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8, Abs. 2 Pkt. 5, angefertigt worden ist.

Munich, 07.05.2021 Evgeniy Faerman



6



Acknowledgements

Throughout the last years, I’ve received tremendous support and encouragement from
different people. First, I want to thank my supervisor and first referee for this thesis, Prof.
Dr. Matthias Schubert, who gave me the freedom and trust to pursue various ideas. I am
also very grateful to Prof. Dr. Kristian Kersting and Prof. Dr. Davide Mottin for their
willingness to review my thesis and interesting discussion during the thesis defense.

I am especially thankful to Prof. Dr. Thomas Seidl for his support and opportunity
to pursue my aspirations and implement my ideas. It was a rewarding experience to build
LMU Innovation Lab and contribute to all other activities. Thank you for your trust and
encouragement!

I also want to thank all my colleagues and collaborators who helped me develop this
thesis’s ideas. In particular, I want to thank Felix Borutta, with whom we navigated
together through the most challenging first years of our PhD study. Thank you for your
passion and commitment! Furthermore, I want to extend my gratitude to Max Berrendorf.
I enjoyed our discussions and learned a lot from you. I am also thankful to Michael Fromm,
my guide into the world of NLP, who convinced me to work on Argument Mining. My
deep gratitude also goes to all students I supervised at LMU. I’ve learned a great deal
while working with you.

Furthermore, I thank Susanne Grienberger and Franz Krojer, who always were very
helpful in administrative issues.

Finally, I want to express my great appreciation to my family for their support and
encouragement. In particular, I want to thank my wife, Oksana, who believes in me more
than I do myself. Thank you for your patience and continuous support!



8



Zusammenfassung

Menschen nutzen Informationen über Beziehungen oder Interaktionen zwischen Objekten
zur Orientierung in verschiedenen Situationen. So haben wir beispielsweise mehr Vertrauen
in Empfehlungen die aus unserem Freundendenkreis kommen, freunden uns eher mit den
Leuten an, mit denen wir bereits gemeinsame Freunde haben, oder passen unsere Mein-
ungen nach den Interaktionen mit anderen Personen an. In vielen Anwendungen, wo die
Methoden des maschinellen Lernens eingesetzt werden, haben wir Informationen darüber,
wie die Objekte miteinander interagieren und oft ist diese Information von großer Bedeu-
tung für den Anwendungsfall. Empfehlungen in den sozialen Medien, Szenenverständnis im
Bereich Computer Vision oder Vorhersagen des Verkehraufkommens sind einige Beispiele,
bei denen Beziehungen eine entscheidende Rolle in der Anwendung spielen. In dieser Ar-
beit stellen wir verschiedene Methoden vor, die in der Lage sind die Beziehungen in den
Daten zu berücksichtigen und demonstrieren deren Nutzen für verschiedene Probleme.

Eine große Anzahl von Problemen, bei denen Beziehungsinformationen eine zentrale
Rolle spielen, kann durch die Modellierung von Daten durch eine Graphenstruktur und
durch die Formulierung der Aufgabe als Vorhersageproblem auf dem Graphen angegangen
werden. Im ersten Teil der Arbeit gehen wir das Problem der Knotenklassifikation aus
verschiedenen Richtungen an. Wir beginnen mit Ansätzen des unüberwachten Lernens,
die sich durch die Annahmen über die Bedeutung der Beziehungen im Graphen unter-
scheiden. Für einige Anwendungen, wie z.B. soziale Netzwerke, ist es eine praktikable
Annahme, dass dicht verbundene Knoten ähnlich sind. Wenn wir hingegen das Passagier-
aufkommen eines Flughafens anhand seiner Flugverbindungen vorhersagen wollen, sind
ähnliche Knoten nicht unbedingt nahe beieinander im Graphen positioniert und haben
eher vergleichbare Nachbarschaftsmuster. Darüber hinaus schlagen wir neuartige Metho-
den zur Klassifizierung und Regression in einem semi-überwachten Setting vor, in dem die
Werte der Zielvariable nur für einen kleinen Teil der Knoten bekannt sind. Wir verwenden
die bekannten Labels und Informationen darüber, wie die Knoten miteinander verbunden
sind, um die Bedeutung der Beziehungen und ihre Auswirkung auf die endgültige Vorher-
sage zu lernen.

In dem zweiten Teil der Arbeit beschäftigen wir uns mit dem Problem des Graph-
Matchings. Unser erster Anwendungsfall ist der Abgleich verschiedener geografischer Karten,
wobei der Fokus auf der realistischen Anwendung mit verrauschten Daten liegt. Wir stellen
eine robuste Methode vor, die in der Lage ist, das Rauschen in den Daten zu ignorieren. Als
nächstes gehen wir das Problem des Entity Matchings in verschiedenen Wissensgraphen an.
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Wir analysieren den Prozess der manuellen Datenannotation und schlagen ein sinnvolles
Setting für das Problem vor. Außerdem führen wir neue Algorithmen ein, um diesen
arbeitsintensiven Prozess zu beschleunigen. Darüber hinaus analysieren wir ausführlich
bestehende Ansätze für Entity Matching und die empirische Auswertung, weisen auf ver-
schiedene Mängel hin und machen mehrere Vorschläge zur Verbesserung.

Der nächste Teil der Arbeit ist der Forschungsrichtung Argument Mining gewidmet.
Argument Mining beschäftigt sich mit der automatischen Extraktion und Suche von Ar-
gumenten. Wir schlagen einen neuartigen Ansatz zur Identifizierung von Argumenten vor
und zeigen, wie er relationale Informationen nutzen kann. Wir wenden unsere Methode an,
um Argumente in Peer-Reviews für wissenschaftliche Publikationen zu identifizieren und
zeigen, dass Argumente für den Entscheidungsprozess wesentlich sind. Außerdem gehen wir
das Problem der Argumentsuche an und stellen einen neuartigen Ansatz vor, der relevante
und originelle Argumente für die Anfragen der Benutzer findet.

Schließlich schlagen wir einen Ansatz für Subspace-Clustering vor. Unser Verfahren
kann mit großen Datensätzen umgehen und ist in der Lage neue Objekte den gefundenen
Clustern zuzuordnen. Unsere Methode lernt die Beziehungen zwischen Objekten und führt
das Clustering auf dem resultierenden Graphen durch.



Abstract

Humans utilize information about relationships or interactions between objects for ori-
entation in various situations. For example, we trust our friend circle recommendations,
become friends with the people we already have shared friends with, or adapt opinions
as a result of interactions with other people. In many Machine Learning applications, we
also know about relationships, which bear essential information for the use-case. Recom-
mendations in social media, scene understanding in computer vision, or traffic prediction
are few examples where relationships play a crucial role in the application. In this thesis,
we introduce methods taking relationships into account and demonstrate their benefits for
various problems.

A large number of problems, where relationship information plays a central role, can be
approached by modeling data by a graph structure and by task formulation as a prediction
problem on the graph. In the first part of the thesis, we tackle the problem of node
classification from various directions. We start with unsupervised learning approaches,
which differ by assumptions they make about the relationship’s meaning in the graph. For
some applications such as social networks, it is a feasible assumption that densely connected
nodes are similar. On the other hand, if we want to predict passenger traffic for the airport
based on its flight connections, similar nodes are not necessarily positioned close to each
other in the graph and more likely have comparable neighborhood patterns. Furthermore,
we introduce novel methods for classification and regression in a semi-supervised setting,
where labels of interest are known for a fraction of nodes. We use the known prediction
targets and information about how nodes connect to learn the relationships’ meaning and
their effect on the final prediction.

In the second part of the thesis, we deal with the problem of graph matching. Our first
use-case is the alignment of different geographical maps, where the focus lies on the real-
life setting. We introduce a robust method that can learn to ignore the noise in the data.
Next, our focus moves to the field of Entity Alignment in different Knowledge Graphs. We
analyze the process of manual data annotation and propose a setting and algorithms to
accelerate this labor-intensive process. Furthermore, we point to the several shortcomings
in the empirical evaluations, make several suggestions on how to improve it, and extensively
analyze existing approaches for the task.

The next part of the thesis is dedicated to the research direction dealing with automatic
extraction and search of arguments, known as Argument Mining. We propose a novel
approach for identifying arguments and demonstrate how it can make use of relational
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information. We apply our method to identify arguments in peer-reviews for scientific
publications and show that arguments are essential for the decision process. Furthermore,
we address the problem of argument search and introduce a novel approach that retrieves
relevant and original arguments for the user’s queries.

Finally, we propose an approach for subspace clustering, which can deal with large
datasets and assign new objects to the found clusters. Our method learns the relationships
between objects and performs the clustering on the resulting graph.
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Chapter 1

Introduction

The field of Machine Learning (ML) deals with the development of algorithms that should
be able to learn from previous experience, where the experience is expressed in the form
of some training dataset. Given data and a task, the goal is to obtain (train) a model
capable of making decisions about unseen cases generated by the same process as the
training data but are not part of it. The distinguishing characteristic of ML is that in the
process of training, a model has to recognize and select patterns in the data leading to the
correct decisions by itself, instead of being explicitly programmed with a set of rules. While
learning a model is the algorithm’s responsibility, an ML practitioner’s task is to design the
right model and training procedure for the problem at hand. As stated in the well known
No Free Lunch theorem Wolpert 1996; Wolpert and Macready 19971 no single algorithm
or model works well for all possible problems in all possible scenarios. ML models differ
based on expectations they have about the data, and therefore some hypothesis about the
task has to be defined in the process of model selection. The set of assumptions affecting
the prioritization of some solution approaches over others independent of concrete samples
in the training data is known as inductive bias Mitchell 1980. Dependent on the task,
various assumptions can be made based on the knowledge about the problem’s domain,
data generation process, or structural dependencies in the data. The usefulness of the
selected model depends on the correlation of the made assumptions with reality.

In this thesis, our focus lies on the problems involving data with explicit relational
structure, and we introduce and analyze methods having relational inductive bias Battaglia
et al. 2018. A relation denotes any interaction between entities we need to make decisions
about, or between their components. For example, in a social network, a relation may
encode a friendship link, in a molecular graph, a bond between different atoms, and in
a street graph, a relation between intersections can encode the information that a street
directly connects them. Throughout the thesis, the essential assumption we make is that
the relations’ information is relevant to the problems we want to solve. Therefore, we make
design choices enabling models to take the relational structure of the data into account.
The backbone for most approaches discussed in the thesis is built by the Artificial Neural

1also known as a Law of Conservation for Generalization Performance in ML Schaffer 1994
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Networks, which have been proven as an efficient tool for the Representation Learning
Bengio, Courville, and Vincent 2013. The idea behind representation learning is that the
feature vector describing a entity of interest in the raw form is presented to the model.
The model maps it to the compact vector representation called distributed representation2

or embedding. In the learning process, a model learns to extract concepts relevant for
the target function from the input data and to encode it by a vector representation. The
inductive bias in representation learning approaches is mostly encoded by the selection and
composition of neural network modules or by the target task for the unsupervised methods.
In contrast, feature engineering based approaches are designed manually to extract relevant
information from the raw input based on the domain knowledge and use it to build the
model’s input features.

In this chapter, we aim to introduce research directions covered in the thesis, provide
relevant context for understanding current state-of-the-art methods, and outline our contri-
butions. In section 1.1 we describe our approaches’ central components to give the reader
a better understanding of the methods introduced in this thesis. Therefore, we start with
the description of the Approximated Personalized PageRank, which we apply in several
approaches to describe the node’s neighborhood in the graph. Next, we describe the analog
of spectral analysis on graphs and explain the effect of applying Personalized PageRank as
a filter from a spectral perspective. Afterward, we provide a detailed overview of the family
of methods known as Message Passing Networks, which are also part of several approaches
later discussed in the thesis. After that, we overview problems addressed in the thesis
and discuss earlier methods proposed to solve them in the next sections. In section 1.2,
we motivate the problem of node classification in homogeneous graphs and describe unsu-
pervised and semi-supervised approaches proposed to solve it. In section 1.3, we describe
the problem of Graph Matching and focus on representation learning approaches for the
inductive setting and matching of entities in different Knowledge Graphs. Moreover, in
section 1.4, we introduce the field of Argument Mining and survey the current state of this
research direction. Finally, in section 1.5, we describe the research questions addressed
in the thesis in more detail and discuss the advantages of proposed approaches in their
context.

2There is a many-to-many relationship between concepts in the data and dimensions in distributed
representation. Each dimension is employed for the description of different concepts, and a combination
of different dimensions describes each concept
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1.1 Preliminaries

Whenever we refer to graph we denote it by G = {V , E}, where V denotes the set of vertices
or nodes with |V| = N and E set of edges with |E| = K. We use A to denote a binary or
weighted adjacency matrix and D is the diagonal matrix with Dii =

∑N
j=0Aij. If nodes or

edges have attributes we denote them by X ∈ RN×d in case of node attributes and edge
attributes are denoted by E ∈ RK×s. We use lowercase letters to denote vectors, e.g. xi
denotes attributes of node i and ei,j attributes of edge between i and j. Nj is used to
denote the neighborhood of the node j, and the definition of a neighborhood depends on
the approach.

1.1.1 Approximated Personalized PageRank

The PageRank algorithm Brin and Page 1998; Page et al. 1999 was developed by the
founders of Google to prioritize the results retrieved by a web search engine for a user
query. The PageRank method’s core assumption is that a web page’s relevance correlates
with its degree of popularity, and more popular websites should be returned first. Therefore
the algorithm analyzes how web pages link to each other and assigns an importance score
to each webpage, describing a probability to be visited by a random surfer, who randomly
clicks on hyperlinks. The algorithm is not restricted to the web search application, and
since the introduction, it was successfully applied to various applications requiring node
importance computation in directed or undirected graphs Gleich 2015. In general, the
vector with the PageRank scores is the solution of the linear system:

pr(α, s) = αs+ (1− α)pr(α, s)W

The transition matrix W , computed as W = 0.5(I + D−1A), is the lazy variant of the
random walk transition matrix, where in each step, the walk is continued or stopped at
the current node with the same probability. The constant α denotes the teleportation
probability; in each step, the random walk can be restarted from one of the starting nodes
with the probability α or continue the walk with the probability (1− α). The vector s in
the equation contains the probability for each node to be the first node in random walk
and, therefore, a teleportation target. The vector s is assigned with the same probability
1
N

for each node, when a global importance score should be computed.
The algorithm known as Personalized PageRank (PPR) computes the relevance of graph

nodes from the point of view of a few starting vertices. The computation of PPR is similar
to PageRank. The main difference is that the vector s is sparse, and the whole teleportation
probability distribution is concentrated only on starting nodes. The resulting PPR vector
score describes the probability of being visited by a random walk when it is started from the
starting nodes. PPR was successfully applied for various tasks on a graph, such as detecting
graph communities Andersen, Chung, and Lang 2006; Kloumann and Kleinberg 2014 or
linking entities recognized in the text to the knowledge base Pershina, He, and Grishman
2015. In this thesis, we use PPR to obtain the single vertex’s relevant neighborhood and
interpret the PPR probability as the neighbors’ relevance score.
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There is a non-zero probability to visit nodes situated in the same connected component
by a random walk, and therefore the PPR is often characterized by long-tail distribution.
However, in most real-life graphs, only a small portion of the graph contains relevant neigh-
borhood for each node Leskovec et al. 2009, and PPR vectors can be well approximated by
sparse vectors Nassar, Kloster, and Gleich 2015. In this thesis, we use the push algorithm
from Andersen, Chung, and Lang 2006 to compute the sparse Approximated Personalized
PageRank (APPR), where the hyperparameter controls the sparsity.

1.1.2 Spectral interpretation

The field of Digital Signal Processing (DSP) has had a significant impact on the devel-
opment of graph-based methods in the last years. A large body of research in DSP is
dedicated to signal representation. The goal is to represent a signal on some new basis
from a pre-specified dictionary Rubinstein, Bruckstein, and Elad 2010, where it can be
analyzed or processed more effectively and efficiently. The signals studied by DSP are usu-
ally temporally or/and spatially distributed or, more generally speaking, are sampled on
regular grids (signals are often represented as functions of time or location). The primary
approach is to transform the signal into the frequency domain by the Fourier Transform
(FT). The FT represents signal by the weighted sum of cosine and sine waves of different
frequencies. E.g. for the 1-dimensional time signal x(t) there is a single weight X(w) in
the frequency domain, which indicates the presence of the corresponding frequency w in
the original signal 3:

x(t) =

∫ ∞

−∞
X(w)e−iwtdt ≈

∞∑

−∞

X(w)e−iwt

While small values of w correspond to the smooth signals, which change slowly over time,
signal with higher frequency changes more rapidly. FT can be used to analyze the signal
spectrum or perform various operations with the signal since there are cheaper operations in
the frequency domain. Afterward, the signal can also be transformed back to the original
domain. The basis sine and cosine functions form an orthogonal basis in the function
space.4

The Laplace Operator or Laplacian ∇2 of a function in Euclidean space denotes the
average difference between the function value at some point and points on the infinitesimal
sphere around it. The FT basis functions are also eigenfunctions 5 of Laplacian and the
corresponding frequencies are the eigenvalues. Based on this fact, the analog of FT is de-
fined on Riemannian Manifolds Canzani 2013 and graphs Shuman et al. 2013; Stankovic,

3By Euler’s formula a complex exponential can be represented as by sum of cosine and sine functions
eiwt = cos(wt) + i ∗ sin(wt).

4 Two functions are called orthogonal if the integral of their product is zero
∫∞
−∞ e−itwneitwmdt =

0, wn 6= wm.
5An eigenfunction of an operator is a function such that the application of an operator on eigenfunction

results in eigenfunction times constant Sherrill 2001
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Dakovic, and Sejdic 2017 to represent signals on manifolds or graph vertices by the com-
bination of eigenvectors of corresponding Laplacian. The Laplacian matrix L = D−A6

can be interpreted as a discrete version of the Laplacian operator. Applied to some signal
X ∈ RN×1 for the node i it results in (LX)i =

∑
j∈Ni

aij(Xi−Xj). The eigendecomposition

of Laplacian can be defined as L = UΛUT , where U is the matrix with the eigenvectors
and Λ is the diagonal matrix with the eigenvalues. Therefore, the FT on a graph is defined
as X̂ = UTX and the signal reconstruction back to vertex domain as X = UX̂. Corre-
spondingly, the filtering operation 7 g(Λ) is defined as Ug(Λ)UTX. A polynomial filter
g(Λ) =

∑K−1
k=0 θkΛ

k is commonly used in the literature Hammond, Vandergheynst, and
Gribonval 2011; Defferrard, Bresson, and Vandergheynst 2016 because it is localized in the
vertex space8. The Laplacian’s eigenvalues can be interpreted as frequencies of the corre-
sponding eigenvectors, smooth signals 9 are mainly mapped to eigenvectors with smallest
eigenvalues Shuman et al. 2013. The Personalized Page Rank (PPR) transition matrix can
be computed from the graph Laplacian using polynomial filters in frequency space. The
corresponding filter amplifies signals mapped to the vectors with small eigenvalues and
suppresses high eigenvalues Klicpera, Weißenberger, and Günnemann 2019.

1.1.3 Message Passing Neural Networks

Graph Neural Networks (GNNs) is a family of models for the representation learning on
graphs. They can be designed to learn representations of nodes, edges, or whole graphs. A
GNN expects an entire graph with associated node features and optional edge features as
input and outputs representations of entities required for the use-case. For the most part,
GNNs are applied to graphs with node features. On the graphs without node attributes,
GNNs can be used with learnable node embeddings10.

A GNN model consists of several GNN layers and output layer(s) dependent on the
application. A typical GNN layer performs feature transformation by a function shared
between nodes and consecutively aggregates transformed features of the node and node’s
neighborhood into a single vector representation. E.g. a single layer of the popular GCN
Kipf and Welling 2016a model is defined as:

H t+1 = ReLU(ÂH tW ) (1.1)

where Â denotes the normalized adjacency matrix with the self-loop11, H t is the matrix
with node representations after layer t, with H0 = X , and W is the matrix with learned

6there is also normalized version is defined as D− 1
2 AD− 1

2 , both versions are used interchangeably
7filtering in frequency domain corresponds to the discounting or amplifying parts of signal associated

with different frequencies.
8since Lk = UΛkUT
9In the vertex domain, the signal is considered smooth if it has similar values at neighboring nodes

10There are some restrictions when using GNN with parametrized embeddings, e.g., it is necessary to
make sure, that all embeddings become gradient updates, cf. 1.2.2

11Â = D̃−
1
2 ÃD̃−

1
2 , with Ã = A+I and D̃ii =

∑
j Ãij
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transformation parameters. This architecture resembles convolutional layer LeCun et al.
1999 with the neighborhood defined by a graph structure instead of proximity on the pixel
grid. Some of the early GNN approaches Bruna et al. 2013; Mikael Henaff 2015; Defferrard,
Bresson, and Vandergheynst 2016; Kipf and Welling 2016a were originally proposed as a
generalization of convolutional networks on graphs, where the main idea is to define the
convolution in the spectral domain. 12 Geometric Deep Learning Bronstein et al. 2017
studies the generalization of convolution to the non-euclidean domains such as graphs or
manifolds.

Another perspective can be seen from the expressing GNN approaches in Message
Passing Neural Networks (MPNN) Gilmer et al. 2017 framework. MPNN is an intuitive
abstraction for the GNN which defines a GNN layer by a few basic operations. It allows
easy comparison of different approaches by comparing the concrete realizations of these
operations. It turned out that MPNN schema provides a practical programming model for
a GNN library Fey and Lenssen 2019. In essence, most of the current GNN approaches
perform following operations in each layer: 13

mt+1
i−>j = M(hti, h

t
j, ei,j),∀i ∈ Nj (1.2)

mt+1
j = Aggr(mt+1

i−>j) (1.3)

ht+1
j = Ut(m

t+1
j , htj) (1.4)

We call vertices with outgoing links senders and nodes with incoming links are denoted
as targets. In the case of undirected graph each edge is represented by two edges in both
directions. The message function M in the equation 1.2 is utilized by each sender node to
create a message. The weights of the function M are shared between nodes, and it expects
sender’s hidden representation hti as input. Optionally, the representation of the target htj
or edge features can also be considered. In the next step, it can be imagined that messages
are sent to the neighbors, and the function Aggr combines all messages for each node to
the single representation. Finally, the shared update function U (1.4) is responsible for the
updating node’s previous vector and outputs the final node representation. For example,
in the GCN model described in equation 1.1, the message function M performs linear
transformation with the weight matrix W . All incoming messages are summed up in the
aggregation step and each message is weighted according to the corresponding entry in the
matrix Â 14. The update function U in the GCN model is an identity function, and it
outputs aggregated message vector as a new node representation.

Comparison of GNN approaches

Meanwhile, a vast number of different GNN approaches is proposed in the literature re-
cently. In the following, we discuss essential ideas by comparing the realizations of MPNN

12According to the Convolution Theorem convolution of two functions can be performed in the Fourier
domain by elementwise product of their transforms. 1.1.2 describes Fourier transformation on graphs

13Note, that we extend original definition to accompany more recent approaches
14in the GCN model the weight for message sent from i to j is

Aij√
DiiDjj
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functions. Note that we include our model presented in chapter 4 to this comparison since
it also can be formulated in the MPNN framework.

Message Function Regarding the message creation and dispatching, there are two main
differences among various approaches. First, it is the type of transformation performed by
the function M . Furthermore, approaches differ in the definition of the neighborhood of
the node.

• Feature Transformation: The majority of approaches create a message by a lin-
ear transformation of node representation from the previous layer, and non-linearity
function is applied after the aggregation step, e.g., Kipf and Welling 2016a; Kipf and
Welling 2016b; Veličković et al. 2017. However, simplified versions demonstrate that
good results can also be achieved without feature transformation Wu et al. 2019a;
Klicpera, Bojchevski, and Günnemann 2018; Thekumparampil et al. 2018. The pos-
sible explanation is that feature propagation reduces the noise alternatively to a
low-pass filter in the frequency domain NT and Maehara 2019. Furthermore, there is
a method utilizing the combination of transformed and original representations Chen
et al. 2020.

• Definition of the neighborhood: In each layer, source nodes send messages to the
neighbors. The majority of the GNN models send messages to the direct neighbors
in each iteration, e.g., Kipf and Welling 2016a; Veličković et al. 2017; Thekumpara-
mpil et al. 2018. The information from remote neighbors flows in consecutive itera-
tions through direct neighbors. However, there are also approaches sending messages
directly to the indirect neighbors Klicpera, Weißenberger, and Günnemann 2019; Def-
ferrard, Bresson, and Vandergheynst 2016; Atwood and Towsley 2016; Thekumpara-
mpil et al. 2018; chapter 4.

Aggregation An aggregation function expects a set of unordered incoming messages
as input and outputs a single vector representation. An important requirement for an
aggregation function is the invariance to permutations15. Following aggregation functions
are applied by different MPNN approaches:

• (Weighted) MEAN: Weighted average is a popular choice for the aggregation function.
Weighting controls the importance of the message for the target node and therefore
many models make use of it to model various inductive biases. In general, it can be
distinguished between following weighting schemes:

– Fixed Weights: Weights stay fixed in the course of model training. E.g. the GCN
model uses weights provided with the data or uses equal weights for unweighted
graphs and decreases the effect of messages from high degree nodes Kipf and
Welling 2016a. Alternatively, methods sending messages to k-hop neighbors

15f(x1, x2, · · · , xn) = f(xπ(1), xπ(2), · · · , xπ(n)) for any permutation π
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directly often use random walk probability for weighting. Therefore, the received
message’s weight is proportional to the probability of visiting the source by a
random walk Atwood and Towsley 2016; Duvenaud et al. 2015.

– Adjustable: Personalized Page Rank (PPR) based methods Klicpera, Bojchevski,
and Günnemann 2018; Klicpera, Weißenberger, and Günnemann 2019; chapter
4 also weight messages according to the random walk probability and weights do
not change in the training process. The special feature of PPR based approaches
is that locality and sparsity of each node’s neighborhood are controlled by tele-
portation probability and approximation hyperparameters. Therefore, the best
hyperparameter setting can be selected using the validation set. In chapter 4, we
present an approach that exploits PPR with different teleportation parameters
in the message passing process and learns how to combine them optimally.

– Attention: Attention-based approaches aim to learn the optimal weight for each
message in each layer. Therefore they utilize an additional function that expects
current representations of sender and target nodes and optionally an embedding
of the edge. The attention function outputs weight for a message, and message
scores for each target node are usually normalized with the softmax function.
Initially, the attention mechanism was proposed for the sequence processing and
it drastically improved results for the machine translation task Bahdanau, Cho,
and Bengio 2014. Nowadays, attention based transformer architecture Vaswani
et al. 2017 became state-of-the art for different types of structured data Brown
et al. 2020; Parmar et al. 2018; Boes and Van hamme 2019. Conceptually,
attention-based graph models Veličković et al. 2017; Thekumparampil et al.
2018 are very similar to transformer architecture. The relational bias is realized
by the restriction that nodes in the graph models are allowed to attend only to
the neighbors in each layer.

– Graph Generation: Graph Generation approaches Elinas, Bonilla, and Tiao
2019; Qasim et al. 2019; Wang et al. 2019; Kazi et al. 2020 learn to generate
a graph with corresponding edge weights and to perform message passing on
it in the same end-to-end training procedure. The goal is to learn unknown
graph structure, although some pre-existing graphs can be used as a prior. The
main difference to attention-based approaches is that they determine weights for
pre-specified edges, whereas Graph Generation approaches first have to decide
which edges exist in the graph. Furthermore, in the case of attention, weights
are recomputed in every layer.

• MAX: MAX function is a popular choice for spatial pooling in convolution networks
and it is also used in GNNs Hamilton, Ying, and Leskovec 2017; Veličković et al.
2019.

• SUM: The usage of MEAN and MAX pooling functions leads to the loss of structural
information such as node degree. Therefore, the SUM aggregator was proposed as
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more powerful aggregation function Xu et al. 2018a; Morris et al. 2019. However,
more expressive models do not necessarily lead to better performance on downstream
tasks Dwivedi et al. 2020 and have worse generalization property Veličković et al.
2019. To remedy this shortcomings it was proposed to use MEAN scaled by degree-
scaler function instead of SUM Corso et al. 2020. Degree-scaler is some injective
function that expects a node degree as input.

• LSTM: Although LSTM method is not permutation invariant it was proposed to use
it on random permutation of messages as an more expressive aggregation function
Hamilton, Ying, and Leskovec 2017

• Set Embedding: The methods proposed for the learning of invariant set representa-
tions are directly applicable to aggregation problem in GNNs. DeepSet Zaheer et al.
2017 proves that the function of the form f(X) = MLPθ(

∑
xi∈XMLPδ(xi)) for the

set X is universal set approximator. Another approach for learning of set represen-
tations called Janossy Pooling uses more expressive permutation-sensitive functions
and approximates the average of function outputs, when it is applied on all possible
reorderings Murphy et al. 2018.

• Combination: There are approaches using combinations of aggregation functions.
According to Dehmamy, Barabási, and Yu 2019 combination of MEAN and SUM
aggregators leads to superior performance for distinguishing between different graph
models. In Corso et al. 2020 authors further combine different aggregation functions
with degree scalers. Another combination approach is presented in Li et al. 2020,
where softmax with temperature is applied dimensions-wise to obtain weight for each
dimension of each neighbor. It can be seen as an interpolation between MAX and
MEAN aggregators, where dependent on the temperature, the resulting aggregation
function is closer to one of them.

Update The GNN layer’s output is produced by an update function that computes node
representation from aggregated messages and node representation from the previous layer.
An important distinguishing feature of different approaches is how the representation of a
target node is integrated into the final representation:

• Self Link: Node sends a message to itself, and it is the same message as sent to
the neighbors. In this case identity is often used as update function and the vector
with aggregated messages becomes new node representation Kipf and Welling 2016a;
Veličković et al. 2017.

• Extra treatment: The common procedure to make the node’s information more
present in the final layer output is to use extra transformation for the own repre-
sentation. Transformed node representation can be added to the representation of
aggregated messages Li et al. 2020; Xu et al. 2018a; Morris et al. 2019; Cangea et al.
2018; Duvenaud et al. 2015. Note, that such an update resembles skip-connection, a
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technique for the training of deep CNN networks He et al. 201616. Another possible
update is concatenation Hamilton, Ying, and Leskovec 2017; Wang et al. 2019 with
the optional transformation of the resulting vector, e.g., to reduce the dimensional-
ity. An alternative update approach utilizes a sequence model (e.g., LSTM) as an
update function and to share function parameters between nodes Li et al. 2016. The
message vector in each layer is used as the input to the sequence function, and hidden
representation is taken as a node output.

16There are also other types of skip-connections in GNNs. E.g. skip connection to the representation
of the first layer Chen et al. 2020, or all previous layers Fey 2019. An alternative to skip-connection is to
aggregate representations from all layers for the final representation Xu et al. 2018b
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1.2 Node Classification

Various practical problems can be addressed by representing the data as a graph and for-
mulating a task as a node classification. For example, a social network can be modeled
as a graph, where nodes represent people, and edges indicate friendships. In such a so-
cial graph, class labels may come in many forms: demographic data, personal interests,
or even detection of misbehavior Bhagat, Cormode, and Muthukrishnan 2011. Another
example is predicting protein function based on its interaction with other proteins in bio-
logical networks Zitnik and Leskovec 2017. This section discusses methods addressing node
classification on homogeneous networks, where nodes may have only class label attributes.
Therefore, the algorithm has access only to the interaction information and labels for a
subset of labeled nodes.

In the following, we present two lines of work for the node classification. First, we
discuss the unsupervised learning of node embeddings with different inductive biases. It
is a two-step approach. In the first step, an embedding is trained for each node in the
graph using some auxiliary tasks. Afterward, these embeddings are used as input to the
classification model. In the second part of the section, we discuss models learning label
assignment directly, either by propagating label information across the graph or end-to-end
learning.

1.2.1 Unsupervised Learning Graphs

Unsupervised Representation Learning aims to learn useful representations of entities of
interest without signal provided by humans for the final task of interest. It is also often
called self-supervised learning since the learning procedure is often similar to supervised
learning and the major difference is that the learning signal is derived automatically. Thus,
the main objective is often to find a suitable task which provides useful supervision and
enough training data. It often requires expertise in the corresponding domain. For exam-
ple, state-of-the-art approaches for unsupervised learning of image representations aim to
learn consistent representations of the same image across different patches or augmenta-
tions Hjelm et al. 2018; Chen et al. 2020. It turned out that in the domain of Natural
Language Processing (NLP), the learning with simple Language Modeling task results in
powerful models which generalize well to other tasks with little or even without task-specific
supervision Devlin et al. 2018; Radford et al. 2019. In the graph domain, there are two
important paradigms for the unsupervised learning of the node representations.

Homophily The first family of approaches is based on the homophily assumption. Ho-
mophily is the phenomena observed in many real-life networks McPherson, Smith-Lovin,
and Cook 2001; Himelboim et al. 2016 that nodes modeling similar entities tend to con-
nect to each other. Therefore, homophily based approaches (section 2) Perozzi, Al-Rfou,
and Skiena 2014; Grover and Leskovec 2016; Tang et al. 2015; Cao, Lu, and Xu 2015;
Wang, Cui, and Zhu 2016; Cao, Lu, and Xu 2016; Abu-El-Haija et al. 2017; Tsitsulin et al.
2018 aim to exploit this property and try to create similar (smooth) representations in the
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embedding space for the nodes closely connected in the graph. The general procedure in
most approaches is the same. In the first step, the method determines each node’s rele-
vant neighborhood, and the retrieved neighborhood defines the context of the node. The
context determines the position of the node representation relative to other nodes in the
embedding space. Therefore, the key distinctive features of different approaches are the
specification of neighborhood and assignment of relevance to the single neighbors. There
are approaches which take only neighbors from the first k hops into account and consider
neighbors from the same hop neighborhood as equally important, e.g., Wang, Cui, and
Zhu 2016. The hop neighborhood denotes the neighbors with the same shortest-path dis-
tance, e.g., 1-hop are direct neighbors, and 2-hop are neighbors of the neighbors, not in
the 1-hop of the target node itself. Another family of methods consists of the random-walk
approaches Perozzi, Al-Rfou, and Skiena 2014; Grover and Leskovec 2016; Abu-El-Haija
et al. 2017; Cao, Lu, and Xu 2015; Cao, Lu, and Xu 2016 which rely on different types of
random-walks or directly compute random walk probabilities to obtain the context of the
target node. Therefore, the neighbor’s relevance is determined by the probability of visiting
it when a random-walk is started from the target node. Although these methods can do
more fine-granular prioritization of neighbors, as we demonstrate in chapter 2, they have
the common problem that non-relevant neighbors are heavily taken into consideration. We
show how this problem can be addressed by using Approximated Page Rank.

Each node’s context can be depicted in the node context co-occurrence matrix, where
each value denotes the importance of the context for the target node. The graph adjacency
matrix can also be seen as a co-occurrence matrix Ahmed et al. 2013, where the edge weight
denotes the importance. More advanced methods use powers of the Laplacian Cao, Lu, and
Xu 2015; Qiu et al. 2018 or counts of random-walk visits Abu-El-Haija et al. 2017. Some
methods explicitly factorize the co-occurrence matrix into the product of representations of
target nodes and context embeddings to learn the embeddings Cao, Lu, and Xu 2015; Abu-
El-Haija et al. 2017; Qiu et al. 2018. An alternative approach is negative sampling Mikolov
and Dean 2013; Mikolov et al. 2013, a variant of noise-contrastive estimation Gutmann
and Hyvärinen 2012. Instead of considering the context’s aggregated importance score,
the learning algorithm with negative sampling processes every single co-occurrence of a
target node and its context as a single training instance. A single co-occurrence is, e.g.,
a visit of a context node by a random walk. Given a pair of target and context nodes
with their corresponding embeddings, the training algorithm maximizes the dot product
between them. The algorithm selects several negative contexts and minimizes the similarity
between their representations and the vector of the target node to avoid the degenerate
solution:

log σ(wTt w
′
c) +

k∑

j=1

Ej∼Pn log σ(−wTt w′j)

the wt is the embedding of the target node, w′c of the context neighbor, w′j of the negative
sample and σ denotes the sigmoid activation. It is noteworthy that learning with negative
sampling implicitly factorizes the co-occurrence matrix Levy and Goldberg 2014; Qiu et al.
2018.
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Implicit or explicit factorization of the co-occurrence matrix results in two matrices.
Let the matrix Wt contain the representations of the target nodes and the Wc the repre-
sentations of context nodes. In the case of parameter sharing, if Wc =: Wt, the training
goal is the similarity of the target node representation to the representation of its contexts.
If there is an extra matrix for the representations of contexts Wc 6=: Wt, the relationship
between two target nodes depends on the similarity of their contexts.

Besides the previously discussed shallow architectures, some methods use autoencoders
with multiple layers with non-linearities Cao, Lu, and Xu 2016; Wang, Cui, and Zhu 2016.
The autoencoder is trained to reconstruct the representation of the node co-occurrence
vector.

Structural Roles Apart from the homophily assumption, another potentially powerful
signal for the learning of node representations is the information about roles of the nodes in
the graph. Intuitively, nodes having the same or similar topological or structural properties
have similar roles and do not have to reside close to each other in the graph. In some appli-
cations, nodes modeling entities with the same function have a similar role in the network
Kleinberg 1999; Scripps, Tan, and Esfahanian 2007; Luczkovich et al. 2003. Earlier work in
the field mainly deals with the role discovery or the division of nodes into classes with the
same roles. Over time, there were different suggestions for defining structural properties,
and to what extent these properties of nodes have to be equivalent or similar for the nodes
to belong to the same class. Previous works formulate different types of role equivalences,
which differ in how strict the definition is Rossi and Ahmed 2014. For example, structural
equivalence Lorrain and White 1971 requires nodes from the same class to be connected to
precisely the same neighbors 17. On the other hand, the stochastically equivalent Holland
and Leinhardt 1981 nodes have a similar probability distribution of roles in the immediate
neighborhood. Later approaches further relax the equivalence requirement and rely on the
structural similarity Jin, Lee, and Hong 2011; Jin, Lee, and Li 2014 instead. Therefore they
use hand-crafted structural feature vectors and assign nodes to the same class if they have
similar features using, e.g., clustering or different types of matrix factorization. In more
recent work the structural node descriptors were used for node classification and matching
of graphs Bhattacharya and Getoor 2007; Henderson et al. 2011; Henderson et al. 2012;
Gilpin, Eliassi-Rad, and Davidson 2013; Ribeiro, Saverese, and Figueiredo 2017; Donnat
et al. 2018; Heimann et al. 2018. As we demonstrate in chapter 3 suitable node structural
descriptors can also be used to characterize whole graphs. We aggregate role descriptors
to the single graph representation and show that the resulting representation can be used
for the graph classification.

The commonly used structural descriptors mostly describe a local topology of the node’s
local neighborhood. Many approaches use statistics about the node’s degree and its local
neighbors to create structural node embeddings Henderson et al. 2011; Henderson et al.
2012; Gilpin, Eliassi-Rad, and Davidson 2013; Ribeiro, Saverese, and Figueiredo 2017; Tu
et al. 2018. Another exciting direction is the characteristic of the signal diffusion in the

17what contradicts the expectation that members of the same class do not have to be close to each other
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local neighborhood. For example, the feature vector computed by GraphWave algorithm
Donnat et al. 2018 describes the effect of filtering with the heat kernel in the spectral
domain.

1.2.2 Semi-Supervised Learning on Graphs

Supervised learning describes a process of learning with a labeled dataset, where labels rep-
resent a target for the task of interest. The semi-supervised learning denotes the setting
where unlabeled instances are additionally used in the learning process. Node classifi-
cation often comes up together with semi-supervised learning. Some node classification
approaches have initially been proposed for semi-supervised learning, where the node clas-
sification is executed on the k-nn similarity graph Joachims 2003. However, the general
node classification task, where the only fraction of labels is known, can also be consid-
ered semi-supervised since unlabeled nodes are also used in the training process, e.g., to
propagate label information of the neighbors.

Collective inference with relational classification One line of work for the semi-
supervised node classification can be described by the combination of relational classifica-
tion models with collective inference Macskassy and Provost 2007. In the first step, the
relational classification model is trained based on the existing labels. Relational classifica-
tion models predict class labels based on the labels in the node’s immediate neighborhood.
In the simplest case, under the homophily assumption, the most frequent label in the neigh-
borhood is assigned to the node under consideration Macskassy and Provost 2003. More
advanced approaches aggregate labels in the local neighborhood and use them as input to
classification model Lu and Getoor 2003; Chakrabarti, Dom, and Indyk 1998. Alterna-
tively, instead of learning a classification model, each class is represented by an average
vector of label counts in the local neighborhood. Unlabeled nodes compare their label
counts vector with the class representations, and the label of the class with the highest
similarity is assigned to the node Perlich and Provost 2003; Macskassy and Provost 2007.
Our approach presented in chapter 4 can also be considered as an instance of relational
classification. In contrast to previous approaches, our method considers neighborhoods
of various extensions and can also aggregate information from multiple neighborhoods.
Therefore our approach is less affected by the problem when labeled nodes have no or very
few neighborhood labels.

Collective inference describes the procedure when multiple instances are classified jointly,
and predicted labels influence further predictions Jensen, Neville, and Gallagher 2004.
When combined with relational classifiers, the relational classification model is first trained
using known labels. In the second step, the same model is applied iteratively without re-
training until the label predictions for the unlabeled nodes stabilizes. Approaches based
on Gibbs Sampling Geman and Geman 1984 define random ordering of unlabeled nodes
and sample a label from the predicted label distribution Sen et al. 2008. The neighbors
utilize sampled labels as input to the classification model for the next predictions. Iterative
classification Neville and Jensen 2000; Sen et al. 2008; Lu and Getoor 2003 works similarly
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to the Gibbs Sampling; the main difference is that a class with the highest probability
is taken directly instead of sampling. In contrast, the Relaxation Labeling Chakrabarti,
Dom, and Indyk 1998 uses labels predicted in the previous iteration as input to the clas-
sifier, and labels predicted in the current iteration are not used until the next iteration.
Note that collective inference methods require multiple hundred iterations and therefore
are computationally expensive. Furthermore, the convergence is not always guaranteed; it
was observed that they also do not always converge in the praxis Macskassy and Provost
2007. The collective inference approaches are necessary with relational classification mod-
els using only direct neighbors to make decisions for the nodes without labeled neighbors.
In our approach in chapter 4, it is possible to parametrize the neighborhood extension.
By selecting wide enough neighborhoods, it is possible to make sure that each node has
labeled neighbors.

Label Propagation The label spreading/propagation (LP) Zhu and Ghahramani 2002;
Zhu, Ghahramani, and Lafferty 2003; Zhou et al. 2004; Peel 2017; Wang, Tu, and Tsotsos
2013 and loopy belief propagation methods Pearl 1982; Yedidia, Freeman, and Weiss 2003;
Koutra et al. 2011; Gatterbauer et al. 2015 can be formulated in the same message propa-
gation framework. Each node maintains the ’belief’ about the own label distribution and
updates it iteratively based on the messages received from the neighbors. Iterations are
executed until convergence is reached and the ’beliefs’ aren’t changing significantly.

LP methods mostly rely on the homophily assumption and, in the end, assign the
most popular label in the local neighborhood. The main difference between different LP
approaches is the assembling and normalization of a graph propagation matrix. In each
iteration, the propagation matrix is multiplied with the label matrix. Therefore all mes-
sages are summed up, and each neighbor’s contribution corresponds to the weight in the
propagation matrix.

The Belief Propagation (BP) algorithm also uses message passing between neighbors
and can be applied when the homophily assumption does not hold. It is also known as
sum-product and it is a popular algorithm for the inference18 in different types of prob-
abilistic graphical models Kschischang, Frey, and Loeliger 2001 19. BP algorithms avoid
the expensive enumeration 20 of all possible states by the utilization of conditional in-
dependence in the graphical model. Therefore the graphical model is often transformed
into the factor graph Yedidia, Freeman, and Weiss 2003, which represents the joint dis-
tribution factorization. Nodes in the factor graph model variables and factor function on
each edge define the joint probability of connected nodes’ variables. In each iteration, all
nodes send a message to the neighbors. The message indicates the ’belief’ of the sender
node about the receiver node’s state. It depends on the sender’s belief about its state and

18Inference is the process of computing marginal distribution for not observed random variables.
19Graphical model is a graph describing conditional dependence between random variables, where ran-

dom variables are modeled by nodes and dependencies by edges.
20By the law of total probability the naive approach to compute a probability for a random variable to

take on a particular value is, to sum up, the probabilities of all possible states, where the variable has this
value.
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factor function defined between the sender and receiver. Each receiver node multiplies all
incoming messages with its own previous belief about its state to update it. BP computes
exact marginal probabilities on the trees, and on the graphs only the approximation, the
convergence is not guaranteed. The adaptation to the node classification scenario is trivial
Sen et al. 2008. The BP algorithm expects a matrix with pairwise label affinities as input
to model as an analog to the pairwise joint distribution. The message is built using local
’belief’ about own label distribution and information about the labels’ relationship. 21

The main restriction of the label propagation approaches is that nodes have to be
connected in the same connected component to exchange information. Nodes in differ-
ent connected components cannot benefit from each other. Moreover, the methods are
transductive; for the new nodes, the algorithms have to be executed from scratch.

Message-Passing Neural Networks Semi-supervised node classification on graphs
with node attributes is popular task for MPNNs Hu et al. 2020. In non-attributed graphs,
where only target labels of nodes are known, MPNN can utilize the learnable parameters
as initial node embeddings. However, in this case, the node embedding receives gradient
updates only if the node itself is labeled or its message directly or indirectly reaches the
labeled node used to minimize the loss in the training process. Otherwise, if the node em-
bedding does not affect some node’s output representation used for loss computation, its
initial embedding is not updated. Due to the oversmoothing 22 problem, typical MPNNs
have a couple of layers. Therefore, each node takes only neighbors from the first few hops
into consideration. Depending on the graph’s structure, the number of labels, and how
well the labeled nodes are distributed across the graph, some nodes can become no or not
enough updates to learn something useful.

The MPNN models can also be applied in the inductive setting. The embedding of a
newly connected node can be initialized using some aggregation of neighbor representations
Hamilton, Ying, and Leskovec 2017.

21The label affinity vector is multiplied with the sender’s label distribution to compute the belief about
each receiver label. Therefore this step can be seen as partial marginalization.

22Oversmoothing describes the phenomenon when an increasing number of layers leads to similar output
node representations for all nodes in the same connected component Li et al. 2019b
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1.3 Graph Matching

The problem of Graph Matching (GM) or finding the correspondence between nodes of
different graphs is important for spatial applications (chapter 6), various tasks in computer
vision Guo et al. 2018; Iqbal, Milan, and Gall 2017, bioinformatics Singh, Xu, and Berger
2008, analysis of social networks Ahmad and Ali 2019 or transferring informations between
different knowledge bases. For example, in computer vision applications, nodes often model
detected objects, and the goal is to detect the same objects in different scenes. GM
approaches use the fact that the objects’ positions relative to each other are similar in
different scenes and represent scenes by graphs, where edges model proximity between
objects.

The procedure of graph matching usually involves two steps. First, an affinity ma-
trix, which encodes similarities between elements of different graphs, needs to be defined.
An affinity matrix encodes similarities between nodes, edges, or even higher-order struc-
tures such as hypergraphs Chertok and Keller 2010; Zass and Shashua 2008. Given the
affinity matrix, the assignment procedure searches for the node-to-node correspondence,
which maximizes the sum of similarities between matched elements, where the matching
depends on the assignment of the nodes. For example the solution for the Lawler Quadratic
Assignment Problem Lawler 1963 for two graphs G1 = {V1, E1} and G2 = {V2, E2} with
|V1| = n, |V2| = m and the affinity matrix K ∈ Rmn×mn is a node correspondence matrix
P ∈ {0, 1}m×n which maximizes the following quadratic form:

max
P

vector(P )TKvector(P )

The matrix K, known as the affinity matrix of second-order, encodes node-to-node simi-
larities by diagonal elements and affinities between edges in two graphs by the rest of the
matrix. The assignment solution is often subject to one-to-(at most)one constraint.

In the following, we review two lines of work, where the optimal affinity matrix for
the problem of graph matching is learned end-to-end. In the first setting, which we call
inductive graph matching, we are given a dataset of graph pairs with the known node
mappings between graphs, and the goal is to learn a model which can decide about node
matchings for the new graph pairs which were not seen by the model in the training
procedure. In another line of work known as Entity Alignment the aim is to learn a model
that can match nodes of two given Knowledge Graphs (KGs) in the transductive semi-
supervised setting. Given the fraction of mappings between two KGs, the goal is to imply
the rest of the matchings.

Note that there is a family of approaches for graph matching dealing with the node
matching assignment based on a predefined affinity matrix. It is still an active area of
research Gold and Rangarajan 1996; Leordeanu and Hebert 2005; Cho, Lee, and Lee 2010;
Bernard, Theobalt, and Moeller 2018; Yu et al. 2018; Wang et al. 2020, and these methods
can be used complementary to the approaches learning an affinity matrix at the inference
time.
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1.3.1 Inductive Graph Matching

Feature learning The starting point for the learning of an optimal affinity matrix is the
definition of the node and edge features. Earlier approaches for computer vision tasks use
hand-crafted features Caetano et al. 2009; Leordeanu, Sukthankar, and Hebert 2012; Cho,
Alahari, and Ponce 2013 and learn the importance of each feature for the optimal affinity
or distance score. More recent works apply neural networks for the learning of optimal
feature representations. Most works follow the Siamese architecture Bromley et al. 1994,
where an identical network is used to extract features for nodes of both graphs. For
example Convolutional Neural Networks (CNN)s are employed for the feature extraction
Zanfir and Sminchisescu 2018; Wang, Yan, and Yang 2019; Yu et al. 2019; Fey et al. 2020
in computer vision applications. When visual features are not available, coordinates of the
corresponding nodes on the image Zhang and Lee 2019 are used as input to the MLP. In
the case of not-attributed graphs, the degree of the nodes or sum of degrees in its k-hop
degree neighborhood were successfully used as input to the neural network Nowak et al.
2017; Nowak et al. 2018.

Models One of the first end-to-end learning approaches Zanfir and Sminchisescu 2018
decomposes the affinity matrix of second-order analogously to Zhou and Torre 2012 into a
product of node and edge representations, which are computed by CNN. Later approaches
employ Message Passing Networks (MPNN) on the top of feature extractor Nowak et al.
2018; Wang, Yan, and Yang 2019; Yu et al. 2019; Fey et al. 2020. The basic architecture,
which was first proposed in Nowak et al. 2018, is similar in most methods using MPNNs.
The Siamese MPNN outputs the nodes’ representations, and the dot product of node
representations computes the affinity matrix. The similarity matrix is often normalized
by (few iterations of) Sinkhorn procedure Sinkhorn 1964; Knight 2008, which makes the
affinity matrix double stochastic.

Graph Structure The graphs for the matchings are usually provided by the application.
For most computer vision tasks, the graph provides information about the nodes’ spatial
positions relative to each other. Therefore, the representation of the node outputted by
MPNN aggregates the node features with the features of other nodes in its spatial proximity.
An unusual alternative is proposed in Wang, Yan, and Yang 2019, where in each layer,
a similarity matrix between node representations of both graphs, is used as adjacency.
Therefore, each node receives information from its most similar nodes in another graph in
each layer. Later the architecture was extended to the alternating application of similarity
and spatial adjacency matrices Yu et al. 2019.

Loss Zanfir and Sminchisescu 2018 proposes displacement loss, which uses the model to
map each node’s position from one of the graphs to the domain of other graphs and mini-
mizes the distance to the ground truth matching. The other domain position is computed
as the weighted mean of nodes in other graphs, where matching probabilities in the affinity
matrix computed by the model are used as weights. Therefore, the displacement loss can
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only be used in the scenarios where nodes have spatial coordinates, or there is a meaning-
ful distance function for the nodes of the same graphs. Other works Nowak et al. 2018;
Wang, Yan, and Yang 2019; Yu et al. 2019; Fey et al. 2020 use more general applicable
binary cross-entropy, which is applied element-wise on the normalized affinity matrix. Yu
et al. 2019 additionally proposes the approach called hungarian attention, where the loss is
applied on the part of the affinity matrix. In each forward path, the hungarian algorithm
Kuhn 1955 computes matchings based on the affinity matrix. The wrong matches assigned
by the Hungarian algorithm are used as negative instances for the loss computation, while
all true matchings are still used as positives.

1.3.2 Entity Alignment

Knowledge Graphs (KG)s have their origin in the Semantic Web, and the main goal is to
organize information so that it can be read and interpreted to some extent by machines
Lenat and Feigenbaum 1992. This capability enables the utilization of information from
KGs by different computer-supported applications requiring access to knowledge. KGs are
used to retrieve information about entities in search applications Singhal 2012 or answer
natural language queries Zhang et al. 2017; Saxena, Tripathi, and Talukdar 2020, in various
biological applications such as drug discovery Mohamed, Nounu, and Nováček 2019 or used
as a knowledge base for the conversational bots Tian et al. 2020.

A KG is a knowledge base where information is structured in the form of triple facts.
The core of each KG is formed by real-world entities, which are real-world animate and
inanimate objects described by the facts. Each fact is a single statement about some entity
expressed in the form of triple subject-predicate-object. A subject is always an entity, and
if the predicate is a relation, the fact describes a relationship between two entities. There
are also attribute predicates, and in this case, an object in the fact is a value of primitive
data type Lin, Liu, and Sun 2016. Each entity and relation in KG is uniquely identifiable
by a URI, and therefore the knowledge base in the form of triples can be represented as
a heterogeneous graph. Each entity in the graph is modeled by a node, attributes by
node attributes, and for each relation fact, there is an edge between two nodes with the
corresponding type. The resulting relation graph can be represented by a three-dimensional
tensor of dimensionality r × N×N, where r is number of relation types and N number of
entities.

The completeness of information in KG is an essential factor for applications relying
on it. Today KGs are employed by the largest technology companies Noy et al. 2019
and already contain hundreds of billions of facts about hundreds of billions of entities
extracted from various data sources Dong et al. 2014. There are different approaches to
complete KG with new facts. Link Prediction, also known as reasoning, is the process of
inferring new facts based on the previous information in Knowledge Graph. Representation
Learning approaches for Link Prediction Nickel et al. 2015 learn embeddings of entities and
relations, and the probability of the new triple can be estimated using the combination of
corresponding embeddings. Another family of representation learning approaches, known
as Entity Alignment (EA), enables information exchange between different KG by matching



40 1. Introduction

their entities. The basic assumption behind all Entity Alignment methods is that the
significant fraction of facts in both KG is the same. Therefore, the high-level idea is to use
facts in each KG to organize representations of entities and optionally relations in some
vector space. An important feature of different approaches is the information utilized by
the model for the EA task. All approaches use the KG structure and differ in how and
whether at all other knowledge is used. The main inconsistencies can be observed for the
usage of the following information:

• Attributes: Attributes are often very sparse, and usually, the utilization of the at-
tributes only slightly improves the matching result, and therefore, they are not used
by the majority of the methods.

• Entity Names: Although entity names can also be considered attributes, they often
become different treatment. Names provide a powerful signal in all used benchmarks
(section 10), and often, methods exploiting it are compared to approaches that do
not use entities’ names for the matching.

• Types of relation: Different edge types are a distinctive feature of KGs. However,
many methods aggregate them and create a homogeneous graph.

If KGs share similar information, the representation of each of two aligned entities is
positioned similarly relative to other elements from the own knowledge base in the vector
space. Since the training procedure forces aligned entities from the training set to end up
close to each other in the common vector space, similar relationships lead to close proximity
for the rest of the aligned entities. In the following, we discuss two types of models for the
EA task.

Link Prediction Models One family of approaches for EA makes use of Link Prediction
(LP) model to create meaningful embeddings of entities and relations Hao et al. 2016; Sun,
Hu, and Li 2017; Chen et al. 2017; Sun et al. 2018; Pei et al. 2019; Qu, Tang, and Bengio
2019; Chen et al. 2018; Lin et al. 2019; Trisedya, Qi, and Zhang 2019; Shi and Xiao
2019; Zhang et al. 2019. While optimizing for the LP task, methods have an additional
loss, which forces aligned entities to be close to each other in some shared vector space.
Most of these methods use TransE model Bordes et al. 2013, which models a relation
as translation in embedding space and minimizes the distance between the representation
of the tail entity and sum of head and relation vectors. There is also a method using a
combination of more powerful models instead of TransE, and evaluation shows that it leads
to better performance Shi and Xiao 2019. Likely, the translation model cannot handle all
relation patterns occurring in typical KG. An example of such a pattern is when the same
entity is related to multiple entities by the same relation. In this case, the method forces
these entities to have an equal representation. A similar effect can be observed with several
different relations between the same pair of entities.

The typical procedure to represent elements of both graphs in the same vector space is to
define them in two distinct spaces and to learn an additional linear transformation to map
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between them. Besides, more recent approaches utilize the adversarial learning framework
Goodfellow et al. 2014 to improve the overlap of the original and translated representations.
Therefore, in combination with an extra discriminator model, an additional loss function
provides feedback for the function responsible for the mapping between different embedding
spaces. For instance Lin et al. 2019 aims to make original and mapped embeddings,
and Qu, Tang, and Bengio 2019 triples formed by these embeddings non-distinguishable.
There are also works adapting cycle loss Zhu et al. 2017 for the task of EA Pei et al.
2019; Lin et al. 2019 analogously to its usage for the alignment of word embeddings from
different vocabularies Conneau et al. 2017. After mapping to another space, an embedding
is mapped back to the original space, and the loss minimizes the distance to the original
representation. There are also other possibilities to represent embedding in the joint space,
e.g., to learn a translation vector instead of linear transformation Chen et al. 2017 or merge
both graphs based on the provided alignments and to learn embeddings for the merged
graph Sun, Hu, and Li 2017.

To make use of attributes, LP approaches utilize additional models representing entities
based on attributes or names Zhang et al. 2019; Chen et al. 2018. These models are trained
with the own loss function and the final affinity matrix is a combination of similarities
produced by LP and attribute models.

Message Passing Networks Another line of work utilizes Message Passing Networks
(MPNN) to summarize the relevant facts in representations of the entities Wang et al.
2018; Sun et al. 2019; Zhu et al. 2019; Cao et al. 2019; Li et al. 2019a; Wu et al. 2019b; Wu
et al. 2019c; Mao et al. 2020; Xu et al. 2019; Fey et al. 2020. MPNNs are used in Siamese
architecture, where the same model is applied to both KGs and outputs representations
of the entities. Models are trained end-to-end and learn to maximize the similarity of
representations of aligned entities in the common vector space.

The vital distinction among MPNN based methods is whether information about entity
names is taken into account. If the methods do not consider entities’ names, the initial
embedding of the node representing an entity is randomly initialized and is updated in
the course of training Wang et al. 2018; Sun et al. 2019; Zhu et al. 2019; Cao et al. 2019;
Mao et al. 2020; Li et al. 2019a. In contrast, models employing entity names utilize word
embeddings for the initial representation of the entities Xu et al. 2019; Fey et al. 2020;
Wu et al. 2019b; Wu et al. 2019c. These initial representations are either used to initialize
trainable embeddings or as fixed node features and stay unchanged during the training.
Since KGs for the matching are defined in different languages in many benchmark datasets,
models employ cross-lingual embeddings Conneau et al. 2017; Feng et al. 2020 or translate
names from one of the KGs to another language with the external translation tool. When
using entity names, the matching zero-shot performance is better than most methods’
performance using random initialization. The zero-shot performance is computed using
the affinity matrix representing the similarity of the entity names. The entity names are
represented by word embeddings, which were pre-trained using some independent tasks.
Therefore the distinction between methods utilizing random initialization and methods
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using entity names is essential for analyzing progress in the field.
Most of the MPNN based approaches do not take information about different types of

relations into account. KG tensor is often aggregated to the binary adjacency matrix in-
dicating, whether there is at least one connection between two entities. Other approaches
use relations to define edge weights by some heuristic, which takes, e.g., the number of
relations between entities and their popularity in the graph into account Wang et al. 2018.
Intuitively, methods able to learn analogy of relations should enable more fine-granular
comparison and better matching. There are already a few MPNN based approaches con-
sidering different relations in the message passing process. In Mao et al. 2020, authors
propose to concatenate the mean of representations of adjoining relations to the entity
embedding. An alternative approach is proposed in Wu et al. 2019b, where nodes model
relations and message passing is additionally performed on the resulting dual graph.
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1.4 Argument Mining

Argumentation is the process of identification and comparison of reasons supporting or
opposing some standpoint. The main goal is to provide support by forming an opinion
about a controversial topic or resolving differences in viewpoints. Various aspects of ar-
gumentation are researched by different disciplines, such as logic, philosophy, psychology,
cognitive science, or linguistics. Argument Mining (AM), also known as Computational
Argumentation is a subfield of computer science, which studies the automatic detection
and retrieval of relevant argumentative structures. In contrast to sentiment analysis or
opinion mining, which aim to recognize the view of a writer on some topic, AM’s goal is
to determine why someone may come up with an opinion. The main tasks of AM are the
detection of argumentative components in unstructured text, estimation of their relevance,
identification of relationships between components of a single argument or how different
arguments interact with each other Cabrio and Villata 2018; Lawrence and Reed 2020.
These tasks are often directly formulated as Machine Learning (ML) problems, or ML
approaches are employed in intermediate steps. ML methods can also be combined with
reasoning approaches for more advanced solutions Galassi et al. 2020.

As AM is a relatively new field, novel argument structures or AM applications in new
domains are actively investigated. However, there is no uniform view on the definition of
the argument, and the current state in argumentation theory is that there are competing
views on different aspects of argumentation Van Eemeren, Grootendorst, and Kruiger
2019; Habernal and Gurevych 2017. Depending on the domain and task requirements,
there are various possibilities to model the argumentative structure. From the application
perspective AM approaches can be categorized based on the types of texts they are applied
to. One speaks about Discourse Level AM, when the source documents are inherently
argumentative and common argumentative structure can be assumed. Examples include
legal documents Palau and Moens 2009, persuasive essays Stab and Gurevych 2017; Eger,
Daxenberger, and Gurevych 2017; Nguyen and Litman 2018, political debates Naderi and
Hirst 2015; Lippi and Torroni 2016a or research articles Teufel, Siddharthan, and Batchelor
2009. On the other hand, Information-Seeking AM aims to analyze arguments in texts,
which are not necessarily argumentative by nature. Examples for that are Wikipedia
articles Levy et al. 2014; Rinott et al. 2015, internet blogs, news, forum posts Habernal,
Eckle-Kohler, and Gurevych 2014; Habernal and Gurevych 2017; Ein-Dor et al. 2020 or any
types of texts found online Stab, Miller, and Gurevych 2018. Furthermore, in chapter 12, we
demonstrate AM’s usefulness for analyzing peer-reviews for scientific publications. When
introducing a new task in AM, the usual approach is to perform an annotation study with
several annotators and analyze the meaningfulness of the new task based on the agreement
among annotators. When annotation agreement is good enough, the proposed task can be
automated, e.g., by applying a ML model. Although a lot of effort is put into clarification
and formalization of definitions, argumentativeness remains a subjective matter, and AM
tasks are characterized by lower agreement scores than in other NLP areas Habernal and
Gurevych 2017.
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Argument Detection A widely accepted view, known as structured Lippi and Torroni
2016b or micro-level Bentahar, Moulin, and Bélanger 2010 argumentation in the argu-
mentation theory, is that an argument comprises multiple components which interact with
each other. Consequently, the parts of the same argument are scattered across the text,
and an AM approach is responsible for identifying argumentative components in the text,
their classification, and establishing relationships. The argument structure is formalized
in argument scheme, which defines argumentative components, functions, and interactions
between them. For instance, the well known Toulmin scheme Toulmin 1958 describes an
argument as subsumption of argumentative components of six types. However, argumen-
tation structure in many types of documents does not explicitly follow Toulmin model
Newman and Marshall 1991. Therefore, various schemas were proposed in the literature
Lawrence and Reed 2020, whereas, over time, it has become apparent that argumentation
across multiple text types has a simple structure. As a result, a schema comprising claim
and evidence components became popular in the recent related work, e.g. Levy et al. 2014;
Habernal, Eckle-Kohler, and Gurevych 2014; Rinott et al. 2015; Habernal, Eckle-Kohler,
and Gurevych 2014; Ein-Dor et al. 2020. Claim, in some works also called a motion, is
a statement about a topic with a clear stance an argument wants to prove, e.g. ”We
should ban the Nuclear Power”. Evidence, also known as premise, provides explicit justi-
fication for the supporting or attacking the claim, e.g. ”Nuclear power plants produce no
greenhouse gas emissions during operation”, or ”Nuclear power plant accidents may have
horrific consequences”. Moreover, works aiming to develop AM models, which generalize to
various types of documents, further reduced the schema to the single evidence components
in combination with predefined topic Stab, Miller, and Gurevych 2018; Trautmann et al.
2020.

Argument Retrieval AM enables the extraction of arguments from various sources and
an unlimited number of documents. There are many possible applications, which can make
use of the vast number of potential arguments. To make the arguments accessible for the
final users, some sort of retrieval system is necessary. Dependent on the application, various
retrieval tasks are conceivable. Currently available argument search engines expect a topic
as a query and perform a search based on the similarity of query text to the argument’s text.
For instance www.args.me searches through arguments already pre-extracted from debate
portals and utilizes BM25 similarity for retrieval Wachsmuth et al. 2017. In contrast,
www.argumentsearch.com analyzes retrieved documents for the argumentative structures
in an online fashion but still performs classic document search based on the text similarity
Stab et al. 2018. As text similarity-based approach can potentially miss relevant arguments,
alternative retrieval approaches Potthast et al. 2019 or more advanced retrieval tasks are
investigated in the related work. For instance retrieving evidence for the query in form of
a claim allows more fine-granular search Dumani and Schenkel 2019; Dumani, Neumann,
and Schenkel 2020; chapter 13.

There are various factors, which can be relevant for the ranking of the retrieved results.
The diversity of retrieved arguments plays an important role for various applications Du-
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mani, Neumann, and Schenkel 2020; chapter 13. Another relevant factor is the argument
convincingness. One possibility to estimate the power of arguments is a manual compar-
ison with the counterarguments. There are already some works addressing the problem
of counterargument search Carstens and Toni 2015; Cocarascu and Toni 2017; Haber-
nal et al. 2018; Wachsmuth, Syed, and Stein 2018; Orbach et al. 2020. However, if the
search algorithms have to take argument strength into account, some sort of automation
is necessary. It is an actively researched topic nowadays, which is addressed from different
directions. There are works investigating quality features of arguments Lauscher et al.
2020; Wachsmuth and Werner 2020 or relying on machine learning to compare arguments
with each other Habernal and Gurevych 2016; Simpson and Gurevych 2018; Gleize et al.
2019 or to assign a global quality score Swanson, Ecker, and Walker 2015; Toledo et al.
2019; Gretz et al. 2020.
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1.5 Overview of the Thesis

In this thesis, we make several contributions in the area of Representation Learning on
Relational Data. Therefore we start with the prediction problems on graphs and introduce
several unsupervised and semi-supervised learning methods. Afterward, we move our focus
towards the problem of graph matching. We contribute to the modeling part and the label
acquisition, evaluation, and benchmarking procedures in this field. Next, we explore the
subfield of Natural Language Processing known as Argument Mining and introduce new
approaches that use relationship information. Finally, we present our scalable approach for
graph generation, where the graph exhibits the latent cluster structure in the dataset. To
this end, the contributions presented in the thesis address the following research questions:

Research Question 1: What is the best way to learn meaningful node embeddings in an
unsupervised fashion, and for what can these embeddings be useful?

A strong inductive bias about the meaning of relationships in the graph is essential for
unsupervised learning on graphs. The homophily based approaches for the unsupervised
learning of node embeddings assume that each node is similar to its close neighbors and
therefore resulting representations depend on the local neighborhood of the node provided
by the method. However, as we demonstrate in chapter 2 on the example of popular bench-
mark datasets, community profiles of the real-life graphs do not exhibit cluster structure,
and therefore the local structure of the neighborhood is challenging to grasp. Therefore,
we introduce a novel approach for the unsupervised learning of node embeddings based
on the homophily assumption called LASAGNE, which retrieves only the most relevant
neighbors for each node. We demonstrate the advantages of our method empirically and
show that it is also flexible regarding the local neighborhood’s extension.

Furthermore in chapter 3 we introduce novel role-based node feature descriptors. The
distinguishing feature of the role-based node representations is that they describe the
node neighborhood’s topological properties. Therefore, two nodes with similar roles do
not necessarily share the same neighbors and may even reside in different graphs. The
node role feature descriptors in our approach are computationally inexpensive and, at the
same time, achieve better performance than previous state-of-the-art approaches on typical
benchmarks. Additionally, we demonstrate that our feature descriptors can be successfully
utilized to define graph representations for graph level prediction tasks.

Research Question 2: Can we define a model that is able to make predictions about
target variables of nodes only based on relationship information in the graph without mak-
ing rigid assumptions about the meaning of relationships?

While unsupervised learning approaches require some additional task to learn something
useful, semi-supervised learning methods can exploit the target task’s signal. In chapter
4, we address the problem of semi-supervised node classification on graphs, where nodes
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have only target attributes. Our approach, called ADA-LLD, defines a representation for
each node that describes the distribution of labels in the node’s local neighborhood. The
end-to-end training procedure learns a correlation between label distribution in the neigh-
borhood and the node’s label instead of making assumptions about the relationship type.
Our method’s unique feature is that it can vary a neighborhood’s locality or even com-
bine neighborhoods of different localities in a single model. We show that our approach
outperforms standard methods for the node classifications by a large margin.

Moreover, in chapter 5, we introduce a semi-supervised approach to the problem of
spatial interpolation. Standard approaches for this problem rely on some manually defined
distance function, which integrates information about relations. Our approach is more
generally applicable since it can learn an optimal distance function based on the available
relationship information in an end-to-end fashion.

Research Question 3: Can neural network-based graph matching techniques be of help
if graphs are different and have only partial overlap?

Graph matching or alignment methods aim to exploit the relationships in graphs to al-
low better matching of entities modeled by the nodes. The underlying assumption is that
graphs are created by a similar process, and therefore there are analogous relationships
between nodes. However, real-life data is often noisy and incomplete. As we demonstrate
in chapter 6 on the example of maps, graphs we have to deal with can differ significantly.
To address this problem, we introduce a novel method for the learning of optimal graph
matching called GrAN. Our approach’s main idea is to learn to ignore the effect of nodes
appearing only in one of the graphs.

Research Question 4: What do we need for the convincing evaluation and benchmark-
ing of different Entity Alignment approaches?

The empirical evaluation is one of the crucial elements for the assessment of scientific
progress. A necessary requirement for a convincing and a fair evaluation is an informative
evaluation score, a meaningful benchmark task, and fair experimental setting. In chapter
8, we carefully examine the typical metrics reported in the fields of Entity Alignment and
Link Prediction in Knowledge Graphs and identify several shortcomings. Therefore, we
introduce a novel evaluation score and demonstrate empirically that its utilization leads to
more infallible and interpretable evaluation. Furthermore, in chapter 10, we analyze the
typical evaluation setting of Entity Alignment approaches and observe that reported results
are not reliable, and a comparison between different approaches is not possible. Therefore,
we fix the experimental setting and provide an extensive comparison of state-of-the-art
methods and make several interesting findings. Moreover, in chapter 9, we analyze the ba-
sic architecture for the Entity Alignment task and report several not self-evident findings
regarding the relevance of the various architecture choices for the final performance of the
model.
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Research Question 5: Can the label acquisition process for Entity Alignment be de-
signed more efficiently than when the labeling pairs are selected randomly?

The current Entity Alignment approaches require thousands of labeled pairs, which are
expensive to acquire in a real-life situation. In chapter 7, we motivate the new problem
of label acquisition for the Entity Alignment task, where the goal is to minimize the la-
beling costs. We introduce a labeling setting for the problem and propose and evaluate
various heuristics with different assumptions. Our evaluation confirms that using suitable
heuristics, we can significantly reduce labeling costs.

Research Question 6: Can we improve argument mining models by taking into ac-
count the information about relationships between arguments?

In chapter 11, we address the problem of argument identification, where the goal is to
estimate the argumentativeness of text pieces extracted from an unstructured corpus. We
argue that a topic of the potential argument provides relevant context for the task and,
therefore, should be taken into consideration. We investigate different architecture choices
that enable taking the relationship between topic and argument into account and show
that our transformer based model outperforms previous state-of-the-art approaches. Fur-
thermore, in chapter 12, we propose to analyze the decision-making process in scientific
publishing through the lens of argumentation and formalize it as an argumentative process.
We analyze the generalization of models trained on pre-existing datasets and motivate the
necessity for a new corpus, which we collect, annotate, and make available for the commu-
nity. Using our method introduced in chapter 11, we show that arguments in peer reviews
can be detected automatically with nearly human performance and that these arguments
play a crucial role in the decisions about paper acceptance.

After arguments are extracted, they have to be made available for the end-users. In
chapter 13, we focus on the problem of argument search or argument retrieval, where the
goal is to retrieve relevant and non-redundant arguments for the query formulated by end-
users from the database with arguments. The previous state-of-the-art method already
recognized that text similarity between query and arguments does not suffice to find all
relevant arguments and therefore searches for the similar queries in the database and re-
trieves arguments manually assigned to them. We introduce a novel approach, where we
use a model to estimate the relevance of the arguments directly, without a detour over
similar queries. We demonstrate that the appropriately designed model can capture the
relevance relationship between query and argument. Furthermore, to ensure that retrieved
arguments do not repeat semantically, we propose to describe each argument by its rela-
tionship to possible queries. The assumption behind this approach is that arguments with
similar meanings have comparable relationships. Our empirical evaluation demonstrates
the validity of this assumption. It shows that our method improves previous state-of-
the-art results while using less information, which makes the approach more flexible in
applying.
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Research Question 6: Can we develop an inductive model that learns to generate a
graph with a community structure reflecting latent cluster structure in a dataset without
explicit relationship information?

In chapter 14, we introduce a novel scalable algorithm for subspace clustering. Our ap-
proach learns to recognize different subspaces by building a graph, connecting instances
where objects in the same subspaces build graph communities. Our approach’s distin-
guishing feature is that it is inductive and can assign instances not used in training to the
clusters. In contrast, related approaches require retraining of the complete model. Fur-
thermore, our method supports batch-wise training and can be applied for the clustering
of large datasets.
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Abstract

In this work we address the problem of graph node alignment at the example of
Map Fusion (MF). Given two partly overlapping road networks, the goal is to
match nodes that represent the same locations in both networks. For this task we
propose a new model based on Graph Neural Networks (GNN). Existing GNN
approaches, which have recently been successfully applied on various tasks for
graph based data, show poor performance for the MF task. We hypothesize that this
is mainly caused by graph regions from the non-overlapping areas, as information
from those areas negatively affect the learned node representations. Therefore, our
model has an additional inductive bias and learns to ignore effects of nodes that do
not have a matching in the other graph. Our new model can easily be extended to
other graph alignment problems, e.g., for calculating graph similarities, or for the
alignment of entities in knowledge graphs, as well.

1 Introduction
In recent years the high relevance of graph-structured data has generally been accompanied by an
increased demand for algorithms that are able to take advantage from the rich body of relational
information encoded in graphs. However, in many domains, the entire knowledge base of a certain
domain is spread across multiple data sources, e.g., geo-spatial information are spread across various
map providing services, social information are spread across multiple social networks, or, somewhat
more general, knowledge bases are distributed across various knowledge graph databases.

In this work, we tackle the problem of knowledge fusion by developing a graph neural network model
that is able to fuse graph-structured data by learning node matchings. Given two partly overlapping
graphs, our approach aims at identifying nodes from both graphs that match to each other. The ultimate
goal is to align the graphs such that the information contained in both graphs can be fused properly. In
general, the node matching problem is of high relevance in many applications including the fusion of
road networks, also called map fusion [1], the matching of knowledge graphs [2, 3, 4, 5, 6, 7, 8, 9, 10],
the alignment of social networks [11], or to enable efficient graph comparison [12, 13]. Traditional
methods addressing the graph alignment problem typically rely on calculating distances between
manually engineered node and edge features. The distances are used to generate pairs of nodes that
serve as matching candidates and the set of candidates is subsequently optimized by incorporating
the nodes’ neighborhood information [1, 14]. However, those approaches require non-trivial, manual
parameter tuning, do not generalize well to unseen data and suffer from high complexities which
makes them impractical. More recent works have applied graph neural networks (GNNs) which
have proven to be particularly suitable for the graph alignment task [8, 9, 10, 12, 13]. The common
approach is to aggregate nodes from the local neighborhood into a target node’s representation and
subsequently compare the resulting representations with each other. More advanced approaches even
additionally aggregate nodes from the other graph into the node representations [12, 9]. Either way,
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the aggregation of information, i.e., the kind of information as well as the locality of the area from
which the information is aggregated, is the critical point to get useful embeddings. This holds for the
graph alignment task in particular, as information gathered from local node neighborhoods generally
tends to become less useful the more the two graphs that shall be aligned differ in terms of structural
properties. To overcome the issue of aggregating irrelevant or even misleading information, state-of-
the-art approaches use different types of attention mechanisms when aggregating node neighborhoods.
The general idea behind using attention is to determine the importance of a certain entity (e.g., a node
in the neighborhood) based on an object’s own representation (e.g., the representation of the target
node) and the current representation of the entity. The higher the importance, the more influence
should the corresponding entity have on the object’s own representation. However, the attention based
on the structure of the own graph is of limited usefulness for the graph alignment task. This problem
has recently been addressed, e.g., by additionally aggregating information from the whole counterpart
graph into the representation of each node [12]. We argue that the most important information about
a node’s neighbors is whether they have good alignments in the counterpart graph. Therefore, the
Graph Alignment Network (GrAN ) presented in this work uses an importance mechanism that, in
contrast to previous works, aims at putting special emphasis on nodes that have a good match in the
counterpart graph. By doing this, our model effectively introduces an additional inductive bias, i.e.,
the assumption that neighboring nodes which are likely to be part of the overlapping area of the two
graphs are particularly useful for a target node’s representation.

After presenting our GrAN model in Section 2, we present preliminary results of our evaluation
in Section 3. Precisely, we compare our model against state-of-the-art GNN approaches on map
fusion tasks. These tasks turned out to be particularly challenging due to presence of geo-spatial
coordinates as they form a natural and very strong baseline. However, it is noteworthy that our model
can also be applied to other tasks including knowledge graph matching and the determination of
graph similarities.

2 Graph Alignment Networks with Node Matching Scores
Let G = (V,E,X, P ) and G′ = (V ′, E′, X ′, P ′) denote two graphs with V , V ′ denoting the sets
of nodes, E, E′ being the sets of edges and X , X ′, and P , P ′ being the node and edge attributes,
respectively. For the sake of simplicity we assume that both graphs are undirected. Given this setup,
we aim at learning a function F : G×G′ → H ∈ R|V |×h which takes two graphs as input, applies
multiple message passing operations on them and finally retrieves latent vector representations for
the nodes of the first graph that was fed as input into F . For the GrAN model, we use a Siamese
architecture that allows to apply the same function F to both graphs such that the model’s final output
are two node embedding matrices H = F (G,G′) and H ′ = F (G′, G), respectively. Given the node
embeddings, we subsequently align two nodes if their vector representations are considered similar
with respect to some similarity function sim and a predefined similarity threshold τ , i.e.,

ŷ(vi, v
′
j) =

{
1 if sim(hi, hj) > τ
0 else.

, (1)

with vi ∈ V , v′j ∈ V ′, hi denoting the row vector from H that corresponds to the embedding of
node vi and hj being the row vector from H ′ that corresponds to the embedding vector of node v′j .
ŷ(vi, v

′
j) = 1 indicates that the nodes vi and v′j are aligned.

Graph Alignment Network. Graph Neural Networks [15, 16] compute node representations by
propagating information between vertices and aggregating them iteratively. In each layer, a message
is formed from each source node and passed to its neighbors. Incoming messages for each target node
are aggregated and flow into the target node’s output representation. Stacking multiple propagation
layers allows propagating information over multiple hops. Given a graph G = (V,E,X, P ) we
define a single message passing propagation step as follows:

mj→i = M l(hlj , pji), with pji ∈ P, (2)

M l(hlj , ej,i) = fmessage(h
l
j) + LSTM(pji), (3)

hl+1
i = [fnode(h

l
i),

∑

j,(j,i)∈E
αl
j→imj→i] (4)

where, l stands for the current layer, M is a message function, fnode and fmessage are small neural
networks and [·] denotes the concatenation operation. Also, note that for the Map Fusion task, the
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edge features pji ∈ P are sequences of coordinates that represent the road segment. Therefore, we
process edge features with a recurrent LSTM network and add the resulting vector to the transformed
node representations. However, the inclusion of edge features is generally optional. The weight
αl
j→i determines the importance of the message emitted by node j. In fact, the α weights realize

the additional inductive bias of our model, i.e., that the effect that a message has on other nodes
is determined by the maximal matching similarity of the source node to the other nodes in other
graph. Intuitively, assume that node v ∈ V has two neighbors u,w ∈ V with u being aligned to node
u′ ∈ V ′ while node w has no matching node in V ′. In this case, our goal is to put high emphasis on
u and low emphasis on w when aggregating incoming messages of v. The intuition is that a node
v′ ∈ V ′ who has u′ as a neighbor also receives highly weighted information from u′ which is assumed
to be similar to the information from u. Therefore, in each layer, our approach first determines the
best matching for each node with respect to the similarity function sim, and all outgoing messages
are weighted accordingly. More formally, we define the message weight αl

j→i as follows:

αl
j→i =

exp(I(hlj , H
′l))∑

ĵ exp(I(h
l
ĵ
, H ′l))

, with (ĵ, i) ∈ E, and (5)

I(hlj , H
′l) = max

k
sim′(fmatch(h

l
j), fmatch(h

′
k
l)), with h′k

l ∈ H ′l. (6)

Since it is not possible to backpropagate through the max operation, we apply the gumbel softmax
trick [17, 18]. For the functions fmessage, fnode and fmatch, we use Multilayer Perceptrons and
add an additional inductive bias by sharing parameters between these three functions. The inverse
Euclidean function is used as similarity function sim′(a, b) = 1

deuclidian(a,b)+1 .

Learning. We use the contrastive loss [19] with positive ε+ and negative ε− margins, i.e.,

L = yi,j ·max(0, d(hi, hj)− ε+) + (1− yi,j) ·max(0, ε− − d(hi, hj)), (7)

to train our model. yi,j is 1 for aligned and 0 for non-aligned pairs of nodes, and d is the Euclidean
distance. In contrast to, e.g., triplet loss, the contrastive loss allows us to incorporate nodes having no
matchings into the training.

3 Experiments
We evaluate our approach by interpreting the node matching problem as a binary classification task
and compare the proposed GrAN model against several state-of-the-art methods including GCN [20],
GAT [21], and GraphSAGE [22]. All GNN models use the same siamese architecture with shared
weights. For the competitors, as well as for our model we use implementations from the pytorch
geometric framework [23]. We also evaluate against a baseline method where we simply use the
geo-spatial coordinates of the used road networks’ vertices as 2-dimensional node representations for
the evaluation. Note, that this is a fairly strong baseline as the graph vertices lie within a continuous
space and two matching nodes obviously tend to have similar geo-spatial coordinates. Additionally,
where it is possible, we report the results when using probabilistic relaxation [14]. Note, that the
probabilistic relaxation method considers all assignments at once using hungarian algorithm [24] in
combination with Otsu’s [25] method, and therefore can benefit from the fact that graphs are different
in size. However, the complexity of O(c3), with c being the number of matching candidates, is rather
high and hence makes it impractical for larger networks. In contrast, all GNN models classify each
candidate pair independently. To achieve a fair comparison, we additionally report results when
conducting nearest neighbor queries on the set of nodes from the larger graph and query objects only
being taken from the smaller graph. This way we still need to find a threshold to divide the retrieved
candidates into nodes with and without matchings, but consider the fact that graphs differ in size.
Note that this approach ignores cases where nodes match to multiple nodes in counterpart graph.

We train each of the models by using two different road networks (one is from OSM1 and the other
from a commercial map provider), that both cover freeways of the Northrhine-Westphalia region
in Germany. In total, the networks consist of 15,442 vertices and 20,166 edges with 2956 of the
vertices having a matching node in the other network, i.e., they form matching pairs. In general,
nodes can have zero (1:0), one (1:1) or multiple (1:n) matching nodes in the other graph. Every node
represents an intersection and each edge corresponds to a road segment represented by the sequence

1https://www.openstreetmap.org
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of coordinates. To train the models, the matching pairs are split into training, validation and test set
(80-10-10). For the purpose of generating negative samples, we project each of the positive sample
vertices into the other road network and perform spatial range queries with a radius of approximately
1km2. The resulting set of vertices form the negative samples of the corresponding node (except for
the actual matching vertex). Additionally, we perform the same range queries for the nodes labeled
as 1:0 matchings and add the resulting pairs to the negative samples. Finally we get a set of 65,432
positive and negative candidate pairs, that form the final training, validation and test sets as reported
in Table 3 in supplementary material. Furthermore, we evaluate how well the models generalize
to yet unseen road networks by measuring their matching performance on a pair of road network
sections that are taken from the urban area of the city of Munich, Germany. Beside freeways, these
graphs also contain types of roads that are not present in the training data, e.g., residential street. The
dataset is referred to as MUC. For all models we trained various different architectures whose details
and hyperparameter settings can be found in the supplementary material. In the following, we report
the results for the architectures that showed the best performance.

Table 1: Resulting F1 Scores for the NRW and
MUC datasets.

Method NRW MUC
GrAN .676 .642

GCN .091 .009
GAT .091 .009
GraphSAGE .091 .009

Spatial Coordinates .681 .626
Probabilistic Relaxation .752 -

Table 2: Resulting F1 Scores for the NRW and
MUC datasets when using NN queries.

Method NRW MUC
GrAN .847 .704

GCN .048 .001
GAT .071 .005
GraphSAGE .064 .001

Spatial Coordinates .827 .661
Probabilistic Relaxation .752 -

Table 1 shows the F1 scores comparing the classification results of our approach against the results
produced by the other GNN based models and when using only spatial coordinates (SC), or the
probabilistic relaxation method. While our approach outperforms GCN, GAT and GraphSage, and
also the SC baseline on the MUC dataset, we achieve similar matching results as the baseline on the
NRW data. When comparing against probabilistic relaxation, the latter achieves better results on the
NRW dataset. However, considering the nearest neighbors evaluation (cf. Table 2), the probabilistic
relaxation approach is outperformed by both our approach and SC, although all methods except for
probabilistic relaxation ignore 1:n matchings. In summary, our method still achieves best results on
both datasets.

4 Conclusion

In this work we studied the problem of graph alignment. We presented our ongoing work on a
new Graph Neural Network based model, that aggregates information from neighbors based on
their alignment scores. We evaluated the proposed approach on Map Fusion tasks and compared it
with state-of-the-art models. Our promising experimental results show that the proposed approach
outperforms other GNN models by large margins. In future work we plan to adapt our model for
other tasks like the alignment of entities in heterogeneous graphs, and also for calculating graph
similarities. We further see the potential of improving the runtime of our algorithm by combining it
with graph coarsening methods for instance.
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5 Supplementary material

5.1 Dataset statistics

Table 3: Training and test dataset statistics.

NRW (train) NRW (test) MUC (test)

Nodes in G1 2,430 308 2,996
Nodes in G2 9,924 1,206 3,153
Candidates 52,138 6,148 378,948
1:1 & 1:n matchings 2,359 294 1,777
1:0 matchings 99 3 1,257

5.2 Architectures & Hyperparameter Settings

For all Graph Neural Network models we tried different architectures and hyperparameters:

Weight Sharing in Siamese Architecture We also tried to learn different encoders for each map
without weight sharing. This could help if two maps have different biases. However, it only
worsened the results.

Unsupervised Pretraining We used an adapted version of Deep Graph Infomax [26] for pretraining.
To corrupt a graph we shifted nodes randomly in coordinate space in each iteration. Model
pretraining led to the fastest convergence but did not affect a final result significantly.

Loss We experimented with different positive and negative margins. We obtained best results with
a positive margin of 0 and a negative margin of 10. To account for the class imbalance,
we decreased the weights for the negative examples inversely proportional to the relative
frequency.

Model Depth We tried 1 to 8 message passing layers, followed by 0 to 2 fully connected layers. For
GAT we additionally tried 1 to 7 attention heads in each layer. The number of attention
heads was constant for all layers.

Width We tested various layer sizes, with both constant and variable sizes of layers in the same
model.

Edge Attributes For the fair comparison we adapted the message function of all GNN models to
be able to consider edge attributes and we evaluated them with and without edge attributes.
We also trained models which consider edge attributes only in the first layer. Using the
Douglas–Peucker algorithm we reduced edge attribute sequence to different lengths. We
tried the sum and concatenation operations for combining edge and node embeddings in the
function M .

Early Stopping We trained all models with early stopping using a patience of 1000.
Message Aggregation To aggregate messages, we tried mean/max pooling and concatenation.
Normalization We normalized the input coordinates to [-1,1] range. Therefore, the data are first

zero-centered for each dimension. Next, each dimension is divided by the max distance
from the center in all dimensions. This normalization stabilizes training and inference while
preserving distance ratios.

Optimizer Settings All tested models were trained with the Adam SGD optimizer with learning
rate lr ∈ [1e-4, 1e-2), β1 = 0.9, β2 = 0.999, and the weight decay being chosen from the
interval [0, 1e-4)
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Shah. “Signature verification using a” siamese” time delay neural network”.
In: Advances in neural information processing systems. 1994, pp. 737–744.

[Bru+13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. “Spectral
Networks and Locally Connected Networks on Graphs”. In: CoRR abs/1312.6203
(2013). url: http://arxiv.org/abs/1312.6203.

https://doi.org/10.1007/978-3-030-72113-8_4
https://doi.org/10.1007/978-3-030-72113-8_4
https://doi.org/10.1145/3350546.3352505
https://doi.org/10.1145/3350546.3352505
http://arxiv.org/abs/1312.6203


BIBLIOGRAPHY 85

[BTM18] Florian Bernard, Christian Theobalt, and Michael Moeller. “DS*: Tighter
lifting-free convex relaxations for quadratic matching problems”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 4310–4319.

[Bus+20] Julian Busch, Evgeniy Faerman, Matthias Schubert, and Thomas Seidl. “Learn-
ing Self-Expression Metrics for Scalable and Inductive Subspace Clustering”.
In: NeurIPS 2020 Workshop on Self-Supervised Learning: Theory and Practice
(2020). arXiv: 2009.12875 [cs.LG].

[BVh19] Wim Boes and Hugo Van hamme. “Audiovisual Transformer Architectures
for Large-Scale Classification and Synchronization of Weakly Labeled Audio
Events”. In: Proceedings of the 27th ACM International Conference on Mul-
timedia. 2019, pp. 1961–1969.

[BWF21] Max Berrendorf, Ludwig Wacker, and Evgeniy Faerman. “A Critical Assess-
ment of State-of-the-Art in Entity Alignment”. In: Advances in Information
Retrieval. Cham: Springer International Publishing, 2021, pp. 18–32. doi:
10.1007/978-3-030-72240-1_2.
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