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Zusammenfassung 

Multilagen-Graphen besteht aus mehreren atomar dünnen Schichten von Kohlenstoffatomen und 

weist eine Vielzahl ungewöhnlicher elektrischer Eigenschaften auf. Unter anderem wurde 

vorhergesagt, dass abhängig von externen elektrischen und magnetischen Feldern und je nach 

Lagenfolge der einzelnen Kohlenstofflagen der Grundzustand des Systems in einen korrelierten 

Zustand übergehen kann, der spontan Symmetrien des Systems bricht. Diese Zustände sind aber 

typischerweise sehr instabil und können nur in hochreinen Proben mit homogener Lagenfolge 

sichtbar gemacht werden. 

Im ersten Teil dieser Arbeit wurden die elektrischen Eigenschaften dieser korrelierten Zustände 

sowohl in Dreilagen-Graphen mit Bernal-Lagenfolge (ABA) als auch in Dreilagen-Graphen mit 

rhomboedrischer (ABC) Lagenfolgen genauer untersucht: In ABA Dreilagen-Graphen ist die 

Bandstruktur stark von externen elektrischen Feldern abhängig und bildet bei stärker werdenden 

Feldern mehrere zusätzliche Dirac-Kegel um den zentralen Dirac-Punkt der Bandstruktur aus. In 

dieser Arbeit wird gezeigt, dass mithilfe elektrischer und magnetischer Felder die Elektron-Elektron 

Wechselwirkung innerhalb der Dirac-Kegel verstärkt werden kann, bis der Grundzustand kontrolliert 

in einen korrelierten Zustand übergeht, der die Rotationssymmetrie des Systems spontan bricht. 

Anders verhält es sich in ABC Dreilagen-Graphen, dessen elektrische Struktur eine starke Berry-

Krümmung und chirale Quasiteilchen aufweist. Als Folge davon wurde unter anderem vorhergesagt, 

dass bei verschwindender Ladungsträgerdichte mehrere spontane Quanten-Hall-Zustände 

auftreten können, die die chirale Symmetrie des Systems brechen. Messungen der 

Magnetotransporteigenschaften bei verschiedenen elektrischen und magnetischen Felder lassen 

ein vielfältiges Phasendiagramm der Quanten-Hall-Zustände erkennen, dass sogar Zustände mit 

intrinsischem orbitalem magnetischem Moment und Hall-Leitfähigkeit beinhaltet. Diese 

Erkenntnisse tragen zum tieferen Verständnis der korrelierten Zustände in Multilagen-Graphen und 

der Wechselwirkung von Ladungsträgern in zweidimensionalen Materialien bei.    

Im zweiten Teil der Arbeit wird der Ladungstransport in anorganischen Halogenid-Perowskit 

Nanodrähten untersucht. Halogenid-Perowskit Materialien haben aufgrund ihrer 

außergewöhnlichen optoelektronischen Eigenschaften bereits vielfach Anwendung als 

Basismaterial für Solarzellen und Photodetektoren gefunden. In diesem Teil der Arbeit wird der 

Ladungstransport in Feldeffekt-Transistoren mit CsPbBr3 Perowskit Nanodrähten in Abhängigkeit 

der Temperatur untersucht. Es wird gezeigt, dass ohne Beleuchtung der Probe der Ladungstransport 
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stark von tiefen Fallzuständen dominiert wird und bei niedrigen Temperaturen komplett ausfriert. 

Wenn die Probe jedoch beleuchtet wird, steigt die Mobilität der Ladungsträger stark an und wird 

bei niedrigen Temperaturen nur von der Phononenstreuung limitiert. Diese Ergebnisse 

unterstreichen die Defekt-Toleranz, die häufig mit Perowskit-Materialien in Verbindung gebracht 

wird und liefern neue Einsichten in die elektrischen Fallenzustände in CsPbBr3 Perowskit-

Nanodrähten.   
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Abstract 

In recent years, multilayer graphene, a stack of several atomically thin layers of carbon atoms, has 

attracted growing interest due to its intriguing electronic properties and exceptional tunability. 

Depending on its stacking order, multilayer graphene has been predicted to be susceptible to a 

variety of correlated broken-symmetry ground states that can be accessed and explored upon 

appropriate tuning of its electronic structure via electrostatic gating and magnetic fields. However, 

in order to reveal these fragile states, excellent device quality and stacking order homogeneity are 

prerequisite.  

In this thesis, magnetotransport in Bernal-stacked (ABA) trilayer graphene encapsulated in 

hexagonal boron nitride as well as suspended rhombohedral (ABC) trilayer graphene is investigated. 

Depending on the stacking order, two families of correlated states that spontaneously break 

symmetries of the system are observed. In ABA trilayer graphene, external electric fields strongly 

deform the band structure and lead to the emergence of multiple off-center Dirac points (Dirac 

gullies). It is demonstrated that electric and magnetic fields can be used as tuning parameters to 

enhance electron-electron interactions within these Dirac gullies. At appropriate tuning, 

magnetotransport maps indicate the emergence of a new correlated ground state that 

spontaneously breaks the rotational symmetry of the system. In contrast, ABC trilayer graphene 

hosts chiral quasi-particles that exhibit a non-zero Berry phase when encircling one of the valleys of 

its band structure. It has been shown, that ABC trilayer graphene is susceptible to spontaneous chiral 

symmetry breaking due to its flat band structure at charge neutrality. Indeed, transport 

measurements demonstrate the emergence of several spontaneous quantum Hall phases that are 

driven by a giant Berry curvature. Mapping magnetostransport as a function of electric and magnetic 

fields reveals a rich phase diagram including states with non-zero orbital momentum and Hall 

conductivity. The findings of this thesis provide novel insights into the world correlated phases in 

multilayer graphene and interaction physics in two dimensions. 

In a second part of this thesis, charge transport in all-inorganic halide perovskite nanowires is 

investigated. In recent years, halide perovskites have emerged as promising novel materials for 

optoelectronic applications due to their large absorption coefficient and exceptional charge carrier 

lifetime. Yet, although the optical properties have been studied intensely, charge transport 

mechanisms and the influence of traps still remains elusive. In this thesis, temperature dependent 

charge transport in CsPbBr3 nanowire field-effect transistors is investigated. It is shown, that charge 
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transport in the dark is dominated by deep traps and freezes out at low temperatures. However, 

illuminating the sample increases the mobility several orders of magnitude revealing even phonon-

limited transport characteristics. These findings highlight and extend the notion of “defect-

tolerance” of perovskite materials and provide novel insights into defect states in CsPbBr3 

nanowires. 
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1 Introduction 

For several decades, two-dimensional (2D) materials were widely believed to be non-existent in 

nature 

1. Although graphene, a single atomic layer of graphite, has already been theoretically studied 

for years 

2,3, it came as a surprise when K. Novoselov and A. Geim were able to isolate it for the first 

time in their groundbreaking experiments in 2004

1,4. Owing to its exceptional electronic and 

mechanical properties, graphene quickly sparked enormous interest in both fundamental physics 

and material science. In part, its great success was also due to the novel and surprisingly simple 

fabrication technique that enabled producing high-quality graphene with nothing more than an 

adhesive tape and a graphite source 

5. In this so-called mechanical exfoliation method, graphene 

flakes are obtained by peeling thin graphite fragments with an adhesive tape from a bulk crystal, 

thinning them down by repeated peeling and transferring them onto a suitable substrate 

1. 

Astonishingly, among thicker graphite clusters, also atomically thin graphene flakes can be found 

and visualized by simple optical microscopy 

1. Motivated by the isolation of graphene and adapting 

the mechanical exfoliation technique, a whole variety of 2D materials including superconductors 

6,7, 

semiconductors 

7 and ferromagnets 

8,9 have been discovered since. In addition, versatile methods to 

transfer and stack individual 2D materials on top of each other allowing to engineer novel complex 

materials with hand-tailored properties have been developed10,11.  

Yet, graphene based systems have still remained highly relevant especially in fundamental research 

due to their unexcelled charge carrier mobility and excellent tunability 

1,5. This is especially true for 

multilayer graphene, a stack of several graphene layers, where layer number and stacking order 

provide additional tuning parameters12–14. For instance, multilayer graphene with rhombohedral 

(ABC) stacking order can host chiral quasi-particles with an arbitrarily flat power-law dispersion14,15, 

while Bernal (ABA) stacked multilayer graphene hosts combinations of massless and massive 

fermions14,16. Together with the possibility to tune its electronic structure via electrostatic gating17, 

multilayer graphene is a versatile platform to investigate quantum transport phenomena and many-

body physics in two dimensions. In particular, multilayer graphene has been predicted to be 

susceptible to a wide range of novel correlated ground states that spontaneously break one or more 

of the systems symmetries18–23.  

In general, the description of electronic states in a solid-state system is a quantum many-body 

problem with a vast amount of degrees of freedom24. Most metallic systems, however, can be 
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described within Landau’s Fermi-liquid theory that reduces the complex interacting electron system 

to an effective essemble of free quasi-particles24,25. Yet, when the interaction energy becomes 

dominant compared to the kinetic energy, this single-particle picture may break down and the 

Fermi-liquid ground state becomes unstable24. As a result, exotic interaction-driven ground states 

such as ferromagnetic phases or the fractional quantum Hall effect might emerge24. In multilayer 

graphene, several instabilities towards complex correlated states are present and can be explored 

experimentally. For instance, in rhombohedral multilayer graphene, the kinetic energy close to 

charge neutrality is quenched substantially due to the flat energy dispersion and interactions are 

expected to dominate12,24. Indeed, several correlated states have been postulated, including a 

superconducting phase21,22 and a set of competing gapped quantum Hall states18,19. So far, 

experiments on bilayer and multilayer graphene confirm the presence of a spontaneous gap at 

charge neutrality17,26–28, but both the order parameter of the ground state and phase diagram of 

correlated states still remain elusive. Alternatively, electron-electron interactions can be enhanced 

in the quantum Hall regime, as the formation of Landau levels likewise quenches the kinetic 

energy24. Here, ABA multilayers are especially suitable to explore correlated stats, since their 

peculiar band structure offers the unique possibility to additionally tune interaction via electric 

fields20,29,30. It has been predicted, that ABA multilayer graphene is susceptible to nematic states that 

spontaneously break rotational symmetry20. 

However, the observation of these fragile correlated states is challenging as excellent device quality 

and the absence of any domain walls are prerequisite31. At the same time, dual-gated structures 

that allow for tuning both charge carrier density and electric field independently are highly 

advantageous. Experimental efforts to isolate graphene from its environment and reducing the 

charge homogeneity have led to the development of two promising device architectures. In the first 

approach, graphene is suspended over the substrate by wet etching17,32. Although demonstrating 

excellent transport characteristics32, the fragile device architecture strongly limits the accessible 

voltage range of electrostatic gates. In a second approach, following the idea of stacking 2D 

materials, graphene is encapsulated in hexagonal boron nitride (hBN)33,34. Since hBN has the same 

crystal structure as graphene with a comparable lattice constant, but is both inert and insulating, 

encapsulated graphene is extremely flat and essentially free of charge traps33,35. Compared to 

suspended devices, encapsulated samples substantially increase the accessible gate range at the 

cost of adding considerable screening of Coulomb interactions through the presence of hBN. 

In this thesis, low-temperature transport measurements on high-quality suspended and 

encapsulated trilayer graphene devices with ABA and ABC stacking order are presented. In both 

device types, the emergence of correlated states that spontaneously break one or more symmetries 

of the system is demonstrated and their dependence on electric and magnetic field explored. 

Specifically, in ABC trilayer graphene, several competing spontaneous quantum Hall states emerge, 

some of which possess a non-zero charge Hall conductivity and orbital magnetic moment even in 
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the absence of magnetic fields. In ABA trilayer graphene, it is demonstrated that electron-electron 

interactions can be readily tuned via electric fields leading to the formation of correlated states that 

spontaneously break the rotational symmetry of the system. These results provide novel insights 

into the phase diagram of correlated states in multilayer graphene and into the world of interaction 

physics in two dimensions. 

 

In the second part of the thesis, electrical transport in all-inorganic perovskite nanowires is 

investigated. All-inorganic halide perovskites are a new class of materials that offer excellent 

optoelectronic properties including strong optical absorption36,37 and long charge carrier lifetime38, 

while still being comparably cheap and easy to process39. In the last years, colloidal methods to 

efficiently fabricate all-inorganic halide perovskite nanowires have been developed39–43, showing 

great promise for application as lasers and photodetectors44–46. However, so far, little is known 

about the transport mechanisms and charge traps inside all-inorganic perovskite materials. In this 

thesis, a field-effect transistor geometry is employed to investigate temperature-dependent charge 

transport properties of CsPbBr3 nanowire films. It is shown, that in the absence of illumination, deep 

traps within the system dominate transport and the mobility freezes out at low temperatures. 

Surprisingly, when switching on the illumination, the mobility increases by several orders of 

magnitude and even phonon-limited transport characteristics are visible. These findings highlight 

the notion of “defect tolerance”47–51 of perovskite materials and provide guidelines to improve 

device performance in the future. 

  

The outline of the thesis is as follows: In chapter 2, the theoretical foundations of this thesis are 

presented. After introducing the basic electronic properties of multilayer graphene, the 

modifications to electronic states in both the quantum Hall regime and due to electron-electron 

interactions are discussed. In a last section, the underlying mechanisms and concepts of field-effect 

transistors and their characteristics are given. In chapter 3, the experimental methods to fabricate 

and characterize high-quality multilayer graphene devices are discussed. Furthermore, the different 

setups and techniques to access the electrical transport characteristics of graphene and perovskite 

devices are presented together with a brief overview of the measurement software developed 

within this thesis. In chapter 4, theoretical simulations as well as transport measurements on 

encapsulated multilayer graphene with ABA stacking order are shown. In chapter 5, transport data 

of suspended dual-gated ABC multilayer graphene devices demonstrating the emergence of several 

competing symmetry-broken quantum Hall states is presented. The temperature dependent 

transport measurements on perovskite nanowire films are discussed in chapter 6. Lastly, a short 

summary and an outlook on future research possibilities is given in chapter 7. 
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2 Theoretical Foundations 

In this chapter, the fundamental concepts and theories that form the basis of this thesis are reviewed. 

First, a brief introduction to the field of 2D materials as well as their electronic structure is given. 

Since graphene plays a central role within this thesis, the electronic properties of both monolayer 

graphene and multilayer graphene are discussed in more detail. In the second section, the quantum 

Hall effect as one of the most fundamental quantum transport phenomena of two-dimensional 

electron systems is presented. In the third section, the influence of electron-electron interactions on 

electronic states and charge transport in graphene is reviewed. Lastly, the basic principles of field-

effect transistors and their application for investigating graphene and perovskite samples are 

discussed.  

2.1 Two-Dimensional Materials 

In the last decades, 2D materials have emerged as a novel and fascinating class of materials. These 

materials consist of a single crystal layer only (thus the term “two-dimensional”) and have been 

shown to exhibit unique physical properties due to their unusual dimensionality 

1,5,10. Starting from 

the first experimental isolation of graphene 

4, a one-atom-thick layer of graphite, a whole variety of 

different 2D materials 

6–9 have been discovered since. Within this thesis, two of the most important 

2D materials are highlighted: few-layer graphene and hBN. On the one hand, graphene is a semi-

metal material that, since its discovery in 2004

4, has consistently been on the forefront of the field 

of 2D materials. Its mechanical strength52, exceptional electric conductivity32,34 and unique 

electronic spectrum 

1 make it a versatile material for a whole range of applications such as in flexible 

electronics or high-frequency transistors 

5. Combining several layers of graphene strongly increases 

the number of tuning parameters and makes multilayer graphene a promising system to investigate 

novel quantum transport properties18,20. On the other hand, hBN is an insulating isomorph of 

graphene that is relatively inert and free of surface charge traps33. Encapsulating graphene in hBN 

layers has proven to be an efficient way to create ultra-clean graphene devices with an excellent 

charge carrier mobility33,34. In general, hBN is broadly used to protect 2D material stacks from the 

environment while, at the same time, acting as a gate dielectric in a field-effect transistor geometry 

(see section 2.2.4). In the following, the atomic structure and electronic properties of monolayer 

graphene and multilayer graphene as well as hBN are discussed in more detail. 
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2.1.1 Monolayer Graphene 

Monolayer graphene consists of a single layer of carbon atoms, that are arranged in a honeycomb 

lattice 

1,53,54 (see Figure 2.1a). The planar structure of graphene is stemming from the 𝑠𝑝2 

hybridization of one 𝑠 and two 𝑝 orbitals of the carbon atoms, which leads to a strong planar 

covalent 𝜎-bond between nearest neighbor carbon atoms53,54. The remaining electrons occupy the 

𝑝𝑧 orbital perpendicular to the carbon plane and form 𝜋-bonds53,54. In general, the 𝜎-bonds are 

responsible for the stability of graphene52, whereas the 𝜋-bonds host a delocalized electron system 

giving rise to the characteristic electronic properties of graphene53,54. In order to calculate the band 

structure, it is worth noting, that the honeycomb lattice structure of graphene can also be seen as 

a triangular lattice with two atoms per unit cell53,54. Consequently, the Graphene lattice decomposes 

into two inequivalent sublattices A and B (see Figure 2.1a). The lattice vectors of graphene can be 

written as53,54 

 𝒂1 =
𝑎

2
(3, √3),      𝒂2 =

𝑎

2
(3, −√3) (2.1) 

where 𝑎 ≈ 1.42 Å is the carbon-carbon distance in the honeycomb lattice. The resulting Brillouin 

zone of the graphene lattice is shown in Figure 2.1b. The high-symmetry points 𝐾 and 𝐾′ are of 

particular importance for the band structure of graphene and correspond to the following positions  

Figure 2.1 Lattice Structure of Graphene: (a) The hexagonal lattice of graphene with two 

atoms per unit cell. The unit cell vectors are represented by 𝑎1 and 𝑎2. Atoms of sublattice 𝐴 

are shown in white and atoms of sublattice 𝐵 in black. (b) The reciprocal lattice of graphene 

and the reciprocal lattice vectors 𝑏1 and 𝑏2 together with the position of the high-symmetry 

points 𝐾 and 𝐾′ points (and 𝛤, 𝑀). 
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in the reciprocal lattice53,54: 

 𝑲 = (
2𝜋

3𝑎
,

2𝜋

3√3𝑎
) ,      𝑲′ = (

2𝜋

3𝑎
, −

2𝜋

3√3𝑎
) (2.2) 

When taking both nearest-neighbor and next-nearest-neighbor hopping into account, the tight-

binding Hamiltonian has the following form

2,53,54 

 𝐻 =  −𝛾0 ∑ (𝑎𝜎,𝑖
† 𝑏𝜎,𝑗 + 𝐻. 𝑐. ) − 𝛾0

′ ∑ (𝑎𝜎,𝑖
† 𝑎𝜎,𝑗 + 𝑏𝜎,𝑖

† 𝑏𝜎,𝑗 + 𝐻. 𝑐. )
〈𝑖,𝑗〉,𝜎〈𝑖,𝑗〉,𝜎

, (2.3) 

where 𝑎𝜎,𝑖  (𝑎𝜎,𝑖
† ) annihilates (creates) an electron with spin 𝜎 = ↑, ↓ on site 𝑟𝑖 on sublattice A (an 

equivalent definition is used for sublattice B). Furthermore, 𝛾0 describes the nearest-neighbor 

hopping energy and 𝛾0
′  the next-nearest-neighbor hopping energy. The energy bands that results 

from this Hamiltonian have to form 

2,53,54 

 𝐸±(𝒌) =  ±γ0√3 + 𝑓(𝒌) − γ0
' 𝑓(𝒌),  (2.4) 

Figure 2.2 Band Structure of Graphene and Pseudo-Spin: (a) Band structure of graphene as 

derived from the tight-binding model for 𝛾0 = 2.7 meV and 𝛾0
′  = 0.5 meV. The conduction and 

valence bands of graphene touch at the 𝐾 and 𝐾′ points forming linear low-energy bands (see 

zoom-in). Reprinted from Ref 53. (b) Schematic representation of the linear band structure of 

graphene together with the pseudo-spin of quasi-particles in graphene. The black arrow 

indicates the direction of the quasi-particle momentum and the red (green) arrow the direction 

of the quasi-spin. All states along the red and green branch of the spectrum have the same 

pseudospin direction. The Fermi-level is indicated in blue. Adapted from Ref 57. 
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with 

 𝑓(𝒌) = 2 cos(√3𝑘ya) + 4 cos (
√3

2
𝑘ya) cos (

3

2
𝑘xa) . (2.5) 

Here, ± refers to the conduction and valence band respectively. When next-nearest neighbor 

hopping is present and 𝛾0
′ ≠ 0, the electron-hole symmetry is broken. The band structure of 

graphene for non-zero 𝛾0
′  is shown in Figure 2.2a. Notably, the band structure is gapless with valence 

and conduction bands touching at the 𝐾 and 𝐾′ points (cf. Figure 2.1a and Equation (2.2))53,54. The 

low energy regime in the vicinity of these points hosts most of the peculiar physics of graphene 

1,53,54. 

Expanding the Hamiltonian in equation (2.3) up to first order for small wave numbers 𝒒 around the 

𝐾 point yields53–55 

 𝐻𝐾 = 𝑣F (
0 ℏ(𝑞𝑥 − 𝑖𝑞𝑦)

ℏ(𝑞𝑥 + 𝑖𝑞𝑦) 0
) (2.6) 

with the Fermi velocity 𝑣F = 3𝑎𝛾0/2. The Hamiltonian describing particles close to the 𝐾′ can be 

derived in a similar way yielding 𝐻𝐾' = 𝐻𝐾
𝑇 . Note, that in the low-energy regime, the electronic states 

are composed of two components belonging to the two different sublattices of graphene. This has 

been accounted for by using a two-component wave function with one component for sublattice A 

and one component for sublattice B 

1,18,19,53,54,56,57. The energy eigenvalues of this Hamiltonian give 

rise to conical bands with a linear dispersion53–55  

 𝐸±(𝒒)  ≈  ±𝑣Fℏ𝑞,  (2.7) 

with ± referring to the conduction and valence band respectively. The low energy bands are shown 

in the zoom-in in Figure 2.2a. Rewriting this Hamiltonian by using a vector of Pauli 

matrices  𝝈 = (𝜎𝑥 , 𝜎𝑦) with  

 𝜎𝑥 = (
0 1
1 0

),       𝜎𝑦 = (
0 −𝑖
𝑖 0

),       𝜎𝑧 = (
1 0
0 −1

) (2.8) 

and the quasi-momentum 𝒑 = ℏ𝒒, gives53–55  

 𝐻𝐾 = 𝑣F𝝈 ⋅ 𝒑 = −𝑖ℏ𝑣F𝝈 ⋅ 𝛻. (2.9) 

Thus, quasi-particles in graphene are described by a massless Dirac-like Hamiltonian58 with the 

speed of light being replaced by the Fermi velocity 𝑣F ≈ 106 m s-1. Due to this analogy, the 𝐾 and 𝐾′ 

points are often called Dirac points

1. The eigenfunctions in momentum space corresponding to this 
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low-energy Hamiltonian are given by54 

 𝜓±
𝐾 =

1

√2
(

𝑒−𝑖𝜙/2

±𝑒𝑖𝜙/2)       𝜓±
𝐾' =

1

√2
(

𝑒𝑖𝜙/2

±𝑒−𝑖𝜙/2), (2.10) 

where 𝜙 refers to the polar angle of the quasi-momentum with 𝒑 = 𝑝(cos 𝜙 , sin 𝜙) and ± again 

refers to the conduction and valence band respectively. At this point, it is worth pointing out various 

important properties of the Hamiltonian and the wave functions: 

Pseudo-Spin: As mentioned earlier, the wave functions have two components corresponding to the 

two sublattices of graphene. In fact, the wave function can be seen as two-component spinors 

where the sublattice index (referring to sublattice 𝐴 and 𝐵) plays the role of a spin

1,18,19,56,57. In this 

analogy, “spin up” refers to finding a quasi-particle in sublattice 𝐴, while “spin down” refers to 

finding a quasi-particle in sublattice 𝐵. In the following, this property of the wave function will be 

referred to as pseudo-spin

1,53,54.  

Valleys: In graphene, the low-energy spectrum has two inequivalent points of particular importance, 

namely the 𝐾 and 𝐾′ points 

1,53,54. As shown before, quasi-particles close to these two valleys can be 

described by two different Hamiltonians and wave functions53,54. However, the wave functions at 

these two valleys are closely related via time-reversal symmetry53,54. Thus, quasi-particles in 

graphene possess an additional degree-of-freedom, often referred to as valley degree-of-freedom. 

Chirality: In contrast to typical solid-state systems, electron and hole states in graphene are deeply 

interconnected 

1,57. For every electron with energy 𝐸 propagating in one direction, there is also a 

hole state with energy – 𝐸 propagating in the opposite direction 

1,18,57. This is a direct consequence 

of the close link between the pseudo-spin direction and the direction of the quasi-momentum: The 

pseudo-spin of an electron is always parallel, while the pseudo-spin of a hole is always antiparallel 

to the momentum 

1,53,57. This is also indicated in Figure 2.2b, where quasi-particles on different 

branches of the b. This symmetry is often referred to as chiral symmetry and quasi-particles obeying 

this symmetry are called chiral

1,53,57.  

Berry Phase: When going along a circular path in momentum space around the 𝐾 or 𝐾′ point rotating 

𝜙 by 2𝜋, the wave function changes sign indicating a phase change of 𝜋 (cf. equation (2.10))53,54. 

This is very characteristic of spinor wave functions and is often referred to as the Berry phase59,60. In 

general, the Berry phase is the phase a wave function picks up when going along a closed loop in 

parameter space59,61. The Berry phase can also be written as the integral of a field (often called the 

Berry curvature) over the surface contained in the closed loop61. Intuitively speaking, the Berry 

curvature can be seen as a built-in magnetic field and the Berry phase as the phase a particle would 

acquire when going around a loop enclosing a magnetic flux61.  It is worth emphasizing, that the 

Berry curvature is an intrinsic property of the band structure and significantly alters the motion of 

electrons in a crystal61. For instance, this becomes relevant, when the system is subject to an 
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external perpendicular magnetic field. Under the influence of the external field, electrons will start 

to move in cyclotron orbits and thus acquire a Berry phase 

1,56,62. As a results, the characteristics of 

the quantum Hall effect in graphene will be different compared to electron systems without a Berry 

phase 

1,56,62. This will be discussed in more detail in the section 2.2. 

2.1.2 Bilayer Graphene 

Bilayer graphene consists of two individual layers of graphene that are stacked on top of each 

other53,54. In the most energetically stable stacking configuration, the two layers are shifted with 

respect to each other such that one atom of the top layer sits directly above the center of the 

honeycomb of the bottom layer (see Figure 2.3a,b)53,54. This stacking configuration is often called 

𝐴𝐵 stacking, referring to the different positions of the individual layers55. When deriving the tight-

binding model of bilayer graphene, not only intralayer, but also interlayer hopping parameters have 

to be taken into account. The definitions of the lowest order hopping parameters, adopting the 

nomenclature from the Slonczewski-Weiss-McClure model for graphite63–65, are shown in Figure 

2.3b. The most important hopping parameters are the intralayer coupling 𝛾0 ≈ 3.2 eV63 analogous 

to the monolayer case, and the nearest neighbor inter-layer coupling 𝛾1 ≈ 0.39 eV63 between atoms 

of sublattice 𝐵1 and 𝐴2 that sit directly on top of each other (cf. Figure 2.3). The next-nearest 

neighbor inter-layer couplings 𝛾3 and 𝛾4 connect sublattices of the different species (e.g. 𝐴1 to 𝐵2) 

and same species (e.g 𝐴1 to 𝐴2) respectively53–55. As in graphene, the electronic properties at low 

energies are well-captured by taking only nearest neighbor couplings into account14,54. Thus, 𝛾3 and 

𝛾4 will be neglected for now, but reintroduced later. First, bilayer graphene has the same symmetry 

Figure 2.3 Lattice Structure of Bilayer Graphene: (a) Relative position of the two graphene 

lattices of bilayer graphene. (b) Relative position of the two graphene lattices of bilayer 

graphene from a side view. Atoms in sublattices 𝐴𝑖  and 𝐵𝑖  with 𝑖 = {1,2} being the layer index 

are indicated in white and black respectively. Red arrows indicate the hopping parameters 𝛾𝑖. 
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as monolayer graphene (cf. Figure 2.1b)53,54. The wave functions describing bilayer quasi-particles, 

however, consist not only of two but four components, one for each of the sublattices 𝐴𝑖  and 𝐵𝑖  

with layer index 𝑖 = {1,2}53,54. In the low-energy approximation, this can be further simplified by 

noting, that the interlayer coupling 𝛾1 essentially dimerizes the sublattices 𝐵1 and 𝐴2 and 

substantially shifts their energy bands by ±𝛾1 away from the Fermi energy54,55. Dropping these high 

energy states, the Hamiltonian for small momentum 𝒒 around the 𝐾 point reads 

1,54,56 

 𝐻𝐾 =
ℏ2

2𝑚
(

0 (𝑞𝑥 − 𝑖𝑞𝑦)
2

(𝑞𝑥 + 𝑖𝑞𝑦)
2

0
), (2.11) 

where the effective mass 𝑚 is given by 𝑚 = 𝛾1/(2𝑣𝐹
2). Again, a similar Hamiltonian can be derived 

for the 𝐾′ point. The eigenvalues of this Hamiltonian give rise to quadratic bands53,54 

 𝐸±(𝒒) =  ±
ℏ2𝑞2

2𝑚
= ±

𝑝2

2𝑚
, (2.12) 

with the quasi-momentum 𝒑 = ℏ𝒒 and ± referring to the conduction and valence band respectively. 

Figure 2.4a shows the low-energy band structure of bilayer graphene. Again, similar to monolayer 

graphene, bilayer graphene has no bandgap and the conduction and valence band touch at the 𝐾 

Figure 2.4 Band Structure of Bilayer Graphene: (a) Low energy band structure of bilayer 

graphene at the 𝐾 point taking only nearest neighbor hopping into account. The band 

structure at zero electric field is shown as a dotted line. The band opening at a non-zero electric 

field is shown in red. Reprinted from Ref 14. (b,c) Trigonal warped Fermi-surfaces at various 

energies at the 𝐾 point. The trigonal warping term 𝛾3 splits the single band touching point 

into one center and three off-center band touching points. Reprinted from Ref 66. 
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and 𝐾′ points. The corresponding eigenfunctions of the Hamiltonian are given by  

 𝜓±
𝐾 =

1

√2
(

𝑒−𝑖𝜙

±𝑒𝑖𝜙) (2.13) 

Again, 𝜙 refers to the polar angle of the quasi-momentum with 𝒑 = 𝑝(cos 𝜙 , sin 𝜙) and ± refers to 

the conduction and valence band respectively. Comparing these results to the monolayer case yields 

some close similarities. Quasi-particles in bilayer graphene also have a pseudo-spin. However, in 

contrast to monolayer graphene, the pseudo-spin refers to sublattices 𝐴1 and 𝐵2 on the bottom and 

top layer respectively53,54. Likewise, quasi-particles in bilayer graphene are chiral

1,53–56. To emphasize 

this analogy, it is worth rewriting the Hamiltonian similar to the monolayer case as follows18,55,56 

 𝐻𝐾 =
ℏ2

2𝑚
(

0 (𝑝𝑥 − 𝑖𝑝𝑦)
2

(𝑝𝑥 + 𝑖𝑝𝑦)
2

0
) =

ℏ2𝑝2

2𝑚
𝝈 ⋅ 𝒏(𝜙) (2.14) 

where 𝒏 = (cos 2𝜙 , sin 2𝜙) and 𝝈 = (𝜎𝑥 , 𝜎𝑦) is a vector of Pauli matrices (cf. equation (2.10)). In the 

context of bilayer graphene, chirality means that the pseudo-spin of the bilayer wave function is 

always parallel (antiparallel) to the axis 𝒏 for electrons (holes)55,56. When going along a closed path 

around the 𝐾 point, the wave function of bilayer graphene acquires a Berry phase of 2𝜋55,56. 

Although this phase is indistinguishable from zero, it does, nevertheless, influence the quantum Hall 

effect in bilayer graphene significantly 

1,55,56. Note, that the Hamiltonian and the wave functions 

corresponding to the 𝐾′ point have not be shown explicitly, but are related by time reversal 

symmetry to the Hamiltonian and wave functions at the 𝐾 point53,55. Notably, quasiparticles at the 

𝐾′ point acquire a Berry phase of -2𝜋55. 

Despite these similarities between the low-energy Hamiltonian of monolayer and bilayer graphene, 

there is also a crucial difference between them. As the wave function of bilayer graphene has 

components associated with different layers, one can break inversion symmetry (and likewise chiral 

symmetry) explicitly by applying an electric field. This introduces a potential difference between 

states on the top and bottom layer and a band gap between conduction and valence band opens. In 

a low-energy approximation, the modified Hamiltonian using the notation from equation (2.14). 

reads14 

 𝐻 =
𝑝2

2𝑚
𝝈 ⋅ 𝒏 +  

𝛥

2
𝜎𝑧 =

𝑝2

2𝑚
[cos(2𝜙) 𝜎𝑥 + sin(2𝜙) 𝜎𝑦] + 

𝛥

2
𝜎𝑧 (2.15) 

where Δ is the potential difference between bottom and top layer and the 𝜎𝑖 the Pauli matrices (cf. 
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equation (2.8)). The eigenenergies of this Hamiltonian are then given by 

 𝐸±(𝒑)  = ±√(𝑝2/2𝑚)2 + (𝛥/2)2 (2.16) 

where ± refers to the conduction and valence band respectively. The resulting band structure is 

shown in Figure 2.4a. At this point, it is worth coming back to the higher order hopping parameters 

𝛾3 and 𝛾4. Reintroducing higher order hopping parameters into the Hamiltonian leads to structural 

modifications to the band structure55,66. The hopping parameter 𝛾3 ≈ 0.32 eV63 introduces an energy 

term proportional to cos 3𝜙66. This leads to so-called trigonal warping that deforms the Fermi-

surface at the 𝐾 and 𝐾′ points into a “triangular” shape (see Figure 2.4b,c)15,55,63,66. The coupling 

𝛾4 ≈ 0.04 eV63 is much weaker, but introduces a asymmetry between conduction and valence bands 

(not shown in Figure 2.4)63. 

2.1.3 Multilayer Graphene  

The term multilayer graphene comprises all graphene stacks with more than two layers. Similar to 

bilayer graphene, consecutive layers in multilayer graphene are stacked in such a way, that one 

atom of the first plane sits directly above the center of the honeycomb of the second layer14,53,67. 

Although other configurations are possible due to the weak inter-lattice van-der-Waal forces, this is 

the most common stacking type in nature14,53,67. In bilayer, as discussed before, only one natural 

stacking order is available53. When adding a third layer, however, there are two possible stacking 

configurations of the third layer available: On the one hand, the atoms of the third layer can sit 

Figure 2.5 Stacking order of Multilayer Graphene: (a) Position of atoms in the Bernal (ABA) 

stacking configuration. Atoms of sublattice 𝐵1 sit directly above atoms of sublattice 𝐴2 and 

𝐵3. (b) Position of atoms in the rhombohedral (ABC) stacking configuration. Atoms of 

sublattice 𝐵𝑖  sit directly above atoms of sublattice 𝐴𝑖+1. 
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directly above the atoms of the first layer14,53,67. This stacking order is called Bernal stacking or ABA 

stacking, where the notation ABA refers the fact, that the first and third layer are at the same 

position14,53,67. In the second configuration, the third layer sits in a position that is different from 

both the first and second layer14,53,67. This configuration is often referred to as rhombohedral 

stacking or ABC stacking14,53,67. Figure 2.5 shows an illustration of the two stacking orders. It is also 

worth noting, that there are no other inequivalent positions a new layer can be placed in53. When 

increasing the number of layers, the natural continuation of these sequences are ABABAB for Bernal 

and ABCABC for rhombohedral stacking14,53. In nature, Bernal stacking is the most 

thermodynamically stable stacking order with only some fraction of natural graphite having the 

rhombohedral stacking order

3,14,53. Besides, also other mixed stacking orders (e.g. ABCBA) are 

possible53,67, but are not be discussed within the scope of this thesis.  

The band structure of multilayer graphene is significantly more complex than the band structure of 

mono- and bilayer graphene and depends both on the layer number and the stacking order 

3,14,53,67,68. 

On the one hand, ABC multilayer graphene can be seen as an extension to monolayer and bilayer 

graphene inheriting many of their properties18. The low-energy states live on the two outermost 

layers and will host chiral quasiparticles with a Berry phase 𝑁𝜋 with 𝑁 being the layer number14,15,18. 

As in bilayer, a non-zero external electric field opens up a band gap between valence and conduction 

band14,62. On the other hand, ABA multilayer graphene behaves like a superposition of individual 

bilayer bands (together with an extra monolayer band for odd layer numbers)16,69–71. An external 

electric field does not open a band gap, instead the potential asymmetry causes band overlapping14. 

The band structure of both ABC and ABA multilayer graphene will be discussed in more detail in the 

following. 

ABC Stacking Order 

As mentioned before, ABC multilayer graphene is the natural extension to monolayer and bilayer 

graphene. The derivation of the low-energy band structure of ABC multilayer graphene closely 

resembles the bilayer case and generalizes the approach to variable layer number 𝑁. The wave 

functions describing quasi-particles in ABC multilayer graphene have 2𝑁 components, one 

component for each layer and sublattice 𝐴𝑖  and 𝐵𝑖
14. However, similar to bilayer graphene, the inter-

layer coupling 𝛾1 dimerizes neighboring sublattice sites 𝐵𝑖  and 𝐴𝑖+1 (see Figure 2.5a,b) and drives 

them away from the Fermi energy15,64,72,73. As a result, in a low-energy approximation neglecting all 

higher order hopping parameters, the wave function reduces to two components (referred to as 

pseudo-spin18,56,62) associated with the remaining outermost surface sublattice sites 𝐴1 and 𝐵𝑁
14,72,74 

while all bulk states are gapped out with an energy gap of approximately 3𝜋𝛾1/𝑁74. Thus, the low-

energy electronic states of ABC multilayer graphene are well localized on the surface layers14,72,74. 
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Expanding the Hamiltonian for small momenta 𝒑 = 𝑝(cos 𝜙 , sin 𝜙) around the 𝐾 point yields14,18 

 𝐻𝐾 =
(𝑣F)𝑁  

(𝛾1)𝑁−1
(

0 (𝑝𝑥 − 𝑖𝑝𝑦)
𝑁

(𝑝𝑥 + 𝑖𝑝𝑦)
𝑁

0
) =

(𝑣F𝑝)𝑁  

(𝛾1)𝑁−1
𝝈 ⋅ 𝒏(𝜙). (2.17) 

Where 𝒏 = (cos 𝑁𝜙 , sin 𝑁𝜙) and 𝝈 = (𝜎𝑥 , 𝜎𝑦) is a vector composed of Pauli matrices (cf. equation 

(2.8)) acting on the two-component spinor wave functions. Notably, this Hamiltonian also 

reproduces the Hamiltonians of monolayer (𝑁 = 1) and bilayer (𝑁 = 2) graphene, highlighting the 

close connection between them. Quasi-particles governed by a Hamiltonian of this general form are 

called chiral with a chirality equal to the layer number 𝑁15,18,19,62,75. In this context, chirality means 

that the pseudo-spin of the wave functions is always parallel (antiparallel) to the axis 𝒏 for electrons 

(holes)55,56. It can be shown that quasi-particles with chirality 𝑁 acquire a Berry phase of ±𝑁𝜋 when 

going along a closed path around the 𝐾 or 𝐾′ point respectively15,18,26,56,72,75. The energy eigenvalues 

of the Hamiltonian in equation (2.17) are given by 

 𝐸±(𝒑) = ±
(𝑣F)𝑁  

(𝛾1)𝑁−1
𝑝𝑁 (2.18) 

where ± refers to the conduction and valence band respectively14. Thus, the low-energy bands 

Figure 2.6 Hopping Parameters and Band Structure of ABC Multilayer Graphene: (a,b) 

Illustration of the position of atoms as well as the hopping parameters 𝛾𝑖  of ABC multilayer 

graphene. (c,d) Band structure of ABC multilayer graphene for layer numbers 𝑁 = 3 (c) and 

𝑁 = 10 (d) in the vicinity of the 𝐾 and 𝐾′ points with (red) and without (black) perpendicular 

external electric field. With increasing layer number, the low-energy bands become more flat 

and the bulk states advance closer to zero energy. Increasing the electric field opens a 

bandgap in the low-energy bands. Reprinted from Ref 14. 
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become more and more flat with increasing layer number 𝑁12,15,26,72,76–78. Figure 2.6c,d shows the 

band structure for two different layer numbers illustrating the increase in flatness of the dispersion. 

As a consequence, the density of states at charge neutrality diverges with 𝐸(2−𝑁)/𝑁  for layer 

numbers 𝑁 > 262,75,78. This is in contrast to monolayer (𝑁 = 1) and bilayer (𝑁 = 2) graphene, where 

the density of state vanishes and remains finite at charge neutrality respectively. However, like in 

bilayer graphene, chiral symmetry can also be explicitly broken by applying an electric field16,62. Since 

the wave function is localized on the top and bottom layers, an electric field introduces a potential 

difference Δ and opens a band gap16,62. The resulting Hamiltonian then reads16  

 𝐻 =
(𝑣F𝑝)𝑁  

(𝛾1)𝑁−1
[cos(𝑁𝜙) 𝜎𝑥 + sin(𝑁𝜙) 𝜎𝑦] + 

𝛥

2
𝜎𝑧 (2.19) 

with energy eigenvalues16  

 𝐸±(𝒑) = ±√
(𝑣F𝑝)2𝑁

(𝛾1)2𝑁−2
+ (

𝛥

2
)

2

 (2.20) 

where ± refers to the conduction and valence band respectively. Other than that, the chiral 

symmetry is very robust with respect to higher order hopping contributions that add further terms 

in 𝜎𝑥 and 𝜎𝑦 to the Hamiltonian18,62. For example, the trigonal warping term 𝛾3 (see also section 

Figure 2.7 Hopping Parameters and Band Structure of ABA Multilayer Graphene: (a,b) 

Illustration of the position of atoms as well as the hopping parameters 𝛾𝑖  of ABA multilayer 

graphene. (c,d) Band structure of ABA multilayer graphene for layer numbers 𝑁 = 3 (c) and 

𝑁 = 4 (d) in the vicinity of the 𝐾 and 𝐾′ points. For trilayer graphene (c), the band structure 

originates from a superposition of a monolayer (M) and bilayer (B) band. For tetralayer 

graphene (d), the band structure consists of two bilayer bands (b and B). Reprinted from Ref 16. 
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2.1.2 and Figure 2.4) deforms the band structure and leads to the formation of additional off-center 

band touching points depending on the number of layers15. In this case, the Berry phase is 

distributed over the off-center Dirac points while keeping the total Berry phase of ±𝑁𝜋 unchanged15. 

ABA Stacking Order 

In contrast to the ABC stacking order, the atomic structure of ABA multilayer graphene does not give 

rise to a 𝛾1 dimer chain that gaps out all bulk states. Instead, in a first approximation, the band 

structure can be decomposed into a superposition of bilayer bands for even layer numbers and a 

superposition of bilayer bands and a single monolayer band for odd layer numbers14,16,53,67,70,79. Due 

to this monolayer band, the electrical properties of multilayer graphene with even and odd layer 

number are distinctly different. In fact, multilayer graphene of arbitrary stacking order can be 

decomposed into such as a superposition of chiral building blocks80. It is also worth noting, that even 

layer numbers exhibit inversion symmetry, but odd layer numbers are only mirror-symmetric with 

respect to the central layer16. This first approximation can be refined by introducing higher order 

hopping terms leading to the Slonczewski-Weiss-McClure model of graphite16,20,29,30,63–65. Here, not 

only the intralayer coupling 𝛾0 and next-layer couplings 𝛾1, 𝛾3 and 𝛾4 as discussed in the bilayer case 

are taken into account (see section 2.1.2), but also next-nearest layer couplings 𝛾2 and 

Figure 2.8 Band Structure of ABA Multilayer Graphene in an External Electric Field: (a) Three-

dimensional illustration of the position of the six Dirac gullies together with the central Dirac 

point for 𝛥1 = 0.2 eV. (b-g) Evolution of the band structure of trilayer graphene in the vicinity 

of the 𝐾+ point with increasing potential difference 𝛥1 = 0.0 eV (b), 0.025 eV (c), 0.05 eV (d), 

0.15 eV (e), 0.18 eV (f) and 0.25 eV (g). Solid (dashed) lines correspond to 𝑘 parallel to the 𝑥-

axis (𝑦-axis). Blue and red lines correspond the to bilayer and monolayer band respectively. 

Reprinted from Ref 29. 
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𝛾5
16,20,29,30,53,63–65. The definition of these coupling parameters is illustrated in Figure 2.7a. In addition, 

an energy difference 𝛿 between lattice sites involved in the 𝛾1 couling and sites not involved is 

introduced30,53,63. The band structure of trilayer and four-layer graphene in the absence of an 

external field is shown in Figure 2.7c,d.  Although the band structure takes into account higher order 

terms, the monolayer-like and bilayer-like bands are nevertheless clearly discernable. When 

applying an external perpendicular electric field, the monolayer-like and bilayer-like bands start to 

hybridize20,29,30. Like in ABC multilayer graphene, an external electric field introduces a potential 

difference Δ1 between the top and bottom layer of the graphene multilayer. However, the potential 

difference opens a negligible band gap in the range of a few meV only20,29,30. More prominently, the 

interplay between Δ1 and the trigonal warping term 𝛾3 leads to a strong deformation of the band 

structure and the emergence of a new set of six additional pronounced Dirac points (“Dirac gullies”) 

in the vicinity of each 𝐾 point20,29. These six gullies can be divided into two sets of three gullies 

interconnected by 𝐶3 rotation symmetry20,29. Figure 2.8a shows the band structure in the vicinity of 

the 𝐾 point at finite potential difference Δ1. The evolution of the band structure with increasing 

potential difference Δ1 is shown exemplarly for trilayer graphene in Figure 2.8b-g. With increasing 

Δ1, the monolayer-like bands start to shift to higher (lower) energies for electrons (holes)29. At the 

same time, the Dirac gullies become more and more prominent and shift to higher momenta20,29. 

This splitting of the band structure into Dirac gullies has further important consequences. If Δ1 is 

fixed at a non-zero value, sweeping the chemical potential 𝜇 can lead to discontinuous changes of 

the Fermi surface topology20, a so-called Lifshitz transition20,81. Such Lifshitz transitions are 

accompanied by a van Hove singularity with a logarithmically diverging density of states20. 

2.1.4 Hexagonal Boron Nitride 

In order to reveal the intrinsic electronic properties of graphene, an inert environment free of charge 

impurities is prerequisite. The commonly used SiO2 substrates for graphene, however, are known to 

have a substantial amount of surface traps and charge impurities that leads to unwanted charge 

disorder and doping in the graphene flake33. One strategy to prepare graphene samples with ultra-

low charge disorder is suspending them over the SiO2 substrate32. As a result, when using ultra-high 

vacuum, the influence of the environment on graphene can be minimized32. This technique, 

however, also suffers from some disadvantages. For example, the electric fields and charge carrier 

densities achievable in such a geometry are very limited due to the fragile nature of the suspended 

structure33. Another approach is to use hexagonal boron nitride as a substrate dielectric. Hexagonal 

boron nitride (hBN) is an insulating two-dimensional material that has the same hexagonal lattice 

structure as graphene33,35. In the hBN lattice, however, boron atoms occupy the sublattice 𝐴 while 

nitrogen atoms occupy the sublattice 𝐵33,35. Since boron and nitrogen have different on-site 

energies, the band gap is very large (Δ = 5.97 eV) and hBN is essentially an insulator33,35. At the same 

time, the lattice mismatch with graphene is only 1.7 %33,35. Due to the strong ionic in-plane bonds, 



2.2 Quantum Hall Effect  

19 

hBN is also expected to be inert and free of dangling bonds or surface charge traps33,35. It has been 

shown, that graphene devices on hBN show an orders of magnitude higher mobility than on 

conventional SiO2 substrates33. Furthermore, charge disorder in graphene was shown to be 

significantly lower when using hBN as a substrate35,82. Completely encapsulating graphene in hBN 

layers yields even higher mobilities close to what has been achieved in suspended samples34.  

2.1.5 Graphite 

When increasing the layer number of multilayer graphene, the band structure starts to lose its two-

dimensional characteristic and becomes bulk-like83,84. In the infinite-layer limit, graphite is a semi-

metal with a small band overlap63. For example, for ABA multilayer graphene the transition to 

graphite-like behavior occurs approximately at layer numbers of 𝑁 ≈ 10 according the theoretical 

studies84. In multilayer ABC, the energy gap of bulk states becomes smaller when increasing 𝑁, until 

transport is essentially three-dimensional83. However, signatures of two-dimensional surface states 

(see section 2.1.3) have been observed in devices up to thicknesses of several tens of layers72. With 

its high conductivity, graphite is an attractive option as a gate electrode in combination with hBN as 

dielectric35.  It has been shown, that in graphene-hBN-graphite stacks, charge impurities were even 

further screened than in a configuration without graphite35. As a result, charge fluctuations in 

graphene are greatly suppressed in the presence of a graphite screening layer35. In addition, using 

graphite as contact material to contact graphene has also proven to yield exceptionally low contact 

resistances85. 

2.2 Quantum Hall Effect 

In 1930 L. Landau realized that if a 2D electron system is subject to a strong perpendicular magnetic 

field, electrons are forced onto quantized cyclotron orbits86. However, to observe this quantized 

motion, high-mobility samples where charge carriers are tightly confined in one dimension, but 

mobile in the remaining two dimensions, as well as low temperatures were prerequisite87. Many 

decades later, in 1980, K. von Klitzing was able to overcome these challenges and demonstrated the 

quantized Hall effect as a direct consequence of the cyclotron motion of charge carriers88. This first 

demonstration of the quantum Hall effect (QHE) is one of the most fundamental discoveries in 

modern solid-state physics and has since then opened up a whole variety of new research topics87. 

Traditionally, 2D electron gases were realized by using either high-quality metal-oxide field-effect 

transistors or semiconductor heterostructures87. 2D materials, however, inherently support two-

dimensional electron systems and are, therefore, a novel and versatile system to explore quantum 

Hall physics89. In the following, the quantum Hall effect is introduced and quantum Hall physics in 

graphene is discussed in detail. 
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2.2.1 Classical Hall Effect 

In 1879, E.H. Hall discovered that in a conductor subject to a magnetic field, a voltage transverse to 

the electric current and perpendicular to the magnetic field builds up90. This effect can be 

understood classically in terms of the Lorentz force acting on the charge carriers moving through 

the conductor91. It can be shown, that the transverse (Hall) voltage 𝑉H and the corresponding 

transverse conductance 𝜎𝑥𝑦 are given by91  

 𝑉H =
𝐼𝐵

𝑛𝑑𝑒
     and      𝜎𝑥𝑦 =

𝐼

𝑉H
=

𝑛𝑑𝑒

𝐵
, (2.21) 

where 𝑛 is the charge carrier density, 𝑑 the thickness of the conductor (in direction of the magnetic 

field), 𝐵 the magnetic field, 𝑒 the elementary charge and 𝐼 the current through the conductor. Here, 

the notation with 𝑥𝑦 indicates that the voltage accumulates in transverse 𝑦 direction, while the 

current flows in 𝑥 direction. Thus, the Hall conductance 𝜎𝑥𝑦 is proportional to the charge carrier 

density and inversely proportional to the magnetic field. The resistance 𝜌𝑥𝑥 along the channel, 

however, remains constant regardless of the magnetic field. 

Figure 2.9 Quantum Hall Effect: (a) Schematical transversal conductance (red) and 

longitudinal resistance (blue) as a function of the charge carrier density 𝑛 in the quantum Hall 

regime. (b) Schematic illustration of the emergence of edge channels in graphene. In the center 

of the sample (light gray), charge carriers move in cyclotron orbits. Close to the edge of the 

sample, charge carriers are reflected and form a pair of directional edge channels connecting 

the two electrical contacts (dark gray). (c) The formation of edge channel from an energetic 

point of view. Close to the edge of the sample (dotted lines), the energy of the Landau levels 

increase. If the Fermi-energy 𝐸𝐹 is located between two Landau level, edge channels at the 

crossing points between Fermi energy and Landau levels form. 
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2.2.2 Two-Dimensional Electron Gas 

In the limit of a 2D electron gas and low temperatures, the conductance 𝜎𝑥𝑦 becomes quantized91. 

For example, when measuring 𝜎𝑥𝑦 as a function of the charge carrier density, quantized 

conductance plateaus at integer multiples of 𝑒2/ℎ can be observed (see Figure 2.9a)91. At the same 

time, the longitudinal resistance 𝜌𝑥𝑥 vanishes at the conductance plateaus but exhibits spikes when 

the conductance increases to the next plateau (see Figure 2.9a). This behavior cannot be explained 

within the framework of the classical Hall effect. In order to understand these phenomena, consider 

a gas of free electrons in the 𝑥𝑦 plane with a perpendicular magnetic field in 𝑧 direction. The 

Hamiltonian for this system is given by86,91 

 𝐻 =  
(𝑝𝑥 − 𝑒𝐴𝑥)2

2𝑚
+

(𝑝𝑦 − 𝑒𝐴𝑦)2

2𝑚
+ 𝐸0, (2.22) 

where 𝑨 = (0, −𝐵𝑥, 0) is the vector potential with 𝑩 = ∇ × 𝑨 and 𝐸0 is a momentum-independent 

energy contribution from the confinement in 𝑧 direction. The magnetic field component forces the 

electrons to move in quantized cyclotron orbits within the 𝑥𝑦-plane. As a result, the energy 

continuum of a free electron gas condenses into quantized energy levels, the so-called Landau 

levels, associated with these cyclotron orbits87,88,91. The Landau levels are given by87,88,91 

 𝐸𝑁 = 𝐸0 + (𝑁 +
1

2
) ℏ𝜔𝐶 ,        𝑁 = 0, 1, 2, … (2.23) 

with the cyclotron frequency 𝜔C = 𝑒𝐵/𝑚. These Landau levels are degenerate with a degeneracy of 

𝑛LL = 𝑒𝐵/ℎ each87,88,91. The Hall conductance at the 𝑁-th Landau Level can then be calculated using 

the formula for the Hall resistance in the classical case. Plugging in the degeneracy of the Landau 

levels yields87,88,91 

 𝜎𝑥𝑦 =
𝑛𝑑𝑒

𝐵
=

𝑛𝐿𝐿𝑁𝑒

𝐵
=

𝑒2

ℎ
𝑁,        𝑁 = 0, 1, 2, … (2.24) 

This correctly reproduces the conductance values of the plateaus in Figure 2.9a, but does explain 

neither the step-like shape of 𝜎𝑥𝑦 nor the resistance spikes of 𝜌𝑥𝑥. Consider a rectangular sample 

hosting the 2D electron gas as shown in Figure 2.9b. As mentioned before, charge carriers are 

moving in quantized cyclotron orbits with a frequency 𝜔𝐶  inside the sample91. However, charge 

carriers can only perform undisturbed cyclotron orbits in the center of the sample (cf. Figure 2.9b). 

Close to the edges, their motion is limited by the sample boundary. As a result, charge carriers are 

reflected multiple times at the sample boundary and form a pair of edge channels in opposite 

directions (see Figure 2.9b). In fact, each of these pairs of edge channel contributes a conductance 



Chapter 2: Theoretical Foundations  

22 

quantum 𝑒2/ℎ to the Hall conductance91. Furthermore, since no back-scattering pathways are 

available, the longitudinal resistance 𝜌𝑥𝑥 of the edge channels vanishes.91 This can also be seen from 

an energetic point of view as shown in Figure 2.9c: Due to the repeated reflections, the energy of 

the Landau levels are essentially bend upwards in energy the closer the states are to the sample 

boundary91. If the Fermi energy lies between two Landau levels, edge channels at the energy levels 

crossing the Fermi energy emerge91. In this framework, also the steps in 𝜎𝑥𝑦 in Figure 2.9a can be 

explained. When the Fermi energy passes through a bulk Landau level, the conductance 𝜎𝑥𝑦 jumps 

by one conductance quantum due to the formation of an additional pair of edge channels. Since the 

states close to the Fermi energy provide scattering pathways, the longitudinal resistance 𝜌𝑥𝑥 

exhibits spikes91. However, if the Fermi energy is in-between two Landau levels, the number of edge 

channel stays constant91. Thus, the conductance 𝜎𝑥𝑦 exhibits a plateau and the resistance 𝜌𝑥𝑥 

vanishes91. Throughout this discussion, degeneracies of the electron gas, such as spin, have been 

neglected. Reintroducing a number of generic degeneracies 𝑔 increases the degeneracy of each 

Landau level 𝑔-fold and leads to steps of 𝑔𝑒2/ℎ in the Hall conductance. Furthermore, within this 

thesis, measurements are typically two-terminal measurements that can measure neither 𝜎𝑥𝑦 nor 

𝜌𝑥𝑥 directly. Instead, the two-terminal conductance 𝜎2T measures a combination of the two given 

by92 

 𝜎2𝑇 = √𝜎𝑥𝑥
2 + 𝜎𝑥𝑦

2  (2.25) 

Thus, the two-terminal conductance still exhibits the same plateaus as 𝜎𝑥𝑦. It is also worth noting, 

that equation (2.25) is only valid for square samples and generally depends on the aspect ratio of 

the sample92,93. For higher and lower aspect ratios, plateaus are increasingly distorted and the 

quantum Hall effect is obscured92,93.  

2.2.3 Monolayer and Bilayer Graphene 

So far, only a gas of free electrons has been considered. In graphene, however, charge carriers are 

chiral as discussed in section 2.1.1. The chiral nature of charge carriers and the corresponding Berry 

phase of 𝜋 leads to an unusual sequence of conductance plateaus of the quantum Hall effect, the 

unconventional quantum Hall effect58,89,94. Similar to the free-electron case discussed in section 

2.2.2, the sequence of Landau levels can be calculated by replacing 𝒑 → 𝒑 − 𝑒𝑨 in the Hamiltonian 

of graphene (cf. section 2.1.1) and calculating the energy eigenvalues95. The Landau levels for 

monolayer graphene are given by 

 𝐸𝑁
(1𝐿)

= √2ℏ𝑣𝐹
2𝑒𝐵 ⋅ √𝑁,        𝑁 = 0, 1, 2, … (2.26) 
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Notably, unlike in the conventional quantum Hall effect, graphene has a zero-energy Landau level95. 

Since graphene has both spin and valley degrees-of-freedom, each of these Landau levels is fourfold 

degenerate. Like in the conventional case for a fourfold degenerate free electron gas, quantum Hall 

plateaus are separated by steps of 4𝑒2/ℎ in monolayer graphene 

1,95. However, the first plateaus are 

shifted to ±2𝑒2/ℎ unlike in the conventional Hall effect

1,95. The sequence of Landau levels and the 

conductance plateaus of monolayer graphene are shown schematically in Figure 2.10a,b. Bilayer 

graphene also hosts chiral quasiparticles, but with a Berry phase of 2𝜋 (cf. section 2.1.2). However, 

even though a phase of 2𝜋 is indistinguishable from zero, the Berry phase greatly modifies sequence 

of Landau levels 

1,56. In bilayer graphene, the Landau levels are given by55,95,96 

 𝐸𝑁
(2𝐿)

=
𝑒ℏ𝐵

𝑚
⋅ √𝑁(𝑁 − 1),        𝑁 = 0, 1, 2, … (2.27) 

Here, the zero energy Landau levels has an additional twofold orbital degeneracy, since both 𝑁 = 0 

and 𝑁 = 1 yield the same energy55,56,95. Thus, the quantum Hall plateaus in bilayer graphene are 

again separated by 4𝑒2/ℎ55,56. In contrast to monolayer graphene, however, the first plateaus are 

shifted to ±4𝑒2/ℎ55,56. The sequence of Landau levels is shown schematically in Figure 2.10c,d.  

2.2.4 Multilayer Graphene 

As already discussed in section 2.1.3, the band structure of multilayer graphene depends strongly 

Figure 2.10 Quantum Hall Effect in Graphene: (a) Schematic low energy dispersion of 

graphene together with the Landau levels with spacing 𝛥𝐸 = √𝑁 (b) Conductance 𝜎𝑥𝑦 with 

respect to the charge carrier density. The density of states of the sequence of Landau levels 

are shown in blue and yellow for electrons and holes respectively. (c) Schematic low energy 

dispersion of graphene together with the Landau levels with spacing 𝛥𝐸 = √𝑁(𝑁 − 1). (d) 

Conductance 𝜎𝑥𝑦 with respect to the charge carrier density. The density of states of the 

sequence of Landau levels are shown in blue and yellow for electrons and holes respectively. 

Adapted from Refs 56,96. 
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on the stacking order. Consequently, the quantum Hall effect in multilayer graphene is stacking 

order dependent as well. First, the quantum Hall effect in ABC multilayer graphene is very much 

analogous to monolayer and bilayer graphene. Since quasi-particles are chiral with a chirality equal 

to the layer number 𝑁, they acquire a Berry phase of ±𝑁𝜋 when going along a closed 

path15,18,26,56,72,75. As a consequence, zero-energy Landau level will have additional orbital 

degeneracies giving rise to an overall 4𝑁 degeneracy56,62. As a result, the first conductance plateaus 

will occur at ±2𝑁𝑒2/ℎ62,75. All higher energy plateaus will be separated by 4𝑒2/ℎ analogous to 

monolayer and bilayer graphene12,75.  

Surprisingly, in a first approximation the situation is the same for multilayer graphene with ABA 

stacking. As discussed before, multilayer graphene with ABA stacking order can be approximated as 

a superposition of bilayer bands together with an extra monolayer band for odd layer numbers16,69–

71. Since monolayer has a 4-fold and bilayer an 8-fold degenerate zero energy Landau level, ABA 

multilayer graphene as a combination of the two has a 4𝑁 degenerate zero energy Landau 

level16,71,80,97. Consequently, the first conductance plateau will occur at ±2𝑁𝑒2/ℎ similar the ABC 

multilayer graphene16,71,80,97. All higher energy conductance plateaus inherit the 4𝑒2/ℎ steps size 

from mono and bilayer graphene16,71,80,97. In fact, the same is true for multilayer graphene with 

arbitrary stacking order, as the band structure can always be decomposed into chiral building blocks 

(see also section 2.1.3)80. Including higher order hopping parameters lifts the degeneracy of the 

zeroth Landau level and leads to a complex landscape of Landau level crossings and anti-crossing 

originating from the monolayer and bilayer bands71,97–99. Additionally, as discussed in section 2.1.3, 

applying a perpendicular electric field, gives rise to emergence of Dirac gully triplets. As a result, the 

Landau level spectrum is expected to show a three-fold degeneracy at high electric fields in addition 

to the spin and valley degeneracy20,100,101. 

2.3 Electron-Electron Interactions 

So far, the properties of graphene have only been discussed within a single-particle framework that 

completely neglects electron-electron interactions. Although this approximation is very successful 

in most situations, the single-particle picture may break down once the kinetic energy of electrons 

becomes comparable to the Coulomb interaction energy24. In this case, electron-electron 

interactions can no longer be neglected and may significantly alter the ground state of the 

system24,102. Indeed, by appropriately tuning the Fermi-energy as well as electric and magnetic fields, 

the ration between Coulomb interaction energy and kinetic energy can be tuned rendering several 

instabilities of the single-particle ground state experimentally accessible. In the following, the 

influence of interactions on the many-body ground state of multilayer graphene of either stacking 

order is discussed in detail. 
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2.3.1 ABC Multilayer Graphene 

It has been predicted that ABC multilayer graphene is particularly susceptible to interaction physics 

due to its flat low-energy band structure that strongly quenches the kinetic energy18,26,103. Given the 

power law dispersion that flattens with increasing layer number 𝑁 (cf. section 2.1.3), the ratio 𝑟S 

between Coulomb energy and kinetic energy scales approximately as12,24 

 𝑟𝑆 ∝ 𝑛−(𝑁−1)/2 (2.28) 

For monolayer graphene (𝑁 = 1), this parameters remains finite and interaction effects are 

independent of the charge carrier density 𝑛. For bilayer and multilayer graphene, however, the 

interaction parameter diverges close to charge neutrality and electron-electron interactions 

become dominant. As shown in section 2.1.3, quasi particles in ABC multilayer graphene are chiral 

with a pseudo-spin chirality equal to the layer number and acquire a Berry phase of ±𝑁𝜋 when 

encircling the 𝐾 or 𝐾′ valley respectively. In general, interaction effects at charge neutrality can be 

captured by introducing a correction term into the single-particle Hamiltonian18,28 

 𝐻 =
(𝑣𝐹𝑝)𝑁  

(𝛾1)𝑁−1
[cos(𝑁𝜙) 𝜎𝑥 + sin(𝑁𝜙) 𝜎𝑦] − 𝜟 ⋅ 𝝈 (2.29) 

Here, 𝝈 = (𝜎𝑥,𝜎𝑦,𝜎𝑧) is a vector composed of Pauli matrices (cf. equation (2.8)) acting on the two-

component spinor wave functions (see section 2.1.3). Depending on the orientation of the order 

Figure 2.11 Broken-Symmetry Quantum Hall States: Illustration of the quantum valley Hall 

(QVH) state, the quantum anomalous Hall state (QAH), the layer antiferromagnetic state 

(LAF), the quantum spin Hall state (QSH) and the “All” state. The top (bottom) layer planes are 

indicated by the solid (dotted) rhomboids and the spin-valley dependent Hall conductivities 

are indicated by the arrows pointing to either side of the rhomboids. The QAH state, for 

instance, has no net layer polarization, but exhibits a net charge Hall conductivity since the 

Hall conductivity contributions of both valleys add up. The QVH state, however, has a net layer 

polarization since all states are localized on the top layer, but remains insulating as the Hall 

conductivity contributions cancel out. Adapted from Ref 18. 



Chapter 2: Theoretical Foundations  

26 

parameter 𝚫, different predicted symmetry breaking mechanisms can be described within this 

Hamiltonian. For instance, it has been predicted that 𝚫 is oriented along the 𝑥-𝑦 plane giving rise to 

gapless nematic states with broken rotational symmetry23,28. Yet, experiments26–28 and perturbative 

renormalization group analysis18,19,78 strongly suggest that 𝚫 aligns along the 𝑧-axis breaking chiral 

symmetry and likewise inversion symmetry. Similar to explicit chiral-symmetry breaking by applying 

an electric field (cf. equation (2.19)), spontaneous chiral-symmetry breaking opens up a gap in the 

electronic spectrum giving rise to a giant Berry curvature in the vicinity to the band minima18. 

Depending on the sign of Δ𝑧  with respect to valley and spin, a family of five competing broken-

symmetry states as summarized in Figure 2.11 have been predicted: The quantum valley Hall (QVH) 

state, the quantum anomalous Hall state (QAH), the layer antiferromagnetic state (LAF), the 

quantum spin Hall state (QSH) and the “All” state18,19. As they can be distinguished by their valley, 

spin and charge Hall conductivities that arise from the non-trivial Berry curvature, they are often 

referred to as spontaneous quantum Hall states18. Notably, the QVH and the “All” state exhibit a 

non-zero net layer polarization. Furthermore, the QAH and the “All” exhibit a non-zero orbital 

magnetic moment as well as a net (charge) Hall conductivity even in the absence of magnetic fields 

(cf. Figure 2.11). These properties are especially useful from an experimental point of view, as 

specific states can be favored by tuning the electric and magnetic fields17,18. For example, with 

increasing electric field, states that exhibit a net layer polarization, such as the quantum valley Hall 

states, are strongly favored18. So far, both the LAF phase and the QVH phase could be identified both 

in bilayer28,104 and multilayer graphene26,72,103,105. However, the full phase diagram remains unknown 

with first indication of the presence of the QAH and the “All” state in bilayer graphene27,106. 

2.3.2 ABA Multilayer Graphene 

As shown in section 2.1.3, the electronic structure of ABA multilayer graphene can be decomposed 

into 𝑁/2 bilayer-like bands for even layer numbers 𝑁 with an additional monolayer-like band for 

odd layer numbers. Since the bilayer-like bands are essentially a limiting case of the previously 

discussed ABC multilayer graphene, interaction-induced chiral symmetry breaking is expected to 

open a band-gap in the electronic spectrum close to charge neutrality69,79. In monolayer graphene, 

however, interactions are weak and the spontaneous gap was shown to be either smaller than 

0.1 meV or completely absent107. As a result, ABA multilayer graphene exhibits a peculiar even-odd 

effect: For even layer numbers, the band structure is gapped out due to the spontaneous gaps in all 

bilayer bands69,79. For odd layer numbers, however, the monolayer band closes this gap and 

obscures the spontaneous symmetry-breaking69.  

Nevertheless, ABA multilayer graphene also offers an alternative pathway to tune interaction 

physics via electric fields. As shown in section 2.1.3, strong electric fields lead to the emergence of 

two sets of three off-center Dirac gullies that are interconnected via 𝐶3 rotational symmetry. As a 

result, upon applying a weak magnetic field, threefold quasi-degenerate Landau levels triplets 
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associated with the Dirac gullies emerge (cf. section 2.2.4). When increasing the electric field, the 

Dirac gullies move further apart in momentum space and the triplet Landau levels become more 

and more degenerate20. Figure 2.12a shows the energy levels comprising an exemplary Landau level 

triplet and their evolution in electric field. In the absence of interactions, the triplet wave functions 

preserve 𝐶3 rotational symmetry and are gully coherent (see inset in Figure 2.12a)20. However, 

increasing the electric field strongly quenches the kinetic energy (i.e. the bandwidth of the triplet 

state) until Coulomb energy dominates and interaction are expected to prevail20,101. Indeed, 

variational Hartree-Fock analysis indicates, that above a critical electric field, 𝐶3 symmetry is 

spontaneously broken yielding a gully polarized nematic ground state as illustrated in Figure 2.12b20. 

First capacitance measurements have confirmed the spontaneous symmetry breaking by probing 

the lifted triplet state degeneracy, but the transport properties of these states remain unknown101. 

2.4 Field-Effect Transistors 

Starting from the first demonstration of conductance modulation in a thin film by W. Shockley108 in 

1948, field-effect transistors (FETs) have found widespread use in both research and industry109–111. 

Out of the great variety of field-effect transistor types, the thin-film transistor is of particular 

importance for research applications and will be focused on in this section109. One of the great 

advantages of thin-film FETs is their low requirements for the active transistor material109. Besides 

semiconducting materials, the active layer can also be made out of semi-metals or even biological 

tissues109. This makes FETs a powerful tool to investigate charge carrier density and electric field 

Figure 2.12 Spontaneous Gully-Polarized Nematic State: (a) Energy evolution of the three 

Landau levels (red, green and blue) that make up the gully triplet state. The insets show the real-

space probability distribution of the individual triplet wave functions close to the 𝐾 point. When 

increasing the interlayer potential 𝛥 by applying an electric field, the energy bandwidth of the 

triplet states decreases. The wave functions of the triplet states obey 𝐶3 symmetry and are gully 

coherent. (b) Real-space probability distribution of the many-body Hartree-Fock ground state 

that spontaneously breaks 𝐶3 symmetry. Adapted from Ref 101. 
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dependent transport properties of a wide range of materials. In the following, the working principle 

and characteristics of FETs will be presented and their application for investigating quantum 

transport in graphene will be discussed.  

2.4.1 Semiconductor Field-Effect Transistors 

The (thin-film) FET consists of an active layer (e.g. a semiconductor) with source and drain contacts, 

which is separated from a gate electrode by an insulating gate dielectric (see Figure 2.13a)109. In a 

first simplification, the active layer can be treated as quasi-2D and the FET as a parallel plate 

capacitor with the gate electrode and the active layer playing the roles of the capacitor plates. 

Applying a voltage bias 𝑉DS between drain and source electrodes will introduce a position dependent 

voltage 𝑉(𝑥) inside the active layer, where 𝑥 measures along the channel from source to drain (see 

Figure 2.13a). For pure materials (no traps or doping), the free charge carrier density 

𝑛(𝑥) accumulated in the channel is given by109 

 𝑛(𝑥) = 𝐶(𝑉(𝑥) − 𝑉G)/𝑒 (2.30) 

where 𝑉G is the voltage between gate and source, 𝐶 the gate capacitance per unit area and 𝑒 the 

elementary charge. In real devices, however, the gate voltage needs to fill all charge traps first, 

before any free charge carriers can be induced. Thus, the gate voltage is effectively shifted by an 

empirical threshold voltage 𝑉G → 𝑉G − 𝑉th
109,112. With equation (2.30) the current through the device 

Figure 2.13 Field Effect Transistors: (a) Schematic of a thin-film field-effect transistor. The 

active layer with source and drain contacts is separated from the gate electrode by an 

insulating dielectric material. (b) Output curves of an ideal transistor, where thick lines and 

thin lines indicate the saturation and the linear regime respectively. (b) Transfer curves of an 

ideal transistor, where thick lines and thin lines indicate the saturation and the linear regime 

respectively. In (b,c) the threshold voltage 𝑉th is set to zero, and the electron and hole mobility 

are given by 𝜇𝑛 = 3 × 10-4 cm2 V-1 s-1 and 𝜇ℎ  = 0 cm2 V-1 s-1 respectively. Reprinted from 

Ref 109. 
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can be written as109 

 𝐼(𝑉G, 𝑉DS) = −𝑒𝑛(𝑥)𝜇𝑊
d𝑉(𝑥)

d𝑥
 (2.31) 

where 𝜇 is the charge carrier mobility and 𝑊 the width of the channel. In general, the charge carrier 

mobility 𝜇 can be different for electrons and holes. Solving this differential equation yields the ideal 

characteristics of a FET as summarized by the output and the transfer curves (see Figure 2.13b,c)109. 

Within the FET characteristics, there are two regimes: the linear region for 𝑉DS < 𝑉G − 𝑉th and the 

saturation region at 𝑉DS > 𝑉G − 𝑉th (cf. Figure 2.13b,c)109,111,112. In these regimes, the solution to 

equation (2.31) is given by111 

 𝐼D
sat = 𝜇𝐶

𝑊

2𝐿
(𝑉G − 𝑉th)2 𝜇sat =

1

𝐶

2𝐿

𝑊
(

𝜕√𝐼D

𝜕𝑉G
)

2

 (2.32) 

 𝐼D
lin = 𝜇𝐶

𝑊

𝐿
[(𝑉G − 𝑉th)𝑉DS −

1

2
𝑉DS

2 ] 𝜇lin =
1

𝐶𝑉DS

𝐿

𝑊

𝜕𝐼D

𝜕𝑉G
 (2.33) 

where 𝐿 is the length of the channel and μsat (μlin) is the mobility calculated in the saturation (linear) 

region. Of particular interest when investigating semiconducting materials is also the density and 

depth of charge traps113. Within the FET framework, the density of deep traps 𝑁DT far away from 

the Fermi-energy of the active material and the density of shallow traps 𝑁ST close to the Fermi-

energy can be estimated using113  

 𝑁ST = (
𝐶

𝑒𝑘B
)

d𝑉th

d𝑇
 

 
(2.34) 

 𝑁DT = (
𝐶

𝑒
) (

𝑒𝑆

𝑘B𝑇 ln10
− 1) with    𝑆 =  

d𝑉G

d(log 𝐼D)
   (2.35) 

Here, 𝑇 is the temperature and 𝑆 the subthreshold swing. 

2.4.2 Dual-Gate Graphene Field-Effect Transistors 

Besides the traditional semiconductor FETs, the FET geometry can also be used to investigate 

transport properties in graphene. When using single gate devices, both charge carrier density and 

electric field are tuned at the same time. Although the electric field component can be neglected 

for most materials, it has significant influence on charge transport in multilayer graphene as it 

introduces a potential difference between bottom and top layer (cf. section 2.1.3). Thus, it is 
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advantageous to disentangle the two components and tune charge carrier density and electric field 

independently. This can be done by using a dual-gate structure as shown in Figure 2.14a. In this case, 

the charge carrier density 𝑛 can be decomposed into contributions from both the top gate voltage 

𝑉T and the bottom gate voltage 𝑉B (similar to equation (2.30))95,100.  

 𝑛 = (𝑛T + 𝑛B) =
(𝐶T𝑉T + 𝐶B𝑉B)

𝑒
=

𝐶B

𝑒
(𝛼𝑉T + 𝑉B), (2.36) 

where 𝐶T and 𝐶B are the capacitances per unit area from the top gate and bottom gate respectively 

and 𝛼 = 𝐶T/𝐶B is the ratio between these two. The electric field 𝐷 perpendicular to the graphene 

layer is given by the mean value of the electric field at the bottom and top gate electrode 

yielding95,100 

 𝐷 =
1

2
(𝐷T + 𝐷B) =

𝐶B

2𝜀0

(𝛼𝑉T − 𝑉B) (2.37) 

Figure 2.14 illustrates these relations for two different configurations of 𝑉T and 𝑉B. At this point, it 

is worth noting, that equations (2.36) and (2.37) are linearly independent and, thus, arbitrary 

combinations of 𝑛 and 𝐷 can be set by an appropriate choice of 𝑉T and 𝑉B. Inverting equations (2.36) 

Figure 2.14 Dual-Gate Field Effect Transistors: (a) Schematic of a dual-gate graphene field-

effect transistor. Graphene is separated from both the top and bottom gate by two insulating 

dielectric layers. (b,c) Illustration of the electric field and charge carrier density that are 

induced in a (exemplary) bilayer graphene device (two dark lines) by two different 

configurations of bottom gate and top gate voltages. (b) For 𝑉𝑇 =  𝑉𝐵 (and equal bottom and 

top gate capacitances) a non-zero charge carrier density is induced in the system, but no 

electric field. (c) For 𝑉𝑇 = -𝑉𝐵, the total charge carrier density is zero, but the electric field is 

non-zero.  
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and (2.37) yields 

 𝑉B =
1

2𝐶B

(𝑒𝑛 − 2𝜀0𝐷) + 𝑉B,0             𝑉T =
1

2𝛼𝐶B

(𝑒𝑛 + 2𝜀0𝐷) + 𝑉T,0 (2.38) 

Here, in analogy to the introduction of the threshold voltage, 𝑉B,0 and 𝑉T,0 have been introduced to 

correct for charge traps screening the gate field.  
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3 Experimental Methods 

In this chapter, the main fabrication and measurement techniques that are employed throughout 

this thesis are presented. During the course of this thesis, great focus was laid on adopting and 

optimizing several state-of-the-art fabrication and measurement techniques. Furthermore, a 

modular measurement software to perform electrical measurements with several different 

measurement devices has been developed. The chapter is organized as follows: First, the general 

procedure for fabricating high-quality 2D material devices is given. Second, the relevant methods for 

characterizing structural and optical properties of 2D materials are presented. Third, the 

measurement setups used for investigating the electrical transport properties of 2D materials and 

perovskites are discussed. In a last step, the brief overview over the measurement software 

developed during the course of this thesis is given. 

3.1 Sample Fabrication 

Within this thesis, two different sample geometries were fabricated (see Figure 3.1). First, 

suspended graphene multilayer devices with a silicon bottom gate and a gold top gate. Second, 

multilayer graphene devices encapsulated in hBN with both graphite contacts and graphite dual 

gates. The procedure employed to produce these two device types is different, but relied on several 

common fabrication techniques. In the following, all relevant fabrication steps are presented and 

the corresponding process parameters are given.  

3.1.1 Wafer Preparation 

For suspended devices, degenerately p-doped Si wafers with a 300 nm SiO2 top layer were used as 

substrate. The doping level was selected in order to ensure low gate resistivities even at 

temperatures close to absolute zero. The thickness of the SiO2 layer was chosen to enhance visibility 

of graphene and hBN in an optical microscope 

1. Prior to exfoliation, the substrates were cleaned in 

an acetone bath and a subsequent isopropanol bath for 3 min each. After blow-drying with dry air, 

they were plasma cleaned (PICO Plasma Cleaner, Diener) for 5 min at 50 W in 10 sccm O2. For 

encapsulated devices, graphene and hBN samples that comprise the final stack were prepared on 

slightly doped Si substrates with a 300 nm SiO2 top layer. Here, the focus was laid on ensuring that 

the flakes could be readily picked up from the substrates during the flake transfer step. Thus, prior 
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to exfoliation, the substrates were cleaned in Piranha acid for at least 20 min and etched in 5 % 

hydrofluoric acid (HF) for less than 10 s removing approximately 1 – 10 nm of SiO2. This enhances 

the hydrophobicity of the substrate and was found to increase the yield of flake pick-up. After 

picking up all flakes of the stack, the stack was laid down onto a new substrate. This substrate was 

prepared similar to the suspended samples in order to enhance adhesion between the stack and the 

substrate.  

3.1.2 Exfoliation  

Throughout this thesis, few-layer graphene and hBN were obtained via mechanical exfoliation from 

bulk. This technique, although being very simple and cheap, has proven to yield high-quality flakes 

with excellent electrical properties 

1. For few-layer graphene, highly oriented pyrolytic graphite and 

natural graphite was used as bulk materials. Both materials display comparable characteristics, with 

the highly oriented pyrolytic graphite yielding smaller and natural graphite larger flakes. For 

exfoliation, a thin layer of graphite was peeled off the bulk graphite with an adhesive tape (Magic 

Tape, Scotch). By repeated peeling with scotch tape, the graphite on the tape was thinned down 

until only few layers of graphite remain. Directly prior to exfoliation, the substrates (see section 

3.1.1) were preheated to 100 – 120 °C for several minutes. The scotch tape with the graphite was 

pressed onto the substrate for 10 – 30 s and then carefully removed. Few-layer hBN was exfoliated 

from crystals obtained from K. Watanabe and T. Taniguchi (National Institute for Materials Science, 

Tsukuba, Japan). The exfoliation of hBN is completely analogous to graphite. However, instead of 

scotch tape, blue Nitto tape (SWT20+, Nitto) was used. Furthermore, in order to increase the yield, 

hBN crystals were crushed into smaller grains prior to exfoliation. After exfoliation, promising flakes 

on the graphene or hBN wafers were located using optical microscopy and further analyzed with 

Figure 3.1 Graphene Device Structure: (a,b) Line cut along the graphene axis (a) and 3D view 

(b) of a dual-gated graphene device with silicon bottom gate and a gold top gate. (c) 

Encapsulated graphene device with graphite contacts and graphite bottom and top gate. 
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Raman spectroscopy, atomic force microscopy and scanning near-field optical microscopy (see 

section 3.2). 

3.1.3 Structuring 

In order to improve the overall homogeneity and cleanliness of the samples, it is often inevitable to 

remove undesired regions of the flake or stack. For example, if stacking order is important, it is highly 

advantageous to cut out the areas of the sample with homogeneous stacking order, since domain 

walls between stacking domains are very likely to move unpredictably during processing114. 

Furthermore, to enhance the stability of suspended graphene structures, it is advisable to structure 

graphene into ribbons of 1 – 2 µm width. Within this thesis, two methods for patterning graphene 

(and hBN) were used: reactive ion etching and scanning probe lithography. First, reactive ion etching 

is a very versatile method to etch materials of arbitrary thickness by bombarding them with reactive 

high-energy ions. In combination with electron beam lithography, it can be employed for 

nanostructuring of both graphene and hBN or combinations of them. Figure 3.2 shows a schematic 

overview of a typical reactive ion etching workflow. First, a 4.5 wt.% solution of the positive-resist 

polymethylmethacrylat (PMMA) 950 k dissolved in anisole (AR-P 672.045, Allresist) was spin coated 

onto the sample at 800 rpm for 1 s and then at 4000 rpm for 30 s. After spin coating, the resist was 

soft-baked at 150 °C for 3 min. Contacts were patterned via electron beam lithography at 10 kV with 

a dose of 110 µ C cm-2 and 170 µ C cm-2 for the 10 µm and 60 µm apertures respectively. The 

structures were developed in a 1:3 solution of methylisobutylketon (MIBK) in isopropanol for 2 min. 

After development, the samples were rinsed with isopropanol and blow-dried with dry air. Then the 

Figure 3.2 Electron Beam Lithography: (a) First, the PMMA resist (red) is spin coated onto the 

substrate (grey) with the graphene or hBN flake (black) on top. (b) The regions that are 

supposed to be etched are exposed with an electron beam. (c) Immersing the sample in the 

developer dissolves the previously exposed areas. (d) The exposed graphene (or hBN) is etched 

in the ICP-RIE while the remaining graphene is masked by the resist. (e) In a final step, the 

resist is dissolved and lifted off. (f) Variation of (e) if metals were deposited in step (d) instead 

of etching. 
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structures were etched via inductively coupled plasma reactive-ion etching (ICP-RIE, Plasmalab 

System 100, Oxford Instruments). By using appropriate parameters and gas mixtures, the etching 

selectivity between graphene and hBN can be maximized. For selectively etching graphene, a flow 

of 10 sccm O2 and a pressure of 10 mTorr with an ICP power of 70 W and a RF power of 144 W was 

used. This yielded an etching rate of 9 nm min-1. For etching hBN, a flow of 10 sccm SF6 together 

with 5 sccm Ar and a pressure of 10 mTorr with an ICP power of 70 W and a RF power of 50 W was 

used. Here, the etching rate was approximately 40 nm min-1. In order to lift-off the remaining PMMA 

mask, the sample was submersed in acetone. Afterwards, the sample was soaked in N-Ethyl-2-

pyrrolidone (NEP) at 60 °C for several hours to remove most PMMA residues and rinsed with 

acetone and isopropanol. 

Although reactive ion etching is very effective and straightforward, inevitable PMMA residues 

strongly hamper subsequent flake transfer. Thus, reactive ion etching is not suitable to pattern 

graphene flakes that are set for encapsulation in hBN. Scanning probe lithography is an alternative 

state-of-the-art method for patterning thin materials that completely avoids device 

contamination115. In principle, it is based on a standard contact mode atomic force microscope (see 

section 3.2.3 for more details) with a metal tip115. By applying a high-frequency AC voltage bias 

between tip and substrate, the underlying material can be locally etched with nanometer resolution 

via anodic oxidation115. Moving the tip along a line or a predefined pattern allows for precise 

structuring of the underlying material115. Within this thesis, a gold tip and a constant contact-mode 

force of 100 – 150 nN and a scanning speed of 2 µm s-1 was used (see also section 3.2.3). The best 

etching results were achieved with an AC voltage bias of 10 V and a frequency of 40 kHz.  

3.1.4 Flake Transfer 

In order to fabricate encapsulated graphene devices, a technique to consistently pick up hBN or 

graphene flakes and transfer them to another substrate is imperative. In cooperation with S. Palmer, 

S. Wakolbinger, R. Schelwald, M. Dembecki and A. M. Seiler, a transfer technique that avoids 

interlayer contamination was adapted from P. J. Zomer116 and D. G. Purdie117. In this method, flakes 

are transferred by means of a stamp that consists of a block of polydimethylsiloxane (PDMS) and a 

film of polycarbonate (PC). To build the stamp, PDMS was prepared using a commercially available 

kit (Sylgard 184, Dowsil) with a mass ratio of 10.5:1 between base and curing agent. After 

preparation, PDMS films with a thickness of approximately 2 mm were cast and dried in vacuum for 

24 h in order to remove bubbles. PC films with a thickness of approximately 10 – 20 µm were 

prepared using a film application machine (ZAA 2300, Zehntner) with an 8 wt.% solution of PC 

(Poly(Bisphenol A carbonate), Sigma-Aldrich) in chloroform. Here, the total height of the blade (ZUA 

2000, Zehntner) was set to 1675 µm and the speed to 6 mm s-1. Afterwards, the PC films were dried 

for at least 1 h in air. Having prepared all components, a block of 2 × 2 mm of PDMS was cut out of 

the PDMS film and placed onto a precleaned glass slide. A window slightly larger than the PDMS 
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block was cut into a double-sided adhesive tape and placed onto the glass slide, such that the PDMS 

block sat inside the window of the adhesive tape. The PC film was picked up with another tape (again 

with a window slightly larger than the PDMS block) and placed on top of the PDMS block. The 

process of building a stack of encapsulated graphene is shown schematically in Figure 3.3. First, the 

top hBN flake was picked up. This was done by heating the sample stage to 40 °C and bringing the 

stamp into contact with the substrate. By heating the sample stage over the course of 20 min to 

60 °C, the contact area between stamp and substrate increases and brings the hBN in contact with 

the stamp. Cooling down the stage back to 40 °C slowly retracts the stamp and delaminates the hBN 

from the substrate. It is worth noting, that these elevated temperatures are chosen in order to 

increase the adhesion of hBN to PC relative to SiO2
117. This process was repeated in order to pick up 

graphite contacts, the multilayer graphene flake, the bottom hBN flake and, lastly, the bottom 

graphite gate. In this process, the strong adhesion of graphene to hBN facilitates the delamination 

of flakes from the SiO2. Except the first hBN flake, contact between the stamp and subsequent layers 

of the stack is minimized greatly reducing interlayer contamination. Once all flakes had been stacked 

onto each other, a clean substrate was prepared and heated to 180 °C above glass transition 

temperature of PC (𝑇𝐺  ≈ 150 °C117,118). Then, the stamp was tilted by a few degrees and brought into 

contact with the substrate. By slowly advancing the contact front, trapped interlayer contaminants 

can be pushed out yielding large, blister-free areas. At 180 °C, the PC primarily adheres to the SiO2 

Figure 3.3 Flake Transfer: (a) First, a hBN flake forming the basis of the stack has to be picked 

up. The hBN flake was positioned directly below the stamp and the substrate was heated to 

40 °C. (b) In order to pick up the hBN flake, the stamp was slowly brought into contact with 

the substrate. Then the temperature was ramped to 60 °C and back down to 40 °C to bring the 

PC in contact with the flake during heating and delaminate it from the substrate upon cooling. 

(c) After pick-up, the stamp with the hBN flake was retracted. (d) Once all desired flakes had 

been picked up using the technique shown in (a-c), the substrate was heated to 180 °C. (e) The 

stack was laid down by slowly bringing the stamp and the stack into contact with the 

substrate. (f) The PC was melted together with the stack onto the substrate and the stamp 

was retracted. 
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instead of the PDMS. Thus, after 30 mins, the stamp can slowly be peeled away leaving the stamp 

together with the PC melted onto the substrate. In a last step, the PC was removed by soaking the 

sample in chloroform for at least 1 h. Thereafter, the stack was annealed in a vacuum chamber at a 

pressure of less than 1 × 10-8 mbar and 200 °C for 12 h to reduce the amount of bubbles further. The 

top gate was added by repeating this process: First, an hBN and, subsequently, a graphite flake were 

picked up. Then, both flakes were melted onto the already prepared stack. Finally, the PC was 

removed with chloroform and the stack was annealed again.  

3.1.5 Contacting 

In order to electrically contact the graphene flake, contact lines and pads were defined via standard 

electron beam lithography and metals were deposited. In encapsulated samples, electrical contact 

to the graphene flake was established via graphite contacts. Thus, only the graphite contacts and 

the two gates were contacted rather than the graphene flake itself. In suspended samples, however, 

the graphene flakes were contacted directly. The contacts were fabricated similar to the recipe 

presented in section 3.1.3. After defining the electrical contacts via electron beam lithography and 

developing the resist, metals were deposited in an electron-beam physical vapor deposition 

chamber (electron-beam PVD) at pressures of less than 5 × 10-7 mbar (see also Figure 3.2f).  First, a 

5 nm adhesion layer of chromium at a rate of 0.1 – 0.3 Å s-1 was evaporated. Second, a layer of gold 

at a rate of 0.8 – 1.4 Å s-1 was deposited. The thickness of the gold was chosen according to the 

application, but ranged between 50 nm and 150 nm. For suspended samples, the contact areas had 

been cleaned for 1 min in a UV/Ozone cleaner (UV Ozone Cleaner, Ossila) prior to metal evaporation 

in order to improve the contact resistance119–121. 

Figure 3.4 Suspending Dual-Gated Graphene Devices: (a) Graphene on a Si/SiO2 substrate 

with gold contacts together with an additional SiO2 spacer and the gold top gate before 

etching. (b) Etching the structure with HF completely removes the SiO2 spacer due to its low 

quality and isotropically etches parts of the SiO2 of the substrate. Regions masked by the 

contacts remain protected, while regions directly below graphene are etched uniformly.  
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3.1.6 Suspending and Wet Etching 

In order to suspend graphene devices, a method developed by K.I. Bolotin32 and extended by R.T. 

Weitz17 was adapted. This method uses the fact, that HF based buffered oxide etch (BOE) etches 

SiO2, but leaves graphene as well as gold and chromium unetched. Thus, submersing a fully 

processed graphene device in HF uniformly and isotropically removes the SiO2 including at the area 

below the graphene flake (regions masked by contacts the remain unetched)32. The uniform etching 

below the graphene flake is rather surprising, but can be explained by a raping propagation of the 

HF along the graphene/SiO2 interface32. As a result, the graphene flake is suspended between its 

metallic contacts. In order to fabricate dual gate devices, first a spacer of SiO2 (see Figure 3.4a) was 

defined using electron beam lithography. The process was analogous to the recipe in section 3.1.3. 

However, instead of using one layer of resist, two layers and a development time of 3:30 min were 

used. Then, 140 nm of SiO2 was evaporated via electron-beam PVD at a rate of 8 – 20 Å s-1. In a next 

step, gate contacts with 5 nm of chromium and 160 nm of gold were defined in a similar way (see 

Figure 3.4a). In order to suspend graphene, the structure was submersed in BOE 1:7 for 100 s which 

removes approximately 150 nm of the SiO2 substrate. The SiO2 spacer that had been evaporated 

previously, however, was etched almost instantly due to its inferior quality. In order to prevent 

collapse during drying, the devices were transferred into an ethanol bath and dried in a critical point 

dryer (K850, Quorum Technologies). The resulting structure is shown in Figure 3.4b. 

Figure 3.5 Current Annealing: (a) Two-point resistance (including the line resistance of the 

cryostat) as function of the top gate voltage before (black) and after (red) current annealing. 

After current annealing, the resistance peak associated with the charge neutrality point of 

multilayer graphene is clearly visible. (b,c) Drain current and resistance of the final drain 

voltage ramp during the current annealing procedure. The drain voltage was ramped up to 

0.7 V above the onset of the resistance increase at approximately 6 V (red arrow). The curve 

in (a) was measured directly after this ramp.   
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3.1.7 Bonding 

Before measuring the electrical properties at cryogenic temperatures, the samples were mounted 

onto a sample holder with silver conductive paint. The contact pads were connected to the sample 

holder pins with gold wires using a wedge bonder (MEI 1204W, Marpet Enterprises). 

3.1.8 Current Annealing 

Suspended graphene devices typically have a substantial amount of contaminants and residues on 

the graphene surface that greatly reduce the quality of the device. Current annealing is an easy but 

yet very effective method to remove these contaminants in-situ by forcing a large current through 

the graphene device122,123. Due to dissipation, the high current density is accompanied by strong 

heating that removes the absorbed contaminations122,123. Figure 3.5a shows an exemplary 

measurement illustrating the increase in device quality during annealing. Within this thesis, current 

annealing was implemented as follows. The drain voltage across the graphene was ramped in 

consecutive runs to higher and higher values. Between each ramp, the quality of the device was 

monitored via gate sweeps. At some voltage, the drain current starts to saturate and the overall 

device resistance starts to increase (see Figure 3.5b,c). The best results were achieved, when 

annealing up to drain voltages approximately 0.7 – 1.5 V above the onset of the resistance increase. 

3.2 Microscopy and Spectroscopy 

In order to find suitable and high-quality multilayer graphene flakes as well as to characterize their 

structural properties, various microscopy and spectroscopy methods were employed within this 

thesis. First, multilayer graphene flakes were located and their layer number was determined using 

optical microscopy. In order to verify the number of layers and to determine the stacking order, 

Raman spectra were taken. The amount of dirt on the flakes or the presence of folds and wrinkles 

was determined via atomic force microscopy (AFM). Lastly, to visualize stacking order domains 

within the flake with nanometer resolution, scattering scanning near-field optical microscopy 

(s-SNOM) was employed. In the following, these methods are presented in more detail. 

3.2.1 Optical Microscopy 

After exfoliation, optical microscopy was used to locate promising flakes and determine their size, 

homogeneity and number of layers. Compared to other methods, optical microscopy has the 

advantage of being simple and efficient in mapping out an entire wafer in a reasonable amount of 

time. In addition, it provides a first measure of the layer thickness. Despite being only one atom 

thick, monolayer graphene absorbs a significant fraction of 2.3 % of the incident white light124. The 

absorbance of graphene is a direct consequence of its exotic electronic properties and is solely 

defined by the fine structure constant124. Furthermore, the absorbance of a graphene flake scales 
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approximately linear with layer thickness125. The contrast in an optical microscope, however, is not 

only determined by the opacity of multilayer graphene, but also by the thickness of the SiO2 and by 

the wavelength of the incident light

1,125,126. For example, multilayer graphene with up to five layers 

is well distinguishable on a substrate with a SiO2 thickness of 300 nm and white light illumination, 

but almost indiscernible on wafers with 200 nm SiO2
125. An example of an optical image and the 

optical contrast of graphene is shown in Figure 3.6a. In order to determine the layer number, the 

optical contrast 𝐶 of the green channel is used as it yields the best results. In this context, the optical 

contrast is defined as 

 𝐶 = 1 −
𝐼G

𝐼BG
, (3.1) 

where 𝐼G and 𝐼BG are the intensities of the graphene flake and the background respectively. Within 

this thesis, a program to correct for a polynomial background (stemming from inhomogeneities in 

illumination intensity) and to determine the contrast of graphene flakes was developed. This 

allowed for fast image processing and provided a robust and consistent way to obtain graphene 

contrast values. The experimentally determined optical contrast values for graphene multilayers up 

to five layers are summarized in Table 3.1. However, due to the high standard deviation of the 

contrast values, the layer number has always been verified with Raman spectroscopy (see section 

3.2.2). In contrast to graphene, the layer number of hBN flakes on a 300 nm SiO2 substrate was best 

discernible when using a band-pass filter with 𝜆 = 650 ± 20 nm (see Figure 3.6b). However, the 

optical contrast only provided a rough estimate of the layer number and the AFM was used to 

determine the thickness of the hBN flakes (see section 3.2.3). For all contrast measurements, a 100x 

Figure 3.6 Optical Microscopy: (a) Graphene flake on a Si/SiO2 substrate with both bilayer (2L) 

and trilayer (3L) regions. The background-corrected grayscale image was calculated using the 

green channel only. The original full-color image is shown in the inset. (b) hBN flake on a 

Si/SiO2 substrate. The background-corrected grayscale image was calculated from the red 

channel. The original image without the band-pass filter is shown in the inset. 
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objective (LD EC Epiplan-Neofluar 100x, Zeiss) has been used.  

3.2.2 Raman Spectroscopy 

After selecting promising multilayer graphene candidates via optical microscopy, Raman 

spectroscopy was used to verify the number of layers as well as to determine and map the stacking 

order of the flake. For this purpose, the 2D Raman mode of multilayer graphene is especially suitable 

as its shape is very sensitive to stacking order and layer number127. The 2D peak originates from a 

second-order Raman process that involves two transverse optical phonons127–129. The line shape of 

the 2D peak is determined by the relative contributions of different scattering paths involving both 

conduction and valence bands127,129. Thus, it is sensitive to the band structure of the material at the 

given excitation energy127,129. As the band structure exhibits strong dependence on both layer 

number and stacking order (cf. section 2.1.3), the line shape of the 2D peak is a powerful tool to 

Figure 3.7 Raman Spectroscopy: (a) Raman spectra of graphene with layer numbers of one 

(black) up to five (yellow). The spectra are normalized and offset by 𝛥𝜈 = 100 cm-1 from the 

trilayer spectrum for clarity. For more than two layers, the spectra corresponding to ABA and 

ABC stacking order are shown as solid and dotted lines respectively. (b) Raman spectra of ABC 

trilayer graphene (black) together with a Lorentzian fit (red) that allows to determine the 

FWHM. 

Measurement Stacking 1L 2L 3L 4L 5L 

Optical 

Contrast [%] 
Both 2.6 ± 1.0 5.8 ± 1.5 8.7 ± 1.5 11.9 ± 1.5 15.9 ± 2.0 

FWHM  

2D Peak 

ABA 
26.5 ± 1.2 45.9 ± 1.2 

49.3 ± 1.1 50.9 ± 0.9 53.0 ± 0.6 

ABC 54.6 ± 2.4 57.5 ± 1.9 58.0 ± 1.3 

 

Table 3.1 Graphene Layer Number and Stacking Order Determination: Experimental 

calibration data of both the optical contrast of the green channel and the FWHM of the 2D 

Raman peak from monolayer to tetralayer graphene. 
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assess the structural properties of graphene13,127,130. However, it is worth noting, that other factors 

such as strain or doping can influence the line shape of the 2D peak as well, but are expected to be 

much weaker131–133. To reduce complexity, fitting a single Lorentzian to the 2D peak and extracting 

the FWHM was shown to provide a facile and effective measure of the layer number and stacking 

order130. This also allows for generating maps of the stacking order by scanning the flake and 

extracting the FWHM of the 2D peak at each position. Unfortunately, the resolution is limited by the 

spot size of the laser of approximately 1 µm. Within this thesis, an excitation wavelength of 532 nm 

(Thorus 532, Laser Quantum) was used. The laser was focused onto the sample using a microscope 

with a 100x objective (MPlanFL N 100, Olympus) and spectra were recorded using a spectrometer 

(Spectrometer iHR550, Horiba Scientific) with a 1800 lines per mm grating. Calibration spectra of 

the 2D peak that were obtained for graphene flakes with up to five layers are shown in Figure 3.7. 

The spectra are in good agreement with the data presented in literature127. Furthermore, the 

corresponding FWHM values are given in Table 3.1. A Raman map of a trilayer graphene flake 

together with the optical image flake is shown exemplarily in Figure 3.8a,b. For hBN, however, 

obtaining the layer number via Raman spectroscopy is much more difficult as very low wave 

numbers in the range of 50 cm-1 have to be resolved and only layer numbers below ten are well 

distinguishable134. Since hBN flakes used for stamping typically have more than 10 nm thickness with 

several tens of layers, Raman spectroscopy is not suitable for hBN thickness determination. Instead, 

within this thesis, the thickness of hBN flakes is determined via AFM.  

Figure 3.8 s-SNOM and Raman Maps of Trilayer Graphene: (a) Background-corrected 

grayscale image of a trilayer graphene flake. (b) Raman map of the flake shown in (a) with the 

color indicating the FWHM. Higher values correspond to areas with ABC stacking order, lower 

to ABA stacking order. (c) Map of the SNOM scattering intensity of the flake shown in (a). 

Correlating the stacking order domains with the Raman map in (b) yields that blue domains 

correspond to ABA and white/red domains to ABC stacking order.  
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3.2.3 Atomic Force Microscopy 

In order to obtain information about the homogeneity of promising flakes, the surface of the flakes 

was scanned with an atomic force microscope (AFM). For flakes to exhibit excellent electronic 

properties, the absence of folds and surface contamination is prerequisite. The latter is especially 

important when encapsulating graphene, as surface contaminants can be trapped between layers 

and influence charge transport unfavorably. In addition, the AFM was used to determine the 

thickness of hBN flakes, as optical methods do not provide a good measure for the layer number. It 

is also worth noting, that measuring the thickness of flakes only has nanometer precision due to the 

surface roughness of SiO2 and is only feasible for hBN flakes. For graphene, on the other hand, this 

precision is unsatisfactory and the method does not yield consistent and reliable results135. Within 

this thesis, all AFM (Dimension 3100 and Dimension Icon, Bruker) measurements were done in 

tapping mode, where a tip oscillating at a constant frequency is brought into close proximity with 

the sample. Due to interactions with the surface, topography changes in the sample lead to a shift 

of the resonance frequency and, thus, of the amplitude of the tip. With a feedback loop, the vertical 

position of the tip is adjusted such that amplitude remains constant. Tracking the vertical position 

directly yields a topography map of the sample. As discussed earlier, the AFM was also used together 

with a metallic tip for graphene structuring (cf. section 3.1.3). In this scanning probe lithography 

method, the AFM was operated in the constant-force contact mode. Here, a non-oscillating tip is 

brought into very close proximity with the sample until the tip experiences a substantial repulsive 

force. When scanning the sample, the vertical position of the tip is set such that this force (as 

measured by the cantilever deflection) stays constant. Again, tracking the vertical position of the tip 

allows for extracting the topography of the sample. 

3.2.4 Scattering Scanning Near-Field Optical Microscopy 

To reveal the stacking order dependent electric properties of multilayer graphene, it is essential to 

be able to resolve the stacking domains down to nanometer scale. Raman spectroscopy, however, 

is limited by the spot size of the laser and is, thus, not able to detect stacking domains smaller than 

micrometer scale (cf. section 3.2.2). Scattering scanning near-field optical microscopy (s-SNOM), on 

the other hand, is able to probe local optical properties down to the nanometer regime well below 

the Abbe limit114,136,137. In principle, a s-SNOM is a tapping mode AFM with a metallic tip that serves 

as a nano-antenna. 136,138. Shining an infrared laser onto this nano-antenna tip leads to a strong 

enhancement of the electric field between tip and underlying material making the system very 

sensitive to the local optical properties136,138. These local near-field properties are encoded in the 

back scattered infra-red light and can be read out in the far field136,138. Since the two stacking orders 

have distinctly different band structures, this allows to distinguish stacking domains by their relative 

scattering amplitudes114,136,137. Correlating domains with weak and strong scattering amplitudes with 
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a Raman map yields a nanometer resolution map of stacking domains114,136,137. Furthermore, 

electronic stacking faults that are not detectable with an AFM can be visualized with the s-

SNOM139,140. At domain walls, surface plasmons are reflected and lead to interference fringes in the 

s-SNOM image139,140. All measurements within this thesis were performed with an experimental 

setup based on a commercially available s-SNOM setup (neaSNOM, neaspec). The wavelength of 

the infrared laser was 10.5 µm (CO2 Laser Merit G, Access Laser Company) and the scattering 

amplitude was demodulated at the third harmonic of the tapping frequency. An examplary s-SNOM 

image together with an optical image and a Raman map is shown in Figure 3.8a-c. The domains in 

the Raman and s-SNOM map correspond very well, connecting low scattering amplitudes to ABA 

and high scattering amplitudes to ABC stacking domains. This example also illustrates the gain of 

several orders of magnitude in resolution compared to a Raman map. 

3.3 Electrical Characterization 

After sample characterization and fabrication, electrical transport properties of the multilayer 

graphene devices were investigated. All measurements on graphene shown within this thesis were 

two-terminal measurements. A first measure of the quality of the flakes was obtained with the 

room-temperature probe station. After preselecting promising flakes or contact pairs, the sample 

was transferred into the cryostat for measurements at temperature close to absolute zero. Besides 

graphene, also electrical characterization measurements on perovskite were conducted within this 

thesis. All temperature dependent measurements on perovskites were performed in a vacuum 

probe state station setup. 

3.3.1 Probe Station 

In order to assess the room temperature transport properties of graphene devices, samples were 

investigated in a simple probe station setup. The setup consists of needle probes that can be used 

to contact the source, drain and gate pads of the devices. The drain and gate voltages were applied 

and the corresponding currents recorded using source-measure units (SourceMeter 2450, Keithley). 

The source contact was used as reference potential for both drain and gate voltages and was 

connected to ground. Depending on the transport characteristic such as a low overall two-terminal 

resistance or a distinct resistance peak at charge neutrality (cf. Figure 3.5), promising flakes were 

preselected for cryostat measurements. 

3.3.2 Vacuum Probe Station 

Temperature dependent measurements on perovskites in a temperature range between 296 K and 

7 K were conducted in a vacuum probe station (Probe Station CRX-VF, Lake Shore Cryotronics). 

Similar to the room-temperature probe station (cf. section 3.3.1), needle probes were used to 
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contact the drain and source device pads. In order to improve thermal conductivity, samples were 

glued to a copper plate with silver conductive paint and pressed onto the sample stage with an 

additional needle. The gate was contacted by placing a needle on the copper plate. Gate and drain 

voltages were applied and the corresponding currents measured with source-measure units 

(SourceMeter 2450, Keithley). The sample stage was coupled to a closed-cycle helium refrigerator 

and the temperature was adjusted using a temperature controller (Cryogenic Temperature 

Controller 336, Lake Shore Cryotronics). 

3.3.3 Cryostat 

During the course of this thesis, a cryogen-free dilution refrigerator measurement system (Dilution 

Refrigerator BF-LD250, Bluefors) was set up in order to measure electrical transport properties at 

temperatures as low as 7 mK. Additionally, the system is fitted with a superconducting magnet that 

is able to reach magnetic fields of up to 14 T. The cryostat consists of several temperature stages 

from room temperature down to the lowest temperature stage, the mixing plate. To transfer heat 

from the lowest to the highest temperatures stage, the cryostat is equipped with two closed-cycle 

cooling systems, namely a 4He pulse-tube refrigerator system and a 4He / 3He dilution refrigerator 

system. The pulse-tube refrigerator is a closed-cycle system that uses 4He at a pressure of some 

hundred mbar as refrigerant. It is able to provide cooling power down to approximately 3 K, the 

boiling temperature of the low-pressure 4He gas. Starting from this temperature stage, the dilution 

refrigerator provides additional cooling to the mixing plate that can ultimately reach temperatures 

as low as 7 mK141. The working principle of the dilution unit is based on a peculiar property of 

mixtures between the two isotopes of helium, 4He and 3He. At zero temperature, instead of forming 

two separate pure phases, the amount of 3He in the 4He phase does not drop to zero and remains 

finite141. By pumping on this diluted phase, 3He atoms evaporate and more atoms from the 3He-rich 

phase (pure 3He at zero temperature) have to be transferred to the diluted phase141. This process 

costs energy and, thus, provides cooling power down to the millikelvin regime141. Achieving these 

low temperatures, however, poses several challenges on designing electrical wiring inside the 

cryostat. Most importantly, wires connecting the measurement devices to the sample at base 

temperature introduce significant heating and need to be thermalized properly. This is achieved by 

several filter stages (self-made as part of this thesis) and thermalization stages (provided by 

Bluefors). Out of the 24 lines to the sample, four lines are equipped with stronger filters and are 

used as gate wires. The remaining lines provide medium filtering and are suitable for contacting the 

graphene devices. Furthermore, the lines are grouped into twisted pairs to minimize 

electromagnetic noise. An overview over the wiring is shown in Figure 3.9a and the design 

parameters of the filters are given in Table 3.2. First, just before going into the cryostat, a 𝜋-filter 

together with an RC-filter (only gate wires) prevents all high-frequency noise from entering the 

cryostat. Inside the cryostat, wires are thermalized at every temperature stage using bobbins 
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(provided by Bluefors). At the mixing plate, another self-made low-pass RC filter stage designed to 

maximize thermalization is added. The filter consist of a thin polyimide (Kapton) film glued onto a 

copper plate that is thermally anchored to the mixing plate. Long copper lines together with the 

shunt capacitance of the RC filter to the copper plate ensure good thermalization. The gate voltages 

were applied and gate currents measured with source-measure units (SourceMeter 2450, Keithley). 

The electric transport properties with respect to the gate voltages and magnetic field were 

measured with a standard lock-in technique (see Figure 3.9b). First, a self-made AC/DC mixer 

inductively modulated the AC reference signal of the lock-ins onto a DC bias (SMU GS610, 

Yokogawa). By using two different resistances for the AC and DC component, the voltages were 

converted to an arbitrary combination of AC and DC currents and applied to the drain contact. At 

Figure 3.9 Cryostat Wiring and Lock-in Measurements: (a) Wiring of the cryostat. From the 

breakout box, the wires (green) go through a 𝜋-filter and a RC filter before entering the 

cryostat (gray dotted area). Inside the cryostat, the wires are grouped in twisted pairs (red) 

and thermalized at every temperature stage (gray lines) with a bobbin (orange). At the mixing 

plate, the wires pass another RC filter before going to the sample. (b) Quasi four-point lock-in 

measurement connection scheme. Solid lines and dotted lines correspond to DC and AC 

components of the current respectively.  

Line Type 
𝜋-Filter RC Filter warm RC Filter cold 

C [nF] R [kΩ] C [nF] f [Hz] R [kΩ] C [nF] f [Hz] 

Gate 5.5 180 100 9 220 150 5 

Source Drain 1.5 - - - 2.32 0.47 145960 

 

Table 3.2 Filter Parameters: Filter parameters for gate wires and source/drain wires.  
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the source contact, the current was amplified by a current amplifier (Model 1211, DL Instruments) 

and measured using a lock-in (Lock-in SR830, Stanford Research Systems) and a multimeter 

(Multimeter 34461A, Keysight). At the same time, the voltage drop over the device was measured 

by an additional lock-in (Lock-in SR865, Stanford Research Systems) using a quasi-four-terminal 

measuring geometry. Together with the current measurement, this allowed for calculating the 

differential resistance or conductance of the device.  

3.4  Measurement Software 

During the course of this thesis, the SuperFunAnalyzer (SFA), a software to perform arbitrary 

electrical measurements was developed. By use of a self-designed graphical user interface (GUI), 

the user can manage various measurement devices, set up sweeps of, for example, the gate voltage 

or the magnetic field, and define variable transformations such as 𝑉𝑇, 𝑉𝐵  → 𝐷, 𝑛 (cf. section 2.4.2). 

During measurements, the obtained data points are processed as well as displayed and plotted in 

real time. In the following, the structure of the software and its components are discussed in brief. 

An organigram of the structure of the SFA in shown in Figure 3.10. First, the software runs in two 

threads namely the sweep thread and the GUI thread. This separation was chosen in order to 

minimize timing errors during a measurement due to GUI calculations. Furthermore, it prevents the 

GUI from freezing during lengthy measurements. In principle, the SFA is divided into several 

separate core modules: The sweep controller, the instrument controller, the operator controller and 

the error controller are responsible for performing sweeps and device communication. The file 

manager, the plot manager and the display manager process the measured data in real time and 

Figure 3.10 SuperFunAnalyzer Overview  
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display as well as store the data points. Each of these core modules has a corresponding GUI widget 

associated with it that allows the user to control the behavior of the modules. For example, the 

instrument widget provide controls for the user to add instruments and modify their settings. In the 

following, the core modules and their function are explained in more detail. The sweep controller 

lives in the sweep thread and is the central module that manages the entire measurement. It takes 

the sweep variables (e.g. the drain voltage or the gate voltage) as user input and computes a list 

with all steps of the sweep. Going through the steps of the sweep, it employs the instrument 

controller to set device source values and read the measurement data. Furthermore, it uses the 

operator controller to perform variable transformations. Lastly, it hands the status and error 

messages acquired by the instrument controller to the error manager to check for errors. The live 

data is handed directly to the plot manager, the file manager and the display manager. The 

instrument controller lives in the sweep thread and is responsible for the entire instrument 

communication. For every instrument, a device specific driver file translates the abstract commands 

used in the SFA (such as “measure()”) to the instrument specific command (such as “SNAP? 2,3”). 

During the sweep, the instrument controller sends commands and receives status messages and 

measurement data from the measurement devices. The operator controller manages all user-

defined variables. For example, the user may want to sweep the electric field 𝐷 and the charge 

carrier density 𝑛 instead of the top gate voltage 𝑉𝑇 and bottom gate voltage 𝑉𝐵 (see section 2.4.2). 

Alternatively, for example, if one is interested in not only plotting the drain current 𝐼𝐷, but also the 

resistance 𝑅 = 𝑉𝐷/𝐼𝐷, the variable 𝑅 can be added as a new measurement variable. During the 

sweep, the operator controller transforms 𝐷 and 𝑛 back to 𝑉𝑇 and 𝑉𝐵 and calculates 𝑅 for each data 

point. The error controller handles the status messages received from the devices, aborts the 

measurement if the device report critical errors, and displays an error message for the user. The 

remaining modules are rather self-explanatory: The plot manager plots data points and saves these 

plots, the display manager shows the current value of user selected variables, and the file manager 

writes data points to a .txt file. All of these three modules receive process and display data points in 

real time.  
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4 Spontaneous Gully Polarization in ABA 

Trilayer Graphene 

Bernal-stacked multilayer graphene is a versatile platform to explore quantum transport phenomena 

and interaction physics due to its exceptional tunability via electrostatic gating. In particular, its band 

structure can be readily tuned to exhibit several off-center Dirac points (so-called Dirac gullies) in 

each valley by applying a perpendicular electric field. In this study, the formation of Dirac gullies and 

the interaction-induced breakdown of gully coherence is explored via magnetotransport 

measurements on high-quality Bernal-stacked (ABA) trilayer graphene encapsulated in hBN and 

equipped with both graphite gates and contacts. In the absence of a magnetic field, multiple Lifshitz 

transitions as function of electric field and charge carrier density indicating the formation of Dirac 

gullies are identified. In the quantum Hall regime and high electric fields, the emergence of Dirac 

gullies is evident as an increase in Landau level degeneracy. When tuning both electric and magnetic 

fields, electron-electron interactions can be controllably enhanced until the gully degeneracy is 

eventually lifted. The arising correlated ground state is consistent with a previously predicted 

nematic phase that spontaneously breaks the rotational gully symmetry.  

The results presented in this chapter are currently being prepared for publication. The theoretical 

framework and the simulations presented within this chapter were provided by A. Ghazaryan and 

M. Serbyn (Institute of Science and Technology Austria, Austria). The graphene heterostructure was 

assembled and contacts were fabricated by A. M. Seiler, the scattering scanning near-field optical 

microscopy measurememts were provided by F. R. Geisenhof. All characterization and transport 

measurements as well as data analysis was done as part of this thesis.  

4.1 Introduction 

Since the advent of two-dimensional materials, graphene has attracted widespread attention due 

to its unusual electronic spectrum hosting massless Dirac fermions 

1,58. When increasing the number 

of graphene layers, stacking order as an additional degree-of-freedom allows for realizing 

superpositions of massive and massless Dirac fermions as well as chiral quasi-particles with cubic or 

higher power dispersions12,14. Additionally, the band structure of multilayer graphene can be tuned 

in-situ by applying electric fields29,30. This renders it possible to both access topology transformations 
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of the Fermi surface (Lifshitz transitions81) and to explore interaction physics solely via electrostatic 

gating98. However, excellent sample quality is necessary for observing these fragile electronic 

phenomena since charge disorder is expected to obscure their electronic signatures. In this study, 

magnetotransport measurements on high-quality Bernal-stacked trilayer graphene (b-TLG) 

encapsulated in hexagonal boron nitride with dual graphite gates and graphite contacts are 

reported. In the absence of an electric field, the band structure of b-TLG decomposes into a 

monolayer-like and a bilayer-like band16. An external perpendicular electric field introduces a 

potential difference Δ1 between bottom and top layer. As a result, the two bands hybridize, driving 

the monolayer band to high energy and significantly deforming the low-energy bilayer band20,29,30. 

The interplay between trigonal warping arising from the skewed interlayer hopping term 𝛾3 and the 

electric field leads to the emergence of two additional sets of three off-center Dirac points related 

via 𝐶3 symmetry, often referred to as Dirac gullies20,29. It has been predicted, that upon tuning 

electric and magnetic fields, electron-electron interactions within the Dirac gullies can be 

significantly enhanced and a new nematic ground state emerges, that spontaneously breaks the 

rotational gully symmetry20. This correlated state is highly reminiscent of nematic states observed 

in Bi142 and predicted in SnTe143 crystal surfaces, yet with additional tunability. Recently, quantum 

capacitance measurements on b-TLG devices have indicated the presence of a correlated ground 

state at high electric fields101. However, transport measurements exploring these correlated states 

are still lacking and it remains unclear, whether interactions merely produce short range ordering 

or percolating phases142. Likewise, Lifshitz transitions are promising candidates for hosting 

correlated states and have, for instance, been associated with superconductivity144,145. In b-TLG, 

several Lifshitz transitions driven by the formation of Dirac gullies are within experimental reach, 

but have not been investigated in transport so far. 

4.2 Fabrication and Methods 

The sample presented within this chapter has been prepared and identified as described in chapter 

3. In brief, trilayer graphene flakes are exfoliated and identified by optical microscopy, Raman 

spectroscopy and atomic force microscopy (AFM). Additionally, scattering scanning near-field 

optical microscopy (s-SNOM) is used to ensure homogeneity of the samples and the absence of any 

domain walls. After identification, a region without domain walls was cut out using electrode-free 

scanning probe lithography115. Hexagonal boron nitride (hBN) and graphite flakes are obtained in 

the same way and their quality is ensured using optical microscopy and AFM. In order to access 

charge transport at high electric fields, a trilayer graphene flake is encapsulated in hBN with both 

graphite bottom and top gates using a dry transfer technique116,117. Low-ohmic electrical contact to 

the flake is established with two additional single-crystal graphite flakes in order to enable the use 

of a high-quality graphite top gate. In order to improve device homogeneity, the encapsulated 



4.2 Fabrication and Methods  

53 

sample was annealed in a vacuum chamber at 1 × 10-8 mbar at 200 °C for 12 h and unwanted 

contaminated areas (“bubbles”) were etched away using reactive ion etching. A microscope image 

of the final stack is shown in Figure 4.1a. All measurements are done at cryogenic temperatures of 

< 10 mK in a dilution refrigerator using standard lock-in measurement technique at an AC frequency 

Figure 4.1 Device Geometry and Electronic Properties of Trilayer Graphene: (a) Microscope 

image of the sample geometry. The investigated stack consists of the following layers (from 

bottom to top): bottom graphite gate (black), bottom hBN (blue), trilayer graphene (red), 

graphite contacts (green), top hBN (orange), top graphite gate (gray) and finally the 

termination hBN (yellow). The red shaded area has been etched out prior to the 

measurements. (b) Differential resistance as a function of charge carrier density and electric 

field in logarithmic color scale. The drift in graphite contact resistance with electric field has 

been corrected to enhance contrast. The parabola-shaped discontinuity is indicated by the 

arrow. (c) Simulation of the DOS as a function of charge carrier density and potential 

difference 𝛥1. At parabolic contours, the Fermi surface topology changes (Lifshitz transition) 

leading to regions with an exceptionally high DOS. The scale of 𝛥1 matches the scale of the 

electric field in (b). (d) Simulated three-dimensional band structure of b-TLG at 𝛥1 = 50 meV 

demonstrating the emergence of Dirac gullies. (e-g) Evolution of the band structure of b-TLG 

for potential differences 30 meV (e), 60 meV (f) and 90 meV (g). Increasing 𝛥1 drives the 

monolayer bands (green and yellow) to higher fields and leads to an increase in inter-gully 

distance 𝛥𝑘. 
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of 78 Hz and currents of ≤ 20 nA. The stacking order is verified by comparing the Landau level 

crossings in the quantum Hall regime to theory. In fact, the stacking order was found to have 

transformed from ABC to ABA during the transfer process. By adjusting the bottom gate voltage 𝑉B 

and the top gate voltage 𝑉T of the graphite gates, both the charge carrier density 

𝑛 = 𝐶B(αVT + VB)/𝑒 and the electric field 𝐷 = 𝐶B(αVT − VB)/2𝜀0 can be tuned independently (cf. 

section 2.4.2)17. Here, 𝐶B is the capacitance per unit area of the bottom gate, 𝛼 the ratio of top and 

bottom gate capacitances 𝛼 = 𝐶T/𝐶B, 𝑒 the electron charge and 𝜀0 the permittivity of vacuum. The 

parameter 𝛼 was determined by sweeping the bottom gate at several top gate voltages and fitting 

a line along the conductance minima positions (see section 4.5 for more details). The contact 

resistance 𝑅C and the bottom gate capacitance were extracted from quantum Hall measurements 

(see section 4.5). 

4.3 Experimental Results 

Figure 4.1b shows the differential two-terminal resistance R of a b-TLG device as a function of charge 

carrier density 𝑛 and electric field 𝐷 in the absence of a magnetic field. At zero doping, the resistance 

increases with increasing electric field indicating the opening of a small band gap. This is consistent 

with tight-binding calculations predicting the emergence a small band gap of a few meV that 

saturates within the experimentally accessible electric field range20,146. Additionally, the resistance 

displays faint discontinuities along a parabola-like contours. This is reminiscent of recent quantum 

capacitance measurements on b-TLG101 and transport measurements on ABA tetralayer graphene 

samples100. In order to understand the transport features, tight-binding calculations based on the 

Slonczewski-Weiss-McClure63–65 model to simulate the band structure of b-TLG have been 

conducted. Figure 4.1c shows the calculated density of states (DOS) as function of charge carrier 

density and electric field. In addition, Figure 4.1d shows the band structure of b-TLG with the 

emergent Dirac gullies at a potential difference of Δ1 = 50 meV. When increasing the electric field 

and, thus, the potential difference Δ1, the Dirac gullies move further apart from each other in 

momentum space (see Figure 4.1e-g). In fact, simulations show that the inter-gully distance Δ𝑘 

depends approximately linearly on the electric field Δ𝑘 ~ 𝐷20. At low doping and high electric fields, 

the Fermi surface is composed of three disconnected pockets, whereas at high doping the Fermi 

surface consists of one single connected surface. In-between, when tuning the charge carrier 

density, the Fermi surface underdoes multiple discontinuous changes of its topology, so-called 

Lifshitz transitions81. These Lifshitz transition are accompanied by a logarithmically diverging DOS 

leading to anomalies in the conductance20,100. Comparing the conductance map to the predicted 

DOS yields fair qualitative agreement. Yet, the transport features are much fainter than expected 

and are suggestive of a much weaker increase in DOS than predicted. In particular, no signatures of 

correlated states as a consequence of a diverging DOS have been observed in agreement with 
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previous measurements101. 

Beside the signatures of Lifshitz transitions at zero magnetic field, the emergence of Dirac gullies 

also manifests as an increase in Landau level (LL) degeneracy in the quantum Hall regime. In the 

absence of an electric field, LLs are spin degenerate and almost valley degenerate except for the 

zero energy LLs where valley degeneracy is broken16,71,99. In the gully regime at high electric fields, 

the LLs condense into two spin-degenerate triplets for electrons and holes each. These quasi-

degenerate triplets are associated with one particular set of 𝐶3-related gullies. The triplet wave 

functions inherit the 𝐶3 symmetry and consist of a coherent superposition of contributions from all 

Figure 4.2 Landau Levels in Electric Fields: (a,b) Simulated DOS (left) and measured derivative 

of the conductance with respect to the charge carrier density (right) of trilayer graphene as a 

function of potential difference 𝛥1 and electric field 𝐷 at 𝐵 = 0.7 T (a) and 𝐵 = 1.25 T (b). Dark 

regions correspond to vanishing DOS or derivative of the conductance (i.e. a conductance 

plateau) respectively. The region of full triplet state splitting is highlighted in green. (c,f) Line 

cuts along electric fields of 𝐷 = 0 V/nm (blue) and 𝐷 = 0.8 V/nm (red) at 𝐵 = 0.7 T (c) and 

𝐵 = 1.25 T (f). (d,e) Theoretical evolution of spin-degenerate LLs stemming from the 𝐾 (red) 

and 𝐾′ (blue) valley as a function of the potential difference 𝛥1 at 𝐵 = 0.7 T (d) and 𝐵 = 1.25 T 

(e). The triplet states are denoted by 𝑇𝜈 according to their associated filling factors 𝜈 and are 

also highlighted in (a,b). The charge neutrality point is located between the 𝑇6 and 𝑇−6 triplets. 
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three gullies20. Figure 4.2a,b shows measurements of the derivative of the conductance d𝐺/d𝑛 as a 

function of charge carrier density 𝑛 and electric field 𝐷 for two different magnetic fields of 0.7 T and 

1.25 T respectively. Figure 4.2c,f shows high-resolution line cuts at two different electric fields. In 

order to provide further insights into the magnetotransport measurements, the evolution of LLs 

with respect to the potential difference Δ1 and the magnetic field 𝐵 has been simulated in a single-

particle framework. The resulting DOS after artificial broadening of the LLs is shown together with 

the measurement data in Figure 4.2a,b. The evolution of spin-degenerate LLs with respect to Δ1 and 

𝐵 are shown in Figure 4.2d,e. The latter nicely illustrates the formation of quasi-degenerate triplets 

from three intertwining LLs with increasing potential difference Δ1. For later reference, the LL 

triplets are denoted by 𝑇𝜈 according to their associated filling factors of 𝜈 = ±6 and 𝜈 = ±12 as a 

Figure 4.3 Landau Levels in Magnetic Fields: (a,b) Derivative of the conductance with respect 

to the filling factor at 𝐷 = 0 mV nm-1 (a) and 𝐷 = 0.8 V nm-1 (b). The region of full triplet state 

splitting is highlighted in green. (c,d) Simulated evolution of spin-degenerate LLs at potential 

differences of 𝛥1 = 0 meV (c) and 𝛥1 = 58 meV (d) stemming from the 𝐾 (red) and 𝐾′ (blue) 

valley as a function of the magnetic field. The values for 𝛥1 in (c) and (d) correspond to the 

electric fields in (a) and (b) respectively. The triplet states are denoted by 𝑇𝜈 according to their 

associated filling factor 𝜈. The charge neutrality point (CNP) is located between the 𝑇6 and 𝑇−6 

triplets. 
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consequence of their combined spin and gully degeneracies. In the absence of an electric field, the 

most prominent conductance plateaus (minima of d𝐺/d𝑛) appear at filling factors 𝜈 = 2, (4), ±6, ±10 

in agreement with theory. When increasing the electric field, a complex landscape of LL crossings 

emerges. Comparing the position of the LL crossings observed experimentally to the single-particle 

simulation in Figure 4.2a,b shows excellent agreement and unambiguously verifies the stacking 

order of the b-TLG. Additional measurements at higher charge carrier densities underline this close 

correspondence further and are presented in the appendix in Figure 4.5. In addition, by matching 

the positions of prominent LL crossings, Δ1 can be related to 𝐷 via an empiric conversion factor 

𝛾 = 0.073 𝑒/nm assuming a linear relationship Δ1 = 𝛾𝐷. At high electric fields, the condensation into 

LL triplets becomes apparent from the formation of prominent plateaus at 𝜈 = -3, ±6, 9, ±12 (see 

Figure 4.2c,f). This is consistent with the threefold gully degeneracy of the LL triplets, yet with broken 

spin degeneracy. Furthermore, the electric field onset of the triplet plateaus correlates positively 

with the magnetic field. For instance, the onset of the prominent 𝜈 = -3 plateau is at 

𝐷 ≈ 170 mV nm-1 for 𝐵 = 0.7 T compared to 𝐷 ≈ 260 mV nm-1 for 𝐵 = 1.25 T. This observation aligns 

well with the single-particle simulations that predict a significant energy splitting increase of the 

triplet states for larger magnetic fields and can be understood as follows. At low magnetic fields and 

high electric fields, inter-gully tunneling is weak and the triplet states are quasi-degenerate20. Upon 

increasing the magnetic field, inter-gully tunneling becomes more and more dominant and the 

triplet state energy splitting increases until the triplets entirely lose their gully character20. This 

magnetic breakdown occurs when the magnetic length 𝑙𝐵 = √ℏ/(𝑒𝐵) with 𝑒 being elementary 

charge becomes comparable to the distance Δ𝑘 between Dirac gullies in 𝑘-space (𝑙𝐵Δ𝑘 ≈ 1)20. Since 

Δ𝑘 ~ 𝐷 as discussed earlier and shown in Figure 4.1e-g, both high electric fields and low magnetic 

fields stabilize gully triplets20. Thus, the critical electric field 𝐷𝐶  below which gully physics breaks 

down and the triplet state energy splitting becomes significant depends on the square root of the 

magnetic field 𝐷𝐶  = √𝐵20. This relation indeed agrees well with the measurement data. In order to 

investigate the formation of triplet states further, measurements of the differential conductance 

𝑑𝐺/𝑑𝜈 as a function of the filling factor 𝜈 and the magnetic field together with the simulated 

evolution of LLs as a function of magnetic field are shown in Figure 4.3. Further measurements at 

an intermediate field of 𝐷 = 0.4 mV nm-1 are shown in the appendix in Figure 4.6. In agreement with 

the observations made before, plateaus associated with gully triplets stabilize at low magnetic fields 

and high electric fields. 

While the aforementioned features of the magnetotransport measurement are consistent with the 

single-particle simulations, many observations cannot be explained in a non-interacting framework. 

For instance, in the absence of electric fields, all integer filling factors between -10 ≤ 𝜈 ≤ -2 are 

already well-resolved at 𝐵 = 1.25 T, some integer filling factors even well below 𝐵 = 0.7 T. This 

electron-electron interaction induced spin and valley degeneracy breaking underlines the excellent 
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quality of the investigated flake and hints towards a dominant influence of electron-electron 

interactions within the system97,98. Furthermore, in the gully regime at high electric and low 

magnetic fields, multiple integer plateaus at filling factors -12 ≤ 𝜈 ≤ -12 are well resolved. This is 

especially apparent for the 𝑇6 and 𝑇12 triplet: Below a critical electric field and above a critical 

magnetic field, several LL crossings stemming from the intertwining triplet states are visible. When 

going across the critical field, LL crossings are completely absent and all integer LLs are readily 

observable (highlighted by the green box in Figure 4.2a,b and Figure 4.3a,b). This indicates that both 

spin and gully degeneracy are broken. In contrast, the gully degeneracy of the 𝑇−6 triplet seems to 

be much more persistent and only spin degeneracy appears to be broken. However, at maximum 

electric field and 𝐵 = 0.7 T, first indication of developing integer plateaus of the 𝑇−6 triplet are 

evident. Together, these observations strongly hint towards an interaction-induced symmetry-

breaking of triplet states. Indeed, in a simplistic picture, increasing the electric field quenches the 

energy splitting of the individual LLs that comprise the triplet states. Thus, the Coulomb interaction 

energy 𝐸𝐶 = 𝑒2/(𝜀hBN𝑙𝐵), although being screened by the hBN (𝜀hBN ≈ 6.9147), eventually becomes 

dominant compared to the kinetic energy and interaction physics is expected to prevail101. First 

indication of a broken triplet degeneracy has also been seen in previous capacitance 

measurements101, yet neither its transport properties nor the ordering length scale could not be 

accessed so far. In order to understand this breakdown of the single-particle picture in more detail, 

a variational Hartree-Fock analysis to model interaction effects and to reveal the ordering of the 

ground state of the system has been employed20. In the Hartree-Fock analysis, only the lowest 

energy state (i.e. 1/3 filling of a triplet ignoring spin) was considered. For small electric fields within 

the gully regime, the Hartree-Fock ground state essentially coincides with the single-particle ground 

state. The wave function is completely gully coherent and obeys 𝐶3 symmetry. At high electric fields, 

however, the Hartree-Fock analysis yields that 𝐶3 symmetry is spontaneously broken and the ground 

state is a nematic gully polarized state20. The transition between these two regimes is of first order 

and takes place at a critical electric field 𝐷C
HF. This agrees very well with the measurement results 

that displays a sudden change in LL degeneracy that is associated with a critical field (green line in 

Figure 4.2a,b and Figure 4.3a,b). Furthermore, the measurements also show a higher critical field 

for the 𝑇12 triplet compared the low energy 𝑇6 triplet in agreement with the Hartree-Fock 

simulations20. However, the absence of broken-symmetry states in the 𝑇−6 triplet is unexpected, but 

could also be related to the overall inferior device performance on the hole side of the spectrum. 

Although these measurements strongly indicate the presence of a nematic phase, further 

measurements transport anisotropies are needed to verify the symmetry of the correlated ground 

state.  
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4.4 Conclusion 

To sum up, b-TLG has been encapsulated in hBN and equipped with both dual graphite gates and 

contacts. Upon applying electric fields, the band structure of b-TLG transforms and multiple off-

center Dirac gullies emerge at each valley. By electrostatically tuning both the electric field and the 

Fermi energy, the Lifshitz transitions necessitated by the formation of Dirac gullies is observed in 

transport. Although being predicted to have a diverging density of states, no signature of correlated 

states are found. In the quantum Hall regime, the Dirac gullies give rise to the formation of triplet 

states that modify the sequence of LLs. By tuning electron-electron interactions via electric and 

magnetic fields, transport measurements demonstrate the emergence of new interaction-driven 

percolating ground state that breaks the triplet state degeneracy. This correlated state is consistent 

with Hartree-Fock simulations that predict a gully polarized nematic ground state at high electric 

fields that spontaneously breaks rotational symmetry.  

4.5 Appendix and Supporting Information 

In this section, further measurement and calibration data not shown within the discussion in section 

4.3 is presented. The additional data supports the presented results and is shown for completeness 

Figure 4.4 Calibration of Charge Carrier Density and Electric Field: (a) Resistance as a function 

of the bottom gate and the top gate voltage. On every column of the plot, the resistance peak 

position is extracted by performing a Gaussian fit. Connecting all peak positions and fitting a 

line yield the charge neutrality line (dotted black). (b,c) Resistance as a function of bottom 

gate voltage (b) and top gate voltage (c) measured along the charge neutrality line. By fitting 

a Gaussian to the resistance minimum of the line profile with respect to the bottom gate and 

top gate voltage, the offset voltages 𝑉𝐵,0 and 𝑉𝑇,0 can be extracted. These offset voltages are 

also indicated in (a).  
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and reference. 

Calibration of Dual-Gate Transport 

In order to transform the top gate voltage 𝑉T and the bottom gate voltages 𝑉B to electric field 𝐷 and 

charge carrier density 𝑛 (see section 4.2 and section 2.4.2), the resistance as a function of the 

bottom gate voltage is recorded for several different top gate voltages as shown in Figure 4.4a. At 

every line, the center of the resistance peak is determined via a Gaussian fit. Collecting all peak 

positions and performing a linear fit directly gives a value for 𝛼. This line is essentially the charge 

neutrality line, and moving along this line translates to changing the electric field only. Since the 

resistance has a minimum for vanishing electric field, the offsets 𝑉𝐵,0 and 𝑉𝑇,0 (cf. section 2.4.2) are 

determined by measuring the resistance with respect to bottom gate voltage and top gate voltage 

close to the lowest resistance peak. By fitting another Gaussian to the resistance values along the 

Figure 4.5 Magnetotransport at High Charge Carrier Densities: (a,b) Derivative of the 

conductance with respect to the charge carrier density as a function of electric field and charge 

carrier density at a magnetic field of 𝐵 = 0.7 T (a) and 𝐵 = 1.25 T (b). Conductance plateaus 

are indicated by a vanishing conductance derivative. (c,d) Simulated DOS as a function of 

charge carrier density and interlayer potential difference at 𝐵 = 0.7 T (c) and 𝐵 = 1.25 T (d). 

The scaling of 𝛥1 in (c,d) corresponds to the scaling of 𝐷 in (a,b). 
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charge neutrality line, the offsets 𝑉𝐵,0 and 𝑉𝑇,0 can be determined (see Figure 4.4b,c). The contact 

resistance and the gate capacitance of the bottom gate 𝐶𝐵  are determined using the quantum Hall 

effect. A rough estimated of 𝐶𝐵  is already given by geometrical considerations. Matching the 

position of conductance plateau to the theoretically expected values of 𝑛 = 𝜈𝑒𝐵/ℎ yields the 

effective 𝐶𝐵 . The contact resistance 𝑅𝐶  can then be determined by matching the conductance 𝐺 of 

the plateaus to the expected values of 𝐺 = 𝜈𝑒2/ℎ. 

Magnetotransport at High Charge Carrier Densities 

Figure 4.5 shows the derivative of the conductance with respect to charge carrier density and 

electric field for different magnetic fields together with the corresponding single-particle 

simulations. In the high-density regime, a characteristic sequence of Landau level crossings along 

parabola-like contours is apparent. From the low charge carrier density measurements (see Figure 

4.2a,b), the interlayer potential difference Δ1 could be related empirically to the electric field via 

Δ1 = 𝛼𝐷 with α = 0.073 e nm-1 assuming a linear relationship (see section 4.3). Using this relation, 

the experimental data show excellent agreement with single particle simulations further underlining 

the findings presented in the main text.  

Magnetotransport at Intermediate Electric Field 

For completeness, the magnetotransport data at intermediate electric field of D = 0.4 mV nm-1 

together with the corresponding simulated evolution of Landau levels are shown in Figure 4.6. In 

contrast to the high-field measurements presented in Figure 4.3b, no clear indication of broken-

Figure 4.6 Magnetotransport at Intermediate Electric Fields: (a) Derivative of the 

conductance with respect to filling factor and the magnetic field at an electric field of 

𝐷 = 400 mV nm-1. Conductance plateaus are indicated by a vanishing conductance derivative. 

(b) Simulated evolution of spin-degenerate LLs at potential differences of 𝛥1 = 29 meV 

stemming from the 𝐾 (red) and 𝐾′ (blue) valley as a function of the magnetic field. The value 

for 𝛥1 corresponds to the electric fields in (a). 
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symmetry states is visible even at low magnetic fields. 
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5 Competition of Broken-Symmetry 

States in ABC Trilayer Graphene 

Quasi-particles in graphene and its multilayer cousins have been shown to exhibit an unconventional 

quantum Hall effect due to their non-trivial Berry phase. Even in the absence of an external magnetic 

field, it has been predicted that interaction-induced symmetry breaking can give rise to several 

spontaneous quantum Hall states that exhibit non-zero spin, valley or charge Hall conductivities. Due 

to its diverging density of states at charge neutrality and its large Berry phase, rhombohedral trilayer 

graphene is especially susceptible to interaction-driven spontaneous symmetry breaking and, thus, 

a promising platform to explore the world of correlated states in two dimensions. In this chapter, 

light is shed onto the rich phase diagram of spontaneous broken-symmetry quantum Hall states by 

tracking their transport signature in suspended dual-gated rhombohedral trilayer graphene devices 

as a function of electric and magnetic fields. In particular, the presence of quantum Hall states with 

non-zero conductance is observed down to exceptionally low magnetic fields and their intrinsic 

orbital magnetic moment is confirmed via hysteresis measurements.  

The results presented in this chapter are currently being prepared for publication. The scattering 

scanning near-field optical microscopy images have been made by F. R. Geisenhof. Furthermore, 

F. Zhang (University of Texas at Dallas, USA) provided the theoretical framework presented within 

this chapter. The experimental work as well as the data analysis was done as part of this thesis. 

5.1 Introduction 

Since the first isolation of bilayer graphene (BLG), continuing advances in device quality have 

facilitated the observation of a whole variety of fascinating correlated broken-symmetry 

states17,27,28,104,106,148,149. Its natural extension, rhombohedral multilayer graphene, is predicted to be 

even more susceptible to interaction-induced chiral symmetry breaking due to its flat low-energy 

bands15,62,72,76,77 and giant Berry curvature15,18,19. Thus, together with the possibility to readily tune 

its properties with electric and magnetic fields15, rhombohedral multilayer graphene is a viable 

platform to explore electron-electron interactions and exotic correlated ground states. So far, five 

competing spontaneous quantum Hall states as a consequence of the non-trivial Berry curvature 

have been proposed18,19,150. Among these, the quantum anomalous Hall (QAH) state and the “All” 
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state are particularly interesting as they are predicted to exhibit an intrinsic orbital magnetic 

moment and a non-zero charge Hall conductivity even in the absence of a magnetic field18,19,150. 

However, experimental studies of correlated states in rhombohedral graphene are sparse due to 

the necessity of excellent sample quality and homogeneity of the highly fragile rhombohedral 

stacking order31,114. Although recent studies provide strong evidence of the insulating layer 

antiferromagnetic (LAF) and quantum valley Hall (QVH) states in rhombohedral multilayer 

graphene26,72,103,105, the presence of the remaining proposed spontaneous quantum Hall states still 

remains elusive. In this study, quantum transport in suspended dual-gated rhombohedral trilayer 

graphene (r-TLG) is investigated. The transport signatures of four of the five proposed spontaneous 

quantum Hall states are identified and light is shed onto the rich phase diagram at low electric and 

magnetic fields. Specifically, the presence of both the QAH and the “All” state are probed by tracking 

down their signatures to exceptionally low magnetic fields of less than 50 mT and revealing their 

intrinsic orbital magnetism. 

5.2 Fabrication and Methods 

The samples presented within this chapter have been prepared and identified as described in 

chapter 3. In brief, r-TLG flakes are exfoliated onto a Si wafer with a 300 nm SiO2 layer and identified 

by optical microscopy, Raman spectroscopy and atomic force microscopy (AFM). Additionally, 

scattering scanning near-field optical microscopy (s-SNOM) is employed to ensure stacking order 

homogeneity down to nanometer scale and confirm the absence of any domain walls. Suspended 

dual-gated structures have been fabricated as follows: First, regions with homogenous stacking 

order were cut out using standard electron-beam lithography together with reactive-ion etching. 

Electrical contacts (5/100 nm Cr/Au), a spacer for the top gate (140 nm SiO2) and the top gate 

(5/160 nm Cr/Au) were fabricated consecutively using electron-beam lithography. To decrease the 

contact resistance, contacts have been treated in a UV/Ozone environment for 1 min prior to metal 

evaporation. Subsequently, samples were submersed in buffered hydrofluoric acid to remove the 

SiO2 spacer and 150 nm of the SiO2 of the substrate. The devices were transferred to ethanol and 

dried in a critical point dryer to prevent collapse of the graphene devices. All measurements are 

performed in a dilution refrigerator system at temperatures below 10 mK (unless specified 

otherwise) using a standard lock-in measurement technique at an AC frequency of 78 Hz and 

currents of < 5 nA. Prior to any measurements, the devices were cleaned in-situ via current 

annealing. By adjusting the voltages 𝑉B and 𝑉T of the silicon back gate and the gold top gate 

respectively, both the charge carrier density 𝑛 = 𝐶B(αVT + VB)/𝑒 and the electric field 𝐷 = 𝐶B(αVT −

VB)/2𝜀0 could be tuned independently17. Here, 𝐶B is the capacitance per unit area of the bottom 

gate, 𝛼 the ratio of top and bottom gate capacitances 𝛼 = 𝐶T/𝐶B, 𝑒 the electron charge and 𝜀0 the 

permittivity of vacuum. The calibration procedure is outlined in more detail in the appendix in 
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section 5.5. The contact resistance 𝑅C and the bottom gate capacitance were extracted from the 

quantum Hall plateaus at 𝐵 = 3 T. 

5.3 Experimental Results 

In r-TLG, interlayer hopping dimerizes neighboring bulk sublattices sites driving them away from the 

Fermi energy and leaving only two sublattice sites on the outermost layers at low energies15,64,72,73. 

Thus, quasi-particles in r-TLG can be described by two-component spinors associated with the two 

low-energy sublattice sites (often referred to as pseudo-spin) leading to an effective two-band 

Hamiltonian14,18,62 

 𝐻 =
 (𝑣F𝑝)3

𝛾1
2 [cos(3𝜉𝜙) 𝜎𝑥 + sin(3𝜉𝜙) 𝜎𝑦]. (5.1) 

Here, 𝑣F is the Fermi velocity in graphene, 𝛾1 is the nearest-neighbor interlayer hopping energy, 𝑝 

is the momentum with 𝜙 = tan−1 𝑝𝑦/𝑝𝑥, 𝜉 = ±1 labels the 𝐾 and 𝐾′ valleys and 𝜎𝑖 are the Pauli 

matrices acting on the pseudo-spin. Quasi-particles governed by this Hamiltonian have a pseudo-

spin chirality of 𝐽 = 3 and acquire a Berry phase of ±3𝜋 when encircling the 𝐾 or 𝐾′ valley 

respectively15,18,75. This chiral symmetry is very robust with respect to higher order hopping terms, 

but can be broken explicitly by applying a perpendicular electric field or spontaneously by electron-

electron interactions18. Indeed, due to the diverging density of states at charge neutrality, both 

perturbative renormalization group analysis18,19,78 and previous experiments26–28 suggest that 

rhombohedral graphene is very susceptible towards spontaneous chiral symmetry breaking. As a 

result, a gap opens in the electronic spectrum giving rise to a giant Berry curvature at the valley 

 𝐾 ↑ 𝐾 ↓ 𝐾′ ↑ 𝐾′ ↓ 
Orbital 

Moment 

Charge 

Hall Conductivity 

Net Layer 

Polarization 

Zeemann 

QVH T T T T No 0 Full  

QAH T T B B Yes 6 e2/h No  

LAF T B T B No 0 No  

QSH T B B T No 0 No  

ALL T T T B Yes 3 e2/h Partial  

 

Table 5.1 Spontaneous Quantum Hall States in r-TLG: Spin-valley layer polarization (T for top 

layer and B for bottom layer) together with further properties of the five proposed quantum 

Hall states, namely the quantum valley Hall (QVH) state, quantum anomalous Hall (QAH) 

states, layer-antiferromagnetic (LAF) state, quantum spin Hall (QSH) state and the “All” state 

that combines charge, valley and spin Hall effects. Adapted from Ref 18. 
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centers18,19. Theoretically, this can be modelled by introducing an additional mass term in the 

Hamiltonian 𝐻int  = 𝐻 + 𝑚𝜎𝑧
18,19,151. Depending on its sign with respect to the spin-valley flavor, a 

family of five competing broken-symmetry states as summarized in Table 5.1 have been predicted: 

Figure 5.1 Microscopy and Magnetotransport: (a-c) Differential conductance as a function of 

top gate voltage and bottom gate voltage at magnetic fields 𝐵 = 0 T (a), 𝐵 = 3 T (b) and 𝐵 = 8 T 

(c). In (a), line cuts show the conductance at vanishing electric field (blue) and vanishing charge 

carrier density (red). In (b), line cuts show the conductance at constant electric fields of 

𝐷 = -20 mV nm-1 (green), 𝐷 = 0 mV nm-1 (blue) and 𝐷 = 20 mV nm-1 (red). In (c), the line cut 

shows the conductance at vanishing electric field. Landau levels (filling factors) are indicated 

by numerals. (d,e) Optical microscopy image (d) of a suspended dual-gated r-TLG sample 

(black contour) together with the corresponding s-SNOM image (e). The vertical line in the 

ABC region is a measurement artifact. (f) Temperature dependence of the forward and 

backward sweep in electric field across the line feature visible in (c). The lines are offset by 

0.5 𝑒2/ℎ with respect to each other for clarity and the temperatures are (from blue to red) 

14 mK, 25 mK, 50 mK, 100 mK, 200 mK, 400mK and 1 K. (g) Differential conductance as a 

function of electric and magnetic fields at charge neutrality. The inset shows a zoom-in on zero 

magnetic and electric fields. The low conductance regions can be indentified with the LAF/CAF 

phase (I) and the QVH phase (II). 
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The quantum valley Hall (QVH) state, the quantum anomalous Hall state (QAH), the layer 

antiferromagnetic state (LAF), the quantum spin Hall state (QSH) and the “All” state18,19. They can 

be distinguished by their respective Hall conductivities and orbital magnetic moments, a 

consequence of the non-trivial Berry curvature, as well as their layer polarization. Although these 

competing states are expected to be close in energy, their relative energies can be tuned by electric 

and magnetic fields. For instance, states exhibiting a layer polarization are favored in electric fields, 

while magnetic fields favor states with non-zero orbital moment.  

First, Figure 5.1a-c shows the two-terminal differential conductance 𝐺 as a function of the bottom 

and top gate voltage at magnetic fields of 𝐵 = 0, 3, 8 T. Figure 5.1d,e shows an image of the device 

geometry and the corresponding scattering scanning near-field optical microscopy image that 

confirms the stacking order homogeneity of the sample (see also Figure 5.4 in the appendix). First, 

unexpected from single-particle simulation, the 12-fold degeneracy of the zeroth Landau level is 

already fully broken at 𝐵 = 3 T and all plateaus at integer filling factors -6 ≤ 𝜈 ≤ 6 are well-resolved. 

This underscores the excellent device quality and hints towards the strong influence of interactions 

within the system. Surprisingly, a discontinuity along the zero electric field line is visible faintly at 

𝐵 = 3 T and very prominently at 𝐵 = 8 T. The discontinuity is exceptionally sharp as revealed by 

additional high-resolution measurements close to zero electric field (see Figure 5.6 in the appendix). 

Since top and bottom layer are expected to exhibit different effective couplings to the electric 

contacts, this discontinuous jump in conductivity strongly hints towards the presence of layer-

polarization in the integer quantum Hall states that reverses at zero electric field. The sharp 

transition is also in stark contrast to measurements in BLG, where the layer inversion extends over 

a broad layer-balanced transition region17,27. On the one hand, this indicates that layer-polarized 

states in r-TLG are favored at substantially lower electric fields than in BLG. On the other hand, the 

sharp transition also suggests that only a single domain is present within the sample in agreement 

with the s-SNOM data. To investigate the transition in more detail, several measurements sweeping 

across the transition line at different temperatures and constant charge carrier density are shown 

in Figure 5.1e. Notably, the transition displays a pronounced hysteresis that vanishes at 

temperatures above 400 mK. The reason for this behavior, however, remains unclear and will be 

investigated in further studies. 

At zero magnetic field and high electric fields, in agreement with single-particle theory and previous 

experiments, the opening of a substantial band gap is apparent from the decrease in conductance 

(see line trace in Figure 5.1a). This also confirms the rhombohedral stacking order, as the opening 

of a band gap requires bulk states to be completely gaped out inconsistent with Bernal 

stacking14,68,72. However, unexpected from a single-particle picture, instead of monotonously 

increasing, the conductance drops again for small electric fields indicating the opening of a 

spontaneous gap. This is consistent with transport spectroscopy measurements on r-TLG that 

demonstrated to opening of a band gap at vanishing electric fields26. To examine this in more detail, 
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Figure 5.1g shows the conductance 𝐺 as a function of perpendicular electric and magnetic fields at 

charge neutrality. It is apparent that the spontaneous phase is suppressed by electric fields, but 

stabilizes in high magnetic fields. This observation agrees very well with previous 

measurements26,72,103,105 as well as theory18,19,152 and allows identifying the insulating phase at 

vanishing electric fields with the spin-polarized LAF (I) phase (or canted anti-ferromagnetic phase 

(CAF) when considering the tilting of quasi-particle spins in an external magnetic field18,26). With 

increasing electric field, the layer-balanced CAF phase becomes increasingly unfavorable and the 

system transitions into the fully layer-polarized QVH phase (II). The crossover line between the CAF 

and QVH phases is marked by an increase in conductance and becomes linear for high magnetic 

fields. This observation is in excellent agreement with theoretical predictions152–154 and previous 

measurements on BLG17,28,104. It is also worth noting, that the crossover line is very sharp, strongly 

Figure 5.2 Magnetotransport at Low Magnetic Fields: (a,b) Differential conductance as a 

function of charge carrier density and electric field at 𝐵 = 200 mT (a) and 𝐵 = 500 mT (b). (c) 

Fan diagram of the differential conductance at constant electric field 𝐷 = -38 mV nm-1. (d-f) 

Fan diagrams of the derivative of the conductance with respect to the charge carrier density 

at electric fields 𝐷 = 0 mV nm-1 (d), 𝐷 = -19 mV nm-1 (e) and 𝐷 = -38 mV nm-1 (f). The filling 

factors and their corresponding slopes are indicated in the top row. The roman numerals 

indicate the associated spontaneous quantum Hall states, namely the LAF/CAF state (I), the 

QVH state (II), the “All” state (III) and the QAH state (IV).  
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hinting towards the absence of an additional intermediate phase as proposed elsewhere155. 

Although there is strong evidence that the CAF phase extends down to zero magnetic field in 

BLG28,156,157, other experiments suggest the presence of a third phase at low magnetic and electric 

fields17,106. Indeed, at low fields (see inset of Figure 5.1g), faint indication of a local conductance 

minimum at lines of constant electric field can be observed in all devices. Thus, it is worth examining 

the remaining spontaneous phases in more detail to shed light onto the yet unknown ground state 

a vanishing fields and charge carrier density. 

Figure 5.2a,b shows the differential conductance as a function of charge carrier density and electric 

field at magnetic fields of 200 mT and 500 mT. Notably, distinct quantum Hall plateaus at 

𝜈 = 0, ±3, ±6 together with several fainter plateaus at integer levels at 𝜈 = -1, -2, -4, -5 are readily 

identifiable even at these weak magnetic fields. The insulating 𝜈 = 0 plateau can again be identified 

with the CAF phase (I) that crosses over to the QVH phase (II) at high electric fields. In agreement 

with the previous observations, the crossover field shifts towards higher electric fields with 

increasing magnetic field. The observation of prominent plateaus at 𝜈 = ±6 and especially 𝜈 = ±3 at 

these low magnetic fields, however, is surprising. Remarkably, while the 𝜈 = ±6 state seems to be 

insensitive to the electric field, the 𝜈 = ±3 state stabilizes at finite electric fields only. To explore the 

behavior of these states with respect to the magnetic field more closely, fan diagrams down to zero 

magnetic have been recorded at various electric fields. Figure 5.2c shows the conductance as a 

function of charge carrier density and magnetic field (fan diagram) for a non-zero electric field. To 

enhance the visibility of the plateaus and the examine the electric field dependence, Figure 5.2d-f 

show fan diagrams of the derivative of the conductance with respect to the charge carrier density. 

Fan diagrams of an additional device are shown in the appendix in Figure 5.7. At vanishing electric 

field, the 𝜈 = ±3 states are absent and the 𝜈 = ±6 persists down to fields of approximately 100 mT. 

When increasing the electric field, the plateau at 𝜈 = ±3 becomes more and more distinct and 

reaches down to exceptionally low fields of less than 50 mT. It is also worth noting that in the vicinity 

of these states, several distinct lines with the same slope are visible. These conductance fluctuations 

originate from localized states and are indicative of the presence of an energy gap106,158. Overall, this 

is very suggestive of the presence of gapped broken-symmetry states with non-zero Hall 

conductivity. Comparing to theory, the observations align very well with the QAH (IV) and the “All” 

state (III) that are predicted to exhibit a charge Hall conductivity of 6 e2/h and 3 e2/h respectively 

(cf. Table 5.1). Since they are predicted to have a non-zero orbital momentum18,19, both states are 

expected to be favored in external magnetic fields. It is also worth noting, that the “All” state is 

partially spin-, valley- and, in particular, layer-polarized18,19. Consequently, the 𝜈 = ±3 state is 

expected to be favored in electric fields consistent with the measurements.  

In order to get more insight into the nature of the spontaneous Hall states and to examine their role 

in the competition for the ground state, the two-terminal conductance at various filling factors is 

tracked while sweeping the magnetic field through zero. Since both the QAH state and the “All” 
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state exhibit an orbital magnetic momentum, they are expected to display a hysteretic behavior of 

the longitudinal and Hall conductance when sweeping the magnetic field through zero159–161. The 

same is true for the two-terminal conduction that contains contributions from both conductances. 

It is also worth noting that while first indications of magnetic ordering in rhombohedral multilayer 

graphene have been observed previously, their connection to spontaneous Hall phases has not be 

explored so far72,105. Figure 5.3a,c shows the conductance as a function of magnetic field for both 

forward and backward sweeps at constant filling factors and finite electric field. For comparison, 

Figure 5.3b shows the conductance at constant charge carrier density and, thus, varying filling factor. 

It is also worth noting that in all cases, forward and reverse sweeps are mirror symmetric with 

respect to zero magnetic field. First, a noticeable hysteresis is apparent for filling factors close to the 

𝜈 = -3 and the 𝜈 = -6 state, while it is absent for filling factors far away (for instance 𝜈 = 0 and 𝜈 = -

8). Additionally, no hysteresis is noticeable when sweeping the charge carrier density and, thus, 

traversing through various filling factors. The hysteresis is very indicative of an orbital momentum 

Figure 5.3 Hysteresis and Orbital Magnetic Moment: (a) Conductance as a function of the 

magnetic field at constant electric field 𝐷 = -20 mV nm-1 and filling factor 𝜈 = -3. The difference 

between forward (blue) and backward (red) sweep is indicated in yellow. (b) Conductance as 

a function of the magnetic field at constant electric field 𝐷 = -20 mV nm-1 and charge carrier 

densities n = -2 × 1010 cm-2 (black), n = 0 cm-2 (red) and n = 2 × 1010 cm-2 (blue). Forward and 

backward sweeps are indicated in dark and bright colors respectively. (c). Sequence of 

hysteresis measurements at different filling factors ranging from 𝜈 = 0 to 𝜈 = -8 at constant 

electric field 𝐷 = -20 mV nm-1. The difference between forward (blue) and backward (red) 

sweep is indicated in yellow. 
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consistent with the presence of both QAH state and “All” state. However, the conductance drop at 

zero magnetic field strongly indicates that neither the QAH nor the “All” state provide percolating 

conductive edge states at zero magnetic field. This implies that both states lose the competition 

against the CAF or QVH state at vanishing magnetic fields. Yet, it has also been pointed out that 

current annealing induced disorder close to the contacts could prevent edge channels to couple to 

the electrical contacts obscuring the observation of a zero-field conductance157. Indeed, as we do 

observes a distinct hysteresis, it seems at least likely that the QAH state (at low electric fields) and 

“All” state (at high electric field) actually persist down to zero magnetic field, but cannot be accessed 

via two-terminal transport measurements. Thus, in order to definitely determine the ground state 

at vanishing fields and charge carrier density, further measurements that are able to directly probe 

the edge channels are necessary. 

5.4 Conclusion 

To conclude, in this study, transport measurements on suspended dual-gated r-TLG devices have 

been conducted to probe the phase diagram of spontaneous broken-symmetry quantum Hall states. 

At charge neutrality, transport measurements demonstrate the presence of the insulating LAF/CAF 

phase at low electric fields and the QVH phase at high electric fields. Furthermore, at filling factors 

of 𝜈 = ±3 and 𝜈 = ±6 and low magnetic fields, distinct quantum Hall plateaus indicate the presence 

of further spontaneous quantum Hall states with non-zero charge Hall conductivity. Together with 

Figure 5.4 Trilayer Graphene Characterization: (a) Optical microscope image of the graphene 

flake presented in the main text. (b,c) Raman spectroscopy map (b) and scattering scanning 

near-field optical microscopy (s-SNOM) map (c) of the trilayer graphene flake shown in (a). 

Two regions with different FWHM and s-SNOM amplitudes are readily visible and can be 

identified with ABA (blue) and ABC (red) stacking order. (d) Single Raman spectra of spots 

inside the ABA (blue) and ABC (red) regions as shown in (b,c).  
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the hysteresis measurements that confirm the presence of an intrinsic orbital magnetic moment, 

the results are consistent with the QAH state at low electric fields and the “All” state a high electric 

fields. At vanishing magnetic fields, however, signature of these states is lost and the LAF/CAF and 

QVH state seem to dominate depending on the electric field. This study is the first experimental 

demonstration of orbital magnetism in pure trilayer graphene and opens up possible applications in 

topological quantum computing applications162. 

5.5 Appendix and Supporting Information 

In this section, further measurement and calibration data not shown within the discussion in section 

5.3 is presented. The additional data supports the presented results and is shown for completeness 

and reference. 

Identification and Characterization 

In a first step, r-TLG is located and identified via optical microscopy. Figure 5.4a shows a microscope 

image of the sample presented in the main text. In order to reveal the stacking order as well as 

stacking faults and domain walls, a combination of Raman spectroscopy and scattering scanning 

near-field optical microscopy (s-SNOM) has been employed. Figure 5.4b,c shows as map of the 

FWHM of the 2D Raman peak and the s-SNOM amplitude respectively. Both maps exhibit two 

distinct regions with low and high FWHM as well as s-SNOM amplitude, with Figure 5.4d displaying 

Figure 5.5 Calibration of Charge Carrier Density and Electric Field: (a) Conductance as a 

function of the bottom gate and the top gate voltage. On every column of the plot, the 

resistance peak position is extracted by performing a Gaussian fit. Connecting all peak 

positions and fitting a line yields the charge neutrality line (dotted red). The top gate and 

bottom gate offset voltages can be extracted by correcting the center of Gaussian fit (dotted 

red) at the zero electric field line (b) and by correcting the mean position of the conductance 

peaks (red arrows) along the charge neutrality line (c). 
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the Raman spectra corresponding to these regions. Comparing the Raman spectra to previous 

calibration data and literature allows to identify the regions with Bernal (ABA) and rhombohedral 

(ABC) stacking order114,127. By matching the low-resolution Raman map to the regions of different 

amplitude in the s-SNOM image allows for resolving the stacking domains down to nanometer 

resolution and confirming the absence of stacking faults and domain walls114. In order to prevent 

transformation of stacking order, ribbons with homogeneous ABC stacking order have been etched 

out using reactive ion etching prior to defining electrical contacts114. 

Calibration of Dual Gate Transport 

In order to transform the top gate voltage 𝑉T and the bottom gate voltages 𝑉B to electric field 𝐷 and 

charge carrier density 𝑛 (see section 4.2 and section 2.4.2), the conductance is mapped as a function 

of the bottom gate voltage and top gate voltage at zero magnetic field as shown in Figure 5.5a. In 

every line of constant top gate voltage, the center of the conductance dip is determined via a 

Gaussian fit. Collecting all peak positions and performing a linear fit directly yields a value for 𝛼 as 

the inverse slope. This line fit is essentially the charge neutrality line, and moving along this line 

translates to changing the electric field only. To determine the offsets 𝑉𝐵,0 and 𝑉𝑇,0 (cf. section 

2.4.2), the conductance is measured as a function of charge carrier density while setting the electric 

field and magnetic field to zero (see Figure 5.5b). The offsets 𝑉𝐵,0 and 𝑉𝑇,0 are selected in order to 

correct for the displacement of the Gaussian fit from zero charge carrier density. Consecutively, the 

conductance is measured as a function of electric field at charge neutrality and 𝐵 = 0.4 T (see Figure 

5.5c). Here, the offsets 𝑉𝐵,0 and 𝑉𝑇,0 are set such that the mean of the two peak positions is at zero 

field. This alignment has shown to yield the most reliable results and relates to the presence of two 

Figure 5.6 Inversions of the Layer Polarization: Conductance as a function of electric field and 

charge carrier density for forward (a) and reverse (b) sweep of the electric field. The map was 

recorded at a magnetic field of 8 T. (c) Conductance along lines of constant density 

n = 4 × 1010 cm-2 (𝜈 ≈ 2.1, red) and n = 5 × 1010 cm-2 (𝜈 ≈ 2.5, blue) as indicated in (a,b). The 

forward and backward sweeps are indicated in dark and bright color respectively. 
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distinctive symmetric conductance peaks at non-zero magnetic and electric fields (see Figure 5.1g). 

This procedure is repeated with alternating sweeps of the charge carrier density and the electric 

field until 𝑉𝐵,0 and 𝑉𝑇,0 converge.

Inversion of the Layer Polarization 

In order to further elucidate the nature of sudden jump in conductance close to the layer inversion, 

Figure 5.6 shows high-resolution measurements close to zero electric field. In agreement with the 

measurements shown in the main text, the discontinuity displays a hysteretic behavior. In addition, 

the jump in conductance is very sharp and happens within an electric field range of 50 µV nm-1 only. 

Surprisingly, the exact position of the transitions seem to vary stochastically between individual lines 

of constant charge carrier density. It is also worth noting, that the shift of the transition line with 

respect to zero electric field lies within the error margin of the electric field calibration. 

Additional Magnetotransport Data 

Figure 5.7 shows further fan diagrams of an additional device confirming the emergence of strong a 

conductance plateaus at 𝜈 = ±6 at vanishing electric field and 𝜈 = ±3 at high electric field. 

 

  

Figure 5.7 Fan Diagrams at Different Electric Fields: (a-c) Fan diagrams of the conductance 

derivative with respect to the charge carrier density at 𝐷 = 0 mV nm-1 (a), 𝐷 = 24 mV nm-1 (b) 

and 𝐷 = 47 mV nm-1 (c) for an additional device. The filling factors and their corresponding 

slope are indicated in the top row. The roman numerals indicate the associated spontaneous 

quantum Hall states, namely the LAF/CAF state (I), the “All” state (III) and the QAH state (IV).  
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6 Charge Traps in Perovskite Nanowire 

Field-Effect Transistors 

All-inorganic halide perovskites have recently emerged as outstanding materials for optoelectronic 

applications. However, although critical for developing novel technologies, the charge transport 

mechanisms and the influence of charge traps in all-inorganic systems still remain elusive. In this 

chapter, the charge transport properties of CsPbBr3 nanowire films are probed by employing a field-

effect transistor geometry. Field effect mobilities of 𝜇FET = 0.004 cm-2 V-1 s-1 and photoresponsivities 

in the range of 𝑅 = 31 A W-1 are demonstrated. Furthermore, to explore defect states in more detail, 

charge transport both with and without illumination is investigated down to cryogenic temperatures. 

Without illumination, the measurements reveal that deep traps dominate transport and the mobility 

freezes out completely at low temperatures. Despite the presence of deep traps, the field effect 

mobility increases by several orders of magnitude when illuminating the sample and phonon-limited 

transport characteristics are visible. This property can be seen as an extension to the notion of 

“defect tolerance” of perovskite materials that has solely been associated with shallow traps so far. 

Furthermore, the findings provide further insights into charge transport in perovskite materials and 

underline that managing deep traps can open up a route to optimizing optoelectronic devices such 

as solar cells or phototransistors operable also at low light intensities. 

The results presented in this chapter have been submitted as “Charge Traps in All-Inorganic CsPbBr3 

Perovskite Nanowire Field-Effect Phototransistors” by F. Winterer, L. S. Walter, J. Lenz, S. Seebauer, 

Y. Tong, L. Polavarapu and R. T. Weitz. The perovskite nanowire films were synthesized, prepared 

and spectroscopically characterized by Y. Tong and L. Polavarapu. All electrical measurements as 

well as data analysis were done as part of this thesis. 

6.1 Introduction 

Halide perovskite materials are a promising new class of semiconductor materials for optoelectronic 

applications owing to their attractive optical and electronic properties such as high absorption 

coefficients36,37 and long charge carrier lifetime38, together with ease of fabrication, solution 

processability and low cost39. They have shown great promise and potential in various applications 

such as solar cells38,163, photodetectors46,164,165, field effect transistors (FETs)166–169 and lasers45. 
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However, the performance of halide perovskite devices is often limited by insufficient stability and 

moderate crystallinity. In the last years, significant advance has been achieved by the extension of 

perovskite materials into (all-inorganic) colloidal nanocrystals (NCs)39. The shape and composition 

of perovskite NCs are easily controllable and a wide range of morphologies have been synthesized39–

43. Among all, especially perovskite nanowires (NWs) show great promise for high performance 

optoelectronic devices such as lasers and photodetectors44–46. However, to exploit the full potential 

of halide perovskite materials, profound understanding of the microscopic transport mechanisms is 

prerequisite. For example, a better understanding of the influence of charge traps and the often 

cited “defect tolerance”47–51 of perovskite materials can provide crucial information for optimizing 

charge generation and transfer in perovskite solar cells49. Here, FETs are a versatile platform to 

investigate charge transport in semiconductor materials. Unlike in solar cells, the FET geometry 

allows to explore the influence of traps on charge carrier mobility both with and without 

illumination. Starting from the pioneering work on layered hybrid tin halide perovskites170 to 

experiments on methylamonium lead halide perovskites (MALHs)166–168,171,172 to all-inorganic 

perovskite FETs169,173–175, several studies aiming to unveil transport mechanisms in perovskite 

materials have been conducted. Yet, especially for inorganic or NC-based materials, thorough 

studies of transport mechanisms and the influence of traps are still lacking.  

In this work, CsPbBr3 nanowire phototransistors are fabricated and their temperature dependent 

transport properties both in the dark and under illumination are investigated down to cryogenic 

temperatures. Field effect mobilities of 𝜇FET
  = 0.004 cm-2 V-1 s-1 and photocurrent responsivities 

𝑅 = 31 A W-1 at a power density of 3.9 mW cm-2 are demonstrated at room temperature. 

Furthermore, temperature dependent measurements enabled the determination of both depth and 

density of deep and shallow traps in the system. Surprisingly, investigating the gate-dependent 

photoconductivity revealed metal-like transport characteristics even in the presence of an 

appreciable density of deep traps. This intriguing observation again underlines the notion of “defect 

tolerance” in perovskite systems and even extends it to deep traps.  

6.2 Fabrication and Methods 

Synthesis of CsPbBr3 Nanowires: The synthesis was carried out following the previously reported 

ultrasonication approach41. In a typical synthesis, 1-octadecene (10 mL), oleylamine (0.5 mL), and 

oleic acid (0.5 mL) were sequentially added to a mixture of Cs2CO3 (0.1 mmol) and PbBr2 (0.3 mmol) 

precursor powders and then subjected to tip-sonication (Sonoplus HD 3100, Bandelin) at a power 

of 30 W for 60 min. The color of the reaction medium gradually turns into yellow during the course 

of the reaction. The resultant colloidal solution was centrifuged at a speed of 5000 rpm for 10 min. 

Then, the obtained sediment was dispersed in hexane (10 mL) under mild sonication. The 

centrifugation process was repeated thrice at a speed of 3000 rpm for 10 min. During this 
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centrifugation process, the nanocubes present in the product separate from the NWs. At last, the 

sediment containing CsPbBr3 NWs was dispersed in hexane (5 mL), which was used for the 

fabrication of devices. The optical properties of the as prepared colloidal solutions were 

characterized by UV-VIS absorption (Cary60, Agilent Technologies) and photoluminescence (Varian 

Cary Eclipse, Agilent Technologies). The morphology of the obtained nanocrystals was characterized 

using a transmission electron microscope (TEM) operating at an accelerating voltage of 80 – 100 kV 

(JEM-1011, JEOL). The high-resolution high-angle annular dark field images (HAADF-STEM) were 

acquired using a scanning transmission electron microscope (Titan, FEI) operating at 300 kV.  

Device Fabrication: For FET device fabrication, p-doped Si wafers with a 100 nm SiO2 layer were used 

as substrates. First, the substrates were immersed in Acetone and put into a sonicator for 3 mins. 

After that, the substrates were plasma cleaned in O2 plasma for 3 min (PICO Plasma Cleaner, Diener). 

The colloidal solution of CsPbBr3 nanowires was spin coated onto the substrates at 1500 rpm for 

1 min. Then, contact pads with a 0.3 nm titanium adhesion layer and a gold layer of 70 nm were 

evaporated on top of the perovskite film using a standard electron beam evaporation technique 

together with a shadow mask. The gold pads functioned as drain and source contacts, while the 

silicon substrate was used as a back gate. Topography measurements were taken with an atomic 

force microscope (Dimension 3100, Bruker) in tapping mode. The thickness of the perovskite film 

was determined by measuring the step height of a scratch through the film. 

Electrical Measurements: All electrical measurements were performed in a vacuum setup (CRX-VF 

Probe Station, Lakeshore) at 𝑝 < 5 × 10-7 mbar (see also section 3.3.2). Furthermore, the sample 

stage was thermally coupled to a helium pulse-tube refrigerator enabling measurements at a 

variable temperature in the range between 8 K and 300 K. Two source-measure units (2450 

SourceMeter, Keithley) were used to apply drain and gate voltages as well as to measure the 

respective currents. To investigate the photoresponse, a halogen lamp (Model 21AC, Techniquip) 

attached to the microscope of the probe station was employed. Wavelength dependent 

measurements were conducted using two different laserdiods with a wavelength of 650 nm 

(532 nm) and a total power of 650 µW (548 µW). 

6.3 Experimental Results 

The colloidal CsPbBr3 NWs were prepared by a ligand-assisted ultrasonication approach (see section 

6.2). The UV-visible absorption and photoluminescence (PL) spectra of CsPbBr3 NWs are depicted in 

Figure 6.1a. The prepared CsPbBr3 NWs exhibit an excitonic absorption peak at 513 nm and PL peak 

at 525 nm. The colloidal solution of NWs emits intense green emission under UV illumination (inset 

of Figure 6.1a). Transmission electron microscope (TEM) analysis of the NWs shows that they have 

a diameter of 12 nm and length ranging from 0.5 µm to 2 µm (Figure 6.1b). The NWs are single 

crystalline as revealed by high-angle annular dark-field scanning transmission electron microscopy 
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(HAADF-STEM) analysis (inset of Figure 6.1b). To analyze electrical transport properties of the 

CsPbBr3 nanowire thin films, the perovskite nanowire solution was spin coated onto a Si/SiO2 

substrate and bottom gate top-contact FET devices were fabricated (see section 6.2 for fabrication 

details). Figure 6.1c shows the schematic illustration of the device architecture. In the following, the 

data of three devices on one exemplary sample (sample A) is presented. Data of further devices and 

samples is shown in the appendix (see Table 6.1 for a sample overview). The layer thickness of the 

nanowire film was measured to be 530 nm thick with an RMS roughness of about 60 nm (see Figure 

6.4 for more details on the topology of the sample). Thus, the electrical measurements can be seen 

as an ensemble average over many nanowires. All electrical measurements were taken in vacuum 

Figure 6.1 Spectroscopy and Field-Effect Transistor Characteristics: (a) UV-visible extinction 

(black) and photoluminescence (red) spectra of the colloidal CsPbBr3 NWs. The inset shows 

images of the colloidal solutions of CsPbBr3 NWs under white light (left) and UV illumination 

(right).(b) Bright-field TEM image and HAADF-STEM image (inset) of the CsPbBr3 NWs. (c) 

Schematic of the device architecture. The p-doped Si substrate acts as a back gate, while the 

two gold pads serve as drain and source electrodes. The perovskite and the gate are separated 

by a SiO2 dielectric. (d,e) Transfer curves at 𝑉D = -20 V with illumination (red) and without 

(blue) in logarithmic (d) and linear (e) scaling. The solid lines show the forward sweep and the 

dotted lines the backward sweep. (f) Output curves without illumination. Gate voltages range 

from 𝑉G = 0 V (yellow) to 𝑉G = -40 V (black) in increments of 10 V. The solid lines represent the 

forward sweeps and the dotted lines the backward sweeps. 
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below 5 × 10-7 mbar. Measurements in bright illumination conditions were done by illuminating the 

sample with a broadband halogen lamp with a power density of 3.9 mW cm-2. First, transfer curves 

for several FET devices with a constant drain voltage of 𝑉D = -20 V and gate voltages 𝑉G ranging from 

-20 V to +20 V in both dark and bright illumination conditions were recorded. Figure 6.1d,e show 

the transfer curves of one exemplary device both with and without illumination. Other devices 

qualitatively show the same behavior (see Figure 6.5). Additionally, Figure 1f shows the output 

curves of the device for drain voltages up to 𝑉D = -40 V. Without illumination, transfer and output 

curves show a clearly visible field-effect with a current modulation over several orders of magnitude.  

The devices show a distinct p-type semiconducting behavior, where only hole conduction is present 

and can be modulated with the gate voltage. Electron transport, on the other hand, is completely 

suppressed throughout the entire accessible gate range. The absence of electron transport has 

already been seen in other CsPbBr3 samples173–175, whereas in some CsPbBr3 devices ambipolar 

transport was observed169. These inconsistent observations can be explained by varying trap 

concentrations in the respective samples caused by different growth conditions47,176,177. A high 

density of traps close to the valence band, for example, can lead to a shift of the electron 

conductivity onset to high positive voltages exceeding the accessible gate range. Such traps can be 

associated with vacancies of Cs and Pb that have particularly low formation energies in Br-rich 

growth conditions47,49. Beside the p-type conductivity, both output and transfer curves display a 

pronounced “clockwise” hysteresis between forward and reverse sweeps. This strong hysteresis is 

very common for perovskite materials and has been broadly reported for perovskite FETs and solar 

cells, even for single crystal samples166–169,171–174,178. Possible explanations for the hysteresis include 

ion migration, ferroelectricity, trap states in the material and surface traps at the interface to the 

dielectric167–169,171–174. Although there is still much debate on the microscopic cause of hysteresis, 

screening of the gate potential due to mobile ions has been widely regarded as the dominant 

mechanism at room temperature168,169,171,174,179. However, also traps at the dielectric interface can 

give rise to substantial hysteresis180. Ferroelectricity, on the other hand, showed only minor 

influence on electrical transport168,179,181. At low temperatures, ion migration is expected to be 

suppressed due to high activation energies168,169,171,174,179,182–184 and interface traps are widely 

believed to become the dominant mechanism leading to hysteresis168,169,171,179. As temperature 

dependent measurement can help to shed more light onto the causes of hysteresis, this discussion 

will be revisited later. Based on the output and transfer curves, the FET mobility in the saturation 

regime can be calculated to be 𝜇FET
Dark = 0.004 cm2 V-1 s-1 at room temperature for the best device (see 

section 6.5 and Figure 6.6 for more details). In this calculation, only the forward sweep was used, as 

the reverse sweep tends to yield unreliable results due to the strong hysteresis effect168. In other 

CsPbBr3 systems, higher FET mobilities with record values of up to 2.2 cm2 V-1 s-1 at room 

temperature have been reported169,174,175,185. However, even these record mobilities are still well 

below what has been expected from time-resolved photoluminescence measurements165,186, 
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acousto-optoelectronic spectroscopy187, Hall-effect measurements182,188 and THz spectroscopy189. 

Thus, a better understanding of the underlying transport mechanisms bears great potential for 

optimizing mobilities of all-inorganic perovskite devices.  

A distinctly different behavior can be observed when illuminating the sample with a halogen lamp. 

As shown in Figure 6.1d, when switching on the illumination, the drain current increases significantly 

by up to four orders of magnitude. Since there is still a field effect present, the charge carrier 

mobility can be obtained similarly to the dark case. For our best device, the mobility of the 

illuminated device is 𝜇FET
Bright = 0.018 cm2 V-1 s-1. The increase of mobility during illumination is 

consistent with observations on other perovskite devices169,174. In general, the strong 

Figure 6.2 Temperature Dependent Transport Without Illumination: (a) Transfer curves at 

temperatures T = 296 K (black), 𝑇 = 210 K (red) and 𝑇 = 170 K (blue) at a drain voltage of 

𝑉D = -20 V. The solid lines show the forward, and the dotted lines the backward sweep. The 

determination of the subthreshold swing 𝑆 is indicated by a green line. (b) Maximum 

conductivity of three different devices (black, red and blue) as a function of temperature. (c) 

Threshold voltage of three different devices (black, red and blue) as a function of temperature. 

The linear fit to the data points is represented by the black dotted line. (d) Arrhenius plot of 

the mobility of three different devices (black, red and blue) with respect to the inverse 

temperature. The exponential fit to the first data points is shown as a black dotted line. The 

lower limit of the mobility at lower temperatures is due to limitations of the measurement 

system. 
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photoconductivity is directly connected to the combination of excellent optical absorption 

characteristics and efficient charge transport properties of perovskite materials37,38,48. Due to the 

high absorption coefficient, photo-excited charge carriers are generated very efficiently38. At the 

same time, fast exciton dissociation36,37,190 as a result of the low exciton binding energies36,48,190 leads 

to a high population of free charge carriers36,37,191. These free carriers can then contribute to the 

transport through the material and enhance the conductivity irrespective of the gate 

voltage164,169,192. This phenomenon is known as the photoconductive effect and leads to a vertical 

shift of the transfer curves to higher drain currents164,169,192. The quasi-additive behavior of a 

constant photocurrent onto a gate-tunable current192 agrees very well with the measurement. 

Notably, the emergence of the photoconductive effect also implies that both mobile holes and 

mobile electrons are present in the system. This is very surprising, as electrons were completely 

immobilized in local trap states in the dark and only holes were mobile. Furthermore, photocurrent 

is suppressed by more than one order of magnitude when illuminating the sample with light at 

excitation energies below the band gap (1.91 eV) compared to above the band gap (2.33 eV). Thus, 

charge carriers are indeed photoexcited within the material rather than at the contacts or nanowire 

interfaces. The transfer curves also allow for calculating the photoresponsivity 𝑅 (drain current 

increase per illumination power) of the devices164,192. For the best device, photoresponsivities of 𝑅 

= 31 A W-1 upon broadband white light illumination with a power density of 3.9 mW cm-2 were 

achieved. This compares very well even to single crystal CsPbBr3 samples with responsivities of up 

to several hundred A W-1 at comparable power densities46,165,169,193. 

In order to investigate the influence of traps in more detail, the electrical transport properties of the 

CsPbBr3 nanowires were measured as a function of temperature. At multiple temperature steps 

between 296 K and 8 K, transfer curves for both dark and bright illumination conditions were 

obtained. Figure 6.2 and Figure 6.3 show the transport characteristics at various temperatures 

without and with illumination respectively. First, it can readily be seen that without illumination, 

both conductivity and mobility decrease substantially with decreasing temperature. This mobility 

freeze-out indicates a thermally activated behavior originating from charge traps in the 

material109,113,194,195 or Schottky barriers at the electrode-perovskite interface.194–196 In general, 

Schottky barriers emerge due to the energy mismatch of valence and conduction band to the work 

function of the electrodes. Although the theoretical mismatch between the valence band of CsPbBr3 

and the work function of gold is in the range of 0.65 eV169,197,198, efficient injection of electrons and 

holes with gold electrodes has been demonstrated in previous experiments169. Additionally, the 

weak dependence of the conductivity on temperature in illuminated samples indicates that charge 

transport is dominated by charge traps rather than barrier physics. At this point, it is also worth 

discussing further mechanisms that could potentially influence temperature dependent transport 

properties, namely ion migration and perovskite phase transitions. First, as mentioned earlier, 

mobile ions can effectively screen the gate potential and, thus, lead to hysteresis168,169,171,174,179. 
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When decreasing the temperature, ion migration is expected to freeze out and the hysteresis is 

suppressed168,174. In our devices, almost no hysteresis is visible in the transfer curves at 210 K (see 

Figure 6.2a). Thus, ion migration cannot explain the observed mobility suppression and can be 

neglected for temperatures 𝑇 ≤ 210 K168,174,182. The same is true for interfacial traps at the dielectric, 

that would lead to a similar hysteretic behavior180. Second, MALH systems are subject to a structural 

phase transition from orthorhombic to tetragonal crystal structure at around 𝑇C = 160 K that can 

significantly alter electronic properties of the system167,171. However, the phase transition 

Figure 6.3 Temperature Dependent Transport in Illuminated Devices: (a) Transfer curve in 

linear and logarithmic (inset) scaling for temperatures T = 296 K (black), T = 210 K (red) and 

T = 8 K (blue). The solid lines represent the forward, and the dotted lines the backward sweep. 

(b) Comparison of the conductivity with illumination (red) and without (blue) with respect to 

the temperature averaged over three different devices. The gate voltage was set to 𝑉𝐺  = -20 V. 

(c) Comparison of the mobility with illumination (red) and without (blue) with respect to the 

temperature averaged over three different devices. (d) Comparison of mobility and 

conductivity with illumination with respect to the inverse temperature. The fit of the Arrhenius 

relation to the mobility is shown as a black dotted line. (e,f) Schematic trap density of states 

with the trap filling level (red) for dark (e) and illuminated (f) samples. In the dark, only deep 

traps are filled and transport is dominated by thermally activated behaviour with a high 

activation energy. In illuminated samples, almost all traps are filled and only shallow traps 

influence charge transport.  
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temperature of CsPbBr3 is well above room temperature, namely at 𝑇 = 361 K from orthorhombic 

to tetragonal and at 𝑇 = 404 K to cubic crystal structure199,200. Therefore, a phase transition is not 

present in the investigated temperature range. 

In the following, properties of the charge traps are investigated in more detail and light is shed onto 

the often cited “defect tolerance” of perovskites47,49. In this context, it is very instructive to 

distinguish between shallow traps close to the band edge (Δ𝐸 ≈ 𝑘B𝑇) and deep traps far away from 

the band edge (Δ𝐸 ≫ 𝑘B𝑇)49,113. First, the trap density of deep traps can be estimated from the 

subthreshold swing 𝑆 of the transfer curves using the formulas113,169,201 

 𝑆 =  
d𝑉GS

d(log 𝐼SD)
          and          𝑁DT = (

𝐶

𝑒
) (

𝑒𝑆

𝑘B𝑇 ln10
− 1) (6.1) 

where 𝑒 is the elementary charge, 𝑘B the Boltzmann constant, 𝑇 the temperature and 𝐶 the gate 

dielectric capacitance per unit area. An illustration of the subthreshold swing determination is 

shown in Figure 6.2a. This yields an average deep trap density of 𝑁DT = 7 × 1012 cm-2 eV-1 at room 

temperature. This trap density is smaller than trap densities reported in literature even for single 

crystal samples50,169. As the Fermi level is still far away from the band edge in the subthreshold 

regime, the density 𝑁DT can be associated with deep trap states (DT)113. The density 𝑁ST of shallow 

trap states (ST) closer to the band edge can be estimated from the dependence of the threshold 

voltage on the temperature using113,201 

 𝑁ST = (
𝐶

𝑒𝑘B
)

d𝑉th

d𝑇
. (6.2) 

This gives a trap density of 𝑁ST = 3 × 1014 cm-2 eV-1 in our system. Figure 6.2c shows the calculated 

threshold voltages with respect to the temperature together with the line fit used to determine 𝑁ST. 

With the gate voltage, a maximum charge carrier density of 𝑛Gate = 4 × 1012 cm-2 can be induced. 

Thus, the gate is very likely not sufficient to fill even the deep traps in the system and transport is 

expected to be trap dominated. This is consistent with the distinct thermally activated behavior of 

the mobility as shown in Figure 6.2d and Figure 6.3d. Fitting an Arrhenius relation 𝜇 ≈  exp(−𝐸𝐴/

𝑘B𝑇) to the temperature dependence of the mobility yields an approximate measure of the trap 

depth109,113,195,201. In the dark and for temperatures above T ≥ 170 K, the fit reveals a surprisingly 

deep trap depth (activation energy) of 𝐸A = 270 ± 16 meV. This is in good agreement with other 

measurements50 and fits well to the theoretically expected trap depth of Cs and Pb vacancies inside 

the crystal lattice in the range of 200 meV47,49. Measurements on an additional sample are 

qualitatively consistent with these results, but yield larger trap depths hinting towards the presence 

of further point defects (see section 6.5 and Figure 6.7). It is also worth noting, that these traps could 

also be located at the grain boundary between individual nanowires. Within the scope of these 
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measurements, it is not possible to pinpoint neither the origin nor the location of these traps. Yet, 

measurements on single crystal samples show comparable or even higher values for 𝑁DT, which 

could hint towards an intrinsic origin of the traps169. 

However, even in the presence of these substantial trap densities, the conductivity of the devices 

increase several orders of magnitude when illuminating the sample even at cryogenic temperatures 

(cf. Figure 6.3a,b). Notably, at low temperatures the conductivity even increases slowly with 

decreasing temperature. This peculiar behavior has also been seen in MALH system202–204 and has 

led to an ongoing debate on its underlying mechanisms. Here, it is worth noting, that this change in 

the slope of the temperature dependence is not related to a phase transition temperature, even in 

MALH systems203,204 In general, the photoconductivity depends on the absorption of the material, 

the mobility and the charge carrier recombination rate203,204. However, some authors have argued, 

that charge carrier mobility variations are most probably the dominating parameter in this relation, 

although they were not able to measure the mobility directly203,204. The FET geometry employed 

within this study, however, allows for directly accessing the mobility in addition to the conductance. 

Figure 6.3c shows the mobility and Figure 6.3d shows a comparison of conductivity and mobility 

with respect to the (inverse) temperature. Additional data of further devices is shown in Figure 6.7 

and Figure 6.8. As proposed by several authors203,204, the mobility indeed nicely mimics the 

photoconductivity behavior. In the low temperature regime, similar to the conductivity, the mobility 

increases with decreasing temperature. Such a behavior is a sign of charge carriers travelling in 

delocalized metal-like band states, where the mobility is limited by phonon scattering203,204. This 

transition from “semiconducting” to “metal-like” behavior is very surprising, especially given the 

existence of a high density of deep traps at that completely hindered transport in the dark. At higher 

temperatures, the mobility shows thermally activated behavior. By again using an Arrhenius relation 

for modelling the mobility 𝜇 ≈  exp(−𝐸𝐴/𝑘B𝑇), the activation energy can be calculated to be 𝐸A = 

26 ± 5 meV. The activation energy of the illuminated sample is significantly lower than in the dark. 

Thus, at high temperatures, only shallow traps with a low activation energy influence charge 

transport. Besides, also excitons could be responsible for the thermally activated transport behavior. 

Their theoretically expected and measured binding energy of 𝐸B = 47 meV48,205,206 is in fair 

agreement with the thermal activation energy.  

Figure 6.7e,f combines these results and shows an illustration of proposed transport mechanisms 

and energy landscape of the charge traps. Although the exact shape of the trap density of state 

(DOS) remains unknown, the measurements indicate that it is composed of a high density of shallow 

traps together with a medium density of deep traps. In the dark (Figure 6.7e), a low density of charge 

carriers are induced by the gate. Since only a fraction of traps are filled, thermal activation of deep 

traps dominates transport. In illuminated samples (Figure 3f), however, a high density of photo-

excited charge carriers are generated and deep traps are completely filled. In this case, at high 

temperatures only shallow traps influence charge transport. At low temperatures, also shallow traps 
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freeze out enabling phonon-limited transport. This tolerance of charge transport in the bright state 

with respect to deep traps is remarkable. The suppressed influence of deep traps can also be seen 

as an extension to the notion of “defect tolerance” in perovskite materials that has only been 

connected to the presence of shallow traps so far47–51. 

6.4 Conclusion 

In summary, CsPbBr3 nanowire FET devices have been successfully fabricated. Without illumination, 

a field-effect with an on/off ratio of more than 104 and saturation mobilities reaching up 

0.004 cm2 V-1 s-1 at room temperature are demonstrated. At the same time, photoconductivity with 

mobilities of up to 0.018 cm2 V-1 s-1 and responsivities of up to 31 A W-1 illustrate the promising 

phototransistor properties of CsPbBr3 devices. Furthermore, transport properties down to cryogenic 

temperatures were investigated in detail. It is shown that transport in the dark is dominated by deep 

traps and freezes out at low temperatures. Surprisingly, when switching on the illumination, 

excellent photoconductivity even exhibiting phonon-limited characteristics can be observed. This 

intriguing observation highlights and further extends the notion of the so-called “defect tolerance” 

of perovskite materials, since not only the influence of shallow traps but also of deep traps on the 

charge carrier mobility is completely suppressed in illuminated samples. These findings provide 

further insight into defect states and enable a deeper understanding of charge transport in all-

inorganic perovskite systems. They underline the superior optoelectronic properties of perovskite 

systems and indicate the importance of managing the density of deep traps in advancing the 

development of efficient optoelectronic devices especially for their use under low-light intensities. 

Sample Device Ch. Length Ch. Width Figures 

A 

A1 10 µm 500 µm 6.1d,e,f; 6.2a,b,c,d; 6.3a,b,c,d; 6.4; 6.6; 

A2 20 µm 500 µm 6.2b,c,d; 6.3b,c,d; 6.4; 6.5; 6.8 

A3 30 µm 500 µm 6.2b,c,d; 6.3b,c,d; 6.4; 6.5; 6.8 

B 
B1 10 µm 500 µm 6.4; 6.7 

B2 20 µm 500 µm 6.4; 6.7 

 

Table 6.1 Sample Overview: Each sample contains several devices with different channel 

lengths or widths and has been prepared individually according to the steps given in the 

methods section. The last column lists all Figures, the data from a particular device has been 

used for. 
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6.5 Appendix and Supporting Information 

In this section, further measurement and calibration data not shown within the previous sections 

are presented. The additional data supports the presented results and is shown for completeness 

and reference. An overview of all samples analyzed within this study is shown in Table 6.1.  

Film Topology 

Figure 6.4 shows atomic force microscopy (AFM) and optical microscopy images of the perovskite 

film between source and drain contacts. The film consists of individual nanowires, that cluster 

together to form a film of several hundred nanometers. The RMS roughness of the film calculated 

from the AFM image is in the range of 60 nm and 97 nm for sample A and B respectively. By 

scratching in the perovskite film and measuring the mean step height by atomic force microscopy, 

a film thickness of 530 nm and 190 nm are obtained for sample A and B respectively.  

Figure 6.4 Film Topology: (a,b) AFM image of the perovskite film between source and drain 

contacts of an exemplary device on sample A (a) and sample B (b). (c,d) Optical microscope 

image of an exemplary device on Sample A (c) and Sample B (d). The yellow areas are the 

evaporated gold pads that act as drain and source electrodes.  
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Additional Room Temperature Transfer Curves 

Further transfer curves of two additional devices on sample A are shown in Figure 6.5.  

Calculation of the Field Effect Mobility and Threshold Voltage 

The field-effect mobility in the saturation regime can be estimated by using the relation of the drain 

current 𝐼D  on the gate voltage 𝑉G (see section 2.4.1 for more details)109,111,112 

 𝐼D =
𝑊

2𝐿
𝜇FET𝐶(𝑉G − 𝑉th)2, (6.3) 

Figure 6.5 Room Temperature Transfer Curves: Transfer curves of devices A2 (a) and A3 (b) 

with (red) and without (blue) illumination. The solid lines represent the forward, and the 

dotted lines the backward sweep. 

Figure 6.6 Determination of Mobility and Threshold Voltage: (a) Square root of the drain 

current (black) together with the calculated mobility (red) using equation (6.4). The data 

shown here corresponds to the device A1. (b) Square root of the drain current (black) as a 

function of the gate voltage. The red line represents the linear fit to the drain current data 

points. The threshold voltage can be extracted by extrapolating the linear fit to zero current. 

The data shown here corresponds to device A1. 
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where 𝑊 is the channel width, 𝐿 is the channel length, 𝐶 is the capacitance of the gate dielectric per 

unit area, 𝑉th the threshold voltage and 𝜇FET the field effect mobility. Taking the derivative with 

respect to the gate voltage 𝑉G yields the field-effect mobility in the saturation regime111 

 

 𝜇FET =  
2𝐿

𝐶𝑊
(

∂√𝐼D

∂𝑉G
)

2

 (6.4) 

An example of the determination of the gate dependent mobility is shown in Figure 6.6a. For further 

calculation or reference, only the maximum mobility is used. The threshold voltage 𝑉th is calculated 

by fitting a linear function to √𝐼D  at the mobility maximum111,112. The threshold voltage 𝑉th is then 

given by the extrapolation of linear fit to zero drain current111,112. This is shown in exemplarily in 

Figure 6.6b. 

 

Figure 6.7 Temperature Dependence of Mobility and Conductivity in Sample B: (a,b) 

Temperature dependence of the conductivity for devices B1 (a) and B2 (d). (c,d) Temperature 

dependence of the mobility without illumination of devices B1 (b) and B2 (e). (c,f) Temperature 

dependence of the mobility with illumination of devices B1 (c) and B2 (f) 
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Temperature Dependent Mobility and Conductivity of Sample B 

In order to confirm the observations described in the main text, the measurements were repeated 

for another set of devices (device B1 and B2) on an additional sample. The temperature dependent 

conductivity and mobility are shown in Figure 6.7. The behavior is qualitatively the same as for the 

devices that have been discussed in the main text. However, the activation energies in the dark state 

of 712 meV for device B1 and 887 meV for device B2 are much lower. In bright illumination 

conditions, the activation energies of 17 meV for device B1 and 27 meV for device B2 are very 

comparable to the values calculated in the main text. 

Temperature Dependent Mobility and Conductivity of Sample A 

Additional measurements of the temperature dependent mobility and conductivity of further 

devices on sample A are shown in Figure 6.8. 

  

Figure 6.8 Temperature Dependence of Mobility and Conductivity in Sample A: The Plots 

show data from device A2 (a) and A3 (b). 
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7 Conclusion 

Within the first part of this thesis, magnetotransport characteristics of correlated states in high-

quality trilayer graphene with ABA and ABC stacking order have been investigated. First, ABA trilayer 

graphene was encapsulated in hBN and fitted with dual graphite gates and graphite contacts. The 

dual gate structure allowed for independent tuning of charge carrier density and perpendicular 

electric field. At vanishing electric fields, the band structure of ABA trilayer graphene consists of a 

linear monolayer-like and a parabolic bilayer-like band. Applying a perpendicular electric field 

hybridizes these bands and leads to the formation of two sets of three off-center Dirac gullies for 

both holes and electrons that are interconnected via 𝐶3 symmetry. The Lifshitz transitions that are 

necessitated by the band structure transformation have been observed in transport measurements 

that map the conductance as a function of charge carrier density and electric field. In the quantum 

Hall regime, in addition to the spin degeneracy, the emergence of Dirac gullies leads to the formation 

of quasi-degenerate triplet states that inherit the 𝐶3 symmetry. The magnetotransport data exhibits 

strong plateaus at filling factors that are multiples of three consistent with the three-fold triplet 

state degeneracy but broken spin degeneracy. However, unexpected from single-particle 

simulations, the triplet state degeneracy is also broken at high electric fields and several integer 

plateaus are clearly discernable. Indeed, theory shows that increasing the electric field quenches 

the triplet state energy and interactions become dominant. The experimental results are consistent 

with Hartree-Fock simulations indicating that 𝐶3 symmetry is spontaneously broken above a critical 

electric field giving rise to a spontaneous gully-polarized nematic ground state.  

Second, dual-gated ABC trilayer graphene was fabricated and subsequently suspended between the 

gate electrodes via wet etching. The band structure of ABC trilayer graphene host chiral 

quasiparticles that exhibit a Berry phase of ± 3𝜋 when encircling the 𝐾 or 𝐾′ valley respectively. Due 

to the flat low-energy dispersion, ABC trilayer graphene has been predicted to be very susceptible 

towards spontaneous chiral symmetry breaking at charge neutrality. As a consequence of the giant 

Berry curvature, a family of five competing spontaneous quantum Hall state with a unique set of 

spin, valley and charge Hall conductivities each have been postulated: The insulating quantum valley 

Hall (QVH) state, the (canted) layer antiferromagnetic (CAF/LAF) and the quantum spin Hall (QSH) 

state as well as the conductive quantum anomalous Hall (QAH) state and the “All” state. At charge 

neutrality, maps of the conductance with respect to electric field and magnetic field reveal the 
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presence of two insulating phases separated by a transition region of increased conductance. In 

agreement with theory and previous studies on ABC trilayer graphene, these two phases could be 

identified with the LAF/CAF phase at vanishing electric field and the QVH phase at high electric fields. 

This identification was further ascertained by noting that the transition line is linear in magnetic field 

in agreement with theoretical predictions. Although the LAF/CAF seems to survive down to 

vanishing magnetic fields, the non-monotonous dependence of the conductance close to zero 

magnetic field is suggestive of the presence of a third phase. In the quantum Hall regime, strong 

plateaus at filling factors 𝜈 = ±6 emerge that are accompanied by pronounced 𝜈 = ±3 plateaus at 

high electric fields. These plateaus persist down to exceptionally low magnetic fields of less than 

50 mT and are very indicative of the presence of spontaneous quantum Hall states with non-zero 

charge Hall conductivity. Indeed, the measurements agree very well with the spontaneous QAH and 

the “All” state that are predicted to exhibit Hall conductivities of 𝜈 = ±6 and 𝜈 = ±3 respectively even 

in the absence of magnetic fields. Furthermore, the increase in stability of the 𝜈 = ±3 state with 

electric field is consistent with the predicted layer-polarization of the “All” state. Besides their Hall 

conductivity at vanishing magnetic fields, these two states are also predicted to exhibit a peculiar 

non-zero orbital magnetic moment that is purely driven by the non-trivial Berry curvature. In order 

to provide additional proof of the presence of the “All” state and the QAH state, the orbital magnetic 

moment was probed by magnetic hysteresis measurements. The hysteresis curves reveal a 

substantial hysteresis close to filling factors 𝜈 = ±6 and 𝜈 = ±3, while it is absent for filling factors far 

away. Although these states could be stabilized in magnetic fields, they seem to lose the competition 

to the LAF/CAF and the QVH state at charge neutrality. 

In summary, the findings of this thesis provide new insights into the physics of correlated states in 

ABC and ABA trilayer graphene. It was shown, that electron-electron interactions in trilayer 

graphene can be readily tuned via electrostatic gating and magnetic fields revealing several 

interaction-induced many-body ground states that break one or more symmetries of the system. 

While transport measurements in ABA multilayer graphene demonstrate the emergence of an 

interaction-induced ground state that breaks the rotational symmetry of the system, ABC trilayer 

graphene displays several exotic quantum Hall states that spontaneously break chiral symmetry. 

Together, these results highlight the great potential of multilayer graphene as a highly-tunable 

platform to investigate fundamental many-body phenomena and facilitate the development of 

novel technologies exploiting correlated states for quantum computing and low-power electronics. 

However, further studies using four-terminal geometries are needed to understand the nature of 

edge channels in the spontaneous Hall phases as well as to probe transport anisotropies associated 

with the rotational symmetry breaking.  

 

In the second part of the thesis, charge traps in perovskite nanowire field-effect transistor devices 

have been investigated. In order to access information about the transport characteristics of all-
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inorganic CsPbBr3 nanowire ensembles, thin nanowire films have been fabricated and equipped with 

top-contact gold electrodes. The devices show a distinct field-effect with saturation mobilities of 

4 × 10-3 cm2 V-1 s-1 at room temperature in the absence of illumination and photoresponsivities of 

up to 31 A W-1 upon white light illumination. In the dark, transport is dominated by deep traps and 

freezes out completely at low temperatures. Surprisingly, when switching on the illumination, 

excellent photoconductivity is recovered and the mobility even shows signs of phonon-limited 

transport at low temperatures. This highlights the excellent optoelectronic properties of all-

inorganic perovskite materials and underlines their exceptional “defect tolerance”. 

The results presented in this thesis facilitate deeper understanding of defect states and charge 

transport in all-inorganic perovskite systems. They highlight the exceptional optoelectronic 

properties of perovskites and provide guidelines for improving the performance of perovskite based 

solar cells and phototransistors. 
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Abbreviations 

Term Description 

2D Two dimensions, two-dimensional 

ABA Bernal (ABA) stacking order 

ABC Rhombohedral (ABC) stacking order 

AFM Atomic force microscopy 

ALL “All” state 

BOE Buffered oxide etch 

b-TLG Bernal-stacked trilayer graphene 

CAF Canted antiferromagnet 

DOS Density of states 

FET Field-effect transistor 

HAADF-STEM High-angle annular dark-field scanning transmission electron microscopy 

hBN Hexagonal boron nitride 

HF Hydrofluoric acid 

ICP-RIE Inductively coupled plasma reactive-ion etching 

LAF Layer antiferromagnet 

NW Nanowire 

PL Photoluminescence 

PVD Physical vapor deposition 

QAH Quantum anomalous Hall effect 

QHE Quantum Hall effect 

QSH Quantum spin Hall effect 

QVH Quantum valley Hall effect 

r-TLG Rhombohedral trilayer graphene 

s-SNOM Scattering scanning near-field optical microscopy 

TEM Transmission electron microscopy 

TLG Trilayer graphene 

UV Ultraviolet 
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