wanted to 

know which mechanisms the serotonin receptors were regulating to understand better 

how proliferation is activated. 

With cell biological techniques, we showed that serotonin increased proliferation 

of human myoblasts. Biochemical methods showed that several serotonin receptors 

and associated proteins are present in the human myoblast. Additionally, we see that 

several cellular signaling mechanisms are effect by the presence of serotonin. 

Together we know that serotonin indeed plays a role in skeletal muscle regeneration 

and is potentially a therapeutic target for stimulating skeletal muscle proliferation. 
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3.1 Materials and Methods 

 

3.1.1 Characterizing the immortalized human myoblast cell line 

 

3.1.1.1 Measuring the doubling time of the immortalized myoblasts 
 

The immortalized cell lines were gifted from Vincent Mouly’s lab (Ref. 

AB1190C16PV). The cell line originated from a paravertebral muscle of a 16-year-old 

human male who declared not to have any neuromuscular disease at the time of 

collection. The cells were immortalized with two lentiviral vectors contain hTert and 

cdk4, as described by Machaoui et al.272. The cells were cultured in a tissue culture-

treated T75 flask in 10 mL of Skeletal Muscle Cell Growth Medium (SM), Ref. C-23060, 

from PromoCell (Heidelberg, Germany) with 1 % penicillin and streptomycin at 37 °C 

with 5 % CO2. The cells were then trypsinized with 2 mL of 0.05 % of trypsin at 37 °C 

until the cells detached from the bottom of the flask. The trypsinization was quenched 

by adding 3 mL of 4 °C DMEM with 10 % FCS and 1 % penicillin and streptomycin to 

the flask. The cells were then transferred via a serological pipette to a 15 mL conical 

centrifuge tube. The cells were pelleted by centrifugation at 300 x g for 3 minutes at 

RT. The supernatant was removed via pipetting, and the cells were resuspended in 10 

mL of 37 °C SM. The cells were counted using a KOVA cell counter slide after diluting 

the cells 1:1 with trypan blue. A new T75 flask was seeded with 1.2 x 106 myoblasts in 

10 mL of fresh 37 °C SM. The flask was then placed on top of a Cytonote 1W camera 

by iPRASENSE (Clapiers, France) inside an incubator. The cells were allowed to 

incubate at 37 °C and 5 % CO2 for 72 hours with the camera recording. The 

iPRASENSE software was set to take an image every ten minutes and count the cells 

in the image for the entire 72 hour period. The data were then exported to prism to 

generate the figure. 

 

3.1.1.2 Identifying the optimal culture medium changing protocol 

 

For the medium changing protocol experiments, three tissue culture-treated 12-

well plates were seeded with 5 x 105 myoblast in 1 mL of SM into each plate’s well. 

The cells were then allowed to incubate overnight at 37 °C and 5 % CO2. The following 

day the 0 Hr wells had their culture medium collected in a 1.5 mL centrifuge tube. The 
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wells were then gently washed with 0.5 mL of PBS and were trypsinized with 0.15 mL 

of 0.05 % trypsin for 5 minutes at 37 °C. A 0.1 mL of FBS was added to each well to 

quench the trypsin action. The previously stored cell culture medium was used to 

pipette their correlated well to collect the cells and moved them to their corresponding 

tube. The cells were then pelleted by centrifugation at 300 x g for 3 minutes. The 

supernatant was removed from the pellet, and the cells were then gently resuspended 

into 0.5 mL of RT PBS. A 10 µL aliquot of the resuspended cells was mixed with 10 µL 

of trypan blue and counted on a KOVA cell counter slide. 

For the later time point wells, the half medium volume change labeled wells had 0.5 

mL of their medium replaced with fresh SM. The full medium volume change labeled 

wells had their entire cell culture medium replaced with 1.0 mL of fresh SM. The plates 

were then placed back into the incubator and allowed to incubate as previously for 

another 24 hours. Following the counting, the media change was repeated above for 

24, 48, and 72 hours at those respective periods. The media was changed every 24 

hours, and the cells were counted once at the appropriate time point. The data were 

then aggregated in excel and moved to prism for analysis and figure generation. The 

analysis consisted of Dunnett’s multiple comparison test of each time point versus the 

“0 Hr” time point to adjust for the experimental setup’s multiplicity. Each condition was 

performed in biological triplicate, and the data graphed for visualization. 

 

3.1.1.3 Optimizing human myoblast transfections 

 

To qualify the transfection reagent, which yielded the best transfection 

efficiency, several commercial transfection reagents were tested. The TransIT®- 2020 

(Ref. MIR 5404), TransIT®- LT1 (Ref. MIR 2304), TransIT®- 293 (Ref. MIR 2704), and 

TransIT®- X2 (Ref. MIR6003) from Mirus Bio (Madison, WI, USA) and Viromer® RED 

(Ref. VR-01LB-00) from Lipocalyx (Halle, Germany) were all tested. Cells were seeded 

near 75 % confluency and allowed to incubate overnight at 37 °C and 5 % CO2. The 

following day the pcDNA3-mRFP plasmid, gift from Doug Golenbock (Addgene 

plasmid # 13032), containing the mRFP1 gene encoding for the monomeric red 

fluorescent protein (mRFP1) was transfected into the cells following the manufacturer’s 

protocol for all of the transfection reagents. The plate was then incubated for 48 hours 

at 37 °C with 5 % CO2.  
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After the incubation, the wells were imaged on an ApoTome inverted 

Microscope from Zeiss (Oberkochen, Germany). The microscope was equipped with 

a Mercury HBO 100 light source. The cells were visualized with the bright-field and 

A594-TexasRed-mCherry-HcRed filters. A PlnN 10X/0.3 objective and a Hamamatsu 

sCMOS ORCA-Flash 4.0 v3 camera were used to take the images. The images were 

acquired using ZEN blue 2012 software from Zeiss and stored for further analysis. 

Images were analyzed for scale in Icy 1.9.10.0273, and figures were finalized in 

Inkscape. 

 

3.1.1.4 Opera proliferation analysis 

 

To screen multiple conditions at once, an Opera High-Content Screening 

System (Opera HCS) from PerkinElmer (Waltham, MA, USA) was used for the 

proliferation assay. Two black with clear flat bottom tissue treated plates were coated 

with Matrigel Matrix, Ref. 354248 from Corning (Corning, NY, USA). For the treatment, 

50 µL of Matrigel was pipetted into each utilized well. The plates were gently shaken 

to ensure that the Matrigel was evenly distributed through the bottom of each well. The 

Matrigel was removed, and the plates were placed in an incubator for 30 minutes at 37 

°C. The wells were then seeded with 4,000 myoblasts per utilized well, which were 

acquired via trypsinization, as described previously, from a maintained cell culture 

restarted after the 8th passage. The plates were then incubated overnight at 37 °C and 

5 % CO2. 

The following day the medium was removed. Cells were dosed with various 

combinations of drugs at various concentration per drug (depending on the 

experiment) and their corresponding controls in fresh medium. Each condition was 

performed in triplicate, and both plates were dosed identically. The plates were then 

allowed to incubate overnight at 37 °C and 5 % CO2. The following day, after 24 hours 

had elapsed from the dosing of the cells, the plates were removed from the incubator 

for further processing. Both plates had the media from their wells removed via pipetting. 

The wells in the Day 2 plate had freshly dosed media with the corresponding drug(s) 

or control media pipetted into them. The Day 2 plate was then placed back into the 

incubator for another 24 hours.  
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The Day 1 plate had its wells washed once with 50 µL of PBS per well via gentle 

pipetting. Once the PBS was removed, the cells were fixed using 50 µL of 4 % 

paraformaldehyde (PFA), made from 16 % PFA in ddH2O, Ref. 15710, from Electron 

Microscopy Science (Hatfield, PA, USA) in PBS. The cells were incubated with the 

PFA solution for 15 minutes at room temperature. Each of the wells with cells were 

then washed again with 50 µL of PBS. The cells were then stained with 50 µL of 1 

µg/mL Hoechst staining solution (made from bisBenzimide H 33342 trihydrochloride, 

Ref. 14533, from Sigma-Aldrich diluted in PBS) for one hour at RT and protected from 

light. The wells with cells were then washed two times as described previously, then 

had 100 µL of PBS added to them, and were stored at 4 °C protected from light. The 

following day the same fixing and staining procedure was performed for the Day 2 

plate.  

The plates were then imaged using the Opera HCS. The images were acquired 

after autofocusing, alignment, and plate pattern input using the software. The images 

were then analyzed by detecting nuclei and counting the number of cells and their 

associated parameters per well using the Columbus software by PerkinElmer. The 

nuclei were found using the following parameter: a common threshold of 0.4, an area 

greater than 20 µm2, a split factor of 7, an individual threshold of 0.45, and a contrast 

greater than 0.4. The population was selected by using the common filter to remove 

border objects and setting the region to nucleus. The intensity was calculated by using 

the standard mean. The cell counts and their associated parameters were then 

exported to Excel and Prism for further analysis. Each triplicate data set were tested 

for a significant change compared to the corresponding Day control using a Mann-

Whitney test. No adjustment for multiplicity was performed. 

 

3.1.1.5 Protein production for Western blot analysis 

 

For each condition, a 100 mm cell culture treated petri dish was seeded with 4 

x 106 myoblasts, from a previously amplified cell culture, in 7 mL of SM and allowed to 

incubate overnight at 37 °C and 5 % CO2. The following day, if cells were treated with 

a drug, the supernatant was removed from each Petri dish and placed in 15 mL conical 

centrifuge tube. A corresponding amount of stock drug solution was added to each 

correlating centrifuge tube to attain the desired final drug concentration. The media in 
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the tube was then returned to the original Petri dish, and the cells were then incubated 

overnight under the same conditions. If there was no drug treatment, the cells were 

allowed to incubate until near 90 % confluency.  

When the cells were ready for harvesting, one of two procedures was utilized: 

trypsinization or cell scraping. If intracellular proteins that were not sensitive to trypsin 

activity were desired, then the plates would be trypsinized and cells pelleted as 

described before. Afterward, the cells would be washed with 10 mL of ice-cold PBS 

and spun at 300 x g for 3 minutes to pellet the cell. The supernatant would be 

discarded, and the cells would be placed at 0 °C, ready for lysing. If the desired protein 

was sensitive to trypsinization, then the cell scraping method was used. After the 

medium was removed, the Petri dish was placed on ice, and the cells were gently 

washed with 5 mL of 0 °C PBS. Once the wash was removed, 1 mL of 0 °C PBS was 

added, and the dishes were scrapped. Using a pipette, the scrapped suspension was 

pipetted and dispensed back onto the dish to try and collect as many of the cells as 

possible. The cells were then transferred to a 0 °C pre-chilled 1.5 mL centrifuge tube. 

The cells were then pop-spun at 6708 x g for 10 seconds to pellet them. 

Once pelleted, the cells were treated with ≤ 150 µL lysing buffer (less if the pellet 

was smaller than usual) and processed as described before. The protein solutions 

were then quantified using a Pierce BCA Protein Assay. The samples were diluted 10 

and 20 fold in lysis buffer. The assay standard concentration gradient and the samples 

were prepared and loaded in duplicate for each quantification assay. The assay 

reading and analysis were performed as described before. 

If the protein quantity concentration was low, below 1 µg / µL, the protein 

extracts were concentrated. Acetone that was chilled to -20 °C was added at a fourfold 

higher volume (e.g., 600 µL to 150 µL of protein extract) to each protein sample. The 

samples were then vortexed and placed at -20 °C for 1 hour. The samples were then 

centrifuged at 21,000 x g for 10 minutes. The supernatant was then carefully discarded, 

and the pellets were allowed to air dry for another 30 minutes with the tube top open 

at RT. The pellets were then resuspended in lysis buffer to the desired concentration. 

From each protein specimen, a sample for SDS-PAGE was made as described before. 

 

3.1.1.6 SDS-PAGE 
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The SDS-PAGEs were performed as described previously. Care was taken to 

flush out the storage buffer from each well of the gels with the MES running buffer. For 

the 15 well NUPAGE, 4-12 % Bis-Tris (Ref. NP0323) from ThermoFisher 25 µg of each 

sample was loaded (15 µL) into each well while 30 µg of each sample was loaded (20 

µL) into the ten well gels. If multiple separate Western blots were to be run on the gel, 

the sample groups were divided by 2 µL of PageRuler™ Prestained Protein Ladder 

(Ref. 26616) from ThermoFisher. 

 

3.1.1.7 Western blots 

 

After SDS-PAGE separation, the gels were transferred to the membranes as 

described previously. Once transferred and labeled, the membranes were blocked, as 

mentioned before. After Ponceau S staining and milk blocking, the membranes were 

carefully cut down the middle of the ladder. The separate pieces of the blot were placed 

into individual 50 mL conical centrifuge tubes and incubated with the primary antibody. 

The antibodies are listed below in Table 3.1. All incubations, washings, and imaging 

procedures for the Western blots were performed as previously stated. 

 

  

 Table 3.1. A list of anti-human antibodies used. The target, host, reference, manufacturer, 

the concentration used, and clonality of all of the antibodies used in the Western blots. 

 

3.1.1.8 Proteomic profile analysis 

 

Myoblasts were expanded and allowed to grow to near confluence in two tissue 

cultured treated T150 flask in an incubator set at 37 °C with 5 % CO2 to perform the 

Target Host Species Reference Manufacturer [ ] (µg/mL)Clonality 

5-HT2A Mouse MABN1595 Merck Mono 

5-HT1B Rabbit NB100-56350 R & D Systems Poly 

5-HT2B Rabbit NBP1-55429 R & D Systems Poly 

5-HT7 Rabbit PA1-41122 Invitrogen Poly 

SERT Rabbit AMT-004 Alomone Labs 0.8Poly 
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proteomic profile. The cells were then trypsinized as described before, rescued with 6 

mL of culture medium, and collected into a single 50 mL centrifuge tube. The cells were 

spun down, resuspended, and counted as before. Four separate 60 mm tissue culture 

treated Petri dishes were incubated with 2 x 106 myoblasts in 3 mL of SM. The dishes 

were then allowed to incubate overnight as previously described.  

The following day, the supernatant of three of the Petri dish were collected and 

pooled into a 15 mL centrifuge tube, and the other dishes were put on ice. The medium 

was then treated with 5-HT to a final concentration of 10 µM. The dosed medium was 

then returned to the three Petri dishes in equal volumes, and the dishes were each 

placed back in the incubator for either 15, 30, or 45 minutes. After incubation, the 

dishes were placed on ice, and the instructions for the Proteome Profiler Human 

Phospho-Kinase Array Kit from R&D Systems (Ref. ARY003B) were followed. Lysis 

was performed using 500 µL of the kit’s Lysis buffer. After lysis, the lysate’s protein 

concentration was quantified using a Pierce BCA kit as described above. The array 

was loaded with 300 µg of protein from each Petri dish. The blots were imaged as 

described before for Western blots. The digital images were quantified for intensity 

corresponding to each blot from the array using FIJI. An ROI mask over the blots was 

created, and the mean intensity of each blot was measured and exported into an array. 

The data were then exported to Excel, where ratios based on the blots’ internal controls 

were used to calculate the phosphorylation change for each target. The information 

was moved to PRISM for figure generation.  

 

3.2 Results and Discussion 

 

3.2.1 Characterizing the immortalized human myoblast cell line 

 

To understand how this cell line behaves under our culturing conditions, several 

experiments characterizing this cell line were performed. 

 

3.2.1.1 Measuring cell doubling time 

 

The cell doubling time was computed from videographic analysis of a culture. 

The myoblast culture in SM was allowed to grow undisturbed at 37 °C with 5 % CO2 
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for 72 hours. An image was taken every 10 minutes, and the population doubling time 

was determined from the iPRASENSE software to be 29 hours with a plateau period 

of about 24 hours. The growth curve of the cell culture can be seen in Figure 3.1. It is 

important to note that the myoblasts were observed to be very motile during the time 

period, which may have added variation to the cell counts. 

 

Figure 3.1. Doubling time of immortalized human myoblast cell line. Cell counts were 

taken over 72 hours of an immortalized human myoblast culture at 37 °C with 5 % CO2. The 

doubling time was 29 hours, after an initial lag phase of >24 hours. 

 

Generally, the cells presented morphologically as elongated cells, and under 

video observation, were very mobile. As cell density increased, the cells started to align 

and pack closer together while still maintaining the same morphology. At near 

confluence, the cells reduced in size and packed tightly together. At lower 

magnification, striation patterns appeared in the culture as the cell aligned in partial 

unison. This cell line did not differentiate into myotubes without changing the cell 

medium to the differentiating cell medium. The differentiating medium consisted of 

DMEM, 50 µg / mL gentamycin, and 10 µg / mL of insulin. The cells started to form 

myotubes at about four days in this culture and were left in this culture for up to 8 days. 

After 8 days, the culture was changed. Note that the culture flask was coated with 

Matrigel if the cells were differentiated to prevent the myotubes from detaching. The 

medium was changed to the differentiating medium when the cells were at or near 

confluence. 
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3.2.1.2 Optimal cell culture medium change procedure 

 

An experiment comparing fractional medium replacement was performed to 

understand how cell culture changes influence cell line survival. Near confluent 

cultures of the myoblast were exposed to three culturing conditions over 72 hours in 

biological triplicates in a single experiment. For the conditions, one set of culture had 

no medium changes, one had half volume medium changes every 24 hours, and the 

third had full volume medium changes every 24 hours. The cell cultures appeared to 

proliferate the best under half volume changes showing a linear increase in 

proliferation over the 72-hour culturing period. The absence of medium changes 

appeared to be slightly detrimental to cell survival, and the full volume medium change 

showed an increase over 48 hours, which leveled off at 72 hours. However, none of 

these trends were statistically significant. This experiment did not allow one to conclude 

whether how the medium is changed modified the proliferation of myoblasts over a 72 

hour incubation period (Figure 3.2). 

 

Figure 3.2. The proliferation of immortalized human myoblasts under different culture 

medium changing conditions. The proliferation of the myoblasts does not significantly 

change by varying the volume of the medium’s changing over a 72 hour culture period. The 

medium was changed every 24 hours, where applicable. 
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3.2.1.3 Optimizing transfections of human myoblast  

 

Several commercially available cell transfection reagents were tested to 

determine how to transfect the myoblasts efficiently. The TransIt-2020, TransIt-L1, 

TransIT-X2, and TransIT-293 reagents kits from Mirus and the Viromer RED kit from 

Lypocalyx were tested. The kits were used to transfect the myoblast cell line with a 

plasmid encoding for the mRFP1 protein. From these tests, qualitatively, it was 

determined that TransIT-X2 works best for transfecting myoblast from the group of 

reagents tested. All of the regents were able to transfect the myoblast with variable 

efficiency. The TransIT-293 and TransIT-X2 appeared to have the best performance, 

having the highest number of red glowing cells after the 48 hour incubation period. The 

Viromer RED reagent appeared to work the least effectively. The complete results from 

48 hours of culturing post-transfection can be seen in Figure 3.3.  
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Figure 3.3. Transfection of the immortalized human myoblast cell line. The human 

immortalized myoblast cell line 48 hours after transfecting with a plasmid encoding for 

mRFP1. There is no auto-fluorescence visible in the control cells. Cells marked in red were 

considered to be positive for the expression of mRFP1. The reagent with the highest 

transfection efficiency was TransIT-X2, followed by TransIT-293, TransIT-2020, TransIT-LT1, 

and Viromer RED. The scale bars were set to 100 µm. 

 

3.2.2 5-HT increases proliferation in muscle 

 

Experimental data from the Experimental Pathology lab indicated that mice 

treated with 18 mg/kg/day (equivalent to serum levels of ~500 ng/mL274) of the 5-HT 

reuptake inhibitor fluoxetine were able to recover faster from induced muscle injury. 

Under the hypothesis that 5-HT was the instigator of this effect, its influence was 

measured in murine skeletal muscle stem cells, also known as satellite cells. The data 

from these experiments showed that satellite cells proliferated and differentiated more 

in the presence of 5-HT (data not shown). Due to the clear clinical relevance, we 

wanted to reproduce these results in a human-based system. The technical challenges 

of acquiring human satellite cells led us to use an immortalized myoblast cell line, which 

is down the differential pathway of satellite cells. 

Several concentrations ranging from 0.1 to 30 µM of 5-HT were incubated with 

cells and allowed to incubate for 3 days to identify if 5-HT had a similar effect on the 

human immortalized myoblasts. In addition to 5-HT, the myoblasts were incubated with 

0.3 to 30 µM fluoxetine to observe if there was a direct influence on the cells from this 

SSRI. The experiment was done using an Opera HCS so that multiple conditions could 

be tested at once. The cells were stained with Hoechst dye to facilitate automated 

counting. The proliferation assay showed that starting at 10 µM, 5-HT had a positive 

effect on the cell count when compared to untreated cells after one day of incubation 

(Figure 3.4A). Whether 5-HT increased proliferation or inhibited cell death after 24 

hours is unclear and warrants further experimentation. While there was a significant 

positive increase in the cell count, the samples from days two and three treated with 

5-HT had a diminutive increase in their cell counts (Figure 3.4B and 3.4C). Additionally, 

fluoxetine appeared to be toxic to the cells even at the lowest concentration. The 

toxicity was seen after two and three days of exposure to the SSRI. 

 



132 
 

 

Figure 3.4. Myoblast proliferation changes with various doses of 5-HT. Myoblasts were 

incubated with different concentrations of 5-HT and fluoxetine (Flx.) for 3 days and counted 

every 24 hours. The assay was performed with biological triplicates in one experiment. 

Concentrations of 5-HT at 10 and 30 µM had a significant increase in cell yield when compared 

to the control, with a 2.7 and 3.1 fold increase over the control, respectively, after one day of 

incubation (A). An increase compared to the control cells was only seen for the 10 µM 5-HT 

dosed cells at day two, and a decrease was seen in the fluoxetine-treated cells (B). After three 

days, an increase over the control cells was seen for the 10 and 30 µM samples, and a 

decrease was seen in the fluoxetine-treated samples. The asterisk indicates significant change 

compared to the control with a 95 % confidence interval. 
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3.2.3 Identification of 5-HT receptors 

 

Lysates of the cells were probed with various antibodies to identify which 

receptors are present in the immortalized myoblast cell lines. As data from the murine 

experiments indicated that 5-HT1B might be a receptor involved in the observed 

proliferation of satellite cells, this receptor’s presence was probed for in the human 

myoblast cell line. Western blot analysis showed the lysates from this cell line were 

negative for the presence of 5-HT1B regardless of the presence of 5-HT or fluoxetine 

(Figure 3.5). The control bands ran smaller than the theoretical size of 87 kDa at 

around 79kDa. A second band appears at around 72 kDa which can be attributed as 

an artifact from the trypsin cleavage of the cells, as there is an extracellular terminus 

of the construct with a trypsin cleavage site. To investigate the presence of other 

possible 5-HT receptors that could be involved in the phenotypic observation, the 5-

HT2A, 5-HT2B, and 5-HT7 receptors were probed.  

 

 

Figure 3.5. Western blot probed for 5-HT1B. Ponceau S staining is shown on the left in red, 

and the Western blot exposure is shown on the right in grey and white. The only bands present 

are at about 79 kDa and 72 kDa from the positive control, labeled PT 5-HT1B, from lysates of 

HTLA cells transfected with the PRESTO-tango 5-HTR1B construct. Where hMb is human 

myoblast cell lysate from a stock sample. Control, 5-HT, and Flx. represent lysates from hMb 

cells after 48 hours incubation with water, 5-HT, or fluoxetine added to the medium, 

respectively.  
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The Western blots showed that the 5-HT receptors 5-HT2A and 5-HT2B were 

present in the myoblast cell line and that the 5-HT7 receptor was not present in the 

myoblast cell line. These results were independent of whether the cells were culture in 

the presence of 5-HT or fluoxetine (Figure 3.5). The anti- 5-HT2A blot (Figure 3.6A right) 

had bands present at about 53 kDa, right at the 52.6 kDa theoretical mass of the 

receptor. Dosing with 10 µM 5-HT and 10 µM fluoxetine appears to reduce the 

expression of the receptor slightly. A similar result was seen when blotting for 5-HT2B. 

The anti- 5-HT2B blot (Figure 3.6B right) had bands at 52 kDa in the immortalized 

human myoblast cell line samples. That size corresponded well with the theoretical 

weight of 54 kDa of the 5-HT2B receptor. Dosing with 10 µM 5-HT increased the band’s 

intensity, and dosing with 10 µM fluoxetine decreased the band’s intensity. The final 

four wells containing whole skeletal muscle extracts (mSK. Mus. 1-6) showed either 

smear bands or no bands indicating poor quality of the samples. Ponceau S staining 

in red and white shows no great variation in loading between those samples. Finally, 

the anti-5-HT7 blot (Figure 3.6C right) was negative for bands in all samples except for 

a band present in the murine brain sample, which had a band near 45 kDa in size 

which corresponding to the 48 kDa theoretical mass of 5-HT7.  
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Figure 3.6. Western blot probed for other 5-HT receptors. On the left side, in red, Ponceau 

S stainings and Western blots analysis in grey and white on the right side. In the anti-5-HT2A 

blot (part A), bands were present in the immortalized human myoblasts (hMb.), in the C2C12 

murine immortalized myoblasts (C12), the murine skeletal muscle (mSk. Mus.), and the 

positive control murine brain extract (mBrain). The bands presented at about 53 kDa. Where 

C12 5-HT and hMb. 5-HT are cell lysates from cells dosed with 10 µM 5-HT, and C12 Flx. and 

hMb. Flx. are lysates from cells dosed with 10 µM fluoxetine. C12 Cntrl and hMb. Cntrl are the 

lysates of C2C12 cells and immortalized human myoblast samples, respectively, with only 

water added to their culture medium. In part B, the blot on the right show bands around 52 kDa 

in the human myoblast samples. The lanes corresponding to the C2C12 samples were 

negative for bands. The final four wells containing whole skeletal muscle extracts (mSK. Mus. 

1-6) showed either smear bands or no bands. In part C, all lanes except for the control of 

murine brain lysate (mBrain) were negative for the 5-HT7 receptor. The mBrain band appears 

near 45 kDa, where 48 kDa is the theoretical mass of 5-HT7. 

 

The presence of 5-HT2A and 5-HT2B is interesting as these receptors have been 

described to be expressed, in conjunction along with 5-HT1B, during the induced 

differentiation of the murine 1C11 neuroectodermal cell line275. That cell line 

differentiates in the presence of butyryl-cAMP, which permeates the cell membrane 

and activates cAMP-dependent kinases. As 5-HT2A and 5-HT2B are present in the 

myoblast cell line and are involved in cAMP regulation, it would be of interest to 

investigate if they are also involved in the differentiation of myoblasts. Additionally, it 

begs the question of whether the myoblasts express 5-HT1B under certain conditions. 

Additionally, the presence of SERT was confirmed to be present in the human 

myoblast cell line (on the right in Figure 3.7). Bands at near 78 kDa in the C2C12 and 

human myoblast cell lines correlated well with the theoretical weight of SERT of 70 

kDa for isoform 1 and 74 kDa for isoform 2. The addition of 10 µM 5-HT to the 

incubation medium of C2C12 cells (C12 5-HT), when comparing to the loading of the 

sample seen in the Ponceau S staining (on the left in red), did not appear to change 

the level of SERT. The band that appears to be expressed highest was seen in the 

human myoblast cell line (hMb). The incubating peptide (Peptide) was too small at 1.4 

kDa to visualize on this Western blot analysis, and the murine brain lysate (mBrain) did 

not load correctly as seen by the Ponceau S staining. 
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Figure 3.7. Western blot analysis against SERT. The anti-SERT antibody incubation on the 

right in grey and white, and the Ponceau S staining on the left in red. The blot showed bands 

at near 78 kDa in the wells with lysates from C2C12 control (C12 Cntrl), C2C12 cells exposed 

to 5-HT (C12 5-HT), and human myoblast cell lines (hMb.). The strongest band appears in the 

well corresponding to the human myoblast cell line. The incubating peptide (Peptide) and the 

murine brain lysate (mBrain) were negative for bands. 

 

With the presence of SERT in myoblasts, the non-receptor mediated function of 

5-HT or the intracellular reception of 5-HT may be in play during the promotion of 

proliferation in these myoblasts. Serotonylation has been reported to affect histones 

and increase proliferation276 making this an interesting possibility of a mode of action 

of 5-HT. Additionally, with the discovery of 5-HT receptors on the mitochondrial 

membranes74, intracellular levels of 5-HT may also be correlated to our observed 

phenomenon. Both of these two possibilities warrant further experimental exploration. 

 

3.2.4 Cellular mechanism modulated by 5-HT 

 

 A proteome profiler human phospho-kinase array assay was performed using 

the myoblasts to investigate the mechanism behind the increase in the human 

myoblasts’ cellular yield under the in vitro exposure of 5-HT. The assay probed for the 
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phosphorylation of 43 kinases and the expression of two other related proteins. The 

assay was performed as a time series with exposure to 5-HT over 15, 30, and 45 

minutes to understand the potential kinetics involved in the myoblast’s response to 5-

HT. The assay revealed several kinases whose phosphorylation were up-regulated 

during the exposure of 5-HT, showed others whose phosphorylation was repressed, 

and some kinases that had dynamic phosphorylation events over the time course. 

Generally, changes in phosphorylation peaked after 30 minutes of exposure to 5-HT. 

The kinases with the greatest increase in phosphorylation were mitogen-activated 

protein kinase 3 /1 (ERK1/2), glycogen synthase kinase-3 alpha/beta (GSK-3α/β), and 

lysine deficient protein kinase 1 (WNK1). All three showed a near threefold increase in 

phosphorylation over the time 0-minute time point. 

Interestingly, ERK1/2 and GSK-3α/β showed this increase after 15 minutes, 

while WNK1 phosphorylation peaked after 30 minutes of 5-HT exposure. Of the kinase 

targets, only heat shock protein beta-1 (HSP27) phosphorylation was markedly 

repressed throughout the entire time series. Data from the assay revealed 14 targets 

that had over a 1.5 fold increase in observed phosphorylation over the 0 minute time 

point.  

Several of these targets were members of known pathways involved in 

proliferation. The signaling pathways whose components’ phosphorylation appeared 

to be up-regulated the greatest in the assay were the classical MAP kinase pathway 

along with the sub branched mitogen-activated protein kinase 14 (p38α) pathway 

(Figure 3.8), the mammalian target of rapamycin (mTOR) pathway, and parts of the 

Wnt pathway (Figure 3.9). 

It can be seen that multiple parts of the p38α pathway had an increase in 

phosphorylation, leading to the activation of this cascade ending with the cyclic AMP-

responsive element-binding protein 1 (CREB) upregulating cell proliferation (Figure 

3.8A). Correspondingly, other p38α mediated phosphorylation events showed a 

change in phosphorylation. Notably, the HSP27 protein showed a prolonged decrease 

in phosphorylation (Figure 3.8B), allowing for its oligomerization and action as its 

capacity as a chaperone. HSP27 oligomerization is contradictory to the canonical 

activity of phosphorylated p38α and would be an interesting area for further 

experimentation after validation of this observation. For this pathway, the effect of 5-

HT appears to be temporal, with most of the peak phosphorylation events appearing 
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at 30 minutes and dissipating at 45 minutes. In the greater MAP kinase pathway, 

ERK1/2 showed a 3 fold increase in phosphorylation within the first 15 minutes of being 

exposed to 5-HT (Figure 3.8D). ERK1/2 phosphorylation may be additive or the main 

driver of the downstream phosphorylation of CREB (Figure 3.8C). Temporally, ERK1/2 

increased phosphorylation is maintained throughout the time series, while CREB’s, as 

mentioned above, peaks at 30 minutes of exposure (Figure 3.8D). The other activated 

pathways had similar behaviors. 

Both the mTOR and the Wnt pathway showed an increase in phosphorylation 

events. In the mTOR kinase pathway, two AKT-regulated cascades showed an 

increase in phosphorylation (Figure 3.9A). Interestingly, the WNK1 protein showed a 

high phosphorylation increase, about 2.5 fold, peaking at 30 minutes. WNK1 has been 

linked to cell proliferation via dual specificity mitogen-activated protein kinase 5 (MEK5) 

activation of mitogen-activated protein kinase 7 (ERK5)277 and C2C12 cell hypertrophy 

via forkhead box protein O4 (FOXO4)278. While the phosphorylation of WNK1 had been 

linked to RAC-alpha serine/threonine-protein kinase (AKT)279, the vast difference 

between the changes in phosphorylation between the two may be due to other 

mechanism acting on it, or it may simply be a reflection of the high kinase efficiency of 

AKT on WNK1. Follow-up studies probing by which mechanism WNK1 is acting on the 

cell when stimulated by 5-HT exposure is needed to understand WNK1’s role under 

these conditions better.  
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Figure 3.8. Proteomic profiler results of p38 and MAP kinase pathways. The mapped out 

changes in phosphorylation of proteins in the p38α (A) and MAP (C) kinase pathways at the 

30 minute time point. In the pathway, p38α phosphorylation leads to phosphorylation of p53 

and MSK1/2, and mediated phosphorylation of HSP27. MSK1/2 catalyzed the phosphorylation 

of CREB, which can lead to the activation of proliferating genes. In the p38α pathway, there 

was a marked increase of over 1.5 fold in the phosphorylation of p38α (T180/Y182), MSK 1/2 

(S376/S360), and CREB (S133) shown in dark green. A noted increase in p53 (S392) 

phosphorylation in light green and a noted decrease in HSP27 phosphorylation in light red. In 

the time course (B), there was increased phosphorylation through 15” (purple), 30” (red), and 

45” (blue) exposure to 10 µM 5-HT in the medium for p38α and p53. MSK1/2 and CREB 

showed increases after 15”, peaking at 30”, and with ebbing increases in phosphorylation after 

45” exposures. HSP27 showed a sustained decrease throughout the time series. In the MAP 

kinase pathway, cAMP can stimulate PKA mediated ERK1/2 (T202, Y204/T185, Y187) 

phosphorylation via Rap1 and RafA phosphorylation of MEK1/2. DAG may do the same via a 

PKC mediated RafB phosphorylation of MEK1/2. Phosphorylated ERK1/2 mediates CREB 

phosphorylation via the phosphorylation of RSK1/2/3. ERK1/2 and CREB were markedly 

increased, with ERK1/2 showing a 3 fold increase seen in dark green. RSK1/2/3 showed a 

moderate increase in phosphorylation. Temporally (D), the increased phosphorylation of 

ERK1/2 was maintained throughout the time series. 

 

Aside from WNK1, all of the proteins phosphorylated via AKT mediated 

regulated ribosomal protein S6 (RPSS6) protein synthesis, represented in the assay, 

showed an increase in phosphorylation after exposure to 5-HT. However, the increase 

in phosphorylation is not very strong being below 1.5 fold. The exception being the 

mTORC1 repressor 5'-AMP-activated protein kinase subunit alpha 2 (cAMPK α2), 

which had increased phosphorylation of 1.5 fold (Figure 3.9B). When looking at the 

temporal aspect of this pathway, it is visible that AKT1/2/3 phosphorylation increases 

modestly after 15 minutes. The inhibiting enzyme proline-rich AKT1 substrate 1 

(PRAS40), regulated by AKT1/2/3, also shows a modest increase in phosphorylation, 

decreasing its inhibitory effect on mammalian target of rapamycin complex 1 

(mTORC1). However, mTORC1 shows the opposite effect than expected, with a 

decrease in phosphorylation after 15 minutes. 

Interestingly the downstream player ribosomal protein S6 kinase beta-1 (p70s) 

already showed an increase at that period. The negative regulation may result from 

not catching the increase in phosphorylation in this assay, or it may be due to an over-
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response from the increase in AMPKα2 phosphorylation, which also occurred at that 

time point. Further increasing the complexity of these results is that at 30 minutes, 

mTORC1 shows an increase in phosphorylation, as do its downstream constituencies. 

However, after 45 minutes of exposure, all pathway members except WNK1 returned 

to their hemostatic phosphorylation levels. The fluctuations of phosphorylation of 

mTORC1 bring an interesting question of regulation and, if verified, merits extra 

consideration. 

The Wnt pathway, known to be involved in embryonic development, also had 

members of its pathway show strong changes with exposure to 5-HT (Figure 3.9C). 

The phosphorylation of GSK3-α/β increased 3 fold and stayed highly phosphorylated 

over the entire time series (Figure 3.9D). β-catenin showed an increase in the amount 

of phosphorylation, which peaked after 15 minutes of exposure to 5-HT and remained 

elevated, to a lesser extent, over the time series. The β-catenin observations are 

consistent with GSK-3α/β phosphorylation leading to the inhibition of the 

phosphorylation and subsequent destruction of β-catenin. Of note, β-catenin has been 

linked to transcription factor (TCF) / lymphoid enhancer-binding factor (LEF) based 

regulation of proliferation280 and shown to directly interacting with myoblast 

determination protein (MYOD) when promoting differentiation in myoblast281. With 

GSK-3α/β having been demonstrated to be a target of phosphorylation by PKA282, a 

direct link between the 5-HT4,6,7 may exist. Whether any of these receptors are present 

in myoblasts and cause an increase of cAMP with 5-HT exposure is worth exploring. 

The upregulation of these pathways was not the only notable result from these assays.  



143 
 

 



144 
 

Figure 3.9. Proteomic profiler results of mTOR and Wnt kinase pathways. The mapped 

out changes in phosphorylation of kinases in the mTOR (A) and Wnt (C) kinase pathways at 

the 30 minute time point. In the pathway AKT1/2/3 (T308) phosphorylation leads to 

phosphorylation of WNK1 (T60), which leads to a phosphorylating cascade that leads to ERK5 

mediated proliferation. AKT1/2/3 phosphorylation of PRAS40 (T246) inhibits the negative 

regulation of mTORC1 (Y1086), leading to protein synthesis via the phosphorylation of p70S6 

(T421/S424), which activates RPS6. mTORC1 is also negatively regulated by a 

phosphorylated AMPKα2. After 30 minute incubation with 10 µM 5-HT, WNK1 showed an 

increase in phosphorylation of about 2.5 fold, and AMPKα2 showed a 1.5 fold increase, seen 

in dark green. AKT1/2/3, PRAS40, mTORC1, and p70S6 showed a moderate increase in 

phosphorylation, seen in light green. During the time series (B), only WNK1 phosphorylation 

was sustained through 45” of exposure. The mTORC protein showed a dynamic change in 

phosphorylation fluctuation with an initial decrease at 15”, an increase at 30”, and a return to 

homeostatic condition at 45”. All other pathway members showed an increase at 15” and 30” 

and a return to or near to homeostatic levels at 45”. In the Wnt pathway (C), the β-catenin 

inhibitor GSK3α/β can be inhibited by cAMP via PKA phosphorylation. Active β-catenin can 

drive proliferation via TCF/LEF or differentiation with directly interacting with MYOD. The 

GSK3α/β protein showed a near 3 fold increase in phosphorylation, and β-catenin showed an 

increase of over 1.5 fold after 30” 5-HT treatment, seen in dark green. Over the time series, 

both showed increased phosphorylation throughout the time series with a tapering of the effect 

seen at 45” (D). 

 

Of the kinases that showed increased phosphorylation the Src, which stands for 

sarcoma, family kinases Lck/Yes novel tyrosine kinase (LYN) and lymphocyte-specific 

protein tyrosine kinase (LCK) showed greater than a 1.5 fold increase in 

phosphorylation along with the signal transducer and activator of transcription (STAT)s 

2,3,5a/b, and 6 (Figure S1 located in Annex I). The LYN kinase located at the plasma 

membrane is activated via various surface receptors and has been linked to PI3K 

mediated AKT phosphorylation in cancer283. Thus, it may be involved in the mTOR 

pathway during 5-HT exposure. The LCK kinase is known to phosphorylate PI3K and 

PLC, potentially linking the kinase to the MAP kinase pathway and the mTOR pathway, 

respectively, to the corresponding 5-HT receptors. If the 5-HT receptors or other 

receptor causes LYN and LCK activation in this assay needs further study. Regarding 

the activated STATs in this pathway, STAT2, STAT3284,285, and STAT5286 have been 

linked to myoblast proliferation where STAT3 phosphorylation has already been 

associated with 5-HT2A receptor activity150 in rat fetal myoblasts. STAT 6 has been 
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connected with IL-4 stimulated myoblast fusion287. How STAT2, 5, and 6 are related to 

5-HT remains to be discovered. 

 

Overall from this preliminary data, it appears that 5-HT has an active role in the 

proliferation of myoblasts and may play a role in differentiation. We have seen that 

there is indeed an increase of myoblast numbers when they are exposed to moderate 

concentrations (10-30 µM) of 5-HT. The cause of the higher cell count, which may stem 

from 5-HT interacting with its receptor, the intracellular metabolism of 5-HT, 

serotonylation, or another undefined mechanism, warrants further experimentation. It 

appears from the western blot information that we have the 5-HT2A and 5-HT2B 

receptors and SERT present in the cells during homeostasis, in the human 

immortalized myoblast cell line. Data from the proteome profiler assay indicates that 

5-HT has at least an acute effect on cell signaling, and it could be interesting to 

understand the signaling modifications of longer 5-HT exposure. Additionally, based 

on the proteome information, it would not be surprising to find either 5-HT4,6,7 to be 

present in the myoblast. 

Interestingly, there are hints that 5-HT1B should also be present. However, the 

preliminary data was not successful in proving 5-HT1B was expressed in the myoblast. 

This receptor may be expressed during specific conditions not reproduced in these in 

vivo conditions. It may be that the receptor is expressed during hypoxia, the 

inflammatory response, or other specific physiological conditions. Regarding the 

mechanistic action of 5-HT in the proliferation of myoblast, it appears to be multi-

fronted. There is a strong hint that CREB via ERK1/2, β-catenin via GSK3α/β, and 

WNK1 mediate proliferation in myoblasts that have been treated 5-HT. However, 

further experimentation would need to be performed to verify this data, figure out the 

primary pathway, and determine if some of the pathways are redundant. The picture 

of proliferation around the action of 5-HT is forming and may be exploited to develop 

therapeutics to aid in muscular regeneration.  
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4 Conclusion and Perspectives 

 

The molecule 5-HT has been mostly associated with being a neurotransmitter. 

The connection of 5-HT as a neurotransmitter hides the fact that 5-HT acts in a greater 

capacity. It can be found throughout the kingdoms of life, where it has a variety of 

actions. Within the human body, 5-HT has a plethora of purposes that we do not yet 

fully understand. We do know that the molecule is found throughout the body, including 

but not limited to: the gut, nervous system, liver, bones, smooth muscle, and skeletal 

muscles. Due to its broad distribution, it is not surprising that 5-HT is involved in several 

pathologies. 

Interestingly, along with 5-HT’s multiple functional capacities, the mechanism 

by which it acts is also very diverse. In the traditional canonical function, 5-HT interacts 

with an entire family of receptors, with each subfamily of the receptors perform a variety 

of tasks. In conjunction, 5-HT has non-canonical activities. It can be added to proteins 

as a post-translational modification, acts as a radical scavenger, and influences 

melatonin metabolism. While much about 5-HT’s functions have been elucidated, other 

duties of this molecule will likely be discovered in the future. 

In this body of work, two frontiers of 5-HT were probed: the role of the N-

terminus of the 5-HT1B receptor in interacting with 5-HT was determined, and the role 

of 5-HT in skeletal muscle regeneration was explored. Through point mutation studies, 

it was determined that the two putative N-glycosylation residues N24 and N32 of the 

5-HT1B receptor modulated the potency of 5-HT. The potency of 5-HT was reduced 

twenty-fold in the double mutant, which removed the two glycosylation sites. 

Fascinatingly, other orthosteric agonists did not show a strong change in modulation 

in the double mutant. This observation's interest was compounded by the structural 

homology of one of these agonists, sumatriptan, with 5-HT. When we probed into the 

observed discrepancy, we discovered that the primary amine of 5-HT, which is not 

present in sumatriptan, is the responsible functional group that interacts with the N-

terminus of the 5-HT1B receptor. MD simulations suggested that both 5-HT and 

sumatriptan do interact with the N-terminus. From the data, we propose that the N-

terminus interacts with 5-HT in a fly-casting-like manner. This mechanism generates a 

higher local concentration of 5-HT and thereby increasing the observed potency of 5-

HT. However, sumatriptan’s robust interaction causes the ligand to interfere with this 
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mechanism, negating any observable potency increase. Beyond this work, the 

physiological role of 5-HT in skeletal muscle was also considered.  

From the Experimental Pathology lab, previous work in mice hinted at 5-HT 

having regenerative properties in injured skeletal muscle. To understand if this was a 

translational property, we looked for signs of 5-HT in a human skeletal muscle model 

system. Culturing of 5-HT treated cells showed an increase in cell counts compared to 

untreated cells, and the serotonin receptors 5-HT2A and 5-HT2B, along with the 5-HT 

transporter SERT, were discovered in human myoblasts. Interestingly, 5-HT2A has 

been found in erythroid progenitor cells, where its expression is upregulated during 

differentiation288. Additionally, it has been found in hepatic stellate cells, where its 

expression is upregulated during senescence172. Along with our discovery of 5-HT2A in 

myoblasts, it appears that 5-HT and the 5-HT2A receptor have a fundamental role in 

stem cell biology. Further work probing proliferation and differentiation with 5-HT2A 

inhibitors and a 5-HT2A knockout cell line could corroborate our observation. 

Further, we looked into the causative mechanistic role of 5-HT in increasing the 

cell count. A kinase phosphorylation assay showed that the MAP kinase, mTOR, and 

Wnt pathways, which signal proliferation and differentiation, showed increased 

phosphorylation when cells were exposed to 5-HT. The assay also demonstrated an 

acute effect of 5-HT, which appears to peak at 30 minutes of exposure. In all, it is clear 

that a 5-HT regulatory pathway is present in human myoblasts, and it appears that they 

are involved in promoting proliferation. 

This work is another example of the ever-expanding discovery of the utilization 

of 5-HT by living organisms. Understanding that extracellular domains of a 5-HT 

receptor, with transient post-translational modifications, can modulate the potency of 

its ligand, the possibility of regulatory mechanism changing the local effect of 5-HT 

based on the physiological need of the tissues has been revealed. For example, during 

muscle injury, it may be the case that the immune system response releases enzymes 

that cause transient modification to the N-terminal glycans and changes the sensitivity 

of the receptors, and thus the cells, to 5-HT. As for the functional and mechanistic 

actions of 5-HT, our evidence points to the promotion of an increase in myoblast 

proliferation seen both through proliferation assays and proteomic pathway analysis. 

However, the increase in myoblast numbers in our assays may also reflect 5-HT 

promoting cell survival, which is an avenue that needs to be further explored. In reality, 
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5-HT likely has a mix of proliferative, protective, and differentiative properties. To better 

understand the scope of the action of 5-HT on skeletal muscle, more work is required. 

The work presented has some limitations. The studies on the 5-HT1B receptor 

were done in vitro, and the change in potency may not translate into living systems. 

Additionally, the assays were performed in cells derived from HEK293 cells. Since 

glycans’ constituency reflects which cell produces them, it is unclear whether the 

observed effect is universal through all cell types. Additionally, the nature of the 

interaction of 5-HT with the N-terminus needs to be confirmed experimentally. 

Understanding if the modulation in potency holds between species is also a limitation. 

As for the 5-HT pathway, work identifying the receptors in primary samples and 

confirming the proteomic profiler information would give greater weight to the role of 5-

HT in skeletal muscle regulation. While this work has its limitations, it does present 

various interesting future outlooks. 

The first half of the thesis identified that the primary amine of 5-HT is the moiety 

that interacts with the N-terminus. This information can be useful to drug designers in 

synthesizing potent agonists of the 5-HT1B receptor. Continuing with the notion of drug 

design, if the receptor’s glycosylation varies per cell type and this variation is identified, 

it may be possible to generate pharmacologics that selectively target the same receptor 

in a specific cell type. It would also be of use to identify the constituency of the glycans 

of this receptor in other species to see what part of the glycan tree is conserved and 

fundamental to the action of the receptor. Finally, as N-terminal glycosylation is 

conserved through the 5-HT family receptors, it would be prudent to understand their 

functions for each of these receptors to design pharmaceuticals specific for each 

receptor type. 

In the second half of the thesis, we began to understand what 5-HT modulates 

in human myoblasts. This work’s natural continuation would be to verify the 

observations from the proteome profiler in primary samples. Next, it would be useful to 

pharmacologically inhibit the proliferation by disrupting the identified pathways and 

then confirming the observed results with genetic knockout cell lines. Understanding 

the pathways involved in myoblast proliferation and being able to manipulate them has 

multiple applications. This knowledge may lead to the development of new 

pharmaceuticals to aid in muscle healing from trauma or regular exercise. It may also 

be utilized to help grow muscle tissue for cultured “clean” meat applications. In all, this 
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body of work shows that 5-HT is present in skeletal muscle and that it has regenerative 

properties.  
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Annex I 
 

Mutation Primers 5'-3' Tm (°C) 

N24A 
FWD: cttgggtgccacaggctgctctgtcaagtgcacc 

REV: ggtgcacttgacagagcagcctgtggcacccaag 
78.7 

N32A 
FWD: caagtgcaccaagccaggcctgctccgcaaaggatt 

REV: aatcctttgcggagcaggcctggcttggtgcacttg 
78.8 

S34A 
FWD: caccaagccagaactgcgccgcaaaggattacata 

REV: tatgtaatcctttgcggcgcagttctggcttggtg 
79.3 

C388A 
FWD: cataagttgattcggttcaaggctacatcaatcgataccggtgg 

REV: ccaccggtatcgattgatgtagccttgaaccgaatcaacttatg 
79.3 

D129A 
FWD: ttctggttgagctcagccatcacctgctgtacc 

REV: ggtacagcaggtgatggctgagctcaaccagaa 
79.1 

N24A N32A Used the N32A primers on the N24A mutant 

Table 1. Primes for the mutagenesis of the PRESTO-Tango 5-HT1B constructs. Primers 

are displayed with point mutations causing changes highlighted in red text. 
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GPCR Drug Name 

Atypical chemokine receptor 3 Plerixafor 

Adhesion G protein-coupled receptor G3 Beclometasone dipropionate 

Adenosine receptor A1 Adenosine 

Adenosine receptor A2a Regadenoson 

Adenosine receptor A2b Theophylline 

Adenosine receptor A3 Nicardipine 

Alpha-1A adrenergic receptor Oxymetazoline 

Alpha-1B adrenergic receptor Prazosin 

Alpha-1D adrenergic receptor Prazosin 

Alpha-2A adrenergic receptor Apraclonidine 

Alpha-2B adrenergic receptor Dexmedetomidine 

Alpha-2C adrenergic receptor Dexmedetomidine 

Beta-1 adrenergic receptor Acebutolol 

Beta-2 adrenergic receptor Pindolol 

Beta-3 adrenergic receptor Mirabegron 

Type-1 angiotensin II receptor Candesartan 

Vasopressin V1a receptor Vasopressin 

Vasopressin V1b receptor Vasopressin 

Vasopressin V2 receptor Vasopressin 

B1 bradykinin receptor Icatibant 

B2 bradykinin receptor Icatibant 

Calcitonin receptor Calcitonin 

Extracellular calcium-sensing receptor Etelcalcetide 

Cholecystokinin receptor type A Ceruletide 
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GPCR Drug Name 

Gastrin/cholecystokinin type B receptor Pentagastrin 

C-C chemokine receptor type 4 Plerixafor 

C-C chemokine receptor type 5 Maraviroc 

Muscarinic acetylcholine receptor M1 Biperiden 

Muscarinic acetylcholine receptor M2 Propantheline 

Muscarinic acetylcholine receptor M3 Umeclidinium 

Muscarinic acetylcholine receptor M4 Acetylcholine 

Muscarinic acetylcholine receptor M5 Acetylcholine 

Cannabinoid receptor 1 Nabilone 

Cannabinoid receptor 2 Nabilone 

Corticotropin-releasing factor receptor 1 Corticorelin ovine triflutate 

C-X-C chemokine receptor type 4 Plerixafor 

Cysteinyl leukotriene receptor 1 Zafirlukast 

Cysteinyl leukotriene receptor 2 Zafirlukast 

D(1A) dopamine receptor  Dopamine 

D(2) dopamine receptor  Dopamine 

D(3) dopamine receptor Dopamine 

D(4) dopamine receptor Dopamine 

D(1B) dopamine receptor  Dopamine 

Endothelin-1 receptor Ambrisentan 

Endothelin receptor type B Bosentan 

Proteinase-activated receptor 1 Vorapaxar 

Free fatty acid receptor 1 Rosiglitazone 

fMet-Leu-Phe receptor  Cyclosporine 
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GPCR Drug Name 

Follicle-stimulating hormone receptor Human follicle stimulating hormone 

Gamma-aminobutyric acid type B receptor subunit 1 Baclofen 

Gamma-aminobutyric acid type B receptor subunit 2 Baclofen 

Glucagon receptor Glucagon 

Growth hormone-releasing hormone receptor Sermorelin 

Glucagon-like peptide 1 receptor Lixisenatide 

Glucagon-like peptide 2 receptor Teduglutide 

Gonadotropin-releasing hormone receptor Abarelix 

G-protein coupled bile acid receptor 1 Deoxycholic acid 

G-protein coupled estrogen receptor 1 Estradiol 

G-protein coupled receptor 143 Levodopa 

N-arachidonyl glycine receptor Dronabinol 

G-protein coupled receptor 35 Bumetanide 

G-protein coupled receptor 55 Dronabinol 

Ovarian cancer G-protein coupled receptor 1 Lorazepam 

Hydroxycarboxylic acid receptor 1 Sodium oxybate 

Hydroxycarboxylic acid receptor 2 Acipimox 1 

Hydroxycarboxylic acid receptor 3 Nicotinic acid 

Orexin receptor type 1 Suvorexant 

Orexin receptor type 2 Suvorexant 

Histamine H1 receptor Cetirizine 

Histamine H2 receptor Betazole 

Histamine H3 receptor Pitolisant* 

Histamine H4 receptor Clozapine 
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GPCR Drug Name 

5-hydroxytryptamine receptor 1A Vilazodone 

5-hydroxytryptamine receptor 1B Sumatriptan 

5-hydroxytryptamine receptor 1D Frovatriptan 

5-hydroxytryptamine receptor 1E Asenapine 

5-hydroxytryptamine receptor 1F Eletriptan 

5-hydroxytryptamine receptor 2A Asenapine 

5-hydroxytryptamine receptor 2B Methysergide 

5-hydroxytryptamine receptor 2C Methysergide 

5-hydroxytryptamine receptor 4 Cisapride 

5-hydroxytryptamine receptor 5A Ergotamine 

5-hydroxytryptamine receptor 6 Amoxapine 

5-hydroxytryptamine receptor 7 Lurasidone 

Lutropin-choriogonadotropic hormone receptor Choriogonadotropin alfa 

Melanocyte-stimulating hormone receptor Corticotropin 

Adrenocorticotropic hormone receptor Corticotropin 

Melanocortin receptor 3 Corticotropin 

Melanocortin receptor 4 Corticotropin 

Melanocortin receptor 5 Corticotropin 

Motilin receptor Erythromycin 

Mas-related G-protein coupled receptor member X1 Chloroquine 

Melatonin receptor type 1A Ramelteon 

Melatonin receptor type 1B Tasimelteon 

Neuropeptide Y receptor type 4 Niclosamide 

Neurotensin receptor type 2 Levocabastine 
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GPCR Drug Name 

Delta-type opioid receptor Naltrexone 

Kappa-type opioid receptor Anileridine 

Mu-type opioid receptor Alfentanil 

Oxytocin receptor Oxytocin 

P2Y purinoceptor 1 Suramin 2 

P2Y purinoceptor 11 Suramin 2 

P2Y purinoceptor 12 Cangrelor 

P2Y purinoceptor 13 Cangrelor 

P2Y purinoceptor 2 Suramin 2 

P2Y purinoceptor 6 Suramin 2 

Prostaglandin D2 receptor Treprostinil 

Prostaglandin D2 receptor 2 Indomethacin 

Prostaglandin E2 receptor EP1 subtype Prostaglandin E1 

Prostaglandin E2 receptor EP2 subtype Prostaglandin E2 

Prostaglandin E2 receptor EP3 subtype Misoprostol 

Prostaglandin E2 receptor EP4 subtype Treprostinil 

Prostaglandin F2-alpha receptor Latanoprost 

Prostacyclin receptor Epoprostenol 

Parathyroid hormone 1 receptor Teriparatide 

Parathyroid hormone 2 receptor Teriparatide 

Sphingosine 1-phosphate receptor 1 Fingolimod 

Sphingosine 1-phosphate receptor 2 Fingolimod 

Sphingosine 1-phosphate receptor 3 Fingolimod 

Sphingosine 1-phosphate receptor 4 Fingolimod 
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GPCR Drug Name 

Sphingosine 1-phosphate receptor 5 Fingolimod 

Secretin receptor Secretin 

Smoothened homolog Sonidegib 

Somatostatin receptor type 1 Pasireotide 

Somatostatin receptor type 2 Lanreotide 

Somatostatin receptor type 3 Pasireotide 

Somatostatin receptor type 4 Octreotide 

Somatostatin receptor type 5 Lanreotide 

Succinate receptor 1 Sodium succinate 

Trace amine-associated receptor 1 Dexamfetamine 

Substance-P receptor Aprepitant 

Thromboxane A2 receptor Iloprost 

Thyrotropin-releasing hormone receptor Protirelin 

Thyrotropin receptor Thyrotropin 

 

Table 2. Table of drugs that target GPCR. A list of GPCRs with an example of an FDA 

approved drug44  
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Figure S1. Proteome profiler time-series results of human immortalized myoblast 

exposed to 5-HT. Fold change compared to the internal controls of phosphorylation for each 

time point. Time exposed to 10 µM 5-HT time point 0” is in green, time point 15” is in purple, 

time point 30” is in red, and time point 45” is in blue. “p-” in front of the protein name indicates 

recognition of phosphorylated kinase. Where AMPKα1 (T308) is 5'-AMP-activated protein 

kinase catalytic subunit alpha-1; Chk-2 (T68) is checkpoint kinase 2; c-Jun (S63) is 

transcription factor AP-1; EGF R (Y1086) is epidermal growth factor receptor; eNOS (S1177) 

is endothelial nitric oxide; FAK (Y397) is focal adhesion kinase 1; Fgr (Y412) is fibroblast 

growth factor receptor 1; Fyn (Y420) is the tyrosine-protein kinase Fyn; Hck (Y411) is the 

tyrosine-protein kinase HCK; Hsp60 is 60 kDa heat shock protein; JNK1/2/3 (T183/Y185, 

T221/Y223) are mitogen-activated protein kinase 8/9/10; Lyn (Y397) is the tyrosine-protein 

kinase, Lyn; p27 (T198) cyclin-dependent kinase inhibitor 1B; p531 (S15) and p532 (S46) are 

cellular  tumor antigen p53; PDGF Rβ (Y751) is platelet-derived growth factor receptors beta; 

PLC-γ1 (Y783) is phospholipase C, gamma 1; PYK2 (Y402) is protein tyrosine kinase 2-beta; 

Src (Y419) is the C-terminal Src kinase; STAT2 (Y689) is signal transducer and activator of 

transcription 2; STAT31 (S705) and STAT3 (Y727)2 are signal transducer and activator of 

transcription 3; STAT5a/b (Y699) is signal transducer and activator of transcription 5a/b; 

STAT5b (Y699) is signal transducer and activator of transcription 5b; STAT6 (Y641) is signal 

transducer and activator of transcription 6; and Yes (Y426) is the proto-oncogene tyrosine-

protein kinase Yes. 
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Annex II 

 

An overview of metadynamics 

 Entrapment in local free energy minima is a common occurrence when 

performing MD simulations of complex biological systems. This entrapment hinders 

MD simulations’ ability to fully explore all of the conformational landscape during the 

simulations’ typical duration, typically several microseconds. We utilized 

metadynamics (MetaD)249,250 to overcome this issue in our production simulations.  

MetaD is an enhanced sampling technique that introduces a bias potential that 

discourages systems from retracing areas of the conformational landscape that have 

already been explored during the simulation. The MetaD history-dependent bias 

potential 𝑉ீ is composed of several specific collective variables (CVs). The CVs are 

functions 𝑆 of the microscopic coordinates 𝑹 of the system 𝑆(𝑹) =  ൫𝑆ଵ(𝑹), . . . , 𝑆ௗ(𝑹)൯. 

CVs are coarse-grain descriptors of the system that can discriminate between the most 

relevant free-energy minima and encode the system’s slowest modes. The modes are 

composed of high free-energy barriers and benefit the greatest from the acceleration 

stemming from the bias potential. The MetaD bias potential is expressed as a sum of 

Gaussians deposited along the trajectory in the CVs space: 

𝑉ீ(𝑆, 𝑡)=න 𝑑𝑡ᇱ
𝒕

𝟎

 𝜔(𝑡ᇱ)∙ expቌ−෍
ቀ𝑆௜(𝑹)−𝑆௜൫𝑹(𝑡ᇱ)൯ቁ

ଶ

2𝜎௜
ଶ

ௗ

௜ୀଵ

ቍ    (1) 

 

where 𝑡 is the simulation time, 𝜎௜ is the Gaussian width of the i-th CV, and 𝜔 is the 

deposition rate of the bias potential. Usually, Gaussians are added to the simulation 

with a discrete and constant deposition stride 𝜏. Therefore, the deposition rate 𝜔 is 

expressed as the ratio between the Gaussian height 𝑊 and the deposition stride 𝜏.  

In the well-tempered variant289, the Gaussian height decreases with the simulation time 

as: 

𝑊(𝑡) = 𝑊଴ ∙ exp ቆ−
𝑉 (𝑆, 𝑡)

𝑘஻𝛥𝑇
ቇ     (2) 
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where 𝑘஻ is the Boltzmann constant, 𝑊଴ is the initial Gaussian height, and 𝛥𝑇 is an 

input parameter with the dimension of a temperature. 𝛥𝑇 can be used to limit the 

exploration to the relevant regions of the CV space and thus limiting the visitation to 

excessively high free-energy areas. This parameter is often expressed in terms of the 

so-called bias factor: 

𝛾 =
𝑇 + 𝛥𝑇

𝑇
     (3) 

 

where 𝑇 is the temperature of the system. MetaD has two advantages: it accelerates 

the sampling, and it enables the direct reconstruction of the equilibrium free-energies 

from the bias potential simultaneously, following: 

 

𝑉 (𝑆, 𝑡 → ∞) =  −
𝛥𝑇

𝑇 + 𝛥𝑇
∙ 𝐹(𝑆) + 𝐶     (4) 

 

where 𝐹(𝑆) is the free energy as a function of the CVs, and 𝐶 is an irrelevant additive 

constant.  
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