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Zusammenfassung

Bei Plattenepithelkarzinomen des Kopf-Hals-Bereiches (HNSCCs) wurde die Tumorhetero-
genitit als eine Hauptursache fiir das Fortschreiten der Krankheit beschrieben. Der
Epithelial-zu-Mesenchymal-Ubergang (EMT) wurde als eine prominente Ursache der
molekularen und zelluldre Heterogenitit in Tumoren identifiziert. Bei humanem Papil-
lomavirus (HPV) negativen HNSCC Patienten gibt es gegenwirtig keine klinisch akzep-
tierten molekularbiologischen Prognostikatoren, die in die Therapieentscheidung mit ein-
bezogen werden. Der epidermale Wachstumsfaktorrezeptor (EGFR) wird bei HNSCC-
Patienten hiufig iiberexprimiert und ist Zielmolekiil fiir eine adjuvante Behandlung. In
fritheren Arbeiten haben wir und andere die anhaltende Aktivierung der EGF/EGFR-
Achse als Induktor der EMT durch die zytoplasmatischen Kinasen ERK1/2 beschrieben.
Wir zeigten, dass die 16sliche Ektodoméne von EpCAM, EpEX, in der Lage war, die
EMT-Induktion zu blockieren. Ein Ziel der vorliegenden Arbeit war die Genregula-
tion der EGF/EGFR-Achse mit Assoziation zum EMT zu untersuchen und den EMT-
blockierenden Einfluss von EpEX auf Transkriptomebene zu definieren. In der vorliegen-
den Arbeit wurden RNA-Sequenzierungsdaten von EGF-behandelten Krebszelllinien gener-
iert, analysiert, und die anhaltende Aktivierung der EGF/EGFR-Achse als Induktor
von EMT bestéatigt. Weiterhin wurde eine EGFR-vermittelte EMT Gensignatur von
n = 172 hoch- und runter-regulierten EMT-Genen aus den Transkriptomdaten bioin-
formatisch extrahiert. Mit Hilfe einer forward-feature-selection Methode konnten fiinf
iiberlebensassoziierte Gene bei HPV-negativen HNSCC-Patienten der publizierten “The
Cancer Genome Atlas” (TCGA, n = 240) Kohorte aus der EGFR-vermittelten EMT
Gensignatur identifiziert werden. Die Implementierung der fiinf iiberlebensassoziierten
Gene in ein multivariates Cox-Modell ermoglichte es, die Genexpression zu gewichten
und so einen prognostischen EGF/EGFR-vermittelten EMT-Risiko-Score mit Assozia-

tionen zu Lymphknoteninfektionen und zum klinischen Stadium des Tumors zu berech-



nen. Der prognostische Wert des EGF/EGFR-vermittelten EMT-Risiko-Scores wurde
in zwei unabhéngigen und publizierten HPV-negativen HNSCC-Kohorten des “MD An-
derson Cancer Center” (MDACC, n = 97) und des “Fred Hutchinson Cancer Research
Center” (FHCRC, n = 62) bestétigt. Dartiber hinaus konnte gezeigt werden, dass EpEX
auf Transkriptomebene kein Repressor der EGF-vermittelten EMT ist und im Vergleich
zu EGF &hnliche, aber reduzierte Genregulationsfihigkeiten, zeigt.

In einem zweiten Teilabschnitt der Promotionsarbeit wurde der Einfluss einer EM'T Son-
derform, der partiellen EMT (pEMT), auf die Tumorerkrankung untersucht. Vorherige
Studien zeigten, dass insbesondere bei HNSCC-Patienten des basal-&hnlichen mesenchy-
malen Subtyps die pEMT mit inter- und intratumoraler Heterogenitdt assoziiert ist.
Unter Verwendung einer publizierten Signatur von pEMT-Genen und der Methode “Sin-
gle sample scoring molecular phenotype” (SING) wurde die pEMT-Genexpression im
HNSCC des basal-dhnlichen und mesenchymalen Subtyps zur Berechnung eines SING
Scores zur Quantifizierung der p-EMT herangezogen. Dieser neue pEMT SING-Score
war in zwei unabhingigen HPV-negativen HNSCC-Kohorten (TCGA und MDACC)
prognostisch, konnte Patienten auf der Grundlage des Gesamtiiberlebens stratifizieren,
war positiv mit der Lymphknotenmetastasierung korreliert und stark mit der Expres-
sion des kanonischen EMT-Transkriptionsfaktors (EMT-TF) SLUG korreliert. Durch
exogene Uberexpression von SLUG in zwei Krebszelllinien der Kopf- und Halsregion
wurde ein zelluldrer pEMT-Phinotyp mit erhdhtem invasivemn Potential und erhdhter
Strahlenresistenz induziert. Der prognostischte Wert der SLUG-Proteinexpression bei
HPV-negativen Patienten wurde in einer separaten Kohorte unserer Klinik durch im-
munohistochemische Quantifizierung von SLUG in kryo-konservierten HNSCC Proben
(n = 76) bestétigt. Eine hohe Expression von SLUG war mit einem Tumorrezidiv, einer
Lokalisation an den Tumorrindern und einem schlechteren krankheitsfreien Uberleben
assoziiert.

Die vorgestellten Untersuchungen fiithren zu der Schlussfolgerung, dass die EGF/EGFR-
Achse einen Induktor der EMT bei HPV-negativen HNSCC-Patienten mit Auswirkun-

gen auf den Krankheitsverlauf darstellt. In vorheriger Arbeit zeigten wir, dass die

vi



EGF/EGFR-Achse die kanonischen EMT-TFs SNAIL, SLUG und ZEB1 induziert. Im
zweiten Teil dieser Promotionsarbeit wurde gezeigt, dass SLUG als Mediator der pEMT
fungiert und dass pEMT bei HPV-negativen HNSCCs Patienten des basal-dhnlichen

mesenchymalen Subtyps mit der Schwere der Erkrankung zusammenhangt.
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Abstract

In Head and Neck Squamous Cell Carcinomas (HNSCCs), tumor heterogeneity was de-
scribed as a main driver of disease progression. Epithelial-to-Mesenchymal transition
(EMT) was identified as a prominent cause of molecular and cellular heterogeneity in
tumors. At present, in Human papillomavirus (HPV) negative HNSCC patients, no clin-
ically accepted molecular prognosticator is available that is implemented into treatment
decision making. Epidermal Growth Factor Receptor (EGFR) is frequently overexpressed
in HNSCC patients and a target for adjuvant treatment. In previous work, we and others
described sustained EGF/EGFR-signaling as an inducer of EMT through the cytoplas-
mic kinases ERK1/2. We showed that the soluble ectodomain of EpCAM, EpEX, was
capable of blocking EMT induction. The aim of the presented thesis was the investigation
of the EMT-associated gene regulation by the EGF/EGFR-axis and the identification of
the EMT-impairing influence of EpEX at the transcriptome level. In the present thesis,
next-generation RNA sequencing data of EGF-treated cancer cell lines was generated,
analyzed, and sustained EGF/EGFR-signaling was confirmed as an inducer of EMT.
Further, an EGF/EGFR-mediated EMT signature of n = 172 up- and down-regulated
EMT genes was extracted from the transcriptome data through bioinformatic analysis.
Using a forward feature selection method, five survival-associated genes in HPV-negative
HNSCC patients could be identified from the EGF/EGFR-mediated EMT signature in
the published “The Cancer Genome Atlas” (TCGA, n = 240) cohort. Implementing the
five survival-associated genes into a multivariate Cox model allowed to weigh the gene
expression and to compute a prognostic EGF/EGFR-mediated EMT Risk Score with
associations to lymph node infection and tumor clinical stage. The prognostic value of
the EGF/EGFR-mediated EMT Risk Score was confirmed in two independent and pub-
lished HPV-negative HNSCC cohorts from the “MD Anderson Cancer Center” (MDACC,
n = 97) and the “Fred Hutchinson Cancer Research Center” (FHCRC, n = 62). Further,
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at the transcriptome level, EpEX is not a repressor of EGF-mediated EMT and shows
similar, but reduced, gene regulation capabilities compared to EGF.

In a second part of this thesis, the influence of a particular form of EMT, so called
partial EMT (pEMT), on tumor progression was investigated. For HNSCC patients of
the basal-like mesenchymal subtype, pEMT was shown to be associated with inter- and
intratumoral heterogeneity by others. Using a published signature of common pEMT
genes and the method “Single sample scoring molecular phenotype” (SING), pEMT gene
expression in HNSCC of the basal-like and mesenchymal subtype was incorporated to
compute a SING score to quantify pEMT. This novel pEMT SING score was prognostic
in two independent HPV-negative HNSCC cohorts (TCGA and MDACC), was capable
of stratifying patients based on overall survival, was positively correlated with nodal
metastasis, and strongly correlated with the expression of canonical EMT transcription
factor (EMT-TF) SLUG. By exogenous overexpression of SLUG in two cancer cell lines
of the head and neck region, a cellular pEMT phenotype with elevated invasive potential
and irradiation resistance was induced. Prognostic value of SLUG protein expression in
HPV-negative patients was confirmed in a separate cohort from our clinic by immuno-
histochemical quantification of SLUG in cryo-conserved HNSCC samples (n = 76). High
expression of SLUG was associated with tumor recurrence, localization to tumor edges,
and poorer disease-free survival.

The presented investigations lead to the conclusion that EGF /EGFR-signaling represents
an inducer of EMT in HPV-negative HNSCC patients that affects disease progression.
EGF/EGFR-signaling was shown to induce the canonical EMT-TFs SNAIL, SLUG, and
ZEB1. In the second part of the presented work, SLUG was identified as a mediator of
pEMT and pEMT was related to disease severity in HPV-negative HNSCC-patients of

the basal-like mesenchymal subtype.
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Chapter 1

Introduction

1.1 Head and Neck Squamous Cell Carcinoma

Head and Neck Squamous Cell Carcinoma (HNSCC) describes a group of cancers in
the oral cavities, oropharynx, hypopharynx, and larynx. Risk factors do include heavy
smoking, alcohol abuse, and human papillomavirus (HPV) 16 infection. Within HNSCCs,
HPV-positive tumors were postulated to rely on a distinct form of disease etiology with
P16 up-regulation, P53 degradation, and retinoblastoma protein (Rb) pathway down-
regulation through the function of the two viral oncogenes E6 and E7, respectively. In
contrast, HPV-negative tumors are often characterized by TP53, the P53 encoding gene,
mutations and P16 down-regulation (Stransky et al. 2011). Thus, HPV-negative and
-positive HNSCCs are generally viewed as two distinct subgroups and HPV infection is
a positive prognostic marker for overall and disease-free survival (Marur et al. 2010).

Worldwide every year approximately 600,000 patients are diagnosed with HNSCC and
due to high rates of intra- and intertumor heterogeneity, standard radio(-chemo)therapy
often fails and patients suffer from tumor recurrence or locoregional lymphnode metas-
tasis. Further, the functional and aesthetic relevance of the head and neck region does
limit the possibilities of radical surgical approaches. Thus, overall survival rates over five

years remain below 50 % (Siegel, Miller, and Jemal 2016; Ferlay et al. 2015).

1.1.1 Molecular Subtypes

Cancers defined as HNSCC cover a spatial region starting, from cranial to caudal, at the

nasal cavity and ending with the larynx. Even though all carcinomas defined as HNSCC

1



originate from squamous epithelium and retain epithelial features to a variable degree,
differences in underlying tumor biology were reported. Formerly, HPV infection was
the only established molecular characterization option in HNSCC. In 2013, a genomic
analysis of tissue microarray sequencing data determined four molecular classes of HN-
SCCs consistent with signatures previously defined for squamous carcinoma of the lung
(Walter et al. 2013). Until today, the definition comprises the atypical, basal-like, clas-
sical, and mesenchymal molecular subtypes of HNSCCs. Atypical tumors were strongly
associated with HPV infection, which correlated with elevated gene levels of CDKN2A,
LIG1, and the transcription factor RPA2. Analysis of gene expression in the basal-
like subtype showed high expression of the Tumor Growth Factor TGF«a and Epidermal
Growth Factor Receptor (EGFR), the transcription factor TP63 and an extracellular ma-
trix associated gene called COL17A1. HNSCC of the classical molecular subtype were
associated with the heaviest smoking history and xenobiotic metabolism gene products
like AKR1C1/3 or GPX2 were found to be highly expressed. The mesenchymal subtype
is characterized by increased expression of mesenchymal markers, such as VIMENTIN
(VIM), the transcription factor TWIST1, and the Hepatocyte Growth Factor (HGF).
Regarding clinical parameters, the described molecular tumor subtypes do not correlate
with age, alcohol consumption, gender, or tumor size (Walter et al. 2013).

Essentially, those findings confirmed previous work based on microarray analysis of n
= 60 HNSCC samples that suggested the above-mentioned four subtypes in HNSCCs
(Chung et al. 2004).

In 2015, The Cancer Genome Atlas (TCGA) accomplished a comprehensive transcriptome-
wide multi-platform characterization of n= 279 tumor samples by RNA sequencing
(RNASeq) (Lawrence et al. 2015). Using the sequencing data, the authors were able to
segregate the cohort into the four molecular subtypes: atypical (24%), basal-like (31%),
classical (18%), and mesenchymal (27%). The computational subtyping of this cohort via
tumor bulk sequencing classified nearly all HPV-positives patients with oropharyngeal
cancers as atypical. The oral cavity sublocalization group consisted, in large proportions,

of HPV-negative patients classified as basal-like or mesenchymal subtypes. HPV-negative



patients suffering from a larynx carcinoma were evenly distributed between the atypical
and classical molecular subtypes.

It is worth noting that recently published work based on single-cell RNA sequencing is
now challenging this standard classification into four molecular subtypes. The authors
found that the mesenchymal classification might essentially be caused by large propor-
tions of non-malignant mesenchymal cells, such as fibroblasts or immune cells, within the
analyzed tumor bulks. By deconvolution approaches of the bulk TCGA data sets based
on multiple linear regression analysis to circumvent influences of non-malignant cells, the
basal-like and mesenchymal subtypes fall together into one single cluster re-defined, by
the authors, as malignant-basal (Puram et al. 2017). Nonetheless, this re-classification
of subtypes within HNSCC needs to be validated by further independent investigations

for its final establishment.

1.2 Epidermal Growth Factor Receptor in HNSCC

EGFR is a 170 kDa cell surface receptor, belongs to the prominent ErbB/HER-family,
and is known to be involved in the regulation of cell proliferation, migration, differ-
entiation, and survival (Kalyankrishna and Grandis 2006). Constitutive activation or
overexpression are frequently found in a variety of cancer types, like lung or HNSCCs,
leading to poor prognosis for patients (Lawrence et al. 2015; McKenzie 1991; Santini et
al. 1991). Therefore, EGFR is a prominent target for therapeutic approaches using e.g.
specific antibodies like Cetuximab or selective chemical inhibitors blocking enzymatic
activities of this receptor tyrosine kinase (Liang, Zhang, and Zhang 2020). In HNSCCs,
function altering EGFR mutations are rare. Mutated EGFR alleles were reported in 4.7
% of HNSCC TCGA tumors but around 15 % of HPV-negative TCGA HNSCC tumors
were characterized by allele amplification of EGFR (Lawrence et al. 2015). Further,
EGFR may be found endocytosed into the nucleus triggered by ligand or Cetuximab
binding, or exposure to irradiation (Zhang et al. 2015). Nonetheless, most attention was

paid to the membrane-bound form of EGFR with its activity regulated by the quantity
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of available ligands and receptor molecules, as it is overexpressed in between 80-100 %
of HNSCCs (Dassonville et al. 1993). The overexpression of EGFR is associated with
decreased survival of cancer patients (Byeon, Ku, and Yang 2019; Kalyankrishna and
Grandis 2006). Even though a prime candidate, monotherapy with EGFR inhibitors,
such as Cetuximab or Erlotinib, a selective Receptor Tyrosine Kinase (RTK) inhibitor,
show no superior treatment success compared to standard of care (Vermorken et al. 2007;
Cohen 2014).

Upon binding of ligands, EGFR homo- or heterodimerizes with other HER receptors or
RTKs like Hepatocyte Growth Factor Receptor (HGFR). Known ligands of the EGFR
receptor include: EGF, TGF«, heparin-binding EGF, and EpCAM extracellular domain
(EpEX) (Pan et al. 2018; Byeon, Ku, and Yang 2019). Once ligands have bound, the
dimerization of EGFR molecules activates signaling cascades such as the pathways of
Mitogen Activated Protein Kinase (MAPK), Phosphoinositid-3-kinase (PI3K)/Protein
Kinase B (PKB/Akt), Janus Kinase (JAK)/ Signal Transducer and Activator of Tran-
scription Proteins (STAT), and the Phospholipase C v (PLC~)/Protein Kinase C (PKC)
(Kalyankrishna and Grandis 2006).

1.2.1 EGFR-signaling in cancer

Canonical EGFR pathways are involved in cell differentiation, proliferation, and survival.
In different cancer types, the EGF/EGFR-axis was shown to contribute to disease pro-
gression by diverse signaling cascades with different outcomes, e.g. cellular proliferation
or transformation (Normanno et al. 2006). The deregulation or activation of the MAPK/
Extracellular Signal-Regulated Kinase (ERK)- and PI3K/Akt-pathway leads to cellular
proliferation and survival (Horn et al. 2015; Affolter et al. 2016). The MAPK/ERK-
pathway is constitutively activated in different tumor types. The pathway was shown
to be up-regulated in cancer cell lines derived from pancreas, colon, lung, ovary, and
kidney tumors (Hoshino et al. 1999). Up-stream of MAPK/ERK, dimerized EGFR ac-
tivates Raf by binding to the small GTPase Ras. The activated Ras/Raf-complex then
phosphorylates MEK (MAPK/ERK-activating kinase), which itself then phosphorylates
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MAPK/ERK. Furthermore, the MAPK/ERK-pathway possesses several capacities as its
activation can lead to different cellular morphologies and behaviors. An intermediate
activation by EGFR ligands, such as EGF, causes transient phosphoERK (pERK) lev-
els leading to an induction of proliferation of epithelial cells. Oppositely, a strong and
sustained ERK2, not ERK1, activation induces a reduction in proliferation and acti-
vates distinct cellular reprogramming inducing a mesenchymal phenotype demonstrated
in HNSCC, human breast, and mouse fibroblast cell lines (Pan et al. 2018; Shin et al.
2010; Murphy, MacKeigan, and Blenis 2004).

For the PI3K /Akt-pathway, activated EGFR directly stimulates PI3K via adapter molecules
such as the Insulin Receptor Substrate (IRS) proteins or through Ras. This triggers con-
version of Phosphatidylinositol (3,4)-Bisphosphate (PIP2) lipids to Phosphatidylinositol
(3,4,5)-Trisphosphate (PIP3) by the catalytic domain of PI3K. Then, membrane-bound
PIP3 activates Akt wia phosphorylation leading to activation of protein synthesis and
proliferation (Alessi et al. 1997).

Additionally, EGFR activation can trigger PLC~y phosphorylation, which then phos-
phorylates PKC. Both pathways, PI3K/Akt and PLC~/PKC ultimately modulate gene
translation through mTORC1 (Fan et al. 2009; Koyama et al. 2003).

Further, EGFR recruits and activates JAK1/2 to phosphorylate STAT1 and STATS3.
STAT1 and STAT3 then form heterodimers and translocate to the nucleus to activate
gene transcription. It has been shown that STAT1/3 activity promotes cell migration in
vitro (Andl et al. 2004).

As aforementioned, solely targeting EGFR in cancer therapy frequently fails to provide
ample benefits to patients and it seems likely that HNSCC cancer cells develop an adap-
tive response against therapeutic treatments by up-regulation of survival pathways such

as the MAPK/ERK-signaling pathway (Rong et al. 2020; Rampias et al. 2014).
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Figure 1.1: Ilustration of canonical EGFR-signaling pathways and cellular effects. Ef-
fects on Hallmarks of cancer are shown. Only nodal points in the pathway are displayed,
indicating targets of therapies in current clinical use or in trials (red arrows). EGF/R: Epi-
dermal growth factor/receptor, TGFa: Transforming growth factor o, PTEN: Phosphatase
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Raf: Rapidly accelerated fibrosarcoma kinase, Ras: Rat sarcoma gene. MAPK: Mitogen
Activated Protein Kinase. Adapted from Gazdar, The New England Journal of Medicine,
2009



1.2.2 Signaling crosstalk with Epithelial Cell Adhesion Molecule

Epithelial Cell Adhesion Molecule (EpCAM) was first described as an antigen expressed
in colon carcinomas and identified as a homophilic cell-to-cell adhesion molecule (Herlyn
et al. 1979; Litvinov et al. 1994). In the following, a variety of functions, besides cell
adhesion, were assigned to EpCAM in cancer and stem cells including promotion of pro-
liferation, epithelial differentiation, and an induction of multipotency in mesenchymal
stem cells and, in part controversially to findings in HNSCCs, an induction of Epithelial-
to-Mesenchymal transition in endometrial cancer through EGFR-signaling (Osta et al.
2004; Miinz et al. 2004; Kuan et al. 2019; Hsu et al. 2016; Gires et al. 2020). High ex-
pression of EpCAM was identified as a poor prognosticator, among others, in colorectal,
prostate, and breast cancer but associated with increased survival in colonic, esophageal,
and HNSCCs (Spizzo et al. 2004; Seeber et al. 2016; Massoner et al. 2014; Went et al.
2006; Kimura et al. 2007; Baumeister et al. 2018).

Cellular signaling and degradation of EpCAM is triggered by a processes termed Reg-
ulated Intramembrane Proteolysis (RIP). EpCAM RIP is a sequential cleavage and
involves initial shedding of the extracellular domain of EpCAM, called EpEX, by a-
secretase (ADAM) and f-secretase (BACE) sheddases. The shedding of EpEX generates
a membrane-tethered C-terminal fragment termed EpCTF. The EpCTF fragment is then
cleaved by a ~-secretase complex, which generates an extracellular EpCAM-AS-like frag-
ment and an intracellular EpICD fragment (Maetzel et al. 2009; Tsaktanis et al. 2015).
The EpICD fragement was shown to be involved in nuclear signaling in conjunction with
components of the WNT-signaling pathway including Four and a Half LIM domain pro-
tein 2 (FHL2), -catenin, and Lef-1 (Maetzel et al. 2009). The extracellular domain of
EpCAM, EpEX, was recently shown to be capable of inducing EGFR-signaling in HNSCC
and colon cancers (Pan et al. 2018; Liang et al. 2018). In both cancer types, EpEX could
induce phosphorylation of ERK1/2 and Akt. In colon cancer cell lines, shedded EpEX
triggered a positive feedback loop of EpCAM proteolysis leading to nuclear localization
of EpICD, causing metastasis and poor survival (Liang et al. 2018). In HNSCC, this

feedback loops was not reported and high expression of EpCAM in combination with low
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levels of EGFR marked a subgroup of patients with exceptionally high survival, indepen-
dent of the HPV infection status (Pan et al. 2018). Further, in vitro studies of HNSCC
cell lines led to the conclusion that EpEX is capable of impairing EGF /EGFR-mediated
induction of Epithelial-to-Mesenchymal transition (EMT) (Pan et al. 2018).

1.3 Epithelial-to-Mesenchymal transition

EMT is a major cellular differentiation program, which was first described in 1982 by Eliz-
abeth Hay and colleagues in embryonic development (Greenburg and Hay 1982). During
this cellular program, epithelial cells loose apical-basal polarity, cell-to-cell contacts, and,
simultaneously, gain a spindle-shaped morphology. On a molecular level, expression of
epithelial markers, such as E-CADHERIN (ECAD) or Cytokeratins (KRT), is lost and
mesenchymal markers, such as VIMENTIN (VIM) or FIBRONECTIN1 (FN1), become
expressed (Nieto 2009; Thiery et al. 2009; Kalluri and Weinberg 2009). Under physiolog-
ical conditions, EMT is a cellular program that is crucial for embryogenesis and wound
healing, including tissue regeneration. These two forms are also classified as EMT type
I, appearing during embryonic development, and type II that is helping the organism to
close wounds after trauma. The type III EMT describes the malignant form in carcinoma
progression (Kalluri and Weinberg 2009).

It has been postulated that EMT might be primarily regulated as an epigenetic process
and would therefore be rather independent of DNA alterations, such as mutations (Tam
and Weinberg 2013; Dongre and Weinberg 2019). Thus, cancer biology assessments re-
lated to the EMT program should rather be addressed by transcriptome or proteomic
analysis.

So far, six canonical EMT Transcription Factors (TFs) were identified, namely SNAIL
(SNAIL), SNAI2 (SLUG), TWIST1, TWIST2, ZEBI, and ZEB2. These EMT-TFs act
as transcriptional repressors to facilitate gene regulation related to cell adhesion, migra-
tion, and invasion (Lamouille, Xu, and Derynck 2014; Peinado, Olmeda, and Cano 2007;
Bolos et al. 2003). SNAIL and SLUG belong to the Snail family that encompasses the
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Figure 1.2: Schematic representation of the major changes during EMT. Epithelial cells

Cl

(blue) with E-CAD expression start expressing EMT transcription factors SLUG and ZEB1.
E-CAD expression is decreased and mesenchymal marker VIM expression is increased. Fi-
nally, the EMT program leads to a transition from an epithelial to a mesenchymal cell
(orange) without tight cell-cell contacts as shown. EMT: Epithelial-to-Mesenchymal tran-
sition, E-CAD: E-CADHERIN, VIM: VIMENTIN.

three members SNAIL, SLUG, and SNAI3. From the Snail family, SNAI3 was the most
recent member to be discovered and the knowledge about the structure and functional
implementations of human SNAI3 is fairly limited to this date. The Snail family shares
a common organization as zinc-finger transcriptional repressors with four to six zinc-
fingers (Cys2-His2-type) and a non-conserved N-terminus containing a SNAG domain of
seven to nine conserved amino acids. DNA elements containing the E2-box type elements
C/A(CAGGTG) are recognized by Snail family members and bound by the zinc-fingers.
The repressor capacity is determined by the SNAG domain (Nieto 2002). Through re-
cruitment of the co-repressor CtBP-1, the SNAG domain recruits histone modifying
enzymes to silence gene expression (Tripathi et al. 2005; Lin et al. 2010). The central
region of Snail proteins is highly divergent, with SNAIL containing a serine/proline-rich
region, whereas SLUG contains the name giving SLUG domain, which acts as a negative
modulator of SLUG-mediated EMT (Peinado, Olmeda, and Cano 2007; Molina-Ortiz et
al. 2012). TWIST1 and TWIST2 encode basic helix-loop-helix (bHLH) transcription
factors that are active under non-malignant conditions during embryonic development.
TWIST2 lacks a glycine rich domain found in TWIST1, otherwise both TFs share high
amino acid similarity of up to 95 % in the bHLH domain and 100 % in the Twist box
(Franco et al. 2011). TWIST1/2 form homo- and heterodimers that bind to DNA E-

box sequences regulating gene products involved in e.g. skull development (Chen and
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Behringer 1995). ZEB1 and ZEB2 contain N- and C-terminal zinc-finger clusters and an
E-box binding homeobox (Stemmler et al. 2019). All six canonical EMT-TFs have been
shown to be involved in down-regulating ECAD and are associated with the up-regulation

of mesenchymal genes, such as VIM, FN1, or N-CADHERIN (NCAD).
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Figure 1.3: Schematic representation of the protein structures of the core EMT-TFs. ZEB1

and ZEB2 are much larger than the other EMT-TFs. Thus, their domain schematics are not
drawn to the same scale as those of SNAIL, SLUG, TWIST1, and TWIST2. DNA-binding
domains are represented in blue. aa: Amino acids, bHLH: Basic helix-loop—helix, CID:
CtBP interaction domain, NES: Nuclear export sequence, SID: Smad interaction domain,
SNAG: Snail corepressor binding domain, EMT-TFs: Epithelial-to-Mesenchymal transition
transcription factors. Adapted from Stemmler et al., Nature Cell Biology, 2019
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1.3.1 The role of EMT in cancer

During cancer progression, cancer cells need to permanently adapt to changing and often
hostile conditions. Metastases formation, local invasion, and tumor recurrence require
cancer cell motility and resistance to irradiation and chemotherapeutic agents. A poten-
tial connection of EMT and tumor progression was established 25 years ago (Hay 1995),
and EMT-TFs were identified as important mediators of cellular plasticity (Chaffer et al.
2016, 2013). Type IIT EMT was shown to be linked to tumorigenesis, invasion, cancer
cell stemness, metastasis, and treatment resistance and, thereby, leads to tumor cell plas-
ticity (Lambert, Pattabiraman, and Weinberg 2017; Nieto et al. 2016). EMT-TFs were
reported to be involved in double-strand DNA repair, induction of a pro-survival and
anti-apoptotic phenotype, and up-regulation of immunosuppressive cytokines (Brabletz
et al. 2001; Nieto et al. 2016). In general, various signaling pathways have been de-
scribed to be capable of inducing the EMT program in cancer cells. Until today, the
canonically pathways include TGFS3, RHO-like GTPases, and as aforementioned the
EGFR-mediated MAPK and PI3K/Akt pathways (Pan et al. 2018; Lamouille, Xu, and
Derynck 2014; Xu, Lamouille, and Derynck 2009; Derynck, Muthusamy, and Saeteurn
2014). Further, stress conditions, such as hypoxia, have been identified as EMT inducers
(Zhang et al. 2013). The (EGFR/)MEK/ERK-signaling cascade inducing EMT was
found to be triggered by EGF and FGF. Additionally, TGFS can synergize with EGF
to execute the EMT program (Tashiro et al. 2016; Tian et al. 2007; Uttamsingh et al.
2008; Shirakihara et al. 2011).

Many findings about EMT have been provided by cell culture and animal model stud-
ies focusing on the expression of particular marker/ effector genes. EMT represents a
complex and plastic cellular program, which makes it challenging to define optimal ex-
perimental conditions for its studies. This might be, in part, an explanation why the
involvement of EMT in cancer progression is of ongoing debate. In 2012 for example,
an n vivo mouse experiment modeling skin carcinogenesis with squamous cell carcino-
mas found that EMT promotes local tumor invasion and needs to be reversible for the

establishment of macrometastases but seems not to be activated in distant metastases
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(Tsai et al. 2012). Further, a lineage-tracing mouse model of spontaneous breast-to-lung
metastasis suggested that EMT is not required for metastasis but contributes to recur-
rence of lung metastasis after chemotherapy (Fischer et al. 2015). A mouse model of
pancreatic cancer suggested that SNAIL1- and TWIST1-induced EMT is dispensable for
the dissemination of primary tumors but is necessary for chemoresistance (Zheng et al.
2015). However, appending examinations revealed concerns whether those findings are
fully sustainable. The mouse model study of breast-to-lung metastasis described FSP1
as a “critical gatekeeping gene” of EMT but all stages of type I EMT were reported in
FSP1-knockout mice (Ye et al. 2017). The mouse model of pancreatic cancer was show-
ing a reduction of mesenchymal marker a-SMA in TWIST1-knockout mice but a-SMA
expression was shown to be rarely induced upon EMT in this mouse model (Aiello et al.
2017). For HPV-negative HNSCCs, recent work with patient data incorporating a variety
of previously published EMT signatures revealed the clinical importance of EMT. This
confirmation of clinical relevance in HNSCC tumors was accomplished by the implemen-
tation of seven different EMT signatures in two independent cohorts of HPV-negative
patients (Heijden et al. 2020).

So far, it should be noted that EMT, as a definition of a biological program, might be
regarded as a simplification of several interacting and multi-layered processes, as e.g.
cancer stemness, Mesenchymal-to-Epithelial transition (MET), and immunosurveillance
are often found to be linked to EMT-related processes. Thus, latest investigations in
cancer research start to refrain from describing EMT as a simple conversion with dis-
tinct steps from an epithelial to a mesenchymal cell but focus more on the underlying

processes and transcriptional changes upon the transition.

12



EMT spectrum of carcinoma cells at different stages of metastatic process
Primary tumor Metastasis

’@E @ @emzs @M (M ST car

@
B @
ay
Mlgratory cancer cells @

=~ .
ay@
= 'd
Intravasation
- Invadopod ia
Platelet- CTC clusters
coated CTCs

C "Qﬂoaﬂoaﬂoaﬂﬂaﬂ
S 2 pericyte

Figure 1.4: Illustration of the metastatic cascade and the involvement of EMT. EMT is a
focal event in the primary tumor that may occur when epithelial carcinoma cells (E) interact
with CAFs or TAMs. The majority of CTCs exhibit a partial EMT phenotype (EM1 or
EM2/3). CTCs can be derived from carcinoma cells that undergo in situ EMT in the pri-
mary tumor, or they can acquire partial EMT phenotypes in the bloodstream, when exposed
to TGFp derived from associated platelets. Mesenchymal cells undergo MET to colonize
their new destination. The plasticity of the carcinoma cells is important to avoid death in the
different stages of tumor progression. CAFs: cancer-associated fibroblasts, TAFs: tumor-
associated macrophages, CTCs: circulating tumor cells, TGF3: Tumor growth factor g,
EMT: Epithelial-to-Mesenchymal transition, MET: Mesenchymal-to-Epithelial transition.
Adapted from Nieto et al., Nature Cell Biology, 2016
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1.3.2 The spectrum of EMT in malignancy

During embryonic development, EMT induces a full conversion of epithelial to mes-
enchymal cells that is required for the formation of the three germ layers of differentiat-
ing embryos. During cancer progression, instead of acquiring a complete mesenchymal
phenotype, epithelial tumor cells often undergo an incomplete or partial EMT (pEMT)
(Kalluri and Weinberg 2009; Yang and Weinberg 2008; Micalizzi, Farabaugh, and Ford
2010). Hereby, cancer cells are co-expressing epithelial and mesenchymal markers. Those
cancer cells represent a pEMT phenotype and were reported to cause an elevated risk of
metastasis and to show increased resistance to therapeutic drugs in contrast to cells that
acquired a fully mesenchymal phenotype (Saitoh 2018). In basal breast cancer for ex-
ample, hybrid epithelial-mesenchymal cells defined by CD44/CD104 (ITG/34) expression
represent a more tumorigenic phenotype compared to completely mesenchymal cancer
cells (Kroger et al. 2019). For HNSCCs of the basal-like and mesenchymal subtype, single
cell RNASeq from patient samples allowed to establish a pEMT state of cancer cells that
functioned as an independent predictor of nodal metastasis, tumor grade, and adverse
pathologic features. Further, for this form of pEMT a gene signature could be identified
but, so far, no prognostic values of the pEMT signature was determined (Puram et al.
2017). Postulated mesenchymal markers in HPV-negative HNSCCs were TGF I, VIM,
FN1, PDPN, LAMB3, and LAMC2. Identified epithelial markers were ECAD, EpCAM,
SFN, and KRT5, KRT14, KRT15, KRT17, and KRT18 (Puram et al. 2017).

The ongoing debate about the influence of EMT in malignancies is leaning more and more
towards a clinical importance of pEMT, as different subpopulations of cells in different
EMT states were found to co-exist in vivo and showed varying abilities of proliferation,
invasion, and metastasis (Pastushenko et al. 2018; Shibue and Weinberg 2017). Recent
observations could show that a complete EMT program, induced by e.g. TGFfS treat-
ments under cell culture conditions, might rather be non-physiological in cancer cells
and is possibly restricted to in vitro experiments (Dongre and Weinberg 2019; McFaline-
Figueroa et al. 2019). Further, it was suggested that the process of EMT in tumors

might reflect a dynamic spectrum of transcriptional changes of cancer cells that cannot
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be adequately partitioned into separate EMT stages (McFaline-Figueroa et al. 2019;
Dijk et al. 2018; Krishnaswamy et al. 2018). Taken together, the clinical relevance of
(p)EMT in cancer as a grounding process for several steps of malignancy development is
becoming increasingly apparent but the EMT process is a diverse cellular program which

needs further refinement for different cancer subtypes and signaling pathways.
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Figure 1.5: Model of the in vivo pEMT program associated with invasion and metastasis
in basal-like and mesenchymal HNSCC tumors. pEMT cells within a heterogenous tumor
are allocated at the tumor edges. Through single-cell dissemination or collective migra-
tion tumor cells are capable of invading surrounding connective tissue and forming lymph
node metastases. pEMT: Partial EMT, HNSCC: Head and neck squamous cell carcinoma.
Adapted from Puram et al., Cell, 2017.
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1.4 Aim of this thesis

Even though great improvements were achieved in cancer care, most routine treatments
implemented in clinical routine are based on irradiation and non-targeted chemothera-
peutic agents, such as cisplatin or 5-fluoruracil, leading to severe side effects in a patient.
Therefore, a diagnosis with cancer is still a major threat and a leading cause of death
world wide. Recent advantages in technology aim at introducing personalized medicine
into health care. Hereby, high-throughput sequencing approaches shall be incorporated
to apply a tailor-made treatment approach for each patient.

HNSCCs patients frequently suffer from lymph node metastasis and locoregional tumor
recurrence resulting in poor prognosis (Siegel, Miller, and Jemal 2016; Ferlay et al. 2015).
The process of EMT enables disease progression but its particular contributions to tu-
mor aggressiveness, recurrences, and metastasis are still not fully understood. Thus,
in HPV-negative patients no clinically accepted prognostic biomarker is available and
clinical tumor classifications, such as TNM-staging, are serving as a sole base for treat-
ment decision (Heijden et al. 2020). This work shall contribute to the refinement of
the measurement and usage of EMT as a parameter in HPV-negative HNSCC progno-
sis. In HPV-negative HNSCCs, EGFR is a major receptor with prognostic value and
the capability of the EGFR-signaling axis to induce EMT has been demonstrated in
previous work. In the present work, a transcriptome analysis of EGF/EGFR-mediated
EMT in cancer cell lines will be used to shed light on this particular signaling axis of
EGFR. Further, the signaling crosstalk of EpCAM, through EpEX, with EGFR and its
influence on the EMT process at the transcriptome level shall be defined. The findings
from this in vitro study on HNSCC cell lines shall then be translated into patient data
with the aim to improve stratification tools. Publicly available transcriptome sequencing
data from patient cohorts will be investigated to identify survival-associated genes regu-
lated by the EGF/EGFR-mediated EMT signaling axis. In a second part of this work,
a published gene signature of the described pEMT in HNSCC patients of the basal-like
and mesenchymal subtype will be used to quantify the degree of pEMT. The resulting
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pEMT-quantifying surrogate will be implemented to assess the prognostic value of pEMT
in HNSCCs. A further aim of the present thesis is the identification of a promising can-
didate pEMT regulator from the canonical EMT-TFs. The extracted candidate gene will
then be further assessed in cell culture experiments to assess a link to a pEMT. Finally,
the clinical relevance of the identified pEMT mediator gene will be addressed by the
investigation of an in-house patient cohort of HPV-negative HNSCCs.
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Figure 1.6: Illustration of the continuum of malignant EMT by EGFR-signaling in HN-
SCC. The EMT spectrum represents a fluid process. By expression of epithelial or mes-
enchymal building blocks, the cellular phenotype adjusts to a specific position within the
spectrum. Further, the amount of a gene expressed contributes to the final cellular phe-
notype. EMT: Epithelial-to-Mesenchymal transition, EGF/R: Epidermal growth factor/
receptor, HNSCC: Head and neck squamous cell carcinoma, ECAD: E-CADHERIN, Ep-
CAM: Epithelial cell adhesion molecule, VIM: VIMENTIN, FN1: Fibronectin 1, RAB25:
Ras-related protein RAB25.
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Chapter 2

Materials and Methods

2.1 Human samples and ethics statement

The HNSCC cohort of the Ludwig-Maximilians-University Munich (LMU) included tu-
mor samples from n= 169 patients. For n= 87 patients macroscopically normal mucosa
was available. N= 82 patients were identified by pl6 staining as HPV-negative and n=
54 as HPV positive. N= 33 patients could not be clearly defined. For n= 76 HPV-
negative patients a complete data set with clinical parameters was available. Clinical
specimens were tested after written consent for routine procedures based on the approval
of the Ethics Committee of the Medical Faculty of the LMU (#087-03;150 #197-11;
#426-11) and in accordance with the WMA Declaration of Helsinki and the report of

the Department of Health and Human Services Belmont.
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2.2 Consumables

Table 2.1: The table shows general consumables.

Item

Manufacturer

Application

1.5 mL Tube (nuclease-free)

Costar (USA)

Miscellaneous

6-well plates

Falcon Corning (Germany)

Cell culture

8 pm 24-well inserts

Corning (Germany)

Matrigel invasion

24-well plate (flat bottom)

Nunc (Germany)

Matrigel invasion

96-well plate (flat bottom)

Nunc (Germany)

Cell culture

96-well plate (round bottom)

Nunc (Germany)

Cell culture

96-well ultra-low attachment

Nunc (Germany)

Spheroid invasion

Micro tube (1.5 mL/2 mL)

Eppendorf AG (Germany)

Miscellaneous

Quadriperm Sarstedt (Germany) IF microscopy
Reagent reservoirs Costar (USA) Miscellaneous
Safe seal tips professional Biozym Scientific (Germany) | Miscellaneous

T25, T75, T125 easy flasks

Nunc (Denmark)
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2.3 Chemicals

Table 2.2: The table lists general chemicals that have not been further described in the

methods.
Chemical Manufacturer Application
ABC-Kit Vectastain@®) Elite® PK6100 | Vector Laboratories (USA) THC

Acrylamide

Merck (Germany)

Western blot

Ammonium persulfate (APS)

BioRad (USA)

Western blot

B-Mercaptoethanol

Merck (Germany)

Western blot

Bovine serum albumin (BSA)

Merck (Germany)

Western blot

Complete protease inhibitor cocktail

Roche (Germany)

Western blot

Crystal Violet

Sigma (USA)

Clonogenic surv.

Dimethyl sulfoxide (DMSO)

Carl Roth GmbH (Germany)

Miscellaneous

DMEM medium

Gibco (Germany)

Cell culture

Ethylenediaminetetraacetic acid (EDTA)

AppliChem GmbH (Germany)

Miscellaneous

Fetal calf serum (FCS)

Merck (Germany)

Cell culture

Geltrex Matrix (Matrigel)

ThermoFisher (Germany)

Matrigel inv.

Chemiluminescent HRP substrate

Millipore (USA)

Western blot

Penicillin/ streptomycin

Merck (Germany)

Cell culture

Polysorbate 20 (Tween 20)

Merck (Germany)

Western blot

PowerUp SYBR Green Master Mix

ThermoFisher (Lithuania)

qPCR

RPMI medium

Gibco (Germany)

Cell culture

Tetramethylethylenediamine (TEMED)

BioRad (Germany)

Western blot

Triton-X 100

Merck (Germany)

Western blot

Tris(hydroxymethyl)aminomethane

AppliChem GmbH (Germany)

Miscellaneous

Trypsin

Merck (Germany)

20

Cell culture



2.4 General devices

Table 2.3: The table lists general devices that have not been further described in the

methods.

Device Manufacturer Application
-80°C freezer Hera Thermo Corporation (Germany) | Storage
-20°C freezer Liebherr (Germany) Storage
-80°C freezer Hera Thermo Corporation (Germany) | Storage
-20°C freezer Liebherr (Germany) Storage
Balance Sartorius (Germany) Miscellaneous

EVE Cell counter

NanoEnTek (USA)

Cell culture

Centrifuge 5415 R, Eppendorf (Germany) Miscellaneous
Centrifuge Rotanta 46 R Sorvall (Germany) Miscellaneous
BlueVertical PRIME BV-104 | SERVA (Germany) SDS-PAGE

Fine balance Sartorius (Germany) Miscellaneous

Incubator

Binder (Germany)

Cell culture

Laminar flow

Heraeus Instruments (Germany)

Cell culture

Micro tube thermomixer

Eppendorf (Germany)

Miscellaneous

MS1 Minishaker

TKA (Germany)

Vortex

NanoPhotometer

Implen (Germany)

RNA, DNA, Protein conc.

Power supply

Major Science (USA)

Western blot

Power supply

SERVA (Germany)

SDS-PAGE

SB10 omniPAGE mini

Biozym (Germany)

Western blot transfer

Shaker Polymax 2040

Heidolph (Germany)

Miscellaneous

Water bath

GFL (Germany)
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2.5 Cell lines and treatments

FaDu and Kyse30 cell lines were obtained from ATCC and DSMZ and were confirmed
by STR typing (Helmholtz Center, Munich, Germany). Kyse30 cells were maintained in
RPMI 1640 and FaDu cell ins DMEM with 10% FCS, 1% penicillin/ streptomycin, in a
5% CO2 atmosphere at 37 °C. Treatment with EGF (PromoCell PromoKine, Heidelberg,
Germany) and EpEX-Fc was conducted in medium after overnight serum starvation.
Recombinant EpEX-Fc was produced as described (Tsaktanis et al. 2015). In brief,
HEK?293 cells were stably transfected with human EpEX-Fc fusion protein in a ps521
vector (kind gift from Pascal Schneider, ISREC, Switzerland) cultured under serum free
conditions for EpEX-Fc purification. Then, recombinant EpEX-Fc was purified from
supernatant of transfected cells after 3 — 5 days of culture according to the protocol
by Savas and colleagues (Savas et al. 2014). Used as a control treatment for EpEX-Fc
treatment, recombinant Fc was purchased from Jackson ImmunoResearch, Baltimore,
MD, United States. To treat cells with EpEX-Fc and Fec, 50 nM of protein were applied.
To treat cells with EGF-low, 10 ng/mL corresponding to 1.8 nM were applied. To
treat cells with EGF-high, 50 ng/mL corresponding to 9 nM were applied. In the co-
treatment of EGF with EpEX, 50 ng/mL of EGF and 50 nM of EpEX-Fc were applied.
EpEX treatments as mentioned within this dissertation are an abbreviation for EpEX-Fc

treatments. These definitions were used throughout the whole extent of this thesis.

2.6 Immunohistochemistry scoring and immunofluorescence

Specific antibodies against SLUG (C19G7, Cell Signaling Technology, NEB, Frankfurt,
Germany, #9585, 1:400), pan-Cytokeratine (polyclonal, Invitrogen, Camarillo, USA,
#18-0059, 1:200) and E-CADHERIN (24E10, Cell Signaling Technology, NEB, Frank-
furt, Germany, #3195, 1:400) were used for immunohistochemistry (IHC) with the
avidin-biotin-peroxidase method (Vectastain, Vector laboratories, Burlingame, CA, US)
or immunofluorescence (IF) staining in combination with Alexa Fluor-488-conjugated

secondary antibody. Confocal microscopy images were recorded with a TCS-SP5 sys-
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tem (Leica Microsystems; Wetzlar, Germany). IHC scores were formed using a two-
parameters system, which implemented scoring of all specimen in percentages of (tumor)
cells and their staining intensities from 0 to 3 (0= negative, 1= mild intensity, 2— mod-
erate intensity, 3= strong intensity, score = sum(% x intensity); resulting max. score
300) as described (Mack and Gires 2008). At least two experienced scorers evaluated
IHC specimen independently and blinded for the specimen’s identity and clinical out-

come.

2.7 Reverse transcription qPCR analysis

In accordance to Schinke et al., total RNA was extracted using RNeasy Mini kit (Qiagen)
and reverse transcribed with QuantiTect Reverse Transcription kit (Qiagen) (Schinke
et al. 2020). The resulting cDNAs were used for analysis with SYBR-Green master
mix and LightCyclerd80 (Roche) or QuantStudio3 (ThermoFisher). If quantifications
were exceeding a cycle threshold (CT) of 35 the respective gene was regarded as not
expressed. All quantified values were normalized to an internal GAPDH control. The
relative expression value for each target gene compared to the calibrator for that target

was calculated as 222Ct as described by Livak (Livak and Schmittgen 2001).

2.8 Primers used for qPCR quantification

E-CADHERIN-FW 5-TGC CCA GAA AAT GAA AAA GG-3
E-CADHERIN-BW 5-GTG TAT GTG GCA ATG CGT TC-3¢
GAPDH-FW 5-AGG TCG GAG TCA ACG GAT TT-3
GAPDH-BW 5-TAG TTG AGG TCA ATG AAG GG-3’
ITGab-FW 5-GGC TTC AAC TTA GAC GCG GAG-3’
ITGa5-BW 5-TGG CTG GTA TTA GCC TTG GGT-3’
LAMC2-FW 5-CAA AGG TTC TCT TAG TGC TCG AT-3’
LAMC2-BW 5-CAC TTG GAG TCT AGC AGT CTC T-3
MMP10-FW 5-TCA GTC TCT CTA CGG ACC TCC-3’
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MMP10-BW 5-CAG TGG GAT CTT CGC CAA AAA TA-3
PDPN-FW 5-ACC AGT CAC TCC ACG GAG AAA-3
PDPN-BW 5-GGT CAC TGT TGA CAA ACC ATC T-3
TGFB1-FW 5-CTT CGC CCC TAG CAA CGA G-3¥
TGFA1-BW 5-TGA GGG TCA TGC CGT GTT TC-3
SLUG-FW 5-TGA TGA AGA GGA AAG ACT ACAG-3’
SLUG-BW 5-GCT CAC ATA TTC CTT GTC ACA G-3°
SNAIL-FW 5-GCG AGC TGC AGG ACT CTA AT-3¢
SNAIL-BW 5-CCT CAT CTG ACA GGG AGG TC-3¢
VIMENTIN-FW 5-GAG AAC TTT GCC GTT GAA GC-3
VIMENTIN-BW 5'-GCT TCC TGT AGG TGG CAA TC-3°
ZEB1-FW 5-TGC ACT GAG TGT GGA AAA GC-3’
ZEB1-BW 5-TGG TGA TGC TGA AAG AGA CG-¥

2.9 Western blotting

Western blotting was performed as described in Schinke et al. (Schinke et al. 2020).
Whole cell lysates were extracted with phosphate-buffered saline (PBS) containing 2 %
Triton X-100 and protease inhibitors (Roche Complete, Roche Diagnostics, Mannheim,
Germany). Protein concentrations were determined by BCA-assay (Thermo Scientific,
Schwerte, Germany). Ten to 50 pg of proteins were separated by 10 % SDS-PAGE
and visualized with primary SLUG or E-CADHERIN antibodies (C19G7, Cell Signaling
Technology, #9585, 1:1000, overnight at 4°C / 24E10, Cell Signaling Technology, #3195,
1:1000, overnight at 4°C) and horseradish peroxidase (HRP)-conjugated secondary an-
tibodies (1:5000, 1 hour at room temperature), and the ECL reagent (Millipore, Darm-
stadt, Germany) in a Chemidoc XRS imaging system (Bio-Rad, Munich, Germany). An
HRP-conjugated specific primary antibody was used to visualize beta-actin (sc-47778
HRP, Santa Cruz).
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2.10 Cell proliferation assay

Cell proliferation assays were performed in accordance to Schinke et al. (Schinke et al.
2020). Cells were counted using a Leica DMi8 microscope with LAS X software and
FIJI. In a 96-well, 2,000 cells were seeded initially for each time point. Cells were left
overnight to fully attach to the plate. The next day (time point 0 hours), and 24 or
48 hours later (time points 24 and 48 hours) were measured. For counting, cells were
stained with Hoechst 33342 dye (ThermoFisher) for 15 minutes. Then, using the LAS
X software, 72 images per well with 100x magnification were taken and merged. In
FILJI, images in greyscale (16-bit) were compressed to 8-bit by threshold adjustment (in
FIJI: Image>Adjust >Threshold >Apply) to remove noise. Then, the Watershed function
was applied to cut any artificially merged pixels (in FIJI: Process>Binary>Watershed).
Finally, resulting particles, representing single cells, were counted and summarized (in
FIJI: Analyze>Analyze Particles, setting Size:0-Infinity, Circularity: 0-1, tick “Clear
results” and “Summarize”). Resulting counted cell numbers were then analyzed using R

Software.

2.11 Fibroblast spheroid invasion assay

Fibroblast spheroid invasion assays were performed as described in Schinke et al. (Schinke
et al. 2020). Spheroids of normal human foreskin fibroblasts (PromoCell, C-12352) were
grown in Ultra Low Attachment plates (ULA) over 24 hours by seeding 1x10? cells in
standard DMEM. Following the formation of fibroblast spheroids, 1x10* FaDu or Kyse
cell transfectants were added and co-cultured for additional 48 and 72 hours. Co-cultured
spheroids were carefully harvested with a cut 100 pL pipette tip and immediately frozen
in tissue-TEK (Sakura Europe) in a cryomold with liquid nitrogen. Then, cryosections

of 4 pm thickness were generated and THC staining was conducted.
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2.12 Matrigel invasion assay

Matrigel invasion assays were conducted in accordance to Leslie M. Shaw and Schinke et
al. (Shaw 2005; Schinke et al. 2020).

Briefly, a total of 1x10% of tumor cells was seeded in 1:10 diluted matrigel-coated 24-well
membrane chambers (Corning, cell culture inserts, 8 um pore size, 353097) in serum-free
medium. The lower 24-well chambers contained standard medium. After 24 hours of in-
vasion, cells attached on the top were swiped off with a cotton swab and membranes were
carefully extracted with a scalpel. Then, cells were fixed with methanol and membranes

stained with crystal violet and invaded cells were counted visually.

2.13 Clonogenic survival assay

Clonogenic survival assays were conducted as described in Schinke et al. (Schinke et
al. 2020). For FaDu 1x10% and for Kyse30 5x103 cells were plated on a 6-well plate and
irradiated 24 hours later. After 14 days for FaDu and 10 days for Kyse30, cells were fixed
and stained with crystal violet solution containing methanol. The whole 6-well plate was
photographed using the Chemidoc XRS imaging system. Then, to quantify the area of
colonies, the ColonyArea Image J Plugin by Guzman was used (Guzmén et al. 2014).
Clonogenic survival was calculated by measuring the area of colonies of irradiated relative

to respective non-irradiated control plates.

2.14 RNA Sequencing

For the 3'-RNA Sequencing (RNASeq), total RNA was extracted using RNeasy Mini kit
(Qiagen), quantified with the Qubit-Fluorometer, and reverse transcribed with Quanti-
Tect Reverse Transcription kit (Qiagen). The quality of RNA was assessed using a Bio-
analyzer 2100 System (Agilent Technologies, Inc., USA) with the Agilent RNA 6000 Pico
Kit (#5067-1513, Agilent Technologies, Inc., USA). The RNA integrity was evaluated by

calculating the percentage of fragments > 200 nucleotides (DV200). Sequencing libraries
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were prepared using 50 ng total RNA and the QuantSeq 3-mRNA-Seq Library Prep
Kit FWD for Ilumina (SKU: 015.96, Lexogen GmbH, Austria). Library amplification
PCR cycles were defined by using the PCR Add-on Kit (SKU: 020.96, Lexogen GmbH,
Austria). The individual libraries were amplified with 17 PCR cycles. The Quanti-iT
PicoGreen dsDNA Assay Kit (P7589, Invitrogen, USA) and the Bioanalyzer High Sen-
sitivity DNA Analysis Kit (#5067-4626, Agilent Technologies, Inc., USA) were used to
assess the quality and quantity of the resulting libraries. Final 3*-RNA-Sequencing with
150 bp paired ends was performed on an Ilumina HiSeq4000 platform (Illumina, Inc.,
USA). Gene expression quantification was carried out by alignment of RNASeq reads
using the STAR aligner. Then the featureCounts of the Rsubreads R package was used

for count quantification.

2.15 General data analysis and statistics

Data analysis was performed using R (R Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical Computing, 2017; R version
3.6.1 (2019-07-05)) as described (Schinke et al. 2020). Correlation matrices were cal-
culated and illustrated with CRAN corrplot package. Unless otherwise stated, further
analysis was performed with built-in packages and functions from the CRAN package

tidyverse.

2.16 Principal Componant Analysis (PCA)

The PCAs were computed using the pcaFzplorer package (version 2.14.2). The top 500
expressed genes across all treatments and controls were used to define the Principal

Components (PCs). Explained variance of PCs is listed directly on the plots.
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2.17 Differentially expressed genes (DEGs)

The DESeq2 R package (version 1.28.1) was applied to compute DEGs between pairs of
samples from different treatments and their respective controls. Before running DESeq2,
genes with an average expression lower than 100 normalized read counts were excluded.
Next, all genes that were significantly differentially expressed at a false discovery rate
(FDR) of < 0.05 with an estimated absolute log2 fold change of > 0.5 in the pairwise
comparisons were kept for downstream analysis. Gene expression is illustrated by the
Volcano plots in the appendix (Appendix Fig. 2 and Fig. 4). The 72 hours treatments
with EGF-low, EpEX and EGF with EpEX did not result in any significant DEGs and
therefore are not displayed in the Volcano plots. The R package used was EnhancedVol-
cano (version 1.6.0) and the displayed p-value cut-off was 0.25 and the log2 fold change

cut-off was 0.5.

2.18 DEGs visualization with Venn diagram and UpSet plot

To illustrate the shared and distinct gene counts from all treatments separated by the two
time points 6 and 72 hours, Venn diagrams as constructed by the venn with vennCounts
and vennDiagram from the limma package (version 3.44.3) were used. To visualize the
DEG count intersections in more detail, an UpSet plot was used. The conducted R
package was UpSetR (version 1.4.0) with the upset function. Both, the Venn diagrams
and the UpSet plot, do only show DEGs as retrieved from the DESeq2 package with an

adjustest p-value < 0.05.

2.19 Heatmaps with hierachical clustering

The r package pheatmap (version 1.0.12) was used for the unsupervised hierarchical clus-
tering of the Top 50 DEGs from the pairwise comparisons defining the DEGs (Appendix
Fig. 1 and Fig. 3). pheatmap was further applied for unsupervised hierarchical clustering

using the Hallmarks EMT signature (MSigDB M5930) in Fig. 4.5 and appendix Fig. 5
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visualizing clustering of treated Kyse30 cells. For the heatmap in Fig. 4.16, the function
heatmap.2 from the gplots package (version 3.0.4) was used to illustrate scaled gene ex-
pression and the distance matrix dendrogram, which was computed with the functions
dist and hclust (both from stats package version 4.0.2). The pheatmap and dist func-
tions computed the respective distance matrix measuring euclidean distance to identify
the distances between the rows of a data matrix. The rows or columns of the heatmaps
are centered and scaled as indicated in the respective figures using the R base function

scale.

2.20 Gene Set Enrichment Analysis (GSEA)

GSEA was conducted using the R package fgsea (version 1.14.0) and the GO term Bio-
logical Process pathways extracted with gmtPathways from ¢5.bp.v6.2.symbols.gmt. The
GSEA was conducted by fgsea with ranked genes from the comparisons of treated cells
and respective controls, ranked by log2 fold change, without any p-value cut-off, but
excluding reads below 100. Permutations were set to 10000, minimum size of genes in

pathways was 15, and maximum was 500.

2.21 Survival analysis

To build Cox proportional hazard (PH) models, survival functions, and Kaplan-Meier
curves, the R package survival (version 3.2-3) with the functions Surv, cozph, and survfit
was used. To further visualize the survival analysis, the R package survminer (0.4.8)

with ggsurvplot and ggforest was applied.

2.22 EGF/EGFR-mediated EMT Risk Score

All n= 181 genes distinctively shared by EGF-high 72 hours treatments in FaDu and
Kyse30 cells were cut to n= 172 because of genes being opposingly deregulated comparing

the two cell lines. The resulting n= 172 consistently down- or up-regulated DEGs were
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applied to univariate Cox PH model analysis using 5-year overall survival as a clinical
endpoint. Genes that were up-regulated in the DE analysis and were showing a Cox PH
hazard ratio (HR) > 1 were kept and genes that were down-regulated in the DE analysis
and were showing a HR < 1 were kept. No cut off using a p-value was applied. The
resulting n= 57 genes were used to build a multivariate Cox PH model. To select genes,
a forward feature selection method called Robust Likelihood-Based Survival Modeling
was applied (Cho et al. 2009). The method is distributed as the rbsurv package (version
2.46.0). The parameters for rbsurv defined were; max.n.genes = 20, n.fold = 5, n.iter =
100, n.seq=1. The n.fold was set to n.fold = t in order to secure a minimal number of
10 events per fold. From the n= 57 genes, NCEH1, DDIT4, ITGS4, FADD, and TIMP1
were selected by rbsurv. Then, a multivariate Cox PH model was computed with NCEH1,
DDIT4, ITGB4, FADD, and TIMP1 as features. For each patient, the expression value
of the respective gene was multiplied by its Cox model coefficient. Then, the sum of all
resulting values was calculated to define the Risk Score. This Risk Score was then used
to assess patients survival and association with clinical parameters. The computation
of the Risk Score, sometimes in literature referred to as prognostic index, was done in

accordance to literature (Hess et al. 2019).

2.23 Pathway activity with PROGENYy

Using the STRINGdb package (version 2.02.) a string network was extracted applying
the function new with parameters version= “117, species= 9606, and score threshold=
400. NCEH1, DDIT4, ITGpB4, FADD, and TIMP1 with map were used to extract neigh-
bors with STRING IDs using get neighbors. R package AnnotationDbi (version 1.50.3)
with EnsDb. Hsapiens.v86 was applied to map STRING IDs back to gene names. The re-
sulting list was used to acquire gene expression data for the TCGA patients from CGDS
as described in the data section. Using the gene expression matrix and the Bioconduc-
tor package progeny (version 1.10.0), pathway activity scores for n= 14 pathways were

computed. The pathways scores were used to compare two risk subgroups of the TCGA
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cohort (“Risk-” and “Risk+”). By setting the progeny parameter scale = T, the result-
ing scaled pathways activity scores were used to investigate linear correlation with the

EGF/EGFR-mediated Risk Score directly across all patients.

2.24 TCGA subtype selection for pEMT quantification

In accordance to Schinke et al., top 10,000 protein coding genes from the whole hu-
man genome across all TCGA patients were identified (Schinke et al. 2020). The
R-package cgdsr (Bioconductor) was used to extract expression profiles (cancer study:
“hnsc_tcga_pub”/ case list: “hnsc_tcga pub _all”/ genetic profile: “hnsc_tcga pub_r-
na_seq v2 mrna”). A total of n= 10,000 complete mRNA profiles could be extracted
for n= 243 HPV-negative TCGA HNSCC patients. Molecular subtypes for each TCGA
patient were subtracted (Lawrence et al. 2015) and patient data was processed in ac-
cordance to Puram et al. (Puram et al. 2017). Briefly, expression values of extracted
top 10,000 protein coding genes across all patients were log2 transformed, centered and
a correlation analysis across all patients was computed. Patients with a mean Pearson
correlation > .1 within their respective subtype and < .1 compared to all patients from
the other subtypes were kept for further analysis. Then, gene expressions of resulting
n= 46 patients from the mesenchymal and n= 38 from the basal-like subtype group were
applied to filter out patients with highest influence of non-malignant cells. Therefore,
centered gene expression values from indicated marker genes of non-malignant cells (Pu-
ram et al. 2017) served to compute an euclidean distance-to-distance matrix using the
dist function from the R CRAN stats package (version 4.0.2). Then, hierarchical clus-
tering was applied using the hclust function from stats package. The resulting clustering
tree was cut at a height of 13 resulting in n= 4 different clusters. The cluster with the
largest influence of non-malignant cells across all patients was excluded from downstream

analysis. All others were kept for further analysis.
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2.25 SING score calculation

SING score calculation was computed as described in Schinke et al. (Schinke et al.
2020). Using the R-package singscore (version 1.8.0, Bioconductor), a SING score, short
for Single Sample Scoring of Molecular Phenotypes (Foroutan et al. 2018), was computed
for each TCGA patient with the n= 15 common pEMT genes defined by Puram et al
(Puram et al. 2017). For univariate survival analysis, Cox PH ratios (HR) > 1 with
logrank p-value < 0.05 was accepted as relevant. To test the validity of results obtained
with the pEMT gene set, n= 10,000 random sets of n= 15 genes from the extracted
gene pool (top 10,000 protein coding genes, excluding all n= 100 pEMT genes) served to
compute Cox PH models with log-rank p-values. For visualization, SING scores of pEMT
genes were implemented to dichotomize patients into 25 % lowest (“low”, 1st quartile),
intermediate 50 % (“medium”, 2nd and 3rd quartiles), and 25 % highest groups (“high”,
4th quartile). Then, a Cox PH model, median survival times, and log-rank p-values
were calculated and included in plots of Kaplan-Meier curves. MD Anderson Cancer
Cencer (MDACC) data was retrieved from the GEO object GSE427/8 by using the R
Bioconductor packages GEOquery, affy, AnnotationDbi, and hgul33plus2.db to extract
and map the cDNA microarray expression data, and to receive the according clinical
data set. The affy function rma for robust multi-array average expression measure with
default settings was applied to MDACC transcriptome data to receive log2 transformed
data. From the n= 10,000 protein coding genes, n= 9831 were recovered in the MDACC
data set. Then, as described for the TCGA data, a SING score with n= 15 common
pEMT was computed, tested in a Cox PH model, applied to patient dichotomization, and
visualized by a Kaplan-Meier curve including a Cox-proportional hazard model, median

survival times, and log-rank p-values.
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Chapter 3

Data

3.1 Public clinical data

The Cancer Genome Atlas (TCGA) clinical data was processed and kindly provided by
Dr. Julia Hess, Head of Radiation Sensitivity Group, HelmholtzZentrum Munich. Tran-
scription data not listed within this section was acquired from the Cancer Genomics
Data Server (CGDS) hosted by the Computational Biology Center at Memorial-Sloan-
Kettering Cancer Center (MSKCC) using the R-CRAN package cgdsr (cancer study:
“hnsc_tcga_pub”/ case list: “hnsc_tcga pub _all”/ genetic profile: “hnsc_tcga pub_r-
na_seq_ v2 mrna”). Data, clinical and preprocessed transcription data, from the Fred
Hutchinson Cancer Research Center (FHCRC) cohort was directly extracted from the
NCBI Gene Expression Omnibus (GEO) object GSE41613. Data, clinical and transcrip-
tion data, from the University of Texas MD Anderson Cancer Center (MDACC) co-
hort was extracted from the NCBI Gene Expression Omnibus (GEO) object GSE42743.
MDACC transcription data was preprocessed as described in the methods. More infor-

mation can be found on https://www.ncbi.nlm.nih.gov.
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Table 3.1: Publicly available clinical data of the HNSCC TCGA cohort. Median of de-
scribed EGF/EGFR-mediated EMT Risk Score defined subgroups Risk- (low) and Risk+
(high). Statistical tests compare Risk- and Risk+. Numeric values are compared by

P-values are

ANOVA. Categorical values are compared by Pearson’s Chi-squared test.

listed.
Risk- (N=120) | Risk+ (N=120) | Total (N=240) | p-value

Time OS in months 0.003
Median 21.5 14.6 16.4

Mean 26.0 19.3 22.6

Range 0.0 - 60.0 0.0 - 60.0 0.0 - 60.0

Status OS < 0.001
Living 80 (66.7%) 46 (38.3%) 126 (52.5%)

Deceased 40 (33.3%) 74 (61.7%) 114 (47.5%)

Primary site 0.097
Hypopharynx 0 (0.0%) 1 (0.8%) 1 (0.4%)

Larynx 30 (25.0%) 40 (33.3%) 70 (29.2%)

Oral Cavity 87 (72.5%) 71 (59.2%) 158 (65.8%)

Oropharynx 3 (2.5%) 8 (6.7%) 11 (4.6%)

N-status < 0.001
NO 77 (64.2%) 47 (39.2%) 124 (51.7%)

N+ 43 (35.8%) 73 (60.8%) 116 (48.3%)

Stage < 0.001
I 8 (6.7%) 1 (0.8%) 9 (3.8%)

I 32 (26.7%) 17 (14.2%) 49 (20.4%)

I11 36 (30.0%) 26 (21.7%) 62 (25.8%)

v 44 (36.7%) 76 (63.3%) 120 (50.0%)

RiskScore < 0.001
Median -0.645 0.700 -0.098

Mean -0.790 0.790 0.000

Range -3.257 - -0.101 | -0.095 - 2.303 -3.257 - 2.303
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Table 3.2: Publicly available clinical data of the FHCRC and MDACC HNSCC cohorts.
Risk- and Risk+ represent subgroups defined according to median of the EGF/EGFR-
mediated EMT Risk Score of the TCGA cohort. Statistical tests compare Risk- and Risk+.
Numeric values are compared by ANOVA. Categorical values are compared by Pearson’s

Chi-squared test. P-values are listed.

FHCRC Risk- (N=39) | Risk+ (N=58) | Total (N=97) | p-value
Time OS in monhts 0.004
Median 60.0 35.3 54.4

Mean 48.0 34.8 40.1

Range 3.4-60.0 0.5 - 60.0 0.5 - 60.0

Status OS 0.015
Living 26 (66.7%) 24 (41.4%) 50 (51.5%)

Deceased 13 (33.3%) 34 (58.6%) 47 (48.5%)

RiskScore < 0.001
Median -0.884 0.549 0.149

Mean -0.988 0.665 0.000

Range -2.833 - -0.116 | -0.090 - 2.544 -2.833 - 2.544

MDACC Risk- (N=27) | Risk+ (N=35) | Total (N=62) | p-value
Time OS in months 0.002
Median 27.8 11.8 20.2

Mean 29.5 16.1 21.9

Range 1.6 - 60.0 0.3-54.4 0.3 - 60.0

Status OS < 0.001
Living 20 (74.1%) 10 (28.6%) 30 (48.4%)

Deceased 7 (25.9%) 25 (71.4%) 32 (51.6%)

RiskScore < 0.001
Median -0.763 0.764 0.025

Mean -0.928 0.716 -0.000

Range -2.359 - -0.131 | -0.082 - 2.144 -2.359 - 2.144
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3.2 In-house LMU cohort

Table 3.3: Clinical data of the in-house LMU cohort. Cohort was separated according to

SLUG IHC quantification. Statistical tests compare SLUG low and SLUG high. Numeric

values are compared by ANOVA. Categorical values are compared by Pearson’s Chi-squared

test. P-values are listed.

SLUG high (N=59) | SLUG low (N=17) | Total (N=76) | p-value
Time DFS in months 0.684
Median 14.1 18.7 14.7
Mean 19.0 20.7 194
Range 1.1-60.0 2.8 -43.7 1.1-60.0
Status DFS 0.008
Living/Recurrence free | 31 (52.5%) 15 (88.2%) 46 (60.5%)
Deceased /Recurrence 28 (47.5%) 2 (11.8%) 30 (39.5%)
Primary site 0.518
Oral Cavity 21 (35.6%) 4 (23.5%) 25 (32.9%)
Oropharynx 27 (45.8%) 8 (47.1%) 35 (46.1%)
Hypopha. & Larynx 11 (18.6%) 5 (29.4%) 16 (21.1%)
Recurrence 0.097
Free 40 (67.8%) 15 (88.2%) 55 (72.4%)
Recurrence 19 (32.2%) 2 (11.8%) 21 (27.6%)
IHC localization 0.100
Homogeneous 34 (57.6%) 12 (70.6%) 46 (60.5%)
Edge 13 (22.0%) 0 (0.0%) 13 (17.1%)
Nolnfo 12 (20.3%) 5 (29.4%) 17 (22.4%)
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Chapter 4

Results

4.1 EGF/EGFR-mediated EMT induction

In collaborative work of Min Pan and myself, we assessed EGFR and EpCAM protein
expression in n = 180 tumor cryosections from HNSCC patients of an in-house LMU co-
hort and I performed the bioinformatic analysis of the resulting data (Pan et al. 2018).
By doing so, we demonstrated that patients with high EGFR protein expression suffer
from poorer overall survival. Comparing the EGFR/EpCAM co-expression, we showed
that patients with EGFR-low/ EpCAM-high co-expression are characterized by outstand-
ingly high overall and disease-free survival rates compared to patients with EGFR-high/
EpCAM-low co-expression (Fig. 4.1 A-B). The difference in survival rates were also con-
firmed in HPV-negative patients only (Fig. 4.1 C-D). Further, we reported the capability
of EGF to mediate EMT in HNSCC cell lines Kyse30 and FaDu, both expressing high
levels of EGFR. A treatment with 10 ng/mL EGF (EGF-low) under serum starvation
induced intermediate levels of pERK and pAkt, and induced cell proliferation. A treat-
ment with 50 ng/mL (EGF-high) induced high levels of pERK, expression of EMT-TFs
SNAIL, SLUG, and ZEBI1, and induced an EMT phenotype at a morphological level
after 72 hours (Pan et al. 2018). Further, sustained high pERK levels were measured
within a timeframe of 6 hours and were identified as the phospho-protein mediator of
EMT in HNSCC cell lines. The extracellular domain of EpCAM, EpEX, was defined as
a novel ligand of EGFR, capable of inducing a similar phenotype as EGF-low treatment.
Co-treatment with EGF-high and EpEX, abbreviated as EGF with EpEX, led to the
inhibition of EMT induction (Pan et al. 2018).
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Now, to understand the underlying changes in the transcriptomes we conducted an
RNASeq of the four different treatments EGF-low, EGF-high, EpEX, and EGF with
EpEX. At 6 and 72 hours bulk RNA was extracted, representing the time points of
high pERK levels and phenotypic EMT, respectively. All treatments were conducted in
quadruplicates, under serum starvation conditions, and in HNSCC cell lines Kyse30 and
FaDu. Cellular morphology of EGF/EGFR-mediated EMT is shown in Fig. 4.2 and the
whole procedure is schematically represented in Fig. 4.3.

A Principal Component Analysis (PCA) with the top 500 genes expressed in Kyse30
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Figure 4.1: EGFR and EpCAM co-expression is prognostic in HNSCCs. EGFR and
EpCAM expression of primary HNSCCs was evaluated through THC stained cryosections of
n = 180 patients from the LMU cohort. A) IHC scores of EGFR and EpCAM expression
from all n = 180 primary tumors and a n = 87 HPV-negative subcohort (C) were subdivided
into quadrants Q1- Q4 according to an THC cut-off threshold of 150 (THC score range 0-300).
Numbers and percentages of patients within quadrants are noted on the plot. B)-D) Overall
and disease-free survival rates of subgroups of patients from (A) and (C) were compared.
Kaplan-Meier curves with 95% CI, HRs, and log-rank p-values of the Cox models comparing
the subgroups are shown. EGFR: Epidermal growth factor receptor, EpCAM: Epithelial cell
adhesion molecule, CI: Confidence intervall, HR: Hazard ratio, IHC: Immunohistochemistry,
RPPA: Reversed-phase protein atlas, HNSCC: Head and neck squamous cell carcinoma.
Taken from Pan et al., 2018.

cells across all treatments determined a PC1 explaining 46.11 % and a PC2 explaining
13.31 % of variance in the transcriptional data. Plotting PC1 and PC2 shows that the

controls of 0 and 6 hours are in close transcriptional proximity. All 6 hours treatments
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Kyse30 -EGF Kyse30 +EGF B FaDu -EGF FaDu +EGF

200x

Figure 4.2: Representative micrographs of the morphology of Kyse30 (A) and FaDu (B)
cells after EGF-high mediated EMT induction. Cells were treated for 72 hours under serum
starvation conditions. 200x magnification. Shown are representative micrographs from n =4
independent experiments. EGF: Epidermal growth factor, EMT: Epithelial-to-Mesenchymal

transition.

do also appear as a cluster, indicating a high degree of transcriptome similarity. After
72 hours, EGF-high treatments are clearly separated from all other 72 hours treatment
and control groups (Fig. 4.4). This is in line with the morphological changes related
to EMT and depicted after 72 hours. To confirm the findings from the PCA and the
induction of an EMT phenotype after 72 hours with EGF-high treatments a Hallmark
EMT signature from the MSig data base was implemented (MSigDB: M5930). This
signature includes n = 200 genes defining EMT related to wound healing, fibrosis, and
metastasis. It was defined using n = 105 previously described gene sets, refined using
four data sets of different cancer types and cell lines, and validated in two data sets, one
consisting of distal stroma vs. malignant tumors and the other consisting of human lung
adenocarcinoma Ab49 cells. The gene expression of all treatment groups in the Kyse30
cells, excluding the controls, was applied to hierarchical clustering based on euclidean
distance. The values in rows, representing the single gene expressions, were centered and
scaled for a better visualization. To exclude genes that might not be relevant in the pre-
sented HNSCC data set and enhance the clustering precision, the top 25 genes expressed
after 72 hours of EGF-high treatment were selected. The hierarchical clustering identi-
fied two distinct clusters, one including all 6 hours and EGF-high 72 hours treatments,
the other including all other 72 hours treatments. Within the first cluster, EGF-high 72

hours treatments further separated from the 6 hours treatments (Fig. 4.5). A clustering
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approach implementing all n = 200 Hallmark EMT genes and n = 200 random genes as
a control of clustering can be found in the appendix (Appendix Fig. 5). A GSEA of GO
terms “Biological Processes” of Kyse30 cells with all treatment groups was conducted.
Terms related to processes such as EMT or cell proliferation were chosen to be displayed
to summarize the findings (Fig. 4.6). All 6 hours treatments do show a high degree
of GO term regulation, as wound healing, ribosome biogenesis, and keratinization are
up-regulated in all four 6 hours groups showing a Normalized Enrichment Score (NES)
> 1.5. Terms like chromosome segregation or cellular component assembly involved in
morphogenesis are down-regulated in all four groups (NES < 2). Terms enriched in all
6 hours treatments, except for the EpEX treatment, were response to cytokine, immune
response, or cell cell signaling (NES = 1.25 to 2). Terms reduced in all 6 hours treat-
ments, except EpEX treatment, were organelle fission and cell division (NES > 1.5).
At 6 hours, all treatments were showing similar GO term enrichment profiles, no treat-
ment was clearly distinct from all others, except EpEX treatment was showing a reduced
number of regulated GO terms. At 72 hours, most regulation of biological processes
was lost in all treatment groups, except the EGF-high treatment, which led to an up-
regulation of GO-terms including wound healing, membrane budding, immune response,
cell cell signaling, and keratinization with NES values > 1.5. Wound healing, keratiniza-
tion, and immune response were already enriched at 6 hours in EGF-high treatments.
Terms like cell division, negative regulation of locomotion, negative regulation of epithe-
lial to mesenchymal transition, chromosome segregation, or cell cycle phase transition
are down-regulated by NES > 2. The EGF-low, EpEX, and EGF with EpEX treatments
at 72 hours were showing considerably reduced regulation compared to 6 hours. These
GO term regulations indicate a similar transcriptional regulation at 6 hours across all
treatments. After 72 hours, essentially only EGF-high is capable of regulating processes

suppressing cellular division or negative regulation of EMT.
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Figure 4.3: Schematic representation of the RNASeq experiment of EGFR-signaling in-
duced by EGF and EpEX. Transient and moderate ERK activity in response to EGFR
activation by EGF-low leads to cell proliferation (left panel). Sustained and strong ERK
activity induced by EGF-high treatments results in EMT induction and a mesenchymal phe-
notype is induced (center-left panel). EpEX binds to the extracellular domain of EGFR, and
activates the ERK downstream signaling pathway similiar to EGF-low treatments (center-
right panel). The co-treatment of EpEX with EGF-high (EGF with EpEX) is not inducing
EMT and an epithelial phenotype is retained (right panel). Bulk RNA was extracted at 6
and 72 hours from n = 4 independent experiments. Cells were treated under serum star-
vation conditions in the absence of additional growth factors. RNASeq: RNA sequencing,
EGF/R: Epidermal growth factor/ receptor, ERK: Extracellular signal-regulated kinase,
EpEX: Extracellular domain of EpCAM.
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PC2: 13.31% variance

Figure 4.4: PCA of Kyse30 cells.
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expressed genes were implemented in the analysis. Per treatment group n > 3 independent
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EGF: Epidermal growth factor, EpEX: Extracellular domain of EpCAM, Fc: Fragment

crystallizable region, PCA: Principal component analysis, PC: Principal component.
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Figure 4.5: Heatmap with hierarchical clustering of treatments excluding controls. Top

Time I 3 Time

"

25 genes expresssed in Kyse30 EGF-high 72 hours treatments of Hallmarks EMT signature
(MSigDB M5930) were selected for clustering. Color represents centered and scaled gene
expresson values in rows. First row of colored boxes represents time points: 6 (blue) and 72
hours (green). Second row of boxes defines treatment group with colors (Condition). Genes
represented in rows are named. Shown are gene expression values from n > 3 independent
experiments. EGF: Epidermal growth factor, EpEX: Extracellular domain of EpCAM,
EMT: Epithelial-to-Mesenchymal transition.
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Overview of GSEA in different treatments
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Figure 4.6: Overview of a GSEA with GO terms Biological Processes of Kyse30 cells.
All treatment groups compared to the respective controls are shown. Gene expression was
ranked according to log2 fold change without p-value cut-off. Pathway names are shown
on the left. Color encodes for p-value. Triangle size encodes for NES. Direction of trianlge
shows if a pathway is up- or down-regulated. Shown are the results from n > 3 independent
experiments. NES: Normalized enrichment score, EGF: Epidermal growth factor, EpEX:
Extracellular domain of EpCAM, EMT: Epithelial-to-Mesenchymal transition, GSEA: Gene

set enrichment analysis, GO: Gene ontology.
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4.2 Sustained EGF/EGFR-signaling is necessary to induce
EMT

To simplify the interpretation of results, the previously reported analysis of EGF/EGFR-
mediated EMT induction was shown for Kyse30 cells only. To avoid making cell type
specific assumptions, all of the following steps will be performed for both, Kyse30 and
FaDu cells. In order do identify differentially expressed genes, the RNA expression in the
treatment groups was compared to the respective controls. All treatments were executed
under serum starvation conditions. All EGF treatments were compared to their control
groups, meaning prolonged serum starvation without further treatment for 6 or 72 hours.
The recombinant EpEX used within the scope of this experiment possessed a C-terminal
immunoglobulin G heavy-chain as a tag for purification (Fc-tag). Therefore, the EpEX
treatments were compared to serum starved cells that were further treated with Fc for
6 and 72 hours. For further downstream analysis of DEGs, cut-offs applied were > 0.5
in log2 fold change with an adjusted p-value of < 0.05 as defined by the implemented
R-package DESeq2. For Kyse30 cells at 6 hours, EGF-low treatment resulted in n = 397,
EGF-high treatment in n = 612, EpEX in n = 137, and EGF with EpEX in n = 291
DEGs. Within Kyse30 cells, the exclusive DEGs in the EGF-low treatment group were n
=96, n = 264 in EGF-high, n = 53 in EpEX, and n = 64 in EGF with EpEX treatments.
Comparing all 6 hours treatments, n = 53 DEGs were overlapping. EGF-low and -high
treatments did show n = 284 genes that were differentially expressed in both treatment
groups, not exclusive to other treatments. For Kyse30 cells at 72 hours, only the EGF-
high treatment group showed n = 1208 DEGs. None of the other treatments sustained
transcriptional regulation after 72 hours, except two DEGs in EpEX, of which one was
as well found in EGF-high treatment (Fig. 4.7). For FaDu at 6 hours, EGF-low induced
regulation of n = 778 genes, EGF-high n = 994 genes, EpEX n = 36 genes, and EGF
with EpEX n = 911 genes. The exclusive DEGs in the EGF-low treatment group were n
= 118, n = 316 in EGF-high, one in EpEX, and n = 278 in EGF with EpEX treatments.

Across all treatments within FaDu cells, n = 33 DEGs were overlapping. In EGF-low and
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-high, n = 581 genes were common but not exclusive to the other treatments. In FaDu
cells after 72 hours, EGF-high sustained the highest number of DEGs with n = 1536.
EGF-low treated cells differentially expressed four genes and EGF with EpEX treated
cells n = 103 genes. Treatment with EGF-low induced the regulation of one distinct
gene, EGF-high n = 1439, EpEX n = 0, and EGF with EpEX n = 6 distinct genes (Fig.
4.7). These findings of the differential gene expression in both cell lines are in line with

the hierarchical clustering of Hallmark EMT genes and the GSEA within Kyse30 cells.

A Kyse30

EGF low EGF high EGF low EGF high
264 EGF with EpEX EpEX 0 o 12

EpEX

EGF with EpEX

— 98

6 hours 72 hours

B Fabu

EGF low EGF high

EpEX 118 316 EGF with EpEX
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6 hours 72 hours

Figure 4.7: Venn diagrams of DEGs in Kyse30 and FaDu cells. Time points 6 and 72
hours are displayed separately. Left panel shows 6 hours, right panel shows 72 hours.
A) DEGs in Kyse30 cells. B) DEGs in FaDu cells. Numbers show DEGs in different
intersections. Intersects are not exclusive across time points and cell lines. All DEGs
plotted meet the criteria of log2 fold change > 0.5 and adjusted p-value < 0.05. Results
from n > 3 independent experiments are shown. DEGs: Differentially expressed genes,

EGF: Epidermal growth factor, EpEX: Extracellular domain of EpCAM.
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4.2.1 EpEX does not inhibit EMT through transcriptional regulation

To compare the DEGs in detail and to understand whether the induction of EMT might
be interfered by transcriptional counter-regulation in EGF-low or EpEX treatments, the
log2 fold change in expression of different treatment groups at 6 hours was plotted. To
quantify the similarity of transcriptional regulation in the comparisons, a Pearson corre-
lation analysis was calculated and is indicated within the respective plots. Further, the
total number of mutual DEGs is shown. In both cell lines, the comparison of DEGs from
EGF-low and -high treatments indicates a very high similarity in transcriptional regula-
tion at 6 hours. The Pearson correlation coefficient r is highly significant and exceeding
0.98, indicating a very strong similarity in log2 fold change of the DEG expression. When
comparing EGF-low and -high treatments to EGF with EpEX respectively, the Pearson
correlation coefficient r is highly significant and exceeds 0.98 in both comparisons and
consistently over both cell lines. Further, the matching gene numbers are not excessively
different, as for Kyse30 in EGF-low vs. -high n = 284, EGF-low vs. EGF with EpEX
n = 169, and in EGF-high vs. EGF with EpEX n = 212 DEGs were found. In FaDu,
the matching DEG numbers were; n = 581 for EGF-low vs. -high, n = 536 for EGF-
low vs. EGF with EpEX, and n = 553 for EGF-high vs. EGF with EpEX. This shows
that EGF-low and -high treatments are very similar at 6 hours and the co-treatment
with EpEX is not inducing a different transcriptional profile. To confirm that EpEX
is not counteracting the induction of EMT by a different transcriptional profile, log2
fold change values of EGF-low and -high were compared to treatment with EpEX only.
Again, no counter-regulated genes were found and in both cell lines, Kyse30 and FaDu,
the Pearson correlation indicates a very high similarity of expression values (for EGF-low
and -high vs. EpEX: r= 0.97 in Kyse30/ r= 0.88 in FaDu). Across all comparisons, not
a single counter-regulated gene by EpEX only or in the combined treatment EGF with
EpEX was found in neither of the two investigated cell lines (Fig. 4.8 and Fig. 4.9).
Therefore, EpEX is not directly regulating gene transcription to repress EMT induction
by EGF-high treatments.
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Figure 4.8: Comparison of DEGs in Kyse30 cells after 6 hours. 2.5 % highest or lowest,
and most significant genes are labelled. Treatments compared are depicted on the respective
axis. Pearson correlation analysis coefficients with p-value and total number of compared
genes are shown on the plot in the white box. Axis show log2 fold change of DEGs. All
DEGs plotted meet the criteria of log2 fold change > 0.5 and adjusted p-value < 0.05.
Results from n > 3 independent experiments are shown. DEGs: Differentially expressed

genes, EGF: Epidermal growth factor, EpEX: Extracellular domain of EpCAM.
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Figure 4.9: Comparison of DEGs in FaDu cells after 6 hours. 2.5 % highest or lowest, and
most significant genes are labelled. Treatments compared are depicted on the respective
axis. Pearson correlation analysis coefficients with p-value and total number of compared
genes are shown on the plot in the white box. Axis show log2 fold change of DEGs. All
DEGs plotted meet the criteria of log2 fold change > 0.5 and adjusted p-value < 0.05.
Results from n > 3 independent experiments are shown. DEGs: Differentially expressed

genes, EGF: Epidermal growth factor, EpEX: Extracellular domain of EpCAM.
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4.2.2 Gene regulation by EpEX

Across both cell lines, EpEX was capable of inducing five genes consistently; A-Kinase
Anchor Protein 12 (AKAP12), Glioma Pathogenesis-Related Protein 1 (GLIPR1), In-
ositol Polyphosphate 1-Phosphatase (INPP1), Microtubule-Associated Monooxygenase
Calponin-And-LIM-Domain-Containing 2 (MICAL2), and ST3 -Galactoside a-2,3-Sialyl
transferase 1 (ST3GAL1). Those genes were found to be up-regulated to very similar lev-
els in the RNASeq comparing Kyse30 and FaDu cells. The cell growth-related AKAP12
and the metabolic activity-associated GLIPR1 showed the highest difference in DEG ex-
pression with a log2 fold change ranging from 2 to 3.5. INPP1 is involved in the inositol
phosphate metabolism and was induced by two fold (log 2 fold change = 1). MICAL2,
which is involved in cytoskeletal dynamics, and ST3GAL1L, which is a sialyltransferase,
were induced with a log2 fold change of 1.4 to 1.9. None of those genes was exclusively
found in the EpEX treatment group. In fact, the regulation of those five genes was
found to be highly similar in all four treatment groups at 6 hours (data not shown). To
confirm the findings from the RNASeq data, AKAP12, GLIPR1, INPP1, MICAL2, and
ST3GAL1 mRNA transcription was measured by qPCR analysis. The up-regulation of
all five genes after 6 hours EpEX treatment relative to Fc treatment (control) was con-
firmed in both cell lines. Except MICAL2 expression in FaDu cells, all relative mRNA
expression values were significantly up-regulated. In the qPCR, AKAP12 was induced by
5 to 17 fold, in Kyse30 and FaDu respectively, which translates into a log2 fold change
of 2.3 to 4.1. GLIPR1 was induced by 7.5 fold in Kyse30 and 35 fold in FaDu cells,
translating into a log2 fold change of 2.9 for Kyse30 and 5.1 for FaDu cells. In Kyse30,
relative mRNA expression of INPP1 was 1.8 (log2 = 0.85) and in FaDu it was 2.5 (log2
= 1.32). MICAL?2 was relatively increased by 3.8 fold in Kyse30 (log2 = 1.93) and 4.5
fold in FaDu (log2 = 2.17). For ST3GALI1, qPCR analysis showed an increase of 2.7 in
Kyse30 cells (log2 = 1.43) and 7.6 in FaDu cells (log2 = 2.93). Thus, the induction of
those genes by EpEX treatment could be validated and the expression values of the con-
firmation by qPCR fall into a similar range compared to the data measured by RNASeq
(Fig. 4.10).
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Figure 4.10: Genes regulated by EpEX. A) Log2 fold changes of genes in Kyse30 and
FaDu cells defined by RNASeq (log2 fold change > 0.5, adj. p-value < 0.05). B) and C)
gPCR relative mRNA expression mean values with SDs of Kyse30 (B) and FaDu cells (C) as
defined by the AACt method. One-way ANOVA with Tukey HSD p-value = not significant;
ns, < 0.05; *, < 0.01; **. Results from n > 3 independent experiments are shown. SD:
Standard deviation, qPCR: quantitative real-time PCR, Fc: Fragment crystallizable region,
EpEX: Extracellular domain of EpCAM, RNASeq: RNA sequencing.
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4.3 EGF/EGFR-mediated EMT Risk Score

The presented RNASeq analysis led to the conclusion that at 6 hours there is no substan-
tial difference in gene regulation between EGF-low or EGF-high or any other treatment
group. An UpSet plot (Fig. 4.11) allowed to define the distinct gene numbers of single
or combined groups of DEG venns. In the UpSet plot, this is illustrated by the dots, rep-
resenting DEG venns of a single treatment, and connecting lines, representing selected
combinations of venns. The distinct numbers of DEGs are indicated and represented
by the blue bar charts on top. Since, treatments at 72 hours, except EGF-high, were
showing almost no DEGs, they will be excluded from the UpSet plot to facilitate the
interpretation of the plotted data. The combination of the DEGs of EpEX treatments
from Kyse30 and FaDu cells shows no distinct genes. The same is true when combining
EpEX and EGF with EpEX treatments, which confirms the aforementioned findings that
EpEX is not a counter-regulator of EGF/EGFR-mediated EMT on transcriptome level.
Nonetheless, the dual comparison of EGF with EpEX in Kyse30 and FaDu cells showed
four genes being distinct from all other treatments. Those four genes were Proliferation
And Apoptosis Adaptor Protein 15 (PEA15), a negative regulator of apoptosis, Plectin
(PLEC), encoding an intermediate filament binding protein, and the two zinc fingers
ZC3H15 and ZNF792. The distinct numbers of DEGs from the treatment groups that
did not result in the induction of EMT, namely EGF-low, EpEX, and EGF with EpEX,
were zero, which shows that the gene regulation is most likely not different to EGF-high
at 6 hours. In both cell lines, EGF-high was capable of regulating the highest absolute
number of genes at both time points. EGF-low was regulating fewer genes in total at 6
hours, and a maximum of four genes at 72 hours. In contrast, EGF-high regulated the
transcription of n = 1208 genes in Kyse30 and n = 1536 in FaDu cells at 72 hours (Fig.
4.7). This is depicted as well by the UpSet plot in Fig. 4.11 by the number of DEGs
on the left side, represented as bar charts. After 72 hours EGF-high treatment, n = 709
genes and n = 919 genes were different from all other treatments for Kyse30 and FaDu

cells, respectively, as shown by the blue bar charts on top. EGF-high treatments at 6
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hours regulated n = 12 distinct genes and the combination with EGF-high treatment of
72 hours led to two DEGs. When looking at EGF-high treatments at 72 hours in Kyse30
and FaDu cells, n = 181 DEGs were distinct from all other plotted treatment groups.
Since an EGF/EGFR-mediated EMT phenotype was observed at 72 hours in both cell
lines (Fig. 4.2, Fig. 4.5, and Fig. 4.6) and was further shown in previous collaborative
work from Min Pan and myself (Pan et al. 2018), those n = 181 DEGs were defined
as the EGF/EGFR-mediated EMT gene signature and served to extract a prognostic
EGF/EGFR-mediated EMT gene signature for HPV-negative HNSCC patients.
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Figure 4.11: Upset plot of DEGs in all 6 hours treatments and 72 hours EGF-high treat-
ments from Kyse30 and FaDu cells. Total number of DEGs is shown by bar charts on the
left. Within the table, points represent a selected treatment and lines mark comparisons
of different treatments. Distinct numbers of DEGs across all samples from comparisons or
single treatments and intersection sizes are shown by bar charts on the top of the graph.
All DEGs plotted meet the criteria of log2 fold change > 0.5 and adjusted p-value < 0.05.
Results from n > 3 independent experiments are shown. DEGs: Differentially expressed

genes, EGF: Epidermal growth factor, EpEX: Extracellular domain of EpCAM.
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4.3.1 Extracting candidate genes from TCGA patient data

The EGF/EGFR-mediated EMT gene signature was reduced from n = 181 to 172 genes
being consistently up- and down-regulatied across FaDu and Kyse30 cells. To assess the
impact of those EMT genes on survival, the publicly available TCGA HNSCC cohort
consisting of n = 243 HPV-negative patients was used (Lawrence et al. 2015). Complete
data including clinical parameters such as tumor primary sites or lymph node metastasis
status were available for n = 240 TCGA patients (Tab. 3.1). The overall survival data
was available for all n = 240 patients and cut to five years of clinical follow-up. Then, the
mRNA expression values of the n = 172 identified EMT genes from the TCGA patients
were downloaded by accessing the Memorial Sloan-Kettering Cancer Center (MSKCC)
Cancer Genomics Data Server (CGDS) and were further log2 transformed. In order to
make a transition from in wvitro findings to clinical data, all n = 172 genes were assessed
by a univariate Cox proportional hazard model (Cox model). Since, EMT is viewed
as a process with negative impact on the overall survival of patients, only genes being
up-regulated in vitro and leading to a Cox hazard ratio (HR) > 1 were kept. Similarly,
down-regulated genes from the candidate EMT genes with a Cox HR < 1 were kept for
further analysis. This led to a total number of n = 57 genes from the EGF/EGFR-
mediated EMT candidate genes with potential relevance in TCGA patients. All n =
57 univariate Cox models are listed alphabetically and separated into up- and down-

regulated in Appendix Tab. 1, 2, and 3.

4.4 Computing and evaluating an EGF /EGFR-mediated EMT
Risk Score

The identified n = 57 genes were applied to robust likelihood-based survival modeling,
a method developed by Cho and colleagues (Cho et al. 2009), for feature selection of a
multivariate Cox model. The feature selection resulted in a highly significant multivariate
Cox model with a global log-rank p-value of 0.0003 (Fig. 4.12, A). The genes selected

as features for the multivariate Cox model were: Neutral Cholesterol Ester Hydrolase 1
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(NCEH1), DNA Damage Inducible Transcript 4 (DDIT4), Integrin Subunit § 4 (ITGB4),
Fas Associated Via Death Domain (FADD), and TIMP Metallopeptidase Inhibitor 1
(TIMP1) (Fig. 4.12, top left). TIMP1 is part of the Hallmark EMT signature (MSigDB:
M5930). NCEH1 was suggested to promote tumor cell migration (Chiang et al. 2006).
DDIT4 is part of the cellular DNA-damage response (Ellisen et al. 2002). FADD mediates
apoptotic signals and ITG /34 mediates cell-matrix adhesion (Chinnaiyan et al. 1996; Dyce
et al. 2002). Next, the information of the multivariate Cox model was combined with the
expression levels of the selected genes to form a Risk Score. In accordance to Hess et al.,
the coefficients of the multivariate Cox model were used to weigh RNA expression of the
featured genes in patients. Thus, for all n = 240 TCGA patients the expression values of
each of the five genes were multiplied by the respective coefficient from the Cox model.
The resulting weighted expression values were added up for each patient. Then the sum
of values were centered and scaled across all patients to form an EGF/EGFR-mediated
EMT Risk Score. To visualize the prognostic value of the EGF/EGFR-mediated EMT
Risk Score, TCGA patients were dichotomized into two groups according to the median
Risk Score of the whole cohort. Patients with a Risk Score larger then the median were
labeled as “Risk+” and patients with a score lower then the median with “Risk-". In a
Kaplan-Meier curve with a Cox model, the “Risk+"- and “Risk-"-patients were compared
and the “Risk+" group was showing worse prognosis according to overall survival with a
2.41-times elevated relative hazard risk (Fig. 4.12, B). The clinical parameters stage and
lymph node metastasis status were both binarized into two groups, I/II vs. III/TV and
NO vs. N+ respectively. For both parameters, the groups related to progression of tumor
disease (III/IV and N+) had significantly higher mean values of EGF/EGFR-mediated
EMT Risk Score compared to patients in stage I/II or with no lymph node involvement.
Further, the patient group denoted as “Risk+” had enriched numbers of stage III/IV and
N+ patients (Fig. 4.13, A). To assure that the prognostic value of the Risk Score is not
driven by a potential substratification of primary tumor localization groups, a Kaplan-
Meier with a Cox model stratified by the risk groups and tumor primary sites was plotted.

The subgroup of oropharyngeal cancers consisted of n = 3 patients in “Risk-" and n = 8
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in “Risk+”. Patients suffering from larynx carcinomas consisted of n = 30 “Risk-"- and
n = 40 “Risk+"-patients. Oral cavity carcinomas, the most abundant sublocalization
within the investigated cohort, included n = 87 “Risk-"- and n = 71 “Risk+"-patients.
The plotted Kaplan-Meier and the significant Cox model (log-rank p-value = 0.00019)
show that the tumor primary site is not a surrogate for the Risk Score because all “Risk-
"-subgroups show a better survival compared to the “Risk+"-patients in the respective
localization group (Fig. 4.13, B). Thus, the computed EGF/EGFR-mediated EMT Risk
Score is a prognosticator that is independent of tumor primary site and is positively
associated to AJCC staging and lymph node metastasis status in the HPV-negative
patients of the TCGA HNSCC cohort.
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Figure 4.12: EGF/EGFR-mediated EMT Risk Score of TCGA patients. A) Forest plot
of a multivariate Cox model after feature selection with RBsurv. Number of events, global
log-rank p-value, AIC, and Concordance index are shown. B) Kaplan-Meier curve with
95% CI, HR, HR 95% CI, and log-rank p-value of the Cox model. Patients are stratified
into Risk- and Risk+ by the median of the Risk Score. Risk- means below median. Risk+
means above median. Numbers at risk are shown in the table. Overall survival over 5 years
of clinical follow-up with time in months were implemented in a Kaplan-Meier curve and
Cox models. CI: Confidence intervall, HR: Hazard ratio, AIC: Akaike information criterion,
EGF/R: Epidermal growth factor/ receptor, EMT: Epithelial-to-Mesenchymal transition,
TCGA: The Cancer Genome Atlas.
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Figure 4.13: EGF/EGFR-mediated EMT Risk Score of TCGA patients. A) Comparisons
of the Risk Score with clinical stage and lymph node status. Differences in Risk Score
mean expression values between groups were compared by a Wilcox test. P-value is shown.
Respective patient numbers in subgroups defined according to median Risk Score values
(below: Risk- and above: Risk+) and clinical parameters were compared by Fisher’s exact
test. P-value is shown. Clinical stages were summarized into I/IT and III/IV. NO means no
nodal involvement. N+ means lymph node metastasis of any stage (I-III). B) Kaplan-Meier
curve with Cox model log-rank p-value stratified according to Risk subgroups and tumor
primary site. Numbers at risk are shown in the table. Overall survival over 5 years of
clinical follow-up with time in months were implemented in Kaplan-Meier and Cox model.
EGF/R: Epidermal growth factor/ receptor, EMT: Epithelial-to-Mesenchymal transition,
TCGA: The Cancer Genome Atlas. Lar: Larynx, OC: Oral cavity, Oro: Oropharynx.
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4.4.1 Validation of EGF /EGFR-mediated EMT Risk Score in indepen-
dent HNSCC cohorts

The validity of the EGF/EGFR-mediated EMT Risk Score was tested in two additional
publicly available HNSCC patients cohorts. One validation cohort was from the Fred
Hutchinson Cancer Research Center (FHCRC) and the other from the University of
Texas MD Anderson Cancer Center (MDACC). The FHCRC and the MDACC data set
consisted of HPV-negative oral cavity tumor patients and data of overall survival was
available for both cohorts. The overall survival over five years of clinical follow-up was not
significantly different across all three evaluated data sets (TCGA, FHCRC, and MDACC)
as illustrated by the Kaplan-Meier curve with a Cox log-rank p-value in the Appendix Fig.
7. Further, the transcriptomes of the FHCRC and MDACC patients were quantified with
cDNA microarrays and expression data was available for all of the five genes implemented
in the multivariate Cox model forming the EGF/EGFR-mediated EMT Risk Score in
TCGA patients (Fig. 4.12). The RNA expression values of the FHCRC and MDACC
cohorts were weighted by the coefficients of the Cox model previously defined in the
TCGA discovery cohort. The resulting values were summed up, centered, and scaled to
form an EGF/EGFR-mediated EMT Risk Score. To stratify the FHCRC and MDACC
cohorts into “Risk-" and “Risk+”, the median Risk Score value from the TCGA data set
was applied. To validate the prognostic value of the EGF/EGFR-mediated EMT Risk
Score, a Kaplan-Meier curve including a Cox model was plotted. The “Risk+"-patients in
the FHCRC cohort were characterized by a 2.28 elevated relative hazard risk and in the
MDACC cohort the “Risk+” were marked by a 4.51 elevated risk of death (Fig. 4.14).
Therefore, the prognostic value of the EGF/EGFR-mediated EMT Risk Score consisting
of weighted expression of the genes NCEH1, DDIT4, ITGS4, FADD, and TIMP1 could
be confirmed in two independent cohorts using a different technique to quantify gene

transcription, i.e. cDNA microarray measurements versus RNASeq.
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Figure 4.14: Validation of EGF/EGFR-mediated EMT Risk Score in the FHCRC and
MDACC HNSCC cohorts. Risk Score was calculated as sum of weighted gene expression
according to the multivariate Cox model computed with the TCGA data. Risk subgroups
were calculated according to the median Risk Score value from the TCGA HNSCC cohort.
Risk- means below and Risk+ means above TCGA median Risk Score. A, B) Kaplan-
Meier curves with 95% CI, HRs, HR 95% CIs, and log-rank p-values of the Cox models
of the (A) FHCRC and the (B) MDACC cohort. Numbers at risk are shown in the table.
Overall survival over 5 years of clinical follow-up with time in months was implemented. CI:
Confidence intervall, HR: Hazard ratio, EGF/R: Epidermal growth factor/ receptor, EMT:
Epithelial-to-Mesenchymal transition, FHCRC: Fred Hutchinson Cancer Research Center,
MDACC: University of Texas MD Anderson Cancer Center, TCGA: The Cancer Genome
Atlas.
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4.5 Evaluation of EGF/EGFR-mediated EMT pathway ac-

tivity

So far, five genes were identified that were up-regulated in EGF-treated HNSCC cell
lines, associated to an increase of Cox HR of death, and incorporated to form one single
prognostic Risk Score in three distinct HPV-negative IINSCC patient cohorts. Those
five genes might thus reflect the EMT status in cell lines as well as in patients but do not
provide in-depth insights into any interaction network or pathway activity. To identify
known interactions, the STRING data base (version 11) was used to extract neighbors of
the EGF/EGFR-mediated EMT genes (NCEH1, DDIT4, ITGS4, FADD, and TIMP1),
representing interaction partners at the protein level. To avoid bloating of the network
and only subtract confident interactions, a standard cut-off of > 400 was applied to the
combined score, which quantifies interaction knowledge defined by the STRING data
base. The combined score integrates and ranks protein associations by benchmarking
against a common reference (Mering et al. 2005). The identified network was translated
back to gene names and consisted of n = 808 unique genes, including the five EMT genes.
This list of n = 808 genes was then used to extract the RNA expression profiles of the in-
vestigated TCGA patient cohort, as described before. The transcriptional data was log2
transformed. Now, the extracted interaction network of n = 808 genes with their expres-
sion profiles was investigated for any pathway regulation related to tumor progression.
To identify possible cancer-related pathway activity in those n — 240 TCGA patients,
the Pathway RespOnsive GEnes (PROGENYy) approach was chosen because it was shown
to perform better than other methods in a wider range of conditions by Schubert and
colleagues (Schubert et al. 2018). Further, the authors of PROGENy could show that
pathway activity is likely to be not reliant on transcription of pathway-related signaling
molecules (Schubert et al. 2018), a prominent assumption of comparable methods. Since
the extracted transcriptional interaction network related to EGF/EGFR-mediated EMT
of a patient cohort should be investigated, consisting of a heterogeneous group of patients

at different time points in disease progression, choosing the robust PROGENy approach
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over methods, as for example GSEA, seemed adequate. Until now, PROGENYy lists 13
pathways; Androgen, EGFR, Estrogen, Hypoxia, Jak-STAT, MAPK, NfxB, p53, PI3K,
TGFpB, TNFa, VEGF, and WNT. The pathway activities were quantified based on the
extracted EGF/EGFR-mediated transcription network for each patient. To relate the
EGF/EGFR-mediated EMT Risk Score with the computed pathway activity quantities,
generalized linear models were built and the estimates with p-values are illustrated in Fig.
4.15. The Risk Score showed a positive association with the EGFR (estimate = 0.218,
p-val = 0.00067), Estrogen (estimate = 0.3, p-val < 0.0001), Hypoxia (estimate = 0.302,
p-val < 0.0001), MAPK (estimate = 0.244, p-val = 0.00013), NfxB (estimate = 0.307,
p-val < 0.0001), TGF/ (estimate = 0.264, p-val < 0.0001), and TNF« (estimate = 0.375,
p-val < 0.0001) pathway activities. All other pathways activities were not significantly
associated with the Risk Score. In Fig. 4.15 the EGF/EGFR-mediated EMT Risk Score
was compared to computed pathway activities. Using the Risk Score median, the TCGA
cohort was dichotomized into “Risk-"-and “Risk+"-patients as previously. Next, it was
investigated whether the positive associations of the Risk Score with higher activity in
pathways was reflected in the dichotomized subgroups. Compared to “Risk-", “Risk+"-
patients are marked by higher activities of the Estrogen (estimate = 0.386, p-value =
0.001), Hypoxia (estimate = 0.713, p-value < 0.001), MAPK (estimate = 0.311, p-value
= 0.023), NfxB (estimate = 0.412, p-value = 0.002), TGFf (estimate = 0.360, p-value =
0.003), and TNF« (estimate = 0.503, p-value < 0.001) pathways. The EGFR pathway
activity was enriched (estimate = 0.288, p-value = 0.053) as was the Jak-STAT pathway
activity (estimate = -0.199, p-values = 0.097) but the changes in activity did not meet

the criteria to be accepted as significant (Tab. 4.1).
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Table 4.1: PROGENy pathway activities in TCGA patients. Risk- and Risk+ subgroups
are compared. Results for Risk+ patients (above median Risk Score) are shown. Estimated
coefficients of linear models with SE, t-statistic, resulting p-value, and analyzed pathway
are shown. p-value: 0.1- 0.05, ., < 0.05, *, < 0.01, ** < 0.001, *** < 0.0001, **** SE:
Standard error, TCGA: The Cancer Genome Atlas.

estimate std.error statistic p.value pathway signif

0.041 0.130 0.317 0.751 Androgen

0.288 0.148 1.948 0.053 EGFR

0.386 0.119 3.258 0.001 Estrogen ok
0.713 0.125  5.692  0.000 Hypoxia  ***
-0.199 0.120 -1.664 0.097 JAK-STAT

0.311 0.136 2.296 0.023 MAPK *
0.412 0.131 3.149 0.002 NFkB ok
-0.111 0.127 -0.873 0.384 pd3

-0.048 0.128 -0.380 0.704 PI3K

0.360 0.121 2.979 0.003 TGFb ok

0.503 0.126 3.982 0.000 TNFa orck
0.018 0.121 0.144 0.885 VEGF
-0.212 0.160 -1.330 0.185 WNT
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Figure 4.15: PROGENy pathway activity scores were scaled across all TCGA patients
and compared to the EGF/EGFR-mediated EMT Risk Score. GLM coefficients with p-
values are shown. Pathway activity scores are depicted on the y-axis, Risk Scores on
the x-axis. Crosses represent patients with an event during 5 years of clinical follow-up.
Squares represent patients without events. Green means patients below Risk Score median,
red means above median. EGF/R: Epidermal growth factor/ receptor, EMT: Epithelial-
to-Mesenchymal transition, TCGA: The Cancer Genome Atlas, GLM: Generalized Linear
Model.
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4.6 Identification of a pEMT mediator in HNSCC patients

Recently, a gene signature was defined describing partial EMT in oral cavity HNSCC
patients based upon single cell RNASeq. (Puram et al. 2017). The authors could show
that the pEMT associates with disease progression in the basal-like and mesenchymal
subtype. The pEMT program was linked to clinical parameters, such as nodal metastasis
or tumor grade. Cells expressing high levels of the genes of the pEMT signature were often
found at the primary tumor edge. Further, it was shown that a subgroup of patients of
the mesenchymal subtype were marked by an excessive influence of non-malignant cells
distorting the results of bulk sequencing of tumors. In the present work, this pEMT
signature was quantified in HNSCC patients and the prognostic value with associations

to disease progression was assessed.

4.6.1 Evaluating expression profiles of TCGA patients

All HPV-negative TCGA patients available (n = 240) were implemented in the analysis.
The previously identified molecular subgroups of the patients (Lawrence et al. 2015),
atypical, basal-like, classical, and mesenchymal, were further refined by a Pearson corre-
lation analysis implementing the top 10,000 protein coding genes across all patients in
accordance to Puram et al. (Puram et al. 2017). Briefly, patients with a Pearson cor-
relation of > 0.1 within their respective molecular subtype group and < 0.1 correlation
towards all other subtypes were kept. This selection refined the number of patients to n
= 125 with good transcriptome correlation within their respective subgroup (atypical =
19, basal-like = 38, classical = 22, mesenchymal = 46, Fig. 4.16). It has been described,
that tumor bulk sequencing approaches are prone to the influence of non-cancerous cells
and this was shown for the TCGA cohort (Puram et al. 2017). In order to minimize the
influence of non-malignant cells within the analyzed tumor bulks, marker genes for T-
cells, fibroblasts, macrophages, dendritic cells, endothelial cells, and B/plasma-cells were
used to conduct hierarchical clustering to identify patients with increased amounts of

non-cancerous cells. The cluster analysis resulted in two main clusters, one representing
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bulks with very low influence of non-malignant marker genes tested and the other with
influences to different degrees. The cluster with influence from non-malignant cells in the
tumor bulk could be substratified into two distinct clusters, where one was marked by
relatively high gene expression from non-malignant cell markers (Fig. 4.16). This group
consistent solely of patients of the mesenchymal molecular subtype, which is in accor-
dance with previous findings (Puram et al. 2017). The patients from this cluster were
excluded from the following analysis and, thus, a sub-cohort of n = 55 HPV-negative
TCGA patients of the basal-like and mesenchymal subtype with relatively low influence
of non-malignant cells was identified (Fig. 4.16).

A Atypical, n=19 Basal-like, n= 38 B row Z-score
Non-malignant cells

Figure 4.16: TCGA patient selection for pEMT quantification by SING scoring. A)
Pearson correlation matrices of selected HPV-negative TCGA patients’ transcriptomes. Top
10,000 protein coding genes expressed were analyzed. Numbers of patients per molecular
subtype are noted. Color encodes for Pearson coefficients. Insignificant p-values are blanked.
Significance niveau < 0.01. Patients with correlation > 0.1 within molecular subtype and
correlation < 0.1 to others were kept and analyzed in (B). B) Heatmap with hierachical
clustering of basal-like and mesenchymal patients based on non-malignant cell marker genes
expression. Heatmap colors define gene expression Z-scores across rows. Red marks basal-
like and blue marks mesenchymal patients. Marker genes in rows are noted on the right side.
TCGA sample ID is noted below the heatmap. Black dotted lines mark subcluster with high
non-malignant cell marker genes expressions. pEMT: Partial Epithelial-to-Mesenchymal
transition, HPV: Human papillomavirus, TCGA: The Cancer Genome Atlas, SING: Single
sample scoring molecular phenotype. Adapted from Schinke et al., 2020.
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4.7 Quantification of pEMT by SING scoring

Different gene set scoring methods are available to quantify the concordance of gene sig-
natures and transcriptomes. Techniques to define stable scores for individual samples are
relativy scarce and often susceptible to instability. In 2018, a research group developed
the Single sample scoring of molecular phenotypes (SING score) method, which is capable
of providing stable quantification scores on an individual level and outperformed com-
parable approaches defining phenotypic landscapes (Foroutan et al. 2018). The SING
score method was used here to quantify pEMT in the extracted n = 55 TCGA patients
by applying the common pEMT signature of n = 15 genes as defined by Puram et al.
and using the background of the top 10,000 protein coding genes expressed across all pa-
tients (common pEMT genes: SERPINE1, TGFgI, MMP10, LAMC2, PAHA2, PDPN,
ITGab, LAMA3, CDH13, TNC, MMP2, EMP3, INHBA, LAMB3, VIM). The pEMT
SING score was used to stratify TCGA patients into “low”, “medium”, and “high” sub-
groups, representing the lowest 25 %, intermediate 50 %, and highest 25 %. Using the
pEMT SING score as a feature in a Cox model of overall survival showed prognostic value
of the method (Cox model coefficient = 6.67, log-rank p-value = 0.04, data not shown),
which was further reflected by a Kaplan-Meier curve with a Cox model of the “low”,
“medium”, and “high” pEMT SING score groups as stratificators. Patients described as
“high” had a significantly worse overall survival prognosis compared to “medium” and
“low” patients (pairwise log-rank p-values: “high” vs. “medium” = 0.04, “high” vs. “low”
= 0.005, data not shown) and the overall model log-rank p-value was 0.0033 (Fig. 4.17
A). To estimate the false-positive rate (a-error), 15 randomly picked gene sets excluding
pEMT genes were tested. The pEMT SING score of the random gene set was computed
and the performance was tested in a Cox model. This procedure was repeated 10,000
times and the proportion of relevant results from a random pEMT SING score according
to a log-rank p-value < 0.05 with a HR > 1 was 4.18 %, representing an a-error in the
acceptable range below 5 % (Fig. 4.17 B). To test if the pEMT SING score is correlated

with nodal metastasis, the pEMT SING score was plotted against the lymph node status
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Figure 4.17: Quantification of pEMT in selected TCGA patients by SING scoring. A)
Kaplan-Meier curves with median survival times and Cox model log-rank p-value of TCGA
patients dichotomized according to pEMT SING score values. HRs with 95% Cls com-
paring subgroups are noted. Numbers at risk are shown in the table. B) a-error rate
of pEMT SING score was assessed by computing SING scores of 10,000 randomly picked
gene sets of 15 genes. Random SING scores were applied to a Cox model. Cox models
featuring random SING scores with a HR > 1 and p-value < 0.05 (red dotted lines) were
accepted as relevant (blue box). Overall survival over 5 years of clinical follow-up with
time in months was assessed. CI: Confidence intervall, HR: Hazard ratio, pEMT: Partial
Epithelial-to-Mesenchymal transition, HPV: Human papillomavirus, SING: Single sample
scoring molecular phenotype, TCGA: The Cancer Genome Atlas. Adapted from Schinke et
al., 2020.

of the analyzed patients (N0 = 18 patients, N1 = 15 patients, N2 = 10 patients, N3 =
1). A correlation analysis showed that the pEMT SING score was positively associated
with nodal metastasis (Kendall’s 7 = 0.30, p-value = 0.005) and significant differences
between the mean levels of pEMT SING score of the different N-statuses were observed
(Kruskal-Wallis = 0.026, Fig. 4.18). To validate the prognostic value of the SING score
method, the MDACC cohort was investigated as a second independent cohort. Again,
the same background of formerly defined 10,000 protein coding genes expressed in the
MDACC patients was applied to quantify the pEMT. In contrast to the TCGA cohort,
the resulting pEMT SING scores for the majority of patients from the MDACC vali-
dation cohort was scored below (. This means that the respective overall ranks of the

PEMT genes within the MDACC cohort are lower compared to the TCGA cohort. A
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Figure 4.18: pEMT SING score and lymph node status. Boxplot showing median as
line, 1. to 3. quartile as box, and 1.5x interquartile range whiskers of pEMT SING scores
of different lymph node statuses (N-status) in TCGA patients. Kruskal-Wallis test shows
difference in means across N-statuses. Kendall’s 7 shows positive association of N-status
and pEMT SING score. NO = 18 patients, N1 = 15 patients, N2 = 10 patients, N3 = 1
patient. pEMT: Partial Epithelial-to-Mesenchymal transition, SING: Single sample scoring
molecular phenotype, TCGA: The Cancer Genome Atlas. Adapted from Schinke et al.,
2020.

quantile-quantile plot of the pEMT SING score for both cohorts, TCGA and MDACC,
shows that the pEM'T SING score is well described by a normal distribution and high
absolute scores are associated to low gene dispersion, as measured by the median absolute
deviation (Fig. 4.19). As for the TCGA patients, the pEMT SING score in the MDACC
cohort was tested in a Cox model before stratifying the patients into the three subgroups.
The Cox model was significant with a log-rank p-value of 0.0002 (Cox model coefficient =
7.24, data not shown). The prognostic value of the pEMT SING score was confirmed by
a Kaplan-Meier curve with a Cox model showing an overall log-rank p-value of 0.00048,
comparing the “low” (lowest 25 %), “medium” (intermediate 50 %), and “high” (highest
25 %) patients in accordance to the TCGA patients (Fig. 4.20). In a pairwise log-rank
comparison, the p-value for “high” vs. “medium” was 0.025, for “high” vs. “low” it was

0.001, and for “medium” vs. “low” it was 0.025 (data not shown).
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Figure 4.19: Metrics of quantification of pEMT by SING scoring in the (A) TCGA and
(B) MDACC cohorts. Left side shows a quantile-quantile plot with bisector (blue line) of
computed pEMT SING scores. Right panel shows distribution of dispersion and scores. Dis-
persion is defined by median absolute deviance. pEMT: Partial Epithelial-to-Mesenchymal
transition, SING: Single sample scoring molecular phenotype, TCGA: The Cancer Genome
Atlas, MDACC: University of Texas MD Anderson Cancer Center. Adapted from Schinke
et al., 2020.

Common pEMT Puram (n= 15)
OS of MDACC

100 —O—I

75

50

Survival probability (%)

'
'
'
'
25 !
i

h
'
,
,
' 0
| HR: medium vs. high= 2.36 (95% Cl: 1.13-4.95)

p =0.00048" HR: low vs. high= 11.30 (95% CI: 2.51-50.89)

0 10 20 30 40 50 60
Time in months

o

Number at risk

high 16 7 3 1 1 1 0
30 22 17 10 6 3 1
16 13 1 4 4 3 2
0 10 20 30 40 50 60

Time in months

Figure 4.20: Confirmation of prognostic value of pEMT SING score in the MDACC
cohort. Kaplan-Meier curves with median survival times and Cox model log-rank p-value
of MDACC patients dichotomized according to pEMT SING score values. HRs with 95%
CIs comparing subgroups are noted. Overall survival over 5 years of clinical follow-up with
time in months was assessed. Numbers at risk are shown in the table. CI: Confidence
intervalls, HR: Hazard ratio, pEMT: Partial Epithelial-to-Mesenchymal transition, SING:
Single sample scoring molecular phenotype, MDACC: University of Texas MD Anderson
Cancer Center. Adapted from Schinke et al., 2020.
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4.8 Identification of potential regulators of pEMT

In order to address whether the pEMT SING score does actually quantify a partial
differentiation status of tumor cells that is characterized by a retention of epithelial
markers and gained expression of mesenchymal markers, epithelial and mesenchymal
markers were plotted along the quantified pEMT spectrum. To do so, the patients from
the TCGA and MDACC cohorts were ranked according to the pEMT SING score from
low to high and marker gene expression was plotted as a line graph with smoothing
using Locally Estimated Scatterplot Smoothing (LOESS). Chosen as epithelial markers
were: ECAD, as a standard marker, CLDNY7, a variable epithelial marker, EpCAM, used
to define epithelial phenotype in cell lines, and KRT14, a non-variable pEMT marker,
all four were described in literature (Puram et al. 2017). RAB25 was described as
a top five epithelial marker defined in cancer patients (Tan et al. 2014). As seen in
the plots, RAB25 represented the only epithelial marker that clearly decreased with
increasing pEMT rank in both cohorts, TCGA and MDACC. CLDN7 and ECAD were
showing a mild but not consistent decrease associated with the pEMT rank. KRT14
expression levels were showing no substantial decrease in both cohorts. EpCAM was
mildly increasing in the TCGA patients with increasing pEMT. Conclusively, no clear and
consistent decrease for epithelial markers according to the pEMT rank, except RAB25,
was depicted in the TCGA and MDACC patients (Fig. 4.21 A). To investigate the
mesenchymal status, VIM and FN1, two standard mesenchymal markers in HNSCC,
and the canonical EMT transcriptions factors reported in the expression data, SLUG,
7ZEB1, and ZEB2, were plotted. VIM was not consistently increasing with pEMT across
the two cohorts. FN1 was showing a clear increase along the ranked pEMT spectrum.
All three EMT transcription factors were increasing with progressing pEMT rank, and
SLUG was showing overall higher expression values compared to ZEB1 and ZEB2 (Fig.
4.21 B). Thus, it can be concluded that an increase in pEMT SING score was associated
with enhanced FN1 and EMT-TFs expression values along with a retention of epithelial
markers except RAB25. The three canonical EMT-TFs SLUG, ZEB1, and ZEB2 were
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Figure 4.21: pEMT SING score quantifies pEMT. TCGA and MDACC patients were
ranked by pEMT SING scores. Log2 gene expression levels of selected epithelial (A) and
mesenchymal markers (B) are plotted across increasing ranks of the patients. Line smoothing
by LOESS was applied. Color of lines encodes for respective marker gene as shown on the
top of the plots. LOESS: Locally weighted scatterplot smoothing, pEMT: Partial Epithelial-
to-Mesenchymal transition, SING: Single sample scoring molecular phenotype, TCGA: The

Cancer Genome Atlas, MDACC: University of Texas MD Anderson Cancer Center. Adapted
from Schinke et al., 2020.

found in the top 10,000 protein coding genes of the TCGA and MDACC HNSCC patients.
To identify potential regulators of pEMT that are consistently expressed in patients of
the TCGA and the MDACC cohorts, SLUG, ZEB1, and ZEB2 were analyzed by a
Pearson correlation against all 15 common pEMT genes. Further, the six genes; TGFfI,
LAMC2, PDPN, ITGab, VIM, and MMP10, described as the top pEMT genes, and
their correlation to the three EMT-TFs are plotted in further detail with noted non-
significant p-values (significance niveau: < 0.01). In both cohorts, SLUG was correlating
best with the pEMT genes compared to ZEB1 and ZEB2. Out of the 15 common pEMT
genes, only MMP2 and VIM were showing better correlation with ZEB1 and ZEB2, in
both patient cohorts. In the TCGA cohort, SLUG was positively correlated to all 15
common pEMT genes. ZEB1 and ZEB2 were not correlated with SERPINE1, MMP10,
LAMC2, PAHA2, LAMA3, and LAMB3. SLUG, ZEB1, and ZEB2 were showing positive
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correlations with TGFBI, PDPN, [TGab, CDH13, TNC, MMP2, EMP3, INHBA, and
VIM. Except MMP2 and VIM, SLUG was showing the strongest correlation overall.
Investigating the top pEMT markers, SLUG was outperforming ZEB1 and ZEB2 for all
genes except VIM, as aforementioned (Fig. 4.22). In the MDACC, ITGab, CDH14,
and EMP3 were not significantly correlated with any of the EMT transcription factors.
Except those genes, SLUG was showing a strong positive correlation to all remaining
common pEMT genes. In contrast, ZEB1 and ZEB2 were not significantly correlated
to any of the pEMT genes, except a negative correlation with LAMA3. None of the
top pEMT markers, except VIM, showed a significant positive association with ZEB1 or
ZEB2. Thus, it is concluded that out of the three EMT-TFs found in the expression data
of the TCGA and MDACC patients, SLUG is showing the strongest correlations to the

pEMT genes on a single gene level (Fig. 4.22). To investigate whether the correlation
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Figure 4.22: Correlation matrices of pEMT and EMT-TF genes in the (A) TCGA and (B)

MDACC cohorts. Color encodes for Pearson correlation coefficient. Top panel shows cor-
relation of EMT-TFs and common pEMT genes with insignificant p-values blanked. Lower
panel shows correlation of EMT-TFs and top 6 pEMT genes with insignificant p-values
stated on the plot. Significance niveau was < 0.01. Black lines in the top panel separate
EMT-TFs from pEMT genes. pEMT: Partial Epithelial-to-Mesenchymal transition, SING:
Single sample scoring molecular phenotype, TCGA: The Cancer Genome Atlas, MDACC:
University of Texas MD Anderson Cancer Center, EMT-TFs: EMT transcription factors.
Adapted from Schinke et al., 2020.
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from a gene to gene comparison is also reflected in the pEMT SING score, expression
levels of SLUG, ZEB1, and ZEB2 were plotted against pEMT SING score levels. As a
quantification of association, a Spearman’s rank correlation analysis was conducted. In
the TCGA cohort, Spearman’s p in correlation with the pEMT SING score for SLUG
was 0.52 (p-value < 0.0001), for ZEB1 it was 0.39 (p-value = 0.0034), and for ZEB2 it
was 0.27 (p-value = 0.045). In the MDACC cohort, Spearman’s p was 0.51 for SLUG
(p-value < 0.00001), 0.28 for ZEB1 (p-value = 0.028), and not significant for ZEB2 (p
= 0.21, p-value = 0.11) (Fig. 4.23). Thus, in both HNSCC patient cohorts, SLUG is
showing the best correlation with the pEMT genes on a single gene level and outperforms

ZEB1 and ZEB2 when associating the pEMT SING score with their respective expression

levels.
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Figure 4.23: Spearman’s rank correlation of pEMT SING scores with single EMT-TFs for
the TCGA (A) and MDACC (B) cohorts. Spearman’s p and corresponding p-values are
depicted. Linear regression line with 95% confidence intervall is plotted. pEMT: Partial
Epithelial-to-Mesenchymal transition, SING: Single sample scoring molecular phenotype,
TCGA: The Cancer Genome Atlas, MDACC: University of Texas MD Anderson Cancer
Center, EMT-TFs: EMT transcription factors. Adapted from Schinke et al., 2020.
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4.9 SLUG induces a pEMT phenotype in vitro

Since SLUG represents the best candidate for an induction of pEMT relevant in HN-
SCC patients, it was overexpressed in two cell lines of the head an neck region, FaDu
and Kyse30, to explore effects on cellular phenotypes and behavior functions. Exoge-
nous expression of SLUG using a 141-pCAG-3SIP plasmid with a CMV promoter and
selecting for puromycin resistance led to a clear induction of SLUG protein expression
compared to empty vector control cell lines (Fig. 4.24 A). Using confocal imaging and
immunostaining, the exogenously expressed SLUG protein was found located in the nu-
cleus comparable to physiological conditions. Compared to the control (Ctrl) cell lines,
the SLUG-over-expressing (SLUG-OE) cells showed much higher SLUG protein levels
within the nucleus (Fig. 4.24 B). The cell morphology of FaDu SLUG-OE cells appeared
to reflect an epithelial phenotype similar to the Ctrl cell line but with potentially less
dense cell-to-cell contacts, as visualized by an increase in phase contrast (Fig. 4.24 C).
In Kyse30, the SLUG-OE cells entered a mesenchymal state compared to Ctrl cells as
judged by the cellular morphology. Cell-to-cell contacts were substantially reduced and
the cells became spindle-shaped (Fig. 4.24 C). Visualizing ECAD on the cell membrane
via immunofluorescence staining showed a qualitative reduction of membranous ECAD
protein in FaDu and, more distinctly, in Kyse30 SLUG-OE cells in relation to the re-
spective Ctrl cell lines (Fig. 4.24 D). To quantify the ECAD reduction in SLUG-OE cells
in comparison to Ctrl cells, a western blot from whole cell lysates was performed and
quantified from three independent experiments. FaDu SLUG-OE cells were showing a
moderate ECAD protein reduction of 16.33 % and Kyse30 SLUG-OE cells a reduction
of 83.44 %. Both reductions were statistically significant, indicating a switch towards a
more mesenchymal cellular state (Fig. 4.25 A and B). The analysis via qPCR linked an
induction of mesenchymal marker VIMENTIN and EMT transcription factor ZEB1 to
SLUG-OE compared to Ctrl and wild type cells, confirming the induction of an EMT in
the SLUG-OE cells for both cell types, FaDu and Kyse30 (Fig. 4.25 C). Cells that have

undergone a full EMT are characterized by a reduction in their proliferation (Diepen-
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bruck and Christofori 2016). Proliferation rates of the SLUG-OE cells were determined
by automated cell counting using a Leica DMi8 microscope and FIJI software by quan-
tifying Hoechst-stained nuclei. A fold change proliferation (fcp) rate relative to day 0
was calculated. FaDu SLUG-OE cells were showing no reduction of proliferation after 24
and 48 hours compared to the corresponding Ctrl cells (Fig. 4.25 D). Kyse30 SLUG-OE
cells were showing a significant but minor reduction in proliferation rate after 24 hours
(Ctrl: 2.00 fep, SLUG-OE: 1.84 fcp) and after 48 hours (Ctrl: 3.39 fep, SLUG-OE: 3.11
fep, Fig. 4.25 D). A clear induction of a full mesenchymal phenotype was not linked to
SLUG-OE but both cancer cell lines were showing characteristics linked to EMT, thus

an induction of a pEMT phenotype is concluded (Fig. 4.25).
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Figure 4.24: SLUG overexpression in FaDu and Kyse30 cells. A) Western blot analysis of
Ctrl and SLUG-OE cells S-actin was used as a loading control. B) Representative images
of immunofluoresence of SLUG protein in Ctrl and SLUG-OE cells. SLUG protein is shown
in green, and DAPI, marking nuclei, in blue. C) 400x - 800x magnified micrographs of
cellular morphology of FaDu and Kyse30 SLUG-OE and Ctrl cells. D) Immunofluorescence
of mebranous E-CADHERIN in Ctrl and SLUG-OE cells from FaDu and Kyse30. All images
shown are representatives from n > 3 independent experiments. Ctrl: Control, SLUG-OE:

SLUG overexpression. Adapted from Schinke et al., 2020.
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Figure 4.25: Induction of pEMT by SLUG-OE. A) and B) Western blot with quantification
of E-CAD protein comparing Ctrl and SLUG-OE in FaDu and Kyse30 cells. [-actin was
used as a housekeeping gene. Means compared by Wilcox test: p-value < 0.05,* ; < 0.01,
k< 0.001, ***. C) qPCR data of VIMENTIN, ZEB1, and SLUG mRNA expression in
Ctrl, SLUG-OE, and WT cells. Values were normalized to Ctrl cells and were analyzed
using the AACt method. Normalized relative mRNA levels are plotted. Upper panel shows
FaDu cells. Lower panel shows Kyse30 cells. D) Proliferation analysis by automated cell
counting from 0 to 48 hours. Values were normalized to 0 hours. Differences in mean values
were compared by one-way ANOVA with Tukey HSD. p-values: ns, not significant; < 0.05,
*. < 0.01, **; < 0.001, ***. Upper panel shows FaDu cells. Lower panel shows Kyse30 cells.
Shown are results from n > 3 independent experiments. Ctrl: Control, SLUG-OE: SLUG
overexpression, IB: Immunoblot, E-CAD: E-CADHERIN, WT: Wild type. Adapted from
Schinke et al., 2020.
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4.9.1 Cells in pEMT show increased invasion and irradiation resis-

tance

An increased invasion of cancer cells into the surrounding connective tissue by overcom-
ing the barriers of the extracellular matrix is a result of EMT (Santamaria et al. 2017;
Lu et al. 2003; Hay 1995). The SLUG-OE cells were tested for their invasive potential
into human skin fibroblast spheroids. To do so, pre-formed spheroids of skin fibroblasts
were co-cultured for 48 and 72 hours with 10,000 Fadu Ctrl, FaDu SLUG-OE, Kyse30
Ctrl or Kyse30 SLUG-OE cells. Co-cultured spheroids were harvested and cryosections
were stained with pan-cytokeratin-specific antibodies to visualize carcinoma cells. Cytok-
eratins are not expressed by human skin firboblasts, which therefore remain unstained.
(Fig. 4.26 A). For the Ctrl cell lines of FaDu and Kyse30, a clear invasion into the un-
derlying fibroblast spheroid was neither observed after 48 hours, nor after 72 hours. In
contrast, FaDu SLUG-OE cells showed a moderate increase in invasion after 72 hours of
co-culture, with singles cells and small aggregates of carcinoma cells infiltrating fibroblast
spheroids (Fig. 4.26 B). Effects of SLUG overexpression were more distinct in Kyse30
cells, which displayed a strong invasive phenotype. After 48 hours, Kyse30 SLUG-OE
cells had penetrated into the first layers of the fibroblast sphere and the edges between
the two distinct cell populations were less sharp compared to the Ctrl cells. After 72
hours this difference was more severe, many Kyse30 SLUG-OE cells were found in the
inner area of the fibroblast spheroids (Fig. 4.26 C). In order to quantify the observed
effects on spheroid invasion, a matrigel invasion assay was performed. 100,000 FaDu Ctrl,
FaDu SLUG-OE, Kyse30 Ctrl, or Kyse30 SLUG-OE cells were seeded in matrigel-coated
24-well membrane chambers and were allowed to invade for 24 hours. The quantification
of the invaded cells compared to Ctrl cells showed a 2.31-fold higher invasion compared
to FaDU SLUG-OE cells (2.29 4+ 0.45 cell/mm? and 0.99 + 0.28 cells/mm?, respec-
tively). Kyse30 cells revealed to be generally more invasive compared to FaDu cells, with
Kyse30 Ctrl cells showing a 6.19-fold higher invasive potential compared to FaDu Ctrl
cells. However, matrigel invasion in Kyse30 was significantly increased by 5.10-fold upon

expression of SLUG compared to Ctrl cells (31.17 4 6.23 cells/mm? and 6.13 + 4.45
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cells/mm?, respectively). Hence, the matrigel invasion assay confirmed the enhanced
invasion of SLUG-OE cell lines observed in 3D co-cultures with fibroblast spheroids (Fig.
4.26 D). Besides an increase in inasive potential, the EMT program in cancer was linked
to irradiation resistance (Lambert, Pattabiraman, and Weinberg 2017; Nieto et al. 2016).
In order to test the effects of SLUG overexpression on irradiation, a clonogenic assay was
performed. One thousand FaDu cells were plated per well on a 6-well plate and irradiated
the next day. After two weeks, clonogenic survival was calculated by measuring the area
of colonies of irradiated relative to non-irradiated control plates. To evaluate the area
of colonies grown relative to the corresponding untreated control, the ColonyArea Image
J Plugin by Guzman et al. was used (Guzman et al. 2014). With an irradiation dose
of 2 Gy, FaDu SLUG-OE cells displayed a colony formation capacity of 42.53 % relative
to FaDu SLUG-OE untreated cells (0 Gy). In contrast, non-irradiated FaDu Ctrl cells
had a colony formation capacity of 21.96 % compared to untreated FaDu Ctrl cells. For
4 Gy, FaDu SLUG-OE and Ctrl cells recovered 4.91 % and 2.20 %, respectively. For 6
Gy, 0.33 % and 0.18 % was recovered respectively (Fig. 4.26 E). Five thousand Kyse30
cells were plated per well on a 6-well plate and irradiated the next day. After 10 days,
clonogenic survival was calculated. Kyse30 Ctrl cells showed less colony formation with
4 and 6 Gy compared to Kyse30 SLUG-OE cells, reporting a significant difference for 4
Gy. After irradiation with 4 Gy, Kyse30 SLUG-OE cells recovered 12.70 % of clonogenic
area relative to untreated SLUG-OE-cells and irradiated Ctrls recovered 4.85 % com-
pared to untreated Ctrl cells (Fig. 4.26 F). Conclusively, the overexpression of SLUG
was increasing the invasive potential of cancer cells and, at least for FaDu, elevated the

resistance to irradiation consistently.
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Figure 4.26: SLUG overexpression induces invasion and resistance to irradiation. B)-C)
Representative THC cryosections of fibroblast spheroid invasion by FaDu and Kyse30 cell
transfectants (Ctrl and SLUG-OE). Pan-cytokeratine stained cancer cells only, as shown
by unstained fibroblasts in Fibroblasts Ctrl panel (A). Invasion was assessed after 48 and
72 hours of 3D co-culture. D) Matrigel invasion assay quantifying the invasion rate. The
mean of relative invasion as defined by invaded cells per square mm is plotted with SD
values. Student’s t-test p-value is shown: p-value < 0.05, *; < 0.01, *. E) Colony formation
assay with 0, 2, 4, and 6 Gy (x-axis). Area of colonies were normalized to respective
untreated (0 Gy) cells and plotted on a logl0 scale on the y-axis. Mean area with SDs of
colonies are shown. Student’s t-test was used to compare mean values of Ctrl and SLUG-
OE cells. p-values are indicated as ns, not significant; < 0.05, *; < 0.01, **; < 0.001,**;
< 0.0001, ***; < 0.00001, ****  Results from n > 3 independent experiments are shown.
Ctrl: Control, SLUG-OE: SLUG overexpression, Gy: Gray, SD: Standard deviation, THC:
Immunohistochemistry. Adapted from Schinke et al., 2020.
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4.10 SLUG in disease progression of HNSCC patients

To explore whether protein levels of SLUG are prognostic, a quantification of immuno-
histochemistry (IHC) staining of SLUG primary tumor cryosections within a cohort of
HNSCC patients from the University Hospital, LMU Munich, Germany (LMU; n = 76
HPV-negative patients) was conducted. Protein levels of SLUG were quantified as de-
scribed (Mack and Gires 2008). Furthermore, the sublocalizations of SLUG within tumor
areas was assessed and categorized as homogeneous or as peripheral at the edge of the

tumor area. Examples of the two SLUG localizations are shown in Fig. 4.27. In the

Patient F

Patient B

Figure 4.27: SLUG protein staining and sublocalization in tumor sections. Left panel
shows representative images from IHC cryosections of SLUG high (patient F) and low (pa-
tient B) stainings. Right panel shows representative images of homogenous staining or
localization to tumor edges within section. ITHC: Immunohistochemistry. Adapted from

Schinke et al., 2020.

TCGA data, a positive link between severity of lymph node metastasis and the pEMT
SING Score was shown in the present work (Fig. 4.18). And SLUG expression was
strongly correlating with pEMT (Fig. 4.22 and 4.23). In the independent in-house LMU
HNSCC cohort, patients suffering from recurrence showed a reduced overall survival over
five years. Interestingly, patients with tumor recurrence had significantly higher SLUG
protein levels (Fig. 4.28 A and B). Further, patients with predominant SLUG stain-
ing on the edges of tumor sections showed elevated SLUG levels compared to patients
with a homogeneous distribution (Fig. 4.28 C). Additionally, the subgroup of patients

with tumor recurrence and SLUG located to the tumor edges significantly expressed two
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times more SLUG protein than patients of the homogeneous and recurrence-free sub-
group, comparing the mean expression levels (Fig. 4.28 D). This is inline with previous
findings about pEMT and SLUG expression in HNSCCs (Puram et al. 2017; Parikh
et al. 2019). To further support the link between SLUG and pEMT in patients and
disease progression, especially with respect to the formation of lymph node metastasis,
n = 16 triplets from patients consisting of normal mucosa, primary tumor, and lymph
node metastases were stained to quantify SLUG expression. When comparing the lev-
els of SLUG protein, normal mucosa was showing very low expression levels compared
to tumor and lymph node metastases (LNM) tissue (mean/ median levels; mucosa =
6.73/ 3.75, tumor = 69.92/ 66.25, LNM = 97.97/ 102.50). Interestingly, affected lymph
nodes from the same patient were showing elevated SLUG expression levels compared to
primary tumors (Fig. 4.28 A). Additionally, Disease-Free Survival (DFS) according to
SLUG IHC scores was assessed in the whole LMU HNSCC cohort. Patients expressing
the lowest levels of SLUG protein (1. quartile, lowest 25%) showed significantly better
DFS over five years of clinical follow-up (Fig. 4.28 B). Thus, SLUG is linked to pEMT
on a transcriptional level, induces a pEMT phenotype in wvitro, and is associated with

recurrence and degree of lymph node infection at the protein level in patients.
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Figure 4.28: SLUG protein is linked to tumor recurrence in HNSCC LMU patients. A)
Kaplan-Meier curve with Cox model log-rank p-value, HR, and HR 95% CI of overall sur-
vival based on recurrence status over 5 years of clinical follow-up. Numbers at risk are
shown in table. B)-D) Box plots with median as line, 1.-3. quartiles as squares, and 1.5x
interquartile range as whiskers. Mean values of SLUG THC scores (y-axis) were compared
based on (B) recurrence status, (C) staining localization and D) recurrence free/ homoge-
nous and recurrence/ edge staining localization. Wilcox test p-value is shown. p-values <
0.05, *. CI: Confidence intervall, HR: Hazard ratio, OS: overall survival, LMU: Ludwig-
Maximilians-University, recur: Recurrence, homogen: Homogeneous, IHC: Immunohisto-

chemistry. Adapted from Schinke et al., 2020.
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Figure 4.29: SLUG protein is linked to disease progression in patients from the LMU
HNSCC cohort. A) SLUG IHC score differences between normal mucosa, primary tumor,
and LNM within n = 16 patients from the LMU cohort. Colored lines and symbols encode
for n = 16 individual patients. Differences in means were assessed by one-way ANOVA with
Tukey HSD. p-values < 0.05, *; < 0.01, **; < 0.001, ***;, < 0.0001, ****. B) Kaplan-Meier
curve with Cox model log-rank p-value, HR, and HR 95% confidence intervall (CI) of SLUG
high (2.-4. quartiles) vs. low (1. quartile) with all patients from the LMU cohort. DFS was
assessed over five years of clinical clinical follow. DFS: Disease-Free Surival, HNSCC: Head
and neck squamous cell carcinoma, LMU: Ludwig-Maximilians-University, LNM: Lymph
node metastases, CI: Confidence intervall, HR: Hazard ratio, IHC: Immunohistochemistry.

Adapted from Schinke et al., 2020.
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Chapter 5

Discussion

5.1 Analysis of the EGF /EGFR-mediated transcriptome

In HNSCCs, primary tumor heterogeneity is a driver of disease progression and the
EGFR-signaling axis is frequently deregulated (Lawrence et al. 2015; Puram et al. 2017;
Mroz et al. 2015; Affolter et al. 2016; Horn et al. 2015; Hoshino et al. 1999). Previous
work identified pERK as the major mediator of sustained EGFR activity and described
it as the main driver of EMT, which itself enables cancer progression and spread (Pan
et al. 2018; Lambert, Pattabiraman, and Weinberg 2017; Nieto et al. 2016). Patients
expressing high levels of EGFR but low levels of EpCAM were characterized by the
poorest survival rates. Simultaneously, patients with low levels of EGFR but high levels
of EpCAM were the best survivors. This in combination with in vitro findings led to
the hypothesis that EpEX, the extracellular domain of EpCAM, is capable of inhibiting
EMT induction by reducing pERK levels (Pan et al. 2018). Tt was unknown whether
EpEX acts as a competitive inhibitor of EGF for the binding to EGFR molecules or if
it triggers a transcriptional counter-regulation of EMT. Further, the differences of tran-
scriptional regulation between EGF-low and EGF-high treatments were unknown. These
questions were addressed within the present doctoral thesis through the RNA sequencing
analysis of the four treatment groups EGF-low, EGF-high, EpEX, and EGF(-high) with
EpEX at 6 and 72 hours (Experimental overview illustrated by Fig. 4.3). After 6 hours,
the EGF-low, EGF-high, EpEX, and EGF with EpEX treatments were showing very
similar transcriptomes but different from their respective controls (Figs. 4.4, 4.6, 4.8,

4.9). Until 72 hours, all treatment groups, except EGF-high, had lost their regulatory
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capability. Accordingly, the transcriptomes of those treatments were similar to control
groups and no DEGs were detected (Figs. 4.4 and 4.7). The EGF-high treatment group
was showing the highest number of DEGs and a persistent transcriptional regulation
(Figs. 4.7 and 4.11). The reported gene regulation could further be linked to the EMT
program. Genes from the Hallmark EMT signature (MSigDB: M5930) were most promi-
nently up-regulated in the EGF-high 72 hours treatment group and the enriched GO
terms “biological processes” were further confirming an EMT phenotype (Figs. 4.5 and
4.6). This is in line with the idea that sustained and strong pERK-signaling, as induced
by EGF-high, is necessary for EMT induction and transient pERK levels fail to do so
(Pan et al. 2018).

The RNASeq-based transcriptome analysis allowed to quantify similarities of gene reg-
ulation by comparing the reported DEG expression values with a Pearson correlation
analysis. Besides supporting the idea of high transcriptional similarity of all treatment
groups, this allowed to conclude that EpEX is not capable of inducing gene regulation
countering EMT. After 6 hours, no single counter-regulated gene was identified, nei-
ther in the treatment with EpEX alone, nor in the co-treatment with EGF. In fact, the
scatter plots with high Pearson correlations reported nearly identical gene regulation.
Overall, EpEX is regulating far less genes by itself, which does not exclude the possibil-
ity that it would counter-regulate EGF-specific genes to block EMT induction. However,
the co-treatment of EpEX and EGF is not showing any counter-regulation and the total
numbers of DEGs are in the same range as EGF-low and -high (Figs. 4.8 and 4.9). If any
gene transcription would be reduced or counter-regulated actively by EpEX, the Pearson
correlation analysis and the scatter plot would be demonstrating it. Theoretically, EpEEX
could completely block the transcription of certain EMT genes, which then would not
be detected in a DE analysis. However, this seems unlikely since EpEX and EGF with
EpEX treatments were not showing any outstandingly different gene regulation patterns
at 6 hours (Figs. 4.5, 4.4, 4.8, 4.9, 4.11). Not exclusive to the other treatment groups,
five genes induced by EpEX were identified throughout both cell lines tested (Fig. 4.10).

All of those five genes were regulated in both cell lines and to comparable levels across all

86



6 hours treatments (data not shown). The RNASeq analysis presented in this doctoral
thesis led to the conclusion that EpEX is not actively repressing or counter-regulating
gene expression at the transcriptional level induced by EGF treatments. In this work,
no evidence of EpEX directly or indirectly supporting EMT was reported, which is in
contrast to findings in colon cancer (Liang et al. 2018) but in line with good survival
of EGFR-low/EpCAM-high HNSCC patients (Fig. 4.1). This suggests that EpEX is
competing with EGF for binding to the extracellular domain of EGFR and is capable
of triggering the same signaling axis but to weaker levels as EGF-high. This is in line
with recent work from Chen and colleagues using domain mutated EpCAM and EpEX
to investigate binding to the extracellular domain of EGFR and signaling cascade acti-
vation (Chen et al. 2020). The group could demonstrate that mutant EpEX, lacking
the EGF-like domain I, is no longer able to trigger Akt- and MAPK-signaling in colon
cancer cells.

The program of EMT in cancer seems to have multifaceted triggers, e.g. ligand binding
of EGF and TGF /3 or hypoxia, with a variety of cellular outcomes (Ye et al. 2017; Aiello
et al. 2017; Fischer et al. 2015; Zheng et al. 2015; Lamouille, Xu, and Derynck 2014;
Derynck, Muthusamy, and Saeteurn 2014; Zhang et al. 2013; Xu, Lamouille, and Derynck
2009). Since, EGFR represents an important and well described receptor in HNSCCs
(Pan et al. 2018; Santini et al. 1991), the RNASeq presented in this work focused on
EGFR-signaling induced by EGF as a trigger for EMT. All 6 hours treatments, including
treatments that were known to lack the capability of inducing EMT, were showing similar
transcriptional profiles. Therefore, further analysis focused on exclusive gene regulation
by cells that have undergone EMT and showed a mesenchymal phenotype, i.e the EGF-
high 72 hours treatment group. By comparing all 6 hours treatments with EGF-high 72
hours treatments, n = 172 DEG candidates consistently regulated by EGF-high treat-
ment after 72 hours in both HNSCC cell lines were identified (Fig. 4.11). Recent research
raised the question how well in vitro experiments with ligands inducing a full EMT are
modeling the non-binary EMT program in cancer progression (Dongre and Weinberg

2019; McFaline-Figueroa et al. 2019). Thus, to transfer in wvitro results from the present
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analysis to patient data and ensure consistency with the hypothesis that EMT is leading
to adverse clinical effects, all n = 172 gene candidates were investigated in univariate Cox
models using overall survival as an outcome variable and publicly available transcriptome
data from HPV-negative HNSCC TCGA patients. If a gene was up-regulated in EMT
cells in wvitro, a HR > 1 in TCGA patients was accepted, and, vice versa, a HR < 1 in
TCGA patients if the gene was down-regulated in EGF treated cells. By applying this
selection, potential non-physiological in vitro-effects in the transcriptome data of treated
cancer cell lines, not reflected in the heterogeneous transcriptomes of patients, could be
limited. The resulting n = 57 gene candidates were used to form a multivariate survival
model assessing EGF/EGFR-mediated EMT effects on patient survival. A forward fea-
ture selection method called robust likelihood-based survival modeling (Cho et al. 2009)
was used to select survival-associated genes based on the partial likelihood of the Cox
model. From the n = 57 genes, a group of five survival-associated genes was identified
and implemented into the multivariate Cox model. The Cox model performed well in
explaining the overall survival of the n = 240 TCGA patients (global log-rank p-value
= 0.000289, Fig. 4.12). Further, the selected genes, namely NCEH1, DDIT4, ITG/4,
FADD, and TIMP1, have been associated with cellular processes related to cancer pro-
gression (Chiang et al. 2006; Ellisen et al. 2002; Dyce et al. 2002; Chinnaiyan et al.
1996). ITGpB4, TIMP1, and FADD have been described as negative prognosticators in
HNSCCs (Gonzélez-Moles et al. 2020; Carpén et al. 2019; Kurokawa et al. 2008). High
expression of DDIT4 was associated with poorer survival in colorectal cancer, melanoma,
breast cancer, glioblastoma, and ovarian cancer (Pinto et al. 2017). The multivariate Cox
model coefficients were used to weigh the respective gene expression in cancer patients
and to form a cumulative risk factor implementing all five genes. This EGF/EGFR-
mediated EMT Risk Score was performing well in Cox models and allowed to stratify
HPV-negative HNSCC patients of three independent cohorts (discovery data: TCGA in
Fig. 4.12 and validation data: FHCRC and MDACC in Fig. 4.14). The association of
the Risk Score with lymph node metastasis and the clinical stage shown in Fig. 4.13

underlines its functional value and corroborates the notion that EMT plays a role in the
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metastatic cascade and tumor progression (Stemmler et al. 2019; Lambert, Pattabira-
man, and Weinberg 2017; Nieto et al. 2016; Chaffer et al. 2016; Tsai et al. 2012). The
transcriptome of the TCGA cohort was quantified by RNASeq and the transcriptomes
of the MDACC and FHCRC cohorts by ¢cDNA microarrays. This supports the robust-
ness of the described EGF/EGFR-mediated EMT Risk Score but made it necessary to
center and scale the Risk Score because gene expression levels were differing across the
data sets. Therefore, so far the Risk Score is not eligible for an implementation into
clinical routine for limit value definition to enable risk assessment and to predict risk
of EGF/EGFR-mediated EMT of treatment-naive single patients. Sufficiently large and
independent patient cohorts with comparable quantification methods would be needed to
address the definition of a predictive EGF/EGFR-mediated EMT Risk Score limit value.
Describing the whole complexity of the EGFR-signaling cascade by only five genes is not
sufficient. In order to further judge the functional value of the EGF/EGFR-mediated
EMT Risk Score in accordance to a potential regulatory network involved, the STRING
data base was used to built a network around the selected five genes (Szklarczyk et
al. 2019). By using the STRING data base, this network is per default restricted to
described protein-protein interactions. This network of 808 genes with protein-protein
interactions has to be viewed with caution because it assumes a direct proportional rela-
tionship between RNA levels and protein expression. Thus, it was essentially only used
to extract gene expression data of TCGA patients.

The application of the resulting gene expression matrix to the PROGENy analysis al-
lowed to define cancer-related pathway activity with potential relation to EGF/EGFR-
mediated EMT in patients by comparing it to the Risk Score. This comparison was
done by building (generalized) linear models with the continuous Risk Score but also by
comparing the stratified TCGA patient groups “Risk-" and “Risk-+". The Risk Score was
positively associated with the EGFR and MAPK pathway but not the PI3K or JAK-
STAT pathway (Fig. 4.15 and Tab. 4.1). This supports the functional connection to
EGF/EGFR-mediated EMT and corroborates the MAPK-pERK axis (Pan et al. 2018;
Blaj et al. 2017; Ichikawa et al. 2015; Shin et al. 2010), not pAkt-signaling (Wang et
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al. 2018; Gao et al. 2015), as the mediator of EMT in HNSCCs. The positive correla-
tions of the Risk Score to pathways related to EMT and disease progression in HNSCCs
and breast cancers; Estrogen, Hypoxia, NFxB, TFGf, and TNFa (Dong et al. 2013;
Imani et al. 2016; Thiery2009; Diepenbruck2016; Liu et al. 2018), might further hint
towards a pleiotropic outcomes of EGF/EGFR-mediated EMT. In HNSCC, common me-
diators/ modulators of EMT postulated include HIF1-a (hypoxia), NFxB, TFGS, EGF,
and EGFR activation (Chen et al. 2013). In contrast to other cancer types where EGFR
gene amplification or mutation is implicated, overexpression of EGFR, without gene am-
plification, appears to drive pathogenesis in HNSCCs (Lawrence et al. 2015; Rogers et
al. 2005; Dassonville et al. 1993). HNSCC studies reported that EGF is secreted by
cancer-associated macrophages and EGF protein was located near the epithelium of oral
mucosa in the stroma (Gao et al. 2018; Rogers et al. 2005), where increased EGF lev-
els associated with the degree of epithelial malignancy. Further, increased expression of
TGFf in tumor tissue samples was reported in 91 % of cases in an esophageal squamous
cell carcinoma study (Talukdar et al. 2020), formally not an HNSCC but in close prox-
imity, and TGFf can synergize with EGF to activate EGFR-signaling (Uttamsingh et
al. 2008). Taken together, those findings suggests that (EGF/)EGFR-mediated EMT is
apparent in HNSCC patients and treating cancer cell lines with EGF to assess effects of

EMT is a reasonable model and a transition to patient data is eligible.

5.2 A pEMT mediator in basal-like mesenchymal HNSCCs

In the previous part of this work, the EGFR-signaling axis was investigated with a fo-
cus on EMT induction and its effects. The analytic approach was strictly focused on
EGF/EGFR-mediated EMT and its effects on patient survival. The second part of the
present work is focusing on a specific form of EMT, so called partial EMT. Puram et
al. used a single cell RNASeq experiment and defined pEMT and an associated gene
signature in HNSCC. Further, they postulated that the mesenchymal subgroup classi-

fication actually reflects sequenced tumor bulks with high rates of non-malignant cells,
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such as fibroblast, distorting the sequencing results towards a mesenchymal phenotype
(Puram, Parikh, and Tirosh 2018; Puram et al. 2017). This view could be confirmed in
the present thesis with hierarchical clustering of TCGA patients using non-malignant cell
marker genes. Hereby, a subgroup of patients with high non-malignant cell marker gene
expression was identified (Fig. 4.16). This subgroup expressing the highest relative levels
of non-malignant cell markers solely consisted of sequenced tumors previously defined as
the mesenchymal subtype (Lawrence et al. 2015). This supports the idea by Puram
et al. that the molecular subtypes of HNSCC might need refinement, but also shows
that bulk sequencing data can be resolved with established clustering methods. Since,
the defined pEMT phenotype was functionally described for patients of the basal-like
and mesenchymal subtype and to avoid distortion of the downstream analysis, analyzed
basal-like and mesenchymal TCGA patients with the highest influence on gene expres-
sion by non-malignant cells were excluded (Fig. 4.16). By excluding patients and not
deconvoluting the gene expression matrix, the cohort was reduced to n = 55 individuals
but the order of gene expression levels was retained, which was highly important for the
following quantification of the pEMT gene signature. Using the SING scoring technique
described by Foroutan et al. as a robust single sample scoring method for molecular
phenotypes, a score quantifying the relative expression of the common 15 pEMT genes
in internal relation to the top 10,000 protein coding genes for each single patient was
defined. This pEMT SING score was performing well in Cox models and allowed to
significantly stratify the TCGA cohort, serving as a discovery data set (log-rank p-value
= 0.0033), and the MDACC cohort, serving as a validation data set (log-rank p-value =
0.00048), into “low”-, “middle™-, and “high”-risk subgroups referring to risk of death (Figs.
4.17 and 4.17). For both cohorts, the “high”-risk group was showing the poorest survival
rates with median overall survival of approximately 10 months. By testing n = 10,000
randomly picked gene sets of n = 15 genes from the top 10,000 protein coding genes, ex-
cluding the pEMT signature, an a-error rate below 5 % (a-error = 0.0418) was reported,
showing that the described method has reliable information content (Fig. 4.17). Disease

progression, such as lymph node metastasis, was described to be linked to pEMT (Parikh
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et al. 2019; Puram et al. 2017). Clinical data of the lymph node status was available
for the TCGA patients and a positive correlation with the pEMT SING score was found
supporting the prognostic value of pEMT and the link to disease progression in patients
(Kendall’s 7 = 0.30, p-value = 0.005, Fig. 4.18).

Epithelial and mesenchymal marker gene expression from TCGA and MDACC patients
was plotted along the pEMT SING score rank to demonstrate that pEMT rather than
EMT or mesenchymal gene expression was quantified. Consistently across both cohorts,
epithelial and mesenchymal genes were co-expressed in patients with a high SING score,
represented by a high pEMT rank, showing that the tumors of these individuals are
reflecting a pEMT state (Fig. 4.21). RAB25 and ECAD were listed as part of the top 5
epithelial marker genes in a generic EMT signature derived from bladder, gastric, ovar-
ian, breast, lung, colorectral, and bladder cancer (Tan et al. 2014). According to the
pEMT SING score, RAB25, out of five epithelial markers including ECAD, was the only
marker gene substantially decreasing expression with increasing pEMT in HNSCC (Fig.
4.21).

Recently, a meta-analysis of the canonical EMT-TFs; TWIST1, TWIST2, SNAIL, SLUG,
ZEB1, and ZEB2, in HNSCC cohorts reported OS prognostic values for TWIST1 (HR
= 1.61), SNAIL (HR = 2.17), SLUG (HR = 1.90), and ZEB1 (HR = 2.70) (Wan et al.
2020). From the three EMT-TFs found within the top 10,000 protein coding genes in
patients (SLUG, ZEB1, ZEB2), SLUG was showing the highest gene expression levels
consistently across both cohorts and SLUG was positively correlating with ten out of the
15 common pEMT genes in the TCGA and MDACC cohort (Figs. 4.21 and 4.22). On the
other hand, ZEB1 and ZEB2 were consistently correlating with only two genes from the
signature, MMP2 and VIM (Fig. 4.22). This shows that on a single gene level, SLUG is
representing the best candidate to mediate the pEMT in HNSCCs. This assumption was
further reflected by the strong, highly significant and consistent correlation of SLUG with
the pEMT SING score (TCGA: Spearman’s p = 0.52, p-value = 0.000059 and MDACC: p
= 0.51, p-value = 0.000027) and outperforming ZEB1 and ZEB2 (Fig. 4.23). Therefore,

SLUG was chosen as the most promising candidate to investigate for associations with
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PEMT effects in witro and in cancer patients. In HNSCC, SNAIL and TWIST1 have
been described as mediators of EMT and tumor progression (Li et al. 2019; Lee et al.
2012). Since, SNAIL and TWIST1 expression was not reported in the defined patient
data, their impact on pEMT could not be assessed upon this doctoral thesis but cannot
be formally excluded. ZEB1 expression correlated to mesenchymal marker VIM expres-
sion in HNSCC patients (Fig. 4.22) and SLUG was shown to be capable of inducing
ZEB1 expression in HT-29 and MDCK cells (Guaita et al. 2002) and cell lines of the
head and neck region (Fig. 4.25). Further, SLUG was reported to regulate expression
and activity of ZEB1 in melanoma (Wels et al. 2011). Thus, higher levels of ZEB1 might
mark more excessive SLUG-induced pEMT in cancer cells that could partly explain the
higher OS HR compared to SLUG reported by Wan et al. (Wan et al. 2020). By over-
expressing SLUG in FaDu cells, a cellular phenotype related to a minor ECAD decrease,
VIM and ZEBI increase, and no clear decrease in proliferation was reported (Figs. 4.24
and 4.25). This shows that SLUG expression is capable of inducing a pEMT phenotype
in cancer cells. In Kyse30 cells, the SLUG-OE was inducing a phenotype, which rep-
resented a rather mesenchymal state, as ECAD levels were decreased extensively and
the cellular morphology became spindle-shaped (Figs. 4.24 and 4.25). Nonetheless, in
both cell lines of the head and neck region the overexpression of SLUG was elevating
the invasive potential of the cells. SLUG-OE cells were showing a higher capability of
invading a fibroblast spheroid and these findings were confirmed by a quantification wvia
a matrigel invasion assay in both cell lines, FaDu and Kyse30 (Fig. 4.26). EMT was
reported to protect cancer cells from irradiation (Stemmler et al. 2019). In both can-
cer cell lines, exogenous SLUG expression was sufficient to significantly increase their
irradiation resistance to 2, 4, and 6 Gray in FaDu, and to 4 Gray in Kyse30 (Fig. 4.26
E-F). Kyse30 cells might naturally represent a more mesenchymal state with elevated
invasive potential of Ctrl cells compared to respective FaDu cells (Fig. 4.26). This would
explain the higher overall susceptibility of FaDu cells to irradiation compared to Kyse30
cells, as shown by the colony formation assay (Fig. 4.26 E-F). Taken together, SLUG

overexpression was inducing invasion and irradiation resistance in witro, characteristics
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related to tumor recurrence and metastasis in vivo. In the present work, a link between
pEMT and SLUG was established by transcriptome analysis of patient data and, now,
in vitro experiments show an association with adverse clinical effects, which add to the
understanding of reappearance and spread of primary tumors. To reveal the effects of
SLUG at the protein level in patients, IHC cryosections of n = 76 HPV-negative HNSCC
primary tumors were stained and quantified. The SLUG staining patterns of 77.6 % of
the evaluated cryosections could be unambiguously categorized as either homogeneously
distributed or as localized towards the edge of tumor sections (Tab. 3.3 and Fig. 4.27).
SLUG expression and pEMT was reported to be found on leading edges of tumors in
HNSCC (Parikh et al. 2019; Puram et al. 2017). Interestingly, LMU patients with a
tumor recurrence or SLUG staining primarily localized to the leading tumor edges were
showing higher SLUG levels in their primary tumors (Fig. 4.28 B-C). When comparing
SLUG levels of patients of the subgroups homogeneous/ recurrence free vs. edge/ recur-
rence, patients suffering from recurrence with SLUG on tumor edges were showing two
times higher mean levels of SLUG (Fig. 4.28 D).

The EMT-TF SLUG was shown to be induced by EGF/EGFR-mediated EMT and rep-
resents a direct target of EGFR-signaling (Pan et al. 2018; Chen et al. 2009). In a
collaborative work with Min Pan, we demonstrated that EGFR-high/ EpCAM-low com-
pared to EGFR-low/ EpCAM-high HNSCC patients show significantly increased levels
of pERK and SLUG, and pERK-SLUG-high patients suffer from poorer OS and DFS
(Appendix Fig. 8). SLUG expression and pEMT in cancer cells located to the tumor
edges could be triggered by EGF/EGFR-signaling through paracrine secretion of EGF
by e.g. cancer-associated macrophages (Gao et al. 2018; Rogers et al. 2005). This mech-
anism could lead to tumor cells on the primary tumor edges possessing an aggressive
phenotype causing recurrence and spread to lymph nodes. In line with this hypothesis
and corroborated by the in vitro findings of elevated invasion and irradiation resistance
upon SLUG overexpression, SLUG levels within the same patient were increased in lymph
nodes compared to primary tumors and lower to not expressed in normal mucosa (Fig.

4.29 A). Further, SLUG was showing prognostic value in a Cox model with disease-free
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survival defining the clinical endpoint (log-rank p-value = 0.019, Fig. 4.29 B). These
findings identifying SLUG as a promising candidate for pEMT induction in cancer are in
agreement with a meta-analysis report defining SLUG as most impactful on the risk of
metastatic breast cancer compared to TWIST1, SNAIL1, and ZEB1 (Imani et al. 2016).
The fact that SLUG is not expressed in healthy tissue, at least not the mucosa of the
head and neck region, might enable it as a therapeutic target.

The pEMT program quantified and connected to SLUG expression within this work was
defined in a subgroup of HPV-negative HNSCC tumors of the basal-like or mesenchymal
subtype, entitled by Puram et al. as malignant-basal, and predominantly consisted of oral
cavity tumors (Fig. 4.16). SLUG protein expression was investigated in HPV-negative
LMU patients of unknown molecular subtype. The LMU cohort consisted of 32.9 % oral
cavity patients (Tab. 3.3) and therefore most likely did not comprise malignant-basal
patients only. It would be interesting to know whether the SLUG-driven pEMT program
represents a general process in HNSCC tumor progression.

Taken together, this work evaluated the effects of EMT on HNSCC patients and via a
transcriptome analysis allowed to identify five genes, which could mediate the clinically
adverse effects of enhanced EGFR-signaling. In the following, HNSCC tumor bulks with
low influence of non-malignant cells were extracted, pEMT was succesfully quantified,
the prognostic value of pEMT was demonstrated, and SLUG was identified as a mediator
of pEMT. Generally, EMT is a cellular program with different triggers and it would be
interesting to see whether the EGF/EGFR-mediated EMT represents the main signal-
ing pathway in HNSCC. Additional measurements of EMT-inducing ligands, e.g. the
concentration of soluble EGF and TGFg, within the tumor microenvironment in vivo
are necessary. Further, using tumor cell spheroids with and without EGF-high treat-
ment followed by e.g. staining of cryosections for SLUG, epithelial-, and mesencyhmal
markers and single cell RNASeq analysis might allow to assess the structural organiza-
tion of in wvivo-like tumors/ spheroids. Prior to those experiments, it seems conducive to
use transcriptome data to define the position of the selected tumor cell lines within the

EMT spectrum, as the SLUG-OE experiments were already pointing towards different
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points in the EMT spectrum of FaDu and Kyse30 cells. Future research further needs to
address how well cell culture conditions, especially 2D-cultures, model EMT relevant in
tumor progression, as this has been questioned for TGFfS—mediated EMT (Dongre and
Weinberg 2019; McFaline-Figueroa et al. 2019).

The process of EMT in vivo most likely represents a spatial and temporal spectrum
causing the reported high rates of heterogeneity of HNSCC tumors (McFaline-Figueroa
et al. 2019; Dijk et al. 2018; Puram et al. 2017; Mroz et al. 2015) and complicating
the transition from ¢n vitro findings to cancer disease in patients. This work aimed to
illuminate a certain axis of the spectrum and defined a certain cellular state of this fluent
spectrum with succeeding prerequisites for cancer disease progression. Future cancer re-
search needs to implement rising high-throughput technology and big data experiments
to further entangle the EMT spectrum, consolidating solid grounds for innovative treat-

ments and paving the way to a system of truly personalized cancer care.
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Epithelial /W;I =~ Mesenchymal

oo T invasion,

therapy resistance
Figure 5.1: Illustration of the EMT spectrum influenced by EGFR-signaling. The EMT
status of a particular cell is influenced by its mircoenvironment. EGFR activation by exces-
sive EGF binding leads to induction of EMT. The resulting position in the EMT spectrum is
influenced by regulation extend of different epithelial and mesenchymal genes. EGF /EGFR-
mediated EMT leads to induction of ITGB4, TIMP1, NCEH1, DDIT4, and FADD. A sub-
type of (p)EMT in malignant-basal HNSCC is driven by expression of EMT-TF SLUG and
mesenchymal marker FN1, and decrease of ECAD and RAB25. Other epithelial markers
such as KRT14 or EpCAM are not decreased. (p)EMT: Partial Epithelial-to-Mesenchymal
transition, EGF/R: Epidermal growth factor/ receptor, HNSCC: Head and neck squamous
cell carcinoma, pEMT: Partial EMT, HNSCC: Head and neck squamous cell carcinoma,
ECAD: E-CADHERIN, EpCAM: Epithelial cell adhesion molecule, KRT14: Cytokeratin
14, FN1: Fibronectin 1, RAB25: Ras-related protein RAB25, ITGB4: Integrin 5 4, TIMP1:
TIMP metallopeptidase inhibitor 1.
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Tables

Table 1: Candidate DOWN genes from EGF/EGFR-mediated EMT genes found in cell
lines by univariate Cox models. Direction of DE is indicated. DOWN means log2 fold change
in cell lines < -0.5. For DOWN genes only genes with HR < 1 in TCGA patients were kept.
Cox model estimated coefficients with SE, t-statistic, and p-value are shown. p-value: .1
- 0.05, .; < 0.05, *; < 0.01, ¥ < 0.001, ***. EGF/R: Epidermal growth factor receptor,
EMT: Epithelial-to-Mesenchymal transition, DE: Differential expression, HR: Hazard ratio,
SE: Standard error, TCGA: The Cancer Genome Atlas.

term Hazard ratio (HR) std.error statistic —p.value signif DE

ADGRL2 0.883 0.075 -1.660 0.097 . Down
BLMH 0.970 0.126 -0.241 0.810 Down
DCP2 0.997 0.195 -0.017 0.986 Down
GPSM2 0.971 0.114 -0.261 0.794 Down
H19 0.976 0.043 -0.564 0.572 Down
ICK 0.986 0.102 -0.136 0.892 Down
KCNK2 0.986 0.020 -0.693 0.488 Down
MAP3K3 0.850 0.179 -0.909 0.363 Down
MBNL3 0.832 0.078 -2.351 0.019 * Down
MSRB3 0.987 0.079 -0.168 0.866 Down
MTF2 0.878 0.249 -0.523 0.601 Down
NFIB 0.920 0.099 -0.838 0.402 Down
PRDM11 0.949 0.104 -0.507 0.612 Down
SLC35B4 0.933 0.181 -0.383 0.701 Down
TRIM29 0.920 0.065 -1.285 0.199 Down
TRPS1 0.856 0.080 -1.955 0.061 . Down
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Table 2: Candidate UP genes from EGF/EGFR-mediated EMT genes found in cell lines
by univariate Cox models. Direction of DE is indicated. UP means log2 fold change in
cell lines > 0.5. For UP genes only genes with HR > 1 in TCGA patients were kept. Cox
model estimated coefficients with SE, t-statistic, and p-value are shown. p-value: .1 - 0.05,
5 < 0.05, *; < 0.01, **; < 0.001, ¥**. EGF/R: Epidermal growth factor receptor, EMT:
Epithelial-to-Mesenchymal transition, DE: Differential expression, HR: Hazard ratio, SE:
Standard error, TCGA: The Cancer Genome Atlas.

term Hazard ratio (HR) std.error statistic —p.value signif DE
ADIRF 1.075 0.072 1.002 0.316 Up
ASPH 1.290 0.119 2.144 0.032 * Up
BAIAP2L1 1.171 0.146 1.086 0.277 Up
CORO2B 1.040 0.055 0.721 0.471 Up
DDIT4 1.218 0.084 2.353 0.019 * Up
EHBP1 1.368 0.142 2.215 0.027 * Up
FADD 1.227 0.071 2.877 0.004  ** Up
FGFBP1 1.006 0.057 0.112 0.911 Up
FKBP1A 1.213 0.192 1.003 0.316 Up
FSCN1 1.106 0.131 0.768 0.442 Up
FXYD5 1.061 0.100 0.588 0.557 Up
HMGA1 1.164 0.120 1.262 0.207 Up
1DS 1.079 0.167 0.454 0.650 Up
ITGB4 1.128 0.109 1.102 0.270 Up
ITPR3 1.090 0.139 0.622 0.534 Up
LAMA3 1.038 0.067 0.551 0.581 Up
LAMB3 1.160 0.092 1.614 0.107 Up
LDHA 1.111 0.134 0.788 0.431 Up
MANCR 1.008 0.046 0.178 0.859 Up
MAPK6 1.009 0.139 0.065 0.948 Up
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Table 3: Candidate UP genes from EGF/EGFR-mediated EMT genes found in cell lines
by univariate Cox models. Direction of DE is indicated. UP means log2 fold change in
cell lines > 0.5. For UP genes only genes with HR > 1 in TCGA patients were kept. Cox
model estimated coefficients with SE, t-statistic, and p-value are shown. p-value: .1 - 0.05,
5 < 0.05, %5 < 0.01, **; < 0.001, ***. EGF/R: Epidermal growth factor receptor, EMT:
Epithelial-to-Mesenchymal transition, DE: Differential expression, HR: Hazard ratio, SE:
Standard error, TCGA: The Cancer Genome Atlas.

term Hazard ratio (HR) std.error statistic p.value signif DE
MPV17 1.114 0.208 0.521 0.603 Up
MYH16 1.010 0.030 0.346 0.729 Up
NCEH1 1.249 0.098 2.270 0.023 * Up
NT5E 1.059 0.061 0.945 0.345 Up
PLEKHB2 1.179 0.241 0.683 0.495 Up
POMP 1.564 0.173 2.581 0.010  ** Up
RABI11A 1.036 0.164 0.214 0.830 Up
RAB3B 1.030 0.032 0.933 0.351 Up
RAC2 1.170 0.098 1.603 0.109 Up
RALB 1.149 0.184 0.755 0.450 Up
S100A10 1.135 0.127 0.999 0.318 Up
SERPINE2 1.043 0.061 0.691 0.489 Up
SH3KBP1 1.045 0.092 0.479 0.632 Up
SHANK?2 1.064 0.048 1.300 0.194 Up
SHC1 1.013 0.194 0.067 0.947 Up
SQSTM1 1.264 0.137 1.702 0.089 . Up
STRAP 1.236 0.205 1.034 0.301 Up
TIMP1 1.242 0.091 2.395 0.017 * Up
TMSB10 1.181 0.136 1.227 0.220 Up
TNNT1 1.047 0.048 0.958 0.338 Up
UCALl 1.009 0.030 0.308 0.758 Up
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Figures

Figure 1: Heatmap with hierarchical clustering of Top50 expressed genes in treatment
groups vs. control of Kyse30. Color encodes for row Z-score. Treatment and control
groups are noted on the top. Gene names are noted on the right side. Ctrl: Control, Fc:
Fragment crystallizable region, EGF: Epidermal growth factor, EpEX: Extracellular domain
of EpCAM.
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Figure 2: Volcano plot of differentially expressed genes in Kyse30. Lines show thresholds

of log2 fold change (log2 FC > 0.5) and p-value (p < 0.05). Ctrl: Control, Fc: Fragment

crystallizable region, EGF: Epidermal growth factor, EpEX: Extracellular domain of Ep-

CAM.
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Figure 3: Heatmap with hierarchical clustering of Top50 expressed genes in treatment
groups vs. control of FaDu. Color encodes for row Z-score. Treatment and control groups
are noted on the top. Gene names are noted on the right side. Ctrl: Control, Fc: Frag-
ment crystallizable region, EGF: Epidermal growth factor, EpEX: Extracellular domain of
EpCAM.
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Figure 4: Volcano plot of differentially expressed genes in FaDu. Lines show thresholds of

log2 fold change (log2 FC > 0.5) and p-value (p < 0.05). Ctrl: Control, Fc: Fragment crys-

tallizable region, EGF: Epidermal growth factor, EpEX: Extracellular domain of EpCAM.
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Figure 5: A heatmap with hierarchical clustering of treatments, excluding controls, includ-
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Figure 6: Correlation matrix with hierachical clustering of a Pearson correlation anaylsis
in TCGA patients of all n = 172 EGF/EGFR-mediated EMT genes. Color encodes for
Pearson correlation coefficient. Insignificant values are blanked. Signifiance niveau < 0.01.
Gene names are noted on the side. EMT: Epithelial-to-Mesenchymal transition, TCGA:
The Cancer Genome Atlas, EGF/R: Epidermal growth factor/receptor.
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Figure 7: Kaplan-Meier curve with 95% CIs and Cox model log-rank p-value and median
overall surival times of TCGA, MDACC, and FHCRC cohorts. Clinical follow-up over 5
years is plotted. Log-rank p-value shows that overall survival of the cohorts are not signifi-
cantly different between the cohorts. Time in months is shown. Numbers at risk are shown
in table. CI: Confidence intervall, TCGA: The Cancer Genome Atlas, MDACC: University
of Texas MD Anderson Cancer Center, FHCRC: Fred Hutchinson Cancer Research Center.

129



>
w

,% 300+ =0.5784

e — . e
E 200 _:- § 200 ._.:_. E
- o A
E 100: o . -E.E-E.- :_; 100 -~ ﬁ.- G E
¥ i . E 8 B X
L L 4
saalilaee L Staaten e oJeac:E e o
& o & o 0 100 200 300
& s & & Qov“ Slug IHC score
o ¢ o ¢
&
& & & &
C. D .
] g
2o %a
§2 £3
5 a
o wes
ng” i
O¢ — of
531 - Others ¢ 3| — Others
£ | - pERK high + Slug high £ | - PERKhigh + Siug high
3y EY
| Bad o
3 | HR3.12(95% CI 1.07-9.1) 8 | HR2.7 (95% CI 1.18-6.16) —‘
2 p=0.0282009 5| p=0.0143807
20 160 120 20 4 150 20

0 60 60 80
Time [months] Time [months]

Figure 8: pERK and SLUG expressions are associated with EGFR/EpCAM co-expression
subgroups and are prognostic in HNSCC. LMU HNSCC tumor cryosections were stained
for EpCAM, EGFR, pERK, and SLUG by IHC. IHC scores were evaluated with a range
from 0-300. LMU patients were subdivided into EGFR/EpCAM subgroups according to
a cut-off threshold of 150. B) pERK and SLUG IHC scores were compared from EGFR-
low/ EpCAM-high and EGFR-high/ EpCAM-low co-expressing patients. Shown are mean
(lines) and Student t-test. p-value: **** < (0.0001. C) pERK and SLUG IHC scores
of patients were compared by Spearman correlation. r- and p-values are shown. D) OS
(n= 98) and DFS (n= 97) rates of pERK- and SLUG-high patients were assessed by a
Kaplan-Meier curve with a Cox model. HR, 95% CI, and log-rank p-values are shown.
Patients with EGFR and EpCAM exression < 125 or > 175 were included. Patients with
pERK and/or SLUG > 175 (pERK + Slug high) were compared against all others. Time
in months was assessed. pERK: Phospho extracellular signal-regulated kinase, EGFR:
Epidermal growth factor receptor, EpCAM: Epithelial cell adhesion molecule, LMU: Ludwig-
Maximilians-University, [HC: Immunohistochemistry, CI: Confidence interval, HR: Hazard
ratio, OS: Overall survival, DFS: Disease-free survival, HNSCC: Head and neck squamous

cell carcinoma. Taken from Pan et al., 2018
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