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Abstract

Graphics rendering hardware often contains specialized components to maximize utilization
of its Graphical Processing Unit (GPU). Examples are dedicated memory and copy engines
to directly access the graphics memory without blocking GPU processing. Considering
that graphics memory is always limited, while the size of datasets produced today is ever
increasing, optimized methods for fast data exchange between host memory and graphics
memory are needed for real-time visualization.

Understanding the complex relations involved in concurrently rendering and upload-
ing requires sophisticated models describing the hardware and the respective data flow.
Input for such models includes the size and structure of the dataset under consideration,
the number of parallel threads for processing it, and modular and exchangeable functions
performing the data transfers as well as parameters for optimal data access. The models
include additional system parameters, such as the concrete hardware used and the various
settable clock rates. In this work we describe a methodical approach to derive such mo-
dels in a systematic fashion. The results are two Models for Asynchronous Rendering and
K-time Uploading (MARKU), one for rendering and one for uploading.

Our methodical approach relies on measuring the effects on the host and the graphics
hardware, while data movement and processing are executed concurrently. A broad set of
experiments is performed, disconnecting inter-process and data dependencies as basis for a
statistical evaluation. This allows to identify individual as well as combinatorial influences
of the evaluated control variables. Using design of experiments approaches reduces the
number of necessary measurements and allows to quickly derive a mathematical description
of the underlying processes. With this, we are able to predict performance expectations
for specific use cases. Finally, we evaluate our approach in a multi-step process to gain
a broad understanding of accuracy and precision of the two MARKUs for rendering and
uploading.

Based on our models, future development of memory transfer optimizations are possi-
ble to balance the predicted impact on rendering with the performance of the data transfer,
leading to improved real-time realizations even for large data-sets.

iii



iv ABSTRACT

iv



Kurzfassung

Grafik-Rendering-Hardware enthält oft spezialisierte Komponenten, um die Auslastung der
grafischen Verarbeitungseinheit (GPU) zu maximieren. Beispiele sind dedizierte Bauteile
zum Speicherzugriff und Datentransfer, die direkten Zugriff auf den Grafikspeicher, ohne
die Verarbeitung in der GPU zu blockieren, ermöglichen. Da einerseits Grafikspeicher
üblicherweise begrenzt ist, andererseits die Größe der heute erzeugten Datensätze weiter
zunimmt, werden optimierte Methoden für den schnellen Datenaustausch zwischen Host-
Speicher und Grafikspeicher zur Echtzeit-Visualisierung benötigt.

Das Verständnis der komplexen Zusammenhänge beim gleichzeitigen Darstellen und
Ausführen von Datentransfers erfordert anspruchsvolle Modelle, die die Hardware und den
jeweiligen Datenfluss beschreiben. Die Eingabe für solche Modelle umfasst die Größe und
Struktur des betrachteten Datensatzes, die Anzahl der parallelen Threads für den Da-
tentransfer und modulare und austauschbare Funktionen, die diese Datentransfers durch-
führen, sowie Treiberhinweise für den optimalen Datenzugriff. In die Modelle fließen weit-
ere Systemparameter ein, wie die konkret verwendete Hardware und die verschiedenen
einstellbaren Taktraten. In dieser Arbeit beschreiben wir einen methodischen Ansatz, um
solche Modelle systematisch herzuleiten. Das Ergebnis sind zwei Modelle für asynchrones
Darstellen und k-fachen Datentransfer (MARKU), jeweils eines für das Darstellen und
eines für den Datentransfer.

Unsere Methodik beruht auf Messungen der Auswirkung auf den Host und die Gra-
fikhardware, während Datentransfer und Darstellung gleichzeitig ausgeführt werden. Es
wird eine Reihe von Experimenten durchgeführt, wobei die Abhängigkeiten zwischen den
Prozessen und den Daten getrennt werden, um eine statistische Auswertung zu ermöglichen.
Dadurch können sowohl individuelle als auch kombinatorische Einflüsse der ausgewerteten
Steuergrößen identifiziert werden. Durch Methoden der Versuchsplanung wird die Anzahl
der notwendigen Messungen reduziert und die schnelle Herleitung einer mathematischen
Beschreibung der zugrundeliegenden Prozesse ermöglicht. Damit sind wir in der Lage, Per-
formanzerwartungen für bestimmte Anwendungsfälle vorherzusagen. Schließlich evaluieren
wir unsere Methodik mehrstufig, um die Genauigkeit und Präzision der beiden MARKUs
für Darstellung und Datentransfer umfassend zu verstehen.

Basierend auf unseren Modellen ist eine zukünftige Optimierung von Datentransfers
möglich, um die Auswirkung auf das Darstellen mit der Geschwindigkeit des Datentransfers
auszubalancieren, was zu verbesserten Echtzeitvisualisierungen auch für große Datenmen-
gen führt.
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Chapter 1

Introduction

"The important thing is not to stop questioning. Curiosity has its own reason for existing.
One cannot help but be in awe when he contemplates the mysteries of eternity, of life, of
the marvelous structure of reality. It is enough if one tries merely to comprehend a little
of this mystery every day" [Albert Einstein, Life magazine, May 2, 1955].

Science tries to satisfy curiosity by describing reality, often by using formulas. Such
formulas describe how planets revolve around the sun, where electrons might be around
atomic cores and why matter and energy are the same. However, in many cases formulas
do not draw a complete picture as they usually abstract reality. In their quest for truth,
scientists challenge such formulas constantly by comparing simulations with real-world
experiments. Usually, the finer the resolution of both, simulations and measurements of
real-world experiments, the better the match with reality. With just the right level of fine-
grained resolutions, we might detect even the smallest deviations which, in turn, might
allow us to adapt or even rewrite the formulas to better fit real behavior.

However, before comparing simulations with real-world experiments, we first need to
understand the results of the simulations. These results often comprise several time de-
pendent datasets, which represent the evolution of the simulation in certain time intervals.
Resolution itself comprises temporal and spacial resolution. Considering that using small
datasets can easily mean having millions or more data points, even small simulation runs
can be impossible to understand by just looking at the numbers.

Therefore, we create images of datasets to help us with understanding them. This
process of creating images out of datasets and the result thereof – the images – is called vi-
sualization, c.f. [Han05, p.xiv] and [War08, p.20]. For creating these images, we distinguish
two processes: rendering and uploading.

Rendering describes the computation to gain the pixels for the images. Uploading is
the process of making datasets available for rendering, usually by moving it to graphics
hardware (reserved) memory. In addition, we have to do rendering and uploading multiple
times to be able to change perspective onto the dataset or change parts of the dataset.

When visualizing datasets to explore them, every additional millisecond spent for
rendering an image slows down its examination; the longer we have to wait for the next
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2 1. Introduction

view point, the longer it takes to sift through the whole dataset. We might miss connections
or relationships just by waiting too long for the next image to be shown. Even worse,
waiting constantly for the data to be shown can be annoying for users and halt exploration
altogether.

By chance, entertainment in general and computer gaming in particular faces similar
challenges, e.g. balancing large and highly detailed scenes with short rendering times,
thus leading to the development of complex and optimized rendering techniques to better
exploit the capabilities of graphics hardware with the goal to minimize rendering times.

However, when datasets become bigger than memory available on graphics hardware,
meaning they can not be stored completely in memory on graphics hardware anymore, other
solutions must be found. Simulation results may consist of multiple time steps that include
the simulation state at a certain point in time. Such datasets can easily be split into their
time steps and while the whole dataset might be bigger than available graphics memory,
single time steps might easily fit. Having a time step available in graphics memory usually
suffices for rendering that particular time step.

Yet, when we want to see the evolution of the simulation over time (like a movie),
the time steps in graphics memory need to be constantly exchanged to be able to render
them consecutively. Therefore, we need to load data from host memory and copy them
to graphics memory – which denotes the process of uploading; in the best case, while
concurrently rendering.

To achieve this, various sophisticated approaches were developed for a range of use
cases. These studies show that data uploading can substantially affect rendering. Further-
more, they analyze how to find an optimized solution for both together, the time needed
for rendering and uploading.

Unfortunately, this leaves out many visualization use cases subject to different per-
formance requirements. These performance requirements constitute different optimization
targets. In this work we analyze the following three distinct optimization targets:

OT1 High priority data rendering

OT2 High priority data uploading

OT3 Balancing both activities

OT1: High priority data rendering means that we prioritize data rendering over
data uploading finishing on time. An example typically prioritizing rendering is using
Virtual Reality (VR) technology for visualizations. VR hardware allows to use natural body
movements for changing the perspective: turning your head to look around or walking to
explore the virtual scene. Instead of spending time learning how to interact with a computer
to navigate through a dataset, users can utilize this time to explore the same dataset and
to improve their understanding of it. This also requires the application to maintain low
rendering times at any moment to make this interaction as natural as possible. If a virtual
movement lags noticeably behind real movement, users might slow down interaction [LH14]
or feel discomfort in form of cybersickness [SNL20] which can halt exploration completely.

2



1.1 Research Question 3

Hence, when optimizing either rendering or data transfer, we need to prioritize rendering,
possibly at the cost of longer data transfer times. However, this might not lead to an
optimal solution as most displays have a fixed minimum frame time by design. This
means, if rendering is finished earlier than this time slot, we can use the remaining frame
time to improve data transfer rates.

OT2: High priority data uploading means that we prioritize data uploading over
data rendering finishing on time. This can mean that data uploading must be finished
before data rendering can start. An example is to render a video to visualize a dataset. We
want to show a certain part of a dataset at a particular point in the video. Consequently, at
the time of rendering, this part of the dataset has to reside in graphics memory. Although
we can measure overall performance based on total rendering and uploading time, if the
datasets to be rendered are absent for a particular frame, the process has failed.

OT3: Balancing both activities connects the former two. Typical examples are real-
time desktop visualizations. On the one hand, high frame rates play an important role
to ensure real-time interactivity, but having some frames take significantly longer usually
does not halt the whole exploration process. On the other hand, showing the next part of a
dataset when requested also ensures real-time interactivity, but waiting two or more frames
longer still allows you to explore the whole dataset without failing the overall objective.
In this case, we might just aim to optimize both rendering and uploading time together,
without any particular priority.

1.1 Research Question
For optimization it is crucial to understand the different parameters involved. Nonethe-
less, before we can fully enhance the performance of visualization applications – and thus
improve understanding of simulations and their datasets – we need to figure out what can
be tuned and how it affects rendering and uploading. This leads to the main research
question RQ of this work:

RQ How to model concurrent data rendering and uploading using graphics hardware?

This work lays the groundwork to understand the two processes, rendering and upload-
ing, for subsequently optimizing them. We develop a methodical approach that allows to
identify and quantify the parameters that influence concurrent rendering and uploading.

Our work is based on the hypothesis that there is a linear mathematical model for
each of both processes called Model for Asynchronous Rendering and concurrent K-time
Uploading (MARKU). The two resulting MARKUs describe the relationship between the
identified and quantified parameters and their influence on performance of each of the
corresponding processes.

3



4 1. Introduction

Therefore the research questionRQ above can be rephrased to: How to obtain the two
MARKUs?. This question is built upon more detailed sub research questions (SRQ) that
illuminate the problem space and outline our methodical approach. They are as follows:

SRQ1 What are use cases for visualization and their performance requirements ad-
dressing RQ?

SRQ2 How can data be uploaded to graphics hardware while concurrently rendering
earlier data?

SRQ3 What parameters can be controlled in these two processes and what are other
influences on performance?

SRQ4 How to design experiments to derive the MARKUs addressing RQ?

SRQ5 How strong are the identified influences of the two MARKUs for the two pro-
cesses rendering and uploading?

SRQ6 How to evaluate the two MARKUs and how to find a more optimal solution for
the outlined optimization targets?

SRQ1 describes the whole range of requirements that visualization use cases may
need to fulfill. By answering SRQ2 we describe how to optimize for any of the performance
requirements for the outlined use cases. The questions SRQ1 and SRQ2 combined lead
to SRQ3. The answer to this question describes what we consider to influence the two
processes of uploading and rendering and therefore, what can be tuned in order to optimize
for different performance targets. SRQ4 aims at removing redundancy when experiment-
ing and deriving models from them. The field of statistics has a long tradition of gaining
the most information of a small amount of experiments with similar or equal performance
compared to doing all possible combinations for given information requirements. SRQ5
analyzes the derived MARKUs and SRQ6 describes an methodical approach to evalu-
ate them. Additionally, SRQ6 evaluates the derived use cases that can help to improve
real-world data visualization applications.

1.2 Methodology
This work builds on three typical visualization use cases that describe a continuum of
possible use cases. For answering RQ the following steps are applied:

1) We systematically analyze selected use cases and derive their performance require-
ments. From that we derive optimization targets for either uploading data from host
memory to graphics memory, for rendering data, or both.

4



1.3 Contributions 5

2) We systematically analyze how data uploading and rendering can be implemented,
both on hardware and software, and what choices software developers have when
designing visualization applications. All these parameters form a set of possible
configurations that allow to fine tune for a given scenario.

3) We empirically derive a mathematical model by applying the statistical methods
D-optimal design and linear regression to gain an understanding of the underlying
processes involved and to quantify influences of changing parameters. The derived
models are analyzed to gain an understanding of the included parameters regarding
form and strength of their influences on performance.

4) We evaluate the obtained models using the original experimental data for deriving
the mathematical model, using additional random configuration experiments, using
configurations based on the models and optimization strategies, and using a real-
world dataset. This allows to gain an overview on the models accuracy and precision
in predicting performance of configurations.

Steps 1) and 2) carry out a qualitative analysis of the problem space. Step 3) performs
a quantitative analysis based on the knowledge gained from the first two steps to gain a
model of the problem space. Step 4) makes predictions based on the gained models to gain
an understanding on their performance and challenge them through experimentation.
The 4 steps of our methodology are described in Chapter 2 for step 1) and 2), Chapters 4
and 6 for step 3) and Chapters 7 and 8 for step 4).

1.3 Contributions
The contributions of this thesis are the following:

• We examine typical visualization scenarios and deduce from them different require-
ments regarding performance. This allows us to define concrete optimization targets
depending on the visualization scenario and their individual performance require-
ments.

• We examine how data rendering and data transfer can be implemented in hardware
and in software and how these two processes can be decoupled. Together with the
described individual optimization targets, this allows us to fine tune the optimization
of performance.

• We describe a methodical approach on how to obtain a mathematical model describ-
ing the influences on concurrent rendering and uploading. By applying approaches
from the field of statistics adapted to the challenge at hand, we obtain the mathe-
matical descriptions in form of the two MARKUs and therefore, a description of the
involved processes. This helps us to understand and predict the two processes for op-
timization. With the resulting MARKUs, we are able to guide future visualizations
towards better performance.

5



6 1. Introduction

• Using the two resulting MARKUs, we give an overview on the parameters involved
for uploading and rendering datasets and how they affect performance of each.

1.3.1 Associated Publications
The following publications are directly associated with this thesis. They provide either
parts of the methodical approach in our work, describe groundwork or frameworks imple-
mented for this thesis, or apply the methodical approach of this thesis.

• Markus Wiedemann, Bernhard S.A. Schuberth, Lorenzo Colli, Hans-Peter Bunge,
and Dieter Kranzlmüller: ”Visualising large-scale geodynamic simulations: How to
Dive into Earth’s Mantle with Virtual Reality”. In EGU General Assembly 2020,
Online, 2020, doi: 10.5194/egusphere-egu2020-5714

Summary: This work presents the particular result of applying parts of the method-
ical approach presented in this thesis. A dataset from the field of geophysics
that is beyond fitting into available graphics memory is visualized using VR
technology in real time.

Own Contribution: The dataset is time dependent and needs to be uploaded to
graphics memory while concurrently rendering it. Parts of the methodical ap-
proach of this thesis are applied. This enables to render the full time range of
the dataset in real time.

Other Contributors: Bernhard S.A. Schuberth, Lorenzo Colli and Hans-Peter Bunge
provided the dataset. Fine tuning of visualization parameters for visual explo-
ration was a collaboration effort between all authors.

• Markus Wiedemann and Dieter Kranzlmüller. ”Statistical Analysis of Parallel Data
Uploading using OpenGL”. In Proceedings of the 2019th Eurographics Symposium on
Parallel Graphics and Visualization, Porto, 2019, pp. 101 - 108, doi: 10.2312/pgv.20191114

Summary: This work presents mechanisms described in this thesis that allow to
decouple the two processes data rendering and data uploading. Furthermore, a
statistical analysis that shows the influences of choosing different parameters on
performance for the two processes.

• Markus Wiedemann, Christoph Anthes, Hans-Peter Bunge, Bernhard S.A. Schu-
berth, Dieter Kranzlmüller. ”Transforming Geodata for Immersive Visualisation”. In
Proceedings of the 2015 IEEE 11th International Conference on e-Science, Munich,
2015, pp. 249-254, doi: 10.1109/eScience.2015.80

Summary: This work presents one workflow for reducing a volumetric dataset to make
it real time render-able and a real-time visualization framework that allows the
use of various displaying technologies.

6



1.4 Thesis Outline 7

Own Contribution: This work lays the groundwork of the visualization framework
used in this thesis. By dividing the dataset into smaller parts and implementing
concurrent uploading schemes, visualization of datasets bigger than available
graphics memory become possible

Other Contributors: Bernhard S.A. Schuberth and Hans-Peter Bunge provided the
dataset for the visualization. Christoph Anthes provided the idea for isosurfacing
the dataset to help reduce the amount of information.

1.3.2 Publications Not Directly Associated to the Thesis
The following publications are not directly associated with this thesis, but were created as
efforts alongside the creation of this thesis in the field of scientific visualization. Some of
the techniques developed in the course of the thesis have been applied to new applications.

• Salvatore Cielo, Luigi Iapichino, Johannes Günther, Christoph Federrath, Elisabeth
Mayer and Markus Wiedemann. ”Visualizing the world’s largest turbulence simula-
tion”, submitted to Parallel Computing.

• Thomas Odaker, Markus Wiedemann, Christoph Anthes, and Dieter Kranzlmüller.
”Texture analysis and repacking for improved storage efficiency”. In Proceedings
of the 22nd ACM Conference on Virtual Reality Software and Technology (VRST
2016), Munich, 2016,
doi: 10.1145/2993369.2996332

• Christoph Anthes, Rubén Jesús García-Hernández, Markus Wiedemann and Dieter
Kranzlmüller, ”State of the art of virtual reality technology”, In Proceedings of the
2016 IEEE Aerospace Conference, Big Sky, 2016, pp. 1-19,
doi: 10.1109/AERO.2016.7500674

• R. J. García-Hernández, C. Anthes, M. Wiedemann and D. Kranzlmüller, "Perspec-
tives for using virtual reality to extend visual data mining in information visualiza-
tion," In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, 2016, pp.
1-11, doi: 10.1109/AERO.2016.7500608

1.4 Thesis Outline
This thesis provides a description of the process of uploading data to graphics hardware
while concurrently rendering data on the associated GPU as well as their performance
characteristics. For this, we first analyze how the processes can be implemented in Chap-
ter 2. We start with a high level overview followed by a description of how the graphics
Application Programming Interface (API) OpenGL specifies it. We discuss challenges in
different implementations. Additionally, we need to define our understanding of perfor-
mance. As there are different possible scenarios for visualization applications, we discuss

7



8 1. Introduction

what might be prioritized by which scenario. From this we derive exclusion and soft crite-
ria that model the different requirements for such an application. The rest of the chapter
brings these requirements together in one framework. Our framework allows to design up-
loading and rendering mostly independent from each other. The framework can therefore
fulfill all of these requirements and allows to model the processes involved individually. Fi-
nally, we describe possible variables and influences involved for both hardware and software
parameters.

Relevant related work is discussed in Chapter 3. We first take a look at approaches
analyzing OpenGL and how they describe performance for data uploading and rendering.
Secondly, we widen the topic by including other non-graphics related APIs that work on the
same hardware and, on a higher level, describe a similar process where data is uploaded to
hardware and processed with that hardware. We discuss in both cases how they addressed
both, modeling data transfers to graphics hardware and using the GPU to operate on the
transferred data. We outline their shortcomings and describe our contribution to this topic.

Chapter 4 describes our methodical approach on modeling concurrent uploading and
rendering by describing which variables are analyzed, by introducing statistical methods
for designing a sufficient number of experiments for our purposes and how to obtain a
model from those experiments.

Next we apply these concepts on a target system configuration. Chapter 5 describes
the parameters of the involved system. This includes hardware parameters, the included
controllable variables (or shorter control variables) and their settings as well as how the
experimental data is processed to prepare it for model deduction.

Chapter 6 describes the results of deriving a mathematical model for concurrently
rendering and uploading data for the given system. We analyze influences and interactions
of control variables in the deduced models as well as which control variables are removed
from the models.

In Chapter 7 we describe how we challenge the deduced models. This is done by
comparing it to three different experimental configuration sets. The first is the data used
for creating the model. As second we randomly create a configuration set to get a broad
picture on the models of the whole parameter space. As third we optimize for the outlined
three use cases of movie, desktop and VR visualization. For that we measure the best
predicted configurations and compare it to the prediction.

In Chapter 8 we use a real-world dataset and compare measured performance with
predicted performance. With this we discuss the obtained MARKUs in terms of applica-
bility and intended usage.

Chapter 9 summarizes our findings and outlines possible future work.

8



Chapter 2

Problem and Requirements Analysis

This chapter provides an overview of the problem at hand and analyzes the requirements for
a possible solution. The overall goal of this thesis is to optimize performance of uploading
and rendering datasets. For this to be achieved, we first need to analyze and define what
performance means in our context. Once performance targets are defined, the next step
is to analyze what components are involved when rendering datasets. This includes the
analysis of respective hardware and software. In the third step we discuss how to overlap
rendering and uploading in order to optimize performance. The fourth step collects all
possible parameters described in the steps before, leading to an overview on what can
be controlled and what can have an influence on performance. Finally, we summarize all
findings of the chapter and describe the connection to the research question RQ and its
sub research questions SRQ1-3.

2.1 Performance
Depending on the scenario, performance for uploading and rendering data can mean many
things. In this section we analyze the following three use cases that describe typical
visualization applications:

Use case 1 Movie visualizations

Use case 2 Desktop visualization

Use case 3 Virtual Reality visualizations.

Each of these use cases adhere to a variety of priorities or requirements. On the one
hand, there are some critical criteria that, when not met, fail the whole process:

• Maximum frame time

• Finishing an upload before rendering

9



10 2. Problem and Requirements Analysis

On the other hand, there are soft criteria that help to optimize both rendering and up-
loading of data to maximize individual priorities:

• Minimize rendering time

• Minimize uploading time

Each of them highly depends on the visualization scenario as well as the context, i.e. how
high the frame rate or the uploading performance already is. Before describing what factors
can influence performance, we will first take a closer look at these scenarios, categorize them
on a priority continuum and then derive requirements or priorities from them. Finally, we
combine the findings to derive the optimization targets introduced in Chapter 1:

OT1 High priority data rendering

OT2 High priority data uploading

OT3 Balancing both activities

2.1.1 Use Case Analysis
Naturally, there is a range of use cases and individual priorities possible for each of them.
In this work, we focus on the three previously introduced use cases that span a whole
continuum of priorities.

Higher Uploading Priority

Higher Rendering Priority

Virtual Reality Desktop Visualization Video Visualization

Figure 2.1: Priority continuum for different types of visualizations

Fig. 2.1 shows how we classify each of them on the whole continuum of priorities. On
the left side we have VR visualization applications. Usually, when using VR we want to

10



2.1 Performance 11

minimize the latency between users interacting and the image they see adapting. An inter-
action can be as simple as turning the head which requires updating the virtual perspective
to the real pose of the user. Highly sensitive users are able to detect latencies smaller than
5 ms [Jer10] between interaction and an update of the image seen. Higher latencies can
induce Oscillopsia [AHJ+01], reduce performance in pointing [WBK+20], searching and
reaching tasks [CMG19] or even induce cybersickness [CMG19]. All of this could force
a user to stop using the application altogether. So this side of the continuum can easily
have a strict deadline for how much time we have to render the next frame. However,
although waiting a couple of milliseconds longer for the next timestep of a data set might
bother people, it will not necessarily prevent a user from further using the application as
cybersickness might.

Rendering a movie to visualize a dataset limits this continuum in Fig. 2.1 on the
other side. Usually, when rendering a movie, rendering a frame can take seconds, minutes
or even longer. Here, the focus lies on visual detail and not on being able to see it in
real-time. However, when we render a frame we want the image to be complete and to
show what was defined before. This means that the dataset needs to be complete in the
graphics memory, when it is rendered. Consequently, the influence of data transfers on
rendering is irrelevant as long as no dataset is present, as the data must be available to
render it.

While VR and movie visualization both have these criteria for exclusion, namely
having a minimum frame rate or having an upload finished before starting to render,
desktop visualization can be classified somewhere on the whole continuum between VR
and movie visualization in Fig. 2.1. However, this only covers parts of the whole truth.
As soon as the criteria for exclusion for VR and movie visualization have been satisfied,
different additional priorities can be set.

Criteria for Use Case 1 – Movie Visualization

For movie visualizations we most certainly need the data to be in memory, for being able
to render it. However, this does not mean that priority lies completely on optimizing
uploading times. Rendering a movie includes both timings for rendering and uploading.
This means, choosing a slower uploading strategy for gaining performance in rendering
can also improve overall performance. Fig. 2.2 illustrates this by an example. Assuming
there are three possibilities on how to configure both processes: Setting a) balances both
the times needed for rendering (tr,n, n ∈ 1, 2) and uploading (tu,n, n ∈ 1, 2). Setting
b) reduces the time needed for uploading and with that increases the time needed for
rendering. Setting c) increases the time needed for uploading but disproportionally reduces
the time needed for rendering. This means that the overall time needed for both processes
(to,n, n ∈ 1, 2) is the smallest for setting c).

Often, rendering for movie visualization includes a high set of visual details, and
therefore, rendering times are disproportionally larger than uploading times. This means,
if we can overlap uploading with rendering, choosing a slower uploading strategy might
not even be noticeable.

11



12 2. Problem and Requirements Analysis

tu,1

tu,1

tu,1

tu,2

tu,2

tu,2

tr,1

tr,1

tr,1

tr,2

tr,2

tr,2

to,1

to,1

to,1

to,2

to,2

to,2

Setting a)

Setting b)

Setting c)

time

Figure 2.2: Three different strategies applied to a video visualization scenario. Setting
a) shows balanced uploading (tu,n, n ∈ 1, 2) and rendering (tr,n, n ∈ 1, 2) times. Setting
b) decreases the time needed for uploading but increases the time needed for rendering.
Setting c) needs overall the smallest amount of time (to,n, n ∈ 1, 2) by reducing the time
needed for rendering and increasing the time needed for uploading.

Criteria for Use Case 2 – Desktop Visualization

Desktop visualizations are the most variable. Here, application developers have to balance
between the performance of both, rendering and uploading. Both, having a high frame
rate as well as having low latency between changing a dataset and seeing it being changed
is desirable. Often, a developer additionally has to balance between spatial interaction
response time and dataset interaction response time, which is represented in balancing
between uploading and rendering.

On the one hand, we want real-time interactivity to be able to quickly spatially
explore a data set. If rendering times are too high, and motions feel jerky, users might
easily get bothered and stop exploration. On the other hand, if there are some frames with
high latency, they won’t get as cybersick as when using VR visualizations. This means, a
developer can play around to get the optimal performance as long as rendering times are
not too high.

For uploading performance, the picture is similar. If it takes seconds every time we
change parts of the data before it gets displayed, it might interfere with the ability to
explore datasets, especially if we want to explore the time dimension. But, if only some
uploads have high latency, the impact on a user exploring a dataset can be minimal.

Fig. 2.3 shows how performance for desktop visualization is highly depending on how
an application is used. While in scenario a), user interaction only in some frames issues an
upload of a new dataset, scenario b) requires constant uploading and increases the total
time to,i needed for rendering for all frames.

Another addition to complexity comes from how images can be displayed on a device.
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to,3
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Scenario a)

Scenario b)

time

Figure 2.3: Performance for desktop visualization highly depends on usage. For scenario a)
only some frames need a new dataset to be uploaded. Consequently, the overall time needed
(to,n, n ∈ 1, 2, 3, 4) mostly depends on rendering time (tr,1). For scenario b), many frames
need uploading of a new dataset. Here, overall time needed depends on both processes.

Most displays have a fixed built-in refresh rate at which they can display new frames. This
refresh rate is also signaled to the graphics card with the so-called vertical synchronization
signal or vsync. A newly rendered frame is only shown in the next displaying cycle, when
rendering of it is finished before vsync is signaled. If a frame is not finished when vsync is
signaled, for the next cycle the frame, that was already shown in the last displaying cycle,
is shown again and consequently, the rate of newly rendered and shown frames, or frame
rate, is dropping. For uploading and rendering this can mean that splitting uploading in
two parts can increase the frame rate as shown in Fig. 2.4. Here, scenario a) shows the
case where uploading and rendering together take longer than the time available for one
frame. In this case, rendering of dataset d1 (which is done in time tr,1) finishes after vsync
is signaled and therefore will be shown after the third vsync (in the third shown frame).
Splitting the process of uploading dataset d1 (which is done in time tu,1 = tu,1,1 + tu,1,2) in
two parts as in scenario b) allows to show a new rendered frame every cycle but prolongs
the time needed to show the next dataset. Consequently, in the first frame, an old dataset
d0 is shown which is rendered in tr,0 and dataset d1 is also only shown in the third frame
after the third vsync. However, in this case, possible perspective changes are shown with
lower latency, as they can be included for rendering and are shown in every frame cycle of
the display.

Different requirements make it more complicated to find an optimal solution. While
usage influences the focus on which process to optimize, vsync can influence how data
needs to be uploaded in order to maintain high frame rates. For all cases it is necessary to
predict how long one of the processes takes in order to improve performance.

Criteria for Use Case 3 – VR Visualization

VR visualizations have an even more complex set of requirements and can require to
meet a certain maximum time between two consecutive frames, usually the same as the
refresh time of the displaying device. This also includes the necessity to finish rendering
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14 2. Problem and Requirements Analysis
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Figure 2.4: Performance for desktop visualization also depends on the refresh rate of the
displaying device. For scenario a) the frame rate drops as rendering finishes after vsync.
Scenario b) circumnavigates this by splitting up the process of uploading of a dataset.

a frame before vsync is signaled and as such including the same challenges of desktop
visualizations. However, we also want to reduce the latency between physical movement
and virtual movement. Some implementations therefore move the rendering of a frame to
the latest possible time of the frame time. This is illustrated in Fig. 2.5.

tothertothertothertother
tr,1tr,1tr,1tr,1

vsyncvsync vsyncvsyncvsync

time

Figure 2.5: Some VR frameworks require to put rendering at the last possible timeslot be-
tween two frames. This means that newest tracking information (shown as black rectangle)
is used for rendering the next frame to reduce latency between movements and displaying
them.

In the beginning of the frame, the timeslot tother can be used to perform other tasks
by the GPU. For instance, this can be a physics simulation or setting the OpenGL states.
A certain time slot is allocated for actually rendering the frame. This time slot is moved to
the end of the frame time and just before it starts, the latest tracking information (black
rectangle) is gathered. This allows to keep the latency of physical motion to displaying it
fixed. It is also known as Running Start, usually 2 to 3 ms before vsync [Vla15, APLK17].
However, the first part of the frame time, namely tother, can also be used to upload data to
graphics memory without worrying about impact on rendering, if we are sure the upload
is finished before rendering starts.

This can also mean that increasing the aggregated time of uploading and rendering
can improve performance. Fig. 2.6 illustrates this issue. While in scenario a) the aggregated
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2.1 Performance 15

time for uploading and rendering is shorter, rendering takes longer and therefore the time
between a physical motion and it being translated to the VR display is longer than in
scenario b). However, it is important to notice that here in both scenarios the aggregated
time fits into the time allocated for one frame.

tr,1

tr,1

tr,2

tr,2

tu,1

tu,1

tu,2

tu,2Scenario a)

Scenario b)

vsync vsyncvsync

time

Figure 2.6: In some cases, increasing the time needed for uploading (tu,n, n ∈ 1, 2) can boost
the overall performance even though the aggregated time for uploading and rendering is
larger. For VR, when all other requirements are met, reducing latency between movement
and displaying and therefore reducing rendering time often takes priority.

On the other hand, this strategy is designed for VR games and possibly games that
require fast physical reactions. For studying a dataset, these requirements are far above
the bare minimum for acceptable experiences. If we have the possibility to choose between
a frame rate of 80 Hz and 90 Hz or to have smooth constant uploads instead of some
parts popping up and some come not being uploaded at all, we might choose to reduce the
frame rate to 80 Hz to enable a smooth uploading rate. This, however, changes completely,
when the choices are between 20 Hz with smooth uploading and 30 Hz with discontinuous
uploads. Here the visual difference can lie between seeing single images or moving pictures.

2.1.2 Matching Optimization Targets with Use Cases
We see that it highly depends on the situation of each individual use case for which process
to prioritize. For use case 1, movie visualization, data must be completely in the graphics
memory for rendering. If this is not the case for a particular frame, then at this moment
uploading takes priority, which is described by OT2. In the remaining situations for
movie visualization, the total time for both, rendering and uploading together, needs to be
reduced. Therefore, this situation is described by OT3.

For use case 2, desktop visualization, a couple of situations depending on user inter-
action can define which process to prioritize. Usually, high responsiveness and with that
short rendering times are preferable. This is described by OT1. However, as we saw in
the section before, the used displays often work with fixed frame times and therefore a
time slot for rendering. If rendering finishes early, uploading can be prioritized which is
described by OT2. Additionally, depending on the type of interaction, situations can occur
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16 2. Problem and Requirements Analysis

where datasets need to be constantly uploaded. In this case, balancing between rendering
and uploading might be necessary and therefore, priority lies at the total time for rendering
and uploading, OT3.

Additionally to the situations described for use case 2, for use case 3, VR visualization,
usually, low latency between interaction and showing the result is preferable. This means,
rendering times should be as low as possible. As most VR devices also work with fixed
frame times and rendering is pushed to the end of these time slots, there are time slots
available in the beginning that can be used to prioritize uploading, OT2.

Hence, most situations can be described by either one of these three optimization
targets OT1, OT2 or OT3.

2.2 Rendering Images
In this section we describe how an image can be rendered using graphics hardware. For
rendering an image, data needs to be uploaded from host memory to graphics hardware.
Once there, it can be rendered and stored as an image or shown on a computer screen.

To achieve these two steps, uploading and rendering, several hardware components
and software concepts are involved. Therefore, in this section we take a look on uploading
and rendering from the following two abstraction layers:

• Hardware

• Software

The first abstraction layer, the hardware, describes what possibilities are there for
data to be uploaded from host memory to graphics hardware, where it is rendered. For
this purpose we also analyze the involved components and in which of the possibilities they
are involved.

For the second abstraction layer, the software, we analyze which steps are required
for uploading and rendering to happen. Additionally, we take a look at specifics related to
the actual software implementation, to what details special attention needs to be paid and
how overlapping of rendering and uploading can improve performance.

2.2.1 Hardware
Graphics hardware is usually designed to process lots of data using single instructions. This
means that the same execution workload is applied to multiple data in parallel, also known
as single-instruction stream – multiple-data stream (SIMD) [Fly72]. One feature thereof is
to render polygon meshes, where each vertex can be processed using the same instructions.
This processing can happen in parallel using hundreds or thousands of small processing
cores at the same time and therefore, many vertices can be computed at the same time using
the same instructions. Further, graphics hardware usually works asynchronously from the
rest of the computer they are attached to. They usually have their own processing unit,
the GPU, and their own dedicated memory, the graphics memory or video RAM (VRAM).

16



2.2 Rendering Images 17

Assumptions

We base the following analysis on two assumptions:

Triangle
meshes

We assume that the dataset to be rendered consists of meshes that are
constructed from triangles.

Data in Host
Memory

We assume that data, which ought to be rendered, already resides in
main memory.

Triangle Meshes Instead of using triangle meshes for rendering, other approaches exist
as well, for example volume rendering techniques, but are not part of the focus of this
thesis. For more information on those techniques see e.g [Bar93] for an overview on several
rendering techniques for medical data or [Han05, chap. 7] for a general overview on volume
rendering for visualization. When using triangles for rendering, this means, we have at least
a list of vertices describing the position of the triangles in space. Each vertex can contain
more information than just the position, for example its color, its normal or its texture
coordinates, which further help to describe visual properties of the surface the triangle
describes.

Data in Host Memory We require that data is already present in host memory, for
rendering it. This assumption is based on two reasons:

1. Main memory is easier expandable than graphics memory as available hardware al-
lows it. In many cases, CPUs and mainboards allow to address and use large amounts
of host memory and easily add new host memory by just sticking it into the memory
slots. For graphics memory this is usually not the case and to add new graphics
memory to graphics hardware, soldering it to the graphics board is required. This
shows that the amount of host memory can easily exceed graphics memory for a
given system1. Consequently, if a dataset exceeds available graphics memory but fits
into main memory, we can preload the dataset into main memory and repeatedly use
it for visualizing it. This, however, means we need to repeatedly copy it to graphics
memory.

2. If data does not fit into main memory, we can use multiple Solid State Disks (SSDs)
in RAID 0 configuration. RAID 0 allows to use multiple hard disks or SSDs together
to increase write and read bandwidth onto them. This in turn can increase reading
performance up to the point where a transfer from main memory to graphics memory
is slower than from storage to main memory [GRE09].

1At the moment of writing this thesis, the highest available amount of graphics memory is 48 GB for
the NVIDIA Quadro RTX 8000. Yet, the Intel Xeon Platinum 8260L CPU can theoretically address up
to 4.5TB of main memory and the AMD Epyc 7742 CPU up to 4TB.
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18 2. Problem and Requirements Analysis

Involved Hardware

An abstract overview of the involved hardware components valid for most rendering hard-
ware available today is shown in Fig. 2.7. For this and the following figures, when referring
to components of those figures, words in the text are written italic to mark them visually.

The involved hardware includes (from bottom to top):

• Host memory or RAM (Random-Access Memory)

• CPU

• The connection between CPU and graphics hardware or in this case the PCI Express
(PCIe)

• Graphics hardware, in this case a Graphics Card with (from left to right):

– VRAM as graphics memory
– Host Interface
– GPU with:

∗ Memory Controller
∗ DMA (Direct Memory Access) Engine(s)
∗ GPU Cores

RAM is connected to CPU which is connected via the PCI Express to the Host
Interface of the Graphics Card. The Host Interface is connected to VRAM and GPU.
Within the GPU, there is a connection from DMA Engine(s) to the Memory Controller
and externally to the VRAM.

Following the work of [KMMB12, KAB13, FAN+13], multiple paths for data to be
rendered using the GPU exist:

• Direct CPU Transfers
• Pinned Transfers

– Direct
– DMA Based
– Microcontroller Based

For all paths, the general data movement is as follows: Data is moved from RAM
via the CPU (and integrated chips/interconnects) and PCI Express to the Graphics Card.
On the Graphics Card, data can either be transferred via the host interface directly into
VRAM, via DMA Engine(s) or other microcontrollers and the memory controller into
VRAM, or directly be processed by the GPU. However, how this is achieved and who is
actively performing the transfer depends on the implementation of the graphics hardware,
its driver and the particular visualization application.

18



2.2 Rendering Images 19

Figure 2.7: Schematic overview of involved hardware components, based on [KAB13]

Direct CPU Transfer The CPU takes the leading role for Direct CPU Transfers;
it loads the data from main memory and copies it to the Graphics Card. Through PCIe
base address registers (BARs), it can directly write into device memory. The path taken
is illustrated in Fig. 2.8, where the data is moved from RAM via CPU, PCI Express and
Host Interface to VRAM. Yet, we do not know what other parts of the Graphics Card
might be involved when taking this approach.

Pinned Transfers Another possibility using PCIe BARs operates on host memory.
Here, the GPU is granted direct access to pinned (host) memory to allow Pinned Trans-
fers. This part of the host memory is page-locked so it cannot be swapped out [HM12].
Using pinned memory allows two paths to take as illustrated in Fig. 2.9: (2a) Direct
– Either the GPU reads directly from RAM via Host interface, PCI Express, and CPU
or (2b) DMA Based – the DMA Engine(s) transfer data via the same components to
VRAM.

For the latter so-called copy engines are used. The DMA transfers can either happen
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20 2. Problem and Requirements Analysis

Figure 2.8: Schematic of direct CPU to VRAM data transfer

asynchronously from the GPU or halt GPU processing for the duration of the transfer,
depending on the DMA Engine(s) involved [HM12, Ven10]. However, for this to work, data
must already reside in pinned memory, which usually requires a transfer from pageable host
memory to pinned memory, see also path (1) in Fig. 2.9.

A third possibility using pinned memory with various manifestations – Microcon-
troller Based – uses other microcontrollers residing in the GPU for copying data. Here,
data is read by these microcontrollers from pinned memory and in a second step written
into device memory. Fujii et al. [FAN+13] however mention that this part is usually limited
to a few hundred bytes and therefore, for our cases, is not relevant.

Unless the GPU directly reads data from host memory, data is transferred from
device memory via a high bandwidth onboard bus from VRAM to the GPU and there
processed to render the final image.
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Figure 2.9: Schematic overview of involved hardware for data transfer from host memory
to pinned memory. From there, data can be either directly accessed by the GPUor copied
to VRAM

2.2.2 Software
To use either of the paths, we need to communicate with the graphics hardware and be
able to design applications that make use of graphics hardware. Graphics APIs, such as
Vulkan2, DirectX3 or OpenGL4 can be used for this purpose. In this work we focus on
OpenGL for the following reasons: DirectX is a Windows only API while OpenGL is usable
on Windows, Linux and MacOS systems. Vulkan is similar to OpenGL but more explicit
and allows to have more control over the rendering pipeline [Guh18]. However, Vulkan
is not natively available for MacOS systems, it can be used only via an interface layer
with possible additional overhead. As OpenGL is available for all three main computer

2https://www.khronos.org/vulkan/
3https://docs.microsoft.com/de-de/windows/win32/directx
4https://www.khronos.org/opengl/

21

https://www.khronos.org/vulkan/
https://docs.microsoft.com/de-de/windows/win32/directx
https://www.khronos.org/opengl/
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platforms, we focus on OpenGL in this work.

Uploading and Rendering Steps

For OpenGL, there are several possibilities on how a data upload from main memory to
graphics memory can be programmed. Each of them requires a couple of steps to be taken:

Genera-
tion

For all cases we first need to generate a name for a so-called vertex buffer
object (VBO). This VBO, or simply buffer, is a generic memory object that
holds data in memory that is available to the GPU (usually in graphics
memory).

Allocation Generating the name however does not actually create a data object. This
is done in a second step, the allocation step. Here we can choose to issue
an asynchronous (for the calling thread on the CPU) data transfer or just to
allocate memory.

Upload If memory is only allocated, there are two further options: Either getting a
pointer to the allocated memory, copying it using the memcpy function and
then freeing the pointer, or issuing an asynchronous transfer (asynchronous
for the calling thread on the CPU).

Rendering is issued by first specifying which shaders to use for both vertices and
fragments, specifying vertices to render and specifying where to write the finished pix-
els. Shaders are programs executed, depending on the type, for each vertex, primitive or
fragment that define how it should be processed. Primitives can be triangles, quads or
other geometric shapes that describe a surface to be rendered. Fragments themselves are
rasterized primitives, in other words pixels to be. This means that fragments can become
pixels of the image shown, but not necessarily, as other fragments could be drawn over
them. More information about shaders can be found in [Guh18, p. 470ff], about fragments
in [Sel13, p. 41f] and primitives in [Sel13, p. 10f].

OpenGL Specifics

Next we take a more detailed look on how OpenGL itself is specified and how we assume
it is implemented in driver and hardware by graphics card vendors.

The Command Queue A graphics card executes commands asynchronously from the
rest of the computer [SKS16, p. 589]. Therefore, OpenGL implements a so-called command
buffer or command queue. This queue provides an interface between the CPU and GPU.
When the CPU issues commands to be processed by the GPU, those commands a pushed
into the command queue. This helps to reduce waiting of CPU and GPU as they do not
need to wait on each other in many cases. An example is issuing a drawing command,
meaning, for example, rendering a triangle mesh. After finishing preparation of the mesh
for rendering, only a couple of non blocking (for the calling CPU thread) calls are executed
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on the CPU to start drawing this mesh. This means that while the GPU processes the
commands in the command queue, the CPU is free to execute other tasks.

However, using a queue forces the GPU to process all commands in this queue sequen-
tially [HM12]. This means individual drawing commands can be processed sequentially.
While the vertices of one mesh are processed in parallel, several meshes in different drawing
commands can be processed like they were issued – one after the other.

The Rendering Pipeline OpenGL specifies a rendering pipeline as an abstract model
to describe how rendering happens. This rendering pipeline describes how vertices are
processed, combined to primitives, rasterized to fragments (if necessary), and then how the
fragments are processed to final pixels of the rendered image. There are many more details
to be discovered in this pipeline, such as various rendering layers, different programmable
stages or optimization techniques. However, most of them are not relevant for this thesis
and are therefore skipped. The interested reader is referred to [Guh18, Sel13, SKS16] for
more information about the rendering pipeline.

The OpenGL Context A variety of different states define how certain steps or which
steps of the rendering pipeline are executed. States are a set of variables that can be
changed and queried via the OpenGL API. The whole set of states is defined in a so-called
context. An OpenGL context is needed for issuing OpenGL commands and it is created via
windowing libraries. There exist different windowing libraries e.g for Windows and Linux
based systems. They allow to create windows that have an OpenGL context associated
with them. For more information on context and window creation, the interested reader
is referred to [Sel13, p. 623ff].

An OpenGL context can only be current in one CPU thread, which means that at
one certain point in time, only one thread can issue an OpenGL command in this context.
However, when the CPU is too busy doing other tasks and not able to fill the command
buffer for the GPU fast enough, it can make sense to use multiple threads to avoid that the
GPU is waiting for new tasks and thus avoiding slowing down performance. Hrabcak and
Masserann have shown in [HM12] that it is possible to gain performance if data transfers
are overlapped with rendering.

Another possibility also detailed in [HM12] is to use multiple contexts that share
some part of the whole state set. An example for shared states are memory objects. This
means that we can outsource data transfers to a different thread to avoid stalling of the
GPU while the CPU is copying data to and from graphics memory.

In all cases, each application only has one command buffer, irregardless of the number
of contexts. However, some commands can be processed concurrently on graphics hardware
which in turn, possibly allows overlapping of data uploading and rendering.

Complications However, either way, there are a couple of details involved that make
data uploads using OpenGL more complicated:
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• When we issue an asynchronous transfer, we need to make sure that the transfer
is finished before we use it for a draw call. If not, OpenGL implicitly synchronizes
transfer and rendering by letting the rendering command wait until the transfer
is finished [HM12]. We can make sure that a transfer is finished by using synch
objects. Synch objects are inserted into the command buffer. When all commands
are executed that were inserted into the command buffer before the synch object was
inserted, then the synch object signals the CPU, implying that all commands before
are executed. This allows to synchronize the part of the application being executed
on GPU with the part of the application executed on the CPU.

• When we issue a data transfer, via either option, implementations can copy the data
to pinned memory. As pinned memory is memory in host memory reserved for the
GPU and accessible by the GPU, this makes the issued transfer a host to host copy.
If we want to use this part of memory for rendering, a second data transfer is issued
that copies the data either from host memory to graphics memory or directly to the
GPU before it is used for rendering [HM12].

Timing Considerations and Overlapping

Overall, there exist multiple possibilities to design data transfers in parallel to rendering,
e.g. using the before described possibilities of the steps necessary to upload and render.
Depending on which we choose, in the worst case we can get an overall time to for rendering
a dataset or uploading a dataset as the sum of time needed for the transfer tu and the time
needed to render it tr, i.e. to = tu + tr. The reason for this can be that either we need to
wait for the data transfer to be finished before rendering can start, or a draw call blocks
the GPU and consequently, stalls any uploading process (which means that the uploading
process needs to wait for the draw call to finish). Fig. 2.10 illustrates this with the first
row of blocks showing an uploading process waiting for rendering to finish and the second
row vice versa. In both cases, the total time to, shown as third row, is the combination of
both times tr and tu.

For Fig. 2.10 (and the following figures), dark gray blocks symbolize the time needed
for uploading and brown blocks symbolize the time needed for rendering a particular part
of a dataset. Additionally, light gray blocks below the brown and/or gray blocks illustrate
the total time of either both processes combined or until the next frame is displayed to
a user, which is in most cases the time combined of both processes. In some cases, user
interaction or other tasks are symbolized by light yellow blocks, pose tracking events by
black blocks. Pose tracking means a technology that allows to determine the position and
orientation – the pose – of an object in the real-world and track it. Usually, the poses can
then be accessed by the application or are signaled by an event system to the application.

A better solution will overlap both uploading and rendering, so in the best case the
total time for rendering and uploading equals the maximum time needed of either of the
processes: to = max(tr, tu). See also Fig. 2.11, where the first row shows time needed for
rendering and the second row time needed for uploading. The third row shows for both
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Figure 2.10: Sequentializing uploading and rendering leads to a total time to = tr + tu

steps (left and right column) the maximum time of either of them. We assume that the
maximum time is used as the worst case scenario. This is due to the nature of OpenGL. We
can only use sync objects for getting a signal if processes are finished. The synch objects
possibly require GPU involvement, which means that we have to wait for both processes
to finish, when we issue them at the same time and insert a sync object after each (as they
use the same command buffer).

tutu

trtr

toto

time

Figure 2.11: Overlapping uploading and rendering leads in an ideal case to a total time
to = max(tr, tu)

2.3 Decoupling Rendering and Uploading
For uploading and rendering a dataset it is not necessary that the steps involved are
performed one after another. Furthermore, while a dataset needs to be present in graphics
memory (this can also mean pinned memory) to be rendered, this does not mean that both
uploading and rendering need to be alternated. If we decouple the two processes, we are
able to plan more flexible how the two processes are performed.

Consequently, we analyze in this section how to decouple both, rendering and up-
loading, on the CPU side of the application as well as on the GPU side of an application.
This is done in the following four steps:
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(1) Conceptual Framework

(2) Implicit Synchronization

(3) Decoupling Using Threads

(4) Decoupling Using Copy Engines

Conceptual Framework gives a brief overview on the implemented framework that allows
us to decouple rendering and uploading. Implicit Synchronization describes the concept
of implicit synchronization and how to avoid it to decouple dependencies on the GPU side
of the application. Decoupling Using Threads analyzes how to decouple dependencies
on the CPU side of the application. This is achieved by using several CPU threads for the
two processes, rendering and uploading, and a strict separation (as far as possible) of data
in graphics memory and data in main memory. Both, avoiding implicit synchronization and
decoupling using threads, only decouple rendering from uploading when the two processes
are executed in parallel. Therefore, in Decoupling Using Copy Engines, we analyze
the usage of copy engines und how they allow to decouple any further dependencies.

(1) Conceptual Framework

The general idea in our framework is two have two separate processes that depict the two
stages of the data to image process: Rendering and uploading. Every part of a dataset
passes through these two processes. This technique, to the best of our knowledge and
excluding our own work, has not been scholarly documented.

Using these two processes, we can render a dataset that is already present in graphics
memory more than once, while another part of the application uploads the next dataset.
This way, the visualization application can still be responsive to user input for moving
within a virtual scene. On the other hand, when uploading is done quicker than rendering,
we can also preload parts of a dataset that might be needed in the future, to avoid urgency
for uploading and along with that, possible performance losses for rendering.

(2) Implicit Synchronization

Implicit synchronization occurs when a dataset is both issued to be uploaded and rendered.
In the case that uploading is not finished at the time the rendering should take place,
rendering has to wait until the upload is finished.

An additional potential conflict is that both, rendering and uploading, access graphics
memory. The access pattern however is different for both processes. Rendering usually
(excluding more advanced rendering techniques) only reads from graphics memory while
uploading writes to it. This means, concurrent access might be possible.

To decouple any dependency caused by implicit synchronization between both, ren-
dering and uploading, we need to make sure that an upload is finished, before we use that
part of the memory for rendering. This can be done, as aforementioned, with synch objects.
If and only if an upload is finished (as far as the driver lets us know this; the driver might
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hide this using pinned-memory and perform a copy when needed to graphics memory),
the reference to the now in graphics memory residing dataset is given to rendering. In
other words, already present datasets are reused by rendering as long as new ones are not
finished uploading. Once uploading is finished, rendering replaces the before used datasets
with the new ones. It then uses these datasets until the next dataset upload is issued and
finished.

This makes sure that rendering is unaware of any data uploads while uploading is
unaware of any data rendering. The latter is achieved by designing the processes to be in
a pipeline.

(3) Decoupling Using Threads

To achieve a decoupling also on CPU side, both processes have their own thread. Uploading
does only need to know about which datasets to upload and where they are in host memory.
Rendering only needs to get the reference to the data in graphics memory.

The question what needs to be uploaded usually is depending on virtual spatial
position, temporal position or on user input. All of them can require prediction of what
positions are needed next or what a user might input. As these can be computational
expensive and require an interface to both rendering and uploading, we need to separate
all tasks related to finding out what needs to be uploaded next into a separate thread to
minimize interference on rendering and uploading.

(4) Decoupling Using Copy Engines

Apart from separating tasks on CPU side, one critical bottleneck is the command buffer
for the GPU. As all commands issued for execution on one graphics card for one OpenGL
application can be sequentially executed, both rendering and uploading can not be sepa-
rated completely. However, as we try to make use of the copy engines on the graphics card,
the actual copy call can be outsourced so that it does not block subsequent commands in
the command buffer.

If we have more than one upload pending and more than one copy engine available,
this can mean that we can also parallelize uploading. However, before we can upload
data, we need to prepare memory in graphics memory, which are commands that are
processed via the command queue. Yet, there might be drawing calls being processed
and blocking further commands in the pipeline. On the other hand, creation of buffers is
usually quicker than the actual uploading process. To maximize uploading performance,
we can also separate the preparation of buffers from uploading using an additional thread.
If we combine both ideas, parallelizing and separation of threads, this leaves us with 1 to
k threads for uploading data and one thread preparing buffers.

Having more threads for uploading than available copy engines might also allow us
to use all available copy engines, while some threads are waiting for a synch object that
was issued after a draw call (due to possible racing conditions).
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Once uploads are finished, only the reference to the buffer needs to be given to
rendering. This reference is usually an unsigned integer and therefore, the influence of this
task on performance is negligible.

2.4 Parameters and Input Space
From the sections before, we see there are many components involved in uploading data
from host memory to graphics memory and in rendering data using the GPU. In order to
optimize for either of the optimization targets we need to know what can be adjusted. In
this section we analyze the involved hardware and software components and describe the
possible influences of them on the two processes rendering and uploading.

We start by analyzing hardware related bottlenecks and controls. As of next we
discuss possible influences of software design.

2.4.1 Hardware
As described in Section 2.2, a couple of hardware components are involved for rendering
an image of a dataset. This part analyzes at first the Data Bandwidth between and of
the individual components, to find out which components represent bottlenecks.

This is followed by Variable Factors, which describes possibilities to adjust hard-
ware and thus can have an influence on performance. Both parts are structured in the
order of data movement, starting from host memory up to the GPU as final component:

• Host memory

• CPU

• PCI Express

• Grapics card, with:

– Graphics memory
– GPU

Data Bandwidth

The components involved for data transfers are sketched in Fig. 2.7 in Section 2.2.
Host memory (RAM in Fig. 2.7) is the first component involved. The type, latency

timings and clock rate can play an important role for read rate and therefore limit uploading
performance. However, read capability of the used host memory usually exceeds theoretical
bandwidth of the PCIe bus (PCI Express in Fig. 2.7), i.e. for PCIe version 3 with 16
lanes this means that the CPU can read data from host memory with a higher rate than
15.75GB/s. This is theoretically already achieved using DDR3-2000 host memory with an
access rate of 16 GB/s. We further disregard access latency as it usually lies in the range
of a couple of ns, while we focus on transfer times in the range of µs to ms.
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The second station is the CPU itself which usually is bound in read rate only by the
main memory and therefore also not a bottleneck for the whole transfer.

The most limiting component in the host system is the PCIe bus. Here, factors
include the type or version and the number of lanes used. Graphics hardware is in the best
case (currently) connected with a PCIe 16x slot. At the time of writing this thesis, only
one graphics card supports PCIe version 4 with double the bandwidth of its predecessor,
PCIe version 3. Most available graphics cards use the older standard which has a transfer
rate of about 15.75 GB/s.

The next steps are the graphics hardware (Graphics Card in Fig. 2.7) and its compo-
nents. One important factor can be the number of copy engines and the memory controllers.
The used graphics memory (VRAM in Fig. 2.7) is depending on architecture, vendor and
version of a graphics card. This translates to which GDDR version is used, how big the
capacity of the memory is and at which clock rate it can be or is operated. The total mem-
ory bandwidth specifies at which rate data can be read or written to graphics memory.
Usually, this number is a lot higher than the bandwidth of the PCIe bus. For instance, one
of the graphics cards used in the Chapters 5, 6 and 7 is the NVIDIA Quadro RTX 4000.
Its memory bandwidth is up to 416 GB/s, which is more than 25 times the bandwidth of
the maximal possible bandwidth of 15.75 GB/s for PCIe Version 3. The GPU read rate is
only bound to the read rate of graphics memory.

Variable Factors

The obvious variability for hardware comes by choosing different components. Using a
different CPU, host memory, PCIe Version (e.g. mainboard) or graphics card can have
a significant impact. However, there are more options available besides changing compo-
nents. For all involved hardware components, clock cycles play an important role for data
transfers.

Often the same main memory can be used with different clocks. Using different clocks
directly translates into different data access rates. For example, operating DDR4 with a
bus clock of 1500 MHz (i.e. 375 MHz internal clock) give a theoretical bandwidth of 24
GB/s while the same module with a bus clock of 2600 MHz gives 41.6 GB/s of theoretical
bandwidth. However, changing the clock rate is in most cases not possible via software
solutions but only via BIOS options.

Changing the clock of the CPU is nowadays done automatically by the operating
system or micro code depending on the current work load. Another option is to change
the clock rate via software, which is an option that the operating system can allow. The
clock rate can have an important impact on data uploading and rendering, especially when
many CPU instructions are involved for issuing them. An example might be to have many
small data datasets (instead of a few large) that all need to be uploaded and rendered.
Each of these requires the CPU to put commands in the command buffer for allocating
memory on the graphics card, set up the different states for each data set and issue a draw
call.

Changing the version of the PCIe bus, as it is the most limiting factor, has an
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important impact on transfer rates and therefore on rendering and uploading performance.
However, this is, if available, only available via BIOS options.

The graphics card itself has usually two options for clock rates: GPU and graphics
memory clocks. Both can have an impact on rendering and uploading and can be changed
via software for some of the currently available (and in this work used) graphics cards.

2.4.2 Software
The most optimized hardware cannot produce the best performance, if used incorrectly.
Therefore, software design plays an important role. Besides the used system software,
i.e. the operating system, the drivers and the used graphics API, there are many choices
when designing an application that allows to transfer data from main memory to graphics
memory and render it there. In this subsection we describe these choices in the following
order:

• Multi-Threading

• Uploading Method

• Buffer Usage Hints

• Direct State Access

• Pixel Buffer Objects

• Dataset

Multi-Threading One of the factors already mentioned before is the choice of using
multi-threading or not. Hrabcak and Masserann [HM12] have already shown that using
a multi-threaded approach can boost performance. To also make use of this performance
boost, we use the before introduced multi-threading approach for this work. However, for
our approach we additionally have the possibility to specify how many concurrent data
uploads can happen at the same time, i.e. how many threads are used for uploading.

Uploading Method Furthermore, OpenGL itself provides a set of possible factors to
tune. There are several uploading methods comprised of non deprecated functions in
modern OpenGL to upload data to graphics memory:

• glBufferData

• glBufferSubData

• glMapBuffer + memcpy + glUnmapBuffer

• glMapBufferRange + memcpy + glUnmapBuffer
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Apart from glBufferData, each of them requires that a buffer is allocated before the
actual upload. This can be done by using glBufferData without uploading any data. The
function signature of glBufferData is as follows:
void g lBuf fe rData ( GLenum target , GLs i ze ip t r s i z e ,

const void ∗ data , GLenum usage ) ;
GLenum target is an enumerated type that defines the binding point. We will take

a closer look at binding points for Pixel Buffer Objects below. GLsizeiptr size and
const void * data define the size of a dataset and a pointer to that dataset, respectively.
The pointer to the dataset is only needed to be not NULL if a data transfer should be
issued with a call to glBufferData. GLenum usage is an enumerated type to specify buffer
usage hints, which will be discussed in the following.

Buffer Usage Hints The function glBufferData itself allows to specify buffer usage
hints. These buffer usage hints can be specified to indicate, how we plan to use the
buffer. In total there are 9 different possibilities generated by the combination of usage and
frequency. Usage describes how the application intends to use the buffer. The possibilities
are READ for reading data from a buffer to the application, DRAW for the buffer is modified
by the application and used for rendering, meaning being processed by the GPU, and COPY
for copying data within the realm of the graphics card. An example for the latter would
be the GPU generating data, writing it into a buffer and then using it for rendering. The
frequency describes how often a buffer is intended to be used. It can be STATIC, for a
buffer being modified once and used often, STREAM, for a buffer being modified once and
only used a couple of times, and DYNAMIC, for a buffer being modified and used repeatedly
[Sel13, p. 92f].

Direct State Access Furthermore, using binding points or not can have an impact
on performance. This can be implemented by using either the function glBindBuffer
or, available since OpenGL version 4.5, by using named functions of the four uploading
methods above:

• glNamedBufferData

• glNamedBufferSubData

• glMapNamedBuffer + memcpy + glUnmapNamedBuffer

• glMapNamedBufferRange + memcpy + glUnmapNamedBuffer.
Using the named version is also known as direct state access (DSA).

Pixel Buffer Objects When using glBindBuffer the binding point or buffer binding
target itself can play an important role. For vertex data, usually GL_ARRAY_BUFFER is
used. For asynchronous pixel data transfers (texture transfers), the so-called pixel buffer
objects (PBO) were introduced. These can also be used instead of GL_ARRAY_BUFFER when
modifying buffers.
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Dataset Another important factor is the dataset itself. While we usually cannot change
the size of a dataset (unless we remove or add information), it will have an impact on
performance. What we can change, however, is how this dataset is structured: Is it one big
dataset or is it subdivided into many small ones? Especially when more than just position
information is given, e.g. colour information of the vertices, we need to decide if these
different properties are saved in individual buffers or together in one big buffer.

2.5 Chapter Summary
In this chapter we describe how data can be uploaded from host memory to graphics
memory and from there to the GPU, where it is rendered into an image. We can see that
this process consists of two stages. These are uploading, which describes the transfer from
host memory to graphics memory, and rendering, that describes transferring the data from
graphics memory to the GPU, where it is processed into an image.

This structure can impact performance goals for several visualization scenarios. We
describe two extreme ends of a visualization priority continuum, VR visualization and
movie visualization. A third instantiation are desktop visualizations, which in turn reside
somewhere between the former two. These three visualization types also describe three use
cases and their performance goals and priority requirements. With that we answer SRQ1:
What are use cases for visualization and their performance requirements addressing RQ?

However, graphics hardware usually works asynchronously from the CPU. OpenGL
and other graphics APIs use command buffers, to collect work for the GPU. Yet, as OpenGL
only implements one, this enforces a sequential execution of all commands in this command
buffer [Sel13, p. 612]. But, we can overlap Rendering and Uploading as graphics hardware
can have copy engines. Yet, we need to avoid rendering a not yet fully uploaded data set,
as this would force implicit synchronization, i.e. the GPU waiting for the upload to finish.
We solve this by using old buffers as long as new ones are not finished being uploaded yet
and only replace after the uploads are finished. Furthermore, as some of the commands
initiating a data upload block the CPU, we can use multiple threads to allow the use of
more than one copy engine if available. This answers SRQ2: How can data be uploaded to
graphics hardware while concurrently rendering earlier data?

All these steps and the chosen system allow for a variety of tuning parameters. At
first the choice of the involved hardware components:

• CPU

• RAM

• Main board and with it the PCIe Bus, the number of lanes and its version

• Graphics card/graphics hardware

Furthermore, there are customizable parameters via software for the hardware:

• CPU clock rate
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• GPU clock rate

• Graphics memory clock rate

On the software side, first we have the system software that can influence performance:

• Operating system

• Drivers of the graphics hardware (Open/Closed source and version)

• Used API

Once these are chosen and using the described framework, there are a couple of parameters
that can be configured

• Number of threads used for uploading

• Uploading method used for data transfer

• Buffer usage hints

• Using binding points or not

All these choices describe an answer to SRQ3: What parameters can be controlled and
what are other influences?

The choices themself create an enormous input space for possible fine tuning if we
construct all possible permutations of them. Before we discuss how to design experiments
to reduce the number of measurements, we will first take a look at related work and their
approaches to quantify the influences of this input space in the next chapter.
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Chapter 3

Related Work

Transferring data to and from graphics hardware can be achieved in two ways: using APIs
aimed at graphics rendering like Vulkan, DirectX or OpenGL or using APIs aimed at gen-
eral purpose computation on graphics processing units (GPGPU) like CUDA or OpenCL.
Both approaches require fine tuning of various factors to achieve the best performance.

In this chapter we analyze relevant related work focusing on data transfers for graphics
hardware. This analysis is structured in

• Related work using GPGPU APIs

• Related work using graphics APIs.

Subsequent, we summarize our findings and discuss them in the context of this work’s goal.

3.1 Performance of Data Transfers of GPGPU APIs
Although not directly related to visualization, relevant related work can also be found for
GPGPU APIs. While compute performance of these APIs is studied in a wide range of
approaches and application examples, Boyer et al. [BMK13] are one of the first to also con-
sider transfer times for predicting compute performance using GPGPU APIs with GPUs.
For that, they expand their performance prediction framework GROPHECY [MMK+11]
to analyze data usage and the need for data transfers. Given a projection of how much
data needs to be transferred from and to graphics memory, they are able to approximate
transfer times using the linear equation

T (d) = α + βd (3.1)

with T (d) as the expected transfer time for d bytes, α as overhead for PCIe transfers and
β as the inverse of transfer bandwidth (of the PCIe bus). With this expansion, Boyer et
al. are able to better predict how much porting an application to a GPU implementation
speeds up execution of said application. In numbers, they are able to reduce the error for
the speedup prediction for four examples from 255% to 9% .
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While Boyer et al. modeled the transfer of data as individual process, newer graphics
cards, drivers and GPGPU APIs (or versions thereof) allow data transfers to overlap with
calculation, similar to overlapping uploading with rendering, as illustrated before. Gómez-
Luna et al. [GLGLBG12] analyze this kind of behavior for CUDA streams. In their analysis
they deduct two kind of experiments: At first, they use a fixed data size for transfers
to and from graphics memory with a variable computation time; as second, they use a
variable data size for transfers to and from graphics memory with a fixed computation
time. For both experiments they analyze the resulting total time (for upload, download,
and computation combined) and deduce a performance model. This model is based on
measured parameters such as fixed offsets, execution time, and timings for uploading and
downloading data and a particular compute capability, which describes the set of compute
features that are available for the given GPU. For hardware with compute capability 1.x
they describe the following formula as performance model:

t = tT + toh, if tT > tE + tT
nStreams

(3.2)

t = tE + tT
nStreams

+ toh, if tT < tE + tT
nStreams

, (3.3)

with t being the resulting execution time, tT as time needed to transfer the data, toh as
overhead for each stream in the total number of streams used nStreams and tE as time
needed to process the data.

For hardware with compute capability 2.x their model changes to

t = tT hd + tE
nStreams

+ tT dh + toh, if tT hd > tE (3.4)

t = tT hd

nStreams
+ tE + tT dh + toh, if tT hd < tE, (3.5)

here additionally with tT hd as time needed to transfer data from host to device, tT dh to
transfer it back. Additionally, the authors show how they are able to deduce the optimal
number of streams for nStreams and validate their model using three example applications
based on the CUDA SDK.

Van Werkhoven et al. [vWMSB14] extend this type of model with more parameters:
They include the number of copy engines, if implicit synchronization happens or not, and
the PCIe Bus version. This allows them to more accurately predict performance for a
number of example applications and to estimate the optimal number of streams more
precisely.

Fuji et al. [FAN+13] get a step closer to the hardware: Instead of testing different
CUDA functions or frameworks on top of CUDA, they adapt how CUDA functions them-
selves are transferring data. This is achieved by adapting an open source driver. In total
Fuji et al. investigate four different types of data transfers, where one has three different
sub variants based on so-called graphics processing clusters (GPCs):

1. DMA engine based
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2. I/O remapping based

3. Indirect memory-mapped based

4. Microcontroller based

a) One GPC individually
b) Four GPCs in parallel individually
c) All GPCs with broadcasting

Type 1 of data transfers issues GPU commands that cause the DMA engine(s) to copy data
from or to device memory. Type 2 uses the I/O remapping function, after the GPU has
allocated the necessary memory region. Type 3 uses indirect access of memory-mapped I/O
space. Here, the CPU can write and read to and from host memory, that itself is implicitly
mapped to device memory. This in turn means that the CPU can indirectly read and write
from and to device memory. Type 4 uses the microcontrollers that control a certain number
of CUDA cores. The used graphics card, a NVIDIA GTX 480, has 4 of these GPCs. For
the first of the sub variants, a), this microcontroller is used individually. For the second,
b), four of them are used in parallel and for the third, c), another microcontroller is used
that broadcasts commands to them. For all those three sub variants, in contrast to type
1,2 and 3, the microcontrollers are performing the actual data transfer.

Fuji et al. analyze these four types of data transfer mechanisms by varying a couple
of parameters and averaging the required time to transfer data of 1000 measurements. The
parameters tested are:

• Data size, ranging from 16B to 64MByte

• Use of real-time tasks within the possibilities of the used Linux kernel

• Stress tests, with another process either allocating memory, performing I/O system
calls with pipes or creating high CPU workload

• Single transfers and double transfers

The authors conclude that either standard DMA (the second type) or I/O remapping (the
third type) perform best depending on the data size.

These previous approaches on analyzing data transfers for GPGPU, show us another
possibility on how to approach this task. The main goal of their analysis is to make
data transfers predictable, so that the time needed for data transfers can be included in
considerations about whether using GPUs for general purpose calculations is worth porting
an application.

3.2 Performance of Data Transfers of Graphics APIs
One of the earliest systematic approaches to analyze data transfers to graphics memory was
performed by Buck et al. [Buc04]. They provide a benchmarking framework to measure
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a multitude of processes relevant to GPGPU, such as memory bandwidth, data upload
or numerical precision. Although the purpose of their work is GPGPU, they are using
OpenGL as no other APIs were widely supported or available at that time. They analyze
how textures can be copied from and to graphics memory. For these data transfers, they
compare the performance of fixed and floating point representations, color component
ordering, and the performance of choosing one, two, three, or four color components.

As OpenGL has undergone numerous changes and redevelopments with various new
versions and changes in its API – the newest version as of today, 4.6, was introduced 2017
– newer works needed to re-evaluate data transfers using newly introduced concepts or
functionality to give a more complete picture on performance of data transfers. Therefore,
Grottel et al. [GRE09] started to systematically benchmark various factors for a scenario,
where parts of a dataset have to be uploaded to the graphics card in order to render it for
the current frame. The benchmarked factors in [GRE09] consisted of the following:

• OpenGL function used:

– Immediate mode using glBegin and glVertex* functions (deprecated since
OpenGL 3.0)

– Vertex Arrays using glVertexPointer (deprecated since OpenGL 3.0)
– glBufferData with 3 different usage hints: GL_STATIC_DRAW, GL_DYNAMIC_DRAW,

GL_STREAM_DRAW

– glMapBuffer, with only positional data, with color data as an additional buffer,
and with color data interleaved in the position array

• Four computer systems with different CPUs

• Five different graphics cards with different GPUs

The authors experiment with these factors in various combinations to see which perform
best. For this work, performance is measured by the time needed for both uploading and
rendering a dataset together. This means that the authors measure the time starting from
uploading the data to graphics memory until the rendering of this data finishes. Evaluating
their experiments, the authors conclude that for most cases, the deprecated functionality
using glVertexPointer yields the best results.

In [FGKR16], Falk et al. extend the work in [GRE09] with shader storage buffers and
come to similar conclusions.

Hrabcak and Masserann show and evaluate in [HM12] several ways of uploading and
downloading data to and from graphics memory. They compare various factors:

• OpenGL function used for uploading to multiple already allocated buffers:

– glMapBufferRange with the flags GL_MAP_WRITE_BIT and
GL_MAP_INVALIDATE_BUFFER_BIT

– glMapBufferRange with the flags GL_MAP_WRITE_BIT and
GL_MAP_FLUSH_EXPLICIT_BIT
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– glMapBufferRange with the flags GL_MAP_WRITE_BIT and
GL_MAP_UNSYNCHRONIZED_BIT

– glMapBufferRange with the flag GL_MAP_WRITE_BIT

– glBufferData to orphan an old buffer and glBufferSubData to upload data
– glBufferSubData to upload data (without orphaning)

• Three computer systems with different CPUs

• Two AMD, one Intel and three NVIDIA graphics cards

• Three scenarios: Single-threaded with one OpenGL context, multi-threaded with one
OpenGL context, and multi-threaded with two shared OpenGL contexts

Hrabcak and Masserann [HM12] conduct experiments to gain data on how the different
OpenGL functions perform for the three scenarios on 6 different combinations of graphics
card and computer systems. For that they also measure the time needed for uploading data
and rendering together and compare the resulting times. They point out the differences
of the used graphics cards and recommend to specifically profile applications on the used
hardware and to adapt it to the used hardware to gain optimal performance.

While all of these works give a great overview on the different possibilities for up-
loading data while rendering, they illuminate only isolated cases and a particular set of all
possible combinations of factors. Even when we combine all their results, possible factors,
various configurations, and the range of scenarios are missing.

3.3 Discussion of Related Work
There exist multiple works describing performance modeling of data transfers and using
graphics hardware at the same time, preceding this work. Those approaches search for
an optimal time for both, transferring data and processing the data combined. They test
different configurations, different hardware and multiple programmable paths for actually
transferring the data.

Our goal is to broaden the view on this topic and include multiple different use case
where different performance requirements and optimization targets are included. Further-
more, we describe how to systematically experiment and deduce a mathematical description
for a given target system that allows to individually optimize for given optimization targets.

In Table 3.1 we compare several key concepts of related work. These key concepts
are shown as columns and consist of the following:

API Which API is analyzed?

Analyze Data
Transfers

Are data transfers part of the analysis?
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Multi-threaded Are multiple threads used for parallelizing transfers and processing
and are structures decoupled?

Individual
Process Analysis

Are transfer and processing analyzed individually?

Statistical
Experimental
Design

Is the design of experiments planned using statistical concepts?

The rows of Table 3.1 represent the previously in this chapter described approaches.
None of the presented works uses a statistical approach on planning experiments in an

efficient manner. Works analyzing GPGPU APIs mainly focus on deriving a mathematical
description of how transferring data to graphics hardware, processing it and transferring
it back. In most cases they analyze the processes individually, meaning how long does the
data transfer take and how long processing. For works focusing on graphics APIs, neither
of those two aspects are analyzed. However, one work of those includes an analysis of
using multi-threading for graphics applications, contrary to GPGPU focused works, where
multi-threading is described to happen only on graphics hardware.
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[BMK13] CUDA X – X – –

[GLGLBG12] CUDA X – X X –

[vWMSB14] CUDA X – X X –

[FAN+13] Driver
Adaptation X – X

only
transfers –

[Buc04] OpenGL X – – – –

[GRE09] OpenGL X – – – –

[HM12] OpenGL X X – – –

[FGKR16] OpenGL X – – – –

Table 3.1: Comparison of key concepts of related work
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Chapter 4

Experimental Design

This chapter describes how to design the necessary experiments for analyzing the perfor-
mance of involved components. Performing measurements for all possible permutations
is not necessary and not even feasible, as statistics provides approaches to increase the
information gained when not measuring all possible permutations.
This chapter is structured as follows:

• Mathematical Model

• D-Optimal Design and Linear Regression

• Model Selection using Information Criteria

• Summary of all Findings

We first detail the mathematical model, that is assumed to describe the processes rendering
and uploading. This, additionally to the general formula, includes what variables and how
variables can have an influence on performance. As second, we discuss how to design
experiments efficiently using D-optimal design and the concept of linear regression for
model deduction. As third we discuss concepts that help to decide which model is a good
fit for a number of experiments given a set of different models. Finally, we summarize and
relate the findings of this chapter to SRQ4.

4.1 Mathematical Model
This section describes the mathematical model and the various choices that feed into it.
This is structured by the following three aspects:

Model Formula This describes the general formula we consider as foundation
for the mathematical model.

Control Variable
Choices

This describes which variables are considered to be part of the
formula and that are checked whether they have an effect on
performance.
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Control Variable
Variations

This describes the different levels or values considered when
parameterizing the chosen control variables.

4.1.1 Model Formula
For this work we assume only the time needed for either uploading or rendering or both
needs to be modeled. This means, the observed variable Y is the time necessary to perform
either uploading or rendering. All other variables, such as GPU clock rate or data size, are
variables we can control, and are therefore the control variables.

We further assume a linear model. Eq. (4.1) gives the general linear function, that
describes the assumed relationship between our observed variable Y and the control vari-
ables. The control variables are included in Xi, where i is a placeholder to identify each of
these control variables individually. As described, we assume a linear model. This means
that the later estimated parameters βi are linear. However, this can also mean that control
variables are modeled nonlinear.

Y = β0X0 + β1X1 + · · ·+ βkXk (4.1)

When performing the experiments, we measure the time Y , that results when setting the
control variables in Xi. Yet, we do not know the parameters βi and the form of Xi. While
βi is linear, the form of Xi could have a linear, quadratic or other nonlinear forms of
contribution.

Another point not known before is interactions between variables. For example, let
us assume that both, using a certain driver version as well as choosing a certain uploading
method, have each a specific impact on the observed time needed. However, they can also
interact with each other, meaning that when choosing both together, their impact can be
different than just adding up both. These kind of interactions are also modeled in the
described function in Eq. (4.1).

As the variables Xi can also describe interactions of more than one variable, these in-
teractions have their own parameter βi that can be estimated. This means that k describes
the number of all possible impact factors, including the number of control variables, their
form variations (i.e. linear, quadratic, etc.) and all possible interactions thereof. All of
them are called explaining variables below. Yet, before we come to finding solutions, we
first need to decide which control variables to include.

4.1.2 Control Variable Choices
In Chapter 2, we see that many variables can potentially play an important role when
considering concurrent rendering and uploading. However, we do not consider all variables
for our experimental design, either because of their trivial influence or because they require
a complete new analysis which is beyond the purpose of this thesis. In the following we
detail which variables are included and which are not as well as the reasoning for that
decision. This is done in the following order: hardware parameters, software parameters
and dataset parameters.
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Hardware Parameters

For the experiments and the evaluation, described in subsequent chapters, we include
the following control variables related to hardware and assumptions of their performance
effects, given in Tab. 4.1.

CPU clock
rate

The CPU clock rate can be changed via software. When the GPU pro-
cesses the commands in the command buffer faster than the CPU can
fill it, we assume that rendering performance will decrease.

GPU clock
rate

The GPU clock rate can be changed via software. Reducing the clock
rate of the GPU reduces the amount of commands that can be processed
in a certain time interval. We assume this has direct effects on rendering
performance.

Graphics
memory
clock rate

The graphics memory clock rate can be changed via software. Reducing
the clock rate of the graphics memory reduces access rate of graphics
memory. We assume that this has effects on both rendering and upload-
ing performance.

Graphics
card

We include two distinct NVIDIA graphics cards that allow to set GPU
and graphics memory clock rate. We assume, as their GPUs have differ-
ent microarchitectures, that they differ in performance.

Table 4.1: Included control variables related to hardware

Software Parameters

For software parameters we decided to stick to operating system, driver and the used API.
While we expect that the introduced methodical approach can be applied to a variation of
them, doing so would require another in-depth analysis as well as extensive adaptation of
our code basis which is beyond the scope of this work and serves no other purpose than
re-applying the presented methodical approach. The variables included in the subsequent
experiments related to software design, are shown in Tab. 4.2.
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Number of
threads for
uploading

As the tested graphics cards have more than one copy engine, we assume
the number of threads used for uploading data to the graphics card
can greatly affect uploading performance. We also assume that this
influences rendering.

Function
used
for data
transfer

We suspect that different OpenGL function use different subroutines for
the data transfer. While one might allow asynchronous uploading for the
CPU, another could allow asynchronicity for the GPU.

Buffer
usage hints

While there is no guarantee that buffer usage hints actually affect the
used memory, we assume that vendors and therefore driver developers
include the specified hints for deciding which type of memory on the
graphics card to use. This would reflect in the performance of uploading,
rendering or both.

Using
binding
points

If using binding points or not has an effect on the performance highly
depends on the implementation of OpenGL. As not using binding points
or, in other words, using direct state access (DSA), is rather newly spec-
ified, one trivial way of implementing this for driver developers would
be to use the old implementation and binding buffers behind the scenes.
Including this factor in our evaluation can inform about such hidden
implementation details.

Table 4.2: Included control variables related to software design

Dataset Parameters

One important aspect is the dataset itself. For this work we create an artificial dataset
that allows to fine tune certain parameters. The generated dataset is designed to fill the
screen fully by rendering a plane with the same size. This means that such a full screen
quad is constructed by using a plane that completely fills a display if it is shown on that
display.

For increasing the dataset size, we split up this plane in rows and columns that
themselves are each build up of two triangles. This is also depicted in Fig. 4.1, which
shows in a) the full screen quad, in b) the quad split up in rows and columns and in c) the
elements further split up in two triangles each. This allows us to balance dataset size with
work for rendering. Additionally, this plane is replicated and all depth tests are turned off
to further increase dataset size and increase necessary work for rendering.

Usually, rendering pipelines for graphics cards have built-in optimizations to maxi-
mize rendering performance. One example is called culling where parts of a dataset that
are not visible are cut out. An example are fragments, that are already obscured by other
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(a) Full-screen quad (b) Split into rows and columns (c) Split into triangles

Figure 4.1: Schematic drawing of how the dataset is generated. (a) shows a full screen
quad, (b) the quad split up in rows and columns and (c) further split up in triangles

surfaces in front of them (with respect to the virtual camera) or virtually outside of the
screen. These fragments need not to be processes – as they cannot be seen – and some
implementations skip processing of them.

By turning off depth tests and using a dataset that is fixed to produce only fragments
of the screen, we avoid having optimizations reducing workload on graphics hardware by
canceling out the replicated planes or having fragments that can be skipped for processing.

This dataset gives us two more control variables that influence performance, listed in
Tab. 4.3:

Dataset
size

We expect the size of a dataset to directly influence both rendering
and uploading performance. However, we do not vary workload with-
out changing dataset size, meaning changing the size of the individual
triangles to produce more or less fragments and therefore varying the
workload on the GPU. We assume that behavior related to this can be
simulated by changing the clock rate of the GPU.

Dataset
partitioning

We can vary how many triangles are in one buffer and therefore how one
dataset is split up in several sub datasets. While this does not change
the overall size of the dataset it varies the number of buffers used. We
assume that this variable has several impacts on the overall performance.
On the one hand, having many buffers requires many state changes for
rendering and many allocations for uploading. However, if it is possible
to parallelize multiple uploads and increase used bandwidth, having at
least two buffers can increase upload performance. On the other side, if
one of the two processes uploading or rendering blocks the other, having
multiple buffers instead of a few might easier allow to intertwine the
individual calls and might also allow parallel execution of some parts of
the two processes.

Table 4.3: Included control variables related to the dataset
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To reduce the possible search space, we exclude altering the following hardware shown in
Tab. 4.4:

CPU
architecture

Changing the clock rate of the CPU has similar effects for the sought of
model. Having a slower CPU architecture only reduces the amount of
commands that can be put in the command buffer, which has the same
consequences as reducing the CPU clock rate. For the experiments run
in this work we use a CPU with 4 logical cores, which suffices for having
multiple uploading threads as well as a distinct rendering thread. The
reasoning for this is that most at the moment available graphics cards
are only equipped with two distinct copy engines. We assume that using
more than 3 parallel threads for uploading has negligible influence on
performance, as they will only be waiting on each other.

DRAM
clock rate
and
architecture

Changing the clock rate or using different DRAM modules only reduces
the possible rate at which data can be transferred. This means that the
maximal possible transfer rate is either limited by this hardware or not,
which is trivial to model.

Mainbord,
PCIe bus
version,
number of
lanes

Changing the number of lanes or the PCIe version (to increase the version
number would require a new mainboard as well as a graphics card that
supports it) only affects the maximal possible transfer rate. Therefore,
its influence is trivial to model.

Table 4.4: Excluded parameters related to hardware

Furthermore, our work aims to provide an methodical approach that models concurrent
rendering and uploading. Our goal is to allow developers to optimize their applications.
Consequently, this means that we focus on variables a developer actually can control with-
out forcing the user to change hardware.

4.1.3 Control Variable Variations
After determining which control variables are part of this analysis, it is necessary to define
what levels we analyze. This in consequence requires us to determine what kind of variables
we are looking at. We distinguish between categorical variables and quantitative variables.

Categorical Variables An example for a categorical variable is what kind of graphics
card is used. A categorical variable takes only certain values which do not need any
ordering and can just describe a certain value. Out of the in subsection 4.1.2 described
control variables, the following fall in that category:
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• Used uploading method

• Buffer usage hint

• Using binding points or not

• Used graphics card

These variables possibly provide an offset and interaction to our mathematical model. For
the experiments, all variations of these variables are used for modeling and experimenting.

Quantitative Variables In contrast, quantitative variables take a range of values. An
example is clock rates. However, we cannot set arbitrary clock rates but only particular
ones. Yet, for our mathematical model we assume them to be continual and therefore their
influence is modeled continual. The remaining control variables in this category are:

• Dataset size

• Dataset partitioning

• CPU, GPU and graphics memory clock rates

• Number of uploading threads

For the quantitative variables we limit the number of possibilities by restricting the highest
order polynomial to a degree of two. We assume that the influence of most quantitative
control variables is linear, except the influence of dataset partitioning.

The latter is based on the number of copy engines of the used graphics cards. For
example, if we assume to have two copy engines and each of them allows to use half of the
maximum possible bandwidth, then dividing one dataset in two allows to increase the usage
of bandwidth and thus performance. Dividing it further however will eventually increase
overhead as more buffers need to be allocated and consequently reduce performance. Hence,
we assume the influence of the number of partitions to be quadratic.

The choice of this, however, can be based on assumed a-priori knowledge or explo-
ration experiments and only functions as a starting point. Assuming higher polynomials
also increases the number of necessary experiments, which means we have to balance
amount of experiments with information. In turn however, using higher polynomials and
performing more experiments does not necessary result in models that provide a more
correct view on the processes modeled.

To make sure that we catch all possible effects to test our assumptions of control
variable influence forms, may they be linear or quadratic or higher, we use more levels as
necessary. This means that we experiment with more than three variations for dataset
partitioning, in particular five levels to see a broad range of possible effects for modeling.

For each of the linear modeled parameters we use three points, one low, one medium
and one high value, to be able to distinguish between linear and quadratic behavior or
other nonlinear behavior.
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4.2 D-Optimal Design and Linear Regression
Having the control variables and their variations, the next step is to design an experiment
that allows to obtain the necessary information for deducing a mathematical model. The
naive solution is to use all possible permutations of control variable variations which can
become a large number of single experiments to run.

To illustrate this lets assume that we have a computer, that allows to set 3 different
CPU, 3 GPU and 3 memory clock rates. Further, we assume that we use 3 different data
sizes and 4 different ways of partitioning it. Additionally, we are able to set 9 buffer usage
hints, use 4 different uploading methods and 1, 2 or 3 threads. When we want to test
all possible permutations, this would require to perform 3 · 3 · 3 · 3 · 4 · 9 · 4 · 3 = 34, 992
experiments. Each of the single runs requires some time; when we assume just 1 minute
on average, this would result in 24.3 days of performing experiments.

The sheer number of possible permutations for all control variables alone requires to
plan experiments efficiently. We apply the so-called Fedorov exchange Algorithm for D-
optimal Design [MN94] or in short D-optimal design. This sections gives a brief overview
on the mathematical background for this algorithm and linear regression to estimate the
parameters βi of our modeling function Eq. (4.1).

The sought for model can use linear, quadratic or higher degree polynomial influences.
Therefore, we combine them in a function vector

fi(xi) = (xi, x
2
i , . . . ), (4.2)

where xi are the modeled explaining variables. They can be control variables as well as
an interaction term that includes multiple individual control variables, such as GPU clock
rate (xgpu-clk) and CPU clock rate (xcpu-clk) together. The interaction xcpu&gpu-clk of xcpu-clk
and xgpu-clk would be defined as

xcpu&gpu-clk = xcpu-clk ∗ xgpu-clk (4.3)

Each of the mutations of xi (or in other words the different functions used to model
the influence a particular control variable) in fi(xi) can take the possible levels or values
of the defined control variables, e.g. the set clock rate of the CPU.

The l-th observation (or time measurement) Yl equals then

Yl = fi(xi,l)Bi + εl (4.4)

with εl being an error term collecting not modeled effects and measurement noise. Bi

consists of the individual parameters βi,v, with v identifying the element of fi(xi):

Bi = (βi,1, βi,2, . . . )T (4.5)

We define for the following Yl to be the l-th measurement of time and xl,i to be the setting
for the l-th measurement for the i-th control variable. Considering 3 different control
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variables and 4 measurements, this means l ∈ 1, 2, 3, 4 and i ∈ 1, 2, 3. The modeling
function then would be:

Y1

Y2

Y3

Y4

 =


f1(x1,1) f2(x1,2) f3(x1,3)
f1(x2,1) f2(x2,2) f3(x2,3)
f1(x3,1) f2(x3,2) f3(x3,3)
f1(x3,1) f2(x3,2) f3(x3,3)

 ·

B1

B2

B3

 +


ε1

ε2

ε3

ε4

 (4.6)

or
Y = X ·B + E (4.7)

Our goal is to find B. For this we can use the Moore-Penrose inverse X+ of X:

X+ = (XT X)−1XT , (4.8)

which is also known as the least squares solution and also used for linear regression algo-
rithms. Using X+ we can estimate coming from Eq. (4.6) the parameter vector B:

B̃ = X+Y . (4.9)
The idea behind D-optimal design is to minimize the determinant of (XT X)−1 or

maximize the determinant of XT X in order to minimize the variance B̃. This is done
by setting random values (out of the possible values) for each of the explaining variables
in X. The values are iteratively exchanged and only those are kept, that yield a better
design, until no improvement can be found. This process is repeated a couple of times with
different starting conditions in order to possibly find the global optimum. However, it is
not guaranteed that the global optimum is found. (For more details regarding D-optimal
design as well as statistical implications refer to [Fed72].)

4.3 Model Selection using Information Criteria
This section describes how to assess the worth of including or excluding individual control
variables and their forms and an algorithms to automate that process for finding an optimal
model.

We start with an a priori model based on our understanding of the system. However,
we want to derive a mathematical model from measurements, that allows to understand
performance of the analyzed processes. This means we need a way to assess the worth of
a variable for a given model. This can be achieved by calculating Akaike’s Information
Criterion (AIC) or a similar version of that, the Bayesian Information Criterion (BIC).

The value of a model is estimated by the AIC or BIC. Both criteria themselves rely on
the log likelihood estimation. Following [BA04, p. 12, p. 60f], for a least squares estimation,
the maximized log likelihood estimation is

ln(L(θ̂)) = −1
2n ln(σ̂2)− n

2 ln(2π)− n

2 , (4.10)
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with θ̂ as the estimation for the model parameters (the estimations of βi in Eq. (4.1)), n the
number of samples, σ̂2 the maximum likelihood estimate of the variance and ln being the
natural logarithm. The AIC and BIC are used to compare different models. This means
that constant terms independent of the model can be neglected, which leaves us with

ln(L(θ̂)) ≈ −1
2n ln(σ̂2) (4.11)

The AIC can then be calculated with

AIC = −2 ln(L(θ̂)) + 2K = n ln(σ̂2) + 2K (4.12)

with K being the total number of explaining variables, including the intercept.
Intuitively speaking, the AIC tries to get the best fit of the defined set of possible

models while on the same time keeping the number of explaining variables as small as
possible. The BIC goes a step further and penalizes more explaining variables stronger by
using the natural logarithm of the sample size ln(n) as factor instead of 2.

BIC = n ln(σ̂2) + ln(n)K (4.13)

For estimating the value of adding an variable, the AIC or BIC is calculated before
and after the addition. Getting a smaller AIC or BIC after the addition means that
the additional variable improves the model given the conducted experiments. When we
iteratively subtract or add a variable to a given starting model, and only hold the result
of such an operation that improves the value of model, we usually obtain a better fitted
model. For more information about AIC or BIC, the interested reader is referred to [BA04,
p. 60ff].

Adding or subtracting a variable does not only meaning adding/subtracting a control
variable, such as GPU clock rate or size. As described above, explaining variables can take
different forms. On the one hand, there are combinations of different control variables
that can result in interaction effects. On the other hand, also the function describing
the form of the influence of a control variable can lead to different results. Therefore, we
include for all quantitative control variable their assumed polynomial degree (e.g. linear
or quadratic) and also one order higher as defined for obtaining the screening design. By
using the BIC with adding and removing variables, this keeps the polynomial degree that
better represents the data and removes unnecessary polynomial degrees.

4.4 Chapter Summary
In this chapter we detail our approach on designing the necessary experiments. We include
the following control variables for finding a mathematical model describing concurrent
uploading and rendering:

• CPU, GPU and graphics memory clock rates
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• Two distinct graphics cards

• Different uploading methods for data transfer

• Buffer usage hints

• Usage of binding points (whether and which)

• Dataset size and partitioning

The total number of all permutations for all levels of the control variables would require
an huge amount of experiments and time for performing the experiments. Yet, we reduce
the number by applying Fedorov’s Exchange Algorithm for D-optimal Design in order to
maximize the amount of information gained by single experiments. Linear regression is
applied in combination with BIC in order to find a suitable model. This answers SRQ4:
How to design experiments to derive the MARKUs addressing RQ?
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Chapter 5

Experimental Setup and Data
Preparation

This chapter describes the experimental setup and the steps necessary to prepare the
data, that is gained from conducting experiments, for analysis and for deducing the two
MARKUs.

5.1 Experimental Setup
System Parameters

For the experiments we use two structural identical systems with the following specifica-
tion:

CPU Intel Xeon CPU E5-1607 v3 @ 3.10GHz

Host Memory 4 x 16GB DDR3 @ 1866Mhz (from 8 available slots)

PCIe Graphics card are connected with PCIe Version 3 x16

Graphics Cards Only the graphics cards are different; we use the following two:

• NVIDIA Quadro RTX 4000 with 8GB GDDR6 graphics memory (in the following
RTX)

• NVIDIA GeForce GTX Titan X with 12GB GDDR5 graphics memory (in the fol-
lowing TITAN)
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CPU The CPU itself allows to read and write with a maximum rate of 59GB/s, supports
the configured clock rate of main memory and can be connected with up to 40 PCIe lanes1.
This means the CPU can be excluded as a bottleneck for data transfers as it exceeds the
maximal bandwidth of the used PCIe v3 x16.

Host Memory For host memory, twice as many slots as needed are available. This
means that the configured DIMMs can be used in dual channel mode and possible access
rate exceeds the maximal bandwidth of the used PCIe v3 x16. A benchmark using Intel
Memory Latency Checker2 version 3.8 confirms this for the test system as it measures an
access rate of up to 32 GB/s.

Clock Rates CPU, GPU and graphics memory clock rate can be adjusted for the given
system. For the CPU we first turn off Intel’s pstates via a kernel argument. For the fol-
lowing experiments, we use three specific settings: 1200, 2000 and 3100 MHz. The two
graphics cards allow to set GPU and graphics memory clock rate via NVIDIA’s Manage-
ment Library (NVML). We include the following settings:

Card GPU clock rates [MHz] Graphics memory clock rate [MHz]

RTX 300, 1200, 2100 810, 5001, 6501

TITAN 595, 1063, 1519 810, 3304, 3505

Please note that for the graphics cards and their GPUs two different architectures
are used, namely Turing and Maxwell for RTX (upper row) and TITAN (lower row),
respectively.

Operating System and Driver Configuration Ubuntu 18.04.06 LTS is used as oper-
ating system with NVIDIA’s proprietary driver 440.64 prebuilt from the graphics drivers
Personal Package Archive (ppa)3. For the driver we turn off threaded optimizations via
the program nvidia-settings as this prevented freezing and crashing the system when using
multi-threaded OpenGL-application.

Graphics Interface A separate off-screen Xserver (which is a graphical surface of linux
that allows to create windows) is started for the experiments in order to avoid any influences

1see also
https://ark.intel.com/content/www/de/de/ark/products/82762/intel-xeon-processor-e5-
1607-v3-10m-cache-3-10-ghz.html, accessed 21.04.2020

2https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-
checker.html, accessed 21.06.2020

3https://launchpad.net/~graphics-drivers/+archive/ubuntu/ppa, accessed 21.04.2020
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from monitor or input devices. Additionally, the application itself creates an off-screen
framebuffer as renderbuffer in order to further avoid such influences. Creation of OpenGL
contexts and off-screen windows is implemented using the library GLFW 3.2 from the
official Ubuntu repositories. With this library, contexts are created with a hidden window
and specified to use OpenGL 4.5 with the core profile.

Dataset Generation and Parameters

Rendering performance and GPU workload highly depend on the scene rendered and the
current perspective, partially because the following two reasons:

(1) Invisible parts of a scene

(2) Distance to visible parts of a scene

(1) Often, parts of a scene, although ordered to be rendered, are not visible from the
current perspective and therefore can be skipped early in the rendering pipeline and reduce
workload for rendering.
(2) Another correlation between perspective and workload is caused by distance to single
triangles. A triangle that covers most of the screen produces more fragments that are
then processed to pixels in comparison to a triangle far away that only covers a few pixels.
Consequently, less processing is needed for the latter and workload on the GPU is smaller.

Dataset Sizes To avoid such perspective influences, we generate an artificial dataset as
described in Chapter 4, using 50 · 50 = 2500 rectangle to divide the full screen quad. As
we always want to pick complete triangles for rendering, we are limited to a multiple of 3
vertices times 3 floating-point numbers for each vertex times 4 Byte for each floating-point
number, resulting in 3 · 3 · 4 = 36B for each triangle. This means that the used datasets
are always a multiple of 36B. To gain sizes close to full MB (i.e. 1024 · 1024B) we use a
factor of 29128 (≈ 1024 · 1024/36).

For the experiments we use datasets with the size of roughly 16, 64 and 128MB; the
exact amount is {16, 64, 128} · 29128 · 36B. Due to the nature of our uploading scheme,
larger datasets can easily result in more graphics memory needed than available. However,
assuming a real dataset with only 200 timesteps, each with 128MB in size, easily shows
that this small dataset easily is more than most current graphics card can store. In total,
this dataset has 25GB while only the top tier professional series of graphics cards have
32GB of graphics memory. On the lower end of the sizes, smaller dataset sizes get small
enough to be hold in memory.

Dataset Partitioning Furthermore, due to splitting up datasets in smaller subsets we
can also easily observe and measure the performance for smaller sizes. Again, we require
that only complete triangles are in the resulting datasets after splitting them apart. There-
fore, we use 1, 2, 4, 11, 22, 44 as divisors. These are chose as they are the divisors of 29128
and therefore guarantee to produce partitions with complete triangles. While using one
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partition is one extreme, using 11, 22, or 44 should give a glance on the effect of using
more and more numbers of partitions on the time needed for both uploading and rendering.
Using two or four partitions allows to see the effect of using two copy engines (that are
present on the tested graphics cards) in parallel and, in the case of four partitions, possibly
overlapping of preparing uploading and uploading as well as keeping the copy engines busy
by having already prepared buffers to fill.

Software Parameters

For the following experiments, we vary the four aforementioned uploading methods without
and with DSA:

Without DSA With DSA

glBufferData glNamedBufferData

glBufferSubData glNamedBufferSubData

glMapBuffer + memcpy
+ glUnmapuffer

glMapNamedBuffer + memcpy
+ glUnmapNamedBuffer

glMapBufferRange + memcpy
+ glUnmapuffer

glMapNamedBufferRange + memcpy
+ glUnmapNamedBuffer

Table 5.1: Used uploading methods, with and without DSA

Further the possible 9 different buffer usage hints are varied:

• GL_STREAM_DRAW • GL_STREAM_COPY • GL_STREAM_READ

• GL_STATIC_DRAW • GL_STATIC_COPY • GL_STATIC_READ

• GL_DYNAMIC_DRAW • GL_DYNAMIC_COPY • GL_DYNAMIC_READ

We also test using PBOs or not by either binding to GL_ARRAY_BUFFER or
GL_PIXEL_UNPACK_BUFFER. The number of concurrent data uploads is varied by using 1, 2
or 3 threads, each with their own OpenGL context.
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5.1.1 Experimental Design
For the experimental design we use the following formula as input for the D-optimal design
algorithm:
time = (method+ bufferhint+ pbo+ dsa+ card+ poly(size, 2)+

poly(gpu− clock, 2) + poly(mem− clock, 2) + poly(numberthreads, 2)+
poly(partition, 3) + poly(cpu− clock, 2))2.

(5.1)

Equation (5.1) is interpreted as follows: For each of the variables, e.g. method or partition,
we try to estimate a regression coefficient βi.

Categorical Variables Some of the variables are categorical variables and have only a
certain set of possibilities. These variables can have more than one regression coefficient.
For example, in our case, method can take 4 different values for the 4 different uploading
methods, described before. For each of the values we want to estimate its influence which is
expressed by its regression coefficient. This means, we need at least 3 regression coefficients
βi, with which we express the deviation from a specific default value. The default value is
just one of the 4 possibilities. This means that for each categorical variable, we need one
less regression coefficient as the variable has possible levels. The categorical variables are:

method Which uploading method is used to upload data?

bufferhint Which buffer usage hint is used?

pbo Are pixel buffer objects used as buffer binding point?

dsa Is direct state access used (i.e. without glBindBuffer)?

card Which card is used?

Quantitative Variables The remaining variables are quantitative variables. For them
we estimate only one regression coefficient. The operator poly is from the stats package,
which itself is part of the core of the programming language R. More information about
this package can be found in [R C19]. This operator describes that we assume that this
variable has polynomial influence with a degree of the second parameter. An example is
poly(mem− clock, 2) in Eq. (5.1). This means that we assume that the influence of the
graphics memory clock rate is quadratic.

The formula given in Eq. (5.1) reflects our assumptions described in Subsection 4.1.2.
For the quantitative variables, we describe a higher degree polynomial to be able to test
our hypotheses on their degree.

Interactions Another important part of Eq. (5.1) is the (·)2 operator. In this case it
describes that we also want to test for all two way interactions. This means that we test
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for all possible pairs of variables. For the categorical variable this means that all levels of
them are variables. An example for this are interactions of the control variables method
and card. For the interaction we additionally test for the combined influence of the first
card and the first uploading method, the first card and the second uploading method, the
first card and the third uploading method and so on. Combined means that we estimate the
influence of both together while we also estimate their influence individually. Theoretically
this can mean, that the first uploading method has a certain influence regardless of all other
variables that is completely annulled by its interaction with other variables for a certain
case. Each of these interaction terms again gets their own regression coefficient βi.

Number of Configurations The minimum number of configurations (this means also
the number of experiments) is defined by the number of regression coefficients, which
is in our case 340. To gain even more information and to be able to vary the formula
in the evaluation, we use more than double this amount, in particular 800 experimental
configurations.

5.1.2 Experimental Parameters
The experiments are conducted in the following steps:

1. Configure uploading and rendering processes for given configuration. This includes
that all uploading threads are killed and newly created with new OpenGL contexts.

2. Upload dataset l times without rendering. For each time, wait until the upload is
finished before the next upload is issued. This allows to get a clean measurement
of uploading performance without GPU workload. This measurement set is called
uploading only in the following.

3. Render dataset l times without uploading. Each time we wait until rendering is
finished before the next upload is issued. This allows to get a clean measurement of
rendering without the influence uploading in parallel. This measurement set is called
rendering only in the following.

4. Render dataset at least l times while uploading (and also exchanging the rendered
dataset) at least 30 times. As rendering and uploading are not necessarily taking the
same time, either the dataset is rendered or uploaded exactly 30 times. The respective
other usually is performed more than 30 times. Another thread is generated to issue
and therefore start the process of uploading. This thread is also used to determine
when a data upload is finished by exchanging the buffer on CPU side for the rendering
process. These measurement sets are called rendering concurrently and uploading
concurrently in the following.

We use l = 30 to have a large enough sample size for further analysis.
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Measurements

For all measurements, the C++ std::chrono::high_resolution_clock class is used for
measuring the time. Measurements start right before uploading or rendering is issued and
include the calls needed for issuing. The CPU thread performing rendering is halted until
these commands are finished and then the time is measured.

The end time for uploading a dataset is determined when it can be exchanged for the
rendering process (which is not necessarily needed for this to happen). In comparison to
the time needed for uploading, the additional time for exchanging the buffer on CPU side
is negligible.

Measurements Example

Fig. 5.1 illustrates this process with an example. Here, one uploading thread (and only
the uploading thread, no preparation thread is illustrated) is shown with the the rendering
thread.

This figure shows from left to right beginning and end of measurements and the in-
dividual calls needed for uploading and rendering. The first and third row show what is
done on CPU side, for rendering and uploading, respectively. The second row illustrates
what is done on GPU side. In other words, the first and third row illustrate how the CPU
fills the command queue. The third row illustrates how the GPU processes the commands
in the command queue.

Rendering Calls The necessary calls involved for rendering and their denotations in
Fig. 5.1 are:

1. Start measurement: sR

2. glBindBuffer (bind the buffer): bcR

3. glDraw (draw the buffer): dcR

4. glBindBuffer(0) (unbind the buffer): ubR

5. Insert synchobject: soR

6. Wait for synchobject: wR

7. Stop measurement: oR

Uploading Calls In this example, the uploading method using the OpenGL function
glBufferData without DSA is used. The necessary calls involved for the corresponding
uploading method and their denotations in Fig. 5.1 are:

1. Start measurement: sU
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2. glBindBuffer (bind the buffer): bcU

3. glBufferData (allocate and upload to the buffer): bdU

4. glBindBuffer(0) (unbind the buffer):ubU

5. Insert synchobject: soU

6. Wait for synchobject: wU

7. Stop measurement: oU

For both cases are waiting times on CPU side involved, denoted wR for rendering and wU

for uploading.
The measured times are shown in the fourth and fifth row and denoted as mtR for

rendering and mtU for uploading.
Fig. 5.1 shows a possible measurement error for each rendering and uploading. We

see that steps 2, 3, and 4 of uploading are inserted into the command queue before the
synchobject of rendering soR can be inserted. Therefore, the measured time for rendering
mtR includes the time it takes to perform steps 2,3, and 4 of uploading.

For uploading we see a similar error. Here, additionally to the time needed for
uploading, also parts of the time for performing the draw call issued by rendering dcR is
included.
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Figure 5.1: Schematic showing how uploading and rendering are measured. A possible
measurements error for each rendering and uploading is illustrated.

5.2 Data Preparation
For evaluation of the measurements, the measured data first needs to be preprocessed. For
this, three steps are involved:

• Data Fusion

• Outlier Removal

• Data Aggregation

5.2.1 Data Fusion
The deviance of set clock rates to queried clock rate might be due to energy saving al-
gorithms of the driver. Therefore, we implemented on another thread periodical clock
rate queries. The clock rates are queried with a forced 1ms delay between each query. In
most cases, the time needed for either process takes longer than one ms, so that every
uploading/rendering measurement should have at least one query in that time frame.

Yet, some queries are getting delayed. We assume this is caused by scheduling or the
driver being busy working on other tasks. For these cases, we search for the closest queries
and use these. For the cases where more than one query is performed while executing
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62 5. Experimental Setup and Data Preparation

uploading or rendering, the arithmetic mean of all queries in the measured time period is
used.

5.2.2 Outlier Removal
In some cases, there are some serious delays in the measurements. One cause can be system
processes that take precedence over the measurement application. In order to filter them
out we use the outlier detection available from the R function boxplot.stats of the core
package grDevices, see also [R C19] for more information. In order to be as conservative
as possible, we only filter out extreme outliers (or far out, as Tukey [Tuk77, p. 44f] labelled
them). This is achieved by using double the default coefficient (which is 1.5) that includes
measurements as non outliers. The range is determined by the size of the range in which
50% of the measurements are, meaning the range between the 25th and 75th percentile.
In our case we use 3 times the size of this range. We only exclude measurements, and
therefore classify them as outliers, that are outside this extended range.

For an example let’s assume that this range, i.e. the range between the 25th and
75th percentile, spans from 10 to 15 ms. This means that 50% of all measurements lie
between 10 and 15 ms. The lower and upper boundaries for measurements being classified
as outliers would be 5ms · 3 = 15ms lower or greater than the 25th and 75th percentiles,
i.e. -5ms and 30ms.

5.2.3 Data Aggregation
For the uploading only and rendering only experiments, we test 800 different configurations
and measure for each 30 data points, resulting in 24,000 data points in total. For the
concurrently scenario, we measured about 240,000 data points for rendering and 42,000
data points for uploading. Additionally, for some configurations, a high variation can be
observed in consecutive measurements due to the nature of the uploading and rendering
processes. The sheer number of data points increase the time for analysis immensely, while
information gain is rather small. Therefore, we first summarize the datasets and analyze
the summarized results. The aggregation of the data points is handled the following way:

• Calculate the natural logarithm of each measurement

• Calculate the mean of all measurements for each configuration

Transforming the Dataset We transform the dataset using the natural logarithm as
we cannot be sure that the distribution of measurements is normal. This is due to each
process requiring a minimum time to be performed if it is undisturbed. Noise, in the sense of
system interruptions, performance throttling or other processes holding back the measured
process, only add a time delay on each measurement and therefore, skew the distribution
positively. Although disputed in the statistics community, transforming skewed data using
the logarithm is widely used [Kee95, MM01, CHN+14]. After this, the arithmetic mean of
the transformed measurements is calculated.
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Normality Analysis Transforming the measurements results in visually more normal
looking residuals, as can be seen in Fig. 5.2. The figure shows a QQ-Plot for deducing
a model as described for all measurements for the concurrent rendering case. The x-axis
describes the theoretical quantiles of a normal distribution, the y-axis shows the standard-
ized residuals of a given model. In (a) the data is not transformed by using the natural
logarithm, in (b) it is. In (a) and (b) we see that the standardized residuals in the range
from about -1.5 to 1.5 of theoretical quantiles mostly follow a straight line. Above and
below 1.5 and -1.5, respectively, the standardized residuals deviate from that straight line.
An indicator for normality is that residuals follow mostly a straight line as illustrated by
the dashed line. We see that transforming the data leads to residuals being closer to the
dashed line, especially for more extreme values of theoretical quantiles in the range below
-1.5 and above 1.5.
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(a) QQ-Plot for residuals for untransformed
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(b) QQ-Plot for residuals of log-transformed
measurements

Figure 5.2: Comparison of QQ-Plots for (a) untransformed and (b) log-transformed mea-
surements

5.3 Chapter Summary
In this chapter, we determine the levels used for the performed experiments. Additionally,
we understand how to transform the gained measurements using the natural logarithm
to get more normal distributed measurements and summarize them using the arithmetic
mean to quicken further analysis.
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Chapter 6

Experimental Data and MARKUs
Analysis

This chapter describes the analysis of the conducted experiments and the derived MARKUs.
Firstly, we take a look at the queried variables, meaning graphics memory clock rate
and GPU clock rate. Secondly, we discuss the differences between rendering and upload-
ing without the respective other compared to how they perform if executed concurrently.
Thirdly, we discuss the MARKUs derived from the experiments. Furthermore, we discuss
what this means for the processes themselves: Which configuration is best for rendering,
which for uploading and what are their impact on the respective other.

Analysed Cases

We distinguish between rendering/uploading only and rendering/uploading concurrently.

Rendering/Uploading only means that only one of the two processes is performed.
For rendering only, this means that data is uploaded to graphics memory once before
measurements start and then rendering is performed with static data. For uploading only
data is uploaded to graphics memory but not further processed on graphics card.

Rendering/Uploading concurrently means that both processes are performed within
the same time period and affect each other, as the uploading process replaces the data used
for the rendering process. The optimization targets OT1, OT2 and OT3 only apply to
the two concurrently cases, as without either rendering or uploading, prioritizing the other
is given.

This means that we take a look at these four cases:

• Rendering only (static data in graphics memory is rendered)

• Uploading only (data is not rendered)
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66 6. Experimental Data and MARKUs Analysis

• Rendering concurrently (of dynamic data; rendering and uploading happen concur-
rently)

• Uploading concurrently (rendering and uploading happen concurrently)

The analysis of the four cases can be found in the following subsections:

rendering uploading
only 6.1.1 6.1.2

concurrently 6.1.1, 6.2.2 6.1.2, 6.1.2

6.1 Only vs. Concurrently
In this section, we compare only cases with concurrently cases. We start with render-
ing only versus rendering concurrently and then compare uploading only with uploading
concurrently.

Configurations For all four cases the same configurations are compared. This means,
that all control variables are set to the same values. However, as mentioned before, the
queried GPU and graphics memory clock rates can differ for either case and we specifically
discuss deviations in these variables, if applicable. For simplicity, we select 5 out of the
800 measured configurations that illustrate similarities and differences and represent the
whole dataset.

The 5 selected configurations are depicted in Table 6.1. They are numbered from 1 to

# size
MB

number
partitions method pbo dsa buffer

hint
number
threads

CPU
GHz

GPU
GHz

VRAM
GHz card

1 16 1 2 yes no 6 1 1.2 1.2 5.001 RTX
2 16 44 1 no yes 4 1 2.0 0.3 5.001 RTX
3 64 22 3 yes yes 5 3 3.1 0.595 3.505 TITAN
4 128 4 0 yes no 8 2 2.0 1.519 3.304 TITAN
5 64 4 0 no no 7 3 1.2 2.1 0.81 RTX

Table 6.1: Five selected configurations used for the comparison of the rendering only and
uploading only with the corresponding concurrently cases.

5 in column #. The 5 configurations include 3 different sized datasets, in particular 16 MB,
64 MB and 128 MB, and 4 different numbers of partitions: 1, 4, 22, and 44. Furthermore,
all 4 before described methods for uploading are used, with or without PBOs, with or
without DSA, 5 different buffer usage hints – 4, 5, 6, 7, and 8 –, the use of 1, 2 or 3 threads
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for uploading as well as 3 different set CPU clock rates – 1.2 GHz, 2.0 GHz, 3.1 GHz–,
5 different set GPU clock rates – 0.3 GHz, 0.595 GHz, 1.2 GHz, 1.519 GHz, and 2.1 –, 4
different set graphics memory clock rates – including 0.81 GHz, 3.304 GHz, 3.505 GHz and
5.001 GHz–, and both graphics cards, RTX and TITAN.
The values for buffer usage hints (buffer hint in Tab. 6.1) correspond to:

Value Buffer usage hint
4 GL_STATIC_COPY

5 GL_DYNAMIC_COPY

6 GL_STREAM_READ

7 GL_STATIC_READ

8 GL_DYNAMIC_READ

The values for the used uploading method (method in Tab. 6.1) correspond to:

Value Uploading method
0 glBufferData

1 glMapBuffer + memcpy + glUnmapBuffer

2 glMapBufferRange + memcpy + glUnmapBuffer

3 glBufferSubData

6.1.1 Rendering Only vs. Rendering Concurrently
For comparing rendering only with rendering concurrently, we first analyze differences in
set and queried clock rates and subsequently differences in times needed for rendering.

Clock Rates

The comparison of the set GPU and graphics memory clock rate with queried clock rates
is shown in Fig. 6.1. The image shows for rendering only (top row) as well as rendering
concurrently (bottom row) the comparison of queried clock rate against set clock rate for
graphics memory (left) and GPU (right) clock rates. In all four images, the configurations
are distributed on the x-axis, the y-axis shows the respective clock rate in GHz from 0
GHz to 6 GHz for graphics memory and 0 GHz to 2.5 GHz for GPU clock rates. For each
configuration, both the set clock rate as well as the mean queried clock rate is shown.

We see that in some cases, e.g for configurations 3 and 4 for graphics memory, or
configuration 1, 2 and 3 for the GPU, the mean queried clock rate is nearly the same as
the set clock rate. For other cases, e.g. configuration 1, 2 and 5 for graphics memory and
4 and 5 for GPU clock, the mean queried differs from the set clock rate. For configuration
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5 for graphics memory clock rate, this difference is quite large. Here the set clock rate is
0.81 GHz, but the queried is 6.5 GHz. Both, rendering concurrently and rendering only
have similar characteristics.

All Configurations If we further compare the queried data for all configurations, we see
that there is quite a difference between the two used graphics cards as well. Fig. 6.2 shows
for all 800 configurations (x-axis) the mean queried clock rate (y-axis), in red for the RTX
and in blue for the TITAN graphics card. We see that the RTX card has a greater variety
for the GPU clock rate, ranging from 300 MHz to 2.1 GHz. The TITAN card ranges from
about 600 MHz to 1.33 GHz.

However, the difference for graphics memory clock rate is pivotal. Fig. 6.3 gives an
overview on all mean queried graphics memory clock rates, again red for the RTX and blue
for the TITAN graphics card.

In comparison to graphics memory clock rates, the GPU clock rates are more evenly
distributed. For the RTX card higher and lower clock rates are queried than for the TITAN
card. For the graphics memory clock rates, we see a more or less divided picture. Most
mean queried graphics memory clock rates for the RTX card are above 5 GHz, only 4 mean
queried are lower than those queried using the TITAN card. Most mean queried graphics
memory clock rates are at 6.5 GHz. For the TITAN card, we see that no mean queried
graphics memory clock rate is above 3.6 GHz and the majority of them are distributed in
the range between 3.3 GHz and 3.5 GHz and at 810 MHz. This needs to be taken into
account for further analysis when we take a look at the influence of the control variables.
Default values need to be used for control variables that are not the focus of the particular
analysis. As the mean queried graphics memory clock rates are highly different for both
cards, we also need to set different default values for each card in order to be within
the prediction boundaries of the deducted models. For the following, when not otherwise
stated, we use the maximum settable clock rate of 6.5 GHz for the RTX card, as there
are the most measurements, and 3.505 GHz for the TITAN card, which is the maximum
settable clock rate for this card, so it is comparable to the RTX card.

Rendering Times

In Fig. 6.4 the time needed for rendering with the same configuration is compared for the
two cases rendering only and concurrently. The 5 configurations are spread on the x-axis
and the y-axis shows the time needed for rendering with a range from 0 ms to about 120
ms. Configuration 1 needs about 14.9 ms for both cases. The remaining configurations all
increase the time needed for rendering and configuration 5 shows a doubling of the time
needed from about 37.9 ms to 80.8 ms. We see that the rendering only case can serve
as a minimal time needed for rendering with a particular configuration. In most cases,
rendering concurrently needs the same time or more than rendering only.
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Figure 6.1: Comparison of graphics memory and GPU clock rates for rendering only and
rendering concurrently.
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Figure 6.2: Queried mean GPU clock rates for all tested 800 configurations for RTX (red)
and the TITAN (blue) graphics card
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Figure 6.3: Queried mean graphics memory clock rates for all tested 800 configurations for
RTX (red) and the TITAN (blue) graphics card
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Figure 6.4: Comparison of needed time for five selected configurations for rendering only
and rendering concurrently.

6.1.2 Uploading Only vs. Uploading Concurrently
For comparing uploading only with uploading concurrently we again analyze first differences
in set and queried clock rates and then differences of times needed for both cases.

Clock Rates

The comparison of the set clock rates with the mean queried clock rates for the uploading
cases is shown in Fig. 6.5. The mean queried clock rates show almost the same deviations
as for the rendering cases.

Uploading Times

Fig. 6.6 shows the time needed for uploading with the same configuration for both uploading
only and uploading concurrently. Again, the 5 selected configurations are distributed on
the x-axis. The y-axis shows the mean time needed for uploading from 0 to about 950 ms.
For each configuration, we compare uploading only (light blue) with uploading concurrently
case (darker blue). We see that the time needed for uploading for configurations 3 and
4, respectively highly deviates from one to the other case. While uploading only needs
about 100 ms to 110 ms, for uploading concurrently the average time is 810 ms to 910
ms. However, not all configurations expose such an increase for the time needed when
comparing uploading only with uploading concurrently. Configuration 1, 2 and 3 change
the time needed from about 20.3 ms, 48.8 ms, and 95 ms to about 19.9 ms, 57.2 ms and
137.8 ms, respectively. For configuration 1 there is even a decrease in the mean time
needed. We assume that this decrease is caused by noise and outlier removal and both
means should be about equal.
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Figure 6.5: Comparison of graphics memory and GPU clock rates for uploading only and
uploading concurrently.
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Figure 6.6: Comparison of needed time for uploading only and uploading concurrently cases.

Once more, we see that uploading only can serve as a bottom line for the time
needed to complete a particular process. For most configurations, the time needed for
uploading is equal or higher for uploading concurrently compared to uploading only. This
means that modeling concurrently can give us an upper limit on the time needed for both
rendering and uploading. We also see that while the increase for rendering for configuration
3 and 4 was moderate, the increase for uploading for those two configurations is immensely.
Uploading only (without rendering) is done on average in 27.5 ms and 170 ms. For uploading
concurrently, the time needed increases to 910.7 ms and 813.5 ms. This further motivates
modeling both processes as concurrent processes instead of using the two only cases.

6.2 MARKUs Analysis
We discuss in this section the two MARKUs derived from the performed experiments
divided in the following parts:

• MARKU-R: MARKU for Rendering Concurrently (in Subsection 6.2.2)

• MARKU-U: MARKU for Uploading Concurrently: (in Subsection 6.2.3)

• Merged MARKUs (in Subsection 6.2.4)

After describing generalities about the following plots and variables, we start with the
MARKU-R which is followed by the MARKU-U. We conclude this section by discussing
differences and similarities of the MARKUs and the effect of them on possible optimiza-
tions.
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6.2.1 Generalities about MARKUs
The plots shown in this section are, if not otherwise noted, split for the two graphics cards.
The top row represents the TITAN card, the bottom row the RTX card. The plots visualize
the effects of one control variable, displayed on the x-axis, on the time needed in ms for per-
forming the task at hand, displayed on the y-axis. A blue line represents the predicted form
of the modeled effect. Gray dots visualize partial residuals to give an idea on the precision
of the model. The partial residuals show for the given configurations the residual errors
when removing the influence of other effects than the shown one(s). The more distributed
these points are, the less accurate the model predicts that configuration. Furthermore,
if present, the gray band around the blue line visualizes the confidence bands around the
prediction. The visualizations are produced using the R package visreg. Additionally, the
response variable, i.e. the time needed for rendering or uploading, is back-transformed from
the log transformation to get easier understandable values. Further information about this
package, partial residuals, how they are calculated, how the confidence bands are calculated
can be found in [BB17].

Interactions

Most control variables have interactions modeled with other control variables. This means
that analyzing them alone can be misleading. Therefore, in most cases we will analyze
the effect of one control variable with their corresponding interactions. For these cases,
each row consists of more than one plot, representing different settings for the interaction
variable. The set value of the additional variables are written on top of each plot.

Interactions are described in the following formulas with an asterisk ∗ (please note
that not all formulas include the asterisk). An interaction can occur between two or more
control variables. If we have an interaction, this means for the formula that each of the
set values for the control variables are multiplied together. Each term, may it be a single
term, e.g. size, or an interaction term, e.g. size∗gpuClock, has an estimated coefficient
which is multiplied with the values set for the variable.

Nomenclature of Control Variables

The different control variables are as follows:

time Time needed for completing the task at hand (in ms)

size Size of the dataset in MB

cpuClock CPU clock rate in GHz

nPartition Numbers of partitions

gpuClock GPU clock rate in GHz
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memClock Graphics memory clock rate in GHz

method Used method as a number

bufferUsageHint The used buffer usage hint as a number

pbo Using or not using PBOs (encoded as either 1 or 0; 1 stands for using
PBOs)

dsa Using or not using DSA (encoded as either 1 or 0; 1 stands for using
DSA)

card The used graphics card, either TITAN or RTX

The used uploading method for uploading is encoded as the following values:

Value Uploading method
0 glBufferData

1 glMapBuffer + memcpy + glUnmapBuffer

2 glMapBufferRange + memcpy + glUnmapBuffer

3 glBufferSubData

or, if applicable, the named versions as described in Chapter 6 for DSA usage with
the same numbers. The buffer usage hints are encoded as the following values:

Value Buffer usage hint Value Buffer usage hint Value Buffer usage hint
0 GL_STREAM_DRAW 1 GL_STATIC_DRAW 2 GL_DYNAMIC_DRAW

3 GL_STREAM_COPY 4 GL_STATIC_COPY 5 GL_DYNAMIC_COPY

6 GL_STREAM_READ 7 GL_STATIC_READ 8 GL_DYNAMIC_READ

Derivation of the MARKUs

The MARKUs are derived using the R function lm for linear regression and the function
step for iteratively adding and subtracting terms and evaluating the BIC, to decide which
terms to include. Both functions are part of the R package stats, which is part of the core
of R. More information about this package can be found in [R C19]. For the lm function
we use the following formula as input argument:

time = method+ bufferUsageHint+ dsa+ pbo+ card+ size

+ poly(size, 2) + gpuClock + poly(gpuClock, 2) +memClock

+ poly(memClock, 2) + nThread+ poly(nThread, 2) + nPartition

+ poly(nPartition, 2) + poly(nPartition, 3) + cpuClock + poly(cpuClock, 2)

(6.1)
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The operator poly stands again for creating a polynomial of the first argument with degree
of the second argument. Additionally, the remaining amount of measurements after outlier
removal is used as weights for the summarized data points. For example, if one configu-
ration has 30 measurements and 5 are removed as outliers, the weight of the summarized
measurements is 25. For another configuration with 30 measurements and only 1 outlier,
the weight is 29.

The step function uses the resulting model obtained from the lm function. Addition-
ally, we define as upper model limit all four way interaction of the included terms from the
lm model. This means that for example an interaction between method, bufferUsageHint,
poly(gpuClock,2) and poly(nPartition,3) can also be part of the final model and is tested
for change of the BIC.

6.2.2 MARKU-R: MARKU for Rendering Concurrently
In this subsection we take a look at the MARKU-R. This subsection is is divided into the
following parts:

• Size

• Number of Partitions

• Clock Rates

• Software Design

The MARKU-R takes the form of the following formula:

time = method+ dsa+ card+ poly(size, 2) + poly(gpuClock, 2)
+ poly(memClock, 2) + poly(nThread, 2) + poly(nPartition, 3)
+ poly(cpuClock, 2) + poly(gpuClock, 2) ∗ poly(memClock, 2)
+method ∗ dsa+ poly(gpuClock, 2) ∗ poly(nPartition, 3)
+ poly(gpuClock, 2) ∗ poly(cpuClock, 2) + card ∗ poly(nThread, 2)
+ card ∗ poly(memClock, 2) + card ∗ poly(gpuClock, 2) +method ∗ card
+ card ∗ poly(nPartition, 3)

(6.2)

As before, the operator poly stands for creating a polynomial of the first argument with
degree of the second argument. We start by analyzing the dataset parameters, namely
size and number of partitions. As next we analyze the effect of the different settable clock
rates on performance. This is followed by the analysis of the software design influences,
namely the used method, buffer usage hint, usage of DSA and usage of PBOs or not, and
the number of threads used for uploading.
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Size

For rendering data, obviously the amount of work to do has an important impact on how
long it takes. This is also reflected in the MARKU-R. Size is modeled alone as polynomial
with degree 2 and without any interaction. Fig. 6.7 shows the expected influence of size
on rendering time. We see that increasing the size of the dataset also increases the time
needed to render it.
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Figure 6.7: Predicted influence of size on rendering times shown for three different numbers
of partitions.

Number of Partitions

The influence on rendering times of the number of partitions is modeled as third degree
polynomial and with an interaction with both, the GPU clock rate (as quadratic polyno-
mial) and the card used, individually. Fig. 6.8 shows this interaction with three plots for
each card for the clock rates 595 MHz, 1.063 GHz and 1.519 GHz for the TITAN card
and 300 MHz, 1.2 GHz and 1.845 GHz for the RTX card. The general tendency for both
cards is that more partitions improve the performance for rendering. Another tendency
shown is that the higher the GPU clock rate, the lower the time needed for rendering. The
interaction between GPU clock rate and number of partitions is visible when we compare
the slope and curvature of the blue prediction line for the individual GPU clock rates.
The higher the GPU clock rate, the stronger the influence of the number of partitions and
consequently, the lower the time needed for rendering. The interaction with the card is
visible when we look at the difference between the low GPU clocks of both cards. While
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for the TITAN card, using more partitions in combination with the low GPU clock can
increase the time needed, for the RTX card, using more partitions always results in lower
rendering times.
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Figure 6.8: Predicted influence of number of partitions on rendering times shown for three
different GPU clock rates.

Clock Rates

If we analyze the influence of the clock rates of hardware components on the graphics card,
namely the GPU and graphics memory clock rates, we can also observe an interaction
between both as quadratic polynomial. Graphics memory clock rate is modeled with that
interaction, alone as quadratic polynomial and additionally with an interaction with the
used card. Fig. 6.9 shows the corresponding plots for its influence. The left plots show the
effect of changing the GPU clock rate on the needed time for rendering for the low graphics
memory clock rates and the right plots for the high graphics memory clock rates. For both
cards, we see that having a high graphics memory clock rate alone does not necessarily
improve rendering times, yet together with a high GPU clock rate, they outperform high
GPU clock rates alone. The interaction with the card is clearly visible for low graphics
memory clock rates: While increasing GPU clock rates for the RTX card always increases
the performance, for the TITAN card this is not necessarily true. Increasing the GPU
clock further than 1.5 GHz theoretically decreases the performance for the low graphics
memory clock rate. However, that part is without measurements as these clock rates are
not tested. Therefore, these predictions can be without any meaning.
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Figure 6.9: Predicted influence of GPU clock rate on rendering times shown for two different
graphics memory clock rates.

The GPU clock rate additionally to the before shown interactions and its influence
alone has an interaction with the CPU clock rate and the used graphics card individually.

The influences are shown Fig. 6.10 for three different GPU clock rates for each card.
We see that while increasing the CPU clock rate for the lowest GPU clock rate can slightly
increase the time needed for rendering (e.g. from 1.2 GHz to 2.0 GHz for the TITAN
card), this effect is turned around for higher clock rates. For the highest GPU clock rate
the performance increase is visible the clearest.
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Figure 6.10: Predicted influence of CPU clock rate on rendering times shown for three
different GPU clock rates.

Software Design

The influence of the used method is modeled alone, together with using DSA or not and
the used graphics card. Their influences are visualized in Fig. 6.11. Left shows not using
DSA and right shows using DSA. The numbers on the x-axis represent the method used.
Please note that we limited the range of the y-axis to a range of 0 ms to 150 ms. This
caused the exclusion of 7 partial residual for the TITAN and 10 partial residuals for the
RTX card due to them being outside that range.

The difference between method 1, 2 to 0 and 3 for non DSA usage is almost not
visible in comparison to using DSA; for the latter it is significantly increased. While using
DSA has similar behavior for both cards, not using DSA is different for each card. For the
card TITAN, methods 1 and 2 need slightly more time for rendering than method 0 and
3; for the card RTX this is turned around. Here method 1 and 2 are slightly faster than
method 0 and 3.

The influence of the number of used uploading threads is shown in Fig. 6.12. The
MARKU-R contains this variable alone in quadratic form and with an interaction with
the used graphics card. Wee see that using more threads increases the time needed for
rendering. The difference between the cards is a difference in the slope.

The remaining software design variables buffer usage hint and usage of PBO or not
are not part of the model and can be expected to only have a minor or no impact on
rendering times.
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Figure 6.11: Predicted influence of used method on rendering times shown for either not
using (left) or using (right) DSA.
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Figure 6.12: Predicted influence of the number of used uploading threads on rendering
times.
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Summary of MARKU-R

From the subsections before, we see there are quite a number of possible influences and
interactions of the influences depicted by the MARKU-R. All quantitative variables, except
number of partitions, are modeled as second degree polynomials; number of partitions is
modeled as third degree polynomial. While size plays an important role in determining
how fast rendering can be done, other variables determine performance of rendering as
well.

First of all, the different clock rates all positively influence the performance and
thus reduce the time needed for rendering . However, if the graphics card cannot process
fast enough the commands issued by the CPU, increasing the CPU clock rate does not
necessarily increase performance. Even worse, with the lowest settable GPU clock rates,
performance can be decreased for the TITAN card. Partitioning of the dataset itself,
without changing the size of the dataset, also reduces rendering times unless lower GPU
clock rates are used; in that case the time can be increased for the TITAN card. Software
choices also significantly influence the performance for rendering while concurrently up-
loading data. However, using different buffer usage hints as well as using PBOs or not, do
not, according to the MARKU-R, influence the outcome. On the other hand, changing the
method used for uploading increases slightly the time for rendering when using method 1
or 2 for the TITAN card or decreases it slightly for the RTX card. In combination with
DSA, for both cards an increase from method 1 or 2 to method 0 and 3 is modeled. Using
more threads for uploading slightly increases rendering times.

6.2.3 MARKU-U: MARKU for Uploading Concurrently

In this subsection we discuss the MARKU-U divided into the following parts:

• Size

• Number of Partitions

• Clock Rates

• Software Design

Eq. (6.3) shows the formula that constitutes the MARKU-U for the time needed for per-
forming an upload of data while concurrently rendering. For the analysis, we start again
with dataset parameters, namely size and numbers of partitions. This is followed by de-
scribing the influence of the settable clock rates and the influence of the software design
variables. For all we include interactions with other control variables in the order of their
first appearance within the order of the main effects described here.
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time = method+ bufferUsageHint+ dsa+ card+ poly(size, 2)
+ poly(gpuClock, 2) + poly(memClock, 2) + poly(nThread, 2)
+ poly(nPartition, 2) + poly(cpuClock, 2) + bufferUsageHint ∗ dsa
+method ∗ poly(nPartition, 2) +method ∗ dsa+method ∗ poly(gpuClock, 2)
+method ∗ poly(memClock, 2) + card ∗ poly(size, 2)
+ poly(size, 2) ∗ poly(nPartition, 2) + dsa ∗ poly(nThread, 2)
+method ∗ poly(cpuClock, 2) +method ∗ bufferUsageHint
+method ∗ poly(nThread, 2) + card ∗ poly(cpuClock, 2)
+ dsa ∗ poly(nPartition, 2) + card ∗ poly(memClock, 2)
+method ∗ bufferUsageHint ∗ dsa

(6.3)

Size

The size of the dataset is modeled as polynomial with degree 2. It has interactions with
the number of partitions and the used card. Fig. 6.13 shows the influence of size on the
x-axis for different numbers of partitions (left, middle and right plot). Please note, the
y-axis is fixed to a range between 0 ms and 3000 ms to clarify the image. In this process,
7 partial residual for the TITAN card and 3 for the RTX card are removed as they are
outside that range.

We can observe that increasing the size of the dataset to be uploaded increases the
time needed for finishing the upload. This effect is increased by increasing the number
of partitions into which the dataset is split into. This means that using more partitions
for one dataset increases the impact of the size of that dataset. Having a large size with
many partitions constitutes the worst performance for this relationship. Additionally, the
confidence bands become broader the more partitions are used. The interaction with the
used card can be seen when we compare the slopes of both rows. For the TITAN card,
there is a stronger increase in uploading times when using bigger in size datasets.

Number of Partitions

The MARKU-U includes an interaction of number of partitions with the chosen upload
method, the size (as seen before) and using DSA or not. Its influence is modeled as second
degree polynomial and also alone part of the formula. Numbering of the method is the
same as in Subsection 6.2.2. Fig. 6.14 shows the influence of the numbers of partitions (x-
axis) on uploading times (y-axis) for the four different uploading methods (left to right: 3,
1, 2, 0). While the numbers of partitions are modeled to have a strong increasing effect on
the time needed for method 3 and 0, the effect for method 1 and 2 in comparison is almost
negligible. For method 1 for the TITAN card, using 1 partition instead of 44 decreases
the time needed from about 12 ms to 10 ms, while for method 3 the times needed for 44
partitions is about 613 ms which is decreased to 83 ms for 1 partition.
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Figure 6.13: Predicted influence of dataset size on uploading times shown for three different
numbers of partitions.
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Figure 6.14: Predicted influence of number of partitions on uploading times shown for the
four different used methods.
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The interaction with using or not using DSA is shown in Fig. 6.15. The interaction
has only a small effect. Using DSA decreases the time needed when using 44 partitions
from 877 ms for the TITAN card to 844 ms, for the RTX card from 724 ms to 697 ms.
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Figure 6.15: Predicted influence of number of partitions on uploading times shown for not
using (left) and using (right) DSA.

Clock Rates

For the queried graphics memory clock rates, an interaction with the used uploading
method and the used card is modeled. Its influence has the form of a second degree
polynomial and is also alone part of the formula. Fig. 6.16 shows the influence of graphics
memory clock rate on needed uploading time for the four different uploading methods from
left to right.

Again, we see that method 0 and 3 have a different behavior than 1 and 2. Using
higher graphics memory clock rates usually decreases the time needed for uploading a
dataset, but for method 0 and 3 the overall time and overall reduction is a lot higher than
for method 1 and 2. For example, changing the graphics memory clock rate for the TITAN
card using method 0 from 6.5 GHz to 0.81 GHz increases the time needed for uploading
from about 82 ms to 451 ms, while for method 1 the predicted times are changed from 15.2
ms to 19.0 ms. For the TITAN card the most time is needed for methods 3 and 0 when
using a graphics memory clock rate of about 1.8 GHz to 2 GHz. Please note, that these
values might be fitting errors as we do not have any measurements in that area, which is
also illustrated by the large confidence band around the prediction line. For the RTX card
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we see for these two methods that there is also a lot of uncertainty in graphics memory
clock rates lower than 3 GHz. This again is caused by not having many measurements for
these clock rates.
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Figure 6.16: Predicted influence of graphics memory clock rate on uploading times shown
for the four different used methods.

A similar behavior can be seen for GPU clock rates, as shown in Fig. 6.17. Increasing
the GPU clock rate decreases the time needed for uploading a dataset. However, for
method 0 and 3, this effect is a lot stronger than for method 1 and 2. For the latter, there
is almost no effect for both cards visible. We also see that method 3 and 0 have a lot of
uncertainty, visualized by the grey confidence bands, in comparison to method 1 and 2.

The CPU clock rate is modeled as second degree polynomial, alone and with an inter-
action with the used method and the used graphics card. Fig. 6.18 shows the corresponding
plots. We can again see that the methods 1 and 2 have a different behavior than method
0 and 3. For method 0 and 3, increasing the CPU clock rate decreases the time needed
for uploading for clock rates lower than 2.0 GHz; using 3.0 GHz however can increase the
time needed. This effect in not visible for method 1 and 2.
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Figure 6.17: Predicted influence of GPU clock rate on uploading times shown for the four
different used methods.
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Figure 6.18: Predicted influence of CPU clock rate on uploading times shown for the four
used methods.
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Software Design

Apart from the already shown interactions, MARKU-U has the used uploading method
also as an interaction with using DSA or not, the buffer usage hint and the number of
threads for uploading. We also have a three way interaction between method, buffer usage
hint, and using DSA or not.

Method Fig. 6.19 shows the influence of the used method on uploading times for using
DSA (right) and not using DSA (left). For all methods, using DSA offsets positively the
time needed for uploading. Furthermore, we see that method 1 and 2 need in all cases less
time for uploading.
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Figure 6.19: Predicted influence of the used method on uploading times shown for not
using (left) and using DSA (right).

The interaction between method and the number of threads is shown in Fig. 6.20,
for using 1 (left), 2 (middle) and 3 (right) threads for uploading. We can see that using
more threads decreases the overall time needed for uploading and decreases the difference
between method 3 and 0 to method 1 and 2.
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Figure 6.20: Predicted influence of the used method on uploading times shown for using 1
(left), 2 (middle) or 3 (right) threads.

Buffer Usage Hints The influence of using DSA or not on the buffer usage hint is shown
in Fig. 6.21. For buffer usage hint 0 and 7 and 8, the time needed for uploading is decreased
if we use DSA. However, this is not the case for buffer usage hint 4, 5, 6, 1, 2, and 3. For
these hints, the time needed is decreased when we are not using DSA. However, we see
that almost all prediction lines are within the range of the confidence bands, so the actual
effect might be negligible. Please note that in this plots, no partial residuals are plotted
for clarity. Furthermore, some of the partial residuals would be outside of the range of the
shown y-axes.

The interaction of buffer usage hint and method is shown in Fig. 6.22. For method
3 buffer usage hints 5, 1, 2, 3, 7 are very similar. Buffer usage hints 6, 0, and 8 have the
lowest times. For method 0 the buffer usage hints are quite similar, with 1, 2, and 3 a
little lower than the others. However, for method 1 and 2, buffer usage hints 5 and 3 lead
to distinctly higher times for uploading than the remaining.
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Figure 6.21: Predicted influence of specified buffer usage hints on uploading times shown
for not using (left) or using (right) DSA.
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Figure 6.22: Predicted influence of specified buffer usage hints on uploading times shown
for the four used methods.
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Number of Threads The number of threads used for uploading is additionally mod-
eled with an interaction with using DSA or not using DSA and alone as second degree
polynomial. A visualization of that interaction is shown in Fig. 6.23. For these plots, the
range for the y-axis is fixed between 0 ms and 1000 ms. Following that, 31 partial residuals
for the TITAN card and 16 for the RTX card are not plotted as they are outside that
range. We see that increasing the number of threads from 1 over 2 to 3 for both cards
reduces the time needed for uploading. Using DSA or not has an effect on the curvature
of the prediction line. As usually no half threads can be used, this difference is negligible.
Additionally, the slopes are different for using DSA or not. While using 1 thread without
DSA results for the TITAN card in 623 ms and for not using DSA in 489 ms, using three
threads requires an estimated 227 ms for not using DSA and 266 ms for using DSA. We
see that when we use multiple threads, not using DSA is the better choice regarding low
uploading times. When we can only use one thread, using DSA results in lower times.
This is true for both cards.

0 1

1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0
0

250

500

750

1000

Number of Uploading Threads

T
im

e
ne

ed
ed

[m
s]

TITAN

0 1

1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0
0

250

500

750

1000

Number of Uploading Threads

T
im

e
ne

ed
ed

[m
s]

RTX

Figure 6.23: Predicted influence of number of the number of threads used shown for not
using (left) and using (right) DSA for uploading on uploading times.

Finally, the usage of PBOs is not modeled and we assume its influence to be negligible.

Summary of MARKU-U

The MARKU-U describes influences by almost all tested control variables for uploading
data while concurrently rendering. All included quantitative control variables are in the
form of a second degree polynomial. All control variables except using PBOs or not are
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included as main effects. The remaining terms of the formula are, except for one which is
a three way interaction, all two way interactions.

The size of an dataset increases the time needed for uploading it. Dividing that
dataset into more partitions also increases the time needed and widens the confidence
bands of the prediction. The effect of using method 0 and 3 on the effect of using more
partitions is an increase of that effect with a broader confidence band. In comparison to
that, the effect of using DSA or not interacting with the number of partitions is almost
negligible. Increasing the graphics memory clock rate usually reduces the time needed for
uploading. The GPU clock reduces the time needed the higher it is. Method 0 and 3 again
increase this effect but also add uncertainty. In comparison to that, for both, graphics
memory and GPU clock rates, almost no effect is visible for method 1 and 2. Using values
lower for the CPU clock rate (from 1 GHz to 2 GHz) can increase performance when
increased, but also also reduce performance when increased at higher values (from 2 GHz
to 3 GHz), when done in combination with method 3 and 0.

For software choices almost all effects influence the time needed for uploading data.
Using DSA is modeled to be worse than not for all 4 uploading methods. However, the
effect is not so clear in combination with the 9 different buffer usage hints. In most cases,
not using DSA produces lower needed times, but for buffer usage hint 0, 7 and 8 using DSA
is the better choice when time should be minimal. The effect of using DSA or not on the
number of threads is also depending on the number of threads. When using only 1 thread,
choosing to use DSA produces lower times; for 3 threads, not using DSA is better. Using
more threads however usually results in lower times needed for uploading and decreases
the difference of choosing one of the four methods.

The combination of buffer usage hints and methods highly depends on the method.
While method 3 and 0 have similar behavior regardless the buffer usage hint, for method
1 and 2 buffer usage hint 5 and 7 produces significantly larger times.

6.2.4 Merged MARKUs

The two MARKUs, MARKU-R and MARKU-U, show several similar characteristics for
uploading and rendering.

Clock Rates Increasing the size of a dataset increases the time needed for both, upload-
ing and rendering. Increasing the clock rate of GPU, graphics memory and CPU, usually
decreases the time needed for rendering and uploading. The highest CPU clock rates are
an exception to that for default values; higher values can decrease performance.

DSA and PBOs Using DSA or not highly depends on other variables. For both cases,
using or not using PBOs has no modeled effect on the outcome.
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Opportunities for Optimization

The two MARKUs show significant differences that allow to optimize depending on the
scenario.

Number of Partitions Increasing the number of partitions allows to better predict the
time needed for rendering while also decreasing that time; the contrary effect is visible for
uploading. Here, using more partitions increases the time needed. We assume this effect
is caused by two reasons:

• More partitions need more allocations and more uploads. Each additional upload
possibly introduces an additional overhead which results in longer uploading times.

• Buffer allocations and preparation possibly require GPU processing. When the GPU
is busy rendering, uploading needs to wait for rendering to be finished before it
can perform its task. This naturally increases the overall measured time needed for
uploading (but not necessarily increases the time for uploading on its own).

Uploading Methods Another difference is visible for the four different uploading meth-
ods used. While method 0 and 3 model rendering with lower times, these methods increase
the time needed for uploading. In a scenario where rendering needs to be done as quick
as possible, these methods might be the best way to go. Method 1 and 2 outperform the
other when uploading needs to be done fast, but increase the time needed for concurrently
rendering.

Number of Threads Additionally, for uploading, using more threads results in less time
needed, for rendering, more threads increase the time needed.

Buffer Usage Hints One control variables is modeled to have no effect on rendering but
on uploading. Buffer usage hints are without effect on rendering, but can have different
times for uploading.

Graphics Cards In all cases, the two different graphics cards show mostly similar char-
acteristics but with some different offsets. This means that slopes or curves usually look
similar for most modeled explaining variables but might have different offsets.

6.3 Chapter Summary
In this chapter we analyze the data gained from performing the configured set of exper-
iments. We see that the two only cases can serve as best case scenarios, while using the
concurrently cases can serve as the worst case. Additionally, clock rates set are not neces-
sarily the same being used, assuming queried clock rates mirror actually used ones. For the
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two MARKUs, we see there are similarities between both models that help to reduce over-
head and performance loss for both processes. Additionally, there are differences for the
two MARKUs that allow to optimize for a given use case. For example, using method 0 or
3 allow to optimize for lower rendering times but increases the time needed for uploading.
Using the remaining methods 1 and 2 allows to do the opposite. We also identified in both
cases control variables that statistically do not influence the outcome and consequently,
can be ignored in the design stage of an visualization application. For all control variables
we also gained insight in how the influence rendering and uploading times. This can be
mathematical positive effects, meaning increasing the time, as well as reducing effects. In
all cases we need to pay attention to possible interaction between several control variables
in order to get full knowledge of the modeled effects. With all this we answer SRQ5 What
and how strong are the identified influences of the two MARKUs for the two processes
rendering and uploading?.
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Chapter 7

Evaluating the MARKUs

We use the Bayesian Information Criterion (BIC) with the iterative algorithm to determine
which explaining variables provide a good fit for the performed measurements. However,
this will only find a good solution given all its restrictions, including what control variables
are used, how they are used and in what combination. Naturally, the next step is to
evaluate how the two MARKUs predict performance of either of the analyzed processes.

The full picture on that task could be drawn by measuring all possible configurations
and comparing them to their predictions. Yet, due to the sheer number of possibilities, this
is not feasible. Additionally, since "all models are wrong" [Box76] the goal of our MARKUs
is not to correctly estimate all possible configurations. Our goal is to give an overview on
the parameters involved and how they affect the outcome. This can give a good starting
point for finding a good configuration for a given scenario.

Hence, in this chapter we focus on giving an overview on the performance of the
MARKUs by performing the following three steps:

1. Comparing predicted performance with measured performance for the MARKUs gen-
erating experiments. This allows to understand how well the MARKUs fits the ex-
periments. In the following this set of configurations is denoted as Model Generating
Configurations (MGC).

2. Performing additional random experiments (different to those already performed)
and comparing predicted performance with measured performance. This gives us
an overview on how well the MARKUs describe the underlying processes and not
only how well the MARKUs fit the data. This step can detect if MARKU is more
likely to only describe the data used for deriving the MARKUs and not the under-
lying processes. In the following this set of configurations is denoted as Random
Configurations (RC)

3. Performing additional experiments for configurations that are predicted to have the
best performance for the described scenarios and compare predicted performance
with measured performance. This is closely related to the overarching objective of
the thesis: Finding a good configuration for a given scenario. In the following the
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set of best predicted performance configurations of configurations is denoted as Best
Predicted Configurations (BPC).

7.1 Evaluation Approach
Comparing single measurements with single predictions would give the most complete
overview, yet can easily overwhelm when the number of predictions and measurements
increases. Therefore, we describe model fitness by three performance indicators:

1. How big is the confidence interval rp compared to the time tp predicted? – p1 =
1
n

∑n
i=1

rp,i

tp,i
, smaller is better. This describes the precision and variability of the

prediction.

2. How many measurements ni lie within the confidence interval compared to the total
number nt of measurements? – p2 = ni

nt
, higher is better. This describes the accuracy

of the predictions.

3. How far off are predicted times tp from measured times tm on average, also known as
Mean Absolute Percentage Error (MAPE)? – p3 = 1

n

∑n
i=1

tp,i−tm,i

tm,i
.

Performance indicator p1 gives an overview on how precisely the MARKUs predicts the
time needed for uploading or rendering. Predictions are calculated using the R function
predict.lm including prediction intervals. This function is part of the stats package
which itself is part of the core of R. More information about this package can be found in
[R C19].

Performance indicator p2 hints on how well the underlying processes are modeled.
It is highly dependent on the width of the estimated confidence intervals. Please note
that these confidence intervals are based on the tested configurations and not necessarily
provide a realistic estimation for the range, where a measurement might be. This indicator
is intended to help compare the different tested sets of configurations but not to give an
absolute estimate on how well the MARKUs perform.

Performance indicator p3 describes the absolute deviation of the prediction from
measurement and is calculated using the MAPE function which is part of the R DescTools
package [ema20].

Please note that we describe the performance indicators for logarithmic transformed
measurements that are summarized by the mean as described in Chapter 6. This means
that actual times need to be back transformed and will result in different performance
indicators. However, as the MARKUs are fitted to that transformation, the evaluation of
the models is best described by using the transformed data without back transforming.
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7.2 MGC Evaluation
In this section we compare the measured timings of MGC with the predicted performance
of the MARKUs. We start by looking at the MARKU-R, continue with the MARKU-
U and conclude with a summary. This allows us to see how well the MARKUs fit the
experimental data.

7.2.1 MGC MARKU-R
The experimental data consists of 800 configurations. The three performance indicators
rounded to three decimals are as follows:

p1 = 0.026 p2 = 396
800 = 0.495 p3 = 0.024

This means that the confidence interval is 2.6% on average of the predicted time needed.
For example, if a value of 5 is predicted, the model predicts summarized measurements to
be in the interval of 5± 0.0625 (note for this and the following that no units are given to
avoid confusion as 5 here is the expected average of log transformed times).

Furthermore, about 50.5% fall within the confidence intervals. On average, predic-
tions are off by about 2.4%. Performance indicators p1 and p3 provide a context for the
low accuracy of 50%. As the confidence intervals are very narrow around the predicted
times, there is not much room for error. In total however, most predictions are very close
to measurements.

7.2.2 MGC MARKU-U
As uploading concurrently is the same experiment as rendering concurrently but a different
measured process, the number of experimental configurations is the same. The three
performance indicators rounded to three decimals are as follows:

p1 = 0.161 p2 = 533
800 = 0.666 p3 = 0.071

In this case, the confidence intervals are larger than for rendering. They span about
16.1% around the predicted time. The accuracy of the MARKU-U is higher than the
accuracy of the MARKU-R; about 66.6% of all measured configurations are within the
confidence intervals. On average, predictions are within 7.1% of measured times. The
bigger confidence intervals explain the higher accuracy of the MARKU-U.

7.2.3 MGC Evaluation Summary
In both cases the MARKUs produce narrow confidence intervals and a close prediction
to the measurements. The MARKU-R has a smaller error than the MARKU-U although
the latter has a higher accuracy. This is due to the bigger confidence intervals for the
MARKU-U.
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7.3 RC Evaluation

In this section we evaluate the two MARKUs using the RC. We start with evaluating
MARKU-R, continue with MARKU-U and conclude with a summary.

One common challenge for deducing models from data is overfitting, which means
the model fits closer the data than the underlying system. To test for overfitting, we use
randomly picked configurations to see how well the MARKUs can predict them. These con-
figurations are not part of the first subset of configurations used for creating the MARKUs
and also not part of the configurations used for the next section. Using randomly picked
configurations allows us to get a broader view on the whole range of configurations.

For finding out if the MARKUs are overfitted to the experimental data, at least one
configuration outside the experimental data needs to be used. Using more configurations
than the experimental data would overreach its usefulness of finding out if the MARKUs
are overfitted and giving an overview on the whole range. Therefore, we meet in the middle
of the two, using 1 configuration and using 800, and pick 400 random configurations to
evaluate the MARKUs. This set of configurations (the RC) is used to perform experiments
the same way the first experiments are performed.

The variable settings are also adjusted to see how the MARKUs behave between the
tested settings. For this we use roughly 32 MB and 96 MB as dataset size, 1, 8, 18, 36 for
numbers of partitions and 1.5 and 2.5 GHz as CPU clock rates. Graphics memory clock
rates are not altered as only 4 possible choices are available. The lowest graphics memory
clock rate is excluded as it restricts the possible GPU clock rates to only very low values.

For GPU clock rates we use 0.823 and 1.291 GHz for the TITAN and 0.750 and 1.650
GHz for the RTX card.

7.3.1 RC MARKU-R

The three performance indicators for RC for MARKU-R are rounded to three decimals as
follows:

p1 = 0.027 p2 = 45
400 = 0.113 p3 = 0.047

The confidence intervals span about 2.7% around the predicted values which is sim-
ilar to the MGC data. This also reflects on the not previously used set values for the
quantitative variables CPU clock, number of partitions and size. We used for these three
variables values different to the MGC, but within the extrema of the already set values.
This means that the MARKU-R is able to also map these values with a high precision.

Accuracy is only at 11.3%, but the mean absolute error is still low at only 4.7%. This
means, although most measurements are outside the predicted confidence intervals, the
MARKU-R is able to predict them with only a small deviation.
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7.3.2 RC MARKU-U
For uploading concurrently using RC, we get the following performance indicators:

p1 = 0.151 p2 = 235
400 = 0.588 p3 = 0.079

p1 is smaller than for theMGC data. In consequence, also accuracy is lower at 58.8%
as indicated by p2. The overall error p3 is similar to the error of the MGC data.

7.3.3 RC Evaluation Summary
We can see the MARKUs perform in a similar fashion as before. The MARKU-R has a
lower accuracy and a higher overall error, but at a very low level of under 5%. For the
MARKU-U, the overall error is also small at under 8% and with that very similar to the
MGC. We see no decisive evidence for overfitting.

7.4 BPC Evaluation
One goal for modeling performance of concurrently data uploading and rendering is to find
an optimal configuration for a given scenario. The scenarios can have different requirements
on what task needs to be prioritized and what to optimize. Therefore, we analyze in
this section how to find possible candidates of configurations for achieving the targeted
prioritization and afterwards evaluate their performance.

The following is structured as follows:

• Description of how the configurations are generated

• Evaluation of prediction performance for

– OT1: High priority data rendering
– OT2: High priority data uploading
– OT3: Balancing both activities.

7.4.1 Configuration Generation
Exemplary for the whole priority continuum introduced in Chapter 2, we use the following
priorities for evaluation:

Movie
Visualization

Priority lies in minimizing the aggregated time for rendering and
uploading together.

Desktop
Visualization

Priority lies in minimizing either rendering or uploading time.
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VR Visualization Priority lies in minimizing time for rendering. Uploading time min-
imization has lower priority.

Based on these priorities we want to find the best configurations. This means, using
the two MARKUs, we predict for all possible configurations the time needed to perform
uploading or rendering a dataset and search for the minimal times. Therefore, we use the
optimization targets OT1, OT2 and OT3 derived in Chapter 2 and predict the perfor-
mance for either MARKU-R, MARKU-U or both:

OT1 High priority data rendering – MARKU-R

OT2 High priority data uploading – MARKU-U

OT3 Balancing both activities – Both MARKUs.

For OT1 we search for configurations that are predicted to produce the shortest rendering
times using MARKU-R, for OT2 the shortest uploading times using MARKU-U and for
OT3 to shortest time for both, rendering and uploading, together using both MARKUs.
The procedure to search for configurations is as follows:

1. Define which levels of the control variables to include

2. Limit the number of configurations

3. Reduce redundancies

Included Control Variable Levels

For real use cases, usually the dataset is fixed to a certain point or cannot be controlled.
As the idea is to also evaluate the MARKUs with different parameters than the trained,
we use about 32MB (exact calculation of size is given in Chapter 5.1) as dataset size. This
size stands exemplary for a time dependent dataset where each time step has 32MB of
data which is right between 16MB and 64MB, the lower two sizes used for creating the
MARKUs. We also vary the possible set of numbers of partitions to 1, 8 ,18 and 36.
Additionally, as the goal for this task is to find the fastest configurations, we restrict the
CPU, GPU and graphics memory clock to their highest values, given in Section 5.1.

Number of Configurations

As we cannot be certain that the MARKUs predict the needed time accurately, we need
to include a range of variety of configurations close to the best predicted configuration.
This allows to find the best configuration within the given uncertainty of the MARKUs.
Furthermore, we could have secondary optimization targets with different priorities as
described in Chapter 2. This means that including worse performing configuration than
the configuration with the best timings for the highest priority target, can overall be better
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when a second priority target can be optimized as well; while the timings for the highest
priority target are close to the optimum.

The next step is to decide how many configurations to include. On the one hand,
using more configurations for this task can allow to also optimize a second priority goal
or to find the best solution for the actual system. Yet, using too many configurations
includes worse and worse predictions. This can mean that configurations are measured
that are likely to miss the first priority goal and therefore unnecessary to even consider.

This requires to tune the number of configurations based on the task at hand. For
this work, we include all predictions within 2σ (standard errors of the residuals, see also
the package stats which is part of the core of R [R C19]) of the MARKUs. With this
we account for the variability of the MARKUs and their residuals, in the hope of catching
all ”best” configurations. We do this for each card individually as they differ in peak
performance. For the following we use the RTX card to extract configurations exemplary.

Reduced Redundancies

For both MARKUs, there are control variables that are modeled to not affect performance.
For MARKU-U this is using or not using PBOs; for MARKU-R using or not using PBOs
as well as changing the buffer usage hint are modeled to have no effect. For prediction of
performance we include these two control variables to not exclude not modeled behavior
and consequently hide possible errors of the models. However, this increases the number
of configurations to be tested without having different predicted performance and leads to
large numbers of not necessary experiments.

Therefore, for all predicted configurations within 2σ of the best predicted time that
only vary in these control variables (that are modeled to have no effect), we randomly
sample one of them and remove the rest of the set of configurations.

Exemplary for OT1 using the all configurations within 2σ of the best predicted time
results in 1728 configurations for the RTX card. Out of those 1728 configurations only 96
differ in predicted times as buffer usage hint and using or not using PBOs are not modeled
to have an effect on MARKU-R.

Resulting Configurations for Both MARKUs

After applying this procedure, the resulting configurations for the three optimization tar-
gets are for OT1 192 configurations, for OT2 1678 configurations and for OT3 1219
configurations.

Performance Indicators for MARKU-R

Table 7.1 shows the three performance indicators rounded to three decimals as columns
for MARKU-R for the best predicted configurations for each optimization target as an
individual row. We can see that for all configurations, that the confidence intervals are
slightly higher than before at around 3.5%. The accuracy is at a very low level and between
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4.2% and 9.3%, but, the overall error, although slightly increased is still low at around 6%.

Optimization Target p1 p2 p3

OT1 0.036 8
192 = 0.042 0.061

OT2 0.035 94
1678 = 0.042 0.060

OT3 0.036 113
1219 = 0.093 0.059

Table 7.1: Performance indicators for MARKU-R of the BPC configurations

Performance Indicators for MARKU-U

Table 7.2 shows the three performance indicators rounded to three decimals as columns
for MARKU-U for the best predicted configurations for each optimization target as an
individual row. In all cases, the confidence intervals are increase to 20.9% to 23.4% and
the accuracy is similar to the previous configurations of MARKU-U and is between 62.3%
and 68.3%. The overall error is also slightly increased to a range of 9.3% to 11%.

Optimization Target p1 p2 p3

OT1 0.209 124
192 = 0.646 0.096

OT2 0.212 1146
1678 = 0.683 0.093

OT3 0.234 759
1219 = 0.623 0.110

Table 7.2: Performance indicators for MARKU-U of the BPC configurations

7.4.2 BPC Evaluation Summary
For the tested BPC, we see similar but worse performance than before. One aspect that
can cause this are the ”extreme” targets and therefore extreme values for the observed
variables. However, the models behave very similar for all three optimizations targets and
have a low overall error between 5 and 11 %.
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7.5 Discussion
Overall we see that the errors are below 11% on average. The confidence intervals for
the MARKU-R are very narrow and cause a low accuracy for predicted times. For the
MARKU-U, the confidence intervals are much larger and consequently, more measurements
are within the intervals. However, the average error for the MARKU-U is also higher than
for the MARKU-R.

Logarithmic Transformation An important aspect is that we use logarithmic trans-
formed observations. This needs to be taken into account when trying to understand errors
and ranges. For example, if we take a closer look at the confidence intervals and trans-
form them back with the exponential function, we see how big they actually can be. An
example measured time is a mean measured time from the uploading optimization target
for uploading of 43.93 ms. Please note that this and the following numbers are round to
2 decimals. 43.93 ms transformed using the natural logarithm is 3.78. For this value, the
MARKU-U predicted a value of 3.52 or non logarithmic of 33.80 ms, with a prediction
interval from 3.17 to 3.87, or non logarithmic from 23.88 to 47.85 ms. We see that the
prediction intervals are asymmetric, caused by non linear transformation, and range with
roughly 24 ms, which can make it difficult for fine tuning depending on rendering load.

Reduced Search Space However, the different settings can also have a huge effect
on rendering or uploading times. For example, while using the same dataset size, CPU,
GPU and graphics memory clock rate, the mean time needed for uploading is for one
configuration 6.84 ms, for another 517.49 ms. This is also reflected in the prediction
intervals for both configurations. The first ranges from 4.66 to 7.54 ms, the second from
255.67 to 579.28 ms after back transformation. Consequently, our approach can help to
find configurations that have a high likelihood of being within the best performing for a
given optimization target, without testing all possible combinations of control variables.

Scope While our methodical approach is applied to a great variety of parameters, the
scope of this work does not allow to test all possible choices. For this work, we focus
on the OpenGL programming interface and on a Linux based operating system. Other
APIs and other operating system might have completely different behavior and require a
remodeling step. This is also true for different hardware setups. Attention needs also be
paid to the validity of the model, especially for quantitative variables, which can produce
an unlimited amount of permutations. This means the derived MARKUs are only valid
within the boundaries of the settings. For example using significantly smaller sizes than
16 MB or larger than 128 MB would possibly require re-performing the model generating
process in order to get a reliable model. Yet, we tested two distinct sizes between 16
MB and 128 MB not used before for deducing the MARKUs and see that these sizes are
predicted similarly to the original sizes.

103



104 7. Evaluating the MARKUs

Missing Details Furthermore, not all details of the processes are modeled. As we sum-
marize and filter out outliers the measurements we lose smaller details. Especially outliers
can have a highly distracting impact on VR visualizations: If some frames are significantly
delayed, data exploration can stop as users might feel unsafe. Furthermore, a preliminary
analysis of the data shows that there might be effects depending on the iteration of the
measurement: We perform for each configuration at least 30 measurements or iterations;
some of them gain performance while others lose performance to the last measurements of
these 30.

7.6 Chapter Summary
In this chapter we discuss how to evaluate the two MARKUs. We analyze them using three
performance indicators that describe how predictions compare to measured performance
and therefore a method that allows to evaluate the MARKUs. We further describe three
classes of experimental data that help to give an overview on how the MARKUs perform
in various situations. The third class leans at an real-world application of the presented
methodology of this thesis: How to optimize for a given use case? We see that while
accuracy is for most cases far from optimal, overall errors for predictions are at a low level.
This mostly is caused by the confidence intervals having only narrow widths.

With a methodology for evaluation and the third set of evaluation configurations, we
answer SRQ6 How to evaluate the two MARKUs and how to find a more optimal solution
for the outlined optimization targets?.
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Chapter 8

Application to Real-World Use Case

In this chapter we describe the application of the two MARKUs on a real-world dataset. We
start by giving a brief description on the dataset itself, which is followed by a comparison
of predicted times for both uploading and rendering. We conclude this chapter with a
discussion of the applicability of the MARKUs for prediction.

8.1 Dataset Description
The dataset used in this chapter is from the domain of geophysics. It is the result of a
simulation using the parallel finite element code TERRA [BB95, BRB96, BR96, BRB97]
and carried out on the supercomputer SuperMUC1 of the Leibniz Supercomputing Centre
(LRZ) of the Bavarian Academy of Sciences and Humanities. The simulation describes
a simulation of Earth’s Mantle convection over 200 million years. For further details on
the model setup refer to [NCG+16]. Every 50.000 years the current status is dumped and
stored to disk resulting in 4000 timesteps. Out of these 4000 timesteps, we use only the
first 20 timesteps for the evaluation as this suffices for performance comparison.

These data dumps are preprocessed similarly as described in [WAB+15]. The details
of the resulting dataset are:

Structure 20 timesteps with two triangle meshes each

Size About 55 MB per timestep

Partitioning 6 buffers/partitions per timestep
The 6 partitions are structured as 2 buffers for positions of the vertices, 2 buffers for normal
vectors of the surfaces and 2 buffers for indices. Normal vectors describe the surface of
the triangles and are used for shading effects. Indices are used to save storage by reusing
positions of vertices that are shared for two triangles.

1https://doku.lrz.de/display/PUBLIC/Decommissioned+SuperMUC
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Differences to Evaluation Datasets
Please note that this differs from the datasets used for performing the experiments and for
the evaluation in three properties:

• Vertices per unit of storage size

• Fragments per triangle

• Used shader

Vertices per unit of storage size In this case there are less vertices processed (and
therefore rendered) per unit of storage size as additional properties are included. However,
the usage of indices allows to store more triangles using less storage. This means that
while the first timestep of the dataset has only about 1.17 million vertices, a total of 2.34
million triangles are rendered. For the datasets generated for the chapters before, a size of
about 55 MB results in 4.81 million vertices and 1.60 million triangles.

Fragments per triangle Additionally to a varying number of vertices and triangles,
the number of produced fragments highly deviates for both datasets. While the dataset,
which is generated obtaining the models, produces with two triangles a full screen quad and
consequently 1920 times 1080 fragments, the triangles of the real-world data is not bound
to full screen quads. These triangles only cover a fraction of the screen and therefore
require less workload as less fragments are produced and require processing. The used
dataset is part of a larger dataset including more details, such as a visual depiction of the
core mantle boundary and Earth’s surface [SVS+05]. A rendering of this larger dataset
is shown in Fig. 8.1. A rendering of the dataset used for this evaluation from the used
perspective is shown in Fig. 8.2. It can be seen that the surfaces do not cover the full
screen. Hence, the single triangles making up the surfaces cover even less. The datasets
used in the chapters before all were made of planes filling the whole screen and would result
in a rectangle if rendered and printed here.

Used shader Another difference to the previously used datasets is that a different shader
is used. This time shading effects are calculated as normal vectors are included in the
dataset and would be used for visualization.

Therefore, a correct prediction of rendering and uploading can not be expected.
However, the two MARKUs should give a starting point for finding good configurations
for a given task.
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Figure 8.1: Rendering of the complete visualization dataset

Figure 8.2: Rendering of the used example dataset
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8.2 Prediction vs. Measurements
For testing the dataset we use again only the maximum settable clock rates for CPU,
GPU and graphics memory. The size of the dataset and the number of partitions is
fixed. All possible configurations for the remaining control variables – buffer usage hint,
using DSA, using PBO, number of threads and uploading method – are generated. These
configurations are tested the same way as the experiments before. This totals in 432
different configurations for each of the used graphics cards. The measurements are then
processed as described before.

Below, we compare predictions of MARKU-R and MARKU-U with measurements,
respectively.

8.2.1 MARKU-R
Fig. 8.3 shows a comparison of the predicted times using the MARKU-R vs. the measured
time needed for the real-world dataset. The measured/predicted time is shown on the
y-axis and ranges from 0 to about 65 ms.

In Fig. 8.3 all configurations are sorted ascending by the time predicted and assigned
a consecutive number from 0 to 864, the configuration number. The x-axis shows this
configuration number and also ranges from 0 to 864. Consequently, configuration number
does not denote a certain configuration but only the position in the sorted sequence from
shortest to longest predicted time for rendering.

Please note, in Fig. 8.3 the time needed and predicted are back-transformed.
We can clearly see in Fig. 8.3 that measurements and prediction highly deviate from

each other. All measurements stay below the predicted time. However, although the
configurations are ordered by predicted times, the best measured times (at nearly 0 ms)
are roughly within the best 600 (from 864) configurations. We can also see that worse
measurements, also near to the worst measured of around 35 to 65 ms, are within this
range. Starting from around configuration 600, all measurements stay above 9 ms.

8.2.2 MARKU-U
Fig. 8.4 shows a comparison of predicted times using the MARKU-U vs. the measured
time needed for the real-world dataset. The measured/predicted time is shown on the
y-axis and ranges from 0 to about 600 ms.

As before, all configurations are sorted ascending by the time predicted and given a
number of 0 to 864. The x-axis shows this number.

Again, we can see that prediction and measurement deviate from each other. The best
measured times in the range from about 8 to 26 ms are within the first 50 configurations
and reflect the prediction. However, the worst measured times, above about 170 ms, are
within the configurations in the range from about 400 to 600.
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Figure 8.3: Comparison of predicted time needed vs. measured time for rendering
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Figure 8.4: Comparison of predicted time needed vs. measured time for uploading
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8.3 Discussion of MARKUs
For both MARKUs, the predictions deviate from measured times. While we can find
the best configurations within the best predicted times, not all good configurations are
predicted correctly.

Differences for rendering On the one hand, workload of rendering highly deviates
from the generated datasets used to obtain the models. After back-transformation, best
rendering times are around 0.3 ms for a dataset of about 55 MB. Compared to that, the
generated dataset with 32 MB used in Chapter 7 that needed in the best cases around 30
ms shows that there is a great difference in workload. This great difference in processing
time also reflects to worse configurations. This short processing time for the real-world
dataset can increase the impact of effects not modeled.

Differences for uploading This also creates a strong impact for the MARKU-U. In
many cases, allocation, binding or even copying of the data itself is processed sequentially
with rendering. This means when rendering times increase, the wait time and also the total
time needed for uploading increases. The same is true vice versa which affects prediction
precision negatively.

MARKUs for optimization Nevertheless, for both models, MARKU-R and MARKU-
U, using the shorter predicted times allows to find good solutions to optimize for a given
use case and to avoid inefficient configurations.
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Chapter 9

Conclusions and Future Work

Visualization of datasets often requires uploading data to graphics hardware while con-
currently rendering. This work analyses the involved hardware and software components
and possible paths data can take from host memory to the final image. Based on that we
describe several possibilities to define performance in the context of visualization.

Visualization can take a broad range of forms which we outline on a priority contin-
uum for rendering and uploading. This continuum shows VR visualization as an extreme
on the one side and movie visualization as an extreme on the other side. All types of
visualization in between these two extremes on the priority continuum can have a variety
of priorities that need to be fulfilled in one or another way.

Based on distinct priorities for those types of visualization, we derive three opti-
mization targets OT1, OT2, and OT3 for the two processes of rendering and uploading.
OT1 prioritizes rendering over uploading. An example for this is VR visualizations, where
consistently low rendering times are needed. OT2 prioritizes uploading over rendering.
Exemplary for this are desktop visualizations, where fixed time slots can be assigned for
rendering the next image shown on a computer screen. If there is time left over in this
time slot, uploading can easily be maximized by prioritizing it. OT3 prioritizes the total
time of both, rendering and uploading, together. An example visualization form of this are
movie visualizations, where the total time for rendering a movie (including all the uploads
necessary for rendering) should be as minimal as possible.

An implementation of a framework for rendering while concurrently uploading data,
which allows to fulfill all these requirements, needs to be as flexible as possible. To achieve
this, we describe how we decouple possible dependencies of data structures on the host
system and on the graphics hardware as well as inter process dependencies of uploading
and rendering, in order to find a solution that fits all use case scenarios. This approach
introduces the number of uploading threads as an additional design choice. The number
of uploading threads, the chosen system, hardware, and other software parameters, form
together an enormous input space of control variables. All of them possibly influence
performance of rendering and or uploading.

In order to quantify these influences, we use D-optimal design and linear regression
in combination with the Bayesian Information Criterion. This allows us to perform a small
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112 9. Conclusions and Future Work

number (compared to all permutations) of experiments and derive for each, rendering
and uploading, a Model for Asynchronous Rendering and K-time concurrent Uploading
(MARKU), that describes form and weight of these influences. We apply this approach for
a given system setup and analyse the resulting MARKUs.

Furthermore we provide an evaluation scheme to challenge performance of the
MARKUs. By predicting the times needed for uploading and rendering using the two
MARKUs and by comparing these times against the MARKUs generating experiments, we
see how well the MARKUs fits that data. Additionally, using in-between range quantitative
variables, such as sizes between the tested sizes, we compare predictions of the MARKUs
against measurements of randomly chosen configurations and for best predicted times for
several use case scenarios. While the prediction interval increases for the latter cases,
the MARKUs are able to predict the needed times similarly compared to the MARKUs
generating measurements with a low average error of under 11%.

Using the presented methodical approach allows to analyse and model data rendering
and uploading for graphics hardware in a general fashion. Instead of only testing for specific
configurations, it enables us to systematically search for optimization targets. From this
point on, targeted testing can easily verify if the found configurations fit to a given use
case.

Finally, we compare predictions of the obtained MARKUs with measurements of a
real-world dataset. While measured and predicted performance deviate from each other,
due to the different structure of the dataset and with this different workload, both extreme
ends of predictions (worst and best) provide valuable insight into finding good configura-
tions and avoiding inefficient ones.

Table 9.1 amends Table 3.1 adding this work and its characteristics to the last row.
The columns of Table 9.1 outline several key concepts for a comparison of related work
and this work. Related work is structured as individual rows.
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[BMK13] CUDA X – X – –

[GLGLBG12] CUDA X – X X –

[vWMSB14] CUDA X – X X –

[FAN+13] Driver
Adaptation X – X

only
transfers –

[Buc04] OpenGL X – – – –

[GRE09] OpenGL X – – – –

[HM12] OpenGL X X – – –

[FGKR16] OpenGL X – – – –

MARKUs
(this work) OpenGL X X X X X

Table 9.1: Comparison of key concepts of related and this work

Future Work
Rendering images for games, visualizations or movies is highly dependent on the data and
the scene rendered as well as the perspective onto the scene. In this work, we focus on
getting a starting point for optimization. We use the worst case scenario for rendering
where the GPU needs to render everything and is kept busy the whole time. In a real
scenario, some perspectives or scenes might finish a lot sooner than expected as some
parts are excluded due to occlusion. These early finishes allow even more possibilities for
improving performance of uploading or other tasks at hand. Future work might include
models of rendering time depending on scene and perspective.

Texture images can also be an important part of the rendering process. However,
they are processed differently compared to vertex data. This means that their performance
can be depending on different parameters and consequently, deviate vastly from our results
on vertex data. An in-depth analysis of texture uploading and rendering can shed light on
this topic and could allow to describe their performance in a mathematical model as well.
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The presented methodical approach relies on a lot of hand tuning and step by step
work in order to get high performing configurations. Future work would build upon our
work and implement fully automated tuning based on defined performance requirements
for a given use case scenario. On-the-fly evaluation while rendering could fine tune and
balance uploading and rendering, depending on remaining frame time or other criteria.

Our two MARKUs and this thesis will help future visualizations to make better use
of hardware capabilities and improve scientific tools. Hence, they will help to understand
a little bit more of the "mysteries of eternity, of life, of the marvelous structure of reality"
[Albert Einstein, Life magazine, May 2, 1955].
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