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1. Introduction 

1.1.  Significance of natural sterols  

Sterols are omnipresent in living nature, whereby the most abundant sterols are cholesterol in 

mammals, β-sitosterol in plants and ergosterol in fungi (Figure 1a) [1]. 

 

Figure 1 a: Structures of cholesterol, β-sitosterol and ergosterol, b: Numbering and ring letters of steroids 
according to IUPAC [2]  

These sterols are synthesized de novo in most organisms starting from acetyl-CoA (coenzyme 

A) and isoprenoids, but they can also be acquired from diet [3]. The latter was shown for 

invertebrates like insects that lack an own de novo biosynthesis, but are able to synthesize the 

required sterols from dietary precursors [4]. The fact that sterols are vital for so many different 

species and that the enzyme squalene monooxygenase, which performs the initial step for 

sterol biosynthesis, has several conserved motifs throughout the different species [5, 6] gives 

a hint to the importance of sterols for early eukaryotic evolution. It has been suggested, see 

e.g. [6, 7], that sterols played an important role in the evolution from prokaryotes to eukaryotes. 

This evolutionary step is characterized by the development of cell compartments and the 

differentiation of cell organelles as well as the endocytosis and exocytosis [5]. All these 

processes involve rapid deformation of cell membranes, and sterols play a crucial role for 

membrane fluidity and function [5]. Due to their amphiphilic properties they are stored in 

between the phospholipids in the cell membranes. Cholesterol, for example, is oriented 

perpendicular to the membrane plane and causes an increase of the membrane’s stability [8]. 

Hence, sterols are essential building materials and a prerequisite for the function of every cell. 

Despite of their important physical properties, sterols like cholesterol act as precursors for 

further essential steroids or bile acids [3, 9]. The focus of this work is the mammalian sterol 

cholesterol and its biosynthesis and metabolism. 
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1.2.  Steroid biosynthetic pathways 

1.2.1. Cholesterol 

Cholesterol de novo biosynthesis in mammals generally can take place in every tissue. 

However, the majority is synthesized in the liver [9, 10]. It is then distributed throughout the 

body via the blood circulation, when bound to specific transport proteins as very low density 

lipoprotein (VLDL) and low density lipoprotein (LDL) [9-11]. In the form of LDL, cholesterol is 

taken up into cells by LDL receptor mediated endocytosis, and excess cholesterol can be 

redistributed to the liver in the form of high density lipoprotein (HDL) [9, 11]. One exception to 

this cholesterol dissemination is the central nervous system (CNS). Almost all CNS cholesterol 

is synthesized de novo within the brain and it is remarkable that the CNS, which accounts for 

about 2% of the body mass, accounts for about one quarter of the whole unesterified 

cholesterol [11]. Cholesterol biosynthesis can be divided into pre- and post-squalene pathway. 

In Figure 2 the pre-squalene section and the involved enzymes and intermediates are shown. 

First, HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) (C6) is synthesized from three acetyl CoA 

(C2) building blocks. Following reduction of HMG-CoA leads to mevalonate (C6). After 

activation of mevalonate by conjugation with pyrophosphate and subsequent decarboxylation, 

isopentenyl diphosphate (IPP) (C5) and its isomer dimethylallyl diphosphate (C5) are formed. 

IPP is a central element of terpenoids, a huge group of natural products. Afterwards, farnesyl 

diphosphate (C15) is synthesized from tree IPP building blocks. The final product of this 

pathway, squalene (C30), is then formed out of two molecules farnesyl diphosphate.  
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Figure 2 Pre-squalene pathway of cholesterol biosynthesis. Involved enzymes: A: acetyl-CoA acetyltransferase B: 

HMG-CoA synthase C: HMG-CoA reductase D: mevalonate kinase E: mevalonate-P kinase F: mevalonate-PP 

decarboxylase G: isopentenyl-PP isomerase H: geranyl-PP synthase I:  farnesyl-PP synthase J: squalene synthase 

[12, 13]. 

The second part of cholesterol biosynthesis starts with the epoxidation and cyclization of 

squalene to form lanosterol. The core pathway from lanosterol to cholesterol involves nine 

different enzymes that are integral membrane-bound proteins of the endoplasmic reticulum 

[13]. These steps can proceed via C24–C25 unsaturated intermediates (Bloch pathway), or 

via the corresponding C24–C25 saturated intermediates (Kandutsch-Russell pathway) [13]. 

Both pathways begin with C14 demethylation followed by elimination of both C3 methyl groups. 

Final modifications of the double bonds lead to cholesterol (Figure 3). 
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Figure 3 Post-squalene pathway of cholesterol biosynthesis and involved enzymes. A: squalene epoxygenase B: 
2,3-oxidosqualene cyclase C: sterol C14-demethylase D: sterol C14-reductase E: methylsterol monooxygenase F: 

sterol 4α-carboxylate-3-dehydrogenase G: 3-keto steroid reductase H: sterol Δ8-Δ7-isomerase I: sterol Δ5-
desaturase J: sterol Δ7-reductase K: sterol Δ24-reductase [12-15]. 
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Several congenital diseases are associated with malfunctions in cholesterol biosynthesis or 

cholesterol distribution. The most common disorder is the Smith-Lemli-Opitz syndrome (SLOS) 

which is caused by a defect of sterol Δ7-reductase (Figure 3, J) [12, 16, 17]. This enzyme 

catalyzes the reduction of 7-dehydrocholesterol to cholesterol as final step of cholesterol 

biosynthesis which leads to an accumulation of 7-dehydrocholesterol in the Kandutsch-Russell 

pathway [12, 16, 17]. This disease is characterized by growth retardation, malformations and 

intellectual deficiencies [16]. Further examples for cholesterol biosynthesis associated 

diseases are Antley-Bixler-syndrome, CHILD-syndrome (Congenital Hemidysplasia with 

Ichthyosiform nevus and Limb Defects) and desmosterolosis [17]. An example for a disease 

associated with cholesterol distribution is Niemann-Pick type C disease (NPC). NPC is a 

severe neurodegenerative disease and is characterized by an accumulation of cholesterol and 

other lipids in endosomes [18]. This is due to a mutation of the NPC protein 1, which is 

mandatory for the release of the acquired cholesterol from the endosomes to the endoplasmic 

reticulum [11]. 

 

1.2.2. Oxysterols 

Oxysterols are phase 1 metabolites of cholesterol which are formed by hydroxylation of the 

ring structure or the side chain. Oxysterols are products of enzymatic hydroxylation and/or 

cholesterol autoxidation [19]. For example, 25-hydroxycholesterol is an autoxidation product 

of cholesterol, as well as a product of enzymatic hydroxylation (Figure 4) [19]. Oxysterols are 

formed by different CYP enzymes. One exception is cholesterol 25-hydroxylase, which is a 

member of a small enzyme class that uses diiron cofactors and is not a CYP enzyme [19-21]. 

The expression of the different enzymes and their corresponding oxysterols depends on the 

tissue. For example, cholesterol 24-hydroxylase is mainly expressed in neurons and sparsely 

in liver, while cholesterol 7α-hydroxylase is only expressed in liver [21]. In contrast cholesterol 

25-hydroxylase and cholesterol 27-hydroxylase can be found in many tissues [19, 21]. 

Especially sterol 27-hydroxylase has a broad substrate specificity and can form different 

oxysterols and plays a key role in steroid acid formation (Chapter 1.2.3) [19]. The major 

oxysterols and the respective enzymes of their biosynthesis are shown in Figure 4. Further 

oxysterols are for example C20-, C22-, or C6-hydroxylated sterols [22, 23]. 
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Figure 4 Oxysterol biosynthesis starting from cholesterol and the respective enzymesl, A: cholesterol 7α-
hydroxylase (CYP 7A1) B: sterol 27-hydroxylase (CYP27A1) C: cholesterol 24-hydroxylase (CYP46A1) D: 

cholesterol 25-hydroxylase [O]: autoxidation [22]. 

Oxysterols have specific biological functions, like cholesterol, they are localized in the cell 

membrane but with different orientation and seem to have a destabilizing effect on the 

membrane [8]. Furthermore, oxysterols are ligands of nuclear receptors like liver X receptor 

(LXR) [8, 24]. Due to this interaction they affect lipid homeostasis and show immunomodulatory 

effects [8, 24, 25]. A known malfunction in oxysterol genesis is, for example, 7α-hydroxylase 

deficiency, leading to higher cholesterol levels in serum and liver and a decrease of bile acid 

formation [21]. Sterol 27-hydroxylase deficiency is the cause of cerebrotendinous 

xanthomatosis (CTX), due to the key role of 27-hydroxylase in bile acid formation. This disease 

is characterized by a decrease of bile acid formation and elevated cholesterol and cholestanol 

levels in blood and tissues like the CNS, which can lead to progressive neurological 

dysfunction [21, 26]. 

 

1.2.3. Steroid acids 

Oxysterols are further processed to bile acids by hydroxylation of the ring structure and side 

chain modifications. The involved enzymes have a broad substrate specificity so the order of 

the different reaction steps may vary [21]. The possible pathways can be roughly divided into 

acidic, 24-hydroxylase-, 25-hydroxylase- and neutral pathway (Figure 5) [21]. In the acidic 

pathway, the side chain is first oxidized to form the carboxylic acid, and the ring structure 

modifications are performed afterwards. In the other pathways, the ring structure is modified 

first, followed by the side chain oxidation. About 75% of the metabolized cholesterol is 

processed via the neutral pathway, also known as classic pathway, and about 25% are 
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processed following the acidic pathway [21]. The first bile acids that are formed along these 

pathways are known as primary bile acids. Examples are cholic acid and chenodeoxycholic 

acid [21]. It is remarkable that the structure of the primary bile acids can vary between different 

mammalian species, like muricholic acid which can only be found in mice, and ursodeoxycholic 

acid which is characteristic for bears [21]. Bile acids play an important role in digestion. They 

are excreted by the liver into the gut and can solubilize hydrophobic dietary components like 

fat-soluble vitamins and enable their absorption [27]. The primary bile acids can be further 

processed by bacteria in the gut to form the so-called secondary bile acids, for example, 

lithocholic acid and deoxycholic acid [21, 27]. Most bile acids excreted from the liver are bile 

acids conjugated to glycine or taurine, which are more amphiphilic [21]. So, the bile acid pool 

of an organism consists of a variety of diverse bile acids and is noticeably different between 

the species. A lack of bile acids, for example due to 3β-hydroxy-Δ5-C27-steroid oxidoreductase 

(Figure 5, D) deficiency, leads to neonatal jaundice, liver enlargement and malabsorption of 

lipids and fat-soluble vitamins [21, 27].  
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Figure 5 Possible pathways of bile acid synthesis and the involved enzymes. grey: Structure variations arising from 
24- or 25-hydroxylase pathway. A: sterol 27-hydroxylase B: oxysterol 7α-hydroxylase (CYP 7B1) C: oxysterol 7α-
hydroxylase (CYP 39A1) D: 3β-hydroxy-Δ5-C27-steroid oxidoreductase E: sterol 12α-hydroxylase F: Δ4-3-
oxosteroid-5β-reductase G: 3α-hydroxysteroid dehydrogenase H: bile acid CoA ligase I: 2-methylacyl-CoA 
racemase J: branched-chain acyl-CoA oxidase K: D-bifunctional protein L: peroxisomal thiolase 2 M: 6β-
hydroxylase N: 7α-dehydroxylase [21, 28-30].  
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1.2.4. Neurosteroids 

Cholesterol side chain hydroxylation at C20 and C22 by cholesterol monooxygenase leads to 

side chain cleavage and the formation of the C21 steroid pregnenolone (Figure 6). 

Pregnenolone is the precursor for several classes of steroid hormones like progestagens, 

mineralocorticoids, glucocorticoids, androgens and estrogens.  

 

 

Figure 6 Neurosteroid biosynthesis starting from cholesterol and involved enzymes. A: cholesterol monooxygenase 

B: 3β-hydroxysteroid dehydrogenase C: steroid-17α-hydroxylase-17,20-lyase D: oxysterol-7α-hydroxylase E: 20α-

hydroxysteroid dehydrogenase F: steroid-5α-reductase G: 3α-hydroxysteroid dehydrogenase H: steroid-5β-

reductase I: 3β-hydroxysteroid dehydrogenase [31-34]. 

As hormones, these steroids can bind to intracellular steroid hormone receptors and thereby 

modulate the transcription of distinct genes. In this way they can unfold huge effects even at 

low endogenous levels. The term “neurosteroids” originally referred to steroids that were 

synthesized within the nervous system [35, 36]. Later, this term was also used to describe the 
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neuromodulatory function of neurosteroids [37] and the additional term “neurosterols” was 

introduced to describe C27 neurosteroids [38]. In this work, the term “neurosteroids” refers to 

C19 and C20 steroids with focus on progestagens and androgens. These steroids do not only 

take effect via steroid hormone receptors, but can also bind to neurotransmitter receptors like 

γ-aminobutyric acid (GABAA) receptors [22, 35, 37, 39], N-methyl-D-aspartate (NMDA) 

receptors [22, 35] or sigma receptors [35]. They are known to play an important role in brain 

development, neuronal growth and plasticity [35]. In addition, they show neuroprotective 

effects, for example, after injuries or ischemia [35] and alterations in neurosteroids genesis are 

associated with neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease 

and multiple sclerosis [40].   

 

1.2.5. Sterol sulfates 

The hydroxyl group of sterols can be sulfo-conjugated by sulfotranferases [41]. Two different 

human hydroxysteroid sulfotransferases, SULT2A1 and SULT2B1, see Figure 7, are known 

[41]. The most important substrate of SULT2A1 is dehydroepiandrosterone with its 3β-hydroxyl 

group, but also steroids with 3α-, 17β- or phenolic hydroxyl groups can serve as substrate for 

SULT2A1 [41]. The enzyme SULT2B1 and especially the subtype SULT2B1b selectively 

sulfonates C3-hydroxy groups of C27 sterols [41, 42]. 

 

Figure 7 Biosynthesis of sterol sulfates. A: sulfotransferase (SULT2A1) B: sulfotransferase (SULT2B1b) [31, 41-
43]. 

In general, sterol sulfates cannot bind to intracellular steroid hormone receptors as the 

respective unconjugated sterols [44], but they still have inherent biological activities [45]. So, 

the sulfo-conjugates of the aforementioned neurosteroids are known to modulate GABAA 

receptors [46], NMDA receptors [46, 47] and melastatin-like transient receptor potential 

channels (TRPM1 and TRPM3) [46]. Sterol sulfates contribute significantly to reproduction [48] 

and cognitive performance [49]. Alterations in SULT activities are also associated with 

Alzheimer’s disease [50]. Cholesterol sulfate as C27 sterol sulfate is, beside 

dehydroepiandrosterone sulfate, the most abundant sterol sulfate in humans [42]. It modifies 

cell membrane stability and modulates the function of blood platelets [42, 51].  
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1.3.  Steroids and Alzheimer’s disease 

At the “Deutsches Zentrum für neurodegenerative Erkrankungen” (DZNE), the research 

interest of the group of Prof. Dr. Harald Steiner is the enzyme γ-secretase, an enzyme 

associated with Alzheimer’s disease (AD) [52]. The amyloid precursor protein (APP) is a 

transmembrane glycoprotein and is amongst others cleaved by β-secretase and γ-secretase 

to form amyloid β (Aβ) peptides [52]. Depending on the length of the Aβ fragment, these 

peptides could aggregate and form extracellular plaques, which are characteristic for AD. The 

major species Aβ 1-40 and some shorter Aβ fragments aggregate less likely as the longer 

species Aβ 42 [53, 54]. So, the specific cleavage site of the γ-secretase is responsible for 

plaque formation and the factors which modulate the γ-secretase activity are therefore under 

investigation [53, 55]. In the group of Prof. Dr. Steiner, the impact of different steroids on γ-

secretase activity is investigated. They observed that free sterols and their corresponding 

sulfates can show contrary activities. Also Vaňková et al. [31] showed different concentrations 

of sterols and sterol sulfates in women with AD compared to healthy women. But not only 

neurosteroids and sterol sulfates are known to affect the γ-secretase, also steroid acids [29], 

cholesterol precursors [56, 57] and oxysterols [58] are under investigation. It remains unclear 

if γ-secretase is modulated via direct binding sites for steroids, or if an altered steroid 

composition in the membrane can influence γ-secretase activity because of the modified 

microenvironment. Effects of cholesterol binding to APP [59], membrane thickness [60] and 

the formation of lipid rafts [61] were already demonstrated. 

 

1.4.  Steroid analysis 

The example of Alzheimer’s disease illustrates the multiple ways steroids are involved in the 

development of diseases. To learn more about these mechanisms a broad view on all the 

steroid classes in specific tissues or experimental cell lines is necessary. This kind of steroid 

analysis is hampered by the very similar structures within the single classes, for example 

pregnanolone and allopregnanolone, and the great differences in concentration which can vary 

by a factor of about 100,000 like cholesterol (~ 10 µg/mg) versus pregnenolone (< 0.1 ng/mg) 

in brain tissue (see Chapter 4). Some of the first analytical procedures, that are still used today, 

are radioimmunoassays (RIA). These play an important role in clinical diagnosis but show 

limited sensitivity and specificity, as cross-reactivities to similar steroids cannot be excluded 

[62-64]. In addition, these assays are not capable of giving information about the presence of 

possibly unexpected accumulating steroids. Such pitfalls can be avoided by mass 

spectrometry (MS) combined with chromatographic systems like gas chromatography-mass 

spectrometry (GC-MS) [62], liquid chromatography-mass spectrometry (LC-MS) [62] and even 

supercritical fluid chromatography-mass spectrometry (SFC-MS) [65]. The most popular 
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systems are LC-MS and GC-MS which have their own specific strengths. The “older” 

technology GC impresses with its huge separation power and, therefore, significant specificity 

even for isobaric steroids [66]. GC-MS systems usually apply electron ionization which is 

especially effective for lipophilic analytes and results in characteristic and highly reproducible 

mass spectra [64, 67]. This enables identification of unexpected compounds using MS-spectra 

libraries [64, 66]. But not every steroidal compound can by analyzed with GC because they 

need to be vaporable without decomposition. Thus, steroids are usually derivatized before GC-

MS analysis, and conjugated steroids, for example, steroid sulfates, also need to be cleaved 

before GC-MS analysis [64]. This makes sample preparation time-consuming and fault prone. 

LC-MS has its strengths in shorter run times and faster sample preparation [62, 64]. However, 

the shorter run time leads to a limited chromatographic resolution [62], so separation of very 

similar compounds cannot always be accomplished. In addition, the ionization of the usually 

applied electro spray procedure is not very effective for lipophilic steroids [64, 67]. Therefore, 

derivatization is also often used in LC-MS procedures [68]. On the other hand the more polar 

analytes like steroid acids or sterol sulfates are easily detected with LC-MS and can be 

analyzed directly without cleavage [64]. 
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2. Topic 

 

Topic of this work was the development of a GC-MS based analytical procedure, to analyze 

the steroidome in tissue and cell samples. The term steroidome covers the whole set of 

steroids found in an organism or tissue [69]. Information about the steroidome is necessary to 

get a better understanding of the underlying pathomechanisms of diseases like, for example, 

Alzheimer’s disease. Hence, a comprehensive analytical method, that gives an as broad as 

possible view on the sterolome, is needed. Nevertheless, there was a focus on some steroids 

of special interest. Those steroids were defined by the group of Prof. Dr. Steiner at DZNE, 

based on their previous experimental results. Consequently, the method ought to include 

specific neurosteroids, oxysterols, sterol sulfates, steroid acids, but should still provide 

information about accumulating unexpected steroidal compounds. The method should be 

applied on biological samples like mouse brain or cultured cells. In order to achieve this goal 

some problems needed to be solved. As mentioned before the sterol sulfates are not vaporable 

without decomposition, so for GC-MS analysis a suitable method for deconjugation was 

required. In addition, the sterol sulfates needed to be separated from unconjugated sterols 

before deconjugation. But also unconjugated steroids needed some additional sample 

preparation before GC-MS analysis. To improve the peak shape and the sensitivity, hydrophilic 

functional hydroxyl groups are frequently derivatized to trimethylsilyl (TMS) ethers using a 

mixture of N-methyl-N-trimethylsilyl acetamide (MSTFA) and trimethylsilyl imidazole (TSIM). 

But this well-established procedure [14, 70, 71] was not sufficient for all steroids of interest, 

especially those with keto groups were subject to artefact formation [72]. So, an additional 

derivatization of the keto groups was necessary. For bile acid analysis an appropriate sample 

preparation procedure including carboxylate derivatization was needed, too. In addition, these 

different steroid classes had to be extracted from the tissue and separated from each other 

before derivatization. The main task of this work was the development of a suitable sample 

preparation procedure which ensured all these requirements. As mentioned before, the 

endogenous levels of some steroids of interest are very low (e.g. pregnenolone < 0.1 ng/mg). 

The well-established measurement in scan mode on an ion trap- (IT-) MS system [14, 66, 70, 

71] could not provide the required sensitivity and therefore, the development of an additional 

method in dynamic multiple reaction monitoring (dMRM) mode on a triple quadrupole- (QqQ-) 

MS system was also part of this work. 
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3. Sterol sulfate analysis 
 

J. Junker, I. Chong, F. Kamp, H. Steiner, M. Giera, C. Müller, F. Bracher, Comparison of 

strategies for the determination of sterol sulfates via GC-MS leading to a novel 

deconjugation-derivatization protocol, Molecules, 24 (2019) 2353 

 

3.1.  Summary 

The impact of steroids and sterol sulfates on the γ-secretase activity is of special interest in 

the group of Prof. Dr. Steiner at DZNE. In their in vitro assays sterol sulfates have shown 

contrary effects compared to their unconjugated counterparts. These findings, in addition to 

reports of divergent sulfotransferase activity in AD patients [31, 50], show the necessity of an 

analytical method which enables the analysis of steroids as well as sterol sulfates in biological 

samples. As mentioned in Chapter 1.4, GC-MS is the analytical method of choice especially 

for untargeted “screening” analysis. However, the analysis of sterol sulfates with GC-MS is 

challenging, because these sterol conjugates are not vaporable without decomposition. For 

this reason, the sterol sulfates need to be cleaved and the free sterol must be derivatized to 

achieve sufficient sensitivity and reproducibility. In the following article we compared and 

discussed different strategies for deconjugation and derivatization of sterol sulfates on the 

basis of eight exemplary sterol sulfates. Therefore, “older” literature methods [73, 74] for 

chemical sulfate cleavage were adapted and modified for the analysis of smaller sample 

amounts. Also, an enzymatic procedure was investigated as a possible alternative to the 

chemical cleavage. The resulting free sterols were then converted into TMS or MO-TMS 

(methyloxime-trimethylsilyl) derivatives (Figure 8). Additionally, the direct derivatization using 

trifluoroacetic anhydride (TFAA) and the resulting trifluoroacetyl (TFA) derivatives were 

examined. I was also able to identify another direct derivatization procedure that was not 

previously reported. This novel deconjugation-derivatization protocol utilized the reagent O-

methylhydroxylamine hydrochloride (2% in pyridine). This reagent is usually used for 

derivatization of the keto groups and has shown to lead simultaneously to the cleavage of the 

sulfate esters. This could be explained with the relatively high nucleophilic properties of O-

methylhydroxylamine due to the so called α-effect. This new method was optimized and 

compared to the solvolysis and MO-TMS derivatization procedure (both well-established). All 

these strategies and the associated advantages and limitations were discussed in detail. 

Especially the discovery of the direct MO-TMS derivatization could simplify future sterol sulfate 

analysis with GC-MS. This method enables the deconjugation of sterol sulfates regardless of 

C5-C6 saturation or C3-configuration. Beside this wide application range, the finally resulting 

MO-TMS derivatives have excellent chromatographic properties and give meaningful mass 
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spectra that are frequently used and therefore can be found in many mass spectral libraries. 

This new method was an important element of the final sample preparation protocol for 

simultaneous analysis of neutral steroids, steroid acids and sterol sulfates (Chapter 4).  

 

Figure 8 Graphical abstract of the original article: Comparison of strategies for the determination of sterol sulfates 
via GC-MS leading to a novel deconjugation-derivatization protocol 

Some preliminary experiments focusing on the sterol sulfate pregnenolone sulfate have 

already been part of my diploma thesis [75]. These experiments included TMS derivatization, 

TFA derivatization, solvolysis with dioxane/acetic acid and enzymatic cleavage. The 

experiments on the other seven exemplary sterol sulfates and the use of O-methyl 

hydroxylamine hydrochloride for derivatization of the keto groups as well as the described 

novel direct deconjugation/derivatization procedure were part of my doctoral thesis.  

 

3.2.  Personal contribution 

My contributions to this article were the previous research and conduction of preliminary 

experiments. Also, conceptualization, the final methodology and designs for the reported 

experiments were part of my contribution. The subsequent performance of the experiments, 

as well as the analysis of the measurement data, formal analysis and data curation was done 

by me. Finally, visualization of the experimental results, writing of the original draft as well as 

reviewing and editing were my contribution to this publication. 
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Abstract: Sulfoconjugates of sterols play important roles as neurosteroids, neurotransmitters, 
and ion channel ligands in health and disease. In most cases, sterol conjugate analysis is 
performed with liquid chromatography-mass spectrometry. This is a valuable tool for routine 
analytics with the advantage of direct sterol sulfates analysis without previous cleavage 
and/or derivatization. The complementary technique gas chromatography-mass spectrometry 
(GC-MS) is a preeminent discovery tool in the field of sterolomics, but the analysis of sterol 
sulfates is hampered by mandatory deconjugation and derivatization. Despite the difficulties 
in sample workup, GC-MS is an indispensable tool for untargeted analysis and steroid 
profiling. There are no general sample preparation protocols for sterol sulfate analysis using 
GC-MS. In this study we present a reinvestigation and evaluation of different deconjugation 
and derivatization procedures with a set of representative sterol sulfates. The advantages and 
disadvantages of trimethylsilyl (TMS), methyloxime-trimethylsilyl (MO-TMS), and 
trifluoroacetyl (TFA) derivatives were examined. Different published procedures of sterol 
sulfate deconjugation, including enzymatic and chemical cleavage, were reinvestigated and 
examined for diverse sterol sulfates. Finally, we present a new protocol for the chemical 
cleavage of sterol sulfates, allowing for simultaneous deconjugation and derivatization, 
simplifying GC-MS based sterol sulfate analysis. 
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1. Introduction 

The sulfoconjugates of sterols, also called sterol sulfates, are synthesized in vivo by conversion of the 

respective sterols by specific cytosolic sulfotransferase enzymes (SULT) [1,2]. These sterol sulfates are 

much more than just terminal stages of steroid metabolism and reservoir of their free analogues [2,3]. 

Several sterol sulfates are known to activate, modulate and inhibit specific enzymes and ion channels. 

For example, pregnenolone sulfate (6), dehydroepiandrosterone sulfate (2) and epipregnanolone sulfate 

are known to modulate neurotransmitter receptors like the γ-aminobutyric acid type A (GABAA) and 

the N-methyl-d-aspartate (NMDA) receptors [4,5]. Furthermore, epipregnanolone sulfate and 

pregnenolone sulfate (6) are activators of melastatin-like transient receptor potential (TRPM) ion 

channels [3,4]. Steroid sulfates can also bind to membrane-associated G-protein coupled receptors 

(GPCRs) and activate MAP kinase cascade or phospholipase C [6]. Amongst other functions, 

cholesteryl sulfate (7) interferes with blood coagulation by activating Factor XII and inhibiting 

the serine proteases thrombin and plasmin [7,8]. The balance between sulfatation and 

desulfatation is fundamental for the tissue distribution and function of sterols and its 

dysregulation is involved in many diseases [9]. For instance, pregnenolone sulfate (6) and 

dehydroepiandrosterone sulfate (2) have been reported to be decreased in the brains of 

Alzheimer’s disease (AD) patients [10]. Altered levels of pregnenolone sulfate (6) and several 

other sterol conjugates have also been found in the blood female AD patients [11], which might 

be related to an attenuated activity of SULT2A1 in the adrenal zona reticularis [12].  

The analysis of sterol sulfates is hampered by the highly similar chemical structures of the 

sterol sulfates and their low abundance in biological samples. Several methodically different 

approaches are being applied in sterol sulfate analysis, the most common being 

radioimmunoassays (RIA), gas chromatography-mass spectrometry (GC-MS) and liquid 

chromatography-(tandem)mass spectrometry (LC-MS(/MS)). The major concerns about RIA 

are the need for using radioactive material as well as the low selectivity and possible cross-

reactivity of similar analytes in addition to matrix effects [13]. In the last decade LC-MS(/MS) 

was the predominantly-used method for sterol conjugate analysis [14]. In contrast to GC-MS, 

as the gold standard of neutral cholesterol metabolites analysis [15], LC-MS(/MS) provides the 

possibility to analyze the non-volatile sterol conjugates without prior deconjugation [13,16,17]. 

Moreover, faster workup without deconjugation and/or derivatization and shorter run times 

of liquid chromatography makes it a high throughput method for targeted analysis ideally 

suited for clinical purposes [13,14]. Nevertheless, LC-MS(/MS) also has disadvantages such as 

limited chromatographic resolution and detection by electrospray ionization (ESI) mass 

spectra, that contain limited structural information due to low fragmentation rates [13,18]. In 

these aspects GC-MS cannot be replaced by LC-MS, since its high chromatographic resolution 

and the option for recording information-rich electron ionization (EI) mass spectra makes GC-

MS a powerful tool for untargeted analyses and steroid profiling [13,16–19]. In particular, EI 

mass spectra of derivatives like sterol trimethylsilyl (TMS) ethers and methyloxime-

trimethylsilyl (MO-TMS) ethers provide considerable structural information which can help 
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to identify unknown steroidal analytes and can be used for suspected-target screening 

[18,20,21]. 

While these derivatization methods are well established for unconjugated steroids (free 

sterols including keto sterols, Figure 1) [20,22], there is no general procedure for the analysis 

of sterol sulfates using GC-MS. There are many different approaches published for 

deconjugation including enzymatic cleavage using sulfatases or chemical solvolysis, but an 

universally applicable method is lacking [23,24]. We discuss here in detail the most commonly 

used methods for deconjugation and derivatization for the GC-MS based analysis of sterol 

sulfates (Figure 1), and provide a significantly simplified procedure developed in the course 

of our investigations, allowing for simultaneous deconjugation and derivatization. 

  
Figure 1. Strategies for sterol sulfate determination utilizing gas chromatography-mass spectrometry (GC-

MS). “Two step” methods make use of a prior deconjugation step to form the free (unconjugated) sterol and 

a subsequent derivatization of the hydroxyl and, for methyloxime-trimethylsilyl (MO-TMS) derivatives, also 

the keto group. Direct derivatization refers to simultaneous cleavage of the sterol sulfate and derivatization. 

The deconjugation and derivatization strategies are shown with pregnenolone sulfate (6) here. TMS = 

derivatization to pregnenolone trimethylsilyl ether, MO-TMS = deconjugation/derivatization to pregnenolone 

methyloxime-trimethylsilyl ether, TFA = deconjugation/derivatization to pregnenolone trifluoroacetyl ester. 

 

Furthermore, we present a comprehensive re-investigation of published methods 
demonstrating the scope and limitations of different derivatization procedures including 
direct acylation and formation of TMS and MO-TMS ethers. Additionally, we present a new 
protocol which allows the direct formation of MO-TMS derivatives from sterol sulfates, 
effectively combining sulfate ester cleavage and the formation of methyloximes (MO). The 
residual free hydroxyl groups can then be selectively silylated in a second step. The 
experiments were carried out with a representative collection of eight sterol sulfates with 
and without keto groups including 3α- and 3β-sterol sulfates and ∆5-unsaturated and 
saturated sterols. The structures of the model analytes are shown in Figure 2. 
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Figure 2. Overview of the model analytes: 1 androsterone sulfate, 2 dehydroepiandrosterone sulfate, 3 

epiandrosterone sulfate, 4 allopregnanolone sulfate, 5 pregnanolone sulfate, 6 pregnenolone sulfate, 7 cholesterol 
sulfate, 8 25-hydroxycholesterol sulfate, and 9 cholestane (internal standard, IS). 

2. Results 

2.1. Derivatization Strategies for Free Sterols (Deconjugated Sterol Sulfates) 

2.1.1. Trimethylsilyl (TMS) Derivatives 

The most popular derivatization method for sterols is the formation of sterol TMS ethers 
[22,25–30]. For this derivatization free hydroxyl groups are required, so in the case of sterol 
sulfates a prior deconjugation step is mandatory. Available deconjugation procedures are 
subject of Section 2.3. 

For silylation several reagents with different silyl donor abilities are available. To ensure a 
complete derivatization even of sterically hindered tertiary hydroxyl groups, the addition of 
a catalyst like N-trimethylsilylimidazole (TSIM) and trimethyliodosilane and/or an auxiliary 
base like pyridine is necessary [25]. An established silylation mixture for complete 
derivatization of secondary and tertiary hydroxyl groups even at room temperature is N-
methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) with 10% TSIM [20,31]. A known 
difficulty in TMS derivatization is the presence of keto groups, because the formation of 
artifacts (identified as enol TMS ethers) can be observed under these conditions [32]. We 
investigated the extent of the reported artifact formation for the exemplary keto sterol 
pregnenolone. The observed total ion chromatogram (TIC) in Figure 3 shows one peak (I) for 
pregnenolone with only one TMS ether (silylated 3-OH) and three (II–IV) artifacts 
corresponding to pregnenolone derivatives with an additional enol TMS ether. The plausible 
structures of these derivatives are shown in Figure 3c [33]. 

One attempt to avoid the formation of mixtures of mono- and bis-silylated products has 
been the application of a stronger silylating reagent which should enhance the enol TMS 
formation. For this purpose trimethyliodosilane can be used. This reactive reagent is generated 
in situ in a mixture of MSTFA and ammonium iodide. A reducing agent such as 
mercaptoethanol is further added in order to avoid undesired side reactions resulting from 
accidentally formed iodine [33–38]. This method requires much effort for optimization 
depending on the analytes of interest [36]. In addition also with this procedure artifacts can be 
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observed, resulting from incorporation of mercaptoethanol [34,35]. In conclusion, silylation of 
keto sterols is cumbersome in most cases. 

2.1.2. Methyloxime-Trimethylsilyl (MO-TMS) Derivatives 

The problematic (and frequently inevitable) enol TMS ether formation of keto sterols can 
be avoided with a two-step derivatization protocol. In this approach the keto groups are 
converted into methoxylamine (synonym: oxime methyl ether; MO) derivatives first, typically 
using 2% O-methylhydroxylamine hydrochloride (m/v) in pyridine (Scheme 1). In a second 
step the hydroxyl groups can be selectively transformed into TMS ethers using the methods 
described in Section 2.1.1 [20,32,34,39]. 

However, with this method two isomeric MO derivatives (syn, anti) can be formed, which 
are partially or fully separated by GC giving two peaks with the same fragmentation patterns 
[32,40,41]. We were able to convert all exemplary keto sterol sulfates into their respective MO-
TMS derivatives after solvolysis (see Section 2.3). The acquired chromatogram in Figure 4a 
shows only one peak for each sterol derivative and no additional peaks or peak shoulders due 
to syn-/anti-isomers of the MO residues were observed. With this procedure keto sterols 
(derived from sulfates 1–6) and sterols without keto groups (derived from 7, 8) can be analyzed 
likewise. 
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Figure 3. (a) Total ion chromatogram (TIC) of pregnenolone-TMS derivatives (containing cholestane (IS)). (b) Mass 

spectra of resulting pregenolone TMS ethers peaks (I)–(IV) after derivatization with N-methyl-N-

trimethylsilyltrifluoroacetamide (MSTFA)/N-trimethylsilylimidazole (TSIM) (9:1). (c) Structures of pregnenolone-

mono-TMS ether (I) and pregnenolone-bis-TMS ethers (II–IV) [33]; for chromatographic and mass spectral 

characteristics see Supplementary Table S1. 
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Figure 4. (a) Total ion chromatogram (TIC) of the eight sterol (MO-)TMS ethers and internal standard (IS). Analyzed 
sterols: 1 androsterone sulfate, 2 dehydroepiandrosterone sulfate, 3 epiandrosterone sulfate, 4 allopregnanolone 
sulfate, 5 pregnanolone sulfate, 6 pregnenolone sulfate, 7 cholesterol sulfate, 8 25-hydroxycholesterol sulfate, and 
9 cholestane (IS). * Impurity of silylating reagent; (b) mass spectrum of pregnenolone MO-TMS ether; (c) mass 
spectrum of cholesterol-TMS ether; (d) proposed fragmentations of pregnenolone MO-TMS ether according to 
literature [29]. For chromatographic and mass spectral characteristics see Supplementary Table S1. 

The mass spectra of these derivatives provide much structural information. They show the 
molecular ion peaks and characteristic fragmentations, which can be seen in Figure 4b,c. As 
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exemplarily shown for pregnenolone MO-TMS ether in Figure 4d the molecular ion [M]+ is 
observable, and the base peak m/z [M − 15 − 16]+ clearly indicates the fragmentation of the MO 

moiety. The ion m/z [M − 90]+ is typical for the loss of trimethylsilanol and the ions m/z [M − 

129]+ as well as m/z 129 are characteristic for ∆5-sterol TMS ethers referring to the loss of 
trimethylsilanol from C-3 together with C-1, C-2 and C-3 [42]. 

2.2. Direct Deconjugation/Derivatization of Sterol Sulfates to Give Trifluoroacetyl (TFA) Derivatives 

The problematic deconjugation step of sterol sulfates (for details see Section 2.3) can in 
certain cases be avoided if O-perfluoroacylation is chosen instead of TMS derivatization. The 
formation of perfluoroacyl derivatives is a fast and easy way to obtain volatile derivatives 
directly from sterol sulfates in one single operation. This method was first described by 
Touchstone and Dobbins [43] who used heptafluorobutyric anhydride (HFBA) in benzene to 
form the 3-O-acylated products directly from estriol sulfate and dehydroepiandrosterone 
sulfate (2). Also, Liere et al. [44] and Schumacher et al. [5] used successfully HFBA for the 
direct derivatization of 2 and 6 without prior sulfate deconjugation in one single step. 

Further investigations with different anhydrides, sterol sulfates and reaction conditions 
were performed by Murray and Baille [45], who observed that this direct derivatization 
protocol is limited to sulfates derived from ∆5-sterols and estrogens. They also showed that 
there is no need for using additional solvents like benzene, and demonstrated that the 
supplement of the auxiliary base pyridine, which is normally used to enhance the esterification 
of free sterols, even inhibits the reaction with sterol sulfates [45]. Complete derivatization of 
the ∆5-sterol sulfate dehydroepiandrosterone sulfate (2) was further obtained using 
trifluoroacetic anhydride (TFAA) without additional solvent reacted at 70 ◦C for 30 min. The 
authors [45] proposed an acid-catalyzed reaction which is shown in Scheme 2. 

  
Scheme 2. Mechanism for the acid-catalyzed reaction of ∆5-sterol sulfates with trifluoroacetic anhydride 

according to Murray and Baille [45]. 

We examined the scope of this direct derivatization protocol with the eight exemplary 
sterol sulfates shown in Figure 2. The results of this experiment are shown in Figure 5 and 
confirm the previously claimed limitation of this method to ∆5-sterol sulfates. The ∆5-
unsaturated sterol sulfates 2, 6, and 7 showed good results while the saturated sterol sulfates 
1, 3, 4, and 5 did not undergo noteworthy conversion. An exception is the ∆5-unsaturated 25-
hydroxycholesterol sulfate (8) whose TFA derivative was detected only in trace amounts 
(Figure 5a). The peak of analyte 8 in the chromatogram (Figure 5b) shows a peak shoulder and 
the corresponding mass spectra indicate an incomplete derivatization. The addition of 
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pyridine is not useful in this case because it would inhibit the deconjugation of the sulfated 
hydroxyl group at C-3 at the same time [45]. 

 

Figure 5. (a) Bar chart with mean base peak areas and standard deviations (n = 6) of the sterol TFA esters 

obtained by treatment of sterol sulfates 1–8 with trifluoroacetic anhydride. (b) Total ion chromatogram (TIC) 

of the eight sterol TFA esters and the internal standard, derived from: 1 androsterone sulfate, 2 

dehydroepiandrosterone sulfate, 3 epiandrosterone sulfate, 4 allopregnanolone sulfate, 5 pregnanolone 

sulfate, 6 pregnenolone sulfate, 7 cholesterol sulfate, 8 25-hydroxycholesterol sulfate, and 9 cholestane (IS). 

(c) Mass spectrum of pregnenolone TFA ester ([M]+ m/z 412). (d) Mass spectrum of cholesterol TFA ester ([M]+ 

m/z 482). For chromatographic and mass spectral characteristics see Supplementary Table S1. 

Another weakness of this approach is the missing molecular ion of ∆5-sterol acyl derivatives 
[26,42,46,47] which is evident from the mass spectra shown in Figure 5c,d. This fact may lead 
to difficulties in identification of unknown compounds. Besides the missing molecular ion 
peak and the incomplete derivatization for some sterols, the residual TFA amounts in the 
samples lead to column bleeding and a shorter shelf life of the GC capillary column. 
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2.3. Strategies for Sterol Sulfate Deconjugation 

2.3.1. Enzymatic Cleavage of Sterol Sulfates 

For the analysis of sterol sulfates as their corresponding TMS derivatives by GC-MS free 
hydroxyl groups of the unconjugated sterols are mandatory. Hence, an additional step for 
deconjugation is required. The enzymatic cleavage of sterol conjugates is a frequently used 
procedure especially in analysis of anabolic androgenic steroids in urine samples [23,24,48]. 
For glucuronides enzymatic cleavage utilizing the highly specific E. coli β-glucuronidase is the 
gold standard for steroid analysis in urine samples [23]. For the cleavage of sterol sulfates 
enzyme preparations from molluscs are commonly used, because these contain sulfatase 
activity beside β-glucuronidase activity. The most common preparations are from Helix 

pomatia, but also Patella vulgata, Haliotis spp. and Ampullaria are current sources [24]. These 
sulfatases are known to hydrolyze sulfates of 3β-hydroxy-∆5-sterols, 3β-hydroxy-5α-sterols, 
and 3α-hydroxy-5β-sterols, but fail to cleave 3α-hydroxy-5α-sterol sulfates [39,49]. Another 
known problem is the conversion and degradation of sterols especially by Helix pomatia 

preparations, which contain additional enzymes with various activities [24,25,28]. Due to these 
limitations there is no general procedure available for enzymatic cleavage of sterol sulfates. 
Gomes et al. [24] present several published procedures utilizing different enzymes, buffers 
and reaction conditions. We adopted the method described by Xu. et al. [50] with the 
difference that we used an aqueous solution of the sterol sulfates instead of a urinary sample. 
Under the described conditions (Section 5.3.4) we obtained only partial hydrolysis of 
dehydroepiandrosterone sulfate (2), a 3β-hydroxy-∆5-sterol sulfate, and epiandrosterone 
sulfate (3), a 3β-hydroxy-5α-sterol sulfate, with poor reproducibility. The other sterol sulfates 
in the experiment did not show any measurable hydrolysis. Variations of the buffer system 
(acetate buffer pH 7, phosphate buffer pH 5, 7, and 8) and reaction conditions (35 ◦C for 4 h 
and 20 h, 55 ◦C for 4 h and 20 h) did not improve our results. Hence, as optimization of the 
hydrolysis conditions is rather complex [48] and many sulfate conjugates (e.g., androsterone 
(1), a 3α-hydroxy-5α-sterol sulfate) are known to be resistant to enzymatic hydrolysis [39,49], 
this method seems not to be suitable for the untargeted analysis of sterol sulfates. 

2.3.2. Chemical Cleavage of Sterol Sulfates 

An alternative to the enzymatic hydrolysis is the chemical hydrolysis or solvolysis. 
Traditionally acidic hydrolysis at elevated temperatures was used for deconjugation of sterol 
sulfates. But the drastic conditions that are required for this hydrolysis includinghigh amounts 
of mineral acid and refluxing, can lead to degradation or transformation of some sterols [51–
53]. In turn, solvolysis under mild conditions is preferred and can be achieved by extracting 
the sterol sulfates from an acidified (with sulfuric acid) aqueous sample with ethyl acetate and 
storing this moist organic phase for 24 h at 39 ◦C [54] or with trimethylchlorosilane in methanol 
(methanolysis) [30]. The ability of oxygen-containing solvents, especially ethers, to cleave 
sterol sulfates in presence of minor amounts of water and acid was investigated in 1958 by 
Burstein and Lieberman [55]. They proposed an acid-catalyzed mechanism for the solvolysis 
(Scheme 3) in oxygen containing solvents, like 1,4-dioxane [55]. Having examined several 
published protocols, we found the solvolysis in 1,4-dioxane to be a particularly effective and 
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mild method. It is applicable for both 3α- and 3β-sterol sulfates as well as for sulfates derived 
from saturated and unsaturated sterols [55,56]. 

To examine the scope of solvolysis we modified a method published by Hutchins and 
Kaplanis [57] who applied 1% acetic acid in 1,4-dioxane under reflux overnight (here: ≤6 h, 100 
◦C; see Section 5.3.5.1). This solvolysis worked for every sterol sulfate in this experiment 
regardless of the configuration at C3 and presence of a ∆5-double bond. The experiments 
revealed the best reaction time for solvolysis was 3 h for the entire set of tested sterol sulfates. 
The optimum reaction times for solvolysis for individual sterol sulfates, shown in Figure 6a 
and Supplementary Table S2, vary between 3 h and 4 h. The solvolyzed sterol sulfates were 
measured as their MO-TMS derivatives (two-step derivatization as described in Section 2.1.2). 

 
Scheme 3. Mechanism of the acid-catalyzed solvolysis of sterol sulfates in 1,4-dioxane proposed by 
Burstein and Lieberman [55]  
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Figure 6. Determination of (keto-)sterol sulfates 1–8 as (MO-)TMS derivatives (a) with and (b) without 

previous sulfate solvolysis step (with 1% acetic acid in 1,4-dioxane). The indicated time refers to the duration 

of solvolysis prior to MO-TMS derivatization (for ”Solvolysis and derivatization”, (a)) or to the incubation 

with O-methylhydroxylamine solution (for ”Simultaneous deconjugation/MO derivatization”, (b)). The 

results obtained for each individual sterol sulfate under the different conditions are shown as relative peak 

areas [%] ± standard deviation (n = 6); the mean value of all steroids for every time point is shown in the 

background (grey), the best conditions for all tested sterol sulfates are marked as “Best condition”. The 

maximum recorded peak area for each sterol derivative within this experiment was set as 100%. Analyzed 

sterols: 1 androsterone sulfate, 2 dehydroepiandrosterone sulfate, 3 epiandrosterone sulfate, 4 

allopregnanolone sulfate, 5 pregnanolone sulfate, 6 pregnenolone sulfate, 7 cholesterol sulfate, and 8 25-

hydroxycholesterol sulfate. 

 

Further experiments surprisingly revealed a possibly new form of chemical cleavage. Sterol 
sulfate deconjugation was found to be a side effect of the first derivatization step, the 
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methyloxime (MO) formation of the keto groups. We examined scope and efficiency of this 
new method for simultaneous cleavage and MO derivatization of sterol sulfates in additional 
experiments. To this end, eight sterol sulfates 1–8 (Figure 2) were incubated with O-
methylhydroxylamine solution for different times (0.5 h–6 h; see Section 5.3.5.2) without 
previous solvolysis, then silylated, and the results were compared with the results of the 
solvolysis approach. This comparison is shown in Figure 6b, and Supplementary Table S2. In 
conclusion, we found that the acidic solvolysis step is dispensable for all investigated sterol 
sulfates. Optimal results for all analytes under investigation, using our new simultaneous 
deconjugation/MO derivatization protocol, were obtained after 4 h incubation with O-
methylhydroxylamine solution. The optimum conditions of this simultaneous 
deconjugation/MO derivatization method for each individual sterol sulfate, shown in Figure 
6b and Supplementary Table S2, vary between 3 h and 6 h. Two criteria were employed for 
evaluation of optimal conditions, on the one hand the relative peak area was taken as indicator 
for the degree of deconjugation, on the other hand the standard deviation (SD) should be as 
small as possible. 

Figure 6a shows that solvolysis is a reliable method which achieves the best results for most 
of the tested sterol sulfates (100% is the best result achieved for individual sterols, not the 
recovery). The disadvantage of solvolysis is the additional workup step, because 
derivatization including methyloxime formation for 0.5 h, if keto sterols are analyzed, and 
silylation has to be performed in addition to the solvolysis step. This extra deconjugation 
procedure can be avoided in the approach with simultaneous deconjugation/MO 
derivatization. In this case, incubation for 4 h achieves the best results for most of the tested 
sterol sulfates. The peak areas achieved under these conditions are similar to those obtained 
with solvolysis with the advantage of less workup efforts. 

Which method should be preferred is dependent on the target analytes. If sterols without 
keto groups are analyzed solely, a simplified approach with solvolysis and subsequent 
silylation is advisable. If keto sterols are determined it depends on the particular sterols, for 
example for dehydroepiandrosterone sulfate (2) better results can be achieved with the 
simultaneous deconjugation/MO derivatization protocol, whereas allopregnanolone sulfate 
(4) can be cleaved with solvolysis more effectively. 

3. Discussion 

We investigated the scope and limitations of most of the commonly used procedures including 

direct acylation and formation of TMS and MO-TMS ethers. The advantages and 

disadvantages of these methods are summarized in Table 1. 

Surprisingly, we found that in the course of the methoximation of keto sterol sulfates, 
originally intended only to protect their keto groups as MO derivatives for avoiding undesired 
enol silylation in the subsequent silylation of the 3-hydroxy groups (see Section 2.1.2), that 
sterol sulfates were as well cleaved upon treatment with the O-methylhydroxylamine reagent. 
To the best of our knowledge, this reaction has not yet been utilized in the analysis of sterol 
sulfates before. Only scarce evidence on this type of organosulfate cleavage has been 
published before, and previous investigations were performed only with aryl [58] and methyl 
sulfates [59,60]. Most likely, this exceptional reactivity of methoxylamine is due to the so-called 
α-effect [59,61], leading to strongly enhanced nucleophilicity of the NH2 group, even enabling 
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this reagent to cleave organosulfates under uncommon nucleophilic attack at the S-atom. This 
novel sample pretreatment allows for an unprecedented, short and easy-to-perform 
derivatization of keto sterol sulfates involving both organosulfate deconjugation and ketone 
methoximation under relatively mild reaction conditions. Subsequent silylation of liberated 
hydroxyl groups provides suitable derivatives for GC-MS analysis. Hence, this new 
deconjugation/derivatization protocol represents a considerable progress in the analysis of 
keto sterol sulfates. Our present investigations on the chemical behavior of sterol sulfates 
provided further useful evidence for the analysis of sterol sulfates. 

Table 1. Overview of derivatization methods for analysis of sterol sulfates. 

 
4. Conclusions 

The aim of the present work was to find the best deconjugation/derivatization strategy for 

the analysis of sterol sulfates by GC-MS. As expected, there is no single best method for 

deconjunction and derivatization of sterol sulfates. Depending on the nature of the analyte of 

interest, the methods have individual strengths and weaknesses (Section 2.3.2, Table 1). For 

the targeted determination of known (∆5-)sterol sulfates an especially fast workup employing 

direct perfluoroacylation can be the method of choice. But one of the biggest advantages of 

GC-MS is its strength as discovery tool for unexpected sterols. For this untargeted approach 

workup procedures are necessary, that are not limited to a subset of sterol sulfates. In addition, 

these workup procedures should form derivatives with characteristic mass spectra. Both our 

new protocol for simultaneous deconjugation/MO-derivatization followed by TMS 

derivatization and the protocol for acidic solvolysis followed by MO-TMS derivatization meet 

these requirements. 

5. Materials and Methods 

5.1. Materials and Reagents 

All consumables were from VWR (Ismaning, Germany). Derivatization reagents 
trifluoroacetic anhydride (TFAA), 1-(trimethylsilyl)imidazole (TSIM), and N-methyl-N-
trimethylsilyltrifluoroacetamide (MSTFA) were from Macherey-Nagel (Düren, Germany). 
Deionized water was prepared with an in-house ion-exchanger. 1,4-Dioxane and methyl tert-
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butyl ether (MtBE) were distilled before use. β-Glucuronidase/sulfatase from Helix pomatia 

type HP-2, 5α-cholestane (≥97%), pregnenolone (>98%), pregnenolone sulfate sodium salt 
(>98%), and cholesteryl sulfate sodium salt (>99%) were purchased from Sigma-Aldrich 
(Schnelldorf, Germany). Dehydroepiandrosterone sulfate sodium salt (>99%) and 25-
hydroxycholesteryl sulfate sodium salt (>99%) were from Avanti Polar Lipids (Alabaster, AL, 
USA). All other sterol sulfate sodium salts were from Steraloids (Newport, RI, USA). All other 
reagents and solvents were purchased in HPLC grade or in pro analysis quality from Sigma-
Aldrich (Schnelldorf, Germany). 

5.2. Instruments and Equipment 

Gas chromatography (GC) was performed on a Varian 3800 gas chromatograph coupled to 
a Saturn 2200 ion trap from Varian (Darmstadt, Germany). The autosampler was from CTC 
Analytics (Zwingen, Switzerland) and the split/splitless injector was a Varian 1177 
(Darmstadt, Germany). Instrument control and data analysis were carried out with Varian 
Workstation 6.9 SP1 software (Darmstadt, Germany) and Agilent MassHunter Workstation 
Software package B.08.00 (Santa Clara, CA, USA). An Agilent HP-5-ms capillary column 
(Santa Clara, CA, USA) of 30 m length, 0.25 mm i.d., and 0.25 µm film thickness was used at 
a constant flow rate of 1.4 mL/min. Carrier gas was helium 99.999% from Air Liquide 
(Düsseldorf, Germany). The inlet temperature was kept at 300 ◦C and injection volume was 1 
µL with splitless time 1.0 min. The initial column temperature was 50 ◦C and was held for 1.0 
min. Then temperature was ramped up to 250 ◦C with 50 ◦C/min. Then the sterols were eluted 
at a rate of 5 ◦C/min until 310 ◦C (hold time 3 min). Total run time was 20 min. Transfer line 
temperature was 300 ◦C and the ion trap temperature was 150 ◦C. The ion trap was operated 
with electron ionization (EI) at 70 eV in scan mode (m/z 50–650) with a solvent delay of 6.3 
min. 

5.3. Methods 

A stock solution containing androsterone sulfate (1), dehydroepiandrosterone sulfate (2), 
epiandrosterone sulfate (3), allopregnanolone sulfate (4), pregnanolone sulfate (5), 
pregnenolone sulfate (6), cholesterol sulfate (7), 25-hydroxycholesterol sulfate (8), and 
cholestane (9) as internal standard (IS) with a concentration of 10 µM of each analyte in ethyl 
acetate was prepared. Substance structures are shown in Figure 1. 

5.3.1. TMS Derivatives by Direct Silylation 

Pregnenolone (2 µg) and cholestane (1 µg, IS) was silylated with 50 µL of a mixture of MSTFA 
and TSIM (9:1) at room temperature for 30 min. After the addition of 950 µL methyl tert-butyl 
ether (MtBE) the sample was analyzed as described above by GC-MS. 

5.3.2. Acidic Deconjugation and Formation of MO-TMS Derivatives 

An aliquot of the stock solution containing 10 nmol of each sterol sulfate and IS was 
transferred into an autosampler vial and the solvent (ethyl acetate) was evaporated under a 
stream of nitrogen. Deconjugation was performed in 1,4-dioxane with 1% acetic acid (v/v) for 
3 h (see Section 5.3.5.1). Subsequently, the sample was evaporated to dryness under a stream 
of nitrogen. The dry residue was derivatized with 100 µL 2% O-methylhydroxylamine 
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hydrochloride in pyridine (m/v) at 80 ◦C for 30 min. This reaction time is sufficient for a 
complete derivatization of the keto groups. Then the sample was diluted with 400 µL water 
and the sterols were extracted with 2 × 1000 µL MtBE. The combined organic phases were 
transferred into a new autosampler vial and evaporated to dryness under a stream of nitrogen. 
Then the residue was silylated with 50 µL of a mixture of MSTFA and TSIM (9:1) at room 
temperature for 30 min. After addition of 950 µL MtBE the sample was analyzed by GC-MS. 

5.3.3. TFA Derivatives by Direct Deconjugation/Derivatization 

An aliquot of the stock solution containing 10 nmol of each sterol sulfate and IS was 

transferred into an autosampler vial (n = 6) and evaporated to dryness under a stream of 

nitrogen. Fifty microliters of trifluoroacetic anhydride (TFAA) was added to the residue. The 

vial was closed and stored at 70 ◦C for 30 min, then the volatiles were evaporated under a 

stream of nitrogen. The residue was dissolved in 1000 µL MtBE and analyzed by GC-MS. 

5.3.4. Enzymatic Cleavage of Sulfates and Derivatization 

An aliquot of the stock solution containing 10 nmol of each sterol sulfate and IS was 
transferred into an autosampler vial (n = 6) and was evaporated to dryness under a stream of 
nitrogen. The residue was diluted in 0.5 mL water and 0.5 mL buffer containing β-
glucuronidase/sulfatase from Helix pomatia type HP-2 was added [50]. The closed vial was 
stored at 37 ◦C for 20 h. Then the sample was extracted with 2 × 1000 µL MtBE. The combined 
organic phases were transferred into a new autosampler vial and evaporated to dryness under 
a stream of nitrogen. The residue was silylated with 50 µL of a mixture of MSTFA and TSIM 
(9:1) at room temperature for 30 min. After addition of 950 µL MtBE the sample was analyzed 
by GC-MS. The acquired peak area for each sterol was compared to the area obtained by 
solvolysis (see Section 5.3.5.1) followed by TMS derivatization. The obtained data are listed in 
Table 1. 

5.3.5. Chemical Cleavage of Sulfates and Derivatization 

5.3.5.1. With Acidic Deconjugation (Solvolysis) 

An aliquot of the stock solution containing 10 nmol of each sterol sulfate and IS was 
transferred into an autosampler vial (n = 6) and the solvent (ethyl acetate) was evaporated 
under a stream of nitrogen. For solvolysis 500 µL of 1,4-dioxane with 1% acetic acid (v/v) was 
added and the vial was closed tightly. The mixture was stored at 100 ◦C for different periods 
of time (0.5–6 h, Figure 6 and Supplementary Table S2). Then the sample was evaporated to 
dryness under a stream of nitrogen. The residue was derivatized with 100 µL 2% O-
methylhydroxylamine hydrochloride in pyridine (m/v) at 80 ◦C for 30 min. Then the sample 
was diluted with 400 µL water and the sterols were extracted with 2 × 1000 µL MtBE. The 
combined organic phases were transferred into a new autosampler vial and evaporated to 
dryness under a stream of nitrogen. Then the residue was silylated with 50 µL of a mixture of 
MSTFA and TSIM (9:1) at room temperature for 30 min. After addition of 950 µL MtBE the 
sample was analyzed by GC-MS. 
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5.3.5.2. With Deconjugation/Methoximation with O-Methylhydroxylamine 

An aliquot of the stock solution containing 10 nmol of each sterol sulfate and IS was 
transferred into an autosampler vial (n = 6) and the solvent (ethyl acetate) was evaporated 
under a stream of nitrogen. Simultaneous deconjugation/MO derivatization was achieved by 
addition of 100 µL 2% O-methylhydroxylamine hydrochloride in pyridine (m/v) directly to the 
neat sterol sulfates (n = 6). The vial was stored at 80 ◦C for different periods of time (0.5–6 h, 
Figure 6 and Supplementary Table S2). Then the sample was diluted with 400 µL water and 
the sterols were extracted with 2 × 1000 µL MtBE. The combined organic phases were 
transferred into a new autosampler vial and evaporated to dryness under a stream of nitrogen. 
Then the residue was silylated with 50 µL of a mixture of MSTFA and TSIM (9:1) at room 
temperature for 30 min. After addition of 950 µL MtBE the sample was analyzed by GC-MS. 

Supplementary Materials: Table S1: Gas chromatography-mass spectrometry data for the eight model sterol 
sulfates. Table S2: Determination of sterol sulfates as MO-TMS derivatives with and without solvolysis. 
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3.4.  Supplementary material 
 

Table S1. Gas chromatography-mass spectrometry (GC-MS) data for the derivatives obtained from the 
eight model sterol sulfates 1 – 8 using different deconjugation/derivatization protocols; chemical 
formulae of the sterol sulfates; TFA: trifluoroacetyl ester; TMS: trimethylsilyl ether; MO-TMS: 
methyloxime-trimethylsilyl ether; relative retention times (RRT) related to internal standard cholestane 
(9); bold m/z value: base peak; * predominantly (2 × TFA); a analyzed as TMS ether (since no keto group 
present for MO formation); b no derivatization possible. 

No. Compound 
Chemical 

formula 

Relative Retention Time 

(RRT) 
Characteristic ions [m/z] 

TFA TMS MO-TMS TFA TMS MO-TMS 

1 Androsterone sulfate C19H30O5S 0.701 0.759 0.796 
386 
368 
342 

347 
272 

215 

391 
360 
270 

2 
Dehydroepiandrosterone 

sulfate 
C19H28O5S 0.728 0.804 0.846 

270 

255 
121 

360 
270 
129 

389 
358 
268 

3 Epiandrosterone sulfate C19H30O5S 0.732 0.813 0.855 
386 
368 
342 

347 

272 
215 

391 
360 

270 

4 Allopregnanolone sulfate C21H34O5S 0.790 0.873 0.929 
396* 
267 
215 

300 

285 
215 

404 
388 

100 

5 Pregnanolone sulfate C21H34O5S 0.790 0.882 0.934 
396* 

267 
215 

375 
300 

285 

404 
388 

298 

6 Pregnenolone sulfate C21H32O5S 0.827 0.926 0.992 
298 

283 
213 

388 
298 
129 

402 
386 

312 

7 Cholesterol sulfate C27H46O4S 1.106 1.257 1.257 
368 

353 
255 

458 
368 

329 

458a 
368 

329 

8 
25-Hydroxycholesterol 

sulfate 
C27H46O5S 1.134 1.516 1.516 

366 

351 
245 

456 
271 
131 

456a 
271 
131 

9 Cholestane (IS) C27H48 1.000 1.000 1.000 
357 b 
262 
217 

357 b 
262 
217 

357 b 
262 
217 
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Table S2. Determination of (keto-)sterol sulfates 1 - 8 as (MO-)TMS derivatives with and without 
previous sulfate solvolysis step (with 1% acetic acid in 1,4-dioxane). The indicated time refers to the 
duration of solvolysis prior to derivatization (MO-TMS) (upper row “Solv. + Deriv.”) or to the duration 
of the simultaneous deconjugation/MO derivatization (lower row “Deconjug./MO”). The results 
obtained for each individual sterol sulfate under the different conditions are shown as relative peak areas 
[%] ± standard deviation (n = 6); optimum conditions for all  tested sterol sulfates are shown in the last 
two rows Ø 1 – 8; in bold: the best conditions for each sterol sulfate; in red: optimum method for all 
tested sterol sulfates. The maximum recorded peak area for each sterol derivative within this experiment 
was set as 100% (Note: The values presented here are not revoveries). Analyzed sterols: 1 androsterone 
sulfate, 2 dehydroepiandrosterone sulfate, 3 epiandrosterone sulfate, 4 allopregnanolone sulfate, 5 
pregnanolone sulfate, 6 pregnenolone sulfate, 7 cholesterol sulfate, 8 25-hydroxycholesterol sulfate. 

Sterol 

sulfate 
Method 

Incubation time 

0.5 h 1 h 2 h 3 h 4 h 5 h 6 h 

1 
Solv. + Deriv. 34 ± 4 47 ± 19 39 ± 9 89 ± 27 100 ± 14 90 ± 5 60 ± 9 

Deconjug./MO 0 ± 0 8 ± 1 17 ± 2 88 ± 45 92 ± 31 41 ± 4 44 ± 3 

2 
Solv. + Deriv. 24 ± 4 31 ± 12 23 ± 4 51 ± 18 60 ± 4 32 ± 5 34 ± 5 

Deconjug./MO. 3 ± 1 12 ± 1 24 ± 5 100 ± 48 92 ± 23 38 ± 4 35 ± 2 

3 
Solv. + Deriv. 44 ± 4 68 ± 17 71 ± 12 98 ± 5 94 ± 5 100 ± 3 92 ± 2 

Deconjug./MO. 8 ± 2 31 ± 2 56 ± 2 82 ± 5 87 ± 5 84 ± 5 86 ± 3 

4 
Solv. + Deriv. 46 ± 4 69 ± 15 68 ± 13 100 ± 5 97 ± 6 98 ± 5 90 ±7 

Deconjug./MO 3 ± 1 12 ± 1 27 ± 2 52 ± 8 61 ± 6 60 ± 4 64 ± 2 

5 
Solv. + Deriv. 53 ± 5 73 ± 16 79 ± 13 99 ± 4 98 ± 5 100 ± 5 96 ± 2 

Deconjug./MO 14 ± 2 36 ± 2 57 ± 4 81 ± 6 90 ± 7 86 ± 6 88 ± 4 

6 
Solv. + Deriv. 58 ± 4 79 ± 15 74 ± 10 100 ± 4 96 ± 5 98 ± 4 93 ± 3 

Deconjug./MO 13 ± 2 38 ± 3 62 ± 6 92 ± 5 100 ± 9 93 ± 5 95 ± 2 

7 
Solv. + Deriv. 71 ± 6 88 ± 9 94 ± 21 99 ± 4 92 ± 4 97 ± 2 100 ± 11 

Deconjug./MO 16 ± 1 33 ± 5 58 ± 3 82 ± 15 83 ± 5 90 ± 6 92 ± 4 

8 
Solv. + Deriv. 48 ± 6 66 ± 14 75 ± 8 100 ± 4 92 ± 4 96 ± 6 92 ± 3 

Deconjug./MO 7 ± 1 23 ± 4 46 ± 4 87 ± 6 99 ± 9 85 ± 8 91 ± 4 

Ø 1 - 8 
Solv. + Deriv. 47 ± 4 65 ± 15 65 ± 11 92 ± 9 91 ± 6 85 ± 4 82 ± 5 

Deconjug./MO 8 ± 1 24 ± 2 43 ± 3 83 ± 17 88 ± 12 72 ± 5 74 ± 3 
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4.  Analysis of neutral steroids, steroid acids and sterol 

sulfates 

 

The article “Effective sample preparation procedure for the analysis of neutral steroids, 

steroid acids and sterol sulfates in different tissues by GC-MS” was submitted to the Journal 

of Steroid Biochemistry and Molecular Biology. 

A revised version of the manuscript has been submitted to the editor. This manuscript is 

presented here.  

 

4.1.  Summary 

The γ-secretase research of the group of Prof. Dr. Steiner does not only focus on neurosteroids 

and sterol sulfates, but this group is also interested in oxysterols and steroid acids. These 

analytes were reported by others to affect the γ-secretase [29, 76-78], and the aim of this work 

was to develop an analytical method for the analysis of these compounds. Also, cholesterol 

precursors, like desmosterol were reported to play a role in AD [56, 57] and their level is 

presumably altered in mouse models like the frequently used NPC knockout mice. Hence, an 

inclusion of this steroid class to the new method was desired and straightforward, as we 

already had much experience in the analysis of cholesterol precursors from earlier work 

(Chapter 4). In the end, the method was validated for nine cholesterol precursors, five 

oxysterols, nine neurosteroids, seven sterol sulfates and seven steroid acids. These analytes 

were measured using GC-MS/MS (tandem MS) in dMRM mode with high sensitivity and 

additionally using GC/MS in scan mode in an untargeted approach. With this untargeted 

screening method further steroids could be identified (e.g. phytosterols). Hence, this method 

enabled the analysis of unexpected occurring steroids as well as the analysis of steroids 

occurring at trace levels. So, this method provides a broader overview on the sterolome as 

other published methods and could therefore help to get a better understanding of sterol 

associated diseases like AD. To accomplish analysis of this wide spectrum of analytes an 

effective sample preparation procedure was developed. As shown in Figure 9 it consists of the 

lipid extraction from the tissue, the steroid group separation and subsequent GC-MS(/MS) 

analysis of each group. 
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Figure 9 Graphical abstract of the article showing the lipid extraction from liver and brain tissue and the principle 
of steroid group separation on the SPE cartridge with subsequent GC-MS analysis. 

First the samples (brain/liver tissue or cultured cells) were homogenized using a bead mill and 

subjected to liquid-liquid extraction using an optimized solvent mixture. The organic phase 

containing the analytes of interest was then further processed on a solid phase extraction 

(SPE) cartridge containing a weak anion exchange sorbent. This enabled the separation of 

neutral steroids (neurosteroids, oxysterols and cholesterol precursors) from steroid acids and 

steroid sulfates using specific eluents. These steroid groups could then be derivatized and 

measured separately. This method was validated for liver and brain tissue and was applied on 

different samples (mice 10 months /three weeks old, cultured cells). Overall, 45 steroids were 

identified and the endogenous concentrations higher than the limit of quantification (> LOQ) 

were reported. 

 

4.2.  Personal contribution 

My contribution to this work were the conceptualization, investigation and method 

development. The latter included optimization of lipid extraction and SPE, concerning the 

choice of solvents, sorbents and eluents. Also, the implementation of the GC-MS procedure 

especially optimization of mass transitions and collision energies for dMRM mode was part of 

the method development. Method validation and application on biological samples were also 

part of my contribution. This included the planning and execution of necessary experiments as 

well as the formal analysis and curation of the measurement data. In addition, the visualization 

of the obtained results as well as writing of the original draft were done by me.  

Prof. Dr. Harald Steiner and Dr. Frits Kamp supported this project by providing resources like 

analytical standards and biological samples. They also designated the steroids of special 

interest for this project. Additionally, they contributed by acquisition of funding.  
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Further biological samples were provided by Edith Winkler, who also performed preliminary 

experiments to determine steroids of interest for this project. 

Prof. Dr. Franz Bracher contributed to this project by providing the necessary resources and 

acquisition of funding. He was also involved in reviewing and editing of the original draft. 

Dr. Christoph Müller was involved in the conceptualization of the project and supported the 

determination of the final experimental design and methodology. He further contributed in the 

formal analysis of the obtained data and especially in reviewing and editing of the original draft. 

 

4.3.  Article 

The following article was submitted to the Journal of Steroid Biochemistry and Molecular 

Biology. It is printed in the original wording of the revised manuscript, that was submitted to 

the editor in February 2021.  
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Abstract 

Steroids play an important role in cell regulation and homeostasis. Many diseases like Alzheimer’s 

disease or Smith-Lemli-Opitz syndrome are known to be associated with deviations in the steroid 

profile. Most published methods only allow the analysis of small subgroups of steroids and cannot give 

an overview of the total steroid profile. We developed and validated a method that allows the analysis 

of neutral steroids, including intermediates of cholesterol biosynthesis, oxysterols, C19 and C21 steroids, 

steroid acids, including bile acids, and sterol sulfates using gas chromatography-mass spectrometry. 

Samples were analyzed in scan mode for screening purposes and in dynamic multiple reaction 

monitoring mode for highly sensitive quantitative analysis. The method was validated for mouse brain 

and liver tissue and consists of sample homogenization, lipid extraction, steroid group separation, 

deconjugation, derivatization and gas chromatography-mass spectrometry analysis. We applied the 

method on brain and liver samples of mice (10 months and 3 weeks old) and cultured N2a cells and 

report the endogenous concentrations of 29 physiological steroids. 

Keywords 

Screening method, bile acids, group separation, steroid profiling, deconjugation, gas chromatography-

mass spectrometry 

1. Introduction 

Steroids are a very large and versatile class of biomolecules. Versatile by means of structure, 

occurrence and by means of biological activity. They act as important cell-building material and as 

signaling molecules on different intracellular and membrane-bound receptors. The set of all steroids of 

a cell or organism is called steroidome and its qualitative and quantitative analysis is known by the term 

steroidomics [1]. In the last decades, steroidomics were used to investigate changes of the steroidome 

in the context of different diseases like congenital adrenal hyperplasia (CAH) [2-5], cerebrotendinous 

xanthomatosis (CTX) [6], Alzheimer’s disease (AD) [7-9], Smith-Lemli-Opitz syndrome (SLOS) [10] 

and more [11, 12]. A change in steroid metabolism leads to an accumulation or reduction of certain 

steroids and this change in the steroid pattern can affect the whole organism in various ways. A change 

of the sterol composition in cell membranes, for example, can alter membrane structure and thickness 

[13, 14], in turn this can modulate the activity of membrane-bound enzymes like γ-secretase [15], an 

enzyme involved in AD. Oxysterols like 27-hydroxycholesterol (23, Table 2) can take effect via nuclear 

receptors like liver X receptor (LXR) and therefore interfere with cellular lipid homeostasis [16, 17]. 

Some oxysterols also reveal immunomodulatory actions, like the Epstein-Barr virus-induced G-protein 
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coupled receptor 2 (EBI2) ligand 7α,25-dihydroxycholesterol (25) [18, 19] and other oxysterols, which 

are involved in neuroinflammation in AD patients [7]. A further important steroid class are 

neurosteroids, like pregnenolone (26), dehydroepiandrosterone (31), allopregnanolone (38) and their 

respective sulfates, which are synthesized and/or take action in the central and peripheral nervous system 

[20-23]. Their biological targets are neurotransmitter receptors like γ-aminobutyric acid type A 

(GABAA) and N-methyl-D-aspartate (NMDA) receptors in brain, and they effect cognitive performance 

[20, 24, 25]. In addition, they have all been investigated in context of AD [8, 9, 26-28]. These 

neurosteroids further interfere with cholesterol biosynthesis, for example pregnenolone (26), 17α-

hydroxypregnenolone (28) and progesterone (29) are supposed to be inhibitors of 24-dehydrocholesterol 

reductase (DHCR24) and lead to an accumulation of desmosterol (13) [29]. Desmosterol (13), other 

cholesterol precursors [30-32] and also cholesterol (10) [33, 34] itself are known to play a role in AD 

pathogenesis. Also, the class of steroid acids do not only play an important role in cholesterol 

homeostasis in liver as bile acids, they also occur in brain and are connected to neurodegenerative 

disorders like AD as well [35-37]. All these different steroidal compounds play their own important 

roles in cell development and homeostasis and are connected to each other by biosynthesis.  

In order to understand the mechanism behind pathological changes in the steroidome, all these different 

steroids need to be analyzed qualitatively and quantitatively. A universal method covering all possible 

steroidal compounds and their conjugates is still far away, but there are already methods published 

covering large numbers of analytes (Table 1). Neurosteroids and conjugates can be analyzed using gas 

chromatography-(tandem) mass spectrometry (GC-MS(/MS)) [2-5, 38-41], liquid chromatography-

tandem mass spectrometry (LC-MS/MS) [42-46], supercritical fluid chromatography-(tandem) mass 

spectrometry (SFC-MS(/MS)) [47] and also with radioimmunoassays (RIA) [48, 49]. Other methods 

cover oxysterols [50-52] and steroid acids [52-58]. Representative validated analytical methods are 

shown in Table 1. However, for most published methods no validation data are provided. The challenge 

in method validation often is a lack of authentic standards or appropriate blank matrix. Hence, most 

methods are qualitative or semi-quantitative, which seems sufficient for most biological studies, in 

which solely variations between different experimental groups are examined.  
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Table 1 Available validated methods for steroid analysis in biological samples 

References 
Analytical 

system 
Number 
analytes 

Type of analytes Biological matrix 
Additional 

information 

Dzeletovic et al. 1995 [59] GC-MS 9 oxysterols plasma  

Liere et al. 2000 [41] GC-MS 6 
C19/C21 steroids + 

conjugates 
brain  

Acimovic et al. 2009 [60] GC-MS 11 
cholesterol precursors 

+ plant sterols 
cultured cells  

Hill et al. 2010 [38] GC-MS 44 C19/C20/C21 steroids serum/amniotic fluid 6 separate runs 

Kumar et al. 2011 [57] GC-MS 16 
oxysterols/ steroid 

acids 
urine  

Tsai et al 2011 [61] GC-MS 8 steroid acids liver/ kidney  

Schött et al. 2015 [50] GC-MS 13 oxysterols serum  

Matysik et al. 2015 [62] GC-MS 4 C19/C21 steroids plasma  

Hill et al. 2019 [40] GC-MS 100 
C19/C20 /C2 steroids + 

conjugates 
serum 3 separate runs 

Müller et al. 2019 [63] GC-MS 12 cholesterol precursors cultured cells  

Liu et al. 2003 [43] 
Nano LC-

MS 
7 

C19/C21 steroids + 

conjugates 
brain runtime 155 min 

Honda et al. 2009 [45] LC-MS 7 oxysterols 
serum/ liver 

microsomes 
 

Rustichelli et al. 2013 [46] LC-MS 3 
C19/C21 steroids + 

conjugates 
brain  

Sánchez-Guijo et al. 2015 
[64] 

LC-MS 11 
C19/C21 sterol sulfates 

+ cholesterol sulfate 
serum  

Crick et al. 2015 [65] LC-MS 27 
oxysterols/steroid 

acids 
plasma  

Matysik et al. 2017 [66] LC-MS 8 C19/C21 steroids serum  

Yang et al. 2017 [67] LC-MS 19 steroid acids 
plasma/liver/intestinal 

section contents 
 

Gomez-Gomez et al. 2020 
[68] 

LC-MS 28/15/12 
C19/C21 steroids + 

glucuronides 

amniotic fluid/ saliva/ 

breast milk 

free and 

conjugated 

steroids are not 

distinguished 

 

As shown in Table 1, most methods which enable the analysis of multiple compounds are GC-MS- 

based. This is due to the higher separation efficiencies for the highly similar steroidal compounds 

compared to LC-MS methods [69]. An often-named advantage of LC-MS is the simple sample work up 

without need for derivatization, as it is mandatory for GC-MS analysis. Even though derivatization with 

Girard`s P reagent (1-(hydrazinocarbonylmethyl)pyridinium chloride) or similar reagents is common in 

LC-MS analysis of oxosteroids and of 3β-hydroxysteroids after enzymatic oxidation, in order to enhance 

sensitivity and improve identification [44, 56]. Careful sample preparation is also important to reduce 

matrix effects, which play a role in both analytical systems, although LC-MS is more susceptible to 

matrix effects [69, 70]. The main disadvantage of GC-MS is the tedious determination of steroid 

conjugates (e.g. glucuronides, sulfates) which must be separated completely from their unconjugated 

counterparts first and cleaved afterwards. A direct measurement of these conjugates can be achieved by 

LC-MS and mistaken identification can therefore be avoided [64]. The same applies to the analysis of 

the even more complex conjugated steroid acids and bile acids. Although GC-MS is the recommended 

method for the analysis of complex mixtures of unconjugated bile acids [71] the analysis of the 

conjugated bile acids is cumbersome. Various groups of different conjugated bile acids are known, 

including but not limited to taurine-, glycine- and sulfo-conjugates [71]. Procedures for bile acid 

extraction and group separation have been discussed in detail by Sjövall and Setchell [72]. Using a 

combination of different reverse phase and ion exchange columns, for example, allowed the separation 

and detailed analysis of the bile acid profile in faeces [73, 74]. Nevertheless, for most conjugated bile 

acids deconjugation before GC-MS analysis is mandatory [72], similar to the process for sterol sulfates. 

This deconjugation is rather difficult as acid hydrolysis leads to a deconstruction of the nuclear structure, 

while alkaline hydrolysis does not work for all bile acids [72]. For example, C27 bile acids need more 

harsh conditions than C24 bile acids and a quantitative cleavage and prevention of artifact formation is 
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not guaranteed [72]. For this reason, the direct analysis without deconjugation using LC-MS after group 

separation, as demonstrated by Yang et al. [75], seems to be a more promising approach for the analysis 

of conjugated bile acids. For this reason, the scope of our method was limited to unconjugated steroid 

acids.  

Based on these previously published methods, a method was developed and validated which enables 

the analysis of differed groups of steroidal compounds including cholesterol precursors, oxysterols, 

neurosteroids, unconjugated steroid acids and sterol sulfates. We used GC-MS with its high separation 

efficiency as analytical system. The samples were first analyzed on a gas chromatograph-ion trap-mass 

spectrometer (GC-IT-MS) system in scan mode for untargeted analysis of unexpected compounds 

(screening method). Additionally, for targeted analysis a gas chromatograph-tandem mass spectrometer 

(GC-MS/MS) was used to obtain higher sensitivity. Most of the methods shown in Table 1 were 

developed for one specific biological matrix, mainly serum or brain. Especially for neutral steroids only 

one method for liver microsomes [45] and one for cultured hepatocytes [60] were published, but no 

method for neutral steroids or sterol sulfates is described in literature for liver tissue. Therefore, the 

steroid content in liver had to be measured until now with methods for serum or brain that were applied 

to liver tissue [76, 77]. In this work we present our validated and optimized sample preparation 

procedure consisting of lipid extraction from murine brain and liver tissues, steroid group separation on 

a solid-phase extraction (SPE) cartridge, deconjugation, derivatization and GC-MS(/MS) analysis.  

 

2. Experimental 

 

2.1 Chemicals, reagents and materials 

 

C19/C21 steroids: Pregnenolone (>98%), progesterone (>99%), allopregnanolone (>98%) and 

pregnanolone (>98%) were purchased from Sigma-Aldrich (Schnelldorf, Germany). 

Dehydroepiandrosterone (>99%) was from Avanti Polar Lipids (Alabaster, AL, USA). Etiocholanolone, 

epietiocholanolone, 17-hydroxyprogesterone, 20-hydroxyprogesterone and 17-hydroxypregnenolone 

were acquired from Steraloids (Newport, RI, USA). Epipregnenolone was synthesized by us and will be 

published elsewhere. Neutral steroids and precursors: Cholesterol (>99%), cholestanol (>99%), 

squalene (>98%), squalene epoxide (>92%), 8-dehydrocholesterol (>99%), and 7-dehydrocholesterol 

(>99%) were purchased from Sigma-Aldrich (Schnelldorf, Germany). Zymosterol (>99%), lathosterol 

(>99%), lanosterol (>99%), dihydrolanosterol (>99%), cholesta-8,14-dien-3β-ol (>99%), 4,4-

dimethylcholesta-5,7-dien-3β-ol (>99%), and 4,4-dimethylcholesta-8,14-dien-3β-ol (>99%) were from 

Avanti Polar Lipids (Alabaster, AL, USA). Desmosterol was purchased from Santa Cruz Biotechnology 

(Dallas, TX, USA) and 4,4-dimethylcholest-8-en-3β-ol was synthesized according to literature [78]. 

Oxysterols: 24(S)-Hydroxycholesterol (>99%), 7α-hydroxycholesterol (>99%), 7β-hydroxycholesterol 

(>99%) and (25R)-27-hydroxycholesterol (>99%) were from Avanti Polar Lipids (Alabaster, AL, USA). 

7α,25-Dihydroxycholesterol was purchased from Santa Cruz Biotechnology (Dallas, TX, USA). 7-

Ketocholesterol and trihydroxycoprostane were acquired from Steraloids (Newport, RI, USA). Sterol 

sulfates: Cholesterol sulfate sodium salt (>99%) and pregnenolone sulfate sodium salt (>98%) were 

purchased from Sigma-Aldrich (Schnelldorf, Germany). Dehydroepiandrosterone sulfate sodium salt 

(>99%) and 25-hydroxycholesterol sulfate sodium salt (>99%) were from Avanti Polar Lipids 

(Alabaster, AL, USA). Allopregnanolone sulfate sodium salt, pregnanolone sulfate sodium salt, 

androsterone sulfate sodium salt and epiandrosterone sulfate sodium salt were acquired from Steraloids 

(Newport, RI, USA). Steroid acids: 5β-Cholanic acid (>99%), cholic acid (>98%), deoxycholic acid 

(>98%) and lithocholic acid (>98%) were purchased from Sigma-Aldrich (Schnelldorf, Germany). 

Cholestenoic acid (>99%), 7α-hydroxycholestenoic acid (>99%) and 3α,7α,12α-trihydroxycholestanoic 

acid (>99%) were from Avanti Polar Lipids (Alabaster, AL, USA). Chenodeoxycholic acid was from 

Santa Cruz Biotechnology (Dallas, TX, USA). Standards: 5α-Cholestane (>97%), pregnenolone-

20,21-13C2-16,16-d2 (>98%), and pregnenolone-20,21-13C2-16,16-d2 sulfate sodium salt (>98%) were 

purchased from Sigma-Aldrich (Schnelldorf, Germany). Cholesterol-25,26,26,26,27,27,27-d7 (>99%) 
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and desmosterol-26,26,26,27,27,27-d6 (>99%) was purchased from Avanti Polar Lipids (Alabaster, AL, 

USA). Fernholtz acid was acquired from Steraloids (Newport, RI, USA).  

Derivatization reagents N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) and 1-

(trimethylsilyl)imidazole (TSIM) were from Macherey-Nagel (Düren, Germany). Deionized water was 

prepared with an in-house ion-exchanger. Iso-hexane and methyl tert-butyl ether (MtBE) were distilled 

before use. All other reagents and solvents were purchased in HPLC grade or in pro analysis quality 

from Sigma-Aldrich (Schnelldorf, Germany). All solvent mixtures were mixed by (v/v). We used the 

following solid-phase extraction cartridges: Chromabond HR-XAW 45 µm, 3 mL/200 mg from 

Macherey-Nagel (Düren, Germany) and Bond Elut C18 40 µm, 1 mL/100 mg from Agilent Technologies 

(Santa Clara, CA, USA). For tissue homogenization we used an IKA (Staufen, Germany) Ultra Turrax 

Tube Drive with BMT-20S Tubes for grinding with stainless steel beads (5.0 mm) or a vortexer equipped 

with a bead tube holder from a Macherey-Nagel (Düren, Germany) and 2 mL microcentrifuge tubes 

containing glass beads (2.0 mm and 3.0 mm). All other consumables were from VWR (Ismaning, 

Germany). 

 

2.2 Stock solutions 

 

Stock solutions of each analyte (1 mg/mL) were prepared in ethanol (EtOH) or ethyl acetate (EtOAc) 

and stored at 4 °C. Mixtures for each experiment were prepared right before use in the necessary 

concentration.  

 

2.3 Biological samples 

 

For method development, optimization and validation pig brain and bovine liver from local markets 

were used. For the data presented, whole brains and livers were taken from wild-type mice (C57BL/6J, 

3 male mice were sacrificed after 3 weeks and 3 female mice were sacrificed at 10 months of age). 

Additionally, mouse neuroblastoma (N2a) cells were taken for analysis. These tissues were stored at -

20 °C before analysis. 

 

2.4 Gas chromatography - mass spectrometry 

 

Samples were analyzed with two different gas chromatography - mass spectrometry (GC-MS) systems. 

An ion trap-mass spectrometer (IT-MS) was used for the screening method (non-targeted screening) and 

a tandem mass spectrometer (MS/MS) was used for highly sensitive and selective analysis (targeted 

screening). 

 

2.4.1 GC-IT-MS (screening method) 

 

Gas chromatography (GC) was performed on a Varian 3800 gas chromatograph coupled to a Saturn 

2200 ion trap from Varian (Darmstadt, Germany). The autosampler was from CTC Analytics (Zwingen, 

Switzerland) and the split/splitless injector was a Varian 1177 (Darmstadt, Germany). Instrument 

control and data analysis were carried out with Varian Workstation 6.9 SP1 software (Darmstadt, 

Germany) and Agilent MassHunter Workstation Software package B.08.00 (Santa Clara, CA, USA). 

An Agilent VF-5ms capillary column of 30 m length with 10 m EZ-Guard, 0.25 mm i.d. and 0.25 µm 

film thickness was used at a constant flow rate of 1.4 mL/min. Carrier gas was helium 99.999% from 

Air Liquide (Düsseldorf, Germany). The inlet temperature was kept at 300 °C and injection volume was 

1 µL. The different steroid groups were analyzed with different split ratios. Neutral steroids (cholesterol 

biosynthesis intermediates, oxysterols and C19/C21 steroids) were measured with split 1:5, steroid acids 

with split 1:2 and sterol sulfates were measured splitless. The initial column temperature was 50 °C and 

was held for 1.0 min. Then the temperature was ramped up to 250 °C with 50 °C/min. The steroids were 

eluted at a rate of 5 °C/min until 310 °C (hold time 3 min). The total run time was 20 min. The transfer 
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line temperature was 300 °C and the ion trap temperature was 150 °C. The ion trap was operated with 

electron ionization (EI) at 70 eV in scan mode (m/z 50–650) with a solvent delay of 9.0 min. For 

measurement of neutral steroids (except cholesterol) an additional time segment (15.35 min -15.70 min) 

without ionization was added.  

The analysis of cholesterol was performed on the above-mentioned chromatographic system with a 

shorter run time (15.4 min). The inlet temperature was kept at 300 °C and injection volume was 1 µL. 

Cholesterol was measured splitless for liver tissue or with split (1:10) for brain tissue. The initial column 

temperature was 50 °C and was held for 1.0 min. Then the temperature was ramped up to 270 °C with 

50 °C/min. Then cholesterol was eluted at a rate of 5 °C/min until 310 °C (hold time 2 min). 

2.4.2 GC-MS/MS (targeted analysis) 

 

An Agilent Technologies 7890B gas chromatograph (Santa Clara, CA, USA) with an Agilent 

Technologies Multimode Inlet (MMI) was coupled to an Agilent Technologies 7010B triple quadrupole 

detector with a high efficiency source (HES) and a Pal3 RSI autosampler from CTC Analytics (Zwingen, 

Switzerland). Two connected 15 m Agilent J&W HP-5ms ultra inert capillary columns with 0.25 mm 

i.d. and 0.25 µm film thickness were used at a flow rate of 1.0 mL/min on the first column and 1.2 

mL/min on the second column. Carrier gas was helium 99.999% from Air Liquide (Düsseldorf, 

Germany). The inlet was utilized in solvent vent mode with a start temperature of 70 °C and vent flow 

of 100 mL/min for 0.01 min, then temperature was raised at a rate of 600 °C/min to 300 °C and was 

held for 5.0 min. During post run and backflush the inlet temperature was elevated to 310 °C. The 

injection volume was 5 µL. Initial oven temperature was 50 °C and was held for 5.0 min. Then 

temperature was ramped up to 250 °C with 50 °C/min. Then the steroids were eluted at a rate of 5 °C/min 

until 310 °C (hold time 3 min). Total runtime was 20 min and additional 4 min post run with backflush 

of the first column at 310 °C. Instrument control and data analysis were carried out with Agilent 

MassHunter Workstation Software package B.08.00 (Santa Clara, CA, USA). The triple quadrupole 

(MS/MS) was operated with electron ionization (EI) at 70 eV in dynamic multiple reaction monitoring 

mode (dMRM) with collision gas argon 99.995% from Air Liquide (Düsseldorf, Germany) with a flow 

rate of 0.9 mL/min. Source temperature was 230 °C. The multiplier operated with gain factor 10. Solvent 

delay was 8.0 min. The transitions and collision energies were optimized using MassHunter MRM 

optimizations software and authentic standards and are given in Table 2. 
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Table 2 Analytical details of the analyzed steroidal compounds. dMRM transitions were only determined for compounds of interest that were available in sufficient purity. Some compounds were 

identified by comparison with literature data: 1 [79], 2 [80], 3 [63], 4 [81], 5 [82]. *: Relative retention time (RRT) is referring to the highest peak in case of double peaks; n.d.: not determined. The 

unknown muricholic acids 52 and 53 are likely β- and ω-muricholic acid. In bold: quantifier ions/transitions. In brackets: collision energy. Sterol sulfates were measured as their unconjugated 

counterpart and are marked in the text with an additional “S” to the compound number.  

Analytes Scan (IT-MS system) dMRM (MS/MS system) 

No. Trivial name Systematic name Characteristic ions [m/z] RRT Transitions [m/z] (CE [V]) RRT 

1 Squalene 

6E,10E,14E,18E)-2,6,10,15,19,23-

Hexamethyltetracosa-2,6,10,14,18,22-

hexaene 

121, 81, 69 0.943 163→107(5), 121→93(5), 121→51(40) 0.958 

2 Squalene epoxide 

2,2-Dimethyl-3-[(3E,7E,11E,15E)- 

3,7,12,16,20-pentamethylhenicosa- 

3,7,11,15,19-pentaenyl]oxirane 

143, 107, 69 1.085 n.d. n.d. 

3 Lanosterol Lanosta-8,24-dien-3β-ol 498, 393, 241 1.385 498→393(5), 483→393(0), 393→95(20) 1.401 

4 Dihydrolanosterol 5α-Lanost-8-en-3β-ol 485, 395, 229 1.350 500→395(5), 485→395(0), 395→55(45) 1.362 

5 4,4-Dimethylcholesta-8,14-dienol 4,4-Dimethylcholesta-8,14-dien-3β-ol 484, 379, 351 1.361 484→379(10), 379→251(20), 379→223(20) 1.380 

6 4,4-Dimethylcholest-8-enol 4,4-Dimethyl-5α-cholest-8-en-3β-ol 486, 396, 381 1.375 n.d. n.d. 

7 Zymostenol 5α-Cholest-8-en-3β-ol 458, 353, 213 1.247 458→213(10), 458→81(35), 443→353(5) 1.257 

8 Lathosterol Cholest-7-en-3β-ol 458, 353, 255 1.279 458→229(5), 458→213(15), 458→147(5) 1.290 

9 7-Dehydrocholesterol Cholesta-5,7-dien-3β-ol 366, 351, 325 1.269 456→143(35), 351→143(15), 325→119(15) 1.273 

10 Cholesterol Cholest-5-en-3β-ol 458, 368, 329 1.226 458→145(2), 368→145(20), 329→91(45) 1.239 

10d Cholesterol-d7 Cholesterol-25,26,26,26,27,27,27-d7 465, 375, 336 1.208 n.d. n.d. 

11 Cholestanol 5α-Cholestan-3β-ol 455, 355, 215 1.232 460→215(10), 445→75(25), 215→91(35) 1.239 

12 Zymosterol 5α-Cholesta-8,24-dien-3β-ol 441, 351, 213 1.284 456→105(45), 372→357(5) 1.290 

13 Desmosterol Cholesta-5,24-dien-3β-ol 456, 351, 253 1.267 456→366(0), 456→351(10), 351→91(35) 1.274 

13d Desmosterol-d6 
Cholesta-5,24-dien-3β-ol-

26,26,26,27,27,27-d6 
462, 372, 357 1.255 462→372(5), 462→357(10) 1.263 

14 Cholesta-8,14-dienol Cholesta-8,14-dien-3β-ol 456, 351, 182 1.240 456→351(10), 351→238(10), 182→45(35) 1.250 

15 4,4-Dimethylcholesta-5,7-dienol 4,4-Dimethylcholesta-5,7-dien-3β-ol 379, 353, 325 1.381 379→171(15), 379→156(35), 172→157(5) 1.386 

16 8-Dehydrocholesterol Cholesta-5,8-dien-3β-ol 456, 351, 325 1.234 456→325(10), 351→143(15), 351→128(45) 1.246 

17 4,4-Dimethylcholest-8(14)-enol 4,4-Dimethyl-5α-cholest-8(14)-en-3β-ol 486, 396, 381 1.357 n.d. n.d. 

18 7-Ketocholesterol 7-Oxocholest-5-en-3β-ol 486, 470, 380 1.427 501→197(25), 501→95(40), 486→81(30) 1.455 

19 7β-Hydroxycholesterol Cholest-5-en-3β,7β-diol 456, (442, 351) 1.300 456→233(15), 456→73(40) 1.318 

20 7α-Hydroxycholesterol Cholest-5-en-3β,7α-diol 456, (443, 129) 1.185 456→233(15), 456→73(45) 1.212 



4. Analysis of neutral steroids, steroid acids and sterol sulfates 
 

 

49 

21 Trihydroxycoprostan 5β-Cholestane-3α,7α,12α-triol 456, 366, 253 1.193 366→281(5), 343→253(5), 253→128(40) 1.228 

22 24S-Hydroxycholesterol Cholest-5-en-3β,24(S)-diol 456, 413, 323 1.440 413→323(0), 413→159(5), 323→91(45) 1.463 

23 27-Hydroxycholesterol Cholest-(25R)-5-en-3β,26-diol 546, 456, 417 1.514 456→145(25), 456→105(45) 1.536 

24 25-Hydroxycholesterol Cholest-5-en-3β,25-diol 546, 456, 131 1.458 131→73(5), 131→58(30) 1.479 

25 7α,25-Dihydroxycholesterol Cholest-5-en-3β,7α,25-triol 544, 454, 131 1.392 544→73(45), 454→73(45), 131→73(5) 1.440 

26 Pregnenolone 3β-Hydroxypregn-5-en-20-one 402, 386, 312 0.969 402→239(5), 386→70(25), 100→54(15) 0.990 

26d Pregnenolone-20,21-13C2-16,16-d2 
3β-Hydroxypregn-5-en-20-one-20,21-
13C2-16,16-d2 

406, 390, 316 0.967 406→316(0), 406→241(5) 0.989 

27 Epipregnenolone 3α-Hydroxypregn-5-en-20-one 402, 386, 312 0.799 n.d. n.d. 

28 17-Hydroxypregnenolone 3β,17α-Dihydroxypregn-5-en-20-one 505, 474, 384 1.012 474→105(40), 474→73(40), 474→384(5) 1.032 

29 Progesterone Pregn-4-ene-3,20-dione 372, 341, 386 1.067 372→341(5), 286→126(15), 153→95(10) 1.067* 

30 17-Hydroxyprogesterone 17-Hydroxypregn-4-ene-3,20-dione 460, 429, 339 1.095 460→429(5), 429→370(10), 429→73(45) 1.107* 

31 Dehydroepiandrosterone 3β-Hydroxyandrost-5-en-17-one 374, 358, 268 0.827 358→84(10), 358→268(5) 0.849 

32 7α-Hydroxydehydroepiandrosterone 3β,7α-Dihydroxyandrost-5-en-17-one 387, 357, 266 0.826 387→356(5), 387→73(40) 0.858 

33 Androsterone 3α-Hydroxy-5α-androstan-17-one 376, 360, 270 0.784 360→270(5), 270→213(5), 270→91(35) 0.798 

34 Epiandrosterone 3β-Hydroxy-5α-androstan-17-one 376, 360, 270 0.837 360→270(5), 270→91(35), 270→84(10) 0.857 

35 Etiocholanolone 3α-Hydroxy-5β-androstan-17-one 376, 360, 270 0.794 360→270(5), 270→105(25), 270→91(35) 0,802 

36 Epietiocholanolone 3β-Hydroxy-5β-androstan-17-one 376, 360, 270 0.774 360→270(5), 270→213(15), 270→84(5) 0,794 

37 20-Hydroxyprogesterone 20-Hydroxypregn-4-en-3-one 417, 286, 117 1.069 417→117(10), 417→73(35), 117→73(5) 1.086 * 

38 Allopregnanolone 3α-Hydroxy-5α-pregnane-20-one 388, 298, 100 0.915 388→70(25), 100→68(5), 100→54(20) 0.929 

39 Pregnanolone 3α-Hydroxy-5β-pregnan-20-one 388, 298, 100 0.925 388→70(25), 100→68(5), 100→54(15) 0.933 

40 Cholestenoic acid 3β-Hydroxycholest-5-en-26-oic acid 502, 412, 373 1.514 412→145(20), 412→105(45), 255→159(10) 1.540 

41 3β,7α-Dihydroxycholestenoic acid 3β,7α-Dihydroxycholest-5-en-26-oic acid 410, 211, 158 1.420 410→211(5), 158→143(10), 158→128(20) 1.413 

42 7α-Hydroxy-3-oxo-4-cholestenoic acid 
7α-Hydroxy-3-oxocholest-4-en-26-oic 

acid 
498, 483, 470 1.573 269→133(10), 269→105(30), 133→105(10) 1.706 

43 Trihydroxycoprostanoic acid 
3α,7α,12α-Trihydroxy-5β-cholestan-26-

oic acid 
410, 343, 253 1.458 410→281(10), 253→143(15), 253→128(40) 1.511 

44 Cholic acid 
3α,7α,12α-Trihydroxy-5β-cholan-24-oic 

acid 
458, 368, 252 1.272 458→368(5), 368→253(5), 253→143(15) 1.313 

45 Chenodeoxycholic acid 3α,7α-Dihydroxy-5β-cholan-24-oic acid 370, 355, 255 1.284 370→105(45), 370→91(45), 213→157(10) 1.306 

46 Deoxycholic acid 3α,12α-Dihydroxy-5β-cholan-24-oic acid 535, 370, 255 1.251 370→255(5), 255→105(25), 255→91(40) 1.288 

47 Lithocholic acid 3α-Hydroxy-5β-cholan-24-oic acid 372, 357, 215 1.242 372→215(5), 215→105(20), 215→91(35) 1.241 

48 Cholestane 5α-Cholestane 372, 357, 217 1.000 372→217(5), 217→121(5), 217→67(25) 1.000 
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49 5β-Cholanic acid 5β-Cholan-24-oic acid 374, 359, 217 1.043 n.d. n.d. 

50 Fernholtz acid 23,24-Bisnor-5-cholenic acid-3β-ol 342, 303, 215 1.069 342→105(40), 215→159(10), 215→91(35) 1.087 

51 �-Murcholic acid 
3α,6α,7β-Trihydroxy-5β-cholan-24-oic 

acid 
458, 443, 195 1, 2 1.254   

52 unknown-Muricholic acid 1 unknown-Muricholic acid 1 195, 285, 369 1, 2 1.453   

53 unknown-Muricholic acid 2 unknown-Muricholic acid 2 195, 285, 361 1, 2 1.462   

54 T-MAS 4,4-Dimethylcholesta-8,24-dien-3β-ol 394, 379, 135 3 1.407   

55 Sitosterol 24S-Stigmast-5-en-3β-ol 486, 396, 357 4 1.387   

56 Campesterol Ergost-5-en-3β-ol 382, 343, 129 5 1.316   

57 Cholesta-7,24-dienol Cholesta-7,24-dien-3β-ol 456, 441, 343 3 1.315   

58 Lophenol 4α-Methylcholest-7-en-3β-ol 472, 382, 367 3 1.320   

59 4-Methylcholesta-7,24-dienol 4α-Methylcholesta-7,24-dien-3β-ol 470, 455, 365 3 1.352   
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2.5 Sample preparation 

 

2.5.1 Lipid extraction procedure 

 

Lipid extraction was performed in 15 mL grinding tubes or 2 mL microcentrifuge tubes depending on 

the available sample amount.  

Mouse brain and liver tissues of 250 - 1,500 mg were homogenized in grinding tubes containing 10 

steel beads. The samples were homogenized without additional solvent at 6,000 rpm for 2 min. Then 2 

mL EtOH containing 5 mg/mL butylated hydroxytoluene (BHT) as antioxidant and 8 mL EtOAc 

containing internal standards as described in Chapter 2.8.1 were added. The samples were mixed one 

more time at 6,000 rpm for 2 min. Then 4 mL of 0.2 M HCl with 25% (m/v) aqueous KCl solution and 

4 mL EtOAc were added to the mixture. The samples were homogenized for another 2 min. Then the 

whole content of the grinding tubes was transferred into 50 mL centrifuge tubes and the samples were 

centrifuged for 5 min at 3,300 g. The organic layer was collected, and the aqueous phase was extracted 

two more times by addition of 10 mL EtOAc, shaking for 1 min and subsequent centrifugation. The 

organic phases were combined.  

Smaller amounts (50 mg – 250 mg) of tissue or cell samples were extracted in 2 mL microcentrifuge 

tubes containing 3 big and 3 small glass beads on a tube shaker (see Chapter 2.1). The samples were 

homogenized without additional solvent at 3,200 rpm for 10 min. Then 200 µL EtOH containing 5 

mg/mL BHT and 800 µL EtOAc containing internal standards as described in Chapter 2.8.1 were added. 

The samples were mixed one more time at 3,200 rpm for 10 min. Then 400 µL of 0.2 M HCl with 25% 

(m/v) aqueous KCl solution and 400 µL EtOAc were added to the microcentrifuge tubes. The samples 

were homogenized for another 10 min at maximum speed. Then the samples were centrifuged for 5 min 

at 12,000 g. The organic layer was collected, and the aqueous phase was extracted two more times by 

addition of 1000 µL EtOAc, mixed for 1 min and centrifuged for 5 min at 12,000 g. The organic phases 

were combined.  

Aliquots (n=3) of these lipid extracts corresponding to 1 mg liver tissue or 0.4 mg brain tissue were 

used for cholesterol determination. For solid-phase extraction and determination of the other steroids, 

aliquots (n=3) corresponding to 250 mg liver tissue or 100 mg brain tissue were used. The aliquots were 

transferred into glass vials (5 mL) and concentrated to dryness under a gentle stream of nitrogen. 

 

2.5.2 Steroid group separation 

 

After extraction the lipids were separated in different groups: neutral steroids, steroid acids and sterol 

sulfates. Therefore, a mixed mode solid-phase extraction (SPE) cartridge with reversed-phase (RP) and 

weak anion exchange abilities was used. All steps were carried out without additional pressure or 

vacuum, exceptions are mentioned explicitly. First, possible lipophilic contaminations from 

manufacturing were removed from the column by washing with 2 mL MtBE. Then the sorbent was 

conditioned with 4 mL MeOH and 4 mL of MeOH/H2O (3:7). Care was taken that the sorbent was 

always wetted. The dried lipid extracts were reconstituted in 600 µL MeOH and then diluted with 1400 

µL H2O. The final pH was spot-checked and ranged between 5 and 7. The sample solution was loaded 

on the column. After the whole solvent had run through, the cartridge was dried by through-flow of 

nitrogen for 1 h. Steroid groups were eluted in the following order: neutral steroids, steroid acids, and 

sterol sulfates. After every elution step, the cartridges were dried for 5 min by through-flow of nitrogen. 

Each eluate was evaporated to dryness under a stream of nitrogen (exception sterol sulfates, see below) 

and was stored at -20 °C prior to further analysis. Different solvents were tested for elutions to find the 

most suitable mixture for every single steroid group. For this purpose, lipid extracts of 50 mg brain 

tissue were spiked with several representative steroidal compounds at concentrations of 1 µg/50 mg 

tissue each, which exceeds the unneglectable endogenous concentration of most steroidal compounds. 

In case of desmosterol, which occurs in a higher concentration in brain, we used desmosterol-d6 (13d). 



4. Analysis of neutral steroids, steroid acids and sterol sulfates 
 

 

52 

Optimization was performed in separate experiments for each steroid group and each experiment was 

performed in triplicate. 

Starting with neutral steroids, desmosterol-d6 (13d), pregnenolone (26), 17-hydroxypregnenolone 

(28), 17-hydroxyprogesterone (30), androsterone (33), 20-hydroxyprogesterone (37), allopregnanolone 

(38) and pregnanolone (39) were used as model analytes. The steroid acid lithocholic acid (47) was used 

as negative control here, and the following solvents were tested: MeOH, iso-hexane/iso-propanol (7:3), 

CHCl3/MtBE (9:1) and dichloromethane (DCM)/MtBE (9:1). Neutral steroids were eluted with 3 × 3 

mL solvent and the internal standard (IS) cholestane (48) (10 µL of 100 µg/mL stock solution) was 

added to each eluate. The eluates were evaporated under a stream of nitrogen and the dry residue of each 

sample was derivatized following the protocol for neutral and sulfated steroids (Chapter 2.6.2). After 

derivatization the samples were analyzed with GC-IT-MS (Chapter 2.4.1). In the case of CHCl3/MtBE 

(9:1) additional fractions of 2 × 3 mL were analyzed to monitor the elution of the huge amount of 

cholesterol occurring in the brain extracts. Recovery was calculated by comparison to the spiked steroids 

measured without SPE in solvent.  

The solvent for elution of steroid acids was optimized using the model compounds cholic acid (44), 

chenodeoxycholic acid (45), lithocholic acid (47), cholanic acid (49), and Fernholtz acid (50). After 

elution of neutral steroids with 3 × 3 mL CHCl3/MtBE (9:1), steroid acids were eluted using the 

following solvents, each with addition of 5% trifluoroacetic acid (TFA): MeOH, iso-hexane/iso-

propanol (7:3), CHCl3/MtBE (9:1), EtOH/EtOAc (2:8) and CH3CN/acetone (2.5:7.5). Analytes were 

eluted with 2 × 1.5 mL solvent and cholestane (1 µg, IS) was added to each eluate. The eluates were 

evaporated under a stream of nitrogen and the dry residue of each sample was derivatized following the 

protocol for steroid acids (Chapter 2.6.3). The derivatized samples were analyzed with GC-IT-MS 

(Chapter 2.4.1). Recovery was calculated by comparison to the spiked steroids measured without SPE 

in solvent. 

Optimization of sterol sulfate elution was performed using cholesterol sulfate (10S), 25-

hydroxycholesterol sulfate (24S), pregnenolone sulfate (26S), dehydroepiandrosterone sulfate (31S), 

androsterone sulfate (33S), epiandrosterone sulfate (34S), allopregnanolone sulfate (38S), and 

pregnanolone sulfate (39S) as model sterol sulfates. Elution of sterol sulfates was investigated after 

elution of neutral steroids (with 3 × 3 mL CHCl3/MtBE (9:1) and steroid acids (with 2 × 1.5 mL 

EtOH/EtOAc (2:8) + 5% TFA) with 2 × 1.5 mL of the following solvents CHCl3/MeOH (1:1), 

MeOH/H2O (1:1), MeOH/H2O (8:2), MeOH/H2O (9:1) and acetone. To each solvent mixture 5% 

triethylamine (TEA) was added for mixed mode SPE. The consecutive use of TFA and TEA leads to 

the formation of small amounts of TEA-TFA salt in the fractions of sterol sulfates. For the removal of 

this contamination an additional C18 SPE was necessary. For this purpose, the sterol sulfate eluate of 

mixed mode SPE was evaporated to almost dryness under a stream of nitrogen and the residue dissolved 

in 1 mL of 0.1 M HCl/MeOH (7:3). Cholesterol-d7 (10d) (10 µL of 100 µg/mL stock solution) was 

added to each sample to examine the behavior of probably co-eluting traces of cholesterol (cross-

contamination). The C18 sorbent was conditioned with 2 mL MtBE, then 2 mL MeOH and 2 mL of 0.1 

M HCl/MeOH (7:3) and was kept wetted for the whole time. Samples were loaded on the conditioned 

SPE cartridge and contaminants of TEA-TFA salt were removed by washing with 1 mL H2O/MeOH 

(7:3). Sterol sulfates were subsequently eluted with 1 mL of the same solvent as used before for mixed 

mode SPE, but this time without the addition of TEA. Cholestane (10 µL of 100 µg/mL stock solution) 

was added to each eluate. Solvents were removed under a stream of nitrogen at 50 °C and the dry residue 

of each sample was derivatized following the protocol for neutral and sulfated steroids (Chapter 2.6.2). 

The derivatized samples were analyzed with GC-IT-MS (Chapter 2.4.1). Recovery was calculated by 

comparison to the spiked steroids measured without SPE in solvent. 
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2.6 Deconjugation and derivatization 

 

2.6.1 Cholesterol 

 

Cholesterol was measured as trimethylsilyl ether (TMS ether). Fifty microliters of MSTFA/TSIM 

(10:1) was added and the sample was kept for 30 min at RT. Finally, 950 µL of MtBE was added and 

the sample was ready for GC-IT-MS analysis (Chapter 2.4.1). 

 

2.6.2 Neutral steroids and sterol sulfates 

 

Neutral steroids and sterol sulfates were measured as their respective O-methyloxime-trimethylsilyl 

ethers (MO-TMS). Sterol sulfates were deconjugated and derivatized in the same step as described 

previously [83]. For this purpose, 200 µL of a solution of O-methylhydroxylamine hydrochloride in 

pyridine 2% (m/v) was added to the dry lipids and kept for 4 h at 80 °C in a 4 mL glass vial. Then the 

sample was transferred into a 2 mL microcentrifuge tube and 400 µl H2O and 1000 µL MtBE were 

added. Liquid-liquid extraction (LLE) was performed by shaking manually for 1 min and centrifugation 

at 10,000 g for 5 min. The organic layer was separated and transferred into an autosampler vial and the 

aqueous phase was extracted one more time with 1000 µL MtBE. The organic phases were combined 

and evaporated to dryness under a stream of nitrogen. Then 50 µL of MSTFA/TSIM (10:1) was added 

and the sample was kept for 30 min at RT. Finally, 940 µL of MtBE and 10 µL internal standard (IS) 

cholestane (48, 1 µg/mL in MtBE) were added before analysis. 

 

2.6.3 Steroid acids 

 

Steroid acids were measured as methyl ester-trimethylsilyl ethers (Me-TMS). To the dry lipids 200 µL 

MeOH and 50 µL HCl conc. were added and the mixture was kept at 80 °C for 30 min. The sample was 

then brought to dryness under a stream of nitrogen at 50 °C. Then 50 µL of MSTFA/TSIM (10:1) was 

added and the sample was kept at RT for 30 min. Finally, 940 µL of MtBE and 10 µL internal standard 

(IS) cholestane (48, 1 µg/mL in MtBE) were added before analysis. 

 

2.7 Investigation of matrix effects 

 

Matrix effects were determined by comparison of the measured peak areas analyzed with and without 

addition of matrix. Therefore, mouse brain samples (50 mg, n=3) were extracted and group separation 

with optimized solvents was performed (see Chapter 2.8.1). The eluates of each class of analytes (neutral 

sterols, steroid acids, and sterol sulfates) were used as matrix. Steroid standards were added to matrix in 

a concentration of 1 µg/50 mg brain tissue, which exceeds the neglectable endogenous concentrations 

of most steroidal compounds in the brain extracts. In case of desmosterol (13) we used desmosterol-d6 

(13d). Solvent samples were prepared with the same steroid standards and concentration. Samples were 

derivatized as described in Chapters 2.6.2 and 2.6.3 and were analyzed with GC-IT-MS (Chapter 2.4.1). 

The ratios of the obtained peak areas with and without matrix were determined for 11 neutral steroids 

(23, 24, 26d, 28, 29-32, and 37-39), 6 steroid acids (40, 44-47, and 50) and 8 sterol sulfates (10S, 24S, 

26S, 31S, 33S, 34S, 38S and 39S). 

2.8 Final method and validation 

 

2.8.1  Final sample preparation protocol 

 

The optimized sample preparation procedure is shown in Figure 1. Tissues (250 -1,500 mg) were 

extracted in grinding tubes, smaller amounts of tissues were extracted in 2 mL microcentrifuge tubes as 

described in 2.5.1. The internal standards were added. For cholesterol precursors desmosterol-d6 (13d) 

(100 ng/250 mg liver; 1000 ng/100 mg brain) was used as internal standard. Pregnenolone-20,21-13C2-
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16,16-d2 (26d) (10 ng/250 mg liver; 10 ng/ 100 mg brain) was used as internal standard for the other 

neutral steroids. Pregnenolone-20,21-13C2-16,16-d2 sulfate (26Sd) (10 ng/250 mg liver; 10 ng/100 mg 

brain) was used as internal standard for sterol sulfates. Fernholtz acid (50) (500 ng/250 mg liver; 50 

ng/100 mg brain) was used as internal standard for steroid acids. After addition of these standards, a 

small aliquot of the extract corresponding to 1 mg liver or 0.4 mg brain tissue was diverted for 

cholesterol analysis. For cholesterol analysis cholestane (48) (10 µL of 100 µg/mL stock solution) was 

added to the aliquot and solvent was evaporated to dryness under a stream of nitrogen. Derivatization 

was performed as described in Chapter 2.6.1. and cholesterol samples were analyzed with GC-IT-MS 

(Chapter 2.4.1.). Aliquots for group separation referring to 100 mg brain tissue or 250 mg liver tissue 

were used for SPE. The extracts were dried under a stream of nitrogen and stored at -20 °C before 

analysis. Conditioning and loading of the weak anion exchange cartridge was performed as described in 

Chapter 2.5.2. The best elution solvent for neutral steroids was CHCl3/MtBE (9:1) 3 × 3 mL, for steroid 

acids EtOH/EtOAc (2:8) + 5% TFA 2 × 1.5 mL and for sterol sulfates MeOH/H2O (9:1) + 5% TEA 2 × 

1.5 mL and MeOH/H2O (9:1) 1 mL. Every sample was derivatized (Chapters 2.6.2 an 2.6.3) and 

analyzed with GC-IT-MS and/or GC-MS/MS (Chapters 2.4.1 and 2.4.2).  

 
Figure 10 Final Sample preparation protocol 

 
 

2.8.2  Identification of steroids 

 

Steroidal compounds were identified using their respective relative retention time (RRT) relating to 

the internal standard cholestane (48) and, in the case of scan data, on basis of the obtained mass spectra. 

The spectra were compared to those obtained for authentic standards or mass spectra previously 

published by us and others [63, 79, 81, 82] (Table 2). In case of dMRM data steroidal compounds were 

identified using their respective relative retention time (RRT) relating to the internal standard cholestane 

(48) and on basis of one or two qualifier and one quantifier transitions (Table 2) [84]. The transitions 

for each compound were chosen under consideration of co-eluting similar compounds and matrix 
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components. Collision energies were optimized using MassHunter MRM optimizations software and 

are shown in Table 2. 

 

2.8.3 Quantification 

 

Quantification was performed using an external calibration. The calibration standards were measured 

in 6 different concentrations with a consistent concentration of internal standard. This concentration was 

100 ng/mL for liver and 1000 ng/mL for brain samples desmosterol-d6 (13d) for cholesterol precursors 

and 10 ng/mL pregnenolone-20,21-13C2-16,16-d2 (26d) for the other neutral steroids. For the steroid 

acids Fernholtz acid (50) was used as internal standard in a concentration of 500 ng/mL for liver samples 

and 50 ng/mL for brain samples. For sterol sulfates pregnenolone-20,21-13C2-16,16-d2 sulfate (26dS, 10 

ng/mL) was used. For cholesterol (10) determination the internal standard was cholestane (48, 1 µg/mL). 

The calibrators were measured in triplicates using a bracketing procedure and peak area ratios from 

quantifier ions/transitions of the analytes and internal standards were plotted against the corresponding 

concentration. The individual calibration ranges and results of linear regression are given in Tables 7 

and 8. 

 

2.8.4 Determination of LOD and LOQ 

 

Limit of detection (LOD) and limit of quantification (LOQ) were determined using linear regression 

according to DIN 32645 [85]. Authentic standards (3-5, 8-10, 12, 13, 15, 18, 19, 22-24, 24S, 26, 26S, 

28-32, 31S, 33S, 34S, 37-41, 38S, 39S and 43-47) were measured in solvent because no steroid-free 

brain or liver matrix was available and matrix effects have shown to be limited (Chapter 3.2). LOD and 

LOQ values were calculated individually for liver and brain tissue with regards to the different amounts 

of tissue which could be used for analysis (250 mg liver tissue; 100 mg brain tissue). LOD and LOQ for 

the analyzed steroids are given in Tables 7 and 8.  

 

2.8.5 Precision and recovery 

 

Precision and recovery were determined as described by Rustichelli et al. [46], who used three different 

sets of quality control (QCa, QCb and QCc) samples. QCa samples were prepared from 400 mg brain 

(n=3) and 1,000 mg liver (n=3). For this purpose, the respective concentrations of internal standards 

were added, and the samples were prepared as described in Chapter 2.8.1. QCb samples were prepared 

from 400 mg brain (n=6) and 1000 mg liver (n=6). In addition to the respective concentrations of internal 

standards the samples were spiked with authentic standards (3-5, 8, 9, 12, 13, 15, 18, 19, 22-24, 24S, 

26, 26S, 28-32, 31S, 33S, 34S, 37-41, 38S, 39, 39S and 43-47) at two different concentrations (LOQ: 

n=6; 50 × LOQ: n=6). Then the samples were prepared as described in chapter 2.8.1. QCc samples were 

prepared in the same manner as the QCb samples but were spiked with authentic standards (LOQ: n=3; 

50 × LOQ: n=3) after sample preparation, just before the deconjugation/derivatization step. Precision 

was calculated as relative standard deviation (RSD) of the spiked authentic standards in QCb samples 

(n=6). Recovery was calculated by comparing the mean values obtained from QCc-QCa samples with 

those of QCb-QCa.  

 

2.9 Application on biological samples 

 

The method was applied on brain and liver samples of 10 months old female mice and on brain of 3 

weeks old male mice. The whole brains and livers were extracted in grinding tubes and further sample 

preparation and analysis was done in technical triplicates. Furthermore, the method was also applied to 

cultured N2a cells which were extracted using microcentrifuge tubes. Per sample ~ 3 × 107 cells 

corresponding to ~ 200 mg cell mass were used (n = 6).   
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3. Results and discussion 

 

3.1 Sample preparation 

 

3.1.1 Lipid extraction 

There are various methods published for lipid extraction from biological samples. The most popular 

methods were published by Folch et al. [86] and Bligh and Dyer [87]. Their methods work with varying 

amounts of MeOH, CHCl3 and H2O. These solvents are still frequently used for lipid extraction even if 

the exact procedure may vary [31, 39]. In recent publications some authors tried to substitute these 

solvents by less toxic EtOH and EtOAc [88, 89]. Another possible procedure is saponification with hot 

aqueous NaOH or KOH and then extraction in an organic solvent like diethyl ether, MtBE or hexane 

[63, 90]. Preliminary experiments revealed that a mixture of EtOAc, EtOH and H2O was as effective as 

CHCl3/MeOH mixtures or saponification with hot aqueous NaOH solution for neutral steroid extraction, 

and even superior for steroid acids extraction. The extraction procedure with EtOAc has some more 

advantages, as unlike to CHCl3 the organic phase is the upper layer and can easily be collected without 

contaminations with the aqueous phase. And in contrast to the saponification protocol we do not need 

harsh conditions and elevated temperatures, which is one main reason for cholesterol autoxidation that 

could lead to the formation of artefacts like 7-hydroxy- or 7-oxocholesterol [91]. Without saponification 

free cholesterol can also be distinguished from cholesterol fatty acid esters. Hence, in the final extraction 

protocol the solvent system EtOH, EtOAc and H2O was used. In addition, the antioxidant 
butylhydroxytoluene (BHT) was used to avoid cholesterol autoxidation and hydrochloric acid was used 

for acidification of the aqueous phase to increase extraction of steroidal acids and sterol sulfates. 

Additionally, a high concentration of KCl improved phase separation and lipid recovery.  

3.1.2 Steroid group separation 

 

After extraction the lipids were separated into different groups: neutral steroids, steroid acids and sterol 

sulfates. This separation is necessary to differentiate between sterols and the respective sterol sulfates, 

which were finally also measured in their deconjugated form. Another reason is the derivatization 

procedure for the steroid acids which varies from neutral or sulfated steroids. A separation just basing 

on the polarity of the analytes, as liquid-liquid-extraction (LLE) [40], column chromatography [92] or 

reversed phase SPE [41] was only successful for a smaller group of steroids, for example C19 and C21 

steroids and their corresponding sulfates. Including C27 steroids (cholesterol precursors), whose 

corresponding sulfates could be more lipophilic than unconjugated smaller steroids, the analysis requires 

another separation mechanism. This could be achieved by SPE with an anion exchange sorbent. Griffiths 

et al. [93] presented a universal extraction scheme employing subsequent solid phase extractions on C18, 

cation exchange and anion exchange sorbents. Following this principle including three to five separation 

steps Liu et al. [43] measured neurosteroids (e.g. progesterone, dehydroepiandrosterone and 

pregnenolone) and sterol sulfates in rat brain. Their sample preparation also gave a fraction of weak 

acids that was not further analyzed. We followed this principle using reversed phase (RP) SPE in 

combination with ion exchange sorbents, but instead of subsequent extraction steps on different 

cartridges, we used a mixed mode sorbent with RP and weak anion exchange properties. So, we could 

reduce the number of extraction steps and achieve a robust method with high reproducibility. In the first 

elution step neutral steroids were eluted from the cartridge. Subsequently, steroid acids were eluted in 

their uncharged form from the sorbent under acidic conditions. The more acidic sterol sulfates remained 

on the column under these conditions and were eluted in a last step under alkaline conditions. 

 

3.1.3 Neutral steroids 

 

The results of the optimization experiments for elution of neutral steroids are shown in Table 3. The 

best results were obtained for CHCl3/MtBE (9:1). Under these conditions the highest recoveries for most 

tested steroids were achieved and the relative standard deviations (RSD) were within an acceptable 
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range. Steroids were eluted with a final volume of 9 mL (3 × 3 mL). Further experiments with larger 

volumes of CHCl3/MtBE (9:1) were performed and it was determined that 99.9% of the endogenous 

cholesterol is eluted with the first 9 mL. Moreover, lithocholic acid (47) started to elute from the solid 

phase after 15 mL of CHCl3/MtBE (9:1). So, a final volume of 9 mL was chosen for extraction of neutral 

steroids. 

 
Table 3 
Mean recovery for various neutral steroids using different solvents (n=3) and respective average relative standard deviations 

(RSD). Log P values (calculated) of analyzed neutral steroids are shown. The final extraction mixture is given in bold letters. 
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13d Desmosterol-d6 6.7 84 54 90 80 

26 Pregnenolone 3.6 87 79 100 61 

28 
17-

Hydroxypregnenolone 
2.8 28 20 67 84 

30 
17-

Hydroxyprogesterone 
3.4 29 20 72 57 

33 Androsterone 3.8 76 76 100 59 

37 
20α-

Hydroxyprogesterone 
3.9 80 84 100 47 

38 Allopregnanolone 4.0 78 73 95 62 

39 Pregnanolone 4.0 80 74 98 62 

 Average recovery [%]  68 60 90 64 

 Average RSD [%]  19 23 19 16 

 

3.1.4 Steroid acids 

 

The results of the optimization experiment for elution of steroid acids are shown in Table 4. The best 

recoveries for most steroid acids were obtained with iso-hexane/iso-propanol (7:3) + 5% TFA and 

EtOH/EtOAc (2:8) + 5% TFA. The recovery of the EtOH/EtOAc (2:8) + 5% TFA protocol was better and 

with lower RSD for the more lipophilic steroid acids. With consideration of further steroid acids that are 

even more lipophilic than lithocholic acid (47), e.g. 3β-hydroxycholestenoic acid (40), and are expected 

to be found only in trace amounts, the mixture of EtOH/EtOAc (2:8) + 5% TFA was chosen. The example 

of 49 shows the limitation of this separation step. This very lipophilic steroidal acid was eluted to a great 

extent in the fraction of neutral steroids. For that reason, we performed an additional experiment for 

cholestenoic acid (40) because it has similar lipophilic properties (Log P 6.1) and confirmed that this 

steroidal acid was indeed eluting in the steroid acid fraction. 
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Table 4 
Mean recovery in % for various steroid acids using different solvents (n=3) and respective average RSD. Log P values 

(calculated) of analyzed steroid acids are shown. The final extraction mixture is given in bold letters. 
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44 Cholic acid 2.5 133 123 15 118 75 

45 Chenodeoxycholic acid 3.7 100 107 113 104 86 

47 Lithocholic acid 5.0 75 89 115 93 75 

49 Cholanic acid 6.5 21 5 4 5 6 

50 Fernholtz acid 4.0 21 106 113 88 93 

 Average recovery [%]  70 86 72 82 67 

 Average RSD [%]  39 10 28 6 33 

 

3.1.5 Sterol sulfates 

 

The results of the optimization experiment for elution of sterol sulfates are shown in Table 5. The best 

results were obtained for MeOH/H2O (9:1) + 5% TEA. Sterol sulfates were eluted under alkaline 

conditions from the SPE sorbent. For this reason, the Log D value (calculated) for the sterol sulfate 

anion is specified. The elution of sterol sulfates from the weak anion exchange sorbent was followed by 

an additional purification step on a C18 SPE cartridge. This is necessary to remove the TFA-TEA salt, 

originating from reaction of TFA from the previous elution step with TEA from the present elution, 

which had shown to disturb the following deconjugation and derivatization steps. In this experiment the 

same mixture was used for both SPEs, but in case of the C18 SPE without the addition of TEA. 

Furthermore, cholesterol-d7 (10d) was added right before C18 SPE to monitor the elution of unconjugated 

cholesterol, which could still be retained in small amounts in the sample and would cause wrong results 

for cholesterol sulfate (10S) measurement. For this reason, solvents which were able to elute 10d were 

excluded. This was the case for acetone and CHCl3/MeOH (1:1). In both cases large amounts of detected 

cholesterol sulfate could be co-eluting with residual free cholesterol.  
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Table 5 
Mean recovery in % for various sterol sulfates using different solvents (n=3) and respective average RSD. Log D values 

(calculated) of analyzed sterol sulfate anions are shown. *: Solvents which also elute unconjugated cholesterol-d7. The final 

extraction mixture is given in bold letters. 
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10S Cholesterol sulfate 4.8 223 3 6 6 162 

24S 
25-Hydroxycholesterol 

sulfate 
3.4 76 0 52 79 29 

26S Pregnenolone sulfate 1.3 93 0 96 107 27 

31S 
Dehydroepiandrosterone 

sulfate 
1.0 96 24 104 111 30 

33S Androsterone sulfate 1.5 87 18 105 106 31 

34S Epiandrosterone sulfate 1.5 100 19 107 116 22 

38S 
Allopregnanolone 

sulfate 
1.7 83 0 95 105 29 

39S Pregnanolone sulfate 1.7 90 0 94 104 27 

 
Average recovery [%]  106* 8 82 92 45* 

 
Average RSD [%]  15 37 27 13 29 

 

3.2 Investigation of matrix effects 

 

Compared to LC-MS/MS matrix effects in GC-MS are known to be minimal [69], even so it is 

recommended to prepare calibration standards in blank matrix [94]. As no steroid-free matrix for brain 

or liver tissue was available the calibration standards had to be prepared in solvent. For this reason, 

matrix effects for all three groups of steroidal compounds were investigated before method validation. 

Brain tissue was chosen for the experiments due to its large amounts of lipids, which are likely to be co-

extracted with the steroids. The matrix effects for neutral steroids (23, 24, 28, 29, 30, 31, 32, 37, 38 and 

39), steroid acids (40, 44, 45, 46, and 47) and sterol sulfates (10S, 24S, 31S, 33S, 34S, 38S and 39S) 

were investigated using several representative compounds (1 µg/50 mg brain tissue) from each steroid 

group. The matrix effects were determined by comparing the peak areas obtained in matrix with those 

obtained in solvent. The mean value for every steroid group is shown in the first row of Table 6. In the 

second row the effect is given after correction with the respective internal standards. The internal 

standards were isotope-labelled pregnenolone (26d) for neutral steroids, Fernholtz acid (50) for steroid 

acids and isotope-labelled pregnenolone sulfate (26dS) for the sterol sulfates.  

 
Table 6 

Mean ratio of peak areas of steroidal compounds measured in spiked matrix compared to pure solvent.  

 

Neutral steroids Steroid acids Sterol sulfates 

Peak area ratio without 
correction with IS 

1.30 2.32 1.11 

Peak area ratio after 
correction with IS 

1.03 1.06 1.15 

 

 

There was a trend to higher areas with matrix matched standards compared to standards analyzed in 

solvent. This matrix enhancement effect [95] seems to take effect especially on the steroid acids. 

However, this effect was successfully compensated by the used of appropriate internal standards. The 
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enhancing effect on sterol sulfates is not as high as for other groups, this is most likely due to the matrix 

composition of this group. In this case the effect of the internal standard is small and does not improve 

the result. Despite of that the internal standard for the sterol sulfates is important regarding the whole 

sample preparation procedure because it compensates losses and variations in sample preparation, which 

includes two critical solid phase extraction steps. The chosen internal standards are acceptable for a huge 

number of steroids in the particular groups (individual values for every tested compound are given in 

Figure 2). Anyway the best internal standard for every analyte would be its isotope-labeled counterpart, 

but these labeled compounds are often not commercially available or very expensive. 
Figure 2 Matrix effects for individual compounds with (green) and without (red) correction using the respective internal 

standards

 

3.3 Method performance 

 

The method performance was investigated for 23 neutral steroids (3-5, 8-10, 12, 13, 15, 18, 19, 22-24, 

26, 28- 32 and 37-39) 7 steroid acids (40, 41 and 43-47) and 7 sterol sulfates (24S, 26S, 31S, 33S, 34S, 

38S and 39S). We determined the selectivity, linearity, precision, recovery, limit of detection (LOD), 

and limit of quantification (LOQ) for each individual analyte in brain and in liver tissue. As no great 

differences between those two matrices were noticed, no further validation experiments for cultured cell 

matrix were necessary. 
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3.3.1 Selectivity 

 

Compounds were identified using the RRT relative to cholestane (48) and full scan mass spectra or 

dynamic MRM transitions. In Figure 3 chromatograms of dynamic MRM measurements are shown. The 

chosen transitions were sufficiently distinctive even for compounds with identical retention times, as for 

example 7α-hydroxydehydroepiandrosterone (32) and epiandrosterone (34) (Figure 3D). Other 

compounds could be distinguished because of their different retention times although they have identical 

mass transitions, as for example allopregnanolone (38) and pregnanolone (39) (Figure 3B). It should be 

mentioned that progesterone (29) and its hydroxylated metabolites have asymmetrical peak shapes (29, 

37, and 30) (Figure 3B). This is due to endo- and exo-isomeric MO derivatives. These peaks were 

processed as one single peak. 
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Figure 3 dMRM chromatograms with selected transitions for several steroidal compounds. Transitions referring to one 

compound are marked in the same color. Numbers in the diagram represent the detected steroids as are given in Table 2. A: 

cholesterol precursors (C27 – C30 steroids); B: C21 steroids C: oxysterols; D: C19 steroids; E: steroid acids.  
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Cholesterol is, because of its high concentration in most biological samples, not analyzed in the same 

run as the other neutral steroids. But its huge amount, especially in brain samples, could still be 

problematic for the analysis of the other neutral steroids. The high on column concentration on the GC-

MS/MS system and the thereof resulting tailing of the cholesterol peak can lead to an overlap with the 

next eluting steroids like lathosterol (8) or desmosterol (13). In this case these steroids could be 

measured alternatively on the GC-IT-MS system with lower on column cholesterol concentration due 

to the lower injection volume (1 µL instead of 5 µL; see Chapter 2.4). 

3.3.2 LOD, LOQ, linearity, precision and recovery 

  

LOD and LOQ were calculated according to DIN 32645 [85]. This method considered slope, intercept 

and residual standard deviation of a calibration curve over a limited concentration range. The advantage 

of this method is that it reveals the individual values for each compound even if they have large 

differences in their LOD and LOQ (see Tables 7 and 8). The achieved limits enable the measurement of 

most endogenous steroids. Only the 17-hydroxylated compounds 28 and 30 had relatively high LOD 

and LOQ. For verification the method precision (RSD of QCb samples, n=6) was measured at LOQ or 

at the lower end of the working range (e.g. 25 ng lanosterol/100 mg brain tissue). One exception was 

cholesterol that was only analyzed at the endogenous level. In this case the precision was calculated as 

RSD of all QC samples. The obtained precision was <20% for 31 compounds in liver tissue and for 20 

compounds in brain tissue and <30% for 34 (liver) and 30 (brain) compounds. Method precision was 

measured also at a medium level corresponding to the middle concentration of working range (e.g. 1,250 

ng lanosterol/100mg brain tissue) and was <20% for 34 (liver) and 31 (brain) compounds and <30% for 

35 (liver) and 32 (brain) compounds. So, no great differences could be determined between the different 

matrices. Measurement of technical replicates would be useful if a sufficient amount of sample is 

available. Higher concentrations were not tested, because this concentration in combination with the 

endogenous amount would exceed the working range by far for some compounds (e.g. cholesterol 

precursors). Determination of recovery is challenging due to the necessary subtraction of the endogenous 

concentration which can lead to inaccuracies because no steroid-free matrix is available for brain and 

liver tissue. So, the recovery was only estimated at medium concentration because endogenous 

concentration did not affect these values that much. For 30 (liver) and 23 (brain) compounds the recovery 

was >50%. Linearity was measured in a bracketing process and was >0.980 for 26 (liver) and 19 (brain) 

compounds. Some compounds showed just sufficient linearity, for example 7-ketocholesterol (18, R2 

0.932), this problem was already described by other authors [65]. Other compounds show difficulties at 

higher concentrations, like desmosterol (13) or lathosterol (8) measured in dMRM in case of liver 

samples. The steroid acids in general showed a smaller linear range compared to the other compounds. 

Linearity and recovery could be improved when using the respective isotope-labelled internal standard, 

which is recommended if a specific steroid of interest should be quantitated with higher accuracy. 
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Table 7 Validation data for brain samples. *: Desmosterol-d6 as IS instead of isotope labeled pregnenolone. IT: measured with 

GC-IT-MS; * precision calculated by the analytical data obtained at the endogenous level. 

 

  

No. Trivial name 
LOD 

[ng/mg] 
LOQ 

[ng/mg] 
Range 

[ng/mL] 
R2 

Precision [%] 
Medium level 

Recovery [%] 
Medium level 

3 Lanosterol 0.049 0.247 25 - 2500 0.924 8 27 

4 Dihydrolanosterol 0.016 0.028 1.6 - 160 0.958 8 36 

5 4,4-Dimethyl-5α-cholesta-

8,14-dienol 

0.006 0.016 0.6 - 60 0.960 8 42 

8 Lathosterol 0.006 0.039 50 – 5000 IT 0.997 IT 15 IT 162IT 

10 Cholesterol 0.850 4.700 10 - 100 IT 0.999 IT 9 IT* n.d. 

13 Desmosterol 0.009 0.025 200 – 20000 IT 0.998 IT 16 IT 112 IT 

15 4,4-Dimethylcholesta-5,7-

dienol 

0.018 0.018 1.8 - 180 0.916 7 49 

18 7-Ketocholesterol  0.159 0.251 25 - 2500 0.932 20 42 

22 24S-Hydroxycholesterol 0.013 0.040 50 – 5000 IT * 0.968 IT* 42 IT* 59 IT* 

23 27-Hydroxycholesterol 0.004 0.006 10 - 1000 0.905 10 35 

24 25-Hydroxycholesterol 0.008 0.032 0.80 – 80 0.998 8 50 

24S 25-Hydroxycholesterol sulfate 0.004 0.004 0.41 - 41 0.985 8 35 

26 Pregnenolone 0.002 0.004 0.40 - 40 0.999 26 79 

26S Pregnenolone sulfate 0.004 0.010 1.0 - 100 0.997 4 49 

28 17-Hydroxypregnenolone 0.134 0.383 38 - 3800 0.997 67 102 

29 Progesterone 0.001 0.002 0.08 – 8.0 0.982 4 78 

30 17-Hydroxyprogesterone 0.162 0.487 49 - 4900 0.993 8 75 

31 Dehydroepiandrosterone 0.003 0.005 0.33 - 33 0.999 3 68 

31S Dehydroepiandrosterone 

sulfate 

0.006 0.006 0.63 - 63 0.993 5 75 

32 7α-

Hydroxydehydroepiandroster

one 

0.001 0.002 0.04 – 4.0 0.971 16 31 

33S Androsterone sulfate 0.004 0.010 0.99 - 99 0.995 6 65 

34S Epiandrosterone sulfate 0.014 0.030 3.0 - 300 0.988 8 55 

37 20α-Hydroxyprogesterone 0.002 0.002 0.16 - 16 0.983 7 81 

38 Allopregnanolone 0.002 0.002 0.24 - 24 0.972 6 58 

38S Allopregnanolone sulfate 0.001 0.002 0.22 - 22 0.998 13 61 

39 Pregnanolone 0.002 0.010 0.20 - 20 0.987 6 68 

39S Pregnanolone sulfate 0.001 0.002 0.16 - 16 0.998 13 50 

40 Cholestenoic acid 0.016 0.035 3.5 - 350 0.858 8 94 

41 3β,7α-Dihydroxycholestenoic 

acid 

0.006 0.269 26 - 2600 0.923 15 19 

43 Trihydroxycoprostanoic acid 0.006 0.031 3.0 - 300 0.979 5 83 

44 Cholic acid 0.017 0.171 17 - 1700 0.968 13 118 

45 Chenodeoxycholic acid 0.012 0.033 3.3 - 330 0.975 5 96 

46 Deoxycholic acid 0.009 0.028 2.8 - 280 0.994 18 81 

47 Lithocholic acid 0.003 0.013 1.3 - 130 0.961 1 82 
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Table 8 Validation data for liver samples. IT: measured with GC-IT-MS; * precision calculated by the analytical data obtained 

at the endogenous level. 

 

  

No. Trivial name 
LOD 

[ng/mg] 
LOQ 

[ng/mg] 
Range 

[ng/mL] 
Linearity 

Precision [%] 
Medium level 

Recovery [%] 
Medium level 

3 Lanosterol 0.020 0.099 25 - 2500 0.987 5 68 

4 Dihydrolanosterol 0.006 0.011 1.60 - 160 0.995 4 62 

5 
4,4-Dimethyl-5α-cholesta-

8,14-dienol 
0.002 0.007 0.6 - 60 0.989 7 62 

8 Lathosterol 0.002 0.016 0.6 - 60 0.902 4 58 

9 7-Dehydrocholesterol 0.008 0.009 15 - 1500 0.916 5 73 

10 Cholesterol 0.340 IT 1.880 IT 1.0 - 10 IT 0.999 IT 9 IT* n.d. 

12 Zymosterol 0.009 0.009 2.2 - 220 0.917 14 97 

13 Desmosterol 0.003 0.010 10 - 1000 0.912 5 68 

15 
4,4-Dimethylcholesta-5,7-

dienol 
0.007 0.007 1.8 - 180 0.989 8 64 

18 7-Ketocholesterol 0.064 0.100 25 - 2500 0.930 7 63 

19 7β-Hydroxycholesterol 0.001 0.001 0.14 - 14 0.996 11 91 

22 24S-Hydroxycholesterol 0.005 0.016 1.3 - 130 0.999 11 61 

23 27-Hydroxycholesterol 0.002 0.003 0.37 - 37 0.979 4 51 

24 25-Hydroxycholesterol 0.003 0.013 0.8 - 80 0.970 7 66 

24S 
25-Hydroxycholesterol 

sulfate 
0.002 0.002 0.41 - 41 0.998 18 35 

26 Pregnenolone 0.001 0.002 0.40 - 40 0.989 7 78 

26S Pregnenolone sulfate 0.001 0.004 1.00 - 100 0.999 10 55 

28 17-Hydroxypregnenolone 0.054 0.153 38 - 3800 0.990 9 74 

29 Progesterone 0.001 0.001 0.08 - 8.0 0.984 7 80 

30 17-Hydroxyprogesterone 0.065 0.195 49 - 4900 0.989 12 76 

31 Dehydroepiandrosterone 0.001 0.002 0.33 - 33 0.993 23 22 

31S 
Dehydroepiandrosterone 

sulfate 
0.003 0.003 0.63 - 63 0.994 8 72 

32 
7α-

Hydroxydehydroepiandrost

erone 

0.001 0.001 0.04 - 4.0 0.993 9 26 

33S Androsterone sulfate 0.001 0.004 0.99 - 99 0.992 4 56 

34S Epiandrosterone sulfate 0.005 0.012 3.0 - 300 0.994 6 52 

37 20α-Hydroxyprogesterone 0.001 0.001 0.16 - 16 0.997 4 78 

38 Allopregnanolone 0.001 0.002 0.24 - 24 0.988 11 71 

38S Allopregnanolone sulfate 0.001 0.001 0.22 - 22 0.990 50 30 

39 Pregnanolone 0.001 0.004 0.20 - 20 0.985 11 70 

39S Pregnanolone sulfate 0.001 0.001 0.16 - 16 0.999 46 37 

40 Cholestenoic acid 0.006 0.014 3.5 - 350 0.921 8 68 

41 
3β,7α-

Dihydroxycholestenoic acid 
0.002 0.108 26 - 2600 0.975 14 64 

43 
Trihydroxycoprostanoic 

acid 
0.002 0.012 3.1 - 310 0.983 8 80 

44 Cholic acid 0.007 0.068 17 - 850 0.992 8 19 

45 Chenodeoxycholic acid 0.005 0.013 15 - 750 0.976 7 61 

46 Deoxycholic acid 0.004 0.011 30 - 1500 0.964 9 68 

47 Lithocholic acid 0.001 0.005 15 - 750 0.995 7 61 
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3.4 Application on biological samples 

 

Results of analysis of liver, brain and cell samples are shown in Table 9. The results obtained with this 

method fit in most cases with previously published values. It should be mentioned that published data 

on endogenous steroid concentrations have noticeable variations. Concentrations are also dependent on 

age, gender and diet of the animals. Furthermore the determined concentrations can also vary on the 

used analytical procedure. With this approach cholesterol precursors, oxysterols, neurosteroids, 

unconjugated steroid acids and sterol sulfates can be analyzed. However some sterols (e.g. bile acids) 

are preferably present as taurine- or glycine-conjugates, which cannot be determined by this approach 

(see 1. Introduction). 
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Table 9 Identified and quantified steroids of mouse brain and liver tissue and cell samples. The concentrations measured with targeted analysis are given as mean ± SD [ng/mg] (n=3) or < LOQ for 

brain and liver tissue. The concentrations measured with targeted analysis are given as mean ± SD [ng/mg] (n=6) or < LOQ for N2a cells. Steroids only detected with the screening method (scan) 

are marked with +. Steroids that could not be detected are marked with n.d.; The unknown muricholic acids 52 and 53 are likely β- and ω-muricholic acid. Results are compared with published data 

[ng/mg], if available. Cholesterol biosynthesis precursors, oxysterols, C19/C21 steroids and sterol sulfates were measured as MO-TMS derivatives (Chapter 2.6.2). Steroid acids were measured as Me-

TMS derivatives (Chapter 2.6.3). 

  

Brain Liver 
N2a 

cells 

 

No. Trivial name 3 weeks 10 months 10 months  References 
 animal 1 2 3 1 2 3 1 2 3 1  

Cholesterol biosynthesis precursors 

1 Squalene n.d. n.d. n.d. n.d. n.d. n.d. + + + n.d. Cultured cells: 35.05 [60] 

3 Lanosterol 
10.42 
± 0.09 

10.84 
± 0.84 

11.46 
±3.16 

4.83 
± 0.59 

5.74 
± 0.67 

6.14 
± 1.69 

1.04 
± 0.14 

0.87 
± 0.08 

1.05 
± 0.14 

0.92 
± 0.19 

Liver: 1.3-4.9 (2-5 months) [96] 

Cultured cells: 3.17 [60] 

4 Dihydrolanosterol 
1.95 

± 0.07 

1.66 
± 0.08 

1.32 
± 0.15 

0.31 
± 0.01 

0.34 
± 0.01 

0.18 
± 0.05 

0.31 
± 0.12 

0.11 
± 0.01 

0.38 
± 0.06 

n.d. 
Liver: 0.15-0.5 (2-5 months) [96] 

Cultured cells: 1.21 [60] 

5 
4,4-Dimethylcholesta-8,14-

dienol 
33.00 
± 1.28 

27.43 
± 4.93 

22.90 
± 3.62 

2.66 
± 0.13 

2.71 
± 0.19 

1.45 
± 0.38 

0.08 
± 0.04 

0.03 
± 0.00 

0.05 
± 0.01 

0.01 
± 0.00 

 

6 4,4-Dimethylcholest-8-enol + + + n.d. n.d. n.d. n.d. n.d. n.d. n.d.  

7 Zymostenol + + + + + + n.d. n.d. n.d. +  

8 Lathosterol 
83.91 
± 2.13 

87.79 
± 7.13 

97.11 
± 17.39 

23.70 
± 11.98 

27.79 
± 4.48 

28.48 
± 6.62 

0.43 
± 0.11 

0.24 
± 0.00 

0.39 
± 0.02 

3.26 
± 1.38 

Brain: 20-30 (16-18 weeks) [76] 

Liver: 1.7-2.1 (2-5 months) [96] 

Cultured cells: 7.50 [60] 

9 7-Dehydrocholesterol 
3.36 

± 0.12 

3.81 
± 0.30 

4.02 
± 1.11 

1.13 
± 0.34 

1.44 
± 0.15 

1.25 
± 0.43 

0.47 
± 0.09 

0.34 
± 0.00 

0.55 
± 0.05 

2.26 
± 0.37 

Cultured cells: 1.48 [60] 

Liver: 0.5-1 (2-5 months) [96] 

Brain: n.d. (15 weeks) [42] 

10 Cholesterol 
8810 
± 65 

8000 
± 23 

8040 
± 80 

12020 
± 48 

11700 
± 77 

13210 
± 105 

1990 
± 40 

2080 
± 43 

1790 
± 0.8 

1500 
± 137 

Brain: 16000 (15 weeks) [97] 

Liver: 1800 (2-5 months) [96] 

Cultured cells: 8608 [60] 

11 Cholestanol + n.d. + n.d. + + n.d. n.d. n.d. n.d.  
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12 Zymosterol 
13.73 
± 0.51 

12.18 
± 0.33 

11.97 
± 0.29 

8.01 
± 0.49 

7.94 
± 0.25 

8.25 
± 0.17 

0.04 
± 0.01 

0.04 
± 0.01 

0.03 
± 0.00 

0.18 
± 0.07 

Liver: 0.1-0.7 (19 weeks, high fat diet) 

[98] 

Cultured cells: 0.00 [60] 

13 Desmosterol 
220 
± 11 

253 
± 21 

284 
± 60 

77.56 
± 8 

84.04 
± 12 

81.73 
± 17.2 

0.44 
± 0.10 

0.24 
± 0.11 

0.43 
± 0.04 

5.14 
± 0.65 

Brain: 100 (15 weeks) [97] 

Liver: 1.2-1.8 (2-5 months) [96] 

Cultured cells: 2.30 [60] 

15 4,4-Dimethylcholesta-5,7-dienol 
6.13 

± 0.11 

4.96 
± 0.03 

4.73 
± 0.13 

0.61 
± 0.02 

0.62 
± 0.04 

0.45 
± 0.06 

0.02 
± 0.00 

0.01 
± 0.00 

0.02 
± 0.00 

0.04 
± 0.01 

 

Oxysterols 

18 7-Ketocholesterol 
2.69 

± 0.20 

3.49 
± 0.67 

2.57 
± 0.36 

3.68 
± 1.00 

2.88 
± 0.52 

2.49 
± 0.48 

0.65 
± 0.05 

1.59 
± 0.10 

0.75 
± 0.24 

7.58 
± 2.56 

 

19 7β-Hydroxycholesterol 
0.76 

± 0.02 

1.14 
± 0.20 

1.55 
± 0.19 

1.22 
± 0.04 

1.27 
± 0.09 

1.82 
± 0.40 

0.74 
± 0.18 

4.73 
± 0.96 

1.43 
± 0.36 

3.15 
± 12.7 

Brain: <0.05 (15 weeks) [97] 

20 7α-Hydroxycholesterol + + + + + + n.d. n.d. n.d. + Liver: 0.087 [77] 

21 Trihydroxycoprostan n.d. n.d. n.d. + n.d. n.d. n.d. n.d. n.d. n.d.  

22 24S-Hydroxycholesterol 
30.45 
± 0.83 

33.40 
± 2.25 

39.16 
± 9.92 

38.30 
± 5.92 

40.60 
± 6.87 

39.21 
± 9.27 

0.08 
± 0.02 

0.22 
± 0.04 

0.25 
± 0.04 

0.26 
± 0.07 

Brain: 27.91±0.73 (15 weeks) [97] 

Liver: 0.009-0.027 (2-5 months) [96], 

0.004 (8 weeks) [77] 

23 27-Hydroxycholesterol 
0.33 

± 0.00 

0.31 
± 0.01 

0.31 
± 0.00 

0.28 
± 0.01 

0.27 
± 0.01 

0.31 
± 0.01 

0.09 
± 0.06 

0.13 
± 0.03 

0.06 
± 0.01 

0.06 
± 0.02 

Brain: 3.9-6 (3-18 months) [17] 

Liver: 0.013-0.019 (2-5 months) [96], 

0.083 (8 weeks) [77] 

24 25-Hydroxycholesterol < 0.032 < 0.032 < 0.032 < 0.032 < 0.032 < 0.032 < 0.013 
0.030 
± 0.01 

0.04 
± 0.02 

0.03 
± 0.01 

Brain: <0.05 (15 weeks) [97] 

Liver: 0.015 (8 weeks) [77] 

Liver: 0.01-0.013 (2-5 months) [96] 

C19/C21 steroids 

26 Pregnenolone 
0.06 

± 0.01 

0.09 
± 0.04 

0.05 
± 0.00 

0.08 
± 0.01 

0.07 
± 0.02 

0.07 
± 0.02 

0.02 
± 0.00 

0.02 
± 0.00 

0.03 
± 0.01 

0.02 
± 0.02 

Brain: 0.00165±0.00023 (8 weeks) 

[99] 

0.00167 (male rat) [100] 

0.015 (female rat) [101] 

28 17-Hydroxypregnenolone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. Brain: n.d. (rat) [100] 

29 Progesterone < 0.002 n.d. n.d. 
0.003 
± 0.00 

< 0.002 < 0.002 n.d. n.d. n.d. n.d. 

Brain: 0.001-0.02 (rat) [43] 

0.008 (female rat) [101] 

0.0007 (male rat) [100] 
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30 17-Hydroxyprogesterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. Brain: n.d. (rat) [100] 

31 Dehydroepiandrosterone 
0.01 

± 0.00 

0.03 
± 0.00 

0.02 
± 0.00 

0.02 
± 0.00 

0.02 
± 0.00 

0.02 
± 0.002 

< 0.002 < 0.002 < 0.002 
0.05 

± 0.01 

Brain: 0.00004-0.00011 (rat) [43] 

0.00027 (male rat) [100] 

0.012 (female rat) [101] 

34 Epiandrosterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. Brain: n.d. (male rat) [100] 

37 20-Hydroxyprogesterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. Brain: 0.00019 (male rat) [100] 

38 Allopregnanolone n.d. < 0.002 n.d. n.d. n.d. < 0.002 n.d. n.d. n.d. n.d. 

Brain: 0.00402±0.00031 (8 weeks) 

[99] 

0.00042-0.038 (rat) [43] 

39 Pregnanolone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.-0.00016 (rat) [43] 

Steroid acids 

43 Trihydroxycoprostanoic acid n.d. n.d. n.d. n.d. n.d. n.d. 
0.52 

± 0.05 

0.27 
± 0.01 

0.31 
± 0.05 

n.d.  

44 Cholic acid 
0.47 

± 0.01 

0.44 
± 0.00 

0.44 
± 0.00 

0.38 
± 0.00 

0.37 
± 0.01 

0.38 
± 0.00 

96.79 
± 20.02 

0.47 
± 0.05 

41.65 
± 13.07 

0.23 
± 0.04 

Brain: 0.047±0.077 (rat) [102] 

Liver: 20-40 [79] 

8.9-22.7 (rat) [103] 

45 Chenodeoxycholic acid < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 
0.36 

± 0.02 

0.12 
± 0.01 

0.21 
± 0.01 

0.28 
± 0.05 

Brain: 0.630±0.23 [102] 

Liver: 0.98-2.6 (rat) [103] 

46 Deoxycholic acid 
0.04 

± 0.01 

0.05 
± 0.01 

0.04 
± 0.00 

0.04 
± 0.00 

0.06 
± 0.00 

0.05 
± 0.01 

0.38 
± 0.04 

0.03 
± 0.01 

0.12 
± 0.02 

n.d. 
Brain: 0.025±0.020 (rat) [102] 

Liver: 2.7-5.1 (rat) [103] 

47 Lithocholic acid n.d. n.d. n.d. n.d. n.d. n.d. 
0.12 

± 0.05 

0.28 
± 0.21 

0.08 
± 0.02 

0.50 
± 0.25 

Liver 1.5-2.6 (rat) [103] 

Sterol sulfates 

26S Pregnenolone sulfate < 0.010 
0.10 

± 0.07 
< 0.010 < 0.010 < 0.010 < 0.010 < 0.004 < 0.004 < 0.004 

0.01 
± 0.00 

Brain: .n.d.-0.00028 (rat) [39] 

n.d. (male rat) [100] 

Liver: n.d. (rat) [39] 

31S Dehydroepiandrosterone sulfate 
0.03 

± 0.01 

0.08 
± 0.04 

0.04 
± 0.00 

0.03 
± 0.01 

0.13 
± 0.09 

0.03 
± 0.01 

n.d. n.d. < 0.003 
0.01 

± 0.00 

Brain: n.d. (rat) [39] 

0.00104 (male rat) [100] 

Liver: 0.00041-0.00074 (rat) [39] 

33S Androsterone sulfate n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. < 0.004 n.d.  
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34S Epiandrosterone sulfate 
0.05 

± 0.01 

0.14 
± 0.07 

0.04 
± 0.01 

0.06 
± 0.01 

0.09 
± 0.04 

< 0.031 
0.01 

± 0.00 

0.02 
± 0.00 

0.05 
± 0.05 

0.05 
± 0.01 

Brain: n.d. (male rat) [100]] 

38S Allopregnanolone sulfate < 0.002 
0.16 

± 0.10 
< 0.002 < 0.002 < 0.002 < 0.002 < 0.001 < 0.001 < 0.001 n.d.  

39S Pregnanolone sulfate < 0.002 
0.14 

± 0.09 
n.d. < 0.002 < 0.002 n.d. < 0.001 < 0.001 < 0.001 < 0.001  

24S 25-Hydroxycholesterol sulfate 
0.01 

± 0.00 

0.020 
± 0.01 

0.01 
± 0.00 

0.01 
± 0.01 

0.06 
± 0.04 

0.01 
± 0.00 

n.d. n.d. < 0.002 n.d.  

others 

51 α-Muricholic acid n.d. n.d. n.d. n.d. n.d. n.d. + + + n.d. Brain: n.d. (rat) [102] 

52 unknown Muricholic acid 1 n.d. n.d. n.d. n.d. n.d. n.d. + + + n.d.  

53 unknown Muricholic acid 2 n.d. n.d. n.d. n.d. n.d. n.d. + + + n.d.  

54 T-MAS + + + + + + n.d. n.d. n.d. + Cultured cells: 1.32 [60] 

55 Sitosterol + + n.d. n.d. n.d. + + + + n.d. Cultured cells: 3.45[60] 

56 Campesterol n.d. n.d. n.d. n.d. n.d. n.d. + + + n.d. Cultured cells: 8.22 [60] 

57 Cholesta-7,24-dienol + + + n.d. n.d. n.d. n.d. n.d. n.d. +  

58 Lophenol + + + n.d. n.d. n.d. n.d. n.d. n.d. n.d.  

59 4-Methylcholesta-7,24-dienol + + + + + + n.d. n.d. n.d. n.d.  

 



4. Analysis of neutral steroids, steroid acids and sterol sulfates 
 

 

71 

Figure 4 Total ion chromatograms from GC-IT-MS (full scan m/z 50 – 650). A: Mouse brain; 10 months old; B: Mouse brain; 3 weeks old; C: Mouse liver, 10 months old; D: N2a cells. Neutral 

steroids: green; steroid acids: red; sterol sulfates: yellow. 10*/10*(S): cholesterol detected in steroid acid and sterol sulfates fractions. Numbers in the diagram represent the detected steroids as are 

given in Table 2. 
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Scan chromatograms measured with IT-MS are shown in Figure 4. Here some additional compounds 

could be identified by comparing with literature data, for example the phytosterols sitosterol (55) and 

campesterol (56) and murine bile acids. Small amounts of residual cholesterol were detected in the 

steroid acids and sterol sulfate groups, where it could not be distinguished from cholesterol 

sulfate.Cholestanol (11, RRT 1.232), 7α-hydroxycholesterol (20, RRT 1.185), and trihydroxycoprostan 

(21, RRT 1.193) could be clearly identified. But due to the high concentration of cholesterol (10, RRT 

1.226) and their nearly identical relative retention times a reliable quantification of 11, 20, and 21 was 

not possible.  

 

4. Conclusion 

 

The described GC-MS method allows the analysis of neutral steroids, steroid acids and sterol sulfates 

from one single sample. This method is suitable for brain and liver tissue and is also applicable on 

cultured cells. The combination of scan and dMRM measurement allows identification of unknown or 

unexpected compounds and quantification of targeted compounds in trace amounts. Especially the peak 

spectra obtained in scan mode can help to identify unexpected compounds by comparing with MS 

databases or literature data. The method has some limitations due to the large amounts of cholesterol in 

most biological samples. A complete elution in the group of neutral steroids is not guaranteed and 

residual cholesterol is then found in the following eluates. This makes an indirect measurement of 

cholesterol sulfate impossible. For this compound direct analysis in presence of cholesterol like LC-MS 

analysis is an alternative [64]. In some cases, the high on column concentration of cholesterol also leads 

to a strong peak tailing which could make the proper analysis of compounds eluting right after 

cholesterol difficult. This is the case for some intermediates of cholesterol biosynthesis, then injection 

of a smaller sample volume, as described for GC-IT-MS analysis, can be a solution, as shown for 

lathosterol (8) and desmosterol (13) in brain samples. There are few methods covering a higher number 

of analytes (Table 1), but we present here the up to our knowledge first method covering this large range 

of different steroid classes including cholesterol precursors, oxysterols, C19 and C21 steroids, steroid 

acids and sterol sulfates. The list of analyzed steroids can certainly be extended with further compounds 

of interest. To improve precision of quantification of certain analytes and to minimize matrix effects, 

the use of the respective isotope-labelled internal standards is recommended for targeted analysis. As 

our method has the potential for untargeted screening and steroid profiling in different tissues it could 

be used for further investigation and comprehension of diseases like AD, CAH, CTX, SLOS and more.  
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5.1.  Summary 

Cholesterol biosynthesis is the target of cholesterol lowering drugs, which are frequently used 

in therapy of cardiovascular diseases to decrease morbidity and mortality [66, 79]. The most 

commonly used cholesterol lowering drugs are statins, which interfere at an early stage in pre-

squalene pathway of cholesterol biosynthesis. Other drugs, such as triparanolol (MER-29) [80] 

and AY-9944 [81], which interfere in a later stage of cholesterol biosynthesis have not been 

successfully applied due to severe side effects [82]. Some of these side effects could be 

explained by intrinsic effects of accumulating cholesterol precursors [82]. This accumulation of 

cholesterol precursors was also observed in some congenital diseases, like SLOS [12, 16]. In 

other cases, an accumulation of steroid precursors seems to be beneficial, for example 

desmosterol which exhibits antiphlogistic effects via LXR activation [83, 84], or C8-C9 

unsaturated sterols which could enhance remyelination [85]. It is further known that other 

drugs, e.g. neuroleptics, show off target effects and interfere with cholesterol biosynthesis [86-

88], which is particularly critical in the treatment of pregnant women [86]. It therefore appears 

important to have a method that allows the identification and characterization of potential 

cholesterol biosynthesis inhibitors. However, identification and characterization of inhibitors of 

cholesterol biosynthesis is challenging. The enzymes involved in cholesterol biosynthesis are 

membrane bound enzymes and as such hardly available as isolated enzymes that could be 

used for in vitro binding studies or similar assays [13, 14]. This problem could be circumvented 

by an analytical procedur based on whole cells. This procedure was first developed by Dr. 

Martin Giera in the course of his dissertation [89] and was part of earlier publications [66, 90]. 

With this whole cell assay, possible inhibitors of the post-squalene pathway of cholesterol 

biosynthesis could be identified and IC50 values could be determined [66, 89]. In the article 

presented here a further improved and refined whole cell assay, covering all enzymes of the 

post-squalene pathway of cholesterol biosynthesis, is described in detail. The assay utilized 

HL-60 cells, which were incubated with potential inhibitors for 24 h. Then the cells were 

hydrolyzed with aqueous NaOH and the sterols were extracted with methyl-tert-butyl ether 

(MtBE) using a liquid-liquid extraction. The sterols were then derivatized to the respective 

sterol TMS ethers, which were then analyzed with GC-MS. The sterol TMS ethers were 
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identified using their relative retention times (RRT) based on cholestane and their obtained 

mass spectra. Therefore, a mass spectral library was created which contained 22 cholesterol 

precursors. An observed accumulation of certain sterols indicates the inhibition of the 

corresponding enzymes. For IC50 value determination, the cells were incubated with different 

inhibitor concentrations and 13C labeled acetate. The incorporation of 13C in cholesterol in 

relation to inhibitor concentration can then be analyzed. This protocol is designed to be 

adapted in other laboratories. The necessary digital library for sterol identification is provided 

alongside this protocol and well-known inhibitors as AY-9944 and clotrimazole are described 

and should be used for verification. On basis of this protocol, the integration of the cholesterol 

biosynthesis precursors into the new method for simultaneous determination of neutral 

steroids, steroid acids and sterol sulfates was possible (Chapter 4).  

 

5.2.  Personal contribution 

The basic development of this assay was done by Dr. Martin Giera [66, 89, 90] and further 

implementation was carried on by Dr. Christoph Müller [71, 91]. These previous works were 

the prerequisite for this publication of the whole protocol. They contributed in writing of the 

manuscript as well as design and performance of the experiments.  

My contributions to this article were the performance of the experiments concerning the mass 

spectral library and method validation, as well as editing and proof reading of the manuscript. 

I further prepared Figure 2 and Table S8, containing the mass spectral library. Therefore, the 

raw data were deconvoluted and formatted for the printed data sheets, as well as for the digital 

library (NIST) by me. The spectra included in the Supplementary Figures S1, S2 and S3 were 

processed by me in the same manner. I further determined and compiled the analytical data 

for Table S1, as well as the validation data in Table S2, the performance of the necessary 

experiments and formal analysis were also done by me.  

Prof. Dr. Franz Bracher was involved in the initial method development and design of the 

protocol [66, 90]. He also contributed in editing and reviewing of the manuscript.  
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5.3.  Article 

The following article is printed in the original wording. The formatting may vary slightly 

compared to the original article. 

 

A gas chromatography–mass spectrometry-

based whole-cell screening assay for target 

identification in distal cholesterol 

biosynthesis 

Christoph Müller1, Julia Junker1, Franz Bracher1 and Martin Giera 1,2* 

Distal cholesterol biosynthesis (CB) has recently taken center stage as a promising drug target in several diseases 

previously not linked to this biochemical pathway, including cardiovascular disease, cancer, multiple sclerosis and 

Alzheimer’s disease. Most enzymes involved in this pathway are hard to isolate, warranting dedicated analytical 

tools for biochemical screening. We describe the use of gas chromatography–electron ionization mass spectrometry 

(GC–MS) in a whole-cell screening assay aimed at monitoring interactions with all enzymes of distal CB in a single 

experiment. Following cell culture and lipid extraction, the trimethylsilyl ethers of sterols are analyzed by GC–MS. 

Analytical data for 23 relevant sterols (intermediates) are provided, allowing their unambiguous identification. 

Sterol pattern analysis reveals the target enzyme on the basis of characteristic marker sterols, whereas 

quantification of 2-13C-acetate incorporation correlates with the inhibitory activity of drug candidates. The protocol 

can be used by both experienced scientists and newcomers to the field, allowing detection and quantification of 

small molecule–enzyme interactions in distal CB. The entire protocol can be carried out within two working days. 

Introduction 

 

Distal CB (Fig. 1; all substance numbers and enzyme letters used hereafter correspond to 

those in Fig. 1, Table 1 and Supplementary Table 1) can be defined as the biosynthetic part 

of CB, starting with the triterpene squalene (1)1. Downstream of the first sterol, lanosterol 

(3), the biosynthesis process is divided into the Bloch and Kandutsch–Russell pathways. 

The Bloch pathway contains the Δ24-unsaturated intermediates and is interconnected with 

the Kandutsch–Russell branch by the actions of the enzyme Δ24-dehydrocholesterol 

reductase (sterol C24-reductase, DHCR24, C) on the respective Δ24 intermediates1. 

Cholesterol (11) has long been recognized as an important storage lipid and a critical 

component of biomembranes, and it plays an essential role during embryonic development. 

Mutations in CB genes have been associated with several inborn disorders that lead to 

severe malformations (Table 2). Most of these defects are linked to decreased cholesterol 

and increased precursor levels (e.g., 7-dehydrocholesterol (10), desmosterol (18)) or the 

formation of abnormal sterols such as 8-dehydrocholesterol (23). However, the 

physiological and biological functions of cholesterol precursors have only recently been 
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Metabolomics, Leiden University Medical Center (LUMC), Leiden, The Netherlands. *e-mail: m.a.giera@lumc.nl 
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investigated and described, probably because of the low amounts present under 

physiological conditions as compared to cholesterol. Byskov et al.2 were the first to discover 

critical biological functions of the precursors 4,4-dimethylcholesta-8,14,24-trien3β-ol (FF-

MAS) (12) and 4,4-dimethylcholesta-8,24-dien-3β-ol (T-MAS) (13) as meiosis-activating 

sterols. In the middle of the 20th century, several companies pursued distal CB as a possible 

drug target for lowering blood cholesterol. A series of promising inhibitors were developed, 

e.g., BIBX 79, NB-598 and MER-29 (triparanol). However, the discovery of the statins and 

the detrimental effects seen following AY-9944 administration in animal models3; as well 

as the market retraction of MER29 due to severe side effects4 slowed progress and 

diminished interest in distal CB. Therefore, it is not surprising that critical functions and 

roles of several cholesterol precursors have only recently been investigated and described. 

Important examples include cholesta-5,24-dien-3β-ol (desmosterol) (18) and its 

hydroxylated metabolites as key regulators of liver X receptor (LXR) and sterol response 

element–binding protein (SREBP)5. Another recent example is Δ8(9)-unsaturated sterols, 

which have been found to play a critical role in the remyelination of oligodendrocytes6, an 

important process fundamental to numerous neurological diseases (e.g., multiple sclerosis). 

Moreover, it has recently been discovered that several drug substances, for example, 

neuroleptic drugs (e.g., haloperidol)7–9, the anti-arrhythmic drug amiodarone10, the selective 

estrogen receptor modulator tamoxifen11 and certain antifungals such as fluconazole12, 

interfere with distal CB, possibly explaining certain activities and side effects of these 

drugs. Given the abovementioned birth defects, related to genetic mutations and possibly 

increased cholesterol precursor levels due to inhibition of certain enzymes, monitoring of 

distal CB might be warranted, particularly in pregnant women under treatment with drugs 

suspected to interfere with the biosynthetic pathway13. Taken together, these examples 

underline the critical roles and activities of several cholesterol precursors, sparking 

increased interest in distal CB as a bioactive pathway and possible drug target14–17. 

Technological solutions that allow qualitative and quantitative determination of the 

interaction of (drug) substances with distal CB are of great interest. However, screening for 

inhibitors of distal CB is not a straightforward task. Most of the enzymes involved in the 

transformation of squalene (1) to cholesterol (11) (Fig. 1) are membrane associated and 

hard to isolate and rapidly lose activity after isolation1. Together this renders classic 

biochemical approaches relying on the availability of the isolated enzymes very 

cumbersome, demanding a dedicated assay for each enzyme of the cascade. A solution to 

these pitfalls is the targeted analysis of mammalian sterol patterns after incubation with test 

substances. Monitoring metabolic activity and molecular composition provides insights 

into target enzymes and allows the construction of IC50 curves for test substances18,19. For 

the targeted identification of sterol intermediates, high chromatographic separation 

efficiency, in combination with a characteristic information-rich detection technique, is 

mandatory due to the high structural similarity of the sterols of interest. GC–MS is a 

technique that fulfills these demands. GC–MS allows for a very high separation efficiency 

in combination with isomer-specific retention behavior. As an example, Fig. 2 shows the 

separation of the isomeric Δ7(8)- and Δ8(9)-sterols, lathosterol (9) and zymostenol (8), giving 

rise to almost identical mass spectra. Electron ionization (EI) mass spectra of the sterol 

trimethylsilyl (TMS) ethers present characteristic fragments that are very meaningful for 

structural elucidation20,21. For identifying the quantitative effects of test substances on CB, 

we found it useful to determine 2-13C-acetate incorporation into the ultimate product of the 

biosynthetic cascade, cholesterol18,22. In this way, multiple enzyme interactions can be 

described in one nominal value, allowing for a more facile comparison, whereas selectivity 

can be investigated using qualitative sterol pattern analysis. Moreover, this approach allows 

the quantification of the overall influence of a substance on CB, even if inhibition takes 

place outside distal CB. We identified HL-60 cells, a human leukemia suspension cell line 

characterized by high growth rates (doubling time 40 h) and active CB, as a suitable 

mammalian source for the study of metabolic activity of distal CB under treatment with test 

substances. We also carried out the procedure with a series of other cell lines, for example 

HEK23 and TR14624 cells, as well as induced pluripotent stem cell (iPSC)-derived neurons25. 

However, the high growth rates in suspension, which make EDTA–trypsin treatment 

unnecessary, plus the robustness of the HL-60 cell line, led us to primarily use this cell line. 

We describe here how GC–MS-based sterol pattern analysis of the unsaponifiable matter 
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obtained from the incubation of test substances with HL-60 cells can be used to identify 

enzyme inhibition in distal CB. In addition, we use 2-13C-acetate and its incorporation into 

cholesterol for the construction of IC50 curves. We present the chromatographic data for 23 

sterol TMS ethers and other relevant intermediates, as well as their characteristic EI mass 

spectra, used for unambiguous substance identification and sterol pattern analysis for target 

identification in distal CB. The protocol can be used to identify and quantify interactions in 

distal CB in various cell types. The protocol is useful in drug-screening campaigns aimed 

at distal CB, as well as for the identification of possible off-target effects. 

Fig. 1 | Main cholesterol biosynthesis pathways. The predominantly observed intermediates are shown. 

Enzymes: A squalene monooxygenase, marker substance for inhibition: squalene (1); B 2,3-oxidosqualene 

cyclase, marker substance for inhibition: squalene epoxide (2); C sterol C24-reductase, marker sterol for 

inhibition: desmosterol (18); D sterol C14-demethylase, marker sterol for inhibition: dihydrolanosterol (4); 

E sterol C14-reductase, marker sterol for inhibition: 4,4-dimethylcholesta-8,14-dien-3β-ol (5); F sterol C4-

demthylase complex (sterol C4-methyl oxidase/ sterol C3-dehydrogenase/sterol C3-keto reductase), 

marker sterol for inhibition: 4,4-dimethylcholest-8-en-3β-ol (6); G sterol C8-isomerase, marker sterol for 

inhibition: zymostenol (8); H sterol C5-desaturase, marker sterol for inhibition: lathosterol (9); I sterol C7-

reductase (10). Marker sterols are shown in red. * *Mass spectrum of the sterol TMS ether is not listed in 

the cholesterol database (Supplementary File S1) or in Supplementary Table 1. For detailed information 

about the enzymes and sterols, see Table 1 and Supplementary Table 1. 
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Table 1 | Classification of enzymes, along with Enzyme Commission (EC) number, established selective inhibitors and marker 
sterols 

 
Letter Enzyme EC no. Established inhibitor Marker sterol for inhibition 

A Squalene monooxygenase (SqMO) 1.14.13.132 NB-59818,82 
TU-207883 

Squalene (1) 

B Oxidosqualene cyclase (OSC) 5.4.99.7 BIBX 7918,84 
Ro 48-807185 

Squalene epoxide (2) 

C Sterol C24-reductase (DHCR24) 1.3.1.72 DMHCA86 
SH-4226 

Desmosterol (18) 

D Sterol C14-demethylase (CYP51) 1.14.13.70 Clotrimazole18,87 Dihydrolanosterol (4) 
E Sterol C14-reductase (DHCR14) 1.3.1.70 Clotrimazole18,87 4,4-Dimethylcholesta-8,14-dien-3β-ol (5) 
F Sterol C4-methyl oxidase 1.14.13.72 Aminotriazole18,88 4,4-Dimethylcholest-8-en-3β-ol (6) 

 Sterol C3-dehydrogenase 1.1.1.170 Aminotriazole18,88  

 Sterol C3-keto reductase 1.1.1.270 Aminotriazole18,88  
G Sterol C8-isomerase (EBP) 5.3.3.5 Aminoindenols29 Zymostenol (8) 
H Sterol C5-desaturase (SC5D) 1.14.21.6 MGI-3919 Lathosterol (9) 
I Sterol C7-reductase (DHCR7) 1.3.1.21 Phenethyltetrahydroisoquinolines22 

BM 1576622,89 
7-Dehydrocholesterol (10) 

Compound numbers refer to Supplementary Table 1. 
 
 
Table 2 | Malformation syndromes caused by disorders of cholesterol biosynthesis 

 

 
Associated disorder Biochemistry References 

 
Name OMIM no. Inheritance 

pattern 
Defective gene Affected enzyme Increased serum or plasma levels 

of marker sterols  

Desmosterolosis 602398 AR DHCR24 Sterol C24-reductase (C) 7-Dehydrocholesterol (10), 
desmosterol (18) 

66,90–92 

Antley-Bixler-syndrome (ABS) 
and cytochrome P450 
oxidoreductase (POR) 
deficiencya 

207410 (ABS) 
124015 (POR) 

AR CYP51A1 and other 
cytochrome P450 
oxidoreductase genes 

Sterol C14-demethylase (D) Lanosterol (3), dihydrolanosterol 
(4), pregnenoloneb, 
17-hydroxyprogesteroneb 

58,90,91,93 

Greenberg dysplasiaa also called 

HEM dysplasiaa 
(hydrops-ectopic 
calcificationmoth-eaten skeletal) 

215140 AR DHCR14 and LBR Sterol C14-reductase (E) 
and lamin B 
receptor (LBR) 

Cholesta-8,14-dien-3β-ol (19), 
cholesta-8,14,24-trien-3β-ol (20) 

60,67,90,91 

CHILD syndrome (congenital 
hemidysplasia with 
ichthyosiform erythroderma 
and limb defects syndrome) 
also called SC4MOL syndrome 
(sterol-C4 methyloxidase-like) 

308050 XL SC4MOL, NSHDL, 
HSD17B7 

Sterol C4-demthylase 
complex (F), sterol C4-
methyl oxidase 
(SC4MOL), sterol 
C3-dehydrogenase 
(NSHDL), sterol C3-keto 
reductase (HSD17B7) 

4,4-Dimethylcholest-8-en-3β-ol 
(6), 4-methylzymostenol (7), 
T-MAS (13), lophenol (21) 

61,68,69,90,91 

CDPX2 syndrome (X-linked 
dominant chondrodysplasia 
punctata) also called Conradi–
Hünermann–Happle syndrome 

302960 XL EBP Sterol C8-isomerase (G) Zymostenol (8), 
8-dehydrocholesterol (23) 

62,90,91 

Lathosterolosis 607330 AR SC5D Sterol C5-desaturase (H) Lathosterol (9), zymostenol (8), 7-
dehydrocholesterol (10) 

61,69,90,91,94 

Smith-Lemli-Opitz syndrome 
(SLOS) 

270400 AR DHCR7 Sterol C7-reductase (I) 7-Dehydrocholesterol (10), 
8-dehydrocholesterol (23) 

9,58,63,64,90,91,95 

AR, autosomal recessive; OMIM, Online Mendelian Inheritance in Man; XL, X-linked dominant. aNot dependent only on affected enzyme. bNot characterized here; see Hill et al.55 for GC–MS data. 
 

Development of the protocol 

When we started our work in the field of distal CB, we wanted an assay that would allow 

us to interrogate all enzymes of the pathway to help us to rationally design our synthetic 

efforts26–31 and determine the target enzyme, selectivity and inhibitory efficiency. Owing to 

the aforementioned pitfalls concerning isolation and stability of the enzymes involved in 
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the pathway, we quickly realized that isolation and testing of single enzymes or mixtures 

would not be practical, and we rationalized 
 

 
c 

 

Fig. 2 | Separation of Δ7- and Δ8-sterol isomers. a–c, Although the isomeric pair zymostenol (8)/lathosterol 

(9) present very similar EI mass spectra (b and c, respectively), with a base peak of m/z 458 and a 

characteristic fragment at m/z 255, GC-based separation (a) allows for their facile separation and hence 

unambiguous identification. 

that monitoring enzyme inhibition at the metabolic level in a whole-cell assay would be a 

much more straightforward and meaningful approach. We therefore sought to adapt our 

concept of whole-cell incubation and metabolic sterol pattern analysis—which we had 

developed for the screening of antifungal drugs21,32—to a mammalian cell system. Initially 

we adapted parts of the HPLC scintillation-based method described by Fernández et al.33. 

In their assay, the authors incorporate 14 C-acetate into cholesterol and its precursors, 

followed by reverse-phase chromatographic separation and scintillation counting. 

Although this is a highly sensitive and useful assay, we wished for faster run times, higher 

throughput and the possibility of identifying unknown sterols accumulating due to 

(multiple) enzyme inhibition. In addition, the use of radioactively labeled materials, which 

is possible only in specialized laboratories and with permission, would limit flexibility. In 

turn, we adapted the cell culture conditions described by Fernández et al.33 and combined 
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11 

8 

9 
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these with GC–MS analysis and the incorporation of non-radioactive 2-13C-acetate for 

isotope labeling18. Many intermediates of distal CB are, chemically speaking, highly 

similar, being positional double-bond isomers or they 

 

Table 3 | Sources of established cholesterol biosynthesis inhibitors 

 
Inhibitor CAS no. Source Item no. 

Aminoindenols ExI 
Ref. 29 

ExI 
Aminotriazole 61-82-5 Sigma-Aldrich A8053 
AY-9944 366-93-8 Cayman Chemicals 14611 
BIBX 79 ExI Ref. 84 ExI 
BM 15766 86621-94-5 Sigma-Aldrich B8685 
Clotrimazole 23593-75-1 Sigma-Aldrich C6019 
DMHCA 79066-03-8 Sigma-Aldrich 700125P 
Haloperidol 52-86-8 Sigma-Aldrich H1512 
MGI-39 ExI Ref. 19 ExI 
NB-598 131060-14-5 AdooQ Bioscience A14131 
Phenethyltetrahydroisoquinolines ExI Ref. 22 ExI 
Ro 48-8071 161582-11-2 Cayman Chemicals 10006415 
SH-42 ExI Ref. 26 ExI 
Tamoxifen 10540-29-1 Sigma-Aldrich T5648 
TU-2078 ExI Ref. 83 ExI 

ExI, experimental inhibitor. 
 

present differential degrees of unsaturation and/or methylation (at C4 and C14). From an 

analytical perspective, this favored the use of GC–MS in combination with EI, tailor-made 

for the intermediates of distal CB. In comparison with HPLC, GC usually allows for higher 

separation efficiencies, as Eddy diffusion in the gas phase is limited, and EI-MS facilitates 

the ionization of neutral molecules and the generation of highly informative mass spectra 

(after derivatization) for substance identification34,35. Initially, we developed a six-well 

screening assay based on liquid/liquid extraction (LLE) of neutral lipids after saponification 

using iso-hexane. We adapted this assay to create a 24-well assay that makes use of methyl 

tert-butyl ether (MtBE), as this solvent has superior solubilizing properties for sterols. The 

recovery for the surrogate analytes (squalene (1), dihydrolanosterol (4), lathosterol (9)) was 

tested with this solvent and found to be >80%18,36. We also determined the linear regression, 

limit of quantification (LOQ) and limit of detection (LOD) for 15 relevant sterols 

(Supplementary Table 2). The detector response, expressed as the slope of the regression 

line of each sterol, was quite similar, with a somewhat lower value found for the Δ24-

unsaturated sterol, desmosterol (18) and a higher value found for cholesta-8,14-dien-3β-ol 

(19) (Supplementary Table 2; ref. 35). The LOD in scan mode ranged between 0.01 and 

0.10 µg/ml and the LOQ ranged between 0.02 and 0.40 µg/ml. Compared to a specific 

liquid chromatography–tandem mass spectrometry (LC–MS/MS) approach, the LODs for 

GC–MS-based analysis are ~20-fold higher (20 pg versus 1 pg on column)37. We 

circumvented the classic lipid extraction protocols of Folch38 and Bligh and Dyer39, which 

make use of chlorinated solvents, thus causing the organic extract to be the lower phase 

during LLE, rendering recovery of the organic extract rather tedious. Instead, we used a 

facile LLE with MtBE, which has a lower density compared to water, thus being the upper 

organic phase for collection. Moreover, as we focused our efforts toward distal CB, we 

carried out a saponification step, allowing investigation of the total sterol pool. When we 

started to work on our protocol, numerous intermediates of distal CB were not 

commercially available; therefore, we carried out organic synthesis for several cholesterol 

precursors of the Kandutsch–Russell pathway and identified members of the Bloch pathway 

using inhibitor combinations and characteristic retention time shifts caused by the Δ24-

unsaturation in combination with the evaluation of EI mass spectra18–20. For details about 
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all identified sterols, see Supplementary Table 1. To validate our system, we utilized well-

described inhibitors of several enzymes of distal CB (Table 3) and recorded the observed 

changes in sterol patterns upon incubation with the respective inhibitors, thereby allowing 

the identification of marker sterols characteristic of specific enzyme inhibition. Later on, 

we developed numerous novel experimental inhibitors to cover the remaining gaps in the 

pathway (see below). However, care must be taken, as several marketed inhibitors of distal 

CB are claimed to be selective, but when used in a whole-cell assay and depending on the 

applied concentrations, multiple enzyme inhibitions were observed. Striking examples are 

AY-9944 and MER-29 (triparanol)40 (see Supplementary Table 3 for non-selective 

inhibitors). 

 
Applications of the protocol 

We have listed several example applications of the protocol below. 

Drug screening approaches aimed at elucidating target enzymes in distal CB 
Test substances can be evaluated for their activity in distal CB using GC–MS analysis 

followed by sterol pattern analysis. In addition, the described quantitative workflow allows 

for the generation of IC50 values. Together these permit medicinal chemistry efforts to be 

steered in terms of selectivity and inhibitory activity. Using our approach, we have 

successfully characterized novel inhibitors of hitherto underexplored enzymes in distal CB, 

including the development of inhibitors of lathosterol oxidase (sterol C5-desaturase, H)6,19, 

selective inhibitors of sterol C8-isomerase (G)29, and selective, in vivo active inhibitors of 

DHCR24 (C)26. 

Evaluation of interactions of drugs with distal CB 
We and others have used the described protocol for evaluating the effects of well-known, 

registered drugs, such as neuroleptics, on CB. Considering the recent interest in distal CB, 

this is an upcoming field of research with several topical contributions41,42. However, the 

concept is not limited to neuroleptics, but can also be expanded to other substance classes 

and diseases43,44. Identification of such previously unknown effects enables drug 

repurposing as an attractive new option for the fast generation of therapeutics for novel 

drug targets. 

Diagnosis of inherited disorders in CB 
The presented analytical data and approach could also be useful for the diagnosis of 

malformation syndromes such as the Smith–Lemli–Opitz syndrome (SLOS) and CHILD 

syndrome (congenital hemidysplasia with ichthyosiform erythroderma and limb defects 

syndrome) (Table 2), as such diseases are characterized by a substantial accumulation of 

cholesterol precursors in patient-derived blood20,26, feces45, tissues45 or other matrices. The 

presented MS data (Supplementary Table 1) allow for the identification of 16 biosynthetic 

precursors of cholesterol; several non-physiological marker sterols (19–21, 23), indicative 

of some malformation syndromes, can also be detected. 

Experimental design 

A detailed depiction of the Procedure can be found in Fig. 3. Experimentally, some steps 

could be modified or carried out in an alternative manner; however, in our experience, the 

described Procedure is the most practical and facile approach. Below we will use Fig. 3 as 

a guideline for the step-by-step description of the entire protocol. 

Cell lysis and extraction of the unsaponifiable matter 
As we focused our attention on distal CB, we opted for alkaline hydrolysis using sodium 

hydroxide, followed by the extraction of the unsaponifiable matter (neutral lipids). This 

procedure has the advantages that (i) no measures have to be taken in order to break the 

cell membrane, and (ii) no dedicated lipid extraction protocol such as those published by 

Bligh and Dyer39 or Folch38 must be applied. A point of attention is the facile autoxidation 

of Δ5,7-sterols, in particular; hence, samples should be flooded with nitrogen or argon gas 

before being heated. The detection of oxysterols, e.g., 7-ketocholesterol, can be indicative 

of sample autoxidation46. If autoxidation is observed, the addition of antioxidants such as 
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butylated hydroxytoluene and triphenylphosphine should be considered. For more 

information about peroxidation of sterols, see Lamberson et al.47. In addition, alkaline 

hydrolysis should be performed in glass vessels, as heating of aqueous suspensions of 

neutral lipids (sterols) in plastic vessels may result in the loss of these analytes, probably 

due to diffusion into the plastic. Moreover, extraction of leachables and extractables from 

polymers can occur, causing pollution of the analytical system. For extraction, we advise 

use of MtBE, as it is an excellent solvent for neutral lipids, and sterols in particular, and its 

low boiling point allows facile removal. Moreover, compared to chlorinated organic 

solvents, waste management is less problematic. To correct for fluctuations of sample 

preparation, cholestane (26), a non-physiological steroid, is added as an internal standard 

(IS) after saponification and before extraction with MtBE. The organic extracts are dried 

over anhydrous sodium sulfate, as any residual sodium hydroxide solution from the 

hydrolysis step might severely damage the GC column and diminish derivatization 

efficiency. Furthermore, our method uses a dispersive solid-phase extraction (dSPE) step, 

using a mixture of the ‘primary secondary amine’ (PSA) reagent and anhydrous sodium 

sulfate48. This step is not critical to the approach and is hence optional; it does, however, 

remove residual fatty acids, which results in much cleaner extracts and improved 

chromatograms. During longer sequences (>100 samples), we found the dSPE protocol 

quite useful in limiting pollution of the GC inlet. 

 
Fig. 3 | Workflow for target identification (and IC50 determination) in distal cholesterol biosynthesis. 

Derivatization and GC–MS analysis 

Although underivatized sterols can, in principle, be analyzed using GC–MS, we found that 

derivatization leads to increased sensitivity as well as sharper and more symmetric peak 

shapes. Sterol TMS ethers show characteristic fragmentations in MS, which allows distinct 

identification of closely related analytes. Sterols, being secondary alcohols, can present 

some difficulties during derivatization because of incomplete conversion. Although many 
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procedures for sterol derivatization have been described34,49,50, in our experience, the most 

straightforward one remains trimethylsilylation. We tested several reagents and 

combinations and found a combination of N-methyl-N-trimethylsilyl-trifluoroacetamide 

(MSTFA) and 10% (vol/vol) N-trimethylsilyl-imidazole (TSIM) most effective, even at 

room temperature (22 °C). Generally, MSTFA can be used alone; however, in this case, 

small amounts of pyridine should be used in order to prevent incomplete derivatization. 

Care must be taken here to ensure that dry and high-purity pyridine is applied. For the 

determination of squalene epoxide (which is analyzed in its underivatized form), a mixture 

of MSTFA/TSIM (1:1) is recommended; when using other silylation reagents, analyte 

breakdown can occur (data not shown). 
Many different stationary phases have been applied in the GC-based separation of 

sterols. However, we make use of a highly inert 5% (vol/vol) phenylmethyl polysiloxane 

column. This stationary phase is broadly applicable and allows high flexibility. Particularly 

in combination with pre-column derivatization and mass spectrometric detection, the use 

of polyethylene glycol–based columns is not advisable. For a detailed discussion of the 

advantages and disadvantages of certain column types, we refer to the work of Gerst et al.51 

and Giera et al.34. 

In principle, GC–MS analysis of sterols can be carried out in combination with 

quadrupole or ion trap (IT)-type mass analyzers. However, IT-type instruments tend to 

result in better quality of the obtained spectra, particularly in the full-scan mode. We 

observed that quadrupoles can lead to an increased intensity of low-mass fragments (m/z 

<200), which in the case of polyunsaturated sterols can lead to a loss of the molecular ion, 

especially when analytes are present in minute amounts. Nevertheless, the use of an IT-type 

mass analyzer is not a requirement, and we have run our assay on both types of instruments, 

including triple-quadrupoles. 

The choice for GC–MS analysis 
LC–MS has become the most prominent technique for the analysis of certain classes of 

steroids, such as bile acids52,53, conjugated sterols54, hormones55,56 and oxysterols57,58. 

However, GC–MS analysis is still the most common technique for the analysis of neutral 

sterols21,51,53,59, such as cholesterol60–64 and its precursors51,60–69. Nevertheless, some LC-

based approaches are described with17,65 or even without derivatization70,71 of neutral sterols. 

With respect to the different detection possibilities, MS-based detection is the most used 

technique in sterolomics53,72,73. Both LC and GC have some advantages and disadvantages 

(which we summarize in Supplementary Table 4). As can be seen, the two techniques are 

highly complementary35. Krone et al.74 have presented a comparison of the performance of 

GC–MS and LC–MS/MS for steroid analysis. The approach we present here aims to use 

GC–MS analysis to produce a screening assay based on determination of patterns of neutral 

sterols50. A decade ago, when we started our research in the field of distal CB, we argued 

that most available knowledge described the GC–MS-based analysis of sterols, including 

retention time data and detailed descriptions of the EI-MS fragmentation patterns75. Taken 

together, these facts let us choose GC–MS rather than LC–MS analysis as the method of 

choice for establishing the protocol presented here. 

Biochemical evaluation and target identification 
On the basis of sterol pattern analysis of the accumulation of cholesterol precursors, the 

target enzyme in distal CB of different low-molecular-weight inhibitors can be deduced. 

The accumulating precursors, in most cases, represent the target enzymes’ substrates (Fig. 

1 and Table 1). However, inhibiting an enzyme in distal CB does not simply stop the 

cascade; rather, the accumulating sterols might become substrates of downstream enzymes, 

resulting in the formation of non-physiological, yet very characteristic, marker sterols. One 

such example is cholesta-8,14-dien-3β-ol (19), a nonphysiological sterol resulting from the 

inhibition of sterol C14-reductase (E) and sterol C8-isomerase (G), typically found when 

high (10 µM) concentrations of AY-9944 are used33. A list of all enzymes involved in distal 

CB, corresponding marker sterols and selective inhibitors can be found in Table 1. 

Cerqueira et al.76 and Nes1 have presented excellent overviews of the enzymes involved in 

CB. 
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Validation of the test system with established enzyme inhibitors 
To calibrate target identification in a certain cell line or type, we recommend evaluating the 

described procedure in-house with well-established and selective enzyme inhibitors as 

outlined in Tables 1 and 3. 

Quantitative assay 

To allow a quantitative assessment of a test substance’s effects on distal CB, we opted for 

the use of sodium 2-13C-acetate. Of course, one could argue that the accumulating precursor 

could be quantified and used for the construction of IC50 curves as described for DHCR24 

(ref. 77). However, when evaluating the entire distal CB, we rationalized that multiple 

enzyme inhibition might occur, rendering the assessment of the quantitative effect on a 

specific enzyme rather complicated. Upstream blockage of the biosynthetic pathway 

normally limits downstream substrate accessibility in a concentration-dependent manner, 

thereby causing multiple enzyme inhibitions to be intertwined, influencing each other. In 

turn, we argued that for our purposes of comparing the efficiency of novel inhibitors of 

distal CB, we would prefer a single nominal value. Therefore, we evaluated the quantitation 

of 2-13C-acetate incorporation into the target molecule cholesterol. To prevent deuterium 

effects, carbon labeling was applied. Considering that cholesterol (11) is biosynthesized 

entirely from the acetate source acetyl-coenzyme A, a total of fifteen 2-13C-acetate units 

could be incorporated into the molecule1 (Fig. 4). To keep this quantification as simple as 

possible, we decided to quantify all the 13C-labeled cholesterol. 

 
Fig. 4 | Quantitation of 2-13C-acetate incorporation. a–c, Structure of sodium 2-13C-acetate (a), black number 1 = 12C, red number 2 = 13C; 

incorporation of unlabeled acetate into cholesterol and its characteristic MS spectrum (b); incorporation of labeled acetate under control 

conditions into cholesterol and its corresponding MS spectrum (c). Internal standard cholestane (26), cholesterol (11) TMS ether. Int., 

intensity; Rel. int., relative intensity. 

To achieve this, we validated our system and applied mass ranges of m/z 372–379 and 462–

469, referring to the most abundant isotope fraction of incorporated 2-13C-acetate units that 

has a sufficient mass distance from naturally occurring isotopes. Preventing overlap with 

the isotopes of unlabeled cholesterol is important; otherwise, these might interfere with the 

analysis. Although isotopolog or flux analysis might give a more accurate view, we argued 

that for the purposes of substance comparison within a group of inhibitors, an easy-to-

apply, facile and robust approach would be preferred and still fulfill our requirements. We 

tested this by evaluating the intra- and interday repeatability of the method as applied to 

two test substances over several days and obtained highly repeatable results18. Importantly, 

for this assessment, we needed to adopt a correction for the overall biomass in each 

experiment. As manual cell counting of dozens of samples can be very tedious, we decided 

to apply determination of total protein content for correction. For this purpose, we adopted 

the Bradford78 method, which can be directly applied to the hydrolyzed samples just before 

sterol extraction. As only a very small aliquot is required for this determination, this does 

not result in a noteworthy influence on the outcome of the sterol assay. Importantly, the 

applied quantification of 2- 13C-acetate incorporation does ultimately quantify a substances’ 

effect on the entire CB pathway but does not allow the determination of individual IC50 

values for specific enzymes. We chose this approach because it allows the comparison of 

IC50 values based on a common denominator, total CB. Such an approach allows a more 
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facile adaptation of the described protocol, as it omits tedious validation procedures for 

each accumulating sterol. Moreover, when multiple enzyme inhibition occurs, 

accumulation of precursors might influence upstream and/or downstream enzymatic 

reactions, thereby making the comparison of multiple enzyme inhibition very challenging. 

Nevertheless, use of our described protocol’s alternative strategies for selectively 

investigating specific enzymatic conversions might include the following examples. First, 

quantification of the accumulating precursor(s) or area ratio analysis compared to those of 

total cholesterol could be of value. Second, quantification of 2-13C-acetate incorporation 

into accumulating precursors might be an alternative as well. As can be seen from 

Supplementary Tables 5–7 (experimental data for three inhibitors of distal CB) and the 

corresponding MS data (some exemplary data are presented in Supplementary Figs. 1–3), 

as well as the recorded IC50 curves (Supplementary Figs. 4–6), such analysis is in principle 

possible, and indications about specific enzyme inhibitions can be obtained. Another 

possible approach for investigating specific enzymatic activities lies in the use of labeled 

substrates as, for example, recently shown by Prabhu et al.77, who studied the activity of 

DHCR24. Taken together, several possibilities for deciphering multi-enzyme inhibition 

and obtaining enzyme-specific IC50 values exist. However, when applying our protocol for 

more than a decade, we had positive experiences quantifying total CB and here focus on 

our proven approach, quantifying 2-13C-acetate incorporation into cholesterol. 

 
Testing of alternative materials 
The presented protocol can also be applied to the characterization of physiological 

cholesterol precursors in blood samples20,26, feces45, tissues45 and other matrices. The 

quantitative aspect of 2-13C-acetate incorporation is not limited to inhibitors of distal CB, 

but also allows a rapid assessment of if, and to what extent, a test substance affects overall 

CB, even for compounds inhibiting enzymes in the proximal (pre-squalene) part of CB. 

Limitations of the protocol 

We list some imitations below: 

• Metabolomics approaches are usually designed to study hundreds of metabolites in a single 

analytical run. However, these approaches are usually not designed to differentiate between 

analytes showing only minute structural differences79. We describe here an approach selectively 

aimed at the analysis of intermediates of distal CB. In turn, our approach can identify only drug 

targets within this pathway. As we wanted to keep the assay as simple and focused as possible, 

we omitted additional derivatization steps for other classes of steroids (lacking relevance in 

CB), for example, oxime or imine functionalization of oxosteroids (e.g., using methoxyamine 

in pyridine)49. 

• If full blockage of an early enzyme in the pathway occurs, inhibitory effects of the same 

inhibitor on downstream enzymes might be occluded. We account for this by recommending 

that the screening always be undertaken using both a high and a low inhibitor concentration 

(e.g., 1 and 50 µM). See, for example, Horling et al.22. 

• This protocol has been set up as a screening tool for medicinal chemistry purposes. In turn, we 

focused our attention on the main metabolites in CB and marker sterols. Hence, the approach 

might not give full coverage of all (minute) intermediates possible. For an in-depth analysis, 

several sterol analysis approaches should be applied. Excellent sources of such protocols are, 

for example, book chapters by Goad and Akihisa50 and Nes80. For a recent example, 

impressively showing an in-depth analysis of a sterol metabolome, see ref. 81. 

• Most of the sterols described here have been identified using synthetic reference materials34. 

However, some intermediates, mainly of the Bloch pathway, were identified only on the basis 

of characteristic retention time differences as compared to those of their Δ24-saturated 

counterparts from the Bloch pathway and characteristic fragmentations patterns matching those 

previously published (Supplementary Table 1). For these components, some care should be 

taken when assigning identity. 
Our quantitative approach using 2-13C-acetate incorporation does not allow enzymes to be 

assigned to specific IC50 values and might be jeopardized by substances inhibiting enzymes in 

distal as well as proximal CB 
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Materials 

 

Biological materials 

• HL-60 cells (DSMZ, cat. no. ACC 3) !CAUTION Handle cell lines according to your 

institutional regulations and inform yourself about necessary bacterial and viral testing. 

!CAUTION The cell lines used in your research should be regularly checked to ensure they are 

authentic and are not infected with mycoplasma. 

Reagents 

!CAUTION Use gloves and a lab coat and ensure that work using organic solvents is carried out 

in a fume hood. 

Cell culture 

• Dimethyl sulfoxide (DMSO; >99.9% (vol/vol); Sigma-Aldrich, cat. no. D8418) 

• Ethanol, absolute (for analysis; Sigma-Aldrich, cat. no. 1009831011) 

• FBS (Sigma-Aldrich, cat. no. F7524) 

• Lipoprotein-deficient serum (LPDS; Sigma Aldrich, cat. no. S5394) 

• Medium for HL-60 cells without cholesterol (PAN Biotech, cat. no. P04-00800); 

alternatively, RPMI1640 can be used (see below) 

• PBS (Sigma-Aldrich, cat. no. P4417) 

• RPMI1640 (with phenol red; Sigma Aldrich, cat. no. R6504) 

• Sterile purified water (Sigma-Aldrich, cat. no. W3500) 

• Clotrimazole (as reference inhibitor; Sigma-Aldrich, cat. no. C6019) 

• AY-9944 (as reference inhibitor; Cayman Chemicals, cat. no. 14611) 

• Butylated hydroxytoluene (Sigma Aldrich, cat. no. W218405) 

• Triphenylphosphine (Sigma Aldrich, cat. no. T84409) 
(Optional) For the quantitative assay, 2-13C-acetate incorporation 

• Sodium 2-13C-acetate (Sigma-Aldrich, cat. no. 279315) 

• Sterile purified water (Sigma-Aldrich, cat. no. W3500) 

Workup 

• 5α-Cholestane (≥97% (HPLC); Sigma-Aldrich, cat. no. C8003) 

• Helium (99.999%; Air Liquide, cat. no. P0251S10R2A001) !CAUTION Helium is an 

asphyxiant. Use in a well-ventilated area. 

• Methyl tert-butyl ether, HPLC Plus, for GC (MtBE; Sigma-Aldrich, cat. no. 650560) 

!CAUTION Use MtBE in a chemical hood and wear protective gloves, safety glasses and 

suitable protective clothing. MtBE is flammable, is acutely toxic and causes skin and eye 

irritation. 

• Nitrogen (99.999%; Air Liquide, cat. no. P0271L50R2A001) !CAUTION Nitrogen is an 

asphyxiant. Use in a well-ventilated area. 

• N-Methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA; Macherey-Nagel, cat. no. 

701270.201) !CAUTION Wear protective gloves, safety glasses and suitable protective 

clothing. MSTFA is flammable and is acutely toxic. 

• N-Trimethylsilyl-imidazole (TSIM; Macherey-Nagel, cat. no. 701310.201) !CAUTION Wear 

protective gloves, safety glasses and suitable protective clothing. TSIM is flammable, 

corrosive and acutely toxic. 

• Sodium hydroxide solution (NaOH; 1 M, reagent grade, European. Pharmacopoeia; Sigma 

Aldrich, cat. no. 1091371000) !CAUTION Wear protective gloves, safety glasses and suitable 

protective clothing. 

• Sodium hydroxide is corrosive and causes serious eye damage. 

(Optional) For dSPE 

• Agilent SPE bulk sorbent, primary secondary amine (PSA; Agilent, cat. no. 5982-8382) 
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• Sodium sulfate, anhydrous (≥99.0%; Sigma-Aldrich, cat. no. 239313)    CRITICAL Make sure 

that this reagent is dry by heating it in a laboratory cabinet to >125 °C for at least 1 h. 

(Optional) For the quantitative assay, 2-13C-acetate incubation 

• BSA (Albumin Fraction V, ≥98%, powdered; Carl Roth, cat. no. 8076.2) 

• 96-well plate (polystyrene; Greiner Bio-One; VWR, cat. no. 391-3605) 

• Hydrochloric acid (1 M; bioreagent; Sigma-Aldrich, cat. no. H9892) !CAUTION Wear 

protective gloves, safety glasses and suitable protective clothing. Hydrochloric acid is 

corrosive and causes serious eye damage. 

• Roti-Quant Bradford reagent (Carl Roth, cat. no. K015.2) 

Equipment 

Cell culture 

• Flow cabinet (Thermo, cat. no. 51029701) 

• Centrifuge tubes (50 ml, polypropylene, sterile; VWR, cat. no. 521-1890) 

• Centrifuge, benchtop (Heraeus Megafuge 8; VWR, cat. no. 525-0156) 

• CO2 incubator (37°C, 5% CO2; Binder C series; VWR, cat. no. 390-0925) 

• Plastic microcentrifuge Safe-Lock tube (2 ml; Eppendorf; VWR, cat. no. 20901-540) 

• Fuchs–Rosenthal counting chamber (chamber depth: 0.2 mm; VWR, cat. no. 631-1171) 

• Culture flask (250 ml, 75 cm2, polystyrene, sterile; Greiner Bio-One; VWR, cat. no. 391-

3106) 

• Plate (24-well; polystyrene, sterile; Greiner Bio-One; VWR, cat. no. 82050-892) 

• Microscope (Zeiss Axio Observer 3; Zeiss, cat. no. 491915-0001-000) 

• Serological pipette (10 ml, polystyrene, sterile; VWR, cat. no. 612-3700) 

Workup 

• Plastic microcentrifuge Safe-Lock tube (2 ml; Eppendorf; VWR, cat. no. 20901-540)    

CRITICAL Only the highest-quality plastic material should be used. 

• Benchtop microcentrifuge (Eppendorf, model no. 5415 with rotor F-45-24-11; Sigma-

Aldrich, cat. no. Z604062) 

• GC glass vial with screw neck (N9, amber, flat bottom, scale, wide opening (Macherey-Nagel, 

cat. no.702284) 

• Glass vial (4 ml, VWR screw-thread vial; VWR, cat. no. 66010-562) 

• Hamilton gas-tight syringe (no. 1750 LT, 500 µl; VWR, cat. no. 549-1184) 

• Laboratory drying cabinet (Binder ED23; VWR, cat. no. 466-3251) 

• Polypropylene top, screw-cap, polypropylene, white silicone septa for 4-ml glass vials (VWR, 

cat. no. 46610-706) 

• Screw cap, N9 polypropylene (blue, center hole, silicone white/polytetrafluoroethylene red, 

hardness: 

• 45° shore A, thickness: 1.0 mm; Macherey-Nagel, cat. no. 702287.1) 

• Ultrasonic bath (Bandelin Sonorex, model no. RK100; Bandelin, cat. no. 301) 

GC–MS analysis 

• GC–MS instrument (Varian, model nos. GC 3800 and MS 2200 IT) 

• GC injector (Varian, model no. 1177 with split/splitless option) 

• GC inlet liner (2 mm i.d., split/splitless, gooseneck; Agilent, part. no. 8004-0119) 

• GC column (Agilent, model no. VF-5MS; 30-m length plus 10-m EZ-Guard, 0.25-mm i.d., 

0.25-µm film thickness; Agilent, part. no. CP9013)    CRITICAL The retention times of sterol 

TMS ethers can strongly depend on the manufacturer of the column. The use of a column 

from the same type and manufacturer is recommended. If a column from a different 

manufacturer is used, (relative) retention times might differ from the values described here. 

• GC autosampler (CTC Analytics, Combi PAL model)  
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Quantitative assay, 2-13C-acetate incubation 

• Greiner Bio-One 96-well plate (polystyrene; VWR, cat. no. 391-3605) 

• Plate reader (ELISA reader; Dynex Technologies, model no. MRX II) or similar 

Software 

• NIST MS search v.2.0 (or higher) if use of the presented database is intended (Supplementary 

Data) (https://chemdata.nist.gov/mass-spc/ms-search/) 

• Prism v.7 (GraphPad: https://www.graphpad.com/scientific-software/prism/) 

Reagent setup 

RPMI1640 medium containing 10% FBS (cultivation medium) 

In a flow cabinet under sterile conditions, add 50 ml of FBS to 500 ml of RPMI1640, mix it 

well and store at 5 °C. The solution can be stored for 2 weeks.    CRITICAL Sterile conditions 

are mandatory. 
Check the sterility of the medium before use. 

Medium for HL-60 cells or RPMI1640 (test medium) containing 1% LPDS 
In a flow cabinet under sterile conditions, add 5 ml of LPDS to 500 ml of medium for HL-

60 cells or RPMI1640, mix well and store at 5 °C. The solution can be stored for 2 weeks. 

CRITICAL Sterile conditions are mandatory. Check the sterility of the medium before use. 

Preparation of test compound solution 

The test compound must be dissolved in either RPMI1640, sterile purified water, ethanol or 

DMSO. The final concentrations of the test compound should be 1 µM and 50 µM. Prepare 

a 50 µM test compound solution and dilute 1:50 to obtain the 1 µM test compound solution. 

CRITICAL For ethanol and DMSO, a maximum final concentration of 1.0% (vol/vol) in the test 

well is allowed. Prepare the test compound solution on the day of experiment. 

Cholestane IS solution (10 µg/ml) for workup 
Prepare a 10 µg/ml solution of 5α-cholestane in MtBE, mix it well and store it in a glass 

volumetric flask at 5 °C. The solution can be stored up to 6 months. !CAUTION MtBE is 

flammable and toxic. See notes above. 

PBS (pH 7.4, 0.01 M phosphate buffer, 0.0027 M potassium chloride, 0.137 M sodium 

chloride)  

In a flow cabinet under sterile conditions, dissolve one tablet in 200 ml of sterile water. 

(Optional) Dispersive solid-phase adsorbent (40 mg per tube) 
Mix anhydrous sodium sulfate (if necessary, dried at >125 °C for 1 h) and Agilent SPE bulk 

sorbent in a ratio of 7:1. The weight per tube can vary between 35 and 45 mg. This mixture 

should be freshly prepared on a weekly basis, ensuring dryness of the sodium sulfate used. 

Bulk preparations can be stored in a closed Falcon tube for up to 1 week. 

Silylation reagent mixture 
Add 100 µl of TSIM with a Hamilton syringe to one vial of MSTFA (1,000 µl). Shake it 

carefully. Keep at 5 °C. The mixture can be stored for up to 1 week. !CAUTION TSIM and 

MSTFA are flammable and toxic. See notes above.    CRITICAL The mixture is sensitive to water. 

It can be stored refrigerated for 1 week. 

BSA calibration standards for quantitative assay, 2-13C-acetate incubation 

Prepare the calibration standards at a concentration range of 0–140 µg/ml (0, 40, 60, 80, 

100, 120, 140 µg/ml) BSA. Prepare a stock solution of 140 µg/ml in sterile water and 

serially dilute to reach the other concentrations. The solutions can be stored for up to 3 

months at −20 °C. 
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Roti-Quant solution (Bradford reagent) 
Mix 5 ml of Roti-Quant with 13.75 ml of water and shake the solution well in a 50-ml 

centrifuge tube. This volume allows pipetting into 84 wells.    CRITICAL Prepare the solution 

immediately before use and mix it well. 

Sodium acetate-2-13C solution (6.25 mg/ml) 

In a flow cabinet, prepare a 6.25 mg/ml solution of sodium 2-13C-acetate in sterile water 

and mix it well. The solution can be stored for up to 3 months at −20 °C.    CRITICAL Prepare 

the solution under sterile conditions. 

Equipment setup 

Injection parameters for GC–MS analysis of squalene, squalene epoxide and sterol TMS 

ethers 

Inject 1 µl of the sample (splitless). After 1 min, set the injector to a split ratio of 1:25. Hold 

the inlet at 250 °C. 

Chromatographic parameters for GC–MS analysis of squalene, squalene epoxide and sterol 

TMS ethers 
In our labs, the column we most often use for this analysis is an inert 5% phenylmethyl 

polysiloxane column (e.g., the VF-5MS from Agilent). Use the carrier gas helium at a 

constant flow rate of 1.4 ml/ min. After injection, hold the column oven at 50 °C for 1 min, 

then ramp up at a rate of 50 °C/min to 260 °C, followed by a ramp rate of 4 °C/min to the 

final temperature of 310 °C, and then hold for 0.3 min. The total run time is 18.0 min. 

Mass spectrometer settings for (qualitative) analysis 
Set the solvent delay at 9 min. Operate the mass spectrometer in scan mode from m/z 50 to 

450 for between 9 and 12 min, and implement a second segment from 12 to 18 min with a 

scan range from m/z 100 to 600. Sterol TMS ethers start eluting at ~13 min. Hold the MS 

transfer line at 270 °C. Set the manifold temperature to 50 °C and the trap temperature to 

200 °C.     CRITICAL The first scan segment is required only for detecting squalene and squalene 

epoxide. The chromatogram might be polluted with low-molecular-weight substances, 

especially in the first segment. If there is no interest in detecting squalene and/or squalene 

epoxide, set the solvent delay to 11 min and the scan range to m/z 100–600 during the whole 

run. It is advisable to obtain full spectral data for each sterol TMS ether in scan mode. For 

identifying the sterol TMS ethers, the use of the single-ion monitoring (SIM) mode in 

combination with relative retention time (RRT) is not sufficient, as this would, in particular, not 

allow detection of possible co-elutions of critical peak pairs. 

Mass spectrometer settings for IC50 analysis (quantitative assay) 
Quantify 13C-labeled cholesterol by analyzing the ions’ m/z 372–379 and 462–469 values 

corresponding to carbon-labeled cholesterol TMS ether (11). Plot the percentage inhibition 

(see equation for the calculation in Box 1, step 16) relative to untreated control samples 

(0% inhibition) against the logarithmic inhibitor Normalize all samples to their protein 

content, determined using the Bradford protein assay, as a surrogate for the respective cell 

count. 
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Box 1 | Optional additional assays 

Quantitative assay: 2-13C-acetate incubation ● Timing 1–2 h hands-on time for 21 samples  

1 Carry out Steps 1–11 as described in the main Procedure. 
2 Calculate the required volume of medium. Use the following equation: 

1,000 µl – (volume 1 × 106 cell � 10 µl test compound solution � 10 µl 13C – acetate solution) �

 necessary volume of medium. 

3 Add the calculated volume of medium for HL-60 cells to 21 wells of a 24-well plate. 
CRITICAL STEP Do not reverse the mixing steps. If the test compound solution is placed first in each 

24-well plate, the solvent of the solution can evaporate. In addition, the cell suspension should not be mixed 
with the test compound solution to avoid temporarily increased concentrations of test compound, ethanol 
or DMSO. 

4 Add 10 µl of the test compound solution in six appropriate concentrations with each concentration in 
triplicate. 

5 Add 10 µl of the test compound solvent in triplicate; use the test compound solvent in triplicate as control 
samples. 

6 Add the calculated volume of cell suspension. 
7 Carry out Steps 17–32 as described in the main procedure. 

Quantitative assay: Bradford protein assay ● Timing 1–2 h hands-on time for 21 samples 
8 Pipette 50 µl of the calibration standards at 0, 40, 60, 80, 100, 120, 140 µg/ml (in triplicates) into a 96-well 

plate. 
9 Pipette 25 µl (in triplicates) of each sample into a 96-well plate. 
10 Add 25 µl of 1 M hydrochloric acid. 

!CAUTION Wear protective gloves, goggles and suitable protective clothing. Hydrochloric acid is corrosive 
and causes serious eye damage. 
    CRITICAL STEP Hydrochloric acid is added only to the sample wells, not the calibration standard wells. 
This is to neutralize the sodium hydroxide stemming from the hydrolysis step. 

11 Add 200 µl of Roti-Quant solution (Bradford reagent) to each well. 
12 Incubate the plate for 5 min at room temperature. 

    CRITICAL STEP Timing is essential for this step. Make sure that you measure your samples within 5–15 
min after you added the reagent. 

13 Measure the plate with the plate reader (ELISA reader) at OD595. Determine the concentration of each 
sample by plotting the OD595 values of the calibration curve and construct the calibration function. Use the 
calibration function in order to calculate the protein content of your samples. !CAUTION The 
concentration of the samples must be multiplied by two. 

Quantification of 2-13C-acetate incorporation and construction of IC50 curves ● Timing 0.5–1 h per sample 
14 Carry out Steps 33–54 as described in the main Procedure. 
15 Integrate the peak areas of cholestane (26) and labeled cholesterol (11) TMS ether. For cholestane, use 

m/z 217 and 357; for cholesterol, use m/z 372–379 + 462–469. 
16 Calculate the amount of newly synthesized cholesterol by using the following equation, where As is the 

area of labeled cholesterol TMS ether in the samples, aISc the average of the area of the IS in the control 
sample (no inhibitor added), aPCc the average of the protein content of the control sample, aAc the 
average area of labeled cholesterol TMS ether in the control sample, ISs the area of the IS in the sample 
and PCs the protein content of the sample. 

%Inhibition = 	1 � �� × ���� ×���� 
�� ×��� ×��� �� 

17 Plot the results in a sigmoidal curve-fitting model and calculate the IC50 value. We usually carry out this 
step using the GraphPad Prism software. Also calculate R2 values to obtain an estimate of the goodness of 
fit. Usually R2 values >0.90–0.95 are obtained. The calculation of the 95% confidence intervals can be 
useful for comparing compound activities. 

Procedure  

    CRITICAL When working with lipids, laboratory glassware should be used wherever possible. 

In cases in which, for example, high centrifugal forces are applied, plastic cannot be 

circumvented. In such cases, we explicitly specify the plastic material to use. 
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Incubation of test organisms with test substances ● Timing 26 h; 1–2 h hands-on 

time for 24 samples 

1 Cultivate HL-60 cells in 25 ml of RPMI1640 medium containing 10% FBS without 

antibiotics (Reagent setup) at 37 °C in a humidified atmosphere containing 5% CO2. 
    CRITICAL STEP All cell-handling steps must be carried out under sterile conditions in 

a flow cabinet. 
2 Maintain the cells at 0.5–1.0 × 106 cells/ml and split the cells every 2–3 d. The residual 

cells can be used for incubation with test substances. Normally, split cells 1:2 –1:5. 3 

Transfer the residual cell culture to a 50-ml centrifuge tube.     CRITICAL STEP Transfer 

all the cells. 
4 Centrifuge the tube at 1,500g for 5 min at room temperature. 
5 Discard the supernatant, and resuspend the pellet in 10 ml of medium for HL-60 cells 

(or RPMI1640) with 1% LPDS. 
6 Transfer 100 µl of the resuspended cell pellet to a 2-ml microcentrifuge Safe-Lock tube. 
7 Add 900 µl of cold PBS, close the tube and manually swirl gently. 
8 Transfer 20 µl to a Fuchs–Rosenthal counting chamber. 
9 Count the cells. 

       CRITICAL STEP We recommend counting two big squares of a hemocytometer, each 

equaling 0.2 µl (verify the size of your own counting chamber). 
10 Calculate the number of cells in 10 ml. One big square of the recommended counting 

chamber equals 0.2 µl (0.2 mm3); hence, the average of the two counted big squares 

must be multiplied by a factor of 500,000. 
11 Calculate the volume containing an absolute number of 1.0 × 106 cells. 
12 Calculate the volume of medium necessary to make up each well to 1,000 µl. Use the 

following equation: 

1,000 µl – volume 1 × 106 cell + 10 µl test compound solution  

= necessary volume of medium 

13 Add the calculated volume of medium to each well of a 24-well plate. 
14 Add 10 µl of the test compound solution to reach final concentrations of 1 µM and 50 

µM, both for each test compound. Perform each experiment in duplicate for screening 

purposes and triplicate in the case of IC50 determination. 
15 Add the calculated volume of medium containing 1.0 × 106 cells from Step 11. 

     CRITICAL STEP Do not invert when mixing in Steps 13–15. If the test compound 

solution is placed first in each 24-well plate, the solvent of the solution can evaporate. 

In addition, the cell suspension should not be mixed with the test compound solution, 

as this might temporarily increase the concentration of the test compound, ethanol or 

DMSO. 
? TROUBLESHOOTING 

16 Always use two control wells; to these, add the same amount of solvent as used for 

dissolving the test compound(s). These wells represent the untreated controls. 
       CRITICAL STEP In addition, we also advise using a well-established inhibitor as a 

positive control 
(e.g., clotrimazole, AY-9944 or NB-598; see Table 1 and Supplementary Table 3 for 

additional inhibitors). 
17 Manually swirl the plate carefully. 

    CRITICAL STEP The test compound solution should be mixed with the test culture 

without splashing into other wells or onto the cover. 
18 Incubate the 24-well plate for 24 ± 2 h at 37 °C in a humidified atmosphere containing 

5% CO2. 
19 After incubation, check all wells under a suitable light microscope. Check for 

bacterial or fungal contamination (i.e., the presence of smaller, frequently rapidly 

moving, cells) and note the morphology of the HL-60 cells. Healthy HL-60 cells 

should be seen in the control wells and should have a round shape.  

? TROUBLESHOOTING 
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Transfer of cells and preparation for cell lysis and extraction ● Timing 0.5–1 h total 

time for 24 samples 
20 Pipette the cells from all incubations into individual 2-ml plastic microcentrifuge Safe-

Lock tubes. One tube per well. 
21 Wash each well of the 24-well plate with 1 ml of cold PBS and combine with the cell 

suspension from Step 20. 
22 Centrifuge the tubes at 540g for 5 min at room temperature. 
23 Discard the supernatants, and resuspend the pellets in 1 ml of cold PBS. 
24 Centrifuge the tubes at 540g for 5 min at room temperature. 
25 Discard the supernatants and resuspend the pellets in 1 ml of 1 M NaOH. 

!CAUTION Wear protective gloves, goggles and suitable protective clothing. Sodium 

hydroxide is corrosive and causes serious eye damage. 
26 Close the tubes. 

!CAUTION Close the tube tightly. Otherwise, there is a danger of loss of material and a 

health risk in case of spilling. 
27 Vortex the tubes for 10 s. 

!CAUTION Wear protective goggles. 
    CRITICAL STEP The pellets must be fully resuspended in sodium hydroxide solution. 

28 Transfer the solutions to 4-ml glass vials. 
    CRITICAL STEP Only glass vials are suitable for cell lysis and saponification. Using 

glass avoids the extraction of leachables and extractables from the plastic tubes and 

overcomes loss of analytes due to adsorption to the plastic material. 
29 Flood the glass vials with nitrogen (alternatively argon) and close the vials tightly with 

a PTFE screw cap. 
    CRITICAL STEP Nitrogen (or argon) prevents the oxidation of sterols. However, if 

oxysterols are detected, autoxidation should be considered. If autoxidation is observed, 

the addition of antioxidants such as butylated hydroxytoluene and triphenylphosphine 

should be considered. 

 ? TROUBLESHOOTING 
    PAUSE POINT At this point, the samples can be stored at 5 °C for up to 24 h. 

Cell lysis, lipid extraction and detection of squalene, squalene epoxide and sterol 

TMS ethers ● Timing 2–3 h total time for 24 samples 

30 Place the glass vial at 60 °C in a laboratory drying 

cabinet or water bath for 1 h. Vortex the vial for 

10 s occasionally during the incubation (at least 

twice). 
31 Allow the suspension to cool to room 

temperature. !CAUTION Wear protective goggles. 
    CRITICAL STEP Do not add MtBE to the hot mixture, as the MtBE might evaporate 

because its boiling point is 55 °C. 
? TROUBLESHOOTING 

 32 Transfer the lysed cell suspension to a 2-ml plastic microcentrifuge Safe-

Lock tube. 
    CRITICAL STEP Plastic must be used because high centrifugal forces will be required. 

In the presence of MtBE, notable diffusion of lipids into the plastic walls is not 

observed. Use only high-quality plastic, ideally the tubes from Eppendorf in the 

Equipment list. 
    CRITICAL STEP For quantification of de novo synthesized cholesterol, also carry out 

protein quantification according to Bradford as described in Box 1.  

33 Add 650 µl of MtBE. 
? TROUBLESHOOTING 

 34 Add 100 µl of IS solution (10 µg/ml). 
? TROUBLESHOOTING 

35 Close the tube. 
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!CAUTION The tube must be tightly closed. Otherwise, part of the suspension will be 

lost during shaking or centrifugation. 36 For the first extraction step, shake the tube 

vigorously for 1 min by hand. 
!CAUTION Wear protective goggles. 

37 Centrifuge the tube at 10,000g for 5 min at room temperature. 
38 Use a glass pipette to transfer ~550 µl of the organic upper layer to a glass GC vial. 

!CAUTION Avoid transferring any of the aqueous layer. Sodium hydroxide damages the 

GC column. 
    CRITICAL STEP If dSPE is to be applied, transfer the 550 µl of the organic upper layer 

to a 2-ml plastic microcentrifuge Safe-Lock tube containing the dispersive solid-phase 

adsorbent. ? TROUBLESHOOTING 
39 Add 750 µl of MtBE to the 2-ml plastic microcentrifuge Safe-Lock tube containing the 

lysed cell suspension. 
? TROUBLESHOOTING 

40 Close the tube. 
!CAUTION The tube must be tightly closed. Otherwise, part of the suspension will be 

lost during shaking or centrifugation. 
41 For the second extraction step, shake the tube vigorously for 1 min by hand. 
42 Centrifuge the tube at 10,000g for 5 min at room temperature. 
43 Use a glass pipette to combine the organic extracts by transferring ~650 µl of the 

organic upper layer to the GC glass vial. 
!CAUTION Avoid transfer of any of the aqueous layer. Sodium hydroxide damages the 

stationary phase of the GC column. 
   PAUSE POINT At this point, the sample can be stored at −20 °C for up to 24 h in the 

dark. 

(Optional) Dispersive solid-phase extraction ● Timing 15 min for 24 samples 

    CRITICAL Steps 44–47 are optional and are required only if performing dSPE. Otherwise, 

proceed directly to Step 48. 
44 Combine the organic extracts by transferring 650 µl of the organic upper layer to the 2-

ml plastic microcentrifuge Safe-Lock tube, which already contains 550 µl of extract 

plus dSPE sorbent from Step 38. 
45 Shake the tube vigorously for 1 min by hand. 

!CAUTION The tube must be tightly closed. Otherwise, a part of the suspension will be 

lost during shaking or centrifugation. 
46 Centrifuge the tube at 10,000g for 5 min at room temperature. 
47 Transfer 1,000 µl of the (cleaned) extract to a GC glass vial (as in Step 43). 

!CAUTION Pipette carefully, making sure to aspirate only the organic phase; avoid 

pipetting solid particles. Particles can plug the GC syringe or the GC column. 
    PAUSE POINT At this point, the sample can be stored at −20 °C for up to 24 h in the 

dark. 

Sterol derivatization ● Timing 1–2 h for 24 samples 

48 Evaporate the extract to dryness under a gentle stream of nitrogen at room 

temperature. 
!CAUTION Evaporate in a fume hood. MtBE is flammable and acutely toxic. 
    CRITICAL STEP Avoid splashing the organic phase out of the vial. If the sample cannot 

be evaporated to dryness, it is probable that some aqueous phase was transferred during 

the extraction step. Such a sample is not suitable for GC–MS analysis and should be 

discarded. 

? TROUBLESHOOTING 
    PAUSE POINT At this point, the sample can be stored at −20 °C for up 

to 24 h.  

49 Dissolve the dried lipid fraction in 950 µl of MtBE. 
? TROUBLESHOOTING 

50 Use a Hamilton glass syringe to add 50 µl of the silylation reagent mixture. 
!CAUTION The silylation reagent mixture is flammable and toxic. See notes above. 



5. Characterization of inhibitors of cholesterol biosynthesis 

102 

    CRITICAL STEP The mixture is sensitive to water (humidity). 
51 Close the GC glass vial with a screw cap. 
52 Mix the vial with a vortex mixer for 10 s. 

!CAUTION Wear protective glasses and work in a fume hood. The silylation mixture is 

corrosive and causes severe eye damage. 
53 Maintain the vial at room temperature for at least 30 min for complete silylation. 

GC–MS analysis and identification of CB intermediates ● Timing ~23 min per 

sample 

54 Transfer the silylated sample to the GC–MS autosampler for analysis (Equipment 

setup). Analyze using the described settings. 

Data analysis: identification and semi-quantitative assessment of CB 

intermediates  

● Timing ~5 min per sample 

55 For each peak in the GC–MS trace, calculate the RRT, i.e., the retention time relative 

to that of the IS. Compare the obtained RRT and mass spectra with the data in 

Supplementary Table 1 and the supplied mass spectral library (Supplementary Data or 

Supplementary Table 8, PDF of database entries). 
    CRITICAL STEP The sterol database gives MS spectra of sterol TMS ethers and can be 

run using the NIST MS search program. A free downloadable version of the NIST MS 

search program with which our library can be browsed is available at 

http://chemdata.nist.gov/mass-spc/ms-search/. Install the program and extract the 

Supplementary Data S1_substance library.7z into the NISTDEMO/MSSEARCH 

folder. The library should now be visible. To use it for search queries, use the ‘options’ 

> ‘library search options’ tab. All spectra should be visible under the ‘Names’ tab. The 

NIST MS search program usually allows searching for mass spectra directly out of raw 

data files. For further information, refer to http://www.chemdata.nist.gov/mass-spc/ms-

search/. The MS search program also allows other search terms, such as name, 

molecular weight and several other options, which can be found under the ‘search’ 

menu. Alternatively, use our spectra catalog (Supplementary Table 8). 

    CRITICAL STEP Both the mass spectrum and the RRT must match in order to achieve 

an unambiguous identification. Empirically, no more than a 0.5% RRT shift is tolerated. 

Some mass spectra of sterol TMS ether isomers, especially pairs of Δ7- and Δ8-isomers, 

are very similar (Fig. 2, Supplementary Data, or Supplementary Table 8). 

? TROUBLESHOOTING 

Identification of the target enzyme in CB ● Timing ~10 min per sample 

56 Compare the obtained peak patterns for the identified squalene, squalene epoxide or 

sterol TMS ethers between sample and control. 

57 Evaluate the differences between the two chromatograms, looking, for example, for any 

intermediates that accumulate only in the treated sample. Usually only cholesterol (11) 

can be found at significant levels in the control samples. 

? TROUBLESHOOTING 
58 Plot your accumulated sterols in the biosynthesis scheme (Fig. 1). The inhibited enzyme 

can now be evaluated. In addition, you can use Table 1 (marker sterols). 

? TROUBLESHOOTING 
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Troubleshooting 

 

Troubleshooting advice can be found in Table 4. 
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Timing 

 

Steps 1–19, incubation of HL-60 cells with test compounds: 26 h; 1–2 h hands-on time for 24 samples 
Steps 20–29, transfer and preparation for cell lysis and extraction: 0.5–1 h for 24 samples 
Steps 30–47, cell lysis, lipid extraction, preparation: 2–3 h for 24 samples 
Steps 48–53, sterol derivatization procedure: 1–2 h for 24 samples 
Step 54, GC–MS separation and detection of intermediates: 23 min per sample 
Step 55, data analysis: identification and semi-quantitative assessment of CB intermediates: ~5 min per 

sample for experienced users 
Steps 56–58, identification of the target enzyme in CB: ~10 min per sample for experienced users 
Box 1, steps 1–7, optional quantitative assay: 1–2 h for 21 test samples 
Box 1, steps 8–13, Bradford protein assay: 1–2 h hands-on time for 21 samples 
Box 1, steps 14–17, quantification of 2-13C-acetate incorporation and construction of IC50 curves: 
0.5–1 h per sample 
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Anticipated results 

 

Figure 5 shows typical test results for target identification, as well as IC50 determination. As can be 

seen from the upper left plot (blue), treatment of HL-60 cells using an inhibitor of proximal CB 

 

Fig. 5 | Anticipated results. The left panels show the total ion current (TIC) chromatograms obtained after incubation with the three listed inhibitors. 

From the chromatographic traces, the interaction with distal CB can be elucidated. No interaction with distal CB is observed for the HMG CoA-reductase 

inhibitor simvastatin, as no substrate of an enzyme of distal CB is detected. Inhibition of sterol C8-isomerase (G), characterized by an accumulation of 

zymostenol (8), is detected for Koe-12129, and inhibition of DHCR24 (C), characterized by the accumulation of desmosterol (18), is observed for SH-4226. 

On the right side, the corresponding IC50 curves as obtained with the described 2-13C-acetate incorporation assay are shown (n = 3 for each data point; 

error bars show ±1 s.d.). 

(simvastatin) does not lead to a detectable accumulation of CB precursors. Nevertheless, the approach 

presented here can still be used to assess the overall effect of simvastatin on the incorporation of 2-
13C-acetate into the target molecule cholesterol (11). The middle (green) and lower (yellow) panels 

show the selective inhibition of distal CB by Koe-121 and SH-42, respectively. Koe-121 leads to an 

accumulation of zymostenol (8), which is characteristic for an inhibition of sterol C8-isomerase (G). 

SH-42 causes a selective accumulation of desmosterol (18), indicating inhibition of DHCR24 (C). 

Following these observations, 2-13C-acetate incorporation analysis allows the assessment of the 

inhibitory potential of these components. These were found to be 15 and 4 nM, respectively. 

Identification of the accumulating sterols should be done on matching RRTs relative to the IS (26) 

and the full-scan MS spectrum (see Table 1 and Supplementary Table 8). Further examples in which 

the in vivo activity of SH-42 has subsequently also been established can be found in ref. 26. 
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Reporting Summary 

Further information on research design is available in the Nature Research Reporting Summary linked 

to this article. 

Data availability 

The datasets generated and analyzed during the current study are available from the corresponding 

author on reasonable request. 
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Compound Substance information Chromatographic 

characteristics  
RRT TMS ether 

MS  
characteristics  

TMS ether 

Reference 

No.  IUPAC Name  Trivial Name  Chemical 

Formula  
M  

[g/mol]  
CAS   

Number  
Origin  Distributor  Order 

Number  
Cholestane  Cholesterol  M  

[g/mol]  
Base 

peak  
[m/z]  

  

1  

(6E,10E,14E,18E)- 
2,6,10,15,19,23Hexamethyltetracosa2,6,10,14,18,22-
hexaene  Squalene  C30H50  410.4  111-02-

4  C  Sigma- 
Aldrich  S3626  0.95  0.76    69  1  

2  

2,2-Dimethyl-(S)3- 
((3E,7E,11E,15E)3,7,12,16,20pentamethylhenicosa 
3,7,11,15,19-pentaenyl)oxirane  

Squalene epoxide  C30H50O  426.4  7200-
26-2  OS2  Sigma- 

Aldrich  41043  1.05  0.83    81  3  

3  
4,4,14- 
Trimethylcholesta-8,24dien-3β-ol  Lanosterol  C30H50O  426.4  79-63-0  C  Sigma- 

Aldrich  L5768  1.44  1.16  498.4  393  4,5  

4  
4,4,14-Trimethylcholest- 
8-en-3β-ol  Dihydrolanosterol  C30H52O  428.4  79-62-9  OS6  

Toronto  
Research  
Chemicals  

D449855  1.40  1.12  500.4  395  1,4  

5  
4,4-Dimethylcholesta- 
8,14-dien-3β-ol    C29H48O  412.4  19456-

83-8  OS7      1.42  1.13  484.5  379  8  

6  
4,4-Dimethylcholest-8en-3β-ol  

  C29H50O  414.4  5241-
24-7  OS7  

Toronto  
Research  
Chemicals  

D230905  1.43  1.14  486.4  486    

7  4-Methylcholest-8-en- 
3β-ol  

4-
Methylzymostenol  C28H48O  400.4  5241-

22-5            472.4      

8  Cholest-8-en-3β-ol  Zymostenol  C27H46O  386.4  566-97-
2  OS6  Sigma- 

Aldrich  700118P  1.27  1.02  458.4  458  9,10  

9  Cholest-7-en-3β-ol  Lathosterol  C27H46O  386.4  80-99-9  OS6  Sigma- 
Aldrich  C3652  1.31  1.04  458.4  458  4,10  
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10  Cholesta-5,7-dien-3β-ol  7-
Dehydrocholesterol  C27H44O  384.3  434-16-

2  C  
Sigma- 
Aldrich  30800  1.29  1.03  456.4  351  4,10  

11  Cholest-5-en-3β-ol  Cholesterol  C27H46O  386.4  57-88-5  C  
Sigma- 
Aldrich  C8667  1.26  1.00  458.4  368  4,10  

12  
4,4-Dimethylcholesta- 
8,14,24-trien-3β-ol  FF-MAS  C29H44O  410.4  64284-

64-6  
MS   
(I)  

Sigma- 
Aldrich  700077P  1.47  1.17  482.4  482  1  

13  
4,4-Dimethylcholesta- 
8,24-dien-3β-ol  T-MAS  C29H48O  412.4  7448-

02-4  
MS   
(II)  

Sigma- 
Aldrich  700073P  1.48  1.18  484.4  379  1  

14  
4-Methylcholesta-8,24dien-3β-ol  

4-Methylzymosterol  C28H46O  398.4  7448-
03-5    

Toronto  
Research  
Chemicals  

M338615      470.4      

15  Cholesta-8,24-dien-3β-ol  Zymosterol  C27H44O  384.3  128-33-
6  Isol.  

Sigma- 
Aldrich  700068P  1.32  1.06  456.4  351  4,10  

16  Cholesta-7,24-dien‑3βol  
  C27H44O  384.3  651-54-

7  
MS  
(III)  

Sigma- 
Aldrich  700114P  1.34  1.09  456.4  343  5,10  

17  
Cholesta- 
5,7,24‑trien‑3β-ol  

7-
Dehydrodesmosterol  C27H42O  382.3  1715-

86-2  
MS  
(IV)  

Sigma- 
Aldrich  700138P  1.33  1.06  454.4  349  5,11  

18  Cholesta-5,24-dien-3β-ol  Desmosterol  C27H44O  384.3  313-04-
2  C  

Sigma- 
Aldrich  D6513  1.29  1.03  456.4  253  1,4  

19  Cholesta-8,14-dien-3β-ol    C27H44O  384.3  17608-
73-0  OS12  

  
  

  1.27  1.02  456.4  351  10  

20  Cholesta-8,14,24-trien3β-ol  
  C27H42O  382.3  64284-

65-7  
MS   
(V)      1.31  1.05  454.4  454  11  

21  4-Methylcholest-7-en3β-ol  Lophenol  C28H48O  400.4  481-25-
4  

MS  
(VI)  

Toronto  
Research  
Chemicals  

M260640  1.37  1.09  472.4  472  4  

22  4-Methylcholesta-7,24dien-3β-ol  
  C28H46O  398.4  24778-

51-6  
MS  
(VII)      1.40  1.12  470.4  365    

23  Cholesta-5,8-dien-3β-ol  8-
Dehydrocholesterol  C27H44O  384.3  70741-

38-7  OS12  
Toronto  
Research  
Chemicals  

D230295  1.26  1.01  456.4  351  9,10  

24  
Cholesta-5,8,24-trien3β-ol  

  C27H42O  382.3  70441-
40-6  

MS  
(VIII)      1.30  1.04  454.4  349    
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25  
4,4-Dimethylcholesta- 
5,7-dien-3β-ol    C29H48O  412.4  53296-

71-2  OS12      1.43  1.14  484.4  379    

26  Cholestane    C27H48  372.4  481-21-
0  C  

Sigma 
Aldrich  C8003  1.00  0.80    217  10  

Supplementary Table S1, Analytical details of cholesterol biosynthesis intermediates. RRT relative retention time, C, commercial source, MS mass spectral analysis, OS organic synthesis, (I) 

incubation of Aspergillus fumigatus13, (II) incubation of Aspergillus fumigatus13, (III) incubation of HL-60 cells with experimental inhibitor (ethyl side chain) see reference14, (IV) incubation of HL-60 

cells with DR 2586, (V) incubation of HL-60 cells with AY-9944, and experimental inhibitor14, (VI) incubation of HL-60 cells with aminotriazole6, (VII) incubation of HL-60 cells with aminotriazole, 

AY9944, MGI-2115 (VIII) incubation of HL-60 cells with experimental inhibitor15, Isol. Isolated from yeast fat.  

1 Acimovic, J. et al. Combined gas chromatographic/mass spectrometric analysis of cholesterol precursors and plant sterols in cultured cells. Journal of 

Chromatography B 877, 2081-2086, doi:https://doi.org/10.1016/j.jchromb.2009.05.050 (2009).  
2 Ceruti, M. et al. Stereospecific synthesis of squalenoid epoxide vinyl ethers as inhibitors of 2,3-oxidosqualene cyclase. Journal of the Chemical Society, 

Perkin Transactions 1, 461-469, doi:10.1039/P19880000461 (1988).  
3 Santivañez-Veliz, M. et al. Development, validation and application of a GC–MS method for the simultaneous detection and quantification of neutral 

lipid species in Trypanosoma cruzi. Journal of Chromatography B 1061-1062, 225-232, doi:https://doi.org/10.1016/j.jchromb.2017.07.031 (2017).  
4 Brooks, C. J. W., Horning, E. C. & Young, J. S. Characterization of sterols by gas chromatography-mass spectrometry of the trimethylsilyl ethers. Lipids 3, 

391-402, doi:doi:10.1007/BF02531277 (1968).  
5 Nakanishi, S., Nishtno, T., Nagai, J. & Katsuki, H. Characterization of Nystatin-Resistant Mutants of <i>Saccharomyces cerevisiae</i> and Preparation of 

Sterol Intermediates Using the Mutants. The Journal of Biochemistry 101, 535-544 (1987).  
6 Giera, M., Plössl, F. & Bracher, F. Fast and easy in vitro screening assay for cholesterol biosynthesis inhibitors in the post-squalene pathway. Steroids 72, 

633-642, doi:https://doi.org/10.1016/j.steroids.2007.04.005 (2007).  
7 Kloos, D.-P. et al. Comprehensive gas chromatography–electron ionisation mass spectrometric analysis of fatty acids and sterols using sequential 

onepot silylation: quantification and isotopologue analysis. Rapid Communications in Mass Spectrometry 28, 1507-1514, doi:doi:10.1002/rcm.6923 
(2014).  

8 NKININ, S. W. et al. Pneumocystis carinii Sterol 14α-Demethylase Activity in Saccharomyces cerevisiae erg11 Knockout Mutant: Sterol Biochemistry. 
Journal of Eukaryotic Microbiology 58, 383-392, doi:doi:10.1111/j.1550-7408.2011.00556.x (2011).  

9 Wolthers, B. G. et al. Use of determinations of 7-lathosterol (5 alpha-cholest-7-en-3 beta-ol) and other cholesterol precursors in serum in the study and 
treatment of disturbances of sterol metabolism, particularly cerebrotendinous xanthomatosis. Journal of Lipid Research 32, 603-612 (1991).  

10 Gerst, N., Ruan, B., Pang, J., Wilson, W. K. & Schroepfer, G. J. An updated look at the analysis of unsaturated C27 sterols by gas chromatography and 
mass spectrometry. Journal of Lipid Research 38, 1685-1701 (1997).  

11 Ogihara, N. & Morisaki, M. FACILE SYNTHESIS OF ZYMOSTEROL AND RELATED COMPOUNDS. CHEMICAL & PHARMACEUTICAL BULLETIN 36, 2724-2725, 
doi:10.1248/cpb.36.2724 (1988).  
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12 Boer, D. R. et al. Calculated heats of formation of sterol diene isomers compared with synthetic yields of isomerisation reactions of Δ5,7 sterols. Journal 

of the Chemical Society, Perkin Transactions 2, 1701-1704, doi:10.1039/B002212H (2000).  
13 Müller, C., Binder, U., Bracher, F. & Giera, M. Antifungal drug testing by combining minimal inhibitory concentration testing with target identification by 

gas chromatography–mass spectrometry. Nature Protocols 12, 947, doi:10.1038/nprot.2017.005 
https://www.nature.com/articles/nprot.2017.005#supplementary-information (2017).  

14 Giera, M., Renard, D., Plössl, F. & Bracher, F. Lathosterol side chain amides—A new class of human lathosterol oxidase inhibitors. Steroids 73, 299-308, 
doi:https://doi.org/10.1016/j.steroids.2007.10.015 (2008).  

15 Giera, M., Müller, C. & Bracher, F. Analysis and Experimental Inhibition of Distal Cholesterol Biosynthesis. Chromatographia 78, 343-358, 
doi:10.1007/s10337-014-2796-4 (2015).  
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Supplementary table S2 Linear regression, LOD, and LOQ of prominent sterols The limit of 

detection (LOD) was determined at a signal/noise ratio of 3 in the total ion chromatogram. The 

limit of quantification (LOQ) was set where the RSD (n=6) was < 20% using the base peak 

chromatograms. All compounds were linear in a range between LOQ and 1.40 µg/mL.  

No.  IUPAC Name  Trivial Name  Base 

peak  
[m/z]  

Slope  Y -

intercept  
R²  LOD 

[µg/mL]  
LOQ 

[µg/mL]  
LOQ on 

column  
[pg]  

1  

(6E,10E,14E,18E)- 
2,6,10,15,19,23- 
Hexamethyltetracosa2,6,10,14,18,22hexaene  Squalene  69  0.4329  -0.0019  0.960  0.05  0.05  50  

2  

2,2-Dimethyl-(S)3- 
((3E,7E,11E,15E)3,7,12,16,20- 
pentamethylhenicosa- 
3,7,11,15,19pentaenyl)-oxirane  Squalene epoxide  81  0.1088  -0.0133  0.953  0.20  0.40  400  

3  
4,4,14- 
Trimethylcholesta- 
8,24-dien-3β-ol  

Lanosterol  393  0.6388  -0.0500  0.979  0.01  0.02  20  

4  
4,4,14- 
Trimethylcholest-8en-3β-ol  Dihydrolanosterol  395  1.342  -0.0127  0.996  0.02  0.02  20 All   

5  
4,4-Dimethylcholesta- 
8,14-dien-3β-ol    379  0.5721  -0.0606  0.991  0.05  0.10  100  

6  
4,4-Dimethylcholest- 
8-en-3β-ol    486  0.1762  -0.0007  0.996  0.02  0.02  20  

8  Cholest-8-en-3β-ol  Zymostenol  458  0.1762  -0.0007  0.996  0.02  0.02  20  
9  Cholest-7-en-3β-ol  Lathosterol  458  0.5883  -0.0474  0.988  0.02  0.20  200  

10  
Cholesta-5,7-dien-3β- 
ol  

7-
Dehydrocholesterol  351  0.6525  -0.0574  0.979  0.02  0.20  200  

11  Cholest-5-en-3β-ol  Cholesterol  368  0.3788  0.0077  0.998  0.02  0.02  20  

15  
Cholesta-8,24-dien3β-ol  

Zymosterol  351  0.2560  -0.0015  0.989  0.05  0.05  50  

18  
Cholesta-5,24-dien3β-ol  

Desmosterol  253  0.3159  -0.0433  0.990  0.10  0.20  200  

19  
Cholesta-8,14-dien3β-ol  

  351  1.756  -0.0359  0.991  0.02  0.02  20  

23  
Cholesta-5,8-dien-3β- 
ol  

8-
Dehydrocholesterol  351  0.8237  -0.0227  0.998  0.05  0.05  50  

25  
4,4-Dimethylcholesta- 
5,7-dien-3β-ol    379  0.8891  -0.0389  0.989  0.05  0.05  50  

  

  

 



5. Characterization of inhibitors of cholesterol biosynthesis 

117 

 
 

Inhibitor  
 

 Inhibited enzymes  

Inhibitor  CAS-Number  Distributor  Item Number    

AY-9944  

BM 15766 sulfate1,2  

366-93-8  

86621-94-5  

Cayman Chemicals  

Sigma-Aldrich  

Cay14611-1  

B8685  

C 3,4, E 5,6, G 3, I 1,2,4,7  

Haloperidol  52-86-8  Sigma-Aldrich  H1512  E 8, G 8, I 8,   

SR 31747  132173-06-9  MuseChem  I013540  C 9, G 3,6,9  

Tamoxifene  10540-29-1  Sigma-Aldrich  T5648  C6,10,11, G6,10,11  

Trifluoperazine 
dihyrochloride  

440-17-5  Sigma-Aldrich  T8516  C 4,12, H 12  

Triparanol  78-41-1  Sigma-Aldrich  T5200  C1,6,12, G12, H12  

U18666A  3039-71-2  Sigma-Aldrich  U3633  B1,13, C1,6,13, G13  

Supplementary Table S3  
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   LC-MS/MS   GC-EI-MS (scan mode)  

Advantages    

  

  

  

Short analysis times1,2, favored for 

high throughput analysis3 but 

long run time for cholesterol 

precursors after derivatization  

(40 min)4  
Analysis of non-hydrolysable and 
derivatization-resistant 
metabolites1,3,5  

Sensitive and specific technique 
for clinical steroid analysis6 (e.g. 
cortisol precursors, hormonal 
3oxo-Δ4 steroids1,2) and 
cholesterol precursors (LOD < 1pg 
on-column  
after derivatization)4  

Suited to commercial routine 
analysis 6 and targed 
steroidomics1,4  

  

  
  

  

  

  

Unprecedented separation 
capacity1  

Minimal matrix effects1 
Derivatized sterols can be 
subjected to untarget and/or 
targeted analysis1,2  

Comparable MS spectra (libaries) 

are available7 (see Supporting 

information)  

Fragmentation of derivatized 
sterols allowes characterization 
of unexpected or novel  
compounds1,3,5   

  

Disadvantages    

  

  

  

Authentic reference material 
should be available1  

Analysis of steroids without 3oxo-
Δ4 unconjugated ring system, by 
ESI sources is challenging1,4 
Derivatzation step is necessary for 
the high sensitivity analysis 
cholesterol precursors4  

Lower sensitivites are achieved 
when analysing underivatized 
sterols8  

  

  

  

  

Extensive sample workup1, 

conjugated sterols (sulfates and 

glucuronides) require a hydrolysis  

step1,3,5-7  

Sterols with Δ5,7-diene structure 

may be labile under basic 

conditions (saponification step)5 

Derivatization step is necessary to 

improve steroid volatility and 

stability 1  

Scan mode lacks sensitivity for 
identifying and quantifying minor 
sterols1  

Supplementary Table S4  
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Supplementary Table S8 - Spectral database 
Compound No.  1  

IUPAC Name  (6E,10E,14E,18E)-2,6,10,15,19,23-Hexamethyltetracosa- 

2,6,10,14,18,22-hexaene  

Trival Name  Squalene  

CAS Number  111-02-4  M  

[g/mol]  

410.4  

Chemical  

Formula  
C30H50  

M TMS ether 

[g/mol]  

  

Structure  

 

RRT TMS ether  

(Cholestane)  

0.95  

RRT TMS ether  

(Cholesterol)  

0.76  

MS spectrum   
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Compound No.  2  

IUPAC Name  (3S)-2,2-Dimethyl-3-((3E,7E,11E,15E)-
3,7,12,16,20pentamethylhenicosa-3,7,11,15,19-pentaenyl)-oxirane  

Trival Name  Squalene epoxide  

CAS Number  7200-26-2  M  

[g/mol]  

426.4  

Chemical  

Formula  
C30H50O  

M TMS ether 

[g/mol]  

  

Structure  

  

RRT TMS ether  

(Cholestane)  

1.05  

RRT TMS ether  

(Cholesterol)  

0.83  

MS spectrum   
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Compound No.  3  

IUPAC Name  4,4,14-Trimethylcholesta-8,24-dien-3β-ol  

Trival Name  Lanosterol  

CAS Number  79-63-0  M  

[g/mol]  

426.4  

Chemical  

Formula  
C30H50O  

M TMS ether 

[g/mol]  

498.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.44  

RRT TMS ether  

(Cholesterol)  

1.16  

MS spectrum TMS ether  
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Compound No.  4  

IUPAC Name  4,4,14-Trimethylcholest-8-en-3β-ol  

Trival Name  Dihydrolanosterol  

CAS Number  79-62-9  M  

[g/mol]  

428.4  

Chemical  

Formula  
C30H52O  

M TMS ether 

[g/mol]  

500.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.40  

RRT TMS ether  

(Cholesterol)  

1.12  

MS spectrum TMS ether  
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Compound No.  5  

IUPAC Name  4,4-Dimethylcholesta-8,14-dien-3β-ol  

Trival Name    

CAS Number  19456-83-8  M  

[g/mol]  

412.4  

Chemical  

Formula  
C29H48O  

M TMS ether 

[g/mol]  

484.5  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.42  

RRT TMS ether  

(Cholesterol)  

1.13  

MS spectrum TMS ether  
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Compound No.  6  

IUPAC Name  4,4-Dimethylcholest-8-en-3β-ol  

Trival Name    

CAS Number  5241-24-7  M  

[g/mol]  

414.4  

Chemical  

Formula  
C29H50O  

M TMS ether 

[g/mol]  

486.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.43  

RRT TMS ether  

(Cholesterol)  

1.14  

MS spectrum TMS ether  
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Compound No.  7  

IUPAC Name  4α-Methylcholest-8-en-3β-ol  

Trival Name  4-Methylzymostenol  

CAS Number  5241-22-5  M  

[g/mol]  

400.4  

Chemical  

Formula  
C28H48O  

M TMS ether 

[g/mol]  

472.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

     

RRT TMS ether  

(Cholesterol)  

  

MS spectrum TMS ether not 
available  
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Compound No.  8  

IUPAC Name  Cholest-8-en-3β-ol  

Trival Name  Zymostenol  

CAS Number  566-97-2  M  

[g/mol]  

386.4  

Chemical  

Formula  
C27H46O  

M TMS ether 

[g/mol]  

458.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.27  

RRT TMS ether  

(Cholesterol)  

1.02  

MS spectrum TMS ether  
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Compound No.  9  

IUPAC Name  Cholest-7-en-3β-ol  

Trival Name  Lathosterol  

CAS Number  80-99-9  M  

[g/mol]  

386.4  

Chemical  

Formula  
C27H46O  

M TMS ether 

[g/mol]  

458.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.31  

RRT TMS ether  

(Cholesterol)  

1.04  

MS spectrum TMS ether  
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Compound No.  10  

IUPAC Name  Cholesta-5,7-dien-3β-ol  

Trival Name  7-Dehydrocholesterol  

CAS Number  434-16-2  M  

[g/mol]  

384.3  

Chemical  

Formula  
C27H44O  

M TMS ether 

[g/mol]  

456.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.29  

RRT TMS ether  

(Cholesterol)  

1.03  

MS spectrum TMS ether  
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Compound No.  11  

IUPAC Name  Cholest-5-en-3β-ol  

Trivial Name  Cholesterol  

CAS Number  57-88-5  M  

[g/mol]  

386.4  

Chemical  

Formula  
C27H46O  

M TMS ether 

[g/mol]  

458.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.26  

RRT TMS ether  

(Cholesterol)  

1.00  

MS spectrum TMS ether  
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Compound No.  12  

IUPAC Name  4,4-Dimethylcholesta-8,14,24-trien-3β-ol  

Trivial Name  FF-MAS  

CAS Number  64284-64-6  M  

[g/mol]  

410.4  

Chemical  

Formula  
C29H44O  

M TMS ether 

[g/mol]  

482.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.47  

RRT TMS ether  

(Cholesterol)  

1.17  

MS spectrum TMS ether  
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Compound No.  13  

IUPAC Name  4,4-Dimethylcholesta-8,24-dien-3β-ol  

Trivial Name  T-MAS  

CAS Number  7448-02-4  M  

[g/mol]  

412.4  

Chemical  

Formula  
C29H48O  

M TMS ether 

[g/mol]  

484.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.48  

RRT TMS ether  

(Cholesterol)  

1.18  

MS spectrum TMS ether  
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Compound No.  14  

IUPAC Name  4α-Methylcholesta-8,24-dien-3β-ol  

Trivial Name  4-Methylzymosterol  

CAS Number  7448-03-5  M  

[g/mol]  

398.4  

Chemical  

Formula  
C28H46O  

M TMS ether 

[g/mol]  

470.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

  

RRT TMS ether  

(Cholesterol)  

  

MS spectrum TMS ether not 
available  
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Compound No.  15  

IUPAC Name  Cholesta-8,24-dien-3β-ol  

Trivial Name  Zymosterol  

CAS Number  128-33-6  M  

[g/mol]  

384.3  

Chemical  

Formula  
C27H44O  

M TMS ether 

[g/mol]  

456.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.32  

RRT TMS ether  

(Cholesterol)  

1.06  

MS spectrum TMS ether  
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Compound No.  16  

IUPAC Name  Cholesta-7,24-dien‑3β-ol  

Trivial Name    

CAS Number  651-54-7  M  

[g/mol]  

384.3  

Chemical  

Formula  
C27H44O  

M TMS ether 

[g/mol]  

456.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.34  

RRT TMS ether  

(Cholesterol)  

1.09  

MS spectrum TMS ether  
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Compound No.  17  

IUPAC Name  Cholesta-5,7,24‑trien‑3β-ol  

Trivial Name  7-Dehydrodesmosterol  

CAS Number  1715-86-2  M  

[g/mol]  

382.3  

Chemical  

Formula  
C27H42O  

M TMS ether 

[g/mol]  

454.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.33  

RRT TMS ether  

(Cholesterol)  

1.06  

MS spectrum TMS ether  
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Compound No.  18  

IUPAC Name  Cholesta-5,24-dien-3β-ol  

Trivial Name  Desmosterol  

CAS Number  313-04-2  M  

[g/mol]  

384.3  

Chemical  

Formula  
C27H44O  

M TMS ether 

[g/mol]  

456.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.29  

RRT TMS ether  

(Cholesterol)  

1.03  

MS spectrum TMS ether  
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Compound No.  19  

IUPAC Name  Cholesta-8,14-dien-3β-ol  

Trivial Name    

CAS Number  17608-73-0  M  

[g/mol]  

384.3  

Chemical  

Formula  
C27H44O  

M TMS ether 

[g/mol]  

456.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.27  

RRT TMS ether  

(Cholesterol)  

1.02  

MS spectrum TMS ether  
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Compound No.  20  

IUPAC Name  Cholesta-8,14,24-trien-3β-ol  

Trivial Name    

CAS Number  64284-65-7  M  

[g/mol]  

382.3  

Chemical  

Formula  
C27H42O  

M TMS ether 

[g/mol]  

454.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.31  

RRT TMS ether  

(Cholesterol)  

1.05  

MS spectrum TMS ether  
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Compound No.  21  

IUPAC Name  4α-Methylcholest-7-en-3β-ol  

Trivial Name  Lophenol  

CAS Number  481-25-4  M  

[g/mol]  

400.4  

Chemical  

Formula  
C28H48O  

M TMS ether 

[g/mol]  

472.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.37  

RRT TMS ether  

(Cholesterol)  

1.09  

MS spectrum TMS ether  
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Compound No.  22  

IUPAC Name  4α-Methylcholesta-7,24-dien-3β-ol  

Trivial Name    

CAS Number  24778-51-6  M  

[g/mol]  

398.4  

Chemical  

Formula  
C28H46O  

M TMS ether 

[g/mol]  

470.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.40  

RRT TMS ether  

(Cholesterol)  

1.12  

MS spectrum TMS ether  
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Compound No.  23  

IUPAC Name  Cholesta-5,8-dien-3β-ol  

Trivial Name  8-Dehydrocholesterol  

CAS Number  70741-38-7  M  

[g/mol]  

384.3  

Chemical  

Formula  
C27H44O  

M TMS ether 

[g/mol]  

456.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.26  

RRT TMS ether  

(Cholesterol)  

1.01  

MS spectrum TMS ether  
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Compound No.  24  

IUPAC Name  Cholesta-5,8,24-trien-3β-ol  

Trivial Name    

CAS Number  70441-40-6  M  

[g/mol]  

382.3  

Chemical  

Formula  
C27H42O  

M TMS ether 

[g/mol]  

454.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.30  

RRT TMS ether  

(Cholesterol)  

1.04  

MS spectrum TMS ether  
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Compound  25  

IUPAC Name  4,4-Dimethylcholesta-5,7-dien-3β-ol  

Trivial Name    

CAS Number  53296-71-2  MR 

[g/mol]  

412.4  

Chemical  

Formula  
C29H48O  

MR TMS ether 

[g/mol]  

484.4  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.43  

RRT TMS ether  

(Cholesterol)  

1.14  

MS spectrum TMS ether  
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Compound No.  26  

IUPAC Name  Cholestane  

Trivial Name    

CAS Number  481-21-0  M  

[g/mol]  

372.4  

Chemical  

Formula  
C27H48  

M TMS ether 

[g/mol]  

  

Structure  

 

RRT TMS ether  

(Cholestane)  

1.00  

RRT TMS ether  

(Cholesterol)  

0.80  

MS spectrum   
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6. Traceless isoprenylation 

 

D. Heerdegen, J. Junker, S. Dittrich, P. Mayer, F. Bracher, Traceless Isoprenylation of 

Aldehydes via N-Boc-N-(1,1-dimethylallyl)hydrazones, European Journal of Organic 

Chemistry, 24 (2020) 3680-3687. 

 

6.1.  Summary 

Isoprenylation is a typical biological process which takes place in posttranslational 

modifications of proteins [92] and in the biosynthesis of terpenes like sterols by addition of 

isopentenyl diphosphate building blocks as shown in Figure 2 (Chapter 1.2.1) [13]. In this 

article, a new approach for the introduction of an isoprenyl group into organic molecules is 

presented. Using the traceless bond construction developed by Thomson et al. [93] N-Boc-N-

allylhydrazines were used, which after condensation with appropriate aldehydes undergo [3,3]-

sigmatropic rearrangement leading to the desired isoprenylated compounds. The 

rearrangement here is named traceless bond construction, since only gaseous by-products 

(N2, iso-butylene (C4H8) and CO2) were formed during the C-C bond formation and the product 

does not contain any retron, which could reveal the used synthetic pathway [93]. The required 

N-Boc-N-allylhydrazone was synthesized from a novel N-Boc-N-allyl-hydrazine building block 

by condensation with the appropriate aldehyde. The resulting hydrazone underwent the [3,3] 

sigmatropic in the presence of catalytic amounts of the superacid triflimide.  

 

Figure 11 Graphical abstract of the article showing the condensation of the N-Boc-N-allylhydrazine with an 

aldehyde leading to a N-Boc-N-allylhydrazone. After [3,3]- sigmatropic rearrangement the desired isoprenylated 

product is formed 

This article describes the synthesis of the required N-Boc-N-allyl-hydrazine building block, the 

condensation reactions with various aldehydes and the subsequent rearrangement. It was 

crucial, to first optimize the [3,3]-sigmatropic rearrangement by changing the solvent, acid, 

temperature and reaction times by using a model compound. All in all, 33 optimization 

reactions were performed for one model product. This high number of experiments could be 

achieved using GC-MS monitoring, which was the ideal method to analyze the very volatile 

model product ((4-methylpent-3-en-1-yl)cyclohexane). As the cumbersome preparative 
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cleanup and weighting of the product could be avoided, the optimization reactions could be 

performed much faster and in smaller synthesis approaches. 

 

6.2.  Personal contribution 

Conceptualization of the project, as well as planning and implementation of the synthesis was 

done by Dr. Desiree Heerdegen. In addition, she wrote the original draft and also the 

preliminary investigations and experiments were part of her contribution to the article.  

My contribution to this article were the development of the GC-MS method for the analysis of 

the prenylated products. The conceptualization of the analytical procedure for the optimization 

experiments, the performance of the respective GC-MS measurements and the analysis of the 

measurement data (see Chapter 6.4) was also part of my contribution to this article. This GC-

MS based method was crucial for the screening of multiple different reaction conditions without 

time consuming workup. 

The crystallization experiments were done by Dr. Peter Mayer. 

The project based on previously developed traceless bond constructions, that were published 

by Dr. Sebastian Dittrich and Prof. Dr. Franz Bracher [94, 95]. Both supported the 

conceptualization of this project and further contributed in editing and reviewing of the original 

draft. Dr. Sebastian Dittrich was further involved in parts of the synthesis. Prof. Dr. Franz 

Bracher further contributed by providing the necessary resources.  
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6.3.  Article 

The following article is printed in the original wording. The formatting may vary slightly 

compared to the original article. 

Traceless Isoprenylation 

Traceless Isoprenylation of Aldehydes via N-Boc-N-(1,1-

dimethylallyl)hydrazones 

Desirée Heerdegen,[a] Julia Junker,[a] Sebastian Dittrich,[a] Peter Mayer,[b] and Franz 
Bracher*[a] 

Abstract: A short isoprenylation protocol starting from 

nonconjugated N-Boc-N-(1,1-dimethylallyl)hydrazones was 

developed utilising Thomson's traceless bond construction. 

This type of [3,3]-sigmatropic rearrangement is catalysed by 

the Brønsted acid triflimide and liberates only gaseous by-

products. The required N-Boc-N-allylhydrazine precursor is 

available in three steps strating from a known diazene using  

Introduction 

The [3,3]-sigmatropic rearrangement is a common but 

impressive tool for the formation of new C–C-bonds in 

synthetic chemistry.[1] In 1973 Stevens showed that N-

allylhydrazones undergo such a rearrangement under 

release of N2 as well, but due to very harsh reaction 

conditions (300 °C) and low yields, this reaction was limited 

in its applicability.[2] For several decades, synthetic chemists 

did not see any real benefit of this unique rearrangement, 

until 2010, when Thomson and co-workers published the 

traceless bond construction (TBC), an improved variant of 

Stevens' [3,3]-sigmatropic rearrangement, working with N-

Boc-N-allylhydrazones (A, Scheme 1a) and catalytic amounts 

of the Brønsted superacid triflimide (HNTf2).[3] It was now 

possible to lower the temperature of the rearrangement to 

125 °C and the yields of the products could be increased. This 

pioneering work of Thomson allowed the synthesis of 

various 1,2disubstituted olefins (B) and one 1,1-

disubstituted olefin (Scheme 1a). Mono-substituted olefins 

could not be obtained by this way. Later our group extended 

the scope to the synthesis of 1,1-disubstituted olefins (D, 

Scheme 1b), bearing an isopropyl group in 1-position, which 

resulted in a methylene branched end, a motif which is found 

in the side chains of steroidal natural products, e.g. 

episterol.[4] In the same year we reportet the synthesis of  

[a] D. Heerdegen, J. Junker, Dr. S. Dittrich, Prof. Dr. F. Bracher 

Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University, 

Butenandtstr. 5-13, 81377 Munich, Germany 

https://bracher.cup.uni-muenchen.de/ 

[b] Dr. P. Mayer 

Department of Chemistry, Ludwig-Maximilians University, 

Butenandtstr. 5-13, 81377 Munich, Germany 

Supporting information and ORCID(s) from the author(s) for this article are available 

on the WWW under https://doi.org/10.1002/ejoc.202000382.  

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. · This is an 

open access article under the terms of the Creative Commons Attribution License, 

which permits use, distribution and reproduction in any medium, provided the original 

work is properly cited. 

biocatalytic aldol addition and Tebbe olefination as key 

steps. Allylhydrazones are prepared via condensation with 

appropriate aldehydes. Scope and limitations of the [3,3]-

sigmatropic rearrangements are analysed. 

 

 

terminal vinylsilanes (F, Scheme 1c) using TBC, which 

opened a new route to diversely substituted olefins.[5] 

 

In this work we present a protocol for the introduction of 

an isopentenyl (isoprenyl) residue to aldehydes (Scheme 1d). 

The isoprenyl function is a common structural element in 

terpenoid biomolecules and natural secondary 
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metabolites.[6] The natural isoprene building block in 

terpenoid biosynthesis is dimethylallyl pyrophosphate 

(DMAPP).[7,8] Steroids like cholesterol as a membrane 

component,[9] pigments like -carotene,[10] or cortisone or 

progesterone to name a few hormones,[11] are naturally 

occurring terpenoid derivatives, derived from DMAPP. 
At the biological level, protein prenyltransferases attach 

terpenoid residues like farnesyl (C15) or geranylgeranyl (C20) 

groups to cysteinyl residues of proteins in posttranslational 

modifications. Due to the introduction of this hydrophobic 

group, the proteins can anchor in biomembranes resulting in 

altered biological activities.[12] In synthetic chemistry, 

organometallic building blocks like 3-methyl-2-

butenylmagnesium chloride are commonly used for the 

introduction of an isoprenyl group.[13] Utilising inverse 

reactivities, 3,3-dimethylallyl bromide can be applied as an 

electrophilic isoprenyl building block,[14] as exemplified by 

the total syntheses of natural products, e.g. (±)-eldanolide[15] 

and (±)-fumagillin.[16] Besides direct isoprenylation, 

eliminations can lead to the isoprenyl function by forming 

the thermodynamically most stable double bond, e.g. from 

tertiary alcohols by dehydration.[17] An intramolecular 

isoprenylation, in which the group is constructed during a 

rearrangement, is to the best of our knowledge, not 

described in literature yet. 
A further centrepiece of this work is the synthesis of the 

required, hitherto unknown, N-Boc-N-(1,1-

dimethylallyl)hydrazine building block (G, Scheme 1d), 

bearing two geminal methyl groups in α-position to the 

hydrazine moiety to receive the desired isoprenylated 

products (I, Scheme 1d) via N-Boc-N-allylhydrazones (H, 

Scheme 1d). In our previous investigations leading to 1,1-

disubstituted olefins,[4] undesired subsequent acidcatalysed 

isomerisations of the formed olefinic double bond were 

observed,[18] which led occasionally to isomeric mixtures of 

product alkenes. In the present case this is not expected to 

happen, since the resulting trisubstituted olefin should be 

the thermodynamically most stable isomer. An additional 

benefit of the two geminal methyl groups in precursor G is 

on the one hand that product I cannot be formed as mixture 

of E/Z isomers and on the other hand it is expected to 

facilitate the rearrangement due to the Thorpe-Ingold effect 

(gem-dimethyl effect).[19] As a result, less drastic reaction 

temperatures and shortened reaction times may be 

employable.[20] 

Results and Discussion 

The synthesis of the required N-Boc-N-(1,1-

dimethylallyl)hydrazine building block 8a (Scheme 2; G in 

Scheme 1d) started with the two-step synthesis of known N-

Troc-N-Boc-protected diazene 2.[21] Conversion into 

aldehyde 6a was performed on two different routes. Route 

A used commercially available silyl enol ether 3, which was 

activated by LiOTf and TBAF. The idea was to achieve a 

controlled O-Si-bond cleavage in 3 by slow addition of the 

fluoride source. Simultaneously, the presence of significant 

amounts of lithium ions should lead to an immediate 

formation of the lithium enolate. However, the addition of 3 

to 2 did not proceed in a regioselective manner, and a 50:50 

mixture of the isomeric aldehydes 6a and its regioisomer 6b 

was obtained. It is noteworthy, that the regioselectivity of 

this reaction could not be measured in this step, hence, it 

was determined retrospectively after conversion into 8a/8b 

after the last step. Both isomers showed identical 

chromatographic behaviour and no distinct signals enabling 

quantification of the ratio of regioisomers could be observed 

by NMR spectroscopy until reaching 8a/8b. Because of the 

lack of regioselectivity, an alternative approach to 

intermediate 6a utilising organocatalysis[22,23] was worked 

out (route B). For this Aldol-type reaction with 

isobutyraldehyde (4), three catalysts were explored: L-

proline,[24] L-phenylalanine,[25] and Ley's (S)-5-(pyrrolidin-2-

yl)1H-tetrazole (5).[21,26] Tetrazole catalyst 5 gave the best 

result with 68 % yield and the isomeric ratio could be 

improved to 91:9 (determined retrospectively by 1H NMR 

spectroscopy) of the desired aldehyde 6a and its 

regioisomer 6b. Methylenation of the aldehyde function of 

6a/6b gave the olefins 7a and 7b. Different methods like 

Wittig,[27] Nysted-Takai[28] and Tebbe[29] olefination were 

tested, whereby the first two methods did not result in any 

product. Under Tebbe conditions the desired terminal olefin 

7a and its regioisomer 7b were obtained in an acceptable 

yield of 48 % as an inseparable mixture. 

 

Scheme 2. Route A leading to an equimolar mixture of 8a/8b starting 

from silyl enolether 3. Route B provides 8a, contaminated with 9 % of 

isomer 6b starting from aldehyde 4. *The ratios of the isomers were 

determined retrospectively by NMR spectroscopy of the product 8a/8b. 
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The X-ray crystal structure of the desired isomer 8a is shown on the left. 

Diazene 2 was synthesised according to literature.[21] 

Chemoselective reductive Troc cleavage with zinc powder 

gave a still inseparable mixture of the desired olefin 8a and 

its constitutional isomer 8b in excellent yield. However, at 

this stage NMR spectroscopy enabled determination of the 

ratio of isomers (route A 50:50, route B 91:9). The structure 

of the desired N-Boc-N-allylhydrazine 8a was 

unambiguously confirmed by X-ray crystal structure analysis 

(see Supporting Information). The enriched isomeric mixture 

of building block 8a and 8b could be used for the next step 

without further purification, since exclusively 8a undergoes 

condensation with the employed aldehydes to give the N-

Boc-N-allylhydrazones 9, whereas the isomer 8b remains 

unreacted. Scheme 3 shows the prepared allylhydrazones 

9a–q. Aliphatic (9a-d, 9f, 9g, 9p), allylic (9h, 9q) and 

aromatic (9i–9o) and ester-bearing (9e) allylhydrazones 

were synthesised by reacting the appropriate aldehydes 

with building block mixture 8a/b in ethanol (yields 33 – 95 

%). Especially non-conjugated allylhydrazones slowly 

decomposed during the purification process, which is 

reflected in the yields. Before we studied the capability of 

our N-Boc-N-allylhydrazine building block 8a, we identified 

the optimum reaction conditions for the rearrangement 

utilising cyclohexanecarboxaldehyde-derived hydrazone 9g 

as a model compound. Overall, 33 test reactions were 

performed with variations of temperature (23 to 125 °C), 

time (15 to 75 min) and solvents (THF and diglyme) (see 

Supporting Information). Significant rearrangement was 

only accomplished at temperatures of 75 °C and above. 

Besides HNTf2 (pKa –12.0, measured in DCE),[30] triflic acid 

(TfOH, pKa –11.3, measured in DCE)[30] and trifluoroacetic 

acid (TFA, pKa 0.23)[31] were tested. All in all, the hitherto 

used conditions of Thomson[3] (HNTf2, diglyme, 125 °C) gave 

the best results for this conversion, closely followed by the 

rearrangement with triflic acid in diglyme at 125 °C, which 

would be a rewarding alternative to HNTf2, which 

decomposes immediately in air and requires extremely dry 

reaction conditions. As the main side product, and even right 

at the beginning of the reaction, the corresponding Boc-

deprotected allylhydrazone was observed, a compound 

which does not undergo the rearrangement. This is in 

accordance with the observations of Thomson and could not 

be prevented.[3] This prompted us to further investigate an 

alternative carbamate residue, which might be less prone to 

premature acidic cleavage. We prepared the ethyl 

carbamate analogue S5a of 8a starting from ethyl carbazate 

on a route analogous to route B shown in Scheme 2 (for 

details, see Supporting Information). Two N-Boc-N-

allylhydrazones S6g and S6i derived thereof were subjected 

to the previously determined best reaction conditions for 

rearrangement (HNTf2, diglyme, 125 °C), but though the 

starting materials were fully consumed, none of the 

expected rearrangement products could be identified by 

GC/MS analysis. Consequently, the Boc group cannot be 

replaced in this protocol by the smaller ethoxycarbonyl 

group. 

 

Scheme 3. N-Boc-N-allylhydrazones 9a–q prepared via condensation 

reaction between N-Boc-N-allylhydrazine 8a and appropriate 

aldehydes. The yields refer to the content of N-Boc-N-allylhydrazine 8a 

in the applied 8a/8b mixture. 
Scheme 4 shows the following rearrangement of substrates 

9. The allylhydrazones 9a–c derived from n-alkanals 

underwent sigmatropic rearrangement providing the 

appropriate olefins 10a–c in 20–21 % isolated yields. The 

poor yields are in part due to the high volatility of the olefinic 

products, as demonstrated by an increased yield (25 %) of 

10g on a larger scale (3 mmol). The rearrangement product 

10d of isobutyraldehydederived N-allylhydrazone 9d could 

be detected by GC/MS, but could not be isolated due to its 

very high volatility (b.p. 135– 136 °C[32]). Ester 9e did not 

undergo rearrangement to the corresponding olefin and 

only the Boc-deprotected allylhydrazone was found. 
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Scheme 4. Successful rearrangements of N-Boc-N-allyhydrazones using 

the standard conditions of the TBC. The reactions were performed at 

least in a 0.5 mmol scale. Isolated yields are given. 

N-Allylhydrazones derived from cycloalkane 

carboxaldehydes (9f, 9g) underwent rearrangement to 

olefins 10f and 10g with a yield of 20 % for both compounds 

(Scheme 4). In contrast, allylhydrazone 9h derived from an 

α,β-unsaturated aldehyde did not undergo rearrangement 

and again only Boc-deprotected allylhydrazone was isolated. 

The attempted rearrangements of variously substituted 

arylidene hydrazones failed as well (9i–m). During the 

purification process of the attempted rearrangements of 9i 

and 9j crystalline solids were obtained, which were 

identified as the symmetric bis-hydrazones 12a/b (Scheme 

5). 

 

 

Scheme 5. Attempted rearrangements of allylhydrazones 9i and 9j 

leading to deprotected allylhydrazons 11a/b and bis-hydrazones 

12a/b. 

Obviously, acid-mediated removal of both the Boc and the 

dimethylallyl residue took place in these experiments. Next 

to those, once again Boc-deprotected allylhydrazones 11a/b 

were formed. Introduction of both electron-donating 

(methoxy compound 9l) and electron-withdrawing groups 

(nitro compound 9m) did not lead to successful 

rearrangements, and the same holds for hydrazones derived 

from heteroaromatic aldehydes (thiophene 9n and pyridine 

9o). After these experiments it became evident which type 

of allylhydrazones would undergo the attempted acid-

catalysed rearrangement. Non-conjugated allylhydrazones, 

like aliphatic systems 9a-d, 9f, and 9g form the 

corresponding olefins, in contrast to allylhydrazones 

conjugated with aryl or ester groups, which do not show any 

rearrangement. The following experiments supported this 

assumption: Non-conjugated N-allylhydrazone 9p derived 

from phenylpropanal showed a successful rearrangement 

with 19 % yield, whereas its cinnamaldehyde-derived 

congener 9q did not give the desired alkene 10q and only 

Boc-deprotected allylhydrazone was obtained. Thomson 

also reported on problems during the development of 

methods for hydrazone rearrangements, but with aliphatic 

systems,[3,33] which resulted in unidentified decomposition 

products. However, the rearrangement of aryl-substituted 

allylhydrazones worked well in his setup. Boc-deprotected 

allylhydrazones were observed in every reaction as by-

products by GC/MS analysis, but no rearrangement takes 

place with these deprotected forms under our conditions. 

The deprotection reaction outcompetes the rearrangement 

and is a possible reason for the observed yields. This finding 

validates computational studies towards the mechanism of 

the triflimidecatalysed [3,3]-sigmatropic rearrangement by 

Gutierrez et al. indicating that conversion of deprotected 

allylhydrazones does not proceed well or not at all.[34] 

Conclusion 

In summary, we present a unique method for traceless 

isoprenylation of aliphatic aldehydes via triflimide-catalysed 

[3,3]-sigmatropic rearrangement of N-Boc-N-

allylhydrazones. The central N-Boc-N-allylhydrazine building 

block 8a is available in four steps utilising organocatalysis 

and Tebbe methylenation. This method opens a new route 

to isoprenyl compounds. This novel protocol is compromised 

by poor yields in the final step and its limitation to non-

conjugated systems. Nevertheless, it broadens the scope of 

Stevens-type traceless bond constructions and represents 

the first example of a TBC for the introduction of an isoprenyl 

group into readily available aliphatic aldehydes. Therefore, 

this work extends the repertoire of methods for the total 

synthesis of isoprenoid natural products. 

Experimental Section 

General Information: All reactions were carried out in 

oven-dried Schlenk flasks equipped with a septum and a 

magnetic stirring bar which were evacuated and back filled 

with dry nitrogen. Solvents were dried ac cording to standard 

methods by distillation over drying agents. Thin layer 

chromatography (TLC) was performed using polyester sheets 

polygram SIL G/UV254 covered with SiO2 (layer thickness 0.2 

mm, 40 × 80 mm) from Macherey-Nagel. Spots were 

visualized with a CAM (ceric ammonium molybdate) solution 

followed by heating. Flash column chromatography was 

performed using SiO2 60 (0.040–0.063 mm, 230–400 mesh 

ASTM) from Merck. For chromatography distilled solvents 

were used. NMR spectra were recorded on JNM-Eclipse 400 

(400 MHz), JNM-Eclipse 500 (500 MHz), Avance III HD 400 

MHz Bruker Biospin (400 MHz) and 

Avance III HD 500 MHz Bruker Biospin (500 MHz) with 

CryoProbe™ Prodigy. Chemical shifts δ are reported as δ 

values in ppm relative to the deuterated solvent peak. The 

chemical shifts are reported in parts per million [ppm] and 

refer to the δ scala. Coupling constants J are indicated in 

Hertz [Hz]. For the characterization of the observed signal 

multiplicities the following abbreviations were applied: s 

(singlet), d (doublet), dd (doublet of doublet), dt (doublet of 

triplet), t (triplet), q (quartet), quint (quintet), m (multiplet), 

br (broad). Infrared spectra were recorded from 4000–650 

cm–1 on a PERKIN ELMER Spectrum BX-59343 FT-IR 

instrument. For detection a Smiths Detection DuraSamp IR II 

Diamond ATR sensor was used. The absorption bands are 

reported in wave numbers (cm–1). High resolution mass 

spectra (HRMS) were recorded on a Jeol Mstation 700 (Fa. 

Jeol, Peabody, USA) or JMS GCmate II Jeol instrument for 

electron impact ionisation (EI) equipped with a quadrupole 

doublet based lens system. Thermo Finnigan LTQ FT (Fa. 

Thermo Electron Corporation, Bremen, Germany) was used 

for electrospray ionization (ESI) equipped with an ion trap. 

Melting points were measured with a Büchi apparatus B-540 

(Büchi, Flawill, Switzerland) and are reported in °C and are 
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not corrected. Gas chromatography (GC) was performed on 

a Varian 3800 gas chromatograph coupled to a Saturn 2200 

ion trap from Varian (Darmstadt, Germany). The 

autosampler was from CTC Analytics (Zwingen, Switzerland) 

and the split/splitless injector was a Varian 1177 (Darmstadt, 

Germany). Instrument control and data analysis were carried 

out with Varian Workstation 6.9 SP1 software (Darmstadt, 

Germany). A Varian VF-5ms capillary column of 30 m length, 

0.25 mm i.d. and 0.25 μm film thickness (Darmstadt, 

Germany) was used at a constant flow rate of 1.4 mL/min. 

Carrier gas was helium 99.999 % from Air Liquide 

(Düsseldorf, Germany). The inlet temperature was kept at 

300 °C and injection volume was 1 μL with splitless time 1.0 

min. The initial column temperature was 50 °C and was held 

for 1.0 min. Then the temperature was ramped up to 250 °C 

with 50 °C/min. Then the products were eluted at a rate of 5 

°C/min until 310 °C (hold time 3 min). Total run time was 20 

min. Transfer line temperature was 300 °C and the ion trap 

temperature was 150 °C. The ion trap was operated with 

electron ionization (EI) at 70 eV in scan mode (m/z 50–650) 

with a solvent delay of 6.3 min. 

Crystallography: All X-ray intensity data were measured 

on a Bruker D8 Venture TXS system equipped with a 

multilayer mirror optics monochromator and a Mo Kα 

rotating-anode X-ray tube (λ = 0.71073 Å). The data 

collections were performed at 103 K. The frames were 

integrated with the Bruker SAINT Software package.[35] Data 

were corrected for absorption effects using the Multi-Scan 

method (SADABS).[36] The structures were solved and refined 

using the Bruker SHELXTL Software Package.[37] All C-bound 

hydrogen atoms were calculated in positions having ideal 

geometry riding on their parent atoms. 

Deposition Number(s) 1907495 (for 8a) contain(s) the 

supplementary crystallographic data for this paper. These 

data are provided free of charge by the joint Cambridge 

Crystallographic Data Centre and Fachinformationszentrum 

Karlsruhe Access Structures service 

www.ccdc.cam.ac.uk/structures. 

Synthesis of Compounds 

Diazene 2 was synthesised according to a literature 

protocol[21] in two steps and a total yield of 81 %. 

1-(tert-Butyl) 2-(2,2,2-Trichloroethyl) 1-(2-Methyl-

1-oxopropan2-yl)hydrazine-1,2-dicarboxylate (6a) 

and 2-(tert-Butyl) 1-(2,2,2Trichloroethyl) 1-(2-

Methyl-1-oxopropan-2-yl)hydrazine-1,2-

dicarboxylate (6b): Route A: A suspension of LiOTf (875 

mg, 5.61 mmol, 1.52 equiv.) in dry CHCl3 (20 mL) was cooled 

to - 50 °C. A solution of diazene 2 (1.70 g, 5.56 mmol, 1.5 

equiv.) in CHCl3 (10 mL), 2-methyl-1-(trimethylsilyloxy)-1-

propene (3) (533 mg, 3.70 mmol, 1.0 equiv.) in CHCl3 (10 mL) 

was added, followed by TBAF (1 M in THF, 3.7 mL, 3.7 mmol, 

1.0 equiv.). The resulting reaction mixture was warmed to 

room temperature and stirred for 16 h. The reaction was 

stopped with aq. sat. NH4Cl solution (10 mL) and the layers 

were separated. The organic layer was washed with aq. sat. 

NaHCO3 solution (10 mL), dried with MgSO4, filtered and the 

solvent was removed in vacuo. The title compound was 

purified by flash column chromatography (hexanes/EtOAc, 

8:1). An inseparable mixture of aldehydes 6a/6b (911 mg, 

2.43 mmol, 66 %) were obtained as a colourless solid in an 

isomeric mixture of 50:50 (determined retrospectively via 1H 

NMR). Route B: Diazene 2 (690 mg, 2.26 mmol, 1.0 equiv.) 

and (S)-5-(pyrrolidin-2-yl)-1H-tetrazole (5) (31.4 mg, 0.226 

mmol, 10 mol-%) were dissolved in dry dichloromethane (15 

mL) and the solution was cooled to 0 °C. Isobutyraldehyde 

(4) (0.25 mL, 2.71 mmol, 1.2 equiv.) was added slowly and 

the reaction mixture was warmed to room temperature. 

After completion of the reaction, the solvent was removed 

in vacuo and the product was purified by flash column 

chromatography (hexanes/ EtOAc, 8:1). An inseparable 

mixture of aldehydes 6a/6b (580 mg, 1.53 mmol, 68 %) were 

obtained as a colourless solid in an isomeric mixture of 91:9 

(determined retrospectively via 1H NMR): Rf = 0.17 

(hexanes/EtOAc, 8:1); m.p. 128–129 °C; 1H NMR (500 MHz, 

[D]chloroform) δ/ppm = 9.49 (s, 1H), 6.70 (s, 1H), 4.93–4.51 

(m, 2H), 1.44 (s, 9H), 1.36 (s, 3H), 1.29 (s, 3H); 13C NMR (101 

MHz, [D]chloroform δ/ ppm = 198.1, 155.4, 154.3, 94.9, 84.3, 

75.2, 67.4, 28.2, 20.5; IR (ATR) ν˜ = /cm–1 = 3255, 3013, 2980, 

2936, 1771, 1723, 1694, 1528, 1457, 1391, 1380, 1365, 1358, 

1287, 1254, 1220, 1161, 1108, 1054, 992, 945, 916, 882, 858, 

834, 817, 799, 763, 750, 724, 709, 658; HRMS (ESI): m/z 

calcd. For C12H18Cl3N2O5 [M – H]– 375.0287, found 375.0287. 

1-(tert-Butyl) 2-(2,2,2-Trichloroethyl) 1-(2-

Methylbut-3-en-2yl)hydrazine-1,2-di-carboxylate 

(7a) and 2-(tert-Butyl) 1-(2,2,2Trichloroethyl) 1-(2-

Methylbut-3-en-2-yl)hydrazine-1,2-dicarboxylate 

(7b): The isomeric mixture of aldehydes 6a/6b (569 mg, 

1.51 mmol, 1.0 equiv.) and pyridine (0.22 mL, 2.7 mmol, 1.8 

equiv.) were added to a flame dried flask and the mixture 

was blended to a gel via ultrasound bath. The suspension 

was cooled to –80 °C and Tebbe reagent (0.5 M in toluene, 

3.92 mL, 1.96 mmol, 1.3 equiv.) was added carefully by 

adding it along the flask. The reaction mixture was warmed 

to 0 °C and stirred 48 h. The reaction was quenched with a 

saturated aqueous NaHCO3 solution (6 mL) at –80 °C and 

extracted with dichloromethane (3 × 10 mL). The combined 

organic layers were dried with MgSO4, filtered and the 

solvent was removed in vacuo. Purification by flash column 

chromatography (hexanes/EtOAc, 9:1) gave an inseparable 

mixture of olefins 7a/7b (270 mg, 0.719 mmol, 48 %) as a 

colourless solid in an isomeric mixture of 91:9 (determined 

retrospectively via 1H NMR): Rf = 0.29 (hexanes/EtOAc, 9:1); 

m.p. 103–104 °C; 1H NMR (500 MHz, [D]chloroform) δ/ppm 

= 6.68 (s, 1H), 6.10 (dd, 3JH,H = 17.4, 11.0 Hz, 1H), 5.08 (d, 3JH,H 

= 17.1 Hz, 1H), 5.00 (d, 3JH,H = 10.9 Hz, 1H), 4.87 (d, 2JH,H = 11.5 

Hz, 1H), 4.68 (d, 2JH,H = 11.8 Hz, 1H), 1.50 (s, 3H), 1.44 (s, 9H), 

1.42 (s, 3H); 13C NMR (126 MHz, [D]chloroform) δ/ppm = 

155.4, 154.5, 144.6, 111.2, 95.2, 82.1, 75.1, 62.9, 28.4, 26.6, 

26.4; IR (ATR) ν˜ = /cm–1 = 3323, 2924, 2854, 1733, 1706, 

1644, 1522, 1456, 1414, 1386, 1359, 1274, 1253, 1233, 1156, 

1101, 1078, 1044, 1011, 990, 967, 922, 907, 851, 815, 759, 
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741, 724, 688; HRMS (ESI): m/z calcd. for C13H20O4N2Cl3 [M – 

H]– 373.0494, found 373.0499. 

tert-Butyl 1-(2-Methylbut-3-en-2-yl)hydrazine-1-

carboxylate (8a) and tert-Butyl 2-(2-Methylbut-3-

en-2-yl)hydrazine-1-carboxylate (8b): The mixture of 

olefins 7a/7b (95.6 mg, 0.254 mmol, 1.0 equiv.) was 

dissolved in a mixture of ethanol (0.3 mL), water (0.3 mL) and 

acetic acid (0.3 mL). Zinc powder (582 mg, 8.91 mmol, 35.0 

equiv.) was added and the reaction mixture was stirred for 

10 minutes at room temperature. After filtration of the 

reaction mixture, the filtrate was extracted with 

dichloromethane (3 × 3 mL) and the residue was extracted. 

The combined organic layers were washed was saturated 

aqueous NaHCO3 solution (5 mL) and the organic layer was 

dried with MgSO4, filtered and the solvent was removed in 

vacuo. The product was used without purification. 8a/8b 

(57 mg, 0.28 mmol, quantitative) was obtained as a 

colourless oil in an isomeric mixture of 91:9: Rf = 0.15 

(hexanes/EtOAc, 8:2); 1H NMR (8a) (400 MHz, [D6]DMSO) 

δ/ppm = 6.00 (dd, 3JH,H = 17.5, 10.7 Hz, 1H), 4.87 (dd, 3JH,H = 

17.5, 10.8, 2H), 4.24 (s, 2H), 1.38 (s, 9H), 1.33 (s, 6H); 13C 

NMR (8a) (126 MHz, [D6]DMSO) δ/ppm = 156.4, 146.2, 

108.8, 79.3, 60.6, 28.1, 26.5; 1H NMR (8b) (500 MHz, 

[D6]DMSO) δ/ppm = 7.95 (s, 1H), 5.81 (dd, 3JH,H = 17.6, 10.8 

Hz, 1H), 5.08–4.92 (m, 2H), 4.07 (s, 1H), 1.38 (s, 9H), 1.03 (s, 

6H); 13C NMR (8b) (126 MHz, [D6]DMSO) δ/ppm = 155.6, 

145.0, 112.2, 78.1, 57.8, 28.2, 24.8; IR (ATR) ν˜ = /cm–1 = 

3334, 2977, 2932, 1679, 1477, 1455, 1412, 1365, 1249, 1163, 

1101, 1005, 994, 948, 907, 868, 766, 724, 687; HRMS (ESI): 

m/z calcd. for C10H21N2O2 [M + H]+ 201.1597, found 

201.1597. 

General Procedure 1 (GP1) for the Synthesis of N-

Boc-N-(1,1Dimethylallyl)hydrazones 9a–q: The 

mixture of N-(1,1-dimethylallyl)hydrazines 8a/8b (1.0 

equiv.) was dissolved in absolute EtOH and the appropriate 

aldehyde (1.0 equiv.) was added. The reaction mixture was 

stirred at room temperature for 15 h, then the solvent was 

removed in vacuo and the crude product was purified by 

flash column chromatography. Isolated yields are correlated 

to the amount of 8a in the isomeric mixture 8a/8b. 

tert-Butyl 1-(2-methylbut-3-en-2-yl)-2-

octylidenehydrazine-1carboxylate (9a): Mixture of 

allylhydrazines 8a/8b (250 mg, 

1.75 mmol  1.59 mmol of isomer 8a) and octanal (0.298 mL, 

1.75 mmol) gave N-Boc-N-allylhydrazone 9a (178 mg, 0.576 

mmol, 36 % referred to isomer 8a) as colourless oil via GP1: 

Rf = 0.58 (hexanes/EtOAc, 9:1); 1H NMR (400 MHz, 

[D]chloroform) δ/ppm = 7.71 (t, 3JH,H = 5.6 Hz, 1H), 6.11 (dd, 
3JH,H = 17.5, 10.8 Hz, 1H), 5.07– 4.86 (m, 2H), 2.35 (td, 3JH,H = 

5.6 Hz, 2H), 1.59–1.50 (m, 2H), 1.42 (s, 9H), 1.39 (s, 6H), 

1.34–1.24 (m, 8H), 0.87 (m, 3H); 13C NMR (101 MHz, 

[D]chloroform) δ/ppm = 169.5, 154.3, 146.3, 109.4, 80.9, 

61.7, 33.0, 31.9, 29.5, 29.2, 28.6, 26.7, 26.2, 22.8, 14.3; IR 

(ATR) ν˜ = /cm–1 = 3084, 3004, 2972, 2958, 2927, 2857, 1698, 

1641, 1455, 1412, 1391, 1366, 1302, 1244, 1157, 1101, 1003, 

991, 901, 855, 757, 724, 686; HRMS (ESI): m/z calcd. for 

C18H35N2O2 [M + H]+ 311.2693, found 311.2694. 

tert-Butyl 1-(2-Methylbut-3-en-2-yl)-2-

nonylidenehydrazine-1carboxylate (9b): Mixture of 

allylhydrazines 8a/8b (404 mg, 2.02 mmol  1.83 mmol of 

isomer 8a) and nonanal (0.346 mL, 2.02 mmol) gave N-Boc-

N-allylhydrazone 9b (284 mg, 0.877 mmol, 48 % referred to 

isomer 8a) as colourless oil via GP1: Rf = 0.58 

(hexanes/EtOAc, 9:1); 1H NMR (500 MHz, [D]chloroform) 

δ/ppm = 7.71 (t, 3JH,H = 5.6 Hz, 1H), 6.11 (dd, 3JH,H = 17.5, 10.8 

Hz, 1H), 5.05–4.89 (m, 2H), 2.34 (td, 3JH,H = 5.6 Hz, 2H), 1.55 

(m, 2H), 1.42 (s, 9H), 1.39 (s, 6H), 1.36–1.21 (m, 10H), 0.89–

0.85 (m, 3H); 13C NMR (101 MHz, [D]chloroform) δ/ppm = 

169.4, 154.3, 146.3, 109.4, 80.9, 61.7, 33.0, 31.9, 29.5, 29.4, 

29.3, 28.5, 26.7, 26.2, 22.8, 14.2; IR (ATR) ν˜ = /cm–1 = 3086, 

2972, 2956, 2926, 2856, 1698, 1640, 1455, 1412, 1390, 1366, 

1302, 1244, 1157, 1100, 1003, 992, 900, 874, 857, 783, 756, 

723, 687, 599; HRMS (ESI): m/z calcd. for C19H37N2O2 [M + 

H]+ 325.2849, found 325.2849. 

tert-Butyl 2-Decylidene-1-(2-methylbut-3-en-2-

yl)hydrazine-1carboxylate (9c): Mixture of 

allylhydrazines 8a/8b (115 mg, 0.574 mmol  0.522 mmol of 

isomer 8a) and decanal (0.108 mL, 0.574 mmol) gave N-Boc-

N-allylhydrazone 9c (56 mg, 0.17 mmol, 33 % referred to 

isomer 8a) as colourless oil via GP1: Rf = 0.56 

(hexanes/EtOAc, 9:1). 1H NMR (500 MHz, [D]chloroform) 

δ/ppm = 7.71 (t, 3JH,H = 5.6 Hz, 1H), 6.11 (dd, 3JH,H = 17.5, 10.8 

Hz, 1H), 5.01 (dd, 3JH,H = 17.5, 2JH,H = 0.7 Hz, 1H), 4.92 (dd, J 
3JH,H = 10.8, 2JH,H = 0.7 Hz, 1H), 2.35 (td, 3JH,H = 5.6 Hz, 2H), 

1.57–1.54 (m, 2H), 1.42 (s, 9H), 1.39 (s, 6H), 1.26 (m, 12H), 

0.89–0.86 (m, 3H). 13C NMR (126 MHz, [D]chloroform) 

δ/ppm = 169.5, 154.3, 146.3, 109.4, 80.9, 61.7, 33.0, 32.0, 

29.6, 29.5, 29.5, 29.4, 28.6, 26.7, 26.2, 22.8, 14.3. IR (ATR) ν˜ 

= /cm–1 = 2924, 2853, 1696, 1458, 1407, 1368, 1310, 1245, 

1158, 1101, 990, 903, 852, 754, 719, 665. HRMS (ESI): m/z 

calcd. for C20H39N2O2 [M + H]+ 339.3006, found 339.3011. 

tert-Butyl 1-(2-Methylbut-3-en-2-yl)-2-(2-

methylpropylidene)hydrazine-1-carboxylate (9d): 

Mixture of olefins 8a/8b (519 mg, 2.59 mmol  2.36 mmol of 

isomer 8a) and isobutyraldehyde (4) (0.237 mL, 2.59 mmol) 

gave N-Boc-N-allylhydrazone 9d (262 mg, 1.03 mmol, 44 % 

referred to isomer 8a) as colourless oil via GP1: Rf = 0.55 

(hexanes/EtOAc, 9:1); 1H NMR (400 MHz, [D]chloroform) δ/ 

ppm = 7.61 (d, 3JH,H = 5.9 Hz, 1H), 6.11 (dd, 3JH,H = 17.6, 10.8 

Hz, 1H), 5.03–4.90 (m, 2H), 2.66–2.56 (m, 1H), 1.42 (s, 9H), 

1.39 (s, 6H), 1.13 (s, 3H), 1.12 (s, 3H). 13C NMR (101 MHz, 

[D]chloroform) δ/ppm = 173.2, 154.1, 146.3, 109.4, 80.9, 

61.9, 32.2, 28.6, 26.6, 19.6. IR (ATR) ν˜ = /cm–1 = 3086, 3008, 

2973, 2930, 2872, 1698, 1641, 1456, 1412, 1390, 1366, 1304, 

1289, 1244, 1156, 1092, 1058, 992, 970, 902, 879, 856, 756, 

686, 599, 588. HRMS (ESI): m/z calcd. for C14H27N2O2 [M + 

H]+ 255.2067, found 255.2066. 
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tert-Butyl 2-(2-Ethoxy-2-oxoethylidene)-1-(2-

methylbut-3-en-2yl)hydrazine-1-carboxylate (9e): 

Mixture of olefins 8a/8b (200 mg, 0.990 mmol,  0.901 mmol 

of isomer 8a) and ethyl glyoxalate solution (ca. 50 % in 

toluene, 0.198 mL, 0.990 mmol) gave NBoc-N-

allylhydrazone 9e (108 mg, 0.380 mmol, 42 % referred to 

isomer 8a) as colourless oil via GP1: Rf = 0.44 

(hexanes/EtOAc, 9:1); 1H NMR (400 MHz, [D]chloroform) 

δ/ppm = 8.41 (s, 1H), 6.05 (dd, 3JH,H = 17.5, 10.8 Hz, 1H), 5.07–

4.93 (m, 2H), 4.26 (q, 3JH,H = 7.1 Hz, 2H), 1.52 (s, 6H), 1.48 (s, 

9H), 1.31 (t, 3JH,H = 7.1 Hz, 3H); 13C NMR (101 MHz, 

[D]chloroform) δ/ppm = 164.9, 151.9, 145.5, 135.7, 110.6, 

83.6, 65.9, 60.9, 28.3, 27.7, 14.4; IR (ATR) ν˜ = /cm–1 = 1742, 

1708, 1585, 1477, 1456, 1369, 1339, 1288, 1242, 1206, 1181, 

1148, 1113, 1093, 1044, 911, 848, 798, 759, 744, 576; HRMS 

(EI): m/z calcd. for C9H16N2O2 [M – Boc˙]+ 184.1206, found 

184.1205. 

tert-Butyl 2-(Cyclopentylmethylene)-1-(2-

methylbut-3-en-2-yl)hydrazine-1-carboxylate (9f): 

Mixture of olefins 8a/8b. (430 mg, 2.15 mmol  1.96 mmol of 

isomer 8a) and cyclopentane carboxaldehyde (0.229 mL, 

2.15 mmol) gave N-Boc-N-allylhydrazone 9f (245 mg, 0.874 

mmol, 45 % referred to isomer 8a) as colourless oil via GP1: 

Rf = 0.57 (hexanes/EtOAc, 9:1); 1H NMR (400 MHz, 

[D]chloroform) δ/ppm = 7.62 (d, 3JH,H = 6.8 Hz, 1H), 6.11 (dd, 
3JH,H = 17.5, 10.8 Hz, 1H), 5.08–4.82 (m, 2H), 2.87–2.71 (m, 

1H), 1.95–1.79 (m, 2H), 1.73–1.54 (m, 6H), 1.42 (s, 9H), 1.38 

(s, 6H); 13C NMR (101 MHz, [D]chloroform) δ/ppm = 172.6, 

154.2, 146.2, 109.4, 80.8, 61.8, 42.9, 30.3, 28.6, 28.5, 26.6, 

25.7; IR (ATR) ν˜ = /cm–1 = 3084, 2968, 2956, 2869, 1697, 

1639, 1476, 1454, 1412, 1390, 1366, 1304, 1244, 1156, 1101, 

1061, 1003, 992, 900, 877, 856, 783, 757, 687; HRMS (ESI): 

m/z calcd. for C16H29N2O2 [M + H]+ 281.2224, found 

281.2225. 

tert-Butyl 2-(Cyclohexylmethylene)-1-(2-

methylbut-3-en-2-yl)hydrazine-1-carboxylate (9g): 

Mixture of olefins 8a/8b (91.6 mg, 0.686 mmol  0.624 mmol 

of isomer 8a) and cyclohexanecarboxaldehyde (55.4 μL, 

0.686 mmol) gave N-Boc-N-allylhydrazone 9f (63.3 mg, 

0.215 mmol, 34 % referred to isomer 8a) as colourless oil via 

GP1: Rf = 0.64 (hexanes/EtOAc, 9:1); 1H NMR (500 MHz, 

[D]chloroform) δ/ppm = 7.58 (d, 3JH,H = 6.0 Hz, 1H), 6.11 (dd, 
3JH,H = 17.5, 10.8 Hz, 1H), 5.01 (dd, 3JH,H = 17.5, 2JH,H = 0.9 Hz, 

1H), 4.92 (dd, 3JH,H = 10.8, 2JH,H = 0.9 Hz, 1H), 2.42–2.25 (m, 

1H), 1.89–1.80 (m, 2H), 1.80–1.73 (m, 2H), 1.70–1.64 (m, 

1H), 1.41 (s, 9H), 1.39 (s, 6H), 1.35– 1.28 (m, 4H), 1.27–1.18 

(m, 1H). 13C NMR (101 MHz, [D]chloroform) δ/ppm = 172.6, 

154.3, 146.3, 109.4, 80.8, 61.8, 41.5, 29.9, 28.6, 26.7, 26.1, 

25.5; IR (ATR) ν˜ = /cm–1 = 2929, 2854, 1709, 1366, 1308, 

1244, 1160; HRMS (ESI): m/z calcd. for C17H31N2O2: 295.2380 

[M + H]+, found 295.2385. 

tert-Butyl 2-(Cyclohex-1-en-1-ylmethylene)-1-(2-

methylbut-3en-2-yl)hydrazine-1-carboxylate (9h): 

Mixture of olefins 8a/8b (200 mg, 0.999 mmol  0.909 mmol 

of isomer 8a) and 1-cyclohexene-1-carboxaldehyde (0.114 

mL, 0.990 mmol) gave N-Boc-N-allylhydrazone 9h (135 mg, 

0.460 mmol, 51 % referred to isomer 8a) as colourless oil via 

GP1: Rf = 0.52 (hexanes/EtOAc, 9:1); 1H NMR (400 MHz, 

[D]chloroform) δ/ppm = 7.99 (s, 1H), 6.18–6.05 (m, 2H), 

5.05–4.85 (m, 2H), 2.37–2.12 (m, 4H), 1.70–1.61 (m, 4H), 

1.43 (s, 9H), 1.41 (s, 6H); 13C NMR (101 MHz, [D]chloroform) 

δ/ppm = 163.9, 153.9, 146.6, 138.2, 136.3, 109.1, 81.2, 62.7, 

28.6, 26.9, 26.3, 23.4, 22.5, 22.1; IR (ATR) ν˜ = /cm–1 = 2976, 

2931, 2859, 1697, 1639, 1596, 1366, 1291, 1243, 1152, 1107, 

902, 881, 754, 699; HRMS (ESI): m/z calcd. for C17H29N2O2 [M 

+ H]+ 293.2224, found 293.2223. 

tert-Butyl 2-Benzylidene-1-(2-methylbut-3-en-2-

yl)hydrazine-1carboxylate (9i): Mixture of olefins 

8a/8b (580 mg, 2.90 mmol  2.64 mmol of isomer 8a) and 

benzaldehyde (0.294 mL, 2.90 mmol) gave N-Boc-N-

allylhydrazone 9i (312 mg, 1.08 mmol, 41 % referred to 

isomer 8a) as colourless oil via GP1: Rf = 0.64 

(hexanes/EtOAc, 9:1); 1H NMR (400 MHz, [D]chloroform) 

δ/ppm = 8.65 (s, 1H), 7.74–7.68 (m, 2H), 7.43–7.34 (m, 3H), 

6.17 (dd, 3JH,H = 17.5, 10.8 Hz, 1H), 5.11–4.90 (m, 2H), 1.52 (s, 

6H), 1.47 (s, 9H); 13C NMR (101 MHz, [D]chloroform) δ/ppm 

= 157.1, 153.6, 146.4, 135.4, 130.2, 128.7, 127.7, 109.4, 81.8, 

63.6, 28.5, 27.2; IR (ATR) ν˜ = /cm–1 = 3083, 3062, 2976, 2932, 

1697, 1642, 1574, 1476, 1449, 1412, 1391, 1366, 1289, 1243, 

1149, 1109, 1071, 992, 947, 898, 856, 784, 753, 692, 659, 

563; HRMS (ESI): m/z calcd. for C17H25N2O2 [M + H]+ 

289.1910, found 289.1909. 

tert-Butyl 2-(4-Bromobenzylidene)-1-(2-methylbut-

3-en-2-yl)hydrazine-1-carboxylate (9j): Mixture of 

olefins 8a/8b (243 mg, 1.21 mmol  1.10 mmol of isomer 8a) 

and 4-bromobenzaldehyde (224 mg, 1.21 mmol) gave N-

Boc-N-allylhydrazone 9j (356 mg, 0.971 mmol, 88 % referred 

to isomer 8a) as colourless oil via GP1: Rf = 0.64 

(hexanes/EtOAc, 9:1); 1H NMR (500 MHz, [D]chloroform) δ/ 

ppm = 8.68 (s, 1H), 7.56 (d, 3JH,H = 8.4 Hz, 2H), 7.50 (d, 3JH,H = 

8.3 Hz, 2H), 6.14 (dd, 3JH,H = 17.5, 10.8 Hz, 1H), 5.07–4.92 (m, 

2H), 1.51 (s, 6H), 1.47 (s, 9H); 13C NMR (126 MHz, 

[D]chloroform) δ/ppm = 153.9, 153.5, 146.3, 134.7, 131.9, 

128.9, 124.1, 109.6, 82.1, 63.9, 28.5, 27.3; IR (ATR) ν˜ = /cm–

1 = 3086, 2979, 2932, 1696, 1643, 1591, 1564, 1487, 1455, 

1412, 1392, 1367, 1289, 1244, 1148, 1115, 1098, 1069, 1044, 

1009, 992, 953, 929, 901, 856, 819, 786, 752, 708, 691, 667; 

HRMS (ESI): m/z calcd. For C17H24BrN2O2 [M + H]+ 367.1015, 

found 367.1026. 

tert-Butyl 2-(4-(Dimethylamino)benzylidene)-1-(2-

methylbut-3en-2-yl)hydrazine-1-carboxylate (9k): 

Mixture of olefins 8a/8b (100 mg, 0.499 mmol  0.454 mmol 

of isomer 8a) and 4-dimethylaminobenzaldehyde (74.5 mg, 

0.499 mmol) gave N-Boc-N-allylhydrazone 9k (143 mg, 

0.431 mmol, 95 % referred to isomer 8a) as white crystalline 

solid via GP1: Rf = 0.35 (hexanes/EtOAc, 9:1); m.p. 73–75 °C; 
1H NMR (400 MHz, [D]chloroform) δ/ppm = 8.30 (s, 1H), 7.61 

(d, 3JH,H = 8.9 Hz, 2H), 6.69 (d, 3JH,H = 8.9 Hz, 2H), 6.19 (dd, 3JH,H 

= 17.5, 10.8 Hz, 1H), 5.08–4.90 (m, 2H), 3.01 (s, 6H), 1.47 (s, 
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6H), 1.44 (s, 9H); 13C NMR (101 MHz, [D]chloroform) δ/ppm 

= 162.4, 154.2, 152.2, 146.6, 129.4, 122.4, 111.8, 109.2, 80.9, 

62.6, 40.4, 28.6, 26.9; IR (ATR) ν˜ = /cm–1 = 2976, 2930, 1693, 

1616, 1601, 1528, 1477, 1455, 1363, 1300, 1237, 1155, 1100, 

1060, 894, 859, 816, 755, 731; HRMS (ESI): m/z calcd. for 

C19H30N3O2 [M + H]+ 332.2333, found 332.2333. 

tert-Butyl 2-(4-Methoxybenzylidene)-1-(2-

methylbut-3-en-2-yl)hydrazine-1-carboxylate (9l): 

Mixture of olefins 8a/8b (150 mg, 0.749 mmol  0.682 mmol 

of isomer 8a) and 4-anisaldehyde (102 mg, 91.1 μL, 0.749 

mmol) gave N-Boc-N-allylhydrazone 9l (151 mg, 0.475 

mmol, 70 % referred to isomer 8a) as colourless oil via GP1: 

Rf = 0.42 (hexanes/EtOAc, 9:1); 1H NMR (400 MHz, 

[D]chloroform) δ/ppm = 8.48 (s, 1H), 7.66 (d, 3JH,H = 8.8 Hz, 

2H), 6.91 (d, 3JH,H = 8.9 Hz, 2H), 6.17 (dd, 3JH,H = 17.5, 10.8 Hz, 

1H), 5.08–4.92 (m, 2H), 3.84 (s, 3H), 1.49 (s, 6H), 1.45 (s, 9H); 
13C NMR (101 MHz, [D]chloroform) δ/ppm = 161.5, 159.0, 

153.9, 146.5, 129.3, 127.8, 114.1, 109.3, 81.4, 63.1, 55.5, 

28.6, 27.0; IR (ATR) ν˜ = /cm–1 = 2975, 2932, 1693, 1606, 

1512, 1456, 1366, 1293, 1245, 1150, 1104, 1031, 900, 859, 

831, 75; HRMS (ESI): m/z calcd. for C18H27N2O3 [M + H]+ 

319.2016, found 319.2015. 

tert-Butyl 1-(2-Methylbut-3-en-2-yl)-2-(4-

nitrobenzylidene)hydrazine-1-carboxylate (9m): 

Mixture of olefins 8a/8b (250 mg, 1.25 mmol  1.14 mmol of 

isomer 8a) and 4-nitrobenzaldehyde (0.126 mL, 1.25 mmol) 

gave N-Boc-N-allylhydrazone 9m (233 mg, 0.698 mmol, 61 

% referred to isomer 8a) as yellow solid via GP1: Rf = 0.51 

(hexanes/EtOAc, 9:1); m.p. 67–69 °C; 1H NMR (400 MHz, 

[D]chloroform) δ/ppm = 9.02 (s, 1H), 8.24–8.19 (m, 2H), 

7.82–7.75 (m, 2H), 6.12 (dd, J = 17.5, 10.8 Hz, 1H), 5.10–4.93 

(m, 2H), 1.56 (s, 6H), 1.50 (s, 9H); 13C NMR (101 MHz, 

[D]chloroform) δ/ppm = 152.9, 148.1, 147.7, 145.9, 142.7, 

127.6, 124.0, 110.1, 82.9, 65.0, 28.5, 27.6; IR (ATR) ν˜ = /cm–

1 = 1699, 1598, 1572, 1518, 1368, 1343, 1286, 1246, 1146, 

1107, 907, 849, 832, 729, 692, 647; HRMS (EI): m/z calcd. for 

C17H23N3O4 [M˙]+ 333.1683, found 333.1710. 

tert-Butyl 1-(2-Methylbut-3-en-2-yl)-2-(thiophen-

2-ylmethylene)hydrazine-1-carboxylate (9n): 

Mixture of olefins 8a/8b (150 mg, 0.749 mmol  0.681 mmol 

of isomer 8a) and 2-thiophenecarboxaldehyde (70 μL, 0.749 

mmol) gave N-Boc-N-allylhydrazone 9n (104 mg, 0.352 

mmol, 52 % referred to isomer 8a) as light yellow oil via GP1: 

Rf = 0.60 (hexanes/EtOAc, 9:1); 1H NMR (400 MHz, 

[D]chloroform) δ/ppm = 8.85–8.83 (m, 1H), 7.32 (dt, 3JH,H = 

5.0, 1.0 Hz, 1H), 7.24 (dd, 3JH,H = 3.6, 1.2 Hz, 1H), 7.04 (dd, 
3JH,H = 5.1, 3.6 Hz, 1H), 6.14 (dd, 3JH,H = 17.5, 10.8 Hz, 1H), 

5.08–4.91 (m, 2H), 1.49 (s, 6H), 1.47 (s, 9H); 13C NMR (101 

MHz, [D]chloroform) δ/ppm = 153.6, 150.2, 146.3, 140.9, 

129.7, 127.9, 127.4, 109.5, 81.9, 63.7, 28.5, 27.2; IR (ATR) ν˜ 

= /cm–1 = 2985, 2938, 1742, 1708, 1585, 1369, 128, 1242, 

1181, 1148, 1113, 1093, 1044, 911, 848, 759, 744, 576; 

HRMS (EI): m/z calcd. for C15H22N2O2S [M]˙+ 294.1396, found 

294.1392. 

tert-Butyl 1-(2-Methylbut-3-en-2-yl)-2-(pyridin-4-

ylmethylene)hydrazine-1-carboxylate (9o): Mixture 

of olefins 8a/8b (350 mg, 1.75 mmol  1.59 mmol of isomer 

8a) and 4-pyridinecarboxaldehyde (0.165 mL, 1.75 mmol) 

gave N-Boc-N-allylhydrazone 9o (342 mg, 1.18 mmol, 74 % 

referred to isomer 8a) as light yellow oil via GP1: Rf = 0.12 

(hexanes/EtOAc, 9:1); 1H NMR (400 MHz, [D]chloroform) 

δ/ppm = 8.90 (s, 1H), 8.65–8.55 (m, 2H), 7.50 (dd, 3JH,H = 6.1, 

0.4 Hz, 2H), 6.11 (dd, 3JH,H = 17.5, 10.8 Hz, 1H), 5.11–4.90 (m, 

2H), 1.54 (s, 6H), 1.49 (s, 9H); 13C NMR (101 MHz, 

[D]chloroform) δ/ppm = 152.9, 150.3, 147.7, 146.0, 143.8, 

121.1, 109.9, 82.8, 64.9, 28.5, 27.6; IR (ATR) ν˜ = /cm–1 = 

2977, 2933, 1698, 1590, 1367, 1287, 1246, 1147, 989, 903, 

859, 814, 755, 732, 656; HRMS (ESI): m/z calcd. for 

C16H24N3O2 [M + H]+ 290.1863, found 290.1862. 

tert-Butyl 1-(2-Methylbut-3-en-2-yl)-2-(3-

phenylpropylidene)hydrazine-1-carboxylate (9p): 

Mixture of olefins 8a/8b (237 mg, 1.18 mmol  1.07 mmol of 

isomer 8a) and 3-phenylpropionaldehyde (0.157 mL, 1.18 

mmol) gave N-Boc-N-allylhydrazone 9p (141 mg, 0.446 

mmol, 42 % referred to isomer 8a) as colourless oil via GP1: 

Rf = 0.46 (hexanes/EtOAc, 9:1); 1H NMR (400 MHz, 

[D6]DMSO) δ/ppm = 7.75 (t, 3JH,H = 5.3 Hz, 1H), 7.31–7.22 (m, 

4H), 7.18 (m, 1H), 5.99 (dd, 3JH,H = 17.5, 10.8 Hz, 1H), 4.94 (dd, 
3JH,H = 17.5, 2JH,H = 1.1 Hz, 1H), 4.86 (dd, 3JH,H = 10.8, 2JH,H = 1.1 

Hz, 1H), 2.83 (t, 3JH,H = 7.3 Hz, 2H), 2.59 (ddd, 3JH,H = 7.3, 5.3 

Hz, 2H),1.36 (s, 9H), 1.25 (s, 6H); 13C NMR (101 MHz, 

[D6]DMSO) δ/ppm = 166.7, 153.2, 145.7, 140.9, 128.3, 128.3, 

125.9, 109.4, 80.1, 61.1, 33.9, 31.3, 27.9, 26.4; IR (ATR) ν˜ = 

/cm–1 = 2979, 2929, 1693, 1639, 1455, 1264, 1303, 1241, 

1155, 1101, 903, 870, 856, 748; HRMS (ESI): m/z calcd. for 

C19H29N2O2 [M + H]+ 317.2224, found 317.2229. 

tert-Butyl 1-(2-Methylbut-3-en-2-yl)-2-((E)-3-

phenylallylidene)hydrazine-1-carboxylate (9q): 

Mixture of olefins 8a/8b (250 mg, 1.25 mmol  1.13 mmol of 

isomer 8a) and cinnamaldehyde (0.157 mL, 1.25 mmol) gave 

N-Boc-N-allylhydrazone 9q (228 mg, 0.725 mmol, 64 % 

referred to isomer 8a) as yellow oil via GP1: Rf = 0.56 

(hexanes/EtOAc, 9:1); 1H NMR (500 MHz, [D]chloroform) δ/ 

ppm = 8.33 (dd, 3JH,H = 7.2, 1.5 Hz, 1H), 7.49–7.47 (m, 2H), 

7.38–7.33 (m, 2H), 7.32–7.28 (m, 1H), 6.96–6.93 (m, 2H), 

6.14 (dd, 3JH,H = 17.5, 10.8 Hz, 1H), 5.07–4.92 (m, 2H), 1.47 (s, 

6H), 1.46 (s, 9H); 13C NMR (101 MHz, [D]chloroform) δ/ppm 

= 161.7, 153.7, 146.2, 140.5, 136.2, 128.9, 128.9, 127.2, 

126.0, 109.5, 81.6, 62.9, 28.5, 26.9; IR (ATR) ν˜ = /cm–1 = 

1694, 1449, 1366, 1289, 1243, 1148, 1109, 1051, 973, 906, 

879, 850, 749, 689; HRMS (ESI): m/z calcd. for C19H27N2O2 [M 

+ H]+ 315.2067, found 315.2066. 

General Procedure for the Synthesis of Olefins via 

[3,3]-Sigmatropic Rearrangement (GP2): In an oven 

dried two-necked Schlenk flask HNTf2 (10 mol-%) was 

dissolved in dry diglyme (1 mL). A solution of the appropriate 

N-Boc-N-allylhydrazone 9 (1.0 equiv.) in dry diglyme (2 mL + 

1 mL rinse) was added at room temperature. The reaction 
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mixture was fitted with a N2 flashed reflux condenser and 

immediately heated to 125 °C in a pre-heated oil bath. After 

completion of the rearrangement detected by TLC (75 min), 

the reaction was immediately cooled to room temperature 

via water bath and then quenched with a sat. aq. NaHCO3 

solution (4 mL). Pentane (10 mL) was added and the organic 

layer was washed with at least 100 mL water. The solvent 

was removed in vacuo (30 °C, max. 700 mbar) and the crude 

product was purified by flash column chromatography. 

2-Methyldodec-2-ene (10a): Allylhydrazone 9a (155 mg, 

0.500 mmol) and HNTf2 (14 mg, 0.050 mmol) gave olefin 10a 

(18 mg, 0.099 mmol, 20 %) as colourless oil via GP2: Rf = 0.94 

(pentane); 1H NMR (400 MHz, [D]chloroform) δ/ppm = 5.15–

5.08 (m, 1H), 1.96 (q, 3JH,H = 7.1 Hz, 2H), 1.69 (d, 3JH,H = 1.4 Hz, 

3H), 1.60 (d, 3JH,H = 1.3 Hz, 3H), 1.26 (s, 14H), 0.88 (t, 3JH,H = 

2.9 Hz, 3H). 13C NMR (101 MHz, [D]chloroform) δ/ppm = 

131.3, 125.1, 32.1, 30.1, 29.8, 29.8, 29.5, 29.5, 28.2, 25.9, 

22.9, 17.8, 14.3. IR (ATR) ν˜ = /cm–1 = 2956, 2922, 2853, 1462, 

1376, 1094, 985, 886, 833, 722; HRMS (EI): m/z calcd. for 

C13H26 [M˙]+ 182.2029, found 182.2027. 

2-Methyltridec-2-ene(10b): Allylhydrazone 9b (162

mg, 0.500 mmol) and HNTf2 (14 mg, 0.050 mmol) gave olefin 

10b (19 mg, 0.10 mmol, 21 %) as colourless oil via GP2: Rf = 

0.88 (pentane/Et2O, 9:1); 1H NMR (400 MHz, [D]chloroform) 

δ/ppm = 5.12 (tdt, 3JH,H = 7.2, 1.5 Hz, 1H), 1.96 (q, 3JH,H = 6.8 

Hz, 2H), 1.69 (d, 3JH,H = 1.4 Hz, 3H), 1.60 (d, 3JH,H = 1.3 Hz, 3H), 

1.26 (s, 16H), 0.93–0.83 (m, 3H); 13C NMR (101 MHz, 

[D]chloroform) δ/ppm = 131.3, 125.1, 32.1, 30.1, 29.8, 29.8, 

29.8, 29.5, 29.5, 28.2, 25.9, 22.9, 17.8, 14.3; IR (ATR) ν˜ = 

/cm–1 = 2955, 2922, 2853, 1456, 1376, 1094, 984, 886, 832, 

721, 593, 556; HRMS (EI): m/z calcd. for C14H28 [M˙]+ 

196.2185, found 196.2183. 

2-Methyltetradec-2-ene (10c): Allylhydrazone 9c (169 

mg, 0.500 mmol) and HNTf2 (14 mg, 0.050 mmol) gave olefin 

10c (21 mg, 0.099 mmol, 20 %) as colourless oil via GP2: Rf = 

0.98 (pentane); 1H NMR (400 MHz, [D]chloroform) δ/ppm = 

5.12 (ddt, 3JH,H = 7.1 Hz, 1H), 1.96 (q, 3JH,H = 6.9 Hz, 2H), 1.69 

(s, 3H), 1.60 (s, 3H), 1.26 (br, 18H), 0.88 (t, 3JH,H = 6.8 Hz, 3H); 
13C NMR (101 MHz, [D]chloroform) δ/ppm = 131.3, 125.1, 

34.3, 32.1, 30.1, 29.9, 29.8, 29.8, 29.5, 28.2, 25.9, 22.9, 22.5, 

17.8, 14.3; IR (ATR) ν˜ = /cm–1 = 2958, 2921, 2850, 1461, 

1372, 1260, 1090, 1022, 881, 806, 723; HRMS (EI): m/z calcd. 

for C15H30 [M˙]+ 210.2342, found 210.2347. 

(4-Methylpent-3-en-1-yl)cyclopentane (10f): 

Allylhydrazone 9f (140 mg, 0.500 mmol) and HNTf2 (14 mg, 

0.050 mmol) gave olefin 10f (15 mg, 0.099 mmol, 20 %) as 

colourless oil via GP2: Rf = 0.95 (pentane); 1H NMR (500 MHz, 

[D]chloroform) δ/ppm = 5.15–5.10 (m, 1H), 2.01–1.95 (m, 

2H), 1.77–1.73 (m, 2H), 1.69 (d, 3JH,H = 1.4 Hz, 3H), 1.60 (d, 
3JH,H = 1.2 Hz, 3H), 1.52–1.46 (m, 2H), 1.34–1.30 (m, 2H), 

1.11–1.05 (m, 2H), 0.91–0.86 (m, 3H); 13C NMR (126 MHz, 

[D]chloroform) δ/ppm = 131.1, 125.2, 39.9, 36.6, 32.8, 27.4, 

25.9, 25.4, 17.8; IR (ATR) ν˜ = /cm–1 = 2983, 2950, 2922, 2857, 

1452, 1376, 1105, 985, 907, 830, 735, 650, 574, 560; HRMS 

(EI): m/z calcd. for C11H20 [M˙]+ 152.1559, found 152.1558. 

(4-Methylpent-3-en-1-yl)cyclohexane (10g): 

Allylhydrazone 9g (147 mg, 0.500 mmol) and HNTf2 (14 mg, 

0.050 mmol) gave olefin 10g (17 mg, 0.10 mmol, 20 %) as 

colourless oil via GP2. (4-Methylpent-3-en-1-

yl)cyclohexane (10g, 30 mol-% HNTf2). Allylhydrazone 

9g (127 mg, 0.433 mmol) and HNTf2 (37 mg, 0.13 mmol) 

gave olefin 10g (18 mg, 0.11 mmol, 22 %) as colourless oil 

via GP2. (4-Methylpent-3-en-1-yl)cyclohexane (10g, 

3.00 mmol scale). Allylhydrazone 9g (822 mg, 3.00 mmol) 

and HNTf2 (84 mg, 0.30 mmol) gave olefin 10g (129 mg, 

0.759 mmol, 25 %) as colourless oil via GP2: Rf = 0.91 

(pentane); 1H NMR (500 MHz, [D]chloroform) δ/ppm = 5.15–

5.00 (m, 1H), 2.03–1.91 (m, 2H), 1.75–1.57 (m, 11H), 1.25–

1.15 (m, 6H), 0.92–0.83 (m, 2H); 13C NMR (126 MHz, 

[D]chloroform) δ/ppm = 131.1, 125.3, 37.8, 37.5, 33.5, 26.9, 

26.6, 25.9, 25.5, 17.8; IR (ATR) ν˜ = /cm–1 = 2923, 2852, 1694, 

1448, 1376; HRMS (EI): m/z calcd. for C12H22 [M˙]+ 166.1722, 

found 166.1720. 

(6-Methylhept-5-en-1-yl)benzene (10p): 

Allylhydrazone 9p (217 mg, 0.686 mmol) and HNTf2 (14 mg, 

0.068 mmol) gave olefin 10p (25 mg, 0.13 mmol, 19 %) as 

colourless oil via GP2: Rf = 0.48 (pentane); 1H NMR (400 MHz, 

dichloromethane-d2) δ/ppm = 7.29–7.23 (m, 2H), 7.20–7.13 

(m, 3H), 5.12 (tdt, 3JH,H = 7.2, 1.5 Hz, 1H), 2.60 (t, 3JH,H = 7.7 

Hz, 2H), 2.01 (q, 3JH,H = 7.3 Hz, 2H), 1.68 (d, 3JH,H = 1.4 Hz, 3H), 

1.64–1.58 (m, 5H), 1.41–1.33 (m, 2H); 13C NMR (101 MHz, 

dichloromethane-d2) δ/ppm = 143.6, 131.8, 128.9, 128.7, 

126.1, 125.2, 36.4, 31.8, 30.1, 28.4, 25.9, 17.9; IR (ATR) ν˜ = 

/cm–1 = 3026, 2922, 2853, 1602, 1494, 1451, 1378, 1108, 

1079, 1029, 741, 698, 571; HRMS (EI): m/z calcd. for C14H20 

[M˙]+ 188.1565, found 188.1565. 
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1 Optimisation of reaction conditions (monitoring with 

GC/MS)  

For the optimization of the acid-catalysed rearrangement different temperatures, reaction 

times and acids/solvents were tested. The reactions were monitored by GC/MS analysis.  

1.1 Instrument parameters  

Gas chromatography (GC) was performed on a Varian 3800 gas chromatograph coupled to a 

Saturn 2200 ion trap from Varian (Darmstadt, Germany). The autosampler was from CTC 

Analytics (Zwingen, Switzerland) and the split/splitless injector was a Varian 1177 (Darmstadt, 

Germany). Instrument control and data analysis were carried out with Varian Workstation 6.9 

SP1 software (Darmstadt, Germany). A Varian VF-5-ms capillary column of 30 m length, 0.25 

mm i.d. and 0.25 µm film thickness (Darmstadt, Germany) was used at a constant flow rate of 

1.4 mL/min. Carrier gas was helium 99.999% from Air Liquide (Düsseldorf, Germany). The 

inlet temperature was kept at 300 °C and injection volume was 1 µL with splitless time 1.0 min. 

The initial column temperature was 50 °C and was held for 1.0 min. Then the temperature was 

ramped up to 250 °C with 50 °C/min. Then the products were eluted at a rate of 5 °C/min until 

310 °C (hold time 3 min). Total run time was 20 min. Transfer line temperature was 300 °C 

and the ion trap temperature was 150 °C. The ion trap was operated with electron ionization 

(EI) at 70 eV in scan mode (m/z 50 - 650) with a solvent delay of 6.3 min.  

1.2 Experimental procedure  

In an oven-dried reaction tube the appropriate catalyst (10 mol %) was dissolved in the 

appropriate solvent (1.3 mL). A solution of the N-Boc-N-allylhydrazone 9g (14.7 mg, 0.050 

mmol, 1.0 eq) in dry diglyme was added. Further cholestane in dry diglyme was added as 

internal standard (IS, final concentration 5 µg/mL in the test tube) at room temperature. The 

reaction tube was purged with N2, closed and then immediately heated at the corresponding 

temperature. After 15, 45 and 75 min samples (3 x 60 µL) were taken. The reaction mixture 

was neutralised with sat. aq. NaHCO3 solution (60 µL) and water (1.0 mL) was added. The 

aqueous phase was extracted with methyl tert-butyl ether (MtBE) (1 x 500 µL). The organic 

layer was dried with Na2SO4 and 300 µL were transferred into an autosampler vial. After 

dilution with additional 300 µL MtBE the solution was analysed by GC/MS.  

1.3 Quantification  

For the quantification of the reaction product 10g, a standard curve with five levels (10-100 

µg/mL) of product 10g and a constant level of IS was used (n = 3; R² > 0.996). The 

corresponding standard curve was measured on the same day the samples were analysed.   

With this method only the concentration of product 10g can be measured, but not the 
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concentration of any side product, as these may have different ionisation properties. As a 

result, the complete mass balance of this reaction cannot be determined.  

  

1.4 Optimisation of reaction conditions for temperature and time  

To examine the effect of temperature and time on the yield of product 10g the reactions were 

carried out at five different temperatures (23 °C, 50 °C, 75 °C, 100 °C and 125 °C) in diglyme 

with HNTf2. The yield of 10g was determined via GC/MS as described above (see chapter 1.1- 

1.3) after 15, 45 and 75 min (n = 3). The results of this experiment are shown in Figure S1.  

 
  
Figure S1. Yields of the optimisation reactions at 23 °C, 50 °C, 75 °C, 100 °C, and 125 °C after 
different reaction times.   
  

The reaction proceeds best at 125 °C and after 75 min. Under these conditions a yield of 31% 

was observed. Longer reaction times were not tested, because at this time only 

Bocdeprotected allylhydrazone was observed, which does not undergo the desired 

rearrangement. Higher temperatures were not tested, because of a possible decomposition of 

the final products.  

    

1.5 Optimisation of reaction conditions for different solvents and catalysts   

To examine the effect of different solvents and catalysts on the yield of product 10g the 

reactions were carried out in THF (70 °C) and diglyme (125 °C). Each solvent was tested with 

three different catalysts (HNTf2, TfOH and TFA). The yield of 10g was determined via GC/MS 

as described above (see chapter 1.1-1.3) after 15, 45 and 75 min (n = 3). The results of this 

experiment are shown in Figure S2.   
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Figure S2. Yields of the optimisation reactions under different conditions after different reaction times.  
The reaction proceeds best with HNTf2 in diglyme at 125 °C and after 75 min a yield of 24%, which 
varies slightly to the value in chapter 1.4, was obtained.  
  

1.6 Optimisation results of reaction conditions  
 

Table S1. Optimisation of reaction conditions for the rearrangement of 9ga   
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aThe reactions were performed with 0.05 mmol of 9g, entries 1-15: HNTf2 in diglyme with variation of 
the reaction, entries 16-33: variation of catalyst and solvent. bThe yields were determined by GC/MS 
using cholestane as internal standard (see Supporting Information). cEntries 1-15 were performed on 
the same day as were entries 16-33.  

 
  
  

2 Synthesis of the N-ethoxycarbonyl-N-allylhydrazine 

building block and two model allylhydrazones  

  

 

 



6. Traceless isoprenylation 

169 

   
Scheme S1. Synthesis of the N-ethoxycarbonyl-N-allylhydrazine building block S5a and two model 
allylhydrazones S6g and S6i  

  

1-Ethyl 2-(2,2,2-trichloroethyl) hydrazine-1,2-dicarboxylate (S1)  

  

  
 
 
 
To a solution of ethyl carbazate (5.2 g, 49 mmol, 1.0 eq) and N-methylmorpholine (5.5 mL, 49 

mmol, 1.0 eq) in THF, 2,2,2-trichloroethylchloroformat (6.9 mL, 49 mmol, 1.0 eq) was added 

at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 24 h. 

The suspension was filtered and the filtrate concentrated in vacuo. Purification by flash column 

chromatography (hexanes/EtOAc 7:3) gave hydrazine S1 (14 g, 49 mmol, quantitative) as a 

colourless oil: Rf = 0.28 (hexanes/EtOAc 7:3); 1H NMR (400 MHz, chloroform-d) δ/ppm = 7.10  

(s, 1H), 6.73 (s, 1H), 4.78 (s, 2H), 4.21 (q, 3JH,H = 7.2 Hz, 2H), 1.27 (t, 3JH,H = 7.1 Hz, 3H); 13C  

NMR (101 MHz, chloroform-d) δ/ppm = 156.6, 155.3, 94.9, 75.2, 62.7, 14.5; IR (ATR) ṽ/cm-1 = 

3258, 1762, 1735, 1697, 1524, 1441 1367, 1259, 1208, 1095, 1053, 1023, 978, 886, 824, 776, 

737, 707; HRMS (EI): m/z  = calcd for C6H9O4N2Cl3 [M]•+ 277.9622, found 277.9617.  

  

1-Ethyl 2-(2,2,2-trichloroethyl) diazene-1,2-dicarboxylate (S2)  

  

 

Hydrazine S1 (14.6 g, 52.2 mmol, 1.0 eq) was dissolved in toluene (120 mL), then pyridine 

(4.22 mL, 52.2 mmol, 1.0 eq) and NBS (9.30 g, 52.2 mmol, 1.0 eq) were added. The reaction 

mixture was stirred for 3 h at room temperature. The mixture was diluted with toluene (50 mL), 

washed with water (120 mL), sat. aq. Na2S2O3 solution (100 mL), 1M aq. HCl (100 mL), sat. 

aq. NaHCO3 solution (100 mL), water (100 mL) and brine (110 mL). The organic layer was 

dried over Na2SO4, filtered and the solvent was removed in vacuo. Azodicarboxylate S2 (13.4 

g, 48.3 mmol, 92%) was obtained as an orange oil and was used without further purification: 

Rf = 0.75 (hexanes/EtOAc 7:3); 1H NMR (400 MHz, chloroform-d) δ/ppm = 5.03 (s, 2H), 4.54 

(q, 3JH,H = 7.1 Hz, 2H), 1.47 (t, 3JH,H = 7.1 Hz, 3H); 13C NMR (101 MHz, chloroform- d) δ/ppm 

= 159.9, 159.0, 93.4, 76.9, 65.9, 14.2; IR (ATR) ṽ/cm-1 = 1770, 1370, 1200, 1097, 1059, 1015, 

854, 801, 718; HRMS (EI): m/z calcd for C6H7O4N2Cl3 [M]·+ 275.9466; found 275.9458.  
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 1-Ethyl 2-(2,2,2-trichloroethyl) 1-(2-methyl-1-oxopropan-2-yl)hydrazine-

1,2dicarboxylate (S3a) and 2-ethyl 1-(2,2,2-trichloroethyl) 1-(2-methyl-1-oxopropan-

2yl)hydrazine-1,2-dicarboxylate (S3b)  

  

 

Azodicarboxylate S2 (6.0 g, 22 mmol, 1.0 eq) and L-proline (249 mg, 2.16 mmol, 10 mol %) 

were disperged in dry methylene chloride (120 mL) and the suspension was cooled to 0 °C. 

Isobutyraldehyde (2.96 mL, 32.4 mmol, 1.5 eq) was added and the reaction mixture was 

allowed to warm to room temperature and stirred for 18 h. The solvent was removed in vacuo 

and the title compound was purified by flash column chromatography (hexanes/EtOAc 7:3). 

An inseparable mixture of aldehydes S3a/S3b (3.23 g, 9.24 mmol, 43%) were obtained as a 

colourless oil in an isomeric mixture of 85:15 (determined retrospectively via 1H NMR 

spectroscopy): Rf = 0.75 (hexanes/EtOAc 7:3); 1H NMR (400 MHz, chloroform-d) δ/ppm = 9.51 (s, 

1H), 7.02 – 6.57 (m, 1H), 4.78 (d, 2JH,H = 31.6 Hz, 2H), 4.20 (dd, 3JH,H = 7.1, 2JH,H = 2.4 Hz, 2H), 1.47 – 

1.20 (m, 9H); 13C NMR (101 MHz, chloroform-d) δ/ppm = 198.1, 155.6, 155.2, 95.0, 75.1, 67.7, 

63.6, 20.4, 14.4; IR (ATR) ṽ/cm-1 = 3306, 1733, 1707, 1514, 1469, 1407, 1379, 1342, 1216, 

1173, 1096, 1047, 818, 757, 719; HRMS (ESI): m/z calcd for C10H16O5N2Cl3 [M+H]+ 349.0119; 

found 349.0123.  

  

1-Ethyl 2-(2,2,2-trichloroethyl) 1-(2-methylbut-3-en-2-yl)hydrazine-1,2-dicarboxylate 

(S4a) and 2-ethyl 1-(2,2,2-trichloroethyl) 1-(2-methylbut-3-en-2-yl)hydrazine-

1,2dicarboxylate (S4b)  

 
  

The isomeric mixture of aldehydes S3a/S3b (3.1 g, 8.9 mmol, 1.0 eq) and pyridine (1.3 mL, 

16 mmol, 1.8 eq) were added to a flame dried flask and cooled to -80 °C.  Tebbe reagent (0.5M 

in toluene, 23.1 mL, 11.5 mmol, 1.3 eq) was added carefully by adding it along the flask. The 

reaction mixture was allowed to warm up to 0 °C and stirred 24 h. The reaction was quenched 

with a saturated aqueous NaHCO3 solution (6 mL) at -80 °C and extracted with methylene 

chloride (3 x 30 mL). The combined organic layers were dried over MgSO4, filtered and the 

solvent was removed in vacuo. Purification by flash column chromatography (hexanes/EtOAc 

9:1 → 8:2) gave an inseparable mixture of olefines S4a/S4b (556 mg, 1.60 mmol, 18%) as a 

colourless oil in an isomeric mixture of 85:15 (determined retrospectively via 1H NMR 
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spectroscopy): Rf = 0.39 (hexanes/EtOAc 8:2); 1H NMR (400 MHz, chloroform-d) δ/ppm = 6.63 

(s, 1H), 6.10 (dd, 3JH,H = 17.5, 10.7 Hz, 1H), 5.10 (dd, 3JH,H = 17.9, 2JH,H = 6.7 Hz, 1H), 5.03 

(dd, 3JH,H = 10.7, 2JH,H = 6.7 Hz, 1H), 4.90 – 4.68 (m, 2H), 4.19 – 4.09 (m, 2H), 1.52 (s, 3H), 

1.45 (s, 3H), 1.25 – 1.20 (m, 3H); 13C NMR (101 MHz, chloroform-d) δ/ppm = 155.4, 155.2, 

143.8, 111.8, 74.9, 63.2, 62.4, 26.3, 26.1, 23.9, 14.5; IR (ATR) ṽ/cm-1 = 3291, 2985, 1749, 

1695, 1517, 1403, 1375, 1338, 1251, 1216, 1181, 1096, 1051, 915, 821, 765, 739, 719; HRMS 

(ESI): m/z calcd for C11H16O4N2Cl3 [M-H]- 345.0181; found 345.0182.  

  

Ethyl 1-(2-methylbut-3-en-2-yl)hydrazine-1-carboxylate (S5a) and ethyl 2-(2-

methylbut3-en-2-yl)hydrazine-1-carboxylate (S5b)  

  

 
  

The mixture of olefins S4a/S4b (550 mg, 1.58 mmol, 1.0 eq) was dissolved in a mixture of 

ethanol (1.0 mL), water (1.0 mL) and acetic acid (1.0 mL). Zinc powder (3.62 g, 55.4 mmol, 

35.0 eq) was added and the reaction mixture was stirred for 10 min at room temperature. After 

filtration of the reaction mixture, the filtrate was extracted with methylene chloride (3 x 10 mL).  

The combined organic layers were washed was saturated aqueous NaHCO3 solution (15 mL) 

and dried over MgSO4, filtered and the solvent was removed in vacuo. S5a/S5b (167 mg, 

0.970 mmol, 61%) was obtained as a colourless oil in an isomeric mixture of 85:15 (determined 

via 1H NMR spectroscopy). This mixture was used for the next step without purification.  Rf = 

0.47 (hexanes/EtOAc 8:2); 1H NMR (S5a) (500 MHz, chloroform-d) δ/ppm = 6.05 (dd, 3JH,H = 

17.5, 10.7 Hz, 1H), 5.01 – 4.92 (m, 2H), 4.13 (q, 3JH,H = 7.2 Hz, 2H), 3.80 (s, 2H), 1.44 (s, 6H), 

1.25 (t, 3JH,H = 7.1 Hz, 3H); 13C NMR (S5a) (101 MHz, chloroform-d) δ/ppm = 157.9, 145.3, 

109.9, 61.9, 61.7, 26.5, 14.7; 1H NMR (S5b) (500 MHz, chloroform-d) δ/ppm = 5.97 (dd, 3JH,H 

= 17.4, 10.7 Hz, 1H), 5.14 – 5.05 (m, 2H), 4.10 – 4.04 (m, 2H), 1.39 (s, 6H), 1.23 – 1.20 (m, 

3H); 13C NMR (S5b) (101 MHz, chloroform-d) δ/ppm = 155.8, 144.2, 111.8, 61.5, 53.6, 26.5, 

14.5; IR (ATR) ṽ/cm-1 = 2980, 1686, 1465, 1400, 1374, 1318, 1246, 1181, 1081, 1007, 910, 

859, 769, 686; HRMS (ESI): m/z calcd for C8H17O2N2 [M+H]+ 173.1285; found 173.1283.  
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Ethyl 2-(cyclohexylmethylene)-1-(2-methylbut-3-en-2-yl)hydrazine-1-carboxylate (S6g)  

  

 

The mixture of allylhydrazines S5a/S5b (200 mg, 1.16 mmol  0.986 mmol of isomer S5a, 1.0 

eq) was dissolved in absolute EtOH (15 mL) and cyclohexane carboxaldehyde (130 mg, 1.16 

mmol, 1.0 eq) was added. The reaction mixture was stirred at room temperature for 18 h. The 

solvent was removed in vacuo and the crude product was purified by flash column 

chromatography (pentane/Et2O 9:1). N-CO2Et-N-allylhydrazone S6g was isolated as 

colourless oil (115 mg, 0.432 mmol, 44% referred to isomer S5a).   

Rf = 0.32 (pentane/Et2O 9:1); 1H NMR (400 MHz, chloroform-d) δ/ppm = 7.60 (d, 3JH,H = 6.0 

Hz, 1H), 6.11 (dd, 3JH,H = 17.5, 10.8 Hz, 1H), 5.10 – 4.90 (m, 2H), 4.07 (q, 3JH,H = 7.1 Hz, 2H), 

2.42 – 2.32 (m, 1H), 1.89 – 1.62 (m, 6H), 1.41 (s, 6H), 1.37 – 1.28 (m, 4H), 1.20 (t, 3JH,H = 7.1 

Hz, 3H); 13C NMR (101 MHz, chloroform-d) δ/ppm = 173.9, 154.9, 145.4, 110.1, 61.9, 61.4, 

41.4, 29.7, 26.5, 26.1, 25.4, 14.5; IR (ATR) ṽ/cm-1 =2979, 2927, 2853, 1699, 1448, 1369, 1281, 

1240, 1177, 1097, 1004, 911, 758, 684; HRMS (EI): m/z calcd for C15H26O2N2 [M]·+ 266.1989; 

found 266.1989.  

  

Ethyl 2-benzylidene-1-(2-methylbut-3-en-2-yl)hydrazine-1-carboxylate (S6b)  

  

 
The mixture of allylhydrazines S5a/S5b (200 mg, 1.16 mmol  0.986 mmol of isomer S5a,  

1.0 eq) was dissolved in absolute EtOH (15 mL) and benzaldehyde (123 mg, 1.16 mmol, 1.0 

eq) was added. The reaction mixture was stirred at room temperature for 17 h. The solvent 

was removed in vacuo and the crude product was purified by flash column chromatography 

(pentane/Et2O 9:1). N-CO2Et-N-allylhydrazone S6i was isolated as colourless oil (234 mg, 

0.899 mmol, 91% referred to isomer S5a).   

Rf = 0.38 (pentane/Et2O 9:1); 1H NMR (500 MHz, chloroform-d) δ/ppm = 8.60 (s, 1H), 7.74 –  

7.70 (m, 2H), 7.44 – 7.38 (m, 3H), 6.18 (dd, 3JH,H = 17.5, 10.8 Hz, 1H), 5.11 – 4.96 (m, 2H), 

4.17 (q, 3JH,H = 7.1  Hz, 2H), 1.53 (s, 6H), 1.25 (t, 3JH,H = 7.1 Hz, 3H); 13C NMR (101 MHz, 

chloroform-d) δ/ppm = 159.0, 154.6, 145.7, 134.9, 130.5, 128.7, 127.8, 110.0, 63.6, 61.7, 26.9, 

14.5; IR (ATR) ṽ/cm-1 = 1698, 1597, 1455, 1368, 1282, 1202, 1166, 1098, 1073, 1015, 906, 

827, 743, 687; HRMS (ESI): m/z calcd for C15H21O2N2 [M+H]+ 261.1597; found 261.1596.  



6. Traceless isoprenylation 

173 

3 Crystallographic data  
  

3.1. Sample preparation  

To receive crystals out of the oily isomeric mixture of 8a and 8b, 80 mg of the neat mixture 

were placed in a 5 mL round bottom flask and cooled to - 20 °C. After seven days, crystals of 

8a were grown as colourless needles. The crystals are stable at room temperature for one 

day.   

  

3.2. Crystallographic information of 

8a  

Table S2. Crystallographic information of 8a  

Compound 8a 
 CCDC 1907495 
net formula C10H20N2O2 
Mr/g mol−1  200.28  
crystal size/mm  0.100 × 0.060 × 0.050  
T/K  103.(2)  
radiation  MoKα  
diffractometer  'Bruker D8 Venture TXS'  
crystal system  triclinic  
space group  'P -1'  
a/Å  5.9860(5)  
b/Å  9.0630(7)  
c/Å  11.4665(9)  
α/°  105.616(3)  
β/°  99.965(3)  
γ/°  97.087(3)  
V/Å3  580.52(8)  
Z  2  
calc. density/g cm−3  1.146  
μ/mm−1  0.080  
absorption correction  Multi-Scan  
transmission factor range  0.95–1.00  
refls. measured  5785  
Rint  0.0312  
mean σ(I)/I  0.0416  
θ range  3.444–26.370  
observed refls.  1982  
x, y (weighting scheme)  0.0299, 0.2047  
hydrogen refinement  H(C) constr, H(N) refall  
refls in refinement  2368  
parameters  140  
restraints  0  
R(Fobs)  0.0411  
Rw(F2)  0.0961  
S  1.072  
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shift/errormax  0.001  
max electron density/e Å−3 0.242 min 
electron density/e Å−3 −0.205 
 
  

  

 
Figure S3. Mercury plot of the solid-state structure of compound 8a 
(50% ellipsoid probability level).  
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4 NMR spectra   

 
Figure S4. 500 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 6a/6b in CDCl3.  
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Figure S5. 500 MHz 1H NMR spectrum (top) and 126 MHz 13C NMR spectrum (bottom) of 7a/7b in CDCl3.   
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Figure S6. 400 MHz 1H NMR spectrum (top) and 126 MHz 13C NMR spectrum (bottom) of 8a/8b (ratio 91:9) in 
DMSO-d6.
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Figure S7. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 9a in CDCl3.   
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Figure S8. 500 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 9b in CDCl3.   
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Figure S9. 500 MHz 1H NMR spectrum (top) and 126 MHz 13C NMR spectrum (bottom) of 9c in CDCl3.   
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 Figure S10. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 9d 
in CDCl3.  
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Figure S11. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 9e 
in CDCl3 
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Figure S12. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 9f 
in CDCl3 
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Figure S13. 500 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
9g in CDCl3. 
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Figure S14. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
9h in CDCl3. 
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Figure S15. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
9i in CDCl3. 
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Figure S16. 500 MHz 1H NMR spectrum (top) and 126 MHz 13C NMR spectrum (bottom) of 9j 
in CDCl3. 
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Figure S17. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 9k 
in CDCl3. 
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Figure S18. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
9l in CDCl3. 
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Figure S19. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
9m in CDCl3. 



6. Traceless isoprenylation 

191 

 

Figure S20. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
9n in CDCl3. 
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Figure S21. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
9o in CDCl3. 
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Figure S22. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
9p in DMSO-d6 
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Figure S23. 500 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
9q in CDCl3 
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Figure S24. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
10a in CDCl3. 
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Figure S25. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
10b in CDCl3. 
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Figure S26. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
10c in CDCl3. 
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Figure S27. 500 MHz 1H NMR spectrum (top) and 126 MHz 13C NMR spectrum (bottom) of 
10f in CDCl3. 
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Figure S28. 500 MHz 1H NMR spectrum (top) and 126 MHz 13C NMR spectrum (bottom) of 
10g in CDCl3. 
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Figure S29. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
10p in CD2Cl2. 
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Figure S30. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
S1 in CDCl3. 
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Figure S31. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
S2 in CDCl3. 
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Figure S32. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
S3a/S3b in CDCl3. 
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Figure S33. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
S4a/S4b in CDCl3. 
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Figure S34. 500 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
S5a/S5b in CDCl3. 
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Figure S35. 400 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
S6g in CDCl3. 



6. Traceless isoprenylation 

207 

 

Figure S36. 500 MHz 1H NMR spectrum (top) and 101 MHz 13C NMR spectrum (bottom) of 
S6i in CDCl3. 
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7. Summary 
 

Monitoring pathological changes of the steroid profile could lead to a better understanding of 

the progression of diseases like Alzheimer’s disease. So, the aim of this work was the 

development of a comprehensive analytical method that could provide a wide overview of the 

sterolome of a specific tissue or cultured cells. In the end, an effective sample preparation 

protocol was developed and validated for 37 steroidal compounds of five different steroid 

classes. The scope of this method includes cholesterol precursors, oxysterols, neurosteroids, 

steroid acids and sterol sulfates. While other published methods focus on one or two of these 

subgroups, this new method can give an extensive overview of the sterolome. The 

corresponding article (Chapter 4) was submitted for publication in the Journal of Steroid 

Biochemistry and Molecular Biology and currently the revised manuscript is under review. In 

order to achieve this goal, some obstacles had to be overcome. One problem was the GC-MS 

measurement of sterol sulfates. Especially for this steroid class, several different 

deconjugation and derivatization procedures were evaluated and finally, a new and 

straightforward protocol for direct MO-TMS derivatization was found and published (Chapter 

3). As sterol sulfates and unconjugated sterols were both measured as unconjugated MO-TMS 

derivatives, they had to be separated before deconjugation and derivatization. Also, the group 

of steroid acids needed to be separated due to different derivatization procedures. The 

necessary steroid group separation was accomplished by a newly developed SPE protocol 

that was included in the novel sample preparation procedure (Chapter 4). Another difficulty 

was the partly huge concentration difference of the analytes. Therefore, the processed 

samples needed to be analyzed on two different GC-MS systems in scan mode and in dMRM 

mode. This approach allowed untargeted screening as well as highly sensitive analysis of 

steroids of interest at trace levels. For scan analysis, a mass spectral library was created that 

contained mainly steroids of interest, defined by the group of Prof. Dr. Harald Steiner at DZNE. 

Additionally, cholesterol precursors could be integrated. Those had already been part of a 

previously published assay for cholesterol biosynthesis inhibitors in Nature Protocols, in which 

I contributed by creating the mass spectral library (Chapter 5). In addition to the creation of the 

mass spectral library, the transitions and collision energies for analysis in dMRM mode were 

optimized individually for each compound. This was the first method transfer from an IT-mass 

spectrometer (scan) to a qQq-mass spectrometer (dMRM) that was performed within our 

working group. Finally, the method was validated and applied to different biological samples 

including brain tissue, liver tissue and cultured cells. The levels of several endogenous 

compounds were measured and compared to literature data wherever possible. Some 

endogenous concentrations had never been reported before. Beside the analysis of biological 

samples, I contributed to a chemical synthesis article which demonstrated a new traceless 
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bond synthesis for isoprenylated products (Chapter 6). In this case I analyzed the synthesis 

products using GC-MS and in this way supported the necessary optimization experiments. 
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8. Abbreviations 
 

AD Alzheimer’s disease 
APP Amyloid precursor protein 
Aβ amyloid β 

CHILD Congenital Hemidysplasia with Ichthyosiform nevus and Limb 
Defects 

CNS central nervous system  
CoA Coenzyme A 
CTX cerebrotendinous xanthomatosis  
dMRM dynamic multiple reaction monitoring 
DZNE Deutsches Zentrum für neurodegenerative Erkrankungen 
GABAA γ-aminobutyric acid 
GC-MS gas chromatography-mass spectrometry 
HDL high density lipoprotein  
HMG 3.Hydroxy-3-methylglutaryl 
IPP Isopentenyl diphosphate 
IT ion trap 
LC-MS liquid chromatography-mass spectrometry 
LDL low density lipoprotein 
LXR liver X receptor 
MO-TMS methyl oxime-trimethyl silyl 
MS mass spactrometry 
MS/MS tandem MS 
MSTFA N-methyl-N-trimethylsilyl acetamide 

MtBE methyl-tert-butyl ether 
NMDA N-methyl-D-aspartate 

NPC Niemann-Pick type C 
QqQ triple quadrupole 
RIA radioimmunoassays 
RRT relative retention time 
SFC-MS supercritical fluid chromatography- mass spectrometry 
SLOS Smith-Lemli-Opitz syndrome 
SPE solid phase extraction 
TFA trifluoroacetyl 
TFAA trifluoroacetic anhydride 
TMS trimethylsilyl 
TRPM melastatin-like transient receptor potential channels 
TSIM trimethylsilyl imidazole 
VLDL very low density lipoprotein 



9. References 

211 

9. References 

 

[1]  A. Bot, Phytosterols, in: L. Melton, F. Shahidi, P. Varelis (Eds.) Encyclopedia of food 
chemistry, Academic Press, Oxford, 2019,  225-228. 

 
[2]  IUPAC‑IUB Joint Commission on Biochemical Nomenclature (JCBN), The 

nomenclature of steroids, European Journal of Biochemistry, 186, 1989, 429-458. 

 
[3]  J. Wollam, A. Antebi, Sterol regulation of metabolism, homeostasis, and 

development, Annual review of biochemistry, 80, 2011, 885-916. 

 
[4]  J.A. Svoboda, M.F. Feldlaufer, Neutral sterol metabolism in insects, Lipids, 26, 1991, 

614-618. 

 
[5]  R.E. Summons, A.S. Bradley, L.L. Jahnke, J.R. Waldbauer, Steroids, triterpenoids 

and molecular oxygen, Philosophical Transactions of the Royal Society B, 361, 2006, 
951-968. 

 
[6]  L.-L. Chen, G.-Z. Wang, H.-Y. Zhang, Sterol biosynthesis and prokaryotes-to-

eukaryotes evolution, Biochemical and Biophysical Research Communications, 363, 
2007, 885-888. 

 
[7]  K.E. Bloch, Speculations on the evolution of sterol structure and function, CRC 

Critical Reviews in Biochemistry, 7, 1979, 1-5. 

 
[8]  V.M. Olkkonen, R. Hynynen, Interactions of oxysterols with membranes and proteins, 

Molecular Aspects of Medicine, 30, 2009, 123-133. 

 
[9]  J. Luo, H. Yang, B.-L. Song, Mechanisms and regulation of cholesterol homeostasis, 

Nature Reviews Molecular Cell Biology, 21, 2020, 225-245. 

 
[10]  G.R. Bayly, Chapter 37 - Lipids and disorders of lipoprotein metabolism, in: W.J. 

Marshall, M. Lapsley, A.P. Day, R.M. Ayling (Eds.) Clinical Biochemistry: Metabolic 
and Clinical Aspects (Third Edition), Churchill Livingstone, 2014,  702-736. 

 
[11]  J.M. Dietschy, S.D. Turley, Cholesterol metabolism in the brain, Current opinion in 

lipidology, 12, 2001, 105-112. 

 
[12]  H.R. Waterham, R.J.A. Wanders, Biochemical and genetic aspects of 7-

dehydrocholesterol reductase and Smith-Lemli-Opitz syndrome, Biochimica et 
Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1529, 2000, 340-356. 

 
[13]  W.D. Nes, Biosynthesis of cholesterol and other sterols, Chemical Reviews, 111, 

2011, 6423-6451. 

 



9. References 

212 

[14]  C. Müller, J. Junker, F. Bracher, M. Giera, A gas chromatography-mass spectrometry-
based whole-cell screening assay for target identification in distal cholesterol 
biosynthesis, Nature protocols, 14, 2019, 2546-2570. 

 
[15]  D.R. Brady, R.D. Crowder, W.J. Hayes, Mixed function oxidases in sterol metabolism. 

Source of reducing equivalents, The Journal of biological chemistry, 255, 1980, 
10624-10629. 

 
[16]  M.J.M. Nowaczyk, M.B. Irons, Smith–Lemli–Opitz syndrome: Phenotype, natural 

history, and epidemiology, American Journal of Medical Genetics Part C (Seminars in 
Medical Genetics), 160C, 2012, 250-262. 

 
[17]  R.I. Kelley, G.E. Herman, Inborn errors of sterol biosynthesis, Annual Review of 

Genomics and Human Genetics, 2, 2001, 299-341. 

 
[18]  E. Lloyd-Evans, F.M. Platt, Lipids on trial: The search for the offending metabolite in 

Niemann-Pick type C disease, Traffic, 11, 2010, 419-428. 

 
[19]  N.B. Javitt, Oxysterols: Novel biologic roles for the 21st century, Steroids, 73, 2008, 

149-157. 

 
[20]  E.G. Lund, T.A. Kerr, J. Sakai, W.-P. Li, D.W. Russell, cDNA cloning of mouse and 

human cholesterol 25-hydroxylases, polytopic membrane proteins that synthesize a 
potent oxysterol regulator of lipid metabolism, The Journal of biological chemistry, 
273, 1998, 34316-34327. 

 
[21]  D.W. Russell, The enzymes, regulation, and genetics of bile acid synthesis, Annual 

Review of Biochemistry, 72, 2003, 137-174. 

 
[22]  Y. Wang, W.J. Griffiths, Chapter 3 steroids, sterols and the nervous system, in: W.J. 

Griffiths (Ed.) Metabolomics, metabonomics and metabolite profiling, The Royal 
Society of Chemistry, Cambridge, UK, 2008,  71-115. 

 
[23]  W.J. Griffiths, P.J. Crick, Y. Wang, Methods for oxysterol analysis: Past, present and 

future, Biochemical Pharmacology, 86, 2013, 3-14. 

 
[24]  X. Fu, J.G. Menke, Y. Chen, G. Zhou, K.L. MacNaul, et al., 27-Hydroxycholesterol is 

an endogenous ligand for liver X receptor in cholesterol-loaded cells, The Journal of 
biological chemistry, 276, 2001, 38378-38387. 

 
[25]  S. Hannedouche, J. Zhang, T. Yi, W. Shen, D. Nguyen, et al., Oxysterols direct 

immune cell migration via EBI2, Nature, 475, 2011, 524-527. 

 
[26]  G. Salen, R. Steiner, Epidemiology, diagnosis, and treatment of cerebrotendinous 

xanthomatosis (CTX), The Journal of Inherited Metabolic Disease, 40, 2017. 

 
[27]  P.A. Dawson, S.J. Karpen, Intestinal transport and metabolism of bile acids, Journal 

of lipid research, 56, 2015, 1085-1099. 



9. References 

213 

[28]  B.S. Kumar, B.C. Chung, Y.-J. Lee, H.J. Yi, B.-H. Lee, et al., Gas chromatography–
mass spectrometry-based simultaneous quantitative analytical method for urinary 
oxysterols and bile acids in rats, Analytical Biochemistry, 408, 2011, 242-252. 

 
[29]  J.I. Jung, A.R. Price, T.B. Ladd, Y. Ran, H.-J. Park, et al., Cholestenoic acid, an 

endogenous cholesterol metabolite, is a potent γ-secretase modulator, Molecular 
Neurodegeneration, 10, 2015, 29. 

 
[30]  J. Zhang, Y. Akwa, M. el-Etr, E.E. Baulieu, J. Sjovall, Metabolism of 27-, 25- and 24-

hydroxycholesterol in rat glial cells and neurons, The Biochemical journal, 322 ( Pt 1), 
1997, 175-184. 

 
[31]  M. Vaňková., M. Hill, M. Velíková, J. Včelák., G. Vacínová, et al., Preliminary 

evidence of altered steroidogenesis in women with Alzheimer’s disease: Have the 
patients “older” adrenal zona reticularis?, Journal of Steroid Biochemistry and 
Molecular Biology, 158, 2016, 157-177. 

 
[32]  A.R. Stiles, J.G. McDonald, D.R. Bauman, D.W. Russell, CYP7B1: one cytochrome 

P450, two human genetic diseases, and multiple physiological functions, The Journal 
of biological chemistry, 284, 2009, 28485-28489. 

 
[33]  J. Teubel, M.K. Parr, Determination of neurosteroids in human cerebrospinal fluid in 

the 21st century: A review, Journal of Steroid Biochemistry and Molecular Biology, 
204, 2020, 105753. 

 
[34]  E.E. Baulieu, Neurosteroids: A novel function of the brain, 

Psychoneuroendocrinology, 23, 1998, 963-987. 

 
[35]  N.A. Compagnone, S.H. Mellon, Neurosteroids: biosynthesis and function of these 

novel neuromodulators, Front. Neuroendocrinol., 21, 2000, 1-56. 

 
[36]  R.P. Baulieu EE., Vatier O., Haug M., Le Goascogne C., Bourreau E. , Neurosteroids: 

Pregnenolone and Dehydroepiandrosterone in the Brain. , Springer, Boston, MA, 
1987. 

 
[37]  M.D. Majewska, Neurosteroids: endogenous bimodal modulators of the GABAA 

receptor. Mechanism of action and physiological significance, Progress in 
neurobiology, 38, 1992, 379-395. 

 
[38]  W.J. Griffiths, Y. Wang, Analysis of neurosterols by GC-MS and LC-MS/MS, Journal 

of Chromatography B, 877, 2009, 2778-2805. 

 
[39]  S.M. Paul, G. Pinna, A. Guidotti, Allopregnanolone: From molecular pathophysiology 

to therapeutics. A historical perspective, Neurobiology of Stress, 12, 2020, 100215. 

 
[40]  S. Luchetti, I. Huitinga, D.F. Swaab, Neurosteroid and GABA-A receptor alterations in 

Alzheimer's disease, Parkinson's disease and multiple sclerosis, Neuroscience, 191, 
2011, 6-21. 



9. References 

214 

[41]  C.A. Strott, Sulfonation and molecular action, Endocrine reviews, 23, 2002, 703-732. 

 
[42]  C.A. Strott, Y. Higashi, Cholesterol sulfate in human physiology: what's it all about?, 

Journal of lipid research, 44, 2003, 1268-1278. 

 
[43]  X. Li, W.M. Pandak, S.K. Erickson, Y. Ma, L. Yin, et al., Biosynthesis of the regulatory 

oxysterol, 5-cholesten-3beta,25-diol 3-sulfate, in hepatocytes, Journal of lipid 
research, 48, 2007, 2587-2596. 

 
[44]  C.N. Falany, Enzymology of human cytosolic sulfotransferases, Federation of 

American Societies for Experimental Biology journal, 11, 1997, 206-216. 

 
[45]  D. Papadopoulos, M. Shihan, G. Scheiner-Bobis, Physiological implications of 

DHEAS-induced non-classical steroid hormone signaling, Journal of Steroid 
Biochemistry and Molecular Biology, 179, 2018, 73-78. 

 
[46]  C. Harteneck, Pregnenolone sulfate: from steroid metabolite to TRP channel ligand, 

Molecules, 18, 2013, 12012-12028. 

 
[47]  M.R. Bowlby, Pregnenolone sulfate potentiation of N-methyl-D-aspartate receptor 

channels in hippocampal neurons, Molecular pharmacology, 43, 1993, 813-819. 

 
[48]  J. Geyer, K. Bakhaus, R. Bernhardt, C. Blaschka, Y. Dezhkam, et al., The role of 

sulfated steroid hormones in reproductive processes, Journal of Steroid Biochemistry 
and Molecular Biology, 172, 2017, 207-221. 

 
[49]  M. Vallée, W. Mayo, M. Darnaudéry, C. Corpéchot, J. Young, et al., Neurosteroids: 

Deficient cognitive performance in aged rats depends on low pregnenolone sulfate 
levels in the hippocampus, Proceedings of the National Academy of Sciences of the 
United States of America, 94, 1997, 14865-14870. 

 
[50]  M. Vaňková, M. Hill, M. Velíková, J. Včelák, G. Vacínová, et al., Reduced 

sulfotransferase SULT2A1 activity in patients with Alzheimer's disease, Physiological 
research, 64 Suppl 2, 2015, S265-273. 

 
[51]  M. Iwamori, Y. Iwamori, N. Ito, Regulation of the activities of thrombin and plasmin by 

cholesterol sulfate as a physiological inhibitor in human plasma, Journal of 
biochemistry, 125, 1999, 594-601. 

 
[52]  S. Krishnaswamy, G. Verdile, D. Groth, L. Kanyenda, R.N. Martins, The structure and 

function of Alzheimer’s gamma secretase enzyme complex, Critical reviews in clinical 
laboratory sciences, 46, 2009, 282-301. 

 
[53]  J.I. Jung, T.B. Ladd, T. Kukar, A.R. Price, B.D. Moore, et al., Steroids as γ-secretase 

modulators, Federation of American Societies for Experimental Biology journal, 27, 
2013, 3775-3785. 

 



9. References 

215 

[54]  M.G. Bursavich, B.A. Harrison, J.F. Blain, Gamma secretase modulators: New 
Alzheimer's drugs on the horizon?, Journal of medicinal chemistry, 59, 2016, 7389-
7409. 

 
[55]  M.P. Burns, G.W. Rebeck, Intracellular cholesterol homeostasis and amyloid 

precursor protein processing, Biochimica et biophysica acta, 1801, 2010, 853-859. 

 
[56]  H. Kölsch, R. Heun, F. Jessen, J. Popp, F. Hentschel, et al., Alterations of cholesterol 

precursor levels in Alzheimer's disease, Biochim. Biophys. Acta, 1801, 2010, 945-
950. 

 
[57]  T. Wisniewski, K. Newman, N.B. Javitt, Alzheimer's disease: brain desmosterol levels, 

Journal of Alzheimer's Disease, 33, 2013, 881-888. 

 
[58]  A. Zarrouk, A. Vejux, J. Mackrill, Y. O’Callaghan, M. Hammami, et al., Involvement of 

oxysterols in age-related diseases and ageing processes, Ageing Research Reviews, 
18, 2014, 148-162. 

 
[59]  A.J. Beel, M. Sakakura, P.J. Barrett, C.R. Sanders, Direct binding of cholesterol to the 

amyloid precursor protein: An important interaction in lipid-Alzheimer's disease 
relationships?, Biochimica et biophysica acta, 1801, 2010, 975-982. 

 
[60]  E. Winkler, F. Kamp, J. Scheuring, A. Ebke, A. Fukumori, et al., Generation of 

Alzheimer disease-associated amyloid beta42/43 peptide by gamma-secretase can 
be inhibited directly by modulation of membrane thickness, The Journal of biological 
chemistry, 287, 2012, 21326-21334. 

 
[61]  K.S. Vetrivel, G. Thinakaran, Membrane rafts in Alzheimer's disease beta-amyloid 

production, Biochimica et biophysica acta, 1801, 2010, 860-867. 

 
[62]  N. Krone, B.A. Hughes, G.G. Lavery, P.M. Stewart, W. Arlt, et al., Gas 

chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in 
clinical steroid investigations even in the era of fast liquid chromatography tandem 
mass spectrometry (LC/MS/MS), Journal of Steroid Biochemistry and Molecular 
Biology, 121, 2010, 496-504. 

 
[63]  K. Robards, P. Towers, Chromatography as a reference technique for the 

determination of clinically important steroids, Biomedical Chromatography, 4, 1990, 1-
19. 

 
[64]  S.A. Wudy, G. Schuler, A. Sánchez-Guijo, M.F. Hartmann, The art of measuring 

steroids: Principles and practice of current hormonal steroid analysis, Journal of 
Steroid Biochemistry and Molecular Biology, 179, 2018, 88-103. 

 
[65]  J. Teubel, B. Wüst, C.G. Schipke, O. Peters, M.K. Parr, Methods in endogenous 

steroid profiling – A comparison of gas chromatography mass spectrometry (GC–MS) 
with supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS), 
Journal of Chromatography A, 1554, 2018, 101-116. 



9. References 

216 

[66]  M. Giera, F. Plössl, F. Bracher, Fast and easy in vitro screening assay for cholesterol 
biosynthesis inhibitors in the post-squalene pathway, Steroids, 72, 2007, 633-642. 

 
[67]  C. Gomez, A. Fabregat, Ó.J. Pozo, J. Marcos, J. Segura, et al., Analytical strategies 

based on mass spectrometric techniques for the study of steroid metabolism, Trends 
in Analytical Chemistry, 53, 2014, 106-116. 

 
[68]  J. Marcos, O.J. Pozo, Derivatization of steroids in biological samples for GC–MS and 

LC–MS analyses, Bioanalysis, 7, 2015, 2515-2536. 

 
[69]  W.J. Griffiths, Y. Wang, Sterolomics in biology, biochemistry, medicine, Trends in 

Analytical Chemistry, 120, 2019, 115280. 

 
[70]  C. Müller, U. Binder, F. Bracher, M. Giera, Antifungal drug testing by combining 

minimal inhibitory concentration testing with target identification by gas 
chromatography-mass spectrometry, Nature protocols, 12, 2017, 947-963. 

 
[71]  C. Müller, S. Hemmers, N. Bartl, A. Plodek, A. Korner, et al., New chemotype of 

selective and potent inhibitors of human delta 24-dehydrocholesterol reductase, 
European journal of medicinal chemistry, 140, 2017, 305-320. 

 
[72]  J. Junker, I. Chong, F. Kamp, H. Steiner, M. Giera, et al., Comparison of strategies for 

the determination of sterol sulfates via GC-MS leading to a novel deconjugation-
derivatization protocol, Molecules, 24, 2019, 2353. 

 
[73]  R.F.N. Hutchins, J.N. Kaplanis, Sterol sulfates in an insect, Steroids, 13, 1969, 605-

614. 

 
[74]  S. Burstein, S. Lieberman, Hydrolysis of ketosteroid hydrogen sulfates by solvolysis 

procedures, Journal of Biological Chemistry, 233, 1958, 331-335. 

 
[75]  J. Junker, Methodenentwicklung zur Bestimmung von Neurosteroiden mittels GC-MS,  

Martin-Luther-Universität, Halle-Wittenberg, 2016. 

 
[76]  G. Testa, E. Staurenghi, C. Zerbinati, S. Gargiulo, L. Iuliano, et al., Changes in brain 

oxysterols at different stages of Alzheimer's disease: Their involvement in 
neuroinflammation, Redox Biol, 10, 2016, 24-33. 

 
[77]  M. Ogundare, S. Theofilopoulos, A. Lockhart, L.J. Hall, E. Arenas, et al., 

Cerebrospinal fluid steroidomics: are bioactive bile acids present in brain?, Journal of 
Biological Chemistry, 285, 2010, 4666-4679. 

 
[78]  H.D. Ackerman, G.S. Gerhard, Bile acids in neurodegenerative disorders, Frontiers in 

Aging Neuroscience 8,2016, 1-13. 

 
[79]  S.M. Grundy, J.I. Cleeman, C.N.B. Merz, H.B. Brewer, L.T. Clark, et al., Implications 

of Recent Clinical Trials for the National Cholesterol Education Program Adult 
Treatment Panel III Guidelines, Circulation, 110, 2004, 227-239. 



9. References 

217 

[80]  T.J. Kirby, Cataracts produced by triparanol. (MER-29), Transactions of the American 
Ophthalmological Society, 65, 1967, 494-543. 

 
[81]  C. Roux, C. Horvath, R. Dupuis, Teratogenic action and embryo lethality of AY 

9944R. Prevention by a hypercholesterolemia-provoking diet, Teratology, 19, 1979, 
35-38. 

 
[82]  F. Chevy, F. Illien, C. Wolf, C. Roux, Limb malformations of rat fetuses exposed to a 

distal inhibitor of cholesterol biosynthesis, Journal of lipid research, 43, 2002, 1192-
1200. 

 
[83]  E.J. Zerenturk, L.J. Sharpe, E. Ikonen, A.J. Brown, Desmosterol and DHCR24: 

unexpected new directions for a terminal step in cholesterol synthesis, Progress in 
lipid research, 52, 2013, 666-680. 

 
[84]  A. Körner, E. Zhou, C. Müller, Y. Mohammed, S. Herceg, et al., Inhibition of Δ24-

dehydrocholesterol reductase activates pro-resolving lipid mediator biosynthesis and 
inflammation resolution, Proceedings of the National Academy of Sciences, 116, 
2019, 20623. 

 
[85]  Z. Hubler, D. Allimuthu, I. Bederman, M.S. Elitt, M. Madhavan, et al., Accumulation of 

8,9-unsaturated sterols drives oligodendrocyte formation and remyelination, Nature, 
560, 2018, 372-376. 

 
[86]  M.R. Boland, N.P. Tatonetti, Investigation of 7-dehydrocholesterol reductase pathway 

to elucidate off-target prenatal effects of pharmaceuticals: a systematic review, The 
pharmacogenomics journal, 16, 2016, 411-429. 

 
[87]  A. Canfrán-Duque, M.E. Casado, O. Pastor, J. Sánchez-Wandelmer, G. de la Peña, 

et al., Atypical antipsychotics alter cholesterol and fatty acid metabolism in vitro, 
Journal of lipid research, 54, 2013, 310-324. 

 
[88]  J. Sánchez-Wandelmer, A.M. Hernández-Pinto, S. Cano, A. Dávalos, G. De La Peña, 

et al., Effects of the antipsychotic drug haloperidol on the somastostatinergic system 
in SH-SY5Y neuroblastoma cells, Journal of Neurochemistry, 110, 2009, 631-640. 

 
[89]  M. Giera, Entwicklung neuer Testsysteme zur Charakterisierung von Enzym-

Inhibitoren des Post-Squalen-Abschnitts der Cholesterol- und Ergosterol-
Biosynthese, Ludwig-Maximilians-Universität, München, 2007. 

 
[90]  M. Giera, C. Müller, F. Bracher, Analysis and experimental inhibition of distal 

cholesterol biosynthesis, Chromatographia, 78, 2015, 343-358. 

 
[91]  A. Horling, C. Müller, R. Barthel, F. Bracher, P. Imming, A new class of selective and 

potent 7-dehydrocholesterol reductase inhibitors, Journal of medicinal chemistry, 55, 
2012, 7614-7622. 

 



9. References 

218 

[92]  W.A. Maltese, Posttranslational modification of proteins by isoprenoids in mammalian 
cells, Federation of American Societies for Experimental Biology journal, 4, 1990, 
3319-3328. 

 
[93]  D.A. Mundal, C.T. Avetta, R.J. Thomson, Triflimide-catalysed sigmatropic 

rearrangement of N-allylhydrazones as an example of a traceless bond construction, 
Nature Chemistry, 2, 2010, 294-297. 

 
[94]  S. Dittrich, F. Bracher, Traceless bond construction via rearrangement of N-Boc-N-

allylhydrazones giving 1,1-disubstituted olefins, Tetrahedron, 71, 2015, 2530-2539. 

 
[95]  S. Dittrich, F. Bracher, Triflimide-catalysed rearrangement of N-(1-

trimethylsilyl)allylhydrazones results in the formation of vinylsilanes and 
cyclopropanes, European Journal of Organic Chemistry, 2015, 2015, 8024-8033. 

 

 


