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SRO5: Similar to Radicle Induced Cell 
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DREB: Dehydration responsive element 
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CRT/DRE: Cold response sensitive 

transcription factors/dehydration 

responsive elements 

COR: Cold-responsive 

ABFs: ABRE-binding factors 
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FLC: Flowering locus C 

LCR: LEAF CURLING RESPONSIVENESS 

DDM1: Decreased DNA methylation 1 

TIM: Translocase Inner Membrane Subunit 

RAN2: RAS-Related GTP-Binding Nuclear 

Protein 

PPR: Pentatricopeptide repeat superfamily 
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Zusammenfassung 

Abiotische Stressbedingungen wie Kälte und Starklicht haben einen negativen Einfluss auf das 

Wachstum von Pflanzen und verursachen weltweit große Ertragsverluste. Daher ist es wichtig, 

die molekularen Anpassungsmechanismen zu verstehen, um Pflanzen mit einer gesteigerten 

Toleranz gegenüber den vielfältigen Belastungen zu erzeugen. Um sich an diese 

Umweltveränderungen anpassen zu können, ist eine Veränderung der Genexpression 

notwendig, wobei kleine, nicht-kodierende RNAs (small RNAs: sRNAs) wesentlich zu 

Veränderungen in der Genexpression beitragen, indem sie in erster Linie posttranskriptionell 

wirken und zum RNA-Abbau beitragen oder deren Translation inhibieren. Um Veränderungen 

im Expressionsmuster kleiner, nicht-kodierender zu untersuchen, wurde Arabidopsis thaliana 

3 Stunden, 6 Stunden und 2 Tage einer Kälte- bzw. einer Starklichtbehandlung unterzogen. 

Zusätzlich wurde A. thaliana Wildtyp zusammen mit zwei retrograden Signalmutanten (gun1 

und gun5) mit Norflurazon (NF) behandelt. Die aus den behandelten Pflanzen erhaltene RNA 

wurden mithilfe von next generation sequencing sequenziert und die Rohdaten unter 

Verwendung der GALAXY- und Shortstack-Software analysiert. Die mRNA-Daten und die sRNA- 

Sequenzierungsdaten wurden korreliert, um das sRNA-Repertoire in Arabidopsis aufzudecken 

und ihre Beteiligung an der Regulation der mRNA-Genexpression zu identifizieren. Die Studie 

konzentriert sich insbesondere auf microRNAs (miRNAs), von denen bekannt ist, dass sie zu 

den Hauptregulatoren der Genexpression zählen. Um den Einfluss differentiell exprimierter 

miRNAs zu untersuchen, haben wir deren mutmaßlichen proteinkodierenden und 

nichtkodierenden Zieltranskripte mithilfe des psRNATarget-Tools identifiziert. Um die 

Auswirkungen anderer sRNA-produzierender Klassen auf abiotischen Stress und auf die 

retrograde Signalübertragung zu verstehen, haben wir die Identifizierung von sRNAs 

eingeschlossen, die von cis- und trans-NATs, long non-coding RNAs, phased interferring sRNAs 

und trans-acting sRNAs abgeleitet sind. Die Ergebnisse zeigen, dass eine große Anzahl von cis- 

und trans-nat-siRNAs, gefolgt von miRNAs, an Veränderungen der Genexpression beteiligt 

sind. Unter Verwendung unserer mRNA- und sRNA-Sequenzierungsdaten in Verbindung mit 

öffentlich verfügbaren Datensätzen haben wir weiterhin ein mit der Kälteakklimatisierung 

verbundenes miRNA-Tanskriptionsfaktor-Regulationsnetzwerk modelliert. Aus diesem 

Regulationsnetzwerk können die Beziehungen der beteiligten miRNAs zueinander ausgelesen 

und zur Untersuchung der neuartigen regulatorischen Beziehungen verwendet werden. Die 

vorhergesagten Ziele differentiell exprimierter miRNAs zeigten eine Überrepräsentation von 

Genen, die TFs codieren, und signalbezogenen Proteinen, die für die Regulation der 

Genexpression notwendig sind. Wir haben neue differentiell exprimierte sRNAs identifiziert, 

die zu allen verschiedenen sRNA-Klassen gehören. Zusammenfassend bietet diese Studie ein 

grundlegendes Netzwerk, um unser Wissen zu vertiefen und die Bedeutung von sRNAs bei 

abiotischem Stress und retrograden Signalmechanismen zu verstehen. 
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Summary 

Abiotic stresses such as cold and high light are unfavorable for the growth and development 

of plants and cause a great yield loss worldwide. Thus, it is critical to understand underlying 

molecular mechanisms of stress adaptations and engineer plants to enhance their tolerance 

to multiple stresses. Due to these inevitable environmental changes, the gene expression 

alteration is necessary and studies have confirmed the importance of small RNAs in regulating 

gene expression. We subjected wild type (WT) Arabidopsis thaliana plants to cold and high 

light treatments for three time points (3 h, 6 h and 2 d) and, WT plants along with two 

additional retrograde signaling mutants gun1 and gun5 were treated with Norflurazon (NF). 

The RNA extracted from the treated aerial tissues was sequenced through Next-generation 

sequencing platform and the raw data was analyzed using GALAXY and Shortstack. The mRNA 

and sRNA sequencing data were correlated to uncover the small RNA (sRNA) repertoire in 

Arabidopsis and to identify their involvement in the regulation of mRNA gene expression. This 

study has a special focus on miRNAs, which are powerful regulators of gene expression. To 

study the impact of differentially expressed miRNAs, we identified the putative protein-coding 

and non-coding RNA targets through psRNATarget tool. To understand the implications of 

other sRNA producing classes in abiotic stresses and retrograde signaling, we identified sRNAs 

derived from cis- and trans- natural antisense transcripts (NATs), long non-coding RNAs 

(lncRNAs), PHAS and trans-acting siRNA producing transcripts (tasiRNAs). The results revealed 

that a large number of cis- and trans-nat-siRNAs followed by miRNAs were involved in gene 

expression alterations. Using our mRNA and sRNA sequencing data along with publicly available 

datasets, we reconstructed a cold acclimation related miRNA-transcription factor (TF)-target 

gene regulatory network (GRN). The subnetworks of miRNAs can be extracted from the GRN 

to study the novel regulatory relationships. We identified novel differentially expressed sRNAs 

belonging to all different sRNA classes and the predicted targets of differentially expressed 

miRNAs indicated an overrepresentation of genes encoding TFs and signal-related proteins 

necessary for the regulation of gene expression. We conclude that this study provides a 

fundamental database to deepen our knowledge and understanding of the importance of 

sRNAs in abiotic stresses and retrograde signaling mechanisms. 
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1 Introduction 

 
Plants are severely affected by dynamic and extreme climatic conditions. Abiotic stresses such 

as temperature and light globally alter the development of plants, and hinder their spatial 

distribution impacting the total agricultural productivity (Gornall et al. 2010). Any deviation 

from the optimal conditions lead to physiological, biochemical and molecular alterations in 

plants. When the conditions are progressively unfavorable, inhibited cellular processes cause 

extreme survival pressure on plants. Under extremely adverse conditions, plants experience 

acute molecular dysfunction which ultimately leads to their death. 

 

1.1 Cold stress 

1.1.1 Cold alters cell structure 

 
Plant cells perceive cold stress by detecting reduced cell membrane fluidity that triggers 

specific signaling cascades (Solanke and Sharma 2008). The cold-adapted plants are able to 

increase the amounts of unsaturated fatty acids in their cell membranes and thus elevate 

membrane fluidity at low temperatures. But in non-acclimated plants, freezing leads to severe 

dehydration which causes membrane damage induced by freezing (Steponkus 1984). Cold 

stress alters the lipid membranes and leads to accumulation of solutes (Kazuo Shinozaki and 

KazukoYamaguchi-Shinozakib 2000) and reactive oxygen species (ROS). In order to acclimate 

to the altered ROS levels, the plant produces abundant ROS scavenging enzymes and alters 

carbohydrate metabolism (Frankow-Lindberg 2001). The change in membrane integrity causes 

leakage of solutes from essential organelles, thereby disrupting the organelles and affecting 

crucial metabolic processes such as photosynthesis. On the whole plant level, low temperature 

reduces the growth of plants by restraining water and nutrient uptake. Due to this, there is a 

substantial reduction in the consumption of photosynthates and the photochemical processes 

are adjusted to the reduced requirements of plants. These overall changes eventually 

determine the yield and distribution of plants (Frankow-Lindberg 2001). 
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1.1.2 Low temperature affects photosynthesis 

 
Chilling injury in the presence of low light selectively inhibits photosystems and in contrast to 

PSII (Photosystem II), PSI (Photosystem I) is more susceptible to low temperature stress (Suping 

Zhang and Scheller 2004). At low temperatures, the energy equilibrium between the 

photochemistry, electron transport, and metabolism are extremely disturbed. Due to reduced 

photosynthetic capacities, plants urge to increase photon capture (Ensminger et al. 2006) but 

as a result, they accumulate higher amounts of chlorophyll b and carotenoid pigments 

associated with light harvesting complex a/b (LHCa and LHCb). It has been shown that the cold 

stress slows down the replenishment of D1 proteins, and an equilibrium between degraded 

and the newly synthesized D1 proteins determines the extent of PSII photoinhibition (Aro et 

al. 1993, Gombos et al. 1994). Altogether, the plant experiences a drop in photosynthetic 

efficiencies and photosynthates transport. Under normal conditions, the excitation energy 

between PSII and PSI is balanced to maintain an optimal photosynthetic rate. However, during 

low temperature stress in the presence of light, the PSII is exposed to high excitation energy 

which is compensated by deviating this excess energy to PSI. Under such circumstances, the 

state transition mechanism redistributes the harnessed energy and reduces the uneven 

distribution of excitation energy. Prolonged cold stress either reduces the photosynthetic 

antenna size or produces stress proteins and lipophilic antioxidant molecules (Dalal and 

Tripathy 2018). Another alternate mechanism is the dissipation of the excess energy absorbed 

by light-harvesting chlorophyll protein complexes (LHC) in the form of heat, known as non- 

photochemical quenching (NPQ). Under normal conditions, the light-induced photon gradient 

across thylakoid lumen helps in ATP production. Due to constant pumping of protons into the 

lumen, the pH in the stroma becomes alkaline which is necessary to activate the Calvin Benson 

cycle enzymes (Hohner et al. 2016). 

 

In case of low temperature stress and excess energy, there is a sudden increase in proton 

pumping across the lumen, causing acidification of the lumen and protonation of LHCII 

polypeptides (Havaux and Kloppstech 2001). This change in the pH gradient across thylakoid 

membrane induces the photoprotective xanthophyll cycle and leads to activation of 

violaxanthin de-epoxidase enzyme. This enzyme converts violaxanthin into antheraxanthin and 

zeaxanthin (Adams et al. 1989, Savitch et al. 2002). Production of zeaxanthin accompanied by 

protonation of LHCs are necessary for NPQ and a decrease in singlet-excited chlorophylls leads 
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to reduction in energy delivered to PSII. It is known that xanthophyll is an abscisic acid 

precursor and elevated levels of endogenous abscisic acid (ABA) was found in plants 

experiencing cold stress (Gusta et al. 2005). Another pathway, namely chlororespiration 

protects PSII from damage during cold stress particularly in the absence of PSI cyclic electron 

flow (Paredes and Quiles 2015). 

 

 
1.1.3 Production of ROS in cold stress 

 
One of the prominent biochemical changes in cold stressed plants is the production of ROS in 

vital processes like photosynthesis and respiration. To cope with the oxidative damage caused 

to the plant cells, an advanced ROS scavenging system exists comprising of scavenging enzymes 

such as superoxide dismutase (SOD), catalase, ascorbate peroxidase and guaiacol peroxidase 

(Erdal et al. 2015), and non-enzymatic antioxidants like proline, glycine betaine, sugars, 

polyphenols, and glutathione (Zouari et al. 2016). Low temperature stress causes the 

accumulation of H2O2 in cells which serves dual roles by acting as a signaling molecule when 

present in low concentrations and toxifies the cell when found in abundance (Das and 

Roychoudhury 2014). The SOD catalyzes the conversion of superoxide radicals (O2
−) into 

molecular oxygen (O2) or hydrogen peroxide (H2O2) (Mizuno et al. 1998). On the other hand, 

non-enzymatic antioxidants like proline and betaine not only help in maintenance of cell 

osmolarity, but also promote detoxification of a cytotoxic compound known as methylglyoxal 

(MG) and protect plants from lipid peroxidation (Yadav 2009). Apart from the well-known 

antioxidant systems, the mitochondrial AOX pathway also works against oxidative damage 

(Erdal et al. 2015). 

 

1.1.4 Cold stress related transcriptional cascades 

 
The low temperature stress is perceived by the cell membrane that relays signals downstream 

through the transducers. This relayed signal leads to altered transcription of stress-related 

genes. Currently, the best-characterized pathway is the CBF-dependent signaling pathway 

(Figure 1), in which ABA accumulates under stress conditions and binds to the pyrabactin 

resistance regulatory component of ABA receptor (PYR/PYL/RCAR) ABA receptors. This ABA 

signal-receptor complex then interacts and inhibits type 2C protein phosphatase (PP2Cs) to 
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block its active site (Park et al. 2009). This interaction abolishes phosphatase activity of PP2Cs 

and allows autophosphorylation and activation of the OPEN STOMATA 1 (OST1)/SnRK2.6/ 

SNF1-related protein kinase 2 (SnRK2E) (Soon et al. 2012). During non-stressed conditions, the 

PP2Cs keep SNRK2 in an inactive state through physical interaction and dephosphorylation 

(Vlad et al. 2009). The activated OST1 was demonstrated to phosphorylate and activate the 

upstream transcriptional activator inducer of CBF expression (ICE1) which encodes for a MYC- 

like bHLH protein (Ding 2015). The presence of activated OST1 suppressed high expression of 

osmotically responsive gene 1 (HOS1) which acts as a repressor of ICE1, and causes its 

ubiquitination and degradation (Dong 2006). On the other hand, SUMO E3 ligase SIZ1 causes 

sumoylation and represses the polyubiquitination providing increased stability to ICE1 (Miura 

et al. 2007). ICE1 is also necessary to cause a delay in flowering during cold stress as 

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) prevents the binding of ICE1 to the 

CBF promoter causing decreased expression of CBFs. But it is known that CBFs induce the 

expression of FLOWERING LOCUS C (FLC) which is a negative regulator of SOC1. Thus a 

feedback loop exists which regulates the cold stress response and flowering time (Seo et al. 

2009). 

 

ICE1 further binds to the MYC cis-elements in the promoters of genes encoding C-repeat 

binding factors (CBF) and similarly induces the expression of several CBF/ dehydration 

responsive element binding factors (DREB) transcription factors. The CBF family contains four 

homologs in Arabidopsis but only three CBF1, CBF2 and CBF3 are functional in cold stress 

response (Medina et al. 1999) . CBFs belong to the APETALA2/ethylene response factor 

(AP2/ERF) family of transcription factors (Stockinger et al. 1997). CBF factors bind to the cold 

response sensitive transcription factors/dehydration responsive elements (CRT/DRE) promoter 

elements generally having a 5 bp core sequence ‘CCGAC’ and these elements are responsible 

for salt, dehydration and low temperature induced gene expression regulation (Yamaguchi- 

Shinozaki and Shinozaki 1994). The low temperature stress induces the expression of CBF 

downstream genes known as the cold-responsive (COR) genes. The COR genes protect the 

plants against the cold stress and encode for cryoprotective proteins, antioxidants, lipids, 

phenylpropanoids and antifreeze proteins which maintain the stable state of plant cells in low 

temperature conditions (Chinnusamy et al. 2010, Cuevas-Velazquez et al. 2014). Some of the 

well-known COR genes in Arabidopsis are COR15a, COR47, COR78 and COR6.6 (Yamaguchi- 

Shinozaki and Shinozaki 1993, Uemura et al. 1996). For instance, COR15a encodes for a 



Introduction 

5 

 

 

cryoprotectant plastid-targeted protein that alters the membrane lipid composition and 

regulates proline levels, thereby stabilizes the cold stress-induced injury (Thalhammer et al. 

2014) . 

 

ABA is a central stress hormone that is important for tolerance related to cold, salt and drought 

stress (Sakuma et al. 2002). CBF transcription factors are considered to be the “master 

switches” that regulate genes associated with an increase in low temperature stress tolerance 

(Thomashow 1999). But what factors regulate these master switches was unknown until 

studies found out that ABA treatment can replace the cold stress stimulus (Chen and Gusta 

1983). Contrary to these findings, other studies found little or no effect of ABA in low 

temperature stress tolerance (Hsu et al. 2018). These conflicting results lead to the conclusion 

that there might be an ABA-dependent and ABA-independent pathways (Gusta et al. 2005). 

 

 
Figure 1. Signal transduction during cold stress acclimation. Cold perception and signaling involves 

multiple regulatory mechanisms. Transduction could take place in an ABA-dependent manner involving 

the association of ABA to its receptor and downstream phosphorylation of ICE1 to induce the CBF 

transcripts. The ABA independent pathway involves calcium ions which drive the intracellular signaling 

to induce the CBF transcripts. The epigenetic regulation involves regulation of coding RNA transcripts 

with the help of non-coding RNAs. The major components of CBF dependent signaling are illustrated. 
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ABA, abscisic acid; PP2C, Protein phosphatase 2C; SnRK2, SNF1-related protein kinase 2; HOS1, High 

expression of osmotically responsive genes 1; ICE1, Inducer of CBF expression 1; CBF, C-repeat binding 

factors; CAMTA, CaM-binding transcriptional activator; CRT/DRE, C-repeat (CRT) or dehydration- 

responsive element (DRE); COR, cold-regulated. Source: Figure adapted from Shi et al. (2015) 

 

The ABA-dependent pathway requires the binding of bZIP transcription factors known as ABRE- 

binding factors (ABFs) to ABA-responsive promoter elements to control the COR gene 

expression (Devert et al. , Wang et al. 2017). Furthermore, studies in Arabidopsis have shown 

that DREB1A/CBF1 and DREB2A/CBF2 can physically interact with ABF2 and, DREB2C/CBF3 

interacts with ABF3 and ABF4 to activate downstream ABA-responsive genes (Lee et al. 2010). 

The CRT/DRE and ABRE domains are present in many cold inducible genes and indicate a tight 

link between the ABA-dependent pathway and the ICE-CBF-COR pathway (Wang et al. 2017). 

 
1.1.5 Regulation of cold stress signaling pathway 

 
In addition to the transcription factor-mediated control of gene expression, epigenetic 

modifications affecting the DNA or histones contribute to the control of gene expression in 

cold stress. Chromatin remodeling refers to the dynamic modification in the architecture of 

genomic DNA which restricts the access of the transcriptional machinery and alters gene 

expression. Such modifications determine the accessibility of DNA in chromatin and the 

efficiency of the transcription machinery (Banerjee et al. 2017, Lamke and Baurle 2017). The 

H3K27me3 histone modification causes methylation of a lysine residue and this epigenetic 

modification was observed in COR15a and Galactinol Synthase 3 gene, which de-repressed the 

expression of cold-responsive genes with a decrease in H3K27me3 (Bowman et al. 2014). 

Likewise, histone acetylation was observed in Drought Responsive Element Binding 1 (DREB) in 

Zea mays (Hu et al. 2011) and Oryza sativa (Roy et al. 2014). 

 

Besides this, various post-transcriptional and post-translational changes also take place. For 

example, post-transcriptional regulation in Arabidopsis can be achieved by alternative splicing. 

In Arabidopsis, pre-mRNAs encoding the serine/arginine-rich (SR) protein were found to 

produce different SR isoforms. SR proteins are part of the spliceosome and promote alternative 

splicing of pre-mRNAs in response to various stresses (Palusa et al. 2007). Another important 

post-transcriptional control of mRNA stability is mediated through RNA silencing. The RNA 

silencing mechanism implicates inhibition of gene expression in a sequence-specific manner 

through non-coding RNAs (ncRNAs). The ncRNAs are classified depending on their length into 
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long non-coding RNAs (lncRNAs) that contribute to the control of gene expression involving 

transcriptional and post-transcriptional pathways (Chekanova 2015) and small non-coding 

RNAs (sRNAs) that bind to reverse complementary target RNAs to confer target RNA cleavage 

or translational inhibition (Li et al. 2017). Also, sRNAs can interfere with transcription via 

epigenetic mechanisms such as RNA-directed DNA methylation (RdDM) (Ku et al. 2015). 

 

1.2 Light stress 

 
Light is a variable environmental factor and changes rapidly throughout the day. It not only 

acts as an energy source for plants but also plays a key role in developmental processes from 

seed germination to senescence (Jiao et al. 2007). Plants encounter changes in the light 

intensity and wavelengths for which they have evolved specialized photoreceptor systems. As 

soon as the plant experiences fluctuations in light, the stress inhibits the plant growth by 

disrupting the photosynthetic pathway (Greenberg et al. 1989, McKenzie et al. 2007). To 

counter the damaging effects of light stress, phytohormones play a prime role in activating 

signaling cascades that ultimately regulates the expression of stress-responsive genes (Effendi 

et al. 2013). 

 

1.2.1 Physiological effects of light stress 

 
UV-B radiations have shorter wavelengths and are one of the major threats to the plant 

species. UV-B light can cause chlorophyll degradation and DNA damages due to photoinhibition 

(Sztatelman et al. 2015). Upon UV-B exposure, lignin content, thickness and surface reflectivity 

of the leaves increases (Rozema et al. 1997, Nogues et al. 1998, Zhou et al. 2018). In Qinoa, 

the effect of these physiological changes could lead to stunted growth, inhibited 

photosynthetic activity and reduced stomatal conductance (Reyes et al. 2018). Bleaching of 

leaves and damaged cell membranes were observed post-exposure to UV-B light (Stapleton 

1992, Hollosy 2002). High light intensity often causes accumulation of flavonoids, phenolics 

and pigments (Tattini et al. 2004). In the case of wheat seedlings exposed to blue light, heat 

production was increased as compared to those grown under red light (Alyabyev A. et al. 2002). 
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1.2.2 Photoreceptors in light signaling 

 
The light is perceived by unique photoreceptors (Pr) that detect different facets of the solar 

spectrum. The phytochromes (PHY A-E) detect the far-red (FR) light and red (R) light, but PhyA 

and PhyB are the dominant players (Sharrock and Quail 1989, Smith 2000). Phytochromes exist 

in two interconvertible states; R light-absorbing inactive Pr form and FR light-absorbing 

biologically active Pfr form. PhyA accumulates in the dark and in FR light, but is degraded in the 

R light (Rockwell et al. 2006), whereas PhyB is comparatively stable and plays a major role in R 

light related photomorphogenic responses. The cryptochromes (CRY1/CRY2/CRY3) and 

phototropin photoreceptors sense the blue light or UV-A radiation (Lin et al. 1998, Christie 

2007). The cryptochromes are flavoprotein photopigments containing the PHR domain which 

is essential for light absorption by non–covalently binding to chromophore flavin adenine 

dinucleotide (FAD). Upon absorption of photons, these proteins get photoexcited and lead to 

flavin photoreduction. The flavin can have an oxidized state (FAD), which is the ground state 

that can absorb blue light to convert into its signaling state called as semi-reduced semiquinone 

(FADH˙ or FAD−), then in the dark this semi-reduced state can be converted back to the oxidized 

state to complete the photocycle (Ahmad and Cashmore 1993, Lin et al. 1998, Banerjee et al. 

2007, Chaves et al. 2011). Phototropins, on the other hand, are light activated serine/threonine 

protein kinases. They contain a repeated motif at the N-terminus known as the LOV (Light- 

oxygen-voltage-sensing) domain which gets photoexcited to cause receptor 

autophosphorylation and initiate phototropin signaling (Christie 2007). In addition, three new 

receptors have been identified for blue or UV-A light perception, namely ZEITLUPE (ZTL), 

FLAVIN-BINDING KELCH REPEAT F-BOX (FKF), and LOV KELCH REPEAT PROTEIN 2 (LKP2) 

(Suetsugu and Wada 2013). Lastly, the UV Resistance Locus 8 (UV8) is responsible for mediating 

the UV-B light signaling (Brown et al. 2005, Rizzini et al. 2011). 

 

1.2.3 Light induced signaling 

 
The light signaling pathway regulates the expression of chloroplast genes psbD and psbA that 

encode for the reaction center II components D1 and D2 proteins. The light photoreceptors 

perceive the photons and induce the expression of bZIP transcription factor ELONGATED 

HYPOCOTYL 5 (HY5) which is known to be a key modulator of signal transduction pathways in 

developmental processes (Oyama et al. 1997 ). CONSTITUTIVELY PHOTOMORPHOGENIC 1 
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(COP1) is an E3 ubiquitination ligase that targets numerous substrates for ubiquitination and 

proteolysis (Hoecker 2017). Upon receiving light, the CRY and UVR8 compete for binding of 

COP1 thereby preventing its interaction with the HY5 substrate (Lau et al. 2019, Xu 2019). HY5 

directly or indirectly controls about one-third of the gene expression in Arabidopsis (Lee et al. 

2007, Zhang et al. 2011). The transcription specificity of the plastid encoded polymerase (PEP) 

is modulated by sigma factors (SIG1 to SIG6) in Arabidopsis. The SIG5 sigma factor is induced 

by various stresses including high light and low temperature (Nagashima et al. 2004). Studies 

have shown that SIG5 is expressed in a HY5- and COP1-controlled manner where COP1-induced 

HY5 binds to SIG5 promoter elements and mediates its expression. After translation, the SIG5 

protein is targeted to the chloroplast and promotes expression of psbD and psbA (Mellenthin 

et al. 2014). Besides, HY5 has been known to promote anthocyanin production, ROS 

homeostasis and regulate cold inducible genes (Catala et al. 2011). 

 

1.2.4 High light induced alterations in photosynthetic machinery 

 
The photosynthetic machinery comprises of membrane protein complexes, PS I and II situated 

in the thylakoids of chloroplasts. The two PS complexes are part of the electron transport chain 

and absorb different spectra of light. The PSII is vulnerable to excess of light and could lead to 

photodamage of the protein complex (Townsend et al. 2018). The PSII gets damaged when the 

available light energy exceeds the optimum amounts required to perform carbon fixation 

(Murata et al. 2007). This exposure to high light causes inhibition of PSII activity and the 

phenomenon is called photoinhibition (Powles 1984). However, plants have developed 

efficient repair mechanisms to repair photodamaged PSII that are necessary to overcome 

lethal effects of excess light (Leitsch et al. 1994, Aro et al. 2005). But the extent of 

photoinhibition depends on the rates of the PSII damage and its repair. 

 

Photosystem II (PSII) is an oxidoreductase found in the thylakoid membrane and catalyzes 

oxidation of H2O to O2 and reduction of plastoquinone (PQ) to plastoquinol (PQH2) (Dau et al. 

2012). Due to leakage of electrons, the one-electron reduction of molecular oxygen produces 

superoxide (O−) which acts as a precursor of most of the other ROS (Turrens 2003, Sharma et 

al. 2012). The two-electron oxidation of H2O produces H2O2 which later forms O2
– and HO• 

(Pospíšil 2016). ROS such as peroxides, superoxide hydroxyl radical, singlet oxygen and alpha- 

oxygen are formed as a natural byproduct of O2 reduction processes and mediate cell signaling 
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and homeostasis (Hayyan et al. 2016, Waszczak et al. 2018). In cases of environmental stress 

such as high light or heat (Pospíšil 2016), the increase in ROS levels could cause significant 

damages to DNA, proteins, lipids and even cell death in the plants (Tripathy and Oelmuller 

2012). 

 

The photosynthetic organisms evolved adaptive mechanisms to cope with the harsh effects of 

excess light such as the movement of chloroplasts, reducing antenna size, decelerating the 

regulatory mechanisms, inducing alternative electron transport mechanisms and triggering the 

ROS scavenging pathways (Figure 2) (Jarillo et al. 2001, Frigerio et al. 2007, Okegawa et al. 

2010). One of the most effective photoprotective mechanisms known is non-photochemical 

quenching (NPQ). It is triggered rapidly upon exposure to excess solar energy and protects 

plants against the excess light by converting the absorbed photons into heat (Niyogi et al. 

1998). In this process the excitation energy is redistributed (state transitions) between the 

photosystems and xanthophyll cycle is activated (Bellafiore et al. 2005). 

 

The current model of NPQ state transition mentions that the light-harvesting complex II (LHCII) 

undergoes a reversible phosphorylation in order to redistribute the imbalanced energy. State 

1: When PSI is overexcited, the PQ pool is oxidized and the unphosphorylated LHCII antennae 

remain bound to PSII; Transient state: PSII excitation begins, the PQ pool gets reduced and 

STN7 kinase gets activated which leads to phosphorylation of LHCII releasing them from PSII; 

State 2: The mobile LHCII binds to PSI forming a super complex, which is required to establish 

the cyclic electron flow between PSI and the PQ pools generating ATP (Bellafiore et al. 2005, 

Minagawa 2013). Apart from state transition strategy, xanthophylls, a group of oxygenated 

carotenoids, bound to chlorophyll have been known to be essential for photoprotection. Under 

excessive light illumination, xanthophylls facilitate the de-excitation of singlet chlorophyll. The 

de-excitation is measured as NPQ of chlorophyll fluorescence which decreases with the 

thermal dissipation of heat. Studies in the photosynthetic alga Chlamydomonas reinhardtii 

revealed that α-carotene-derived xanthophylls such as lutein can mediate nonradiative 

dissipation of excess photons absorbed (Niyogi et al. 1997 ). As the NPQ is triggered, 

violaxanthin de-epoxidase converts violaxanthin (V) to zeaxanthin (Z) and antheraxanthin (A) 

via the xanthophyll cycle. It is known that Z can deactivate the excited singlet chlorophyll in PSII 

and protect membrane lipids in association with tocopherols (Wrona et al. 2004). Studies on 

high light grown plants confirmed a larger pool size of the pigments of xanthophyll cycle 
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(zeaxanthin, antheraxanthin and violaxanthin) compared to the low light grown plants 

(Demmig et al. 1988, Verhoeven et al. 1997). 

 

The cyclic electron flow (CEF) also termed as cyclic photophosphorylation refers to the cyclic 

transfer of electrons within the PSI in photosynthetic organisms to synthesize ATP without 

generating NADPH and O2. The CEF leads to the development of a pH gradient across the 

thylakoid membrane and this gradient induces the NPQ mechanism. Studies in tobacco leaves 

have confirmed that the activity of CEF-PSI increases upon high light stress and it induces the 

NPQ of chlorophyll fluorescence (Miyake et al. 2004). 

 
 
 

Figure 2. High light induced photoprotective mechanisms. High light induces responses via changes 

in the photosynthetic electron transport chain which triggers ROS production. The ROS scavenging 

system takes control of the ROS metabolism and affects the redox homeostasis to regulate short- and 

long-term high light responses. Alternatively, excess light energy is dissipated in the form of heat (NPQ) 

and produces ATP through CEF which is used in the process of photorespiration. NPQ, non- 

photochemical quenching; VAZ cycle, violaxanthin-antheraxanthin-zeaxanthin cycle; PSII and I, 

photosystem II and I; ATP, adenosine triphosphate; NADPH, reduced form of nicotinamide adenine 

dinucleotide phosphate; ROS, reactive oxygen species; RuPB, ribulose 1,5-bisphosphate; PG, 2- 

phosphoglycolate; PGA, 3-phosphoglycerate; Rubisco, ribulose-1,5-bisphosphate 

carboxylase/oxygenase. Source: Figure adapted from Szymańska et al. (2017). 
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Studies in tobacco and pea plants observed an increase in the levels of electron transport chain 

components, Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and Calvin Cycle 

enzymes when exposed to high light irradiance (Evans 1987, Yamori et al. 2010). It was 

concluded that leaves exposed to excess light have a higher abundance of electron transport 

chain and CO2 assimilation, which could indicate an involvement of photorespiratory pathway 

in high light acclimation (Yamori et al. 2010, Huang et al. 2014). Photorespiration is a process 

where RuBisCO enzyme oxygenates D-ribulose-1,5- bisphosphate (RUBP) into glycolate-2- 

phosphate and glycerate-3-phosphate (Ogren 1984). This process is considered to be wasteful 

as it does not produce sugars or ATP but rather consumes ATP and NADPH, and loses fixed 

carbon in the form of CO2 (Busch et al. 2013). The pathway is known to serve as an energy sink 

thereby preventing the over reduction of electron transport chain under stress conditions 

(Wingler et al. 2000 ). The glycolate-2-phosphate is a potential inhibitor of chloroplast function 

(Anderson 1971) and can be converted into glycerate-3-phosphate through photorespiration. 

Since photorespiration occurs in three organelles, namely chloroplast, peroxisomes and 

mitochondria, the process also produces glycine in mitochondria that acts as a precursor of 

glutathione and glycine betaine, known to play role in stress protection (Sakamoto and Murata 

2002). 

 

1.3 Retrograde signaling 

 
The chloroplast plays a major role in sensing environmental changes and the photosynthetic 

activities take place in this organelle to provide energy, oxygen and reduced carbon. Plants 

exposed to stress experience decreased photosynthetic efficiency followed by reduced 

respiration rate which ultimately causes a lack of cellular energy. Any changes in the 

developmental or environmental state of the plants can have a profound effect on the 

transcript profiles of nuclear genes. In order to survive in the stress conditions, plants need to 

restore their homeostasis by altering the gene expression and metabolism towards 

acclimation. 

 

The endosymbiotic theory of evolution states that the mitochondria, plastids and other 

organelles of the eukaryotic cells have descended from the prokaryotic organisms. These were 

considered to be integrated into the ancestral eukaryotic cells through the process of 



Introduction 

13 

 

 

endosymbiosis (Goksoyr 1967). The nucleus of the host contained major part of its genome 

required to control most of the cell functions. But a small part of their genome was retained in 

each organelle that encodes proteins necessary for the organelle function (Dyall et al. 2004). 

To coordinate the gene expression, nucleus and organelles communicate with each other and 

the signals sent from the nucleus to organelles are known as anterograde signals. If the plant 

experiences any deviations from the optimum conditions which leads to redox imbalance, the 

chloroplast and mitochondria are able to sense it and transmit signals to the nucleus through 

retrograde signaling cascades (Surpin and Chory 1997, Surpin et al. 2002). The chloroplast is 

susceptible to oxidative damage due to its demand to reduce NADP+ and accumulate excess 

energy at PSII (Baier and Dietz 2005). Lincomycin causes inhibition of plastid translation which 

hinders the expression of nuclear encoded photosynthesis associated nuclear genes (PhANGs). 

The studies with this antibiotic indicate that the plastid transmits retrograde signals to the 

nucleus in order to regulate the nuclear gene expression (Gray et al. 2003). Norflurazon is 

another important herbicide that is an inhibitor of the phytoene desaturase which produces β- 

carotenoids. This action of norflurazon inhibits the carotenoid biosynthetic pathway as well as 

PhANGs expression which clearly indicates that plastid can communicate with the nucleus in 

order to regulate PhANG expression (Woodson et al. 2011). 

 

Studies with WT Arabidopsis grown in the presence of norflurazon suggest a downregulation 

of PhANG expression as the chloroplast biogenesis is blocked. To study the pathway of 

retrograde signaling, genomes uncoupled (gun) mutants have been studied since these 

mutants have impaired retrograde communication (Susek et al. 1993). Unlike WT, these 

mutants de-repressed PhANGs (LhcbI) even in the presence of norflurazon and were concluded 

to affect the plastid to nucleus signaling (Susek et al. 1993, Larkin 2014). The mutated loci in 

the gun2, gun3, gun4 and gun5 mutants code for heme oxidase, phytochromobilin synthase, 

Mg-chelatase regulator and H-subunit of Mg-chelatase, respectively (Mochizuki et al. 2001, 

Larkin et al. 2003, Strand et al. 2003). GUN1 encodes for a nuclear encoded and plastid 

localized PPR protein. This protein regulates tetrapyrrole synthesis pathway, plastid gene 

expression and photosynthetic electron transport related signals (Koussevitzky et al. 2007). 

Chlorophyll is a tetrapyrrole molecule and it is produced through the tetrapyrrole biosynthetic 

pathway involving GUN2 to GUN6 factors (Brzezowski et al. 2015). Chlorophyll molecule 

constitutes a porphyrin ring having four N atoms and a central Mg2+ ion which is inserted by 

the Mg-chelatase/CHLH enzyme i.e. GUN5 (Mochizuki et al. 2001). Mg-protoporphyrin IX (Mg- 
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Proto IX) is a precursor of chlorophyll and is known to accumulate in the chloroplast during 

stress conditions and to negatively regulate PhANG expression (Strand et al. 2003, Zhang et al. 

2011). Apart from controlling the nuclear gene expression, Mg-Proto IX also controls plastid 

encoded photosynthetic genes by altering the expression of sigma factors that are required for 

efficient transcription mediated by PEP (Ankele et al. 2007). 

 

1.3.1 Retrograde signaling in cold stress 

 
A recent study claims that the accumulation of Mg-Proto IX induces the cyanide resistant 

respiration which is known to facilitate cold stress tolerance and Mg-Proto IX also enhanced 

antioxidant enzyme activities and increased glutathione levels during cold stress (Zhang et al. 

2016). Further studies in tobacco lines showed that changes in Mg-Proto IX due to Mg Proto IX 

methyl transferase correlated with similar changes in levels of PhANGs (Brzezowski et al. 2015). 

Apart from the role of Mg-chelatase in tetrapyrrole biosynthesis and retrograde signaling, it is 

known that CHLH is associated with the chloroplast envelope which indicates that it could 

possibly sense the changes in membrane fluidity caused due to low temperature. Studies have 

shown that two lines with mutant alleles of CHLH namely gun5-1 and cch show impaired cold 

acclimation abilities. The mutants also showed impaired protein translation in conditions of 

low temperatures, increased levels of CBF transcripts but lower levels of COR15a, COR47 and 

COR78 genes which indicates that a functional chloroplast is necessary for cold acclimation 

process (Kindgren et al. 2015). GUN1 also plays an important role in chloroplast protein 

homeostasis; it controls the accumulation of chloroplast ribosomal proteins S1 (PRPS1) and 

interacts with components of tetrapyrrole biosynthesis pathway including CHLH which are 

known to activate the retrograde signaling. The association of PRPS1 and CHLH with protein 

complexes through GUN1 indicates its role in retrograde signaling (Tadini et al. 2016). A recent 

study demonstrated that FUG1, a chloroplast translation initiation factor IF-2 is required for 

effective cold acclimation since it is a component of the plastid translation machinery. It was 

also shown that due to reduced levels of FUG1 ,GUN1 was able to facilitate cold acclimation 

implying its role in plastid proteostasis during cold stress (Marino et al. 2019) 
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1.3.2 Excess light induced retrograde signals 

 
Studies with meta-analysis of transcriptomes have confirmed that about 10% to 20% of 

chloroplast localized proteins could have a role in plant stress responses (Kmiecik et al. 2016). 

The plastoquinone redox state changes rapidly in response to excess light and causes 

alterations in the gene expression (Fey et al. 2005). SAL1, a bifunctional protein with 

nucleotidase/phosphatase activity, is encoded in the nucleus and phosphonucleotide 3′- 

phosphoadenosine 5′-phosphate (PAP) is regulated by SAL1. PAP is a retrograde signal, 

produced in plastids and is responsible for inhibiting exoribonucleases XRN2, 3 and 4 that 

mediate degradation of aberrant RNAs (Gy et al. 2007). SAL1 negatively regulates PAP which is 

known to accumulate in response to high light and drought conditions (Estavillo et al. 2011). 

Methylerythritol cyclodiphosphate (MEcPP) is the precursor of carotenoids and is known to 

elicit expression of nuclear-encoded plastidial proteins related to environmental stress (Xiao 

et al. 2012). MEcPP is a retrograde-signaling metabolite which is also known to coordinate 

stress-responsive genes in high light stress (Kleine and Leister 2016). Research reveals that 81% 

of high light responsive genes required photosynthetic electron transport (PET) for their 

expression and 68% of these genes were ABA-responsive indicating that both the signals were 

necessary for the expression of high light responsive genes (Bechtold et al. 2008). Retrograde 

regulation uses alternate signaling pathways and modifies the signaling patterns in response 

to excess of light. A time-dependent study suggested that oxylipins, metabolites and redox 

cues predominantly control the light acclimation process (Alsharafa et al. 2014). MAP kinase 6 

(MAPK6) and APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcripts are also known 

to show induced expression in response to high light treatment indicating the role of 

retrograde signaling in light stress response (Kleine and Leister 2016). 

 

1.4 Non-coding RNAs in abiotic stress 

1.4.1 Long non-coding RNAs and their mode of action 

 
LncRNAs are longer than 200 nt and possess 5’ capping and 3’ polyadenylation similar to 

mRNAs (Ransohoff et al. 2018). Often, they are expressed in a tissue-specific or stimulus- 

dependent manner and their sequences are not conserved across different plant species 

(Wang et al. 2011). Also, certain non-polyadenylated lncRNAs were shown to be induced by 

abiotic stress conditions and to be involved in the regulation of gene expression (Di et al. 2014). 
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LncRNAs exert their function by different modes of action, for instance, lncRNAs restrain the 

accessibility of regulatory proteins to nucleic acids by serving as decoys (Wang and Chang 

2011). Another mechanism is presented by the well-characterized lncRNA IPS1, which acts as 

a non-cleavable competitor for the PHO2 (Phosphate 2) mRNA that is targeted by miR399 for 

degradation (Franco-Zorrilla et al. 2007). Several other lncRNAs that may act as target mimics 

of miRNAs have been predicted using bioinformatics tools (Wu et al. 2013). LncRNAs also cause 

epigenetic alterations such as histone modifications as identified in the vernalization process 

where prolonged cold stress leads to epigenetic silencing of the FLC locus that controls 

flowering time (Swiezewski et al. 2009, Csorba et al. 2014). Here, the lncRNA cold induced long 

antisense intragenic RNA (COOLAIR) interacts with a polycomb repressive complex (PRC2) and 

subsequently causes histone methylation and silencing of the FLC locus. LncRNAs also assist in 

de novo methylation of DNA cytosine residues and cause transcriptional silencing of genes by 

RdDM (Matzke and Mosher 2014, Au and Dennis 2017). Another mode of action of lncRNAs is 

presented by HIDDEN TREASURE 1 (HID1) that positively regulates red light mediated 

photomorphogenesis by repressing PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) encoding 

a transcription factor that inhibits red light responses (Wang et al. 2014). 

 

1.4.2 Small RNAs in abiotic stress 

 
Small RNAs are 21-24 nt in size and efficiently regulate mRNA transcript levels, mRNA 

translation and also mediate epigenetic silencing (Mallory and Vaucheret 2006). The two main 

classes of small RNA are microRNAs (miRNAs) that are processed from single-stranded 

precursors forming a partially double-stranded hairpin structure and small interfering RNAs 

(siRNAs) that are generated from double-stranded RNA precursors. 

a) microRNA biogenesis 

 

MicroRNA biogenesis occurs in a multistep fashion starting with the transcription of nuclear 

encoded MIR genes by RNA Polymerase II to produce a 5’ capped and poly A-tailed primary 

miRNA transcript (pri-miRNA) (Vazquez et al. 2008). A dicing complex containing the 

ribonuclease III-like enzyme DICER-LIKE1 (DCL1) and accessory proteins such as Hyponastic 

Leaves 1 (HYL1) and Serrate (SE) precisely excise a miRNA duplex from the double-stranded 

hairpin region. Subsequently, the 3’ ends of the duplex are methylated by HEN1 (Hua Enhancer 

1) to increase miRNA stability (Bin Yu et al. 2005) and the miRNA duplex is translocated to the 
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cytoplasm by the exportin HASTY (HST) (Sunkar and Zhu 2007). The mature miRNA is loaded 

onto an ARGONAUTE (AGO) protein that is a part of the RNA induced silencing complex (Pratt 

and MacRae 2009) and guides the RISC to pair with target RNA sequences to mediate their 

cleavage or mediate translational inhibition (Wightman et al. 1993, Carmell 2002, Eulalio et al. 

2008). 

b) miRNAs in abiotic stress 

 

Studies have shown that plant miRNAs play important roles in a wide range of biological 

processes including development and stress adaptation (Lima et al. 2012). To uncover the 

changes in miRNA repertoire in response to stress, small RNA libraries were generated from 

plants subjected to diverse stress conditions and analyzed by RNA sequencing approaches 

(Baev et al. 2014, Song et al. 2017). Additional approaches such as MIR overexpression (Ma et 

al. 2015), miRNA target mimicry (Franco-Zorrilla et al. 2007), the generation and expression of 

miRNA-resistant RNA target RNAs (Li and Millar 2013) were applied to study the impact of 

stress-related miRNA on stress adaptation. 

 

Previous studies in Arabidopsis reported differential upregulation of isoforms of miR171 at low 

as well as elevated temperature stress (Liu et al. 2008), miR171 was found to target 

SCARECROW-LIKE6-III (SCL6-III) and SCL6-IV transcripts coding for GRAS family transcription 

factors (Mahale et al. 2013, Zhang et al. 2014). MiR408 was recognized to be induced by cold 

and other abiotic stresses. It regulates transcripts encoding phytocyanin family proteins 

(cupredoxin, plantacyanin and uclacyanin) which act as electron transfer shuttles between 

proteins (Rienzo et al. 2000). It also regulates transcripts of phytophenol oxidases called 

Laccases (LAC3, LAC12 and LAC13) (Pilon 2008) which are known to oxidize flavonoids during 

seed development and environmental stress (Pourcel et al. 2007). Laccases are essential to 

maintain cell wall functions and are important to regulate biological pathways necessary for 

abiotic stress responses (Liang et al. 2006). Recent investigations validated the involvement of 

miR394 and one of its targets LEAF CURLING RESPONSIVENESS (LCR) in regulation of leaf 

development (Song et al. 2012, Knauer et al. 2013) and mediating responses to cold, salt and 

drought stress in an ABA dependent manner (Song et al. 2013, Song et al. 2016). In Arabidopsis, 

miR397 was shown to positively regulate cold tolerance via the CBF-dependent signaling 

pathway and overexpression of miR397a caused increased CBF transcript levels leading to an 

induction of cold-responsive COR genes (Dong and Pei 2014). 
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c) siRNAs derived from other RNA classes 

 

In contrast to miRNAs, siRNAs are generated from dsRNA molecules and are sub-classified 

based on their specific biogenesis pathways. A subset of siRNAs are the natural antisense 

transcript derived short interfering RNAs (nat-siRNAs) which are produced from overlapping 

regions of antisense transcripts transcribed by RNA polymerase II (Kumar and Carmichael 

1998). It has been suggested that about 9% of all Arabidopsis genes overlap and have the 

potential to generate cis-natural antisense transcripts (cis-NATs) (Werner and Berdal 2005). It 

is known that siRNA producing transcripts are regulated with the help of siRNA mediated RNA 

silencing which greatly affects their transcript levels. Studies in Arabidopsis found light 

responsive lncNATs (long non-coding natural antisense transcript) having one lncRNA in a pair 

of NATs. A large number of lncNAT were differentially expressed after 6 h of continuous white 

light and the study concluded that the transcription of light regulated NATs change depending 

on the histone H3 acetylation (Wang et al. 2014). Recent studies have found involvement of 

lncRNAs in light regulated processes. lncRNA HIDDEN TREASURE 1 (HID1) was found to act 

through PIF3 which is a key repressor of photomorphogenesis (Wang et al. 2014). Another 

lncRNA CDF5 LONG NONCODING RNA (FLORE) is a NAT of CYCLING DOF FACTOR 5 (CDF5).  

FLORE caused repression of CDF5 gene and promoted transcription of FLOWERING LOCUS T 

(FT) which is involved in promoting flowering in favorable environmental conditions (Henriques 

et al. 2017). lncRNAs can be processed to yield siRNAs (Affymetrix and Cold Spring Harbor 

Laboratory 2009) or they can bind with sRNAs to modulate their activity. In Arabidopsis, long 

ncRNA IPS1 (INDUCED BY PHOSPHATE STARVATION 1) binds with miR399 in a non-cleavable 

manner and sequesters it to inhibit miRNA interaction with its target transcripts. This 

phenomenon of target mimicry by IPS1 was observed upon phosphate starvation (Franco- 

Zorrilla et al. 2007). 

 

NATs also have a capability to generate siRNAs from their overlapping regions and depending 

on their genomic loci, can be divided into two; cis–NATs, that are transcribed from the 

complementary regions of the same genomic loci and trans-NATs that are transcribed from 

different genomic loci and could have sequence complementarity to more than one transcripts 

(Lavorgna et al. 2004). The two overlapping transcripts can undergo several regulatory events 

such as RNA interference (RNAi) where the two transcripts can be cleaved into endo-siRNAs 

with the help of Dicer like proteins, reducing the transcript levels. A detailed overview of 

possible mechanisms that produce siRNAs from cis-NATs are illustrated in Figure 3. The two 
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transcripts can undergo transcriptional interference where the transcription machinery 

associated with one of the transcripts hinders the transcription of the other, thereby affecting 

transcript levels of one or both the transcript. The antisense transcript can methylate the 

regions of sense transcript in the genome thereby reducing the transcription of sense 

transcript (Lavorgna et al. 2004). A high salinity responsive nat-siRNA was first identified in 

 

 
Figure 3. Mechanisms of siRNA production from cis-NATs. The sense and antisense transcripts pair up 

and (a) dsRNAs are recognized by transcriptional machinery to produce nat-siRNAs (b) dsRNA produces 

nat-siRNAs, the nat-siRNAs further bind to the single-stranded transcript and using these transcripts as 

templates produce another dsRNA which are processed into secondary nat-siRNAs (c) DCL recognizes 

a secondary structure in one of the transcripts to produce site-specific nat-siRNAs (d) both transcripts 

form a complex secondary structure recognized by DCL to produce nat-siRNAs (e) On the other hand, 

these transcripts do not undergo pairing, rather one of the transcript forms a secondary structure and 

is recognized by DCL to produce siRNAs. Source: Figure modified from Zhang et al. (2013) 

 

Arabidopsis where the constitutively expressed gene delta-pyrroline-5-carboxylate 

dehydrogenase (P5CDH) and the salt induced gene Similar to Radicle Induced Cell Death One 5 

(SRO5) are encoded on opposing strands of an overlapping genomic region. The SRO5 mRNA 
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is induced by salt stress and forms a dsRNA with the constitutively expressed P5CDH transcript 

and DCL2 processes a distinct 24 nt nat-siRNA from the dsRNA region. The generated nat-siRNA 

targets the P5CDH transcript and mediates its cleavage thereby suppressing proline 

degradation and inducing salinity tolerance (Borsani et al. 2005). In addition to nat-siRNAs 

produced from cis-NATs, trans-NATs can also be generated when antisense-mediated pairing 

of transcripts occurs that are derived from non-overlapping genes (Wight and Werner 2013). 

The formation of these dsRNAs takes place in diverse trans-combinations i.e. between long 

non-coding RNAs, pre-tRNAs, transposable elements, protein coding transcripts and 

homologous pseudogenes (Wang et al. 2005, Yuan et al. 2015). 

 

The mature tRNAs are 73 to 90 nucleotides (nt) in length and are known to produce 18–40 nt 

tRNA-derived small RNAs (tsRNAs) in bacteria and eukaryotes. Studies identified ~20 nt small 

tRNA-derived fragments (tRFs) and ~30 nt tRNA-derived halves (tRHs) which were produced 

from pre-tRNAs or mature tRNAs using RNA Pol III. Pre-tRNAs can produce 5′ leader tRFs and 

3′ U tRFs (or 3′ U trailer tRF) whereas mature tRNAs generate 5′ tRFs from the D-loop and 3′ 

tRFs from the T-loop. Initially, it was thought that these tsRNAs are random degradation 

products of endonucleases but over the last few years studies suggest their role in cell 

proliferation, tumor formation, stress response, intergenerational epigenetic inheritance, and 

genome stability maintenance (Zhu et al. 2018, Zhu et al. 2019). 

 

Expression of tRNA derived sRNAs has been found in plants. To identify phosphate deficiency 

responsive sRNAs in Arabidopsis, small RNA profiles of normal and Pi deficient plants were 

analyzed. They found about 30% sRNAs in roots and about 5% in shoots comprised of 16-27 nt 

tsRNAs. Especially 5′ tRF-GlyTCC represented about 80% of total tsRNAs which indicates 

biogenesis of tsRNAs in resposnse to Pi deficiency (Hsieh et al. 2009). In barley shoots, in the 

presence and absence of phosphorous, tsRNAs from GlyTCC –tRNA comprised 58% or total 

sRNAs whereas in rice, 5′ tRF-AlaAGC represented 82% of total tsRNA (Hackenberg et al. 2013) 

In Chinese cabbage, it was found that tsRNAs were being produced from chloroplast genome 

(csRNAs) which mostly constituted the 5′ parts of the molecules. It was observed that in heat 

stressed seedlings, the longer csRNAs (29–32 nt) decreased whereas the shorter ones (16–25 

nt) increased. Two csRNAs originating from chloroplast tRNAAla were the most prominent. The 

researchers concluded that reduction in longer csRNAs in response to heat could mediate 

maintenance of subcellular structures and photosynthetic capacity of chloroplasts (Wang et al. 

2011). These studies revealed that under a certain condition or a developmental stage, one or 
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two tsRNA species were abundant. They found abundance of 5′ tRFs in most of the plant 

species and the abundance was induced in the presence of stress treatment. The observed 

tsRNA abundance was unrelated to the copy number of the tRNA gene and plastid encoded 

tRNA genes produced a large amount of tsRNAs. The stability of the tRNA structures plays an 

important role in tRFs biogenesis. 

In humans, reduced levels of Lupus autoantigen (La) protein which stabilizes RNA pol III caused 

transport of misfolded tRNAs into the cytoplasm. Later, Dicer was found to cleave these 

immature tRNA transcript fragments and incorporate them into AGO proteins (Hasler et al. 

2016). Such evidence suggests the association of tRF expression with stress. Another possibility 

is that they are loaded into the AGO complex and could mediate posttranscriptional regulation 

(Loss-Morais et al. 2013). This could also indicate the hijacking of RNAi pathways and restricting 

the incorporation of miRNAs and other sRNAs. Due to their abundance, tRFs on one hand, can 

exhaust the availability of AGO complexes for other small RNAs and on the other hand, could 

be free in the cytoplasm to interact with the ribosome and interfere with translation (Martinez 

2018). A recent study in soybean revealed that tRFs can act as signal molecules in modulating 

host nodulation and three tRFs were confirmed to regulate host genes associated with nodule 

initiation by hijacking the AGO proteins (Ren et al. 2019). It has been known that tRFs target 

numerous protein encoding mRNAs in plants and their abundance correlates with reduced 

transcripts for some of their predicted targets (Wang et al. 2016). 

In Yeast, a wide range of tRNA halves and rRNA fragments were detected when it was subjected 

to oxidative stress. The results indicated the occurrence of tRNA processing and involvement 

of ribosomes in case of stress which indicates their potential function in protein biosynthesis 

(Thompson et al. 2008, Gebetsberger et al. 2012). In animals, tRFs are incorporated into the 

AGO protein which mediates RNA interference. Similarly, in rice and Arabidopsis, sequenced 

libraries of immunoprecipitated AGO proteins (AGO-IP) proved the interaction between AGOs 

and tRFs (Loss-Morais et al. 2013, Alves et al. 2017). In plants such as Physcomitrella, 19 nt tRFs 

derived from 5′ and 25 nt tRFs derived from 3′ arising from m tsRNA-GluTTC and AspGTC 

respectively were most abundant. In case of Chlamydomonas, 19, 20 nt tRFs derived from 5′ 

and 23, 24 nt tRFs derived from 3′ were found in large amounts. Recent studies revealed that 

19 nt tRFs suppressed the expression of transposable elements through AGO specific for 

miRNAs (Martinez et al. 2017, Zhu et al. 2018). 
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In addition, similar to MIR precursors some transposable element derived transcripts can form 

a stem-loop structure from which siRNAs can be processed (Piriyapongsa and Jordan 2008). 

Research in last few years confirmed the occurrence of sRNAs from transposons known as 

easiRNAs (Creasey et al. 2014) which have the potential to affect non-TE transcripts by 

sequence complementarity (Cho 2018). Transposable elements also encode lncRNAs and there 

is a rising evidence that environmental factors lead to altered chromatin organization and the 

expression of lncRNAs that may have functions in the adaptation to altered environmental 

conditions that can even be inherited (Wang et al. 2017). This study in Arabidopsis reports on 

a transposable element-derived TE-lincRNA1195 that was shown to be involved in the ABA 

response and to contribute to abiotic stress adaptation. In Arabidopsis pollen grains, the 

transcriptional activation of TE resulted in their degradation into siRNAs which further 

regulated other targets (Slotkin et al. 2009). 

 

Trans-acting siRNAs (ta-siRNAs) are endogenous plant-specific small RNAs that are capable of 

acting in trans and have the potential to repress distinct mRNA transcripts. The production of 

ta-siRNAs is triggered by the cleavage of primary TAS transcripts by specific miRNAs. The 

cleaved transcripts are converted into dsRNA by RDR6 and processed by DCL4 into 21 nt ta- 

siRNAs in a phased manner (Peragine et al. 2004, Vazquez et al. 2004). In Arabidopsis, several 

TAS families (TAS1, TAS2, TAS3, TAS4) have been identified that are mainly classified according 

to the miRNA mediating their initial cleavage (Allen et al. 2005, Rajagopalan et al. 2006, Howell 

et al. 2007). Ta-siRNAs have been shown to regulate plant development (Guan et al. 2017) and 

recent studies also suggest a role of ta-siRNAs in environmental stress adaptation. For example, 

14 hypoxia-responsive ta-siRNAs have been identified in Arabidopsis that are processed from 

TAS1a, b, c, TAS2 and TAS3a precursors (Moldovan et al. 2010). The expression of a TAS1- 

derived ta-siRNA and its target transcript encoding heat-induced TAS1 target (HTT4) were 

shown to be regulated by temperature shifts (Kohei 2010). Furthermore, the generation of 

TAS4-derived ta-siRNAs was shown to be triggered by miR828 under phosphate deficiency 

(Hsieh et al. 2009). Pseudogenes are also known to promote the processing of mRNAs into 

siRNAs in mammalian system (Tam et al. 2008). For example, the class of trans–NATs that are 

produced from pseudogenes can regulate their homologous protein encoding transcript levels 

(Zhang et al. 2013). 
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In our study, we have used RNA sequencing to uncover the cold, high light and retrograde 

signaling-responsive non-coding RNA repertoire in Arabidopsis and to study their role in the 

regulation of various target RNAs. We subjected Arabidopsis plants to cold and high light 

treatments for 3 h, 6 h and 2 d. To identify sRNAs involved in retrograde signaling, we treated 

WT plants and two additional mutants gun1 and gun5 with norflurazon. We sequenced mRNAs 

and sRNAs libraries from the treated plants and analyzed the raw sequencing data to find the 

differential expression of mRNA/lncRNAs and sRNAs. The putative correlations between 

differentially expressed small RNAs and their protein coding targets was performed. We found 

the involvement of miRNAs, sRNAs derived from cis- and trans-NAT gene pairs and sRNAs 

derived from lncRNAs in response to cold, high light and NF treatment. Overall, our study 

provides the fundamental knowledge related to the role of non-coding RNAs in response to 

different abiotic stresses. 
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Abstract 

Background: Cold stress causes dynamic changes in gene expression that are partially caused by small non-coding 

RNAs since they regulate protein coding transcripts and act in epigenetic gene silencing pathways. Thus, a detailed 

analysis of transcriptional changes of small RNAs (sRNAs) belonging to all known sRNA classes such as microRNAs 

(miRNA) and small interfering RNA (siRNAs) in response to cold contributes to an understanding of cold-related 

transcriptome changes. 

Result: We subjected A. thaliana plants to cold acclimation conditions (4 °C) and analyzed the sRNA transcriptomes 

after 3 h, 6 h and 2 d. We found 93 cold responsive differentially expressed miRNAs and only 14 of these were 

previously shown to be cold responsive. We performed miRNA target prediction for all differentially expressed 

miRNAs and a GO analysis revealed the overrepresentation of miRNA-targeted transcripts that code for proteins 

acting in transcriptional regulation. We also identified a large number of differentially expressed cis- and trans-nat- 

siRNAs, as well as sRNAs that are derived from long non-coding RNAs. By combining the results of sRNA and mRNA 

profiling with miRNA target predictions and publicly available information on transcription factors, we reconstructed 

a cold-specific, miRNA and transcription factor dependent gene regulatory network. We verified the validity of links 

in the network by testing its ability to predict target gene expression under cold acclimation. 

Conclusion: In A. thaliana, miRNAs and sRNAs derived from cis- and trans-NAT gene pairs and sRNAs derived from 

lncRNAs play an important role in regulating gene expression in cold acclimation conditions. This study provides a 

fundamental database to deepen our knowledge and understanding of regulatory networks in cold acclimation. 

Keywords: Arabidopsis thaliana, Cold acclimation, Small non-coding RNA, Gene regulation, RNA sequencing, 

miRNA-transcription factor network 
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Background 

Plants are severely affected by dynamic and extreme cli- 

matic conditions. Changes in temperature is one of the 

most critical factors for plants to exhibit flourishing 

growth and low temperature  stress  globally  influences 

the development of plants and restricts their spatial dis- 

tribution affecting the total agricultural productivity [1]. 
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Although most plant species have evolved a certain degree 

of cold tolerance, deviations from the optimal conditions 

lead to restructuring at the  gene level enabling the  plant 

to cope with the environmental fluctuations [2]. 

Plant cells perceive cold stress by  detecting  reduced 

cell membrane fluidity that triggers specific signaling 

cascades [3] to induce the expression of cold responsive 

genes [4]. Currently, the best characterized pathway is 

the C-repeat binding factor (CBF)-dependent signaling 

pathway in which OPEN STOMATA 1 (OST1)/SNF1- 

related protein kinase 2 (SnRK2.6/SnRK2E) is released 

from type 2C protein phosphatase (PP2Cs) in response 
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to elevated abscisic acid (ABA) [5] levels to activate the 

upstream transcription factor (TF) inducer of CBF ex- 

pression (ICE1) by phosphorylation [6]. ICE1 further in- 

duces the expression of several CBF/ dehydration 

responsive element binding factors  (DREB)  TFs  that 

bind to the cold response sensitive TFs/dehydration re- 

sponsive elements (CRT/DRE) promoter elements of 

cold-responsive (COR) genes, which act in the adapta- 

tion to low temperature conditions [7, 8]. Another ABA- 

dependent pathway that  controls  COR  gene  expression 

is mediated through the binding of bZIP TFs known as 

ABRE-binding factors (ABFs) to ABA-responsive pro- 

moter elements [9, 10]. Furthermore, studies have shown 

that DREB/CBF can physically interact with ABFs to ex- 

press ABA responsive genes [11]. The CRT/DRE and 

ABRE regions are present in many cold-inducible genes 

and indicate a tight link between the ABA-dependent 

pathway and the ICE-CBF-COR pathway [10]. 

In addition to the TF mediated transcriptional control, epi- 

genetic modifications control the gene expression in cold 

stress mainly by chromatin remodeling altering the accessibil- 

ity of chromatin for the transcription machinery [12, 13]. Be- 

sides the transcriptional control, gene regulation involves 

regulatory processes at the post-transcriptional and post- 

translational level [14]. An important post-transcriptional con- 

trol of gene expression is mediated by non-coding RNAs 

(ncRNAs) that cannot be translated into functional proteins. 

ncRNAs are classified into long non–coding RNAs (lncRNAs) 

that contribute to the control of gene expression involving 

transcriptional and post-transcriptional pathways [15] and 

sRNAs binding to reverse complementary target RNAs to 

confer target RNA cleavage or translational inhibition [16] or 

they interfere with transcription via epigenetic mechanisms 

such as RNA-directed DNA methylation (RdDM) [17]. 

lncRNAs are longer than 200 nt and possess 5′ capping 

and   3′   polyadenylation   similar   to   mRNAs   [18–20]. 

lncRNAs exert their function by different modes of action, 

for instance lncRNAs restrain the accessibility of regula- 

tory proteins to nucleic acids by serving as decoys [21]. 

Another mechanism is presented by the well characterized 

lncRNA Induced by Phosphate Starvation1 (IPS1), that 

acts as a non-cleavable competitor for the Phosphate 2 

(PHO2) mRNA that is targeted by miR399 for degradation 

[22]. LncRNAs also cause epigenetic alterations such as 

histone modifications as identified in the vernalization 

process where prolonged cold stress leads to epigenetic si- 

lencing of the Flowering locus C (FLC) that controls flow- 

ering time [23, 24]. Here, the lncRNA cold induced long 

antisense intragenic RNA (COOLAIR) interacts with a 

polycomb repressive complex (PRC2) and subsequently 

causes histone methylation and silencing of the FLC locus. 

lncRNAs also assist in de novo methylation of DNA cyto- 

sine residues and cause transcriptional silencing of genes 

by RdDM [25, 26]. 

 

Small RNAs (sRNA) are 21–24 nt in size and effi- 

ciently regulate mRNA transcript levels, translation and 

also mediate epigenetic silencing [27]. The two main 

sRNA classes are microRNA (miRNAs) that are proc- 

essed from single stranded precursors forming a partially 

double-stranded hairpin structure and small interfering 

RNAs (siRNAs) that are generated from double-stranded 

RNA precursors. miRNA biogenesis occurs in a multi- 

step fashion starting with the transcription of nuclear 

encoded MIR genes by RNA polymerase II to produce a 

5′  capped  and  polyA-tailed  primary  miRNA  transcript 

(pri-miRNA) [28]. The dicing complex containing Dicer- 

like1 (DCL1) and its accessory proteins Hyponastic 

Leaves 1 (HYL1) and Serrate (SE) excise a miRNA du- 

plex from the double stranded hairpin structure that is 

translocated to the cytoplasm by the exportin Hasty 

(HST). The mature miRNA is loaded into an argonaute 

protein within the RNA-induced silencing complex to 

mediate the cleavage of target mRNAs via reverse com- 

plementary binding of the miRNA [29]. 

Plant miRNAs play important roles in a wide range of 

biological processes including development and stress 

adaptation [30]. To uncover the stress-regulated miRNA 

repertoire, sRNA libraries were generated from plants 

subjected to diverse stress conditions and analyzed by 

RNA sequencing  approaches  [31–34].  Previous  studies 

in A. thaliana identified  members of the  miR171 family 

to be upregulated by low as well  as elevated tempera- 

tures [35] targeting SCARECROW-LIKE6-III (SCL6-III) 

and SCL6-IV that belong to the GRAS family of TFs [36, 

37]. MiR408 was recognized to be induced by cold and 

other abiotic stresses. It regulates transcripts encoding 

phytocyanin family proteins (cupredoxin,  plantacyanin 

and uclacyanin) which act as electron transfer shuttles 

between proteins [38] and transcripts of phytophenol 

oxidases called Laccases [39] which are known to oxidize 

flavonoids during seed development and environmental 

stress [40]. These are essential to maintain cell wall 

functions and are important to regulate biological path- 

ways necessary for abiotic stress responses [41]. Recent 

investigations validated miR394 and its target LEAF 

CURLING RESPONSIVENESS (LCR) to regulate leaf de- 

velopment [42, 43] and to be involved in an ABA- 

dependent manner in responses to cold, salt and drought 

stress [44, 45]. In A. thaliana, miR397 was shown to 

positively regulate cold tolerance via the CBF-dependent 

signaling pathway and overexpression of MIR397a 

caused increased CBF transcript levels leading to induc- 

tion of cold responsive COR genes [46]. 

In contrast to miRNAs, siRNAs are generated from 

dsRNA molecules and are sub-classified based on their 

specific biogenesis pathways. Trans-acting siRNAs (ta- 

siRNAs) are endogenous plant-specific small RNAs that 

are capable of acting in trans and have the potential to 
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repress distinct mRNA transcripts. The production of ta-

siRNAs is triggered by miRNA-mediated cleavage of 

primary TAS transcripts to generate 21 nt ta-siRNAs in a 

phased manner [47, 48]. Ta-siRNAs have been shown to 

regulate plant development [49]. Recent studies suggest 

their role in environmental stress adaptation, for ex- 

ample, 14 hypoxia-responsive ta-siRNAs have been iden- 

tified in A. thaliana that are processed from TAS1a, b, c, 

TAS2 and TAS3a precursors [50]. The expression of a 

TAS1-derived ta-siRNA and its target transcript heat–in- 

duced TAS1 target (HTT4) were  shown  to be  regulated 

by temperature shifts [51]. Furthermore, the generation 

of TAS4-derived ta-siRNAs was shown to be triggered 

by miR828 under phosphate deficiency [52]. 

Another subset of siRNAs are natural antisense tran- 

script derived short interfering RNAs (nat-siRNAs) 

which are produced from overlapping regions of RNA 

polymerase II derived antisense transcripts [53]. The 

NATs can be classified into two types depending on the 

genomic location of the overlapping transcripts. Either 

both transcripts are encoded on opposite DNA strands 

within the same genomic region to produce overlapping 

transcripts (cis-NATs) or both transcripts derive from 

separate genomic regions (trans-NATs), but are able to 

pair with each other. A high salinity responsive nat- 

siRNA was first identified in A. thaliana where the con- 

stitutively expressed gene transcript delta-pyrroline-5- 

carboxylate dehydrogenase (P5CDH) and the salt in- 

duced gene transcript Similar to Radicle Induced Cell 

Death One 5 (SRO5) encoded on opposing strands of an 

overlapping genomic region form a dsRNA and DCL2 

processes a distinct 24 nt nat-siRNA from the dsRNA re- 

gion. The generated nat-siRNA cleaves the P5CDH tran- 

script and suppresses proline degradation thereby 

inducing salinity tolerance [54]. In addition to  nat- 

siRNAs produced from cis-NATs, trans-NATs can be 

generated when antisense-mediated pairing of tran- 

scripts occurs that are derived from  non-overlapping 

genes [55]. The formation of these dsRNAs takes place 

in diverse trans-combinations i.e. between long non- 

coding RNAs, protein coding transcripts, homologous 

pseudogenes and transposable elements (TE)  [56,  57]. 

For example, the class of trans–NATs that are produced 

from pseudogenes can regulate their  homologous  pro- 

tein encoding transcripts levels [58]. 

A large number of TE-derived siRNAs were observed 

in Decreased DNA methylation 1 (DDM1) mutants of A. 

thaliana and are referred to as epigenetically activated 

siRNAs (ea-siRNAs). These siRNAs are produced from 

transposon-encoded transcripts that are cleaved in a 

miRNA-dependent manner and become converted into 

dsRNAs that are further processed by DCL4 into 21 nt ea-

siRNAs. These ea-siRNAs were shown to be mainly 

required for silencing of TE by targeting their intrinsic 

 

transcripts whereas a subset of these siRNAs also targets 

protein coding mRNAs to reduce their expression levels 

[59]. In addition, similar to MIR precursors some TE- 

derived transcripts can form a stem loop structure from 

which siRNAs can be processed [60]. TE also encode 

lncRNAs and there is rising evidence that environmental 

factors lead to altered chromatin organization and the 

expression of lncRNAs that may have functions in the 

adaptation to altered environmental conditions and can 

even be inherited. A study in A. thaliana reports on a TE-

derived TE-lincRNA1195 that was shown to be in- volved 

in the ABA response and to contribute to abiotic stress 

adaptation [61]. 

In our study we have used RNA sequencing  to  un- 

cover the cold responsive non-coding RNA repertoire in 

A. thaliana and to study their role in the regulation of 

various target RNAs. We sequenced mRNAs and sRNAs 

libraries from A. thaliana plants subjected to cold accli- 

mation conditions for 3 h, 6 h and 2 d and analyzed pu- 

tative correlations between differentially expressed 

sRNAs and their protein coding targets. To gain add- 

itional insight  into  the  cold-responsive  interconnection 

of miRNA-regulated direct targets and  indirect  targets 

that are regulated by TFs, we generated a gene regula- 

tory network (GRN) using information  on  miRNA- 

targets and publicly available TF-related database the 

generated network allows to identify connectivities and 

regulatory impacts of miRNAs under cold acclimation. 

 

Results 

Altered expression of sRNAs during cold acclimation in A. 

thaliana 

To analyze cold-responsive changes in the sRNA reper- 

toire we subjected A. thaliana seedlings to 4 °C cold 

treatment for 3 h, 6 h and 2 d time points. Previous stud- 

ies related to cold acclimation observed a rapid  inhib- 

ition of photosynthetic machinery when shifted from 

normal temperatures to 4 °C [62]. In addition, studies re- 

vealed that abundant cold-responsive genes were differ- 

entially expressed at early time points i.e. 3 h and 6 h as 

well as at later time points i.e. 48 h [33, 34, 62]. Thus, in 

order to study the sRNAs that could possibly regulate 

these cold-altered genes, the 3 h, 6 h and 2 d time points 

were chosen for RNA sequencing analyses. The RNA of 

treated and control samples were used to perform tran- 

scriptome profiling yielding a minimum of  7  million 

reads per library. The sRNA reads were mapped to the 

A. thaliana reference genome and in all samples on 

average about 10% reads mapped to miRNA loci, 10% to 

trans- and 2% to cis-nat-siRNA loci, 4% reads mapped to 

lncRNAs, 3% to ta-siRNA producing regions and 0.3% to 

pha-siRNAs (Additional file 1: Table S2). Only about 1% 

of the total reads mapped to loci encoding the most 

abundant RNAs such as ribosomal RNA, snoRNA, tRNA 
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and snRNA which indicates a good quality of the sRNA 

libraries. The remaining proportion of reads mostly 

mapped to other RNA classes such as TE and repeat as- 

sociated regions which are known to be involved in epi- 

genetic pathways. 

The size distribution of sRNAs ranging from 21 to 24 

nt showed two distinct peaks at 21 nt indicating an en- 

richment of miRNAs, nat-siRNAs and ta-siRNA and at 

24 nt corresponding to sRNAs derived from repetitive/ 

intergenic RNAs, inverted repeats and TE (Fig. 1a, b, c, 

Additional file 1: Table S3). We observed an overall re- 

duction of sRNAs in response to cold acclimation as 

compared to the control. The distribution of sRNA reads 

mapping to different sRNA producing loci including 

miRNAs, nat-siRNAs, ta-siRNAs, phasiRNAs and sRNAs 

produced from lncRNAs indicated that miRNAs and 

trans-nat-siRNAs are the two major sRNA classes de- 

tected in our data set (Fig. 1d) To identify differentially 

expressed (DE) sRNAs between  cold  treated  samples 

and the respective  untreated  controls  (fold  change  ≥ 2 

& ≤− 2  and  a  Benjamini-Hochberg  corrected  p-value 

≤0.05), the relative expression of mature miRNAs and 

siRNAs was calculated on the basis of the number of 

normalized reads. Over the analyzed time course cold 

stress mainly affected sRNAs produced from trans- and 

 

cis-NATs-pairs followed by the class of miRNAs and 

sRNAs derived from lncRNA (Fig. 2a, b, c). Moreover, 

we observed an increasing number of up- and downreg- 

ulated sRNAs from all sRNA classes during the time 

course reaching the highest numbers  after  2  d  of  the 

cold treatment (Fig. 2c). To evaluate the reliability of the 

sRNA sequencing results, we performed stem-loop qRT- 

PCRs for selected sRNAs belonging to all analyzed sRNA 

classes to validate and confirm their expressional 

changes during the time course of cold treatment (Fig. 3). 

miR162a-3p, miR3434-5p, cis-nat-siRNA produced from 

AT3G05870-AT3G05880 transcripts, a trans-nat-siRNA 

generated from AT1G10522-AT5G53905 transcripts and 

a sRNA derived from lncRNA AT5G04445 were found 

to be induced over the course of cold treatment con- 

firming our sRNA sequencing results. 

 
Expression profiling of cold acclimation responsive 

miRNAs 

The sRNA sequencing method allows to distinguish be- 

tween individual miRNAs with even a single nucleotide 

difference. After precise read mapping, sequence reads 

were analyzed to identify differentially regulated miR- 

NAs (FC ≥ 2 & ≤− 2, Benjamini-Hochberg corrected p- 

value ≤0.05) (Table 2, Additional file 2: Table S4). We 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 sRNA size distribution. Graphs depicting the size distribution of mapped sRNAs ranging from 20 to 24 nt in response to cold treatment 

and in the respective untreated controls after 3 h (a), 6 h (b) and 2 d (c) (represented in reads per million). Average trimmed sRNA reads per 

million mapping to different classes of RNAs in control and cold acclimated samples (d) 
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observed a general trend in all the samples that around 

10% of the detected miRNAs possessed very high nor- 

malized read counts (> 1000 reads per sample),  about 

50% showed moderate expression (< 1000 and > 20 nor- 

malized reads), 11% showed reduced read counts (< 20 

and > 5 normalized reads) and 27% showed very low ex- 

pression (< 5 normalized reads) (Additional file 2: Table 

S5). In response to cold treatment we observed 22 miR- 

NAs (8 up and 14 down) that were DE after 3 h, 36 ma- 

ture DE miRNAs (19 up and 17 down) after 6 h and 79 

DE mature miRNAs (42 up and 37 down) after 2 d. We 

found miRNAs showing differential expression at spe- 

cific time points as well as miRNAs with differential ex- 

pression at two or all three time  points.  Two  DE 

miRNAs were found throughout the course of cold 

treatment, 13 DE miRNAs were detected  at 6 h and  2  d, 

8 DE miRNAs were  common  after  3 h and 2 d,  and 4 

DE miRNAs were found at the 3 h and 6 h time point. 

We also observed 7, 17 and 55 DE miRNAs that were 

specifically regulated at the 3 h, 6 h, and 2 d time points 

(Fig. 4). We detected an increasing number of DE indi- 

vidual miRNAs over the time course of cold treatment 

suggesting that alterations in miRNA levels seem to be 

an important step during cold acclimation. 

In recent years, 22 miRNA families were identified to be 

conserved between A. thaliana, Oryza sativa and Populus 

trichocarpa [63–65] and some of them were shown  to 

have important roles in abiotic stress adaptation since they 

predominantly regulate targets encoding TFs or enzymes 

that promote tolerance to stresses [66–68]. Out of these 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Validation of sRNA sequencing data by stem loop qRT-PCR. The expression levels of miRNAs (a) and sRNAs produced from trans-NATs and 

lncRNA (b) and cis-NATs (c) were verified using stem loop qRT-PCR. The relative expression level of untreated control was set to 1 and the treated 

samples were normalized to UBI1 housekeeping gene. The error bars indicate the standard deviation from three technical replicates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 sRNA producing classes during cold acclimation. Graph depicting the number of up- (black) and downregulated (gray) sRNAs from 

different sRNA classes in response to 3 h (a), 6 h (b) and 2 d (c) of cold treatment (FC ≥ 2 &  ≤− 2, Benjamini-Hochberg corrected p-value ≤0.05) 
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22 miRNA families, we detected individual members of 16 

families to be differentially expressed corresponding to 15, 

20 and 43 DE mature miRNAs at 3 h, 6 h and 2 d, respect- 

ively (Fig. 5, Additional file 2: Table S6). In total, we 

found 107 non-redundant mature miRNAs to be dif- 

ferentially expressed throughout the course of cold 

treatment and 36 mature miRNAs out of  these  be- 

longing to 9 conserved miRNA families  have  been 

known to be cold regulated in other plant species 

(Additional file 2: Table S6) [35, 69, 70]. Out of 107 

miRNAs, 14 have been previously known to be cold 

responsive in A. thaliana and our  study  shows  simi- 

larity in the induction or repression pattern of these 

miRNAs compared to other cold stress  related  studies 

[35, 71, 72].  The  remaining  93  DE  mature  miRNAs 

that belong to 55 miRNA families have not been  re- 

ported before to be cold-regulated in A. thaliana 

(Additional file 2: Table S6). We identified several 

miRNAs with a varying expression pattern  i.e.  up- 

and downregulation at different time points. For  ex- 

ample, miR156f-5p and miR157b-3p were downregu- 

lated at 3 h and upregulated at 2 d, miR166f was 

upregulated at 3 h and downregulated at the 2 d  time 

point, miR447b and miR5653 were upregulated at 3 h, 

but downregulated at 6 h time point whereas miR157b-

5p was downregulated  at  3 h  and  upregu- lated at 6 h. 

Similarly,  12  miRNAs  showed  inconsist- ent regulation 

at 6 h and 2 d, whereas we observed consistent 

upregulation of miR408-5p, miR395e, miR159c, 

miR169h and downregulation of miR160a- 

5p, miR160b, miR398a-5p, miR8175, miR319b  in  at 

least two time points.  This  indicates  that  the  regula- 

tory pattern of a miRNA can  vary  at  different  time 

points of cold treatment and the steady-state level of 

mature miRNAs depends on the physiological need of 

plants subjected to stress conditions. 

 
Differentially expressed miRNA targets 

Since miRNAs and mRNA/lncRNA  were  sequenced 

from the same RNA samples we were able to compare 

changes in miRNA expression with the changes of their 

cognate targets. To identify the targets of miRNAs that 

were found to be differentially expressed during the time 

course of cold treatment we have used the psRNAtarget 

prediction  tool  with  a  stringent  expectation  cut-off  of 

2.5 and allowed miRNA accessibility to its mRNA target 

with a maximum energy to unpair the target site  of 25 

[73]. Applying these stringent parameters, the prediction 

tool revealed putative targets for 93 DE miRNAs out of 

107. The target prediction for the 93 non-redundant DE 

miRNAs identified 338 mRNAs and  14  non-coding 

RNAs as putative targets (Additional file 3:  Table  S7, 

S8). The 18 DE miRNAs at 3 h (5 up- and 13 downregu- 

lated) can target 96 non-redundant mRNAs and 3 non- 

coding transcripts. The 33 DE miRNAs at  6 h  (18  up- 

and 15 downregulated) can target 173 non-redundant 

mRNAs and 3 non-coding RNA targets and the 69 DE 

miRNAs after 2 d (34 up- and 35 downregulated) are 

able to target 267 non-redundant mRNAs and 12 non- 

coding RNA targets (Additional file 3: Table S7, S8). To 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 UpSet plot depicting the number of DE miRNAs. The plot depicts the global comparison of up- and downregulated DE miRNAs after 3 h, 

6 h and 2 d of cold treatment (FC ≥ 2&  ≤− 2, Benjamini-Hochberg corrected p-value ≤0.05) 
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Fig. 5 Hierarchically clustered heatmap depicting miRNAs differentially expressed in at least one of the analyzed time points in response to 

cold treatment 
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analyze how the regulation of these  targets  correlates 

with the expression of miRNAs, we used our mRNA and 

lncRNA transcriptome sequencing data generated  from 

the identical RNA pools as the sRNA data set for the 3 

h, 6 h and 2 d cold treatments and their respective un- 

treated controls (Additional file 4: Table S9, S10). We 

used the mRNA/lncRNA transcriptome data to examine 

the expression levels of all 338 transcripts targeted by 

the 93 differentially regulated miRNAs in order to cor- 

relate the target  transcript  expression  to the  expression 

of their cognate miRNAs (Additional file 3: Table S7). In 

frequent cases we observed that one transcript can be 

targeted by various isoforms of a miRNA family, but in a 

few cases target transcripts can also be cleaved by differ- 

ent miRNAs that are unrelated  in sequence.  In general, 

we considered all individual DE miRNAs and their cog- 

nate protein-coding targets (mRNAs) as miRNA:mRNA 

pairs and identified 111, 246 and 376 of these pairs for 

the 3 h, 6 h and 2 d time points of cold treatment, re- 

spectively (Additional file 3: Table S7). For each time 

point we classified the miRNA:mRNA target pairs into 

different subgroups according to the correlation of their 

expression with the expression of their cognate miRNA. 

These miRNA:mRNA target pair subgroups were classi- 

fied as inversely correlated when they show an anticorre- 

lation of mRNA and miRNA expression, showing same 

tendency of expression when the miRNA  and its  target 

are either upregulated or downregulated, and the 

miRNA is regulated, but the target remains unchanged 

or undetected (Table 1). We observed 2, 12 and 27 

anticorrelated miRNA:mRNA target pairs at 3 h, 6 h and 

2 d, respectively, with a total number of 39 non- 

redundant anticorrelated miRNA:mRNA target pairs 

pointing to a role of these miRNAs in controlling the 

transcriptome upon cold treatment (Additional file 3: 

Table S7). Apart from the mRNA targets, the target pre- 

diction tool also identified 14 putative non-coding RNA 

targets of DE miRNAs, but the expression levels of 

ncRNA target transcripts was less than 5 reads or they 

were not differentially expressed. 

 
Table 1 Number of putative miRNA:mRNA target pairs and 

their relative expression pattern after 3 h, 6 h and 2 d of cold 

treatments 
 

miRNA:mRNA pairs 3 h 6 h 2 d

↑ ↓  2 12 27 

↑ ↑  0 9 15 

↓ ↓  1 1 12 

↑─ or ↓─ 7 15 32 

↑○ or ↓○ 29 137 99 

The first arrow corresponds to miRNA regulation and the second to the 

regulation of its target mRNA transcripts and the arrows represent the 

correlation expression as follows: ↑ = upregulated, ↓ = downregulated, 

─ = unchanged, ○ = undetected. 

 

On the basis of Araport (Version 11; https://araport.org/ 

) annotation, we observed 54 targets of DE miRNAs from 

all the four subgroups to be consistently present at all the 

time points (Additional file 5: Table S11). These mainly 

encode TFs and DNA binding domain containing proteins 

and include MYB domain containing proteins, nuclear 

factor Y subunit genes, heat shock TFs (HsFs), TCP do- 

main proteins and Squamosa promoter binding (SPLs) 

proteins. We also examined the functions of the miRNA 

targets that were specific for each time point. Specifically, 

at 6 h time point we found several PPR proteins that are 

known to be important for RNA maturation in various or- 

ganelles, TPR encoding genes required in plant signaling 

and organellar import and genes encoding membrane 

multi-antimicrobial extrusion [22] efflux proteins that act 

in the transport of xenobiotic compounds. At the 2 d time 

point we found abundant transcripts coding for factors in- 

volved in transcriptional regulation and protein phosphor- 

ylation that control intracellular signaling in response to 

stress. Taken together, we found a remarkable overrepre- 

sentation of genes encoding transcription factors, proteins 

associated with transcriptional regulation, and proteins in- 

volved in RNA processing and translational control. 

We found 39 miRNAs and their putative targets show- 

ing an inverse correlation, for example, after 3 h of cold 

treatment we noticed a strong downregulation of 

miR172c (FC = −4.86) and an upregulation of its pre- 

dicted target TARGET OF EARLY ACTIVATION 

TAGGED (EAT, FC = 2.18) which is known to be re- 

duced in A. thaliana ice1 mutants [33]. In addition, EAT 

also showed increased expression levels in roots and 

leaves at 4 °C in A. thaliana [74]. After 6 h of cold treat- 

ment  we  observed  downregulation  of  miR395c  (FC = 

−19.27) and a concomitant upregulation of its target 

transcript encoding the magnesium-chelatase subunit H 

which presents the GUN5 gene (FC = 2.18) that was 

shown to be an important component of plastid to nu- 

cleus signal transduction. Another miRNA, miR5595a 

showed reduced expression levels (FC = − 2.88) whereas 

its target encoding a methyl esterase 9 was upregulated 

(FC = 3.58) and is known to be a plant core environmen- 

tal stress responsive gene (PCESR) [75]. Additionally, 

after 2 d of cold  treatment,  we observed three  isoforms 

of miR319 to be downregulated and an upregulation of 

one of their target transcript encoding a TCP2 TF (FC = 

2.56). A previous study revealed an upregulation of the 

TCP2 transcript after shifting A. thaliana plants to cold con- 

ditions with 100 μE light conditions, but not in dark condi- 

tions and it was speculated that light-dependent signals 

derived from the chloroplast at low temperature are import- 

ant for increased TCP2 levels that might be important for 

the control of photosynthesis related genes [76, 77]. After 2 

d of cold treatment we also detected downregulation of 

miR159 isoforms (FC = − 2.53) resulting in elevated levels of 
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one of their target transcripts Translocase Inner Membrane 

Subunit 44 (TIM44)-related encoding a subunit of the mito- 

chondrial inner membrane translocase complex subunit 

(FC = 2.80). 

 
Gene ontology analysis of predicted miRNA targets 

To obtain information about the possible role of DE cold 

responsive miRNAs and their  targets,  we  performed 

gene ontology (GO) analysis of all putative targets using 

the David bioinformatics tool [78]. Based on the three 

categories; biological processes, cellular component and 

molecular function, we observed an enrichment of GO 

terms for all three time points with Benjamini-Hochberg 

corrected p-values obtained from Fisher’s test (Fig. 6, 

Additional file 6: Table S12). At the 3 h time point the 

significant biological processes included regulation of 

transcription (47), transcription (41), cell differentiation 

(12), ethylene-activated signaling pathway (7) and auxin- 

activated signaling pathway (7) indicating a major impact 

 

of miRNAs on an early response of genes that code for 

proteins mainly acting in signaling and gene transcrip- 

tion. Concerning the category cellular component, we 

identified the highest  number of targets associated with 

the nucleus (63) which nicely correlates with the over- 

representation of TFs before. Furthermore, in the cat- 

egory molecular functions, the TF activity, sequence- 

specific DNA binding (46), DNA binding (44) and auxin 

binding functions were most significant also pointing to 

an overrepresentation of transcripts that code for regula- 

tory proteins and factors involved in gene transcription. 

For the 6 h time point significant biological  processes 

with the highest number of genes included regulation of 

transcription (62 target genes), response to salicylic acid 

(8), regulation of secondary cell wall biogenesis (5) and 

positive regulation of programmed cell death. We also 

found S-adenosylmethionine-dependent methyltransfer- 

ase activity (7) to be significantly enriched in the mo- 

lecular function category. Similar to 3 h time point, we 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Gene ontology analysis for all predicted targets of DE miRNAs in cold acclimation. Dot plot represents GO terms grouped according to 

molecular functions, cellular components and biological processes. The y-axis depicts the GO terms and the x-axis shows the time points of the 

cold treatment. The size of the bubble depicts the number of genes in a particular GO term (Benjamini-Hochberg corrected p-value ≤0.05) 
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observed an enrichment of transcription related genes at 

the 6 h time point. Along with these, the overrepresenta- 

tion of methyltransferase activity related genes indicates 

epigenetic modifications related to abiotic stress and the 

genes that may act in secondary cell  wall  biogenesis 

could lead to strengthening of the cell wall and reduc- 

tion in pore size in stress conditions. At the  2  d time 

point, significant biological processes included regulation 

of transcription (89), embryo  development  ending  in 

seed dormancy (15), multicellular organism development 

(13), methylation (9) and response to jasmonic  acid (8). 

At all the three time points, we observed an enrichment 

of genes encoding TFs which indicates that these are key 

regulators of a set of genes involved in transcriptional 

reprogramming during cold acclimation.   Concerning 

the category cellular components, we observed the 

highest number of targets associated with  the  nucleus 

(136 target genes) which is in line with the categories 

outlined  before  and  underlines  the  massive  processes 

of transcriptional regulation in response to cold accli- 

mation (Fig. 6). 

 
Construction of a gene regulatory network (GRN) 

To understand the possible interactions and  contribu- 

tions of the major gene regulatory classes, we recon- 

structed a miRNA and TF regulatory network 

(Additional file 7, Data S1). The network comprises dir- 

ect miRNA-mediated target control, miRNAs that regu- 

late transcripts encoding TFs regulating their 

downstream targets (indirect targets), and TFs which are 

not miRNA-controlled but regulating miRNA regulated 

downstream targets (direct targets).  To  construct  the 

final network, we considered the generated miRNA and 

mRNA expression data and analyzed all miRNA targets 

that were predicted using the psRNATarget  tool  to- 

gether with publicly available information of TF binding 

sites (TFBS) and downstream targets. We included ex- 

perimentally validated regulatory connections from Ara- 

bidopsis Transcriptional Regulatory Map [79] and Agris 

[80]. Further, we included TF target  interactions  with 

high confidence from PlantRegMap [81] only consider- 

ing TFs with different criteria of binding site conserva- 

tion. First criterion includes TFs and their targets whose 

binding sites lie within conserved elements of different 

plant species (CE) whereas the second criterion includes 

TFs and targets whose binding sites were found to be 

conserved in different plant species when scanned for 

conservation of TFBS (FunTFBS). 

The validity of the connections in the network  was 

tested by predicting miRNA- and TF-controlled target 

mRNA expression levels based on miRNA or TF expres- 

sion levels at a given time point. Here, the prediction 

power is used as an indicator for the reliability of regula- 

tory links in the network and is calculated by Pearson 

 

correlation between the predicted and the measured 

mRNA expression level (Fig. 7 b). We tested the predict- 

ive power of the three different network versions to ensure 

maximal information in the model. Here, the combined 

version is able to explain on average 77% of the change in 

target gene expression (0.77 Person correlation coefficient) 

and was considered for further investigation. 

This resulting network model contains 350 miRNAs 

classified into 166 families and consisting a total of 657 

TFs belonging to 38 families that either activate or repress 

2420 downstream target genes. In total, there are 36,523 

regulatory relationships out of which 3846 are miRNA 

based whereas the remaining 32,677 are TF-based (Fig. 7 

a, Additional file 7: Data S1, Additional file 8: Fig. S1). 

After validation of the network reconstruction we ana- 

lyzed the network modularity. Modules are clusters of 

nodes which are closely connected to each other com- 

pared to other nodes in the network. In biological sys- 

tems, nodes of one module are often co-regulated and 

closely associated in function. Modules can therefore be 

interpreted as the functional units of the cell [82].  By 

using the community detection method [83], we found 

17 modules. Functional enrichment using GO and Map- 

Man ontology revealed signaling, transport, cold and bi- 

otic stress components, RNA and protein synthesis and 

cellular organization to be overrepresented in five major 

network modules. 

A cold responsive subnetwork (Fig. 8 a, Additional file 

7: Data S2, Additional file 9: Fig. S2) comprising targets of 

differentially expressed miRNA and targets encoding TFs 

and their downstream targets was extracted from the 

GRN. The depicted targets are differentially expressed in 

at least one of the time points and the extracted network 

is comprised of 830 nodes and 1332 edges. We observed 

103 mature miRNAs and 58 TFs to be involved in the 

regulation of 669 direct and indirect targets. The func- 

tional enrichment revealed a predominant regulation of 

genes related to cold acclimation, transcription/transla- 

tion, biotic stress/cell organization, signaling/protein deg- 

radation and cell wall/lignin synthesis. 

We selected two subnetworks, for miR319 which was 

DE at all the three time points and miR858 found to be 

DE at 6 h and 2 d. The miRNA-TF subnetwork of these 

two miRNAs was extracted from  the  whole  network 

(Fig. 8 b, c) and the depicted targets in the network are 

DE in at least one of the analyzed time points  (Add- 

itional file 10: Fig. S3 and Additional file 11: Fig. S4). 

The miR858 subnetwork consists of 30 nodes and 51 

edges. Among its targets miR858 controls the expression 

of Tryptophan synthase (TSB1, AT5G54810) catalyzing 

tryptophan synthesis that is the precursor of the auxin 

indole-3-acetic acid [84]. MiR858 also controls a tran- 

script encoding the TF MYB111 (AT5G49330) which 

modulates the salt stress response by regulating 
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flavonoid biosynthesis [85] and the heat shock factor 

HSFA4A (AT4G18880) involved in the response to heat 

stress. We found 25 nodes and 43 edges to be linked 

with miR319 that mediates regulation of transcripts such 

as TRANSPARENTt TESTA 8 (TT8, AT4G09820) en- 

coding a TF regulating anthocyanin biosynthesis by the 

control of dihydroflavonol 4-reductase [86]. MiR319 also 

regulates mRNA for the thermotolerance related heat 

shock factor HSFB-2b (AT4G11660) and a transcript 

coding for Probable pectinesterase/pectinesterase inhibi- 

tor 25 (PME25, AT3G10720) that could facilitate  cell 

wall modifications in cold stress. 

 
Differentially expressed sRNAs derived from various other 

RNA classes 

We used our sRNA sequencing data not only to analyze 

miRNA regulation in response to cold, but also to iden- 

tify sRNAs derived from other RNA classes which could 

provide links to their role in cold  acclimation.  We 

mapped sRNA reads to publicly available reference data- 

bases of lncRNAs, trans- and cis-NATs pairs, TAS and 

PHAS [57, 87–89] and we were able to associate a high 

number of DE sRNAs to these RNA classes. 

 
sRNAs derived from non-overlapping lncRNAs 

Here we define non-overlapping lncRNAs as transcripts 

with a size larger than 200 nt that are single  stranded 

RNA and do not overlap with protein coding transcripts 

or other non-coding transcripts. In our sRNA data, we 

observed 15 non-redundant non-overlapping lncRNA 

loci that produce DE sRNAs and 13 of these upregulated 

sRNA production whereas the remaining two downregu- 

lated sRNAs in response to cold (Additional  file  12: 

Table S13). However, even if these  lncRNAs  generate 

DE sRNAs, the transcript levels of the lncRNAs 

remained unchanged across the analyzed samples. We 

found one lncRNA at 3 h, another lncRNA at 6 h and 7 

lncRNAs at the 2 d time point of cold treatment that 

produced DE sRNAs. In addition, we found two 

lncRNAs differentially producing sRNAs at 3 h as well as 

6 h out of which AT5G07745 reduced sRNA production 

and the other (AT5G04445) upregulated sRNAs at both 

time points. At 6 h and 2 d we detected four common 

lncRNAs producing sRNAs with elevated expression 

levels. The lncRNA AT5G05455 was the only one that 

produced reduced amounts of sRNAs at the 2  d  time 

point whereas others were upregulated. Single stranded 

transcripts have the capability to produce fold back 

structures forming dsRNA which can be processed into 

small RNAs, but we observed sRNAs produced  from 

sense as well as antisense strands of these lncRNA tran- 

scripts.  Since these lncRNAs do   not   overlap   with 

any other transcript and do not have any pairing 

partners in  other  genomic  loci,  it  probably  indicates 

that RNA dependent  RNA  polymerases  are  involved 

in the formation of dsRNA from these lncRNA  in  a 

primer independent manner that   are   later   converted 

to sRNAs [9, 90]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 (a) Cold-responsive gene regulatory network generated by inferring miRNA and TF-mediated control of gene expression. The TF and 

target connections were obtained from publicly available databases and were combined with psRNATarget predicted miRNA targets. Vertex 

colors indicate the respective regulatory activity and edge colors mark the association to a calculated module. The largest modules are labeled 

with their most prominent functional groups which were identified using ontology enrichment. (b) Predictive power of the network. The Pearson 

correlation of the predicted and measured expression levels of different network versions considering regulatory connections of different sources. 

All versions contain experimentally validated TFBS. Additionally, CE includes TFBS predictions only present in conserved regions, while FunTFBS 

contains predicted TF based connections only if the binding sites are functionally conservation. Combined merges all sources. The data related to 

GRN can be accessed through GEPHI Software (Additional file 7: Data S1) 
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sRNAs derived from NATs 

NATs are pairs of transcripts either non-coding (nc) or 

protein coding (pc) genes that overlap and form dsRNAs 

due to sequence complementarity. The pairing of tran- 

scripts is possible between nc-nc, nc-pc and pc-pc tran- 

scripts and the resulting paired transcript serve as targets 

for DCL-mediated processing into sRNAs. We found the 

majority of cis- and trans-NAT pairs to be produced from 

pc:pc or pc:nc transcript pairs. In case of pc:nc, the nc 

pairing partner mostly represents pre-tRNAs or tran- 

scripts from TE which also have the capacity to produce 

sRNAs individually [91–93]. It is known that pre-tRNA 

and TE-derived sRNAs have the capacity to regulate other 

transcripts by sequence complementarity which could 

indicate their contribution in regulation of cold acclima- 

tion related network [92, 94]. Our data set revealed that 

transcript pairs producing elevated levels of sRNAs in re- 

sponse to cold can have different expression  patterns. 

They can show anticorrelation (one transcript upregulated 

and the other downregulated), a same tendency of expres- 

sion (both transcripts either upregulated or down regu- 

lated) or no correlation (one transcript regulated and the 

other remains unchanged). During stress conditions, re- 

verse sequence complementary transcripts of a stress- 

induced gene and a constitutively expressed gene pair to 

each other and produce 24 nt and 21 nt siRNAs. The siR- 

NAs produced have the capability to cleave the constitu- 

tively expressed transcript resulting in its downregulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 The extracted cold responsive GRN comprising of direct and indirect targets of DE miRNAs. (a) Network of miRNAs and targets that are 

differentially expressed at any one of the analyzed time points (FC ≥ 2& ≤−  2, Benjamini-Hochberg corrected p-value ≤0.05). Functional modules 

associated with cold acclimation, kinase signaling, transcription; translation and transport are represented by blue, dark green, pink, and orange 

color, respectively. (blue nodes = miRNAs, orange nodes = TFs, gray nodes = targets) (b) Subnetwork of miR858. (c) Subnetwork of miR319. In (b) 

and (c) direct and indirect targets of miRNAs are differentially expressed in at least one of the analyzed time points (FC ≥ 2& ≤−  2, Benjamini- 

Hochberg corrected p-value ≤0.05). Curved edges indicate regulatory connections of a regulator and its target. The node colors depict the 

inferred function based on GO enrichment analyses. Green: biotic stress, cell organization; blue: cold stress; pink: transcription, translation; orange: 

transport, PPR; dark blue: cell wall, lignin synthesis; red: signaling, protein degradation. The data related to GRN can be accessed through GEPHI 

Software (Additional file 7: Data S2) 



Tiwari et al. BMC Plant Biology (2020) 20:298 Page 13 of 25 
 

 

 

 

 
 

to facilitate stress acclimation. This mechanism represents 

the classical expression pattern of NATs [54]. The pair is 

characterized by induced differential expression of nat- 

siRNAs and anticorrelated expression pattern of the sense 

and antisense transcripts. We observed abundant sRNAs 

that were regulated, but their transcript levels remained un- 

changed. The second most abundant case was an upregula- 

tion or downregulation of one of the transcripts whereas 

the other transcript remained unchanged (Table 2). 

Most of the trans-NATs gene pairs produced large 

amounts of sRNAs after 2 d of cold  treatment  and 

showed a decrease or no change in the gene transcript 

levels deduced from the mRNA data. This indicates the 

possible pairing of both transcripts which are further 

processed into nat-siRNAs and  higher  production  of 

these nat-siRNA in the cold acclimation could be re- 

quired to keep at least one of transcripts at steady levels. 

 

cis-nat-siRNAs 

We found 5, 20 and 100 cis-NATs loci (104 non- 

redundant pairs) at 3 h, 6 h and 2 d,  respectively, that 

produced DE sRNAs from two overlapping  transcripts 

one of which is up- or downregulated whereas the other 

one remains unchanged (Table 2) (Additional file 12: 

Table S14). In addition, we detected 24, 34 and 278 cis- 

NATs (308 non-redundant pairs) at 3 h, 6 h and 2 d time 

point that produced DE sRNAs, but where the cognate 

overlapping transcripts  remained  unchanged  or  could 

not be detected. Prevalently,  we  observed  that most of 

the pairs producing cis-nat-siRNA were pc:pc transcript 

 
Table 2 Overview of DE nat-siRNAs including expression 

analysis of the underlying cis- or trans-transcript pairs 
 

Time points sRNA clusters ↑ ↑  ↑ ─ ↓ ─ — ─ ↑ ↓ 

3h cis-NATs up 1 5  3  

 down    21  

6h cis-NATs up 1 20  26 1 

 down    8  

2 d  cis-NATs up 15 93 7 270 9 

 down    8  

Non-redundant  16 104  308 9 

3h trans-NATs up    8  

 down    33  

6h trans-NATs up  6  24  

 down 2 7  15  

2 d  trans-NATs up  9 11 75  

 down  1 13 13  

Non-redundant  2 14 18 95  

The two symbols in the five columns at the right represent the pairing cis- or 
trans-transcript partners and indicate their expression as follows: ↑ = 

upregulated, ↓ = downregulated, ─ = unchanged (unchanged refers to FDR > 

0.05 and/or fold change FC ≥ 2 & ≤ −2). 

 
pairs. We found one NATs pair at 6 h and 9 pairs at 2 d 

resembling the classical mechanism of antisense tran- 

script regulation by nat-siRNAs (Table 3) [54]. We de- 

tected a gene pair that gives rise to an  increased 

production of nat-siRNAs and comprises a cold-induced 

transcript coding for a RAS-Related GTP-Binding Nu- 

clear Protein (RAN2, AT5G20020) and a concomitant 

downregulation of its pairing transcript encoding a Plant 

Tudor-like RNA-binding protein (AT5G20030). Until 

now, functional studies on the Plant Tudor-like RNA 

binding protein are lacking, but RAN2 is known to be 

necessary for nuclear translocation of proteins and for 

RNA export [95]. Another transcript of a salt stress re- 

sponsive gene encoding an Oleosin-B3-like protein 

(AT1G13930) [96] which is known to be ABA-induced 

[97] was also induced by cold in our data and its tran- 

script is able to pair with the transcript of a T-box TF 

(AT1G13940) to induce production of cis nat-siRNAs. 

Apart from the above mentioned expression patterns of 

transcripts that differentially regulate siRNA production, 

we found sRNA producing loci  showing  same tendency 

of transcript expression denoted by the upregulation of 

both pairing transcripts (16  non-redundant  pairs;  1,  1 

and 15 at 3 h, 6 h and 2 d, respectively) leading to in- 

duced sRNA biogenesis. In this category we observed 

enrichment of pc:pc as well as pc:nc transcript pairs. 

Prominent examples from our results include the stress- 

induced pc:pc transcripts RARE-COLD-INDUCIBLE 2A 

(AT3G05880) and anaphase-promoting complex/cyclo- 

some 11 (AT3G05870) which cause increased cis-nat- 

siRNA production. We also found a cold-induced pc:nc 

transcript pair coding for a chloroplast beta amylase and 

a lncRNA, and this upregulated cis-nat-siRNAs produc- 

tion consistently at all the three time points. The beta 

amylase promotes starch degradation into sugars which 

may act as osmolytes to maintain osmotic balance under 

cold stress conditions [98]. 

 

trans-nat-siRNAs 

We found 38 non-redundant trans-NAT pairs (5, 14 and 

26 at 3 h, 6 h and 2 d, respectively) that generated DE 

trans-nat-siRNAs from each transcripts. The transcript 

levels of these 38 gene pairs showed that one of  the 

pairing transcript was either upregulated (5 transcript 

pairs) or both were unchanged (33 transcript pairs). Out 

of these 38, we detected four trans-NATs gene pairs that 

generated DE trans-nat-siRNA and were common after 

3 h (both gene transcripts unchanged) as well as after 6 h 

(one transcript upregulated and the other one un- 

changed). We observed 41, 39 and 88 (95 non- 

redundant) trans-NATs gene pairs at 3 h, 6 h and 2 d, 

respectively, that gave rise to DE trans-nat-siRNAs from 

the overlapping region of two transcripts having un- 

changed  or  undetected  transcript  levels  (Table  2).  We 
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Table 3 Examples of cold acclimation induced cis-NATs pairs that produce siRNAs resembling the classical nat-siRNA expression 

Gene 1 sense transcript FC Gene 2 antisense transcript FC 

6h       

 
AT2G22080 

Transmembrane protein 4.75 AT2G22090 UBP1-associated proteins 1A −1.41

2 d       

 
AT5G20020 

RAS-related GTP-binding nuclear protein 2 2.58 AT5G20030 Plant Tudor-like RNA-binding 
protein 

−2.17

 
AT3G11830 

TCP-1/cpn60 chaperonin family protein 2.86 AT3G11840 Plant U-box 24 −2.9 

 
AT1G03090 

Methylcrotonyl-CoA carboxylase alpha chain, mitochondrial / 3- 
methylcrotonyl-CoA carboxylase 1 (MCCA) 

−2.5 AT1G03100 Pentatricopeptide repeat (PPR) 
superfamily protein 

2.47 

 
AT1G72030 

Acyl-CoA N-acyltransferases (NAT) superfamily protein −2.3 AT1G72040 Deoxyribonucleoside kinase 2.44 

 
AT2G40420 

Transmembrane amino acid transporter family protein −2.3 AT2G40430 SMALL ORGAN 4 2.32 

 
AT5G52440 

HIGH CHLOROPHYLL FLUORESCENCE 106 −1.7 AT5G52450 MATE efflux family protein 2.9 

 
AT3G16800 

E GROWTH-REGULATING 3 −1.4 AT3G16810 Pumilio 24 5.5 

 
AT2G22080 

Transmembrane protein 3.13 AT2G22090 UBP1-associated proteins 1A −1.51

 
AT1G13930 

Oleosin-B3-like protein 4.53 AT1G13940 T-box transcription factor, 
putative (DUF863) 

−1.31

Sense transcript and antisense transcript fold change ≥2 or ≤ −2, Benjamini-Hochberg corrected p-value ≤0.05 and siRNA expression fold change ≥2, Benjamini- 

Hochberg corrected p-value ≤0.05. 

observed 2, 5 and 23 trans-NAT pairs comprising over- 

lapping pc:pc transcript that generate DE trans-nat-siR- 

NAs. We found one pc:pc NAT pair that  produced 

reduced nat-siRNAs at 3 h, but increased nat-siRNAs at 

6 h and 2 d time points. Both transcripts encode ZED re- 

lated kinases (ZRK 1, AT3G57710 and ZRK 7, 

AT3G57770) that are known to be induced at high 

temperature and to inhibit the immune response in the 

absence of plant pathogens [99]. In our data, the tran- 

script levels of these two genes were unchanged, but the 

generation of trans-nat-siRNAs from the two  overlap- 

ping transcripts might be important to keep the tran- 

scripts at a steady-state level. After 2 d of cold 

treatment, we found a pc:pc trans-NAT pair that led to 

increased trans-nat-siRNA production from transcripts 

encoding Plastid Redox Insensitive (PRIN2, AT1G10522) 

and prolamin like protein (AT5G53905), but the tran- 

script levels for these two genes remained unchanged. It 

is known that PRIN2 is a plastid protein involved in 

redox-mediated retrograde signaling and is required for 

light-activated PEP-dependent transcription. Another 

similar  example  comprises a ncRNA (AT1G70185)  and 

a transcript for a hypothetical protein (AT5G53740) that 

produce high amounts of trans-nat-siRNAs, but their 

transcript levels were unchanged.  Apart  from  pc:pc 

pairs, we detected pc transcripts that  are  able  to  pair 

with distinct pre-tRNA. In particular, 7 pc transcripts 

pairing with 36 pre-tRNA transcripts produced DE 

trans-nat-siRNAs at 3 h, 10 pc transcripts paired with 46 

pre-tRNAs at 6 h and 15 pc paired with 82 pre-tRNAs 

after 2 d of cold treatment. The majority of the trans- 

NAT gene pairs comprised a nc transcript partner en- 

coding a pre-tRNA or RNA deriving from TE. We found 

a large number of pc:nc pairs that generated DE sRNAs 

(41, 37 and 65 loci at 3 h, 6 h and 2 d, respectively) 

where the transcripts levels were undetected or un- 

changed. There is a possibility that these pc:nc  NATs 

pairs produce sRNA from the double stranded region of 

two completely or partially overlapping transcripts, 

which can be referred as  trans-nat-siRNAs  or  these 

could be derived from single stranded region of two par- 

tially overlapping tRNA or TE transcripts   (Add- 

itional file 12: Table S15). In particular, we observed 1, 8 

and 17 pc:nc trans-NATs pairs at 3 h, 6 h and 2 d, re- 

spectively, that produced DE sRNAs from TE  tran- 

scripts. One widely known example for a TE-derived 

siRNA is siRNA854 which shows partial complementar- 

ity to the 3′ UTR of its target encoding an RNA-binding 

protein involved in stress granule formation known as 

UBP1b transcript [100]. We also detected TE-derived 

sRNAs that are able to target mRNA transcripts to pro- 

mote cold treatment adaptation. Concerning the trans- 

nat-siRNA producing loci we found 13 transcript pairs 

after 6 h and 34 pairs after 2 d time that produced DE 

trans-nat-siRNAs where one of the transcripts from each 

pair was either up- or downregulated and the pairing 
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partner remained unchanged. The time profile revealed 

that the highest number of DE trans-nat-siRNAs were 

identified after 2 d indicating trans-nat-siRNA mediated 

regulation of gene expression seems to be most import- 

ant for the late response to cold acclimation. 

 
Pha-siRNA 

At 6 h time point we identified upregulated sRNAs that 

were derived from a transcript coding for a mitochon- 

drial PPR protein (AT1G63070) and this was already 

shown to produce pha-siRNAs [101] (Additional file 12: 

Table S16). Despite the increasing abundance of the pha-

siRNAs we were not able to detect the  respective PPR 

transcript in the mRNA data. The most abundant sRNAs 

were 21 nt in size followed by 22 nt sRNAs gen- erated 

from this PPR transcript. The 21 nt pha-siRNAs are 

known to be loaded into the argonaute and RNA- induced 

silencing complex to mediate cleavage of mRNAs 

targets. We performed  a  target  prediction  for the 21 nt 

pha-siRNA with psRNATarget applying strin- gent 

parameters and identified putative target transcripts that 

encode other PPR and TPR proteins, the photo- system II 

subunit QA (AT4G21280), RNA processing factor 2 

(AT1G62670) and HVA22 Homologue A (AT1G74520). 

The RNA processing factor 2 also belongs to a class of 

PPR protein which facilitates RNA process- ing in 

mitochondria [102]. The photosystem II  subunit QA is a 

component of the electron transport chain and the 

HVA22 Homologue A protein with an unknown function 

was previously shown to be ABA and stress in- ducible 

[103]. In agreement with the observed upregula- tion of 

the pha-siRNA we found the transcript levels of one of the 

putative targets encoding a PPR protein (AT1G18485) to 

be significantly downregulated. 

 

Discussion 

Our study aims to provide insights into the cold- 

responsive regulation of different classes of sRNAs and 

their impact on the control of either the transcripts 

underlying sRNA production or the control  of  tran- 

scripts targeted by the sRNAs. We combined sRNA se- 

quencing together with sequencing of mRNAs and 

lncRNAs to correlate changes in mRNA/lncRNA steady 

state levels to changes in sRNA expression. We observed 

classical cold stress related marker genes to be upregu- 

lated in the mRNA sequencing data which were found 

to be differentially expressed in a previous study (Lee 

et al. 2005) (Additional file 13: Table S17). Over the time 

course of cold treatment, we observed an overall reduc- 

tion of sRNAs produced from RNA classes such as miR- 

NAs, trans- and cis-NATs-pairs and lncRNAs. To 

exclude that these changes are not caused  by  altered 

levels of the major components involved in sRNA bio- 

genesis we analyzed the levels  of transcripts encoding 

 

sRNA biogenesis associated proteins such as Hua En- 

hancer 1 (HEN1), RNA dependent RNA polymerase 

(ATRDR1–6), DCL1–4, HST1, HYL1, Serrate and Sup- 

pressor of Gene Silencing 3 (SGS3). Their levels 

remained unaffected during the time course of cold 

treatment and we speculate that the reduced sRNA pro- 

duction could be due  to  a  reduced  transcription  of 

sRNA precursor transcripts in response to cold 

acclimation. 

 
Analysis of miRNAs and their putative targets 

We analyzed DE miRNAs since these are powerful regu- 

lators of gene expression  and are involved in the control 

of nearly all cellular pathways [104]. We found 107 DE 

miRNAs over the time course of the treatment and com- 

pared our results to previously reported cold-responsive 

miRNAs in in A. thaliana [32, 35, 71]. Baev et al. (2014) 

treated plants at 4 °C for 24 h and sequenced the RNA 

from rosette leaves and detected 44 DE miRNAs. We 

found an overlap of 7 miRNAs following the same ex- 

pression pattern  and the majority of  these were  DE after 

2 d of cold treatment. Similarly, Liu et al. (2008) sub- 

jected plants to 4 °C, isolated RNA from whole plant tis- 

sues and detected 11 DE miRNAs through microarray 

experiments. We detected 5 of these 11 miRNAs follow- 

ing the same expression pattern. Sunkar et al. (2004) 

studied DE miRNAs from whole plants treated at 0 °C 

for 24 h and two miRNAs were also identified as DE 

miRNAs in our study. We found 14 out of 107 DE miR- 

NAs to be previously identified in A. thaliana in cold 

stress and these comparisons show that there is limited 

overlap between the different  studies  which  might  be 

due to the applied temperature, duration  of  the  treat- 

ment or plant tissue types used in the studies. Several 

miRNAs such as miR167c, miR168, miR397, miR389, 

miR400, miR837-5p, miR838, and miR857 were re- 

ported  to  be  cold  stress  responsive  in  other  studies, 

but were not  identified  to  be  differentially  expressed 

in this study [32, 35, 71]. 

We analyzed the psRNATarget tool predicted putative 

miRNA targets of the DE miRNAs and  found 96,  173 

and 267 miRNA target pairs at  3 h, 6 h  and  2 d time 

points, respectively, which reflects the importance of 

miRNAs in regulating the transcriptome  at  prolonged 

cold treatment. Typically, the alterations in miRNA ex- 

pression affect the abundance of target genes via cleav- 

age of the target transcript after complementary pairing. 

The responses of several abiotic stresses are regulated by 

common mediators that facilitate cross talk of multiple 

signaling pathways [105]. To maintain the temporal and 

spatial expression of stress-related genes, the regulatory 

factors comprising TFs and sRNAs are extremely essen- 

tial. Among the predicted targets of the DE miRNAs, we 

found mRNAs encoding TFs such as NFY, MYB, TCP 
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and HSFs. The GO enrichment of all predicted miRNA 

targets showed that the highest number of targets are as- 

sociated with the nucleus (136 mRNAs) and 85 of these 

encode TFs. Some miRNAs were not associated with 

anticorrelated targets, but their expression pattern sup- 

ports the findings of previous cold- related  studies  such 

as miR161.1 and miR159b, which were found to be 

downregulated at the 6 h time point. Studies with 

SNRK1 overexpression lines showed  reduced  miR161 

and miR159b promoter activity and lowered transcript 

levels of the respective MIR precursors that is likely to 

cause reduced miR161 and miR159b levels [106]. Plants 

have a multitude of TFs that are  necessary  for  growth 

and stress responses and we predicted 85 targets of DE 

miRNA that encode TFs. We predicted TCP2 

(AT4G18390) and TCP4 (AT3G15030) to be targeted by 

miR319 and which is consistent with previous studies in 

A. thaliana and sugarcane [107]. All miR319 isoforms 

were downregulated after 2 d of cold treatment which is 

consistent with a study in rice, where miR319 was down- 

regulated and its target TCP21 was upregulated by cold 

treatment [108]. We observed a similar downregulation 

of miR319 and concomitant upregulation of its targets 

TCP2 and TCP4 after 2 d of cold treatment. 

MYB TFs are known to facilitate cell proliferation and 

to control phenylpropanoid metabolism and hormone 

responses [109]. We observed upregulation of  miR858 

and a corresponding downregulation of its putative tar- 

gets MYB48, MYB34 and MYB20. Apart from TFs, tar- 

gets of miRNAs also comprise transcripts for epigenetic 

regulators such as methyl transferases. miR163 was up- 

regulated after 6 h and downregulated after 2 d of cold 

treatment. One of its targets coding for a S-adenosyl-L- 

methionine-dependent methyltransferases superfamily 

protein (AT1G15125) was downregulated after 6 h and 

another target encoding a N2, N2-dimethylguanosine 

tRNA methyltransferase (AT5G15810) was upregulated 

after 2 d of cold treatment. The tRNA methyltransferase 

(AT5G15810) was shown to cause stress-related N2, N2- 

dimethylguanosine (m2
2G) modification in tRNAs of A. 

thaliana [110]. Usually, tRNA nucleotide modifications 

occur within tRNAs during their maturation and pro- 

cessing and these modifications are biomarkers of spe- 

cific stresses and were observed to be induced  in 

response to oxidizing agents [111]. It is also known that 

stress-induced epitranscriptomic changes regulate tRNA 

stability, translation initiation, and microRNA-based 

regulation of transcripts [111]. 

 
miR159 alters mitochondrial protein import and ethylene 

biosynthesis 

Similarly, miR159 isoforms were upregulated at 3 h, but 

downregulated after 2 d of cold treatment. The putative 

target transcript of miR159 encoding a mitochondrial 

 

translocase TIM-44 related protein (AT5G27395) was 

anticorrelated with 1.4 fold downregulation at 3 h and 

2.8 fold upregulation after 2 d. Since mitochondrial pro- 

teins are translated in  the  cytosol  and  require  import 

into the mitochondria, our results suggest miRNA- 

mediated regulation of TIM-44 that may lead to altered 

mitochondrial protein  import  during  cold  treatment.  It 

is known that environmental stresses inhibit and stimu- 

late protein import [112]. TIM44 recruits mitochondrial 

HSP70 and facilitates the import of proteins containing 

a transit peptide from the inner membrane into the 

mitochondrial matrix [113]. miR159 is also known to 

target RNAs coding for MYB TFs, an amino- 

cyclopropane-1-carboxylate synthase (ACC synthase) 

and proteins of the Small Auxin-Up RNA (SAUR) family 

[114]. Consistent with the previous findings, the upregu- 

lation of miR159 was accompanied by a downregulation 

of 13 SAUR mRNAs and a transcript for an ACC syn- 

thase (AT4G37770) that is required for ethylene biosyn- 

thesis which is known to be a negative regulator of 

freezing tolerance [115]. Thus, miR159-mediated down- 

regulation of ACC synthase observed in our study sug- 

gests a reduced ethylene biosynthesis and increased 

transcription of CBF genes. 

 
miR395c targets an mRNA for a mg chelatase that 

promotes thermogenesis in cold acclimation 

miR395c was found to be downregulated  after  6 h  of 

cold treatment and its putative target coding for the Mg 

chelatase subunit H was concomitantly upregulated. The 

Mg chelatase is a multifunctional protein involved in 

chlorophyll synthesis catalyzing the insertion  of  Mg2+ 

ions into protoporphyrin IX to produce Mg protopor- 

phyrin IX (Mg-Proto-IX) [116]. A recent study con- 

firmed the role of Mg-Proto-IX-derived signals in 

inducing the gene Alternative oxidase 1a (AOX1a) [117]. 

AOX1a reduces O2 to H2O without  pumping  protons 

from the matrix  to  the  inter-membrane  space  and  in 

turn dissipates excess energy in the form of heat. The 

generated heat plays a role in thermogenesis during cold 

stress conditions and promotes stress tolerance. More- 

over, the Mg-Proto-IX signals also lead to increased ac- 

tivities of antioxidant enzymes that add to the 

maintenance of redox equilibrium in cold stress [118]. 

 
A putative target of miR408 coding for a galactose 

oxidase/kelch repeat protein could induce acclimation in 

an ABA-dependent manner 

Interestingly, miR408-5p was upregulated at all  ana- 

lyzed time points. A chickpea MIR408  overexpression 

line subjected to drought  stress  showed  reduced  levels 

of its target coding for plastocyanin. The lack of plas- 

tocyanin caused an accumulation of copper and  in- 

creased levels of copper were shown to cause 
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upregulation of drought responsive genes such  as 

DREB factors and induced their downstream genes 

COR47/RD17 and Low Temperature-Induced 78/Re- 

sponsive to desiccation 29A (LTI78/RD29A) [119]. 

Similarly, we observed upregulation of miR408-5p, 

transcripts of DREBs and their downstream  tran- 

scripts COR47/RD17 and LTI78/RD29A [120, 121]. 

Further, MIR408 overexpression lines showed an in- 

creased efficiency of photosystem II,  reduced  electro- 

lyte leakage and lipid peroxidation and increased 

chlorophyll fluorescence resulting in enhanced cold 

tolerance due to reduced ROS levels [122].  We  pre- 

dicted a miR408-5p target coding for a galactose oxi- 

dase/kelch repeat superfamily protein (AT1G67480) 

that was found to  be  downregulated  at  6 h  and  2  d 

time points indicating cleavage of  the  mRNA  tran- 

script. Song et  al.  (2013)  studied  miR394  and  one  of 

its targets coding for the galactose oxidase kelch fam- 

ily protein LCR (Leaf Curling Responsiveness) in A. 

thaliana MIR394 overexpression and lcr mutant lines. 

They demonstrated upregulation of miR394 and 

downregulation of LCR in the presence of ABA indi- 

cating their regulation in salt and drought   stress. 

Other galactose oxidase kelch family proteins such as 

ZEITLUPE (AT5G57360) have been observed to be 

reduced at low temperatures [123] and KISS ME 

DEADLY (AT1G80440) was downregulated to induce 

UV tolerance [124]. There is a possibility that the pu- 

tative target  galactose  oxidase/kelch  repeat  superfam- 

ily protein (AT1G67480) could also mediate cold 

tolerance in an ABA-dependent manner by its down- 

regulation through miR408-5p [45]. 

 
miRNA-mediated inhibition of chlorophyll biosynthesis 

and flowering in cold 

miR171-3p was downregulated at the 2 d time point and 

its cognate mRNA target  encoding  the  GRAS  domain 

TF Scarecrow-Like 27 (AT2G45160) was upregulated. It 

is known that SCL27 binds to the promoter of the PORC 

gene (protochlorophyllide oxidoreductase) through GT cis- 

element repeats and represses its expression causing reduced 

chlorophyll synthesis [125]. The upregulation of SCL27 due 

to reduction in miR171 levels could facilitate the cold treat- 

ment imposed inhibition of chlorophyll biosynthesis. 

We detected miR156/157  isoforms  to  be  upregulated 

at the 2 d time point  accompanied  with  downregulation 

of their target SPL3 (Squamosa Promoter Binding 

Protein-Like 3).  It has  been shown that  overexpression 

of MIR156a maintains reduced levels of SPL3 transcripts 

which leads to delayed flowering in A. thaliana [126]. In 

contrast, miR172c was downregulated and its putative 

target encoding RAP2.7 also known as Target of Early 

Activation Tagged 1 (TOE1) was upregulated. A. thali- 

ana TOE1 overexpression lines also showed delayed 

 

flowering [127] and it is possible that miR156 and 

miR172c regulate transcript levels of SPL3 and TOE1 

under cold treatment to inhibit flowering. 

 
A cold-responsive gene regulatory network indicates 

importance of miRNA-TF-mRNA interaction 

By combining the temporal miRNA and mRNA expres- 

sion data with publicly available knowledge about regu- 

latory binding behavior of miRNAs, TFs and their 

downstream target genes, we were able to construct a 

cold-related GRN of A. thaliana. In the resulting GRN 

we observed different modes of target regulation with re- 

spect to miRNAs and TFs both regulating direct targets 

and miRNAs that regulate TF transcripts and thus con- 

trol additional targets in an indirect manner. A large 

number of connections was observed between miRNAs 

and their direct targets, but the number of affected tar- 

gets increased when miRNA-targeted TFs were included 

into the network. This indicates that TFs act as the cen- 

tral nodes for relaying information from miRNAs to sev- 

eral TF-affected targets. The extracted cold responsive 

GRN revealed an overrepresentation of distinct func- 

tional modules such as cold stress, biotic stress and cell 

organization, transcription and translation, transport and 

PPR, cell wall and lignin synthesis, signaling and protein 

degradation. This indicates that miRNA-regulation 

seems to be important to control major cellular path- 

ways that are known to be involved in cold adaptation. 

The complete GRN as well as specific subnetworks can 

be used to study the regulatory relationships of miRNA, 

TFs and their direct and indirect targets to explore puta- 

tive novel interacting regulatory components that facili- 

tate cold acclimation. 

 
Differentially expressed sRNAs derived from other RNA 

classes 

We further investigated sRNAs derived from other RNA 

classes such as lncRNA, cis- and trans-NATs, TAS and 

PHAS. We found 15 non-redundant, non-overlapping 

lncRNAs that produced DE sRNAs during the course of 

cold treatment. Since 12 of these  lncRNA  transcripts 

were not detected by RNAseq and 3 were not DE, we 

speculate that the lncRNA transcripts are efficiently 

processed into sRNAs to repress their transcript levels. 

Such an autoregulatory mechanism has been  shown  in 

rice where the lncRNA Long day specific male fertility 

associated RNA (LDMAR) was able to produce Psi- 

LDMAR siRNAs that were able to repress their parent 

LDMAR transcript by RNA-dependent  DNA  methyla- 

tion (RdDM) [128]. 

Besides non-overlapping lncRNAs, we found 429 non 

redundant cis-NATs and 179 non redundant trans- 

NATs pairs producing DE siRNAs with a high propor- 

tion of pc:nc and pc:pc transcript pairs. DE sRNAs 
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derived from cis-NATs have been identified in A. thali- 

ana subjected to drought, cold and salt stress treatments 

[87]. Zhang et al. (2012) grew seedlings for 29 days at 

23 °C and shifted them to 5 °C for 24 h and we detected 

three cis-NATs pairs that were reported in this study to 

give rise to cold-induced nat-siRNAs. One transcript pair, 

AT5G15845 (ncRNA) and AT5G15850 (CONSTANS-like 1) 

showed the same pattern of nat-siRNA production as reported 

for cold and salt stress and the transcript levels of both genes 

as well as the nat-siRNAs were upregulated [87]. Another 

transcript pair, AT5G19220 (ADP-glucose pyrophosphorylase) 

and AT5G19221 (ncRNA) showed unchanged transcript 

levels, but elevated nat-siRNA production. The second pair 

showed less normalized reads in untreated samples compared 

to cold, salt and drought stress in Zhang et al. (2012). Another 

NATs pair comprising AT3G22120 (Cell wall-plasma mem- 

brane linker protein homolog) and AT3G22121 (ncRNA) led 

to increased nat-siRNA production. The same gene pair was 

found to generate reduced nat-siRNA in the previous study in 

response to cold, but produced elevated nat-siRNAs under salt 

stress [87]. 

We observed a predominance of pc:nc gene pairs with 

pre-tRNA or TE as  the  non-coding  transcript  partner. 

We found a large number of pre-tRNA transcripts 

pairing with protein coding transcripts and producing 

siRNAs from one or both pairing transcripts. Several pre-

tRNA transcripts are able to pair with an mRNA en- 

coding a Gly-Asp-Ser-Leu (GDSL)-like Lipase/Acylhy- 

drolase superfamily protein (AT5G55050) and a GDSL 

type lipase gene in pepper has been shown to be  in- 

volved in drought tolerance, the expression of ABA- 

inducible genes and oxidative stress signaling [129]. 

Transcripts encoding F-Box containing proteins 

(AT2G33655, AT1G11270, AT2G16365) that are known 

to be co-expressed with several abiotic stress  related 

genes [130] or to activate stress-responsive genes [131] 

showed pairing with pre-tRNA transcripts to produce 

trans-nat-siRNAs. With respect to the  expression  pat- 

tern of the pairing transcripts and the  resulting  nat- 

siRNA it is possible that the siRNAs are produced from 

the pre-tRNA alone or they are processed from a dsRNA 

formed by pairing of pre-tRNA and the protein coding 

transcript. tRNA-derived small RNAs (tsRNAs) were ini- 

tially thought to be degradation products of endonucle- 

ases, but recent advances suggest their functional role in 

the maintenance of genome stability, epigenetic inherit- 

ance, stress response and cell proliferation [132]. Studies 

in other organisms suggest that the expression of these 

sRNAs referred to as transfer RNA-derived fragments 

(5’tRF and 3’tRF) can be related to the quality control of 

protein synthesis [133, 134]. Previous experiments in 

A.thaliana and human suggest that the tRNA-derived 

sRNA biogenesis depends on the miRNA pathway [135] 

and  tRFs  target  transcripts  of  TE  to  promote  genome 

 

stability [91, 136]. A recent study confirmed the loading 

of 19–25 nt tRFs into AGO proteins suggesting a role of 

tRNA produced sRNAs in post-transcriptional gene si- 

lencing [94, 137–140]. German et al. (2017) observed 

the accumulation of 19 nt  tRNA-derived  sRNAs  from 

the  5′  end  of  mature  tRNA  transcripts  in  A.  thaliana 

pollen. It was concluded that tRFs are processed similar 

to miRNAs since there was a reduction in tRF accumu- 

lation in a ddm1/dcl1 double mutant. tRFs and TE- 

derived sRNAs have been observed to be DE in barley in 

the presence and absence of phosphorous [141] and in 

response to phosphate deficiency in A.thaliana [142]. 

Moreover, recently a new class of DCL-independent siR- 

NAs termed sidRNAs were identified that are incorpo- 

rated into AGO4 and trigger de novo methylation in A. 

thaliana [143] suggesting similarity to tRFs. Besides 

tRNAs, we detected differential regulation of trans-nat- 

siRNAs derived from transposons containing Ty3 Gypsy, 

CACTA and Ty1 Copia elements. TE-derived siRNAs 

can cause DNA methylation or induce repressive histone 

tail modifications to repress TE loci [144]. Furthermore, 

in A. thaliana TE-derived siRNAs can also target protein 

coding genes. For example the TE-derived siRNA854 

was found to control UBP1 transcript level that encodes 

Upstream Binding Protein 1a component of plant stress 

granules [100]. We found 4, 6 and 26 hypothetical pro- 

tein coding transcripts pairing with TE encoded tran- 

scripts, pseudogene RNAs, mRNA and non-coding RNA 

transcripts at 3 h, 6 h and 2 d time point, respectively, 

indicating an involvement of several RNA classes in the 

adaptation to cold treatment. 

In addition to nat-siRNAs derived from pc:nc pairing 

transcripts, we also identified pc:pc cis- and trans-NATs 

pairs that produced siRNAs and we observed an increas- 

ing number of nat-siRNAs over the time course of the 

treatment. We detected elevated expression of nat-siRNAs 

from 9 cis-NAT pairs in response to cold where the over- 

lapping transcripts underlying nat-siRNA production fol- 

low the classical expression pattern of a nat-siRNA 

regulon [54]. This is characterized by an increased expres- 

sion of nat-siRNAs in response to a stimulus due to an el- 

evated transcription of one of the pairing partners that 

causes downregulation of the cognate partner transcript. 

We observed cold-induced upregulation of one transcript 

together with the repression of its cognate pairing tran- 

script and these gene pairs comprised the  transcripts 

RAN2 GTPase (AT5G20020) and Plant Tudor-like RNA- 

binding protein (AT5G20030), TCP-1 chaperonin family 

protein (AT3G11830) and plant U-box 24 (AT3G11840) 

and PPR (AT1G03100) pairing with mitochondrial/3- 

methylcrotonyl-CoA carboxylase 1 (AT1G03090). The in- 

verse expression pattern of these pairing transcripts was 

accompanied by the induction of cis-nat-siRNAs in cold 

treatment. An ideal example is represented by the cold 
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responsive upregulation of an mRNA encoding a MATE 

efflux protein (AT5G52450) that is involved in xenobiotic 

detoxification, disease resistance, and the control of phyto- 

hormones and its pairing partner High Chlorophyll Fluor- 

escence 106 (HCF106, AT5G52440) that displays a 

concomitant downregulation. Until now, functional stud- 

ies on the putative MATE efflux protein are lacking 

whereas the overlapping transcript encoding HCF106 pro- 

tein is well characterized. HCF106 is a chloroplast thyla- 

koid protein and imports proteins into the  thylakoid 

lumen. The hcf106 knockout mutants are albino mutants 

and seedling-lethal, whereas weaker T-DNA alleles are 

paler in color and display reduced stomatal aperture and 

reduced water loss and hence cause elevated dehydration 

tolerance [145]. The production of nat-siRNAs from the 

two transcripts resulting in elevated levels of the MATE 

transcript and downregulation of HCF106 transcript sug- 

gests a cold-responsive regulatory mechanism which could 

act in cold acclimation. 

Based on our results, we conclude that cold treatment 

leads to considerable changes in sRNA levels that are 

likely to contribute to changes in gene expression that 

underlie cold acclimation in A. thaliana. The combination 

of multilevel high throughput sequencing and bioinfor- 

matics analysis proved to be a powerful tool to create a 

regulatory network of sRNAs and mRNAs responsive to 

cold stress. A high number of miRNAs were DE and their 

predicted targets include a large number of mRNAs en- 

coding TFs, PPR and TPR proteins that act in the regula- 

tion of gene expression and protein biosynthesis, 

respectively, and transcripts encoding important enzymes 

that act in cold acclimation. Along with miRNAs, large 

numbers of sRNAs were produced from lncRNAs and 

transcripts of cis- and trans-NATs pairs indicating  a 

strong impact of all sRNA classes in cold adaptation. 

 

Conclusions 

According to this study in A. thaliana, miRNAs and 

sRNAs derived from, cis- and trans-NAT gene pairs and 

from lncRNAs play an important role in regulating gene 

expression in cold acclimation. The gene regulatory net- 

work constructed provides substantial information  re- 

lated to the interaction of miRNA and their associated 

direct and indirect targets. Overall, this study provides a 

fundamental database to deepen our knowledge and un- 

derstanding of regulatory networks in cold acclimation. 

 

Methods 

Plant material and stress treatment 

Seeds of A. thaliana ecotype Columbia  (Col-0)  were 

sown at a high density (ca. 50 seeds on  9 × 9 cm pots) 

with soil substrate and stratified at 4 °C for 2 d in the 

dark. Following stratification, the pots were transferred 

to LED-41 HIL2 cabinets (Percival, Perry, USA) and 

 

cultivated under control conditions with a light / dark 

regime of 16 h light (80 μmol photons m− 2 s− 1; corre- 

sponding to 18% of blue and red channel) at 22 °C 

followed by 8 dark at 18 °C for 14 d. Plants serving as 

controls remained under these condition whereas plants 

subjected to cold  treatment  were  transferred  4 h  after 

the onset of light at continuous 4 °C with diurnal light 

intensity of 35 μmol photons m− 2 s− 1. The cold treat- 

ment was performed in three independent subsequent 

experimental replicates using the same growth chamber 

with identical settings. The aerial tissues from three ex- 

perimental replicates of cold-treated as well as control 

samples were harvested after 3 h, 6 h, and 48 h (2 d). 

 
RNA isolation and sRNA sequencing 

The total RNA from the biological triplicates of each 

sample were isolated using TRI-Reagent (Sigma) accord- 

ing to the manufacturer’s instructions. For each mRNA 

and lncRNA  library  including  polyA-tailed  lncRNAs, 

10 μg total RNA was vacuum dried with RNA stable 

(Sigma-Aldrich). The libraries were prepared by Novo- 

gene (China) using the Next Ultra RNA Library Prep Kit 

(NEB). The libraries were strand-specifically sequenced 

as 150 bp paired-end on a HiSeq-2500 platform with at 

least 15 million read pairs per library. 

For each sRNA library 50 μg of total RNA was sepa- 

rated on a 15% native polyacrylamide gel. The ZR small- 

RNA Ladder (Zymo Research) served as RNA  size 

marker and sRNAs corresponding to 17–29 nt were ex- 

cised from the gel. The gel pieces were transferred into a 

LoBind Eppendorf tube and crushed using a disposable 

polypropylene pestle. 0.3 M NaCl was added to immerse 

the gel pieces and the tubes were frozen for 15 min at − 

80 °C  and  RNA  was  subsequently  eluted  overnight  at 

4 °C. The buffer was transferred into a Spin-X centrifuge 

tube filter (COSTAR) and centrifuged for 1 min at 4 °C 

to remove the gel pieces. RNA was precipitated by add- 

ing 2.5 volume of 100% (v/v) ethanol, 1/10 volume of 3 

M NaOAc (pH 5) and 1 μl of glycogen (10 mg/ml) and 

incubation at − 80 °C for 4 h. The samples were centri- 

fuged for 30 min with 17.000 x g at 4 °C and the RNAs 

were washed twice with 80% ethanol, dried at room 

temperature and resuspended in 7 μl of nuclease free 

water. RNA concentrations were measured spectro- 

photometrically and the sRNA fractions were used for li- 

brary preparation using the NEBNext multiplex small 

RNA library prep kit Illumina following the manufac- 

turer’s  protocol  with  minor  modifications.  The  3′  SR 

adapter was ligated at 16 °C overnight and the SR reverse 

transcription  primer  was  hybridized  to  an  excess  of  3′ 

SR adapter to prevent adapter dimer formation. After 

ligation  of  the  3′ SR  adapter,  the  5′ SR  adapter  was  li- 

gated to the RNA and incubated for 1.5 h at 25 °C. PCR 

amplification of the libraries was performed using 
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specific index primers for 12 cycles and the cDNA 

amplicons were separated on a 6% native acrylamide gel 

at 120 V. The gel was stained with SYBR gold and RNAs 

with a size between 138 and 150 nt corresponding to 

adapter-ligated sRNAs with a size between 18 and 30 nt were 

excised. Gel elution of the DNA was performed as described 

above except the addition of 1 μl linear acrylamide (5 mg/ml) 

prior to precipitation to increase the DNA pellet mass. The 

cDNA library with concentration of at least 8 ng/μl was con- 

sidered optimum for sequencing. The sRNA libraries were 

sequenced with an Illumina deep sequencing platform (Illu- 

mina HiSeq 1500) with a read length of 50 nt and a mini- 

mum of 7 million reads per library. 

 
Bioinformatic analyses of transcriptomes 

The mRNA/lncRNA sequencing data for the triplicates 

of 3 h, 6 h and 2  d  cold-acclimated  samples  together 

with the respective controls were analyzed using  open 

web based platform GALAXY (https://usegalaxy.org/) 

[146]. The adapter sequences were trimmed using the 

FASTQ Trimmomatic tool using the default parameters. 

To map the raw reads against A. thaliana reference gen- 

ome (https://www.arabidopsis.org, release: TAIR10), 

Tophat tool was used with a maximum intron length 

parameter of 3000 nt. The Araport11 annotation  [147] 

was used to annotate the transcripts and ncRNA tran- 

scripts longer than 200 bp were considered as lncRNAs. 

We used the FeatureCounts tool to count the number of 

reads mapped to the reference genome (Additional file 

1: Table S1). Using the count file as an input for the 

DeSeq2 tool of GALAXY, we obtained the final list of 

genes. All genes were classified based on Araport11 ref- 

erence annotation (https://araport.org/). 

The sRNA raw reads were mapped to the TAIR10 

(https://www.arabidopsis.org, release: TAIR10) reference 

genome using the Shortstack software [148]. Approxi- 

mately 80%  of the obtained reads efficiently  mapped  to 

it (Additional file 1: Table S2). We generated a reference 

annotation database for sRNAs derived from RNA clas- 

ses such as miRNA (miRBase version 22.1), lncRNA 

(Araport11), trans- and cis-nat-siRNA [57, 87–89], ta- 

siRNA and phasiRNA [101] that was used to generate 

read counts of sRNAs obtained from these RNA classes. 

The counts generated from the triplicates were used for 

the analysis of differential expression using the DeSeq2 

tool in GALAXY and sRNAs having a FC ≥ 2& ≤− 2, 

Benjamini-Hochberg corrected p-value ≤0.05 were con- 

sidered to be DE. Global comparisons of DE miRNAs 

were generated using UpSetR package (https://CRAN.R- 

project.org/package=UpSetR). 

 
cDNA synthesis for stem loop qRT-PCR 

cDNA was synthesized using 300 ng of RNA from three 

biological replicates of treated and untreated samples 

 

[149]. The RNA was treated with DNAse I (2 U, NEB) at 

37 °C for 30 min to eliminate genomic DNA contamin- 

ation, the enzyme was heat-inactivated at 65 °C for 10 

min and the RNA was reverse transcribed into cDNA by 

M-MuLV Reverse transcriptase (200 U, NEB) at 42 °C 

for 30 min. Specific stem loop primers and a universal 

reverse primer were used for cDNA synthesis  (Add- 

itional file 14: Table S18). During cDNA synthesis, we 

added UBI1 (AT4G36800) specific reverse primer and 

monitored the successful cDNA synthesis through PCR 

by using UBI1 specific gene primers. 

 
Stem loop qRT-PCR 

The Real-time PCR was performed using EvaGreen and 

sRNA-specific primers (Additional file 14: Table S18). For 

each sample, the qRT-PCR was performed in three tech- 

nical replicates and each reaction contained cDNA 

amounts equivalent to 20 ng/μl of initial RNA. The qRT- 

PCR program was adjusted to initial denaturation at 95 °C 

for 2 min followed by 40 cycles of amplification with 95 °C 

for 12 s, annealing for 30 s and 72 °C for 15 s. The SYBR 

green signals were measured after each cycle and melting 

curves were monitored to confirm primer  specificities. 

The Ct values were used to calculate the expression levels 

by using ΔΔCt method [150]. The expression levels were 

normalized using UBI1 housekeeping gene (AT4G36800). 

 
miRNA target prediction 

MiRNA targets were predicted using the psRNATarget 

prediction tool (2017 Update) [73]. DE miRNAs were used 

as a query to search against A. thaliana protein coding 

and non-coding transcripts of Araport11 keeping default 

parameters and allowing calculation of target accessibility 

(maximum energy to unpair the target site = 25). We used 

a stringent cut off value 2.5 as the maximum expectation 

score for selecting our potential targets. 

 
Gene ontology of miRNA targets 

GO analyses were performed with the DAVID Bioinfor- 

matics tool [78]. The list of miRNA target genes was 

provided as an input and the output list contained genes 

categorized into biological process, cellular compartment 

and molecular function. We filtered for significant GO 

terms with Benjamini-Hochberg corrected p-value ≤0.05 

which was obtained from Fisher’s test in all the categor- 

ies. The dot plot visualizing the GO terms was generated 

using ggplot2 package (https://CRAN.R-project.org/ 

package=ggplot2). 

 
Construction and validation of the regulatory network 

model 

The gene regulatory network (GRN) was  constructed 

using high confidence experimentally validated regula- 

tory connection from ATRM [79] and Agris [80]. We 
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did not include all the connections available in PlantReg- 

Map [151] but the ones which fulfill the criteria of con- 

servation of binding motifs. First criterion includes TF 

connections whose binding sites lie in the conserved ele- 

ments of different plant species (motif_CE) and the sec- 

ond criterion included TF connections whose binding 

sites were found to be conserved in different plant spe- 

cies when scanned for conservation of TFBSs (FunTFBS) 

[81]. The TF based regulatory connections following 

these two criteria were merged with the psRNATarget 

tool predicted miRNA targets to obtain the full network 

model. The prediction of target gene expression was per- 

formed using the Fast Tree Regression learner from Dot- 

net.ML version 0.8 [152]. The outcome variable was the 

FPKM of target gene expressions at the separate time 

points 3 h, 6 h, and 2 d. As input variables, we used the 

time point, the expression levels for each regulator 

familywise aggregated at the respective time and the 

counts of binding sites of the target gene. Both family 

assignments for each TF and binding site information 

for each target were taken from the AtTFDB database 

[153]. The data related to GRN can be accessed through 

free visualization Software GEPHI available for down- 

load at https://gephi.org/ (Additional file 7: Data S1, S2). 

 
Heatmap clustering 

The pheatmap function (https://cran.r-project.org/web/ 

packages/pheatmap/index.html) of the R package ‘Pheat- 

map’ was used to create a heatmap showing hierarchical 

clustering of differentially expressed miRNAs at the 

three time points of cold treatment. 
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SUMMARY 

Chloroplast perturbations activate retrograde signalling pathways, causing dynamic changes of gene 

expression. Besides transcriptional control of gene expression, different classes of small non-coding RNAs 

(sRNAs) act in gene expression control, but comprehensive analyses regarding their role in retrograde sig- 

nalling are lacking. We performed sRNA profiling in response to norflurazon (NF), which provokes retro- 

grade signals, in Arabidopsis thaliana wild type (WT) and the two retrograde signalling mutants gun1 and 

gun5. The RNA samples were also used for mRNA and long non-coding RNA profiling to link altered sRNA 

levels to changes in the expression of their cognate target RNAs. We identified 122 sRNAs from all known 

sRNA classes that were responsive to NF in the WT. Strikingly, 142 and 213 sRNAs were found to be differ- 

entially regulated in both mutants, indicating a retrograde control of these sRNAs. Concomitant with the 

changes in sRNA expression, we detected about 1500 differentially expressed mRNAs in the NF-treated WT 

and around 900 and 1400 mRNAs that were differentially regulated in the gun1 and gun5 mutants, with a 

high proportion (~30%) of genes encoding plastid proteins. Furthermore, around 20% of predicted miRNA 

targets code for plastid-localised proteins. Among the sRNA–target pairs, we identified pairs with an anti- 

correlated expression as well pairs showing other expressional relations, pointing to a role of sRNAs in bal- 

ancing transcriptional changes upon retrograde signals. Based on the comprehensive changes in sRNA 

expression, we assume a considerable impact of sRNAs in retrograde-dependent transcriptional changes to 

adjust plastidic and nuclear gene expression. 

 
Keywords: small non-coding RNA, non-coding RNA, gene regulation, retrograde signalling, gun1, gun5, Ara- 

bidopsis thaliana. 

 

 
INTRODUCTION 

Both mitochondria and chloroplasts are characteristic orga- 

nelles of eukaryotes that have evolved through the 

endosymbiosis of distinct prokaryotic progenitors (Gok- 

soyr, 1967). Cyanobacteria gave rise to plastids, and the 

majority of the endosymbiotic cyanobacterial genome was 

transferred into the nuclear DNA of the host organism. 

Consequently, most multiprotein complexes within the 

plastids are formed by organellar- and nuclear-encoded 

proteins, requiring a well-coordinated expression of both 

genomes (Zimorski et al., 2014; Zhao et al., 2019a). The 

nuclear gene expression is controlled by plastid-to-nucleus 

retrograde signalling (Kleine and Leister, 2016; Chan et al., 

2016), which is proposed to be mediated by several factors. 

For example, norflurazon (NF), a specific inhibitor of the 
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enzyme phytoene desaturase, which produces b-carote- 

noids from phytoene, causes repression of photosynthesis- 

associated nuclear genes (PhANGs) (Woodson et al., 2011). 

Carotenoids are part of the light-harvesting complexes and 

protect the cells from photooxidative damage (Kim and 

Apel, 2013). In the presence of NF the chloroplast suffers 

from photooxidation, leading to characteristic bleaching 

symptoms of the green plant tissues caused by the degra- 

dation of chlorophyll (Breitenbach et al., 2001). Several 

decades ago Arabidopsis thaliana mutant screens were 

performed to identify factors which specifically block the 

expression of PhANGs under conditions of chloroplast 

developmental prevention (Susek et al., 1993; Mochizuki 

et al., 2001; Meskauskiene et al., 2001; Larkin et al., 2003; 

Gray et al., 2003; Gutierrez-Nava et al., 2004; Ball et al., 
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2004; Rossel et al., 2006; Saini et al., 2011). Several GEN- 

OME UNCOUPLED (gun) mutants were identified with dis- 

turbed retrograde signalling leading to a de-repression of 

PhANGs. Interestingly, five different gun mutants, gun2 to 

gun6, are affected in the tetrapyrrole biosynthesis pathway 

(TPB). The gun5 mutant has a defective regulatory CHLH 

subunit of the magnesium-chelatase (Mochizuki et al., 

2001). The gun4 mutation also affects the subunit of the 

magnesium-chelatase, leading to an increased efficiency. 

The gun2, gun3 and gun6 mutants are impaired in heme 

oxygenase, phytochromobilin synthase and Fe-chelatase, 

respectively (Woodson et al., 2011; Woodson et al., 2013). 

Based on these studies, it has been proposed that chloro- 

plast metabolites may act as retrograde signals (Kakizaki 

et al., 2009). The gun1 mutant is not related to the remain- 

ing gun mutants since GUN1 encodes a member of the 

chloroplast-localised pentatricopeptide repeat proteins, 

which usually act in post-transcriptional processes (Tadini 

et al., 2016). The gun1 mutant is able to perceive signals 

from the TPB, plastid gene expression and redox state, but 

the mode of action of GUN1 in retrograde signalling 

remains unknown (Kleine and Leister, 2016). Microarray 

studies have been performed to compare transcriptional 

changes of A. thaliana wild type (WT) and gun1 and gun5 

mutants in response to NF, revealing a strong correlation 

between the gun1 and the gun5 mutant because a large 

number of genes were consistently regulated in both 

mutants, including de-repression of PhANGs. 
To date, all studies analysing gene expression in various 

retrograde signalling mutants focused on the analysis of 

protein-coding genes. However, it is well known that 

classes of non-coding RNAs (ncRNAs), including long 

ncRNAs (lncRNAs) as well as small ncRNAs (sRNAs), have 

important functions in diverse biological processes 

because they mainly act in the control of gene expression 

(Wang and Chekanova, 2017; Huang et al., 2019). 

LncRNAs with a size larger than 200 nucleotides were 

shown to have important functions in the control of gene 

expression (Wierzbicki et al., 2008; Dinger et al., 2009) and 

to exert their function by various mechanisms. One speci- 

fic role of lncRNAs is the regulation of mRNA splicing, 

where they can either activate or inhibit specific splicing 

events (Ma et al., 2014). They also mediate epigenetic mod- 

ifications and act in microRNA (miRNA) target mimicry, 

where the lncRNA harbours a miRNA binding site, causing 

miRNA binding and sequestration (Franco-Zorrilla et al., 

2007; Swiezewski et al., 2009; Heo and Sung, 2011). A 

specific gene regulatory class of ncRNA comprises sRNAs 

with a size of 20–24 nucleotides. They can interfere with 

nuclear transcription by regulating epigenetic modifica- 

tions (Khraiwesh et al., 2010; Bannister and Kouzarides, 

2011; Holoch and Moazed, 2015) or they can act post-tran- 

scriptionally by targeting RNAs, mediating RNA cleavage 

or translational inhibition (Meister and Tuschl, 2004; Bartel, 

© 2020 The Authors. 

2004; Kim, 2005). sRNAs can be divided into two classes on 

the basis of their origin: hairpin RNA (hpRNA) and small 

interfering RNA (siRNA) (Axtell, 2013a). One of the most 

important classes of hpRNA are miRNAs, which are pro- 

cessed from stem-loop transcripts by DICER-LIKE1 enzymes 

(Park et al., 2002; Meyers et al., 2008) and guided through 

ARGONAUTE1 and RNA-induced silencing complex to their 

target RNAs by sequence complementarity to mediate their 

cleavage or translational inhibition (Wierzbicki et al., 2008; 

Voinnet, 2009). Until now only one recent study reported 

on a functional role of miRNAs in retrograde signalling 

(Fang et al., 2018). It was shown that tocopherols positively 

regulate the accumulation of 30-phosphoadenosine 50-phos- 

phate (PAP), which is an inhibitor of exonuclease 2 (XRN2), 

which negatively regulates mRNA and pri-miRNA levels by 

degradation of 5’ uncapped mRNA. Moreover, miR395 

mediates cleavage of the mRNA encoding ATP sulfurylase 

(APS), the enzyme catalysing the initial step of PAP synthe- 

sis (Fang et al., 2018). 

Two other sRNA classes are formed from double 

stranded RNAs (dsRNAs), which are derived from 

endogenous transcripts and generate natural antisense 

transcript-derived siRNA (nat-siRNA) or trans-acting 

siRNA (ta-siRNA), based on their specific biogenesis 

pathways. Nat-siRNAs are generated from two genes 

encoding overlapping transcripts in antisense orientation, 

leading to the formation of dsRNA molecules (Borsani 

et al., 2005). Nat-siRNAs are processed from these 

dsRNAs and mediate subsequent cleavage of one of the 

initial overlapping transcripts. According to their geno- 

mic location, NAT pairs can be distinguished into cis- 

NAT pairs, generated from opposing DNA strands within 

an identical genomic region, and trans-NAT pairs, pro- 

duced from transcripts encoded by separated genomic 

regions (Lapidot and Pilpel, 2006; Yuan et al., 2015). The 

first identified nat-siRNA was shown to have an impor- 

tant function in salt stress adaptation of A. thaliana (Bor- 

sani et al., 2005), where it is involved in the regulation 

of proline biosynthesis. Unlike nat-siRNAs, ta-siRNA gen- 

eration is triggered by miRNAs, since ta-siRNA precursor 

transcripts are cleaved in a miRNA-dependent manner 

and further processed into phased 21 nt ta-siRNA 

duplexes to control target RNAs (Chen, 2009). The role 

of sRNAs in retrograde signalling has not been analysed 

yet and information on the role of lncRNAs in retro- 

grade control is completely lacking. To gain information 

whether these classes of ncRNA act in retrograde sig- 

nalling, we made use of two well-characterised mutants 

affecting plastid-to-nucleus signalling events. A. thaliana 

gun1 and gun5 mutants were grown under standard 

conditions and in the presence of NF, and RNA expres- 

sion profiles were compared to WT controls to identify 

functional sRNA–RNA target pairs that are modulated by 

retrograde signals. 
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RESULTS 

De novo sRNA sequencing after norflurazon treatment 

To identify sRNAs that may act in retrograde signalling 

pathways, seedlings of A. thaliana WT and the two retro- 

grade signalling mutants gun1 and gun5 were treated for 4 

days with 5 µM NF under continuous light (Figure S1a) and 

sRNA sequencing was performed from six independent bio- 

logical replicates samples, yielding a minimum of 5 million 

reads per replicate. The length distribution of all sRNA 

reads was analysed and we observed an enrichment of 

reads with a length of 21 and 24 nt (Figure S1b–d). The 21 nt 

peak corresponds to an expected enrichment of miRNAs, 

ta-siRNAs and nat-siRNAs, whereas the 24 nt peak complies 

with enriched repeat-associated sRNAs. The ShortStack 

sRNA analysis software has been used to map the sRNA 

data set against different reference databases (Table S1). 

DeSeq2 was used to calculate the differential expression 

(2-fold regulation and false discovery rate [FDR] ≤ 0.05) of 

sRNAs between the samples, with a special focus on 

sRNAs that were differentially expressed in NF-treated 

samples with respect to their untreated controls, and in 

NF-treated gun mutants compared to the NF-treated WT 

(Table S2). Specific sRNA clusters arising from different 

ncRNA classes were found to be differentially expressed 

(Figure 1). These classes include mature miRNAs, cis-nat- 

siRNAs and trans-nat-siRNA, as well as sRNAs derived 

from lncRNAs. Upon growth on normal media, we identi- 

fied only a small number of differentially regulated sRNAs 

in the gun mutants as compared to the WT, whereas the 

number of differentially regulated sRNAs between the 

mutants and WT strongly increased upon NF treatment 

(Table S3). 

NF treatment caused an increased number of differen- 

tially expressed sRNAs in WT and both gun mutants, indi- 

cating a considerable sRNA regulation by retrograde 

signals. Furthermore, we observed a higher number of 

differentially expressed sRNAs in both NF-treated gun 

mutants compared to NF-treated WT, pointing to a strong 

regulation of sRNAs that underlies specific retrograde sig- 

nals in these mutants. Most of the changes affect miRNA 

and nat-siRNA expression levels, and we mainly focused 

on these sRNA classes with regard to their differential 

expression and further target analysis to predict the regula- 

tory functions of these sRNAs (Figure 1 and Table S3). 

Analysis of differentially expressed miRNAs 

Because beside a recent analysis of tocopherol-responsive 

miRNAs (Fang et al., 2018) little is known about the role of 

miRNAs in retrograde signalling, we analysed changes in 

miRNA expression in response to NF in A. thaliana WT and 

in the gun1 and gun5 mutants. The comparison of differen- 

tially expressed miRNAs between the samples is shown in 

a hierarchically clustered heatmap (Figure 2a). Only a low 

number of differentially expressed miRNAs was observed 

in the untreated mutants compared to the WT control. In 

the gun1 mutant (gun1/WT), only six differentially 

expressed miRNAs were detected, and only five miRNAs 

were detected in the untreated gun5 mutant compared to 

the WT control (gun5/WT). 

We hypothesised that miRNAs can play a role in retro- 

grade signalling that should be reflected by an enrichment 

of differentially expressed miRNAs after NF treatment. 

Indeed, we observed a remarkable increase in the number 

of differentially expressed miRNAs in response to NF treat- 

ment with a similar number of NF-responsive miRNAs in 

the three analysed genotypes (Figure 2b). In total, we 

observed 22 miRNAs to be differentially regulated in the 

NF-treated WT compared to the untreated control (WT NF/ 

WT). Twenty-four miRNAs were differentially expressed in 

the NF-treated gun1 compared to the untreated gun1 

mutant (gun1 NF/gun1), and 18 miRNAs were differentially 

regulated in the NF-treated gun5 mutant compared to the 

untreated gun5 control (gun5 NF/gun5). 

 
Figure 1. Differentially expressed sRNAs within the 

different samples. Overview of differentially regu- 

lated sRNAs between the different samples 

(log2(FC) ≤ —2 or ≥ +2; FDR ≤ 0.05) subdivided into 

specific sRNA classes. (a) miRNAs, (b) sRNAs 

derived from lncRNA, (c) cis-NAT pairs and (d) 

trans-NAT pairs. The up- and downregulation of the 

members of each class are depicted by grey (up) 

and black (down) partitions of the respective bars. 
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Figure 2. Behaviour of the differentially expressed 

miRNAs. (a) Hierarchically clustered (UPGMA) heat- 

map depicting miRNAs that are differentially regu- 

lated in at least one sample displaying normalised 

log2(FC) values. (b) UpSet plot depicting the num- 

ber of differentially expressed miRNAs in response 

to NF in WT (WT NF/WT) and both gun mutants 

(gun1 NF/WT NF and gun5 NF/WT NF). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Interestingly, we further detected miRNAs that seem to 

be controlled by retrograde signals, as de-repressed miR- 

NAs were observed in the gun1 and gun5 mutants in 

response to NF treatment, which is reminiscent of the de- 

repression of PhANGs in these mutants. We focused on 

miRNAs with altered expression levels in the treated WT 

(WT NF/WT) and correlated them with differentially 

expressed miRNAs in the NF-treated gun mutants (Fig- 

ure 2b). In response to NF, two miRNAs (miR169g-3p and 

miR5996) showed patterns of de-repression in both gun 

mutants similar to de-repressed PhANGs, and one miRNA 

(miR3932-5p) was de-repressed only in the NF-treated 

gun5 mutant compared to the treated WT (gun5 NF/WT 

NF). Furthermore, five miRNAs were downregulated in the 

treated WT (WT NF/WT) and were upregulated in at least 

one NF-treated gun mutant (gun NF/WT NF). We also iden- 

tified two miRNAs which seemed to be controlled by retro- 

grade signals in an opposite manner. These two miRNAs 

were found to be upregulated in the treated WT (WT NF/ 

WT) and downregulated in at least one of the treated gun 

mutants (gun NF/WT NF). In addition, we found miRNAs 

which showed a specific regulation restricted to NF-treated 

gun mutants when compared to the treated WT. Two miR- 

NAs were found to be downregulated in both treated gun 

mutants (gun NF/WT NF). Moreover, nine miRNAs were 

specifically downregulated in the NF-treated gun1 mutant 

compared to the treated WT (gun1 NF/WT NF), and the 

expression of three miRNAs was reduced in the treated 

gun5 mutant (gun5 NF/WT NF). Furthermore, two miRNAs 

were upregulated in the treated gun1 mutant and five miR- 

NAs were upregulated in the treated gun5 mutant (gun NF/ 

WT NF). We also detected four upregulated miRNAs com- 

mon for both treated gun mutants (gun NF/WT NF). 

Differentially regulated nat-siRNAs 

To identify nat-siRNAs from our sRNA sequencing data we 

made use of different accessible databases (Table S1) com- 

prising experimentally validated and computationally pre- 

dicted cis- and trans-NAT pairs (Jin et al., 2008; Zhang 

et al., 2012; Yuan et al., 2015). 

We identified 12 various cis-NAT pairs producing differ- 

entially regulated nat-siRNA clusters in both untreated 

gun1 and gun5 mutants (gun1/WT and gun5/WT) (Fig- 

ure 1c). Besides this, 57 and 23 trans-NAT pairs were 

detected to produce differentially regulated nat-siRNA in 

the gun1 and gun5 mutants, respectively (Figure 1d). 

Upon NF treatment we detected 21 cis-NAT pairs (Fig- 

ure S2a) and 70 trans-NAT pairs (Figure S2b) in the WT 

(WT NF/WT) producing differentially regulated nat-siRNA 

clusters from at least one transcript of these NAT pairs. In 

the treated gun1 mutant (gun1 NF/gun1), nat-siRNAs from 

12 cis-NAT pairs were detected to be differentially 

expressed (Figure 1c) and 23 differentially regulated trans- 

NAT pairs producing nat-siRNA clusters were identified to 

be differentially regulated in the treated gun1 mutant 

(gun1 NF/gun1). In the NF-treated gun5 mutant, we identi- 

fied 33 cis-NATs and 38 trans-NATs generating differen- 

tially expressed nat-siRNAs (gun5 NF/gun5) (Figure 1c,d). 

The overlap and co-regulation as well as specific expres- 

sion of the differentially expressed cis-NAT pairs and 

trans-NAT pairs producing differentially regulated nat- 

siRNA clusters were analysed between the samples and 
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are shown in an UpSet plot (Figure S2). We focused on the 

analysis of NF-responsive differentially expressed nat-siR- 

NAs in the WT to provide information on nat-siRNAs that 

are controlled by retrograde signals. Moreover, we com- 

pared NF-treated WT with both NF-treated gun mutants to 

identify NF-responsive nat-siRNA misregulation that is 

caused by the perturbed retrograde signals in these 

mutants. We detected 31 cis-NAT pairs and 54 trans-NAT 

pairs producing differentially expressed nat-siRNAs in the 

NF-treated gun1 mutant (gun1 NF/WT NF). In the NF-trea- 

ted gun5 mutant we detected 73 cis-NAT pairs and 68 

trans-NAT pairs that produce differentially regulated nat- 

siRNA clusters (gun5 NF/WT NF). For both gun mutants 

the majority of cis-derived nat-siRNAs were upregulated, 

whereas the majority of trans-derived nat-siRNAs were 

downregulated in these mutants (Figure S2). We identified 

five cis-NAT pairs to be downregulated in the treated WT 

(WT NF/WT) and upregulated in both treated gun mutants 

(gun NF/WT NF), thus representing the gun-specific de-re- 

pression of nuclear-encoded PhANGs (Figure S2a). We also 

detected one nat-siRNA cluster produced from a cis-NAT 

pair displaying an opposing expression pattern (upregu- 

lated in WT NF/WT and downregulated in both gun NF/WT 

NF). Within trans-derived nat-siRNAs we identified 19 

sRNA clusters that were differentially regulated in 

response to NF in WT (WT NF/WT) and showed further dif- 

ferential regulation in response to NF in both gun mutants 

(gun NF/WT NF) (Figure S2b). Five of them resemble the 

gun-specific de-repression, since they were downregulated 

in the WT (WT NF/WT) and upregulated in both mutants 

(gun NF/WT NF). Eleven trans-derived nat-siRNAs dis- 

played an opposite expression and were upregulated in 

the treated WT (WT NF/WT) and downregulated in both 

treated gun mutants (gun NF/WT NF). In addition, two dif- 

ferentially expressed nat-siRNA from trans-NAT pairs were 

downregulated within all three samples and another one 

was upregulated in the treated WT (WT NF/WT) and in the 

treated gun5 mutant (gun5 NF/WT NF) and downregulated 

in the treated gun1 mutant (gun1 NF/WT NF). 

Other differentially regulated sRNA classes 

Besides the differentially expressed miRNAs and NAT pairs 

we also found differentially expressed sRNAs produced 

from lncRNAs and phased siRNA (phasiRNAs) precursors 

(Figure S3 and Table S3). Similar to miRNAs and nat-siR- 

NAs, we detected only a small number of differentially reg- 

ulated sRNA clusters derived from lncRNA precursors in 

the untreated genotypes (gun/WT). In total, 11 differentially 

expressed sRNA clusters produced from lncRNAs were 

noticed in the gun1 mutant (gun1/WT) and all 18 differen- 

tially expressed sRNA clusters in the untreated gun5 

mutant were downregulated (gun5/WT). 

When comparing the individual genotypes with and 

without NF treatment, we identified only a considerably 

small number of differentially expressed sRNAs. In the 

treated WT, eight sRNA clusters processed from lncRNA 

precursors were identified to be differentially expressed 

(WT NF/WT). For both treated gun mutants, we observed 

nine different upregulated sRNA clusters (gun NF/gun). 

Comparing the NF-treated gun mutants with the NF-trea- 

ted WT we noticed an increase in the number of differen- 

tially expressed sRNAs (Figure S3). Generally, we observed 

a higher number of upregulated sRNA clusters produced 

from lncRNA precursors in both treated gun mutants (gun 

NF/WT NF). Of 31 differentially expressed sRNA clusters, 

22 were detected to be upregulated in the NF-treated gun1 

mutant (gun1 NF/WT NF). For the treated gun5 mutant, 36 

out of 51 differentially expressed sRNA clusters were found 

to be upregulated (gun5 NF/WT NF). We detected only one 

sRNA cluster derived from a lncRNA precursor that was 

downregulated in the treated WT (WT NF/WT) and upregu- 

lated in both NF-treated gun mutants (gun NF/WT NF). 

Two sRNA clusters were downregulated in the treated WT 

(WT NF/WT) and upregulated in the treated gun1 mutant 

(gun1 NF/WT NF). Another two sRNA clusters derived from 

lncRNA precursors were downregulated in the treated WT 

(WT NF/WT) and upregulated in the treated gun5 mutant 

(gun5 NF/WT NF). Furthermore, 11 sRNA clusters produced 

from lncRNA precursors were similarly regulated in both 

treated gun mutants (gun NF/WT NF), with six of them 

upregulated and five downregulated (Figure S3). 

In addition to the lncRNA-derived sRNA clusters, we 

identified two differentially expressed phasiRNAs. One 

phasiRNA derived from locus AT1G63070 was 5.8-fold 

upregulated in the untreated gun1 mutant (gun1/WT) and 

4.1-fold upregulated in the NF-treated gun1 mutant (gun1 

NF/WT NF). The second phasiRNA produced from the 

locus AT5G38850 was 2.6-fold downregulated in the trea- 

ted WT (WT NF/WT) and 3.5-fold downregulated in the 

treated gun1 mutant (gun1 NF/gun1). 

Analysis of lncRNA and mRNA in the gun mutants 

Besides sRNA sequencing, we also sequenced mRNAs and 

lncRNAs to gain more information about NF-dependent 

regulation of lncRNAs and to examine the correlation of 

sRNAs with their targets. 

The samples were mapped against the A. thaliana gen- 

ome deposited in Araport11 (Table S4) and differential 

expression of mRNA and lncRNA between the samples 

(Tables S5 and S6) was calculated with Cuffdiff. Represen- 

tative transcripts belonging to different RNA classes show- 

ing differential expression levels in the RNA sequencing 

data were selected for expression analyses by quantitative 

real-time PCR (qRT-PCR), which confirmed the mRNA and 

lncRNA sequencing data (Figure S4). We selected various 

genes which were detected to be differentially expressed 

in the treated WT as well as in both NF-treated gun 

mutants. Furthermore, we selected two transcripts each 
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that displayed a low, moderate and high abundance, 

respectively. In addition, we included one lncRNA that was 

found to be differentially regulated in all three samples. 

Classification of differentially expressed ncRNAs detected 

via ribosomal depleted RNA sequencing 

We identified differentially expressed transcripts belonging 

to distinct ncRNA classes (Tables S5 and S6), including 

lncRNAs, which may act in regulatory processes of gene 

expression, as well as tRNA, rRNA and small nucleolar 

RNA (snoRNA), which act in protein translation and splic- 

ing and usually have few regulatory functions. Under nor- 

mal growth conditions we identified 10 differentially 

expressed ncRNAs in each of the gun mutants as com- 

pared to the untreated WT (Table 1 and Figure S5a). The 

number of differentially expressed ncRNAs increased upon 

NF treatment, indicating potential roles upon plastid per- 

turbations that trigger retrograde signalling. In total, we 

identified 34 differentially expressed ncRNAs in the NF- 

treated WT compared to the untreated control (Table 1). In 

the NF-treated gun1 and gun5 mutants (gun NF/gun), we 

identified 32 and 70 differentially expressed ncRNAs, 

respectively. Interestingly, in the NF-treated gun mutants 

we observed 20 and 45 differentially expressed ncRNAs in 

the gun1 and gun5 mutants (gun NF/WT NF), respectively. 

An UpSet plot (Figure S5b) depicts the distribution of 

differentially expressed ncRNAs between various samples 

(WT NF/WT, gun1 NF/WT NF and gun5 NF/WT NF). We 

identified two interesting lncRNAs (AT1G05562 and 

AT4G13495), which represent the classical gun-related 

expression as these show a downregulation in response to 

NF treatment in WT, but are upregulated in both NF-trea- 

ted gun mutants. Furthermore, three lncRNAs (AT3G01835, 

AT5G07325 and AT5G07745) were identified to be upregu- 

lated in the NF-treated WT (WT NF/WT) and downregulated 

in the treated gun1 mutant (gun1 NF/WT NF). 

Another interesting lncRNA (AT4G13495) was de-re- 

pressed in both NF-treated gun mutants with 7.2-fold and 

3.4-fold upregulation in gun1 and gun5 mutants (gun NF/ 

WT NF), respectively, whereas this lncRNA was highly 

downregulated (fold change [FC] of —10.5) in the treated 

WT (WT NF/WT). From our sRNA data we already detected 

sRNAs arising from this lncRNA and in agreement with the 

expression level of this lncRNA, the total sRNAs generated 

from this transcript were downregulated in the treated WT 

(FC of —2.8; WT NF/WT) and 3.4-fold upregulated in the 

treated gun1 mutant (gun1 NF/WT NF). Interestingly, this 

lncRNA overlaps with three individual miRNA precursors 

(miR5026, miR850 and miR863) in sense direction, suggest- 

ing that these miRNAs can be processed from the individ- 

ual precursors as well as from the overlapping lncRNA. In 

line with this hypothesis, we observed a consistent differ- 

ential expression of the lncRNA and the three individual 

miRNAs within the analysed samples (Table 2). 

In addition, we identified two differentially regulated 

lncRNAs overlapping with mRNA transcripts in antisense 

that may act as precursors for the generation of nat-siR- 

NAs. One lncRNA (AT1G05562) that may act as a natural 

antisense transcript was downregulated in the treated WT 

(FC of —3.7; WT NF/WT) and upregulated in the treated 

gun1 and gun5 mutants with a FC of 3.9 and 4.2 (gun 

NF/WT NF), respectively. This lncRNA transcript is able to 

overlap with an mRNA encoding an UDP-glucose trans- 

ferase (AT1G05560). Furthermore, the overlapping mRNA 

transcript was downregulated in the treated WT (FC of 

—5.8; WT NF/WT) and upregulated in both treated 

mutants (FC of 3.6 for gun1 NF/WT NF; FC of 3.1 for 

gun5 NF/WT NF). We also detected differentially 

expressed sRNA clusters processed from this region in 

the sRNA sequencing data in the treated WT (FC of —4.4 

for WT NF/WT) as well as in the treated gun1 mutant (FC 

of 6.6 for gun1 NF/WT NF). Thus, the regulation of nat- 

siRNAs correlates with the expression of the respective 

lncRNA–mRNA transcript pair and the differential expres- 

sion seems to be regulated by specific retrograde sig- 

nalling pathways. 

 
 
 

Table 1 Overview of differentially expressed ncRNAs in response to NF in A. thaliana WT and gun1 and gun5 mutants 
 

 
gun1/ 

WT 

gun5/ 

WT 

WT NF/ 

WT 

gun1 NF/ 

gun1 

gun5 NF/ 

gun5 

gun1 NF/ 

WT NF 

gun5 NF/

WT NF 

lncRNAs 6 5 15 13 34 11 20 

snRNAs 0 0 3 0 8 1 5 

snoRNAs 0 0 3 3 11 2 4 

rRNAs 0 0 2 0 1 1 0 

tRNAs 0 0 3 4 1 2 1 

pseudogenes 4 5 5 6 9 2 10 

transcript regions 0 0 2 5 3 1 4 

MIR precursors 0 0 1 1 2 0 0 

antisense RNAs 0 0 0 0 1 0 1 

Total 10 10 34 32 70 20 45 
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Table 2 Expression data for the lncRNA AT4G13495 that overlaps 

in sense with the individual miRNA precursors miR5026, miR850 

and miR863 
 

 
 

FC WT 

ID NF/WT FDR 

FC 

gun1 

NF/WT 

NF 

 
 
 

FDR 

FC 

gun5 

NF/WT 

NF 

 
 
 

FDR 

AT4G13495 —10.54 0.001 7.17 0.001 3.36 0.001 
miR5026 —2.63 0.085 4.08 0.004 3.08 0.042 

miR850 —2.58 0.077 2.61 0.068   3.81 0.007 

miR863-5p —1.7 0.561 1.29 0.941   2.34 0.467 

miR863-3p —1.51 0.538 2.7 0.025 2.61 0.045 

In addition, we identified a TAS3 precursor transcript 

(AT3G17185) that was downregulated in the NF-treated WT 

(FC of —2.9 for WT NF/WT) and de-repressed in the treated 

gun5 mutant (FC of 2.6 for gun5 NF/WT NF). Ta-siRNAs 

produced from the TAS3 transcript control the expression 

of transcripts coding for auxin response factors such as 

ARF2, ARF4 and ETT. However, we detected neither differ- 

entially expressed TAS3-derived ta-siRNAs nor differential 

expression of their cognate targets between the analysed 

samples. 

Differentially regulated nuclear- and organellar-encoded 

mRNAs after NF treatment 

In parallel to sRNA and lncRNA, we analysed the data 

obtained from the ribosomal depleted nuclear- (Figure 3) 

and organellar-encoded (Figure 4) RNA sequencing to 

identify protein-coding mRNAs that are regulated by retro- 

grade signalling pathways. Furthermore, to categorise 

putative functions of differentially regulated RNAs after NF 

treatment, Gene Ontology (GO) enrichment terms were 

explored (Table S8 and Figure S6). We detected only a low 

number of differentially expressed genes (DEGs), with 212 

and 165 differentially expressed transcripts in the 

untreated gun1 and gun5 mutants (gun/WT), respectively 

(Figure 3a). However, when we analysed differential gene 

expression in response to NF, we observed a remarkable 

increase in the number of DEGs (Figure 3b). We identified 

1557 DEGs in the WT in response to NF (WT NF/WT). For 

both treated mutants compared to their respective 

untreated controls, we identified slightly lower numbers of 

DEGs. In total, 1361 DEGs were identified in the treated 

gun1 mutant (gun1 NF/gun1) and 1177 DEGs were detected 

in the treated gun5 mutant (gun5 NF/gun5). In addition, we 

compared mRNA expression between the NF-treated gun 

mutants and the NF-treated WT. We identified 905 DEGs in 

Figure 3. Distribution of nuclear DEGs in the 

untreated and NF-treated samples. (a) UpSet plot 

showing the distribution of differentially regulated 

mRNAs in the untreated gun mutants compared to 

the WT. (b) UpSet plot depicting the distribution of 

differentially regulated mRNAs in response to NF in 

WT (WT NF/WT) and both gun mutants (gun1 NF/ 

WT NF and gun5 NF/WT NF). (c) Hierarchically clus- 

tered (UPGMA) heatmap of normalised log2(FC) val- 

ues from nuclear-encoded DEGs with 15 clusters 

based on co-expression patterns. 
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the NF-treated gun1 mutant (gun1 NF/WT NF) and 1319 

DEGs in the treated gun5 mutant (gun5 NF/WT). We gener- 

ated a hierarchically clustered heatmap from all 3352 

nuclear-encoded mRNAs that were differentially regulated 

in at least one sample (Figure 3c). Based on the co-expres- 

sion of DEGs we were able to separate 15 specific clusters 

of differentially regulated nuclear-encoded genes 

(Table S7). We identified 1557 DEGs in the treated WT (WT 

NF/WT) and 75% of the mRNAs were downregulated. As 

expected, the NF-treated gun mutants behaved in an oppo- 

site manner, as the majority of the RNAs were upregulated, 

with 65% and 75% upregulated DEGs in the treated gun1 

and gun 5 mutants (gun NF/WT NF), respectively. 

To identify the most interesting candidates regulated by 

retrograde signals, we analysed the overlap between the 

treated WT (WT NF/WT) and both treated gun mutants 

(gun NF/WT NF) to detect those genes that display a typical 

gun-related expression in both mutants (Figure 3b). We 

identified 284 DEGs in response to NF in WT (WT NF/WT) 

as well as in both gun mutants (gun NF/WT NF). These 

DEGs seem to be controlled by retrograde signalling path- 

ways, because they are repressed by NF in the WT and de- 

repressed in the gun mutants. Furthermore, we detected 

56 DEGs with a specific de-repression in the treated gun1 

mutant (gun1 NF/WT NF) and another 287 DEGs 

specifically de-repressed in the gun5 mutant (gun5 NF/WT 

NF). Most likely, the regulation of the genes requires speci- 

fic retrograde signals, as we identified genes showing a 

specific de-repression restricted to only one of the gun 

mutants. 

Besides the analysis of nuclear-encoded genes, we 

investigated organellar gene expression and studied the 

expression of genes encoded by the plastidic and mito- 

chondrial genomes in the WT and both gun mutants in the 

absence or presence of NF. We generated two hierarchi- 

cally clustered heatmaps for plastidic (Figure 4a) and mito- 

chondrial (Figure 4b) genes that were differentially 

expressed in at least one of the samples. As expected, we 

only detected eight mitochondrial genes with differential 

expression in at least one of the samples, as NF treatment 

affects carotenoid biosynthesis in the plastids and should 

not directly affect mitochondrial gene expression. Further- 

more, the low number of affected genes in the mitochon- 

dria indicates an insignificant crosstalk between plastids 

and mitochondria triggered by plastid-derived retrograde 

signals. 

In contrast, we detected a considerable high number of 

differentially regulated plastid-encoded genes. Upon 

growth in the absence of NF, none of the plastid-encoded 

genes were differentially expressed in the gun5 mutant 

 
 

Figure 4. Distribution of differentially expressed 

plastidic and mitochondrial DEGs in the untreated 

and NF-treated samples. Hierarchically clustered 

(UPGMA) heatmap depicting (a) plastidic and (b) 

mitochondrial genes that are differentially 

expressed in at least one of the samples displaying 

normalised log2(FC) values. (c) UpSet plot depicting 

the expression of plastid-encoded DEGs detected in 

the NF-treated gun mutants (gun1 NF/WT NF and 

gun5 NF/WT NF) and in the NF-treated WT (WT NF/ 

WT). 
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and only one plastid-encoded gene was differentially 

expressed in the gun1 mutant (gun/WT). However, after NF 

treatment we detected 41, 56 and 36 differentially 

expressed plastid-encoded genes in the treated WT (WT 

NF/WT) and gun1 and gun5 mutants (gun NF/WT NF), 

respectively. Furthermore, we noticed a highly interesting 

phenomenon: Almost all plastid-encoded differentially 

expressed mRNAs were downregulated in the NF-treated 

gun1 mutant (gun1 NF/WT NF) and upregulated in the NF- 

treated gun5 mutant (gun5 NF/WT NF). Thus, based on the 

plastidic gene expression, both mutants respond in an 

almost completely opposed manner to NF treatment, sug- 

gesting specific perturbations in the NF-triggered organel- 

lar signalling pathways. We observed 27 differentially 

expressed plastid-encoded mRNAs in response to NF in 

both the gun1 and the gun5 mutant (Figure 4c) compared 

to the NF-treated WT, but they were regulated in an oppos- 

ing manner: They were all downregulated in the treated 

gun1 mutant, but upregulated in the treated gun5 mutant. 

miRNA target analysis 

We performed miRNA target prediction with ‘psRNATar- 

get’ using all protein-coding and non-coding transcripts 

from Araport11 to correlate the expression of miRNAs with 

putative target RNA transcripts (Table S9). For each pre- 

dicted miRNA target, we considered its expression 

changes to subclassify the miRNA–RNA pairs. For the dif- 

ferentially regulated miRNAs, which were detected in WT 

NF/WT, gun1 NF/WT NF and gun5 NF/WT NF, we were able 

to predict 218 protein-coding targets as well as 16 non-cod- 

ing target RNAs, and some of these can be targeted by 

several miRNAs. We generated a non-redundant list of 

miRNA targets and excluded transcripts with low frag- 

ments per kilobase of transcript per million reads (FPKM) 

values (≥ 5). Applying these parameters, we obtained 119 

predicted miRNA targets that were categorised into three 

different classes based on their expression. It has to be 

noted that a specific miRNA–RNA pair can be grouped into 

different categories since the miRNA as well as the cognate 

RNA target can be differently regulated between the anal- 

ysed samples. The first category comprises miRNA–RNA 

pairs that are ‘unchanged’ according to the FC of the RNA 

transcript (but not the miRNA) and includes 101 miRNA– 

RNA pairs. The second category contains seven miRNA– 

RNA pairs that show an anticorrelated expression pattern, 

and the third category encompasses 16 miRNA–RNA pairs 

 
 

Figure 5. Scatter plots of differentially expressed 

miRNAs and their targets. Only miRNAs with 

FDR ≤ 0.05 were included. The direct plots (left 

panel) depict all differentially expressed miRNAs 

and their direct predicted target transcripts. MiRNA 

target transcripts encoding transcription factors are 

shown in orange (FDR ≤ 0.05)   and   black 

(FDR ≥ 0.05). MiRNA target transcripts encoding 

other proteins are shown in blue (FDR ≤ 0.05) and 

grey (FDR ≥ 0.05). The indirect plots (right panel) 

depict downstream targets of transcription factors 

that are miRNA-regulated. Here, the mRNAs of 

these downstream genes are plotted against the 

miRNAs controlling their respective transcription 

factor mRNAs. The blue dots correspond to 

FDR ≤ 0.05 and the grey dots to FDR ≥ 0.05. 
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where the miRNA and the predicted target show the same 

direction of their differential expression (both up- or both 

downregulated). Two different miRNAs together with at 

least two of their targets were validated by qRT-PCR, con- 

firming their anticorrelated expression pattern (Figure S7a, 

b). Scatter plots (Figure 5) were created to show the distri- 

bution of the differentially regulated miRNAs and their cor- 

relating targets and were divided into ‘direct’ and ‘indirect’ 

scatter plots. The direct plots show the correlation of miR- 

NAs and their cognate RNA targets either coding for tran- 

scription factors or coding for other proteins. The indirect 

scatter plots depict the expression of downstream genes 

that are controlled by miRNA-regulated transcription fac- 

tors. From the direct scatter plot, it is obvious that most 

differentially expressed miRNA targets do not encode tran- 

scription factors. Nevertheless, we identified transcription 

factor transcripts which are controlled by miRNAs, and 

their effect on the transcription factor targets can be seen 

in the indirect plots. For example, the indirect plot shows 

many differentially expressed transcripts coding for tran- 

scription factors, which are controlled by miRNAs in the 

NF-treated WT (WT NF/WT). 

We identified one miRNA–RNA target pair (Table S9) 

that has been shown to play a role in the acclimation to 

phosphate deficiency. MiR399a was downregulated in the 

treated gun1 mutant (gun1 NF/WT NF), whereas the 

expression of its target PHO2 (AT2G33770), encoding a 

ubiquitin-conjugating E2 enzyme, remained unchanged in 

the treated gun1 mutant (gun1 NF/WT NF). MiR850 and its 

cognate target, encoding a chloroplast RNA-binding pro- 

tein (AT1G09340), belong to the category of miRNA–target 

pairs showing the same expression (Table S9) since both 

were upregulated in the treated gun5 mutant (gun5 NF/WT 

NF). This chloroplast RNA-binding protein is necessary for 

the proper function of the chloroplast and mutations in this 

gene cause growth deficiency (Fettke et al., 2011). Further- 

more, we also identified miR157a-5p (FC of —7 in gun5 NF/ 

WT NF), displaying an anticorrelated expression to its tar- 

get PHOTOSYSTEM II REACTION CENTRE PSB28 PROTEIN 

(AT4G28660), which is 2.9-fold upregulated (gun5 NF/WT 

NF). PSB28 is highly conserved in photosynthetic eukary- 

otes and lack of PSB28 results in a pale-green phenotype 

in rice, pointing to a role in the assembly of chlorophyll- 

containing proteins such as CP47 (Lu, 2016). 

Nat-siRNA target analysis 

We detected a larger number of differentially expressed 

sRNAs arising from predicted NAT pairs than from any 

other sRNA class in the treated WT (WT NF/WT) as well as 

in both NF-treated gun mutants (gun NF/WT NF). Filtering 

the differentially expressed nat-siRNAs with at least five 

normalised reads in one of six samples (WT, WT NF, gun1, 

gun1 NF, gun5 and gun5 NF) led to a total number of 73 

non-redundant cis-NATs and 193 non-redundant trans-NAT 

© 2020 The Authors. 

pairs. These pairs were further analysed and we only 

selected the nat-siRNA producing transcript pairs with at 

least five normalised reads for one of the two overlapping 

transcripts. This reduced the number to 64 non-redundant 

cis-NAT and 40 non-redundant trans-NAT   pairs 

(Table S10). The expression changes of two nat-siRNAs 

together with their overlapping transcripts in NF-treated 

WT and the NF-treated gun5 mutant were confirmed by 

qRT-PCR (Figure S7c,d). 

For many trans-NAT pairs, we observed that one of the 

transcripts was derived from a transposable element or a 

pre-tRNA, whereas the second overlapping transcript rep- 

resented a protein-coding gene. Among these trans-NAT 

pairs, we only detected one overlapping transcript encod- 

ing a plastid-localised protein, suggesting a low impact of 

trans-NAT pairs in the adjustment of plastid and nuclear 

gene expression in response to NF. The trans-nat-siRNA 

generated from this pair was found to be downregulated 

in the treated WT (WT NF/WT) and upregulated in both 

treated gun mutants (gun NF/WT NF). The first overlapping 

transcript codes for the plastid-localised UDP-glucosyl 

transferase 75B2 (AT1G05530), which is able to bind UDP- 

glucose, important for cellulose and callose synthesis 

(Hong et al., 2001). Its expression was unchanged in the 

treated WT (WT NF/WT) as well as in both treated gun 

mutants (gun NF/WT NF). The second overlapping tran- 

script represented a lncRNA (AT1G05562) that was down- 

regulated in the treated WT (WT NF/WT) and upregulated 

in both treated gun mutants (gun NF/WT NF). 

Interestingly, out of 64 cis-NAT pairs that give rise to 

differentially regulated nat-siRNAs, we detected 31 indi- 

vidual transcripts which encode plastid proteins, indicat- 

ing a considerable role of cis-NAT pairs in the direct 

control of genes coding for plastid proteins via NF-trig- 

gered retrograde signals. Moreover, within the cis-NAT 

pairs we identified 35 individual transcripts encoding 

nuclear-localised proteins, pointing to a large impact of 

these in the indirect adjustment of nuclear gene expres- 

sion via nuclear regulatory proteins. One sRNA processed 

from a cis-NAT pair was detected to be downregulated in 

the treated WT (WT NF/WT). Interestingly, both overlap- 

ping transcripts were identified to encode plastid- 

localised proteins. The expression of the first overlapping 

transcript (AT1G29900), which codes for a subunit of car- 

bamoyl phosphate synthetase, which is presumed to be 

necessary for the conversion of ornithine to citrulline in 

the arginine biosynthesis pathway (Molla-Morales et al., 

2011), was unchanged (WT NF/WT). In agreement with 

the expression of the nat-siRNAs, the second overlapping 

transcript (AT1G29910) was downregulated by NF in the 

WT (WT NF/WT). This transcript encodes a chlorophyll 

A/B-binding protein, which is the major protein of the 

light-harvesting complex and is required for absorbing 

light during photosynthesis. 
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Network analysis 

In order to gain a comprehensive picture of the role of 

miRNAs in retrograde signalling and to analyse possible 

downstream effects, we investigated a miRNA–RNA-target 

network that also comprises related transcription factor to 

target gene connections. The results were combined in a 

complex interaction network (Data S1), since one miRNA 

can control many mRNAs encoding transcription factors, 

which in turn control several downstream genes, but also 

one miRNA target can be controlled by numerous miRNAs 

(Figure S8 and Table S12). Within the considered network, 

most miRNAs regulate just a small number of target tran- 

scripts (Figure S8a), but there are some miRNAs regulating 

up to 140 targets. In contrast, the majority of miRNA tar- 

gets are regulated by only a few miRNAs, but there are still 

some targets that can be regulated by up to 15 miRNAs 

(Figure S8b). We observed that miRNAs controlling the 

highest number of targets mainly regulate mRNAs that do 

not encode transcription factors (Figure S8c), while the dis- 

tribution of miRNA targets encoding transcription factors 

indicates that most miRNAs regulate only a small number 

of such targets, with the highest number being eight (Fig- 

ure S8d). Some motifs are recurrent in the miRNA–RNA 

target network (Figure 6). We explored the network for dif- 

ferent characteristic relations of regulatory linkage and 

behaviour. Here, we found simple expected patterns where 

a miRNA, miR157a-5p, was downregulated and its target 

mRNA transcript encoding a plastid-localised protein 

(AT4G28660) in turn was upregulated, or vice versa (Fig- 

ure 6a), but we also observed many miRNA targets that 

did not show any differential expression on the mRNA 

level, although corresponding miRNAs were differentially 

expressed. The effect of these miRNAs might be visible on 

the protein level due to inhibition of translation. If the tar- 

get mRNA encodes a transcription factor, we should see 

the miRNA-dependent regulation in the expression of 

downstream targets of this transcription factor (Figure 6b), 

as reported before (Megraw et al., 2016). As an example, 

the transcription factor AT4G36920 can act as an activator 

or repressor on its targets, and furthermore, the transcrip- 

tion factor can control other transcription factors or down- 

stream targets like AT2G33380, which is a CALEOSIN 3 

transcript and important for stress responses (Sham et al., 

2015). In addition, the downstream transcription factors 

can also target other transcription factors or downstream 

targets, which increases the network complexity. Further- 

more, this points to a sophisticated interaction between 

miRNAs and their targets, because miRNAs indirectly regu- 

late genes encoding plastid proteins through the direct 

control of transcription factor mRNAs. Besides transcrip- 

tion factor mRNAs, many miRNAs are able to regulate tran- 

scripts of genes that do not encode transcription factors, 

but also these transcripts do not always show the expected 

behaviour. For instance, miR395c is predicted to control 

 
Figure 6. Illustration of different network motifs 

which we observed in the miRNA–RNA target net- 

work in connection with relative changes of RNA 

levels between treatments. (a) Examples of 

expected regulations where a miRNA and its target 

mRNA exhibit inversed differential expression. (b) 

The interaction between a miRNA regulating the 

mRNA of a transcription factor, and the interactions 

of this transcription factor with its downstream tar- 

get genes. (c) A downregulated miRNA which regu- 

lates four different targets. (d) An example of three 

miRNAs that regulate a single mRNA. The whole 

network can be accessed through the supporting 

Data S1 in GML format. 
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four different mRNA targets, including three transcripts 

encoding plastid-localised proteins (Figure 6c). Further, 

we found examples where several miRNAs are able to 

control the transcript of a single transcription factor (Fig- 

ure 6d). These cases show possible interactions between 

miRNAs and their targets and suggest a wide range of 

direct and indirect impacts of miRNAs to regulate gene 

expression. Nevertheless, behavioural predictions are 

impossible without additional information on the exact 

mode of action of each miRNA and the magnitude of its 

influence. 

DISCUSSION 

Until now, it is not known whether ncRNAs and sRNAs are 

regulated by retrograde signalling in response to NF treat- 

ment and how they contribute to the control of nuclear 

gene expression in response to plastid-derived signals. To 

better understand these biological processes, we com- 

bined sRNA sequencing with mRNA/lncRNA sequencing of 

A. thaliana WT seedlings and the two retrograde signalling 

mutants, gun1 and gun5, to identify ncRNAs and mRNAs 

regulated by retrograde signals. 

Generally, after NF treatment we detected nearly the 

same number of DEGs in all treated samples compared to 

the untreated WT. Further, we observed an overall ten- 

dency that more DEGs were downregulated than upregu- 

lated in response to NF treatment. In addition, we could 

observe an overrepresentation of DEGs encoding plastid- 

localised proteins in all three samples and detected more 

DEGs to be upregulated in the treated gunmutants com- 

pared to the treated WT. 

Previous studies with different gun mutants were per- 

formed using A. thaliana microarrays lacking probes for 

ncRNAs (Strand et al., 2003; Koussevitzky et al., 2007; 

Woodson et al., 2013). Koussevitzky et al. (2007) analysed 

changes in mRNA levels in WT (Col-0), gun1 and gun5 

mutant seedlings grown on media with and without NF. 

About 43% of upregulated and 67% of downregulated 

DEGs in the present study overlap with those of Kousse- 

vitzky et al. (2007) in response to NF (Figure S9a,b). Gener- 

ally, more downregulated DEGs and larger changes in the 

NF-treated gun5 mutant than in the other mutant were 

identified in both studies. A good overlap of DEGs was 

found in both gun mutants. About 56% of the DEGs 

detected in gun1-102 (gun1 NF/WT NF) in our study were 

also detected in the treated gun1-9 mutant by Koussevitzky 

et al. (2007) (Figure S9c), and about 50% of the DEGs iden- 

tified in the treated gun5 mutant (gun5 NF/WT NF) in our 

study were also identified by Koussevitzky et al. (2007) 

(Figure S9d). However, in our data set we identified also 

44% (gun1 NF/WT NF) and 50% (gun5 NF/WT NF) of DEGs 

that have not been shown to be controlled by gun-related 

retrograde signalling pathways before, which might be 

due to the differences between the two methods (RNA 

© 2020 The Authors. 

sequencing versus microarrays) and the varying duration 

of the NF treatment between the studies (5 versus 4 days). 

Recently, another RNA sequencing study reported NF-re- 

sponsive transcriptome changes in a different gun1 mutant 

(gun1-1) (Richter et al., 2020); 55% and 49% of the DEGs 

detected in the NF-treated gun1 and gun5 mutant com- 

pared to the NF-treated WT overlapped with DEGs in our 

study (Figure S9e,f). RNA sequencing was also performed 

in the gun1-9 mutant grown in the presence of NF (Zhao 

et al., 2019b) with an overlap of 65% of DEGs compared to 

our data (Figure S9g). Taken together, we observed a con- 

siderably high overlap with other transcriptome studies 

despite the differences between the studies regarding 

growth conditions, available mutants and analysis 

methods. 

In our study, we observed an opposite regulation of dif- 

ferentially expressed plastid-encoded transcripts in both 

gun mutants, while the nuclear-encoded DEGs showed 

large overlap between the gun1 and gun5 mutants. Sur- 

prisingly, in response to NF all differentially expressed 

plastid-encoded transcripts were downregulated in the 

gun1 mutant, whereas they were upregulated in the trea- 

ted gun5 mutant. These observations are in line with the 

model suggesting that plastid gene transcription is con- 

trolled by retrograde signalling networks, including sigma 

factors (SIG2 and SIG6) and plastid-encoded RNA poly- 

merase (PEP), which might be crucial for proper plastid 

RNA transcription (Woodson et al., 2013). It seems that 

GUN1 activates PEP (Maruta et al., 2015) and a perturbed 

PEP activation in the gun1 mutant may prevent the upregu- 

lation of the plastid-encoded genes compared to WT upon 

NF treatment. 

We identified an interesting lncRNA (AT4G13495) show- 

ing classical de-repression in both gun mutants (gun NF/ 

WT NF) (Table 2). This lncRNA overlaps in sense direction 

with three different miRNA precursors (MIR5026, MIR850 

and MIR863) and all three miRNAs were differentially 

expressed in at least one treatment (WT NF/WT, gun1 NF/ 

WT NF and gun5 NF/WT NF). We assume that all three 

miRNAs can be produced either from the three individual 

miRNA precursor transcripts or from the lncRNA. We did 

not find any predicted target for miR5026 according to the 

applied psRNATarget parameters. MiR850 was upregulated 

in the gun5 mutant (gun5 NF/WT NF), and two predicted 

cognate target RNAs, encoding a chloroplast RNA-binding 

protein (AT1G09340) and a threonine-tRNA ligase 

(AT2G04842), respectively, were upregulated as well. 

MiR863 targets the SERRATE transcript (AT2G27100), 

encoding an accessory protein essential for the miRNA 

biogenesis pathway, and thus may influence the regulation 

of several miRNAs (Meng et al., 2012). MiR863 was upregu- 

lated in both treated gun mutants (gun NF/WT NF), but we 

did not detect significant changes of the SERRATE tran- 

script in the two treated gun mutants. 
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Concerning the overall regulation of differentially 

expressed sRNAs belonging to different classes (miRNAs, 

nat-siRNAs and other sRNA producing loci), we detected 

more downregulated sRNAs in the treated WT (WT NF/ 

WT), whereas both treated gun mutants exhibited a higher 

number of upregulated sRNAs (gun NF/WT NF). Princi- 

pally, this suggests an increased sRNA processing in 

response to NF in both gun mutants, resembling the de-re- 

pression of nuclear-encoded genes, and we assume that 

these sRNAs might have an impact on retrograde-con- 

trolled nuclear gene expression. sRNAs are able to affect 

nuclear transcripts regulated by retrograde signals and 

they may regulate mRNA transcripts, affecting plastid-lo- 

calised proteins. Among all sRNA classes, we observed in 

all treatments the highest number of differentially regu- 

lated sRNAs within the nat-siRNA class. Furthermore, all 

differentially regulated sRNAs have been associated to 

their corresponding putative differentially expressed RNA 

targets (Table S13) and we could detect high numbers of 

differentially regulated sRNAs. Besides an effect of sRNAs 

on their direct targets, we expect based on our network 

analyses a considerable indirect regulation by sRNAs 

through transcription factors (Data S1). 

Interestingly, we found that miR169g-3p, a heat- and salt 

stress-responsive miRNA (Szyrajew et al., 2017; Pegler 

et al., 2019), is the most strongly downregulated miRNA in 

the treated WT (—151.6-fold; WT NF/WT), and the most 

strongly upregulated one in the treated gun5 mutant (38.2- 

fold; gun5 NF/WT NF). We did not find any predicted target 

for miR169g-3p according to our parameters. 

Unexpectedly, after miRNA target prediction the expres- 

sion of most of the targets was not anticorrelated to the 

expression changes of their cognate miRNA, leading us to 

conclude that miRNAs might not be involved in the expres- 

sion of genes controlled by retrograde signalling path- 

ways, or the expressional changes of miRNAs somehow 

balance transcriptional changes of their targets to maintain 

constant steady-state levels. Another possibility could be 

that they act as translational repressors and do not have a 

direct effect on the transcript abundance of their target 

RNAs. However, we predicted 20 miRNA targets coding for 

transcription factors and 22 targets encoding plastid-lo- 

calised proteins to be targeted by 23 differentially regu- 

lated miRNAs. Thus, we assume that miRNAs may have 

important functions in the control of transcripts that code 

for regulatory proteins that are directly involved in tran- 

scriptional control and may contribute to the manifold 

changes of gene expression in response to retrograde sig- 

nals. Further, nuclear transcripts that code for plastid- 

localised proteins are targets of miRNAs, suggesting that 

these specific miRNA–mRNA pairs can play an important 

role in the retrograde signalling pathway, and thus may 

contribute to the adjustment of plastidic and nuclear gene 

expression. One interesting case involves miR395b and 

miR395c, which target the mRNA for the magnesium-che- 

latase subunit GUN5 (AT5G13630). In the NF-treated WT, 

both miRNAs and the target mRNA are downregulated 

compared to the untreated control, whereas in the treated 

gun5 mutant both miRNAs and the target are upregulated. 

Even though the expression of this miRNA–mRNA pair is 

not anticorrelated, the enhanced miRNA levels may bal- 

ance an increased transcription rate of the target mRNA to 

keep physiologically relevant steady-state levels. Magne- 

sium-chelatase is required in the chlorophyll biosynthesis 

pathway, where it catalyses the insertion of Mg2+ into pro- 

toporphyrin IX, and the gun5 mutant is characterised by a 

single nucleotide substitution resulting in a defective mag- 

nesium-chelatase. In the WT, the GUN5 transcript level 

decreases in response to NF-triggered retrograde sig- 

nalling, whereas the transcript level in the gun5 mutant 

remains high and cannot be efficiently downregulated by 

the increased miRNA levels. The seven detected classical 

anticorrelated miRNA–mRNA pairs point to regulatory 

functions of specific miRNAs in the retrograde signalling 

pathway, because we assume efficient miRNA-mediated 

target cleavage followed by a reduced mRNA steady-state 

level. In this category of anticorrelated pairs, we identified 

the mRNA for the transcription factor SPL10, representing 

a validated target of miR157a, suggesting miR157 acts in 

retrograde signalling by affecting the levels of a transcrip- 

tional regulator and its downstream targets. Another anti- 

correlated predicted miRNA–mRNA pair is miR398, 

targeting the transcript of the multidrug and toxic com- 

pound extrusion (MATE) efflux protein (AT2G04050). We 

found miR398 to be downregulated in the treated WT com- 

pared to the untreated control, and the target was slightly 

upregulated. This MATE efflux protein belongs to a huge 

class of membrane proteins located in the plasma mem- 

brane and the chloroplast envelope membrane (Wang 

et al., 2016) that are able to bind cytotoxic compounds like 

primary and secondary metabolites, xenobiotic organic 

cations (Omote et al., 2006) and toxic substances such as 

pollutants and herbicides (Diener et al., 2001) to eliminate 

them from the cell (Liu et al., 2016). NF-triggered downreg- 

ulation of miR398 most likely causes elevated transcript 

levels and increased levels of the encoded plasma mem- 

brane-located MATE efflux protein. We speculate that the 

regulated MATE efflux protein might be involved in the 

extrusion of the applied herbicide NF or the extrusion of 

toxic compounds accumulating within the cell in response 

to NF treatment. Another interesting target encodes a plas- 

tid protein that appeared to be upregulated in the NF-trea- 

ted gun5 mutant (gun5 NF/WT NF) by decreased levels of 

the cognate miRNAs. PSB28 (AT4G28660), targeted by 

miR157a, encodes a protein that is part of the photosystem 

II reaction centre and is suggested to function in the bio- 

genesis and assembly of chlorophyll-containing proteins 

(Mabbitt et al., 2014). NF treatment usually leads to the 
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downregulation of PhANGs and thus should cause 

decreased expression levels of the PSB28 mRNA. However, 

miR157a contributes to the downregulation of PSB28 

mRNA levels post-transcriptionally and seems to be con- 

trolled by retrograde signals, as indicated by the misregu- 

lation of miR157a in the gun5 mutant. 

Fang et al. (2018) identified miR395 and miR398 to be 

important in retrograde signalling triggered by toco- 

pherols, and we confirmed both miRNAs applying NF as 

another trigger of retrograde signalling. Additionally, the 

transcript encoding the enzyme APS, which catalyses the 

initial step in PAP synthesis (Klein and Papenbrock, 2004; 

Pornsiriwong et al., 2017) was identified to be targeted by 

miR395 (Liang et al., 2010). We found miR395b to be down- 

regulated in the treated WT (WT NF/WT) and upregulated 

in the treated gun5 mutant (gun5 NF/WT NF). In the treated 

WT, reduced miR395b levels lead to increased APS tran- 

script levels, causing elevated PAP synthesis, which acts as 

retrograde inhibitor of XRNs and should provoke elevated 

pri-miRNA and mature miRNA levels. Besides, Fang et al. 

(2018) detected the downregulation of miR398 in the WT 

after NF treatment, which is in line with our sRNA sequenc- 

ing data. The COPPER/ZINC SUPEROXIDE DISMUTASE 2 

(CSD2) was previously found to be a target of miR398 

(Guan et al., 2013). After heat stress, Fang et al. (2018) 

found miR398, PAP and tocopherol levels to be increased 

and CSD2 levels to be decreased in the WT, and they 

hypothesised that tocopherols and PAP are required for 

miR398 biogenesis under heat stress. The CSD2 mRNA 

escaped our miRNA target prediction due to a considerably 

high number of mismatches within the miRNA binding 

site, causing a score value that was above our cut-off 

value. Still, we identified this miRNA as differentially 

expressed supporting the previous study by Fang et al. 

(2018). 

Besides differentially expressed miRNAs, we identified 

an even higher number of differentially regulated nat-siR- 

NAs in the treated WT (WT NF/WT) and both gun mutants 

(gun NF/WT NF). Most of the overlapping transcripts 

encode nuclear or plastid proteins, suggesting that nat-siR- 

NAs have a considerable impact on the control of PhANGs 

encoding plastid proteins. For most of the cis-NAT pairs 

we observed similar correlations between RNA transcript 

and sRNA expression levels. For example, the levels of two 

overlapping transcripts (AT1G05560 and AT1G05562) and 

the related cis-nat-siRNA were decreased in the treated WT 

(WT NF/WT) and increased in both gun mutants (gun NF/ 

WT NF). The gene AT1G05562 encodes an antisense 

lncRNA and overlaps with the gene AT1G05560, which 

codes for a UDP-glucose transferase. Another interesting 

cis-nat-siRNA and one of the overlapping transcripts 

encoding a chlorophyll binding protein (AT1G29930) were 

downregulated in the treated WT (WT NF/WT) and upregu- 

lated in the treated gun5 mutant (gun5 NF/WT NF), 

© 2020 The Authors. 

whereas levels of the other overlapping transcript, coding 

for a nuclear RNA polymerase (AT1G29940), remained 

unchanged in both treatments. 

Here, we could demonstrate that NF treatment and sub- 

sequent retrograde signals lead to comprehensive changes 

in the steady-state levels of non-coding sRNAs comprising 

all known sRNA classes. The majority of the identified dif- 

ferentially expressed sRNAs belong to the cis- and trans- 

nat-siRNAs, followed by miRNAs, representing the second 

most abundant class. Thus, we postulate that mainly these 

two sRNA classes act as important regulators of gene 

expression in retrograde signalling. We also identified a 

considerably high number of so far unknown nuclear- 

encoded DEGs and thus add to the knowledge about genes 

that are controlled by retrograde signalling. Finally, we 

were able to identify promising sRNA–RNA target pairs 

that may act in the adjustment of plastidic and nuclear 

gene expression in retrograde signalling pathways. 

 
EXPERIMENTAL PROCEDURES 

Plant material and growth conditions 
 

Arabidopsis thaliana WT (Col-0) and the retrograde signalling 

mutants gun1-102 and gun5-1 were used in this study. Gun1-102 

(SAIL_290_D09) harbours a transfer DNA insertion within the 

AT2G31400 gene locus resulting in a loss-of-function allele (Tadini 

et al., 2016). Gun5-1 is an EMS mutant harbouring a point muta- 

tion within the gene AT5G13630 causing an Ala/Val substitution at 

residue 990 (A990V) resulting in deficient magnesium-protopor- 

phyrin IX synthesis (Mochizuki et al., 2001). Surface-sterilised 

seeds were incubated on ½ MS agar plates containing 1.5% 

sucrose. For treatments with NF, seeds were incubated on the 

same medium supplemented with 5 µM norflurazon (Sigma- 

Aldrich, Taufkirchen, Germany). After vernalisation (2 days at 4°C 

in darkness) the seeds were grown for 4 days under continuous 

light (115 µmol photons m—2 sec—1) at 22°C. Whole plants were 

harvested and immediately frozen in liquid nitrogen and stored at 

—80°C until RNA isolation. All control experiments and norflura- 

zon treatments were performed in three biological replicates for 

each genotype. 

RNA isolation 
 

The plant material was ground in liquid nitrogen and RNA isola- 

tion was performed using TRIzol reagent (Invitrogen) according to 

the manufacturer’s protocol. RNA integrity was monitored by 

agarose gel electrophoresis and RNA concentration and purity 

were determined spectrophotometrically (260 nm/280 nm and 

260 nm/230 nm absorbance ratios). 

sRNA purification 
 

For sRNA sequencing 30 µg of total RNA were separated by 15% 

PAGE for 2 h at 120 V. The sRNA fractions with sizes ranging from 

18 to 29 nucleotides were excised from the gel and eluted in 0.3 M 

NaCl overnight at 4°C with rotation. Remaining gel pieces were 

removed using a Spin-X centrifuge tube (Sigma-Aldrich) and 1 µ l 

GlycoBlue (15 mg ml—1, Thermo Fisher), 25 µ l sodium acetate 

(3 M, pH 5.0) and 625 µ l ethanol were added to the 250 µ l flow- 

through and samples were incubated for 4 h at 80°C. After cen- 

trifugation for 30 min with 17 000 g at 4°C the RNA pellet was 
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washed twice with 80% ethanol, dried and dissolved in nuclease- 

free water. 

Quantitative RT-PCR 
 

Prior to cDNA synthesis, RNA samples were subjected to DNase I 

digestion (NEB, Ipswich, MA, USA) to remove residual genomic 

DNA. Total RNA (2 µg) was incubated at 37°C for 30 min together 

with DNaseI (2 U; NEB). To inactivate the DNaseI, 2.5 µ l 50 mM 

EDTA was added and samples were incubated at 65°C for 

10 min. The RNA was denatured for 5 min at 65°C in the pres- 

ence of 100 pmol of an oligo-dT23VN oligonucleotide and 10 mM 

dNTPs and transferred to ice. Subsequently, cDNA synthesis was 

performed for 1 h at 42°C using M-MuLV reverse transcriptase 

(200 U; NEB) followed by heat inactivation at 80°C for 5 min. 

To monitor successful cDNA synthesis, we performed RT-PCR 

using gene-specific primers for the gene UBI7 (AT3G53090) 

(Table S11). 

For each qRT-PCR we used cDNA equivalent to 20 ng µ l—1 RNA 

with gene-specific primers and an EvaGreen qPCR mix. The sam- 

ples were pre-heated for 2 min at 95°C and qRT-PCR cycling con- 

ditions were as follows: 12 sec at 95°C, 30 sec at 58°C and 15 sec 

at 72°C for 40 cycles. All qRT-PCRs were performed in three tech- 

nical triplicates with the CFX Connect Real-Time PCR device (Bio- 

Rad, Feldkirchen, Germany). The Ct-values were used to calculate 

changes in gene expression by the 2—DDCt method (Livak and Sch- 

mittgen, 2001). The values were normalised to the housekeeping 

gene UBI1 (AT4G36800). Oligonucleotide sequences of all gene- 

specific primers are listed in Table S11. 

 
Stem-loop qRT-PCR 

 

Stem-loop qRT-PCRs were used for sRNA quantification as 

described previously (Kramer, 2011). RNA from three independent 

biological replicates (300 ng) was used for cDNA synthesis. RNA 

was denatured for 5 min at 65°C together with 100 pmol of stem- 

loop oligonucleotides (Table S11) and 10 mM dNTPs. cDNA syn- 

thesis was performed for 5 min at 25°C and 20 min at 42°C using 

M-MuLV reverse transcriptase (200 U; NEB), followed by heat inac- 

tivation at 80°C for 5 min. RT-PCR for the gene UBI7 (AT3G53090) 

served as control (Table S11). 

RNA sequencing 
 

For the generation of mRNA libraries, including poly(A)-tailed 

lncRNAs, 10 µg total RNA from each sample was vacuum-dried in 

the presence of RNAstable (Sigma-Aldrich). The libraries were pre- 

pared using the Next Ultra RNA Library Prep Kit (NEB) by Novo- 

gene (China). The samples were sequenced strand-specifically as 

150 bp paired-end reads on a HiSeq-PE150 platform with at least 

15 million read pairs per library. 

sRNA libraries for each RNA sample were generated twice fol- 

lowing two slightly modified protocols. The first set of libraries 

was generated from 5 µg total RNA with the NEBNext Multiplex 

Small RNA Library Prep Set for Illumina according to the manufac- 

turer’s instructions and 1 h of 30 adapter ligation. The second set 

of sRNA libraries was prepared from purified sRNAs obtained 

from 30 µg of total RNA using the same kit as described above 

performing 30 adapter ligation for 18 h. For both libraries, exces- 

sive non-ligated 3’ adapters were made inaccessible by converting 

them into dsRNA by hybridisation of complementary oligonu- 

cleotides. 5’ adapter ligation was carried out at 25°C for 1.5 h, 

reverse transcription was performed by using the ProtoScript II 

reverse transcriptase and libraries were amplified by 12 PCR 

cycles. The PCR products were separated by 6% PAGE for 2 h at 

60 V. The cDNA library fractions with a size ranging from 138 to 

150 nucleotides were excised from the gel and eluted overnight. 

The sRNA libraries were sequenced as 50 bp single-end reads on 

an Illumina HiSeq1500 sequencer with approximately 10 million 

reads per library. 

Analysis of mRNA and lncRNA 
 

The mRNA and lncRNA sequencing results were analysed with 

the open source and web-based platform GALAXY (Afgan et al., 

2016). The FASTQ raw sequences were trimmed with the tool 

Trimmomatic to remove adapter sequences with their default 

parameters (Bolger et al., 2014). Tophat (Kim et al., 2013) was 

used to map the reads against the A. thaliana reference genome 

(https://www.arabidopsis.org/, release: TAIR10) with a maximum 

intron length parameter of 3000 nt. The transcripts were annotated 

in Araport11 (https://apps.araport.org/thalemine/dataCategories. 

do); we considered annotated ncRNAs longer than 200 bp as 

lncRNAs. Differential expression of transcripts was analysed by 

Cuffdiff (Trapnell et al., 2010) to normalise the sequencing depth 

of each library and to calculate FPKM values. The FDR was used 

as a statistic indicator to exclude type I errors or rather false posi- 

tives. Transcripts having FDR ≤ 0.05 and log2(FC) ≤ —1 and ≥ +1 

were considered as DEGs. The package pheatmap (https://cran. r-

project.org/web/packages/pheatmap/pheatmap.pdf) was used to 

generate hierarchically (UPGMA) clustered heatmaps of differen- 

tially expressed RNAs (Kolde, 2019). 

Gene ontology terms 
 

GO enrichment terms were analysed using the DAVID Bioinfor- 

matics Resources 6.8 (https://david.ncifcrf.gov) with default 

parameters (Huang da et al., 2009a,b) and results were visualised 

with the R package ‘ggpubr’ (Wickham, 2016). 

Analysis of sRNA 
 

NEBNext Kit adapter sequences were clipped from the sequencing 

reads using a custom script within GALAXY that identifies Illu- 

mina adapter sequences using a seed sequence of 10 nt. After 

adapter clipping FASTQ files of the raw reads with a length of 18– 

26 nt were loaded into the CLC Genomics Workbench 11.0.1 (Qia- 

gen, Hilden, Germany) for further analyses. The ShortStack analy- 

sis package was used for advanced analysis of the sRNA 

sequences (Axtell, 2013b). The FASTQ files of the six biological 

replicates derived from each treatment were first mapped against 

the A. thaliana TAIR10 reference genome (https://www.arabidop 

sis.org/, release: TAIR10). The merged alignments were mapped 

against a file covering all A. thaliana mature miRNAs (http://www. 

mirbase.org/) and a second file comprising different RNA classes, 

namely nat-siRNAs, ta-siRNAs, phasiRNAs and lncRNAs. A nat- 

siRNA database (Table S1) was generated from previously anno- 

tated NAT pairs (Jin et al., 2008; Zhang et al., 2012; Yuan et al., 

2015), phasiRNAs were taken from Howell et al. (Howell et al., 

2007) and lncRNAs were downloaded from Araport11 (https:// 

apps.araport.org/thalemine/dataCategories.do, release: Araport 11 

Annotation). After mapping to the respective references, the indi- 

vidual raw reads for each replicate were used for normalisation 

and differential expression analysis based on a calculation with 

DeSeq2 (Love et al., 2014). The sRNAs were filtered by fold 

changes between ≤ 2 and ≥ +2. The significance of the differen- 

tially expressed sRNAs was evaluated with FDR ≤ 0.05. MiRNA tar- 

get RNAs were identified using the psRNATarget (Dai et al., 2018) 

prediction V2 tool (http://plantgrn.noble.org/psRNATarget/) from 

protein-coding and non-coding transcripts present in Araport11. 

An expectation value of less than 2.5 was considered as a cut-off 
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for true miRNA targets, where mRNAs harbouring a lower number 

of mismatches to the reverse and complementary miRNA obtain 

lower score values. 

Network analysis 
 

Using the sRNA and mRNA sequencing data together with the 

miRNA target prediction, we assembled an interaction network of 

miRNAs and their putative targets. For network analysis, we used 

the python package networkX (Hagberg et al., 2008). We further 

investigated the miRNA targets that were predicted as described 

above using the psRNATarget tool to identify all miRNA targets 

that encode transcription factors. For this, we compared all 

miRNA targets with a reference database, containing A. thaliana 

transcription factors, which was generated using publicly avail- 

able data (http://atrm.cbi.pku.edu.cn). Furthermore, this reference 

database was extended by incorporating available information 

about whether the transcription factors act as activators or 

repressors of gene expression together with available informa- 

tion about the individual target genes of the transcription factors 

(https://agris-knowledgebase.org). The data obtained from the 

RNA sequencing experiments were then used to generate a net- 

work of miRNAs and their targets, differentiating between miRNA 

targets encoding transcription factors and targets encoding other 

proteins. For network analyses connected to measurements, only 

RNAs with a FDR less than 0.05 were considered, unless indi- 

cated otherwise. Network analyses were performed to determine 

relationships between miRNAs and their targets with special 

focus on miRNA targets encoding transcription factors. In these 

network analyses we considered the impact of miRNAs on the 

transcripts coding for transcription factors and the impact of the 

expression of transcription factor mRNAs on downstream genes, 

regulated by these transcription factors. If the change of a miRNA 

results in an expected change of an mRNA coding for a transcrip- 

tion factor, or at least downstream genes show expected tran- 

scriptional changes, we classified this behaviour as ‘expected’. 

For example, if miRNA expression was reduced and the target 

mRNA encoding a transcription factor was upregulated, the tran- 

scription factor acted as an activator and downstream genes of 

this transcription factor were consequently also upregulated, this 

would be considered as ‘expected’ behaviour. Furthermore, the 

scatter plots presented for all differentially expressed miRNAs 

(FDR ≤ 0.05) were subdivided into two categories: plots depicting 

relations of miRNA and their direct target transcripts (direct) and 

plots depicting indirect relations comprising miRNAs that control 

mRNAs encoding transcription factors and their downstream tar- 

get genes (indirect). 
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10 Abstract 
 

11 The biological significance of non–coding RNAs (ncRNAs) has been firmly established to be 

12 important for the regulation of genes involved in stress acclimation. Light plays an important role for 

13 the growth of plants providing the energy for photosynthesis, however, excessive light conditions can 

14 also cause substantial defects. Small RNAs (sRNAs) are a class of non-coding RNAs that regulate 

15 transcript levels of protein-coding genes and mediate epigenetic silencing. Next generation sequencing 

16 facilitates the identification of small non-coding RNA classes such as miRNAs (microRNAs) and 

17 small-interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), but changes in the ncRNA 

18 transcriptome in response to high light are poorly understood. We subjected Arabidopsis plants to high 

19 light conditions and performed a temporal in-depth study of the transcriptome data after 3 h, 6 h and 2 

20 d of high light treatment. We identified a large number of high light responsive miRNAs and sRNAs 

21 derived from NAT gene pairs, lncRNAs and TAS transcripts. We performed target predictions for 

22 differentially expressed miRNAs and correlated their expression levels through mRNA sequencing 

23 data. GO analysis of the targets revealed an overrepresentation of genes involved in transcriptional 

24 regulation. In A. thaliana, sRNA-mediated regulation of gene expression in response to high light 

25 treatment is mainly carried out by miRNAs and sRNAs derived from NAT gene pairs, and from 

26 lncRNAs. This study provides a deeper understanding of sRNA-dependent regulatory networks in high 

27 light acclimation. 
 

28 1 Introduction 
 

29 Acclimation to changing abiotic and climatic conditions is a prerequisite for plants to survive. High 

30 light stress is probably the most frequently experienced stress by plants and efficient light utilization 

31 requires proper acclimation to light-limiting and light-excess conditions. To counter the effects of high 

32 light, plants respond systemically by adjusting leaf orientation, depositing salt crystals on the leaf 

33 surface or developing air-filled hairs (Ruban, 2009). On the cellular level, changes in the light spectral 

34 quality are perceived by the chloroplasts and light absorption is regulated by chloroplast movements. 

35 Far-red light and red light are perceived by phytochromes (PHY A-E) (Sharrock and Quail, 1989) 

36 whereas cryptochromes (CRY1/CRY2/CRY3) and phototropins sense blue light or UV-A light (Lin et 

37 al., 1998). The conversion of light energy into chemical energy requires the photosynthetic apparatus 
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38 comprising photosystem II (PSII) and photosystem I (PSI) that function sequentially. The two 

39 photosystems have different absorption spectra and thus any fluctuations in light intensity could lead 

40 to imbalanced excitation rates causing a loss in photosynthetic efficiency. Excess light is known to 

41 reduce the efficiency of photosynthesis. During short-term fluctuations, the light state transition 

42 mechanism regulates the distribution of imbalanced energy through reversible phosphorylation of the 

43 light-harvesting complex II (LHCII) (Minagawa, 2013). When PSI is overexcited, the 

44 unphosphorylated LHCII antennae binds the PSII whereas when PSII is overexcited, STN7 

45 (Serine/Threonine protein kinase) phosphorylated LHCII binds the PSI to correct the light-shift- 

46 imbalance (Bellafiore et al., 2005). 
 

47 Under excess light photoinhibition provokes the production of reactive oxygen species (ROS) which 

48 leads to inactivation of the PSII reaction center by photodamage (Norikazu Ohnishi et al., 2005; Murata 

49 et al., 2007). In the last few years, studies revealed that plants have developed mechanisms to cope 

50 with photodamage such as thermal dissipation of excess energy, xanthophyll cycle, cyclic electron flow 

51 and photorespiratory pathways (Demmig et al., 1987; Park et al., 1996; Niyogi et al., 1998; Cornic et 

52 al., 2000; Maxwell and Johnson, 2000; Wingler et al., 2000; Clarke and Johnson, 2001; Munekage et 

53 al., 2004; Miyake et al., 2005; Jahns and Holzwarth, 2012). 
 

54 When plants are exposed to high light, chloroplasts transmit retrograde signals to the nucleus (Nott et 

55 al., 2006) in order to downregulate the expression of photosynthesis associated genes and to induce 

56 defense related genes to prevent oxidative damage (Apel and Hirt, 2004; Van Breusegem et al., 2008). 

57 Moreover, biosynthesis of the phytohormone abscisic acid (ABA) was induced in parenchyma cells 

58 and initiated a signaling network in bundle sheath cells. The G protein complex, OPEN STOMATA 1 

59 protein kinase and H2O2 together with redox signals, activated expression and accumulation of 

60 Ascorbate peroxidase 2 (APX2). Thus, ABA was found to be essential to coordinate the expression of 

61 high light responsive genes in coordination with retrograde signaling mechanisms (Valdivieso et al., 

62 2009). In response to high light, 3′-phosphoadenosine 5′-phosphate (PAP) accumulates in the 

63 chloroplasts of Arabidopsis which is normally dephosphorylated to AMP by the SAL1 phosphatase. 

64 SAL1 was found to be inhibited upon high light and drought stress leading to PAP accumulation and 

65 the inhibition of exoribonucleases in the nucleus causing modulations in nuclear gene expression 

66 (Estavillo et al., 2011). MEcPP (methylerythritol cyclodiphosphate) was shown to be a retrograde 

67 signal that is converted into HMBPP (hydroxymethylbutenyl diphosphate) by the enzyme 1-hydroxy- 

68 2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS). In high light, HDS was inhibited leading to the 

69 accumulation of MEcPP and altered gene expression in the nucleus with an upregulation of HPL 

70 (hydroperoxide lyase) via chromatin remodeling (Xiao et al., 2012). HPL is a nuclear-encoded and 

71 plastid localized enzyme and the stress-responsive induction of the gene initiates the oxylipin 

72 biosynthesis (Savchenko et al., 2017). During high light stress, singlet oxygen (1O2) which is generated 
73 due to imbalanced redox potential induced the expression of β-cyclocitral, about 10 glutathione S- 

74 transferase and 12 UDP-glycosyltransferases genes, respectively. These genes are  known to be 

75 involved in detoxification of endogenous compounds such as lipid peroxides and to confer stress 

76 tolerance to 1O2 (Ledford et al., 2007). The alterations in gene expression mediated by β-cyclocitral 

77 increased the photosynthetic efficiency and reduced lipid peroxidation in high light stress (Ramel et 

78 al., 2012). 

79 Due to excess  light, the electron transport chain is  over reduced and PSII can be affected by 

80 photoinhibition. This imbalance of redox potential leads to the production of high amounts of 1O2 in 
81 PSII that can cause the formation of irreversible reactive oxygen species (ROS), peroxides and radical 

82 induced damages even though high levels of ROS have also been shown to act in signaling pathways 

83 in response to high light (Karpinski et al., 2003). Plants have evolved mechanisms to protect themselves 
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84 from elevated ROS levels by ROS scavenging proteins such as ascorbate peroxidases (APX), 

85 superoxide dismutase (SOD), glutathione peroxidases (GPX), catalases (CAT), and peroxiredoxins 

86 (PRX). Fluorescence quenching (NPQ) was proven to be a potential initiator of retrograde signals and 

87 were shown to be the regulators of APX1 and APX2 encoding ascorbate peroxidases (Szechynska- 

88 Hebda et al., 2010). The non–enzymatic antioxidants include ascorbate and glutathione, flavones, 

89 carotenoids, tocopherols and anthocyanins (Birben et al., 2012). The constant process of ROS 

90 production and scavenging occurs in all cellular compartments and hence is tightly controlled by a 

91 ROS associated gene network (Mittler et al., 2004). 
 

92 In addition to transcriptional changes of protein-coding genes light stress also causes changes in the 

93 expression of non-coding transcripts (Wang et al., 2014a). Non-coding RNAs (ncRNAs) are divided 

94 into two groups based on their size. ncRNAs shorter than 200 nt are considered as small ncRNAs 

95 whereas longer transcripts are referred to as long ncRNAs. Among the small ncRNAs miRNAs with a 

96 size of approximately 21 nt are prominent regulators of gene expression. miRNAs are transcribed as 

97 primary miRNAs from MIR genes by RNA polymerase II. The pri-miRNA folds back into a stem loop 

98 structure which is further processed into a pre-miRNA by DICER-LIKE1 (DCL1), HYPONASTIC 

99 LEAVES1 (HYL1) and   SERRATE (SE) that   is   further processed   to   release the mature 

100 miRNA:miRNA∗ duplex (Voinnet, 2009). The duplex becomes 3’ methylated by HUA ENHANCER1 

101 (HEN1) protecting the miRNA from degradation (Bin Yu et al., 2005). The mature miRNA strand 

102 binds to ARGONAUTE1 (AGO1) and is loaded into the RNA-induced silencing complex (RISC) 

103 guiding the complex to fully or partially reverse complementary target transcripts causing target 

104 cleavage or translational inhibition (Voinnet, 2009). 
 

105 Studies in different plant species have been conducted to identify differentially expressed miRNAs in 

106 response to high light, UV-A and UV-B (Zhou et al., 2016). miR156/157, miR167, miR170/171 and 

107 miR159/319 are known to be red light and UV-B responsive in Arabidopsis (Zhou et al., 2007; Tsai et 

108 al., 2014; Zhenfei S. et al., 2018), Oryza sativa (Sun et al., 2015), Glycine max (Li et al., 2015) and 

109 Triticum aestivum (Wang et al., 2013). The expression levels of miR165/166, miR396, miR408 and 

110 miR169 were UV-B, white and red light regulated in A. thaliana, O. sativa and G. max (Casadevall et 

111 al., 2013). miR398, miR172, miR160, miR169, miR164, miR395, miR399, miR168, miR393, miR858, 

112 miR163, miR390 and miR397 were responsive to white and far red light, UV-A, UV-B and 

113 differentially expressed in Arabidopsis phyB (phytochrome B) and pif4 (phytochrome interacting factor 

114 4) mutants (Chung et al., 2016; Sharma et al., 2016; Lin et al., 2017; Zhenfei S. et al., 2018). In addition, 

115 miR396 was found to be upregulated in response to UV-B light mediating the downregulation of its 

116 targets encoding GROWTH REGULATING FACTOR1 (GRF1), GRF2, and GRF3 that led to an 

117 inhibition of cell proliferation in leaves (Casadevall et al., 2013). miR163 was also found to be highly 

118 induced by red light in Arabidopsis targeting PXMT1 encoding a 1,7-paraxanthine methyltransferase 

119 involved in methylation of phytohormones (Chung et al., 2016). In the early stages of development, 

120 this miRNA and its target were also found to regulate germination. Upregulation of miR156 was found 

121 to be important for increasing anthocyanin levels in Arabidopsis. miR156 targets SPL transcripts which 

122 are known to repress the anthocyanin biosynthesis pathway (Gou et al., 2011; Cui et al., 2014). In 

123 addition to miR156, miR858 is also considered a positive regulator of anthocyanin biosynthesis as it 

124 targets MYBL2 coding for a repressor of the phenylpropanoid pathway (Sharma et al., 2016; Yulong 

125 Wang et al., 2016). ELONGATED HYPOCOTYL 5 (HY5) was also shown to be a positive regulator 

126 of the anthocyanin pathway as it downregulates MYBL2 (MYB-LIKE 2) (Nguyen et al., 2015). 
 

127 lncRNAs can be transcribed from the positive as well as the negative strand of the genomic DNA 

128 generating overlapping sense and antisense transcripts referred to as natural antisense transcripts 

129 (NAT). When lncRNAs do not overlap with any protein coding gene, but are present between two 
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130 genes or in the intronic region, they are referred as long intergenic or intronic non-coding RNAs 

131 (lincRNAs) (Ma et al., 2013). Recent studies have found lncRNAs involved in light regulated 

132 processes, HIDDEN TREASURE 1 (HID1) was found to act through PIF3 which is a key repressor of 

133 photomorphogenesis (Wang et al., 2014b) and CDF5 LONG NONCODING RNA (FLORE), a NAT of 

134 CDF5 repressed CDF5 itself and promoted transcription of FLOWERING LOCUS T (FT) which 

135 induced flowering (Henriques et al., 2017). The RNA polymerase II derived NATs are able to produce 

136 siRNAs from overlapping regions referred to as nat-siRNAs. Depending on the genomic locations of 

137 the two overlapping transcripts, the NATs are classified as cis-NATs when the transcripts are encoded 

138 by complementary DNA strands at the same genomic region and referred to as trans-NATs when the 

139 transcripts are produced from two different regions in the genome (Wight and Werner, 2013). The first 

140 identified cis-nat-siRNA producing loci have an important role in response to high salinity stress. The 

141 constitutively expressed transcript delta-pyrroline-5-carboxylate dehydrogenase (P5CDH) and the salt 

142 induced transcript Similar to Radicle Induced Cell Death One 5 (SRO5) produce 24 nt cis-nat-siRNA 

143 from a dsRNA formed by both transcripts. siRNAs produced from this region are able to cleave the 

144 P5CDH transcript resulting a decreased proline degradation and improved salinity tolerance (Borsani 

145 et al., 2005). trans-nat-siRNAs are produced in a similar manner, but transcript pairing can take place 

146 in diverse combinations i.e. between lncRNAs, mRNAs, transposable elements (TE) and tRNA 

147 transcripts (Wang et al., 2005; Yuan et al., 2015). Another class of secondary siRNAs known as trans- 

148 acting siRNAs (ta-siRNAs) are produced from non-coding TAS transcripts. ta-siRNA production is 

149 initiated by miRNA assisted cleavage of TAS transcripts, subsequent dsRNA synthesis and phased 

150 processing to produce siRNAs in a specific head to tail arrangement. Another sRNA class, the 

151 phasiRNAs are similar to ta-siRNAs and also produced in a phased manner, but ta-siRNAs are able to 

152 act only in trans (Fei et al., 2013). The recently discovered class of 21 nt epigenetically activated 

153 siRNAs (ea-siRNAs) were found to be expressed from transposon-encoded transcripts in the 

154 Decreased DNA Methylation 1 (DDM1) mutant of Arabidopsis. These siRNAs are important to reduce 

155 or prevent transcription of TE-encoded RNAs and certain mRNA transcripts via siRNA-mediated 

156 silencing (K.M. Creasey and Zhai, 2014). A TE-derived lncRNA (TE-lincRNA1195) was also reported 

157 to be involved in the ABA response and found to be important for abiotic stress adaptation (Wang et 

158 al., 2017). 
 

159 In our study we performed transcriptome sequencing to identify the ncRNA repertoire involved in the 

160 response to high light treatment in Arabidopsis and to analyze their impact on associated target 

161 mRNAs. We sequenced mRNA as well as sRNA libraries from Arabidopsis plants treated with high 

162 light acclimation conditions for 3 h, 6 h and 2 d and investigated putative correlations between 

163 differentially expressed sRNAs from all classes and their cognate target RNAs. We identified a large 

164 number of sRNAs belonging to all known sRNA classes which were differentially expressed during 

165 the high light treatment and these sRNAs are able to control a large set target RNAs. Most of these 

166 targets encode transcription factors pointing to their role in modulation of gene expression. 
 

167 2 Materials and Methods 

168 2.1 Plant material and stress treatment 

169 Seeds of A. thaliana ecotype Columbia (Col-0), purchased from Nottingham Arabidopsis Stock Centre 

170 (NASC; UK), were sown at a high density (ca. 50 seeds on 9 x 9 cm pots) on a soil substrate and 

171 stratified for 2 d in the dark at 4°C. The pots were transferred into the light (LED-41 HIL2 cabinets, 

172 Percival, Perry, USA) following stratification and cultivated under control conditions with a light / 

173 dark regime of 16 h light (80 µmol photons m-2 s-1; corresponding to 18% of blue and red channel) at 

174 22°C followed by 8 h dark at 18°C for 14 d. Plants serving as controls remained under these conditions 
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175 whereas plants subjected to high light treatment were transferred 4 h after the onset of light at 22°C 

176 with a light intensity of 450 µmol photons m-2 s-1. Aerial tissues from 3 h, 6 h, and 48 h high light- 

177 treated as well as control samples were harvested. 
 

178 2.2 RNA isolation and sequencing 

179 The mRNA and sRNA sequencing data of untreated control samples obtained after 3 h, 6 h and 2 d 

180 time points are available from our previous study (Tiwari et al., 2020). The mRNA sequencing data of 

181 high light treated samples obtained after 3 h and 2 d were reported previously (Garcia-Molina et al., 

182 2020). The mRNA sequencing data of high light treated samples obtained after 6 h as well as the sRNA 

183 sequencing data after 3 h, 6 h and 2 d time were generated in this study. Total RNA was isolated using 

184 TRI-Reagent (Sigma) following manufacturer’s protocol. Library preparations and sequencing were 

185 performed according to our previous study (Tiwari et al., 2020). Briefly, the mRNA/lncRNA libraries 

186 were prepared using the Next Ultra RNA Library Prep Kit (NEB) and were sequenced strand- 

187 specifically as 150 bp paired-ends with at least 15 million read pairs per library on Illumina HiSeq- 

188 2500 platform. sRNA libraries were prepared from 50 µg of total RNA using the NEBNext Multiplex 

189 sRNA Library Prep Kit (NEB)for Illumina following manufacturer’s instructions. The sRNA libraries 

190 were sequenced as 50 bp read length with a minimum of 7 million reads per library on Illumina HiSeq 

191 1500. 
 

192 2.3 Bioinformatic analyses of transcriptomes 

193 The 3 h, 6 h and 2 d high light-acclimated samples along with their respective controls were sequenced 

194 and the mRNA/lncRNA sequencing data was analyzed using open web based platform GALAXY 

195 (https://usegalaxy.org/) (Afgan et al., 2016). The adapter sequences were trimmed by FASTQ 

196 Trimmomatic tool using the default parameters. The Tophat tool mapped the raw reads against the A. 

197 thaliana TAIR10 reference genome (https://www.arabidopsis.org) with a maximum intron length 

198 parameter of 3,000 nt. The annotation of coding and non-coding RNA transcripts (≥ 200 bp) was 

199 performed using Araport11 annotation (Cheng et al., 2017). The FeatureCounts tool counted the 

200 number of reads mapped to the reference genome. The final list of genes was obtained by DeSeq2 tool 

201 of GALAXY using output from the FeatureCounts tool and classified using Araport11 reference 

202 annotation (https://araport.org/). 
 

203 The TAIR10 reference genome was used to map sRNA raw reads using the Shortstack software (Axtell, 

204 2013). Approximately 80% of the obtained reads efficiently mapped to the reference. A reference 

205 annotation database was created from publicly available sources such as miRNA (miRBase version 

206 22.1), lncRNA (Araport11), trans- and cis-nat-siRNA (Jin et al., 2008; Zhang et al., 2012;Wang et al., 

207 2014a; Yuan et al., 2015), ta-siRNA and phasiRNA (Howell et al., 2007). Using these sources, the read 

208 counts of different classes of sRNAs were calculated. The read counts of the triplicates of samples 

209 were later analyzed by the DeSeq2 tool and differentially expressed (DE) sRNAs with FC ≥ 2& ≤ -2 

210 (Benjamini-Hochberg corrected p-value ≤ 0.05) were identified. Further global comparisons of DE 

211 miRNAs were performed using UpSetR package (https://CRAN.R-project.org/package=UpSetR). 
 

212 2.4 Prediction of putative miRNA targets 

213 psRNATarget: A Plant Small RNA Target Analysis Server(2017 Update) was used to identify putative 

214 miRNA targets (Dai et al., 2018). DE miRNAs were used as a query to search against A. thaliana 

215 Araport11 transcript database using default parameters with changes in UPE (25) and maximum 

216 expectation (2.5) to ensure more stringent predictions. 
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217 2.5 Gene Ontology analyses of putative miRNA targets 

218 We used the DAVID Bioinformatics tool (Jiao et al., 2012) to perform the GO analyses. The list of 

219 miRNA target genes was provided as an input and the output gene list was broadly classified into 

220 biological process, cellular compartment and molecular function. The significant GO terms were 

221 identified in all aforementioned categories (Fisher´s test with Benjamini-Hochberg corrected p-value 

222 ≤ 0.05).   The   ggplot2   package   (https://CRAN.R-project.org/package=ggplot2)   was   used   for 

223 visualization of the output. the ggplot2 package was used. 
 

224 2.6 cDNA synthesis for stem loop qRT-PCR 

225 We used 300 ng of RNA from three biological replicates of treated and untreated samples as the starting 

226 material for cDNA synthesis. DNAse I (2 U, NEB) was added to the RNA and incubated at 37 °C for 

227 30 min to eliminate genomic DNA contamination, and later was inactivated at 65 °C for 10 min. 

228 Reverse transcription of RNA into cDNA was performed by M-MuLV Reverse transcriptase (200 U, 

229 NEB) at 42 °C for 30 min. The stem loop primers specific for the sRNAs and a universal reverse primer 

230 were used for cDNA synthesis (Supplementary Material 1, Table S1). We used UBI1 (AT4G36800) 

231 specific reverse primer during the reverse transcription and confirmed successful cDNA synthesis 

232 through RT-PCR by using UBI1 specific gene primers. 
 

233 2.7 Stem loop qRT-PCR 

234 We performed qRT-PCR using EvaGreen and sRNA-specific primers (Kramer, 2011) 

235 (Supplementary Material 1, Table S1). The qRT-PCRs were performed in three technical replicates 

236 for each sample and each reaction contained cDNA amounts equivalent to 20 ng/μl of initial RNA. The 

237 qRT-PCR program was subjected to initial denaturation at 95 °C for 2 min followed by 40 cycles of 

238 amplification with 95 °C for 12 s, annealing for 30 s and 72 °C for 15 s. After each cycle, the EvaGreen 

239 signals were measured and melting curves were monitored to confirm primer specificities. The ΔΔCt 

240 method was used to calculate the expression levels following normalization against UBI1 

241 housekeeping gene. 
 

242 3 Results 

243 3.1 Changes in the sRNA repertoire during high light acclimation in A. thaliana 

244 A. thaliana seedlings were subjected to high light treatments (450 µmol photons m-2 s-1 for 3 h, 6 h and 

245 2 d) to analyze high light-responsive changes in the sRNA repertoire. A minimum of 7 million reads 

246 per library of treated and control samples were generated for transcriptome profiling. For all samples, 

247 mapping of sRNA reads against the A. thaliana reference genome revealed an average of about 13% 

248 reads mapping to miRNA loci, 10% to trans- and 2% to cis-nat-siRNA loci. 5% of the remaining reads 

249 corresponded to   lncRNAs,   3%   to   ta-siRNA   producing   regions   and   0.3%   to   phasiRNAs 

250 (Supplementary Material 2, Table S2,3). Only approximately 1% of the reads accounted for loci 

251 encoding the most abundant RNAs such as rRNA, snoRNA, tRNA and snRNA validating high quality 

252 of the sRNA libraries. The remaining reads mostly mapped to other RNA classes involved in epigenetic 

253 regulations such as TE and repeat associated regions. 
 

254 The size distribution of sRNAs showed two distinct peaks at 21 nt and 24 nt. The peak at 21 nt indicates 

255 an enrichment of miRNAs, nat-siRNAs and ta-siRNA whereas the peak at 24 nt represents sRNAs 

256 derived from repetitive/intergenic RNAs, inverted repeats and TE (Figure 1A,B,C, Supplementary 

257 Material 2, Table S4). We observed an increased sRNA biogenesis at the early time points (3 h and 6 
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258 h) and reduced production after 2 d compared to the control samples in response to high light 

259 acclimation. Our analyses revealed that miRNAs and trans-nat-siRNAs are the two major sRNA 

260 classes uncovered in our data set (Figure 1D). To identify DE sRNAs between treated samples and the 

261 controls, the values of normalized reads were used to calculate the relative expression of mature 

262 miRNAs and siRNAs (FC ≥ 2 and ≤-2, Benjamini-Hochberg corrected p-value ≤ 0.05). 
 

263 Over the analyzed time points, high light affected sRNAs were mainly generated from trans- followed 

264 by cis-NAT-pairs and miRNAs (Figure 2A,B,C). We observed an increasing number of upregulated 

265 trans-nat-siRNAs and cis-nat-siRNAs over the time course of high light treatment (Figure 2A,C). The 

266 differential expression of miRNAs substantially increased after 6 h of treatment (Figure 2B). 
 

267 To confirm the reliability and validity of our sRNA sequencing data, we performed stem loop RT- 

268 PCRs to determine the steady-state levels for selected sRNAs produced from all analyzed RNA classes 

269 during the course of high light treatment (Figure 3). miR159c, miR166f, miR779.2, trans-nat-siRNAs 

270 produced from AT4G20520-AT4G32200 and AT1G31600-AT5G39660 transcripts, cis-nat-siRNAs 

271 derived from AT1G48920-AT1G48930 were differentially expressed upon high light treatment and 

272 AT1G11260-AT1G11270 were repressed after 6 h whereas sRNAs derived from lncRNA AT5G07325 

273 were downregulated after 3 h of high light treatment confirming our sequencing results. 
 

274 3.2 Expression profiling of miRNAs during high light acclimation 

275 Next generation sequencing distinguishes between individual miRNAs even with a single nucleotide 

276 polymorphism and obtained reads were analyzed to determine differentially regulated miRNAs (FC ≥ 

277 2 and ≤ -2, Benjamini-Hochberg corrected p-value ≤ 0.05) after precise read mapping (Table 1, 

278 Supplementary Material 3, Table S5). We observed a general trend in all samples that around 11 % 

279 of the detected miRNAs possessed very high normalized read counts (> 1,000 reads per sample), about 

280 38 % showed moderate expression (< 1,000 and > 20 normalized reads), 15 % showed reduced read 

281 counts (< 20 and > 5 normalized reads) and 36 % showed very low expression (< 5 normalized reads) 

282 (Supplementary Material 3, Table S6). In response to high light treatment, we observed 24 DE 

283 miRNAs (8 up and 16 down) after 3 h, 56 mature DE miRNAs (26 up and 30 down) after 6 h and 26 

284 DE mature miRNAs (14 up and 12 down) after 2 d. 
 

285 Conserved miRNA families seem to have important functions since they mainly regulate targets 

286 encoding TFs or enzymes acting in abiotic stress adaptation (Qin et al., 2014; Khaksefidi et al., 2015; 

287 Yu et al., 2019). Over the last few years, 22 miRNA families were identified to be conserved between 

288 A. thaliana, Oryza sativa and Populus trichocarpa (Bonnet et al., 2004; Zhang et al., 2006; Pelaez et 

289 al., 2012). Out of these 22 miRNA families, members of 16 families were found to be differentially 

290 expressed upon high light; corresponding to 8, 11 and 13 DE mature miRNAs at 3 h, 6 h and 2 d, 

291 respectively (Supplementary Material 3, Table S7). It is known that miRNAs regulate the expression 

292 of TFs and are involved in phyB-mediated light signaling pathways and there are very few light 

293 responsive miRNAs identified in crop plants (Sun et al., 2015; Yang et al., 2019). In total, 92 non- 

294 redundant mature miRNAs were found to be differentially expressed throughout the course of high 

295 light treatment. Out of these 92 mature miRNAs, 38 mature miRNAs belonging to 14 conserved 

296 miRNA families are light stress regulated in other plant species (Casati, 2013) (Table 1) and 46 mature 

297 miRNAs have been previously known to be UV-B, white light, and red light responsive in A. thaliana. 

298 Our study shows similarity in the induction or repression pattern of these miRNAs compared to other 

299 light stress-related studies (Zhou et al., 2007;Shikata et al., 2014). The remaining 46 DE mature 

300 miRNAs belonging to 37 miRNA families such as miR447, miR861 and miR863 have not been 

301 reported before to be light-regulated in A. thaliana (Supplementary Material 3, Table S7). We 
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302 identified 5 miRNAs with a varying expression pattern i.e. up- and downregulation, and 7 miRNAs 

303 with consistent expression pattern (either up- or downregulated) in at least two of the analyzed time 

304 points. We found miR399a to be consistently upregulated at all the three time points. This miRNA was 

305 also found to be upregulated by red light in leaves of potatoes and in phosphorous deficient conditions 

306 in barley (Hackenberg et al., 2013; Qiao et al., 2017). 
 

307 3.3 Differentially expressed miRNA targets 

308 MiRNAs can mediate the cleavage of their mRNA targets or cause translation inhibition (Aukerman 

309 and Sakai, 2003). Plant miRNAs show perfect or partial sequence complementarity to their target 

310 sequences and often lead to mRNA cleavage between nucleotides 10 and 11 of the miRNA binding 

311 site (Bartel, 2004; Brodersen et al., 2008). We sequenced the sRNAs and mRNA/lncRNA from the 

312 same RNA samples and directly compared changes in miRNA expression with the changes of their 

313 cognate targets. We used the psRNATarget analysis server with stringent search criteria to determine 

314 the targets of DE miRNAs during the time course of high light treatment (Dai et al., 2018) and found 

315 putative targets for 88 of 92 DE miRNAs comprising 322 mRNAs and 15 ncRNAs (Supplementary 

316 Material 4, Table S8,9). The 25 DE miRNAs (14 up- and 11 downregulated) at 3 h of high light 

317 acclimation can target 100 non-redundant mRNAs and 3 non-coding transcripts. The 50 DE miRNAs 

318 (23 up- and 27 downregulated) at 6 h of treatment are able to target 220 non-redundant mRNAs and 

319 10 non-coding RNA targets and the 25 DE miRNAs (14 up- and 11 downregulated) after 2 d can target 

320 125 non-redundant mRNAs and 5 non-coding RNA targets (Supplementary Material 4, Table S8,9). 

321 To investigate how the regulation of these putative targets correlates with the changes in the miRNA 

322 repertoire, our mRNA as well as lncRNA transcriptome data generated from the identical RNA pools 

323 were further analyzed (Supplementary Material 5, Table S10,11). We investigated the correlation 

324 between the 88 DE miRNAs and their cognate 332 target transcripts (Supplementary Material 4, 

325 Table S8). Even though we mainly observed that one transcript can be targeted by various isoforms of 

326 a miRNA family, we found few cases in which target transcripts can also be cleaved by different 

327 miRNAs that are not related in sequence. By taking all individual DE miRNAs and their cognate 

328 protein-coding transcripts (mRNAs) as miRNA:mRNA pairs into consideration, we identified 128, 298 

329 and 175 miRNA:mRNA pairs for the 3 h, 6 h and 2 d time points of high light treatment, respectively 

330 (Supplementary Material 4, Table S8). We broadly classified the miRNA:mRNA target pairs of all 

331 time points into different categories based on the correlation between miRNAs and their cognate 

332 mRNA expressions. These broad categories are i. inverse correlation (when miRNA and mRNA show 

333 anticorrelation), ii. same tendencies (when both miRNA and mRNA either upregulated or 

334 downregulated), iii. steady (or undetected) levels of target mRNA despite changes in miRNA levels 

335 (Table 1). We observed 3, 6 and 2 inversely correlated pairs at 3 h, 6 h and 2 d, respectively, with a 

336 total number of 10 non-redundant inversely correlated miRNA:mRNA target pairs that modulate the 

337 mRNA repertoire upon high light treatment (Supplementary Material 4, Table S8). Apart from the 

338 mRNA targets, psRNATarget prediction server additionally predicted 17 putative non-coding RNA 

339 targets of DE miRNAs, but the expression levels of those ncRNA target transcripts were either 

340 unchanged or their levels were below detection limit (less than 5 reads). 
 

341 Table 1. Putative miRNA:mRNA target pairs and their relative expression patterns upon 3 h, 6 h and 

342 2 d of high light treatments. The first arrow corresponds to miRNA regulation and the second to the 

343 regulation of its target mRNA transcripts and the arrows represent the correlation expression as 

344 follows: ↑= upregulated, ↓ = downregulated, ─ = unchanged, ○ = undetected. 
 

miRNA:mRNA pairs 3 h 6 h   2 d 
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↑ ↓ 3 6 2 

↑ ↑ 0 4 5 

↓ ↓ 3 1 1 

↑─ or ↓─ 18 34 36 

↑○ or ↓○ 104 253 131 
 

345 On the basis of Araport annotation (V11; https://araport.org/) (Cheng et al., 2017), we observed 30 

346 targets of DE miRNAs from all the four subgroups to be consistently present throughout the course of 

347 high light treatment (Supplementary Material 4, Table S8). These mRNAs mainly encode 

348 transcription factors and integral membrane proteins. We also examined the putative function of 

349 miRNA targets that were specifically observed in each time point. At the 6 h time point we found 

350 several pentatricopeptide repeat proteins (PPR), important for RNA maturation in various organelles, 

351 tetratricopeptide repeat (TPR) proteins acting in signaling and organellar import, and S-adenosyl-L- 

352 methionine-dependent methyltransferases superfamily proteins, necessary for epigenetic regulation of 

353 gene expression. At the 2 d time point we found transcripts encoding auxin response factors, GRAS 

354 family transcription factors and MYB domain proteins that are involved in transcriptional regulation 

355 in response to stress. We detected an inverse correlation between 10 miRNAs and their putative targets, 

356 for example, after 3 h of high light treatment we noticed upregulation of miR864-3p (FC = 3.65) and 

357 downregulation of its predicted target DARK INDUCIBLE 4 (DIN4, FC = -2.31) which is known to be 

358 induced in darkness in A. thaliana (Fujiki et al., 2000) and suggests that miR864-3p represses DIN4 

359 expression in high light. At the same time point, we found miR172b-3p to be upregulated (FC = 2.47) 

360 and its putative target hydroxysteroid dehydrogenase 3 (HSD3, FC = -2.05) to be downregulated. It is 

361 known that   plant   cell   membranes   contain   sterols   that   are   synthesized   by hydroxysteroid 

362 dehydrogenases/decarboxylases (Kim et al., 2012) and that light stress has an impact on the 

363 composition of sterols in the cell membranes (Kuczynska et al., 2019). After 6 h of high light treatment 

364 we observed upregulation of miR156d-5p (FC = 2.42) and a concomitant downregulation of its target 

365 transcript encoding the Squamosa promoter binding protein-like 3 (SPL3, FC = -2.14). A previous 

366 study has shown that constitutive expression of miR156 extended the transition from the juvenile to 

367 vegetative phase resulting in delayed flowering (Wu and Poethig, 2006). Thus, it is likely that high 

368 light leads to an upregulation of miR156 and a concomitant downregulation of SPL3 to delay flowering. 

369 Another miRNA, miR171c-5p showed reduced expression levels (FC = -2.53) after 6 h of high light 

370 treatment whereas its target encoding APS reductase 3 was upregulated (FC = 2.26). APS reductase is 

371 the key enzyme of sulfate assimilation and was previously reported to increase in response to sugar 

372 and light (Kopriva et al., 1999) suggesting a regulatory role of miR171c-5p in this process. 

373 Additionally, after 6 h and 2 d of high light treatment, we observed a downregulation of miR395a and 

374 an upregulation of its target transcript encoding cellulose synthase like G3 which is responsible for 

375 producing the polysaccharide cellulose, the main component of the plant cell wall. 
 

376 3.4 Gene ontology analysis of predicted miRNA targets 

377 We used the David bioinformatics tool (Jiao et al., 2012) to perform gene ontology (GO) analysis for 

378 the putative targets of DE high light responsive miRNAs to obtain information about the possible role 

379 of the targets. Based on the three categories of GO biological processes, cellular component and 
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380 molecular function, an enrichment of GO terms for all time points was observed (Fisher´s test with 

381 Benjamini-Hochberg corrected p-values) (Figure 4, Supplementary Material 6, Table S12). After 3 

382 h time point the significant biological processes included regulation of transcription (32) and 

383 transcription (30).  Within the  cellular component category,  the highest number of  targets were 

384 associated with the CCAAT-binding factor complex (8). Furthermore, in the molecular functions 

385 category, regulatory proteins involved in gene transcription such as TF activity, sequence-specific 

386 DNA binding (33) and DNA binding (31) were significantly overrepresented. After 6 h of high light 

387 treatment, miRNA targets were mainly involved in regulation of transcription (68), cell differentiation 

388 (38), salicylic acid response (11), methylation (9) and jasmonic acid response (7), and similar to the 3 

389 h time point indicating an enrichment of genes associated with transcriptional control. We also found 

390 methyltransferase activity (9) to be significantly enriched in the category molecular function suggesting 

391 epigenetic modifications and a potential role in secondary cell wall biogenesis. At the 2 d time point, 

392 we detected an enrichment of significant biological processes including regulation of transcription (61), 

393 cell differentiation (34), multicellular organism development (11) and jasmonic acid response (8). 

394 Thus, at all the three time points, genes encoding proteins involved in transcriptional reprogramming 

395 upon high light acclimation were enriched. The category cellular components showed a striking 

396 enrichment of targets associated with the nucleus (78 target genes) nicely matching the enrichment of 

397 transcription-related biological processes and molecular functions that points to massive changes in 

398 transcriptional regulation in response to high light acclimation (Figure 4). 
 

399 3.5 DE sRNAs derived from various other RNA classes 

400 The sRNA sequencing data was used to analyze miRNA regulation as well as to identify sRNAs 

401 derived from other RNA classes in response to high light providing links to their role in high light 

402 acclimation. After mapping the sRNA reads against publicly available reference databases (Jin et al., 

403 2008; Zhang et al., 2012; Wang et al., 2014a; Yuan et al., 2015),we revealed a high number of DE 

404 sRNAs associated to lncRNAs, trans- and cis-NATs pairs, TAS and PHAS RNAs. 
 

405 3.6 sRNAs derived from non-overlapping lncRNAs 

406 Non-overlapping lncRNA transcripts, ≥ 200 nt in size, do not overlap with protein encoding or other 

407 non-coding transcripts. In our sRNA data 11 non-redundant non-overlapping lncRNA loci which 

408 produce DE sRNAs were determined and two of these 11 lncRNA loci give rise to upregulated sRNAs 

409 whereas the remaining 11 generate downregulated sRNAs upon high light (Supplementary Material 

410 7, Table S13). The transcript levels of the lncRNAs remained unchanged across all analyzed samples, 

411 but we observed DE sRNAs generated from these lncRNAs. We found 5, 5 and 1 lncRNA at 3 h, 6 h 

412 and 2 d time point after high light treatment, respectively, that produced DE sRNAs. We found 

413 differentially expressed 24 nt sRNAs derived from lncRNA AT4G05135 and AT3G05925 and 21 nt 

414 sRNAs produced from lncRNA AT5G07325 after 3 h time point. At 6 h time point, lncRNA 

415 AT3G26612, AT3G04485 and AT4G04965 gave rise to differentially expressed 24 nt sRNAs and 

416 AT5G04445 produced increased 21 nt sRNAs. We found one ncRNA AT1G06797 that generated 

417 reduced levels of 24 nt sRNAs after 2 d of treatment. There were 4 sense strand (AT2G14878, 

418 AT5G04445, AT3G26612, AT5G06045) and 3 antisense strand lncRNA transcripts (AT5G07565, 

419 AT5G07325, AT4G04965) that produced DE sRNAs, and strand specificity was undetected for the 

420 remaining 4 lncRNA loci. Furthermore, since the lncRNAs do not overlap with any other gene and do 

421 not have any trans pairing partner, we speculate that the sense strand lncRNAs are converted into 

422 dsRNA by RNA dependent RNA polymerases in a primer independent manner. The lncRNA antisense 

423 transcripts also have a capability to form stem-loop fold back structures which can produce sRNAs. 
 

424 3.7 sRNAs derived from natural antisense transcripts 
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425 The NAT pairs can form dsRNAs due to sequence complementarity and can arise from overlapping 

426 non-coding (nc) or protein coding (pc) genes. The transcript pairing is possible between pc-pc, nc-pc 

427 and nc-nc transcripts and the resulting paired transcript can be targeted by DCL enzymes to produce 

428 nat-siRNAs. The majority of cis- and trans-NAT pairs were produced from pc:pc or pc:nc transcript 

429 pairs. In case of pc:nc, the nc pairing partner mostly represents tRNA or TE derived transcripts which 

430 also have the capacity to produce sRNAs individually (Creasey et al., 2014; Martinez et al., 2017; Cho, 

431 2018). The pre-tRNA and TE-derived sRNAs could contribute to the regulation of a high light 

432 acclimation related network by regulating their own as well as other transcripts by sequence 

433 complementarity (Loss-Morais et al., 2013; Cho, 2018). We revealed that transcript pairs producing 

434 elevated levels of sRNAs can have different expression patterns. We observed abundant transcript pairs 

435 that generate differentially expressed nat-siRNAs, but the transcripts were either undetected or 

436 unchanged in the mRNA data. We further identified pairs of transcripts where one transcript is 

437 regulated and the other remains unchanged, anticorrelated pairs with one transcript up- and the other 

438 transcript downregulated, and pairs showing the same changes in expression (both transcripts either 

439 upregulated or down regulated). 
 

440 3.8 cis-nat-siRNAs 

441 We found 56, 25 and 24 cis-NATs loci (90 non-redundant pairs) at 3 h, 6 h and 2 d, respectively, that 

442 produced DE cis-nat-siRNAs from two overlapping transcripts. We detected 7, 3 and 2 loci at 3 h, 6 h 

443 and 2 d, respectively, where one of the transcripts was either up- or downregulated and the other one 

444 remained unchanged (Table 3). At 3 h time point, we observed that all the 7 loci encoding pc:pc 

445 transcripts reduced the production of sRNAs with at least two-fold decrease in one of their parent 

446 transcripts. The decrease in one of the parent transcripts and thus the sRNAs could be due to transient 

447 changes in response to high light stress (Supplementary Material 7, Table S14). We detected 49, 21 

448 and 20 cis-NATs (76 non-redundant pairs) at 3 h, 6 h and 2 d time point, respectively, that produced 

449 DE sRNAs from cognate overlapping transcripts that remained unchanged or were undetectable 

450 (Supplementary Material 7, Table S14). At the 6 h time point, we observed upregulation of sRNAs 

451 from a cis-NAT transcript pair where one of the pairing transcripts encoding NUCLEOLIN LIKE 1 

452 was upregulated. This gene was also shown to be upregulated by salt stress and to play a role in 

453 ribosome biogenesis (Huang et al., 2018). We detected another transcript pair with reduced nat-siRNA 

454 production where one transcript encoding the ARABIDOPSIS HOMOLOGUE OF YEAST BRX1-1 

455 (AT3G15460) was upregulated and the other transcript encoding an aluminum induced protein with 

456 YGL and LRDR motifs (AT3G15450) was downregulated. It has been shown that AT3G15450 is 

457 regulated by ABA since an ABA hypersensitive mutant (ahg2-1) shows reduced levels of this gene in 

458 response to high light stress (Nishimura et al., 2005; Valdivieso et al., 2009). After 2 d of high light 

459 stress, we found two gene pairs generating elevated levels of nat-siRNAs where the pairing transcripts 

460 were also upregulated. In each pair, one transcript encodes a lncRNA (AT3G51238 and AT5G01595) 

461 and the other encodes flavanone 3-hydroxylase (AT3G51240) and FERRETIN 1 (AT5G01600), 

462 respectively. The upregulation of flavanone 3-hydroxylase is associated to the biosynthesis of 

463 flavonoids where it catalyzes the conversion of flavanones to dihydroflavonols whereas FERRETIN 1 

464 plays a role in iron homeostasis (Pelletier and Shirley, 1996; Briat et al., 2010). At the same time point, 

465 we found upregulated nat-siRNAs derived from two gene pairs where one transcript was upregulated 

466 and the other remained unchanged. Interestingly, the upregulated transcripts of these pairs encode for 

467 chalcone synthase (AT5G13930) known to be the rate-limiting enzyme involved in flavonoid synthesis 

468 (Fuglevand et al., 1996) and a MULTIDRUG RESISTANCE-ASSOCIATED PROTEIN 2 

469 (AT2G34660) which was shown to assist in vacuolar transport of anthocyanins and flavonoids 

470 (Behrens et al., 2019). This suggests a possible involvement of nat-siRNAs in regulation of these 
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471 transcripts in biosynthesis and transport of flavonoids which could play a major role in protection of 

472 plant against high light stress. 
 

473 3.9 trans-nat-siRNAs 

474 We found 17 non-redundant trans-NAT pairs (0, 12 and 5 at 3 h, 6 h and 2 d, respectively) producing 

475 differentially expressed trans-nat-siRNA. In this case, transcripts can produce sRNAs from their 

476 overlapping region or from the single stranded region when partially overlapped. We observed 40, 124 

477 and 52 (84 non-redundant loci) trans-NATs gene pairs at 3 h, 6 h and 2 d, respectively, that promote 

478 DE trans-nat-siRNAs from the overlapping region of two transcripts having unchanged transcript 

479 levels or levels below the detection limit (Supplementary Material 7, Table S15). We observed 3, 5 

480 and 3 trans-NAT pairs comprising overlapping pc:pc transcripts that generate DE trans-nat-siRNAs. 

481 The majority of the trans-NAT gene pairs comprise a nc transcript partner encoding a pre-tRNA or 

482 RNA derived from a TE. Apart from the pc:pc pairs at 3 h, 6 h and 2 d time point, we found 34, 124 

483 and 44 transcript pairs generating DE trans-nat-siRNAs which are comprised of one  transcript 

484 encoding a pre-tRNA and 7, 13 and 4 pairs where one of the transcripts is encoded by a TE transcript. 

485 The profiling of trans-nat-siRNAs over time revealed that the highest number of DE trans-nat-siRNAs 

486 were found after 6 h proposing the involvement of trans-nat-siRNA in modulating gene expression 

487 during early stages of high light acclimation. 
 

488 3.10 ta-siRNAs 

489 After 2 d of high light treatment, we observed an upregulation of ta-siRNAs derived from the TAS4 

490 precursor (Supplementary Material 7, Table S15) that requires miR828-mediated cleavage prior to 

491 ta-siRNA biogenesis (Rajagopalan et al., 2006). 
 

492 In response to sugar accumulation, TAS4 expression is regulated through a signaling pathway involving 

493 PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) (Luo et al., 2012). The TAS4 derived ta- 

494 siRNAs are capable of targeting mRNAs encoding MYB transcription factors such as PAP1 and PAP2 

495 which regulate the anthocyanin biosynthesis pathway. MIR828 overexpression lines showed reduced 

496 anthocyanin accumulation since miR828 is also known to target PAP1 (Yang et al., 2013). We found 

497 increasing levels of miR828 (FC = 20.9), TAS4 transcript (AT3G25795, FC = 3.27), ta-siRNAs (FC = 

498 6.32), PAP1 (AT1G56650, FC = 5.20), PAP2 (AT1G66390, FC = 6.77), and ELONGATED 

499 HYPOCOTYL 5 (HY5, AT5G11260, FC = 1.67) that all play a role in anthocyanin biosynthesis. In 

500 addition to the altered expression of these regulators, we also found increased amounts of downstream 

501 anthocyanin biosynthetic enzymes i.e. DIHYDROFLAVONOL 4-REDUCTASE (DFR, AT5G42800, 

502 FC = 12.1), CHALCONE SYNTHASE (CHS, AT5G13930, FC = 5.16) and ANTHOCYANIDIN 

503 SYNTHASE (ANS, AT4G22880, FC = 14.7) (see also discussion, Fig 5). According to our sequencing 

504 data, we can provide evidence that the regulation of the PAP1 transcript in response to high light stress 

505 is mediated by miR828 and HY5. The consequent increase in the components of the anthocyanin 

506 biosynthetic pathway is likely to maintain the increased levels of anthocyanin production required to 

507 protect plants from high light. 
 

508 4 Discussion 
 

509 Transcriptome studies by mRNA and sRNA sequencing in response to high light stress and white light, 

510 respectively, have been conducted in several plant species, whereas a global transcriptome analysis of 

511 sRNAs in response to high light acclimation has not been performed yet. Our study aims to provide 

512 insights into the high light-responsive regulation of different classes of sRNAs and their effects on the 

513 modulation of gene expression. We performed sRNA sequencing along with mRNA and lncRNA 
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514 sequencing from the same RNA samples to associate changes in target transcripts (mRNA/lncRNA) 

515 steady state levels to changes in sRNA repertoire upon high light. Over the time course of high light 

516 treatment, the number of DE sRNAs from all different classes showed a gradual increase during the 

517 early stages (3 h and 6 h) of high light treatment and a reduction after 2 d. We analyzed the miRNAs 

518 which are known to be important regulators of gene expression in eukaryotes and detected 92 DE 

519 miRNAs over the course of high light treatment and out of these, 44 DE miRNAs were shown before 

520 to be responsive to UV-B, white light or red light in A. thaliana (Bonnet et al., 2004; Zhang et al., 

521 2006; Zhou et al., 2007; Pelaez et al., 2012; Shikata et al., 2014). To determine the impact of DE 

522 miRNAs on the transcriptome of A. thaliana we investigated their targets predicted by the 

523 psRNATarget tool and found 128, 298 and 175 potential miRNA:mRNA target pairs at 3 h, 6 h and 2 

524 d time point, respectively. The high number of putative miRNA targets at the early time points reflect 

525 the importance of miRNAs in regulating the gene expression at the initial stages of the high light 

526 treatment. At early time points, we observed targets encoding PPR and TPR proteins which could lead 

527 to alterations in the process of RNA maturation, stress signaling and organellar transport. The miRNA 

528 targets also include members of the S-adenosyl-L-methionine-dependent methyltransferase 

529 superfamily proteins indicating a possible epigenetic regulation of gene expression in response to high 

530 light. GO analysis revealed a large number of putative targets encoding transcription factors such as 

531 MYB, squamosa promoter binding proteins (SPBs), Teosinte Branched 1, Cycloidea, members of the 

532 PCF (TCP) TF family and members of the Homeodomain-like superfamily. The enrichment of these 

533 TFs clearly indicates their involvement in high light-induced regulation of gene expression. Studies on 

534 high light and salinity stress in A. thaliana have shown that MYB TFs are principal regulators of 

535 flavonoid biosynthesis. MYB112 was found to be induced by high light stress and to regulate 

536 anthocyanin biosynthesis. It mediates activation of PAP1, MYB7 and MYB32, but downregulates 

537 MYB12 and MYB111 which are involved in the control of the flavonoid pathway, however the 

538 mechanism of this negative control has not been fully elucidated (Lotkowska et al., 2015). It can be 

539 hypothesized that the MYB transcripts targeted by miRNAs in our study are directly or indirectly 

540 involved in the regulation of anthocyanin biosynthesis to protect the plant against high light. Plants 

541 also require the crosstalk between phytohormones such as jasmonic acid (JA) and salicylic acid (SA) 

542 to acclimate to high light (Mateo et al., 2006; Balfagon et al., 2019). Studies in wheat and barley 

543 subjected to UV-B stress in the presence of exogenous JA reported an increased antioxidant signaling, 

544 enhanced proline levels and elevated ROS scavenging capabilities (Fedina et al., 2009; Liu et al., 2012). 

545 Similarly, the role of SA in response to high light and its role in redox homeostasis was elucidated in 

546 A. thaliana (Mateo et al., 2006). Our GO analysis for DE mRNAs revealed an enrichment of genes 

547 expressed in response to SA which may be involved in in the maintenance of redox homeostasis as 

548 well as protection of PSII and improvement of the photosynthetic capacity upon high light (Herrera- 

549 Vasquez et al., 2015; Chen et al., 2020). We also noticed an enrichment of SPLs which are known to 

550 be targeted by miR156/miR157 isoforms. miR156-SPLs affect the anthocyanin biosynthesis pathway 

551 and control development in stress conditions (Cui et al., 2014). After 6 h of high light treatment, we 

552 observed an upregulation of miR156d-5p and a concomitant downregulation of its target SPL3. 

553 Constitutive overexpression of miR156 caused an extended juvenile phase and delayed flowering (Wu 

554 and Poethig, 2006). On the other hand, it was shown that upregulation of SPL3 leads to increased levels 

555 of LEAFY (LFY), FRUITFULL (FUL), and APETALA1 (AP1) all encoding TFs that promote flowering 

556 (Yamaguchi et al., 2009). Our results suggest that high light causes upregulation of miR156 that 

557 mediates downregulation of its cognate target SPL3 to inhibit flowering under stress conditions. 
 

558 After 6 h of treatment, miR171c-5p levels were reduced and associated with the upregulation of its 

559 target APS reductase 3. This enzyme was found in high amounts after 4 h of light treatment and when 

560 supplemented with 0.5% sucrose, its amount increased seven-fold (Kopriva et al., 1999). It is also 

561 known that continuous light treatments lead to increased sugar levels (Haque et al., 2015; Chen et al., 
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562 2019) which could enhance the APS reductase expression. Studies have shown that APS reductase is 

563 needed to synthesize additional cysteine required for glutathione biosynthesis. During oxidative stress 

564 in A. thaliana, the amount of oxidized glutathione increases and the reduced form of glutathione 

565 decreases which drives the expression of APS reductase (Leustek, 2002). Considering the impact of 

566 enhanced oxidative stress during high light stress, our data point to an important role of miR171c-5p 

567 in the control of APS3 reductase transcript levels to promote the production of reduced glutathione. 
 

568 At the same time point, the upregulation of miR163 led to downregulation of one of its target transcripts 

569 coding for a S-adenosyl-L-methionine-dependent methyltransferases superfamily protein 

570 (AT1G15125). It is known that SAM dependent carboxyl methyltransferases are a family of plant 

571 enzymes that act on a variety of substrates such as salicylic acid, jasmonic acid and 7-methylxanthine 

572 to produce their methyl compounds (Ross et al., 1999). In conditions of high light stress, it is likely 

573 that the plant maintains its levels of SA and JA by reducing the levels of methyltransferases that could 

574 be necessary for defense and development (Kemal Kazan and Manners, 2011; Svyatyna and Riemann, 

575 2012; Khan et al., 2015). After 6 h and 2 d of treatment, miR395a was downregulated accompanied by 

576 elevated levels of one of its putative targets encoding cellulose synthase like G3. A previous study 

577 revealed differential regulation of this transcript in cry1 mutants subjected to blue light (Folta et al., 

578 2003) and in phyB mutants exposed to continuous monochromatic red light (Tepperman et al., 2004). 

579 Light receptors such as cry1 and phyB perceive light and mediate growth control with the help of 

580 cellulose synthase which is involved in maintaining the strength and composition of cell walls 

581 (Bischoff et al., 2011; Le Gall et al., 2015). The upregulation of this transcript (6 h and 2 d) in response 

582 to high light treatment may lead to increased mechanical strength to withstand elevated turgor pressure. 

583 This hypothesis is supported by mutants that are defective in cellulose synthase like genes displaying 

584 an enhanced sensitivity to salt stress (Wang et al., 2016; Zhang et al., 2016). 
 

585 We further investigated sRNAs derived from lncRNA, cis- and trans-NATs, TAS and PHAS RNAs. 

586 We found 11 non-redundant, non-overlapping lncRNAs which produced DE sRNAs during the course 

587 of high light treatment. The transcripts of all lncRNAs were undetectable in the sequencing data and 

588 two lncRNAs showed increased production of sRNAs. A study in rice may explain these observations 

589 where Psi-LDMAR siRNAs generated from the lncRNA Long day specific male fertility associated 

590 RNA (LDMAR) were able to downregulate the LDMAR transcript through RNA-dependent DNA 

591 methylation (RdDM) (Ding et al., 2012). Out of 11, the remaining 9 lncRNAs led to decreased sRNA 

592 production in high light samples compared to their respective controls and we speculate that the steady 

593 state levels of parent transcripts were maintained by the siRNAs. 
 

594 We also found 90 non-redundant cis-NATs pairs and 104 trans-NATs pairs that led to the production 

595 of differentially expressed nat-siRNA over the time course of high light treatment. We detected 45 

596 pc:pc and 45 pc:nc non-redundant cis-nat-siRNA producing loci, and 10 pc:pc and 94 pc:nc non 

597 redundant trans-nat-siRNA producing loci. After 6 h of treatment, we observed cis-nat-siRNAs being 

598 produced from two pairing transcripts. The transcript encoding NUCLEOLIN LIKE 1 was upregulated 

599 and glycosyl hydrolase 9C1 transcript levels remained unchanged. Salt stress causes elevated 

600 NUCLEOLIN LIKE 1 transcript levels pointing to its role in rRNA processing during salt stress 

601 adaptation (Huang et al., 2018). It has been demonstrated that stress affected plants show altered 

602 ribosome biogenesis (Huang et al., 2016; Palm et al., 2019). Similar results were obtained in our data 

603      indicating an involvement of this gene in response to high light treatment. Another cis-NATs pair 

604 reduced the production of nat-siRNAs. While the upregulated transcript encodes for ARABIDOPSIS 

605     HOMOLOGUE OF YEAST BRX1-1 (AT3G15460) that plays a role in the maturation of the large 

606 ribosomal subunit and facilitates pre-rRNA processing, its pairing transcript encoding aluminum 

607 induced protein with YGL and LRDR motifs (AT3G15450) was reduced. Studies have shown that 
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608    AT3G15450 is an auxin responsive transcript that was found to be downregulated by drought stress 

609   (Huang et al., 2008). Its downregulation is also observed in high light treatment, but the significance 

610     of its repression in stress remains unknown. After 2 d of high light treatment, lncRNA AT3G51238 

611 and AT5G01595 paired with a transcript encoding flavanone 3-hydroxylase (AT3G51240) and 

612 FERRETIN 1 (AT5G01600), respectively. Both pairing transcripts as well as the deriving nat-siRNAs 

613   were upregulated. It can be speculated that the upregulation of these transcripts is necessary for high 

614 light acclimation since flavanone 3-hydroxylase is known to promote flavonoid accumulation in high 

615   light (Pelletier and Shirley, 1996) and FERRETIN 1 is known to increase the photosynthetic 

616 performance of plants in response to oxidative stress (Briat et al., 2010). The upregulated levels of nat- 

617 siRNAs could be responsible for maintaining steady state levels of the parent transcripts produced in 

618     response to high light treatment. This may occur by maintaining an equilibrium between the rate of 

619 transcription of the parent transcripts and the rate of subsequent nat-siRNAs generation. The trans-nat- 

620 siRNAs were mostly produced from pc:nc transcript pairs with pre-tRNAs being the most prominent 

621      nc pairing partner. Studies have shown how sRNAs derived from tRNAs and mRNAs can regulate 

622 post–transcriptional gene expression (Garsin, 2016 ). At all the three time points, we found nat-siRNAs 

623   produced from single stranded regions of partially overlapping transcripts as well as from the double 

624 stranded regions of completely overlapping transcripts. The second most abundant nc pairing partner 

625 that led to differentially expressed trans-nat-siRNA were TE derived RNAs. TEs have the potential to 

626 mobilize and induce mutations in the host genome. Thus, plants have evolved special mechanisms to 

627 control the expression of TEs which are based on RNA silencing and chromatin modifications (Slotkin 

628 and Martienssen, 2007). Studies have confirmed that tRNA derived sRNAs can target endogenous TE 

629 (Martinez et al., 2017) and target other non-TE targets (Creasey et al., 2014; Cho, 2018). 
 

630     We also detected differentially expressed genes and sRNAs that might regulate anthocyanin 

631 biosynthesis under high light conditions (Figure 5). For example, miR828 seems to be involved in two 

632      pathways regulating PAP1 transcripts. In the indirect pathway, that was elucidated in sugar treated 

633 plants, miR828 triggers the production of TAS4 derived ta-siRNAs which target and negatively control 

634 MYB transcription factors including PAP1 and PAP2 resulting in reduced anthocyanin production (Luo 

635   et al., 2012). In addition, in the direct pathway, miR828 is able to directly target the PAP1 transcript 

636     and its overexpression causes reduced PAP1 transcript levels and represses anthocyanin biogenesis 

637 (Yang et al., 2013). Moreover, we observed upregulation of HY5 encoding a transcriptional regulator 

638 that enhances PAP1 transcription by binding to G- and ACE-boxes in the PAP1 promoter. In support 

639 of this positive regulation of PAP1 by HY5 and an anticipated increase in anthocyanin production, we 

640 observed increasing transcript levels of downstream genes encoding enzymes such as DFR, CHS and 

641 ANS that act in the anthocyanin biosynthetic pathway. Apart from its role in the sugar and high light 

642 response, miR828 is also known to trigger the production of TAS4 derived ta-siRNAs in response to Pi 

643   deficiency (Hsieh et al., 2009). We found more than two-fold upregulation of members acting in the 

644 regulation of anthocyanin production: miR828, TAS4 transcript, TAS4-derived ta-siRNAs, PAP1 and 

645 PAP2, HY5, DFR, CHS and ANS. Taken together, our results support previously reported studies (Luo 

646      et al., 2012; Yang et al., 2013; Hsieh et al., 2009) and expand the current knowledge on regulatory 

647 components of the anthocyanin biosynthetic pathway by the identification of HY5 and PAP1 that may 

648 lead to elevated anthocyanin levels in response to high light. 
 

649    Consequently, the proposed model for anthocyanin biosynthesis as well as the high number of 

650 identified miRNAs, sRNAs derived from cis-and trans-NAT gene pairs and from lncRNAs provide a 

651 fundamental base to elucidate sRNA-controlled gene regulatory networks underlying molecular 

652 adaptations of high light induced acclimation responses. 
 

653     5      Data Availability Statement 



sRNAs during high light acclimation 

16 

 

 

 

654 The raw Illumina sRNA and mRNA sequencing data is deposited in NCBI SRA database with the ID 

655 PRJNA653584. All raw data used for the analyses in this study is available for reviewers at 
 

656    https://dataview.ncbi.nlm.nih.gov/object/PRJNA653584?reviewer=pdhcbecm4g2ufc5pguk4f1hk2 
 

657   The original contributions presented in the study are included in the article/Supplementary Material, 

658 further inquiries can be directed to the corresponding authors. 
 

659     6      Author Contributions 
 

660 WF designed the research; BT performed the research with the help of MAA and KH; BT, MAA, KH, 

661    OT and WF analyzed the data; and BT, OT and WF wrote the paper. All authors read and approved 

662  the final manuscript. 
 

663     7      Funding 
 

664 The funding for the research conducted was provided by the German Research Foundation (SFB-TRR 

665    175, grants to W.F. project C03). The Funding body was not involved in the design of the study and 

666 analysis or interpretation of the data and in writing of the manuscript. 
 

667 8 Conflict of Interest 
 

668 The authors declare that they have no competing interests. 

669 9 Supplementary Material 

670 Supplementary Material 1: Table S1. List of stem loop qPCR oligonucleotides used in this study. 
 

671    Supplementary Material 2: Table S2. Mapped mRNA sequencing reads after adapter trimming in 

672     control and high light treated samples (biological triplicates). Table S3. Mapped sRNA sequencing 

673 reads from specific sRNA producing RNA classes in control and high light treated samples. Table S4. 

674     The size distribution of sRNAs (reads per million) from control and high light treated samples after 

675  adapter trimming. 
 

676 Supplementary Material 3: Table S5. DE miRNAs upon 3 h, 6 h and 2 d of high light acclimation, 

677     respectively. Evolutionarily conserved miRNA families are highlighted in orange. Table S6. 

678    Normalized read counts and FC of all miRNAs upon 3 h, 6 h and 2 d of high light acclimation, 

679   respectively. Table S7. High light-responsive DE miRNAs in Arabidopsis. MiRNAs were classified 

680 as DE miRNAs when log2FC ≥ 1& ≤ -1 (Benjamini-Hochberg corrected p-value ≤ 0.05). 
 

681   Supplementary Material 4: Table S8. Targets of all DE miRNAs at the three time points predicted 

682 using psRNATarget Analysis Server. N/A = No significant fold change. Table S9. NcRNA targets of 

683 all DE miRNAs at three time points predicted using psRNATarget Analysis Server. N/A = No 

684  significant fold change. 
 

685     Supplementary Material 5: Table S10. All mRNAs and their normalized read counts (triplicates) 

686     acquired from mRNA sequencing data of control and high light treated samples at 3 h, 6 h and 2 d. 

687 Table S11. Detailed list of all DE mRNAs acquired from mRNA sequencing data (control and 3h, 6 h 

688  and 2d of high light treated samples. 



sRNAs during high light acclimation 

17 

 

 

 

689 

690 
 

691 

692 

693 

694 

695 

696 

697 
 

698 

699 
700 
701 
702 
703 
704 
705 
706 
707 
708 
709 
710 
711 
712 
713 
714 
715 
716 
717 
718 
719 
720 
721 
722 
723 
724 
725 
726 
727 
728 
729 
730 
731 
732 
733 
734 
735 
736 
737 
738 
739 
740 
741 
742 
743 
744 
745 

Supplementary Material 6: Table S12. Gene Ontology term enrichment analysis for putative targets 

of DE miRNAs after 3 h, 6 h and 2 d of high light acclimation. 
 

Supplementary Material 7: Table S13. DE sRNAs derived from non-overlapping lncRNAs. The 

sRNA and lncRNA sequencing data at different time points are shown in the sub-tables. Table S14. 

DE sRNAs generated from cis-NAT pairs. The sRNA and cis-NAT sequencing data at different time 
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11 Figure Legends 
 

Figure 1. The size distribution (20 to 24 nt) of mapped sRNAs after 3 h (A), 6 h (B) and 2 d (C) of 

high light treatment (represented in reads per million). The distribution of trimmed sRNA reads from 

different RNA classes (reads per million) in untreated and high light acclimated samples (D). 
 

Figure 2. Number of detected sRNAs belonging to different sRNA classes during high light 

acclimation. The number of up- (black) and downregulated (gray) sRNAs from trans-NATs (A), 

miRNAs (B), cis-NATs (C), lncRNAs (D) and ta-siRNAs (E) in response to high light treatment after 

3 h, 6 h and 2 d (FC ≥ 2 & ≤ -2, Benjamini-Hochberg corrected p-value ≤ 0.05). 
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997 Figure 3. Stem loop qRT-PCR based validation of sRNA sequencing data for miRNAs as well as 

998 sRNAs derived from trans-NATs, cis-NATs and lncRNA. Expression values are normalized to UBI1 

999 housekeeping gene and the untreated control was set to 1. The error bars indicate the standard deviation 

1000 (n=3). 

1001 Figure 4. Gene ontology analysis for all predicted targets of DE miRNAs in high light acclimation. 

1002 The dot plot represents GO terms categorized into molecular functions, cellular components and 

1003 biological processes. The GO terms and the time points of the high light treatment were depicted on 

1004 the y- and x-axis, respectively. The bubble size represents the number of genes in that particular GO 

1005 term (Benjamini-Hochberg corrected p-value ≤ 0.05). 

1006 Figure 5. Our current model on the regulation of anthocyanin biosynthesis in response to high light. 

1007 Increased PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) can bind to the PAP1 cis- 

1008 elements of the TAS4 gene to induce TAS4 transcription. In response to high light, miR828 is 

1009 upregulated and triggers the production of TAS4 derived ta-siRNAs. The ta-siRNAs can target PAP1 

1010 and PAP2 mRNAs and downregulate their transcript levels. Additionally, high light induced miR828 

1011 can also downregulate PAP1 transcripts. Furthermore, high light induces the transcription factor 

1012 ELONGATED HYPOCOTYL 5 (HY5) that binds to the PAP1 promoter and activates PAP1 

1013 transcription that in turn provokes transcription of genes encoding enzymes involved in anthocyanin 

1014 biosynthesis such as DIHYDROFLAVONOL 4-REDUCTASE (DFR), CHALCONE SYNTHASE 

1015 (CHS) and ANTHOCYANIDIN SYNTHASE (ANS). After 2 d of high light treatment, the 

1016 concomitant increase in the components of the proposed model were confirmed by our mRNA 

1017 sequencing data which support previous findings (Luo et al., 2012; Yang et al., 2013; Hsieh et al., 

1018 2009). 
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3 Discussion 

 
The study presented here aims to provide an insight into the cold-, high light- and retrograde 

signaling-responsive small RNAs (sRNA) which could have an impact on the sRNA producing 

transcripts or the sRNA targeted transcripts. The sRNA and mRNA/lncRNA sequencing data 

were combined to study the correlations between the sRNAs and their corresponding parent 

and/or target mRNA/lncRNA transcripts. The development of high throughput transcriptome 

sequencing has enabled researchers to identify the miRNAs and their role in regulation of gene 

expression in response to environmental stress. Several studies have identified the 

differentially expressed cold and high light responsive miRNAs that could alter expression of 

stress acclimation related genes. But a comprehensive investigation to identify the sRNAs 

derived from lncRNAs, cis- and trans-NATs, TAS and PHAS has not been published yet. Over the 

years, it is unrevealed if non-coding RNAs are regulated by retrograde signaling in the presence 

of norflurazon (NF) treatment that perturbs the chloroplast development and restricts the 

plastid-derived signals. To study the sRNAs, WT Arabidopsis plants were subjected to cold (4   ) 

and high light treatment (450 µE); to study the retrograde signaling responsive sRNAs, two 

additional mutants gun1 and gun5 together with WT were treated with NF. 

The sequencing data for mRNA/lncRNA was analyzed using GALAXY software and the sRNA 

data with Shortstack software. We observed an approximate mapping of 10 - 13% reads 

mapping to miRNAs, 10% to trans- and 2% to cis-nat-siRNA loci, 4 - 5% reads mapped to 

lncRNAs, 3% to ta-siRNA producing regions and 0.3% to pha-siRNAs. The remaining reads 

mapped to transposable elements and repeat-associated regions. We observed differential 

expression of cis-nat-siRNAs and trans-nat-siRNAs followed by miRNAs in response to cold, high 

light and retrograde signaling treatments. Most of the changes were observed after 2 d of cold 

treatment and 6 h of high light treatment whereas a striking de-repression pattern of sRNAs 

was observed in NF treated gun mutants when compared to NF treated WT. There was a strong 

upregulation of cis-nat-siRNAs in NF treated gun mutants and downregulation of trans-nat- 

siRNAs and miRNAs. The results suggest a predominant role of nat-siRNAs and miRNAs in 

response to environmental stresses and in retrograde signaling. 
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3.1 Cold stress 

 
The agricultural productivity is decreasing at an alarming rate due to the effects of various 

climatic conditions. Cold stress is one of the major factors that alters the physiology of plants 

and causes changes at molecular levels to attain acclimation. 

Due to cold treatment, we observed an overall reduction of sRNAs produced from RNA classes 

such as miRNAs, trans- and cis-NATs-pairs and lncRNAs. The reason behind the reduction could 

be the reduced transcription of sRNA precursor transcripts in response to cold acclimation. 

With the help of our sequencing data, we found 107 DE miRNAs responsive to cold treatment 

and when compared to previously reported cold-responsive miRNAs in A. thaliana, we found 

an overlap of 14 DE miRNAs to be previously identified in A. thaliana in cold stress (Tiwari et 

al. 2020). To predict the genes that could be affected by the DE miRNAs, we used the 

psRNATarget tool to predict putative miRNA targets and found 96, 173 and 267 miRNA target 

pairs at 3 h, 6 h and 2 d time points, respectively. It reflects the importance of miRNAs in 

regulating the transcriptome at prolonged cold treatment. Prominently, we found mRNAs 

encoding TFs such as NFY, MYB, TCP and HSFs as the predicted targets of the DE miRNAs. The 

GO enrichment of all predicted miRNA targets showed that the highest number of targets are 

associated with the nucleus (136 mRNAs) and 85 of these encode TFs (Tiwari et al. 2020). Plants 

have a multitude of TFs that are necessary for growth and stress responses and we predicted 

85 targets of DE miRNA that encode TFs. 

With the help of our mRNA and sRNA sequencing results, we observed several miRNAs showing 

anti-correlated expression to their targets indicating cold acclimation related alterations (Table 

1). In response to cold treatment, miRNAs could be involved in altering transcript levels of their 

target genes through sequence complementarity. Plants generally activate metabolic 

pathways that are necessary to protect cells from subjected stress and deactivate pathways 

that needs investment of energy. The target genes downregulated were found to be negative 

regulators of cold tolerance and the upregulated targets were involved in reducing chlorophyll 

synthesis or in delaying the flowering time. 

The sRNA sequencing data was used to analyze miRNA regulation and to identify sRNAs derived 

from other RNA classes in response to cold treatment providing links to their role in 

acclimation. 
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miRNA miRNA 

Expression 

Target Target 

Expression 

Time 

point 

Function in cold stress 

miR159 ↑ TIM-44  ↓ 3 h Alters mitochondrial 
protein import in stress 

conditions 

miR159 ↓ TIM-44  ↑ 2 d Alters mitochondrial 
protein import in stress 

conditions 

miR159 ↑ ACC synthase  ↓ 3 h ACC synthase produces 

ethylene which is a 

negative regulator of 
freezing tolerance 

miR395c ↓ Mg chelatase  ↑ 6 h Mg chelatase produced 

Mg-Proto-IX which is 

known to signal the 

induction of AOX1a gene. 

AOX1a is involved in 

initiating thermogenesis 

during cold stress 

 

Mg-Proto-IX also 

increases activities of 

antioxidant enzymes and 

maintains redox 

equilibrium of cells in 
cold stress 

miR408-5p ↑ Galactose 
oxidase/Kelch 

family protein 

↓ 6 h, 
2 d 

Expected to mediate cold 
stress in an ABA- 

dependent manner 

miR171-3p ↓ Scarecrow 

like 27  

↑ 2 d SCL 27 binds to cis- 

elements of PORC gene 

leading to reduced 

chlorophyll synthesis 
during stress conditions 

miR156/157 ↑ SPL3  ↓ 2 d Involved in delayed 

flowering during cold 
stress 

miR172c ↓ TOE1  ↑ 2 d Involved in delayed 

flowering during cold 

stress 
 

Table 1: Cold treatment responsive differentially expressed miRNAs and their anti-correlated protein 

coding gene targets (FC≥ 2 & ≤− 2, Benjamini-Hochberg corrected p-value ≤0.05). The arrows represent 

the correlation expression as follows: ↑=upregulated, ↓=downregulated. Source: Tiwari et al. (2020). 

 

 
The sRNAs derived from non-overlapping lncRNAs were differentially expressed, but their 

parent transcripts were undetected pointing to their efficient processing into sRNAs and 
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repression of parent transcripts. We observed a high number of sRNAs derived from cis-NATs 

followed by trans-NATs. We found protein-coding transcripts pairing with pre-tRNAs and/or TE 

transcripts producing sRNAs from one or both transcripts. Several F box related proteins 

(AT2G33655, AT1G11270, AT2G16365) known to be co-expressed with abiotic stress related 

genes (Gonzalez et al. 2017) were found to be pairing with tRNA transcripts to produce trans- 

nat-siRNAs. There is a possibility that the nat-siRNAs are produced from the pre-tRNA 

transcript alone or from the overlapping regions of the two transcripts. Recent studies revealed 

the role of sRNA derived from tRNA in maintenance of epigenetic inheritance, genome stability, 

cell proliferation and stress response (Zhu et al. 2018). We observed trans-nat-siRNAs 

produced from TE such as Ty3 Gypsy, CACTA and Ty1 Copia elements. TE derived sRNAs are 

known to repress TE transcripts via DNA methylation or histone tail modifications (Xie and Yu 

2015 ) 

The study concludes that cold stress considerably alters the sRNA expression that in turn alters 

the gene expression in order to induce cold acclimation. A large number of miRNAs and other 

classes of sRNAs were differentially expressed indicating their importance in regulation of gene 

expression. 

3.2 High light stress 

 
Light is the primary source of energy for plants and serves as an important factor for their 

growth and development. When the irradiance is far above the light saturation point of 

photosynthesis, it is considered as high light stress which induces acclimation responses linked 

to the photosynthetic machinery, xanthophyll cycle and photorespiratory pathways. 

Over the time course of high light treatment, we observed an increase in the number of 

differentially expressed sRNAs during the 3 h and 6 h time points, but a reduction after 2 d. We 

found 92 miRNAs to be differentially expressed and 44 miRNAs have been previously reported 

in UV B, red light and white light related studies in Arabidopsis (Bonnet et al. 2004, Zhou et al. 

2007, Zhou et al. 2016). The psRNATarget tool was used to identify the putative targets of 

differentially expressed miRNAs and we found 128, 298 and 175 potential miRNA:mRNA target 

pairs at 3 h, 6 h and 2 d time point, respectively. The number of targets indicate that the 

majority of the acclimation related alterations through miRNAs occurred during the early 

stages of treatment. Similar to the study of cold treatment, the GO analysis of differentially 

expressed miRNAs revealed association of transcription factors such as MYB, squamosa 
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promoter binding protein (SPLs) and Teosinte Branched 1, Cycloidea, and members of the PCF 

(TCP) TF family. The enrichment of TFs indicates their involvement in inducing stress tolerance 

since TFs can bind to cis - elements in the promoter regions of stress tolerance genes and 

modulate their expression. 

 
 

miRNA miRNA 

Expression 

Target Target 

Expression 

Time 

point 

Function in cold 

stress 

miR156-5p ↑ SPL3  ↓ 6 h Involved in delayed 

flowering during 
high light stress 

miR171c- 

5p 

↓ APS reductase 3 ↑ 6 h Increases the 

amounts of reduced 

glutathione in stress 
affected plants 

miR163 ↑ S-adenosyl-L- 

methionine- 

dependent 

methyltransferases 

superfamily 

protein 

↓ 6 h These enzymes 

convert substrates 

into their methyl 

compounds reducing 

levels of important 

substrates. These 

could be involved in 

maintaining levels of 

salicylic acid and 

jasmonic acids in 
high light stress 

miR395a ↓ cellulose synthase 

like G3  

↑ 6 h, 

2 d 

Could lead to 

increased 

mechanical strength 

to withstand the 

turgor pressure in 
high light conditions 

 

Table 2: High light treatment responsive differentially expressed miRNAs and their anti-correlated 

protein coding gene targets (FC≥ 2 & ≤− 2, Benjamini-Hochberg corrected p-value ≤0.05). The arrows 

represent the correlation expression as follows: ↑=upregulated, ↓=downregulated. Source: Tiwari et 

al. (2021) (Submitted to Frontiers in Plant Science). 

 

 
When we correlated the sRNA and the mRNA sequencing data, we observed anti-correlated 

pairs of miRNAs and their predicted targets (Table 2). During high light treatment, the levels of 

differential expression of these targets corresponds to their functions as expected. We found 

genes that could inhibit flowering in stress conditions, increase mechanical strength, and 
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maintain levels of salicylic acid and jasmonic acid found to be important in the high light stress 

signaling. 

Similar to our data of the cold treatment, we found abundant sRNAs produced from cis-NATs 

and trans-NATs pairs in response to high light treatment. We found sRNAs to be produced from 

the single stranded regions as well as the overlapping regions of the two pairing transcripts. 

Out of the two transcripts, the non-coding transcripts comprised pre-tRNAs and/or TE pairing 

with a protein coding gene transcript. After 2 d of high light treatment, we identified ta-siRNAs 

derived from the TAS4 precursor. A previous study in Arabidopsis explained an autoregulatory 

loop that involved PAP1 and TAS4 transcript in response to sugar accumulation and was also 

shown to regulate anthocyanin production in high light stressed plants (Luo et al. 2012). 

miR828 was found to trigger production of TAS4 derived ta-siRNAs which were able to target 

transcripts of PAP1 and PAP2 MYB factors. It is known that the downregulation of these two 

TFs causes reduced anthocyanin biosynthesis (Yang et al. 2013). Another TF namely HY5 was 

upregulated in our sequencing data and it is known to enhance PAP1 transcription. The positive 

regulation of PAP1 by HY5 is supported by the increase in transcripts coding for enzymes of the 

anthocyanin biosynthesis pathway such as DFR, CHS and ANS. Another study confirmed that 

miR828 triggers production of TAS4 derived ta-siRNAs in response to Pi deficiency (Hsieh et al. 

2009). Our sequencing data revealed a two-fold increase in the levels of miR828, TAS4 

transcript, ta-siRNAs, PAP1 and PAP2, HY5, DFR, CHS and ANS. We can conclude that HY5 and 

PAP1 facilitate an increase in the production of anthocyanin production in response to high 

light treatment. 

3.3 Retrograde Signaling 

 
Until now, it is not known if sRNAs can be regulated by retrograde signaling in response to NF 

treatment. To better understand the role of sRNAs in modulating nuclear gene expression 

responsive to retrograde signals, the sRNA and mRNA sequencing of treated Arabidopsis 

samples and gun mutants were analyzed (Habermann et al. 2020). 

The mRNA sequencing data was first evaluated and surprisingly, we found that in response to 

NF, plastid encoded DEGs were repressed in gun1 mutant whereas the same set of genes were 

differentially upregulated in the gun5 mutant. This observation is consistent with previous 

findings showing the control of plastid gene transcription via retrograde signaling networks 

(Kleine and Leister 2016). Another surprising observation was that the plastid encoded 
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transcripts in untreated gun mutants were oppositely regulated whereas the nuclear encoded 

transcripts were overlapping in large numbers in both the mutants. 

Concerning the sRNA sequencing data, we detected large numbers of downregulated sRNAs in 

treated WT (WT NF/WT) whereas treated gun mutants exhibited upregulated sRNAs 

(gun1/5 NF/WT NF). The increase of sRNAs in treated gun mutants suggests their de-repression 

and their potential role in retrograde-controlled nuclear gene expression. It is possible that 

these retrograde signal induced sRNAs modulate the mRNA transcript levels and therefore 

affect the plastid localized proteins. A large number of nat-siRNAs have been found to be 

differentially expressed in all the treatments (Habermann et al. 2020). We used psRNATarget 

to find putative targets of differentially expressed miRNAs and unexpectedly, there was no 

anticorrelation of targets to their cognate miRNAs. From this, we concluded that either the 

miRNAs are not directly involved in retrograde signal induced alteration of gene expression or 

they inhibit the initiation of translation thereby repressing translation of mRNA transcripts. 

Similar to cold and high light related studies, the target prediction tool found 20 miRNA targets 

encoding transcription factors and 22 targets encoding plastid-localized proteins, being 

targeted by 23 differentially regulated miRNAs. It can be concluded that miRNAs control 

transcripts of regulatory proteins which could in turn regulate the nuclear gene expression. 

 

The chloroplast localizing protein transcripts that are targeted by specific miRNAs suggest their 

possible impact in response to retrograde signals. Our results found a validated target SPL10 

transcript to be regulated by miR157a, suggesting its possible role in retrograde signaling. 

Another pair showing anticorrelated regulation is comprised of miR398 targeting the transcript 

of multidrug and toxic compound extrusion (MATE) efflux protein. It mediates removal of the 

xenobiotic organic compounds out of the cell. The NF-triggered downregulation of miR398 

would cause elevation of MATE efflux transcript pointing to its role in extrusion of NF herbicide 

or other toxic compounds accumulating in the cell. miR395b was downregulated in NF treated 

WT (WT NF/WT) whereas upregulated in treated gun5 mutant (gun5 NF/WT NF). Fang et al. 

(2019) found that reduced levels of miR395b causes increased PAP synthesis, which inhibits 

XRNs and prompt elevation of pri-miRNA and mature miRNA levels. Besides miRNAs, we 

observed a higher number of differentially expressed nat-siRNAs in the treated WT (WT 

NF/WT) and both gun mutants (gun NF/WT NF). Majority of pairing transcripts encode nuclear 

or plastid proteins suggesting a greater impact of nat-siRNAs in control of PhANGs encoding 

plastid proteins. 
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3.4 Comparison of cold stress, high light stress and retrograde signaling 

affected non-coding RNAs 

 
 

It is known that high light and low temperature stress induce disturbances in the organellar 

gene expression (OGE) such as in chloroplast and mitochondria. The disturbances in the 

homeostasis trigger retrograde signals to cause nuclear gene expression (NGE) changes (Kleine 

and Leister 2016). To modulate changes at the transcript level, miRNAs either cleave the mRNA 

transcripts or repress their translation. Our results suggest involvement of 5 miRNAs 

differentially regulated in cold, high light and in response to norflurazon treatment (Figure 4). 

These miRNAs include miR166f, miR169g-3p, two isoforms of miR395b/c and miR398b-5p. The 

differential expression of these miRNAs clearly reflects their role in retrograde signaling. The 

differential regulation of the same set of miRNAs in response to cold and high light treatment 

indicates the trigger of retrograde signals in order to modulate nuclear gene expression in 

stress conditions. 

 

 

Figure 4. Venn diagram depicting the overlap of differentially expressed miRNAs in response to 

cold treatment, high light treatment and NF treatment in WT. 

 

 
To unravel the putative protein-coding transcripts that could be regulated by the DE miRNAs, 

we used psRNATarget tool for the prediction of their targets. The gene ontology enrichment 

of all miRNA targets was performed for high light and cold affected miRNAs and we observed 

a striking overlap between the putative targets. There was an overrepresentation of 

transcription regulatory proteins and factors with DNA binding ability. Also genes coding for 

proteins with methyltransferase activity were enriched pointing to potential epigenetic 
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modifications upon environmental stress (Thiebaut et al. 2019). The genes associated with 

response to salicylic acid and jasmonic acid were enriched in cold as well as high light stress 

treatments. The genes associated with post-transcriptional processing such as TPR and PPR 

were also enriched and these proteins have a role in mediating RNA maturation, stress 

signaling and organellar transport to promote stress acclimation. The overlap of miRNA targets 

in high light and cold stress indicates common miRNAs that are potentially modulating gene 

expression in response to abiotic stresses. 

We observed 51 miRNAs overlapping between cold and high light treatments and majority of 

them are conserved suggesting that miRNAs regulating gene expression alterations in response 

to environmental cues could be common. We explored the possibility of finding alterations in 

sRNA expression from all the other RNA classes and found expression of sRNAs from 6 cis-NAT 

loci and 28 trans-NAT loci being altered in cold, high light and in response to NF treatment in 

WT plants (Figure 5). 

 

 

Figure 5. Venn diagram depicting the overlap of differentially expressed nat-siRNAs in response to 

cold treatment, high light treatment and NF treatment in WT. (a) cis-nat-siRNAs were differentially 

expressed in large numbers in response to cold treatment (b) the overlap of trans-nat-siRNAs 

differentially expressed in the three treatments were substantially high compared to the other classes 

of sRNAs. 

 

 
There was a higher overlap between cold and high light related sRNAs produced from cis- and 

trans-NATs transcripts indicating their importance in regulating stress related genes. The cis- 

NATs gene pairs comprised of pairing between an mRNA transcript and a tRNA transcripts 

including tRNA-Phe (AT5G03452), tRNA-His (AT3G06665), tRNA-Phe (AT3G15585), tRNA-Ser 

(AT1G59570), tRNA-His (AT1G02600) and tRNA-Gly (AT5G11325). The 28 trans-nat-siRNAs 
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comprised of pairing between an mRNA transcript and a tRNA transcripts including tRNA-Asp 

(AT3G02335), tRNA-Ser (AT1G57030), tRNA-Phe (AT5G03452), tRNA-Asp (AT5G59055), tRNA- 

Phe (AT4G01865), tRNA-Val (AT3G59923), tRNA-Asp (AT1G75070), tRNA-Ser (AT1G72780), 

tRNA-Asp (AT3G27555). The sRNAs produced from single stranded tRNA-Asp transcript were 

found to be induced by Pi starvation in roots (Hsieh et al. 2009), from single tRNA-His transcript 

known to be induced by oxidative stress in Arabidopsis seedlings (Thompson et al. 2008) and 

from tRNA-Phe in the leaves (Nowacka et al. 2013). There was an overlap of 39 cis-NAT loci and 

74 trans-NAT loci in high light and cold treatment. The results suggest a greater involvement 

of trans-nat-siRNAs and cis-nat-siRNAs followed by miRNAs in regulation of environmentally 

altered genes. We did not find an overlap of sRNAs derived from non-overlapping lncRNAs in 

response to NF when compared with cold and high light treatments, but 5 lncRNAs loci 

generated differentially expressed sRNAs in both stress treatments. In cold treatment, majority 

of lncRNAs generated upregulated sRNAs whereas in high light these were downregulated. 

Along with differential upregulation of sRNAs we found that the lncRNA transcripts were not 

differentially expressed in the mRNA data indicating potential processing of transcripts into 

sRNAs. In high light mRNA data, we found lncRNA AT5G07325 transcript to be differentially 

downregulated with a concomitant downregulation of sRNAs. 

Apart from the sRNA data, we analyzed the overlap of mRNA genes differentially expressed 

(FC≥ 2 & ≤− 2, Benjamini-Hochberg corrected p-value ≤0.01) in response to cold and high light 

treatments, and in NF treated WT plants (WT NF/WT). There was an overlap of 140 genes in all 

the three treatments, with 900 genes found in high light and cold treatment, 385 overlapping 

between cold treatment and WT NF/WT, and 82 overlapping between high light treatment and 

WT NF/WT. Out of the 140 genes found in all the three treatments, 31 genes encoded 

chloroplast localizing proteins and mainly comprised genes related to oxidation-reduction 

processes, response to UV and jasmonic acid, and flavonoid biosynthesis processes. With the 

cold treatment we observed genes mainly related to metabolic pathways, carbon metabolism, 

photosynthesis and chlorophyll metabolism. 

A large number of genes were differentially up- or downregulated in response to abiotic 

stresses, as there is an increased generation of ROS indicating reduced photosynthetic 

efficiency and shut down of the photosynthetic machinery. Alterations in gene expression upon 

such stresses take place with the help of retrograde signals that modulates the PhANGs 

expression with the help of sRNAs and transcription factors (Figure 6). 
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Figure 6. Impact of high light and cold stress on components of retrograde signaling pathways. High 

light and cold stress induce generation of reactive oxygen species via the electron transport chain. The 

ROS have an inhibiting effect on enzymes such as SAL1, HDS and CHL27 which lead to accumulation of 

the intermediate metabolites PAP, MEcPP and MG Proto IX. These intermediates are responsible for 

altering the PhANG expression and stress responsive genes. SAL1: inositol polyphosphate 1- 

phosphatase, HDS: 1-hydroxy-2-methyl-2-E)-butenyl-4-diphosphate synthase, CHL27: Mg- 

protoporphyrin monomethylester aerobic cyclase, MEcPP: 2-C-methyl-D-erythritol 2,4- 

cyclodiphosphate, MgProtoIX(/-ME): magnesium protoporphyrin 9 (and its monomethylester 

derivative), PAP: 3′-phosphoadenosine 5′-phosphate, PhANGs: photosynthesis-associated nuclear 

genes, ROS: reactive oxygen species. 

 

 
The chloroplast can sense the fluctuations in the environment and in response to abiotic 

stresses, changes in nuclear gene expression are induced. The trigger of high light and cold 

treatment is known to generate large amounts of reactive oxygen species due to inefficient 

photosynthetic electron transport chain. The ROS causes inhibition of certain enzymes such as 

SAL1, HDS and CHL27 which use PAP, MEcPP and Mg Proto IX metabolites as substrates. The 

accumulation of these intermediate metabolites leads to their transport into the nucleus, 

altering expression of PhANGs and stress responsive genes with the help of transcription 

factors (Crawford et al. 2018). The abiotic stress directs modulation of nuclear gene expression 

leading to expression of small RNAs, which in turn regulate the expression of stress responsive 

genes. 
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3.5 Outlook 

 
Our study provides a fundamental database showing the possible involvement of sRNAs in cold 

and high light acclimation and their potential role as regulators of gene expression in 

retrograde signaling. Using the accuracy of high throughput data generated via next- 

generation sequencing platform and bioinformatics tools for subsequent data analyses, we 

were able to find abundant of differentially expressed sRNAs in the aforementioned 

treatments. We were able to identify miRNAs and sRNAs derived from cis- and trans-NATs, 

lncRNAs, PHAS and TAS that can be further selected for functional analysis. The miRNAs 

affected in cold and high light treatment can be further studied in overexpression or knock out 

lines of miRNAs. We were able to transform the miRNA mimicry constructs of 4 miRNAs namely 

miR395, miR161.1, miR163 and miR169 into Arabidopsis plants. These transformed lines are 

considered as the knock-down lines as the miRNA transcripts are sequestered by binding to 

the miRNA mimicry sequence. The putative targets of these miRNAs can be validated for a 

concomitant upregulation in knock-out or knock-down lines and for downregulation in 

overexpression lines through RT-PCRs. Apart from the identification of miRNAs, our results 

provide miRNA-TF-mRNA networks that were constructed using bioinformatic tools and 

machine learning concepts. The specific miRNA subnetworks comprising TFs and their direct 

as well as indirect targets can be used to explore the regulatory relationships in abiotic stress 

acclimation. We identified cold treatment related cis-nat-siRNA producing cis-NATs pairs that 

can be further used for functional studies in cold treatments in Arabidopsis. Cold affected 

siRNAs derived from AT3G05870-AT3G05880 (ANAPHASE-PROMOTING 

COMPLEX/CYCLOSOME 11 - RARE-COLD-INDUCIBLE 2A), AT1G10522-AT5G53905 (PLASTID 

REDOX INSENSITIVE 2 - prolamin-like protein) and high light affected siRNAs from AT1G48920- 

AT1G48930 (NUCLEOLIN LIKE 1 - GLYCOSYL HYDROLASE 9C1) and AT1G11260 - AT1G11270 

(SUGAR TRANSPORTER 1 - F-box and associated interaction domains-containing protein) have 

been validated to be differentially expressed through stem-loop RT-PCR through our studies. 

The identified cis-NATs can be functionally analyzed in treated WT or in gene knock out 

mutants. 

Overall, the results of this PhD thesis can be used to unravel the regulators of gene expression 

in response to cold, high light and retrograde signaling. Most sRNAs act in post-transcriptional 

control of gene expression by binding to reverse complementary sequences within their target 
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RNA and thus our combined analyses facilitate direct correlations of altered small RNA 

expression to changes in mRNA transcripts. Furthermore, we identified a considerable high 

number of sRNAs that have not been associated with cold, high light and retrograde signaling- 

responsive transcriptional changes previously. We also included a modeling approach to 

generate a gene regulatory network that involves microRNAs and their direct targets as well as 

transcription factors that are miRNA-regulated and their respective downstream targets. The 

obtained network and cold-responsive subnetwork provide insights into regulatory gene 

interconnectivities that underlie adaptation processes to cold. 
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