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Abbreviations	

5-HTTLPR	 Serotonin-transporter-linked	polymorphic	region	

ACTH	 	 Adrenocorticotropic	hormone	

ADCYAP1R1	 Pituitary	adenylate	cyclase-activating	polypeptide	type	I	receptor	(gene)	

BDNF	 	 Brain	derived	neurotrophic	factor	

CAPS	 	 Clinician-administered	PTSD	scale	

CpG	 	 Cytosine-phosphate-guanine	

CRF	 	 Corticotropin	releasing	factor	

CRF1	 	 	Corticotropin	releasing	factor	receptor	1	

CRHR1		 Corticotropin	releasing	factor	receptor	1	(gene)	

CSF	 	 Cerebrospinal	fluid	

CTQ	 	 Childhood	trauma	questionnaire	

DICER1	 Dicer	gene	

DNA	 	 Deoxyribonucleic	acid	

DNMT1	 DNA	methyltransferase	

DSM-5		 The	Diagnostic	and	Statistical	Manual	of	Mental	Disorders,	Fifth	Edition	

EEG	 	 Electroencephalography	

FDA	 	 Food	and	Drug	Administration	

FKBP5		 FK506-binding	protein	51	kDa	(gene)	

GABA	 	 gamma-Aminobutyric	acid	

GAD	 	 Generalized	anxiety	disorder	

GR	 	 Glucocorticoid	receptor	

GxE	 	 Gene	by	environment	interaction	

HPA	 	 Hypothalamic-pituitary-adrenal	
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ICD-10	 International	Statistical	Classification	of	Diseases,	10th	revision	

ICV	 	 Intracerebroventricular	

IFN-γ	 	 Interferon-gamma	

IL-12	 	 Interleukin	12	

MDD	 	 Major	depressive	disorder	

miR	 	 microRNA	

NR3C1		 Nuclear	receptor	subfamily	3	group	C	member	1	

PAC1	 	 Pituitary	adenylate	cyclase-activating	polypeptide	type	I	receptor	

PBMCs	 Peripheral	blood	mononuclear	cells	

PET	 	 Positron	emission	tomography	

PTSD	 	 Post-traumatic	stress	disorder	

PVN	 	 Paraventricular	nucleus	

RNA	 	 Ribonucleic	acid	

SKA2	 	 Spindle	and	kinetochore-associated	complex	subunit	2	

SLC6A4	 Serotonin	transporter	(gene)	

SNP	 	 Single	nucleotide	polymorphism	

SSRI	 	 Selective	serotonin	reuptake	inhibitor	

SNRI	 	 Serotonin-norepinephrine	reuptake	inhibitor	
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Summary	

Post-traumatic	stress	disorder	(PTSD) represents one of the major psychiatric disorders, yet 

treatment options, including pharmacological interventions, are still limited. As a regulator of 

the HPA axis and having been implicated in the pathogenesis of the disorder, the 

corticotropin-releasing factor (CRF) system represents a promising drug target in PTSD. 

However, results from large clinical trials using CRF receptor type 1 (CRF1) antagonists to treat 

other stress-related disorders like major depressive disorder (MDD) or generalized anxiety 

disorder (GAD) have been disappointing so far. To further improve pharmacological 

treatment, therapeutic concepts like precision medicine are of great value. This approach 

incorporates the idea of targeting the “right” patient with the “right” treatment. Here, 

clinically applicable biomarkers represent an essential tool. Diagnostic and prognostic markers 

will enable a biology-based diagnosis and allow us to apply preventive therapies for high-risk 

patients. Treatment biomarkers are specifically helpful in predicting individual treatment 

response but also tracking the effectiveness of a therapeutic intervention. This thesis aims to 

evaluate	the	efficacy	of	a	CRF1	receptor	antagonist	in	a	cohort	of	PTSD	diagnosed	women	

with	particular	 focus	on	biological	 subgroups	 showing	differential	 treatment	 response	

and	 further	 to	 identify	 potential	 treatment	 biomarkers,	 specifically	 on	 the	 epigenetic	

level.	Results	from	this	randomized	clinical	trial	revealed	that	the	applied	CRF1	receptor	

antagonist	 was	 not	 superior	 over	 placebo	 overall.	 However,	 a	 distinct	 subgroup	 of	

patients,	hypothesized	 to	have	higher	CRF	 system	activity,	 showed	significantly	better	

treatment	 outcome.	 By	 examining	 DNA	 methylation	 levels	 of	 PTSD-relevant	 genes	 in	

peripheral	blood	before	and	after	CRF1	receptor	antagonist	administration,	 this	 thesis	

identified	 potential	 epigenetic	 treatment	 biomarkers	 in	 PTSD	 for	 CRF1	 antagonist	

therapy.	 Our	 previously	 described	 subgroup	 of	 responsive	 patients	 demonstrated	
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significantly	 different	 changes	 of	 CRHR1	 methylation	 levels	 over	 treatment	 time	

compared	to	the	other	patients	suggesting	CRHR1	methylation	as	a	possible	treatment-

tracking	marker.	Further,	NR3C1	methylation	 levels	at	baseline	significantly	 interacted	

with	 early	 life	 stress	 to	 predict	 treatment	 outcome	 and	 may	 therefore	 serve	 as	 an	

epigenetic	 stratification	 biomarker,	 subgrouping	 patients	 prior	 to	 a	 therapeutic	

intervention.	 Interestingly,	NR3C1	 methylation	 has	 previously	 been	 shown	 to	 predict	

PTSD	 treatment	 response	 after	 psychotherapy	 proposing	 a	 treatment	 biomarker	

independent	of	the	type	of	therapy.	In	addition,	the	presented	work	investigated	the	role	

of	miR-15a	in	the	human	stress	response,	a	microRNA	that	has	been	shown	to	be	crucially	

involved	in	stress	reactivity	in	mice.	Showing	differential	regulation	in	peripheral	blood	

after	 dexamethasone	 treatment	 in	 healthy	 subjects	 as	well	 as	 in	 adult	 patients	with	 a	

history	of	early	trauma,	miR-15a	represents	another	potential	epigenetic	biomarker	 in	

stress	related	disorders	such	as	PTSD.	 

The	 presented	 data	 strengthen	 the	 concept	 of	 precision	 medicine	 in	 stress	 related	

psychiatric	 disorders	 by	 revealing	 biological	 subgroups	 with	 differential	 response	 to	

CRF1	receptor	antagonist	treatment.	This	thesis	further	identifies	promising	epigenetic	

biomarker	 candidates	 and	 highlights	 their	 future	 potential	 to	 improve	 preventive	

strategies,	diagnosis	and	treatment	in	PTSD.		
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Zusammenfassung	

Die	 Posttraumatische	 Belastungsstörung	 (PTBS)	 stellt	 eine	 der	 wichtigsten	

psychiatrischen	 Erkrankungen	 dar.	 Dennoch	 sind	 die	 Behandlungsmöglichkeiten	

einschließlich	 pharmakologischer	 Interventionen	 weiterhin	 deutlich	 begrenzt.	 Als	

Regulator	der	HPA-Achse	und	zudem	an	der	Pathogenese	der	PTBS	beteiligt,	stellt	das	

Corticotropin-Releasing-Factor	(CRF)	-System	einen	vielversprechenden	Ansatzpunkt	in	

der	pharmakologischen	Therapie	der	Erkrankung	dar.	Die	Ergebnisse	großer	klinischer	

Studien	 zur	Behandlung	 anderer	 stressbedingter	Erkrankungen	wie	Major	Depression	

(MDD)	oder	generalisierter	Angststörung	(GAD)	mit	CRF-Rezeptor-Typ-1-Antagonisten	

(CRF1)	 waren	 bisher	 jedoch	 enttäuschend.	 Im	 Rahmen	 der	 pharmakologischen	

Therapieoptimierung	 der	 PTBS	 spielen	 deshalb	 therapeutische	 Konzepte	 wie	 die	

Präzisionsmedizin	 eine	 bedeutende	 Rolle.	 Dieser	 Ansatz	 beinhaltet	 grundsätzlich	 die	

Idee,	die	„richtige“	Behandlung	für	den	„richtigen“	Patienten	zu	identifizieren.	In	diesem	

Zusammenhang	 stellen	 klinisch	 anwendbare	 Biomarker	 ein	wichtiges	 Instrument	 dar.	

Diagnostische	und	prognostische	Marker	gestatten	eine	biologiebasierte	Diagnose	und	

ermöglichen	 so	 den	 Einsatz	 von	 vorbeugenden	 Therapien	 für	 Hochrisikopatienten.	

Behandlungsbezogene	Biomarker	sind	besonders	hilfreich	sowohl	bei	der	Vorhersage	des	

individuellen	Ansprechens	der	Behandlung	als	auch	beim	Monitoring	der	Wirksamkeit	

einer	 therapeutischen	 Intervention.	 Die	 vorliegende	 Arbeit	 zielt	 darauf	 ab,	 die	

Wirksamkeit	 eines	 CRF1-Rezeptorantagonisten	 in	 einer	 Kohorte	 von	 PTBS-

diagnostizierten	Frauen	zu	evaluieren	und	legt	dabei	einen	besonderen	Schwerpunkt	auf	

biologische	Untergruppen	mit	 unterschiedlichem	Ansprechen	 auf	 die	 Behandlung.	 Ein	

weiterer	Fokus	liegt	in	der	Identifikation	potenzieller	behandlungsbezogener	Biomarker,	

insbesondere	auf	epigenetischer	Ebene.	Die	Ergebnisse	dieser	randomisierten	klinischen	

Studie	 zeigten	 insgesamt	 keine	 Überlegenheit	 des	 applizierten	 CRF1-
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Rezeptorantagonisten	 gegenüber	 der	 Behandlung	mit	 Placebo.	 	 Allerdings	 konnte	 bei	

einer	 spezifischen	Untergruppe	von	Patienten,	 von	denen	 angenommen	wird,	 dass	 sie	

eine	 höhere	 Aktivität	 des	 CRF-Systems	 aufweisen,	 ein	 signifikant	 besseres	

Behandlungsergebnis	 beobachtet	 werden.	 Durch	 Untersuchung	 der	 DNA-

Methylierungslevel	von	PTBS-relevanten	Genen	im	peripheren	Blut	der	Patientinnen	vor	

und	 nach	 der	 Verabreichung	 des	 CRF1-Rezeptorantagonisten	 konnten	 potenzielle	

epigenetische	 Behandlungsmarker	 für	 die	 CRF1-Antagonistentherapie	 bei	 PTBS	

identifiziert	werden.	Die	zuvor	beschriebene	Subgruppe	mit	einem	erhöhten	Ansprechen	

auf	 die	 Behandlung	 zeigte	 signifikant	 unterschiedliche	 Veränderungen	 der	 CRHR1-

Methylierungslevel	im	Vergleich	zu	den	übrigen	Patienten,	was	darauf	hindeutet,	dass	die	

CRHR1-Methylierung	 einen	 möglichen	 Marker	 darstellt,	 um	 den	 Behandlungsverlauf	

nachzuverfolgen.	 Darüber	 hinaus	 zeigte	 sich	 die	 Interaktion	 zwischen	 NR3C1-

Methylierungslevel	 zu	 Behandlungsbeginn	 und	 Kindheitstrauma	 als	 signifikanter	

Prädiktor	 für	 das	 Behandlungsergebnis,	 und	 könnte	 somit	 als	 epigenetischer	

Stratifikationsmarker	 dienen,	 um	 Patienten	 vor	 einer	 therapeutischen	 Intervention	 in	

relevante	Untergruppen	zu	unterteilen.	Interessanterweise	konnte	die	Methylierung	von	

NR3C1	bereits	in	früheren	Studien	bei	PTBS-Patienten	als	Prädiktor	für	das	Ansprechen	

auf	 eine	psychotherapeutische	Behandlung	 identifiziert	werden	und	 stellt	 somit	 einen	

möglichen	 Behandlungsmarker	 dar,	 unabhängig	 von	 der	 angewandten	 Therapie.	 Die	

vorgestellte	Arbeit	 untersucht	 ferner	die	Rolle	 von	miR-15a	 im	Rahmen	der	humanen	

Stressantwort,	 einer	 microRNA,	 deren	 entscheidender	 Stellenwert	 bei	 der	

Stressreaktivität	 von	 Mäusen	 bereits	 gezeigt	 werden	 konnte.	 Sowohl	 nach	

Dexamethason-Behandlung	 von	 gesunden	 Probanden	 als	 auch	 bei	 erwachsenen	

Patienten	mit	 Kindheitstraumata	 in	 der	 Vorgeschichte	weist	miR-15a	 eine	 veränderte	
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Regulation	im	peripheren	Blut	auf	und	repräsentiert	damit	einen	weiteren	potentiellen	

epigenetischen	Biomarker	stressbedingter	Erkrankungen	wie	PTBS.	

Die	 hier	 präsentierten	 Daten	 stärken	 das	 Konzept	 der	 Präzisionsmedizin	 im	 Rahmen	

stressbedingter	 psychiatrischer	 Erkrankungen,	 indem	 biologische	 Untergruppen	 mit	

unterschiedlichem	 Ansprechen	 auf	 die	 Behandlung	 mit	 CRF1-Rezeptorantagonisten	

aufgedeckt	 werden.	 Darüber	 hinaus	 identifiziert	 die	 vorliegende	 Arbeit	

vielversprechende	 Kandidaten	 für	 epigenetische	 Biomarker	 und	 zeigt	 ihr	 zukünftiges	

Potenzial	 zur	 Verbesserung	 von	 Präventionsstrategien,	 Diagnose	 und	 Behandlung	 bei	

PTBS	auf.	
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Introduction	
	

PTSD	and	the	need	of	specific	pharmacological	treatment		

Post-traumatic	 stress	disorder	 represents	a	 common	and	debilitating	mental	disorder.	

This	psychiatric	condition	typically	occurs	after	experiencing	a	traumatic	life	event	and	is	

accompanied	 by	 characteristic	 symptoms	 such	 as	 repeated	 and	 unwanted	 re-

experiencing	 of	 the	 event,	 emotional	 numbness	 and	 avoidance	 as	 well	 as	 increased	

arousal.	 By	 definition,	 these	 symptoms	 last	 for	 a	 minimum	 of	 one	 month	 and	 create	

distress	or	functional	impairment	(DSM-5).		The	overall	lifetime	prevalence	is	reported	

between	 7-12%	 and	women	 are	 affected	 twice	 as	 often	 as	men	 (Breslau	 et	 al.,	 1998;	

Breslau	2001;	Kessler	et	al.,	1995).	Although	a	history	of	exposure	to	a	traumatic	event	is	

a	diagnostic	criteria	 for	PTSD,	 it	 is	not	sufficient	 itself	 for	an	 individual	 to	develop	 the	

disorder.	The	fact	that	around	40-90%	of	the	general	population	is	exposed	to	a	traumatic	

event	in	their	life,	but	only	a	small	number	of	individuals	eventually	develop	the	disorder,	

indicates	a	possible	genetic	predisposition	to	PTSD	(Galea	et	al.,	2005).	A	number	of	twin	

studies	have	provided	evidence	that	the	estimated	genetic	contribution	to	PTSD	risk	in	

both	men	 and	women	 ranges	 between	 30	 and	 40%.	 Nonetheless	 the	 investigation	 of	

genetic	main-effects	in	the	field	of	PTSD	has	shown	only	very	limited	results	(Afifi	et	al.,	

2010).	As	previously	mentioned,	experience	of	a	traumatic	event	represents	an	essential	

criterion	 for	 the	diagnosis	of	PTSD	and	 is	crucially	 involved	 in	 the	pathogenesis	of	 the	

disorder.	The	often	long-lasting	effects	caused	by	these	environmental	factors	are	most	

likely	 mediated	 by	 epigenetic	 changes	 and	 other	 molecular	 and	 cellular	 mechanisms.	

Therefore,	 research	 in	PTSD	has	 centered	on	 the	 complex	 interplay	between	genetics,	

environmental	factors	and	epigenetic	mechanisms	(Pape	and	Binder,	2016).		
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Due	to	this	unique	psychopathology,	 treatment	of	PTSD	remains	challenging.	Available	

therapeutic	approaches	are	psychotherapy	and	psychopharmacology	or	the	combination	

of	the	two.	With	only	two	medications,	the	selective	serotonin	reuptake	inhibitors	(SSRIs)	

Sertraline	 and	 Paroxetin,	 approved	 by	 the	 Food	 and	 Drug	 Administration	 (FDA),	

psychotherapeutic	 strategies,	 especially	 exposure-based	 interventions,	 currently	

represent	 the	most	 commonly	 used	 therapeutic	 approach	 (Powers	 et	 al.	 2010).	 Even	

though	recommendations	regarding	 treatment	 for	PTSD	are	 inconsistent,	most	clinical	

guidelines	indicate	pharmacological	interventions	as	second	line	treatment	(Hoskins	et	

al.,	2015;	Lee	et	al.,	2016).	Here,	SSRIs	and	SNRIs	(Serotonin–norepinephrine	reuptake	

inhibitors)	seem	to	have	the	broadest	effect	on	PTSD	symptoms.	With	remission	rates	of	

only	20-30%	there	is	however	still	much	room	for	improvement	(Krystall	et	al.,	2017).		

Interestingly	 none	 of	 the	 drugs	 used	 in	 the	 treatment	 of	 PTSD	 has	 been	 specifically	

developed	 for	 this	purpose.	 SSRIs	 for	example	have	been	used	due	 to	 the	overlapping	

symptoms	 and	 high	 comorbidity	 with	 other	 mood	 disorders	 like	 depression.	 Even	

medication	 like	 beta-blockers,	 originally	 designed	 to	 treat	 cardiologic	 disorders,	

represents	 a	 common	 off-label	 use	 in	 PTSD	 treatment.	 For	 this	 reason,	 current	

pharmacological	 interventions	 in	 PTSD	 are	 solely	 capable	 of	 specific	 symptom-based	

therapy	instead	of	directly	targeting	the	pathophysiology	underlying	the	disease.	Future	

research	 should	 therefore	 focus	 on	 more	 specific	 pharmacological	 treatment	 options	

developed	on	the	basis	of	the	pathophysiology	of	PTSD	(Yehuda	2015).	
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The	CRF-system	in	the	context	of	PTSD	

Corticotropin-releasing	factor	is	a	small	41	amino	acid	peptide,	discovered	by	Vale	and	

colleagues	 in	 1981,	 that	 is	 widely	 expressed	 throughout	 the	 central	 nervous	 system	

showing	 its	 highest	 concentration	 in	 the	paraventricular	nucleus	 of	 the	hypothalamus	

(Vale	et	al.,	1981).	CRF	binds	to	two	known	receptors,	CRF	receptor	type	1	(CRF1)	and	

CRF	receptor	type	2	(CRF2)	(Lewis	et	al.	2001),	but	its	affinity	to	CRF1	is	tenfold	higher	

(Perrin	and	Vale,	1999).	As	the	primary	mediator	of	the	hypothalamus–pituitary–adrenal	

(HPA)	axis,	CRF	and	its	type	1	receptor	(CRF1)	play	a	crucial	role	in	the	adaptation	of	the	

organism	to	stress	 (Claes,	2004).	HPA	axis	activation	 is	 initiated	by	 the	release	of	CRF	

from	the	nerve	terminals	of	the	paraventricular	nucleus	(PVN)	following	exposure	to	a	

stressor.	After	its	secretion	from	the	PVN	neurons,	terminating	in	the	median	eminence,	

CRF	binds	to	CRF1	receptors	in	pituitary	corticotrophs,	which	leads	to	the	synthesis	and	

release	of	adrenocorticotrophin	hormone	(ACTH)	from	the	anterior	lobe	of	the	pituitary	

gland.	ACTH	in	turn	triggers	the	subsequent	stimulation	of	glucocorticoid	synthesis	and	

secretion	from	the	adrenal	gland	into	the	systemic	circulation	(Herman	et	al.,	2016;	Smith	

2006).	 In	 humans,	 cortisol	 then	 acts	 on	 two	 nuclear	 hormone	 receptors,	 the	

mineralocorticoid	 and	 glucocorticoid	 receptor	 (GR)	 in	 the	 CNS	 as	 well	 as	 in	 multiple	

peripheral	 tissues,	 triggering	 metabolic,	 and	 neuromodulatory	 changes	 essential	 for	

stress	adaption	(Carvalho	et	al.,	2017)	(Figure	1).	
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Figure 1: Schematic diagram of the hypothalamic-pituitary-adrenal (HPA) axis.  

	

Since	 dysregulation	 of	 this	 axis	 is	 one	 of	 the	 most	 consistent	 findings	 in	 PTSD,	

corticotropin-releasing	 factor	 and	 its	 type	 1	 receptor	 have	 been	 closely	 linked	 to	 the	

pathophysiology	of	the	disorder	(Mehta	and	Binder,	2012).	This	has	been	investigated	by	

numerous	studies	in	animals	as	well	as	in	humans.	Intracerebroventricular	(ICV)	or	site-

specific	injection	of	CRF	followed	by	different	behavioral	paradigms	is	a	well-studied	and	

validated	 method	 in	 animal	 models	 to	 test	 for	 behavioral	 changes	 in	 a	 CRF	 hyper-

activated	system.	One	of	the	first	studies	in	this	field	examined	changes	in	behavior,	which	

has	 been	 shown	 to	 be	 related	 to	 the	 degree	 of	 responsiveness	 to	 novelty.	 CRF	

administered	rats	showed	an	increase	in	grooming	as	well	as	a	decrease	in	rearing	and	

food	intake,	which	represents	fear	related	behaviors	(Britton	et	al.,	1982).	Other	studies	

showed	 an	 increase	 in	 locomotor	 activity	 (Matsuzaki	 et	 al.	 1998;	 Sutton	 et	 al.,	 1982),	
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decreased	 active	 social	 interaction	 (Dunn	 and	 File	 1987),	 potentiation	 of	 freezing	

behavior	 (Sherman	 and	 Kelin	 1988)	 as	 wells	 as	 acoustic	 startle	 response	 in	 rats	

(Swerdlow	 et	 al.1986)	 after	 ICV-injection.	 Another	 interesting	 study	 by	 Brown	 and	

colleagues	demonstrated	the	impact	of	injected	CRF	on	the	sympathetic	nervous	system	

by	increase	of	blood	pressure	and	heart	rate	(Brown	et	al.,	1982).	Together	these	studies	

suggest	an	anxiogenic	action	for	CRF	including	features	particularly	relevant	to	PTSD.		

Instead	 of	 exogenous	 administration,	 later	 studies	 investigating	 genetically	 modified	

animals	 overexpressing	 CRF,	 further	 support	 the	 crucial	 role	 of	 CRF/CRF1	 activity	 in	

stress-induced	 psychiatric	 disorders.	 The	 observed	 findings	 were	 in	 line	 with	 earlier	

studies	 performing	 ICV-injection	 by	 showing	 induced	 anxiety-like	 behavior	 as	well	 as	

chronic	 stress-like	 autonomic	 and	 physiological	 alterations	 (Dirks	 et	 al.,	 2002)	 after	

persistent	 central	 CRF	 hypersecretion.	 For	 example,	 CRF	 transgenic	 animals	 spent	

significantly	less	time	in	the	open	arms	of	the	elevated	plus	maze	(Stenzel-Poore	et	al.,	

1994)	 and	 female	 mice	 showed	 impairment	 in	 social	 interaction	 being	 sexually	 less	

receptive	compared	to	control	mice	(Heinrichs	et	al	1997).	Using	viral	vector	technology,	

a	 recent	 study	 investigated	 the	 consequences	 of	 chronically	 increased	 CRF	 in	 the	

amygdala	of	primates.	Showing	similar	results	to	rodent	studies,	primates	overexpressing	

CRF	demonstrated	significantly	increased	anxious	temperament	compared	to	their	cage-

mate	controls	(Kalin	et	al.,	2016).		

Confirmatory	results	are	obtained	when	decreasing	levels	of	CRF.	Skutella	and	colleagues	

suppressed	 translation	 of	 CRF	 by	 intracerebroventricular	 infusion	 of	 antisense	

oligodeoxynucleotides.	As	hypothesized	by	the	authors,	lower	CRF	levels	in	mice	led	to	

reduced	anxiety-related	behavior	demonstrated	by	significantly	higher	amounts	of	time	

spent	in	the	open	arms	of	the	elevated	plus	maze	after	social	defeat	then	controls	(Skutella	

et	al.,	1994).		Being	an	important	mediator	of	the	CRF-induced	response	to	stress,	several	
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studies	 have	 investigated	 the	 corticotropin-releasing	 factor	 receptor	 1	 in	 the	 same	

context	 using	 CRF1-deficient	 mice.	 Overall	 these	 studies	 showed	 comparable	 results	

indicating	that	a	lack	of	CRF1	results	in	decreased	anxiety-like	behavior	(Contarino	et	al.,	

1999;	Smith	et	al.,	1998;	Timpl	et	al.,	1998).	The	above-mentioned	studies	clearly	show	

that	 a	 general	 hyperactivity	 of	 the	 CRF/CRF-1	 system	 in	 animals	 leads	 to	 increased	

anxiety	like	behavior	and	vice	versa.	However,	work	from	the	Deussing’s	lab	suggests	that	

specific	 brain	 regions	 and	 even	 neurotransmitter-specific	 neuronal	 circuits	may	 show	

opposite	effects	(Dedic	et	al.,	2018;	Refojo	et	al.,	2011)	(Discussed	in	detail	on	pp.	73-74).	

Even	though	there	are	considerably	less	studies	in	humans	specifically	examining	the	role	

of	CRF/CRF1	activity	 in	PTSD,	 the	observed	 results	point	 in	 the	 same	direction	as	 the	

described	animal	studies,	showing	a	strong	link	between	CRF/CRF-1	system	activity	and	

the	disorder.	An	important	finding	reported	by	several	authors	shows	specific	changes	in	

cerebrospinal	 fluid	 (CSF)	 concentrations	 of	 corticotropin	 releasing	 hormone	 in	 PTSD	

patients.	 Hypothesizing	 a	 hypersecretion	 of	 neuronal	 CRF	 in	 PTSD	 the	 authors	 found	

significantly	higher	basal	CSF	CRF	levels	 in	patients	with	chronic	combat-related	PTSD	

than	in	comparison	subjects,	further	linking	the	CRF	system	to	the	disorder	(Baker	et	al.,	

1999;	Bremner	 et	 al.,	 1997).	 This	 effect	 has	 been	 shown	 to	 be	 even	 stronger	 in	 PTSD	

patients	with	comorbid	psychosis,	which	is	hypothesized	to	be	a	more	severe	form	of	the	

disorder.	Patients	with	secondary	psychotic	symptoms	displayed	significantly	higher	CSF	

concentrations	of	CRF	than	healthy	controls	but	also	significantly	higher	CRF	levels	than	

PTSD	 patients	 without	 comorbid	 psychosis	 (Sautter	 et	 al.,	 2003).	 Examining	 whether	

Plasma	CRF	levels	might	serve	as	a	possible	predictor	of	hypothalamic	CRF	levels	de	Kloet	

and	colleagues	obtained	and	tested	plasma	CRF	from	war	veterans	diagnosed	for	PTSD,	

traumatized	 veterans	without	 PTSD	 and	 healthy	 controls.	 Interestingly	 PTSD	 patients	

showed	 higher	 CRF	 plasma	 concentration	 than	 controls	 but	 also	 higher	 than	 patients	
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without	 PTSD	 but	 a	 history	 of	 trauma	 experience.	 This	 suggests	 that	 increased	 CRF	

concentrations	 are	 specifically	 associated	with	 the	development	 of	 PTSD	but	 not	with	

trauma	exposure	alone	(de	Kloet	et	al.,	2007).	

	

	

CRHR1	polymorphisms	in	PTSD	and	other	stress	related	

psychiatric	disorders	

Genetic	 heritability	 represents	 an	 important	 contributor	 to	 the	 risk	 for	 PTSD	 and	 has	

therefore	long	been	subject	of	intense	research.	Identifying	the	genetic	underpinnings	of	

the	disorder	would	give	us	a	better	understanding	of	the	inter-individual	differences	in	

susceptibility	to	the	disease	and	might	help	subgrouping	patients	for	individual	treatment	

options.	

Due	 to	 the	 central	 role	 of	 the	 CRF	 system	 in	 stress	 related	 disorders	 such	 as	 PTSD,	

variation	 of	 genes	 involved	 in	 this	 system	 are	 of	 special	 interest.	 Studies	 examining	

genetic	variants	 in	the	CRF	receptor	1	gene	(CRHR1)	and	stress	related	disorders	have	

found	 that	 specific	CRHR1-polymorphisms	have	 impact	 on	 an	 individual’s	 response	 to	

environmental	 stressors,	 in	 this	 case	 trauma	exposure.	 In	 two	 independent,	 ethnically	

different	 populations	 Bradley	 and	 colleagues	 reported	 that	 several	 CRHR1	

polymorphisms	significantly	moderated	effects	of	early	trauma	on	depressive	symptoms	

in	adulthood,	showing	the	strongest	interaction	effect	for	rs110402	GG	genotype	by	child	

abuse	 on	MDD	 risk	 (Bradley	 et	 al.,	 2008).	 Further,	 a	 potentially	 protective	 effect	 of	 a	

haplotype	formed	of	three	single	nucleotide	polymorphisms	rs7209436,	rs110402	and	

rs242924	 was	 reported	 and	 replicated	 in	 a	 later	 study	 (Polanczyk	 et	 al.,	 2009).	 The	

authors	 therefore	 suggested	 that	 these	genetic	 variants	possibly	predict	both	 risk	and	

resilience	for	MDD	in	subjects	that	experienced	childhood	trauma	(Bradley	et	al.,	2008).	
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Although	 these	 reports	 clearly	 implicate	genetic	variants	of	CRHR1	 in	 traumatic-stress	

related	phenotypes,	only	a	few	studies	so	far	have	specifically	investigated	these	variants	

in	 the	 context	 of	 PTSD.	 For	 example,	 Amstadter	 and	 colleagues	 tested	 nine	 CRHR1	

polymorphisms	in	relation	to	PTSD	severity	in	a	small	prospective	study	of	children	who	

had	experienced	medical	trauma.	Several	of	the	variants	were	associated	with	both,	acute	

symptom	level	and	trajectory	of	symptoms	over	time,	with	SNP	rs12944712	being	most	

significant	 (Amstadter	et	al.,	2011).	The	 first	 study	 in	 this	 context,	working	with	adult	

patients,	evaluated	CRHR1	polymorphisms	in	association	with	PTSD	symptoms	in	victims	

of	the	2004	Florida	hurricanes.	Results	indicate	a	significant	relation	between	two	CRHR1	

variants	and	symptom	severity.	More	specifically,	showing	that	the	major	alleles	of	SNP	

rs12938031	and	rs4792887	increased	the	risk	for	post-hurricane	PTSD	symptoms	(White	

et	 al.	 2013).	 Another	 study	 designed	 to	 assess	 a	 cumulative	 risk	 score	 for	 PTSD	 from	

multiple	polymorphisms	located	in	different	genetic	loci,	found	that	CRHR1	SNP	rs110402	

was	 associated	 with	 PTSD	 symptom	 level.	 Studying	 outpatients	 with	 chronic,	

nonmalignant	pain,	a	condition	often	associated	with	PTSD,	the	authors	found	that	G	allele	

carriers	 of	 rs110402	 (CRHR1)	were	more	 common	among	PTSD	 cases	 than	non-PTSD	

cases	(Boscarino	et	al.,	2012).	

Specifically	 interesting	 in	 the	 context	 of	 the	 current	 work	 are	 reports	 of	 associations	

between	 genetic	 variants	 in	 the	 CRF	 receptor	 1	 gene	 (CRHR1)	 and	 neuroendocrine	

alterations	including	the	CRF	system	in	psychological	and	pharmacological	challenge	tests	

(Chichetti	et	al,	2011;	Heim	et	al,	2009;	Mahon	et	al,	2013;	Sumner	et	al,	2014;	Tyrka	et	al,	

2009).	Using	the	combined	dexamethasone	suppression/CRF	stimulation	test,	Heim	and	

colleagues	 as	 well	 as	 Tyrka	 and	 colleagues	 demonstrated	 a	 significant	 association	

between	G	allele	carriers	of	CRHR1	SNP	rs110402	that	also	experienced	childhood	trauma	
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and	an	elevated	endocrine	response	to	this	test	(Dunlop and Wong, 2018; Heim	et	al,	2009;	

Tyrka	et	al,	2009).	

These	 studies	 highlight	 the	 close	 link	 between	 the	 CRF	 system	 and	 stress	 related	

disorders	 such	 as	 PTSD.	Moreover,	 the	 data	 suggest	 that	 certain	 genetic	 variants	may	

moderate	an	individual’s	stress	response,	possibly	by	affecting	the	functional	properties	

of	 the	CRF	 system,	 and	 therefore	potentially	 serve	 as	 specific	 endophenotypes	 for	 e.g.	

personalized	 treatment	 selection.	 Directly	 antagonizing	 this	 system	 represents	 a	

promising	 pharmaco-therapeutic	 approach	 of	 which	 individuals	 with	 enhanced	 CRF	

system	activity	(likely	carriers	of	the	rs110402	G	allele	that	also	experienced	childhood	

trauma)	might	benefit	most.	

	

	

CRF1	antagonists	in	stress	related	disorders	

Over	the	last	decades	the	hypothesis	to	pharmacologically	target	the	CRF	system	in	order	

to	treat	stress	related	psychiatric	diseases	emerged	from	considerable	evidence	involving	

the	 CRF	 system	 in	 the	 pathogenesis	 of	 these	 disorders.	More	 specifically	 a	 number	 of	

points,	 discussed	 in	 detail	 above	 and	 summarized	 in	 the	 following,	 indicate	 increased	

CRF/CRF1	signaling,	suggesting	antagonism	of	the	CRF1	receptor	and	by	that	reducing	

endogenous	CRF1	receptor	neurotransmission,	as	a	promising	treatment	strategy.	First,	

a	hyper-activated	CRF	system	in	animals,	induced	by	either	exogenous	administration	or	

by	 CRF	 overexpression,	 leads	 to	 anxiety-related	 behavior.	 Secondly,	 suppressing	 the	

system	 utilizing	 e.g.	 antisense	 oligodeoxynucleotides	 or	 CRF1	 receptor	 deficient	 mice	

decreased	 stress-induced	anxiety-like	behavior	 compared	 to	 control	 animals.	Third,	 in	

humans,	 concentrations	of	CRF,	 the	 ligand	of	 the	CRF1	 receptor,	 are	 elevated	 in	PTSD	
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patients	(Baker	et	al.,	1999;	Bremner	et	al.,	1997;	Britton	et	al.,	1982;	Dunn	and	File	1987;	

Skutella	et	al.,	1994;	Smith	et	al.,	1998;	Stenzel-Poore	et	al.,	1994).	

Consequently,	these	findings	led	to	multiple	preclinical	studies	investigating	the	effects	of	

CRF1	 receptor	 antagonists	 in	 animal	 models	 on	 both	 CRF-	 and	 also	 stress-induced	

behavioral	alterations.	Overall,	CRF1	receptor	antagonists	have	been	shown	to	reverse	

stress-related	behaviors	provoked	by	intracerebroventricular	infusion	or	overexpression	

of	 CRF.	 For	 example,	 early	 work	 by	 Swerdlow	 and	 colleagues	 demonstrated	 that	 the	

potentiation	of	acoustic	startle	amplitude	in	rats	induced	by	exogenous	administration	of	

CRF	was	reversed	after	infusion	of	a	CRF1	receptor	antagonist	(Swerdlow	et	al.,	1989).	

Another	 study	 showing	 that	 transgenic	 mice	 with	 chronic	 overproduction	 of	 CRF	

throughout	their	life	span	spend	significantly	less	time	in	the	open	arms	of	an	elevated	

plus	maze	 than	controls,	 further	depicted	 that	 this	anxiogenic	effect	was	reversible	by	

intracerebroventricular	 infusion	 of	 a	 CRF1	 receptor	 antagonist	 (Stenzel-Poore	 et	 al.,	

1994).	In	addition,	CRF1	receptor	antagonists	hold	the	potential	to	significantly	reduce	

locomotor	activity	in	animals	produced	by	exogenous	administration	of	CRF	as	reported	

by	several	groups	(Menzaghi	et	al.,	1994;	Spina	et	al.,	2000).	

Considering	CRF1	receptor	antagonists	as	potential	treatment	options	of	stress	related	

disorders,	their	capability	to	reverse	behavioral	alterations	induced	by	a	certain	external	

stressor	might	be	even	more	relevant.	Here,	exploration-based	models	of	anxiety	–	like	

the	elevated	plus	maze	or	the	open	field	test	–	represent	commonly	used	test	paradigms.	

Several	 authors	 reported	 the	 antagonizing	 compounds	 to	 have	 a	 reversal	 effect	 on	

increased	 anxiety-related	 behavior	 evoked	 by	 exposure	 to	 different	 environmental	

stressors.	An	interesting	study	by	Heinrichs	and	colleagues	showed	that	after	exposure	to	

either	social,	swim	or	restraint	stress	animals	displayed	less	exploration	of	the	open	arms	

of	the	maze	and	that	these	behavioral	effects	were	blocked	after	CRF1	receptor	antagonist	
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administration.	The	authors	 further	demonstrated	that	 the	behavioral	reactivity	 to	 the	

different	kinds	of	stressors	as	well	as	the	efficacy	of	the	antagonist	to	reverse	these	effects	

were	 comparable,	 suggesting	 that	 the	 type	 or	 intensity	 of	 a	 stressor	 might	 not	 be	

particularly	relevant	 for	 the	outcome	of	antagonizing	 the	CRF	system	(Heinrichs	et	al.,	

1994).	 Similar	 anti-stress	 effects	 were	 observed	 in	 non-human	 primates.	 Using	 an	

intruder	paradigm,	the	authors	reported	that	administration	of	the	antagonist	not	only	

inhibited	behaviors	associated	with	anxiety	but	even	 increased	exploratory	and	sexual	

behaviors	 usually	 decreased	 during	 stress.	 Moreover,	 the	 administered	 compound	

significantly	 suppressed	 elevated	 CRF	 concentration	 in	 the	 cerebrospinal	 fluid	 of	 the	

monkeys	 (Habib	 et	 al.,	 2000).	Numerous	other	 findings	using	different	 animal	models	

further	demonstrate	the	highlighted	anxiolytic	effects.	CRF1	receptor	antagonists	reverse	

stress-induced	behaviors	like	decreased	social	interaction,	increased	freezing	behavior,	

potentiation	of	acoustic	startle,	aggression	and	sleep	impairments	(Farrokhi	et	al.,	2004;	

Griebel	 et	 al.,	 2002,	 Kobayashi	 et	 al.,	 2011;	 Philbert	 et	 al.,	 2015;	 Robison	 et	 al.,	 2004;	

Swerdlow	et	al.	1989).		

Interestingly	 the	 observed	 effects	 only	 occur	 under	 stressed	 but	 not	 non-stressed	

conditions,	 suggesting	 CRF	 1	 receptor	 antagonists	 to	 require	 a	 highly	 activated	 CRF	

system	to	perform	their	actions	(Keck	et	al.,	2001;	Zorilla	et	al.,	2010).	Keck	and	colleagues	

tested	 a	 CRF1	 receptor	 antagonist	 in	 a	 rat	 strain	 selectively	 bred	 for	 strong	 anxiety	

behavior	 measured	 on	 the	 elevated	 plus	 maze.	 A	 significant	 anxiolytic	 effect	 of	 the	

compound	was	only	observed	in	animals	showing	high	innate	anxiety	but	not	in	controls	

(Keck	et	al.,	2001).		

Taken	 together,	 these	 preclinical	 data	 provide	 convincing	 evidence	 to	 consider	 CRF1	

receptor	 antagonists	 as	 potential	 new	 treatment	 options	 for	 stress	 related	psychiatric	

disorders	 in	 humans.	 The	 first	 clinical	 trials	 evaluated	 the	 efficacy	 of	 CRF1	 receptor	
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antagonists	 in	 patients	 with	 major	 depressive	 disorder	 (MDD).	 In	 2000,	 Zobel	 and	

colleagues	administered	a	CRF1	receptor	antagonist	to	20	MDD	patients	for	30	days.	The	

subjects	were	split	into	two	groups	of	which	one	received	a	dose-escalation	from	5	to	40	

mg	and	the	other	40	to	80	mg	over	treatment	time.	As	a	first	finding	the	authors	reported	

that	the	antagonist	was	safe	and	well	tolerated	by	the	patients.	They	further	observed	that	

the	compound	significantly	reduced	symptom	severity,	rated	by	a	clinician	and	the	patient	

himself,	 and	 also	 relapse	 of	 these	 symptoms	 after	 drug	 discontinuation	 (Zobel	 et	 al.,	

2000).	Moreover,	 in	 a	 subsequent	 study	 investigating	 a	 subgroup	 (n=10)	 of	 the	 same	

sample,	 the	 CRF1	 receptor	 antagonist	 showed	 to	 have	 beneficial	 effects	 on	 sleep	

architecture	in	depressed	patients	measured	by	EEG	(Held	et	al.,	2004).	

Although	this	study	was	originally	designed	to	evaluate	safety	and	tolerability	instead	of	

drug	efficacy,	the	sample	size	was	small	and	the	clinical	development	of	this	specific	drug	

was	 discontinued	 due	 to	 hepatotoxicity,	 it	 yielded	 initial	 promising	 results	 of	 CRF1	

receptor	 antagonists	 as	 potential	 therapeutic	 agents	 (Ising	 and	 Holsboer,	 2007).	

Therefore,	multiple	other,	larger	clinical	trials	in	MDD	patients	followed	using	different	

newly	developed	compounds.	However,	all	of	these	trials	failed	to	demonstrate	efficacy	in	

the	 treatment	 of	 MDD	 or	 have	 been	 discontinued	 due	 to	 intolerable	 side	 effects.	

(Binnemann	et	al.	2008;	Koob	and	Zorrilla,	2012)	The	therapeutic	value	of	CRF1	receptor	

antagonism	was	further	tested	in	generalized	anxiety	disorder.	A	cohort	of	260	patients	

with	GAD	was	treated	with	eather	a	CRF1	receptor	antagonist,	placebo	or	escitalopram.	

Treatment	outcome	(pre	to	post	treatment	score	on	the	Hamilton	Anxiety	Scale)	showed	

no	 significant	 differences	 between	 the	 CFR1	 receptor	 group	 and	 placebo.	 Moreover,	

subjects	treated	with	escitaplopram	showed	better	outcome	than	patients	treated	with	

the	antagonist.	
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Given	 the	 fact	 that	CRF1	 receptor	 antagonists	 failed	 to	 treat	 stress	 related	psychiatric	

disorders	like	MDD	or	GAD	in	clinical	studies	on	the	one	hand	and	on	the	other	hand	are	

particularly	effective	in	animal	models	immediately	after	exposure	to	a	strong	external	

stressor,	experts	hypothesize,	that	these	agents	may	show	their	greatest	therapeutic	value	

in	 disorders	 which	 specifically	 include	 traumatic	 stressors	 in	 their	 etiology,	 e.g.	

posttraumatic	stress	disorder	(Kehne	and	Cain	2010).	

	

	

Biomarkers	in	PTSD	treatment	

A	major	challenge	in	treating	psychiatric	diseases	like	post-traumatic	stress	disorder	is	to	

find	the	right	therapy	for	each	individual	patient.	In	order	to	enable	precision	medicine	

biomarkers	that	predict	or	monitor	treatment	outcome	are	of	great	value.	A	biomarker	in	

general	 refers	 to	 “a	 characteristic	 that	 is	 objectively	 measured	 and	 evaluated	 as	 an	

indicator	 of	 normal	 biological	 processes,	 pathogenic	 processes,	 or	 pharmacological	

responses	to	a	therapeutic	intervention”	(Biomarkers	Definitions	Working	Group,	2001).	

Treatment	response	biomarkers	in	particular	can	be	used	to	either	track	an	individual’s	

response	to	a	therapeutic	intervention	or	serve	as	predictive	markers	to	stratify	patients	

into	 different	 subgroups	 of	 potential	 responders	 and	 non-responders	 to	 a	 targeted	

therapy.	Ideally,	these	objective	parameters	derived	from	either	different	body	fluids	like	

blood,	saliva	or	cerebrospinal	fluids	or	from	imaging	methods	will	help	to	develop	more	

specific	phenotype	characterization	and	further	customize	individual	therapies.		

Due	to	the	limited	success	of	current	pharmacological	treatment	options	this	might	be	a	

way	 to	 improve	 PTSD	 treatment	 outcome.	 However,	 the	 field	 of	 biomarkers	 in	 PTSD,	

especially	 markers	 of	 therapy	 response	 is	 still	 in	 its	 infancy.	 Potential	 biomarkers	

predicting	 or	 monitoring	 treatment	 outcome	 include	 brain	 activity	 and	 morphology	
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(Bryant	et	al.,	2008;	Dickie	et	al.,	2013;	Felmingham	et	al.,	2007;	Levy-Gigi	et	al.,	2013),	

neurochemical	 (Rapcencu	 et	 al.,	 2017;	 Rauch	 et	 al.,	 2015;	 Yehuda	 et	 al.,	 2014),	

neurophysiological	(Griffin	et	al.,	2012;	Pitman	et	al.,	2002;	Raskind	et	al.,	2016;	Wangelin	

and	Tuerk,	2015)	as	well	as	genetic	and	epigenetic	markers	(discussed	in	detail	below).		

	

	

Genetic	biomarkers		

Research	 on	 genetic	 biomarkers	 to	 predict	 and	monitor	 treatment	 outcome	 in	 stress	

related	psychiatric	diseases	has	mainly	focused	on	major	depressive	disorder	(reviewed	

in	Kato	and	Serretti,	2010).	So	far	only	a	few	studies	investigated	the	influence	of	genetic	

variants	 on	 treatment	 response	 in	 PTSD.	 Here,	 most	 authors	 focused	 on	

psychotherapeutical	interventions.		

Due	to	its	strong	association	with	PTSD	(for	review	see	Koenen	et	al.,	2009),	Bryant	and	

colleagues	examined	whether	the	5-HTTLPR	polymorphism	of	the	serotonin	transporter	

(SLC6A4)	 gene	predicted	 treatment	 outcome	 following	 eight	weeks	 of	 exposure-based	

cognitive	behavior	therapy	and	after	six	months	follow	up.	At	six	month	follow	up	but	not	

after	eight	weeks	carriers	of	the	5-HTTLPR	short	(S)	allele,	which	is	associated	with	lower	

transcriptional	activity	compared	to	the	long	(L)	allele,	showed	stronger	PTSD	severity,	

suggesting	5-HTTLPR-genotype	as	a	predictor	of	long	term	treatment	response	(Bryant	et	

al.,	2010).		

Among	other	glucocorticoid-related	biomarkers	Yehuda	and	colleagues	assessed	a	BCLI	

polymorphism	of	the	glucocorticoid	receptor	gene,	that	has	previously	been	associated	

with	 HPA-axis	 sensitivity	 in	 PTSD	 (Bachmann	 et	 al.,	 2005),	 before	 and	 after	

psychotherapy.	In	a	sample	of	37	combat	veterans	with	a	diagnosis	of	PTSD,	subjects	were	

either	 treated	 with	 prolonged	 exposure	 therapy	 or	 received	 minimal	 attention	
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intervention	over	 twelve	consecutive	weeks.	Responder	status	was	determined	by	 the	

absence	of	 a	PTSD	diagnosis	using	 the	Clinician	Administered	PTSD	Scale	 (CAPS).	The	

authors	 reported	 that	 G	 allele	 carrier	 status	 of	 the	 BCLI	 polymorphism	 significantly	

predicted	recovery	from	PTSD	symptoms	(Yehuda	et	al.,	2014).		

Another	study	in	this	line	of	research	by	Felmingham	and	colleagues	examined	whether	a	

genetic	variant	in	the	brain-derived	neurotrophic	factor	(BDNF)	-	gene	would	serve	as	a	

predictor	for	treatment	response	after	eight	weeks	of	exposure-based	cognitive	behavior	

therapy.	 The	 authors	 assessed	 genotype	 status	 of	 55	 patients	 diagnosed	 with	 PTSD	

according	 to	 a	 polymorphism	 in	 the	 BDNF	 gene,	 which	 results	 in	 an	 amino-acid	

substitution	 (valine-to-methionine)	 at	 codon	66.	This	 functional	 variant	 (Met-allele)	 is	

associated	with	reduced	activity-dependent	secretion	of	BDNF,	decrease	in	hippocampal	

volume	and	human	cognitive	dysfunction	(Bath	and	Lee,	2006;	Egan	et	al.,	2003).	Findings	

showed	 that	 PTSD	 patients	 carrying	 the	 Met-allele	 (Met/Met	 and	 Val/Met)	 showed	

significantly	poorer	 response	 to	psychotherapy	 then	Val	 allele	 carriers,	 indicating	 this	

BDNF	variant	as	a	potential	predictor	of	treatment	outcome	(Felmingham	et	al.,	2013).		

Given	 that	SSRIs	are	currently	 considered	 the	Gold	Standard	 in	pharmacological	PTSD	

therapy	 and	 represent	 the	 only	 medication	 approved	 by	 the	 FDA,	 most	 studies	

investigating	 predictive	 biomarkers	 for	 pharmacotherapy	 focus	 on	 SSRI	 treatment.	

Findings	include	e.g.	BDNF	serum	levels	and	changes	in	functional	brain	activity	(Berger	

et	 al.,	 2010;	 Zhu	 et	 al.,	 2015),	 however	 studies	 investigating	 genetic	 biomarkers	 of	

pharmacological	response	are	rare.		

Mushtaq	 and	 colleagues	 assessed	 the	 serotonin	 transporter	 (5HTTLPR)	 genotype	 as	 a	

possible	predictor	of	sertraline	treatment	response	in	PTSD.	Patients	were	genotyped	and	

analyzed	according	to	their	carrier	status	of	the	long	(L)	or	the	short	(S)	allele	(SS	vs	SL	

vs	LL)	of	5HTTLPR.	All	subjects	were	treated	with	a	dose	of	100	mg/day	Sertralin	over	
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twelve	 consecutive	 weeks	 and	 responder	 status	 was	 determined	 by	 symptom	

improvement	of	over	30%	assessed	by	the	CAPS.	Patients	homozygous	for	the	long	allele	

(LL)	 showed	 significantly	 better	 treatment	 response	 compared	 to	 the	 other	 5HTTLPR	

genotypes.	Additionally,	the	short	allele	was	associated	with	a	higher	drop	out	rate	due	to	

adverse	side	effects	(Mushtaq	et	al.,	2012).	

In	 line	 with	 the	 work	 of	 Mushtaq	 and	 colleagues	 several	 other	 studies	 investigating	

biomarkers	of	treatment	response	in	different	psychiatric	disorders	suggest	that	genetic	

variants	in	genes	of	the	molecular	target	of	the	given	drug	might	be	particularly	relevant	

as	treatment	outcome	predictors.	For	example,	in	MDD	patients	a	functional	5-HTTLPR	

polymorphism	has	been	shown	to	predict	treatment	outcome	specifically	following	SSRI	

treatment	but	not	after	treatment	with	tricyclic	antidepressants	(Huezo-Diaz	et	al.,	2009;	

Kenna	et	al.,	2012;	Lester	et	al.,	2013;	Pollock	et	al.,	2000).		

With	an	estimated	contribution	 to	disease	risk	of	about	30-40%	genetics	represent	an	

important	factor	in	accounting	for	the	risk	of	developing	PTSD.	However,	exposure	to	a	

traumatic	or	stressful	event	is	by	definition	mandatory	for	the	diagnosis	of	the	disorder	

(Pape	 and	 Binder,	 2016).	 Trauma	 exposure	 further	 plays	 a	 crucial	 role	 in	 the	

susceptibility	 to	 PTSD.	 Here	 early	 life	 trauma	 seems	 to	 be	 particularly	 relevant	 and	

represents	an	 important	disease	risk	 factor	as	 it	has	been	shown	 in	numerous	studies	

(Brewin	et	al.,	2000;	Cougle	et	al.,	2010;	Lang	et	al.,	2008).	Several	authors	suggest	that	

not	only	the	genetic	background	determines	an	individuals	risk	to	develop	PTSD	but	that	

environmental	 factors	 like	 early	 life	 stress	 might	 recalibrate	 the	 individual	 stress	

response	system	to	subsequent	traumatic	events	and	by	that	influence	susceptibility	to	

the	disease	later	in	life	(Mehta	and	Binder,	2012;	Yehuda	et	al.,	2010).	Therefore,	research	

in	 PTSD	has	 focused	 on	 gene	 by	 environment	 (G	 x	 E)	 interaction	 studies,	 particularly	

investigating	the	joint	contribution	of	the	genetic	predisposition	and	the	environmental	
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trigger.	 Several	 of	 these	 studies	 suggest	 that	 different	 interactions	 between	 multiple	

genetic	and	environmental	 factors	will	affect	different	biological	pathways	resulting	 in	

distinct	 pathophysiological	 subtypes	 of	 PTSD	 (reviewed	 by	Mehta	 and	 Binder,	 2012).	

Since	 individuals	 with	 specific	 PTSD	 subtypes	 will	 most	 likely	 respond	 differently	 to	

certain	treatments,	accounting	for	G	x	E	interactions	in	treatment	response	studies	might	

be	particularly	relevant.		

	

	

Epigenetic	biomarkers		

As	described	above,	an	interplay	of	genetic	factors	and	traumatic	events	is	thought	to	form	

the	complex	phenotype	of	PTSD.	However,	the	exact	molecular	mechanisms	that	mediate	

the	long-lasting	effects	of	these	interactions	have	not	been	entirely	elucidated.	Recently,	

increasing	evidence	suggests	epigenetic	changes	as	prime	candidates	for	stress-induced	

long-term	 effects	 on	 DNA	 function	 like	 alteration	 of	 gene	 transcription	 and	 protein	

translation.	These	epigenetic	processes	such	as	DNA	methylation,	histone	modification	or	

non-coding	RNAs	are	not	limited	to	early	developmental	stages	but	can	also	occur	in	later	

life.	Furthermore,	they	can	be	long	lasting	but	also	dynamic,	as	indicated	by	longitudinal	

studies	(Klengel	et	al.,	2014;	Rusiecki	et	al.,	2013;	Wiechmann	et	al.,	2019).	Due	to	these	

unique	characteristics	epigenetic	mechanisms	represent	a	significant	contributor	to	the	

pathophysiology	of	PTSD	as	it	has	been	shown	in	numerous	studies	to	date.	Therefore,	

epigenetic	 changes	 observed	 in	 peripheral	 tissues	 such	 as	 blood	 and	 saliva	 of	 PTSD	

patients	may	serve	as	biomarkers	of	 the	disorder.	These	peripheral	modifications	may	

either	 reflect	 PTSD-specific	 epigenetic	 changes	 in	 the	 brain	 or	 simply	 be	 disease-

associated	changes	independent	of	the	disorder’s	pathophysiology	(Zannas	et	al.	2015).	

Therefore,	these	modifications	may	also	serve	as	diagnostic	and	prognostic	biomarkers	
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as	well	 as	predicting	and	monitoring	 treatment	outcome.	Several	 studies	highlight	 the	

possible	use	of	epigenetic	marks	in	peripheral	tissues	as	potential	biomarkers	in	PTSD.	

However,	most	 of	 these	 studies	 focus	 on	 diagnostic	 or	 prognostic	markers	 of	 disease	

status	instead	of	biomarkers	of	treatment	response,	predicting	and	monitoring	therapy	

outcome.	In	this	context	epigenetic	modification	of	genes	involved	in	the	regulation	of	the	

HPA	axis	has	been	extensively	investigated	and	most	studies	focus	on	DNA	methylation,	

which	represents	the	best	characterized	epigenetic	mechanism,	(Klengel	et	al.,	2013)	

	

DNA-methylation	studies	

We	have	previously	reviewed	these	studies	(Addendum:	Pape	and	Binder,	2016,	pp.514-

515).	For	example,	a	number	of	authors	have	observed	a	strong	association	between	PTSD	

symptoms	and	methylation	 levels	of	 the	glucocorticoid-receptor	encoding	gene	NR3C1	

(Labonte	et	al.,	2014;	Vukojevic	et	al.,	2014;	Yehuda	et	al.	2015).	Work	by	Labonte	and	

colleagues	 showed	 significantly	 lower	 NR3C1	 promoter	 methylation	 in	 peripheral	 T	

lymphocytes	 of	 30	 subjects	 with	 a	 diagnosis	 of	 lifetime	 PTSD	 compared	 to	 healthy	

controls	(Labonte	et	al.,	2014).	Investigating	a	cohort	of	122	combat	veterans	Yehuda	and	

colleagues	 reported	 lower	 blood	 NR3C1	 promoter	 methylation	 in	 individuals	 with	 a	

diagnosis	of	PTSD	compared	to	those	without.	Furthermore,	promoter	methylation	levels	

correlated	inversely	with	PTSD	symptom	severity	(Yehuda	et	al.	2015).	Also	in	line	with	

the	 previous	 results	 another	 study	 demonstrated	 that	 increased	 NR3C1	 promoter	

methylation	 in	 peripheral	 blood	 was	 associated	 with	 less	 intrusive	 memory	 of	 the	

traumatic	event	and	reduced	PTSD	risk	in	male	survivors	of	the	Rwandan	genocide,	and	

further	showed	that	it	may	be	related	to	differences	in	recognition	memory-related	brain	

activity	(Vukojevic	et	al.,	2014).	
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SKA2,	 the	 spindle	 and	 kinetochore	 associated	 protein	 2,	 which	 has	 previously	 been	

implicated	 in	 the	 pathophysiology	 of	 PTSD	 at	 the	 epigenetic	 level	 represents	 another	

promising	biomarker	candidate.	By	activating	the	glucocorticoid	receptor,	SKA2	seems	to	

be	involved	in	moderating	the	negative	feedback	mechanism	of	the	HPA	axis	(Rice	et	al.,	

2008).	Methylation	levels	of	the	SKA2	gene	have	been	shown	to	predict	suicidal	behavior.	

More	 specifically	 Guintivano	 and	 colleagues	 examined	 SKA2	 methylation	 in	 human	

postmortem	brain	tissue.	The	authors	observed	significantly	elevated	methylation	levels	

of	 a	 CpG	 (cg13989295)	 located	 in	 the	 SKA2	 gene	 in	 suicide	 completers	 compared	 to	

controls.	 Interestingly,	 this	 increase	 in	 methylation	 was	 associated	 with	 significantly	

decreased	SKA2	expression	levels	(Guintivano	et	al.	2014).	Due	to	increased	suicide	rates	

among	PTSD	patients,	SKA2	methylation	levels	were	also	investigated	in	the	context	of	

PTSD.	SKA2	methylation	at	the	previously	described	CpG	(cg13989295)	and	early	trauma	

scores	were	identified	as	a	significant	predictor	of	PTSD	status	(Kaminsky	et	al.,	2015).	

Two	 additional	 studies	 specifically	 examined	 associations	 between	 PTSD	 and	 SKA2	

methylation	at	cg13989295	(Boks	et	al.,	2016;	Sadeh	et	al.,	2016).	Boks	and	colleagues	

were	able	to	confirm	the	previous	findings	by	Kaminsky	and	further	strengthend	the	role	

of	SKA2	as	a	potential	biomarker	in	PTSD.	Analizing	DNA	methylation	levels	in	93	Dutch	

war	veterans,	the	authors	observed	a	significant	interaction	of	childhood	trauma	and	pre	

deployment	 SKA2	 methylation	 predicting	 the	 development	 of	 PTSD	 after	 deployment	

(Boks	et	al.,	2016).	A	study	by	Sadeh	and	colleagues	investigated	a	military	cohort	of	200	

trauma-exposed	veterans.	Results	showed	a	positive	correlation	between	PTSD	symptom	

severity	and	SKA2	(cg13989295)	DNA	methylation	levels	(Sadeh	et	al.,	2016).		

In	a	cohort	of	heavily	traumatized	subjects	with	or	without	a	diagnosis	of	PTSD	Ressler	

and	colleagues	have	identified	another	interesting	epigenetic	biomarker	candidate.	DNA	

methylation	 levels	 of	 ADCYAP1R1,	 the	 gene	 encoding	 the	 pituitary	 adenylate	 cyclase-
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activating	polypeptide	type	I	receptor	(PAC1),	showed	a	positive	correlation	with	PTSD	

symptom	severity	(Ressler	et	al.,	2011).		

Studying	DNA	methylation	of	different	subsets	of	PTSD-relevant	genes	or	on	a	genome	

wide	 level	 and	 by	 that	 possibly	 identifying	 PTSD-specific	 methylation	 profiles	 across	

multiple	 genomic	 loci,	 represents	 another	 promising	 approach	 in	 the	 field	 of	 PTSD	

biomarker	 research	 and	 to	 date	 numerous	 such	 studies	 have	 been	 completed	

(Hammamieh	et	al.,	2017;	Kuan	et	al.,	2017;	Mehta	et	al.,	2013;	Rusiecki	et	al.,	2013;	Smith	

et	al.,	2011;	Uddin	et	al.,	2010,	2011).	Taken	together,	these	results	suggest	distinct	PTSD	

and	trauma	associated	genome	wide	differences	in	DNA	methylation	levels	with	possible	

system	wide	effects	on	the	organism	(Pape	and	Binder,	2016).	

As	highlighted	above,	the	vast	majority	of	studies	investigating	epigenetic	biomarkers	in	

PTSD	concentrate	on	diagnostic	or	prognostic	markers	of	disease	 status.	 So	 far	only	a	

single	 study	 has	 focused	 on	 epigenetic	 biomarkers	 of	 treatment	 response	 in	 PTSD	

(Yehuda	et	al.,	2013).	In	a	small	cohort	of	PTSD	diagnosed	combat	veterans	treated	with	

prolonged	exposure	psychotherapy	over	twelve	consecutive	weeks	the	authors	observed	

that	pre-treatment	NR3C1	methylation	levels	significantly	predicted	treatment	outcome.	

Further,	 results	 showed	 that	 a	 decrease	 in	FKBP5	 methylation	 associated	with	 better	

treatment	outcome	(Yehuda	et	al.,	2013).		

Yehudas	 work	 represents	 the	 first	 study	 examining	 epigenetic	 treatment	 outcome	

markers	 in	 PTSD	 following	 psychotherapy.	 The	 fact	 that	 epigenetic	 biomarkers	 of	

response	to	pharmacological	treatment	have	not	been	studied	in	PTSD	makes	this	present	

study	particularly	relevant.	
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MicroRNA	studies	

In	 addition	 to	 DNA	 methylation,	 microRNAs	 represent	 another	 promising	 epigenetic	

biomarker	candidate	 in	stress-related	psychiatric	disorders.	However,	 in	PTSD	specific	

biomarker	research	involving	microRNAs	is	even	less	established	than	DNA	methylation.	

In	this	context	most	studies	were	conducted	in	animals	and	mainly	focus	on	the	impact	of	

different	stressful	stimuli	on	microRNA	expression	levels.	Several	studies	in	rodents	have	

proven	a	potential	role	for	microRNAs	as	biomarkers	for	stress	(PTSD)	related	symptoms.		

For	example,	Balakathiresan	and	colleagues	investigated	microRNA	expression	levels	in	

serum	 and	 amygdala	 of	 rats	 stressed	 in	 a	 daily	 two	 hours	 session	 of	 immobilization	

accompanied	 by	 tail	 shocks	 over	 three	 days.	 Results	 showed	 82	 (78	 upregulated)	

differentially	expressed	microRNAs	in	serum	and	60	(all	upregulated)	in	the	amygdala	14	

days	after	stress	exposure.	A	comparison	between	serum	and	amygdala	identified	a	panel	

of	 9	 commonly	 upregugalted	 microRNAs	 which	 might	 be	 particularly	 relevant	 as	

biomarkers	 for	 fear	response	(Balakathiresan	et	al.,	2014).	Another	study	showed	that	

exposure	 to	 acute	 stress	 results	 in	 increase	 of	miR-34c	 in	 the	 amygdala	 of	mice.	 The	

authors	 further	 reported	 that	 virus-mediated	 overexpression	 of	 miR-34c	 significantly	

reduces	 anxiety-like	 behavior	 induced	 by	 acute	 stress	 (Haramati	 et	 al.,	 2011).	 Also	 in	

mice,	Volk	and	colleagues	demonstrated	an	upregulation	of	miR-19b	in	the	amygdala	after	

chronic	 social	 defeat.	 Further	 findings	 revealed	 miR-19b	 as	 a	 possible	 modulator	 of	

behavioral	 responses	 to	 stress.	 Bilateral	 injection	 of	 the	microRNA	 into	 the	 amygdala	

resulted	 in	 lower	 freezing	 time	 in	 the	 cue	 fear	 conditioning	 test,	 whereas	 miR-19b	

knockdown	led	to	opposite	behavioral	effects	(Volk	et	al.,	2014).	 	Several	other	rodent	

studies	also	show	a	shift	in	microRNA	levels	in	response	to	different	external	stressors	

(Cho	et	al.,	2014;	Issler	et	al.,	2014;	Mannironi	et	al.,	2013;	Snijders	et	al.,	2017).	
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As	mentioned	 above,	most	 studies	 investigating	 the	 involvement	 of	microRNAs	 in	 the	

underlying	 molecular	 mechanisms	 of	 PTSD	 and	 their	 potential	 role	 as	 epigenetic	

biomarkers	have	been	completed	in	animals.	In	humans	this	line	of	research	is	still	in	its	

infancy	with	a	very	limited	number	of	studies.		

In	 an	 early	 study,	 for	 example,	 Zhou	 and	 colleagues	 examined	 the	 involvement	 of	

microRNAs	 in	 PTSD	 associated	 immunological	 dysfunction.	 Findings	 included	 a	

significant	downregulation	of	miR-181c	and	miR-125a	in	peripheral	blood	mononuclear	

cells	(PBMC)	of	PTSD	patients	compared	to	controls.	Interestingly	miR-125a	specifically	

targets	IFN-γ	mRNA	and	by	that	decreases	IFN-γ	production	(Zhou	et	al.,	2014).	Bam	and	

colleagues	further	underlined	the	role	of	microRNAs	as	a	potential	regulator	of	elevated	

pro-inflammatory	cytokine	levels	in	PBMCs	of	PTSD	patients.	Using	the	same	cohort,	the	

authors	observed	a	down	regulation	of	miR-193a	in	PTSD	patients	compared	to	controls	

as	well	as	increased	levels	of	one	of	its	targets,	IL-12.	Transfection	of	THP-1	cell	with	pre-

mir-193a	resulted	in	a	downregulation	of	the	transcript	level	of	IL-12	(Bam	et	al.,	2016).		

Differential	levels	of	DICER1,	a	crucial	enzyme	in	the	biogenesis	of	microRNAs,	have	also	

been	 linked	 to	 the	 pathogenesis	 of	 PTSD.	 Blood	 DICER1	 expression	 was	 significantly	

decreased	 in	 PTSD	 patients	 compared	 to	 controls	 in	 a	 cohort	 of	 184	 mainly	 African	

American	 subjects.	 This	 finding	 was	 replicated	 in	 two	 independent	 cohorts	 and	

interestingly	 correlated	with	a	downregulation	of	overall	microRNA	 levels	 in	 cases	vs.	

controls	(Wingo	et	al.,	2015).	A	recent	study	by	Martin	and	colleagues	further	associated	

differentially	expressed	microRNAs	with	PTSD.	In	a	cohort	of	24	combat	veterans	with	or	

without	 a	 diagnosis	 of	 PTSD	 the	 authors	 reported	 eight	 differentially	 expressed	

microRNAs,	of	which	4	were	upregulated	and	4	downregulated.	 Interestingly,	pathway	

analyses	revealed	that	these	specific	microRNAs	relate	to	Wnt	signaling	as	well	as	axonal	

guiding	(Martin	et	al.,	2017;	Snijders	et	al.,	2017).	
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Taken	 together,	 these	 studies	 emphasize	 the	 role	 of	 microRNAs	 in	 the	 underlying	

molecular	 mechanisms	 of	 PTSD.	 Furthermore,	 showing	 differential	 peripheral	 blood	

expression	 profiles	 between	 patients	 and	 controls,	 microRNAs	 represent	 a	 promising	

Biomarker	candidate	in	the	diagnosis	of	PTSD.	
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Aims	of	the	thesis	

The	 first	 goal	 of	 this	 thesis	 was	 to	 evaluate	 whether	 the	 efficacy	 of	 a	 CRF1	 receptor	

antagonist	 in	 post-traumatic	 stress	 disorder	 was	 depedent	 on	 distinct	 biological	

subgroups	of	patients.	For	this,	a	cohort	of	women	between	18	and	65	years	of	age	with	a	

diagnosis	of	current	PTSD	of	at	least	three	months	was	treated	with	the	CRF1	receptor	

antagonist	 or	 placebo	 and	 CRHR1	 genotypes	 as	 well	 as	 different	 psychological	 and	

environmental	 measures	 were	 assessed.	 Then	 differences	 in	 treatment	 response,	

specifically	 in	 subsets	 of	 patients	with	probable	differential	 CRF	 system	activity,	were	

investigated.		

The	second	aim	was	 to	examine	whether	epigenetic	modifications	 in	CRHR1	would	be	

associated	with	PTSD	symptom	change	after	CRF1	receptor	antagonist	treatment	in	the	

same	 cohort	 (with	 specific	 focus	 on	 a	 previously	 identified	 biological	 subgroup)	 and	

further,	 whether	 these	 alterations	 may	 serve	 as	 potential	 epigenetic	 biomarkers	 for	

treatment	 response.	 To	 test	 this,	 pre-	 and	 post-treatment	 peripheral	 blood	 DNA-

methylation	was	measured	in	our	cohort	of	PTSD	diagnosed	women.	

In	 addition,	 the	 presented	work	 aimed	 to	 unravel	 whether	methylation	 levels	 of	 two	

specific	 PTSD-relevant	 genes,	 that	 had	 previously	 been	 associated	with	 and	 shown	 to	

predict	treatment	outcome	following	psychotherapy,	may	also	show	potential	as	blood-

biomarkers	following	pharmacological	treatment.		

Finally,	this	thesis	followed	up	on	animal	findings	showing	an	important	role	for	miR-15	

in	 stress	 reactivity,	 analysing	 human	 peripheral	 blood	 samples	 in	 order	 to	 evaluate	

another	possible	biomarker	in	PTSD.	Therefore	miR-15a	levels	were	examined	in	human	

samples	 in	 two	 different	 stress	 scenarios:	 1.	 in	 healthy	 individuals	 following	

dexamethasone	treatment,	and	2.	in	adult	subjects	that	had	experienced	early	life	stress.	
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levels may serve as a potential marker to predict PTSD treatment outcome, independent of the type of therapy. However,
to establish clinical relevance of these markers, our findings require replication and validation in larger studies.
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Background
Post-traumatic stress disorder (PTSD) is a common psy-
chiatric disorder with a prevalence of about 5% in the
general population and an overall lifetime prevalence of
7–12%. Key symptoms of the disorder include intrusive
memories, avoidance, and numbing as well as hyper-
arousal. Typically, these symptoms are long lasting and
occur after exposure to traumatic life events. Women
are twice as likely to develop the disease than men.
PTSD therapies include both evidence-based psycho-
therapies and pharmacology, but only few patients attain
remission. Currently, only two medications, paroxetine
and sertraline, are approved by the US Food and Drug
Administration (FDA). These SSRIs are capable of sig-
nificantly reducing PTSD symptoms, but with only 20–
30% remission rates to these agents, there is a need for
additional pharmacologic treatment options [1].
Among pathophysiologic mechanisms that have been

investigated for PTSD, disruptions of regulation of the
hypothalamic-pituitary-adrenal (HPA) axis are among
the most frequently cited hypotheses [2]. A key regulator
of the HPA axis is the corticotropin-releasing factor
(CRF) and its type 1 receptor (CRF1 receptor), and many
studies have reported alterations in this system in PTSD
[3]. Therefore, it represents a promising novel drug tar-
get for this disorder. In response to stress, CRF is se-
creted by nerve terminals of the paraventricular nucleus
of the hypothalamus and binds to the CRF1 receptor in
the adenohypophysis to release adrenocorticotropic hor-
mone (ACTH). This process acts as the initial step of
HPA axis activation and leads to the release of a number
of hormones from the adrenal cortex including cortisol.
Numerous studies in laboratory animals as well as in
humans indicate that abnormalities of these HPA axis
regulators play a crucial role in stress-related disorders
such as PTSD [4].
In humans, for example, a number of independent

studies report increased cerebrospinal fluid concentra-
tions of corticotropin-releasing factor in PTSD patients
[5–7], suggesting hyperactivity of the hypothalamus and
extra-hypothalamus CRF system. Moreover, previous in-
vestigations have found that genetic variants in the CRF
receptor 1 gene (CRHR1) are associated with differences
in CRF signaling and may also impact individual responses
to environmental stressors [3]. The most studied are vari-
ants within a haplotype tagged by the intronic SNP
rs110402 that also comprises rs242924 and rs7209436. In-
teractions with exposure to child abuse and this haplotype
were shown to alter risk for major depression, with indi-
viduals homozygous for the G-allele of rs110402 and ex-
posed to child abuse being at higher risk in several but not
all studies (see [8] for review). This haplotype has also
been associated with differences in the neural activation
profile with emotional stimulus processing [9], as well as

neuroendocrine responses in psychological and pharma-
cological challenge tests [10–14], in which individuals
who experienced childhood abuse and carry the G-allele
display stronger HPA axis disturbances.
These preclinical and clinical results, taken together,

support the role of CRF/CRF1 receptor as a potential
drug target in PTSD. However, antagonism of the CRF1
receptor may only benefit those patients with initial in-
creases in CRF signaling, which according to the above
cited endocrine studies are likely to be those with expos-
ure to child abuse and carrying the G-allele of rs110402.
We recently published a study evaluating the efficacy of

a novel CRF1 receptor antagonist (GSK561679) in a co-
hort of female PTSD patients in a double-blind, placebo-
controlled trial. Although the drug was not superior to
placebo overall, it was associated with a significantly
stronger symptom reduction in a subset of patients with
probable CRF1 receptor hyperactivity, i.e., patients with
childhood abuse and carriers of the GG genotype of the
CRHR1 SNP rs110402 [15, 16]. These patients may repre-
sent a biologically distinct subtype of PTSD and show dis-
tinct biomarker profiles. Markers that predict or monitor
treatment outcome would represent an important tool to
offer targeted treatment for individual patients. Despite
great progress in identifying the underpinnings of the
pathophysiology of PTSD and some very promising results
in the biomarker field [17, 18], there is still no clinically
applicable marker in PTSD, neither for diagnosis nor,
perhaps even more significantly, to guide treatment se-
lection. This is likely due to the complex pathophysi-
ology of the disease that may include an interplay of
genetics, environment, and epigenetic changes. It is
therefore likely that not a single but rather a combin-
ation of different biological and clinical markers will
need to be identified [18].
In addition to gene variants that predispose to PTSD

development, epigenetic changes have been implicated
in the pathophysiology of PTSD (for review, see [19]).
These modifications may also serve as diagnostic marks
as well as predicting and monitoring treatment outcome.
Several studies highlight the possible use of epigenetic
marks in peripheral tissues such as the blood and saliva
as diagnostic markers in PTSD [18, 20, 21]. So far, epi-
genetic marks of only two genes, also within the HPA
axis, NR3C1—encoding the glucocorticoid receptor (GR)
and FKBP5—a co-chaperone of the GR, have been
shown to associate with treatment response. More spe-
cifically, NR3C1 baseline promoter methylation in per-
ipheral blood predicted treatment outcome in PTSD,
and in the same study, promoter methylation of FKBP5
decreased in association with symptom improvement
[22]. These findings were observed after 12 weeks of
psychotherapy and have not yet been investigated in the
context of pharmacological treatment.
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Extending our previous study showing potential effects
of a novel CRF1 receptor antagonist (GSK561679) in a
specific subset of women with PTSD (GG homozygous
for rs110402 and with a history of childhood abuse) [16],
we here use the same cohort to test whether blood-based
epigenetic changes of PTSD relevant genes could serve as
potential markers for treatment selection and outcome
monitoring in biologically defined subgroups of patients.
Given that the drug targets the CRF1 receptor, we focused
our analysis on the methylation of the CRHR1 gene using
the previous subgrouping of patients based on genetic and
environmental risk factors. In addition, we explored
whether methylation levels of two other genes within the
stress hormone system (NR3C1 and FKBP5), previously
shown to predict and correlate with PTSD symptom im-
provement after psychotherapy [22], would also be associ-
ated with pharmacological treatment response in our
study, again with specific focus on patients with probable
CRF system hyperactivity (rs110402 GG-carriers and ex-
posure to child abuse).

Results
Subgroup differences in CRHR1 baseline methylation and
change in CRHR1 methylation from baseline to post-
treatment
First, we tested a model with the main effects and inter-
action effect of child abuse and rs110402 carrier status

on mean CRHR1 baseline methylation. Seventy-nine sub-
jects were included in this analysis due to missing genotype
data in three samples. Neither the main effects nor the
interaction effect showed significance (n = 79; p > 0.05).
Next, we tested a model including main effects of treat-
ment as well as interaction effects of treatment by child
abuse, treatment by rs110402, child abuse by rs110402,
and the three-way interaction of treatment by child abuse
by rs110402 on changes in mean methylation levels of
CRHR1 from baseline to post-treatment. Due to missing
methylation data in two baseline samples and one
post-treatment sample, 57 subjects with baseline and
post-treatment methylation data remained for this analysis.
There was a significant interaction effect of child abuse by
rs110402 carrier status (n = 57; F (1, 41) = 9.05; p = 0.004;
ß = − 0.449; Cohen’s f = 0.47; R2 = 0.38; adj. R2 = 0.153;
post-hoc power = 0.94) on change in methylation. Further,
the three-way interaction of treatment by child abuse by
rs110402 showed a significant effect on CRHR1 methyla-
tion levels from pre- to post-treatment (n = 57; F (1, 41) =
4.86; p = 0.033; ß = − 0.297; Cohen’s f = 0.344; R2 = 0.38; adj.
R2 = 0.153; post-hoc power = 0.72) (Fig. 1a, b).

Genotype by childhood abuse interaction on methylation
change stratified by treatment
To further explore the significant three-way interaction
on CRHR1 methylation, we investigated the interaction

Fig. 1 The boxplots describe the mean change of CRHR1 methylation (top tertile of the most variable CpGs from pre- to post-treatment) in
abused and non-abused patients treated with GSK561679 or placebo. GG carriers are shown in blue (plain boxes) and AA/AG in red (striped
boxes). Positive values correspond to an increase, whereas negative values correspond to a decrease in methylation from baseline to endpoint.
Dots indicate outliers. Three-way interaction of treatment × rs110402 A carrier status × child abuse was significantly associated with mean
methylation change (n = 57; p = 0.033) (a, b). After treatment stratification, there was a significant interaction effect of rs110402 A carrier status
and child abuse on mean methylation change in subjects treated with GSK561679 (n = 28; p = 0.00005) (a) but not with placebo (n = 29;
p > 0.05) (b)
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of rs110402 carrier status by child abuse on the change in
methylation levels stratified by treatment. The interaction
showed a significant effect on pre- to post-treatment
CRHR1 methylation change only in patients treated with
the CRF1 receptor antagonist (n = 28; F (1, 16) = 29.81;
p = 0.00005; withstands Bonferroni correction for mul-
tiple testing; ß = − 0.913; Cohen’s f = 1.366; R2 = 0.73;
adj. R2 = 0.55; post-hoc power = 0.99) (Fig. 1a).
Interestingly, the subset of patients with child abuse

and who are also carriers of the GG genotype of
rs110402 showed an increase in CRHR1 methylation
with GSK561679 treatment. This subgroup was previ-
ously described to benefit most from the drug ([16] and
Additional file 1: Figure S1). The other three subsets of
patients (no abuse and rs110402 GG; no abuse and
rs110402 AG/AA; abuse and rs110402 AG/AA) showed
no change or decreased methylation after GSK561679
treatment. There was no significant effect in the placebo
group (n = 29; p > 0.05) (Fig. 1b).

Baseline methylation by treatment interaction effects on
PTSD symptom change
We next tested whether baseline methylation predicted
%-change of PTSD symptoms from pre- to post-treatment.
Seventy-nine (CAPS)/78 (PSS) subjects were included in
the analysis due to missing genotype data in three samples
and missing phenotype data (PSS %-change) in one sample.
Neither NR3C1 (n = 79/78; p > 0.05) nor FKBP5 (n = 79/78;
p > 0.05) showed a significant interaction effect of treat-
ment by baseline methylation on symptom change.

Three-way interaction effects on PTSD symptom change
with treatment, baseline methylation, and SNP/child
abuse
Next, we included either rs110402 or child abuse in our
analysis and tested for two three-way interaction effects
(rs110402 × treatment × mean baseline methylation or child
abuse × treatment × mean baseline methylation) on
symptom reduction measured by change in Clinician-
Administered PTSD Scale (CAPS) and PTSD Symp-
tom Scale-Self-Report (PSS-SR) scores. Treatment by
baseline methylation by rs110402 carrier status was
not significantly associated with differences in PTSD
symptom change for neither of the genes (NR3C1:
n = 79/78, p > 0.05; FKBP5: n = 79/78, p > 0.05).
The three-way interaction that included child abuse

was significant for NR3C1 baseline methylation (n = 78;
F (1, 56) = 4.26; p = 0.044; ß = 0.276; Cohen’s f = 0.277;
R2 = 0.33; adj. R2 = 0.087; post-hoc power = 0.67) and
showed a trend towards significance for FKBP5 baseline
methylation (n = 79, F (1, 57) = 2.81; p = 0.099; ß = 0.215;
Cohen’s f = 0.222; R2 = 0.28; adj. R2 = 0.017;post-hoc
power = 0.38).

More specifically, CRF1 receptor antagonist-treated,
abused patients with high baseline NR3C1 methylation
levels showed the strongest PSS percent change and there-
fore the best treatment outcome overall (Fig. 2a, b). A
post-hoc analysis revealed that the interaction of baseline
NR3C1 methylation and child abuse was significantly as-
sociated with PSS percent change after CRF1 receptor an-
tagonist treatment (n = 38; F (1, 20) = 4.58; p = 0.045; ß =
0.331; Cohen’s f = 0.478; R2 = 0.67; adj. R2 = 0.39; post-hoc
power= 0.81) (Fig. 2a) but not placebo (n = 40; p > 0.05)
(Fig. 2b). Results from the same analysis using CAPS score
%-change as treatment outcome showed the same direc-
tion of effects but did not reach significance (three-way
interaction: n = 79; p > 0.05) (Fig. 2c, d).
For FKBP5, abused patients with high baseline methy-

lation and treated with the CRF1 receptor antagonist ex-
perienced the strongest CAPS percent change (n = 79, F
(1, 57) = 2.81; p = 0.099). The post-hoc analysis, stratify-
ing patients by treatment and testing the interaction ef-
fect of baseline methylation by child abuse on PTSD
symptom change, did not reach significance in neither
one of the treatment groups (p > 0.05 for all) (Fig. 3a–d).

Pre- to post-treatment methylation change by treatment
interaction effects and three-way interaction effects
including SNP or child abuse on PTSD symptom change
To examine the association between FKBP5/NR3C1 methy-
lation change from baseline to post-treatment and symptom
improvement, we tested for interaction effects of treatment
by pre- to post-methylation change on %-change of PTSD
symptoms from pre- to post-treatment. For NR3C1 and
FKBP5, 57 subjects were included in the analysis due to
missing methylation data in two baseline samples and one
post-treatment sample. None of the tested interactions
reached significance (FKBP5: n = 57, p > 0.5; NR3C1: n = 57,
p > 0.5). Further, including either rs110402 or child abuse in
our analysis to test for two three-way interactions (rs110402
× treatment × pre- to post-methylation change or child
abuse × treatment × pre- to post-methylation change) on
symptom reduction also did not show significant effects
(FKBP5: n= 57, p > 0.5; NR3C1: n = 57, p > 0.5).

Discussion
The objective of this study was to investigate epigenetic
marks of PTSD-related genes in association with PTSD
symptom changes after CRF1 receptor antagonist
(GSK561679) treatment in female PTSD patients. In a
first analysis, we observed significant differences in
CRHR1 methylation levels after treatment among pa-
tients with probable CRF hyperactivity who previously
demonstrated the greatest clinical benefit from the CRF1
receptor antagonist [16]; this effect was not present
among those who received placebo. This subgroup of
patients who had experienced child abuse and were
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homozygous for the rs110402 GG allele were the only indi-
viduals showing a significant increase in CRHR1 methyla-
tion from baseline to the post-GSK561679 treatment time
point. All other subjects either showed no change or a re-
duction in methylation over the time of treatment. On the
other hand, baseline CRHR1 methylation did not predict
treatment outcome, suggesting that this epigenetic change
may only serve as a potential tracker of symptom changes.
The maximum difference in mean CRHR1 methylation
between the subgroups was more than 3%, a change com-
parable to or even larger than other studies examining

peripheral blood DNA methylation and psychiatric disor-
ders or psychiatric treatment response. In fact, when exam-
ining the 11 CpGs composing the CRHR1 variable
methylation score, the maximal effects were observed in
CpGs cg27410679 and cg04194664. In the subgroup of pa-
tients with child abuse and homozygous for the rs110402
GG allele, these CpGs showed an increase in methylation
of up to 3.9% and a maximum methylation difference be-
tween the four subgroups of 9.9% (cg04194664) and 7.7%
(cg27410679). Future studies should evaluate these opti-
mized markers in larger samples.

Fig. 2 The scatter plots describe the association between the mean percent change of PTSD symptoms and mean NR3C1 methylation dependent on
child abuse in patients treated with GSK561679 (a, c) or placebo (b, d). Higher symptom percent change corresponds to improvement (reduction) in
PTSD symptoms from baseline to endpoint. Abused patients are shown in red (solid line) and non-abused patients in blue (dashed line). Three-way
interaction of NR3C1 baseline methylation × treatment × child abuse was significantly associated with PSS %-change (n = 79; p = 0.044) (a, b) but not
with CAPS %-change (n = 78; p > 0.05) (c, d). After treatment stratification, there was a significant interaction effect of baseline methylation and child
abuse on PSS %-change in subjects treated with GSK561679 (n = 38; p = 0.045) (a) but not with placebo (n = 40; p > 0.05) (b). For CAPS %-change, the
effect pointed in the same direction without reaching significance (c, d)
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A number of factors can contribute to changes in
DNA methylation. In a mixed tissue such as peripheral
blood, the most likely contributor is the changes in im-
mune cell subtype composition. Changes in immune re-
sponses have been reported in PTSD (reviewed by [23]),
and symptom normalization may be associated with a
change in immune function and cell type proportion
[24–26]. We attempted to account for this using a bio-
informatics deconvolution method for blood cell types
from genome-wide methylation data [27] and adding the
estimated cell type proportions as covariates. In addition,
there has been increasing evidence suggesting that dy-
namic methylation changes, as observed in our study, may

be mediated by certain transcription factors [28–30]. Sev-
eral studies have reported on the potential role of the
glucocorticoid receptor as one of these transcription fac-
tors mediating glucocorticoid-induced DNA demethyla-
tion [31, 32]. CRF1 receptor antagonists influence the
regulation of the HPA axis and by that, ultimately, modu-
late GR activity. Our previously identified subgroup of pa-
tients with rs110402 GG genotype and a history of child
abuse displayed a significant increase in CRHR1 methyla-
tion after GSK561679 treatment. Previous studies have
shown that this combination of environmental and genetic
risk is associated with specific disruptions of HPA axis
regulation, including an enhanced cortisol response to the

Fig. 3 The scatter plots describe the association between the mean percent change of PTSD symptoms and mean FKBP5 methylation dependent
on child abuse in patients treated with GSK561679 (a, c) or placebo (b, d). Higher symptom percent change corresponds to improvement (reduction)
in PTSD symptoms from baseline to endpoint. Abused patients are shown in red (solid line) and non-abused patients in blue (dashed line). The three-
way interaction testing FKBP5 baseline methylation × treatment × child abuse on CAPS %-change had a p value of p = 0.099 with an n = 79 (c, d) and
p > 0.05 with PSS %-change (n = 78) (a, b). After treatment stratification, there was no significant interaction effect of baseline methylation by child
abuse on PTSD symptom %-change in neither one of the treatment groups (p > 0.05 for all) (a–d)
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Trier Social Stress Test and the combined dexamethasone
suppression/CRF stimulation test [11–14]. A combination
of increased CRF activity and GR activation may exist in
this subgroup and normalize with specific CRF1 receptor
antagonist treatment. In fact, a number of studies have
also reported GR supersensitivity with PTSD [33, 34] and
its normalization with effective treatment [35, 36]. Such a
reversal of GR supersensitivity in the subset of patients
with response to the antagonist may also lead to changes
in GR-mediated DNA methylation. In fact, active GR re-
sponse elements are shown in the ENCODE project for
the CRHR1 locus [37]. Finally, GSK561679 itself could dir-
ectly impact CRHR1 methylation. However, the CRHR1
expression is low in peripheral blood cells (https://gtex
portal.org/), suggesting that the epigenetic regulation of
the locus indirectly via receptor blockade and adaptive
transcriptional regulation is an unlikely mechanism for in-
ducing this effect.
In our second analysis, we investigated peripheral blood

DNA methylation of two genes, for which a previous
study had found an association with improvement of
PTSD symptoms after prolonged exposure therapy [22].
In a small cohort of combat veterans diagnosed with
PTSD, the authors reported that pre-treatment NR3C1
methylation significantly predicted treatment outcome,
with higher NR3C1 methylation at baseline associated
with better response to psychotherapy. The authors also
observed a decrease in FKBP5 promoter methylation over
treatment in patients showing clinical improvement [22].
Similar to Yehuda et al. [22], we also find that higher

baseline methylation of NR3C1 is associated with better
treatment outcome with the antagonist. However, in
our analysis, this is only seen in patients who had also
experienced child abuse. No association was found for
FKBP5, neither for baseline levels predicting treatment
outcome nor for change in FKBP5 methylation being
associated with symptom improvement, as reported in
Yehuda et al. [22]. While exploratory, our results sup-
port the conclusion that peripheral blood DNA methy-
lation of NR3C1 is associated with PTSD treatment
response.
The major limitation of this study is the small sample

size, particularly after biological subgrouping. Power calcu-
lation for our main hypothesis (change of CRHR1 methyla-
tion over treatment and prediction of treatment outcome),
however, revealed that power would be sufficient to detect
medium to large effect sizes, whereas smaller effect sizes
would have been missed. A post-hoc power analysis for the
specific effect sizes detected in our study showed that
power ranged between 0.673 and 0.999. Further, due to the
exploratory nature of our study, we did not apply a system-
atic correction for multiple testing, increasing the risk for
false-positive associations. To identify smaller effects, con-
firm our results, and reduce the risk of a type I and type II

error, much larger sample sizes will be required for future
studies.
An additional limitation to this study, which repre-

sents a general issue in DNA methylation analyses of
mixed tissues, is to rule out cell type composition vari-
ation as a potential confounding factor contributing to
the observed epigenetic changes. As described, we ap-
plied a commonly used bioinformatics cell-type decon-
volution method [27] to address this issue. However, this
method only accounts for six different cell types in the
blood, so that changes in subtypes not covered by this
algorithm may still contribute to the observed changes
in DNA methylation.

Conclusion
Overall, our results indicate that markers for PTSD likely
will need to be an index, comprised of several combin-
ation markers. Here, we describe the association of
CRHR1 DNA methylation with treatment response, but
only in a specific subset of patients defined by genetic and
environmental risk factors. While our association of base-
line NR3C1 methylation with PTSD treatment outcome is
supportive of previous findings, both studies are small.
Given the exploratory nature of the study and the small
sample size, larger studies that stratify patients by poten-
tial biomarker status will be needed to fully establish the
clinical value of these measures.

Methods
Study overview
Detailed descriptions of the trial design and the study re-
sults were published previously [15, 16] and are summa-
rized in the following.

Cohort
Patients were recruited at four academic sites (Emory Uni-
versity, Icahn School of Medicine at Mount Sinai, Baylor
College of Medicine, University of California San Fran-
cisco/San Francisco Veterans Affairs Medical Center) in
the USA. The institutional review boards at each study site
approved the study. The cohort used for this study con-
sisted of 88 female patients between 18 and 65 years of
age. Males were excluded due to potential reproductive
organ toxicity of the investigational medication. All sub-
jects were free of psychotropic medication (except non-
benzodiazepine hypnotics) for at least 2 weeks prior to
randomization. Subjects had to fulfill criteria for a primary
psychiatric diagnosis of DSM-IV-defined PTSD of at least
3 month’s duration since the index trauma. PTSD status
at the baseline (randomization) visit had to be of at least
moderate severity, defined as Clinician-Administered
PTSD Scale (CAPS) for DSM-IV [38] past-month and
past-week total scores ≥ 50. Important exclusion criteria
included current or past diagnosis of a psychotic disorder,
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bipolar disorder, or obsessive-compulsive disorder. Sub-
jects with a positive test for drugs of abuse at the screen-
ing visit, or who met criteria for substance abuse or
dependence within 3 months of the randomization visit,
or who presented with significant current suicidal ideation
were excluded. Pregnant or lactating women and subjects
with an unstable medical condition were also excluded.

Study design
Subjects participated in a parallel-group, double-blind,
placebo-controlled randomized clinical trial of a novel CRF1
receptor antagonist (GSK561679). After randomization, pa-
tients were either treated with a nightly dose of 350 mg
GSK561679 or placebo over 6 weeks. At the baseline visit
(prior to treatment phase), numerous data including demo-
graphics, vital signs, and several psychiatric measures were
assessed, e.g., level of childhood maltreatment was tested
using the Childhood Trauma Questionnaire (CTQ). CAPS
score and PTSD Symptom Scale-Self-Report (PSS-SR)
[39] were assessed at weeks 1, 2, 4, and 6 after
randomization to assess PTSD symptom severity, and the
percent change of these scores from pre- to post-
treatment were used to determine the degree of improve-
ment in PTSD symptoms. For biological assessments (e.g.,
methylation levels, genotyping), whole blood was collected
at baseline (n = 88) as well as after 5 weeks of treatment
(n = 60 with both baseline and post-treatment) and DNA
extraction was performed.

DNA extraction
DNA isolation from whole blood was performed with a
magnetic bead-based technology on the chemagic 360 ex-
traction robot using the chemagic DNA Blood Kit special
(PerkinElmer Inc., Waltham, MA, USA). Quality and
quantity of the extracted DNA were assessed using the
Epoch Microplate Spectrophotometer (BioTek, Winooski,
VT, USA).

Genotyping
Genome-wide SNP genotyping was performed for all
subjects using Illumina HumanOmniExpress-24 Bead-
Chips according to the manufacturer’s protocol. We ex-
cluded the relatives of individual subjects from the
whole sample (n = 3, Pihat ≥ 0.0625) based on mean
identity by descent (IBD) in PLINK [40]. Eighty-five sub-
jects remained for further QC. For the genome-wide
analyses that were used to correct for population stratifi-
cation, we only included individuals with a sample-wise
call rate ≥ 0.98 and SNPs with call rate ≥ 0.98, Hardy
Weinberg equilibrium test (HWE) p value ≥ 1 × 10− 5

and MAF ≥ 0.05, allowing for a total of 575,455 markers
in 85 individuals. To correct for population stratification
in an ethnically mixed sample, principal components
(PC) for the genetic background were calculated from all

genotypes for each of the individuals using genome-wide
complex trait analysis (GCTA) [41].

Methylation analysis
DNA methylation levels were assessed using the Illu-
mina 450k array. After bisulfite conversion with the
Zymo EZ-96 DNA Methylation Kit (Zymo Research, Ir-
vine, CA. USA), genome-wide DNA methylation levels
were assessed for 84 baseline samples and 60 matching
post-treatment samples using Illumina 450K DNA
methylation arrays (Illumina, San Diego, CA, USA) as
previously published [42].

Quality control of DNA methylation
Minfi Bioconductor R package (version 1.10.2) was used
to perform quality control of methylation data including
normalization, intensity readouts, cell type composition
estimation, and beta and M value calculation. A detec-
tion p value larger than 0.01 in at least 75% of the sam-
ples led to an exclusion of the probe. Probes that were
located close (10 bp from query site) to a SNP which
had a minor allele frequency of ≥ 0.05 in any of the pop-
ulations represented in the sample were removed as well
as X chromosome, Y chromosome, and non-specific
binding probes. The data were then normalized using
functional normalization, which is an extension of quan-
tile normalization included in the minfi R package. The
Bioconductor R package shinyMethyl version 0.99.3 was
used to identify batch effects by inspecting the associ-
ation of the first principal component of the methylation
levels with plate, sentrix array, and position using linear
regression and visual inspection of PCA plots. A linear
regression model was fitted in R with the M values for
each probe as the dependent variable and plate, sentrix
array, and row as the independent variables as factors to
remove batch effects. Two baseline samples and one
post-treatment sample did not pass quality control,
which resulted in 82 baseline samples and 57 matching
pairs with 450K methylation data.

Statistical analyses
Statistical analysis was carried out using SPSS v.18.0
(IBM Corp., Armonk, NY, USA) and R software v 3.2
(https://www.r-project.org/). Genotype analysis (SNP
rs110402): the intronic SNP rs110402 has been shown to
be associated with HPA axis hyperactivity [11, 14, 43].
This may result in a different response to antagonizing
the CRF system, depending on a patient’s rs110402
genotype. We therefore focused on rs110402 genotype
stratification in our analysis. Direct genotypes were
taken from the HumanOmniExpress-24 array (rs110402
MAF = 0.401, HWE test p value = 0.52). According to
our previous study [16], patients were categorized by
rs110402 A-allele carrier status (GG = 33 carriers and 53
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A-allele carriers, of which 38 patients had the AG geno-
type and 15 were homozygous for the A-allele). Group-
ing individuals carrying one or two copies of the minor
A-allele of rs110402 has been used in previous studies
[9, 11, 44] and helps to preserve power. Additive effects
of that SNP have previously been reported [45]. Methy-
lation analysis: CRHR1: From the CRHR1 gene locus
covered by 33 CpGs on the 450k array, the top tertile
(11 CpGs) of the CpGs with the most variable methyla-
tion change from pre to post-treatment was selected
(Additional file 1: Table S1). The mean methylation of
these 11 CpGs was calculated and used for further ana-
lysis. NR3C1: Mean methylation of 5 CpG sites within the
1F promoter and exon present on the Illumina 450K array
was used for the analysis (Additional file 1: Table S2).
DNA methylation in the 1F promoter and exon had been
shown to predict PTSD treatment outcome [22]. FKBP5:
Mean methylation level of 3 CpG sites within the exon 1
promoter present on the Illumina 450K array was used for
the analysis (Additional file 1: Table S3). DNA methylation
of this locus was shown to track with symptom improve-
ment [22]. Childhood trauma status was defined as previ-
ously described by categorizing individuals as having
experienced either no or only mild abuse versus those
having experienced at least one type of moderate to severe
abuse (emotional abuse ≥ 13, physical abuse ≥ 10, sexual
abuse ≥ 8) (57 = abused, 31 = non-abused) using the CTQ
[45]. We performed linear regression models adjusted for
age, smoking, ancestry PC, and estimated blood cell count
to test for main/two-way and three-way interaction effects
on methylation changes as well as main/two-way and
three-way interactions effects on PTSD symptom
%-change. For each of the analysis, only individuals with
complete phenotype, methylation data, genotypes, and
any additional covariates were included in the model. We
calculated power post-hoc using G Power 3.1 [46]. Alpha
was set to 0.05, and the number of groups, degrees of free-
dom, and eta squares were set according to the
test-specific calculations performed in SPSS. Statistical sig-
nificance was considered at p < 0.05. Due to the explora-
tory nature of the study, no correction for multiple testing
was applied. As a measure of effect size, Cohen’s f was cal-
culated and interpreted as follows: f < 0.25 = small effect
size; 0.25 < f < 0.4 = medium effect size; f > 0.4 = large ef-
fect size [47].

Additional file

Additional file 1: Figure S1. The boxplots describe the mean % change
of PSS total score in abused and non-abused patients treated with the
CRHR1 antagonist or placebo. GG carriers are shown in blue (plain boxes)
and AA/AG in red (striped boxes). rs110402 A carrier status by childhood
abuse exposure showed a significant interaction effect on PSS score %
change over treatment in subjects treated with the CRHR1 antagonist
(n = 43; F (1, 31) = 4.42; p = 0.043) (a) but not in subjects treated with

placebo (n = 42, p > 0.05) (b). rs110402 GG carriers exposed to child
abuse displayed the highest % change of PSS symptoms following
CRHR1 treatment. (From Biological Psychiatry; Dunlop et al., 2017).
Table S1. CRHR1: List of CpGs used for analysis. Table S2. NR3C1:
List of CpGs used for analysis. Table S3. FKBP5: List of CpGs used for
analysis. (DOC 977 kb)
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Corticotropin-Releasing Factor Receptor 1
Antagonism Is Ineffective for Women With
Posttraumatic Stress Disorder
Boadie W. Dunlop, Elisabeth B. Binder, Dan Iosifescu, Sanjay J. Mathew, Thomas C. Neylan,
Julius C. Pape, Tania Carrillo-Roa, Charles Green, Becky Kinkead, Dimitri Grigoriadis,
Barbara O. Rothbaum, Charles B. Nemeroff, and Helen S. Mayberg

ABSTRACT
BACKGROUND: Medication and psychotherapy treatments for posttraumatic stress disorder (PTSD) provide insuf-
ficient benefit for many patients. Substantial preclinical and clinical data indicate abnormalities in the hypothalamic-
pituitary-adrenal axis, including signaling by corticotropin-releasing factor, in the pathophysiology of PTSD.
METHODS: We conducted a double-blind, placebo-controlled, randomized, fixed-dose clinical trial evaluating the
efficacy of GSK561679, a corticotropin-releasing factor receptor 1 (CRF1 receptor) antagonist in adult women with
PTSD. The trial randomized 128 participants, of whom 96 completed the 6-week treatment period.
RESULTS: In both the intent-to-treat and completer samples, GSK561679 failed to show superiority over placebo on
the primary outcome of change in Clinician-Administered PTSD Scale total score. Adverse event frequencies did not
significantly differ between GSK561679- and placebo-treated subjects. Exploration of the CRF1 receptor single
nucleotide polymorphism rs110402 found that response to GSK561679 and placebo did not significantly differ by
genotype alone. However, subjects who had experienced a moderate or severe history of childhood abuse and
who were also GG homozygotes for rs110402 showed significant improvement after treatment with GSK561679
(n= 6) but not with placebo (n= 7) on the PTSD Symptom Scale–Self-Report.
CONCLUSIONS: The results of this trial, the first evaluating a CRF1 receptor antagonist for the treatment of PTSD,
combined with other negative trials of CRF1 receptor antagonists for major depressive disorder, generalized anxiety
disorder, and social anxiety disorder, suggest that CRF1 receptor antagonists lack efficacy as monotherapy agents
for these conditions.

Keywords: Adrenocorticotropic hormone, Child abuse, Clinical trial, Dexamethasone, Pharmacogenetics
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Posttraumatic stress disorder (PTSD) is a common psychiatric
syndrome affecting individuals who have been exposed to
traumatic events (1). The symptomatology of PTSD is multiplex,
encompassing components of intrusive re-experiencing of the
traumatic event, avoidance of reminders of the event, negative
or reduced range of mood, and hyperarousal and excessive
reactivity to the environment. The pathophysiology of PTSD is
broad, including abnormalities in fear processing (2), sympa-
thetic nervous system hyperactivity (3), and disturbed
hypothalamic-pituitary-adrenal (HPA) axis functioning (4).
Excessive fear processing is targeted by two established forms
of PTSD treatment: exposure-based psychotherapies and se-
lective serotonin reuptake inhibitors. Excessive sympathetic
nervous system activity, as measured by systolic blood
pressure, is targeted by prazosin and perhaps by atypical an-
tipsychotics, which have some efficacy for certain PTSD
symptoms (5). However, response rates to existing in-
terventions are ,60%, with only 20% to 30% of patients
achieving remission with medication (6), indicating the need for

additional therapeutic options. A wealth of studies implicating
HPA axis disruption in PTSD pathophysiology suggests that
directly targeting this system may be a fruitful approach (7).

Activation of the HPA axis in response to stress begins with
the release of corticotropin-releasing factor (CRF) from the
hypothalamus. CRF is a 41–amino acid peptide neurotrans-
mitter that mediates the stress response via its effects on
neuroendocrine, immune, autonomic, and behavioral systems
(8). CRF binding to CRF type 1 receptors (CRF1 receptors) in
the pituitary gland stimulates the release of adrenocortico-
tropin (ACTH), which enters the systemic circulation and in-
duces release of cortisol from the adrenal cortex. In healthy
subjects, the acute actions of cortisol produce negative feed-
back to the HPA axis via glucocorticoid receptors in the pitu-
itary and hypothalamus. Abnormalities of the HPA axis in
patients with PTSD include low circulating levels of ACTH and
cortisol and hypersuppression of these hormones after low-
dose dexamethasone administration (4). Elevated CRF con-
centrations are present in the cerebrospinal fluid of PTSD
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patients (9–11), though mildly ill patients may not show this
abnormality (12).

Outside the hypothalamus and anterior pituitary, CRF1
receptors are expressed widely in the cortex and cerebellum,
hippocampus, amygdala, and bed nucleus of the stria termi-
nalis (13). Activation of CRF receptor binding in the amygdala
induces fear responses (14), and administration of CRF in
animal models produces PTSD-relevant anxiety behaviors,
including heightened acoustic startle response, sleep distur-
bance, and increased conditioned fear response (15). Early life
stress in animal models produces hyperactivity of CRF neu-
rons and chronic activation of limbic brain regions (16,17).

Several CRF1 receptor antagonists studied in animal models
have demonstrated potential therapeutic value for stress-
related disorders (18). An early human trial suggested effi-
cacy of CRF1 receptor antagonism for major depression (19),
and another CRF1 receptor antagonist produced anxiolytic
effects in healthy adults given 7.5% carbon dioxide (20).
However, larger trials examining several CRF1 receptor an-
tagonists in clinical populations have not found efficacy for the
treatment of major depression, generalized anxiety disorder, or
social anxiety disorder (21).

GSK561679 is an orally active, selective CRF1 receptor
antagonist that demonstrates anxiolytic effects in animal
models (22). The investigator brochure for GSK561679 reports
that in healthy adults, GSK561679 dose-dependently sup-
pressed ACTH response to stress in the Trier Social Stress
Test and after intravenous administration of CRF, but only
inconsistently reduced cortisol responses in these challenge
tests. In patients with social anxiety disorder, a single 400-mg
dose of GSK561679 reduced reactivity in the amygdala after
exposure to facial expressions, similar to a single dose of al-
prazolam. The drug achieves good brain penetration in rodents
and is not a substrate for p-glycoprotein transport. The primary
route of metabolism is through cytochrome P450 3A4. Pre-
clinical studies found GSK561679 caused changes to the
testes and seminiferous epithelium in male animals, thereby
limiting human clinical trials to female participants.

We aimed to determine whether GSK561679 was efficacious
for PTSD. Secondary aims were to evaluate the tolerability of
GSK561679 and its effects on depressive symptoms. We also
examined the potential moderating impact of HPA axis–related
genes implicated in the development of PTSD. The clinical trial
reported here is a component of the National Institute of Mental
Health National Cooperative Drug Discovery/Development
Groups program, which aims to facilitate partnerships between
academic clinical and preclinical researchers and industry to
support the discovery of drug development tools and apply
“first in human, first in patient testing.”

METHODS AND MATERIALS

Study Overview

A detailed description of the study rationale, methods, and
design was previously published and is summarized here (23).
The study design was a randomized, double-blind, placebo-
controlled, parallel-group clinical trial of GSK561679 that
enrolled patients between January 2010 and June 2014. After a
screening phase lasting 1 to 4 weeks, patients entered a
6-week double-blind treatment phase, followed by a 1-month

off-drug follow-up phase to monitor safety and durability of
any clinical changes. Four academic sites conducted the
study: Emory University, Icahn School of Medicine at Mount
Sinai, Baylor College of Medicine, and the University of Cali-
fornia San Francisco. Approval to conduct the study was
obtained from the institutional review board of each university
and its affiliated Veterans Affairs Hospitals, if applicable. The
study was conducted in accordance with the Helsinki Decla-
ration of 1975 and its amendments and is listed as
NCT01018992 at ClinicalTrials.gov.

Participants

All participants provided written informed consent before the
study. Recruitment was conducted by advertising and clinic
referral. Eligible participants were women 18 to 65 years of age
who met DSM-IV-TR criteria for chronic PTSD, determined
using the Structured Clinical Interview for DSM-IV (24) and
confirmed through a clinical interview with a study psychiatrist.
For patients with multiple DSM-IV–qualifying traumas, we
defined the “index” trauma as the trauma currently causing the
greatest distress or impairment to the patient, identified from
parts one and two of the Posttraumatic Diagnostic Scale (PDS)
(25). PTSD had to be at least moderately severe at the
screening and baseline visits, defined as Clinician Administered
PTSD Scale for DSM-IV (CAPS) (26) past-month and past-week
total scores $50. Important exclusion criteria included the
following: any current or past diagnosis of schizophrenia or
other psychotic disorder, bipolar disorder, or obsessive
compulsive disorder; current substance abuse or dependence;
use of a psychotropic agent, other than a nonbenzodiazepine
hypnotic; use of a systemic steroid medication; significant
uncontrolled medical conditions, or current clinically significant
suicidal or homicidal ideation; current participation in a struc-
tured psychotherapy targeting PTSD symptoms; and any cur-
rent or planned litigation regarding the traumatic event.

Randomization

Randomization to GSK561679 or placebo was 1:1 with
permuted blocks generated separately for each site by a stat-
istician whowas not involved in the analysis of the data (23). The
investigational pharmacist assigned the eligible patient to the
treatment indicatedby the randomization list at thebaseline visit.

Study Medication

The selected dose of 350 mg/day of GSK561679 was based
on the tolerability and biological activity observed during phase
1 testing. Study medication was dispensed in two bottles
containing 100 mg or 50 mg white tablets of GSK561679 or
matching placebo. Patients took three 100-mg tabs and one
50-mg tab each evening between 6:00 PM and 8:00 PM and
recorded the time in a dosing diary.

Study Visits and Assessments

The Posttraumatic Diagnostic Scale and CAPS were admin-
istered at screening to assess trauma severity. Patients
completed the PTSD Symptom Scale–Self-Report (PSS-
SR) (27), the Childhood Trauma Questionnaire (28), the
Montgomery–Åsberg Depression Rating Scale (MADRS)
(29,30), the Quick Inventory of Depressive Symptomatology,
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Self-Report (31), the Clinical Global Impression of Severity (32),
the Sheehan Disability Scale (33), and the clinician-
administered version of the Columbia Suicide Severity Rating
Scale (34). An electrocardiogram, laboratory testing, urine drug
screen, medical history, and a physical examination were
conducted to ensure medical appropriateness for the study.
Adverse events were captured by open-ended questions and
via the Patient Rated Inventory of Side Effects (35) at each
postscreening visit.

On the day before the baseline (randomization) visit, patients
underwent phlebotomy for measurement of ACTH and cortisol,
underwent baseline laboratory tests, and took 0.5 mg of
dexamethasone at 11:00 PM for the low-dose dexamethasone
suppression test. Patients returned the next morning to repeat
phlebotomy for post-dexamethasone ACTH and cortisol con-
centrations. Ratings visits occurred at baseline and weeks 1, 2,
4, and 6 postrandomization, with administration of past-week
CAPS, MADRS, and the self-report symptom measures.
Neuroendocrinological testing was repeated during the fifth
week postrandomization. Plasma samples for GSK561679
concentrations were collected at weeks 1, 2, 4, and 6. Methods
for DNA genotyping are presented in the Supplement.

The primary outcome was change in past-week CAPS total
score from baseline to week 6, assessed at weeks 1, 2, 4 and
6. CAPS raters were initially trained through use of a scoring
guide and watching a training video interview. Interrater reli-
ability was assessed annually via independent scoring of
standardized videotaped CAPS interviews. Raters whose
scores were .4 points from the median for each interview
underwent additional training until reliability was achieved.

Statistical Analyses

All analyses used R software (version 3.2; available at https://
www.r-project.org). Generalized linear models evaluated the
effects of treatment on univariate outcomes; multilevel models
examined treatment effects on longitudinal outcomes. Ana-
lyses evaluated treatment effects with and without adjustment
for site effects. Inclusion of site as a covariate failed to alter any
conclusion derived from models without site, and so the re-
sults are based on the more parsimonious unadjusted models.
Primary analyses used intention-to-treat principles with multi-
level models maximizing the use of all available data using
restricted maximum likelihood estimation, and dichotomous
outcomes imputed as negative/nonresponsive to treatment.

CRF1 receptor SNP rs110402 was the main focus of the
genetic analysis. Direct genotypes were taken from the
HumanOmniExpress-24 array (Illumina Inc., San Diego, CA)
(rs110402 minor allele frequency = 0.401, Hardy-Weinberg
equilibrium test p value = .52), with patients categorized
according to rs110402 A allele carrier status (GG = 33 carriers
and 53 A-allele carriers, of which 38 patients had the AG
genotype and 15 were homozygous for the A allele;
Supplemental Table S2). To assess A-allele carrier main effects
and interaction of the carrier status with childhood abuse on
change in psychiatric symptoms, we performed linear regres-
sion models adjusted for age, baseline symptom severity, and
ancestry PC (Supplemental Figure S8), with the percent
change in CAPS, PSS, and MADRS scores as outcomes. In-
dividuals were categorized as having experienced either no or

only mild abuse versus having experienced at least one type of
moderate to severe abuse (56 = abused, 30 = nonabused) as
previously described using the Childhood Trauma Question-
naire (36). To conserve power, we refrained from testing three-
way interactions of SNP by child abuse by treatment on
symptom changes but instead analyzed two-way interactions
of SNP by child abuse on outcome, stratified by treatment
status. Significance was considered at p , .05, and owing to
limited power, all genetic analyses are considered exploratory
only, so no correction for multiple testing was applied.

RESULTS

The CONSORT diagram (Supplemental Figure S1) depicts
the overall participant flow for the trial, with N = 267 enrolled,
n = 128 participants randomized, and n = 96 completing
treatment. The mean age of the sample was 40.5 6 12.1 years;
only three participants identified combat as their index trauma.
The baseline demographic and clinical characteristics of the
sample are presented in Table 1.

Table 1. Demographic and Clinical Variables at Baseline

Variable
Placebo,
n= 65

GSK561679,
n= 63

Race, n (%)

White 32 (49) 40 (64)

African American 28 (43) 18 (29)

Other 5 (8) 5 (8)

Hispanic 5 (8) 8 (13)

Current Major Depression, n (%) 43 (66) 41 (65)

Education (n= 125), n (%)

,High school 4 (6) 7 (11)

High school degree/some college 29 (45) 24 (38)

College degree 15 (23) 19 (30)

Graduate degree 16 (25) 11 (18)

Current Smoker, n (%) 17 (26) 12 (19)

Time Since Primary Trauma (n= 125), n (%)

#6 months 5 (8) 6 (10)

6 months–3 years 15 (24) 11 (18)

3–5 years 11 (18) 5 (8)

$5 years 32 (51) 39 (64)

Age, Years, Mean (SD) 40.4 (12.3) 40.6 (11.8)

No. of Traumatic Events, Lifetime, Mean (SD) 3.7 (2.2) 3.5 (1.6)

CAPS Past Month Total, Mean (SD) 79.8 (15.6) 82.0 (12.5)

CAPS Past Week Total, Mean (SD) 74.8 (17.6) 77.5 (14.3)

PSS-SR Total, Mean (SD) 30.0 (9.3) 31.1 (7.1)

MADRS, Mean (SD) 25.1 (8.3) 26.5 (7.0)

QIDS-SR, Mean (SD) 13.6 (4.5) 13.3 (4.1)

CTQ Total, Mean (SD) 75.9 (23.9) 79.3 (27.2)

SDS, Mean (SD) 16.3 (7.1) 15.5 (7.1)

CGI-S, Mean (SD) 4.7 (0.7) 4.7 (0.7)

CAPS, Clinician-Administered PTSD Scale; CGI-S, Clinician Global
Impression-Severity; CTQ, Childhood Trauma Questionnaire;
MADRS, Montgomery–Åsberg Depression Rating Scale; PSS-SR,
PTSD Symptom Scale–Self-Report; QIDS-SR, Quick Inventory of
Depressive Symptomatology–Self-Report; SDS, Sheehan Disability
Scale.
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Retention and Treatment Compliance

Kaplan-Meier survival curves failed to demonstrate differential
attrition as a function of treatment group (c2

1= 0.2, p = .647).
Among individuals (n= 91) who completed treatment and who
demonstrated compliance with the medication regimen (veri-
fied via serum levels at the week 6 or early termination visit only
in the GSK561679 condition), retention did not differ as a
function of treatment group (placebo: n= 49; GSK561679: n=
42; c2

1 = 1.183, p = .278). The mean week 6 concentration of
GSK561679 among compliant patients receiving the active
drug was 923 6 603 ng/mL.

CAPS Outcomes

Evaluation of the CAPS past-week total score as a function of
time, treatment, and their interaction found no differential
change over time between GSK561679 and placebo (t435 =
0.713, p # .477) (Figure 1). The three CAPS-derived symptom
clusters of re-experiencing, avoidance, and hyperarousal also
found no differential change over time for GSK561679
compared with placebo (all p . .05).

Response rates did not differ between treatments, whether
defined as a 50% decrease from baseline (placebo: 18
[27.7%]; GSK561679: 14 [22.2%]; c2

1 = 0.543, p = .305) or
30% decrease (placebo: 34 [52.3%]; GSK561679: 28 [44.4%];
c2

1 = 0.384, p = .238).

MADRS Outcomes

Longitudinal modeling of MADRS scores found no differential
change over time between the treatments (t425 = –0.693,
p # .489) (Supplemental Figure S2).

Completers and Compliers

Reanalysis of symptom outcomes (i.e., CAPS and MADRS)
using all completers, as well as the completers and compliers
sample, failed to substantively alter any conclusions. Among
the completers and compliers sample who received
GSK561679, the mean week 6 serum concentrations between

responders ($30% improvement from baseline) and non-
responders did not differ (responders: 852 6 427 ng/mL;
nonresponders: 706 6 419 ng/mL; F1,35 = 1.1, p # .301).

Secondary Outcomes

Multilevel modeling evaluated several secondary outcomes as
a function of time, treatment, and their interaction. Change in
PSS-SR Total scores over time did not reveal a treatment by
time interaction (t436 = –0.022, p = .983). Similar null results
were found for the re-experiencing (t438 = –0.016, p = .987),
hyperarousal (t437 = 0.300, p = .764), and avoidance (t436 =
–0.263, p = .793) subscales of the PSS-SR. The Quick
Inventory of Depressive Symptomatology, Self-Report (t427 =
0.748, p = .455), Clinical Global Impression of Severity (t411 =
1.126, p = .207), and Sheehan Disability Scale (t188 = –0.440,
p = .660) also failed to show differential change for GSK561679
over placebo.

Treatment Outcome Moderators

We conducted a post hoc exploratory evaluation of potential
clinical moderators to account for potential heterogeneity in
treatment response. We found no significant moderation of the
results by patient age, time since traumatic event, comorbid
major depressive disorder, CAPS score at screening, or
Childhood Trauma Questionnaire total score.

Genotype by Childhood Abuse Interaction on
Symptom Change Stratified by Treatment

We first tested the interaction effect of SNP rs110402 carrier
status and childhood abuse on the percent change of CAPS
score, as well as PSS-SR score, separately in GSK561679-
treated and placebo-treated patients. rs110402 carrier sta-
tus showed no significant main effect on the percent change
of PTSD symptoms from pre- to posttreatment (p . .05) or
on CAPS score change over treatment (p . .05) in either
treatment group. However, childhood abuse and the inter-
action of genotype by child abuse significantly predicted
PSS-SR percent change in the GSK561679 group (abuse:
b = 1.534, p = .021; SNP by abuse: b = –1.904, p = .043) but
not in the placebo group (abuse: b = –.629, p = .53; SNP by
abuse: b = .421, p = .68). More specifically, GG genotype
carriers who had experienced childhood abuse showed the
highest PSS-SR percent change after GSK561679 treatment
(Figure 2). Plotting PSS-SR scores by group over time
showed that among the patients with childhood abuse, GG
homozygotes who received GSK561679 had consistently
lower symptom scores over all 5 postbaseline timepoints
(Figure 3A, B).

Interestingly, the interaction of genotype by child abuse on
PSS total score was most pronounced for the two PSS-SR
subscales of re-experiencing and arousal. Significant inter-
action effects for the re-experiencing (GSK561679: b =
–2.472; p = .006; placebo: b = .075; p = .92) and arousal
subscales (GSK561679: b = 2.034; p = .019; placebo: b =
.054; p = .94) emerged in subjects treated with GSK561679,
but not for the PSS-SR avoidance subscale (GSK561679:
b = –0.945; p = .36; placebo: b = .565, p = .44) (Supplemental
Figures S3–S5).

Figure 1. Change in Clinician-Administered PTSD Scale (CAPS) past-
week total scores by treatment group. Bars represent 6 1 SE.
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Genotype by Childhood Abuse Interaction on
Depressive Symptoms Stratified by Treatment

Because of the implications of rs110402 for depression after
childhood abuse, we also tested the interaction effect of
rs110402 and child abuse on the percent change in MADRS
scores. There was no main effect of child abuse, nor was there
an interaction effect of genotype by abuse, in either of the
treatment groups (p . .05 for all).

Analysis of Treatment or Genotype Effect on Blood
Cortisol and ACTH Levels and Interaction Effects of
Treatment by Cortisol/ACTH Levels on Psychiatric
Symptom Change

We tested for main effects of GSK561679 as well as rs110402
A-allele carrier status on change in cortisol concentrations over
treatment time. There was no significant effect of GSK561679
compared to placebo on morning basal plasma cortisol con-
centrations after 5 weeks of treatment (p . .05) (Supplemental
Figure S6). There was also no significant effect on cortisol
suppression following the dexamethasone suppression test at
baseline, nor a significant difference in cortisol suppression at
baseline compared to week 5 (p . .05) (Table 2; Supplemental
Figure S7). Genotype analyses of rs110402 carrier status
showed similar null results (p . .05 for all). Neither the inter-
action of treatment by morning cortisol levels at baseline, nor
treatment by change of morning cortisol levels from prestudy
to 5 weeks were correlated with pre- to postpercent change of
psychiatric symptoms (CAPS, PSS, and MADRS). In addition,
there was no interaction effect of treatment with changes in the

dexamethasone suppression test from prestudy to 5 weeks on
percent change of psychiatric symptoms (p . .05 for all). For
ACTH analyses, we used the same models replacing cortisol
by plasma ACTH concentrations. No significant main or
interaction effects were observed (p . .05 for all).

Safety and Tolerability

One serious adverse event occurred in each treatment arm,
and both were considered unrelated to the study medication.
Evaluation of suicidal ideation and behavior using the
Columbia Suicide Severity Rating Scale did not find differential
levels of either ideation or behavior. No adverse events
occurred significantly more frequently in the GSK561679 than
the placebo arm (Supplemental Tables S3 and S4).

DISCUSSION

This clinical trial found that a potent CRF1 receptor antagonist
provided no benefit for reduction of PTSD symptoms beyond
those achieved with placebo. The failure of GSK561679 to
demonstrate efficacy is unlikely to be the result of symptom
severity or placebo responsiveness of the sample. The base-
line CAPS total score of 76 was similar to baseline scores in
positive trials of selective serotonin reuptake inhibitors and
venlafaxine, and the mean change in CAPS score of 28 points
in the placebo arm was similar to the degree of placebo
improvement in those trials, which ranged from 23.2 to 26.2
points (37–41).

One explanation for the trial’s failure to show benefit of
GSK561679 may be found in our analysis of the rs110402 SNP

Figure 2. Significant interaction effect of rs110402
and childhood abuse on percent change in PTSD
Symptom Scale–Self-Report (PSS-SR) score. The
boxplots describe the mean percent change of PSS-
SR total score in abused and nonabused patients
treated with the GSK561679 or placebo. GG homo-
zygotes are shown in light gray, and carriers of the A
allele (AG heterozygotes and AA homozygotes) in
dark gray. Higher PSS-SR percent change corre-
sponds to improvement (reduction) in posttraumatic
stress disorder symptoms from baseline to endpoint.
rs110402 A carrier status by childhood abuse
exposure showed a significant interaction effect on
PSS-SR score percent change over treatment in
subjects treated with GSK561679 (b = –1.904, p =

.043) but not in subjects treated with placebo (b = .421, p = .68). rs110402 GG carriers exposed to child abuse displayed the highest percent change of PSS-SR
symptoms after GSK561679 treatment.

Figure 3. PTSD Symptom Scale–Self-Report
(PSS-SR) score change over time among patients
treated with GSK561679 by abuse level. Mean (6
SEM) PSS-SR total score at all five time points
during treatment with GSK561679 in (A) patients
with a history of childhood abuse and (B) patients
with mild/no childhood abuse, stratified by
rs110402 carrier status. GG homozygotes are
shown in light gray, and carriers of the A allele (AG
heterozygotes and AA homozygotes) in dark gray.
When treated with GSK561679, the GG genotype
carriers that experienced childhood abuse showed
consistently lower symptom scores over all five

time points compared to abused AG/AA carriers, while this genotype effect was not observed in the nonabused group.
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of the CRHR1 gene. Among patients with a history of child-
hood abuse, GG homozygotes at this locus, in contrast to
A-allele carriers, demonstrated significant improvements in
self-reported hyperarousal and re-experiencing symptoms
with GSK561679 treatment, which were absent in the placebo-
treated patients. Thus, the responsiveness of patients to CRF1
receptor antagonism may depend on their genetic endowment
and environmental exposures, which could be linked to an
increased activity of the CRF system in these individuals.
However, this abuse by allele status analysis was exploratory,
the number of patients in each arm was relatively small,
and the effect was observed on the PSS-SR, not the primary
CAPS scale, so this finding requires replication in larger
samples before definitive conclusions about this association
can be made.

Some data do not support the model that disruptions in CRF
signaling are associated with anxiety disorders, raising the
possibility that the negative result is a consequence of poor
target selection. Adult wild-type and CRF knockout mice
demonstrate similar behavioral responses to stressors, even
though CRF knockouts fail to activate the HPA axis in response
to stressors (42). In the central nucleus of the amygdala, CRF1
receptor activation reduces glutamate-mediated excitatory
postsynaptic currents and increases excitatory postsynaptic
currents in the lateral septum (43). Conflicting data exist on
whether chronic antidepressant administration impacts basal
CRF messenger RNA expression in the paraventricular nucleus
(44–46) or diminishes stress-induced CRF gene expression in
the paraventricular nucleus (46). Other data suggest that anti-
depressants reduce CRF1 receptor messenger RNA expres-
sion in the amygdala (45), but this finding has not been
replicated (46). Finally, a small study of PTSD patients who
achieved remission with paroxetine found no significant pre- to
posttreatment change in cerebrospinal fluid CRF concentra-
tions (12). In combat veterans with PTSD, observation of
trauma reminder stimuli resulted in unexpected reductions in
cerebrospinal fluid CRF concentrations (47).

Another alternative is that the negative results of this study
may be related to the differential anxiolytic and anxiogenic
effects of CRF1 receptor activation by brain region. In the
forebrain, CRF1 receptor increases anxiety by amplifying ac-
tivity in the hippocampal formation via increased firing fre-
quency of glutamatergic inputs. Stress increases CRF
concentrations in the locus ceruleus, which can induce
anxiety-like behavior in animals (48), and CRF receptor an-
tagonists applied to the locus ceruleus diminish norepineph-
rine release to the hippocampus (49) and prefrontal cortex (50).
CRF activity at CRF1 receptor in the dorsal raphe reduces

activity of serotonergic neurons (51). In the prefrontal cortex,
CRF acting through CRF1 receptor sensitizes postsynaptic 5-
HT2 receptors that mediate anxiety behaviors in mice (52). In
contrast, to these effects, loss of CRF1 receptor signaling in
midbrain dopaminergic neurons increases anxiety by inhibiting
dopamine release in the prefrontal cortex (53).

Another consideration for the trial’s negative results is the
potential sex-specific responses to CRF and CRF1 receptor
antagonists. In contrast to male mice, which show clear
behavioral and HPA axis responses to infusion of either CRF or
a CRF1 receptor antagonist into the dorsal raphe, female mice
demonstrate modest changes (54). Because participation in
the current trial was limited to women, the potential efficacy of
GSK561679 in men could not be assessed. Design of future
human studies of CRF1 receptor antagonists should pro-
spectively consider possible sex-specific effects of CRF-
modulating drugs.

As part of this National Cooperative Drug Discovery/
Development Groups program, a study evaluating the anxio-
lytic effects of GSK561679 was conducted in healthy adults
using a startle paradigm (55). Contrary to expectations, a sin-
gle 400-mg dose of GSK561679 increased startle in response
to a stimulus predictive of electric shock (i.e., increased fear)
but had no effect on unpredictable shock (i.e., anxiety),
although GSK561679 also reduced baseline startle, which
complicates interpretation of the startle potentiation results. In
contrast, alprazolam in this study was found to reduce anxiety
but did not impact fear. Although these results did not support
preclinical rodent data suggesting that CRF1 receptor antag-
onism decreases anxiety measures, they were consistent with
the rodent data suggesting that CRF1 receptor antagonism can
increase startle responses potentiated by cued fears (56).
Taken together, these data suggest that CRF1 receptor
antagonism can inhibit the bed nucleus of the stria terminalis,
thereby reducing the “brake” that bed nucleus of the stria
terminalis exerts on the reactivity of the central nucleus of the
amygdala to fear stimuli (57), but that this inhibitory effect is
inadequate to reduce behavioral expressions of anxiety. These
different regional actions of CRF1 receptor antagonism within
the central nervous system may have yielded competing ef-
fects on patients’ anxiety levels. In addition, the current trial
used only a fixed dose of 350 mg/day; higher doses may have
produced different effects.

Alternatively, if CRF overactivity is truly present in PTSD, the
negative study result may indicate that once PTSD is estab-
lished, a blockade of CRF’s extrahypothalamic sensitization
effects on anxiety signaling is insufficient to alter the expres-
sion of anxiety behaviors. The great majority of animal studies

Table 2. Morning Plasma Cortisol and Adrenocorticotropin Concentrations Before and After 5 Weeks of Treatment

Pretreatment Week 5

Pre-Dexamethasone Post-Dexamethasone Pre-Dexamethasone Post-Dexamethasone

Cortisol, mg/dL 6 SD

Placebo 10.3 6 3.8 p = .65 2.2 6 2.9 p = .50 10.7 6 4.2 p = .77 2.9 6 2.9 p = .16

GSK561679 10.7 6 3.4 1.8 6 2.0 10.4 6 3.1 1.8 6 3.0

ACTH, pg/mL 6 SD

Placebo 21.9 6 15.3 p = .18 11.6 6 7.2 p = .39 20.0 6 12.8 p = .041 8.7 6 4.8 p = .32

GSK561679 26.5 6 14.7 10.2 6 6.4 27.5 6 14.4 11.0 6 11.1

ACTH, adrenocorticotropin.
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implicating the role of CRF1 receptor activation in anxiety re-
sponses are based on short-term stressors and drug expo-
sures. For example, in mice, CRF1 receptor antagonism
immediately after a predator stressor successfully blocks the
initiation and consolidation of the stressor’s effects on startle
(58). In human adults affected with depression, PTSD, or
anxiety disorders, CRF activation at the time of stress may
produce circuit-level changes that, once established, are only
weakly responsive to further modulation of CRF signaling.
Indeed, chronic overexpression of CRF in adult mice produces
only modest effects on behavior (59). Under this model, CRF1
receptor antagonists may prove more efficacious as preven-
tative treatments immediately posttrauma rather than as
monotherapy treatments for established conditions.

While this trial was underway, GSK561679 was found to be
ineffective in the treatment of major depressive disorder (60),
and one study in social anxiety disorder was completed with
undisclosed results (61). The negative result in the current trial
suggests that CRF1 receptor antagonists are unlikely to prove
useful for the treatment of anxiety disorders, despite the wealth
of suggestive preclinical data (21). Our preliminary data
attempting to subtype patients according to possible CRH
system hyperactivity suggest, however, that CRF1 receptor
antagonists may be effective in specific biological subgroups
of patients. This observation needs to be confirmed by addi-
tional, larger studies. Other possible explanations for the failure
of CRF1 receptor antagonists include inadequate central ner-
vous system penetration of the compounds, inadequate
treatment duration, abnormal concentrations of CRF-binding
protein in the central nervous system (62), competing actions
by urocortins (43), or strong compensatory systems that
oppose any anxiolytic effect of CRF1 receptor antagonism (63).
The effects of CRF2 receptor activation in the presence of
CRF1 receptor antagonism are unknown (64), although existing
data suggest that preserved CRF2 receptor signaling in the
absence of CRF1 receptor activation should have provided a
protective effect against anxiety (65,66). Despite the failures of
CRF1 receptor antagonists in mood and anxiety disorders, this
mechanism of action may find clinical value in other areas of
psychiatry.
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SUMMARY

MicroRNAs are important regulators of gene expres-
sion and associated with stress-related psychiatric
disorders. Here, we report that exposing mice
to chronic stress led to a specific increase in
microRNA-15a levels in the amygdala-Ago2 complex
and a concomitant reduction in the levels of its pre-
dicted target, FKBP51, which is implicated in
stress-related psychiatric disorders. Reciprocally,
mice expressing reduced levels of amygdalar
microRNA-15a following exposure to chronic stress
exhibited increased anxiety-like behaviors. In hu-
mans, pharmacological activation of the glucocorti-
coid receptor, as well as exposure to childhood
trauma, was associated with increased microRNA-
15a levels in peripheral blood. Taken together, our
results support an important role for microRNA-
15a in stress adaptation and the pathogenesis of
stress-related psychopathologies.

INTRODUCTION

Recent studies have linked microRNA (miRNA) expression
or biogenesis dysregulation to various psychiatric disorders,
including anxiety and depression (Dias et al., 2014b; Issler and
Chen, 2015; Issler et al., 2014; Lopez et al., 2014; O’Connor
et al., 2012; Volk et al., 2014). However, changes in miRNA
expression levels do not necessarily reflect their immediate
activity; it is only when a specific miRNA, in the canonical
pathway, has matured and been incorporated into the RNA-
induced silencing complex (RISC) in the presence of argonaute
RISC catalytic component 2 (Ago2) that it becomes truly active
(Meister et al., 2004) as a result of its association with its target
mRNA.

The amygdala plays a pivotal role in regulating the behavioral
responses to stressful challenges (Dunsmoor and Paz, 2015; Du-

varci and Pare, 2014; Johansen et al., 2011; L€uthi and L€uscher,
2014; Maren and Holmes, 2016). Recently, regulation of some
amygdalar functions and stress-related behaviors has been
attributed to miRNAs. miR-34c is involved in regulating stress-
induced anxiety (Haramati et al., 2011) and miR-34a in fear
memory consolidation (Dias et al., 2014a). Furthermore, miR-
19b plays an important role in memory consolidation following
stress by regulating the adrenergic receptor beta 1 (Volk et al.,
2014).
In this study, we investigated Ago2-associated miRNAs and

transcripts in the amygdala of mice subjected to a chronic social
defeat stress. This chronic social stress paradigm consists of 10
consecutive days of short physical encounters between a
C57BL/6 mouse and an aggressive ICR (CD1) mouse (Golden
et al., 2011; Krishnan et al., 2007). The repeated exposure to
stress is considered a model for the induction of chronic stress
(Elliott et al., 2010, 2016; Issler et al., 2014), as well as depres-
sion-like behavior (Hollis and Kabbaj, 2014; Malatynska and
Knapp, 2005) in mice. Molecular analysis and behavioral studies
demonstrate that miR-15a is recruited to the Ago2 complex
following chronic stress and is an essential regulator of an intact
behavioral response to chronic stress.

RESULTS

miR-15a and FKBP51mRNAAreAssociatedwith Ago2 in
the Amygdala following Chronic Stress
To identify miRNAs that are involved in the regulation of the
behavioral response to chronically stressful challenges, we
immunoprecipitated the Ago2 complex in tissue obtained from
the amygdala of mice 8 days after completion of the chronic so-
cial defeat stress. Mice were subjected to the chronic social
defeat stress paradigm for 10 consecutive days (Figure 1A),
following which they were subjected to a social avoidance test
to categorize them as being either ‘‘susceptible’’ or ‘‘resilient’’
to the chronic social defeat stress (Figure 1B). The RNA from
the Ago2 complex of three groups—susceptible, resilient, and
control—was extracted and analyzed in parallel using two
distinct microarray platforms; a miRNA and a mRNA expression
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Figure 1. miR-15a Is Elevated following Chronic Stress and Potentially Regulates FKBP51
(A) Schematic illustration of the social defeat paradigm. C57 mice are subjected to 5 min of physical contact (left) with an aggressive ICR mouse, followed by

sensory contact for 24 hr (right).

(B) Social avoidance test. Unstressed mice spend more time in the interaction zone following introduction of an unfamiliar mouse, t(16) = !3.657, p = 0.002.

Susceptible mice spend less time in the interaction zone following introduction of an unfamiliar mouse, t(16) = 3.133, p = 0.006. Resilient mice spendmore time in

the interaction zone following introduction of an unfamiliar mouse, t(16) = !2.358, p = 0.031. Data are represented as mean ± SEM.

(C) Extracts of the amygdalae ofmice subjected to social defeat were used for immunoprecipitation (IP) with anti-Ago2 antibody. The bound RNAwas analyzed on

a miRNA array (four control arrays, n = 12 animals; six social defeat arrays, n = 18 animals) and a gene expression array (three control arrays, n = 9 animals; six

social defeat arrays, n = 18 animals).

(D) Log2 miRNA expression analysis. Four miRNAs were elevated, and ten miRNAs were decreased in the amygdala Ago2 complex following social defeat.

(E) miR-15a levels were elevated in the Ago2 precipitate, t(7) = 7.147, p = 0.0002; as was FKBP51 mRNA, t(7) = 5.352, p = 0.0011.

(F) miR-15a was also elevated in total RNA extracted from mice amygdalae (n = 5) following social defeat, t(8) = 2.46, p = 0.039; whereas FKBP51 levels (n = 5)

were decreased, t(8) = 3.531, p = 0.008. Data are represented as mean ± SEM.

(G) FKBP51 protein levels following social defeat. FKBP51 protein levels are downregulated in chronically stressed mice compared to control, t(6) = 3.049, p =

0.014. Data are represented as mean ± SEM.

Error bars represent mean ± SEM. *p < 0.05; **p < 0.01.

See also Figures S1 and S2.
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array (Figure 1C). Initially, we hypothesized that we would
observe changes in the miRNA population of the Ago2 complex
in the amygdala not only between stressed and control mice but
also between susceptible and resilient mice. However, our anal-
ysis revealed that no significant changeswere detected between
the susceptible and resilient mice. For this reason, we combined
the two groups of mice into one that is referred to in the text as
‘‘social defeat.’’ Analysis of the miRNA array revealed four
miRNAs that were upregulated and ten that were downregulated
(Figure 1D; Figure S1A). A parallel analysis on the gene array re-
vealed a small number of mRNAs that were either upregulated or

downregulated in the Ago2 complex immunoprecipitation (IP)
following social defeat (Figure S1B). When we analyzed the
mRNAs that were changed following social defeat, we focused
on stress-associated genes that were previously described to
be expressed in the amygdala. This is the reason we focused
on FK506 binding protein 51 (FKBP51) and miR-15a. FKBP51
has been previously linked to the pathogenesis of posttrau-
matic stress disorder and depression (Binder et al., 2008;
Klengel et al., 2013; Lekman et al., 2008; Zannas et al.,
2016). miR-15a levels were raised 1.8-fold (p = 0.0002) in the
array following exposure to chronic stress (Figure 1E). Interest-
ingly, a parallel increase in FKBP51 mRNA (p = 0.001), a pre-
dicted target of miR-15a, was observed in the Ago2 complex
(Figure 1E). Whereas the levels of miR-15a were also elevated
(p = 0.039) in the total RNA levels of the amygdala tissue,
FKBP51 levels were, as expected, decreased (p = 0.008)
(Figure 1F), supporting the possibility that FKBP51 is directly
downregulated by miR-15a in the amygdala. Consistently, the
protein levels of FKBP51 were measured, and a reduction of
25% in its levels was observed (p = 0.014) (Figure 1G). Interest-
ingly, the levels of miR-15a were also elevated by 60% in the
plasma of mice subjected to chronic stress (p = 0.047),
whereas the levels of miR-124, an abundant brain miRNA,
were unchanged (Figures S2A and S2B), implicating miR-15a
as a possible marker for chronic stress exposure. These ex-
periments led us to focus on miR-15a and FKBP51 and
address their involvement in mediating chronic stress cellular
processes.

miR-15a Transcription Regulation
miR-15a is located on chromosome 14 as part of a cluster with
miR-16-1 (Figure 2A), indicating that these two miRNAs are co-
transcribed. Previous studies have demonstrated that the pro-
moter for miR-15a and miR-16-1 is likely to be the promoter
for DLEU2, a non-coding gene that contains the transcript
for miR-15a (Zhang et al., 2012). Although both miR-15a
and miR-16-1 share a seed sequence, their mature miRNA
sequence differs in several nucleotides (Figure 2B). In addition,
the total levels of miR-16 in most brain areas appear to be higher
than that of miR-15a (Figure 2C), possibly since miR-16 has two
copies in the genome (miR-16-1 on chromosome 14 and miR-
16-2 on chromosome 3), which both give rise to a similar mature
form of miR-16, whose genomic origin is indistinguishable.
Importantly, the elevation in miR-15a levels observed in our
Ago2 IP is specific for this miRNA and not for miR-16 (Figure 2D),
implying miR-15a specificity at the level of the Ago2 complex
formation.

FKBP51 Is a Confirmed Target of miR-15a
Consistent with direct targeting of FKBP51 by miR-15a,
the seed sequence for miR-15a binding at the 30 UTR of
FKBP51 is highly conserved (Figure 3A). Moreover, a lucif-
erase assay, in which a construct containing luciferase
followed by the 30 UTR of FKBP51 was constructed and trans-
fected into Huh7 cells expressing either miR-15a or a
scramble control for it, showed a robust specific reduction
in normalized luciferase levels (p < 0.001; Figure 3B). Impor-
tantly, this reduction was abolished when the miR-15a seed

Figure 2. miR-15a and miR-16-1 Are Differentially Expressed
following Chronic Stress
(A) Schematic illustration of the miR-15a and miR-16-1 transcript.

(B) Alignment of the mature sequence of miR-15a and miR-16.

(C) The distribution of miR-15a and miR-16 in different brain regions. Olf., ol-

factory; PFC, prefrontal cortex.

(D) Comparison of the amygdala Ago2 IP results of miR-15a and miR-16. Data

are represented as mean ± SEM. **p < 0.01.
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sequence was mutated (Figure 3B). These results support a
regulatory role for miR-15a in directly controlling FKBP51
levels.

Overexpression of miR-15a in the Basolateral Amygdala
Does Not Affect Anxiety-like Behavior
To examine whether increased levels of miR-15a in the amyg-
dala are sufficient to mimic the behavioral effects associated
with chronic stress exposure, we designed, constructed, and
produced lentiviruses overexpressing the precursor of miR-
15a or a scramble miR sequence as a control (Figure S3A).
The degree of infection and the levels of miR-15a expression
were verified using qPCR on RNA samples extracted from
amygdala punches obtained from mice injected with these vi-
ruses into the basolateral amygdala (BLA). The treated mice
showed an approximately 2-fold increase in the level of amyg-
dalar miR-15a compared to scramble control (p < 0.001; Fig-
ure S3B), which is similar to the elevated levels of miR-15a
observed following exposure to chronic stress (Figure 1F).
To assess the stress-related behavioral changes of mice ex-
pressing higher levels of miR-15a, mice were injected bilater-
ally into the BLA with either miR-15a-overexpressing or
control-scrambled viruses under basal or chronic stress
conditions (Figures S3C–S3E). Behavioral assessment of the
injected mice indicated no significant changes between mice
overexpressing miR-15a or a control scramble miR in the
open-field test, or in the elevated plus maze (EPM) test, under
baseline (Figures S4A and S4C) or chronic stress (Figures S4B
and S4D) conditions. In addition, no changes were observed in
the locomotor activity or total time traveled in the open field
test of mice overexpressing miR-15a compared to control
scramble miR under basal (Figures S4E–S4G) or chronic
stress conditions (Figures S4H–S4J). Therefore, we concluded
that overexpression of miR-15a in the BLA is not sufficient to

mimic the behavioral effects associated with exposure to
chronic social defeat.

Reduced Levels of miR-15a in the BLA Increases
Anxiety-like Behavior following Exposure to Chronic
Stress
Next, we assessed the requirement of endogenous amygdalar
miR-15a levels for the behavioral responses under baseline
and chronic stress conditions. We designed, constructed, and
produced a viral vector containing multiple binding sites for
miR-15a (miR-15a Sponge), which enabled the knockdown
(KD) of miR-15a levels in the BLA (Figure 4A). The control sponge
viral construct was generated by specifically mutating 4 bp on
each side of the bulge of the sponge (Figure 4A). Injection
of the miR-15a KD or control sponge viruses into the BLA of
mice, regardless of their exposure to chronic social defeat, re-
sulted in an approximately 2.5-fold reduction in the levels of
miR-15a in the BLA under basal conditions (p = 0.019) and
following social defeat (p = 0.012) (Figures 4B and 4C). Whereas
a reduction was observed independently of chronic stress, the
absolute levels of miR-15a were higher in the chronic social
defeat group compared to controls (Figure 4C). This supports
our initial observation regarding elevation in miR-15a levels in
the amygdala following chronic social defeat. The BLA of an
additional group of mice was injected with miR-15a sponge
and a control sponge virus (Figure S5A), and RNAwas extracted.
The levels of miR-15awere confirmed to be reduced by 40% (p =
0.009) using real-time PCR (Figure S5B). These samples were
also sequenced using the Illumina TruSeq Small RNA Library
Preparation Kit, and no significant changes were observed in
the 25 most abundant miRNAs (Figure 4D), thus verifying a spe-
cific KD for miR-15a. As expected from our luciferase assay,
FKBP51 mRNA levels were elevated in the BLA of mice injected
with the miR-15a KD virus (p = 0.033; Figure 4E). The protein

Figure 3. FKBP51 Is Regulated by miR-15a In Vitro
(A) Schematic illustration of FKBP51 30 UTR indicating the conserved seed match for miR-15a.

(B) Luciferase assay with luciferase fused to the 30 UTR of FKBP51 containing an intact or a control of a mutated (mut) seed site for miR-15a in the presence of

miR-15a or control scramble miR (n = 6) showed a 50% decrease in luciferase levels, t(10) = 9.083, p = 0.000. This decrease was abolished when the intact

FKBP51 30 UTR contained a miR-15a mutated seed. Data are represented as mean ± SEM. ***p < 0.001
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levels of FKBP51 were increased by approximately 50% (p =
0.022; Figures 4F and 4G) following injection of miR-15a KD or
control viruses.

Next, we assessed the miR-15a KD mice for anxiety-like
behavior using the EPM test. Under baseline conditions (in which
mice were not exposed to chronic social defeat), a tendency
toward main effect was observed (p = 0.058). No significant
changes were observed in the time spent in the open arms, num-
ber of visits to the open arms, or distance traveled in the open
arms between the miR-15a KD and control groups (Figures
5A–5C). Similarly, the locomotor activity and the total distance
traveled in the open field test showed no differences between
these groups (Figures 5H–5J). Intriguingly, however, following
chronic social defeat, a main effect between the behavior of
miR-15a KD and control mice was observed (p = 0.026). Mice
with miR-15a KD spent significantly less time in the open arms
(p = 0.009) (Figures 5D and 5G) and traveled less distance in
the open arms relative to controls (p = 0.002; Figures 5F and
5G, (asterisks indicate significance following correction with
Bonferroni correction for multiple testing). No differences were
observed in the number of visits to the open arms, the locomotor
activity between the groups, or the total distance traveled in the

open field test (Figures 5E and 5K–5M). These results demon-
strate that KD of miR-15a levels in the amygdala specifically
impaired the recovery and behavioral response of mice following
their exposure to chronic stress. In the open field test, miR-15a
KD mice spent less time in the center of the arena (p = 0.032),
but no changes were observed in the distance traveled in the
center or the number of visits to the center (Figure S5C).
Following chronic social defeat, miR-15a KD and control mice
spent similarly less time in the center of the arena, suggesting
a ‘‘floor effect.’’ However, miR-15a KD mice showed a tendency
to travel for less distance in the center of the arena (p = 0.060)
and made fewer visits to the center of the arena (p = 0.041) (Fig-
ure S5D). These results are in accordance with Hartmann
et al. (2015), who observed induced anxiety-related behavior
following overexpression of FKBP51 in the BLA. Moreover, Att-
wood et al. (2011) showed that silencing of FKBP51 levels in
the BLA by injection of lentiviral short hairpin RNA led to a reduc-
tion in anxiety levels in the EPM. Taken together, the present data
suggest that amygdalar miR-15a levels are functionally impor-
tant in regulating the behavioral response to challenge and
suggest that this effect is mediated, at least in part, via a
reduction of FKBP51 levels.

Figure 4. KD of miR-15a in the BLA Results in Increased FKBP51 Levels in the BLA
(A) Schematic illustration of lentiviral GFP-labeled constructs of control and sponge used to knock down miR-15a.

(B) Representative microscope image of virally infected basolateral amygdala (BLA) of a 10-week-old mouse following injection of lentiviral miR-15a KD with

enlargement of the BLA region that corresponds to the injection site (Paxinos and Franklin, 2001).

(C) Left: decreased miR-15a levels in the BLA (n = 4) of mice injected with miR-15a KD relative to control under basal conditions, t(6) = 3.175, p = 0.019; or (right)

following social defeat, t(6) = 3.528, p = 0.012. Data are represented as mean ± SEM.

(D) miRNA sequencing data. No differences are observed in the top 25 most abundant miRNA from mice injected with miR-15a KD virus compared with the

control virus.

(E) Elevated FKBP51 levels in the BLA (n = 7) of mice injected with miR-15a KD relative to control, t(12) =!2.413, p = 0.033. Data are represented asmean ± SEM.

(F and G) FKBP51 protein levels following miR-15a KD virus injection to the BLA. FKBP51 protein levels are upregulated in the BLA of mice injected with miR-15a

KD virus compared with control virus, t(6) = !3.060, p = 0.022. Data are represented as mean ± SEM.

*p < 0.05.

See also Figures S3 and S5.
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miR-15a Is Regulated by Glucocorticoids and Trauma in
Human Samples
To examine the potential parallel role of miR-15a in the human
stress response, we first analyzed miR-15a expression levels
in RNA extracted from peripheral blood cells of young healthy
male subjects following administration of the glucocorticoid re-
ceptor (GR) agonist dexamethasone (1.5 mg orally [p.o.]). We
observed a significant upregulation of miR-15a at 3 and 6 hr
post-treatment (Figure 6A), indicating that miR-15a is potentially
regulated by activation of the stress hormone system in humans.
In addition, we performed miRNA analyses on peripheral blood
cells of subjects with childhood trauma and control subjects
matched for age and gender with no history of early life stress.
We found that the levels of miR-15a were significantly higher
by 32% in subjects exposed to childhood trauma as compared
to control subjects who were not exposed (p = 0.000, Figure 6B).
Taken together, these results support a functional associ-
ation between the blood levels of miR-15a and psychiatric
impairment.

DISCUSSION

The present study reveals an important role for amyg-
dalar miR-15a in regulating the behavioral responses to
chronic stressful challenges. miR-15a levels are significantly
increased in the amygdala of mice subjected to chronic
stress, and amygdala-specific KD of miR-15a changes the
behavioral responses to chronic stressful challenges. A target
of miR-15a, FKBP51, identified in our studies, has been impli-
cated in a number of stress-related psychiatric disorders
(Binder, 2009; Zannas et al., 2016). FKBP51 is part of the im-
munophilin protein family and is known to play a role in GR
transcriptional activation following the elevation of cortisol
(Gillespie et al., 2009). Manipulation of FKBP51 levels in the
BLA, using small interfering RNA (Attwood et al., 2011), or of
its overexpression, using a viral vector (Hartmann et al.,
2015), has been linked to changes in anxiety-like behavior.
FKBP51, which is strongly implicated in a number of stress-
related psychiatric disorders and is currently a leading target
for pharmacological manipulation for the treatment of various
psychopathologies, is robustly regulated both in vitro and
in vivo by miR-15a. Importantly, miR-15a is upregulated by
pharmacological activation of the stress response in humans
by dexamethasone treatment, as well as exposure to early
adverse life events. Therefore, miR-15a might represent

an important target for the treatment of stress-related
psychopathologies.
Our results imply that, in the chronic stress response, miR-15a

and its target FKBP51 represent major components for the
following reasons: Although miR-15a is bioinformatically pre-
dicted to target other stress- and depression/anxiety-related
transcripts, such as GILZ or Sgk1 (Anacker et al., 2013; Thiagar-
ajah et al., 2014), the mRNA levels of these genes were un-
changed in our Ago2 IP array (data not shown), supporting the
specificity of the assay. In the present study, we focused exclu-
sively on miR-15a regulation of FKBP51 due to the reported
involvement of this gene in stress-response regulation and
stress-linked psychopathologies (Hartmann et al., 2012, 2015;
Scharf et al., 2011). Furthermore, FKBP51 mRNA was detected
in the Ago2 complex, implicating a direct binding to the RNAima-
chinery. Finally, a significant decrease in FKBP51 levels was
observed in the total RNA samples that concomitantly exhibited
elevated miR-15a levels. Nevertheless, it is important to note
that FKBP51 is not the only predicted target of miR-15a and
that the changes observed in anxiety-like behavior after knock-
ing down the levels of miR-15a in vivo are not mediated merely
by affecting the levels of FKBP51.
Although BLA-specific overexpression of miR-15a resulted in

no significant behavioral changes, knocking down miR-15a in
the BLA caused an anxiogenic phenotype following exposure
to chronic stress. The regulation of miR-15a following exposure
to chronic stress and the observed anxiogenic phenotype in the
BLA-miR-15a KD mice following chronic stress exposure may
suggest that miR-15a is specifically involved in regulating the
behavioral responses to repeated or chronic stressful exposure.
Nevertheless, miR-15amay potentially be important also in regu-
lating anxiety levels, regardless of the stress history of the mice,
and its effectmay be amplified by stress. The lack of an anxiolytic
phenotype in the BLA-miR-15a-overexpressing mice could be
explained either by lack of spatial specificity, meaning that the
overexpression of miR-15a was not induced in endogenously
relevant BLA neurons, or by a possible ‘‘ceiling effect,’’ in which
increasing levels of miR-15a on top of its endogenous stress-
induced elevation is not effective because the stress response
has already reached its full capacity. However, preventing the
elevation of endogenous miR-15a in the BLA by its KD resulted
in a failure of themice tomount the required behavioral response
when exposed to a chronic stressful challenge.
Finally, the elevation of miR-15a in two distinct human stress-

linked scenarios—namely, administration of dexamethasone

Figure 5. Mice with Virally Mediated Reduced Levels of BLA-miR-15a Exhibit Increased Anxiety-like Behavior
(A–C) Results from the elevated plus maze (EPM) test of mice injected with miR-15a KD or control viruses (ns = 11 and 12, respectively) showing a tendency for

differences, F(3, 19) = 2.971, p = 0.058. No significant differences were observed in the time spent in the open arms (A), the number of visits to the open arms (B), or

the distance traveled in the open arms (C), according to Bonferroni correction for multiple testing. Data are represented as mean ± SEM.

(D–F) Mice injected with miR-15a KD or control viruses (ns = 10 and 9, respectively) that were also subjected to social defeat showed different behavior in the

EPM, F(3, 15) = 4.08, p = 0.026; with a significant decrease in the time (D) (U = 13, p = 0.009) and distance (F) (U = 7, p = 0.002) spent in the open arms of the EPM

(corrected according to Bonferroni correction formultiple testing). No changeswere observed in the number of visits to the open arms (E). Data are represented as

mean ± SEM.

(G) Representative tracking in the EPM of control mice (upper panel) relative to miR-15a KD mice (lower panel).

(H–M) No changes were observed in the locomotor activity and total distance traveled in the open field test between miR-15a KD and control mice under basal

conditions (H–J) or following social defeat (K–M). Data in (I)–(J), (L), and (M) are represented as mean ± SEM.

*p < 0.05; **p < 0.01.

See also Figures S4 and S5.
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to healthy subjects as well as individuals exposed to
childhood trauma—strongly suggests its involvement in hu-
man stress conditions. Collectively, the preclinical and
human translational results presented in the present study
strongly suggest that alterations in miR-15a levels are
associated with the behavioral response to chronic or
repeated stressful challenges and may be relevant in the
pathogenesis of adverse life events and stress-linked psy-
chiatric disorders such as anxiety. Targeting miR-15a levels
might prove to be beneficial in the treatment of these
conditions.

EXPERIMENTAL PROCEDURES

See also the Supplemental Experimental Procedures.

Chronic Social Defeat Stress
10-week old C57BL/6J male mice were subjected to a chronic social

defeat stress protocol, as previously described (Krishnan et al., 2007). Briefly,

the mice were placed randomly in a home cage of an aggressive ICR

mouse and allowed to physically interact for 5 min. During this time, the ICR

mouse attacked the intruder mouse and the intruder displayed subordinate

posturing. A perforated clear Plexiglas divider was then placed between

the animals, and they remained in the same cage for 24 hr to allow sensory

contact. The procedure was then repeated with an unfamiliar ICR mouse for

each of the next 10 days. The animal protocols were approved by the Institu-

tional Animal Care and Use Committee (IACCU) of the Weizmann Institute of

Science.

IP of Ago2 Protein, RNA Purification, and Microarray
Pools of three amygdalae taken from three mice from the same treatment

group (either social defeat, n = 18, or control, n = 12) were immunoprecipitated

using magnetic protein G beads (Dynabeads, Invitrogen/Life Technologies)

and Ago2 monoclonal antibody (WAKO Chemicals).

RNA from the Ago2 IP samples was isolated and analyzed on an Affymetrix

miRNA 2.0 array (enriched RNA protocol) and an Affymetrix Mouse Gene 1.0

ST array .

Cloning of 30 UTRs into Psicheck2 Luciferase Expression Plasmid
The 30 UTR sequence of FKBP51 was PCR amplified from mouse genomic

DNA. This mutation replaced the first 4 nt in the miR-15a seed sequence of

FKBP51.

Design, Construction, and Validation of miR-15a Lentiviruses
The miR-15a overexpression vector was cloned following the human synapsin

promoter. The miR scramble control was purchased from GeneCopoeia. The

H1-miR-15a sponge KD and its control were designed according to Lin et al.

(2011).

Stereotactic Intracranial Injections
A computer-guided stereotaxic instrument and a motorized nanoinjector

(Angle Two Stereotaxic Instrument, myNeuroLab, Leica Biosystems) were

used as described previously (Elliott et al., 2010; Kuperman et al., 2010; Regev

et al., 2012).

Behavioral Assessments
All behavioral assessments were performed during the dark (active) phase

following habituation to the test room for 2 hr before each test.

Open-Field Test

The open-field test was performed in a 50 3 50 3 22-cm white box, lit to 120

lux. The mice were placed in the box for 10 min. Locomotion in the box was

quantified using a video tracking system (VideoMot2; TSE Systems).

EPM Test

The apparatus in this test is designed as a plus sign and contains two barrier

walls and two open arms. During the 5-min test, which is performed in relative

darkness (6 lux), data are scored using a video tracking system (VideoMot2,

TSE Systems).

Homecage Locomotion

Homecage locomotion was assessed using the InfraMot system (TSE Sys-

tems). Measurements of general locomotion consisted of two light and two

dark cycles in the last 48 hr, collected at 10-min intervals.

Statistics
Data are expressed as mean ± SEM and were performed using the Statistical

Package for the Social Sciences (SPSS) software.

Human Studies: Dexamethasone
Dexamethasone-unstimulated peripheral blood samples were drawn at 12:00

p.m. followed by oral administration of 1.5 mg dexamethasone. Subsequently,

stimulated samples were collected at 1:00 p.m., 3:00 p.m., 6:00 p.m., and at

11:00 a.m. the following day.
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The accession numbers for the data reported in this paper are GEO:
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Discussion	

Due	 to	 limited	 efficacy	 of	 pharmacological	 interventions,	 pharmacotherapy	 of	 post-

traumatic	stress	disorder	remains	a	great	challenge.	Directly	targeting	players	involved	

in	 the	 pathophysiology	 of	 the	 disorder	 is	 a	 possibly	 fruitful	 approach	 in	 novel	 drug	

development.	As	a	regulator	of	the	HPA	axis,	the	CRF	system	represents	a	promising	drug	

target	in	PTSD.	Although	antagonizing	this	system	with	CRF1	antagonists	has	shown	very	

promising	results	in	preclinical	studies	with	animal	models	of	stress	related	psychiatric	

disorders,	clinical	trials	with	large	human	cohorts	have	so	far	failed	to	show	efficacy	in	

the	 treatment	of	e.g.	MDD	or	GAD.	These	contradictory	 results	are	 likely	based	on	 the	

heterogeneity	 of	 the	 recruited	 patients	 in	 these	 trials.	 The	 pathophysiology	 of	 stress	

related	psychiatric	disorders	including	PTSD	is	a	complex	interplay	between	genetic	and	

environmental	 factors.	 Different	 interactions	 between	 multiple	 genetic	 and	

environmental	 factors	 will	 affect	 different	 biological	 pathways	 resulting	 in	 distinct	

pathophysiological	subtypes	of	PTSD,	which	consequently	will	respond	differently	 to	a	

certain	 treatment.	 Here,	 biological	 markers	 are	 of	 great	 value.	 Treatment	 response	

biomarkers	 can	 either	 serve	 as	 predictive	 markers	 to	 stratify	 patients	 into	 different	

subgroups	of	potential	responders	and	non-responders	to	a	targeted	therapy	or	track	an	

individual’s	response	to	a	therapeutic	intervention.	

This	thesis	addresses	the	above	statements	by	evaluating	pharmacological	CRF1	receptor	

antagonism	 in	 PTSD,	 identifying	 differentially	 responding	 subgroups	 of	 patients	 and	

examining	 potential	 DNA-methylation	 markers	 of	 treatment	 response	 in	 a	 cohort	 of	

PTSD-diagnosed	women,	treated	with	a	CRF1	antagonist.	Participants	were	assessed	for	

genotypes	and	genome-wide	DNA	methylation	from	peripheral	blood,	as	well	as	detailed	

information	on	stress-related	phenotypes	 (Figure	2).	Additionally,	 the	presented	work	
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intends	to	translate	promising	stress	related	microRNA	findings	from	mice	to	human	to	

possibly	identify	further	epigenetic	biomarkers	in	PTSD.	

	

	

	

Figure 2: Schematic workflow regarding the placebo-controlled randomized clinical trial:  
PTSD diagnosed women between 18 and 65 years of age were assessed for multiple stress-related 
psychological measures. After randomization, subjects were either treated with the CRF1 receptor 
antagonist or placebo. For biological assessments whole blood was collected at baseline and again 
after treatment. From all samples, DNA was extracted and measurement of genotypes as well as 
genome-wide DNA methylation analysis were performed. 
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Treatment	effects	of	a	CRF1	receptor	antagonist	in	PTSD		

In	 a	 first	 analysis,	 our	 collaborators	 investigated	 the	 effect	 of	 a	 novel	 CRF1	 receptor	

antagonist	(GSK561679)	on	PTSD	symptom	severity	in	a	double-blind	placebo	controlled	

clinical	 trial.	A	 cohort	of	 currently	untreated	adult	 female	patients	with	a	diagnosis	of	

posttraumatic	stress	disorder	was	treated	with	GSK561679	or	placebo	over	six	weeks.	

The	underlying	hypothesis	was	that	the	CRF1	receptor	antagonist	would	show	stronger	

PTSD	symptom	reduction	than	placebo.		

This	hypothesis	was	based	on	considerable	evidence	from	preclinical	and	human	studies	

(discussed	in	detail	in	the	introduction).		1)	A	hyper-activated	CRF	system	in	animals	leads	

to	anxiety-related	behavior.		2)	Concentrations	of	CRF,	the	ligand	of	the	CRF1	receptor,	

are	elevated	in	PTSD	patients.	3)	CRF1	receptor	antagonist	in	animal	models	have	shown	

promising	results	for	the	treatment	of	stress	related	disorders.		

However,	 the	 outcome	 of	 the	 study	 showed	 that	 there	 was	 no	 significant	 differential	

change	 in	 PTSD	 symptoms	 over	 treatment	 time	 between	 the	 antagonist	 and	 placebo.	

Therefore,	the	CRF1	receptor	antagonist	GSK561679	was	not	superior	over	placebo	in	the	

treatment	of	PTSD.		

One	of	several	possible	explanations	for	the	diverse	results	between	animal	and	human	

studies	may	be	the	inadequate	central	nervous	system	penetration	as	well	as	insufficient	

receptor	occupancy	of	 the	antagonist	 in	humans.	 In	 animals,	 ex	vivo	 studies	 assessing	

receptor	occupancy	can	partially	address	and	answer	these	questions	(Kehne	and	Cain,	

2010).	 In	 humans,	 finding	 the	 right	 dosage	 of	 the	 CRF1	 receptor	 antagonist,	 to	 reach	

adequate	CRF1	receptor	occupancy	and	by	that,	achieve	efficacy,	remains	difficult.	To	fully	

evaluate	 CRF1	 receptor	 occupancy	 in	 the	 human	 brain	 an	 appropriate,	 high	 affinity	

positron	emission	tomography	(PET)	ligand	will	be	required.	Despite	the	identification	of	
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several	promising	ligand	candidates,	so	far	none	of	them	has	shown	efficacy	for	imaging	

brain	CRF1	receptors	in	vivo	(Lodge	et	al.,	2014,	Sanders	and	Nemeroff,	2016).	

Another	 potential	 reason	 for	 the	 insufficient	 treatment	 effects	 of	 CRF1	 receptor	

antagonists	 in	 humans,	 particularly	 addressing	 the	 poor	 translation	 of	 promising	

preclinical	research,	is	the	time	point	the	CRF	system	is	targeted	by	the	antagonist.	Most	

animal	studies	in	this	context	examine	short-term	stress	exposure	and	immediate	drug	

exposure	right	after	the	external	stressor.	In	contrast,	clinical	trials	testing	the	efficacy	of	

CRF1	 receptor	 antagonists	 in	humans	mainly	 assess	 adult	 patients	with	 stress	 related	

disorders	that	might	suffer	from	these	conditions	for	significantly	longer	periods	of	time.	

In	these	patients	the	CRF1	system	might	have	undergone	long	term	and	profound	changes	

on	 the	 circuit	 level	 and	may	 not	 be	 sensitive	 to	 external	modulation	 by	 CRF	 receptor	

antagonists	anymore.	Therefore,	administration	of	a	CRF1	receptor	antagonist	right	after	

exposure	 to	a	 traumatic	event	might	hold	 the	potential	 to	prevent	 the	development	of	

chronic	PTSD.	However,	to	clearly	answer	this	question	further	clinical	trials	specifically	

testing	this	model	are	necessary	(Kehne	and	Cain,	2010).	

A	possible	 bidirectional	 role	 of	 CRF	 in	 stress	 related	psychiatric	 disorders,	 represents	

another	explanation	for	the	ineffectiveness	of	the	CRF1	receptor	antagonist.	Increasing	

evidence	suggests	that	the	effect	of	the	CRF	system	on	behavioral	responses	to	stress	is	

not	 only	 brain	 region-specific,	 but	 even	 dependent	 of	 the	 neurotransmitter-specific	

neuronal	circuit.	By	specifically	deleting	the	CRHR1	gene	in	different	neuronal	subtypes	

Refojo	 and	 colleagues	 revealed	 differential	 behavioural	 effects	 in	mice.	While	 animals	

lacking	CRHR1	 in	 glutamatergic	neurons	of	 the	 forebrain	 showed	 reduced	anxiety-like	

behavior,	CRHR1	 knock	 out	 in	midbrain	 dopaminergic	 neurons	 resulted	 in	 anxiogenic	

effects	(Refojo	et	al.,	2011).	In	line	with	these	findings	Dedic	and	colleagues	demonstrated	

another	distinct	CRF/CRF1	neuronal	 circuit	 responsible	 for	 specific	behavioral	 effects.	
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Chronic	 CRF	 depletion	 from	 GABAergic	 projection	 neurons	 of	 the	 extended	 amygdala	

leads	to	anxiolytic	behavior	in	mice	(Dedic	et	al.,	2018).	These	findings	suggest	different	

CRF/CRF1	 circuits	 as	 antagonistic	 modulators	 of	 the	 physiological	 stress	 response.	

Therefore,	 simultaneously	 antagonizing	 CRF1	 in	 these	 different	 neurotransmitter-

specific	neuronal	subpopulations	might	have	a	neutralizing	effect	attenuating	the	efficacy	

of	the	applied	compound.	

Last,	the	failure	of	the	evaluated	drug	can	be	explained	by	differential	treatment	response	

of	different	 subgroups	of	patients.	Particularly	 relevant	 to	our	 study	 is	 a	possible	 sex-

specific	response	to	CRF1	receptor	antagonists.	This	has	been	shown	in	animal	studies.	

After	CRF1	receptor	antagonist	infusion	into	the	dorsal	raphe,	male	mice	demonstrated	

strong	HPA	axis	and	behavioral	responses	compared	to	female	animals,	which	only	show	

very	limited	changes	(Howerton	et.	al.,	2014).	However,	due	to	male-specific	side	effects	

of	 GSK561679	 only	 women	 could	 be	 included	 in	 the	 study	 and	 treatment	 effects	 of	

GSK561679	on	male	patients	were	not	tested.		

	

	

Distinct	biological	subgroups	of	patients	show	differential	

response	to	CRF1	receptor	antagonist	treatment	

In	a	second	analysis,	we	aimed	to	identify	more	distinct	biological	subgroups	of	patients	

that	show	differential	response	to	CRF1	receptor	antagonist	treatment.	

As	discussed	above,	the	issue	of	adequate	patient	selection	represents	another	potential	

contributing	factor	to	the	failure	of	CRF1	receptor	antagonist	treatment	in	stress	related	

psychiatric	 disorders.	 CRF1	 receptor	 antagonists	 might	 be	 particularly	 relevant	 for	

certain	subpopulations	of	patients	with	distinct	biological	backgrounds.	Several	authors	

suggest	 that	 individuals	with	 an	 enhanced	 central	 CRF	 system	 represent	 one	 of	 these	
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subgroups	and	might	benefit	most	of	the	drug	(Griebel	and	Holsboer,	2012;	Kehne	and	

Cain,	 2010;	 Sanders	 and	 Nemeroff,	 2016;	 Spierling	 and	 Zorrilla,	 2017).	We	 therefore	

specifically	 investigated	 treatment	 response	 of	 subsets	 of	 patients	 with	 probable	

differential	CRF	system	activity.	More	specifically,	subjects	were	stratified	according	to	

childhood	trauma	status	and	their	genotype	of	the	CRHR1	SNP	rs110402.		

Our	results	showed	that	patients	who	had	experienced	child	abuse	and	were	homozygous	

for	the	rs110402	GG	allele	exhibited	significantly	stronger	PTSD	symptom	reduction	than	

other	patients,	after	CRF1	receptor	antagonist	treatment.	Interestingly,	particularly	these	

individuals	with	a	history	of	early	trauma	and	genetic	variants	in	the	CRF1	receptor	gene	

(CRHR1)	are	hypothesized	to	show	central	CRF	system	overactivation.		

Multiple	studies,	 in	both	animal	and	human,	have	shown	long	term	effects	of	early	 life	

trauma	 on	 central	 CRF	 system	 activity.	 Rats	 for	 instance,	 that	 experienced	 postnatal	

maternal	 separation,	 showed	 elevated	 CRF	 concentrations	 as	 well	 as	 increased	 CRF	

mRNA	in	adulthood.	(Ladd	et	al.,	2000;	Plotsky	and	Meaney,	1993;	Plotsky	et	al.,	2005).	

Similar	results	have	been	described	in	adult	nonhuman	primates.	Monkeys	that	have	been	

exposed	 to	 adverse	 early	 life	 rearing	 conditions	 exhibited	 a	 persistent	 increase	 of	

cerebrospinal	fluid	concentrations	of	corticotropin-releasing	factor	(Coplan	et	al.,	1996	

and	 2001).	 Also	 in	 humans	 findings	 point	 in	 the	 same	 direction.	 Several	 studies	 have	

revealed	a	strong	correlation	between	early	adverse	life	events	and	CRF	system	activity.	

Work	by	Carpenter	and	colleagues	demonstrated	early	life	adversity	to	be	a	significant	

predictor	of	CRF	concentrations	in	cerebrospinal	fluid	in	depressed	patients	(Carpenter	

et	al.,	2004).	Further,	Lee	and	colleagues	showed	a	positive	correlation	between	CSF	CRF	

levels	and	the	total	score	on	the	Childhood	Trauma	Questionnaire	as	well	as	a	negative	

correlation	between	parental	care	and	CSF	CRF	concentrations	in	a	cohort	of	patients	with	

personality	disorder	(Lee	et	al.,	2005	and	2006).	



Novel	epigenetic	and	genetic	biomarker	candidates	in	PTSD	
	

	 76	

Genetic	variants	 in	 the	CRF	receptor	1	gene	have	also	been	reported	 to	associate	with	

neuroendocrine	alterations	including	central	CRF	system	activity.	(Chichetti	et	al,	2011;	

Heim	et	al,	2009;	Mahon	et	al,	2013;	Sumner	et	al,	2014;	Tyrka	et	al,	2009).	By	using	the	

combined	dexamethasone/CRF	challenge	test	studies	by	Tyrka	and	colleagues	as	well	as	

Heim	and	colleagues	specifically	examined	the	functional	effects	of	CRHR1	SNP	rs110402,	

childhood	maltreatment	and	the	interaction	of	the	two.	Findings	showed	that	both,	the	

rs110402	GG	genotype	itself	(Heim	et	al.,	2008)	as	well	as	the	interaction	with	early	life	

trauma	 (Tyrka	 et	 al.,	 2009),	 was	 significantly	 associated	 with	 an	 enhanced	 cortisol	

response	in	the	DEX/CRF	test,	which	has	been	linked	to	central	CRF	system	hyperactivity	

(Dunlop and Wong, 2018;	Griebel	and	Holsboer,	2012).	

Taken	together,	these	data,	showing	an	elevated	activity	of	the	CRF	system	in	individuals	

with	a	history	of	 early	 trauma	as	well	 as	 in	 rs110402	GG	genotype	carriers,	 suggest	a	

probable	CRF	system	overactivity	in	individuals	with	a	combination	of	the	two.	

Therefore,	 as	 previously	 mentioned,	 several	 authors	 have	 hypothesized	 that	 CRF1	

receptor	 antagonism	 might	 be	 particularly	 relevant	 for	 this	 biological	 subgroup.	 Our	

findings	 strongly	 support	 this	 hypothesis	 by	 showing	 significantly	 better	 response	 to	

CRF1	 receptor	 antagonist	 treatment	 in	 this	 specific	 subset	 of	 patients.	 However,	 the	

number	of	patients	is	small,	specifically	after	subgrouping,	and	larger	sample	sizes	will	be	

required	to	entirely	establish	clinical	relevance	of	theses	findings.	
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Potential	 CRF1	 receptor	 antagonist	 treatment	 markers	 in	

PTSD	

	

Gene	by	environment	interactions	predicting	treatment	response	

Precision	medicine,	 tailoring	 the	optimal	 therapy	 to	 each	 individual	patient	 remains	 a	

challenging	 task	 in	 stress	 related	 psychiatric	 disorders	 such	 as	 PTSD.	 In	 this	 context,	

treatment	 markers	 represent	 a	 helpful	 tool.	 They	 can	 either	 serve	 as	 stratification	

markers	 to	 subgroup	 patients	 matching	 them	 to	 the	 most	 effective	 treatment	 or	 as	

tracking	markers	to	monitor	effectiveness	of	a	specific	therapeutic	intervention.		

As	 discussed	 above	 our	 results	 suggest	 that	 CRF	 receptor	 antagonists	 might	 be	

particularly	effective	in	a	subset	of	PTSD	patients,	showing	a	history	of	childhood	trauma	

and	being	carriers	of	the	GG	genotype	of	the	CRHR1	SNP	rs110402.	These	specific	traits	

therefore	 have	 the	 potential	 to	 serve	 as	 predictive	 markers	 stratifying	 patients	 into	

subgroups	of	possible	responders	and	non-responders	prior	to	CRF	receptor	antagonist	

treatment.	

Compared	 to	other	stress-related	psychiatric	disorders	 like	MDD,	studies	 investigating	

gene	 by	 environment	 interactions	 in	 the	 prediction	 of	 treatment	 response	 are	 rare	 in	

PTSD.	In	fact,	this	is,	to	our	knowledge,	the	first	study	looking	at	G	x	E	interaction	effects	

on	therapeutic	response	after	CRF1	receptor	antagonist	treatment.	Due	to	the	complex	

pathophysiology	 of	 stress	 related	 disorders,	 that	 consists	 of	 complex	 interactions	 of	

genetic	 and	 environmental	 factors,	 G	 x	 E	 interactions	 studies	 represent	 a	 promising	

approach	in	the	prediction	of	treatment	response	(Klengel	and	Binder,	2013).	However,	

even	in	the	field	of	MDD	where	this	concept	has	been	widely	studied	and	multiple	studies	

have	 shown	 promising	 results,	 no	 clinically	 applicable	 treatment	 marker	 has	 been	
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developed	 so	 far	 (Keers	 et	 al.,	 2011;	Mandelli	 et	 al.,	 2009,	 Xu	 et	 al.,	 2011	 and	 2012).	

Therefore,	 large	 prospective	 studies	 specifically	 exploring	 similar	 or	 the	 same	

environmental	measures	are	desperately	needed	to	fully	establish	suitable	stratification	

markers	for	stress	related	psychiatric	disorders	(Klengel	and	Binder,	2013).	

	

	

Epigenetic	 modifications	 as	 potential	 stratification	 and	 tracking	

markers	

	

CRHR1	 methylation	 levels	 as	 tracking	marker	 for	 CRF1	 antagonist	 treatment	 in	

PTSD?	

As	highlighted	 in	 the	 introduction	 epigenetics	 represent	 another	 layer	 in	 the	 complex	

pathophysiology	of	stress	related	psychiatric	disorders.	Modifications	of	the	epigenome	

are	candidate	mechanisms	in	mediating	both,	short	term	and	long-lasting	effects	of	the	

environment	on	DNA	function	without	altering	the	underlying	genetic	code	(Klengel	et	al.,	

2014;	Zannas	et	al.,	2016).	Due	to	their	decisive	role	in	the	pathogenesis	and	the	fact	that	

they	 are	 accurately	 and	 reproducibly	 measurable	 across	 individuals,	 epigenetic	

alterations	hold	considerable	promise	as	biomarkers	in	PTSD	(Voyias	et	al.,	2016).	

In	 our	 previous	 analysis,	 we	 identified	 a	 distinct	 subset	 of	 PTSD	 patients	 possibly	

benefitting	more	 from	 CRF1	 receptor	 antagonist	 treatment	 than	 others.	 As	 discussed	

above,	 treatment	 biomarkers	 can	 help	 stratifying	 patients	 into	 specific	 subgroups	 of	

differential	 treatment	response,	but	they	can	further	help	to	monitor	the	course	of	 the	

disorder	 under	 the	 given	 treatment	 intervention.	 Epigenetic	 markers	 are	 of	 special	

interest	since	 they	can	serve	as	both,	 treatment	stratification	markers	but	also,	due	 to	

their	potentially	dynamic	nature,	as	tracking	markers	(Klengel	et	al.,	2014,	Wu	and	Zhang,	
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2014).	 Compared	 to,	 for	 example,	 genetic	 marks,	 which	 are	 persistent	 and	 therefore	

suitable	 as	 trait	 markers,	 epigenetic	 marks	 hold	 the	 potential	 to	 change	 over	 time,	

therefore	 reflecting	 the	 current	 state	 of	 the	disease	 (state	markers)	 (Hacimusalar	 and	

Eşel,	 2018).	 We	 were	 therefore	 particularly	 interested	 whether	 certain	 epigenetic	

modifications	 would	 be	 associated	 with	 PTSD	 symptom	 change	 after	 CRF1	 receptor	

antagonist	treatment	in	our	previously	identified	subgroup	of	responsive	patients.	Due	to	

the	fact	that	the	drug	targets	the	CRF1	receptor,	we	specifically	focused	our	analysis	on	

methylation	levels	of	the	CRHR1	gene.	Our	findings	demonstrated	significantly	different	

changes	 of	 CRHR1	 methylation	 levels	 in	 our	 distinct	 subgroup	 over	 treatment	 time	

compared	to	the	other	patients.	These	individuals	were	the	only	ones	showing	increased	

CRHR1	methylation	from	pre-	to	post-treatment,	while	all	other	subjects	either	showed	

no	change	or	a	reduction	in	methylation	over	the	six	weeks.	Notably	this	effect	was	not	

observed	 in	the	placebo	group.	Such	specific	methylation	changes	over	treatment	time	

hold	the	potential	to	track	treatment	response	to	a	given	therapeutic	intervention.		

	

	

NR3C1	and	FKBP5	methylation	levels	as	treatment	markers	independent	of	type	of	

therapy?	

Studies	investigating	epigenetic	biomarkers	of	treatment	response	in	PTSD	are	extremely	

rare.	In	fact,	work	by	Yehuda	and	colleagues	from	2014	represents	the	first	and	so	far	only	

study	in	this	context.	Here,	the	authors	aimed	to	determine	whether	methylation	levels	of	

NR3C1	and	FKBP5	would	predict	or	associate	with	treatment	outcome	in	a	small	cohort	

of	 combat	 veterans	diagnosed	with	PTSD.	The	 therapeutic	 intervention	 applied	 to	 the	

patients	 in	 this	study	was	prolonged	exposure	psychotherapy	over	 twelve	consecutive	

weeks.	 Findings	 included	 that	 pre-treatment	 NR3C1	 methylation	 levels	 significantly	
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predicted	 treatment	outcome.	More	 specifically,	higher	NR3C1	methylation	at	baseline	

correlated	with	better	response	to	twelve	weeks	of	psychotherapy.	The	authors	further	

observed	a	decrease	 in	FKBP5	methylation	associating	with	better	 treatment	outcome	

(Yehuda	 et	 al.,	 2013).	 In	 summary	 this	 study	 suggests	NR3C1	 and	FKBP5	methylation	

levels	 as	 potential	 markers	 to	 subgroup	 patients	 as	 well	 as	 monitor	 the	 course	 of	

treatment	using	psychotherapy	in	PTSD.	

In	our	final	analysis	we	were	therefore	specifically	interested	whether	epigenetic	marks	

of	 these	 same	 loci	 would	 also	 serve	 as	 stratification	 or	 tracking	 markers	 for	

pharmacological	 treatment	 interventions	 in	 PTSD.	 More	 specifically	 we	 examined	

whether	 peripheral	 blood-based	 DNA	 methylation	 levels	 of	 NR3C1	 and	 FKBP5	 are	

associated	 with	 treatment	 response	 after	 CRF1	 receptor	 antagonist	 treatment	 in	 our	

cohort	of	PTSD	diagnosed	women.	 In	 contrast	 to	Yehuda	and	 colleagues,	we	 found	no	

association	between	FKBP5	methylation	levels	and	CRF1	antagonist	treatment	outcome	

in	 our	 analysis.	 For	NR3C1	 our	 findings	 went	 in	 line	 with	 the	 results	 from	 Yehuda’s	

previously	discussed	study.	Higher	baseline	methylation	of	NR3C1	was	associated	with	

better	treatment	response	to	the	antagonist.	Interestingly	this	effect	was	only	observed	

in	 patients	 with	 early	 trauma.	 No	 correlation	 was	 found	 between	 change	 in	 NR3C1	

methylation	over	 treatment	and	symptom	 improvement.	Taken	 together,	 these	 results	

suggest	NR3C1	baseline	methylation	as	a	potential	stratification	marker	independent	of	

the	type	of	treatment.	

	

Potential	mechanisms	for	the	observed	differences	in	DNA	methylation	levels		

One	 possible	 mechanism	 inducing	 these	 methylation	 changes	 is	 thought	 to	 be	

transcription	factor	mediated	(Kirillov	et	al.,	1996;	Feldmann	et	al.,	2013;	Weaver	et	al.,	

2007).	 A	 specifically	 interesting	 transcription	 factor,	 in	 the	 context	 of	 stress	 related	
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disorders,	is	the	glucocorticoid	receptor	(GR).	We	and	others	have	previously	shown	that	

glucocorticoid-induced	 activation	 of	 the	 GR	 can	 lead	 to	 dynamic	 changes	 in	 DNA	

methylation	 (Thomassin	 et	 al.,	 2001;	 Wiechmann	 et	 al.,	 2019;	 Wiench	 et	 al.,	 2011).	

Therefore,	 differences	 in	 GR	 activity	 may	 result	 in	 different	 methylation	 levels.	

Dysregulation	of	the	HPA	axis	plays	a	central	role	in	the	pathogenesis	of	PTSD.	Several	

studies	have	shown	PTSD-typical	HPA	axis	abnormalities	including	enhanced	activity	of	

the	 CRF	 system,	 alterations	 in	 baseline	 cortisol	 levels	 and	 hypersensitivity	 of	 the	 GR.	

However,	these	differences	in	HPA	axis	activity	are	not	exclusively	relevant	between	PTSD	

patients	vs.	healthy	controls	but	also	play	a	role	between	different	biological	subgroups	

of	PTSD,	which	might	explain	differences	in	NR3C1	and	FKBP5	baseline	methylation	levels	

correlated	 with	 differential	 CRF1	 receptor	 antagonist	 treatment	 response	 within	 our	

cohort.		

Further,	pharmacological	modification	of	HPA	axis	activity	might	result	in	dynamic	DNA	

methylation	 changes.	 Here,	 biological	 subgroups	with	 distinct	 HPA	 axis	 abnormalities	

might	 show	 different	 neuroendocrine	 alterations	 in	 response	 to	 treatment	 possibly	

reflected	 by	 differential	 changes	 in	 DNA	methylation	 levels.	 Our	 previously	 identified	

subgroup	of	patients,	who	had	experienced	child	abuse	and	were	homozygous	 for	 the	

rs110402	GG	allele,	has	been	associated	with	a	specific	HPA	axis	profile	in	several	studies,	

namely	 a	 combination	 of	 increased	 CRF	 activity	 and	GR	 sensitivity.	 This	 highly	 active	

system	 might	 be	 particularly	 sensitive	 to	 CRF1	 receptor	 antagonist	 treatment.	 Many	

studies	 have	 shown	 that	 GR	 supersensitivity	 in	 PTSD	 normalizes	 with	 symptom	

improvement	 after	 therapy.	 GR	 sensitivity	 normalization	 in	 the	 given	 subgroup	 after	

CRF1	receptor	antagonist	treatment	may	result	in	GR	mediated	methylation	changes.		

Due	to	high	tissue	and	cell	type	specificity	of	DNA	methylation	patterns,	cell	composition	

effects	may	be	responsible	for	an	observed	epigenetic	signal	(Breeze	et	al.,	2016;	Byun	et	
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al.,	2009;	Ghosh	et	al.,	2010;	Kozlenkov	et	al.,	2016;	Varley	et	al.,	2013;	Zhang	et	al.,	2013).	

Therefore,	change	in	cell	type	distribution,	e.g.	immune	cells,	represents	another	potential	

contributor	to	DNA	methylation	differences	in	our	sample.	Increasing	evidence	suggests	

a	 close	 relationship	 between	 PTSD	 and	 biological	 alterations	 in	 the	 immune	 system.	

Multiple	studies	describe	imbalances	towards	a	pro-inflammatory	state	including	a	shift	

in	immune	cell	composition	in	patients	suffering	from	PTSD	(Aiello	et	al.,	2016;	Jergović	

et	al.,	2014;	Morath	et	al.,	2014;	Wang	and	Young,	2016;	Zhou	et	al.,	2014).		

Further,	there	are	several	reports	about	a	possible	association	between	PTSD	symptom	

recovery	 and	normalization	of	 immune	 function	 (Gill	 et	 al.,	 2013;	Morath	 et	 al.,	 2014;	

Tucker	et	al.,	2004).	Particularly	interesting	in	the	context	of	the	current	work	is	a	study	

by	 Morath	 and	 colleagues.	 The	 authors	 were	 able	 to	 demonstrate	 a	 normalization	 of	

originally	 reduced	 regulatory	T	 cells	 correlating	with	 symptom	 improvement	 in	 PTSD	

patients	after	twelve	sessions	of	narrative	exposure	therapy	(Morath	et	al.,	2014).	Such	a	

shift	in	immune	cell	composition	after	CRF1	receptor	antagonist	treatment	could	possibly	

drive	the	observed	methylation	effects	in	our	defined	biological	subgroup.	To	control	for	

this	potential	confounding	factor,	we	used	a	reference-based	deconvolution	method	for	

blood	cells.	After	estimating	the	proportions	of	the	underlying	immune	cell	 types,	they	

were	 included	 as	 covariates	 (Houseman	 et	 al.,	 2012;	 Teschendorff	 and	 Zheng,	 2017).	

However,	this	algorithm	only	estimates	cell	proportions	of	six	main	cell	types	whereas	

subtypes	 are	 not	 included	 and	 therefore	 remain	 potential	 confounders	 of	 DNA	

methylation	analyses.	

A	 direct	 effect	 of	 the	 CRF1	 receptor	 antagonist	 on	 epigenetic	 mechanisms	 is	 another	

potential	 explanation	 for	 the	 observed	 findings.	 Increasing	 evidence	 suggests	 that	

psychotropic	substances	partially	act	through	epigenetic	effects.	Modulation	of	epigenetic	

machinery,	 resulting	 in	 DNA	 methylation	 changes,	 has	 been	 shown	 for	 a	 number	 of	
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antidepressant	 drugs	 (Lisoway	 et	 al.,	 2018).	 Paroxetine,	 and	 different	 tricyclic	

antidepressants,	 for	 example	 have	 been	 demonstrated	 to	 alter	 methylation	 levels	 by	

inhibiting	 DNA	 methyltransferase	 I	 (DNMT1)	 in	 rat	 astrocytes	 (Perisic	 et	 al.,	 2010;	

Zimmermann	 et	 al.,	 2012).	 However,	 due	 to	 significant	 pharmacodynamic	 differences	

between	these	antidepressants	and	CRF1	receptor	antagonists,	a	direct	epigenetic	effect	

can	 only	 be	 hypothesized	 and	 future	 pharmaco-epigentic	 studies	 are	 needed	 to	

strengthen	this	assumption.		

	

A	general	challenge	of	methylation	studies	in	stress	related-psychiatric	disorders	is	the	

issue	of	cross	tissue	correlation.	Given	the	difficulty	of	assessing	human	brain	samples,	

which	represent	the	tissue	of	interest	in	psychiatric	studies,	epigenetic	analyses	in	these	

studies	are	often	limited	to	peripheral	tissues	like	blood	or	saliva.	The	question	remains	

whether	 stress-induced	 DNA	 methylation	 changes	 correlate	 across	 different	 types	 of	

tissue	throughout	the	organism	and	to	what	extent	methylation	levels	of	e.g.	blood	can	be	

used	as	appropriate	markers	for	the	brain	(Klengel	et	al.,	2014;	Klengel	and	Binder,	2015;	

Pape	 and	 Binder;	 2014).	 Over	 the	 last	 years,	 there	 have	 been	 some	 very	 interesting	

reports	about	cross	tissue	effects	from	blood	to	brain	which	suggest	at	least	some	specific	

methylation	changes/signaling	pathways	in	the	brain	to	be	reflected	in	peripheral	blood	

samples	(Bakulski	et	al.,	2016;	Klengel	et	al.,	2013;	Provencal	et	al.,	2012).	

Despite	 these	 promising	 results,	multiple	 epigenome	wide	 studies	 have	 shown	 highly	

tissue-specific	 DNA	 methylation	 profiles,	 specifically	 in	 brain	 and	 blood,	 with	 a	 very	

limited	 overlap	 of	 CpG	 sites	 showing	 similar	methylation	 patterns	 (Lokk	 et	 al.,	 2014;	

Walton	et	al.,	2016).	These	data	clearly	suggest,	 that	no	general	conclusions	should	be	

drawn	 from	 peripheral	 methylation	 changes	 to	 pathomechanisms	 in	 the	 brain.	 Here,	

further	 studies	 specifically	 examining	 the	 relation	 of	 epigenetic	 signatures	 between	
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peripheral	tissue	and	brain	are	of	great	need.	Nonetheless,	these	statements	should	not	

diminish	the	potential	of	using	peripheral	tissue	to	identify	epigenetic	modifications	as	

biomarkers	for	stress-related	psychiatric	disorders.	To	serve	as	a	suitable	biomarker,	it	is	

irrelevant	 whether	 these	 epigenetic	 changes	 merely	 depict	 disease-associated	

modifications,	 independent	of	 the	disorder’s	pathophysiology	or	actually	mirror	PTSD-

specific	epigenetic	changes	in	the	brain.	(Zannas	et	al.,	2015)	

	

	

MicroRNA-15a	as	a	potential	future	biomarker	in	PTSD?	

MicroRNAs	 represent	 another	epigenetic	mechanism	with	high	biomarker	potential	 in	

stress	 related	 disorders	 like	 PTSD	 (Issler	 and	 Chen,	 2015).	 As	 mentioned	 in	 the	

introduction,	the	number	of	studies	published	in	this	line	of	research	is	still	limited	and	

so	far	only	a	few	studies	have	been	completed	in	humans.	Our	group	identified	miR-15a	

to	be	differentially	regulated	in	mice	after	stress	exposure.	More	specifically,	animals	that	

were	 subjected	 to	 chronic	 social	 defeat	 demonstrated	 significantly	 increased	miR-15a	

levels	 in	 the	 amygdala.	 Simultaneously	 it’s	 predicted	 target	FKBP5	 showed	 decreased	

mRNA	levels	suggesting	miR-15a	as	a	direct	regulator	of	FKBP5.	Moreover,	knockdown	of	

miR-15a	 in	 the	 amygdala	 affected	 the	 animals’	 stress	 response,	 resulting	 in	 increased	

anxiety-like	 behavior	 following	 stress	 exposure.	 These	 results	 strongly	 suggest	 an	

involvement	of	miR-15a	in	stress	reactivity	and	by	that	possibly	in	PTSD	and	other	stress	

related	disorders.	As	a	next	step,	we	were	therefore	specifically	interested	whether	these	

findings	were	translatable	to	humans.	To	examine	its	potential	role	in	the	human	stress	

response,	we	analyzed	miR-15a	expression	levels	 in	peripheral	blood	of	young	healthy	

male	subjects	after	dexamethasone	treatment.	We	saw	a	significant	up-regulation	of	miR-

15a	after	three	hours	and	a	further	increase	six	hours	post	treatment.	A	second	analysis	
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aimed	to	examine	the	effect	of	early	life	stress	on	miR-15a	levels.	Therefore,	microRNA	

expression	analysis	in	peripheral	blood	was	carried	out	in	a	cohort	of	20	subjects	exposed	

to	 childhood	 trauma	 and	 20	 controls	 without	 early	 life	 stress.	 Results	 revealed	

significantly	elevated	miR-15a	expression	 levels	 in	patients	with	a	history	of	early	 life	

trauma	compared	to	controls.	

These	translational	findings	strongly	suggest	miR-15a’s	involvement	in	the	human	stress	

response.	 Further,	 the	 fact	 that	 altered	miR-15a	 levels	 in	human	peripheral	 blood	 are	

present	a	few	hours,	but	also	up	to	several	years	later,	makes	this	particular	microRNA	a	

promising	biomarker	candidate	in	stress	related	psychiatric	disorders	like	PTSD.	

	

	

Concluding	remark	

This	cumulative	thesis	addresses	the	ongoing	challenge	of	appropriate	treatment	in	stress	

related	 disorders	 like	 PTSD.	 To	 overcome	 this	 current	 therapeutic	 stagnation	 new	

treatment	 concepts	 are	 desperately	 needed.	 The	 established	 psychiatric	 diagnostic	

classification	 systems	 lack	 objectivity,	 being	 based	 on	 clinical	 evaluation	 instead	 of	

considering	 the	 underlying	 psychobiology	 of	 the	 given	 disorder.	 Future	 therapeutic	

strategies	 should	 focus	on	 individualized	 treatment,	matching	 the	 right	 therapy	 to	 the	

right	patient,	by	using	objective	measures	such	as	genetics	or	blood-based	biomarkers.	By	

identifying	 specific	 biological	 subgroups	 showing	 differential	 treatment	 response	 to	 a	

CRF1	 antagonist	 in	 female	 PTSD	 patients	 this	 thesis	 emphasizes	 the	 importance	 of	

precision	medicine	in	this	context	(Figure	3).	The	presented	work	further	highlights	the	

potential	 use	 of	 epigenetic	 changes	 in	 these	 disorders	 as	 e.g.	 diagnostic	 or	 treatment	

prediction	 biomarkers.	 While	 these	 findings	 strengthen	 the	 promising	 concept	 of	

precision	medicine,	they	need	to	be	validated	in	future	studies	using	much	larger	sample	
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sizes.	 Further,	 given	 the	 multifactorial	 etiology	 and	 the	 complexity	 of	 the	 underlying	

pathophysiology	 of	 psychiatric	 disorders	 it	 is	 most	 likely	 that	 clinically	 applicable	

markers	will	be	an	index,	comprised	of	several	combination	markers.	Therefore,	future	

studies	in	this	field	should	take	into	account	different	kinds	of	moderators	associated	with	

a	given	psychiatric	disorder	 like	genetics,	epigenetics,	neuroimaging	as	well	as	clinical	

features.	

	
1. Standard medicine 

	
2. Precision medicine 

	
Figure 3: Representation of the standard treatment approach (trial and error) vs. precision medicine 
1. According to their psychiatric diagnosis (using the established psychiatric diagnostic classification 
systems ICD-10 or DSM-5) patients are treated with the respective first line treatment. Usually only a 
subset of patients will show beneficial treatment outcome. For nonresponder an often lengthy trial 
and error process of treatment follows.  
2. Precision medicine aims to tailor the optimal therapy to each individual patient. Using 
pathophysiological markers like genetics, epigenetics, psychological measures etc. patients are 
stratified in differential biological subgroups and individual therapies can be applied. (Menke et al., 
2018)  
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Figure S1 
 

 
 
 
 
Figure S1 The boxplots describe the mean % change of PSS total score in abused and non-abused patients 

treated with the CRHR1 antagonist or placebo. GG carriers are shown in blue (plain boxes) and AA/AG in red 

(striped boxes). rs110402 A carrier status by childhood abuse exposure showed a significant interaction effect 

on PSS score % change over treatment in subjects treated with the CRHR1 antagonist (n=43; F(1, 31)=4.42; 

p=0.043) (a) but not in subjects treated with placebo (n=42, p>0.05) (b). rs110402 GG carriers exposed to child 

abuse displayed the highest % change of PSS symptoms following CRHR1 treatment. (From Biological 

Psychiatry; Dunlop et al., 2017) 
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Table S1. CRHR1: List of CpGs used for analysis 

CpG Chr. Genomic location (hg19) 
cg18090064 17 43716542 

cg04194664 17 43716618 

cg16228356 17 43848958 

cg08929103 17 43860356 

cg04856689 17 43862033 

cg24063856 17 43863304 

cg13947929 17 43863356 

cg27410679 17 43866279 

cg16642545 17 43878770 

cg00022871 17 43884359 

cg00025823 17 43909151 

 

 

 

Table S2. NR3C1: List of CpGs used for analysis 

CpG Chr. Genomic location (hg19) 
cg17860381 5 142783570 

cg04111177 5 142783608 

cg15910486 5 142783621 

cg15645634 5 142783639 

cg18068240 5 142783844 

 

 

 

Table S3. FKBP5: List of CpGs used for analysis 

CpG Chr. Genomic location (hg19) 
cg16012111 6 35656758 

cg07843056 6 35656848 

cg01294490 6 35656906 
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DNA extraction and genotyping  

 

DNA isolation from whole EDTA blood was performed with a magnetic bead based technology using 

the PerkinElmer Chemagic 360 extraction robot. Quality and quantity of the extracted DNA was 

assessed using the EpochMicroplate Spectrophotometer (BioTek).We excluded relatives of individual 

subjects from the whole sample (n = 3, Pi_Hat ≥ 0.0625) based on mean identity by descent in PLINK 

(1). For the genome wide analyses referring the population stratification, we only included 

individuals with a sample-wise call rate ≥ 0.98 and SNPs with call rate ≥ 0.98, Hardy Weinberg 

equilibrium test (HWE) p-value ≥ 1×10-5 and MAF ≥ 0.05, allowing for a total of 575,455 markers in 86 

individuals. To correct for population stratification in an ethnically mixed sample, principal 

components (PC) for genetic background were calculated from all genotypes for each of the 

individuals using Genome-wide Complex Trait Analysis (Figure S8).  

 



Du
nl

op
 e

t a
l. 

 
Su

pp
le

m
en

t 2 

SU
PP

LE
M

EN
TA

RY
 T

AB
LE

S 

Ta
bl

e 
S1

. C
O

N
SO

RT
 C

he
ck

lis
t 

 

Se
ct

io
n/

To
pi

c 
Ite

m
 

N
o 

C
he

ck
lis

t i
te

m
 

R
ep

or
te

d 
on

 
pa

ge
 N

o.
 

Ti
tle

 a
nd

 a
bs

tr
ac

t 
 

1a
 

Id
en

tif
ic

at
io

n 
as

 a
 ra

nd
om

is
ed

 tr
ia

l i
n 

th
e 

tit
le

 
Pr

ev
en

te
d 

by
 

ch
ar

ac
te

r l
im

it 

1b
 

St
ru

ct
ur

ed
 s

um
m

ar
y 

of
 tr

ia
l d

es
ig

n,
 m

et
ho

ds
, r

es
ul

ts
, a

nd
 c

on
cl

us
io

ns
 (f

or
 s

pe
ci

fic
 g

ui
da

nc
e 

se
e 

C
O

N
SO

R
T 

fo
r a

bs
tra

ct
s)

 
2-

3 

In
tr

od
uc

tio
n 

Ba
ck

gr
ou

nd
 a

nd
 

ob
je

ct
iv

es
 

2a
 

Sc
ie

nt
ifi

c 
ba

ck
gr

ou
nd

 a
nd

 e
xp

la
na

tio
n 

of
 ra

tio
na

le
 

4-
6 

2b
 

Sp
ec

ifi
c 

ob
je

ct
iv

es
 o

r h
yp

ot
he

se
s 

5-
6 

M
et

ho
ds

 
Tr

ia
l d

es
ig

n 
3a

 
D

es
cr

ip
tio

n 
of

 tr
ia

l d
es

ig
n 

(s
uc

h 
as

 p
ar

al
le

l, 
fa

ct
or

ia
l) 

in
cl

ud
in

g 
al

lo
ca

tio
n 

ra
tio

 
6 

3b
 

Im
po

rta
nt

 c
ha

ng
es

 to
 m

et
ho

ds
 a

fte
r t

ria
l c

om
m

en
ce

m
en

t (
su

ch
 a

s 
el

ig
ib

ilit
y 

cr
ite

ria
), 

w
ith

 
re

as
on

s 
n/

a 

Pa
rti

ci
pa

nt
s 

4a
 

El
ig

ib
ili

ty
 c

rit
er

ia
 fo

r p
ar

tic
ip

an
ts

 
6-

7 

4b
 

Se
tti

ng
s 

an
d 

lo
ca

tio
ns

 w
he

re
 th

e 
da

ta
 w

er
e 

co
lle

ct
ed

 
6 

In
te

rv
en

tio
ns

 
5 

Th
e 

in
te

rv
en

tio
ns

 fo
r e

ac
h 

gr
ou

p 
w

ith
 s

uf
fic

ie
nt

 d
et

ai
ls

 to
 a

llo
w

 re
pl

ic
at

io
n,

 in
cl

ud
in

g 
ho

w
 a

nd
 

w
he

n 
th

ey
 w

er
e 

ac
tu

al
ly

 a
dm

in
is

te
re

d 
7 

O
ut

co
m

es
 

6a
 

C
om

pl
et

el
y 

de
fin

ed
 p

re
-s

pe
ci

fie
d 

pr
im

ar
y 

an
d 

se
co

nd
ar

y 
ou

tc
om

e 
m

ea
su

re
s,

 in
cl

ud
in

g 
ho

w
 

an
d 

w
he

n 
th

ey
 w

er
e 

as
se

ss
ed

 
8-

9 

6b
 

An
y 

ch
an

ge
s 

to
 tr

ia
l o

ut
co

m
es

 a
fte

r t
he

 tr
ia

l c
om

m
en

ce
d,

 w
ith

 re
as

on
s 

n/
a 



Du
nl

op
 e

t a
l. 

 
Su

pp
le

m
en

t 3 

Sa
m

pl
e 

si
ze

 
7a

 
H

ow
 s

am
pl

e 
si

ze
 w

as
 d

et
er

m
in

ed
 

R
ef

. 3
4 

7b
 

W
he

n 
ap

pl
ic

ab
le

, e
xp

la
na

tio
n 

of
 a

ny
 in

te
rim

 a
na

ly
se

s 
an

d 
st

op
pi

ng
 g

ui
de

lin
es

 
n/

a 

R
an

do
m

is
at

io
n:

 
 

 
 

 
Se

qu
en

ce
 

ge
ne

ra
tio

n 
8a

 
M

et
ho

d 
us

ed
 to

 g
en

er
at

e 
th

e 
ra

nd
om

 a
llo

ca
tio

n 
se

qu
en

ce
 

7 

8b
 

Ty
pe

 o
f r

an
do

m
is

at
io

n;
 d

et
ai

ls
 o

f a
ny

 re
st

ric
tio

n 
(s

uc
h 

as
 b

lo
ck

in
g 

an
d 

bl
oc

k 
si

ze
) 

7 

 
A

llo
ca

tio
n 

co
nc

ea
lm

en
t 

m
ec

ha
ni

sm
 

9 
M

ec
ha

ni
sm

 u
se

d 
to

 im
pl

em
en

t t
he

 ra
nd

om
 a

llo
ca

tio
n 

se
qu

en
ce

 (s
uc

h 
as

 s
eq

ue
nt

ia
lly

 
nu

m
be

re
d 

co
nt

ai
ne

rs
), 

de
sc

rib
in

g 
an

y 
st

ep
s 

ta
ke

n 
to

 c
on

ce
al

 th
e 

se
qu

en
ce

 u
nt

il 
in

te
rv

en
tio

ns
 

w
er

e 
as

si
gn

ed
 

7 

 
Im

pl
em

en
ta

tio
n 

10
 

W
ho

 g
en

er
at

ed
 th

e 
ra

nd
om

 a
llo

ca
tio

n 
se

qu
en

ce
, w

ho
 e

nr
ol

le
d 

pa
rti

ci
pa

nt
s,

 a
nd

 w
ho

 a
ss

ig
ne

d 
pa

rti
ci

pa
nt

s 
to

 in
te

rv
en

tio
ns

 
7 

Bl
in

di
ng

 
11

a 
If 

do
ne

, w
ho

 w
as

 b
lin

de
d 

af
te

r a
ss

ig
nm

en
t t

o 
in

te
rv

en
tio

ns
 (f

or
 e

xa
m

pl
e,

 p
ar

tic
ip

an
ts

, c
ar

e 
pr

ov
id

er
s,

 th
os

e 
as

se
ss

in
g 

ou
tc

om
es

) a
nd

 h
ow

 
7 

11
b 

If 
re

le
va

nt
, d

es
cr

ip
tio

n 
of

 th
e 

si
m

ila
rit

y 
of

 in
te

rv
en

tio
ns

 
n/

a 

St
at

is
tic

al
 m

et
ho

ds
 

12
a 

St
at

is
tic

al
 m

et
ho

ds
 u

se
d 

to
 c

om
pa

re
 g

ro
up

s 
fo

r p
rim

ar
y 

an
d 

se
co

nd
ar

y 
ou

tc
om

es
 

8-
9 

12
b 

M
et

ho
ds

 fo
r a

dd
iti

on
al

 a
na

ly
se

s,
 s

uc
h 

as
 s

ub
gr

ou
p 

an
al

ys
es

 a
nd

 a
dj

us
te

d 
an

al
ys

es
 

9 

R
es

ul
ts

 
Pa

rti
ci

pa
nt

 fl
ow

 (a
 

di
ag

ra
m

 is
 s

tro
ng

ly
 

re
co

m
m

en
de

d)
 

13
a 

Fo
r e

ac
h 

gr
ou

p,
 th

e 
nu

m
be

rs
 o

f p
ar

tic
ip

an
ts

 w
ho

 w
er

e 
ra

nd
om

ly
 a

ss
ig

ne
d,

 re
ce

iv
ed

 in
te

nd
ed

 
tre

at
m

en
t, 

an
d 

w
er

e 
an

al
ys

ed
 fo

r t
he

 p
rim

ar
y 

ou
tc

om
e 

10
 

13
b 

Fo
r e

ac
h 

gr
ou

p,
 lo

ss
es

 a
nd

 e
xc

lu
si

on
s 

af
te

r r
an

do
m

is
at

io
n,

 to
ge

th
er

 w
ith

 re
as

on
s 

Fi
g 

S1
 

R
ec

ru
itm

en
t 

14
a 

D
at

es
 d

ef
in

in
g 

th
e 

pe
rio

ds
 o

f r
ec

ru
itm

en
t a

nd
 fo

llo
w

-u
p 

6 

14
b 

W
hy

 th
e 

tri
al

 e
nd

ed
 o

r w
as

 s
to

pp
ed

 
n/

a 

Ba
se

lin
e 

da
ta

 
15

 
A 

ta
bl

e 
sh

ow
in

g 
ba

se
lin

e 
de

m
og

ra
ph

ic
 a

nd
 c

lin
ic

al
 c

ha
ra

ct
er

is
tic

s 
fo

r e
ac

h 
gr

ou
p 

27
 



Du
nl

op
 e

t a
l. 

 
Su

pp
le

m
en

t 4 

N
um

be
rs

 a
na

ly
se

d 
16

 
Fo

r e
ac

h 
gr

ou
p,

 n
um

be
r o

f p
ar

tic
ip

an
ts

 (d
en

om
in

at
or

) i
nc

lu
de

d 
in

 e
ac

h 
an

al
ys

is
 a

nd
 w

he
th

er
 

th
e 

an
al

ys
is

 w
as

 b
y 

or
ig

in
al

 a
ss

ig
ne

d 
gr

ou
ps

 
10

 

O
ut

co
m

es
 a

nd
 

es
tim

at
io

n 
17

a 
Fo

r e
ac

h 
pr

im
ar

y 
an

d 
se

co
nd

ar
y 

ou
tc

om
e,

 re
su

lts
 fo

r e
ac

h 
gr

ou
p,

 a
nd

 th
e 

es
tim

at
ed

 e
ffe

ct
 

si
ze

 a
nd

 it
s 

pr
ec

is
io

n 
(s

uc
h 

as
 9

5%
 c

on
fid

en
ce

 in
te

rv
al

) 
10

-1
1 

17
b 

Fo
r b

in
ar

y 
ou

tc
om

es
, p

re
se

nt
at

io
n 

of
 b

ot
h 

ab
so

lu
te

 a
nd

 re
la

tiv
e 

ef
fe

ct
 s

iz
es

 is
 re

co
m

m
en

de
d 

10
 

An
ci

lla
ry

 a
na

ly
se

s 
18

 
R

es
ul

ts
 o

f a
ny

 o
th

er
 a

na
ly

se
s 

pe
rfo

rm
ed

, i
nc

lu
di

ng
 s

ub
gr

ou
p 

an
al

ys
es

 a
nd

 a
dj

us
te

d 
an

al
ys

es
, d

is
tin

gu
is

hi
ng

 p
re

-s
pe

ci
fie

d 
fro

m
 e

xp
lo

ra
to

ry
 

11
-1

3 

H
ar

m
s 

19
 

Al
l i

m
po

rta
nt

 h
ar

m
s 

or
 u

ni
nt

en
de

d 
ef

fe
ct

s 
in

 e
ac

h 
gr

ou
p 

(fo
r s

pe
ci

fic
 g

ui
da

nc
e 

se
e 

C
O

N
SO

R
T 

fo
r h

ar
m

s)
 

13
, T

ab
le

s 
S3

,S
4 

D
is

cu
ss

io
n 

Li
m

ita
tio

ns
 

20
 

Tr
ia

l l
im

ita
tio

ns
, a

dd
re

ss
in

g 
so

ur
ce

s 
of

 p
ot

en
tia

l b
ia

s,
 im

pr
ec

is
io

n,
 a

nd
, i

f r
el

ev
an

t, 
m

ul
tip

lic
ity

 
of

 a
na

ly
se

s 
14

-1
7 

G
en

er
al

is
ab

ilit
y 

21
 

G
en

er
al

is
ab

ilit
y 

(e
xt

er
na

l v
al

id
ity

, a
pp

lic
ab

ili
ty

) o
f t

he
 tr

ia
l f

in
di

ng
s 

14
-1

7 

In
te

rp
re

ta
tio

n 
22

 
In

te
rp

re
ta

tio
n 

co
ns

is
te

nt
 w

ith
 re

su
lts

, b
al

an
ci

ng
 b

en
ef

its
 a

nd
 h

ar
m

s,
 a

nd
 c

on
si

de
rin

g 
ot

he
r 

re
le

va
nt

 e
vi

de
nc

e 
14

-1
7 

O
th

er
 in

fo
rm

at
io

n 
 

R
eg

is
tra

tio
n 

23
 

R
eg

is
tra

tio
n 

nu
m

be
r a

nd
 n

am
e 

of
 tr

ia
l r

eg
is

try
 

6 

Pr
ot

oc
ol

 
24

 
W

he
re

 th
e 

fu
ll 

tri
al

 p
ro

to
co

l c
an

 b
e 

ac
ce

ss
ed

, i
f a

va
ila

bl
e 

6 

Fu
nd

in
g 

25
 

So
ur

ce
s 

of
 fu

nd
in

g 
an

d 
ot

he
r s

up
po

rt 
(s

uc
h 

as
 s

up
pl

y 
of

 d
ru

gs
), 

ro
le

 o
f f

un
de

rs
 

17
-1

8 

 



Dunlop et al.  Supplement 

5 

Table S2. Ethnicity and allele frequency of CRF1 SNP rs110402   
 

Race GG AG/AA Total 
White  18 33 51 
Black 14 14 28 
Other 1 6 7 
Total 33 53 86 
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Table S3. Spontaneously reported adverse events  
 

Adverse Event GSK561679 Placebo Total 
Headache 25 24 49 
Nausea 19 11 30 
Insomnia 6 11 17 
Diarrhea 6 9 15 
Upper Resp. Tract Infection 8 7 15 
Sedation 5 8 13 
Dizziness 7 4 11 
Rash 2 8 10 
Vomiting 4 6 10 
Dyspepsia 4 5 9 
Constipation 2 5 7 
Dry Mouth 5 2 7 
Irritability 3 4 7 
Pruritis  4 3 7 
Abdominal Pain 1 5 6 
Arthralgia 5 1 6 
Cough 2 4 6 
Depression Worsening 2 3 5 
Neck Pain 3 2 5 
Rhinitis Allergic 2 3 5 
Sinusitis 1 4 5 
Vision Blurred 2 3 5 
Contusion 0 4 4 
Disturbance in Attention 1 3 4 
Hypersensitivity 1 3 4 
Migraine 3 1 4 
Muscle spasm 1 3 4 
Myalgia 1 3 4 
Palpitations 2 2 4 
Abdominal Distension 0 3 3 
Flatulence 0 3 3 
Hot Flush 0 3 3 
Non-Cardiac Chest Pain 0 3 3 
Oropharyngeal Pain 0 3 3 
Tinnitus 3 0 3 

 
All p >.05 
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Table S4. Patient Rated Inventory of Side Effects (PRISE) symptom counts 

Symptom Placebo GSK561679 p-value 
n (%) n (%)  

Anxiety 50 (77) 54 (86) p < 0.29 
Blurred Vision 21 (32) 15 (24) p < 0.38 
Chest Pain 13 (2) 9 (14) p < 0.53 
Constipation 16 (25) 17 (27) p < 0.92 
Decreased Energy 54 (83) 51 (81) p < 0.93  
Diarrhea 20 (31) 22 (35) p < 0.62 
Difficulty Sleeping 59 (91) 58 (92) p < 0.99 
Difficulty Urinating 1 (2) 0 (0) p < 0.99  
Dizziness 31 (47) 24 (38) p <  0.27 
Dizziness on Standing 23 (35) 19 (3) p <  0.66 
Dry Mouth 22 (34) 22 (35) p > 0.99 
Dry Skin 29 (45) 25 (4) p < 0.70 
Fatigue 55 (85) 47 (75) p < 0.15 
Frequent Urination 21 (32) 16 (25) p < 0.50 
General Malaise 25 (38) 22 (35) p < 0.82 
Headache 51 (78) 45 (71) p < 0.47 
Blurred Vision 21 (32) 15 (24) p < 0.38 
Chest Pain 13 (2) 9 (14) p < 0.53 
Constipation 16 (25) 17 (27) p < 0.92 
Decreased Energy 54 (83) 51 (81) p < 0.93  
Diarrhea 20 (31) 22 (35) p < 0.62 
Difficulty Sleeping 59 (91) 58 (92) p < 0.99 
Difficulty Urinating 1 (2) 0 (0) p < 0.99  
Increased Perspiration 19 (29) 13 (21) p < 0.36 
Itching 28 (43) 27 (43) p > 0.99 
Loss of Sexual Desire 28 (43) 32 (51) p < 0.49  
Menstrual Irregularity 11 (17) 9 (14) p < 0.87 
Nausea/Vomiting 26 (4) 28 (44) p < 0.74 
Painful Urination 6 (9) 1 (2) p < 0.11 
Palpitation 18 (28) 20 (32) p < 0.76 
Poor Concentration 53 (82) 53 (84) p < 0.88  
Poor Coordination 16 (25) 17 (27) p < 0.76 
Rash 9 (14) 8 (13) p > 0.99 
Restlessness 42 (65) 40 (63) p > 0.99  
Ringing in Ears 18 (28) 15 (24) p < 0.76  
Sleeping Too Much 19 (29) 11 (17) p < 0.17 
Tremors 11 (17) 2 (3) p < 0.02 
Trouble Achieving Orgasm 11 (17) 7 (11) p < 0.45 

 
Bolded value is p<.05 
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Figure S1: CONSORT flow diagram 
 

 
  

Consented to Participate (n=267) 

Analysed:  ITT (n=63); Completer (n=47) 

 
 

Terminated Early (n=16) 
¤  Withdrew Consent (n=3) 
¤  Adverse Event (n=8) 
¤  Lost to Follow-up (n=5) 

¤  Protocol Violation (n=0) 
 
 
 
  
 

Allocated to GSK561679 (n=63) 
  
  

Terminated Early (n=16) 
¤  Withdrew Consent (n=8) 
¤  Adverse Event (n=3) 
¤  Lost to Follow-up (n=1) 

¤  Protocol Violation (n=4) 
 

Analysed:  ITT (n=65); Completer (n=49) 

 
 

 

Allocation 

Analysis 

Follow-Up 

Randomized (n=128) 

Enrollment 

Allocated to Placebo (n=65) 
  

¤  Failed to meet eligibility criteria (n = 69) 
¤  Lost to follow-up   (n = 26) 
¤  Withdrew consent (n = 44) 
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Figure S2: Change in MADRS scores over time  
S.E. bars represent ± 1 S.E. 

 

 

 

Figure S3: Significant interaction effect of rs110402 and childhood abuse on percent change in PSS 
re-experiencing score  
The boxplots describe the mean % change of PSS re-experiencing score in abused and non-abused 

patients treated with GSK561679 or placebo. GG carriers are shown in light grey and AA/AG in dark 

grey. Black dots indicate outliers. rs110402 A carrier status by childhood abuse exposure showed a 

significant interaction effect on PSS re-experiencing score % change over treatment in subjects 

treated with GSK561679 (-ß=-2.472; p=0.006) but not in subjects treated with placebo (ß=-0.075; 

p=0.92). rs110402 GG carriers exposed to child abuse displayed the highest % change of PSS 

symptoms following GSK561679 treatment. 
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Figure S4: Significant interaction effect of rs110402 and childhood abuse on percent change in PSS 
arousal score  
The boxplots describe the mean % change of PSS arousal score in abused and non-abused patients 

treated with GSK561679 or placebo. GG carriers are shown in light grey and AA/AG in dark grey. 

Black dots indicate outliers. rs110402 A carrier status by childhood abuse exposure showed a 

significant interaction effect on PSS arousal score % change over treatment in subjects treated with 

the GSK561679 (ß=-2.034; p= 0.019) but not in subjects treated with placebo (ß=0.054; p=0.94). 

rs110402 GG carriers exposed to child abuse displayed the highest % change of PSS symptoms 

following GSK561679 treatment. 

 

 

Figure S5: Lack of interaction effect of rs110402 and childhood abuse on percent change in PSS 
avoidance score  
The boxplots describe the mean % change of PSS avoidance score in abused and non-abused patients 

treated with GSK561679 or placebo. GG carriers are shown in light grey and AA/AG in dark grey. 

Black dots indicate outliers. rs110402 A carrier status by childhood abuse exposure showed no 

significant interaction effect on PSS avoidance score % change over treatment in subjects treated 

with either GSK561679 (ß=-0.945; p=0.36) or placebo (ß=0.565; p=0.44). 
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Figure S6. Lack of effect of GSK561679 and placebo on morning cortisol  
Non-significant change in morning cortisol from baseline to week 5 between patients treated with 

GSK561679 or placebo (p<.05). 
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Figure S7: Lack of effect of GSK561679 on change in morning plasma cortisol levels after 
dexamethasone suppression  
Change of 8:00am plasma cortisol levels before and after administration of 0.5mg dexamethasone in 

subjects treated with the GSK561679 or placebo. a) Pre-treatment; b) after 5 weeks of treatment. At 

both time points no significant difference was observed between the two treatments groups (p>0.05 

for all; Pre-treatment: n= 36 GSK561679, 33 placebo; 5 weeks after treatment: n= 29 GSK561679, 26 

placebo). 
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Figure S8: PCA Plot  
PCA plot of samples shows good concordance between self-reported ethnicity (legend) and 

estimated ethnicity by principal component analysis. African-American (AfrAm), Asian South Central 

(Asian SC), Asian South East (Asian SE), Hawaiian Pacific Islands (Haw PacIsl) Multiple (Mult), 

Unknown (Unk), White Arabic (White A), White Caucasian (White C). 
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Figure S1: miRNA and gene array results (related to fig. 1) 
(A) A list of miRNAs that were significantly (step up p value<0.01) up and down regulated in RNA 
from IP of amygdala Ago2 complex following chronic stress in mice. (B) A list of genes that were 
significantly (p value<0.05) up and down regulated in RNA from IP of amygdala Ago2 complex 
following chronic stress in mice.  
 
 
 
 
 
 
 
 
 



 
 
Figure S2: miR-15a levels are elevated in mice plasma following social defeat (related to fig. 1)  
Real time PCR analysis. (A) The levels of miR-15a (n=6) were increased by 60% (t(10)=-2.265, 
p=0.047) in plasma of mice subjected to the chronic social defeat paradigm whereas (B) the levels of 
miR-124 (n=7,6) remained unchanged.  
 
 
 

 
 
Figure S3: Construction and validation of miR-15a over-expressing lentiviruses (related to fig. 4) (A) 
Schematic illustration of the Syn-miR-15a over-expression (OE) and scramble control lentiviral 
constructs. (B) miR-15a levels in the basolateral amygdala (BLA) (n=6) of mice injected with miR-15a 
OE or control (scramble) lentiviruses under basal conditions (t(10)=-6.147, p=0.000). (C) Schematic 
representation of the site of delivery. Adapted from Paxinos and Franklin digital mouse brain atlas. 
(D) Enlargement of the BLA region corresponding to the injection site. (E) Representative microscope 
image of a virally infected BLA following miR-15a injection of a 10-week old mouse.  



 
 

 
 
Figure S4: Anxiety and depression-like behavioral tests and locomotor activity in mice over-
expressing miR-15a (related to fig. 5) (A, B) No significant differences were observed in the open 
field test between BLA miR- 15a OE and control mice under basal conditions (A) or following chronic 
social defeat (B). (C, D) No significant differences were observed in the EPM test between BLA miR- 
15a OE and control injected mice under basal conditions (C) or following chronic social defeat (D). (E-
J) No significant differences were observed in the locomotor activity or total distance traveled in the 
open field test between BLA miR-15a OE and control mice under basal conditions or (H-J) following 
chronic social defeat.  



 

 
 
Figure S5: Knockdown of miR-15a results in increased anxiety-like behavior in the open-field test 
(related to fig. 4 and 5) (A) Illustration of miR-15a KD and control virus injection sites. Blue circles 
represent the punch area used for RNA extraction. (B) Real time PCR analysis of miR-15a levels (n=5). 
The levels of miR-15a were significantly decreased following injection of miR-15a KD virus compared 
to control virus (t(8)=-3.445, p=0.009). (C) Open-field test for mice injected with miR-15a KD virus 
relative to control (n=11, 12). The mice spent significantly less time in the center of the arena 
(F(1,22)=5.27, p=0.032). No changes were observed in the distance spent in center or visits to center. 
(D) Open-field test for mice injected with miR-15a KD or control viruses (n=10, 9) and were also 
subjected to social defeat. There were no differences in the time the mice spent in the center of the 
arena but they showed a tendency to travel less distance in the center of the arena (U=22, p=0.060) 
and had fewer visits to the center of the arena (U=20, p=0.041).  
 
 
 
 
 



Supplemental Materials and Methods (related to Experimental Procedures) 
 
 
Animals 
C57BL/6J mice and ICR mice (outbred mice strain, also known as CD1) (Harlan Israel, Kiryat 
Weizmann, Rehovot) were maintained in a pathogen-free temperature-controlled (22 ± 1°C) mouse 
facility on a reverse 12 h light-dark cycle at the Weizmann Institute of Science, according to 
institutional guidelines. Food (Harlan Israel, Kiryat Weizmann, Rehovot) and water were given ad 
libitum. C57BL/6J mice were housed 4 per cage whereas ICR mice were single caged. The total 
number of animals used for the Ago2 IP was 30 (18 social defeat and 12 controls). The total number 
of animals used for the lentiviruses experiment was 40 in total (10 per group).  
 
Chronic social defeat 
10-week old C57BL/6J male mice were subjected to a social defeat protocol as previously described 
(Krishnan et al. 2007). Briefly, the mice were placed randomly in a home cage of an aggressive ICR 
mouse and allowed to physically interact for five minutes. During this time, the ICR mouse attacked 
the intruder mouse and the intruder displayed subordinate posturing. A perforated clear Plexiglas® 
divider was then placed between the animals and the mice remained in the same cage for 24 h to 
allow sensory contact. The procedure was then repeated with an unfamiliar ICR mouse for each of 
the 10 consecutive days. Control mice were housed in the same room as the social defeat mice but 
were taken out of the room during the five-minute interaction with the ICR. Control mice were 
handled daily and housed 2 per cage with a perforated clear Plexiglas® divider placed between the 2 
mice. The cage used for the social defeat is a type II long cage for mice (W x D x H) 15.59 x 8.46 x 6.77 
inch. The bedding used during the social defeat was Aspen Sami bedding 17304. Mice were not 
lethally injured although superficial marks were observed. We find that within a period of 5 minutes 
the mice tend to avoid major injuries.  
 
Microdissection of brain sites for Ago2 IP 
Amygdala samples were collected from social defeat and control mice 8 days after the end of the 
chronic social defeat protocol. Tissue collection and processing was performed as previously 
described (Lebow et al., 2012; Sztainberg et al., 2010). Briefly, after removing the brain and placing it 
on an acryl 1 mm brain matrix (Stoelting Co., Wood Dale, IL, cat# 51380), 2 mm slices were taken 
using standard razor blades (GEM, 62-0165) based on designated anatomical markers. Blunted 
syringes of different diameters were used to punch out the amygdala from slices removed from the 
matrix.  
 
Immunoprecipitation of Ago2 protein 
Pools of 3 amygdalae taken from 3 mice from the same treatment group (either Social defeat n=18 or 
Control n=12) were homogenized in NP40 buffer, which was supplemented with RNase inhibitor, 
protease inhibitor and phosphatase inhibitor (Roche Diagnostics, Indianapolis, IN). The samples were 
constantly agitated for 2 h at 4°C. Samples were then centrifuged for 20 min at 12,000 rpm at 4°C in a 
microcentrifuge; the supernatant was placed in a fresh tube, kept on ice and the pellet was 
discarded. Magnetic protein G beads (Dynabeads, Invitrogen Life Technologies, Carlsbad, CA) were 
incubated with the Ago2 monoclonal antibody (WAKO chemicals GmbH, Neuss, Germany) with 
rotation at room temperature for 10 minutes. After several washes, the samples were added to the 
Ago2-coated protein G beads and incubated overnight at 4°C under agitation. The following day the 
beads were washed 3 times with PBS. For RNA purification, the beads were homogenized in RLT 
buffer (RNeasy kit, QIAGEN, Hilden, Germany - miRNA supplementary protocol). For western blot 
analysis, the beads were boiled in sample buffer to release the protein from the beads.  
 



RNA purification and microarray 
RNA from the Ago2 immunoprecipitation samples was isolated using the RNeasy plus kit (QIAGEN, 
Hilden, Germany) following QIAGEN’s supplementary Protocol 1: Purification of total RNA containing 
miRNA. RNA for all other purposes was isolated from frozen brain punches using the miRNeasy mini 
kit (QIAGEN, Hilden, Germany) according to the manufacturer’s recommendation. RNA derived from 
tissues of stressed mice following Ago2 immunoprecipitation was further analyzed on an Affymetrix 
miRNA 2.0 array (enriched RNA protocol) and an Affymetrix Mouse Gene 1.0 ST array (Affymetrix, 
Santa Clara, CA).  
 
Microarray analysis 
For the miRNA analysis, we used 4 arrays for the control mice and 6 arrays for the social defeat mice 
(each array consists of a pool of 3 mice). We used step up correction for multiple testing correction. 
The fold change threshold was 1.75 with a p value of p < 0.01. For the gene analysis, we used 3 arrays 
for the control mice and 6 arrays for the social defeat mice (each array consists of a pool of 3 mice). 
The fold change threshold was 1.3 with a p value of p < 0.05.  
 
Bioinformatic analysis of microRNA microarray results  
miRNAs and genes were tested in 3 different web based programs in search for a seed match 
between a miRNA and a 3'-UTR: Target Scan (http://www.targetscan.org), Miranda 
(http://www.microrna.org), (Betel et al., 2008) and Pictar (http://pictar.mdcberlin. de).  
 
Cloning of 3'-UTRs into Psicheck2 luciferase expression plasmid 
The 3'-UTR sequence of FKBP51 was PCR amplified from mouse genomic DNA using a forward 
primer: CCAACTCAGGACTGAACAGT and a reverse primer: GTTCCTTAGGCTGTGGAGAA. The DNA 
sequence for the mutated form of FKBP51 was generated by site directed mutagenesis using the 
original cloning primers of FKBP51 and 2 new primers: FKBP51-SDM-F ATGACCACCACGGGCTGCGG 
and FKBP51-SDM-R CCGCAGCCCGTGGTGGTCAT. This mutation replaced the first 4 nucleotides in the 
miR-15a seed sequence of FKBP51 from TGCT to ACGG. The 3'- UTR fragments were then ligated into 
pGem-T easy vector (Promega, Madison, WI) according to the manufacturer's guidelines, and further 
subcloned into a single NotI site at the 3' end of luciferase in the Psicheck2 reporter plasmid 
(Promega, Madison, WI). Cloning orientation was verified by diagnostic cuts and sequencing.  
 
Transfections and luciferase assay 
Huh7 cells were grown on poly-L-lysine coated 48-well plates to 70-85% confluence and transfected 
using polyethylenimine with the following plasmids: 5 ng of Psicheck2- 3'- UTR plasmid and 215 ng of 
EGFP over-expressing vector for either a specific miRNA, or a miR-scramble EGFP plasmid. 24 h 
following transfection, cells were lysed and luciferase reporter activity was assayed as previously 
described (Chen et al. 2005). Renilla luciferase values were normalized to control luciferase levels 
(transcribed from the same vector but not affected by the 3'-UTR tested) and averaged across eight-
well repetitions per condition.  
 
miRNA RT-qPCR expression analysis 
Quantitative miRNA expression was acquired and analyzed using a step one thermocycler (Applied 
Biosystems, Waltham, MA), using miRCURY LNA Universal RT microRNA PCR primers (Exiqon, 
Vedbaek, Denmark) or miScript primer assay (QIAGEN, Hilden, Germany). RNA samples were 
assessed using miRCURY Universal cDNA Synthesis kit II and miRCURY ExiLENT SYBR Green (Exiqon, 
Vedbaek, Denmark) or miScript II RT kit and miScript SYBRgreen PCR kit (QIAGEN, Hilden, Germany), 
according to the manufacturer's guidelines. U6, 5S rRNA were used as internal controls. Gene 
expression was obtained using the High Capacity kit and SYBR green PCR master mix (Applied 
Biosystems, Waltham, MA). The real-time PCR primers for FKBP51 were: forward: 
ATGACTACTGATGAGGGCAC and reverse: GACATAAACTTTGTCACCAAAC.  
 
 



Design, construction and validation of miR-15 lentiviruses 
The miR-15a over-expression vector was cloned as follows: the enhanced form of human synapsin I 
promoter (Hioki et al. 2007) was PCR amplified (forward primer: ttttttatcgatctcgagtagttattaatagtaatc, 
reverse primer: ttttttaccggtggcgcgcccgccgcagcgcagatggt) from pENTR1A-E/SYN-GFP-WRPE1 (Kindly 
provided by Dr. Takeshi Kaneko, Department of Morphological Brain Science, Graduate School of 
Medicine, Kyoto University, Kyoto, Japan) and inserted between ClaI and AgeI restriction sites to 
replace the CMV promoter in pCSC-SP-PW-GFP (kindly provided by Dr. Inder Verma, The Salk 
Institute for Biological Studies, La Jolla, CA). Following the Synapsin promoter, the precursor for miR-
15a was inserted: 
gcacataccagtgttagatttttttcaaacatagattttatgtgttctactttttcctaaaaagccttttctgtaaattactattgaggtgctaggagttt
caaaaccaacccttggagtaaagtagcagcacataatggtttgtggatgttgaaaaggtgcaggccatactgtgctgcctcaaaatacaaggac
ctgatcttctgaagagagtacctgtctttttattcatagctcctatgatagcaatgtc.  
The miR scramble control was purchased from GeneCopoeia (Rockville, MD) and subcloned into 
pCSC-SP-PW-SYN-GFP plasmid. The miR-15a sponge KD and its control were designed according to 
Lin et al. (Lin et al. 2011) and inserted following an H1 promoter in the p156RRL-CMV-GFP viral 
plasmid. The sequence for miR-15a sponge was: 
CGCGGATCTAGCTAGCCACAAACCAAGCGTGCTGCTAATCGCACAAACCAAGCGTGCTGCTAATCGCACAAAC
CAAGCGTGCTGCTAATCGCACAAACCAAGCGTGCTGCTAGCTAGATCGATCTTCTAGAAAGATCCAAACCAAG
CGTGCTGCTAATCGCACAAACCAAGCGTGCTGCTAATCGCACAAACCAAGCGTGCTGCTAATCGCACAAACCA
AGCGTGCTGGCTAGCTAGCCTAGATCCGCGTCGTTAATTAACCTTAGGGCTTAGCGCTAGC.  
The sequence for miR-15a sponge control was: 
CTAGCTAGCCATGTCCCAAGCAGAATGCTAATCGCATGTCCCAAGCAGAATGCTAATCGCATGTCCCAAGCAG
AATGCTAATCGCATGTCCCAAGCAGAATGCTA. 
High titer lentiviruses were produced as previously described (Tiscornia et al. 2006). Briefly, 
recombinant lentiviruses were produced by transient transfection in HEK293T cells. Infectious 
particles were harvested at 48 and 72 h post-transfection, filtered through 0.45 μm-pore cellulose 
acetate filters, concentrated by ultracentrifugation, re-dissolved in sterile HBSS, aliquoted and stored 
at –80°C.  
 
Stereotactic intracranial injections 
A computer-guided stereotaxic instrument and a motorized nanoinjector (Angle TwoTM Stereotaxic 
Instrument, myNeurolab, Leica Biosystems, Buffalo Grove, IL) were used as previously described 
(Elliott et al., 2010; Kuperman et al., 2010; Regev et al., 2012). 10- week old male mice were 
randomly selected and anesthetized using 1.5% isoflurane and 1 μl of the lentiviral preparation was 
delivered to each BLA using a Hamilton syringe connected to a motorized nanoinjector system at a 
rate of 0.2 μl per min (coordinates relative to bregma: AP = –1.58 mm, L = ±3.3 mm, H = –4.6 mm). 
Following a 2-week recovery period, mice were subjected to behavioral studies and later 
anesthetized and perfused with 4% PFA. The fixed brains were serially sectioned and 
immunohistochemically stained in order to confirm the location of the injection site, as previously 
described (Regev et al., 2011). The antibodies that were used were: Goat biotinylated anti-GFP 
(Abcam, Cambridge, UK; ab6658) and Alexa Fluor 488 Streptavidin (Jackson ImmunoResearch 
Laboratories, West Grove, PA; 016-540-084). 3 repetitions were used for the immunohistochemical 
analysis.  
 
Behavioral assessments 
All behavioral assessments were performed during the dark (active) phase following habituation to 
the test room for 2 hours before each test. Behavioral tests were conducted as previously described 
(Haramati et al., 2011; Lebow et al., 2012) in the following order, from the least stressful procedure 
to the most and ending with home cage locomotor testing: Open-field, EPM and home cage 
locomotion. 
Open-field test: The open-field test was performed in a 50 x 50 x 22 cm white box, lit to 120 lux. The 
mice were placed in the box for 10 minutes. Locomotion in the box was quantified using a video 
tracking system (VideoMot2; TSE Systems, Bad Homburg, Germany).  



EPM test: This apparatus in this test is designed as a plus sign and contains 2 barrier walls and 2 open 
arms. During the 5-minute test, which is performed in relative darkness (6 lux), the number of 
entries, the distance traveled and the time spent in the open arms is automatically scored using a 
video tracking system (VideoMot2, TSE Systems, Bad Homburg, Germany).  
Homecage locomotion: Homecage locomotion was assessed using the InfraMot system (TSE Systems, 
Bad Homburg, Germany). Mice were housed individually for 72 h, in which the first 24 h were 
considered habituation to the individual housing conditions. Measurements of general locomotion 
consisted of 2 light and 2 dark cycles in the last 48 h, collected at 10 min intervals. 
 
Statistics 
Data are expressed as mean ± standard error of the mean (Binder et al.). Statistical analyses were 
performed using Statistical Package for the Social Sciences (SPSS) software (SPSS Inc., Chicago, IL). All 
data sets’ distributions were tested for normality using Shapiro-Wilks test in order to determine 
which statistical tests should be applied. In cases where indices of 2 groups were compared and the 
data’s distribution was normal, a 2-sided students t-test was used, where the data departed from 
normal distribution, the Mann- Whitney U test was applied. All data sets were also tested for 
variance similarity between compared groups. For the miRNA array results, a q-value correction was 
performed. Mice were excluded from the analysis if they had values higher than AVG+2*SD or lower 
than AVG-2*SD. 
 
Human studies - qPCR analysis 
Samples: For this study, 26 males of Caucasian origin aged between 19 and 30 years were recruited 
(mean age = 25.58 +/- 2.64SD). All participants were free of a history of psychiatric disorders as well 
as major neurological and general medical disorders. Further exclusion criteria were regular use of 
medical drugs, as well as excessive alcohol or caffeine consumption. All subjects gave written 
informed consent. Procedures were approved by the Ethics Committee of the Ludwig Maximilians 
University, Munich, Germany, in accordance with the Declaration of Helsinki.  
Study Design: Unstimulated peripheral blood samples were drawn at 12:00pm followed by oral 
administration of 1.5 mg of dexamethasone. Subsequently stimulated samples were collected at 
1:00pm, 3:00pm, 6:00pm, and at 11:00am the following day. PAXgeneTM (QIAGEN, Hilden, Germany) 
whole blood RNA collection tubes were used at each time point for whole blood collection. RNA 
extraction: Total RNA was extracted using the PAXgene Blood RNA Kit (PreAnalytiX, Hombrechtikon, 
Switzerland) with the QIAGEN method for column purification of nucleic acids (PreAnalytiX, 
Hombrechtikon, Switzerland) according to the manufacturer’s instructions. For RNA quality and 
quantity, extracted samples were subsequently run on the Agilent 2200 TapeStation (Agilent 
Technologies, Santa Clara, CA). All samples had an RNA integrity number (RIN) ≥7. 
Quantitative real time polymerase chain reaction: Total RNA was reverse transcribed using the 
miRCURY LNA™ Universal RT miRNA PCR cDNA synthesis kit (Exiqon, Vedbaek, Denmark). CDNA was 
diluted and mixed with the Exiqon microRNA LNA PCR primers as well as the Exiqon SYBR Green 
master mix and assayed in 10 μl reactions. qPCR experiments were performed using the Roche 480 
LightCycler system (Roche Applied Science, Roche Diagnostics, Indianapolis, IN) in 384-well plates. 
Each sample was run in technical triplicates. Normalization of the results was performed against 
SNORD38 using the delta Ct method.  
 
Western blot analysis 
Frozen brain samples were homogenized in RIPA buffer supplemented with proteinase inhibitors 
(Sigma-Aldrich, St. Louis, MO) and were incubated on ice for 10 min. After 10 min centrifugation, the 
supernatant was transferred to a new tube and sample buffer was added to the sample, which was 
then boiled for 5 min and placed on ice. The samples were separated in a 10% polyacrylamide gel 
electrophoresis. Transfer was performed using an assembly of nitrocellulose membrane and 
Whatman paper. The transfer was performed at 100v, 280 mAmp for 1h and 40 minutes. After 
washes with PBST (PBS + 20% Tween 20) membrane was blocked with 10% milk for 1 h. The first 
antibody was added (goat anti FKBP51 – Santa Cruz 11518, mouse anti-GAPDH – abcam 8245 or 



mouse Anti-b-Actin- Sigma-Aldrich, St. Louis, MO; A1978) to PBST and placed on constant shaking at 
4°C overnight or 1 h at room temperature. The second antibody (anti-goat HRP – abcam 6885, anti-
mouse HRP – cell signal 7076) was added in 10% milk for 1 h. Each step was separated by additional 
washes with PBST. Finally, ECL was added to the membrane which was then exposed to film. 
 
Social avoidance test 
The test is performed in an open field design with a small neighboring chamber that is separated 
from the open field with a divider with small open slits, allowing full sensory contact between the 2 
fields. The mice are allowed to habituate to the open field for 3 minutes, and then an unfamiliar ICR 
mouse is placed in the neighboring chamber, and they are allowed to interact for 3 minutes. The 
entire session is videotaped and analyzed with Ethovision software (Noldus, Wageningen, 
Netherlands). The space next to the small neighboring chamber is deemed the interaction zone. The 
time a mouse spends in the interaction zone with the unfamiliar ICR mouse is divided by the time the 
mouse spent in the interaction zone without the unfamiliar ICR mouse and then multiplied by 100. 
Mice were categorized into 3 groups: Control, “Susceptible” and “Resilient”. Mice that received 
below 100 in this analysis were characterized as “Susceptible”. Mice that received above 100 in this 
analysis were characterized as “Resilient”. Only control mice that received above 100 were further 
used. 
 
miRNA Sequencing analysis 
RNA samples were quantified by Qubit and 400 ng RNA used for library preparation using the 
Illumina TruSeq Small RNA Library Preparation Kit following the standard protocol and size-selected 
on DNA-PAGE to a size of 145-155nt. QC was carried out using BioAnalyzer High Sensitivity DNA chips 
and libraries quantified using the KAPA library Quantification Kit for Illumina (Kapa Biosystems Inc., 
Wilmington, MA) on a Roche Lightcycler480. Libraries were multiplexed in euqimolar pools and 
sequenced single-end 50nt on an Illumina MiSeq at MPI of Psychiatry, München, using v3 chemistry 
to a depth of minimum 5Mio reads per sample (% >=Q30 higher then 96). Fastq raw sequence reads 
were quality-checked using FASTQC* and reads between 15-40nt length containing the Illumina 
Small RNA Adapter selected and adaptertrimmed using Cutadapt*. Reads were aligned to miRbase 
v21 and normalized to counts per million using sRNAbench* (library mode using Bowtie*). 
Differential expressed microRNAs were queried using the Bioconductor - DESeq2 package* applying a 
minimum cut-off of 5 read counts in all samples. 
 
Subjects exposed to early life trauma 
Control subjects were available at the IRCCS Fatebenefratelli Institute, Brescia (Italy). Individuals 
presenting a history of neurological disease, prior electro-convulsivant treatment, prior traumatic 
brain injury, or mental retardation (IQ<70) were excluded from the study. Written informed consent 
was obtained by participants after receiving a complete description of the study, which has received 
approval by the local ethics committee.  
 
The absence of psychiatric disorder was ascertained via 2 schedules: the Mini International 
Neuropsychiatric Interview (M.I.N.I. Plus, Bonora et al., 1995), to exclude any psychiatric disorder in 
Axis I; and the Structured Clinical Interview for DSM disorders (SCID-II, Spitzer et al., 1993) to exclude 
any psychiatric disorder in Axis II.  
 
The list of traumatic events includes loss of a biological parent due to death or separation for at least 
6 months, including being taken into local authority care, severe physical, sexual abuse by a parental 
figure and neglect. Physical abuse includes incidents that meet at least 2 of the following criteria: a) 
the abuse consisted of being hit with a belt or stick, or being punched or kicked; b) the abuse 
resulted in an injury, including broken limbs, black eyes or bruising; and c) the perpetrator was 
considered to be out of control. Sexual abuse was defined as unwanted or illegal sexual experiences 
prior to age 17 years with any adult or an individual at least 5 years older than the recipient, not 
necessarily limited to the immediate family; moreover, these experiences have to meet at least 2 of 



the following criteria: a) the perpetrator was known to the individual; b) the perpetrator was a 
relative; c) the perpetrator lived in the same household; d) the unwanted sexual experience occurred 
more than once; e) the perpetrator touched the child's genitals; f) the perpetrator forced the child to 
touch the perpetrator's genitals; and g) the abuse involved sexual intercourse.  
 
Neglect was defined in terms of parents’ disinterest in material care (feeding and clothing), health, 
schoolwork and friendships. Neglect was quantified for both mother and father.  
 
The most conservative cut-off points published by Bifulco et al. (2005) were used to dichotomise 
these responses into a yes/no answer. For this study, we performed miRNA analyses using qPCR in a 
group of 20 subjects who reported at least one type of abuse (physical abuse, sexual abuse, physical, 
parents separation or loss and neglect) and 20 subjects matched for age and gender with no history 
of early life stress (mean age ± SD: 38.1 ± 6.1 and 37.5 ± 6.7 respectively in the subjects with and 
without childhood trauma, p<0.05); percentage of females of 55% and of 54% respectively in the 
subjects with and without childhood trauma, p<0.05).  
 
Blood samples were collected by using PaxGene Blood Tubes. After collection, blood samples were 
then kept at room temperature for 2 hours, then at -20°C for 2 days and then at -80°C until their 
processing.  
 
miRNA isolation from the blood of subjects  
Total RNA was extracted from 2.5 mL of blood with the PAXGene Blood miRNA Kit (QIAGEN, CA, 
USA), designed for the simultaneous isolation of small and large RNAs; RNA concentration and 
quality were assessed through a NanoDrop spectrophotometer (Thermo Scientific, MA, USA).  
 
Real-time PCR analyses  
We looked specifically at the expression of hsa-miR-15a-5p by Real Time PCR (RTPCR). RT-PCR was 
conducted using TaqMan MicroRNA Assays (Applied Biosystems, CA, USA), following the 
manufacturer's instructions and the reactions were run on the StepOnePlus instrument (Applied 
Biosystems, Waltham, MA). The Ct values were normalized according to the deltaCt method on the 
endogenous controls RNU44 and RNU48. 
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The Role of Genetics and Epigenetics  
in the Pathogenesis of Posttraumatic 
Stress Disorder

ABSTRACT
Posttraumatic stress disorder (PTSD) represents a common psychiatric disorder that 

can emerge after a traumatic life event. Despite a high incidence of trauma exposure 
(40%-90%) in the general population, only a minority (7%-12%) will eventually develop 
the disorder. As indicated by twin and family studies, genetic factors are an important 
contributor to PTSD, suggesting an individual genetic vulnerability to the disorder. Stud-
ies exclusively focusing on genetic main effects have shown limited results, likely because 
environmental factors play a key role in this disorder. Gene and environment interac-
tion (GxE) studies may represent a more promising approach to better understand the 
pathophysiology of this disorder because they jointly consider the genetic predisposition 
as well as the environmental trigger. On a molecular level, such GxE and long-lasting ef-
fects of these interactions on transcriptional regulation may be mediated by epigenetic 
modifications. A number of studies suggest that the etiology of PTSD is the result of a 
complex interplay of genetics, environmental factors, and epigenetic regulation. This ar-
ticle reviews current genetic and epigenetic findings in the field of PTSD, focusing both 
on candidate gene and genome-wide approaches. Although there has been some initial 
progress, the field still lacks large-scale studies on the genetic level, but some are currently 
underway within the Psychiatric Genomics Consortium PTSD. Finally, the reviewed stud-
ies support that a combination of different approaches, integrating genetic and epigen-
etic data, will be necessary to better understand the underlying molecular mechanisms of 
PTSD. [Psychiatr Ann. 2016;46(9):510-518.]
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With a prevalence of about 
5% in the general popula-
tion and an overall lifetime 

prevalence of 7% to 12%, posttraumatic 
stress disorder (PTSD) is a common 
psychiatric disorder. Per definition, 
PTSD is a disorder with long-lasting 
symptoms occurring after exposure to 
a traumatic life event. These symptoms 
include intrusive memories, avoidance 
and numbing, and hyperarousal. Wom-
en are twice as likely as men to develop 
the disease.1 

Although environmental triggers are 
well-defined, a key question that re-
mains unanswered is why only a small 
percentage of people that experience 
trauma go on to develop PTSD.2,3 The 
ratio between a high lifetime trauma 
incidence and the relatively low preva-
lence of PTSD suggests that exposure 
to a trauma does not inevitably lead to 
development of the disorder.4 Some of 
the environmental factors that seem to 
be responsible for an altered response 
to traumatic life events are the type and 
intensity of the trauma, exposure to 
previous trauma, and living in unsafe 
neighborhoods. Nonetheless, inter-in-
dividual differences in susceptibility to 
the disease exist and these may be medi-
ated by genetic factors. As indicated by 
twin and family studies, genetics repre-
sent an important factor in accounting 
for the risk of developing this disorder. 
Several of these studies have consistent-
ly shown the estimated genetic contri-
bution to be between 30% and 40%.5 It 
should be noted, however, that heritabil-
ity research for PTSD is complex, as it 
is depends on comparable environmen-
tal exposures in relatives.

Although there is a clear indication 
of genetic contribution to this disorder, 
so far the investigation of the main ef-
fects of genetics in PTSD has provided 
only limited results.6 As mentioned 
above, environmental factors, in this 
case traumatic life events, play a de-
cisive role in the pathogenesis of the 

disorder. Some of the lasting effects 
caused by these factors are likely me-
diated by epigenetic changes. These are 
changes that do not affect the sequence 
of the DNA but rather its accessibility to 

transcription factors or effects mediated 
by noncoding RNA that shape the tran-
scriptional response of affected tissues.7 
Consequently, research in the field of 
PTSD has now increasingly focused on 
the interplay of genetics, environment, 
and epigenetic factors. 

One main approach to the study of the 
genetic component of PTSD was to in-
vestigate candidate genes. These genes 
were selected for their involvement in 
systems possibly relevant for PTSD. 
These include genes involved in the se-
rotonergic and dopaminergic system but 
also more specifically, genes from mo-
lecular pathways that are thought to be 
involved in the pathogenesis of PTSD, 
such as genes involved in the stress-hor-
mone system or relevant for different as-
pects of fear conditioning.8 However, as 
with other complex disorders, candidate 
gene studies are fraught with inconsis-
tent replication and the risk of false-
positive associations.9 To overcome this 
issue, The Psychiatric Genomics Con-
sortium PTSD Workgroup has recently 
been formed to enable genome-wide  
association studies (GWAS).10 It is 
hoped that large-scale GWAS may pro-
vide novel, hypothesis-free, genetic risk 
variants for PTSD.

This article provides an overview of 
the genetic and epigenetic mechanisms 
possibly involved in the pathophysiol-

ogy of PTSD, as well as recent findings 
and developments in this field. 

CANDIDATE GENES
Because dysregulation of the hypo-

thalamic-pituitary-adrenal (HPA) axis 
has been shown to play a decisive role 
in the pathogenesis of PTSD,11 genes 
involved in its regulation are of particu-
lar interest. The HPA axis represents the 
most important system regulating the 
neuroendocrine stress response of an or-
ganism.12 It acts through a complex inter-
play of direct interactions and negative 
feedback loops. In response to stress, the 
release of corticotropin-releasing hor-
mone (CRH) in the hypothalamus sets 
off a cascade of reactions, promoting the 
release of a number of hormones from 
the adrenal glands, including cortisol. 
Cortisol then acts on two nuclear hor-
mone receptors—the mineralocorticoid 
and glucocorticoid receptor (GR). A set 
of downstream effects, including tran-
scriptional ones, allows the organism 
to adapt to stress exposure, but once the 
stressor has passed, also decreases HPA 
activity through negative feedback me-
diated by the GR. This stress hormone 
system is dysregulated in PTSD, making 
genetic variants of key regulators in this 
system prime candidates in understand-
ing the genetics of PTSD. These can-
didates include the receptors for CRH, 
particularly CRHR1, the gene encoding 
the GR (NR3C1), a co-chaperone of the 
GR, (FKBP5), as well as the important 
pituitary peptide PACAP (ADCYAP1 
gene) and its receptor. 

Although case/control association 
studies are the main method used for the 
study of many disorders, they often fail 
for PTSD due to the strong environmen-
tal component. Therefore, a number of 
genetic studies in PTSD have sought to 
incorporate interactions between genes 
and trauma exposure.7

CRH and its receptor CRHR1 play a 
role in several stress-related disorders, 
including PTSD. In animal studies, in-

So far the investigation of the 
main effects of genetics in 

PTSD has provided only limited 
results.
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tracerebroventricular infusion of CRH 
led to anxiety and particularly PTSD-
like behavior, and these effects were re-
versed by the administration of CRHR1 
antagonists.13,14 In humans, increased 
levels of CRH in the cerebrospinal fluid 
of patients  with PTSD compared to con-
trols represents another interesting find-
ing linking CRH to the disorder.15,16 

Three CRHR1 polymorphisms that 
have previously been associated with 
the development of depression after 
child abuse have been tested in the con-
text of PTSD. These polymorphisms not 
only interact with child abuse to predict 
depression, but also with endocrine dys-
regulation, with an exaggerated stress 
response seen in risk-allele carriers with 
exposure to early trauma.17,18 Imaging 
studies also indicate that these poly-
morphisms moderate neural responses 
to emotional stimuli.19,20 Although these 
specific single nucleotide polymor-
phisms (SNPs) were not associated with 
PTSD,21 two recent studies reported as-
sociations of other CRHR1 SNPs and 
the disorder. First, rs12944712 was sig-
nificantly related to PTSD severity in a 
prospective study of children who had 
experienced medical trauma.22 Second, 
the major alleles of two polymorphisms 
within the CRHR1 gene increased the 
risk for posthurricane PTSD symp-
toms.23

Despite being a main regulator of the 
HPA axis and, therefore, thought to be 
crucially involved in the pathogenesis 
of PTSD, investigations into possible 
associations of genetic variants of the 
GR with the disorder have not been suc-
cessful. For example, Bachmann et al.24 
studied GR polymorphisms in the con-
text of PTSD in a cohort of 118 combat 
veterans diagnosed with PTSD. The au-
thors did not detect altered frequencies 
of the tested polymorphisms in cases 
compared to controls.24 

FKBP5 is a heat shock protein 90 as-
sociated co-chaperone of the GR com-
plex. Among its other functions, FKBP5 

regulates GR sensitivity. Cortisol bind-
ing to the complex leads to a change in 
affinity, which results in an exchange of 
FKBP5 with other co-chaperones such 
as FKBP4. Subsequently, the increased 
binding of FKBP4 promotes the recruit-
ment of dynein, which leads to translo-
cation of the GR to the nucleus, where it 
acts as a transcription factor. Activation 
of the GR by glucocorticoids enhances, 
among many other genes, FKBP5 tran-
scription, resulting in the formation 
of an intracellular ultrashort feedback 
mechanism. Increased levels of FKBP5 
inhibit GR activity.25,26

Because of its critical role in regu-
lating GR sensitivity, genetic polymor-
phisms in FKBP5 are a target of PTSD 
research. In several different cohorts, 
a haplotype tagging a functional poly-
morphism that alters the induction of 
FKBP5 mRNA by GR has been as-
sociated with PTSD, but only when in 
combination with childhood trauma ex-
posure.27,28 One study has also shown 
that depending on the environment and 
trauma, the FKBP5 “risk” allele may 
also confer protective features, as it 
has been associated with posttraumatic 
growth in people who experienced Hur-
ricane Katrina.29 As detailed later in this 
article, this interaction may be medi-
ated by allele-specific DNA methylation 
changes in the FKBP5 locus that fur-
ther disinhibit FKBP5 transcription.30 
A number of animal studies have shown 
that increased FKBP5, especially in the 
amygdala, is associated with key endo-
phenotypes often related to PTSD, such 
as stress coping and increased anxiety, 
but also altered fear extinction.31-35 In 
addition, in humans, the genetic poly-
morphisms associated with increased 
FKBP5 expression have not only been 
associated with PTSD but also with re-
lated endophenotypes. For example, the 
risk allele has been associated with an 
enhanced GR suppression as measured 
by the low-dose dexamethasone sup-
pression test.36 Imaging studies point 

to an important role of FKBP5 not only 
in amygdala reactivity to threat,37-39 but 
also structure, function, and connectiv-
ity of the hippocampus, a brain region 
consistently implicated in PTSD.30,39-41 
For example, people carrying two risk 
alleles exhibited lower structural as well 
as functional connectivity between the 
anterior cingulate cortex and the hippo-
campus, a connection critical for adap-
tive cognitive and emotional process-
ing.42 FKBP5 risk alleles have also been 
associated with behavioral endophe-
notypes for PTSD, such as bias toward 
threat43 and an increase in intrusions, 
even in healthy people.44 They are also 
associated with peri-traumatic dissocia-
tion in children who experienced acute 
medical injury, a strong predictor for 
PTSD later in life.45 Finally, these genet-
ic polymorphisms were also associated 
with response to PTSD treatment. In a 
cohort of 43 people exposed to trauma 
during civil war in Uganda, the authors 
evaluated the treatment effect of narra-
tive exposure therapy dependent on an 
FKBP5 genotype (rs1360780). After 10 
months of therapy, people carrying the 
risk (T) allele had a significant increase 
in relapse of PTSD symptoms compared 
to noncarriers.46

The pituitary adenylate cyclase acti-
vating polypeptide (PACAP) represents 
another key mediator of the stress re-
sponse and, therefore, has been studied in 
the context of PTSD. A study by Ressler 
et al.47 examined a civilian cohort of 
highly traumatized people and patients 
with PTSD. The authors identified a ge-
netic polymorphism (rs2267735) in the 
PACAP receptor type 1 gene (PAC1R; 
ADCYAP1R1) that was significantly as-
sociated with PTSD in women only. In 
another study using a cohort of similarly 
traumatized people (n = 1,160), the find-
ing was not replicated, but interestingly 
an association between PTSD and the 
interaction of rs2267735 and trauma 
load was observed, and again the as-
sociation was restricted to women.48 
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Further, an interaction of the same SNP 
and childhood maltreatment was found 
to be associated with PTSD symptoms 
in 495 adult women.49 Finally, there 
seems to be an ADCYAP1R1 genotype 
effect on individual brain function. The 
activity of PTSD-relevant brain regions, 
the amygdala and hippocampus, was 
analyzed in 49 traumatized women af-
ter exposure to threatening and neutral 
stimuli. The authors observed increased 
amygdala activity after the threat stimu-
li as well as lower functional connectiv-
ity with the hippocampus in carriers of 
the risk genotype (CC).50

Despite some promising findings 
in PTSD research using the candidate 
gene approach, a single gene is unlikely 
to explain the complex phenotype of 
the disorder. By combining different 
candidate genetic risk variants to form 
a cumulative risk score, Boscarino et 
al.51 aimed to develop a possible PTSD 
prediction tool. The authors used a 
cumulative risk allele count includ-
ing polymorphisms of different genes 
(CRHR1, FKBP5, COMT, CHRNA5, 
CRHR1) to show an interaction effect 
of the risk score and trauma exposure 
level on PTSD symptom severity.51 In a 
subsequent study, they incorporated this 
genetic risk-allele information to their 
previously developed PTSD screening 
instrument, which already included data 
concerning mental health status, sub-
stance abuse, and other psychosocial 
measures. Adding the genetic informa-
tion to the existing screening tool sig-
nificantly increased the ability to predict 
PTSD.52

In a pilot study, Rothbaum et al.53 
also found evidence that a composite 
additive risk score derived from poly-
morphisms in 10 previously identified 
genes associated with stress response 
(ADCYAP1R1, COMT, CRHR1, DBH, 
DRD2, FAAH, FKBP5, NPY, NTRK2, 
and PCLO) predicted the development 
of PTSD symptoms after trauma expo-
sure in patients recruited in the emer-

gency department and observed pro-
spectively. This risk could be attenuated 
by early intervention.

GENOME-WIDE ASSOCIATION 
STUDIES

In contrast to the above-presented 
candidate gene studies, GWAS represent 
a hypothesis-free tool to identify the 
most common genetic variations associ-
ated with the disease on a genome-wide 
level. 

In the past 10 years, GWAS studies 
have decisively broadened our knowl-
edge about new loci associated with 
susceptibility to common complex dis-
orders not only in psychiatry, but across 
many medical disorders. To achieve 
this, international GWAS consortia 
were established to analyze sample 
sizes large enough to reach adequate 
power, which is one of the critical fac-
tors for these analyses. The Psychiatric 
Genomics Consortium represents such a 
consortium that has been successful in 
identifying robust genetic risk variants 
for a number of disorders, in particular 
schizophrenia.54 Although a few GWAS 
results for PTSD have been published, 
they are mostly limited by the relatively 
small sample sizes. To overcome this, 
the first PTSD GWAS consortium (Psy-
chiatric Genomics Consortium-PTSD) 
was recently formed.10 

The first PTSD GWAS was conduct-
ed in 2012 by Logue et al.55 The authors 
found one associated SNP after correc-
tion for multiple testing. This SNP was 
located in the retinoid-related orphan 
receptor alpha gene (RORA). The sig-
nificant SNP did not reach genome-wide 
significance in two African-American 
replication samples, but several other 
RORA SNPs were found to be nomi-
nally significant in these samples.55 
The RORA gene was previously found 
to be associated with other psychiatric 
disorders such as bipolar disorder and 
major depressive disorder.56,57 Three 
other GWAS that were published re-

cently identified genome-wide signifi-
cant polymorphisms in genes previously 
connected to neurobiological pathways 
and processes implicated in PTSD.58-60 
The most recent GWAS found a SNP 
(rs717947) that was significantly as-
sociated with PTSD on a genome-wide 
level. Having used a small discovery 
sample (n = 147) the authors were able 
to replicate their finding in a much larger 
cohort where the SNP remained signifi-
cant in women diagnosed with PTSD 
but not in men (n = 2,006). Interestingly, 
the discovered SNP correlated with an 
intermediate neural phenotype (more 
precisely with altered medial and dor-
solateral prefrontal activation to fearful 
faces) identified using functional mag-
netic resonance imaging (fMRI) data 
in a subset of the replication sample.61 
Although these studies brought to light 
some promising results, they only repre-
sent a first step in identifying “true” and 
replicable genetic risk loci for PTSD. 
In addition to the challenge faced by all 
other psychiatric disorders (ie, small ge-
netic effect sizes with the need of sam-
ples exceeding several thousand samples 
and diagnostic heterogeneity), differenc-
es in environmental exposure and gene 
and environment (GxE) interactions also 
need to be incorporated in the models.

EPIGENETICS
The genetic background plays a deci-

sive role and provides an important con-
tribution to disease pathogenesis. How-
ever, the complex phenotype of PTSD 
cannot be explained by genotype alone. 
Like most psychiatric disorders, the eti-
ology of PTSD is multifactorial in nature, 
where environment represents another 
important contributor to the disease. 
Although environmental factors do not 
affect the genetic code itself, they can al-
ter gene function by epigenetic changes 
such as DNA methylation, histone modi-
fication, or noncoding RNAs.62,63 These 
modifications are candidate mechanisms 
for mediating effects by the environ-
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ment on the DNA, which most often 
result in an alteration of gene tran-
scription and protein translation. Such 
effects can be long lasting but also 
lead to a rather short-term change (eg, 
RNA expression). Epigenetic changes 
can occur at multiple stages through-
out life, including in adulthood, and 
are not limited to early developmental 
phases as previously assumed. They 
represent adaptations or maladapta-
tions to a changed environment and 
these epigenetic consequences can be 
moderated by genetic variation, thus 
providing a molecular mechanism for 
GxE interaction.

In the context of PTSD, the envi-
ronmental factors affecting a person 
are, by definition, different kinds of 
trauma exposure. Several studies have 
shown that stressful life events can 
lead to alterations in epigenetic marks. 
Here, DNA methylation represents the 
most examined and best known mech-
anism. Briefly, cytosine bases (mainly 
in CpG sites) are converted to 5-meth-
ylcytosine by covalent modification. 
This results in decreased transcription 
factor binding to these loci which, 
if located in the promoter region of 
a gene, subsequently suppresses its 
transcription.64 

Pioneering work in this field was 
performed by Weaver et al.65,66 in 
animals showing epigenetic modifi-
cation induced by early life experi-
ence. More specifically, the authors 
observed that low levels of maternal 
licking and grooming led to hyper-
methylation of the hippocampal GR 
gene in pups followed by decreased 
GR expression. This study is of great 
relevance for PTSD because early ad-
verse life experience is an important 
risk factor for the disorder and the 
investigated animal model reflects 
PTSD-related phenotypes such as de-
creased cortisol levels at baseline as 
well as increased cortisol suppression 
after the dexamethasone suppression 

test65,66 (reviewed by Anacker et al.,67 
Szyf,68 and Zhang et al.69). 

These findings were also translated 
to humans. McGowan et al.70 analyzed 
the human GR promoter (NR3C1) 
in suicide victims with a history of 
childhood abuse compared to sui-
cide victims without childhood abuse 
and control subjects. Comparable to 
the results of the rodent studies, the 
NR3C1 promoter showed increased 
methylation as well as significantly 
lower GR expression in postmortem 
hippocampus tissue of suicide victims 
who were abused as children.70 

The fact that epigenetic regulation 
represents a key mechanism in mediat-
ing the long-lasting effects of stressful 
life events might be of particular in-
terest in PTSD. As a result, numerous 
studies described in more detail below 
specifically investigating the epigene-
tic changes affecting genes regulating 
the HPA axis have been conducted. 

In fact, people with PTSD display 
significantly lower NR3C1 promoter 
methylation compared to healthy con-
trols in DNA from peripheral blood,71 
and differential methylation at these 
sites serves as a predictor of treatment 
outcome. In a cohort of combat vet-
erans diagnosed with PTSD, patients 
with higher pretreatment promoter 
methylation responded significantly 
better to psychotherapy.72 Another 
study demonstrated that increased 
NR3C1 promoter methylation in pe-
ripheral blood was associated with 
less intrusive memory of the traumatic 
event and reduced PTSD risk in men, 
and also showed that it may be related 
to differences in recognition memory-
related brain activity.73

ADCYAP1R1, previously described 
as being associated with PTSD symp-
toms, also shows epigenetic modifi-
cation. In a study examining ADCY-
AP1R1 methylation levels in highly 
traumatized people with or without 
PTSD, the authors observed a sig-

nificant positive correlation between 
methylation of the PAC1R locus and 
PTSD symptom severity.47

Another recently identified player 
involved in the pathophysiology of 
PTSD at the epigenetic level is the 
spindle and kinetochore associated 
protein 2 (SKA2). SKA2 plays a role 
in the activation of the GR and, there-
fore, may moderate negative feedback 
of the HPA axis. Methylation levels 
of this locus were recently described 
as a predictor of suicidal behavior. A 
study by Guintivano et al.74 examin-
ing human postmortem brain tissue 
showed significantly increased meth-
ylation levels of a CpG (cg13989295) 
located in the SKA2 gene as well as 
significantly decreased SKA2 expres-
sion levels in suicide completers com-
pared to controls. Because of its mo-
lecular function and the association of 
increased suicide rates among PTSD 
patients, SKA2 methylation was also 
investigated in patients with PTSD. A 
combined predictor using SKA2 meth-
ylation at the above-described CpG 
(cg13989295) and early trauma scores 
resulted in a significant prediction of 
PTSD status.75 

Two further studies investigated 
associations between SKA2 methyla-
tion at cg13989295 and PTSD.76,77 In 
a cohort of 200 soldiers exposed to 
trauma, Sadeh et al.76 examined CpG 
13989295 methylation levels and 
PTSD symptoms. The authors ob-
served a positive correlation between 
PTSD symptoms and SKA2 methyla-
tion levels.76 A study by Boks et al.77 
investigating a Dutch military cohort 
showed that SKA2 methylation togeth-
er with childhood trauma scores were 
able to significantly predict posde-
ployment PTSD symptoms, confirm-
ing the findings by Kaminsky et al.75 
and again strengthening the role of 
SKA2 as a possible PTSD biomarker.

Besides genes involved in the regu-
lation of the HPA axis, several other 
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candidate genes (eg, implicated in 
the serotonergic or dopaminergic sys-
tem) have been extensively studied 
in the context of PTSD.78,79 Detailed 
description of these studies is beyond 
the scope of this review but is avail-
able elsewhere.80,81

Instead of focusing on a single can-
didate gene, several studies82-87 exam-
ined DNA methylation on a genome-
wide level or focused on subsets of 
genes involved in stress response, im-
mune regulation, or located in repeti-
tive genomic elements. These studies 
aim to elucidate specific methylation 
patterns of PTSD patients across mul-
tiple genomic loci. Although no single 
consistent sites have been identified 
so far, the combined findings suggest 
that trauma and PTSD are associated 
with genome-wide changes in DNA 
methylation and may have a system-
wide impact on the organism.82-87 

Finally, increasing evidence sug-
gests that parental vulnerability to 
PTSD can be transmitted to the next 
generation.88 Here, epigenetics repre-
sents a candidate mechanism involved 
in the transgenerational transmission. 
Studies by Yehuda et al.89,90 have spe-
cifically investigated the molecular 
biologic background of this mecha-
nism, demonstrating alterations in 
methylation levels of GR and FKBP5 
in offspring in relation to parental 
trauma.89,90

It is important to note that epigen-
etic alterations caused by the envi-
ronment can be dependent on DNA 
sequence. Therefore, the epigenetic 
response of an organism to trauma ex-
posure and the associated individual 
susceptibility to PTSD can be influ-
enced by genetic variation.91 One such 
example of genotype-specific epigen-
etic changes associated with trauma 
has been described for the FKBP5 
locus. Here, a combination of a ge-
netic variation that leads to an altered 
transcriptional response of FKBP5 

to glucocorticoids and exposure to 
trauma during childhood leads to fur-
ther DNA demethylation in additional 
glucocorticoids responsive elements. 
This combination of genetic and epi-
genetic factors then leads to a disin-

hibition of FKBP5 regulation that has 
been associated with PTSD and relat-
ed endophenotypes.30

Noncoding RNAs, in particular mi-
cro RNAs (miRNAs), represent anoth-
er important epigenetic mechanism in 
posttranscriptional regulation of gene 
expression. miRNAs are non–protein-
coding single stranded RNAs about 22 
base pairs long that are evolutionarily 
highly conserved. The biogenesis of 
miRNAs is a complex multistep bio-
chemical process, which begins in the 
nucleus and results in the cytoplasm 
where the mature miRNA becomes 
functionally active. Here they are in-
corporated into the RNA-induced si-
lencing complex and perform gene 
silencing. More precisely, they bind 
and interact with complementary sites 
in the 3’UTR region of their target 
mRNA, which leads to translation 
repression or degradation of their tar-
get (for a detailed review see Ha and 
Kim92).

In the past few years, miRNAs have 
been progressively emerging as pivot-
al factors involved in the pathogenesis 
of psychiatric disorders. Most of the 
studies examining the role of miRNAs 
in PTSD were performed in animals 

and used fear conditioning or predator 
exposure models.93-95 These models 
are thought to explain the underlying 
mechanisms of fear and the occur-
rence of trauma-related symptoms in 
PTSD.96

For example, a study by Haramati 
et al.94 showed that acute stress leads 
to a significant upregulation of miR-
34c levels in the amygdala of rodents. 
The authors observed that anxiety-like 
behavior induced by an acute stressor 
was significantly decreased after vi-
rus-mediated overexpression of this 
miRNA.97 Interestingly, the CRHR1 
transcript is one of the main targets of 
miR-34c.

A recent study in humans identi-
fied DICER1 as being involved in the 
pathogenesis of PTSD.98 DICER1 is 
an important enzyme in the biogen-
esis of miRNAs, converting precursor 
miRNAs to mature miRNAs. In a co-
hort of 184 mainly African-American 
patients with or without diagnosis of 
PTSD with comorbid depression, the 
authors observed a significantly lower 
blood expression of DICER1 in cas-
es versus controls and were able to 
replicate these findings in two inde-
pendent cohorts. This was associated 
with overall lower miRNA levels in 
patients versus controls. In a follow-
up fMRI study, they showed that the 
decreased DICER1 expression levels 
were associated with elevated amyg-
dala activation to fearful stimuli, 
which represents a neural correlate for 
PTSD.98 

Although still in their primary stag-
es, these and other studies examining  
miRNAs role in the underlying molec-
ular mechanisms of PTSD show some 
promising initial results, which never-
theless need to be intensively further 
investigated.

CONCLUSIONS
Over the last few years, it has be-

come clear that a complex interplay of 

It has become clear that a 
complex interplay of genetics, 
environment, and epigenetic 

changes underlies the 
pathophysiology of PTSD. 
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genetics, environment, and epigenetic 
changes underlies the pathophysiol-
ogy of PTSD. Studying the main ge-
netic effects will not be sufficient to 
explain the complex and multifacto-
rial etiology of the disease, and en-
vironmental factors have to be taken 
into account. Studies assessing GxE 
interactions will be important. Here, 
however, many challenges need to be 
overcome, ranging from sufficiently 
large sample size for power to con-
sistent and exhaustive measurement 
of environmental factors, to statisti-
cal issues.99 Epigenetic modifications 
may represent a candidate mechanism 
by which environmental factors interact 
with genetic predisposition to shape risk 
and resilience to PTSD. 

In the end, a combination of GWAS 
or better genome-wide GxE interactions 
in large, well-phenotyped cohorts will 
be necessary and will need to be com-
bined with mechanistic examinations, 
including epigenetic measures.
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