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1. Abbreviations 
 

AO Arbeitsgemeinschaft für Osteosynthesefragen 
Ant Anterior 
CAD Computer-Aided Design 
CT Computer Tomography 
DAAD Deutscher Akademischer Austauschdienst 
3D Three Dimensional 
2D Two Dimensional 
FE Finite Element 
FEA Finite Element Analysis 
Fracture C Coronal Fracture  
Fracture H Horwitz Fracture  
GPa Giga Pascal 
L Lateral 
LA Lateral-Anterior 
LC Lateral-Central 
LP Lateral-Posterior 
M Medial 
MA  Medial-Anterior 
Max Maximum 
Min Minimum 
MM Millimeter 
MP Medial-Posterior 
MPa Mega Pascal 
MPC   Multi-Point Constraint Contacts 
N Newton 
N/mm Newton/Millimeter 
OTA Orthopaedic Trauma Association 
Post Posterior 
R2 R-Squared 
RMSE Root Mean Square Error 
S Single 
TiAl6V4 Titanium 6% Aluminum 4% Vanadium 
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4. Introduction 

4.1. Clinical Background 

Bi-condylar tibial plateau fractures, which account for 35% of all tibial plateau fractures, 

are considered as one of the most complex osseo-ligamentous traumas [1, 2]. This complexity is 

associated with multi-planar comminution as well as severe soft tissue injuries of the knee joint 

(Fig. 1) [1–4]. This type of fracture occurs mainly in males rather than females with a higher 

incidence in ages between 16 and 40 years old. Also, it usually results from high-energy 

accidents in which varus or valgus stresses along with axial loading contribute to injury [1, 2, 5]. 

The healing complications has been observed in 14% up to 42% cases of complex tibial plateau 

fractures [1, 6–10].  

The most challenging type of bi-condylar tibial plateau fracture is that with a coronal 

split, thereby generating a posteromedial fragment as described initially by Barei et al [6, 7]. The 

reason for this complication is that the coronal fracture line could not be identified on bi-planar 

radiographs [11]. Moreover, fragmentation of the medial tibial condyle has been reported for 

almost 50% of bi-condylar tibial plateau fractures [1, 6, 7, 12]. Furthermore, when fixation of this 

crucial fragment is neglected, it may lead to some skeletal abnormalities including posterior 

subluxation of the femur during stance, an unstable femoral-tibial articulation, as well as a stiff 

arthritic knee [13]. Additionally, treatment aims of this trauma contains restoration of the limb 

alignment and the knee articular surface in order to recover patients to their normal activity levels 

[14]. Considering the preceding issues, a comprehensive characterization of the fracture site is 

required to provide an appropriate pre-surgery plan offering a biomechanically stable fixation, 

which reduces immobilization time [2, 15]. Accordingly, after the development of CT imaging 

that characterizes the 3D fracture morphology, the tibial plateau fracture has been an interesting 



 

11  
 

research topic in regard to fracture classification, fixation techniques, as well as treatment 

outcomes [16]. 

 
Fig. 1. Representative case of a bi-condylar tibial plateau fracture including the coronal split, adapted from Xie et al. 
2020 [4]. 
 

Regardless of spread clinical and biomechanical studies, the ideal fixation method for 

this problematic injury is still questionable [1, 13, 17–21]. This is mainly because the established 

two-dimensional fracture classifications (Schatzker or AO/OTA) ignore the existence of the 

posteromedial fragment in their descriptions of bi-condylar tibial plateau fractures (Fig. 2) [3]. 

According to previous clinical investigations, using CT data altered the original category of 

almost 40% of the fractures which were initially classified based on the AO system [22]. In 

addition, employing CT scanning together with bi-planar radiographs changed not only the 

fracture grouping but also the surgery plan for more than 25% of patients [23]. MRI imaging, 

however, has not shown remarkable improvements for fracture evaluations [15]. Therefore, in 

addition to x-ray images, suitable 3D imaging techniques are required to recognize the coronal 

split as well as to determine the three-dimensional geometry of this complex fracture [15, 16]. 
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Fig. 2. Traditional fracture classifications for the tibial plateau fractures: A) The AO system, and B) The Schatzker 
classification, adapted from Berkson et al. 2006 [15]. 
 

The recent classifications developed by Luo et al. [24] or Krause et al. [25] have been 

focused on characterizing the posterior fragments of the tibial plateau fractures. The three-column 

concept introduced by Luo et al. has changed the understanding of fracture pattern and treatment 

strategies. It could not, however, describe the differences between split and depression fractures 

as well as between the posteromedial and posterolateral fractures [24]. The four-quadrant 

classification that distinguishes fragmentations of the posterolateral from posteromedial sections 
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of the tibial plateau was established by Chang et al [5]. Krause et al. proposed a ten-segment 

categorization in which the fracture locations are defined by considering axial CT images from 

the tibial articular surface to the 3-cm depth [25]. It should be noted that the three above-

mentioned grouping did not provide detailed information about the mechanisms of injury 

associated with each fracture type [26, 27]. While planar images are practical for explaining the 

mechanisms of the injury, the exact location of the main fracture segments can be recognized by 

CT data [16, 27]. Consequently, unlike previous taxonomies which were based on either 2D or 

3D imaging methods, Kfuri et al. recently revised the Schatzker classification using CT data 

combined with x-ray images. They developed a new fracture categorization in which 3D 

morphology of the fracture and the spatial location of the principle fracture planes are presented 

in addition to the injury mechanisms [16]. 

4.2. Biomechanical Background 

Despite the high prevalence of the postoreomedial fragment and its critical role in 

preoperative planning, previous biomechanical experimental studies have not taken the presence 

of this fragment into account [11, 18-20, 28–36]. Although the recent fracture classifications have 

applied 3D imaging to describe the morphology of the posteromedial fragment, this concept has 

still not been transferred to biomechanical investigations. The traditional Horwitz model, which 

represents a Schatzker type VI fracture and ignores the coronal splits, has been widely utilized in 

the previous studies. This is yet another reason that the ideal fixation method for this kind of 

orthopaedic trauma is still under debate. Therefore, there is a great need to revise the traditional 

biomechanical fracture model by considering this crucial fracture fragment. In this regard, Yoo et 

al. recently executed the first mechanical tests for a Horwitz fracture model consisting of a 

posteromedial fragment [37]. However, their fracture model does not include all morphological 
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features of bi-condylar tibial plateau fractures. Our previous clinical study, based on the CT data 

of this complex trauma, revealed that for 97% of cases the sagittal lateral fracture line was 

observed in addition to their coronal major fracture line [1]. Accordingly, developing a fracture 

model based on the mentioned clinical observations concerning the morphology of this 

problematic injury is an essential step to find a biomechanically stable fixation method. 

4.3. FEA Background 

The finite element analysis (FEA) is implemented in the orthopaedic biomechanics field 

to develop implants or to help answer clinical questions by analyzing the parameters such as 

stresses or strains, which cannot be easily measured in experiments [38–40]. The essential steps 

in FEA are: 1) the verification to demonstrate that the FE model is free of numerical errors as 

well as 2) the validation to assess the reliability of FE simulations by comparing numerical 

outcomes with experimental data [39, 41, 42]. Afterwards, the predications of simulated bone-

implant structures can be transferred to clinical applications. Importantly, the validated FE 

models can be used to answer clinical questions by evaluating variations of input parameters such 

as loading conditions, bone qualities, and material properties or even design factors of implants. 

Considering the costs and efforts required for the experimental explorations of these variables, 

FE modeling is an extremely adequate substitute for executing sensitive analyses in a multitude 

of scenarios [42]. 

There are two main shortcomings in previous FE studies regarding the bi-condylar tibial 

plateau fractures. The first major drawback was that the complex fracture morphologies were 

ignored, and only the simple fracture geometries were considered. Most importantly, these FE 

models were not validated in connection with experimental tests [43–47]. Although mechanical 

understanding of the influence of coronal splits on the load sharing within the bone-implant 
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structure can resolve the current debate about the ideal fixation method of this complex fracture, 

like biomechanical experimental investigations, previous numerical studies also did not take the 

posteromedial fragment into account. Therefore, there is a necessity to develop an FE model of 

this complex fracture based on clinically relevant morphology in order to provide mechanical 

knowledge for the proposal of an appropriate fixation method. 

4.4. Objective of the Study 

As mentioned in the previous sections, the standard fixation method for complex tibial 

plateau fractures is still controversial due to the disregard of the posteromedial fragment in 

previous biomechanical and numerical studies as well as in established fracture classifications. 

Therefore, a biomechanical investigation using a clinically relevant fracture model is required to 

resolve this issue. To address that, this study was designed in two parts which are elaborated on 

in the next sections as publication I and II, respectively. Part I, which applied mechanical tests on 

the synthetic bones, aimed to develop a biomechanical fracture model based on the clinical 

review of CT data as well as to assess the effect of coronal splits on the mechanical behaviour of 

the tibia-implant structure. Part II, which utilized the FE method, focused on the evaluation of 

stress distributions within the implant components to provide a detailed understanding about the 

influence of the coronal fracture line.  

4.5. Publication I 

4.5.1. Summary of Publication I 

In this experimental publication, a biomechanical model of the bi-condylar tibial plateau 

fracture (Fracture C) including the coronal fracture line was developed and in terms of the 
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mechanical stability compared with the traditional Horwitz model (Fracture H) that disregarded 

the coronal split. Fracture models C and H were actualized using twelve specimens of the 4th 

generation tibias, and both of them were fixed with single lateral locked plating. The mechanical 

tests were performed under quasi-static and incremental cyclic loading until failure. The external 

force was transferred though a project-specific load applicator that consisted of femoral 

components of unilateral knee joint replacements to apply physiological pressure with a 

distribution of 60% on the medial tibial plateau surface and 40% laterally. Mechanical stability of 

the tibia-implant structures was compared between fracture models with respect to global 

stiffness, failure load, failure cycle, survival curve, as well as interfragmentary movements and 

relative rotations of fracture fragments. 

The results of this publication showed that with the presence of a coronal split, the 

construct stiffness and the failure load of the bone-implant structure were reduced by 43% (p      = 

0.013) and 38% (p  =  0.016), respectively. Considering the interfragmentary movement 

measurements, the coronal split resulted in the destabilization of the medial side of the tibia and a 

generation of joint incongruities which was resulted from the large relative displacement between 

the medial fragments and the tibial shaft as well as between the medial-anterior fragment and its 

posterior counterpart. Furthermore, the obtained results indicated that additional medial 

implantation is required due to the inadequacy of single plating with the lateral locking plate to 

stabilize this fracture.  

In conclusion, this part of the study demonstrated that applying a fracture model based 

on the clinical morphology of bi-condylar tibial plateau fractures is fundamental for the 

biomechanical evaluations since the coronal articular fracture lines have remarkable effects on 

the mechanical stability of the tibia-implant constructs, particularly on the medial side. 
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4.6. Publication II 

4.6.1. Summary of Publication II 

This publication addressed the effect of the fracture morphology on stress distributions 

within the implant components by implementing the finite element analysis (FEA). For this 

purpose, two FE models corresponding to the coronal fracture model (Fracture C) consisting of 

the coronal split as well as the traditional Horwitz model (Fracture H) ignoring the coronal 

fracture line were developed. After the verification and validation of the FE models, stress 

distributions within the locking plates and screws were assessed.  

For the validation purpose, Fractures C and H were realized on the synthetic tibial 

samples and fixed with the lateral locking plates to execute mechanical tests under the single and 

semi-physiological loading conditions. Global as well as local accuracies of the FE predictions 

were respectively assessed by regression analyses of the global axial stiffness and local 

displacements of optical markers, as well as by determining the root-mean-square errors (RMSE) 

for marker displacements of each fracture fragment and the percentage errors of the global axial 

stiffness [42, 48–50]. The validation step was initiated with calibrating the FE model of Fracture 

C under the simple and distributed loading conditions. First, the single loading case, in which an 

axial force was applied for the five different positions on the tibial plateau surface, was 

considered to evaluate the global stiffness and marker displacements for the FE model of Fracture 

C as well as to compare these numerical outcomes with the experimental ones. Following this 

calibration step, the load case was changed to a more realistic one by simulating a semi-

physiological loading scenario similar to the experimental conditions. The FE model of Fracture 

C was also calibrated for this distributed loading condition. Subsequently to validate the FE 

simulations in the both loading cases, the same numerical assumptions were applied for the FE 
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model of Fracture H and then numerical and experimental outcomes were compared. It should be 

noted that due to the complexity of the semi-physiological load applicator including the distal 

femoral condyles, an initial sub-validation step under the single loading condition was executed. 

Eventually, under semi-physiological loading, the validated FE models of Fractures C and H 

were compared with respect to von-Mises stress distributions within the implant components, 

total deformations of tibia-implant constructs, as well as the load sharings between the medial 

and lateral tibial condyles.  

The results of this publication illustrated that both fracture models were well validated, 

while FEA of Fracture C indicated superior agreements with the experimental outcomes than that 

of Fracture H. The assessments of the total deformation demonstrated that the coronal split 

increased the maximum total deformation of the tibia-implant structure by almost 73% in 

Fracture C than Fracture H, which caused higher relative displacement between the medial 

fragments and the tibial shaft. The evaluations of von-Mises stress distributions revealed that in 

comparison with Fracture H, the coronal split of Fracture C resulted in the alternation of the 

stress concentration areas from the middle part of the plate to the proximal section of the plate as 

well as a 61% increase in the peak stress of the kick-stand screw. In Fracture C, the proximal-

dorsal and kick-stand screws were the main load-bearing parts, while in Fracture H the load was 

mainly transferred through the kick-stand screw. It should also be noted that the fracture 

morphology influenced the load sharing between the medial and lateral sides of the tibia. In 

Fracture H, the external load was shared almost equally on both tibial condyles. The lateral 

fragment of Fracture C, however, transferred 61% of the external load. 23% and 16% of the axial 

force were carried by the medial-anterior fragment and its posterior counterpart, respectively.  

As a conclusion, this numerical section of the study also confirmed that the coronal 

fracture lines noticeably affected the stress distributions within the components of the locking 
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implants in addition to destabilizing the medial side of the tibia-implant constructs. Therefore, 

employing the clinically relevant FE model developed in this study is highly recommended for 

any numerical evaluations of bi-condylar tibial plateau fractures. Using this model can provide 

mechanical justification for selection of an ideal fixation method as well as for identification of 

the potential fatigue failure points in the lateral locking plates and screws. 

4.7. Study Limitations  

It is noteworthy to briefly consider the limitations of this study mentioned above as 

publications I and II. First, two fracture models were compared experimentally and numerically 

only under the axial and bending loading conditions since in most daily activities, the knee 

contact force is mainly applied in the axial direction. Moreover, the muscle forces were not taken 

into account for both the mechanical tests and the FE simulations. Furthermore, the ankle joint 

was simplified as a distal embedding cube. Additionally, the fourth-generation Sawbones were 

utilized instead of the human samples. Due to the constant geometry and the consistent 

mechanical properties, synthetic bones were selected to focus on the fracture morphology as the 

only study variable. Last but not least, both Fractures C and H were stabilized with single lateral 

plating which cannot appropriately reduce the movements of the medial fragments. This 

implantation was selected because it has been the most common plate used in the previous 

biomechanical studies investigating Fracture H. It can be postulated that the use of a more stable 

fixation method such as the double locked plating would noticeably decrease interfragmentary 

movements. 
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4.8. Conclusion of the Study and Future Perspective 

To sum up, both experimental and numerical parts of the study suggest that the coronal 

articular fracture lines substantially affect both the mechanical response of tibia-implant 

structures, specifically on the medial side, as well as the stress distribution within the locking 

implant. Consequently, for the experimental and numerical evaluations of bi-condylar tibial 

plateau fractures, a clinically relevant fracture model should be utilized to compare different 

fixation methods or assess implant failures. 

Having the outcome of this study in mind, the presented coronal fracture model should 

be implemented for future experimental researches to propose the best fixation method for this 

challenging orthopaedic trauma. In this regard, previous clinical studies have demonstrated that 

double plating fixation of the bi-condylar tibial plateau fractures consisting of the coronal splits 

provides adequate stability [2, 6, 13, 51]. This clinical recommendation, however, should be 

biomechanically investigated with the experimental tests based on the coronal fracture model. 

Therefore, the in-vitro mechanical tests on the cadaveric or synthetic tibial specimens can be 

executed to compare different configurations of the double plating such as the lateral locking 

plate combined with the medial locking plate located anteriorly or posteriorly.  

Furthermore, the validated FE model of the bi-condylar tibial plateau fractures 

developed in this study can be utilized for future numerical sensitivity investigations. On the one 

hand, the fixation methods are primarily selected based on the surgeon’s individual experience, 

disregarding comprehensive biomechanical assessments. On the other hand, the experimental 

investigations concerning available fixation options including all possible hardware 

configurations can be excessively complicated or even impossible. Therefore, the presented 

validated FE model of the bi-condylar tibial plateau fractures including coronal splits can be used 
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as a resource-efficient option to provide the biomechanical evaluations of different fixation 

methods. In order to find out the optimum plate position and implant design for this fracture type, 

distinctive fixation configurations of the medial and lateral locking plates can be analyzed 

regarding the effects of plate positions, implant designs, as well as screw orientations on the 

structural stability. It is worth mentioning that the current available fixation methods for bi-

condylar tibial plateau fractures are not limited to the locking plates. External fixations, double 

compression buttress plates, or even intramedullary nailing can be offered as well [52]. 

Therefore, the coronal FE model established in this study can be also utilized to assess not only 

the different configurations of the locking plates but also distinct combinations of other fixation 

techniques. However, additional validation of the FE model is required, if non-locking implants 

are considered. Subsequently, the optimization process considering the implant positions and the 

geometrical variables of implants can be executed. Additionally, the effect of environmental 

variables such as the loading condition and the bone quality can be numerically estimated to 

suggest a stable fixation technique in the case of osteoporosis as well as for the variations of the 

external loads. Last but not least, clinical trial studies are also required to verify the 

biomechanical outcomes regarding the most stable fixation method. 

 

 

 

 

 

 

 

 



 

22  
 

5. Summary 
  

Bi-condylar tibial plateau fractures with the highest frequency in 40-to-60-year-old 

patients accounts for 35% of all tibial plateau fractures. Surgical treatment of this fracture 

remains challenging due to the multi-planar articular comminution and the subsequent severe soft 

tissue injuries. Preoperative planning is meaningfully affected by recognition of the exact 

location of the fracture fragments, in particular the posteromedial fragment created by the coronal 

split. Despite the 50% incidence rate of this crucial fracture line, it has been disregarded in the 

established fracture classifications like the AO or Schatzker systems as well as in the previous 

biomechanical studies. For this reason, there is still a controversy regarding an ideal fixation 

strategy for the complex tibial plateau fractures. Therefore, through both experimental and the 

numerical investigations, this study aimed to develop a coronal fracture model based on the 

clinical data to ultimately address this concern. The experiments focused on comparison of the 

structural stability between the coronal fracture model and the traditional Horwitz model. The 

numerical simulations, which were established based on the validation of these fracture models, 

evaluated the effects of the fracture morphology on the stress distributions within the implant. 

Both study parts revealed that the coronal split remarkably reduced the global axial stiffness and 

displacement of the bone-implant structure, significantly destabilized the medial side of the tibia, 

as well as noticeably changed the stress distributions within the locking plates and screws. 

Furthermore, the lateral locking plate cannot adequately stabilize this fracture, and a double 

plating method including a supplemental medial plate is required. Consequently, it is highly 

recommended to apply the coronal fracture model of bi-condylar tibial plateau fractures for 

biomechanical tests, which aimed to compare different fixation methods, as well as for numerical 

studies, which focused on finding the optimum plate position, screw direction or plate design.  
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6. Zusammenfassung 
 

Bicondyläre Tibiaplateaufrakturen machen 35% aller Tibiaplateaufrakturen aus, mit der 

höchsten Häufigkeit im Alter von 40-60 Jahren. Die chirurgische Behandlung dieser Fraktur 

bleibt aufgrund der multiplanaren Gelenkzertrümmerung sowie der nachfolgenden schweren 

Weichteilverletzungen eine Herausforderung. Das Erkennen der genauen Lage der 

Frakturfragmente wird bei der präoperative Planung, insbesondere durch die koronale Spaltung 

des entstandenen posteromedialen Fragments, erheblich beeinträchtigt. Trotz einer Inzidenzrate 

von 50% für diese kritische Frakturlinie wurde sie in den etablierten Frakturklassifikationen wie 

dem AO- oder Schatzker-System sowie in früheren biomechanischen Studien nicht 

berücksichtigt. Aus diesem Grund gibt es nach wie vor eine Kontroverse über eine ideale 

Fixationsstrategie für komplexe Tibiaplateaufrakturen. Daher zielte diese Studie, die aus 

experimentellen und numerischen Teilen besteht, darauf ab, auf der Grundlage der klinischen 

Daten ein koronales Frakturmodell zu entwickeln, um diesem Anliegen letztlich Rechnung zu 

tragen. Der experimentelle Teil konzentrierte sich auf den Vergleich der strukturellen Stabilität 

zwischen dem koronalen Frakturmodell und dem traditionellen Horwitz-Modell. Im numerischen 

Teil, der auf der Grundlage der Validierung dieser Bruchmodelle erstellt wurde, werden die 

Auswirkungen der Bruchmorphologie auf die Spannungsverteilungen innerhalb der 

Implantatkomponenten bewertet. Beide Teile dieser Studie zeigten, dass die koronale Bruchlinie 

die globale axiale Steifigkeit und Verschiebung der Knochen-Implantat-Struktur bemerkenswert 

reduziert, die mediale Seite der Tibia signifikant destabilisiert und die Spannungsverteilung 

innerhalb der Verriegelungsplatten und -schrauben merklich verändert hat. Außerdem kann die 

laterale Verriegelungsplatte diese Fraktur nicht ausreichend stabilisieren, so dass eine doppelte 

Verplattung einschließlich einer zusätzlichen medialen Platte erforderlich ist. Daher wird 
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dringend empfohlen, das koronale Frakturmodell für bikondyläre Frakturen des Tibiaplateaus 

anzuwenden, sowohl bei biomechanischen Tests, bei denen verschiedene Fixationsmethoden 

verglichen werden, als auch für numerische Studien, bei denen es darum geht, die optimale 

Plattenposition, Schraubenrichtung oder das optimale Plattendesign zu finden. 
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Abstract
Introduction Surgical treatment of bi-condylar tibial plateau fractures is still challenging due to the complexity of the frac-
ture and the difficult surgical approach. Coronal fracture lines are associated with a high risk of fixation failure. However, 
previous biomechanical studies and fracture classifications have disregarded coronal fracture lines.
Materials and methods This study aimed to develop a clinically relevant fracture model (Fracture C) and compare its 
mechanical behavior with the traditional Horwitz model (Fracture H). Twelve samples of fourth-generation tibia Sawbones 
were utilized to realize two fracture models with (Fracture C) or without (Fracture H) a coronal fracture line and both fixed 
with lateral locking plates. Loading of the tibial plateau was introduced through artificial femur condyles to cyclically load 
the fracture constructs until failure. Stiffness, fracture gap movements, failure loads as well as relative displacements and 
rotations of fracture fragments were measured.
Results The presence of a coronal fracture line reduced fracture construct stiffness by 43% (p = 0.013) and decreased the 
failure load by 38% from 593 ± 159 to 368 ± 63 N (p = 0.016). Largest displacements were observed at the medial aspect 
between the tibial plateau and the tibial shaft in the longitudinal direction. Again, the presence of the coronal fracture line 
reduced the stability of the fragments and created increased joint incongruities.
Conclusions Coronal articular fracture lines substantially affect the mechanical response of tibia implant structures spe-
cifically on the medial side. With this in mind, utilizing a clinically relevant fracture model for biomechanical evaluations 
regarding bi-condylar tibial plateau fractures is strongly recommended.

Keywords Bi-condylar tibial plateau fracture · Coronal fracture line · Horwitz fracture model · Coronal fracture model · 
Mechanical test · Interfragmentray displacement

Introduction

Bi-condylar tibial plateau fractures are challenging traumas 
due to their complex fracture geometry and accompanying soft 
tissue injury [1, 2]. These fractures mainly occur in young 
patients as a result of high-energy trauma and generally require 
open reduction and internal fixation [3, 4]. Healing complica-
tions for these fractures have been reported from 14% up to 
a staggering 42% [5–10]. The main goal of operative treat-
ment is the patient’s return to daily activity and functional-
ity, which can be achieved through accurate reconstruction 
of the knee joint and the anatomical axes [2]. For planning 
and achieving suitable treatment, it has been recognized that 
providing a three-dimensional representation of the fracture by 
CT imaging plays a critical role [1, 11–14]. This is particularly 
important for articular fractures in the coronal plane as they are 
difficult to detect on bi-planar radiographs and complicated to 
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characterize by two-dimensional fracture classifications such 
as Schatzker or AO/OTA [15]. The AO/OTA and Schatzker 
classifications are the most common taxonomies of tibial 
plateau fractures due to their simplicity, while they disregard 
injury patterns observed in the third dimension [16].

The clinical relevance of these coronal fractures was identi-
fied by Barei et al. as a fracture pattern that separates a pos-
teromedial fragment from the tibial plateau [11] and which 
has a prevalence of almost 50% in complex tibial plateau frac-
tures [1, 11, 17]. The detection of this fracture line is clinically 
important because lateral locking plates, which are a common 
fixation method for this fracture, may not effectively stabi-
lize the posteromedial fragment and supplemental implants 
may be required [5, 6, 11, 18–20]. To adequately describe the 
personality of complex tibia plateau fractures, various three-
dimensional classification schemes such as the “three-column” 
concept were developed to refine the traditional planar clas-
sifications as a guide for surgical planning [21]. Recently, 
an extension of the Schatzker classification was introduced 
in which the fracture type and the mechanism of injury were 
described based on plain radiographs as well as CT data were 
utilized to provide complemental third-dimensional infor-
mation about the location of the main fracture planes [22]. 
Although the clinical relevance of the posteromedial frag-
ment and the dependency of treatment plans on identifying 
fracture locations has been recognized, there is still a lack of 
understanding regarding the biomechanical implications of the 
posteromedial fragment, in particular with respect to its ade-
quate stabilization [1]. Previous biomechanical studies on bi-
condylar tibial plateau fractures have largely been based on the 
model developed by Horwitz et al. [23] to simulate a Schatzker 
Type VI fracture. As this model is based on a coronal projec-
tion of the fracture, it completely ignores any coronal fracture 
lines and thus the presence of a posteromedial fragment. Yet, 
it remains the most frequently employed biomechanical model 
[23–35] on which recommendations for fracture fixation of 
complex tibia plateau fractures are based upon.

Due to the aforementioned negligence of articular frac-
ture lines, establishing a clinically relevant, biomechanical 
fracture model is required to resolve controversies regarding 
the ideal fixation method for this complex trauma. The aim 
of this study was to develop a biomechanical model for bi-
condylar tibial plateau fractures, which incorporates a coro-
nal fracture line. We hypothesized that our novel coronal 
fracture model would exhibit inferior mechanical stability 
compared to the traditional Horwitz model.

Materials and methods

This biomechanical study was performed on synthetic bone 
analogues which were osteotmized to produce two differ-
ent fracture models: the traditional Horwitz fracture model 

(Fracture H) and a novel fracture which was based on a sys-
tematic review of CT images [1] and included a coronal frac-
ture line (Fracture C). The fracture models were fixed with 
locked plating constructs and were quasi-statically as well 
as cyclically loaded to determine the mechanical stability as 
measured by stiffness, fragment movement and failure loads.

Sample preparation

Twelve synthetic tibial bones (#3406 left large tibia, 4th 
Generation, Sawbones, Malmö, Sweden) were prepared 
with identical osteotomies using a custom-made jig and an 
oscillating saw. For Fracture H, the central triangle of the 
proximal tibia was removed to mimic an unstable fracture 
situation [23, 34]. The first cutting line started from the 
intercondylar eminence and ended at a point on the lateral 
cortex located 4 cm distally from the lateral plateau. The 
medial cut was made from the intercondylar eminence to 
a point on the medial cortex positioned 6 cm distally from 
the medial plateau. A final cut was made to connect the lat-
eral and medial cortex points (Fig. 1a). The coronal frac-
ture model (Fracture C) consisted of coronal and sagittal 
articular fracture lines. The coronal fracture line was made 
in the center part of the medial tibial plateau in the superior 
view. The sagittal fracture line split the lateral plateau and 
intercondylar eminence of the tibia in the transverse plane. 
Then, lateral and medial cuts were made from the Tubercu-
lum intercondylare laterale to the lateral cortex at 4 cm and 
on the medial cortex at 6 cm distal from the tibial plateau. 
The final osteotomy connected the lateral and medial splits 
and the central triangle of the bone from the proximal tibia 
was removed (Fig. 1b).

Both fracture types were fixed with titanium locking 
plates (AxSOS Proximal Lateral Tibia Plate, left, six-hole 
length, Stryker, Selzach, Switzerland) by an experienced 
orthopedic trauma surgeon according to the manufactur-
ers’ recommendations using locking self-taping screws of 
4-mm diameter (four articular screws including two 80-mm 
screws for proximal-posterior and proximal-inferior plate 
holes, 85 and 70-mm screws for proximal-middle and prox-
imal-anterior plate holes, respectively, one kick-stand screw 
with 75-mm length as well as six shaft screws with length 
between 20 and 32 mm). A 3D-printed template was used 
to ensure that implants were inserted identically in all speci-
mens (Fig. 2).

Experimental setup

The distal end of the tibia was embedded in an aluminum 
box to a depth of 50 mm using a three-component casting 
resin (RenCast FC 53 A/B + Füller DT 082, Gößl + Pfaff 
GmbH, Karlskron/Brautlach, Germany). This box was 
clamped to the base of the testing machine (Instron E3000, 
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Fig. 1  a Fracture H according to the schematic drawing of Horwitz et al. [23] and [34]. b Fracture C developed based on clinically relevant frac-
ture lines [1]

Fig. 2  a Prepared samples for fracture models H and C. b Anterior–posterior X-ray of prepared specimens for each fracture model
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Instron Structural Testing, High Wycombe, UK) to rigidly 
fix samples in a vertical position. Loading was introduced 
through artificial femur condyles of unilateral knee replace-
ments which were embedded in polyurethane blocks. These 
blocks were attached to the actuator of the testing machine 
with a hinge joint, which allowed the femur condyles to tilt 
in the frontal plane and balance the movement of the tibial 
head (Fig. 3a). The testing machine included a Dynacell 
load cell (Capacity of ± 10 kN, ISO 7500-1 Class 1, Instron 
Structural Testing, High Wycombe, UK) and data logging 
software (Instron Console V8.4 and Instron Wave Matrix 
V1.5, High Wycombe, UK).

To simulate physiological loading conditions, femoral 
condyles were positioned in such a way that the equidistant 
point and the axis of the testing machine were not aligned, 
so the applied load was distributed 40% laterally and 60% 
medially on the tibial plateau (Fig. 3b) [35, 36].

Loading scenario

At the beginning of loading, six static displacement-con-
trolled ramps (10 mm/min) up to 250 N were performed. 
The first three static ramps allowed the samples to settle, 
while the second three cycles were used to measure the ini-
tial stiffness of the tibia-implant constructs. Afterwards, con-
structs were cyclically loaded with a sinusoidal axial load 
(2 Hz) between the lower level of 20 N and an incrementally 
increasing upper load level. The upper load level started at 

250 N and was increased stepwise by 50 N every 500 cycles 
to mimic increasing levels of weight bearing. Additionally, 
static measurements were taken at maximum loads before 
and after increments of 500 cycles (Fig. 4).

All specimens were loaded until mechanical failure (i.e., 
Sawbone breakage, gap closure on the medial side of the 
tibia, or implant failure). With a retrospective analysis of 
ARAMIS data, the clinical failure point was defined as ≥ 5° 
relative rotations of fracture fragments, ≥ 5-mm fracture gap 
displacements for medial- or lateral-shaft gaps, or ≥ 2-mm 
displacements of articular gaps on the tibial plateau, which-
ever occurred first [37, 38].

Interfragmentary movement analysis

To track the relative displacement of fracture fragments, an 
optical measurement system (ARAMIS 5M, GOM GmbH, 
Braunschweig, Germany) with measurement error < 0.1% 
and 2% for relative translational and rotational movements, 
respectively [39], was utilized. ARAMIS system consists 
of data capturing and analysis software (GOM Correlate 
Professional 2018, GOM GmbH, Braunschweig, Germany) 
that utilizes stereo-image based techniques to evaluate the 
coordinates and displacements of objects with image cor-
relation from point marker or stochastic pattern recognition. 
The global coordinate system was defined using computer-
aided design (CAD) files of the tibial shaft and the best-fit 
algorithm included in the GOM Correlate software. Then, 

Fig. 3  a Experimental setup for mechanical test in which the high-
lighted local coordinate system indicates degrees of freedom for the 
load applicator. b Load applicator and more details about load distri-

bution. Also, the marker placements and the spray pattern for image 
detection can be seen
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CAD files of other fracture fragments were virtually matched 
with the corresponding surface and point components to 
track relative displacements between fracture parts (Fig. 5a).

Interfragmentary movements and the relative rotation 
of fracture segments with respect to the tibial shaft were 
analyzed to elucidate displacement of fracture fragments. 
All kinematic data were reported in the anatomic coordinate 
system in which x, y and z axes indicate frontal, sagittal and 
longitudinal directions, respectively. Moreover, the axial dis-
placement of the loading center was evaluated in the loading 
coordinate system (Fig. 5b). Every 100 cycles, ARAMIS 
pictures were taken at the maximum and minimum loads to 
measure the elastic and plastic deformations of the construct, 
respectively. Additionally, a static measurement at the point 
of maximum load before and after each 500 cycles was made 
to track the elastic deformation of the specimens. To evalu-
ate the movement of the fracture fragments during loading, 
a pair of points was considered in the center of each gap to 
measure changes in the relative distances of individual gaps 
(Fig. 6).

Measurement outputs

From recorded data, the following parameters were 
evaluated:

1. Static construct stiffness (N/mm), defined as load 
changes between 20 and 250 N divided by the corre-
sponding axial displacement of the loading center in the 
static step.

2. Cyclic construct stiffness (N/mm), which was calculated 
by considering in-between ramps between cyclic steps 

and dividing load changes between 20 and 250 N by the 
corresponding axial displacement of the loading center.

3. Interfragmentary displacement (mm), determined as 
relative movement between individual fracture gaps and 
reported for static loading as well as after 2500 cycles 
at the 500 N force corresponding to 20% of maximum 
knee contact force [40].

4. Rotations of fracture fragments around the three ana-
tomical axes with respect to the tibial shaft (degree), 
which were evaluated at the maximum load levels during 
cyclic steps.

5. Failure load (N) and failure cycles that determine 
the load and the number of cycles where the samples 
exceeded clinical failure criteria.

6. Survival curves as a comparison between fracture mod-
els for level of load tolerance regarding clinical failure.

Statistical analysis

Independent t tests were applied to compare mechani-
cal parameters between the two fracture models. The 
assumptions of independent t test consisting of independ-
ence, interval scale, normal distribution, as well as homo-
geneity of variances (Levene’s test) were evaluated for 
both fracture groups. Normal distributions of data were 
assessed with Shapiro–Wilk’s test (p > 0.05) as well as 
visual inspection of the histogram, normal Q–Q, and box 
plots. For the fatigue tests, Kaplan–Meier survival analy-
ses with log-rank tests were executed (IBM SPSS Statistics 
19, Chicago, IL, US).

Fig. 4  Force-steps curve that 
indicates loading scenario 
includes static and incremental 
cyclic
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Fig. 5  a A general view for the defined markers and surfaces as well as fitted CAD files in GOM Correlate software. b Axial displacement of the 
loading point highlighted with an arrow as well as details of the loading and anatomic coordinate systems

Fig. 6  Positions for measurement of interfragmentary movements. a 
Fracture H: medial-shaft, lateral-shaft, and plateau gaps. b Fracture 
C: medial anterior-shaft, medial posterior-shaft, lateral-shaft, side 

coronal, corner coronal, plateau coronal, medial anterior-lateral, and 
medial posterior-lateral gaps
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Results

In static loading, the axial stiffness of Fracture C was 43% 
lower than that of Fracture H (Table 1, p = 0.013). During 
cyclic steps, depending on the load level, Fracture C was 
on average 47–55% laxer than Fracture H (Fig. 7). 

To elucidate the effect of the coronal fracture line on 
fragment stability, relative displacements and rotations were 
evaluated for the key fracture fragments. Although fragment 
displacements were evaluated during the whole cyclic test-
ing procedure, we report the displacements after 2500 cycles 
at the 500-N load level corresponding to 20% of the maxi-
mum knee contact force (Fig. 8). For both Fractures H and 
C, displacements on the medial sites were predominantly 
in the longitudinal direction followed by frontal and sagit-
tal displacements. In particular, displacement at the medial 
anterior-shaft gap of Fracture C was almost exclusively in 
longitudinal direction and exceeded the 5-mm clinical fail-
ure criteria (Fig. 8a). Both coronal gaps of Fracture C were 
mainly displaced in the sagittal direction followed by the 
longitudinal and frontal movements. The average sagittal 
displacements exceeded the 2-mm failure criteria at both 
locations in the plateau (Fig. 8b).

As the displacement measurements indicated that the 
medial-anterior and medial-posterior fragments of Fracture C 
moved in different directions, relative rotations of these frag-
ments were analyzed (Fig. 9). Analysis of the sagittal rotation 
revealed that the coronal split mainly destabilized the medial-
anterior fragment which showed larger rotations compared to 
its corresponding posterior one as well as the whole medial 
segment of Fracture H (Fig. 9a). Regarding the frontal rotation, 
unlike the movement of the medial segment in Fracture H, the 
coronal split resulted in reversing the rotation of both medial 
fragments toward the posterior direction (Fig. 9b). Finally, 
for the longitudinal rotation, the coronal split destabilized the 
medial-posterior fragment, demonstrating a more than three-
fold increase in internal rotation when compared to its ante-
rior counterpart as well as the medial component of Fracture 
H (Fig. 9c). For both Fractures H and C, interfragmentary 

Table 1  Comparing mechanical properties between Fractures H and 
C (mean ± standard deviation, n = 6)

Static stiffness 
(N/mm)

Failure load (N) Failure cycles

Fracture H 304 ± 95 593 ± 159 3517 ± 1493
Fracture C 172 ± 50 368 ± 63 1433 ± 656
p 0.013 0.016 0.017

Fig. 7  Cyclic stiffness for both fracture configurations (mean ± stand-
ard deviation, n = 6)

Fig. 8  Interfragmentary displacements at 500-N cyclic load after 2500 cycles. a Medial-shaft gaps of Fractures H and C. b Coronal gaps of 
Fracture C. The dash-dotted lines depict clinical failure criteria

32 



1726 Archives of Orthopaedic and Trauma Surgery (2020) 140:1719–1730

1 3

movements of the lateral-shaft and medial–lateral gaps were 
almost negligible compared to those of the medial-shaft and 
coronal gaps. Moreover, the movements of these two gaps and 
relative rotations of lateral fragments were similar in both frac-
ture models.

Shapiro–Wilk’s test (p > 0.05) as well as visual inspection 
of the histogram, normal Q–Q, and box plots indicated that for 
both Fractures H and C, the parameters of mechanical stabil-
ity (i.e., static stiffness, failure load, and failure cycles) were 
approximately normally distributed. According to the clinical 
failure criteria, Fracture C failed earlier and at lower load lev-
els compared to Fracture H which tolerated 60% higher load 
levels (p = 0.016). Failure cycles of Fracture H samples were 
almost 2.5 times that of Fracture C (Table 1, p = 0.017). The 
survival analysis revealed that the survival rate of Fracture H 
was almost 2.5 times that of the Fracture C group. While none 
of the Fracture C samples survived the clinical failure criteria 
until 2500 cycles or 500-N load, half of Fracture H specimens 
survived 2500 cycles (Fig. 10, p = 0.006).

Discussion

Articular fracture lines in complex tibial plateau fractures 
which result in a coronal split have been widely ignored in 
previous biomechanical studies and fracture classifications 

[11]. Thus, we developed a coronal fracture model based 
on 3D fracture morphologies [1] and assessed this model 
biomechanically. Our study revealed that the presence of a 
coronal split generates an unstable posteromedial fragment 
which is inadequately stabilized with unilateral plating from 
the lateral aspect. The coronal split reduced the stiffness and 

Fig. 9  Relative rotations of the medial fragments for Fractures H and C with respect to the tibial shaft. a Sagittal rotation. b Frontal rotation 
(dash-dotted circle indicates destabilization of diagonal screw). c Longitudinal rotation. Dash-dotted lines demonstrate clinical failure criteria

Fig. 10  The survival curves for Fractures H and C
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decreased the strength of fracture fixation and resulted in 
increased fragment displacements during loading.

The biomechanical assessments revealed that Fracture H 
was almost two times stiffer and tolerated 1.5 and 2.5 times 
higher load level and cycles, respectively, as compared to 
Fracture C (Table 1). Also, the survival rate of the Fracture 
H group was nearly 150% higher than that of Fracture C. 
Thus, the coronal fracture line remarkably destabilized the 
fracture fixation construct.

To further understand the effects of coronal fracture 
lines, the rotations of fracture fragments relative to the 
tibial shaft and interfragmentary displacements were ana-
lyzed. Interfragmentary movements (especially on the artic-
ular surfaces) are considered an important clinical param-
eter because an articular subsidence of more than 2–3 mm 
remarkably increases knee joint pressure and may result in 
osteoarthritis [41, 42]. Moreover, malalignment is an impor-
tant factor in evaluating treatment outcomes of tibia plateau 
fractures and rotations of joint lines more than 5° are con-
sidered fixation failure [37, 43, 44]. Thus, interfragmentary 
displacements of the medial and plateau fracture gaps were 
analyzed to assess a risk of bone non-union and osteoarthro-
sis, respectively. The relative rotations of medial fracture 
fragments with respect to the tibial shaft are also indicative 
of limb malalignment. To the best of our knowledge, this 
was the first study in which 3D displacements of fracture 
fragments have been evaluated for complex tibial plateau 
fractures. To build upon previous investigations regarding 
bi-condylar tibial plateau fractures, which only evaluated the 
facture fragment subsidences [23–31, 33, 45] or the frontal 
intra-articular gap movements [35], we presented a compre-
hensive 3D kinematic evaluation of all fracture fragments to 
illuminate the effects of coronal fracture lines.

During cyclic loading, the medial-anterior segment of 
Fracture C mainly moved in the longitudinal direction and 
exceeded 5-mm clinical failure which is indicative of a high 
risk for bone non-union. At the same time, the medial-poste-
rior portion separated from the anterior one in the posterior 
direction with sagittal displacements exceeding 2 mm which 
indicates a risk of knee osteoarthritis (Fig. 8).

Due to the vertical nature of the coronal fracture line, 
the medial segments of Fracture C were subjected to higher 
shear forces [11]. Therefore, compared to Fracture H, the 
medial segments of Fracture C, especially medial-posterior 
one, demonstrated higher instability (Fig. 9). From sagit-
tal rotational disparity between the two medial fragments, 
it can be concluded that coronal fracture line results in an 
articular step-off which may lead to knee osteoarthritis. 
Since sagittal rotations occurred due to screw bending, the 
coronal split mainly destabilized the anterior fragment per-
haps due to the inclusion of fewer screws in comparison to 
its posterior counterpart. Regarding the frontal rotations, the 
contact between the load applicator and the coronal edges 

of the medial fragments in Fracture C resulted in reversing 
the movement of these fragments compared to Fracture H. 
For Fracture C in the 500-N cyclic load level, the diago-
nal screw which is the only connection between the medial 
fragments and mainly passes through the medial-posterior 
segment, lost its connection with the anterior one. Thus, 
medial-anterior fragment rotated in frontal direction, while 
the medial-posterior part remained stable. Importantly, lon-
gitudinal rotations demonstrate that the medial-posterior and 
medial-anterior fragments of Fracture C tilted away towards 
the posterior direction of the transverse plane. This separa-
tion resulted in higher loading on the medial-posterior part 
and consequently more longitudinal rotation compared to 
the medial-anterior one. It should be noted that for Fracture 
C there is a risk of malalignment in frontal and transverse 
planes due to exceeding the clinical failure criteria for sag-
ittal and longitudinal rotations of the medial-anterior and 
medial-posterior fragments, respectively.

These biomechanical findings demonstrated that disre-
garding the coronal fracture line will result in overestimation 
of structural rigidity of tibial plateau fracture constructs. 
Also, the relative displacement of fracture fragments was 
considerably affected by the presence of a coronal split. 
While the medial fragment of Fracture H displaced mainly 
in the frontal plane, the coronal fracture resulted in rotational 
instabilities of both medial fragments. Therefore, with the 
presence of the coronal split, there is a risk of non-union at 
the tibial medial side as well as malalignment of the tibial 
plateau and eventually osteoarthrosis. With kinematic evalu-
ations in mind, these consequences are likely to occur at 
lower load levels in Fracture C than in Fracture H. Notice-
ably due to higher relative rotations for the medial-posterior 
fragment and interfragmentary movements over 5 mm for 
medial anterior-shaft gap, an additional medial fixation could 
provide higher stability for Fracture C. These conclusions 
agree with previous clinical studies that have demonstrated 
higher clinical failure rates at the medial side of complex 
tibial plateau fractures [1, 2]. Also, it has been clinically [2, 
11, 17, 19, 20] or biomechanically [45] observed that lateral 
locking implants may not adequately stabilize the postero-
medial fragments of bi-condyla tibia plateau fractures and a 
supplementary medial implantation will be required.

Considering the clinically observed importance of pos-
teromedial fragment for bi-condylar tibia plateau fractures, 
developing a biomechanical fracture model including the 
coronal fracture line is highly demanded [11]. Contrary to 
previous experimental studies, which applied loads only 
on the medial tibial plateau [23, 29, 32–34, 45], our load 
applicator was designed to simultaneously apply axial 
forces on both tibial plateau surfaces and distribute it 
40% laterally and 60% medially, corresponding to physi-
ological conditions [35, 36]. This load applicator with the 
adjustable position of the medial and lateral indenters can 

34 



1728 Archives of Orthopaedic and Trauma Surgery (2020) 140:1719–1730

1 3

be used even for cadaveric samples with various plateau 
widths. Moreover, using artificial femur condyles pro-
vided a more physiological contact pressure on the tibial 
plateau as compared to previous biomechanical studies 
[35]. Furthermore, like some of previous investigations 
[23, 26, 31], the fracture model of this study presented a 
highly unstable situation by removing the central triangle 
of bone from the proximal tibia. Comparing mechanical 
behaviors of the Horowitz fracture model among previous 
experimental studies [23, 26, 29, 31, 33, 35] is difficult due 
to some distinctions regarding sample types (composite 
or cadaveric bones), loading and boundary conditions as 
well as loading scenarios. In this regard, only the study 
of Lasanianos et al. [35] was almost similar to ours. The 
static stiffness of Fracture H was found to be 304 ± 95 N/
mm which is in the same range of their reported value (400 
± 64 N/mm) [35]. The mentioned research group obtained 
higher static stiffness values for specimens fixed with lat-
eral locking plates. A reason for this could be that the 
fracture model of their study was stiffer due to preserving 
the middle fracture gap. Also, a different distal boundary 
condition was assumed in their experimental setup. Failure 
load of Lasanianos et al.’s fracture model was almost three 
times that of Fracture H reported in the current research, 
since we assumed the clinical failure criteria which is in 
contrast with their mechanical failure criteria. Among pre-
vious biomechanical studies, only the investigation of Yoo 
et al. [45] considered a Horwitz fracture model consist-
ing of the posteromedial fragment. However, their frac-
ture model was different than our coronal fracture model 
developed based on the clinical review of Pätzold et al.’s 
study [1]. Fracture C includes a sagittal articular fracture 
line in addition to the proximal fracture gap that is located 
laterally compared to that of Yoo et al.’s fracture model. 
They reported failure load of the Sawbone samples fixed 
with the tibial less invasive stabilization system (LISS) to 
be 1680 ± 179 N that is almost 4.5 times that of Fracture 
C. This difference could be due to their stiff fracture model 
in which the middle fracture gap was preserved as well as 
the lateral articular split was not included. Additionally, 
they utilized a hemispherical impactor for exclusive load-
ing on the medial tibial plateau, although our loading was 
performed with a dual applicator which simultaneously 
applies the axial force on both tibial plateaus. Moreo-
ver, their failure criteria were different than our clinical 
ones. Regarding the loading scenario, an incremental 
cyclic loading until failure was considered in this study. 
Unlike previous studies, in which the testing protocol did 
not include the incremental cyclic loading [23–35], the 
maximum load level of our gradual fatigue test increased 
stepwise by 50 N every 500 cycles. We believe that this 
progressive cyclic loading can simulate daily living activ-
ities of patients during the healing process, since after 

surgery incremental weight bearing on the injured limb 
is recommended.

Naturally, this study had some limitations which should 
be taken into consideration. First, artificial fourth-generation 
Sawbone samples were used for mechanical testing. Due to 
their material properties, their failure behavior might poten-
tially differ from failure in human bone specimens. That is 
why we focused the failure analysis on relative movements 
between fragments rather than catastrophic failure of the 
fracture fixation construct. Also, Sawbone provided con-
sistency in material, geometry, and mechanical properties, 
which increases the power to detect differences between 
groups. Second, the two fracture models were compared 
only under axial and bending loading conditions. The load 
applicator used in this study provided the sagittal rotational 
degree of freedom and consisted of femoral components of 
unilateral knee joint replacements which applied physiologi-
cal pressure to the tibial plateau surface with distribution 
of 60% on the medial side and 40% laterally. In addition, 
the loading scenario only included axial knee joint forces, 
although for more realistic loading, the effect of muscle 
forces should also be considered. Moreover, instead of 
simulating the ankle joint, specimens were fixed distally to 
the testing machine directly, resulting in a somewhat over-
constrained loading condition. Furthermore, to evaluate 
displacements and rotations, the fracture fragments were 
assumed as rigid parts. This assumption could be used due 
to high stiffness of the Sawbones which makes local defor-
mations of segments negligible. Additionally, we simulated 
a hypothetical, unstable bi-condylar tibial plateau fracture in 
both fracture models by removing the central triangle of the 
proximal tibia as well as the side gap from the medial tibia. 
Last but not least, only one particular implant configuration 
with single lateral plating has been considered. With a more 
stable configuration like double medial and lateral platting 
which stabilizes the posterior fragment, the destabilizing 
effect of the coronal fracture is most likely less pronounced.

Conclusion

The outcomes of this study emphasize that it is mandatory 
for biomechanical simulations regarding complex tibial pla-
teau fractures to be based on a clinically relevant fracture 
model such as ours (Fracture C) due to its ability to mimic 
native mechanical behavior more accurately than the tra-
ditional Horowitz model. The observed instability on the 
medial side of the coronal fracture model suggests that lat-
eral plating alone provides insufficient mechanical fracture 
stabilization. We intend to pursue future research in this 
endeavor to propose the best fixation method for our novel 
fracture model.
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a b s t r a c t 

Bi-condylar tibial plateau fractures are demanding to treat due to the complex geometry and the artic- 

ular comminution. The presence of a coronal fracture line plays a crucial role in the fixation strategy. 

Disregarding this fracture line in previous biomechanical studies and established fracture classifications 

resulted in a lack of detailed knowledge regarding the influence of medial-posterior fragments on implant 

load sharings. This study aimed to evaluate the effects of coronal splits on stress distributions within the 

implants using the finite element analysis (FEA). FE models with (Fracture C) and without the coronal 

split (Fracture H) were developed and validated in order to assess stress distributions within the implant 

components. Comparing FE outcomes with biomechanical experiments indicated that both fracture mod- 

els were well validated. FE evaluations demonstrated that the coronal split caused destabilization of the 

medial tibia, as well as a shift in the peak-stress areas from the middle part of the plate to the proximal 

section, and a 61% increase in the maximum stress of the kick-stand screw. Therefore, FE models based 

on clinically-relevant fracture morphologies can provide a reliable tool to assess implant failures as well 

as to compare different fracture fixation techniques. 

© 2020 Published by Elsevier Ltd on behalf of IPEM. 
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1. Introduction 

Bi-condylar tibial plateau fractures characterized by destabiliza-

tion of both medial and lateral proximal condyles represent 35% of

all tibial plateau fractures [1 , 2] . This fracture has the highest fre-

quency in people between 40 and 60 years old and is more com-

mon in males than in females [1 , 2] . It occurs mainly as a result

of varus or valgus stresses combined with axial loading [3] . Aims

of an appropriate treatment include restoring knee joint functions

and preventing osteoarthritis or limb mal-alignment [4] . Almost

50% of complex tibial plateau fractures present with a coronal frac-

ture line which splits a posteromedial fragment [5–7] . Since frac-

tures in the coronal plane are difficult to identify in bi-planar

radiographs, preoperative 3D imaging is mandatory for adequate
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39
lanning of the surgical treatment [ 4–6 , 8 , 9] . Presence of a coro-

al split often requires medial implants in addition to the lateral

ocking plate to stabilize the posteromedial fragment [6 , 10 , 11] . The

stablished Schatzker and AO/OTA fracture classifications, however,

ave ignored this important fracture line [12] . 

Previous experimental studies on tibial plateau fractures have

argely been based on the model developed by Horwitz et al. that

mulates a Schatzker Type VI fracture [13–25] . Since this model

s created according to a frontal projection of the fracture, it dis-

egards coronal fracture lines as well as the presence of postero-

edial fragments. Due to the inadequacy of this fracture model in

eproducing complex fracture situations, the findings from these

iomechanical studies have limited relevance for fractures with

oronal splits and posteromedial fragments. 

The finite element analysis (FEA) has proven to be an extremely

seful tool for the development and correct applications of frac-

ure fixation implants when simulations were properly verified and

alidated [26 , 27] . Verified and validated FE models can be ana-

yzed regarding mechanical parameters such as strains or stresses,

hich are complicated, if not impossible, to measure in experi-
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ents [26 , 28] . Like biomechanical experiments, previous finite el-

ment studies for tibial plateau fractures have simulated neither

omplex fracture morphologies nor the presence of coronal splits

29–33] . 

Due to the lack of adequate models for the fixation of tibial

lateau fractures, there is still a lack of understanding about the

mpact of the coronal fracture line on the load sharing within the

one-implant constructs. Such detailed knowledge would provide

echanical justification and educated evidence for implant selec-

ion. Therefore, this study used FEA to evaluate the effect of the

oronal fracture line on the load distributions within fixation con-

truct and fracture stability. To do so, FE models with and without

 coronal fracture line were developed, validated, as well as com-

ared with respect to stress distributions within the implants. We

ypothesized that our coronal fracture model would exhibit higher

tresses with distinct stress distributions within the implant com-

ared to the traditional Horwitz model. 

. Material and methods 

.1. Study design 

FEA was utilized to assess the effect of the fracture morphology

n implant stress distributions by comparing two different fracture

odels simulated on synthetic tibia models fixed with the lateral

ocking plates: a traditional Horwitz fracture model (Fracture H)

nd a novel coronal fracture model (Fracture C). The FE models

ere validated with mechanical tests executed on synthetic sam-

les under static single and semi-physiological loading conditions.

nitially, the FE model of Fracture C was assessed with respect to

imple single loading cases in five different force positions and in

he axial direction. Then, the load case was extended to repre-

ent a semi-physiological loading scenario. The FE model of Frac-

ure C was calibrated using both load cases, and afterwards the

alidity of FE simulations was assessed for the FE model of Frac-

ure H. Subsequently, validated FE models were compared under

emi-physiological loading regarding total deformations of bone-

mplant structures, load sharings between the medial and lateral

ibial plateaus, as well as von-Mises stress distributions within the

mplant components. 

.2. Mechanical test to validate FEA of fracture models 

.2.1. Sample preparation 

Fracture samples were prepared using two synthetic tibial

ones (#3406 left large tibia, 4 th Generation, Sawbones, Malmö,

weden). The coronal fracture model (Fracture C) consisted of coro-

al and lateral articular splits identified in a systematic review of

T images [5] . In the superior view, the coronal fracture line di-

ided the medial tibial plateau in two equal medial-anterior and

edial-posterior segments. In the transverse plane, the sagittal

racture line separated the lateral plateau and intercondylar emi-

ence of the tibia. Then, the lateral and medial osteotomies were

erformed from the Tuberculum intercondylare laterale to the lat-

ral cortex at 4 cm and to the medial cortex at 6 cm distal from

he tibial plateau, respectively. The medial and lateral ends were

onnected by a final cut, and the central segment was removed

 Fig. 1 ). For Fracture H, the lateral and medial cortexes were cut

rom the intracondylar eminence to 4 cm from the lateral plateau

nd 6 cm from the medial plateau, respectively. The third cut from

he lateral to the medial cortex removed the central bone gap

 Fig. 1 ). 

A board-certified orthopedic trauma surgeon fixed both fracture

odels using titanium locking plates (AxSOS Proximal Lateral Tibia

late, left, six-hole length, Stryker, Selzach, Switzerland) and lock-

ng self-tapping screws of 4 mm diameters (four articular screws
40
ith 70 to 85 mm lengths, as well as six shaft screws with 20 to

2 mm lengths). A 3D-printed template was utilized to insert im-

lants in both fracture models identically. 

.2.2. Experimental setup 

The distal end of the tibia was embedded vertically in an alu-

inum box to a depth of 50 mm using a three-component cast-

ng resin (RenCast FC 53 A/B + Füller DT 082, Gößl + Pfaff GmbH,

arlskron/Brautlach, Germany). The box was fixed via a bench vise

nd a cross table to a testing machine (Zwick 010, Zwick GmbH &

o. KG, Germany) to provide the possibility for shifting the sample

osition from one loading point to another one in the single load-

ng cases ( Fig. 2 .A). For semi-physiological loading, the embedding

art was directly clamped to the base of an electro dynamic testing

achine (Instron E30 0 0, Instron Structural Testing, High Wycombe,

nited Kingdom) ( Fig. 2 .B). 

Validation consisted of single and semi-physiological loading

ases. In single loading, six static displacement-controlled ramps

10 mm/min) up to 350 N were applied at five different points (LA,

C, LP, MA, and MP) on the tibial plateau to cover a representa-

ive area for knee joint contact forces ( Fig. 2 .C) [34] . The first three

tatic ramps of 75 N allowed the samples to settle, while the sec-

nd three cycles up to 350 N were used to measure the stiffness

f the tibia-implant constructs and local displacements. To remain

ithin the linear elastic regions, the lateral positions (LA, LC, and

P) were loaded with 350 N, while the MA and MP positions were

oaded with 75 N and 100 N, respectively. For instance, Fig. 2 .A il-

ustrates the experimental set-up for the LP position of this loading

ondition. The loads were introduced through a 10 mm-diameter

teel ball attached to an aluminum cylinder. A horizontal linear

lide connected the cylindrical indenter to the testing machine. The

irection and position of the force were transferred to the FE mod-

ls by virtually tracking the indenter of the testing machine. 

For semi-physiological loading, the axial force was introduced

hrough artificial femur condyles of unilateral knee replacements

mbedded in polyurethane blocks. These blocks were attached to

he actuator of the testing machine with a hinge joint, which al-

owed the femur condyles to tilt in the frontal plane. To provide

hysiological load distribution with 60% loading on the medial tib-

al plateau [19 , 35] , the distance of the femoral condyles was ad-

usted in such a way that the equidistant point and the axis of the

esting machine were not aligned ( Fig. 2 .D). For this loading sce-

ario, samples were subjected to six static displacement-controlled

amps (10 mm/min) up to 250 N which results in the elastic de-

ormation. After settling of samples in the first three static ramps,

he second three cycles were executed to determine global axial

tiffness and local displacements. The location of the loading point

as specified with an optical marker located on the center of the

inge joint in the frontal plane. 

An optical measurement system (ARAMIS 5M, GOM GmbH,

raunschweig, Germany), with measurement error < 0.1% and

%%for relative translational and rotational movements, respec-

ively [36] , was utilized to measure local displacements and ax-

al deformation. Point markers and stochastic patterns were ap-

lied to the bone surfaces and the load applicator for visual track-

ng. For each fracture fragment, a set of 8 to 27 optical markers

as considered, and coordinate data of markers were imported

nto ANSYS to calculate their displacements and to be compared

ith experimental data. The solid models of all fracture fragments

nd locking plates were virtually matched with the corresponding

urface and point components by a best-fit algorithm included in

OM Correlate software (GOM Correlate Professional 2018, GOM

mbH, Braunschweig, Germany). Therefore, the position of the tib-

al shaft relative to the experimental coordinate system could be

etermined to provide the loading and boundary conditions for the
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Fig. 1. Schematic drawings of Fractures C and H with anterior and superior views of prepared samples. 
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FE model. The loading coordinate systems were defined to evaluate

the global axial displacement and stiffness ( Fig. 2 .A and B). 

2.2.3. Experimental measurements 

Axial stiffness and local marker displacements were experimen-

tally evaluated to validate FE models. The axial stiffness was de-

fined as the ratio of the applied load to the displacement of the

load applicator in the axial direction. 

2.3. Finite element analysis of fracture models 

2.3.1. Geometry reconstruction 

The geometry of FE models corresponded to the prepared sam-

ples for Fractures H and C. The CAD model of the intact tibia

with a differentiation between cortical and cancellous bone was

first generated from the CT data of the tibial Sawbone (SO-

MATOM Definition AS, Siemens Healthcare GmbH, Erlangen, Ger-

many), with the following CT imaging parameters: peak voltage

120 kVp, tube current 106 mA, 0.75 mm slice thickness, pixel spac-

ing 0.227 \ 0.227 mm. Using AMIRA software (Visage Imaging GmbH,

Berlin, Germany) the CT data were segmented to obtain a 3D re-

construction of the bone surface. Then, the segmented CT data

were converted into a NURBS solid model with Geomagic Studio

software (V.12, Geomagic, Morrisville, USA). The fracture models

were simulated in computer-aided design (CAD) models of the in-

tact tibia by slicing the aforementioned fracture lines for Fractures

C and H. Then, the CAD model of the AxSOS proximal lateral tibia

plate, provided by the company, was virtually implanted in both

fracture models ( Fig. 3 .A). The highlighted holes and screws in

Fig. 3 .B demonstrate the maximum von-Mises stress areas which

are explained in the discussion section. Screws were modeled as

simple cylinders with 3.35 mm diameters corresponding to the in-

ner diameter of the 4 mm locking screw and lengths as used in

the experimental samples [37] . 
41
.3.2. Spatial registration 

Static FE models were computed in ANSYS® Workbench (ANSYS

cademic Research, Release 19.3, ANSYS, Inc., Canonsburg, USA).

y implementing a best-fit algorithm (GOM Correlate software),

he position of the tibia bones relative to the testing machine as

ell as the initial positions of the load applicators and the dis-

al clamps were spatially determined. Then, the required transfer

atrices were calculated to corespond the spatial positions of the

odel components as well as the loading and boundary condi-

ions between the FE models and experimental tests. The positions

f the optical markers considered for validation of local displace-

ents were also extracted from the GOM Correlate software and

mported into ANSYS® Workbench [38 , 39] . 

.3.3. Assigning material properties 

The material properties for the synthetic tibia were assigned

ccording to the manufacturer’s specifications for the fourth-

eneration Sawbones (model 3406, Malmö, Sweden). The Young’s

odulus was set to 16.4 GPa and 155 MPa for the cortical and can-

ellous bone analogue, respectively, and a Poisson’s ratio of 0.3 for

oth materials. For locking plates and screws, the material prop-

rties of TiAl6V4 with the Young’s modulus of 110.4 GPa and the

oisson’s ratio of 0.33 were employed. All materials were assumed

o be homogeneous, isotropic, and linear elastic. For the embed-

ing part and the distal aluminum cast, the Young modulus was

et to 3.1 GPa and 700 GPa, respectively, and Poisson’s ratios of

.3. The semi-physiological load applicator was assumed as a rigid

ody. 

.3.4. Contact conditions 

The FE model of Fracture C was designed with different con-

act types to determine which contact behavior was the most suit-

ble to provide higher accuracy for numerical predictions, com-

ared with experimental data ( Table 1 ). After calibration of Frac-

ure C in both load cases, the same contact assumptions were ap-

lied to Fracture H to evaluate the validity. 
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Fig. 2. Experimental set-up for validation of FE models in two loading conditions. (A) Single loading in which the picture shows the LP loading, and the force arrow was 

changed corresponding to each load position, (B) Semi-physiological loading, (C) Details of the single loading, in which the first letter of each label indicates the condyle 

and the second letter represents the location within the condyle: A = anterior, P = posterior, M = medial, L = lateral, C == central, (D) Details of semi-physiological load 

applicator. In both experimental setups, the red vectors show the loading directions and degrees of freedom. The loading coordinate systems were also highlighted. 

Fig. 3. (A) Solid models of Fractures C and H which were fixed with lateral locking plates and prepared for FEA, (B) Posterior and side views of the lateral locking implant 

in which the proximal-inferior, proximal-threadless, and kick-stand holes as well as the kick-stand screw are highlighted in order to refer to them in the discussion section 

regarding stress distributions within the implant. 

42
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Table 1 

Contact details defined for each contact pairs in the FE models. 

Contact Pair Contact Type Formulation Detection Method Normal Stiffness Friction Coefficient Interface Treatment 

Screw-Plate Bonded MPC Nodal: Normal from Target - - - 

Screw-Bone Bonded Pure Penalty On Gauss Point 1 - - 

Kick-Stand Screw-Bone Frictional Pure Penalty On Gauss Point 1 0.3 - 

Embedding-Bone Bonded Pure Penalty On Gauss Point 1 - - 

Embedding-Cast Frictional Augmented Lagrange On Gauss Point 1 0.1 Adjust to Touch 

Load Applicator-Bone Frictionless Augmented Lagrange Nodal: Normal from Target 0.1 - Adjust to Touch 
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By omitting screw threads, bone-screw interfaces were simu-

lated as bonded contacts [37 , 40] with the normal stiffness factor of

one. The reduced contact stiffness (instead of the default value of

10) allowed some numerical penetrations that could be more real-

istic assumptions for contacts between titanium screws and porous

spongy bones [41] . In Fracture C, since the kick-stand screw was

not completely located in the medial-anterior fragment, this bone-

screw interface was assumed as a frictional type with a coefficient

of 0.3, which has been previously used for titanium-spongy bone

interfaces [42 , 43] . The interfaces between the locking screws and

the plates were assumed as multi-point constraint contacts (MPC)

which internally adds constraint equations to “tie” the displace-

ments between contacting surfaces [41] . In the semi-physiological

loading case, the interface between the tibial plateau and the

load applicator was assumed to be frictionless because both tib-

ial plateau and knee condyle surfaces were extremely smooth and

polished. To simulate corner-surface contacts between the load ap-

plicator and the coronal split, the detection method of “normal di-

rection from target surface” was selected [41] . For all interfaces,

the contact stiffness was updated in each iteration to improve con-

vergence behavior [44] . All contact areas were simulated as asym-

metric pairs to efficiently establish all contact elements on one sur-

face and all target elements on the corresponding surface [41] . 

2.3.5. Loading and boundary conditions 

The validation step consisted of two single and semi-

physiological loading cases. For both static scenarios, the direction-

sand magnitudes of the external forces, as well as boundary con-

ditions were applied equivalent to experimental tests ( Fig. 4 ). For

each position of the single loading, a point force corresponding

to the experimental condition was applied on the proximal tibial

condyle ( Fig. 4 .A). In the semi-physiological loading scenario, the

top surface of the load applicator was coupled to a remote point

(loading center) that was able to freely rotate around the sagittal

axis and translate along the vertical direction ( Fig. 4 .B). 

2.3.6. Discretization of FE models 

The solid models were meshed with 10-node tetrahedral el-

ements including quadratic displacement functions. Convergence

tests were executed to assess that a fine enough element dis-

cretization was used for FE analysis. For each part of fracture mod-

els (i.e. cortical and spongy bones, plate, screws, embedding mate-

rial, and embedding cast), the element sizes were reduced until a

convergence of the global axial displacement as well as the indi-

vidual maximum von-Mises stresses for each specific part. In this

regard, the node numbers of each part were increased by almost

30%, and if the numerical results of the global displacement and

individual maximum von-Mises stress did not respectively change

more than 3% and 5%%in three subsequent steps of sufficient mesh

refinement, then the convergence element sizes were determined.

A subsequent coarsening of the converged element size was car-

ried out for all parts to check whether bigger element size can be

selected for some parts if the changes in the global displacement

and individual maximum von-Misses were less than 0.5% and 1%,

respectively [39] . Bigger element sizes could be selected for the
43
ortical and spongy parts of the distal tibial shaft (below the plate)

ecause coarsening their element sizes had not significant effects

n the numerical outcomes. Both FE models consisted of almost

45,0 0 0 Elements and 1,220,0 0 0 nodes. 

.3.7. Validation assessments 

For each optical marker, the numerical local displacement was

efined as the total displacement of the closest node to the loca-

ion of the marker ( Eq. 1 ) [38 , 39] . 

 tot = 

√ 

u 

2 
x + u 

2 
y + u 

2 
z (1)

The overall axial stiffness was defined as the external axial load

ivided by the displacement of the load applicator projected in

he loading direction. The global as well as local corroborations

etween FEA and the experiment were respectively assessed by

egression analyses regarding the axial stiffness and the marker

isplacements as well as by root-mean-square errors (RSME) cal-

ulated for the marker displacements of each fracture fragment

 Eq. 2 ), [38 , 42 , 45 , 46] . 

MSE% = 100 ∗
√ 

1 

n 

n ∑ 

i=1 

(
FE A i − EX P i 

EX P i 

)2 

(2)

Moreover, the deviation of the numerical axial stiffness from

he experimental measurements was evaluated in terms of per-

entage error to check the local accuracy of the FE models [43 , 44] .

.3.8. Outcomes of FE analyses 

The global mechanical response of fracture models was as-

essed by analyzing the total displacement contours under semi-

hysiological loading. In addition, the medial and lateral contact

eaction forces of the tibial plateaus were assessed to investigate

he effect of the coronal split on the load shared between the tib-

al plateaus. Afterwards, von-Mises stress distributions within the

ateral locking plates and screws were evaluated for both fracture

odels. Stress singularities due to sharp re-entrant corners or con-

training points such as bonded contacts between locking screws

nd plates were ignored, and stress values were reported some

odes away from the local peak areas. 

. Results 

.1. FEA validation 

Axial stiffness demonstrated a very strong agreement between

umerical results and experimental measurements for Fracture C

R 

2 = 99%; slope = 1.09, and intercept = -7.3 N/mm; Fig. 5 .A) as

ell as for Fracture H (R 

2 = 99%; slope = 0.99 and intercept = +
.6 N/mm; Fig. 6 .A). Although agreement for the marker displace-

ent measurements was still strong, it was slightly smaller for

racture H (R 

2 = 87%; slope = 1.06 and intercept = -0.05 mm;

ig. 6 .B) than that of Fracture C (R 

2 = 96%; slope = 0.97 and in-

ercept = -0.03 mm; Fig. 5 .B). Root-mean-square errors of marker

isplacements and stiffness deviations were around 10% for Frac-

ure C and about 10% larger for Fracture H ( Table 2 ). 
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Fig. 4. Loading and boundary conditions applied in FE models for validation. (A) Single loading case in which as an example a 350 N point force applied on the LP position, 

and the force arrow was changed corresponding to each load position for four other loading points, (B) Semi physiological loading with the sagittal rotational and axial 

translational degrees of freedom. 

Fig. 5. Regression analysis of Fracture C. (A) Stiffness (LA , LC, LP, MA , and MP indicate single loading case and S indicates semi-physiological loading), (B) Local displacements. 

Table 2 

Accuracy of FEA for displacements and axial stiffness in single and semi-physiological loading scenarios. 

Fracture Loading Lateral % RMSE Medial % RMS Shaft % RMSE Stiffness % Error 

Anterior Posterior 

C Single (Average) 9.8 12.5 11.4 10.9 10.8 

Semi-Physiologic 7.9 7.1 7.5 3.7 -3.3 

H Single (Average) 18.4 19.8 21.8 14.2 

Semi-Physiologic 11.3 12.6 2.5 18.1 

44



90 S. Samsami, S. Herrmann and R. Pätzold et al. / Medical Engineering and Physics 84 (2020) 84–95 

Fig. 6. Regression analysis of Fracture H. (A) Stiffness (LA , LC, LP, MA , and MP indicate single loading case and S indicates semi-physiological loading), (B) Local displacements. 

Fig. 7. Total deformation of tibia-implant structures for both FE models. (A) Fracture 

C, (B) Fracture H. 
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3.2. Evaluation of total deformations and stress distributions 

FE analysis of total deformations indicated that Fracture C

showed 73% higher overall deformation, compared to Fracture H.
45
he coronal fracture line resulted in instability which rotated the

edial-anterior fragment in the frontal plane and tilted away its

osterior counterpart in the transverse plane. The medial section

f Fracture H, however, is mainly displaced in the frontal plane

 Fig. 7 ). 

The effect of fracture morphology on the load shared between

he medial and lateral sides of the tibia was also interesting. In

racture H, the external load was shared almost equally on both

ibial sides (56% on the lateral and 44% on the medial tibial

lateau), while the lateral fragment of Fracture C carried 61% of

he axial external load as well as the medial-anterior and medial-

osterior fragments transferred 23% and 16% of this force, respec-

ively. 

Von-Mises stress contours of the inner surfaces of the plates in-

icated that for Fracture C, the peak stress, which occurred around

he proximal-inferior and proximal-threadless holes, was almost

0% higher than that of Fracture H, which was observed around

he kick-stand hole. At the outer surfaces of the plate, Fracture C

emonstrated an almost 62% higher peak stress, compared to that

f Fracture H. The high-stress areas at the outer surface of the

late were mainly in the vicinity of the proximal-threadless hole

or fracture C and around the kick-stand hole in Fracture H. There-

ore, in Fracture C, the main load is transferred through the proxi-

al part of the lateral locking plate, while for Fracture H, the mid-

le section of the plate is the main load-bearing part ( Fig. 3 .B and

ig. 8 ). 

Comparing von-Mises stress distributions in screws, Fracture C

evealed a 61% higher maximum stress than that of Fracture H. For

oth, the peak stress areas were found in the inferior surface (com-

ression side) of the kick-stand screws which is in contact with

ortical tibial bone ( Fig. 9 and Fig. 10 ). In Fracture C, the kick-stand

nd proximal-dorsal screws were highly loaded and showed max-

mum stress areas with values of 427 MPa and 325 MPa, respec-

ively. For the proximal-inferior screw, only a small area around the

crew head, which was bonded to the plate, demonstrated a stress-

oncentration of 123 MPa, and the rest of the screw shafts had

nly minor stress values. Moreover, the proximal-middle screw did

ot play a role in load sharing ( Fig. 9 ). Contrastingly, for Fracture

, the kick-stand screw carried the highest loads with 265 MPa

aximum stress, while the proximal-dorsal and proximal-inferior

crews demonstrated 115 and 60 MPa von-Mises stress values, re-
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Fig. 8. Von-Mises stress distributions for the inner and outer surfaces of the lateral locking plates in the fracture FE models. (A) Fracture C, (B) Fracture H. 
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pectively. Additionally, among proximal screws, the anterior one

ndicated a minimum stress ( Fig. 10 ). 

. Discussion 

The crucial role of the posteromedial fragment for the fixation

f bi-condylar tibial plateau fractures has been clinically well rec-

gnized [6 , 10 , 11] . In contrast, there is a lack of understanding re-

arding the biomechanical consequences of this fracture instability.

herefore, the aim of this study was to evaluate the effect of the

oronal split on fracture stability and stress distribution within the

mplants. Using validated numerical models, our findings indicated

hat the coronal split destabilizes the medial side of the fracture,

eading to decreased fracture stiffness and to increased total frag-

ent deformation. In particular, the relative displacements of the

edial fragments with respect to the tibial shaft were larger in
46
racture C, compared with Fracture H. Analysis of the stress dis-

ributions within the implant components demonstrated that the

oronal fracture line shifted the high-stress areas from the mid-

le section of the lateral locking plate to the proximal part. Also,

he peak stress observed at the kick-stand screw as the main load-

earing screw was drastically increased. 

Numerical simulations are reliable if their outcomes are appro-

riately justified by verification and validation [27 , 46 , 47] . Inspired

y previous studies [38 , 39 , 42–45 , 4 8 , 4 9] , the mandatory steps for

E verification as well as validation were executed for our FE mod-

ls. In both loading cases, FEA of both fractures revealed accept-

ble accuracies, while the FE model of Fracture C demonstrated

uperior agreement with experimental outcomes than that of Frac-

ure H. Applying different assumptions for the interface between

he medial fragment and the kick-stand screw in fracures C and



92 S. Samsami, S. Herrmann and R. Pätzold et al. / Medical Engineering and Physics 84 (2020) 84–95 

Fig. 9. Different views of von-Mises stress distributions for locking screws of Fracture C. (A) Isometric, (B) Superior, (C) Inferior views. 
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H is supposed to be the main reason regarding larger errors for

the FE model of Fracture H than Fracture C’s. The kick-stand screw

was fully integrated into Fracture H with the bonded contact, while

according to experimental observations for Fracture C, its inter-

face with the medial-anterior segment should be modeled as a

frictional contact. Accordingly, the FE outcomes of Fracture H are

more sensitive to the location of the loading position with respect

to this screw, and our unpublished sensitivity analysis also con-

firmed that. Furthermore, in semi-physiological loading condition,

the higher structural rigidity of Fracture H resulted in displace-

ment values below 1 mm, and a slight deviation between numer-

ical and experimental outcomes introduced larger relative inaccu-

racy. In Fracture C, the regression curve of marker displacements

demonstrated some data deviations. It could be related to differ-

ent tracking method for the medial-posterior fragment that was

located out of camera views or some errors in the plate position. 

Some previous studies conducted FE analysis regarding tibial

plateau fractures, but none of them were validated against experi-

mental data [29 , 30 , 32 , 33 , 36] . More importantly, similar to previous

experimental investigations [13–25] , these studies also disregarded

complex morphologies of bi-condylar fractures consisting of coro-
47
al splits. According to the obtained results for semi-physiological

oading, the static stiffness of Fracture H was 295 N/mm which is

n the same range of experimental values reported by Lasanianos

t al. (400 ± 64 N/mm) [19] . The difference between these values

ould be due to the preservation of the bone fracture gaps or dis-

inctions in experimental boundary conditions. 

The total deformation of bone-implant structures revealed that

he presence of the coronal fracture line destabilized the medial

ide of the tibia which was inadequately fixed with single lateral

lating only. This outcome is in agreement with previous clinical

tudies indicating that the clinical failures of complex tibial plateau

ractures mainly occurrs at the medial side [5 , 50] , as well as noting

hat double plating is required for bi-condylar tibia plateau frac-

ures with coronal splits [2 , 6 , 51 , 52] . 

The numerical evaluations of the axial reaction forces on the

ibia plateaus illustrated that since the lateral side of Fracture C

as stiffer than its medial counterpart, the lateral tibia plateau

ransferred 61% of the external load. Previous FE studies regarding

ibial plateau or proximal tibial fractures, however, mainly applied

he knee contact forces as simple pressures on the tibial plateau

ith 60% distribution on the medial side [29 , 31 , 33 , 53 , 54] . Although
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Fig. 10. Different views of von-Mises stress distributions for locking screws of Fracture H. (A) Isometric, (B) Superior, C) Inferior view. 
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0% of the knee contact force is transferred through the medial

lateau of the intact tibia [35 , 55] , the current FE simulations and

ur pilot mechanical tests demonstrated that for the tibia-implant

tructures, the load sharing between the medial and lateral sides

epended on their relative rigidity. Therefore, our designed load

pplicator in addition to providing more realistic contact areas

n the tibial plateau surface distributed the external loads corre-

ponding to the relative rigidity of the tibial plateaus, which most

ikely represent clinical reality. 

Our results regarding implant stress distributions are helpful in

mproving plate designs or fixation methods for this complex frac-

ure. The locations of maximum von-Mises stresses are the poten-

ial failure points in cases of repetitive loading. All peak stress val-

es were smaller than the yield strength of Ti6Al4V (800 MPa)

30] . In both fracture models, the maximum von-Mises stress of

he kick-stand screw was almost twice that of the plate. Thus, it

an be predicted that the screw fatigue failure would occur sooner

han the plate failure. Due to the coronal split, the medial side

f Fracture C was laxer than Fracture H’s. That is why the lateral

ide of Fracture C was subjected to almost 11% more load which
48
aused higher von-Mises stress values in the lateral locking plate

nd screws. 

Stress distribution contours indicated that the coronal fracture

ine resulted in altering the potential failure points of the lat-

ral locking plate from the middle section (in Fracture H) to the

roximal part (in Fracture C) as well as remarkably increasing the

eak von-Mises stress of the kick-stand screw. In Fracture C, the

ick-stand and proximal-dorsal screws were the main load-bearing

crews, while in Fracture H, the load was mostly transferred by

he kick-stand screw. Therefore, disregarding this crucial fracture

ine leads to distinct predictions about the failure sites of the lat-

ral locking plate under fatigue loading or the failure loads of the

ick-stand screw. 

According to the obtained values for maximum von-Mises

tresses of the lateral locking implantation in Fracture C, in the

ase of full-weight bearing, in which peak of knee contact forces

ncreased to almost three times of the body-weight, approximately

500 N [56] , the kick-stand screw or the proximal section of the

ateral locking plate would be plastically deformed. This outcome

s also in alignment with previous clinical studies which empha-
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sized on insufficiency of single lateral platting for complex tibial

plateau fractures including the posteromedial fragments [6 , 51 , 52] . 

This study also had some limitations which should be men-

tioned. First, although our models were validated in terms of ax-

ial stiffness and marker displacements, stress contours of the im-

plant components were not verified. Nevertheless, we assume that

stress calculations in the metallic components to be reliable. Its

supporting reason is that the applied loads did not result in plas-

tic deformations or screw loosening. Also, displacements and stiff-

ness which both primarily result from implant deformation were

very accurately predicted, providing sufficient trust in the numeri-

cal model. As another limitation, due to FE simplifications regard-

ing the bone-screw and the screw-plate interfaces, the mentioned

stress results were just estimations to assess the effects of frac-

ture morphology. However, it is expected that the real patterns of

stress contours for the plate and the screw shank would remain

about the same. In addition, the FE models were based on Saw-

bones instead of human bones. It has been shown that mechanical

properties of the fourth-generation Sawbones are very close to ca-

daveric bones. Since the geometry and the mechanical properties

of synthetic bones are constant [57 , 58] , they were suitable for our

study. Furthermore, the FE models were validated only under ax-

ial and bending loading conditions, since in all activities the axial

component of the knee contact forces is dominant [56] . Moreover,

muscle forces were not regarded in FE simulations, and only the

knee contact force was considered for loading conditions. Finally,

distal boundary conditions were simplified with embedding cubes

instead of simulating the ankle joint. 

5. Conclusion 

In conclusion, outcomes of this study reveal that the coro-

nal splits of complex tibial plateau fractures remarkably affect the

stress distributions within locking implants in addition to desta-

bilizing the medial side of the tibia. Therefore, the potential fa-

tigue failure points of lateral locking plates and screws depend on

the fracture morphology, and a clinically-relevant fracture model

such as Fracture C should be considered to accurately assess fixa-

tion methods. The presented validated FE model of bi-condylar tib-

ial plateau fractures including coronal splits provides the potential

to assess the effects of implant designs, plate positions, and screw

orientations on the fixation stability of these clinically-challenging

fractures. 
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