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Zusammenfassung

Für lebende Zellen ist die präzise Koordination mehrer zellulärer Funktionen wie Zellwachs-
tum, DNA-Synthese, Zellteilung und Zellmigration essentiell. Beispielsweise müssen Zellen
während der Zellteilung das Zellwachstum, die Verdopplung und Trennung der DNA und
die Septumbildung eng koordinieren, um zwei lebensfähige Tochterzellen zu erzeugen. Um
solch eine robuste Koordination mehrerer zellulärer Funktionen zu gewährleisten muss die
Zelle fortwährend räumliche und zeitliche Informationen verarbeiten. Diese räumliche und
zeitliche Information ist mittels Proteindichteprofilen innerhalb der Zelle kodiert. Für ei-
ne zuverlässige Koordination mehrerer Zellfunktionen ist daher die robuste räumliche und
zeitliche Regulierung solcher Proteinkonzentrationsprofile entscheidend.

In dieser Doktorarbeit haben wir mithilfe von Reaktionsdiffusionsmodellen untersucht, wie
solche Proteinmuster aus einer Kombination von Protein-Protein-Wechselwirkungen und
Proteintransport entstehen. Insbesondere haben wir untersucht, wie ein Proteinmuster die
Bildung und den stationären Zustand eines nachgeschalteten Proteinmusters beeinflussen
kann. Solche Prozesse, bei denen ein Proteinmuster als Vorlage für das nächste Muster
dient, entsprechen der räumlichen Verarbeitung von Informationen. Hier stellen wir ver-
schiedene Mechanismen der räumlichen und zeitlichen Informationsverarbeitung mittels
proteinbasierter Musterbildung vor und zeigen, wie eine hierarchische Kopplung solcher
Berechnungen bei Seesterneizellen einen Mechanismus zur Anpassung an die Form der
Eizelle zur Folge hat.

In Kapitel 1 stellen wir die Grundprinzipien für die proteinbasierte Musterbildung vor. Wir
werden zunächst einige grundlegende Mechanismen des Proteintransportes und der Pro-
teininteraktionen in Zellen diskutieren und erklären, wie eine Kombination von Transport
und Proteininteraktionen zu Proteinmustern führt. Im Anschluss daran werden wir unter-
suchen, wie solche Proteinmuster durch geometrische, mechanische und biochemische Reize
beeinflusst werden. Insbesondere diskutieren wir wie Zellgröße, Zellform sowie mechanische
Spannungen und Spannungen des Zellkortex die Bildung von Proteinmustern steuern kön-
nen. Danach werden wir das Ziel dieser Arbeit – zu verstehen, wie ein Proteinmuster als
Vorlage für nachgeschaltete Proteinmuster dienen kann – motivieren. Abschließend werden
die Grundprinzipien der linearen Stabilitätsanalyse und der Theorie des lokalen Gleichge-
wichts vorgestellt, anhand derer wir die Bildung von Proteinmustern untersuchen.

In Kapitel 2 wird erläutert, wie ein vorübergehender Signalimpuls das Polaritätsmuster
einer Zelle beeinflussen kann. Die Polarität der Zelle ist entscheidend für verschiedene
zelluläre Prozesse, einschließlich Zellmigration. In diesem Kapitel untersuchen wir ein Po-



laritätsmodell für das Bakterium Myxococcus xanthus. Die Polarität von M. xanthus wird
durch die asymmetrische Verteilung des Polaritätsproteins MglA definiert und bestimmt
die Bewegungsrichtung. Die Polarität kann sich bei einem vorübergehendem Signal des
vorgeschalteten Frz-Signalsystems umkehren. Wir untersuchen systematisch, wie sich die
Amplitude und Dauer des Signals auf die dynamische Verteilung des Polaritätsmarkers
auswirkt. Wir identifizieren vier qualitativ unterschiedliche Schaltmechanismen und disku-
tieren ihre Eigenschaften anhand nichtlinearer und stochastischer Dynamik.

In Kapitel 3 stellen wir einen Mechanismus vor, mit dem ein Protein eine Schwellenwert
in einem flachen Konzentrationsgradienten finden kann. Als Beispiel nutzen wir in unse-
rer Diskussion die Dynamik des Guanin-Austauschfaktors (GEF) Ect2. Ect2 kann einen
Schwellenwert in einem Konzentrationsgradienten des Zellzyklusregulators Cdk1 in See-
sterneizellen bestimmen (siehe auch Kapitel 6). In diesem Kapitel stellen wir zunächst
ein Modell für Ect2 vor, das auf verfügbaren biochemischen Informationen über Ect2
basiert und das Bistabilität von Ect2 ermöglicht. Wir zeigen dann, dass die Bistabili-
tät der Ect2-Aktivität zur Bildung eines Frontmusters führen kann, bei dem die Grenz-
schicht an dem Cdk1-Schwellenwert ausgerichtet ist. Somit kann eine Ect2-Front einen
Cdk1-Schwellenwert markieren, indem Cdk1-Konzentrationen unter dem Schwellenwert
durch eine hohe Ect2-Aktivität gekennzeichnet sind, während Cdk1-Konzentrationen über
dem Schwellenwert durch eine niedrige Ect2-Aktivität gekennzeichnet sind. Schließlich zei-
gen wir, dass der Zerfall des Cdk1-Gradienten zur Verschiebung der Ect2-Front führt. Die
in diesem Kapitel vorgestellten Ergebnisse bilden die Grundlage für den in Kapitel 6 vor-
gestellten Mechanismus zur Anpassung an die Form einer Zelle.

In Kapitel 4 wird ein Mechanismus vorgestellt, durch den die Aktivität eines Proteins nach
der Aktivierung eines Signals vorübergehend erhöht wird. Dies entspricht einer zeitlichen
Ableitung. Als Beispiel nutzen wir hier die Dynamik des Rho-Enzyms. Rho bildet ein
Aktivitätsband, das sich an der Grenzfläche der Ect2-Front befindet und sich in Seestern-
eizellen über die Membran ausbreitet (siehe auch Kapitel 6). In diesem Kapitel stellen wir
zunächst ein Modell für Rho vor, das auf den verfügbaren biochemischen Informationen
für Rho basiert. Wir analysieren die Parameterregime des Modells mithilfe einer Phasen-
porträtanalyse und zeigen, dass Rho eine oszillatorische Dynamik aufweist. Wir zeigen,
dass die Rho-Dynamik an einer zeitliche Ableitung entspricht, wenn die Reaktionsraten
anregbar sind und nahe am Schwingungsregime liegen.

In Kapitel 5 stellen wir einen Mechanismus vor, bei dem sich die Konzentration eines
Proteins am Rand eines vorgeschalteten stufenförmigen Proteinmusters ansammelt. Dies
entspricht an einer räumlichen Ableitung. Um diesen Mechanismus zur Erkennung von
Kanten zu demonstrieren, verwenden wir ein konzeptionelles eindimensionales Modell eines
Proteins, das von der Membran ins Cytosol und umgekehrt wechseln kann, und fragen,
wie sich eine vorgeschalteten Vorlage, die die Kinetik der Proteinreaktion beeinflusst, auf
die Proteinmusterbildung auswirkt. Mit Hilfe lokaler Gleichgewichtstheorie können wir
die stationären Muster im Phasenraum der Reaktionskinetik grafisch konstruieren. Als
nächstes zeigen wir, dass die Vorlage eine regionale Instabilität der Massenumverteilung



in der Nähe von Kanten in der Vorlage auslöst, was zur Akkumulation von Proteinmasse
und schließlich zu einer stationären Konzentrationspitze an Kanten in der Vorlage führt.
Darüber hinaus zeigen wir, dass einfache geometrische Kriterien für die Form der reaktiven
Nullkline vorhersagen, wann dieser Kantenerkennungsmechanismus funktionsfähig ist.

Kapitel 6 baut auf der Arbeit in Kapitel 3 und 4 auf. In diesem Kapitel fragen wir, wie
sich Proteinmuster an die Zellform anpassen können, sodass ihre räumliche und zeitli-
che Dynamik unempfindlich gegenüber Variationen der Zellform ist. Zunächst präsentieren
wir experimentelle Ergebnisse, bei denen wir Seesterneizellen in unterschiedlich geformten
Kammern eingeschlossen haben, und zeigen, dass sich die Ausbreitung eines Bandes von
Rho-Aktivität an die Zellform anpasst. Anschließend präsentieren wir einen Mechanismus
zur Anpassung an die Form der Eizelle, der trotz drastischer Formänderungen eine robuste
räumliche und zeitliche Dynamik von Proteinen auf der Membran gewährleistet. Der Me-
chanismus basiert auf der hierarchischen Kopplung eines cytosolischen Cdk1-Gradienten,
einer bistabilen Ect2-Front und eines anregbaren Rho-Impulses. Wir zeigen, wie Infor-
mationen über die Zellform, die in einem cytosolischen Gradienten enthalten sind, durch
Ect2 (einem bistabilen Regulator von Rho) decodiert werden können. Diese bistabile Front
steuert wiederum präzise eine mechanochemische Reaktion, indem sie lokal die anregbare
Dynamik von Rho auslöst. Unsere Theorie macht Vorhersagen über die Breite des Rho-
Aktivitätsbandes und seine Ausbreitungsgeschwindigkeit, die wir experimentell bestätigen.

In Kapitel 7 verwenden wir dasselbe konzeptionelle eindimensionale Modell wie in Kapitel
5 und fragen, wie sich der cytosolische Fluss auf die räumliche und zeitliche Dynamik von
Proteinmustern auf der Membran auswirkt. Wir kombinieren eine lineare Stabilitätsanalyse
mit numerischen Simulationen, um zu zeigen, dass sich membrangebundene Proteinmuster
gegen die Strömungsrichtung ausbreiten. Der Mechanismus, der der Musterausbreitung
zugrunde liegt, beruht auf einem höheren Proteinzufluss auf der stromaufwärtigen Seite
des Musters im Vergleich zur stromabwärtigen Seite. Darüber hinaus stellen wir fest, dass
der cytosolische Fluss das Membranmuster qualitativ von einem spitzenförmigen Muster
zu einem plateauförmigen Muster ändern kann. Schließlich zeigen unsere Untersuchungen,
dass ein ungleichmäßiges Strömungsprofil die Musterbildung induzieren kann, indem eine
regionale laterale Instabilität ausgelöst wird.

Abschließend diskutieren wir in Kapitel 8 die Auswirkungen der in dieser Arbeit vorge-
stellten Ergebnisse und machen einige Vorschläge für zukünftige Forschungen.





Summary

Living cells rely on the precise coordination of several cellular functions, such as cell growth,
DNA synthesis, cell division and cell migration. For example during cell division, cells
need to closely coordinate cell growth, the duplication and segregation of the DNA and
septum formation to obtain two viable daughter cells. To obtain such a robust coordination
of multiple cellular functions, the cell needs to constantly process spatial and temporal
information. This spatiotemporal information is encoded in the concentration profiles
of proteins inside the cell. Thus, to ensure a reliable coordination of multiple cellular
functions, it is crucial that the concentration profiles of proteins are robustly regulated in
space and time.

In this thesis, we study how such protein patterns arise from a combination of protein-
protein interactions and protein transport, using reaction–diffusion models. In particular,
we study how one protein pattern can affect the formation and steady state of a downstream
protein pattern. Such processes, where one protein pattern serves as a template for the
next pattern, are reminiscent of spatial computational operations. Here, we demonstrate
several mechanisms for spatial and temporal computations based on protein-based pattern
formation and show how a hierarchical coupling of such computations lead to a shape-
adaptation mechanism is starfish oocytes.

In Chapter 1, we introduce the basic principles for protein based pattern formation. We
will first discuss several basic mechanisms for protein transport and protein interactions
that take place in cells and explain how a combination of transport and protein interactions
leads to protein patterns. Next, we will review how such protein patterns are affected by
geometric, mechanical and biochemical guiding cues. In particular, we discuss examples
how cell size, cell shape, and mechanical stresses and tension of the cell cortex can guide
protein pattern formation. We will then motivate the aim of this thesis, which is to under-
stand how one protein pattern can serve as a template for downstream protein patterns.
Finally, we will present the basic principles of linear stability analysis and local equilibria
theory, which we use to study protein pattern formation.

Chapter 2 discusses how a transient signal can affect the polarity pattern of a cell. Cell
polarity is crucial for several cellular processes including cell motility. In this chapter, we
study a polarity model for the bacterium Myxococcus xanthus. The polarity of M. xanthus
is marked by the asymmetric distribution of the polarity protein MglA, and determines the
direction of motion. The polarity can reverse upon a transient signal from the upstream Frz
signaling system. We systematically study how the amplitude and duration of the signal



affects the dynamic distribution of the polarity marker. We identify four qualitatively
distinct switching mechanisms and discuss their characteristics based on the nonlinear and
stochastic dynamics.

Chapter 3 presents a mechanism by which a protein can measure a threshold concentration
in a shallow concentration gradient. As an example, our discussion is based on the dynam-
ics of the guanine exchange factor (GEF) Ect2. Ect2 can measure a threshold value in a
concentration gradient of the cell cycle regulator Cdk1 in starfish oocytes (see also Chapter
6). In this Chapter, we first introduce a model for Ect2 which is based on the available bio-
chemical information of Ect2 and allows for Ect2 bistability. We then show that bistability
of the Ect2 activity can lead to the formation of a front pattern, where the front interface
is positioned at the Cdk1 threshold value. Thus, Ect2 can mark a Cdk1 threshold value,
such that Cdk1 concentrations lower than the threshold are marked by high Ect2 activity
and Cdk1 concentrations higher than the threshold are marked by low Ect2 activity. Fi-
nally, we show that the decay of the Cdk1 gradient leads to propagation of the Ect2 front.
The results presented in this Chapter form the basis of the shape-adaptation mechanism
presented in Chapter 6.

Chapter 4 presents a mechanism by which the activity of a protein is transiently increased
after a signal is turned on. This is reminiscent of a temporal derivative. As an example, our
discussion is based on the dynamics of the enzyme Rho. Rho forms a band of Rho activity
that localizes at the interface of the Ect2 front, which propagates over the membrane in
starfish oocytes (see also Chapter 6). In this Chapter, we first introduce a model for
Rho which is based on the available biochemical information for Rho. We analyze the
parameter regimes of the model using a phase portrait analysis and show that the Rho
exhibits oscillatory dynamics. We show that the Rho dynamics is reminiscent of a temporal
derivative when the reaction rates are excitable and close to the oscillatory regime.

In Chapter 5, we present a mechanism by which the concentration of a protein accumulates
at the edge of an upstream steplike protein pattern. This is reminiscent of a spatial deriva-
tive. To demonstrate this edge-sensing mechanism, we use a conceptual one-dimensional
model of a protein that cycles between the cytosol and membrane and ask how the pro-
tein pattern formation responds to an upstream template that affects the protein reaction
kinetics. Using local equilibrium theory, we are able to graphically construct the station-
ary patterns in the phase space of the reaction kinetics. We next show that the template
triggers a regional mass-redistribution instability near the template edge, leading to the
accumulation of protein mass, which eventually results in a stationary peak at the template
edge. Furthermore, we show that simple geometric criteria on the reactive nullcline’s shape
predict when this edge-sensing mechanism is operational.

Chapter 6 builds upon the work presented in Chapter 3 and 4. In this Chapter, we ask
how protein patterns can adapt to cell shape, such that their spatiotemporal dynamics is
insensitive to cell shape variations. First, we present experimental results where we confined
starfish oocytes in differently shaped compartments, and show that the propagation of a
Rho activity band adapts to the cell shape. We then present a shape-adaptation mechanism



that ensures robust spatiotemporal dynamics of proteins on the membrane despite drastic
shape changes. The mechanism is based on the hierarchical coupling of a cytosolic Cdk1
gradient, a bistable Ect2 front and the excitable Rho pulse. We show how cell-shape
information contained in a cytosolic gradient can be decoded by a bistable regulator of
Rho, Ect2. In turn, this bistable front precisely controls a mechanochemical response by
locally triggering excitable dynamics of Rho. Our theory makes predictions on the width
of the Rho activity band and its propagation speed, which we experimentally confirm.

In Chapter 7, we use the same conceptual one-dimensional model as in Chapter 5 and
ask how cytosolic flow affects the spatiotemporal dynamics of protein patterns on the
membrane. We combine a linear stability analysis with numerical simulations to show
that membrane-bound protein patterns propagate against the direction of the flow. The
mechanism underlying the pattern propagation relies on a higher protein influx on the
upstream side of the pattern compared to the downstream side. Furthermore, we find that
cytosolic flow can change the membrane pattern qualitatively from a peak-shaped pattern
to a mesa-shaped pattern. Finally, our study shows that a non-uniform flow profile can
induce pattern formation by triggering a regional lateral instability.

Finally, in Chapter 8, we discuss the implications of the results presented in this thesis and
make several suggestions for future research.
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1 Introduction

“You can’t connect the dots looking forward;
you can only connect them looking backwards.

So you have to trust that the dots will somehow
connect in your future.”

– Steve Jobs

This Chapter is based on our manuscript “Control of protein pattern formation via geo-
metric, mechanical and biochemical guiding cues”, which is in preparation for publication.
This work has been performed together with Tom Burkart, Laeschkir Würthner and Erwin
Frey.

Living cells rely on the precise coordination of several cellular functions, such as cell growth,
DNA synthesis, cell division and cell migration. For example during cell division, cells need
to closely coordinate cell growth, the duplication and segregation of the DNA and septum
formation to obtain two viable daughter cells. During cell migration, external signals from
the cell’s surroundings are transmitted by signaling proteins to polarity proteins to regulate
the cells direction of motion. Thus, to obtain robust coordination of multiple cellular
functions in space and time, the cell needs to process spatial and temporal information.

This spatiotemporal information is encoded in the concentration profiles of proteins that
regulate these cellular functions, whereby each type of protein performs one specific task.
Key examples are motor proteins that can generate small forces, and membrane receptor
proteins that can transmit information from external signals. Remarkably, an individ-
ual protein is only a couple of nanometers in size, but collectively, multiple proteins can
orchestrate processes on a much larger scale. In other words, to ensure such large scale co-
ordination of cellular processes, it is crucial that protein concentration profiles are robustly
regulated in space and time.

How do proteins find the right place at the right time inside a cell? The combination of
protein transport and protein reactions can give rise to the self-organization of proteins
inside cells. Such spontaneous protein patterns can be stationary or dynamic depending on
the underlying transport and reaction properties of the proteins. In addition, the cellular
substrates that the proteins are embedded in can affect protein transport and reactions
due to variations in the viscosity or biochemical properties. Interestingly, the cell is not a
static object itself but rather an active material that can dynamically adapt its size, shape
and material properties, depending on its environment and the state of the cell cycle [1–5].



2 1. Introduction

On the one hand, such properties are orchestrated by protein patterns, but on the other
hand protein patterns also need to adapt to such dynamically varying cellular properties
to ensure reliable functions.

Increasing number of theoretical and experimental studies [6–16] find that protein concen-
tration profiles respond and adapt to cell shape, size and cell mechanics. In this chapter,
we will review how protein patterns respond to such geometric and mechanical guiding
cues. First, we give an overview of the types of transport and reactions proteins exhibit
inside cells. Next, we will discuss how the transport and reaction can be affected by cell
shape, size and cell mechanics.

In addition to cell geometry and cell mechanics, also previously established protein pat-
terns affect the formation of downstream protein patterns, providing biochemical guidance
of protein pattern formation [17–24]. However, the mechanisms that underlie such biochem-
ical guidance remain poorly understood. In this thesis, we will discuss several biochemical
guiding mechanism that process the spatial and temporal information contained in protein
patterns. Finally in Sec. 1.4, we provide an outlook on the future research directions in
this field.

1.1 Protein pattern formation

Protein transport

The transport of proteins within a cell is crucial to regulated spatial variations in protein
concentration. In the following, we will discuss several mechanisms that underlie protein
transport within cells.

Diffusion – Perhaps the most basic means of protein transport is diffusion. Diffusion arises
from the Brownian motion of proteins and leads to the flattening of concentration gradients.
In other words, diffusion leads to a net transport from regions with high concentration to
regions with low concentration. The diffusion constant is given by the Stokes-Einstein
relation D = kBT/(6πηr), where η is the viscosity of the surrounding substrate and r the
size of the diffusing particle. Hence, the diffusion properties of a protein can vary between
proteins and in different parts of the cell.

Flow – Apart from diffusion, also flow can lead to protein transport due to the friction be-
tween the proteins and the moving substrate. Flows generically arise from stress gradients,
such that the substrate moves into the direction of higher contractile or lower extensile
stresses. In cells, stress gradients can be generated by external forces that act on the cell,
or by internal forces that are generated via contractions of the cytoskeleton. A prominent
example for how flows are generated by internal forces in the cell is the cortical contractions
in the C. elegans zygote [8, 13, 25]. Here, local depletion of the myosin concentration at
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the cell cortex leads to a gradient of contractile stresses such that the cell cortex flows from
the anterior to the posterior pole [26, 27].

Such cortical flows can also lead to flows in the cytoplasm or membrane due to the hy-
drodynamic coupling between the membrane, cortex and the cytoplasm [13]. In addition,
cortical contractions can induce shape changes, leading to flows in the cytoplasm. Such
cytoplasmic flows have been observed to be induced by surface contraction waves during
maturation of starfish oocytes [28].

Proteins can be transported with the flow due to frictional coupling of the protein to
the viscous medium. However, it is important to note that the transport of proteins is
affected by diffusion and flow simultaneously. The relative impact of diffusion and flow
on the transport of a protein can be quantified by the Péclet number Pe = ξ·v/D, where
v is the velocity of a protein in the direction of the flow, D the diffusion constant and
ξ a characteristic length scale. Large values of the Péclet number correspond to protein
transport that is dominated by flow rather than diffusion. Thus, small proteins with large
diffusion constant will have a small Péclet number, and are therefore less affected by flow,
than large proteins with a small diffusion constant. Similarly, a protein that diffuses in the
cytoplasm is less affected by flows than when it is bound to the more viscous membrane.

Active transport – So far we have discussed that diffusion and flow arise from concentration
and stress gradients, respectively. Apart from these processes, proteins can also be trans-
ported via processes that consume energy in the form of ATP or GTP on the molecular
scale. An example of such active transport is the treadmilling behavior of the tubulin-like
filament FtsZ that constitutes the contractile ring during cell division in bacteria. FtsZ
monomers can only bind to the plus end of FtsZ filaments and detach from the minus end,
while the monomer turnover depends on the GTPase activity of FtsZ [29–31]. Thus, via
the consumption of GTP, FtsZ filaments exhibit directed motion along the cell membrane.

In addition, proteins can be carried along cytoskeletal structures by molecular motors, such
as kinesin [32]. Molecular motors also consume energy via ATP or GTP cycles, which leads
to a stepping motion of the motor along microtubules or movement on actin fibres [32].
This leads to a directed transport of the cargo protein either towards the plus or minus end
of the filaments, depending on the type of motor. Experiments in vivo and in vitro have
highlighted the importance of this process for polarization of cells [33–39]. For example,
during cell growth in fission yeast microtubules are aligned along the long axis of the cell
and direct the active transport of the tip factors Tea1 and Tea4 towards the cell poles [34,
40–42]. These tip factors serve as a spatial cue for cell growth leading to the elongation of
the cell along its long axis. Thus, the arrangement of microtubules directs the transport
of proteins within the cell.
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Protein reactions

The biochemical properties of proteins characterize the ability of proteins to associate with
other proteins or cellular media. In the following, we discuss how such protein reaction
kinetics can lead to the formation of protein patterns due to changes either in protein
transport or in protein activity.

Attachment/detachment kinetics – One of the most basic protein reactions is the attach-
ment of a protein to substrates in the cell, such as membranes. Since the material proper-
ties vary between different cellular substrates, the attachment and detachment kinetics can
regulate the effective transport of a protein in the cell. It has been suggested that such a
regulation of transport via attachment and detachment kinetics is playing a key role during
directed motion in migrating cells [13]. During cell migration, a rearward flow of the cell
cortex can lead to translocation of proteins from the front to the back of the cell. At the
same time, flows in the cytoplasm are directed towards the cell frontier. Thus, proteins
that are predominantly bound to the cell cortex accumulate at the cell rear, while proteins
that predominantly diffuse freely in the cytosol would accumulate at the cell frontier [13,
43].

Aggregation – In addition to attachment kinetics to different substrates in the cell, proteins
can also bind to other proteins and thereby form protein aggregations. The size of such
aggregations range from nanometer scale protein dimers to micrometer scale oligomers and
protein droplets [44–46]. Since the diffusion constant of a protein depends on its size, the
formation of a protein aggregate changes the protein transport properties. Such an effect
on protein transport has been suggested to play a role in the transport of PAR-3 proteins
in the C. elegans embryo. Here, diffusive transport may dominate for PAR-3 monomers
(Pe < 1), while the transport of PAR-3 becomes dominated by flow (Pe > 1) due to cell
cycle dependent aggregation of PAR-3 [26, 47]. Thus, the protein clustering kinetics can
affect the distribution of proteins in the cell.

Conformational state changes – So far we have discussed how protein reactions can affect
the transport properties of the protein, which can lead to a non-uniform distribution of the
protein concentration. We will now discuss protein reactions that do not alter the protein
transport properties but rather its activity on downstream processes. Such reaction kinetics
can lead to spatial patterns in protein activity rather than in the protein concentration.
Key examples include molecular switches that can cycle between an active and inactive
state due to phosphorylation and dephosphorylation, or nucleotide binding and hydrolysis.

Such reaction cycles can lead to spatial patterns in the proteins activity when the state
changes only at a specific region in the cell, such as the cell membrane or the nucleoid
in bacterial cells. To illustrate this, consider a protein that cycles between an active and
an inactive state such that only the active state can bind the cell membrane. At the
membrane the protein can undergo a conformational state change from the active to the
inactive state, thereby detaching from the membrane. In the cytoplasm the inactive protein
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diffuses freely until it gets activated and is able to bind to the membrane again. Since the
protein only changes to an inactive state at the membrane, the membrane acts as a source
into the cytoplasm for inactive proteins and as a sink for active proteins, leading to activity
gradients in the cytoplasm. Thus, this source-degradation process of inactive proteins leads
to spatial patterns of the protein activity, while the total concentration stays uniform [6,
21, 48, 49].

Nonlinear reaction kinetics and pattern forming instabilities – Some proteins have been sug-
gested to amplify the attachment, clustering or activation kinetics, giving rise to nonlinear
reaction kinetics. The combination of nonlinear reaction kinetics and protein transport can
lead to the coexistence of multiple stable chemical equilibria, dynamic chemical equilibria
and several pattern-forming instabilities. A pattern forming instability arises when a spa-
tially uniform steady state is unstable against spatially inhomogeneous perturbations. An
example of such a pattern forming instability is a mass-redistribution instability, which am-
plifies spatial variations in protein number, leading to a protein concentration pattern [49].
The dynamics and length scale of these patterns on short time scales is determined by
the growth rate and wave length of the unstable modes. The wavelength of the fastest
growing unstable mode determines the characteristic length scale of the initially growing
pattern. The growth rate of the unstable modes depends on the specific reaction kinetics
and transport properties of the dynamics. While the initial pattern is dominated by the
dynamics of the unstable modes, the dynamics on longer timescales may be dominated by
other processes such as coarsening [50] and non-linear reactions of the unstable modes far
away from the linear regime.

In addition, several of such chemical equilibria can coexist for the same total protein
concentration. This means that at different regions in the cell, the system can be at
different chemical equilibria, giving rise to front-like protein activity patterns. Such front-
like patterns can propagate, when one chemical equilibrium is more dominant than the
other [51]. Moreover, unstable chemical equilibria can give rise to spatially homogeneous
oscillations and traveling spiral waves [49, 52–55]. In general, nonlinear reaction kinetics
and pattern forming instabilities play a central role for many of the pattern formation
processes that we discuss in the following.

1.2 Guided pattern formation

1.2.1 Geometric guiding cues

On the most macroscopic scale, a cell is characterized by its size and shape, which confine
protein transport and protein reaction kinetics. Both cell size and cell shape can affect
protein pattern formation. For example, cell size provides a natural upper limit to the
length scale of a pattern. In addition, for a constant protein concentration in the cell, an
increasing cell size needs to be accompanied by a higher protein number, which has recently
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been shown to be an important control parameter for the formation of protein patterns [49,
56]. Moreover, when the protein species cycle between the cytosol and the membrane, the
cell shape can affect protein patterns due to local variations in the membrane curvature [57]
and in the ratio between cytosolic volume to membrane surface [6].

In the following, we will first discuss how the cell size affects protein pattern formation.
Next, we discuss how the shape of the cell affects the distribution of proteins on the mem-
brane, either due to a curvature-dependent protein binding affinity or due to a curvature-
dependent probability to encounter the membrane.

Size-dependent protein patterns

So far we have discussed that the biochemical reactions determine the chemical equilibria
of the system and that nonlinear protein reactions in combination with protein transport
can lead to pattern forming instabilities. Interestingly, several experimental studies show
that, apart from reaction and transport properties of the cell, also the cell size affects
protein patterns. Key examples include the transition of pole-to-pole oscillatory patterns
to stripe patterns of MinD in filamentous E. coli cells [58] and the observation that the
PAR proteins in C. elegans fail to polarize in small cells [16]. Here, we will review how
the size of the cell affects both the chemical equilibria and the wave length of the initially
growing unstable modes, and the final pattern that arise from a pattern forming instability.

To understand how the cell size affects chemical equilibria, consider a protein that cycles
between a membrane-bound and cytosolic state. The chemical equilibrium is reached
when the reactive fluxes between the two different states are balanced. The flux of the
cytosolic component onto the membrane depends on the cytosolic diffusive flux towards
the membrane as well as the reactive flux at the membrane. The reactive flux, in turn,
depends on the total number of proteins in the cytosol. As the cell increases in size, while
keeping the concentration constant, the total number of proteins in the cell increase. This
implies a change of the balance between reactive membrane and cytosol fluxes, leading to
a change of the chemical equilibrium. Such a change of the chemical equilibrium could
either lead to a quantitative change in the membrane and cytosolic concentration, but can
also qualitatively change the number of equilibria and their stability [49, 52].

In addition, cell size can also affect pattern forming instabilities. As explained above, a
pattern forming instability arises when a spatially uniform steady state is unstable against
spatially inhomogeneous perturbations. The characteristic length scale of the pattern that
arises from such an unstable steady state is limited by the cell size: only unstable modes
with a wavelength equal to the cell size or a fraction of the cell size can grow [59]. Thus,
while a reaction network can lead to a pattern forming instability in large cells, it may
only result in a stable and spatially uniform steady state in small cells. Indeed, this has
been observed for the polarity pattern of PAR proteins in C. elegans [16].
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Shape-dependent protein patterns

Over the last decades, an increasing number over experimental studies demonstrate the
effect of cell shape on the distributions of proteins [15, 26, 27, 53, 58, 60]. These studies
show that for a broad range of cells, ranging from bacteria to migrating fibroblasts to large
zygotes, the cell shape and local membrane curvature serve as important guiding cues for
the accumulation of proteins on the membrane. For example, during persistent motion,
the curvature-sensitive protein BAIAP2 accumulates at curved membrane patches at the
cell front, inducing the formation of lamellipodia [61]. Furthermore, in the rod-shaped
bacterium B. subtilis, a curvature-sensitive protein DivIVA accumulates at the cell poles,
where it recruits MinD to guide correct placement of the septum [62].

The mechanisms that underlie such curvature sensing rely on the interaction of proteins
with the membrane. Note that the attachment of proteins to the membrane depends on
(i) the probability of a protein to encounter the membrane (hitting probability) and (ii) the
affinity of binding to the membrane. Both the hitting probability as well as the binding
affinity can be affected by the shape of the membrane. In the following, we will review the
mechanisms underlying a curvature-sensitive binding affinity and hitting probability.

Binding affinity – A prominent example of proteins that can sense the membrane curvature,
are proteins that contain a curved Bin/Amphiphysin/Rvs (BAR) domains [60, 63, 64]
Proteins that contain BAR-domains have a higher binding affinity to parts of the membrane
that have a similar curvature as the domain, compared to their binding affinity to flat or
oppositely curved membrane regions. The length of BAR-domains is approximately 20 nm,
which limits their sensitivity to weakly curved surfaces.

Alternatively, membrane curvature can be sensed by proteins whose oligomerization is
promoted by membrane curvature. A curved oligomer can more easily be formed on a
membrane region with similar curvature compared to a flat membrane. This increased
affinity of oligomers to curved membranes leads to enhanced protein accumulation. An
example of such collective curvature sensing is provided by dynamin, which forms heli-
cal collars around the thin neck during bud formation in yeast due to curvature-induced
oligomerization [57, 65, 66].

Finally, some proteins recognize membrane curvature via defects in membrane structure.
This mechanism is well exemplified by proteins with ALPS motif. ALPS motifs do not have
a defined structure in solution, but absorb into lipid bilayers by folding into an α-helix.
It has been shown that ALPS motifs bind preferably to regions with low lipid packing
density [57]. Such low-density packing can arise from membrane curvature, where the outer
part of the lipid bilayer is stretched compared to a flat membrane. In experiments, ALPS
motifs were found to bind strongly to sufficiently curved liposomes (R < 50 nm), and to
weakly curved liposomes with a high concentration of conic-shaped lipids. This suggests
that the attachment of proteins containing ALPS motifs can be promoted in regions of
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negative membrane curvature in cells. Thus, curvature-dependent binding affinity can
lead to predominant accumulation of proteins at curved membrane regions.

It has been reported that proteins that sense curvature can also deform the membrane.
For example, the helical structure of dynamin oligomers induces membrane curvature dur-
ing scission of the yeast bud [66–69]. Furthermore, proteins with BAR-domains play a
curvature-sensing role at low concentrations, but stabilize membrane curvature at high
protein concentrations [63, 64, 70]. Such a dual role can lead to a positive feedback loop,
where a slightly curved membrane leads to the accumulation of curvature-sensitive pro-
teins. These proteins, in turn, deform the membrane, leading to a further increase in the
binding affinity. This has been proposed as a mechanochemical mechanism for protein
recruitment [14].

Hitting probability – Recently, it has been shown that the distribution of proteins on the
membrane can depend on the cell geometry even when the binding affinity of proteins does
not depend on membrane curvature [6, 7, 53]. Theoretical studies have shown that the
probability of proteins to encounter the membrane can become curvature-dependent for
proteins whose rebinding to the membrane after detachment is delayed [6, 7]. Such a delay
can arise for proteins that need to undergo a conformational state change between detach-
ment and rebinding. This is a generic feature of NTPase cycles or phosphorylation cycles.
The key insight to understand this curvature sensitivity is that the hitting probability de-
pends on the distribution of proteins in the cytosol, which becomes inhomogeneous due to
a delayed rebinding of proteins to the membrane. In the following, we will first discuss how
a delayed rebinding of proteins to the membrane leads to an inhomogeneous distribution
of proteins in the cytoplasm. Next, we will discuss how the hitting probability depends on
the distribution of proteins in the cytoplasm.

To understand how a delayed rebinding leads to an inhomogeneous distribution of pro-
teins in the cytosol, consider proteins that cycle between an active (NTP-bound) state
and an inactive (NDP-bound) state, which can both bind to the membrane or diffuse in
the cytosol. Furthermore, active membrane-bound proteins deactivate upon membrane
detachment, and get reactivated with a rate λ in the cytosol [6]. This delayed activation
leads to an exponentially decaying concentration of inactive proteins in the cytosol with
a characteristic reactivation length scale l =

√
Dc/λ, where Dc is the diffusion constant

in the cytosol. Thus, for a reactivation length scale l larger than the radius of membrane
curvature R, but smaller than the system size L, the concentration of inactive proteins in
the cytosol is increased close to membrane regions with stronger negative curvature (e.g.
at cell poles). The strength of this effect depends on the reactivation length l and vanishes
for a reactivation length smaller than the radius of membrane curvature (l � R) and larger
than the system size (l � L). Such a locally increased concentration of inactive proteins in
the cytosol at cell poles leads to an increased binding of inactive proteins to the negatively
curved membrane.

In contrast, the concentration of active proteins exhibits a complementary concentration
gradient perpendicular to the membrane, with its minimum at the membrane and its
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maximum further away from the membrane, in the center of the cell [6]. Interestingly,
this gradient of active proteins leads to an asymmetry of membrane attachment between
curved and flat membrane regions that depends on the reactivation length [7]. For a large
reactivation length (l ∼ L), an active protein is more likely to hit the membrane in the
middle of the cell due to the increased cytosolic concentration in the cell center. However,
for a small reactivation length, active proteins have a higher probability to hit the cell
poles, due to the increased ratio between membrane surface to cytosolic volume.

This argument based on the hitting probability of proteins to the membrane explains where
proteins are most likely to encounter the membrane. However, the final protein pattern
that forms on the membrane depends on the details of the protein reaction kinetics on
the membrane. If a protein only binds to and detaches from the membrane, the increased
hitting probability directly leads to an increase in the protein concentration at the poles.
This is further enhanced when the protein promotes its own binding autocatalytically [6].
However, when two proteins mutually inhibit each others binding, an increased hitting
probability leads to the formation of an interface between two protein domains on the
membrane [7].

In addition to the inhomogeneous hitting probability, also other geometric factors may play
a role during the formation of the protein patterns. For example, theoretical work on the
polarization of the C. elegans zygote has suggested that the pattern formation dynamics
is initially dominated by the curvature-dependent hitting probability [7]. However, the
mechanism that underlies the positioning of the aPAR-pPAR interface on longer time
scales is not completely understood, and may be largely determined by the minimization
of the interface length [7] and other biochemical cues [26].

1.2.2 Mechanical guiding cues

In addition to the cell size and shape, also the mechanical properties of the cell can affect the
transport and reaction kinetics of proteins. In the following, we will first discuss examples
where local contractions of the cell cortex lead to the generation of stress gradients in the
cell, leading to protein transport. Next, we discuss how the binding kinetics of proteins to
the actin cortex can depend on the tension on the actin fibers.

Flow generation

As discussed in Section 1.1, flows arise from stress gradients. Recent work has demonstrated
the generation of such stress gradients in the cytoplasm of starfish oocytes [28]. In these
oocytes, a cortical surface contraction wave travels across the membrane along the animal-
vegetal axis. These contractions lead to stress gradients in the cytoplasm, which results
in cytoplasmic flows along the animal-vegetal axis. Similar observations were made for
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Drosophila embryos, were apical constrictions instead of surface contraction waves lead to
cytoplasmic flows [71]

In addition, instead of deforming the cell shape, cortex contractions can also lead to flows of
the cortex as a direct consequence of spatially inhomogeneous contractions [8] or anisotropic
cortical tension [72]. For example, cortical flows in C. elegans zygotes prior to PAR polar-
ization arise due to nonuniform actomyosin activity [8]. Reduced actomyosin contractility
at the posterior pole leads to anterior-directed cortical flow. Through hydrodynamical
coupling, the cortical flow induces flows in the cytosol, leading to a posterior-directed cy-
toplasmic flow [26]. As discussed earlier, such flows can play a key role in the pattern
formation process or serve as a symmetry-breaking cue. Thus, shape deformations as well
as cortex contractions can act as a mechanical guiding cue for pattern formation.

Tension-dependent reaction kinetics

Forces acting on the actin cortex can also affect the reaction kinetics of proteins that
bind to actin fibers. In the following, we will discuss two mechanism that underlie such
tension-dependent reaction kinetics.

A first example is given by smooth muscle myosin. It has been observed that muscles
liberate more heat, depending on the load applied to the muscle [73]. This so called ‘Fenn
effect’ implies that the biochemistry of a shortening muscle, which is driven by acto-myosin
contractions, responds to its mechanical conditions. A molecular mechanism for this load-
dependent kinetics has been suggested by Huxley and Simmons, who proposed that the
force-generating cycle of myosin proceeds slowly under load, while more quickly without
load [74]. Indeed, in vitro studies showed that the binding life time of a single smooth
muscle myosin to an actin filament is prolonged under higher load and decreases under low
or negative load [75]. The same mechanism has been suggested as an underlying mechanism
for the cooperative binding of non-muscle myosin II [76].

Another protein with tension-dependent binding kinetics is the actin-depolymerization
factor cofilin [77]. Cofilin has been observed to preferentially accumulate on relaxed actin
fibers [78, 79]. Since cofilin depolymerizes and severs actin fibers [80], it can locally alter
the mechanical properties of the cortex depending on the local tension. The underlying
mechanism for this tension-dependent binding has been hypothesized to rely on the degree
of twist in the actin fiber [78, 79]. While spontaneous fluctuations can twist relaxed
actin fibers [81], such fluctuations are suppressed in fibers under tension [82], leading to a
preferred binding to relaxed fibers. In addition, the binding of cofilin itself can also induce
a twist in relaxed actin fibers [78, 79]. This positive feedback loop has been suggested to
induce cooperative binding of cofilin, which can lead to accumulation of cofilin to relaxed
actin fibers. Thus, tension-dependent reaction kinetics can lead to the formation of protein
patterns.
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1.3 Aim of this thesis

In this introduction, we have have discussed how size, shape and mechanics of cells affect the
formation and steady states of protein patterns inside cells. In other words, we discussed
how the spatial and temporal information about the cell’s geometry and mechanics can be
encoded in protein concentration profiles. A third guiding cue to regulate the formation
of protein patterns can be formed by biochemical signals. Such signals can originate from
the external environment of the cell or from internal processes to coordinate multiple
cellular functions. Cells process the information from these external and internal signals
via biochemical signaling pathways.

To study such signaling pathways, the cell is often perceived as a computational unit that
takes the concentration of external molecules as an input. Via membrane receptors and
biochemical interactions inside the cell, these inputs lead to an output, such as the up-
or down-regulation of the target protein or a change in its conformational state. The
specific biochemical interactions between the membrane receptors and the target protein
determine the decision-making response of the cell. For example, several theoretical and
experimental studies have identified biochemical circuits that are able to perform logic
operations, generate pulses, or act as noise-reduction filters [83–87]. In these examples,
both the input and the output are considered to be homogeneous throughout the cell or,
in other words, ‘well-mixed’.

In contrast to such ‘well-mixed’ computational operations, both the input signals as well
as the output can be spatially-dependent, leading to locally varying responses in the cell.
Thus, these spatially-dependent signals are processed via protein patterns, such that the
concentration profile of one protein serves as a biochemical guiding cue for the formation of
a downstream protein pattern. Such spatially-dependent signal processing, where spatial
protein patterns serve as inputs for downstream protein patterns, has been observed during
many biological processes, ranging from the placement of the division site [17, 18, 20, 21,
23] to macropinocytosis [22, 24] and cellular wound healing [19]. However, the biophysical
mechanisms that underlie these spatial computations remain poorly understood [88].

The general aim of this thesis is to uncover biophysical mechanisms by which proteins can
process spatial and temporal information inside cells via protein-based pattern formation.

We will use mass-conserving reaction–diffusion models to study how protein patterns arise
from a combination of protein-protein interactions and protein transport. In particular, we
will ask how one protein pattern can affect the formation and steady state of a downstream
protein pattern. Such processes, where the concentration profile of one protein serves as
a template for the next pattern, is reminiscent of computational operations in cells. We
will demonstrate several mechanisms for both spatial as well as temporal computations.
To characterize the mechanisms for these computations, we will use biophysical analyses,
such as a phase portrait analysis, linear stability analysis, and local equilibrium theory.
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First, we characterize four mechanisms, that can switch the polarity of a cell upon a
transient signal, using numerical simulations and a phase portrait analysis. Next, we
use local equilibria theory to show how a protein can measure a threshold in a shallow
gradient. We then demonstrate mechanisms of computations that are reminiscent of a
temporal derivative and a spatial derivate. The mechanism of the temporal derivative
demonstrates how a sudden increase in the concentration of the input leads to a transient,
peak-like increase of the output. The spatial derivative shows how a step-like input leads
to the formation of a peak at the edge of the step-like concentration profile. Then, we show
that a hierarchical coupling of such computations lead to a shape-adaptation mechanism
in starfish oocytes. Finally, we perform a linear stability analysis to show how flows in
the cytoplasm of a cell can affect the protein concentration profiles of membrane-bound
proteins.

1.4 Biophysical analysis

To describe the formation of protein patterns, reaction–diffusion models have proven useful
[53, 89–104]. We will next give a brief overview of the mathematical methods to study
such reaction–diffusion models.

1.4.1 Linear stability analysis

To study whether protein patterns can spontaneously arise from a homogeneous (or well-
mixed) system, one can perform a linear stability analysis. The goal of linear stability
analysis is to find whether a steady state is stable or unstable against small perturbations.
In particular, one studies the time evolution of a small perturbations of the system in the
vicinity of the steady state. When the amplitude of this perturbation grows, the system is
unstable; and vice versa, a decaying amplitude implies a stable steady state.

To illustrate the general procedure of linear stability analysis we consider we consider the
dynamics of one protein species on a one-dimensional domain of length L, as in Ref. [56].
The proteins can cycle between a membrane-bound state (concentration m(x, t)) and a
cytosolic state (concentration c(x, t)), with diffusion constants Dm and Dc respectively.
The reaction–diffusion equations for the membrane density m and the cytosolic density c
read

∂tm(x, t) = Dm∂
2
x m+ f(m, c), (1.1a)

∂tc(x, t) = Dc∂
2
x c − f(m, c), (1.1b)
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where the reaction term f(m, c) describes the attachment–detachment dynamics of the
proteins. We consider reflective boundary conditions at x = 0, L, such that ∂xc|0,L =
∂xm|0,L. The dynamics conserves total protein density

n̄ =
1

L

∫ L

0

dx n(x, t), (1.2)

with the local total density n(x, t) = m(x, t) + c(x, t).

Following the standard procedure for linear stability analysis, we first find the homogeneous
steady state u∗ = (m∗, c∗) by solving f(m∗, c∗) = 0 and n̄ = m∗ + c∗.

Next, we consider the dynamics for small perturbations u(x, t) = u∗ + δu(x, t) around
the homogeneous steady state. Expanding δu(x, t) in exponentially growing (or decaying)
Fourier modes δu = ûq e

σteiqx leads to the eigenvalue problem

J ûq = σûq, (1.3)

with the Jacobian
J =

(
−Dcq

2 − fc −fm
fc −Dmq

2 + fm

)
,

where fc = ∂cf |u∗ and fm = ∂mf |u∗ encode the linearized reaction kinetics. Thus, for
each Fourier mode with wave number q, the eigenvalues σ1,2 of the Jacobian J represent
the growth rate of a the mode. The mode q = 0 correspond to spatially homogeneous
perturbations, whereas the modes q > 0 correspond to spatially inhomogeneous pertur-
bations. The eigenvalue with the largest real part determines the stability of the mode
and indicates the mode’s growth rate. For Reσ(q) > 0, the mode with wave number q is
unstable, whereas a mode is stable for Reσ(q) < 0.

A typical dispersion relation with a band of unstable modes is shown in the inset of
Fig. 1.1d. The mode qc with the highest growth rate determines the wave length λ = 2π/qc
of growing pattern on short time scales (see Fig. 1.1d). On longer timescales, the linear
approximation of the dynamics may no longer hold. In this nonlinear regime, the system
can be analyze using finite element simulations or local equilibrium theory, which we will
further discuss in the next section.

1.4.2 Local equilibria theory

This section is based on Sec. I.B. from the paper “Pattern localization to a domain edge’,
which has been published in Physical Review E (Ref. [105]). This work has been performed
together with Fridtjof Brauns, Tobias Hermann and Erwin Frey.

Recent work has developed a theoretical framework to study mass-conserving reaction–
diffusion models in the nonlinear regime [49, 56]. In the following we review the key
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(a) (b)
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Figure 1.1 | Illustration of the phase-space geometric analysis for two-component
McRD systems. (a) The reactive equilibria (black dots) are given by the intersections
between the reactive subspaces m + c = n (grey lines) and the reactive nullcline f =
0 (black line) in the (m, c)-phase space. Hence, the reactive nullcline encodes the
qualitative structure of the reactive flow as illustrated by the red arrows. (b) Sketch of
the membrane profile of a mesa pattern composed of a high- and low-density domains,
m+ and m−, connected by a diffusive interface around the inflection point x0. (c) Flux-
balance construction of the mesa pattern in phase space (cf. (a)). The intersections of
the flux-balance subspace (FBS) (purple dashed line) and the reactive nullcline yield
the concentrations at the plateaus m± and the inflection point m0. The balance of
net reactive flows in the system (red arrows) determines the FBS-offset η0. In the
regime where the slope of the reactive nullcline is steeper than the slope of the FBS, an
homogenous steady state is laterally unstable. (d) Linearization of the dynamics in the
vicinity of the homogeneous steady state, yields a dispersion relation for growth rates
of the eigenfunctions (Fourier modes indexed by wavenumber q). The fastest growing
mode, qc, dominates the length scale of the initial dynamics.

insights from this work and use these concepts and methods throughout the rest of the
thesis.

To that end, we consider the dynamics of one protein species on a one-dimensional domain
of length L, as in Ref. [56] and Sec. 1.4.1. The proteins can cycle between a membrane-
bound state (concentration m(x, t)) and a cytosolic state (concentration c(x, t)), with diffu-
sion constants Dm and Dc respectively. In cells, the diffusion constants of membrane-bound
proteins and cytosolic proteins are typically widely different, such that Dm � Dc. The
reaction–diffusion equations for the membrane density m and the cytosolic density c read

∂tm(x, t) = Dm∂
2
x m+ f(m, c), (1.4a)

∂tc(x, t) = Dc∂
2
x c − f(m, c), (1.4b)
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where the reaction term f(m, c) describes the attachment–detachment dynamics of the
proteins. Specific examples of such systems exhibiting self-organized pattern formation
can be found in [91, 93, 94, 103]. At the boundaries, we impose no-flux conditions
Dc∂xc|0,L = Dm∂xm|0,L = 0. The dynamics conserves total protein density

n̄ =
1

L

∫ L

0

dx n(x, t), (1.5)

with the local total density n(x, t) = m(x, t) + c(x, t).

To characterize the dynamics and steady states of McRD systems, we recently introduced
a framework, termed local equilibria theory [49, 56]. This theory proposes to analyze spa-
tially extended systems as a collection of small diffusively coupled compartments. The local
reaction kinetics inside each of the compartments, then serves a proxy for the spatially ex-
tended dynamics, enabling a quantitative phase portrait analysis of the spatially extended
system in the phase space of reaction kinetics [56]. In the following we briefly review the
key results of local equilibria theory for the two-component McRD system and generalize
this framework to analyze pattern formation in the presence of a spatial template. For a
comprehensive analysis of the two-component McRD system on a homogeneous domain,
we refer to Ref. [56].

The reaction kinetics of McRD systems conserves total protein mass, which implies that
the reactive flow must point along the reactive phase spaces n = c +m, indicated by the
gray lines in Fig. 1.1(a). The reactive flow vanishes along the reactive nullcline (NC), given
by f(m, c) = 0. Intersections of the reactive nullcline with reactive phase spaces, given by
the total density (mass) n, determine the reactive equilibria (m∗(n), c∗(n)) shown as black
dots in Fig. 1.1(a). Hence, the shape of the nullcline encodes how the reactive equilibria
move when total density n is changed, highlighting that the total density n is a control
parameter for the reaction dynamics. Within each reactive phase space, the flow is directed
towards a stable reactive equilibrium, as illustrated by the red arrows in Fig. 1.1(a).

In a spatially extended system, the total density n(x, t) = m(x, t) + c(x, t) is generically
inhomogeneous, and its dynamics is driven by diffusion, as can be seen by adding Eqs. (1.4a)
and (1.4b)

∂tn(x, t) = Dc∂
2
xη(x, t), (1.6)

where we introduced the mass-redistribution potential, defined as [56]

η(x, t) := c(x, t) +
Dm

Dc

m(x, t). (1.7)

To study the interplay of local reactions and diffusive mass-transport in spatially extended
systems, local equilibria theory proposes to analyze such systems as a collection of diffu-
sively coupled compartments. These notional compartments are chosen small enough that
each of them can be regarded as well-mixed. Thus, local dynamics within each compart-
ment can be characterized in the ODE phase space of reactions which is determined by
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the density n(x, t) within that compartment. In this characterization, the local (reactive)
equilibria and their stability in each local phase space serve as proxies for the reactive
dynamics in each compartment. This becomes clear when one imagines the compartments
as isolated, for a given total density profile n(x). Then each compartment will approach a
stable local equilibrium, parametrized by the local density n(x). In the spatially coupled
system, the total density n(x, t) is diffusively redistributed due to concentration gradients
between the compartments (cf. Eq. (1.6)). Consequently, the local equilibria shift and their
stability may change [56, 106]. This interplay between shifting local equilibria and mass
transport is at the core of local equilibria theory.

In the remainder of this section, we recapitulate two key results from the phase-portrait
analysis of two-component McRD systems [56]. We will later generalize this analysis to
systems on a spatially heterogeneous domain.

Flux-balance construction. — From the dynamics of the total mass Eq. (1.6)–(1.7) it follows
that, for any stationary pattern (denoted by m̃(x), c̃(x)), η̃(x) must be constant in space
on a domain with no-flux (or periodic) boundary conditions [56]:

η0 = c̃(x) +
Dm

Dc

m̃(x) = const. (1.8)

This relationship defines a linear subspace, termed flux-balance subspace (FBS), of the
(m, c)-phase space of reaction kinetics (purple dashed line in Fig. 1.1(c)). Any stationary
pattern must be embedded in a single FBS. This reflects that, in steady state, the diffusive
fluxes in m and c are balanced against each other such that there is no net transport of
mass.

We can use this condition, Eq. (1.8), to geometrically construct the steady state density
profile in the (m, c)-phase space and from that estimate the real space density profile. The
key insight is that we can approximate the concentrations at the plateaus, and the inflection
point of the pattern by the local equilibria at the FBS-NC intersections (see Fig. 1.1(b)).
We denote these intersection points by m−, m0 and m+, where m± correspond to the
concentrations at the plateaus and m0 to the concentration at the inflection point of the
pattern (Fig. 1.1(b,c)). Thus, the FBS-offset, η0, fully determines these concentrations.

To determine the FBS-offset, η0, one uses that in steady state the net reactive flow within
the whole system must be balanced1:∫ m+(η0)

m−(η0)

dmf

(
m, η0 −

Dm

Dc

m

)
= 0, (1.9)

where the plateau concentrations far away from the interface are approximated by the
FBS-NC intersections m±(η0). This total turnover balance condition implicitly determines
the FBS-offset η0. Note that on a large domain (much larger than the interface width,

1Note that before integration, Eq. (1.4a) is multiplied with ∂xm̃(x) as a mathematical trick to substitute
the integral over space by an integral over m.
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where the approximation m(0, L) ≈ m± holds), total turnover Eq. (1.9), and hence η0,
depends only on the function f and the ratio of the diffusion constants. This implies that
η0 is not dependent on the average mass n̄ in this approximation.

We will show next that the average mass n̄ determines the relative size of the low- and
high-density regions and with that the position of the pattern’s interface. This interface
is marked by the position of the inflection point x0 of the pattern profile. For a domain
size much larger than the interface width, we can neglect the finite width of the interface
region, such that the average mass can be approximated by

L n̄ ≈ x0 n
−(η0) + (L− x0)n

+(η0). (1.10)

Conversely, x0 can be determined for a given n̄. Thus, this geometric construction, termed
flux-balance construction, shows that significant features of the steady state profile are
determined by the shape of the nullcline.

Mass-redistribution instability. — In addition to the construction of stationary patterns, it
was shown in Ref. [56] that the nullcline shape determines the stability of a homogeneous
steady state, and that the mechanism underlying lateral (“Turing”) instability is a mass-
redistribution cascade. Specifically, it was found that a homogenous steady state is laterally
unstable when the slope of the nullcline χ(n̄) := ∂mc

∗|n̄ is steeper than the slope of the
FBS (see Section II.D1 in Ref. [56] for a derivation),

χ(n̄) < −Dm

Dc

, (1.11)

which, using the mass-redistribution potential, Eq. (1.7), is equivalent to ∂nη
∗ < 0. If this

condition is fulfilled, high-density regions act as cytosolic sinks, leading to further accumu-
lation of mass and hence a mass-redistribution cascade. This motivates the corresponding
name mass-redistribution instability.

Starting from a homogeneous steady state with a small random perturbation, the initial
dynamics is dominated by the fastest growing eigenfunction of the linearized dynamics.
At the onset of this instability there is a dominant eigenfunction that determines the
initial dynamics of the system. We can find this dominant eigenfunction by linearizing the
system around its homogenous steady state (linear stability analysis). For a homogenous
steady state, these eigenfunction are Fourier modes and their growth rates are given by the
dispersion relation, shown as inset in Fig. 1.1(d). Due to mass-conservation, the real part
of the growth rate goes to zero at q = 0, corresponding to a type II dispersion relation in
the classification by Cross and Hohenberg [107]. The fastest growing mode, qc, determines
the length scale of the initially growing pattern as illustrated in Fig. 1.1(d)). Subsequently
the pattern coarsens into a single peak [93, 94, 108, 109].
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2 Polarity switching in response to a
transient signal

“Non numeranda, sed ponderanda
sunt argumenta.”

– Marcus Tullius Cicero

The mechanisms and design principles of regulatory systems establishing polarized
protein patterns within cells are well studied. However, cells can also dynamically
control their cell polarity. Here, we ask how an upstream signaling system can switch
the orientation of a polarized pattern. We use a mathematical model of a core polarity
system based on three proteins as the basis to study different mechanisms of signal-
induced polarity switching. The analysis of this model reveals four general classes of
switching mechanisms with qualitatively distinct behaviors: the transient oscillator
switch, the reset switch, the prime-release switch, and the push switch. Each of these
regulatory mechanisms effectively implements the function of a spatial toggle switch,
however with different characteristics in their nonlinear and stochastic dynamics. We
identify these characteristics and also discuss experimental signatures of each type of
switching mechanism.

This Chapter is based on our paper “Four different switching mechanisms”, which has been
published in PloS Computational Biology [110]. This work has been performed together
with Filipe Tostevin, Ulrich Gerland and Lotte Søgaard-Anderson.
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2.1 Introduction

Cell polarity is manifested in molecular and morphological asymmetries of the cell. From
bacterial to mammalian cells, cell polarity is essential in a multitude of functional contexts,
including cell migration, asymmetric cell division and differentiation, cell-cell signaling,
development and tissue homeostasis [111, 112]. One fundamental question related to cell
polarity is how an initially symmetrical cell can establish a polarized state and subsequently
maintain it [113]. However, cells are also known to dynamically change their polarity, e.g.
reversing polarity in response to external or internal signals to control motility [114, 115].
This raises a second fundamental question: Which mechanisms permit reliable switching
of cell polarity?

The first question, about establishing and maintaining cell polarity, is well studied, both
on the conceptual level with theoretical approaches and on the experimental level by char-
acterizing model systems. The polarization of an initially nonpolarized cell is a symmetry
breaking phenomenon: In the case of essentially isotropic cells, e.g. budding yeast or
epithelial cells [113], the continuous angular symmetry is broken by polarization, whereas
discrete symmetry breaking occurs for rod-shaped bacterial cells [116]. Symmetry breaking
can occur spontaneously [117], but is often controlled by upstream guiding cues [8]. While
the detailed molecular mechanisms underlying cell polarization differ between organisms,
they often incorporate conserved G-protein based signaling systems that use multiple feed-
back interactions to generate asymmetric distributions on the cell membrane via a Turing
instability [118]. A class of simple networks that can achieve cell polarization was ex-
plored in a synthetic biology study [119], which first showed computationally that all such
networks feature the three minimal motifs ‘positive feedback’, ‘mutual inhibition’, or ‘in-
hibition with positive feedback’, but that combinations of these motifs generally polarize
more reliably. The study then corroborated the latter finding experimentally, recapitulat-
ing the basic principles underlying the establishment and maintenance of cell polarization
in engineered systems. Taken together, these and other results address many aspects of the
first question raised above. By comparison, significantly less is known about the second
question on the dynamical control of cell polarity.

Dynamically changing cell polarity is widely observed and studied in eukaryotic model
systems such as neutrophils [120], amoebae [115], and melanoma cells [121]. Depending on
the system, its genetic makeup, and the environment, cells display a variety of dynamical
patterns. For instance, melanoma cells either randomly polarize into frequently changing
directions, or reverse cell polarity in an oscillatory fashion, or they persistently maintain
cell polarity [121]. The dynamical control of cell polarity involves signaling. For instance,
cell polarity changes can be coupled to internal signals, as in the case of yeast, where the
dynamics of cell polarity is co-regulated by the cell cycle [122]. Often, cells get a directional
cue from the environment governing the direction of their response [115]. However, cells
can also respond to non-directional cues. For instance, a temporally decreasing chemoat-
tractant signal triggers reversals of cell polarity in neutrophils, even in the absence of a
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spatial concentration gradient [120]. Which mechanisms permit such reversals induced by
a non-directional signal?

Rod-shaped bacteria display much of the eukaryotic phenomenology and serve as paradig-
matic model systems. For instance, the Min system, used by Escherichia coli to localize
the septum prior to cell division [123], constitutes a prime example of autonomous cell
polarity oscillations. Its underlying molecular network, based on three Min proteins, was
successfully reconstituted in vitro [54]. On a conceptual level, the cell polarity oscillations
of the Min system are analogous to those of the melanoma cells, also with respect to the
basic regulatory scheme, whereby a bistable system can be turned into an oscillator via
slow negative feedback [121, 124]. For signal-induced (rather than autonomous) polarity
reversal, the Mgl system of Myxococcus xanthus constitutes a prime example. Here the
cell polarity, marked by MglA, undergoes intermittent reversals, which are thought to be
triggered by the upstream Frz signaling system [125]. The cell polarity reversals are ac-
companied by reversals in the direction of cell motion, enabling motility patterns that are
crucial for predatory behavior and fruiting body formation [126].

Recently, Guzzo et al [127] identified the response regulator FrzX as a mediator of the Frz
reversal signal to the Mgl system, and proposed a mechanism for how FrzX can interact with
the three core polarity proteins to trigger polarity reversals. We take this study as a starting
point to explore the question of signal-induced polarity switching on a more general level.
Rather than focusing on one particular mechanism, we aim to identify the distinct classes
of switching mechanisms and their underlying working principles. We find four distinct
classes of mechanisms that can occur for different signaling regimes. We demonstrate that
some are sensitive to the amplitude and duration of the input signal but relatively robust
to intrinsic molecular noise, while others are less sensitive to signal variability but more
susceptible to noise. These and other features allow us to identify experimental signatures
that can be used to discriminate between the four classes of mechanisms in vivo.

2.2 Methods

We consider a cell polarity defined by an asymmetric distribution of a certain ‘polarity
marker’ A. The polarity marker has the regulatory role to direct the spatial localization or
activity of downstream processes. For instance, MglA in M. xanthus is a polarity marker
that localizes at one of the cell poles and activates the motility machinery to determine
the direction of cell motion [125]. Similarly, Cdc42 is a polarity marker in yeast and other
eukaryotic cells [128]. A module consisting of the polarity marker and other regulatory
proteins has the ability to establish and maintain a polarized distribution of A. This
module, which we refer to as the ‘core polarity system’, receives input from a signaling
pathway via a signaling protein X. We stipulate that the ‘full polarity system’ consisting
of X and the core system can implement the function of signal-induced polarity switching
(Fig. 2.1).
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To explore mechanisms for signal-induced polarity switching, we consider a symmetric cell
with a polarity marker that localizes only at its two cell poles ‘1’ and ‘2’ (Fig. 2.1A), while
it rapidly diffuses in the cytoplasm. This simplest scenario is a good approximation for the
M. xanthus polarity system [127] and suffices to reveal general principles of signal-induced
polarity switching, as we will see below. The distribution of A is then characterized by
quantifying its abundance at pole ‘1’ and ‘2’, as well as in the cytoplasm, and the time-
dependent cell polarity can be defined as

ωA(t) =
A1(t)− A2(t)

A1(t) + A2(t)
, (2.1)

where A1(t) and A2(t) are the time-dependent abundances of A at the poles. Hence, ωA > 0
corresponds to a higher abundance of A at pole 1 than at pole 2, and vice versa for ωA < 0,
such that a reversal of cell polarity is marked by a change of sign in ωA(t).

time t

pole 1

pole 2

BA

X

R

signal duration (  )

signal 
amplitude (        )

polarity marker antagonist

recruitment factor

si
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 X

(t)
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τ
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tOFFtON

Figure 2.1 | Signal-induced polarity switching. A Schematic representation of a rod-
shaped cell with polarity marker A shown in yellow. Proteins can either be bound to
the poles or diffuse in the cytoplasm. The abundances of the polarity marker at the two
poles are denoted by A1 and A2. The release of a signal protein X in the cytoplasm,
shown in purple, can lead to a polarity reversal, such that the polarity marker switches
from pole 1 to pole 2. B Schematic representation of the molecular interactions of
the polarity model. The polarity marker A and its antagonist B inhibit each others
binding to the pole. B can cooperatively recruit itself to the pole and promotes binding
of the recruitment factor R, which in turn recruits A. Dashed lines indicate exemplary
hypothetical interactions of the signal protein X with the polarity proteins. C The
switching signal is implemented as a pulse in the total amount of X, parameterized by
the signal duration τ and signal amplitude Xmax.

2.2.1 Model for a switchable polarity system

To obtain our working model, we generalize the recently proposed model of the M. xanthus
polarity system [127]. This model involves the ‘antagonist’ B to the polarity marker A, as
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well as a third protein species, the ‘recruitment factor’ R (representing MglB and RomR,
respectively). The network of interactions between A, B, and R is shown in Fig. 2.1B.
Besides the mutual inhibition between A and B, it involves self-recruitment of B, as well
as indirect recruitment of A by B via R. The full dynamics of the interactions between A,
B, and R at the poles is described by [127]

dAi

dt
= krA(1− A1 − A2)Ri − kaAi − kbaAiB

2
i

dRi

dt
= (1−R1 −R2)(kR + kbRBi)− krRi

dBi

dt
= (1−B1 −B2)(kB + kbBBi)− kb

kM
Bi + kM

Bi

− kabAiB
2
i ,

(2.2)

using the same convention for B and R as for A, i.e. Bi and Ri denote the abundances at
the poles (i = 1,2). Eqs. 2.2 assume that the total abundances of A, B, and R in the cell
are approximately constant, at least on the relevant timescale of polarity reversals. These
total values are set to one by choosing appropriate units for the abundances. The dynamics
in the cytoplasm is then obtained from the dynamics of the polar abundances, e.g. the
cytoplasmic abundance of A is 1−A1−A2. In total, the interactions between A, B, and R
are specified by 10 rate constants and one saturation parameter. R binds to the cell poles
with rate kR where it locally recruits A with rate krA. B binds at the intrinsic rate kB to
the poles, where it recruits both itself, at rate kbB, and R at rate kbR. At the same time,
A can displace B from the pole and vice versa with a rate kab and kba, respectively. All
three proteins can also spontaneously unbind from the poles, with the corresponding rates
ka, kr, and kb, but the unbinding of B is slowed in presence of more B (with the saturation
parameter kM determining the characteristic abundance for this feedback effect).

The positive feedback from B onto its own localization together with the mutual inhibition
of A and B allow this model to spontaneously generate a stable asymmetry in the protein
abundances at the two poles. Polarity schemes based on mutual antagonism also play a
role in polarity establishment of the PAR system [25] determining the anterior-posterior
axis in C. elegans, and the Rac-Rho system regulating front-rear polarity in mammalian
cells [121]. Here, we use Eq. 2.2 to describe the deterministic dynamics of the core polarity
system. To explore noise effects due to the relatively low copy numbers of regulatory
proteins within cells, we also devised a stochastic model based on stochastic differential
equations, see Eqs. 2.6 in ‘Materials and Methods’. These equations take the same form
as Eqs. 2.2, but with an added noise term in each equation that depends on the state of
the system. The noise strength in this model is determined by an effective “copy number”
parameter N , with N → ∞ recovering the deterministic dynamics and noise strength
increasing with decreasing N .

The signaling protein X mediates a non-directional signal that interacts with the core
polarity system (Fig. 2.1B) to induce polarity switching (in M. xanthus, X corresponds
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Figure 2.2 | Schematic representation of the workflow. A Switching signals are pa-
rameterized by the choice of i) a reaction rate it acts on, ii) an inhibitory or enhancing
effect and iii) the amplitude Xmax and duration τ of the transient signal. X can act
on any of the 11 parameters of the polarity model. B Example of a deterministic and
stochastic simulation before, during and after the signal. The signal is applied between
t = 0 and t = 3. Thick lines indicate the concentrations of A (yellow), B (red), R
(green) and X (purple) at pole 1, and thin lines at pole 2. C Switching is evaluated
by comparing the signs of the asymmetry ωA(t) in A before and after the switch. For
the stochastic simulation a switching probability is calculated from 100 trajectories. D
Switching regimes are plotted in phase space as a function of Xmax and τ for the mod-
ification of each model parameter. For the deterministic model, successful switches are
shown by the gray regions with a black outline, for the stochastic model switching prob-
abilities are shown in green. E The state of the system during the signal is identified
by simulating the deterministic model with the signal applied for the duration of the
simulations. The dynamics is classified into three states: symmetric (blue), oscillatory
(orange) and polarized (yellow).

to phosphorylated FrzX [127]). We assume the total amount Xt of X to have a step-
like pulse form (Fig. 2.1C), parameterized by an amplitude Xmax and duration τ . While
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step-like pulses are a reasonable assumption, given that signals change via (rapid) protein
modifications rather than (slow) changes in protein levels, we will also study the effect of
more gradual changes further below. In the model of [127], cytoplasmic X is recruited to
the poles by the antagonist B with rate kX and spontaneously unbinds with rate kx, such
that its polar abundances change according to

dXi

dt
= kX(Xt −X1 −X2)Bi − kxXi . (2.3)

In order to systematically explore the possible mechanisms by which polar X may interact
with the core polarity system, we allowed X to regulate each one of the 11 parameters in
Eqs. 2.2. We allowed for both positive and negative regulation, thus obtaining 22 different
candidate models for a switchable polarity system. In each case, one parameter, denoted
kj, depends on Xi while the others are not affected (the index j in kj specifies which of
the 11 parameters in Eqs. 2.2 is regulated). For a positive regulation, we have

kj(Xi) = kj(1 +Xi) , (2.4)

and for a negative
kj(Xi) = kj(1−Xi) . (2.5)

Hence, a candidate signaling scenario is parameterized by (i) which parameter kj is regu-
lated by X, (ii) whether the regulation is enhancing or repressive, and (iii) the amplitude
and duration of the pulse, as illustrated in Fig. 2.2A.

2.2.2 Identifying functional switching scenarios

To test a candidate signaling scenario for its ability to induce polarity switching, we sim-
ulate the dynamics (both deterministic and stochastic) of the model. The output of a
simulation is a set of time-dependent abundances of the four proteins A, B, R, and X at
the two poles (Fig. 2.2B). Each simulation run has three phases. First, we simulate the
polarity model, Eq. 2.2, in the absence of signaling input (Xt = 0). In this condition, the
system reaches a stable polarized configuration. At t = 0, we then switch to Xt = Xmax for
a duration τ , after which the simulation is continued with Xt set to zero again. We then
compare the polarization of the cell at the time when the signal is initiated (t = 0) with a
time point after the removal of the signal (tend = 30 was chosen to allow for the system to
fully relax back to a polarized steady state). The candidate signaling scenario is consid-
ered to generate a successful switch if the signs of ωA(0) and ωA(tend) were different (i.e.,
the initial and final polarity states were different), and unsuccessful otherwise (Fig. 2.2C).
For the stochastic dynamics, we estimated the switching probability from 100 simulation
runs (Fig. 2.2B,C). We repeated this procedure for each signaling scenario with a range of
Xmax and τ values, generating deterministic and stochastic phase diagrams delineating the
functional regimes in (τ,Xmax)-space (Fig. 2.2D).
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Figure 2.3 | Switching regimes for each of the model parameters. Regions in which
the deterministic model shows switches are indicated by thick black outlines. The green
shading shows the switching probability of the stochastic model with N = 103.75. The
upper half of the phase diagram shows results for a signal that enhances the reaction
rate, and the lower half for a repression of the rate. The colored bars to the right of
each panel indicate the class of dynamics when the corresponding amplitude of signal is
applied, with yellow for polarized, orange for oscillatory and blue for symmetric polar
distribution of A. The red symbols indicate the signal amplitude and duration of the
trajectories shown in Fig. 2.4

.

2.2.3 Characterizing functional switching scenarios

Fig. 2.3 shows the resulting phase diagrams, each representing regulation via one of the 11
model parameters and including both enhancing and repressive regulatory effects. Here, the
deterministic regimes of successful polarity reversals (solid black lines) are superimposed
with the stochastic switching probabilities (green shading). We identified at least one
range of signal parameters with successful polarity reversals in each of the phase diagrams.
That is, it is possible for X to induce reversals by regulating any of the interactions of the
polarity proteins, provided that the profile of the signal pulse Xt is chosen appropriately.
Surprisingly, in most cases reversals can be observed when X acts either positively or
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negatively. For example, reversals can be induced by X either enhancing or repressing the
strength of B self-recruitment via the parameter kbB.

Polarity is highly sensitive to regulation of some parameters (e.g. kbB, kba), with switching
occurring for most signal profiles. These parameters tend to be those involved in the key
interactions of Fig. 2.1B, including the nonlinear feedbacks in B recruitment, A recruitment
by R, and A-B mutual antagonism, which together are crucial for the establishment and
maintenance of polarity. For parameters that are more peripheral to the interaction net-
work, in particular the spontaneous binding and dissociation rates (e.g. kR, kB), switching
occurs only in small regions of high-amplitude signals.

Fig. 2.3 reveals two qualitatively different patterns in the signaling regimes generating
switching: solid regions, in which switching is insensitive to Xmax and τ provided these
exceed a threshold; and alternating bands of successful and unsuccessful switching regions,
in which the system remains sensitive to the values of Xmax and τ . These qualitative
patterns remain when the values of the basal parameters kj are varied (Figs. 2.10 and
2.11). Intuitively, alternating bands would be expected to occur, if the system dynamics
become oscillatory in presence of the signal, since Fig. 2.3 only compares the initial and
final state, such that for instance it does not discriminate between trajectories in which
polarity is never reversed, and those in which polarity reverses twice.

To investigate the switching mechanism in the successful parameter regimes, we examined
trajectories of the system for different signals. For a trajectory within a banded region
(plus symbol in Fig. 2.3), we see that once the signal is applied, A rapidly relocates to
the opposite pole, followed by B and on a slower timescale R (Fig. 2.4A, solid lines).
If a signal with the same amplitude Xmax is applied for a longer time (open triangle in
Fig. 2.3), a second switch takes place (Fig. 2.4A, dashed lines). Hence the width of the
bands is determined by the timescale of R reorientation. This particular case, where X
enhances kab, is precisely the relaxation oscillator dynamics reported in [127].

For a trajectory in the non-band signal regime (star symbol in Fig. 2.3), the system rapidly
reaches a new steady state (with the same polarity) when the signal is applied (Fig. 2.4B).
The polarity reversal occurs after, and appears to be initiated by, the removal of the signal.
To confirm that there are no longer-period oscillations during the signal period, we exam-
ined the dynamics with a signal of the same amplitude for a long duration (τ = 100). The
system remained stably polarized throughout this duration. Thus, this switching mecha-
nism is qualitatively different from the relaxation oscillator reported previously. Switching
is insensitive to the signal duration τ , provided that it is above a threshold value. We
interpret this threshold as meaning that the signal must be present for long enough to
prime the system to switch, and refer to this mechanism as a “prime-release” switch.

We then examined trajectories over the entire signal space and determined the order in
which the polarity of A, B and R reversed, defined by the times at which their asymmetry ω
becomes zero. For almost all regimes with reversals the same order was observed (Fig. 2.12):
first A, then B, and finally R. This suggests that the underlying dynamics of the trajectory
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Figure 2.4 | Trajectories of the model during switches, classified as four different
switching classes. Signal parameters Xmax and τ and the parameter modified are
indicated by the corresponding symbols in Fig. 2.3. Vertical dashed lines indicate
the period during which the signal is present. A Relaxation oscillator. For a short
signal (plus-symbol), the polarity switches during the applied signal as shown by the
solid lines. For a longer signal (open triangle), the system switches a second time as
shown by the dashed lines. B Prime-release switch. During the signal the polarity is
unchanged, but switches after the signal is released. C Reset switch. During the signal,
the system relaxes to a symmetric distribution of the polarity marker and establishes
a reversed polarity after the signal is removed. D Push switch. The system switches
while the signal is applied and does not switch back when the signal is applied longer.

between the two polarity states is similar in different switching regimes. In some limited
regimes, for particularly high-amplitude signals, reversal of first B and then A was observed.
However, these reversals were almost simultaneous. In some regimes reversals of A and B
but not R occurred. In these cases, the polarity oscillations of A and B were so fast that a
second reversal was initiated before the much slower dynamics of R could catch up to the
new polarity state.

2.2.4 Classification of switching mechanisms

We next examined the dynamics during persistent signals for all regulations and signal
amplitudes (Fig. 2.2E). We identified three classes of behavior (Fig. 2.13), reflecting qual-
itatively different topologies of the model’s state space as shown in Fig. 2.5. These are
(i) static asymmetrically polarized protein distributions, corresponding to bistable state
space with the two stable states representing the two possible orientations of polarization;
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Figure 2.5 | In the presence of the signal, the polarity system can display three
qualitatively different phase space topologies, here denoted as ‘polarized’, ‘oscillatory’,
and ‘symmetric’. For each case, the dynamics of the system is shown in the three-
dimensional space (A1 − A2, B1 − B2, R1 − R2), in which the origin corresponds to
a completely symmetric protein distribution. A In a polarized state, the system is
bistable, with two stable fixed points, marked grey and blue, which correspond to the
two polarities of the cell. Depending on the initial condition, the system approaches
one or the other stable fixed point, as illustrated by the shown trajectories. B In an
oscillatory state, all trajectories of the system run into a stable limit cycle, marked in
black. C In a symmetric state, the system is monostable, with a single stable fixed
point at the origin, corresponding to an unpolarized cell.

(ii) oscillatory protein dynamics, corresponding to a stable limit cycle in state space; and
(iii) symmetric protein distributions, corresponding to a single stable fixed point in state
space. The extent of these different regimes are indicated by the colored bars adjacent to
each panel in Fig. 2.3.

This analysis confirmed that band structures in Fig. 2.3 correspond largely to oscillatory
dynamics in the presence of the X signal, while solid regions correspond to regimes where
the system remains bistable when the signal is applied. However, we also identified regimes
presenting two additional types of switches.

For large-amplitude signals, the system can transition from an oscillatory to a monostable
regime. In this scenario, while the signal is applied the system gradually relaxes towards
a symmetric configuration (Fig. 2.4C). Once the signal is removed, the system once again
becomes polarized, but settles in the opposite polarization state from that in which it was
initially. Effectively, the initial state of the system is erased and a new polarity state is
chosen when the signal is removed. We therefore refer to this mechanism as a “reset”
switch.
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Finally, we found that as the oscillatory regime is approached, the onset of switching does
not always coincide with the onset of oscillations. In the intervening region, the system still
remains bistable. Examining the system trajectories, we observed qualitatively different
behavior from Fig. 2.4B. Instead of switching once the signal is removed, the system begins
to switch immediately when the signal is applied, and subsequently remains stably polarized
in the opposite orientation (Fig. 2.4D). We refer to this mechanism as a “push” switch.

We have thus identified four distinct classes of switching dynamics, corresponding to four
qualitatively different trajectories (Fig. 2.4). To understand these different mechanisms
from a more general nonlinear dynamics perspective, we next ask how the topology of the
phase space changes in each case. Prior to the application of the signal, the system is
in a bistable configuration with two stable fixed points corresponding to the two possible
polarity orientations (Fig. 2.5A). The subsequent behavior differs for each mechanism, as
shown in Fig. 2.6 and described in the following.

2.3 Results

2.3.1 Transient oscillator switch

In this class of switching, the system becomes oscillatory when the signal is applied, fol-
lowing the prescribed path of the limit cycle in state space. Upon removal of the signal,
the phase space reverts to being bistable. The system then relaxes to one of the polarized
fixed points. Which fixed point is chosen depends on the state at the end of the signal
period, and in particular on which side of the separatrix (the division between the basins of
attraction of the two fixed points) the state lies, as shown in Fig. 2.6A. The duration of the
signal relative to the oscillation period determines the phase at the time of signal removal
and hence the final polarity state. How sensitive an oscillatory switch is to the signal
duration varies dramatically between different regulations in our model, being relatively
high for kb and kab, but low for kbR and kr among others.

2.3.2 Reset switch

Instead of following a limit cycle during the signal period, the reset switch gradually relaxes
(usually along a spiraling trajectory) towards a single stable fixed point (Fig. 2.6B). Once
again, the choice of polarity state upon removal of the signal depends only on which side
of the separatrix the system is once the signal is removed. In the deterministic model, the
choice of final polarity state is reliable even with a small remnant of asymmetry at the
time of signal removal. However, this mechanism will be susceptible to noise in the protein
dynamics that can overwhelm memory of the previous state (see below).
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Figure 2.6 | Nonlinear dynamical behavior of the four different mechanisms of signal-
induced polarity switching. In each case, the system dynamics are shown both during
(red) and after (black) a signal pulse, with projections onto the (A1−A2, R1−R2)-plane,
the (B1−B2, R1−R2)-plane, and the (A1−A2, B1−B2)-plane. A Transient oscillator
switch. B Reset switch. C Prime-release switch. D Push switch.

2.3.3 Prime-release switch

This type of switch occurs when the model remains bistable even in the presence of the sig-
nal, and for parameter changes opposite to those that induce oscillations. The application
of the signal does not cause a change in the topology of the state space, but does change
the position of the fixed points and separatrix. If the signal is sufficiently strong, it may
be that the new fixed points lie on the opposite side of the previous separatrix (Fig. 2.6C).
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However, since the current state remains on the same side of the new separatrix, the sys-
tem simply relaxes to the new fixed point with the same polarity orientation (the “prime”
phase). Only upon removal of the signal (the “release” phase) does the system find itself
in the basin of attraction of the opposite polarity state.

This picture allows us to rationalize various observations about this switching mechanism.
The amplitude of the signal must be sufficiently large that the new fixed point lies on
the opposite side of the old separatrix, leading to a threshold in Xmax. The duration of
the signal must be sufficiently long for the state of the system to move across the old
separatrix, leading to a threshold in τ . Once these criteria are met, switching is insensitive
to the signal amplitude and duration since the system can remain at the new polarized
fixed point indefinitely.

2.3.4 Push switch

The mechanism of the push switch is similar to that of the prime-release switch, but
effectively with the order of events reversed. The application of the signal (“push”) again
leads to a shift in the positions of the bistable fixed points and separatrix, but in the
opposite direction (Fig. 2.6D). The system in its initial polarized state now finds itself on
the opposite side of the new separatrix, from where it relaxes to the oppositely polarized
fixed point. Upon removal of the signal, the system relaxes to the new slightly shifted fixed
point but retains the same polarization. This mechanism is again largely robust to changes
in the signal duration (after a threshold time needed for the initial relaxation phase), but
occurs only for very small ranges of signal amplitudes in our model.

2.3.5 Signals with slow edges

Both the prime-release and push switches described above rely on the fact that the signal
appears and disappears very quickly, which causes a correspondingly fast change in the
phase space. We expected that if the onset and removal of the signal were slower than
the relaxation of the system, then the state of the system would be able to track the fixed
points as they move gradually from their old to their new positions and no switching would
occur. To test this prediction we computed the dynamics with the X signal increasing
and decreasing gradually according to Xt(t) = Xmax(1 − e−λt) for 0 ≤ t < τ and
Xt(t) = Xmax(1 − e−λτ )e−λ(t−τ) for t ≥ τ (Fig. 2.14). We saw that for large λ � 1,
the dynamics was similar to a step signal and switching continued to occur (Fig. 2.15).
However for slow signals with λ . 1, switching in bistable regimes was abolished (Figs. 2.16
and 2.17). This was specific to the prime-release and push mechanisms since switching in
oscillatory regimes continued to occur, with slight shifts to band boundaries reflecting the
effects of the gradual signal on the oscillation phase (Fig. 2.18, Fig. 2.19 and Fig. 2.20).
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Figure 2.7 | Behavior of the model at different noise levels. A Switching probability as
a function of noise strength for different switching mechanisms. Signal parameters are
indicated by the corresponding symbols in Figs. 2.3 and 2.4. Each data point represents
the results of 104 stochastic realizations. B Probability of different numbers n of
switching events at different noise levels for the prime-release switch. Signal parameters
are as for Fig. 2.4B. C States of 200 stochastic realizations (N = 104) of the prime-
release switch at t = τ . Dashed line shows an estimate of the position of the separatrix
in the absence of the signal (see Materials and Methods). D States of 200 realizations
of the relaxation oscillator at t = τ (N = 104). Dotted line shows the deterministic
limit cycle of the system during the signal, dashed lines indicate where the limit cycle
intersects with the separatrix in the absence of signal. The three different panels in C
and D show different two-dimensional projections of the nine dimensional phase space.
Point type and color indicate whether the system switches polarity (red) or not (black).

2.3.6 Stochastic effects

As seen in Fig. 2.3, the switching probability of the stochastic model for low to intermediate
noise levels tends to closely follow the boundaries of regions in which the deterministic
model switches (see also Figs. 2.21 and 2.22). However, switching can also occur for signal
parameters Xmax and τ for which the deterministic system does not switch. In particular,
the regimes in which switching can occur are greatly expanded by noise for prime-release
and push switches, while the transition boundaries between switching and non-switching
regimes of relaxation oscillators appear much sharper. For reset switches, switching remains
relatively robust with short signals, which are cut off before the system has fully relaxed
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to a symmetric state. For longer signals the switching probability approaches 0.5, as the
new polarity state is chosen randomly once the signal is removed.

Fig. 2.7A shows the switching probability for the signal parameters indicated in Fig. 2.3
for increasing noise level. Each mechanism displays a different noise threshold at which
the switching probability departs from the deterministic result (either 0 or 1 depending on
the signal parameters). This threshold is highest for the transient oscillator (+, 4), and
lowest for the push (×) and prime-release switches (∗). Around N ≈ 103.5 the switching
probability converges to approximately 0.5 for all mechanisms. For higher noise levels
(smaller N), all the mechanisms show qualitatively similar damped oscillations around
0.5. Similar behavior is observed in stochastic trajectories in the absence of any signal,
indicating that these features are primarily the result of the dynamics during the period
that the signal is not present (τ ≤ t ≤ tend). For this reason we first focus on the regime
N & 104, in which the switching behavior remains influenced by the signal, and return to
the high-noise behavior later.

2.3.7 Noise-induced switching errors

The switching probability, comparing only the states of the system before and after the
signal is applied, cannot distinguish between cases in which noise prevents a switch from
occurring and cases in which noise causes an extra switch to occur. We therefore examined
the number of polarity switching events, defined as times at which A1 = A2, in stochastic
trajectories. The distributions of such events are plotted for the prime-release switch in
Fig. 2.7B (see Fig. 2.23 for the other cases). We observe that the initial decrease in
switching probability around N ≈ 106 corresponds to the appearance of a sub-population
of realizations that do not switch. A flattening out of the switching probability around
N = 104, coincides with the appearance of trajectories exhibiting an extra second switch,
due largely to stochastic switches during the period when no signal is present.

In the prime-release mechanism, switching is triggered by the removal of the signal. In
the presence of noise, the system fluctuates around the fixed point of the dynamics, rather
than resting exactly at the fixed point. The range of these fluctuations, visualized by
sampling the states of different stochastic realizations at the end of the signal (prime)
phase (Fig. 2.7C), expands with increasing noise strength. Importantly, when the signal is
removed the states of the system are clustered close to the new separatrix of the system,
allowing them to be forced from the basin of one fixed point to the other by noise. The
same mechanism accounts for the expansion of the range of signals for which switching
can be induced in the presence of noise beyond that in which the deterministic model will
switch (Figs. 2.3 and 2.7A, ◦). The signal is not sufficiently strong for the deterministic
fixed point with the signal applied to cross the original separatrix. However, some fraction
of the distribution of states around this fixed point will lie close enough to the separatrix
to undergo a switch when the signal is removed. Similar behavior can also be observed for
the push signal with respect to the distribution of states at the onset of the signal period.
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For the transient oscillator the initial deviation from the deterministic results is due to
noise-induced extra switches once the signal has been removed. Noise in the dynamics
during the signal predominantly leads to phase variability, as different realizations spread
out around the limit cycle. However, the state of the system at the removal of the signal
is typically far from the separatrix (Fig. 2.7D) in the slow phase of the dynamics where
R reacts to the new polarity of A and B. Under these conditions, extremely high noise
levels are required for the system to cross into the opposite basin of attraction. Hence,
oscillatory switching appears extremely robust to noise.
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Figure 2.8 | Stochastic switching. A Power spectral density of A1(t) − A2(t) in the
absence of any X signal for different noise strengths. A peak in the power spectrum
at high noise indicates stochastic coherence. B The maximal power density relative to
the power at zero frequency shows a non-monotonic dependence on the noise strength.
C The mean time between switching events, defined as points when A1 = A2, varies
as different signals are applied, at a noise level N = 103.75. Signals that generate
deterministic oscillations have been excluded. Times between switches were extracted
from stochastic trajectories with the signal applied continuously for 50000 min.

2.3.8 Coherence resonance

Returning to the high-noise regime (N . 103.5), where switching in the absence of any
signal dominates, we observe that the switching probability oscillates before it saturates
at 0.5 for very high noise (Fig. 2.7A). These oscillations are reminiscent of a so-called “co-
herence resonance” [129]. A coherence resonance occurs when the activation timescale for
noise to drive the system across the separatrix of a bistable system becomes shorter than
the relaxation timescale to reach the vicinity of the opposite fixed point. The trajectory of
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such a stochastic system has a largely oscillatory character. Indeed, the power spectrum
of the dynamics changes from monotonically decreasing at small noise to peaked at a finite
frequency for larger noise (Fig. 2.8A), indicating the appearance of oscillations. Addition-
ally, the height of this peak shows a maximum at a finite noise level (Fig. 2.8B), confirming
the coherence resonance behavior. Thus at high noise levels, noise can drive the system
between the two polarity states with a largely oscillatory dynamics, even in the absence of
any X signal (Fig. 2.24).

2.3.9 Signal-induced stochastic switching

The application of a signal could also influence the stochastic switching rate during the
period that the signal is active. For example, a signal could lower the height of the sep-
aratrix barrier between two fixed points, thereby increasing the chance of a stochastic
switch. To study which signals could give rise to such an increase of stochastic switching,
we analyzed long trajectories where signals with different amplitudes were applied contin-
uously. Fig. 2.8C shows the resulting mean times between switching events. We observe
that indeed the mean time between switches is affected by the choice of signal. Interest-
ingly, the mean interval between switches decreases as the signal approaches the regime
of oscillations, consistent with a reduction in the height of the separatrix barrier as the
bifurcation point is approached. Conversely, switches become rarer when the signal varies
in the opposite direction, into the prime-release regime. In general, however, the frequency
of switching is extremely low such that the expected number of switches during one sig-
nal period approaches zero. We therefore conclude that the effects of stochastic switching
during the signal will be negligible and dominated by the responses of the system to the
transient phases of the signal.

2.4 Discussion

In this work we developed a classification of signal-induced polarity switching mechanisms.
Our classification of switching mechanisms is not based on the molecular interactions,
but on the qualitative dynamic behavior. Interestingly, one can obtain different switching
mechanisms already with the same signaling and regulation network, by changing only the
signal amplitude and duration, or the sign of the regulatory effect of the signal (Fig. 2.3).
Overall, we found four qualitatively different switching mechanisms: (i) the transient oscil-
lator switch, (ii) the reset switch, (iii) the prime-release switch, and (iv) the push switch.
The working principles underlying these four mechanisms can be understood already within
a schematic, two-dimensional respresentation of the signal-dependent phase space structure
of the system (Fig. 2.9).

In the absence of the signal input that triggers polarity switching, the phase space structure
must be that of a bistable system, with two stable fixed points corresponding to the two
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Figure 2.9 | Illustration of the working principles underlying the four classes of switch-
ing mechanisms. The different nonlinear dynamical behaviors are schematically repre-
sented in a two-dimensional phase space. Red/black symbols indicate the state space
and dynamics when the signal is present/absent. A Transient oscillator switch. B
Reset switch. C Prime-release switch. D Push switch.

polarity states. The basins of attraction of these fixed points are separated by a boundary
(separatrix). Before the signal is applied, the system is at one of the stable fixed points
(black filled circles in Fig. 2.9). When the signaling system is activated, it interferes with
the polarity system. This temporarily deforms the structure of the phase space, and causes
the state of the system to move within the phase space. The movement begins during the
application of the signal (red trajectories in Fig. 2.9), but continues after the signal has
disappeared and the structure of the phase space has returned to its original state (black
trajectories in Fig. 2.9).

We found three types of phase space structure in the presence of the signal: monostable,
bistable, and oscillatory (Fig. 2.5). With these three structures, our analysis revealed four
types of polarity switches. All four have in common that the temporary deformation of
the phase space structure leaves the system on the other side of the separatrix when the
original bistable phase space structure is restored. The transient oscillator switch achieves
this by moving the system along a limit cycle during the signal (Fig. 2.9A), while the reset
switch moves it towards a single stable fixed point along a curved trajectory (Fig. 2.9B).
When the system is bistable in the presence of the signal, there are two distinct types of
switches: Either the signal moves the fixed point through the original separatrix (prime-
release switch, Fig. 2.9C), or the signal pushes the separatrix through the original fixed
point (push switch, Fig. 2.9D).

The actual phase space of the system is higher-dimensional, but the qualitative behavior is
the same as that shown in Fig. 2.9. In principle, there could be polarity networks for which
the signaling system induces more complex types of phase space structure, e.g. higher-
order multistable or chaotic, albeit the functional benefits would be unclear. Assuming
that the phase space structure is either monostable, bistable, or oscillatory in the presence
of the signal, the four switching mechanisms of Fig. 2.9 appear to exhaust the spectrum of
possible behaviors. We therefore do not expect additional classes of signal-induced polarity
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switches to arise in other models of polarity systems with the above-mentioned properties.
It is somewhat surprising that the interaction scheme of the Guzzo et al [127] model for
M. xanthus polarity, which we took as the starting point for our analysis, is capable of
producing all four types of switches. It remains to be seen whether the capacity for such
diverse switching phenomenology is common to other models of prokaryotic and eukaryotic
cell polarity, and which features of such models enable different switching modes. Some
models, in particular those with fewer components, are likely not able to produce all four
types of switches, e.g. because they cannot generate oscillations.

We also showed how the different switching mechanisms respond to signal variability and
internal molecular noise. For instance, while the transient oscillator switch is most sensitive
to signal variability it is least sensitive to molecular noise. By contrast, the prime-release
switch is least sensitive to signal variability, but very sensitive to molecular noise. These
differences in behavior will be useful as signatures to identify the actual switching mecha-
nisms in biological systems. In addition, these properties will be relevant for the design of
synthetic systems.

Currently, the M. xanthus system is perhaps the best studied system for polarity switching,
but even there the question of the mechanism is not resolved. Guzzo et al [127] showed that
the transient oscillator switch is a possible mechanism for the observed polarity switching,
but other possible mechanisms are currently not excluded. Furthermore, important new
components of this system continue to be found [130] and the precise interactions between
the known components continue to be investigated [131]. The situation is even less clear
for other experimentally studied examples of polarity switching such as neutrophils [120].
Given this state of research, it is of practical significance to know which types of mechanisms
are in principle available, and what the properties of these mechanisms are.

To clearly distinguish between these mechanisms, it would be particularly useful to have
experimental control over the input signal that triggers polarity switching. For the prime-
release switch, the polarity reversal can only occur after the signal is removed. Hence, if
the reversal is observed while the signal is still present, the prime-release switch can be
excluded. The reset switch displays a loss of polarity during a long signal, which constitutes
a unique signature of this mechanism. The transient oscillator switch is best detected by
varying the duration of the signal. Finally, the push switch should switch only once during
a long signal. Note, however, that such experiments will give insight only into the type of
switch and not into the detailed interaction between the signaling protein and the polarity
proteins, since the same qualitative dynamics can be generated by different modes of action
of the signal. Our analysis of the systems’ dynamics also revealed that, while the timing
with respect to the input signal is different for the different mechanisms, the order in
which the proteins of the core polarity system switch poles is almost always the same.
This indicates that we cannot infer the interaction of the signaling protein X from looking
at the order in which the polarity proteins switch poles, but that the order of switching is
rather a characteristic of the interactions between different polarity proteins.
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By analogy with the paradigmatic genetic toggle switch [132], the functionality analyzed
here can be regarded as a ‘spatial toggle switch’. The core of the genetic toggle switch is
a circuit of two mutually repressing genes, conceptually similar to the mutual inhibition
between the polarity marker A and its antagonist B. Some of the behavior is also analogous,
e.g. molecular noise can cause the genetic toggle switch to flip spontaneously [133], just as
it does for the polarity system. However, while the genetic toggle switch is a well-mixed
bistable system, the core polarity system is a spatially extended bistable system that forms
asymmetric patterns. The spatial extension of the polarity system allows a global signal
(Xt) to be converted into a local signal (differential activity of X at the two poles), in a
way that would be impossible in a well-mixed system. This permits the polarity system to
function as a true toggle switch, i.e. the same signal causes switching in both directions,
in contrast to the original genetic toggle switch, where different signals “set” and “reset”
the switch [132]. The true toggle (or “push-on push-off”) functionality in genetic switches
requires more elaborate regulatory circuitry that manipulates the bistable system as a
function of input signals to achieve control of the system [134–137].

In comparison with genetic systems, the control of pattern forming systems is only be-
ginning to be explored, opening interesting directions for future research. Here, we used
a simplified treatment for the pattern formation process, with the cell divided into only
three regions, the two poles and the cytoplasm. The underlying assumption is time-scale
separation between the diffusive transport and the relevant biochemical processes. Given
typical cell lengths, e.g. L ∼ 6µm for M. xanthus, and diffusion coefficients D ∼ 10µm2/s
for small cytoplasmic proteins [138], the mixing timescale L2/(2D) over which cytoplas-
mic proteins explore the bulk of the cell is less than 2 seconds. In contrast, the observed
timescale of the actual switching process, during which the abundances of the polarity
system proteins decrease at one pole and increase at the opposite pole, is on the order of
30 seconds for M. xanthus [127], suggesting that the assumption is reasonable. However,
it will be interesting to explore the dynamics also under conditions where this assumption
does not hold, using full spatial models.

Appendices

2.A Material and Methods

Deterministic dynamics

Reaction rates kj were chosen as in [127], with the rate kab = 15 min−1. The deterministic
dynamics was computed with Mathematica (Wolfram Research Inc.) using the function
NDSolve separately in each domain (before, during and after the signal), with initial con-
ditions set according to the protein abundances at the end of the previous segment.
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Stochastic model

For the stochastic version of the model we used a Langevin extension of Eqs. 2.2, adding
a noise term to each equation,

dAi

dt
= krA(1− A1 − A2)Ri − kaAi − kbaAiB

2
i + fA,i(x)1/2ηA,i(t)

dRi

dt
= (1−R1 −R2)(kR + kbRBi)− krRi + fR,i(x)1/2ηR,i(t)

dBi

dt
= (1−B1 −B2)(kB + kbBBi)− kb

kM
Bi + kM

Bi

− kabAiB
2
i + fB,i(x)1/2ηB,i(t)

dXi

dt
= kX(Xt −X1 −X2)Bi − kxXi + fX,i(x)1/2ηX,i(t)

(2.6)

where x = (A1, A2, R1, . . . , X2) is the state vector, and the η·,i are independent Gaussian
random variables, 〈η·,i(t)〉 = 0 and 〈ηp,i(t)ηq,j(t′)〉 = N−1δp,qδi,jδ(t−t′). We have introduced
N as a parameter to tune the magnitude of the noise, with the deterministic model being
recovered as N → ∞. We chose to make the noise multiplicative by having the strengths
f·,i(x) depend on the current state of the system, x. Specifically,

fA,i(x) = krA(1− A1 − A2)Ri + kaAi + kbaAiB
2
i

fR,i(x) = (1−R1 −R2)(kR + kbRBi) + krRi

fB,i(x) = (1−B1 −B2)(kB + kbBBi) + kb
kM

Bi + kM
Bi

+ kabAiB
2
i

fX,i(x) = kX(Xt −X1 −X2)Bi + kxXi

(2.7)

We emphasize here that these noise terms were chosen simply as one plausible general-
ization of Eqs. 2.2. While they resemble those that might be obtained from a system-size
expansion of a full Master equation for the reactions underlying Eqs. 2.2 [139, 140], we note
that since the original model is defined only in terms of the rate equations and not in terms
of the underlying molecular reactions, no such systematic derivation of the noise is possible.
We verified that the particular choice of the form of the noise did not affect our conclusions,
and found qualitatively similar results when white noise was used (implemented by fixing
x = (1/3, 1/3, . . . , 1/3, Xt/3, Xt/3) in Eq. 2.7), see Figs. 2.25 and 2.26.

Simulations of the stochastic model were performed by directly integrating Eqs. 2.6 using
an update rule of the form

x(t+ dt) = x(t) + dt d(x) +
√

dt

N
f(x) ξ, (2.8)

where d(x) represents the deterministic part of Eqs. 2.6, f(x) = (fA,1, fA,2, fR,1, . . . , fX,2) is
a vector of noise strengths, ξ is a vector of independent samples from a normal distribution,
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and multiplication of f1/2 and ξ is performed elementwise. A time step dt = 10−4min was
used throughout. After each update step, all protein abundances were corrected such that
none were negative or exceeded the total protein numbers (i.e. ensuring A1 +A2 ≤ 1, and
similarly for each other protein). The simulation code (implemented in C++) is available
at github.com/gerland-group/langevin_switching.

Estimation of separatrices

The separatrix lines in Fig. 2.7C,D were estimated as follows. For the prime-release switch
(Fig. 2.7C), we first estimated the state space around the fixed point in the presence of
the signal by simulating 10000 stochastic trajectories with N = 103 until t = τ . For each
of these points, we determined on which side of the separatrix they fell in the absence of
signal, by taking these as the initial conditions for deterministic simulations over the period
τ ≤ t < tend. The projections of the separatrix in the planes shown were then estimated
by using a linear discriminant classifier to determine, for each of the two-dimensional pro-
jections of the data in turn, the decision boundary between the sets of states that belong
to each of the basins of attraction. This analysis was performed using the ‘LinearDiscrim-
inantAnalysis’ class from scikit-learn [141] with default parameters. For the relaxation
oscillator (Fig. 2.7D), we identified the path of the limit cycle from the trajectory of the
deterministic model. The intersection points with the separatrix were then estimated by
initializing simulations with the signal removed at different points along the limit cycle.

Power spectra

Power spectral densities were estimated from trajectories sampled every 0.01 min for 50000
min by Welch’s method of averaged periodograms from overlapping segments of the trajec-
tory [142] using the MATLAB (Mathworks) function pwelch with segments of length 216

samples.
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Figure 2.10 | Switching regimes, with the signal acting on each of the model pa-
rameters as in Fig. 2.3 of the main text, but with a different basal parameter set
that was randomly chosen (by multiplying each of the original basal parameter values
by a random number between 0.5 and 1.5). In the shown example, these values were
krA = 400·1.01, ka = 2·1.38, kba = 400·0.95, kB = 2·1.15, kbB = 30·0.54, kb = 2.8·0.96,
kM = 0.3 · 1.36, kab = 0.5 · 30 · 0.59, kR = 0.1 · 1.49, kbR = 1.5 · 0.75, kr = 0.4 · 0.98,
kX = 20 · 1.16, and kx = 3 · 0.61. Here, the deterministic switching regimes shift only
slightly in the space of signal amplitude and duration, but the sensitivity to noise be-
comes significantly stronger. However, the qualitative behavior remains the same as in
Fig. 2.3 of the main text, with alternating bands and solid regions that show robust
deterministic switching as long as the signal amplitude and duration exceed a threshold.
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Figure 2.11 | Switching regimes, with the signal acting on each of the model pa-
rameters as in Fig. 2.3 of the main text, but with a different basal parameter set
that was randomly chosen (by multiplying each of the original basal parameter values
by a random number between 0.5 and 1.5). In the shown example, these values were
krA = 400 ·1.1, ka = 2 ·0.58, kba = 400 ·1.38, kB = 2 ·0.81, kbB = 30 ·1.31, kb = 2.8 ·0.69,
kM = 0.3 · 1.02, kab = 0.5 · 30 · 1.04, kR = 0.1 · 1.37, kbR = 1.5 · 1.05, kr = 0.4 · 1.46,
kX = 20 · 1.08, and kx = 3 · 1.35. Here, the deterministic switching regimes shift sig-
nificantly in the space of signal amplitude and duration, and the sensitivity to noise
becomes significantly weaker. However, the qualitative behavior remains the same as
in Fig. 2.3 of the main text, with alternating bands and solid regions that show robust
deterministic switching as long as the signal amplitude and duration exceed a threshold.
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Figure 2.12 | Order of switching. Switching trajectories are obtained from the de-
terministic model. Black solid lines in the phase diagrams show switching regimes
as in Fig. 2.3. The colors indicate in which order A, B and R switch polarity. In
the regimes where the system switches polarity multiple times (due to the transient
oscillator switch), the switching order represents the order of the first switch.
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Figure 2.13 | Trajectories of the system during the signal for A the transient oscillator
switch, B the prime-release switch, C the Reset switch and D the push switch. The
symbols next to the panel labels indicate the signal parameter Xmax as indicated in
Fig. 2.3. The signal is applied for the duration of the simulation. During the transient
oscillator switch (A) the polarity of the system oscillates, while during the reset switch
(C) there is no polarity, i.e. the distribution of the proteins at pole 1 and pole 2
is symmetric. During the prime-release and push switch (B and D) the system is
polarized during the switch.
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time

XT

Figure 2.14 | Example of a gradually increasing and decreasing signal. The total
amount of X, Xt, increases according to Xt(t) = Xmax(1 − e−λt) for 0 < t < τ and
decreases according to Xt(t) = Xmax(1 − e−λτ )e−λ(t−τ ) for t > τ . The dashed line
indicates the step-like signal.
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Figure 2.15 | Trajectories for a gradually increasing and decreasing signal with λ = 4.
Signal amplitude Xmax and duration τ are chosen the same as in Fig. 2.4, where in A
the solid line corresponds to the short signal (plus-symbol) and the dashed line to the
long signal (open triangle). The system shows qualitatively the same behavior as for
the step-like signal.
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Figure 2.16 | Trajectories for a gradually increasing and decreasing signal with λ = 2.
Signal amplitude Xmax and duration τ are chosen the same as in Fig. 2.4, where in A
the solid line corresponds to the short signal (plus-symbol) and the dashed line to the
long signal (open triangle). For these gradual signals, the transient oscillator switch
(A), the reset switch (C) and the push switch (D) switch qualitatively the same as for
a step-like signal, while the prime-release switch (B) does not respond to the gradual
signal.
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Figure 2.17 | Trajectories for a gradually increasing and decreasing signal with λ = 1.
For these gradual signals, the prime-release (B) and push switch (D) do not respond
to the signal, while the transient oscillator (A) and reset switch (C) do.
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Figure 2.18 | Switching regimes for a gradually increasing and decreasing signal with
λ = 4. Regions in which the deterministic model shows switches are indicated by thick
black outlines. The green shading shows the switching probability of the stochastic
model with N = 103.75. The upper half of the phase diagram shows results for a
signal that enhances the reaction rate, and the lower half for a repression of the rate.
The colored bars to the right of each panel indicate the class of dynamics when the
corresponding amplitude of signal is applied, with yellow for polarized, orange for os-
cillatory and blue for symmetric polar distribution of A, for a gradually increasing and
decreasing signal. The switching regimes are similar to the regimes for a step-like signal
as shown in Fig. 2.3.
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Figure 2.19 | Switching regimes for each of the model parameters for a gradually
increasing and decreasing signal with λ = 2. The regimes where the prime-release
switch acts to switch the polarity, for example via repression of the parameter kab or
krA, have become smaller.
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Figure 2.20 | Switching regimes for each of the model parameters for a gradually
increasing and decreasing signal with λ = 1. The regimes where the prime-release
switch acts to switch the polarity becomes smaller, for example by enhancing kB,
or completely vanishes, for example via repression of the parameters kab or krA. In
addition, the regimes where the push switch acts vanishes, for example via a slight
enhancement of the parameter krA.
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Figure 2.21 | Switching regimes for each of the model parameters with a step-like
increasing and decreasing signal. The green shading shows the switching probability
of the stochastic model with N = 103.5. The stochastic switching probability, outside
of the deterministic switching regimes (solid black lines), is higher as compared to a
noise level of N = 103.75 as shown in Fig. 2.3, while the switching probability in the
deterministic regimes is smaller.
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Figure 2.22 | Switching regimes for each of the model parameters with a step-like
increasing and decreasing signal. The green shading shows the switching probability
of the stochastic model with N = 104. The stochastic switching probability, outside
of the deterministic switching regimes (solid black lines), is smaller as compared to a
noise level of N = 103.75 as shown in Fig. 2.3, while the switching probability in the
deterministic regimes is higher.
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Figure 2.23 | Probability of different numbers of switching for different noise levels.
Symbols next to the panel labels A-E correspond to the signal amplitude and duration
as shown in Fig. 2.3. F shown the probability of different numbers of switches without
a signal.
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Figure 2.25 | Switching regimes for each of the model parameters with a step-like
increasing and decreasing signal. The green shading shows the switching probability of
the stochastic model with white noise and with N = 104. The switching regimes are
qualitatively similar to the switching regimes in Fig. 2.3.
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3 Finding a threshold in a shallow
gradient

“You don’t need fancy sneakers
to run fast.”

– Jon Bon Jovi

Living cells rely on the precise interplay of several biological tasks, such as cell growth,
cell motility, DNA segregation, and cell division. These processes are regulated in
space and time by the precise spatiotemporal distribution of proteins that can transmit
signals, direct cell motility and exert forces. To transmit spatiotemporal signals, such
protein pattern acts as computational units that convert one protein pattern into
another. In this chapter we demonstrate a mechanism by which a protein can measure
a threshold concentration in a shallow concentration gradient.

This chapter is based on Section 3 in the Supplementary Information of our paper “A
hierarchy of protein patterns robustly decodes cell shape information”, which has been
published in Nature Physics [143]. This work has been performed together with Tzer Han
Tan, Fridtjof Brauns, Jinghui Liu, S. Zachary Swartz, Erwin Frey, and Nikta Fakhri
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So far we have discussed how a temporal signal can be processed by polarity proteins. Next,
we will focus on how proteins process spatial information. In this chapter we demonstrate
how a protein can measure a threshold concentration in a shallow concentration gradient
of another protein. We explain this mechanism using the propagating Ect2 front in starfish
oocytes as a model system.

In starfish oocytes, it has been observed that a cytosolic gradient of the cell cycle regulator
Cdk1, that is set up during meiosis and degraded during anaphase I, guides the propagation
of a Rho pulse, thereby inducing a surface contraction wave (SCW) (Fig. 6.1a-c and 6.1l)
[144]. We show in chapter 6 that the RhoGEF Ect2 forms a front-like pattern, that follows
a threshold value of the Cdk1 concentration and localizes the Rho pulse to the front edge.
In this chapter, we first recap the literature to motivate why Ect2 is a good candidate
link between Cdk1 and Rho and review the interactions between Cdk1 and Ect2. Next,
in Sec. 3.2, we motivate an effective reaction–diffusion model based on these interactions
that exhibits bistability and therefore propagating fronts. In Sec. 3.3 we discuss how an
Ect2 front can be initiated in the starfish oocyte. Finally, in Sec. 3.4, we discuss how the
Cdk1 gradient guides the propagation of the Ect2 front as the gradient degrades.

3.1 Review of Ect2 reaction kinetics

It has been observed that Cdk1 inhibition induces Ect2-mediated Rho excitability on
starfish oocyte membrane [145], suggesting that Ect2 is the protein that connects cell
cycle regulation to Rho signaling. In fact, Ect2 is a RhoGEF that plays an important
role in the formation of the cytokinetic ring by recruiting and activating Rho [146]. This
activation step requires both Ect2 membrane binding as well as its catalytic activity [147].
Like most RhoGEFs, Ect2 has a DBL homology (DH) domain that is responsible for the
guanine nucleotide exchange catalytic activity and a pleckstrin homology (PH) domain
that is responsible for membrane binding activity [147, 148]. The binding and catalytic
activities are regulated through multiple phosphorylation sites and different phosphoryla-
tion sites have different effects. For instance, in human cell lines, Ect2 phosphorylation by
Cdk1 has been suggested to inhibit its membrane association ability [149]. This is consis-
tent with the observation that Cdk1 inhibits Ect2-mediated excitability in starfish oocytes.
Other phosphorylation sites, such as T412, are responsible for catalytic activity of Ect2
[150]. Although this would suggest that Cdk1 would be a very likely candidate to promote
Ect2 activity, we note that other GEFs could be involved in the Cdk1-Rho interactions.
For instance, another RhoGEF, GEF-H1, has been shown to have its catalytic activity
inhibited by Cdk1 phosphorylation [151], which potentially could also play a role in the
starfish oocyte.

In general, regulatory proteins of phosphorylation dynamics could feedback on one another
and form a complex interaction network. While not much is known about the relevant
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phosphatases that dephosphorylate Ect2, some common feedback motifs in the regulation
of cell cycle kinases and phosphatases can give rise to bistable switches [124].

3.2 Model Description

To elucidate the mechanism by which the Ect2 front is guided by the Cdk1 gradient we
aim to find a minimal model that integrates the available biochemical information and
exhibits propagating fronts. We propose a model in which Ect2 can diffuse on the surface
of a three-dimensional ellipsoidal, triangular or star geometry, representing the membrane
and the cytosol close to the membrane. We assume that Ect2 cycles between an inactive
phosphorylated (concentration uEp(~r, t)) and an active non-phosphorylated state (uE(~r, t))
in the cytosol, and that the active non-phosphorylated state of Ect2 can bind to and detach
from the membrane (ue(~r, t)). To describe the dynamics of Ect2, we use a reaction–diffusion
model

∂tuE = Dc∇2uE + fE(uE, uEp, ue), (3.1)
∂tuEp = Dc∇2uEp + fEp(uE, uEp, ue), (3.2)
∂tue = Dm∇2ue + fe(uE, uEp, ue). (3.3)

The diffusion constants are chosen such that the cytosolic components diffuse much faster
than the membrane component (Dc � Dm). Motivated by the observation that Ect2 forms
a front pattern on the membrane (Fig. 6.2d), we propose a model that exhibits bistability
with the following reaction kinetics, as illustrated in Fig. 3.1:

fE = −
k[Cdk1]uE

Kp + uE
+ (kdp + kfbuE)uEp, (3.4)

fEp =
k[Cdk1]uE

Kp + uE
− (kdp + kfbuE)uEp, (3.5)

fe = konuE − koffue. (3.6)

These reaction kinetics conserve total protein mass, such that
∫ L

0
d~r uE + uEp + ue = nE

remains constant. The active Ect2 conformation can attach to and detach from the mem-
brane with the rates kon and koff, respectively, as shown in Fig. 3.1. In the cytosol, Ect2
can get phosphorylated enzymatically with a rate k[Cdk1], which we describe by Michaelis-
Menten kinetics with a Michaelis-Menten constant Kp. Furthermore, Ect2 can get de-
phosphorylated with a rate kdp. As bistability typically arises from feedback loops in
the reaction kinetics, we include a feedback loop such that active Ect2 enhances its own
activation with a rate kfb.
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Figure 3.1 | Model schematic of the reaction kinetics for Ect2. Ect2 can bind
and detach from the membrane with rates kon and koff, respectively. Cytosolic Ect2
can get phosphorylated with the Cdk1-dependent phosphorylation rate k[Cdk1], which
prevents Ect2 from binding to the membrane. Furthermore, Ect2 can get dephospho-
rylated with a rate kdp, and enhances its own dephosphorylation (activation) with a
rate kfb.

In the starfish oocytes, the surface contraction waves are triggered after nuclear envelope
breakdown (NEBD). Upon NEBD, Cdk1 gets released from the nucleus and forms a gradi-
ent in the cytosol that gets degraded by APC/C [144]. Thus, initially the Cdk1 concentra-
tion is high and slowly decreases while maintaining a spatially non-uniform concentration
profile [144, 152]. We assume that the phosphorylation rate of Ect2, k[Cdk1] , depends on
the Cdk1 concentration [149], such that the rate depends on space and time. For simplic-
ity, we emulate this spatiotemporally varying phosphorylation rate using a decaying linear
gradient

k[Cdk1](|~r|, t) = (c0 − a|~r|)(1− t/(γ + t)). (3.7)

Here, γ is the Cdk1 half-life and c0 and a are the maximum and slope of the gradient,
respectively.

In order to find parameters for which the model exhibits bistability, we first only analyze
the reaction kinetics of the model. This means that we consider the system to be well-
mixed, with a uniform phosphorylation rate k[Cdk1] and numerically solve for the steady
states. Indeed, we find that the model exhibits bistability for a broad parameter regime,
with a stable steady state with a high Ect2 concentration on the membrane and a stable
steady state with a low Ect2 concentration on the membrane (solid black dots in the purple
shaded area in Fig. 3.2). By varying the Cdk1-dependent phosphorylation rate, we find that
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Parameter Value Unit Description
kon 0.5 s−1 Ect2 membrane attachment
koff 5 s−1 Ect2 membrane detachment
k[Cdk1] 0-150 µm−2s−1 Phosphorylation rate
kdp 2.5 s−1 Dephosphorylation rate
kfb 0.5 µm2/s Autocatalytic dephosphorylation rate
Kp 0.1 µm−2 Phosphorylation saturation constant
nEct2 14.67 µm−2 Ect2 total concentration
Dc 10 µm2/s Diffusion constant in cytosol
Dm 0.5 µm2/s Diffusion constant membrane
γ 100 s Cdk1 half-life
c0 750 µm−3 Maximum Cdk1 concentration
a 3.6 µm−4 Initial Cdk1 slope

Table 3.1 | Parameters Ect2 model. Parameters are chosen such that the model
exhibits bistability for a range of phosphorylation rates (Cdk1 concentrations), and
such that the front speed matches the experimentally observed wave speed.

the system transitions from a bistable regime (low phosphorylation rate) to a monostable
regime (high phosphorylation rate) (purple and green shaded areas in Fig. 3.2).

3.3 Initial front formation

Traveling front-like concentration profiles are a generic phenomenon in bistable media [153].
The front corresponds to an interface connecting spatial regions where the concentrations
are in either of the two (locally) stable steady states (fixed points), respectively. For
propagating fronts to arise from a spatially homogeneous steady state, a strong enough
stimulus is needed.

Consider a system with a spatially homogeneous distribution of Cdk1 (middle panel Fig. 3.3A),
with a concentration that lies within the bistable regime (upper panel Fig. 3.3A). In ad-
dition, we consider that the initial Ect2 concentration is also spatially homogeneous (say
at the low-Ect2 fixed point). For the front to form there needs to be a sufficiently strong
local perturbation such that locally the Ect2 concentration relaxes toward the high-Ect2
fixed point (lower panel Fig. 3.3A), i.e. locally the Ect2 concentration enters the basin of
attraction of the high-Ect2 fixed point. In the absence of such a perturbation the system
remains in the respective spatially homogeneous steady state.

How does this picture change for a starfish oocyte where Cdk1 forms a cytosolic gradient
(middle panel Fig. 3.3B)? Then, the phosphorylation rate is different at each position along
the membrane (upper panel Fig. 3.3B). Thus, at each position in space the number, value,
and nature of fixed points for the Ect2 concentration on the membrane can differ. Consider
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Figure 3.2 | Bifurcation diagram for increasing (Cdk1-dependent) phospho-
rylation rate. Solid black dots illustrate the stable steady states, open circles illustrate
unstable steady states of the reaction kinetics. For an increasing phosphorylation rate,
the system transitions from a monostable (green area) regime to a bistable (purple area)
to a monostable (green area) regime. The parameters used are specified in Table 3.1.

a Cdk1 gradient for which the concentration range lies within the monostable regime (high
Cdk1-dependent phosphorylation rates) (Fig. 3.2). As the Cdk1 gradient decays, the part
of the system with the lowest Cdk1 concentration will become bistable first (upper panel
Fig. 3.3B; see also Fig. 3.2). Such a gradient gives rise to a (nearly) uniform Ect2 concen-
tration profile with a low Ect2 concentration on the membrane (lower panel Fig. 3.3B).
However, to form a traveling front the system would need a large perturbation to get into
the basin of attraction of the high-Ect2 fixed point. As the Cdk1 gradient further decays,
the region where the Cdk1 concentration is lowest reaches a monostable regime with a
fixed point with high active Ect2 concentration (upper and middle panel Fig. 3.3C). Con-
sequently, the active Ect2 concentration in this region will relax to the high-concentration
fixed point in the monostable regime, creating a front between the high- and low-Ect2
steady states (lower panel Fig. 3.3C). Thus, we expect the Ect2 front to start at the po-
sition where the Cdk1 concentration is lowest, which is consistent with our simulations in
different geometries (movies S15-S17), and with the experimental observations (Fig. 6.1j-o,
and Ref. [144]).
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Figure 3.3 | Schematic of front initialization. Upper panels show a schematic of
the bifurcation diagram. yellow area illustrates the Cdk1 concentration range. Solid
lines indicate stable steady states, dashed lines illustrate unstable steady states. Middle
panels show the Cdk1 distribution in space. Lower panels show the Ect2 concentration
on the membrane. Red lines indicate the Ect2 concentration on the membrane. Solid
black circles indicate the locally stable fixed points, open circles illustrate the locally
unstable fixed points. (A) homogeneous Cdk1 concentration profile. The front starts
due to a local perturbation. (B) Cdk1 gradient leads to different (number of) fixed
points at different positions in space. (C) Cdk1 gradient with a lower concentration
range. For lower Cdk1 concentrations the system is monostable, which leads to the
formation of an Ect2 front.

3.4 Front propagation

Fronts in bistable media generically have a finite propagation velocity. The sign and
magnitude of this velocity depend on the form of the reaction kinetics; see e.g. Refs. [153,
154]. Heuristically, a bistable front propagates because one of the steady states is ‘more
attractive’, also called the dominant state [154], and invades the ‘less attractive’ steady
state. Which steady state is more attractive depends on the reaction rates of the system.
The speed at which the front propagates is given by the balance of the attraction strength
of the two steady states [153].

In our case, the magnitude and sign of the front velocity therefore depends on the con-
centration of Cdk1. As a consequence, there is a threshold value [Cdk1]∗, for which the
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Figure 3.4 | Ect2 front follows the Cdk1 threshold value. Ect2 front speed,
Cdk1 decay rate and Cdk1 slope at the Ect2 front is measured at various positions
along the circumference of a cross section of the ellipsoidal, triangular and star shaped
geometries.

front velocity is zero1. Hence, when the Cdk1 concentration in the cell is non-uniform, the
relative dominance of the two states varies in different parts of the cell, and thereby also
the velocity of the bistable front. If the Cdk1 gradient includes the threshold value [Cdk1]∗,
the front will travel in the cell until it reaches that value and then stall there [91, 157],
we call this position the pinning position. As the Cdk1 gradient decays, this threshold
concentration moves in space, leading to subsequent Ect2 front propagation up to the new
pinning position (Fig. 6.4). Thus, we expect that Ect2 follows the Cdk1 threshold con-
centration, as long as the Cdk1 gradient decays slower than the Ect2 front speed. To test
this, we performed 3D simulations in ellipsoidal (movie S15), triangular (movie S16) and
star-shaped (movie S17) geometries and measured the propagation of the Cdk1 threshold
value from the decay rate and Cdk1 slope at the Ect2 front. Indeed, we find a positive
correlation between and the Ect2 front propagation speed and the ratio of the Cdk1 decay
rate to the Cdk1 slope (Fig. 3.4). In the model, we choose a Cdk1 half-life γ and gradient
slope such that the speed of the Cdk1 threshold value corresponds to the observed speed
of the surface contraction wave. In movies S15-S17, we initialize the system with all Ect2
starts in the phosphorylated conformation such that uE = ue = 0 and uEp = nEct2.

1Note that Cdk1 plays a similar role as curvature in modulating the front propagation speed [155, 156],
such that the threshold Cdk1 concentration can depend on curvature.
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“Hoed u voor de mensen die iets zeker weten.
Ze zijn gevaarlijk.”

– Jan Terlouw

Cells constantly process signals from the external environment or internal cellular
processes. In this chapter we present a mechanism by which the activity of a protein
exhibits a pulse response after a signal is turned on. This is reminiscent of a temporal
derivative. As an example, our discussion is based on the dynamics of the enzyme
Rho. We first introduce a model for Rho which is based on the available biochemical
information for Rho. We analyze the parameter regimes of the model using a phase
portrait analysis and show that Rho exhibits oscillatory dynamics. We then show that
the Rho dynamics is reminiscent of a temporal derivative when the reaction rates are
excitable and close to the oscillatory regime. We will later show in Chapter 6 that
the Rho activity on the membrane of starfish oocytes takes such a temporal derivative
of a propagating Ect2 front on the membrane, which in turn leads to a band of Rho
activity that localizes at the interface of the Ect2 front.

This chapter is based on Section 2 in the Supplementary Information of our manuscript
“A hierarchy of protein patterns robustly decodes cell shape information”, which has been
published in Nature Physics [143]. This work has been performed together with Tzer Han
Tan, Fridtjof Brauns, Jinghui Liu, S. Zachary Swartz, Erwin Frey, and Nikta Fakhri
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4.1 Introduction

In this chapter we show how a protein concentration exhibits a pulse response after a
signal is turned on. Such a response is reminiscent of a temporal derivative. We explain
this mechanism using the dynamics of the cell shape regulator Rho in starfish oocytes as a
model system. We first recap the literature to outline the biochemical interactions of the
different conformational states of Rho with other proteins (see Sec. 4.2). Next, in section
4.3 we motivate a model based on the available biochemical information to describe the
dynamics of Rho in the cell. We will analyze this model using a phase portrait analysis
(Sec. 4.5), which we introduce in Sec. 4.4. Finally, we discuss how the Rho regulator
Ect2 serves as an input to the Rho dynamics (Sec. 4.6) and how Rho, in turn, can take a
temporal derivative of the Ect2 concentration (Sec. 4.7).

4.2 Review of the Rho GTPase reaction kinetics

The canonical view of the Rho GTPase cycle [148, 158] is that there are two major pools
of Rho: (i) GDP-bound, inactive Rho that is usually cytosolic and (ii) GTP-bound, active
Rho that is usually on the membrane. Three main classes of proteins that regulate the
Rho GTPase cycling between the active and inactive form are: (i) the guanine nucleotide
exchange factors (GEFs) which promotes exchange of GDP for GTP to activate Rho;
(ii) the GTPase activating proteins (GAPs) which promotes hydrolysis of GTP to GDP
to inactivate Rho; and (iii) the guanide nucleotide dissociation inhibitors (GDIs) which
sequester Rho-GDP in the cytosol.

In starfish oocyte, at least three different RhoGEFs are present in the transcriptome: Ect2,
GEF-H1 and MyoGEF (Fig. 4.1A-i) [152]. Ect2 has been implicated in the regulation of
Rho, both during the surface contraction wave (where Ect2 over-expression is known to
induce spiral wave dynamics [145]) and during contractile ring formation during polar body
extrusion [152]. RhoGAPs have not been directly identified in the starfish oocyte, but their
effects have been characterized to some extent. Experiments have shown that Rok (a Rho
kinase) inhibition alters the Rho-GTP pulse dynamics to step like behavior (Fig. 4.1A-ii)
[152], suggesting the existence of a Rok-associate GAP. In addition, filamentous actin has
been shown to have an inhibitory role on Rho, potentially through the action of a GAP
(Fig. 4.1A-iii) [145].

Important aspects of Rho dynamics and regulation has been shown in other organisms.
For instance, in HeLa cells, GEF-H1 and Ect2 have been shown to play distinct roles in
Rho regulation during cytokinetic furrow formation, where Ect2 localizes Rho to cleavage
site while GEF-H1 is required for GTP loading on Rho (Fig. 4.1B-1) [151]. Recent work
in mammalian U2OS cells suggests that in GEF-H1 mediated Rho excitable dynamics,
membrane-bound Rho-GTP can recruit more GEF-H1, indicating that in addition to their
catalytic activity, GEFs could additionally recruit more Rho to the membrane (Fig. 4.1B-2)
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[159], forming a positive feedback loop. In terms of the role GDIs play in regulation of
Rho, the textbook view is that GDI acts passively by binding to soluble Rho-GDP and
sequester it in the cytosol. However, a recent study in Xenopus egg and supported lipid
bilayer challenges this view by showing that GDI can actively extract both Rho-GDP and
Rho-GTP from the membrane (Fig. 4.1B-3) [160].

In addition to having multiple variants, the regulatory proteins often have distinct domains
that can interact with multiple protein partners, creating complex feedback between the
different regulatory proteins. In the ‘GTPase flux model’, GEFs and GAPs are thought
to act simultaneously to promote fast cycling of Rho (Fig. 4.1B-iv) [161]. Two different
studies suggest that GAP may play an activating role: the MgcRacGAP is proposed to
transiently anchor active Rho (Fig. 4.1B-v) [162] and Cyk4 is known to relieve GEF Ect2
auto-inhibition, thereby activating GEF (Fig. 4.1B-vi) [147]. Additionally, Rho itself can
interact with other membrane proteins. A recent study demonstrated the role of anillin
in increasing the dwell time of active Rho on the membrane through PIP2 accumulation
[163].

4.3 Model description

We consider a three-component model based on the Rho GTPase cycle. The canonical
view of the Rho GTPase cycle [148, 158] is that there are two major pools of Rho: (i)
GDP-bound, inactive Rho that is usually cytosolic and (ii) GTP-bound, active Rho that is
usually on the membrane. Three main classes of proteins regulate the Rho GTPase cycling
between the active and inactive form are: (i) the guanine nucleotide exchange factors
(GEFs) which promotes exchange of GDP for GTP to activate Rho; (ii) the GTPase
activating proteins (GAPs) which promotes hydrolysis of GTP to GDP to inactivate Rho;
and (iii) the guanide nucleotide dissociation inhibitors (GDIs) which sequester Rho-GDP
in the cytosol.

Figure 4.1 | Graphical summary of the literature of Rho reaction kinetics in (A)
starfish and (B) other organisms.
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Thus, we consider a model in which Rho can cycle between three conformations: (1) an
inactive (GDP-bound) cytosolic conformation (concentration uR(~r, t)), (2) an inactive state
on the membrane (concentration urd(~r, t)) and (3) an active (GTP-bound) conformation on
the membrane (concentration urt(~r, t)). The transitions between the different biochemical
conformations of Rho are regulated by a complex network of Rho regulatory proteins,
including several GEFs, GAPs and GDIs [148, 158]. We do not explicitly include these
regulatory proteins in the model but instead consider an effective reaction–diffusion model

∂tuR = DR∇2uR + fR(uR, urt, urt), (4.1)
∂turd = Drd∇2urd + frd(uR, urd, urt), (4.2)
∂turt = Drt∇2urt + frt(uR, urd, urt), (4.3)

where Rho in the cytosolic state diffuses with a diffusion constant DR, which is much higher
than the diffusion constant of the membrane-bound states, Drd and Drt. We consider both
the membrane and the cytosol as a two-dimensional spherical shell. For the reaction
kinetics, we assume a generic GTPase reaction cycle, with the reaction terms

fR = koffurd − konuR + kgapurt, (4.4)
frd = konuR − koffurd − (kr + kdtu

2
rt)urd, (4.5)

frt = (kr + kdtu
2
rt)urd − kgapurt, (4.6)

as illustrated in Fig. 4.2. These reaction kinetics conserve total protein mass, such that∫
Ω
d~r(uR + urd + urt) = nR, where Ω denotes the surface of a 3D volume. We don’t include

protein production and degradation of Rho, as these processes are typically much slower
(∼hours) than the Rho oscillation period (∼minutes). The inactive Rho conformation
can attach to and detach from the membrane with rates kon and koff, respectively. On
the membrane, the inactive conformation can get activated with the basal activation rate
kr and the autocatalytic activation rate kdt. The autocatalytic activation rate effectively
represents a mutual interaction between Rho and potentially multiple GEFs, in which Rho
that has been activated by GEFs, recruits more GEFs. The action of the RhoGEFs is
modeled implicitly through the choice of nonlinearity [145, 164, 165]. For example, the
term u2

rturd arises when two GEFs (e.g. GEF-H1 and Ect2) are required for Rho activation,
such that Rho activation scales as [GEF-H1](urt)× [Ect2](urt)×urd ∼ u2

rturd following [99].
Such a dependence on both GEF-H1 and Ect2 has indeed been suggested in HeLa cells
[151]. In the active state, Rho can undergo hydrolysis, mediated by a RhoGAP. We do
not consider the RhoGAP as a separate species in the model, but model the action of
the RhoGAP implicitly via hydrolysis rate kgap. We assume that Rho-GTP immediately
detaches from the membrane after it is hydrolyzed [95, 166].

The reaction rates in the model are effective rates and depend on the concentrations of
the regulatory proteins. For example, the nucleotide exchange rates will depend on the
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Figure 4.2 | Schematic of the reaction kinetics of the Rho model. Inac-
tive Rho-GDP can bind to and detach from the membrane with a rate kon and koff
respectively. On the membrane, Rho-GTP gets activated with a rate kr and can auto-
catalytically enhance its own activation with a rate kdt. When Rho-GTP is hydrolyzed
with a rate kgap it detaches from the membrane.

concentration of (potentially multiple) RhoGEFs, including Ect2. The hydrolysis rate
depends on the concentration of RhoGAPs and the attachment and detachment rates
depend on the concentration of RhoGDIs. Note that most regulatory proteins also interact
among each other, such that variations in the concentration of one regulatory protein can
indirectly results in a change of potentially multiple rates in the model. For example, it
has been proposed that the RhoGEF Ect2 binds to the RhoGAP MgcRacGAP [162] or
is involved in the localization of Rho to the membrane [151], such that an increase in the
Ect2 concentration might lead to an increase in both the nucleotide exchange rate and the
hydrolysis rate or attachment rates respectively. Furthermore, it has been suggested that
the RhoGAPs are recruited by F-actin [145] and interact with the Rho kinase Rok [152],
such that variations in the concentration of F-actin and Rok could indirectly affect the
hydrolysis rate.

The oscillatory and excitable dynamics in this model depends on the mass conservation
of Rho, as the local depletion of the cytosol in the vicinity of the membrane effectively
leads to a negative feedback for Rho attachment. Oscillatory and excitable dynamics can
also arise via delayed negative feedback from another protein, such as F-actin or a GAP
[167–169]. A model based on the Rho GTPase cycle that explicitly accounts for such
negative feedback has been used before to describe the Rho spirals [145]. In that model,
specific interactions between Rho and Ect2 and Rho and F-actin were assumed, such that
F-actin acts as an inhibitory protein to induce oscillations. Here, we instead model all
regulatory interactions implicitly. This enables us to identify the key processes of the Rho
GTPase cycle that give rise to the experimentally observed phenomena with minimal model
assumptions. Furthermore, this minimal model facilitates an intuitive understanding of the
reaction kinetics of the Rho conformations in a phase-portrait analysis. The insights gained
from this analysis might help to develop a more detailed molecular model for the regulation
of the Rho GTPase cycle in the future.
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Parameter Value Unit Description
kon 1.5× 10−4 s−1 Rho-GDP membrane attachment
koff 1.5× 10−5 s−1 Rho-GDP membrane detachment

kr 1.5× 10−4ξEct2 s−1 Nucleotide exchange rate/activation
rate

kdt 9.45× 10−3ξEct2 µm4s−1 Autocatalytic activation rate
kgap 1.5× 10−2 µm2/s Rho-GTP membrane detachment
nR 10 µm−2 Rho total concentration

DR 10 µm2/s
Diffusion constant Rho-GDP in the cy-
tosol

Drd 0.1 µm2/s
Diffusion constant Rho-GDP on the
membrane

Drt 0.05 µm2/s
Diffusion constant Rho-GTP on the
membrane

VEct2 0.2 µm/s Ect2 propagation speed
ε 1 µm Width of Ect2 front interface

ξEct2 [0.01, 1] µm−2 Ect2 front parameter in low and high
Ect2 domain (movies S14 and S18)

ξEct2 ue + uE µm−2 Ect2 front parameter to couple Rho
and Ect2 module (movies S15- S17)

Table 4.1 | Model parameters for the Rho dynamics. Parameters are chosen
such that the model exhibits oscillatory dynamics.

4.4 Phase portrait analysis of local reactions

In order to gain an intuitive understanding of the spatiotemporal dynamics of Rho, we first
analyze the Rho reaction dynamics. Motivated by local equilibria theory [49, 56, 105], we
consider a compartment along the membrane, small enough to be considered well-mixed.
We picture this compartment isolated from the rest of the system, such that there is no
diffusive mass transport in and out of the compartment. This is equivalent to analyzing
a well-mixed system. We perform a phase portrait analysis for the local compartments,
providing an intuitive understanding of the Rho reaction dynamics at a particular position
in the cell.

To perform the phase space analysis, consider a position x with total density nR(~r). Since
the Rho reaction kinetics conserves total protein mass, the reactive flow of the system
is restricted to the simplex uR + urd + urt = nR(~r), where nR(~r) is the average protein
density within the compartment. Thus, the local dynamics within each compartment can
be characterized in the two-dimensional phase space of the reaction kinetics on this simplex.
This allows us to eliminate one of the three components in the reactive dynamics at an
isolated membrane position,
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Figure 4.3 | The (urd, urt)-phase portrait. The frt - and frd-nullcline are
represented as black and gray lines respectively. The intersection of the two nullclines
defines the steady state. The light gray arrows indicate the direction of the reactive
flow towards the steady state.

∂turd = f̃rd(urd, urt) = frd(nR(~r)− urd − urt, urd, urt), (4.7)
∂turt = f̃rt(urd, urt) = frt(nR(~r)− urd − urt, urd, urt), (4.8)

such that we can visualize the reaction dynamics in the two-dimensional (urd, urt)-phase
plane, as shown in Fig. 4.3. The reactive flow at the isolated membrane position is then
characterized by f̃rd and f̃rt, indicated by the light-gray arrows in Fig. 4.3. The nullclines,
f̃rd = 0 and f̃rt = 0 indicate the positions in phase space at which the reactive flow of urd
and urt change sign respectively (gray and black solid lines respectively in Fig. 4.3). In the
(urd, urt)-phase plane, these nullclines are given by

urd =
kon(nR − urt)

koff + kon + kr + kdtu2
rt
, (4.9)

urd =
kgapurt

kr + kdtu2
rt
, (4.10)

which we will call the frt- and frd-nullcline respectively. The intersection of the two null-
clines defines the steady state. Thus, the shape of the nullclines reveals information about
the reaction dynamics of Rho and the stability of the steady states.

In the following, we use the phase portrait analysis to explain the mechanism how the
Rho pulse localizes to the Ect2 front in wild type oocytes and how Ect2 overexpression
leads to a front of Rho spirals. First, in Sec. 4.5, we use the phase portrait to characterize
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different parameter regimes of the model and discuss how variations of the reaction rates
lead to transitions between the different parameters regimes. We then argue, in Sec. 4.6,
how the front-like concentration profile in Ect2 affects the reaction rates of the model and
explain, in Sec. 4.7, how the Rho dynamics at a single membrane position responds as the
front-like concentration profile of Ect2 travels along the membrane (Fig. 6.3b). Using the
intuition gained from the analysis of the local dynamics, we then explain, in Sec. 6.B, why
the experimentally observed Rho pulse follows the travelling Ect2 front in the spatially
extended system and how the width of the pulse depends on the speed of the front. Using
a similar approach, in Sec. 6.C, we explain how overexpression of Ect2 can lead to spiral
dynamics in the domain where the Ect2 concentration is high.

4.5 Parameter regimes

By exploring the parameter space of the model, we find four qualitatively different param-
eters regimes, which we characterize based on the intersection of the two nullclines:

1. A monostable regime where the nullclines intersect before the maximum of the
frt-nullcline. In this parameter regime, the dynamics is monostable. The stable
steady state (fixed point) is at low Rho-GTP concentration (Fig. 4.4A). The flow
field, indicated by the gray arrows (cf. Eq. ?? and 4.10), shows how the concentra-
tion of Rho-GTP and Rho-GDP on the membrane transitions to the steady state.
Importantly, in phase space, this is not always a direct path to the steady state but
can be a large excursion as indicated by the green line in Fig. 4.4A. This excursion
in phase space leads to a transient increase in the Rho-GTP concentration before it
relaxes to the steady state.

2. A monostable regime where the nullclines intersect at the tail of the frt-nullcline. The
fixed point is at high Rho-GTP concentration (Fig. 4.4B). Similar as in parameter
regime 1, the dynamics towards the steady state can initially lead to a transient in-
crease in the Rho-GTP concentration before relaxing to the steady state, as indicated
by the green line in Fig. 4.4B.

3. An intermediate regime where the nullclines intersect right after the maximum of the
frt-nullcline. In this regime, the system relaxes to a limit cycle, rather than a stable
steady state (green line in Fig. 4.4C, lower panel). This means that the concentration
of the Rho-states oscillates (Fig. 4.4C, upper panel).

4. A bistable parameter regime where the nullclines intersect three times such that there
are two stable steady states with a low and high Rho-GTP concentration respectively
and an unstable steady state (Fig. 4.4D). In this regime, it depends on the initial
condition whether the Rho-GTP concentration if low or high in the steady state.
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Figure 4.4 | Sketches of phase portraits for qualitatively different parameter
regimes (lower panels) and a typical trajectory within that regime (upper
panel). The frt- and frd-nullclines are shows as black and gray lines, respectively.
Light gray arrows show the reactive flow towards the steady states. A typical trajectory
(cf. Eq. ?? and 4.10) is shown as a green line. The intersections of the nullclines identify
four qualitatively different parameters regimes: (A) monostable with low Rho-GTP
concentration, (B) monostable with high Rho-GTP concentration, (C) limit cycle
oscillations and (D) bistability.

In the following we discuss how the parameters of the model change the nullcline shape
such that the system can transition between the qualitatively different regimes. We restrict
our discussion to the regimes 1-3 and illustrate the change of the nullcline shape for varying
a parameter in Fig. 4.5.

Attachment and detachment – The attachment and detachment rate only change the shape
of the frd-nullcline. In particular, it changes the shape such that the maximum of the
frd-nullcline shifts up, for increasing attachment rate (kon) or decreasing detachments rate
(koff). The maximum cannot be larger than the total Rho concentration nR. Thus, when
the maximum of the frt-nullcline is low enough, an increase of the attachment rate or a
decrease of detachment rate, can lead to a transition from the low Rho-GTP concentration
(regime 1) to oscillations (regime 3) to a high stable Rho-GTP concentration (regime 2).

Hydrolysis – The hydrolysis rate (kgap) only changes the shape of the frt-nullcline. In
particular, it stretches the frt-nullcline along the urd-axis. Decreasing the hydrolysis rate
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Figure 4.5 | Parameter sweeps For an increase of the reaction rate, the nullcline
moves into the direction indicated by the red arrows. The increase of the reaction rate
can lead to a transition between parameter regimes as classified illustrated in Fig. 4.4.

therefore leads to a transition from the low Rho-GTP concentration (regime 1) to oscilla-
tions (regime 3) to a high stable Rho-GTP concentration (regime 2).

Nucleotide exchange – The nucleotide exchange rates change the shape of both nullclines.
The linear rate kr has the same effect on the frd-nullcline as the detachment rate. In addi-
tion, kr decreases the slope of the frt-nullcline for small Rho-GTP concentration. Thus, an
increase in kr shifts the system towards low Rho-GTP concentration (regime 1). The auto-
catalytic rate kdt changes the slope of the frd-nullcline and the position of the maximum of
the frt-nullcline. This typically leads to a transition from the low Rho-GTP concentration
(regime 1) to oscillations (regime 3).

Total Rho concentration – In a spatially extended systems, the total concentration of
Rho is generically inhomogeneous. Attachment and detachment of Rho to and from the
membrane will induce gradients in the cytoplasmic Rho concentration. These gradients
lead to mass transport due to fast diffusion in the cytoplasm. We therefore ask how the Rho
dynamics depends on the total density of Rho. In regime 1, the change of the Rho-GTP
concentration is proportional to the linear nucleotide exchange rate kr until the system
transitions to limit cycle oscillations (regime 3). In the oscillatory regime (regime 3), the
increasing Rho concentration changes the amplitude of the limit cycle and therefore the
amplitude of the oscillations (Fig. 4.6). Furthermore, a large enough increase could lead
to a transition from oscillations to a stable steady state with high Rho-GTP concentration
(regime 2) (Fig. 4.6).
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Figure 4.6 | Varying total concentration. Increase in total Rho concentration
decreases the amplitude of the limit cycle oscillations. Upper panels show the Rho-GTP
concentration over time, lowel panels show the (urd, urt)-phase portrait.

4.6 The Ect2 front serves as a spatial template for Rho
reaction kinetics

In Fig. 6.2d, we will show that Ect2 forms a front pattern on the membrane, with a
high Ect2 concentration in the VP domain and a low concentration in the AP domain.
Furthermore, we will show that this front pattern colocalizes to the Rho pulse (Fig. 6.2b).
How can a front-like profile of the Ect2 concentration localize a Rho pulse? As Ect2 is
a RhoGEF it must affect the reaction kinetics of the Rho GTPase cycle. However, it is
not a priori evident how. At first sight, one would expect that an increase in the Ect2
concentration increases the nucleotide exchange rate of Rho. However, other scenarios are
possible as well. For example, it has been suggested that apart from its GEF activity, Ect2
is also involved in recruiting Rho to the membrane [151], such that an increase in the Ect2
concentration might also lead to an increase of Rho’s attachment rate. Furthermore, Ect2
could also indirectly affect processes of the GTPase cycle via interactions of Ect2 with
other Rho regulatory proteins [148, 158]. Hence, an increase of the Ect2 concentration
in the VP domain could also lead to an increase of other regulatory processes apart from
the increase of the nucleotide exchange rate, for example via interactions with a RhoGAP
[162] or microtubules [149]. Indeed, we showed that the microtubules also form a front
pattern similar to the Ect2 front (movie S20). We therefore first ask to which qualitative
parameter regimes (as outlined in Sec. 4.5) the two Ect2 levels correspond and then argue
which parameter in our model could lead to such a transition, integrating the available
biochemical information.

In the main text we discussed that, viewed from a position on the membrane, the Ect2
concentration suddenly increases as the Ect2 front passes along the membrane (Fig. 6.3b).
In the phase portrait, the increase of the Ect2 concentration is represented as a change of
the nullclines and therefore of the position of the fixed point. Hence there are two possible,
qualitatively different, scenarios: (i) The change of the Ect2 concentration can change
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the fixed point within the same parameter regime, leading to transient dynamics as the
concentration transitions from the old fixed point to the new fixed point. (ii) The change
in the Ect2 concentration can result in a transition between different parameter regimes,
leading to a qualitatively different Rho behavior, in the VP and AP domain.

In the following, we will argue how the concentration of Rho-GTP at a position on the
membrane responds to a change of the Ect2 concentration, in both the wild type (Sec. 4.7)
and for Ect2 over expression (Sec. 6.B). As the Ect2 front travels along the membrane,
such a response happens at each position in space, giving rise to a spatial template for the
Rho dynamics.

4.7 Rho senses the temporal derivative of the Ect2
template

Here, we analyze how the Rho dynamics responds to the moving Ect2 front. To this end, we
first consider the local Rho dynamics at a single position on the membrane. We argue how
the Rho dynamics will play out in a diffusively coupled system and confirm this intuition
in finite element simulations (implemented in COMSOL Multiphysics 5.4).

Local reaction dynamics – Before the Rho wave starts, the Rho-GTP concentration in the
starfish oocyte is homogeneous with only little Rho-GTP on the membrane (Fig. 6.1d).
This suggests that the reaction kinetics of Rho in the AP domain lies within regime 1 cf.
Sec. 4.5. Viewed from a single position on the membrane, the concentration of Rho-GTP
increases only transiently as the SCW travels along the membrane (Fig. 6.1d). Interestingly,
after the Ect2 front has passed a single position on the membrane, the Ect2 concentration
is still high, but Rho-GTP has returned to a low concentration, such that also the reaction
kinetics in the VP domain must be in regime 1. This suggests that the transient increase
of the Rho-GTP concentration arises from the dynamics of Rho-GTP as it transitions
from the steady state in the AP domain to the new steady state in the VP domain.
Thus, we seek parameters for the model such that the steady states in both the AP and
VP domain have a low Rho-GTP concentration (regime 1) and are laterally stable, as
the Rho-GTP concentration is homogeneous before and after the SCW. Furthermore, the
difference between the AP- and VP-steady state must be such that a transition from the
AP- to the VP-steady state leads to a large excursion in phase space, corresponding to
an increase in the Rho-GTP concentration. Such excursions typically occur in parameter
regimes close to oscillatory regimes [170].

How does Ect2 affect the Rho GTPase cycle? As Ect2 is a RhoGEF, the intuitive choice is
that the increased Ect2 concentration in the VP domain increases the nucleotide exchange
rates in this domain. As discussed in Sec. 4.5, an increase in the linear nucleotide exchange
rate decreases the initial slope of the frt-nullcline and also decreases the intercept of the
frd-nullcline, such that the fixed point moves towards a lower Rho-GDP concentration
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on the membrane (Fig. 4.7A). A change in the autocatalytic nucleotide exchange rates
only slightly changes the fixed point to a position with lower Rho-GDP concentration
on the membrane (Fig. 4.7B). However, increasing kdt mainly changes the reactive flow
towards the steady state (gray arrows Fig. 4.7B). The reactive flow towards this fixes point
(cf. Eq. 3, and gray arrows in Fig. 4.7B) indicates that starting from a low Rho-GTP
concentration, Rho-GTP first increases before it relaxes to the fixed point. Indeed, our
simulation (cf. Eq. 1, and green line in Fig. 4.7B) shows that a sudden increase in the
nucleotide exchange rates leads to an excursion in phase space and therefore to a transient
increase in the Rho-GTP concentration. In particular, the reactive flow shows that the
increase in Rho-GTP concentration is larger for a larger autocatalytic activation rate. We
therefore model the Ect2 front as a step-like increase of both the basal and the autocatalytic
activation rates to describe the Rho pulse. This means that kr and kdt are multiplied by
ξEct2 = 0.01 + 0.99Θ(|~r| − (|~r0| − VEct2t)), with |~r0| the initial front position and VEct2 the
front speed. Note that one can also use ξEct2 = ue(~r, t)+uE(~r, t) to couple the Ect2 module
of the model to the Rho module.

How fast the Ect2 concentration increases at a position on the membrane depends on
the speed of the front and the width of the front passing that position. For a slowly
propagating front, or a large front width, the Ect2 concentration at a membrane position
increases slowly. For a sufficiently slow rate of change in the local Ect2 concentration
(dark red line in Fig. 4.8A) the Rho concentration will gradually transition from the old to
the new steady state (dark green line in Fig. 4.8B). In phase space, this represented by a
trajectory that stays slaved to fixed points as the system changes from the old to the new
steady state (dark green line in Fig. 4.8C). However, when Ect2 increases faster than the
relaxation of Rho the moving fixed point, the Rho-GTP concentration first increases before
it relaxes to the new steady state, as illustrated by the brighter trajectories in Fig. 4.8.
Thus, a Rho pulse only exist when the Ect2 concentration at a membrane position increases
sufficiently fast to induce a large excursion of the Rho dynamics in phase space.

As the Ect2 front moves along the membrane, it continuously triggers such local excursions,
resulting in a Rho pulse that follows the Ect2 front (Fig. 6.3f). Hence, the Rho pulse relies
on the movement of the Ect2 front. Thus, the model predicts that a stationary Ect2 front
would not localize a Rho pulse to its interface. Furthermore, in a system without diffusive
coupling, the width of the pulse is given by the product of the excursion time and the Ect2
front speed. Indeed, our simulations in ellipsoidal, triangular and star geometry (Fig. 4.9)
and experiments (Fig. 6.3g) show that the width of the Rho pulse is positively correlated
with the wave speed.

Spatially (diffusively) coupled systems – In the spatially extended system with diffusive
coupling, the local increase of Rho-GTP on the membrane results in a local decrease of
the cytosolic Rho-GDP concentration. This leads to gradients in the cytoplasm, which in
turn leads to diffusive transport of Rho-GDP in the cytosol. Thus, in a diffusively coupled
system, each position on the membrane has a slightly different total density nR(x). In
Sec. 4.5 we showed that the total Rho density also changes the shape of the nullclines
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Figure 4.7 | Transition from the old to the new steady state leads to a
large excursion in phase space. (A) increasing the linear nucleotide exchange
rates, moves the fixed point to a position in phase space with a lower concentration for
Rho-GDP and a slightly higher concentration of Rho-GTP. (B) An additional increase
of the autocatalytic nucleotide exchange rate mainly changes the reactive flow towards
the new steady state such that the Rho-GTP concentration first increases before it
relaxes to the new steady state, as indicated by the larger excursion in phase space.
Parameters are specified in Table 4.1.

describing the local Rho dynamics (cf. Eq. 4). However, as the Rho pulse is a robustly
observed phenomenon in all wild type oocytes, we conclude that the local variations of
the total Rho density should not qualitatively change the Rho dynamics. We therefore
choose parameters such that variations in the total density only change the steady state
concentrations, but not the qualitative dynamics of Rho (see Table 4.1 for parameters).
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Figure 4.8 | Trajectories for varying widths of the Ect2 increase. (A) The
change in Ect2 concentration viewed from a position on the membrane ranging from a
gradual increase (dark) to a sudden increase (bright). (B) The transient dynamics of
the Rho-GTP concentration on the membrane, and (C) the corresponding trajectory in
the phase space. The faster the Ect2 concentration increases, the larger the excursion
in phase space and the more pronounced the Rho-GTP increase.

Figure 4.9 | Rho band width versus wave speed. The width of the Rho band is
positively correlated with the propagation speed. The Rho band width and propagation
speed are measured at various positions along the circumference of a cross section of
the simulations in ellipsoidal (movie S15), triangular (movie S16) and star geometry
(movie S17)
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5 Spatial derivative

“I am as proud of what we don’t do
as I am proud of what we do”

– Steve Jobs

The formation of protein patterns inside cells is generically described by reaction–
diffusion models. The study of such systems goes back to Turing, who showed how
patterns can emerge from a homogenous steady state when two reactive components
have different diffusivities (e.g. membrane-bound and cytosolic states). However, in
nature, systems typically develop in a heterogeneous environment, where upstream
protein patterns affect the formation of protein patterns downstream. Examples for
this are the polarization of Cdc42 adjacent to the previous bud-site in budding yeast,
and the formation of an actin-recruiter ring that forms around a PIP3 domain in
macropinocytosis. This suggests that previously established protein patterns can serve
as a template for downstream proteins and that these downstream proteins can ‘sense’
the edge of the template. A mechanism for how this edge sensing may work remains
elusive.
Here we demonstrate and analyze a generic and robust edge-sensing mechanism, based
on a two-component mass-conserving reaction-diffusion (McRD) model. Our analysis
is rooted in a recently developed theoretical framework for McRD systems, termed local
equilibria theory. We extend this framework to capture the spatially heterogeneous
reaction kinetics due to the template. This enables us to graphically construct the
stationary patterns in the phase space of the reaction kinetics. Furthermore, we show
that the protein template can trigger a regional mass-redistribution instability near the
template edge, leading to the accumulation of protein mass, which eventually results
in a stationary peak at the template edge. We show that simple geometric criteria on
the reactive nullcline’s shape predict when this edge-sensing mechanism is operational.
Thus, our results provide guidance for future studies of biological systems, and for the
design of synthetic pattern forming systems.

This chapter is based on our publication “Pattern localization to a domain edge’, which
has been published in Physical Review E [105]. This work has been performed together with
Fridtjof Brauns, Tobias Hermann and Erwin Frey.
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5.1 Introduction

5.1.1 Background and motivation

Many cellular processes, such as cell division and cell motility, rely crucially on the local-
ization of proteins in space and time. Strikingly, these protein localization patterns can
emerge from the collective coordination of transport and local molecular interactions of
proteins. Diffusion in the cytosol is a simple means of protein transport that accounts for
many self-organization processes [106]. To analyze how the interplay of diffusive protein
transport and protein-protein interactions on a nanometer scale influences the protein pat-
terns on the cellular scale, mass-conserving reaction–diffusion models have proven useful
[53, 89–104]. The study of reaction–diffusion systems in general goes back to Turing [171],
who showed how patterns can emerge from a homogenous steady state when two reactive
components have different diffusivities. In cells, differential diffusivities are generic because
many proteins have membrane-bound and cytosolic states, where diffusion on the mem-
brane is orders of magnitude slower than in the cytoplasm. Turing’s pioneering work [171]
has led to vast advances in the field on how protein patterns arise from homogeneous (ini-
tial) steady states on spatially homogeneous domains. However, as Turing already pointed
out [171], “most of an organism, most of the time, is developing from one pattern into
another, rather than from homogeneity into a pattern.”

For example, previously formed protein patterns can control pattern formation of proteins
downstream by affecting their local interactions, such that the upstream pattern acts as a
spatial template for the downstream proteins. A biological system where such “templating”
has been suggested is macropinocytosis [24]. Here, a high density domain of PIP3 (a
charged phospholipid) and a Ras-GTPase1 have been suggested to serve as a template for
a ring of actin recruiters (SCAR complex, Arp2/3), that forms around the PIP3 domain
edge [22]. Recruitment of an actomyosin ring, controlled by GTPases, is also key for single-
cell wound healing. Following the rupture of the cell wall, two GTPases– Abr and Cdc42
–are recruited to the wound edge, where they organize into two concentric rings of high
protein concentration [19]. Cdc42 in turn recruits actomyosin which contracts to close the
wound and repair the underlying cytoskeleton. Mutations of Abr, which forms the inner
ring, leads to a loss of the outside Cdc42 ring, suggesting hierarchical interaction between
Abr and Cdc42 [19]. Thus, the inner Abr-ring may be pictured as a template for the
outer Cdc42-ring. Yet another example where protein patterns act as a spatial template,
can be found during cell division in budding yeast. Here, landmark proteins direct the
polarization of the GTPase Cdc42, such that the Cdc42 cluster emerges either adjacent to
the previous bud-site, or at the opposite cell pole, depending on the cell-type [17]. Various
mutations or deletions of individual landmark proteins lead to Cdc42 clusters right on top
of the previous bud-site or at a random position [18, 20, 23]. Hence, the landmark proteins

1GTPases are hydrolase enzymes that can bind and hydrolyze guanosine triphosphate (GTP). Ras is a
subfamily of small GTPases.
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may be pictured as a template that controls Cdc42 pattern formation. Common to all the
above examples is that the downstream proteins localize at the edge of some template.
Both the specific (molecular) mechanisms, and the general principles underlying this ‘edge
sensing’ remain elusive.

Here, we present a pattern-forming mechanism capable of robust edge sensing and provide
criteria for its operation based on simple geometric relations in the phase space of the re-
action kinetics. To find these criteria, we use a recently developed framework, termed local
equilibria theory which enables us to gain insight into the dynamics of mass-conserving
reaction–diffusion (McRD) systems [49, 56]. We introduce a step-like template that im-
poses heterogeneity in the reaction kinetics, and generalize the framework to study the
dynamics of such systems. This enables us to explain why and under which conditions a
density peak forms at the edge of the template. Thus, our results may provide guidance for
the design of patterns in synthetic systems and may help to identify molecular mechanisms
underlying edge-sensing in biological systems.

5.1.2 Pattern formation with a step-like template

A common feature of the biological examples we discussed in Section 5.1.1 is that the
templates have a sharp edge, and that a downstream protein pattern localizes to this
edge. To obtain a conceptual understanding of how such an edge-sensing mechanism might
work, we study how an idealized step-like template affects the pattern formation of the
two-component McRD model as a paradigmatic example.

We consider a step-like template profile θ(x) with a sharp edge at xE

θ(x) :=

{
θA x ≤ xE

θB x > xE
, (5.1)

as illustrated in Fig. 5.1(a). Such a template defines two spatial subdomains (labelled A
and B). Here, we consider a template that couples to the downstream pattern forming
system via the local reactions f(m, c; θ(x), such that different reactive dynamics

fA,B(m, c) := f(m, c; θA,B), (5.2)

govern the system in the two subdomains (see Fig. 5.1(b)).

Pattern forming systems with a step-like (also called “jump-type”) heterogeneity have a rich
history in the mathematical literature (see e.g. [172–181]) where, they have been studied in
the context of front-pinning [179], pulse localization [180], and wavenumber selection [181],
to name a few recent examples. These studies predominantly focussed on excitable media
and the models studied are not mass-conserving. Furthermore, the prevalent methods
employed in these studies are singular perturbation theory (Refs. [182, 183] may serve as
general introductions) and normal form theory (see e.g. Ref. [184]). The former method
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Figure 5.1 | Illustration of a step-like template (a) that acts on the reaction kinetics
defines two subdomains, labelled A and B, with respective reaction kinetics fA and
fB. (b) We consider a two-component system describing, for example, a single pro-
tein species that cycles between a membrane bound and a cytosolic state. (c) The
reactive flow due to the reaction kinetics can be visualized in the (m, c)-phase space
of concentrations. Due to mass-conservation, the flow points along the reactive phase
spaces m+c = n (indicated by gray lines). Along the nullclines fA,B, the flow vanishes.
Therefore, the reactive flow in each subdomain is qualitatively captured by the shape
of the respective nullcline. (d) With the reactive flow encoded by the nullclines, the
phase portraits of the two subdomains can be combined (‘overlaid’) into a single phase
space. This combined phase space will be used for the construction of stationary states.
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uses matched asymptotics and is based on a separation of spatial scales; the latter applies
in the vicinity of a bifurcation.

Here, we choose a conceptually different approach building on the recently developed local
equilibria theory [49, 56], specifically the phase-portrait analysis outlined in Sec. 1.4.2 and
introduced in detail in [56]. Our starting point is to use the reactive nullclines of the two
subdomains as proxies for the respective reactive flows (Fig. 5.1(c)). For this purpose, we
combine the phase portraits of the subdomains into a single phase portrait as shown in
Fig. 5.1(d). This ‘overlaying’ of the phase portraits facilitates a geometric analysis of the
system with a step-like template based on the approach presented previously for the two-
component system on a homogeneous domain [56] (see recap in Sec. 1.4.2). Throughout
the paper we will use nullcline shapes as illustrated in Fig. 5.1(d) (see Appendix 5.A for the
specific equations and parameters). A different nullcline ‘arrangement’, and the general
role of the nullcline shapes are discussed in Appendix 5.B.

The remainder of the paper is structured as follows. In Sec. 5.2.1, we first analyze steady
states with a monotonic density profile and show how these states can be determined via
a flux-balance construction in the (m, c)-phase portrait. In Sec. 5.2.2, we extend the flux-
balance construction to also obtain the non-monotonic steady states of the system. In
Sec. 5.2.3, we introduce the concept of regional instability to understand the transition
from monotonic to non-monotonic steady states. Finally, in Sec. 5.3, we analyze how the
peak responds to a moving template edge and show that this can lead to depinning or
suppression of the peak when the template edge moves sufficiently fast.

5.2 Construction of steady states and their bifurcations

The goal of this section is to characterize the steady states of the two-component McRD
system with a step-like template. These systems generically don’t exhibit spatially homoge-
nous states. Non-homogeneous steady states can be categorized based on the monotonicity
of their density profiles. We first briefly summarize the main results of this section. In
Sec. 5.2.1, we characterize the monotonic steady states, which consist of two plateaus con-
nected by a monotonic interface at the template edge xE, as shown in Fig. 5.2(a). We call
these monotonic steady states the (spatially) heterogenous base-states. We will show that
these base states only exist for low or high total mass. Starting from the low-mass base
state and increasing the total mass n̄, we find that the base state disappears through a
saddle node bifurcation. In the subsequent intermediate-mass regime, the steady states
are non-monotonic which are the self-organized patterns of the system. In Sec. 5.2.2 we
show that the stable stationary patterns (i.e. non-monotonic steady states) exhibit a sin-
gle density peak either at the system boundary or at the template edge. The transition
between the monotonic base states to the non-monotonic patterns arises from a lateral in-
stability localized at the template edge, which we call a regional instability. Via numerical
simulations we show that from this instability a peak at the template edge emerges (‘edge
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Figure 5.2 | Illustration of the construction of monotonic steady states (heterogeneous
base states) in (m, c)-phase space. (a) Density profile with the inflection point at the
template edge xE. (b) Phase space including the reactive nullclines of subdomain A
(orange) and B (blue) with the corresponding density distribution (thick orange and
blue line). (c) Total turnover as a function of the membrane density at the template
edge mE. Total turnover balance determines the steady state value m∗

E. (d) Density
profile for a case where the inflection point of the profile, x0, lies within subdomain A,
that is, when m0

A > mB as illustrated in the corresponding phase space representation
(e). (f) In this case, the total turnover becomes a non-monotonic function of mE,
such that total turnover balance may have multiple solutions, or no solution at all.
These different cases are sketched here for different average global total densities n̄.
(g) Bifurcation diagram of the base state, showing the saddle-node bifurcation due to
breakdown of total-turnover balance. In the region beyond the saddle-node bifurcation
(shaded in gray) no monotonic base state exists. Note that monotonicity enforces
m∗

E −mB < 0 here.

sensing’). Importantly, we find a simple geometric criterion for edge sensing: The reactive
nullclines of the two subdomains have to intersect at a point where only one of them has
negative slope, as illustrated in Fig. 5.1(d). Note that we restrict our construction to the
nullcline shapes shown in Fig. 5.1(d) here. Generalizations to other arrangements follow
the same principles and can be worked out analogously.
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5.2.1 Monotonic steady states (base states)

In steady state, the net diffusive flux that redistributes mass must vanish and reactive
flows in m and c must be balanced. This balance is encoded in the constraint that a
stationary pattern’s phase space distribution must be embedded in a flux-balance subspace
(cf. Eq. (1.8)). This constraint is independent of the local reactions, and, hence, also
holds when the local reaction are heterogeneous due to a template (purple dotted line in
Fig. 5.2(b)).

Analogously to the construction of mesa patterns in Sec. 1.4.2, we can graphically con-
struct the steady-state density profile in real space, as illustrated in Fig. 5.2(b, e). To
that end, we approximate the density profile at the plateaus—where diffusive fluxes cancel
everywhere—by the concentration at the FBS-NC intersections, such that the concentra-
tion at the plateaus is fully determined by the FBS-offset, η0. Let us denote the membrane
concentration at the FBS-NC intersections as m−

A(η0), m0
A(η0) and m+

A(η0) for subdomain
A (orange nullcline) and as mB(η0) for subdomain B (blue nullcline). For specificity, we
consider in the following a base state that approaches the plateaus m−

A and mB far away
from the template edge. An analogous construction can be made for a monotonic state
that connects m+

A and mB.2

The conservation of average total density n̄ enforces a constraint on the construction of the
base state. This constraint can be used to estimate η0 from the average total density n̄.
For a domain much larger than the profile interface, the interface region can be neglected
and the average total density can be approximated by the weighted average of the plateau
densities in the two subdomains

n̄ ≈ xE n−
A(η0) + (L− xE)nB(η0), (5.3)

with n−
A and nB the total density at the plateaus in subsystem A and B respectively. This

determines an implicit, approximate relation between the control parameter n̄ and the
FBS-offset η0.

Upon changing n̄, the plateau concentrations of the density profile must change, and
hence, η0 must shift (cf. Eq. (5.3)). For the laterally stable plateaus, the nullcline slope
at the corresponding FBS-NC intersections (m−

A and mB) is larger than the FBS-slope
(∂nη∗A,B(n) > 0, cf. NC-slope criterion Eq. (1.11)). Hence, the relationship η0(n̄) must
be monotonically increasing for stable base states, as one sees by taking the derivative of
Eq. (5.3) w.r.t η0, and using that monotonicity of a function implies monotonicity of its
inverse.

Note that, even though the base state looks similar to a mesa pattern in a system on a
homogeneous domain, the relationship between η0 and n̄ makes a key difference between the

2 Furthermore, note that we ignore potential intersection points of FBS and B-nullcline at higher masses.
In this regime, subdomain B will also exhibit lateral instability. Here, we restrict ourselves to the
regime where only subdomain A becomes laterally unstable.
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two cases. As we discussed in the introduction (Sec. 5.1B), in a system on a homogeneous
domain, changing n̄ does not affect η0 in a system much larger than the interface width, but
instead shifts the pattern interface (cf. Eq. (1.10)). In contrast, the interface position of
a heterogeneous base state is determined by the position of the template edge xE. Hence,
to accommodate a given average mass n̄ the plateau concentrations n−

A(η0) and nB(η0),
determined by FBS-NC intersection points, must adapt (cf. Eq. (5.3)). Thus, η0 of a
heterogeneous base state depends directly on n̄.

So far we have estimated the concentration at the two plateaus of the monotonic steady
state profile. To determine how these two plateaus are connected at the template edge
position xE, we use the condition that in steady state the total reactive turnover in the
system must vanish. In the vicinity of the template edge at xE, the concentrations deviate
from the local equilibria, such that there are reactive flows (illustrated by red arrows in
Fig. 5.2(b)). Since the template introduces two subdomains with different reaction kinetics,
the total reactive turnover in a system with a template is given by the sum over the turnover
in the two subdomains,

F (mE; η0) = FA(mE; η0) + FB(mE; η0)

=

∫ mE

m−
A

dmfA(m, η0 −
Dm

Dc

m)

+

∫ mB

mE

dmfB(m, η0 −
Dm

Dc

m),

(5.4)

where mE is the membrane concentration at the template edge. In steady state, the total
turnover F (mE; η0) must vanish such that all reactive flows in the system balance. Thus,
the solution of F (m∗

E; η0) = 0 (see Fig. 5.2(c)) determines the steady state concentration
at the template edge m̃(xE) = m∗

E. Note that, due to monotonicity, η0 and m∗
E uniquely

identify a base state of a given system.

For small enough n̄, the second FBS-NC intersection m0
A for the A-nullcline is larger

than the FBS-NC intersection for the B-nullcline mB as illustrated in Fig. 5.2(b). In this
case, both summands of Eq. (5.4) are monotonic in mE ∈ [m−

A,mB] because the reactive
flow does not change sign within either subdomain, i.e. the inflection point of the profile
coincides with the template edge. Hence, there is only a single solution m∗

E that fulfills
total turnover balance. For larger n̄ (and thus η0, cf. Eq. (5.3)), m0

A can become smaller
than mB, as illustrated in the sketch in Fig. 5.2(d,e). This entails that the position where
the reactive flows change sign (i.e. inflection point) lies in subdomain A (see Fig. 5.2(d,e)).
Thus, FA(mE; η0), and thereby also the total turnover F as a function of mE becomes non-
monotonic and may thus have multiple roots. Indeed, for increasing n̄, our flux-balance
construction predicts three different regimes: (i) A regime where there is one solution in the
interval [m−

A,mB], (ii) a regime with two solutions, and (iii) a regime with no solution (as
illustrated in the sketch in Fig. 5.2(f)). In the last regime, total turnover balance becomes
impossible for a monotonic steady state (base state). In Sec. 5.2.2, we will see how total
turnover balance can be reached in this regime by a non-monotonic steady state.
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The roots of F correspond to different base states which we characterize by the amplitude
of the density profile in Subdomain B, m∗

E −mB; see Fig. 5.2(g). For monotonic states (i.e.
base states), m∗

E − mB is negative3. At the transition from regime (ii) to (iii), the base
state undergoes a saddle-node bifurcation at n̄SN. From the flux-balance construction and
total turnover balance, we can estimate the position of this bifurcation. At the saddle-
node bifurcation point, the minimum of F coincides with the root of F . From Eq. (5.4)
it follows that F reaches its minimum at fA(mmin, η) = fB(mmin, η). Thus, this condition,
together with F (mmin; ηSN) = 0 implicitly determines the value of ηSN at the saddle-node
bifurcation. From this we can then estimate n̄SN via (5.3).

To test this approximate construction of steady states, we use specific reaction terms fA and
fB as specified in Appendix 5.A and compare the steady state profiles obtained from the
flux-construction to the profiles obtained from numerical continuation (see Appendix 5.E
for a short description of numerical continuation and the comparison of steady states.
A more detailed explanation of continuation methods can be found in Ref. [185]). We
find that the flux-balance construction gives a estimate of the steady states profiles for
sufficiently large system sizes (see Appendix 5.E).

As we noted above, there is also a family of base states which connects a plateau at m+
A

(instead of m−
A) in subdomain A to mB in subdomain B. These base states have a high

average mass, and we will refer to them as ‘high-mass’ base states. Following the same
arguments as above, we find that these base states undergo a saddle-node bifurcation
when the average total mass is decreased below a critical average mass, analogously to the
saddle-node bifurcation of ‘low-mass’ base states discussed in this section.

In summary, we have shown how to find monotonic steady states (base states) with a flux-
balance construction. Notably, we found that for a range of total mass n̄, this flux-balance
construction has no solution, and hence, there exist no monotonic steady states. In this
regime, the steady states must be non-monotonic. We next study these non-monontonic
steady states, which we refer to as patterns.

5.2.2 Non-monotonic steady states (patterns)

To gain some intuition about the structure of the stationary patterns, we first calculate
them numerically as a function of the average total density n̄ using numerical continua-
tion4 for a specific choice of the reaction term f(m, c; θ) specified in Appendix 5.A. The
resulting one-parameter bifurcation structure shows that the system exhibits two stable
patterns, one with a peak (high density region) at the template edge and one with a peak
at the system boundary, respectively (see Fig. 5.3(a)). In the bifurcation structure, the

3Note that for high-mass base states, monotonicity enforces m∗
E − mB > 0, in the case of a nullcline

arrangement as shown in Fig. 5.1.
4See Appendix 5.E for a brief description of the core idea behind numerical continuation. An excellent

overview is provided in Ref. [185].
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Figure 5.3 | Bifurcation structure and phase space construction of stationary pat-
terns. (a) Bifurcation structure of stationary states for the average mass, n̄, obtained
by numerical continuation, together with spatial profiles for the stable steady states
(montonic base states and non-monotonic patterns). In the area shaded in gray, no
monotonic base states exist. Solid (dashed) lines indicate stable (unstable) branches.
The unstable branches in the central region, marked by numbers 1–6 correspond to
unstable patterns with multiple inflection points in subdomain A (see Fig. 5.12 in Ap-
pendix 5.E). The instability of these patterns is related to coarsening, which is gener-
ically exhibited by two-component McRD systems on a homogeneous domain ([93,
94, 108, 109]). (b,c) Sketches of stable, non-monotonic, stationary patterns together
with the corresponding phase space constructions. At the density profile’s extremum,
marked by the dash dotted vertical line, there are no gradients (∂xm̃ = 0 = ∂xc̃), such
that a notional no-flux boundary can be introduced. Thus, the resulting two segments
(labelled I and II), can now be studied separately. In the phase portraits, the density
distributions of the two segments connect at the extremal concentrations m−

A and m+
A,

in (a) and (b) respectively. They are shown slightly offset from the FBS (dashed purple
line) for visual clarity. The true density distribution must of course be embedded in a
single FBS to fulfill diffusive flux-balance.
Parameters for the bifurcation diagram: Dm = 0.01, Dc = 0.5, k̂fb = 0.25, k̂off = 4,
θB = 20, θA = 2, L = 10, xE = 5.
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branches of stable patterns are connected to the base states via an unstable steady states
(green dashed branches in the bifurcation structure in Fig. 5.3(a), see also Fig. 5.11 in
Appendix 5.E). Between the two branches of stable patterns, there is a cascade of unstable
patterns (numbered 1–6 in Fig. 5.3(a); see Fig. 5.12 in Appendix 5.E for representative
density profiles). The instability of these patterns that have multiple interfaces within
subdomain A can heuristically be understood as a coarsening process due to a competition
for total density, similarly as in a system on a homogeneous domain [93, 94, 108, 109].
Some more technical aspects of this bifurcation structure are discussed in Appendix 5.E.

Can we use the flux-balance construction to construct non-monotonic steady states as
well? At the extrema of any stationary pattern in a two-component McRD system, the
gradients (and hence diffusive flux) in both membrane and cytosol concentration vanish
simultaneously (cf. diffusive flux-balance Eq. (1.8)). This allows us to place notional reflec-
tive boundaries at extrema, effectively splitting the non-monotonic profile into monotonic
segments. Thus, we can use the flux-balance construction as described in Sec. 5.2.1 to
construct the steady states in the two segments separately, with the additional constraint
of continuity at the boundaries connecting the segments.

The stable patterns in the two-component McRD system with a step-like template have
only a single peak, and hence only a single extremum within the domain that splits the
system into two segments (labelled I and II; see Fig. 5.3(b,c)). Segment I is fully embedded
in subdomain A, i.e. it is a system on a homogeneous (sub)domain. Hence, for sufficiently
large domain size, its steady state is a mesa pattern5 as introduced in Sec. 1.4.2. The
orientation of the mesa pattern in segment I determines whether the density peak is located
at the left domain boundary or at the template edge. segment II contains the template
edge, such that the steady state in segment II is a heterogeneous base state.

By continuity, the FBS-offset η0 must be identical in both segments. Recall that for a mesa
pattern, η0 is determined by total turnover balance, and independent of the average mass
and domain size in the large domain size limit (see Sec. 1.4.2 and Ref. [56]). We can thus
find η0 solely by total-turnover balance in segment I, without specifying the position of
the boundary between the segments, and without specifying the average masses in the two
segments respectively. Instead, given η0, we find the average mass in segment II, n̄II, via
Eq. (5.3), which depends on the choice for the orientation of the mesa pattern in segment I.
In segment II, subdomain B plays the role of a mass-reservoir that absorbs a fraction of the
total average mass and thus reduces the mass available to the mesa pattern in segment I,
n̄I = n̄−n̄II. Finally, n̄I determines the position of the mesa pattern’s interface in segment I
via Eq. (1.10). Similarly, we can construct the (unstable) patterns with multiple peaks by
splitting the system into more than two segments.

5In the vicinity of the saddle-node bifurcations of these patterns, segment I exhibits a peak pattern
instead of a mesa pattern. To obtain an approximation for this case, one would need to generalize the
peak approximation as discussed in Ref. [56].
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We conclude that the flux-balance construction fully characterizes the stationary patterns
of the system with a step-like template. These steady states exhibit density peaks similar
to a system on a homogeneous domain, however, the position of the density peak depends
on the template edge position.

We next ask which of the two stable patterns emerges as the base state ceases to exist.
To that end, we use finite element simulations and adiabatically increase the total average
density in a system such that it passes through the base-state bifurcation (Supplementary
Movie 1). The system evolves into a pattern with a peak at the template edge (correspond-
ing to the upper branch in Fig. 5.3(a)). Upon further increase of n̄ the peak widens and
eventually transitions into a mesa pattern at the template edge. The right hand interface
of the mesa patter remains localized at the template edge while the left hand interface
moves into subdomain A to accommodate the additional mass (cf. Eq. 1.10). Eventually
for even larger n̄, the mesa pattern ceases to exist as its interface hits the left boundary of
the domain. The system then transitions to the ‘high-mass’ base state which connects the
FBS-NC intersection points m+

A and mB. Going backwards by adiabatically decreasing n̄,
the system passes through the ‘high-mass’ base state’s saddle-node bifurcation. The corre-
sponding regional instability leads to the formation of a trough, rather than a peak, at the
template edge. The resulting stationary pattern has a minimum at the template edge and
a maximum at the left boundary (corresponding to the lower branch in Fig. 5.3(a)) (Sup-
plementary Movie 2). Upon further decrease of n̄, the interface of this pattern will reach
the left boundary of the domain such that the system transitions back into the low-mass
base state.

These transitions also take place when the average mass is changed non-adiabatically but
still so slow that mass-transport across the system by cytosolic diffusion (∼L2/Dc) is faster
than the rate at which mass is added or removed. Interestingly, when we increase the mass
on a non-adiabatic timescale we observe multiple transient patterns, which we characterize
in Appendix 5.D. Furthermore, we show that we can get similar transitions between the
base state and the patterns if, instead of increasing the average mass, the local reactions
fA,B in the two subdomains are varied over time (Appendix 5.C).

Taken together, we have shown that the flux-balance construction can be used to construct
non-monotonic steady states by splitting the density profile into monotonic segments. This
is possible because, the stationary pattern profile can be split at extrema, where all diffusive
fluxes vanish. We found that the system can exhibit two patterns, with a density peak
either at the system boundary or at the template edge. The peak at the template edge
only exists when the two nullclines intersect at a point where only one of them has negative
slope. Furthermore, our finite element simulations show that increasing the mass, starting
from the low-mass base state, leads to a peak at the template edge. Vice versa, decreasing
mass, starting from the high-mass base state leads to a peak at the system boundary. In
the next Section we provide a heuristic argument to understand under which conditions
the peak emerges at the template edge.
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5.2.3 Template-induced regional instability

We next want to understand the mechanism of pattern selection as the system goes through
the saddle-node bifurcation(s) where the base state ceases to exist. We first show that a
(numerical) linear stability analysis explains why either a peak or a trough pattern grows
at the template edge, as the system goes through the bifurcation. We then provide a
heuristic argument to explain this edge-sensing mechanism, and formulate a geometric
criterion under which this mechanism works, based on the shape of the nullclines.

To study how the base state develops into a pattern, as the system goes through the saddle-
node bifurcation, we consider a base state (m̃(x), c̃(x)) in the vicinity of the bifurcation
point and analyze the dynamics of a small perturbation (δm(x, t), δc(x, t)). The dynamics
of the perturbed state, up to linear order is given by:

∂tδm(x, t) = Dm∂
2
xδm+ f̃m(x)δm+ f̃c(x)δc , (5.5a)

∂tδc(x, t) = Dc∂
2
xδc − f̃m(x)δm− f̃c(x)δc . (5.5b)

The linearized reaction coefficients

f̃m,c(x) = ∂m,cf
∣∣
(m̃(x),c̃(x))

(5.6)

are not homogeneous in space and hence Eq. (5.5) is a set of linear PDEs with nonconstant
coefficients. We seek solutions of the form δm(x, t) = Φm(x)e

σt, δc(x, t) = Φc(x)e
σt. With

this ansatz, Eq. (5.5) turns into the Sturm–Liouville eigenvalue problem

σΦm(x) = Dm∂
2
xΦm + f̃m(x)Φm + f̃c(x)Φc , (5.7a)

σΦc(x) = Dc∂
2
xΦc − f̃m(x)Φm − f̃c(x)Φc , (5.7b)

for the eigenvalues σ and the associated eigenfunctions (Φm,Φc)(x).

The defining feature of a a saddle-node bifurcation is that one eigenvalue vanishes exactly
at the bifurcation point. The associated eigenfunction reveals the flow structure of the
dynamics on the slowest timescale close to the bifurcation point (center manifold, see e.g.
Ref. [184]). From this we can gain intuition about the fate of the system upon passing
through the bifurcation.

At the base-state saddle-node bifurcation (marked SN in Fig. 5.3(a)), the numerically
calculated6 eigenfunction is peaked in the vicinity of the template edge (see Fig. 5.4(a)).
This localized eigenfunction indicates that the density profile will change most in the
vicinity of the template edge, giving rise to either a peak or a trough as the system goes
through the saddle-node bifurcation.

6The Sturm–Liouville eigenvalue problem at the numerically calculated base-state saddle-node bifurcation
is solved by discretizing the spatial derivatives (Laplace operator) and solving the resulting eigenvalue
problem numerically in Mathematica. For further details see e.g. Ref. [186].
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Figure 5.4 | Regional lateral instability at the base state’s saddle-node bifurcation. (a)
The numerically calculated eigenfunction, Φm, associated to the vanishing eigenvalue at
the saddle-node bifurcation is localized at the template edge. (Parameters as in Fig. 5.3
at the saddle-node bifurcation n̄ ≈ 2.65541). (b) The concentration profile m̃(x) of the
base state at the saddle-node bifurcation. A spatial region that is fully contained in
subdomain A and centered around the profile’s inflection point x0 is marked in green.
(c) This spatial region corresponds to a phase space region where the dynamics is guided
by a section of the nullcline with a negative slope, i.e. where the system is laterally
unstable. (The phase space is shown as a sketch for visual clarity. See Fig. 5.7(a) in
Appendix 5.B for a plot from numerical simulation.)

An intuition why the neutral eigenfunction at the base-state saddle-node bifurcation is
peaked at the template edge can be gained from the phase portrait as sketched in Fig. 5.4(c)).
Recall, that the inflection point of the base state’s density profile m0

A = m̃(x0) lies within
subdomain A (cf. Fig. 5.2(d,e)). Consider a region centered around x0, fully contained
within subdomain A, as indicated in green in Fig. 5.4(b). In phase space this point lies
on a section of the A-nullcline with a slope steeper than the FBS. Suppose for a moment
that this region is isolated from the rest of the system. Then, as the slope of the nullcline
at m0

A is steeper than the slope of the FBS, the homogeneous equilibrium in this region
will be unstable due to a mass-redistribution instability. This instability will set in when
the region is large enough to contain the shortest growing mode7. We call this a regional
(mass-redistribution) instability.

A necessary condition to trigger a regional instability at the template edge is that the
nullclines of the two subdomains cross at a point where the the A-nullcline fulfills the

7More precisely, the size of the region centered around the inflection point, 2(xE − x0), must be larger
than the wavelength of the shortest growing mode π/qmin(n0).
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nullcline-slope criterion for lateral instability, Eq. (1.11) (see Fig. 5.5(a)). When this edge-
sensing criterion is not fulfilled, as shown in Fig. 5.5(b), the regional instability sets in at
the system boundary first, giving rise to a peak at the system boundary and not at the
template edge (as illustrated in Fig. 5.7(b) in Appendix 5.B). Because the shapes of the
nullclines in the two subdomains relative to each other depend on how the template affects
the reaction kinetics, the edge-sensing criterion constrains models that can exhibit edge
sensing. In Appendix 5.F we demonstrate that the edge-sensing criterion precisely predicts
the regime of edge sensing for a phenomenological model of Cdc42. We furthermore show
that edge sensing only works if the template increases both the attachment and detachment
rate of Cdc42 in one of the subdomains. This may help to identify the relevant molecular
players in biological systems.

The concept of regional instability was already discussed in Ref. [56] in the context of
excitability (“nucleation and growth”) for a homogeneous domain. There, a stable homo-
geneous steady state is perturbed by moving mass from the system into small region. When
this region contains sufficient mass, it can become laterally unstable and thus formation of
a peak pattern is “nucleated.” With that, the regional instability at the template edge can
also be understood in terms of lateral excitability. From the perspective of subdomain A,
the differing reaction kinetics in subdomain B induces a perturbation at the subdomain
interface, that is, the template edge (orange line in Fig. 5.4(b)). In that sense, the base
state is a perturbed homogeneous steady state in each subdomain. If in subdomain A,
this perturbation becomes large enough to cross the nullcline in a section of negative slope
(Fig. 5.4(c)), it triggers a lateral instability and thus the formation of density peak at the
template edge. This relationship to excitability highlights that it is the spatial gradient of

(a) Edge sensing (b) No edge sensing

Figure 5.5 | Nullcline criterion for edge sensing, i.e. the emergence of a stable density
peak at the template edge. Edge sensing is possible is the nullclines intersect in a point
where one of them has negative slope (a). If they don’t intersect (b) or intersect in a
point where they have both positive (or both negative) slope, stable peaks only exist
at a system boundary, and hence, edge sensing is not possible.
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the reaction kinetics due to the template that localizes the instability. Heuristically this
can be pictured as sensing the spatial derivative of the template. Here we focussed on a
sharp template edge. For future work, it will be interesting to study also a smooth tem-
plate edge. Intuitively, if the template gradient is too shallow, it will not induce a laterally
unstable region, because the induced deviation from the local equilibria that effectively
acts as the perturbation in the analogy to excitability will be too small.

In conclusion, we showed in this section that the template localizes the patterns and deter-
mines the position of the instability from which they emerge. Importantly, this instability
determines which of the two stable stationary patterns forms when the system passes
through a bifurcation of the base state. Finally, we presented a simple geometric criterion,
shown in Fig. 5.5, that determines when the regional instability is localized at the template
edge.

5.3 Moving template edge

Until now we considered pattern formation with a fixed template edge position xE. We next
ask what happens when xE moves after a peak at the template edge has been established
(Fig. 5.6).

When the template edge moves, the peak must adapt to the new template edge position.
In order to reach the new stationary state, mass must be transported from one side of the
peak to the other. Thus, we expect that the peak follows the template edge position as long
as the mass is transported faster than the velocity vE at which the template edge moves, i.e.
for vE � Dc/w, where w is the width of the peak. To test the intuition for this adiabatic
case, and study what happens in the non-adiabatic case of a fast-moving template edge, we
turn to numerical simulations. To probe a range of template velocities vE, we quadratically
increase the template edge velocity during the simulation. At a distance 0.3L from the
system boundary, the template movement is stopped. Furthermore, we move the interface
either to the right, away from the peak Fig. 5.6(a,c) or to the left, towards the peak
Fig. 5.6(b,d). In the adiabatic case, we find—in agreement with our expectation—that
the peak remains pinned to the template edge position (see Fig. 5.6(a,b) and SI Movies 3
and 4).

In the non-adiabatic case, when the template edge moves faster than the peak can follow
by diffusive mass transfer, the peak position will shift relative to the template edge. We
find that, when the template moves away from the peak (‘pulling’), the peak depins at a
critical velocity and stops following the template edge (see Fig. 5.6(c) and SI Movie 5).
Because peaks in the interior of subdomain A are unstable (cf. Figs. 5.3(a) and 5.12, the
depinned peak will move very slowly either to the domain boundary or to the template
edge (given that the movement of the template edge has stopped). There it reaches the
respective stable steady state, a “boundary peak” or an “edge peak” (cf. Figs. 5.3(a)).
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Figure 5.6 | Time evolution of m-profile due to dynamic template interface position.
The supplementary material contains a movie for each of the four scenarios. (a) Slow
pull (the template edge moves away from the peak): This results in pinning of the peak
to the template edge (see SI Movie 3). (b) Slow push (the template edge moves towards
the peak): This results in pinning of the peak to the template edge (see SI Movie 4).
(c) Fast pull: This results in depinning as the peak cannot follow the template edge.
However, the peak stays where it depins as it is quasi-stable in region A on the observed
timescale (see SI Movie 5). (d) Fast push: This results in suppression as the peak is not
stable in region B. As the peak dissipates the average mass at the new edge position
slowly increases and potentially (if there is enough total mass in the system) leads to
to a re-entrance of the peak (see SI Movie 6).
Parameters: Dm = 0.01, Dc = 10, kon = 1, k̂fb = 1, koff = 2, K̂d = 1, n̄ = 5,
θB = 20, θA = 0.5, L = 20, xE = 3/5L, vE(t) = ±2.4 × 10−14 t2 in (a) and (b),
vE(t) = ±8.9× 10−13 t2 in (c) and (d).
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When the template moves towards the peak (‘pushing’), the peak is suppressed at some
critical edge-velocity (see Fig. 5.6(d) and SI Movie 6). Interestingly, the critical velocity
for depinning while pulling is much lower than the critical velocity for suppression while
pushing.

To heuristically understand this difference of critical velocities, we take a closer look at
how the peak adapts to a shifted template position. Suppose for a moment that we keep
the peak profile frozen while shifting the template edge xE by a small amount δxE. This
will change the local reactions in the vicinity of the template edge. When the peak profile
is now “released”, these reactions will lead to changes in the concentrations m and c, and
hence in the mass-redistribution potential η(x, t) between the original and shifted edge
positions xE and xE + δxE. The resulting η gradient leads to mass transport (Eqs. (1.6)),
which in turn causes a movement of the peak.8 The difference between pulling and pushing,
i.e. moving the template edge away from the peak or towards it, is the amplitude of the η
gradient that builds up as the template edge is shifted. In the case of pulling, the template
edge moves into the flat tail of the peak, such that the η gradient decreases with increasing
distance between peak and template edge. In contrast, while pushing, the template edge
moves into the steep interface of the peak, leading to an continually increasing η gradient.
Only when the template edge has shifted beyond the maximum of the peak, the induced
η gradient starts decreasing again.

This effect qualitatively explains the different critical velocities for depinning (while pulling)
and suppression (while pushing). In the former case the induced gradients in η, and hence,
the rate of mass transport that shift the peak towards the moving template edge are small
and decreasing with peak-to-edge distance. Therefore, depinning is self-enhancing. In the
case of pushing, the η gradient keeps increasing as the peak-to-edge distance decreases.
This in turn, increases the speed of the peak due to faster mass transport. Only when the
template edge has crossed the peak maximum, the peak will be suppressed because it then
lies mostly within the laterally stable subdomain B that does not support a stable peak.

In summary, we showed that in the case of an adiabatically slow template motion, the
peak stays pinned at template edge. In the non-adiabatic case we found a qualitatively
and quantitatively different behavior between pushing and pulling. Pulling leads to de-
pinning, while pushing eventually leads to suppression. Furthermore, we heuristically
explained why critical velocity for pulling (depinning) is lower than the critical velocity
for pushing (suppresion). Going forward, it would be interesting to study this behavior
more systematically, both in numerical simulations and on an analytic level. For example,
concepts like response functions [187], projection onto slow manifolds [176] and singular
perturbation theory [179, 180] may help to estimate the critical velocities for depinning
and suppression.

8A geometric analysis in phase space, similar to the one presented in Figs. 5.2 and 5.3, shows that the η
gradient is always such that the peak moves in the direction that the template edge was shifted, until
it reaches it’s new stationary (pinned) position at the shifted edge position.
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5.4 Discussion

We showed how protein pattern formation can be controlled by a spatial template (e.g. an
upstream protein pattern), which acts on the proteins interaction kinetics. In particular, we
demonstrated for two-component McRD systems how a step-like template—which defines
two subdomains with different reaction kinetics—can localize the formation of a peak
pattern to the template edge. We explained this edge-sensing mechanism by a regional
(mass-redistribution) instability that emerges at the template edge position. This is in
contrast to pattern formation on a homogeneous domain, where the instability is generically
“delocalized” (Fourier modes, cf. Fig. 1.1(d)), such that noisy initial conditions have a
strong impact on pattern formation process.

Our analysis is based on a recently developed theoretical framework [49, 56], termed lo-
cal equilibria theory. This theory proposes to analyze McRD systems as dissected into
diffusively coupled compartments, so small that each of the compartments can be consid-
ered as well-mixed. For the paradigmatic (minimal) case of two-component systems, this
framework enables one to to perform phase-portrait analysis of the interplay between local
reactions and diffusive transport in the phase space of the reaction kinetics. Here, we have
extended this phase-portrait analysis to incorporate the effect of a step-like heterogeneity
of the reaction kinetics in the spatial domain. We were able to construct the bifurcation
diagram for the average mass n̄, which is a natural control parameter as it can be controlled
by production or degradation/sequestration of proteins in cells (e.g. in a cell cycle depen-
dent manner). We found that, at a critical average mass, the system’s base state undergoes
a saddle-node bifurcation, such that the system transitions to a stationary pattern, with
either a peak at the template edge or at the system boundary. The peak forms at the
template edge if the template triggers a regional (mass-redistribution) instability at the
template edge. The phase-portrait analysis enables us to formulate a geometric criterion
for this edge-sensing mechanism. In particular, we show that the step-like template can
trigger a regional instability at the template edge, if the nullclines of the reaction kinetics
in the two subdomains intersect at a point where one of them has a negative slope (more
precisely, a slope steeper than the negative ratio of the diffusion constants, −Dm/Dc), as
illustrated in Fig. 5.5. Finally, we showed that the edge-localized peak is stable when the
template edge is slowly moved and demonstrated that qualitatively different processes—
depinning vs. suppression—lead to the loss of the edge-localized peak when the template
is shifted too rapidly away from the peak (‘pulling’) or towards it (‘pushing’).

We speculate that the edge-sensing mechanism studied here might underly formation of
the actomysin ring during macropinocytosis and cellular wound healing, as well as the
direction of Cdc42 polarization in budding yeast adjacent to the previous bud-site. In
macropinocytosis a high density PIP3 domain has been suggested to act as a template
for a ring of actin nucleators that localize to its periphery [22]. Similarly, during cellular
wound healing, the inside Abr could act as a template for the outside Cdc42 ring which
then drives recruitment of actin via formins [19]. Finally, in budding yeast, landmark pro-
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teins that localize to the previous bud-site can be pictured as a template that suppresses
Cdc42 accumulation at the previous bud-site and simultaneously localizes Cdc42 cluster to
its vicinity [17, 18, 20, 23]. Furthermore, the spatio-temporal organization of intracellular
membranes, like the Golgi apparatus, endosomes, and the endoplasmatic reticulum, in-
volves cascades of coupled GTPases [188–190]. Hence, we speculate that this organization
may rely on similar domain-edge sensing mechanisms.

The edge-sensing criterion (cf. Fig. 5.5) based on the shape of the nullcline, may provide
guidance for the mathematical modeling of these systems and thereby help to identify the
key bio-molecular players and processes. The nullcline shapes of a given model constrain
the ability of this model for edge-sensing. As an example, we showed for an phenomeno-
logical two-component model for Cdc42 pattern formation [91] that edge sensing requires
a template which increases both the attachment and detachment rate of Cdc42 in one
subdomain. Indeed in single-cell wound healing, the protein Abr could provide such a tem-
plate for Cdc42 since it is both a guanine exchange factor (GEF) and a GTPase-activation
protein (GAP) for Cdc42 [19].

Beyond the understanding of living systems, our results may also advance the field of
synthetic biology. Previous studies have explored mechanisms by which a gradient can
position a sharp front pattern via a bistable reaction-diffusion system [157, 191]. The
edge-sensing mechanism, presented in this paper, is a candidate for a further building
block to design spatial protein patterns.

In future studies, it would be interesting to generalize our results beyond the paradigmatic
case of a single, stationary, step-like template in one spatial dimension. Templates with
multiple steps may be dissected into segments with single steps that can then be studied
separately. Furthermore, it has been shown that the geometry of a cell indirectly affect
the attachment–detachment kinetics via the ratio of bulk-volume to surface-area [6, 192],
and curvature sensing proteins [10]. Another promising direction is to incorporate the
dynamics of the template itself as a self-organized pattern-forming system, and include
a feedback from the downstream pattern to the template. Such feedback may give rise
to complex spatio-temporal behavior like oscillatory patterns and traveling waves that
can then be characterized by building on the phase-portrait analysis presented here. Our
results on the moving template (Sec. 5.3) and non-adiabatic upregulation of average mass
(Appendix 5.D) indicate that the edge sensing works beyond the adiabatic regime.

Finally, even for the elementary case studied here, many important questions remain open.
We showed that a moving template will lead to a loss of the edge-localized peak due to
depinning (while pulling) or suppression (while pushing) at different critical edge-velocities.
In future work, these transitions should be studied in more detail both numerically and
analytically, e.g. using a response function formalism [187]. Furthermore, an analytic
approach employing asymptotic methods like singular perturbation theory [176, 179, 180,
183] may help to cast our heuristic explanation of the localized eigenfunction, based on the
concept of regional instability, into a more rigorous argument. Similarly, such an approach
may elucidate the transition from edge-localized peaks to boundary-localized peaks for too
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fast mass upregulation (cf. Appendix 5.D, Fig. 5.10). In general, we expect that combining
mathematical tools like singular perturbation theory with the local equilibria framework
will be a fruitful approach to systematically study complex pattern-forming systems.

Appendices

5.A Reaction kinetics and template definition

Throughout this paper we use a two-component McRD model on a one-dimensional domain
with one protein species (cf. Eq. (1.4a) and (1.4b)). The proteins cycle between a cytosolic
state (concentration c(x, t)) and membrane bound state (concentration m(x, t)) as specified
by the reaction term f(m, c). Importantly, our results are based on the shape of the reactive
nullclines and, hence, don’t depend on the specific choice for f(m, c). To illustrate our
findings, we use biochemically motivated reaction kinetics, comprising attachment, a(m),
and detachment, d(m), reactions

f(m, c) := a(m)c− d(m)m . (5.8)

Specifically we use

a(m) := (kon + kfb m) , (5.9a)

d(m) :=
koff

Kd + m
, (5.9b)

as introduced before in Ref. [56]. These reaction kinetics describe a protein species that
can attach from the cytosol to the membrane with a rate kon and get recruited from the
cytosol to the membrane by membrane bound proteins with a rate kfb. Membrane bound
proteins detach from the membrane via an enzymatic process described by first order
Michaelis-Menten kinetics, parameterized by the rate koff and the dissociation constant
Kd.

We consider systems were the reaction rates are different in subdomains A and B. This
externally imposed heterogeneity was introduced as a step-like template in Sec. 5.1.2 (cf.
Eq. (5.1)). For specificity, we choose a template that affects the reaction rates, such
that the reactive nullcline in subdomain B is stretched along the m-axis with respect to
the reactive nullcline in subdomain A. To that end, we rescale the feedback rate and the
dissociation constant scale with the template value, such that these rates become space
dependent

kfb(x) := k̂fb/θ(x), (5.10a)
Kd(x) := K̂d θ(x). (5.10b)
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The reaction term then becomes

f(m, c; θ) =

(
kon + k̂fb

m

θ(x)

)
c−

koff
m

θ(x)

K̂d +
m

θ(x)

. (5.11)

For convenience, we do not specify units of length and time. In an intracellular con-
text a typical size would be L ∼ 10 µm, and typical diffusion constants are Dm ∼
0.01−0.1 µm2s−1 on the membrane and Dc ∼ 10 µm2s−1 in the cytosol. Rescaling to
different spatial dimensions is straightforward. To fix a timescale, the kinetic rates can
be rescaled with respect to the attachment rate kon. In an intracellular context, typical
attachment timescales are on the order of seconds, i.e. kon ∼ s−1.

5.B Nullclines without edge-sensing

In Sec. 5.2.3 in the main text, we analyzed the edge-sensing mechanism based on the
reactive nullclines in phase space. In this analysis, the effect of the heterogeneous reaction
kinetics, i.e. the template, is captured by the shapes of the reactive nullclines. From our
analysis, we found a criterion for the edge-sensing mechanism, as illustrated in Fig. 5.4.
The nullclines need to intersect at a point where only one nullcline is steeper than FBS
(cf. Eq. (1.11)).

In this appendix, we discuss a case where the criterion for edge sensing is not fulfilled, such
that a localization of the regional instability to the edge is not possible, and a peak at
the template edge does not exist (cf. Fig. 5.5(b)). As an example, we consider a template,
affecting the reaction kinetics such that the nullcline is stretched along the c-axes instead
of the m-axis, as shown in Fig. 5.7(b).

For the specific attachment–detachment reaction kinetics (Eq. (5.9)), the nullclines is
stretched along the c-axis via the off-rate while keeping all other rates constant:

koff(x) := k̂off θ(x). (5.12)

The resulting reaction term then reads

f(m, c; θ) = (kon + kfb m) c− θ(x)
k̂off m

Kd +m
. (5.13)

Following the same arguments as presented in Sec. 5.2.1,we can construct the base states
(monotonic steady state). Starting from the low-mass base state, illustrated in Fig. 5.7(a),
and increasing the average mass n̄ results in an upwards shift of the FBS by the same
argument as presented in Sec. 5.2.1. When the mass is further increased the FBS moves
to the level where the two FBS-NC intersection points on the A-nullcline, m−

A and m0
A,

annihilate in a saddle-node bifurcation, as shown in Fig. 5.7(b). If η0 increases beyond
that point, the base state vanishes. Note that the origin of the saddle-node bifurcation
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Regional lateral
instability

(a) Low-mass base state (b) Base-state bifurcation

Figure 5.7 | Base states for nullclines shapes that do not facilitate edge-sensing. (a)
The low-mass base state with a high-concentration plateau in subdomain A and a low-
concentration plateau in subdomain B. (b) At a critical average mass, the base state
undergoes a saddle-node bifurcation. The bifurcation arises from the ‘annihilation’ of
the FBS-NC intersection point m−

A and m0
A, and not from the break down of turnover

balance as discussed in Sec. 5.2.3 the main text. In this case, a regional instability is
triggered at the system boundary. An adiabatic sweep of n̄ through the saddle-node
bifurcation of the FBS-NC intersection points is shown in Supplementary Movie 7.

lies in the annihilation of the two FBS-NC intersection points. This is different from the
saddle-node bifurcation that occurs for the nullclines we analyzed in Sec. 5.2.1 in the main
text. There, the base state vanishes due to a breakdown of total turnover balance which
becomes apparent by the ‘annihilation’ of the two solutions for mE of Eq. (5.4); cf. Fig. 5.2.

To study the dynamics in the vicinity of the base state bifurcation, we use the concept
of regional instability (cf. Sec. 5.2.3). The part of the density distribution that enters the
laterally unstable region in phase space corresponds to the concentration at the left hand
system boundary (x = 0) (Fig. 5.7(b)). Hence, upon crossing the base state’s saddle-node
bifurcation, a regional instability emerges at this system boundary, and a peak forms there.

Moreover, for nullclines shown in Fig. 5.7, there is only one way to construct a stationary
pattern with a single interface (inflection point) within subdomain A (in addition to the
interface imposed by the template step). This pattern always has a density peak at the
system boundary (x = 0) and decreases monotonically in space towards x = L. A stable
peak localized to the template edge does not exist in this case.

5.C Temporal variation of the template

In Sec. 5.2 in the main text, we considered upregulation of average mass n̄ while the spatial
template was kept constant. One can perform a similar analysis for a varying template,
while keeping the average mass constant. In this scenario, not n̄ but the parametrization
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Regional lateral
instability

(a) (b) (c) (d)

Figure 5.8 | An adiabatically changing template triggers peak formation at the
template edge. See also Supplementary Movie 8.
(a) Initial state with a homogeneous template profile θA = θB. (b) Base state analogous
to Fig. 5.2. (c) Base state right before the saddle-node bifurcation. The region that
becomes laterally unstable in the bifurcation is highlighted in light green in the spatial
profile and in phase space (cf. Fig. 5.4). (d) Peak pattern state after the system
transitioned through the bifurcation. This state is qualitatively the same as sketched
in Fig. 5.3(c).
Parameters as in Fig. 5.6 but with L = 5, θB = 20, and θf

A = 0.5.

of the template (e.g. θA) serves as a bifurcation parameter. In the biological context, this
corresponds to a dynamically varying upstream protein pattern.

To demonstrate that varying the template induces equivalent bifurcations as variation of
the average mass, we use the template as in the main text (cf. Eq. (5.11)) and perform a
numeric simulation where we let the template θ(x, t) slowly vary with time (for simplicity
only in subdomain A):

θ(x, t) =

{
θA(t) x ≤ xE,

θB x > xE.
(5.14)

We initialize the template value in subdomain A at θA(0) = θB and let it change via a
sinusoidal ramp to its final value θA(tf) = θf

A.

An exemplary simulation is shown in Fig. 5.8 and Supplementary Movie 8. At the start of
the simulation, the reaction rates, and thus the reactive nullclines, are the same in subdo-
main A and subdomain B, which is illustrated by the overlapping nullclines in Fig. 5.8(a).
The template is homogeneous, and the corresponding steady state is a homogeneous density
profile for sufficiently low average mass. Upon decreasing θA, the reaction rates in sub-
domain A change, leading to a change in the shape of the reactive nullcline (Fig. 5.8(b)).
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The resulting base state is equivalent to the low-mass base state, similar to the case for
mass upregulation analyzed in Sec. 5.2.1. When θA is further decreased, the density profile
becomes regionally unstable at the template edge(Fig. 5.8(c)), which triggers a peak at the
template edge (Fig. 5.8(d)). This shows that the pattern formation process as discussed
in the main text can also be realized with a dynamic template.

5.D Non-adiabatic mass upregulation

In Sec. 5.2 in the main text, we analyzed the steady states as a function of average mass
and found that the system undergoes a transition from base states to patterns through a
saddle-node bifurcation. To analyze how the patterns emerge as the system goes through
this bifurcation, we performed numerical simulations where we adiabatically increased the
average mass by a global cytosolic source with rate κs

∂tc = Dc ∂
2
xc− f(m, c) + κs, (5.15)

which entails ∂tn̄ = κs. In this appendix, we explore the emergence of patterns when the
average mass is non-adiabatically increased beyond the base-state bifurcation. We initialize
the system at zero mass and increase mass up to a value n̄f within the regime where no
base state exists. Varying the rate of mass inflow κs, we find six regimes with qualitatively
different transient dynamics (see Supplementary Movies 9-14). Below, we briefly describe
the observed dynamics of the density profile in real space in these regimes going from slow
to fast κs. We then use the (m, c)-phase space and the concept of regional instability (cf.
Sec. 5.2.3) to heuristically explain the observed dynamics.

1. Template-edge peak. For small κs, a density peak emerges at the template edge, even
though the density profile does not relax to a quasi-steady state. This highlights that
the edge-sensing mechanism is robust against rate of mass inflow. (Supplementary
Movie 9)

2. Transition regime. Here, we observe two peaks emerging simultaneously, one at the
outer boundary of subdomain A and one at the template edge. This is an intermediate
regime between the boundary peak regime (3) and the template edge peak regime
(1), as both peaks emerge simultaneously. (Supplementary Movie 10)

3. System-boundary peak. Here, we observe one peak forming at the system boundary
at x = 0. (Supplementary Movie 11)

4. Sequential peak formation. First, a peak forms at the domain boundary of subdomain
A, as in the system- boundary peak regime (3). Then, after the first peak already
formed, another peak forms at the template edge as in regime (1).(Supplementary
Movie 12)



108 5. Spatial derivative

5. Multiple peaks. Here, the pattern-formation process is very similar to the system-
boundary peak regime (3). However, multiple peaks form at the outer boundary of
subdomain A simultaneously. (Supplementary Movie 13)

6. Quenched system. Here the mass is upregulated almost instantaneously, κ−1
s → 0,

which is equivalent to a system initialized with the complete mass in the cytosol.
This results in a sequence of peaks forming in subdomain A, starting from the tem-
plate edge in a process akin to front invasion into an unstable state [51, 193, 194].
(Supplementary Movie 14)

Note that all states with multiple peaks (corresponding to multiple inflection points of the
pattern profile in subdomain A) are unstable due to coarsening. The final steady state is
always a pattern with a peak either at the template edge or at the system boundary x = 0.

In Sec. 5.2.3 and Appendix 5.B, we showed that the formation of a density peak is deter-
mined by the position of a regional instability, when the system is in quasi-steady state.
The position of the regional instability can be found from a phase portrait analysis, since
the nullcline slope criterion (cf. Eq. (1.11)) determines which part of the density profile
becomes unstable. To use the same heuristic for understanding the formation of these tran-
sient peaks, we analyze the density distribution in phase space obtained from numerical
simulations in these non-adiabatic regimes. When mass is added to the system on a faster
timescale than it can relax to its steady state, the density distribution in phase space is no
longer embedded in a single FBS. Instead, the density distribution in phase space follows a
‘zig-zag’ shape, as illustrated in Fig. 5.9. This indicates that the density in the vicinity of
the template edge is still embedded in a FBS, with offset ηint, but the density far away from
the template edge deviates from this FBS. Instead, these ‘quasi-plateaus’ are slaved to the
nullcline which indicates that they are locally close to reactive equilibrium, and that their
relaxation is limited by diffusive mass transport. Accordingly, for faster inflow of mass, the
zig-zag shape is more pronounced—that is, the quasi-plateaus deviate more from ηint. If
inflow of mass is faster than diffusive transport across the quasi-plateaus, a region at the
system boundary in subdomain A enters the lateral unstable region in phase space first, as
illustrated in Fig. 5.9(b). This leads to the emergence of a peak at the system boundary in
regime (3), and to more complex pattern formation in regimes (4)–(6). In the transition
regime (2), mass inflow and mass transport roughly balance, such that a region at the
system boundary and a region at the template edge enter the laterally unstable region in
phase space at the same time.

The (L2/Dc, κ
−1
s )-phase diagram shown in Fig. 5.10 confirms the intuition that pattern

emergence depends on the competition between the time scales of mass inflow, κs, and
diffusive mass transport across the system ∼L2/Dc. Indeed, the regime boundaries in the
phase diagram are roughly straight lines emanating from the origin. In particular, the
transition from a ‘template-edge peak’ to a ‘system-boundary peak’ corresponds to a line
κ−1

s ≈ L2/Dc. This confirms the intuition that edge sensing is only possible when the
inflow of mass into the system is slower than the timescale of diffusive mass transport. For
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(a) (b)

Regional lateral instability

 

Figure 5.9 | Effect of non-adiabatic mass upregulation on the pattern formation
dynamics. (a) Peak formation at the template edge: The density distribution is not
embedded in a single FBS, leading to the ‘zig-zag’-shaped density distribution in phase
space. The regional instability is still triggered at the template edge, as highlighted
by the (green) shaded region. (b) Peak formation at the system boundary: The faster
mass-inflow leads to a more pronounced ‘zig-zag’-shaped density distribution in phase
space. The regional instability is now first triggered at the system boundary. This
results in a peak forming at the system boundary as shown in Fig. 5.3(b).

comparison, in an intracellular context one has L ≈ 10 µm and Dc ≈ 10 µm2s−1, such
that the timescale of mass transport across the cell is on the order of seconds. This is
fast compared to changes in average protein concentrations (for instance, due to protein
expression or release from the nucleus). Hence, the edge-sense mechanism is a realistic
candidate for template guided intracellular pattern formation.

5.E Numerical continuation, steady state construction and
bifurcation scenarios

Numerical continuation. — To numerically calculate steady state solutions of the two-
component McRD system (Eq. (1.4)), we choose a finite-difference discretization of the
PDEs. For steady states, this yields an algebraic system of equations that can be solved
with an iterative Newton method. The basic idea of numerical continuation is to follow
a solution branch through parameter space (see for instance, Ref. [185] for an excellent
overview over continuation methods). This “path-following” is often performed by emply-
ing a predictor-âcorrector scheme: Starting from one solution, the next solution along the
branch is predicted from the tangent space of the solution branch which can be obtained
from the Jacobian.

Steady state construction and finite domain size effects. — In order to test the geometric
constructions introduced in Sec. 5.2 we characterize the steady state of the system with
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Figure 5.10 | Phase diagram for the timescale of mass upregulation (global cytoso-
lic inflow κ−1

s ) against the timescale of mass-redistribution across the entire domain
(L2/Dc). Edge sensing, i.e. formation of a single density peak a the template edge, is
operational in regime (1), see Supplementary Movie 9. In regimes (2)-(6) a peak at the
system boundary (x = 0) or multiple peaks form, see Supplementary Movies 10-14.
Parameters: Dm = 0.01, Dc = 10, kon = 1, k̂fb = 1, koff = 2, K̂d = 1, θA = 0.5,
θB = 20, xE = 3/5L, n̄f = 5.

the quantity m∗
E−mB, which must be negative for low-mass base states (monotonic steady

states in the low-mass regime, cf. Sec. 5.2.1) and positive for non-monotonic steady states
(stationary peak pattern localized at the template edge, cf. Sec. 5.2.2). We perform
numerical continuation and compare the results from the simulation (solid lines in Fig. 5.11)
with the approximation from the geometric construction (red dots and dash-dotted line).
The geometric construction serves as a good approximation for the steady for sufficiently
large system sizes.

Also note that for small system sizes the base state smoothly transitions into the pattern
state (purple line corresponding to L = 5 in Fig. 5.11).

Bifurcation scenario. — The bifurcation scenario connecting the base state and the pat-
terns can be understood as a series of imperfect subcritical pitchfork bifurcations. The
imperfection is caused by the template that breaks mirror symmetry of the system. On a
homogeneous domain (i.e. without a template), the bifurcations from homogeneous steady
state to patterns are subcritical pitchfork bifurcation that become supercritical for small
system sizes / large wavenumbers [56]. A more detailed analysis of the bifurcation scenario
induced by the step-like template is left for future work. One interesting starting point
would be to analyze the two-parameter bifurcation diagram in the (n̄, θA)-plane, where the
line θA = θB correspond to the homogeneous domain. Alternatively, one can investigate
the bifurcation scenario in the template edge position (i.e. the (n̄, xE) parameter plane),
where xE = 0 and xE = L correspond to homogeneous domains.
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Figure 5.11 | One-parameter bifurcation structure in n̄ (average mass) connecting the
low-mass base state (monotonic, i.e. mE < mB and the peak pattern at the template
edge (non-monotonic, i.e. mE > mB). Solid (dashed) lines indicate stable (unstable)
branches from numerical continuation for different domain sizes (increasing from dark
to light lines). The corresponding steady state profiles are shown in Movies 15 and 16,
for domain sizes L = 10, 40. Solutions from the analytic construction of base states
in the large domain size limit (L → ∞) are shown as red dots and (position of the
saddle-node bifurcation denoted by n∞

bs). Note that for small domain size (L = 5), the
saddle-node bifurcations vanish and the base state smoothly transitions into a stable
peak pattern upon increasing n̄. The red, dash dotted line indicates the analytically
constructed edge-localized pattern (limit L → ∞). The lower bound in average mass
for the existence of these patterns is denoted by n∞

pattern.
Fixed parameters as in Fig. 5.3(a).

Unstable multi-interface patterns. — The dotted branches in the bifurcation structure Fig. 5.3(a)
correspond to patterns with multiple self-organized interfaces (i.e. more than two inflec-
tion points in the spatial profile, since the template edge enforces one inflection point at
xE). Figure 5.12 shows spatial profiles at the numbered points in Fig. 5.3(a) representa-
tive for the respective branches. The spiral structure of the bifurcation structure reflects
an increasing number of of peaks from the outside to the center of the spiral. For the
branches numbered 1-3 (4-6) the concentration difference m∗

E −mB is positive (negative),
corresponding to a peak (trough) at the template edge.

All multi-interface patterns are unstable due to a competition for mass and decay into one
of the two stable patterns, with a peak either at the system boundary or at the template
edge, in a coarsening process.
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Figure 5.12 | Spatial profiles representative of the unstable branches numbered (1-6)
in the n̄-bifurcation diagram Fig. 5.3(a).
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Figure 5.13 | Demonstration of the edge-sensing criterion for a phenomenological
model for Cdc42 pattern formation. (a) Nullclines of the reaction kinetics Eq. (5.16)
in subdomains A (orange) and B (blue), defined by the reaction rates in Eq. (5.19).
Multiple B-nullclines are shown for off-rate factors γoff = 1, 1.5, . . . , 5 while the on-rate
factor is fixed at γon = 8. The critical values γ±off between which the A-nullcline is
intersected at negative slope (i.e. the edge-sensing criterion is fulfilled) are shown as
dashed and dash-dotted lines respectively. (b) Phase diagram of on- and off-rate factors
(γon, γoff). The shaded region shows the regime where edge-sensing is observed in nu-
merical simulations with adiabatically increasing average mass (cf. Eq. (5.15)). Dashed
red lines show the curves γ±off(γon), cf. Eq. (5.21), between which the edge-sensing
criterion is fulfilled. (c) Quasi-stationary density profiles obtained from numerical sim-
ulations with adiabatically increasing average mass n̄ illustrating the typical pattern
emerging from the base-states’s saddle-node bifurcation in the three regimes of the
(γon, γoff) phase diagram (γon = 8; top: γoff = 5.5, n̄ = 2.9; γoff = 3, n̄ = 2.35; bottom:
γoff = 1.5, n̄ = 2.24.). Fixed parameters: kfb = 1, kon = 0.07, koff = 1, Dm = 10−4, Dc =
0.1, L = 1, xE = 0.5, κs = 10−5.
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5.F Demonstration of the edge-sensing criterion

To illustrate how the edge sensing criterion might help in modeling of biological systems
we consider a concrete biological example. Cdc42 pattern formation is described by a
phenomenological two-component model of the form Eq. (1.4) with the reaction kinetics
[91]

f(m, c) =

(
kon + kfb

m2

1 +m2

)
c− koffm (5.16)

The nullcline c∗(m) determined by f(m, c∗(m)) = 0 has a section of negative slope for
kfb > 8kon in the interval [mmax,mmin] given by

mmin,max =

√
1

1 + kon/kfb

(
1∓ ν

2
− kon

kfb

)
(5.17)

with

ν =

√
1− 8

kon

kfb
. (5.18)

Since cytosolic diffusion is multiple orders of magnitude faster than diffusion of membrane
bound Cdc42, we consider the limit Dc � Dm where the FBS-slope is zero. Then the
criterium for lateral instability is that the nullcline slope be negative ∂mc

∗(m) < 0; and
the edge-sensing criterion is that nullclines must intersect at a point where one of them
has negative slope.

In cellular wound healing, Abr forms a ring of high concentration around the wound edge,
followed by the formation of a Cdc42 ring around the Abr ring [19]. Cdc42 then activates
the actomyosin machinery that drives the contraction of the cell membrane to close the
wound. Protein mutation on Abr and Cdc42 studies suggest that the high density Abr ring
acts as a template for Cdc42 [19]. Furthermore, it has been shown that Abr acts as both a
nucleotide exchange factor (GEF) and a GTPase-activating protein (GAP) for Cdc42 [19].
We therefore model the effect of Abr on the Cdc42 kinetics as a factor increasing both the
attachment rate kon and the detachment rate koff. The reaction terms in the two subdo-
mains with low and high Abr density, are thus defined as fA,B(m, c) = f(m, c; kA,B

on , kA,B
off )

with

kA
on = kon, kB

on = γonkon, (5.19)
kA

off = koff, kB
off = γoffkoff, (5.20)

where the factors γon, γoff > 1 encode the relative enhancement of attachment and detach-
ment rates in subdomain B compared to subdomain A.

The edge-sensing criterion (nullclines intersect at a point where the A-nullcline has negative
slope) is fulfilled when the intersection point (mi, ci) of the two nullclines, defined by
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fA(mi, ci) = 0 & fB(mi, ci) = 0, lies in the range [mmax,mmin] (see Fig. 5.13(a)). Solving
these equations for γoff, we find that nullclines fulfill the edge-sensing criterion when γoff
lies in the range [γ−

off, γ
+
off] as a function of γon:

γ±
off(γon) =

1

1 + kfb/kon

(
kfb

kon
+

2

ν ∓ 1
+ γon

ν ∓ 3

ν ∓ 1

)
. (5.21)

Note that γ±
off(1) = 1 corresponds to the singular case where the template has no effect,

i.e. the reaction kinetics in the two subdomains are identical. The dashed, red lines in
Fig. 5.13(b) show the curves γ±

off(γon) that delineate the regime where the edge-sensing
criterion is fulfilled.

To test the criterion, we ran numerical simulations, for different combinations (γon, γoff).
In each simulation, the average mass is adiabatically increased at a rate κs = 10−5, cf.
Eq. (5.15).

We find three different types of patterns emerging from the base-states’s saddle-node bi-
furcation. Examples of these are shown in Fig. 5.13(c). The regime where we find edge-
localized peaks agrees well with the prediction from the geometric edge-sensing criterion
(shown as dashed, red lines in (b)).

Interestingly, the (γon, γoff)-phase diagram shows that both attachment and detachment
need to be enhanced in subdomain B. This implies that proteins, like Abr, that have both
GEF- and GAP-catalytic domains may play a crucial role for edge sensing by GTPases.



6 Decoding cell shape information

“Simplicity is the final achievement.
After one has played a vast quantity of notes and more notes,
it is simplicity that emerges as the crowning reward of art.”

– Frédéric Chopin

Many cellular processes rely on precise positioning of proteins on the membrane. Such
protein patterns are susceptible to cell-shape changes, raising the question of how these
patterns can robustly regulate cellular tasks including cell division. Here, we elucidate
a shape-adaptation mechanism that robustly controls spatiotemporal protein dynam-
ics on the membrane despite cell-shape deformations. By combining experiments on
starfish oocytes with biophysical theory, we show how cell-shape information con-
tained in a cytosolic gradient can be decoded by a bistable regulator of Rho. In turn,
this bistable front precisely controls a mechanochemical response by locally trigger-
ing excitable dynamics of Rho. We posit that such a shape-adaptation mechanism
based on a hierarchy of protein patterns may constitute a general physical principle
for cell-shape sensing and control.

This chapter is based on our paper “A hierarchy of protein patterns robustly decodes cell
shape information”, which has been published in Nature Physics [143]. This work has been
performed together with Tzer Han Tan, Fridtjof Brauns, Jinghui Liu, S. Zachary Swartz,
Erwin Frey, and Nikta Fakhri
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6.1 Shape adaptation mechanism

Cellular protein patterns emerge from a combination of protein interactions, transport,
conformational state changes, and chemical reactions at the molecular level [106]. Recent
experimental and theoretical work clearly demonstrates the role of geometry and flows –
including membrane curvature [57, 195, 196], local cytosolic-to-membrane ratios [6, 197]
and advective cortical flow – in modulating membrane protein patterns. Given that diverse
biological processes, such as cell division [198–200], cell motility [201], wound healing [202]
and tissue folding [203, 204], rely on precise spatiotemporal organization of regulatory
proteins on the membrane, how can these patterns form robustly in the face of dynamic
cell-shape changes during physiological processes?

Here, we uncover such a mechanism using the oocytes of the starfish Patiria miniata as
a model system. In these oocytes, the cell shape is dynamically deformed by surface
contraction waves (SCWs) that travel along the membrane from the vegetal pole (VP) to
the animal pole (AP) during meiotic anaphase (Fig. 6.1a and b). While SCWs are observed
in many species [205–209], their functional role is still under debate [28, 210]. SCWs
are induced by the GTPase Rho, which, when GTP-bound, locally triggers actomyosin
contractility, thus generating a zone of surface contraction that travels as a band across
the membrane (Fig. 6.1c, movie S1) [144]. When the mechanical properties of the oocyte
surface are altered by removing the extracellular jelly layer, the degree of deformation
becomes larger and, remarkably, the SCW slows down (Fig. 6.1d). The same effect was
previously observed when myosin contractility was increased to amplify shape deformations
[152]. These observations establish the starfish oocyte as an ideal model system to unravel
the dynamic interplay between cell shape and biochemical dynamics.
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Figure 6.1 (previous page) | Contraction waves in starfish oocytes confined
in compartments with different geometries. a, Differential interference contrast
(DIC) images of a surface contraction wave (SCW) traveling from the vegetal pole (VP)
to the animal pole (AP) during meiotic anaphase I. b, Kymograph of the SCW trac-
ing cell surface curvature. c, Kymograph showing the distribution of active Rho-GTP
(labeled with rGBD-GFP) which coincides with the SCW (movie S1). d, Contraction
wave speed plotted as a function of curvature change. Error bars indicate standard de-
viation (see Method). e, Schematic of the confinement experiments. f-i, Representative
confocal cross-sections of Rho (top left) and DIC (top right) images, and membrane
Rho kymographs of oocytes confined in different geometries. (f) Ellipse with AP at
the tip (N=4). (g) Ellipse with AP on the long side (N=4). (h) Triangle (N=6). (i)
Star (N=2) (movies S2 to S5 ). White dotted circles indicate positions of nucleus. j-o,
Spatiotemporal gradient of Cdk1-cyclinB in wildtype (circular) and elliptical oocyte.
(j, m) Confocal cross-sections of Cdk1-cyclinB distribution in wildtype oocyte (movie
S6, N=3) and elliptical oocyte with AP on the long side (movie S7, N=2). (k, n) Cdk1
distribution along the membrane at three different time points. The times t1, t2, and
t3 are 100s, 400s, and 700s after the first wave initiation. (l, o) Kymographs of the
membrane Cdk1 gradient during passage of the SCW in wildtype and elliptical oocyte.
The dotted line indicates the position of Rho-GTP band estimated from cell surface
deformation (see Method). Cdk1-cyclinB intensity is normalized to the value at the
initiation point of the first wave. All white scale bars represent 50 µm.

To investigate how the Rho dynamics is affected by cell shape, we confine the oocytes in
microfabricated chambers of various shapes during anaphase (Fig. 6.1e). We find that shape
affects both the initiation and the propagation speed of the Rho-GTP band. Specifically,
we observe that the Rho-GTP band always initiates from regions of high curvature, which
we refer to as corners (red arrowheads, Fig. 6.1, f to i, movies S2 to S5). Moreover, in
elliptical (Fig. 6.1g ) and triangular (Fig. 6.1h ) geometries, multiple wave initiations occur,
with the first starting from the corner furthest from the nucleus (red asterisks). In the star
geometry, where two such corners are present, wave initiations occur simultaneously from
both corners (red asterisks, Fig. 6.1i ). Strikingly, these waves propagate with varying
speeds on different sections of the membrane such that they always meet closest to the
nucleus (AP). This suggests that wave initiations and propagation are globally coordinated.

Motivated by recent experimental evidence that the Rho-GTP band is guided by a tem-
porally decaying cytosolic gradient of the kinase-active Cdk1-cyclinB complex [144], we
hypothesize that Cdk1-cyclinB provides this global coordination, analogous to positional
information in morphogenesis [211]. In unconfined oocyte, the Cdk1-cyclinB forms a cy-
tosolic gradient that is high at the AP and low at the VP (Fig. 6.1j-l, movie S6). To test
how cell shape modulates this gradient, we imaged the evolution of the Cdk1-cyclinB con-
centration gradient (in short: cytosolic Cdk1 gradient) in different cell shapes (Fig. 6.1m ,
movies S7 to S9). In all cell shapes tested, this gradient extends radially from the AP into
the cytoplasm (Fig. 6.1, j and m ). Consequently, the gradient perceived along the mem-
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brane (in short: membrane Cdk1 gradient) depends on the membrane orientation relative
to the Cdk1 cytosolic gradient. In an elliptical geometry, the membrane Cdk1 gradient
is shallow at the corners (C1 and C2) but steeper in the middle of the elliptically-shaped
oocyte (Fig. 6.1m-o). These results demonstrate how the membrane Cdk1 gradient encodes
information about cell shape.

In the different cell shapes, the Cdk1-cyclinB concentration is always lowest at corners,
which precisely coincides with the wave initiation points (Fig. 6.1o ). This is consis-
tent with prior work indicating that the Rho-GTP band originates at the point of lowest
Cdk1-cyclinB concentration in unconfined oocytes21. Furthermore, our experiments show
that, as the Cdk1 gradient decays, the Rho-GTP band (as indicated by the SCW) follows
an isocline of the Cdk1-cyclinB concentration, such that multiple waves arrive at the nu-
cleus simultaneously. Hence, the Rho-GTP band on the membrane must follow a specific
concentration of the decaying membrane Cdk1 gradient.

How can the Rho-GTP band be coupled to a particular level of Cdk1-cyclinB? A likely
molecular link between the Cdk1 gradient and the Rho-GTP band is the Rho guanine
nucleotide exchange factor (GEF) Ect2, which activates Rho (Fig. 6.2a). Cdk1-cyclinB
phosphorylates Ect2, which has been suggested to decrease its membrane affinity [149].
Moreover, it has been reported that Ect2 over-expression induces a propagating front of
Rho-GTP spirals instead of a Rho-GTP-band [145] (Fig. 6.2b-c, movie S10). When we
imaged the fluorescently-tagged Ect2 , we observed that an Ect2 front coincides with the
Rho-GTP band (Fig. 6.2d-e, movie S11). We hypothesize that the Ect2 front follows a
threshold of Cdk1-cyclinB concentration and that the Ect2 front, in turn, regulates the
downstream Rho dynamics. To test these hypotheses, we simultaneously imaged Ect2
and Rho. Indeed, we find that the domain of high Ect2 concentration coincides with the
domain of Rho spirals (dashed line in Fig. 6.2f , movie S12). Furthermore, simultaneous
imaging of Ect2 and Cdk1-cyclinB confirmed that the Ect2 front approximately follows a
single Cdk1-cyclinB level (dashed line in Fig. 6.2g , movie S13).

Taken together, this suggests that the propagating Rho-GTP band is a result of the follow-
ing hierarchy of protein localization patterns (Fig. 6.2h): Cdk1-cyclinB forms a cytosolic
gradient in the cell, which serves as a spatial map to guide a front of Ect2 by localizing
the front interface to a threshold Cdk1-cyclinB level. The Ect2 front demarcates a domain
of high and a domain of low Ect2 concentration, providing a spatial cue for the Rho-GTP
band on the membrane. This cue leads to a Rho-GTP band at the interface of the Ect2
front in the wild type, or Rho spirals in the high concentration domain when Ect2 is over-
expressed. Since the position of the two Ect2 domains are determined by the Cdk1-cyclinB
threshold concentration, the propagation of the Rho-GTP band is ultimately controlled by
the degradation of Cdk1-cyclinB. To elucidate the underlying physical mechanism of this
Cdk1-Ect2-Rho pattern hierarchy, we propose a reaction-diffusion model with two distinct
modules. First, we demonstrate how the Ect2 front controls the downstream Rho-GTP
band and spiral front dynamics. We then propose a mechanism for how the membrane
Cdk1 gradient controls the position of the Ect2 front.
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Figure 6.2 | The Cdk1-Ect2-Rho pattern hierarchy. a, Biochemical interaction
network of the signaling molecules controlling SCW in starfish oocyte. b-e, Snap-
shots of the Rho spiral front (b) and the cumulative intensity difference of the Ect2
front (d) on the membrane during SCW propagation in an Ect2-overexpressing oocyte
(movie S10-S11). The kymographs show the Rho signal (c) and the cumulative in-
tensity difference of Ect2 (e) within a narrow region around the AP-VP axis during
SCW propagation (white dashed boxes in (b) and (d) respectively). Grey dashed line
in (d) marks the boundary of the cell. Scale bars in (b) and (d) represent 50 µm.
f, Kymographs of Ect2 and Rho concentrations along the membrane of an oocyte ex-
pressing both rGBD-GFP and Ect2-mCherry during SCW propagation (movie S12).
g, Kymographs of Cdk1-cyclinB and Ect2 concentration along the membrane of an
oocyte expressing both cyclinB-GFP (a marker for Cdk1 activity) and Ect2-mCherry
during SCW (movie S13). The Cdk1-cyclinB intensity is normalized the same way
as in Fig. 6.1l. Grey dotted lines in (f) and (g) are guides for the eyes showing ap-
proximately the front positions. h, Schematic showing how the spatial distributions
of Cdk1-cyclinB (top), Ect2 (middle) and Rho (bottom) proteins couple to each other
during SCW propagation.
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Figure 6.3 | Model of Rho dynamics. a, Schematic of the reaction-diffusion dy-
namics of Rho proteins in different Ect2 subdomains. b, The Ect2 front, serving as
an input to the model, effectively increases the nucleotide exchange rates, thus activat-
ing Rho. Viewed from a single membrane position, the Ect2 concentration suddenly
increases as the Ect2 front passes by. c-e, With local excitable dynamics, the sudden
increase in Ect2 (c) leads to a large excursion of the dynamics in phase space (d), re-
sulting in a transient increase in the Rho-GTP concentration on the membrane (e). f,
Snapshot of a finite-element simulation of the Rho-GTP band traveling over the surface
of a three-dimensional sphere (movie S14), with the accompanying kymograph of the
traveling Rho-GTP band. g, Rho-GTP band width versus propagation speed in oocytes
confined to three different geometries. The band width is calculated as the product of
excitation time and propagation speed. Error bars indicate standard deviation. h-j,
With local oscillatory dynamics, the increase in Ect2 (h) leads to oscillations along a
limit cycle in phase space (i), resulting in oscillatory Rho dynamics (j). k, Snapshot
of a finite-element simulation of the Rho spiral domain traveling over the surface of
a three-dimensional sphere (movie S18), with the accompanying kymograph of Rho-
GTP spirals. See Methods and Table S1 and S2 in the SI for the model equations and
parameters used in (f) and (k).
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The first module of our model captures key features of the Rho GTPase cycle [148,
158] (Fig. 6.3a, Figs. 4.1 and 4.2). In its inactive GDP-bound state, Rho can either
be membrane-bound or cytosolic (GDI-bound). Once bound to the membrane, Rho-GDP
can undergo nucleotide exchange which converts it into an active GTP-bound state, a
process mediated by GEFs. When Rho-GTP is hydrolyzed by GTPase-activating proteins
(GAPs), it detaches from the membrane. The GEF Ect2 front demarcates subdomains on
the membrane with high and low nucleotide exchange rates (Fig. 6.3a, Figs. 4.5 and 4.7;
see also Sec. 4.4-4.7). Thus, viewed from a position on the membrane, the passing Ect2
front induces a sudden increase in the nucleotide exchange rates (Fig. 6.3, b and c). Can
such an increase lead to the observed Rho-GTP band? As the Ect2 increase shifts the
steady-state concentration of Rho-GTP upwards, one might, at first glance, assume that
this merely translates the Ect2 front into a Rho-GTP front. However, this focus on steady
states assumes an instantaneous response and thus overlooks the transient dynamics, which
can be qualitatively different when the increase in the Ect2 concentration occurs suddenly
(Fig. 4.8). Consider an initially low Ect2 concentration, such that most Rho is in the
inactive GDP-bound form (point 1, Fig. 6.3, d and e). A sudden increase in the Ect2
concentration then shifts the steady state towards a (slightly) increased Rho-GTP and de-
creased Rho-GDP concentration on the membrane (from point 1 to 3 in Fig. 6.3d). Owing
to the positive feedback on Rho activation, the Rho concentrations do not relax directly
into the new steady state, but transitions to it via a large excursion in phase space; in other
words, the Rho dynamics is excitable (Figs. 4.3 and 4.4, and Sec. 4.4 and 4.5). The large
excursion in phase space corresponds to a transient increase in the Rho-GTP concentration
on the membrane (point 2 in Fig. 6.3, d and e). Thus, the time differential of the local Ect2
concentration, rather than the absolute Ect2 level, induces the large transient increase in
Rho activation.

As the Ect2 front moves along the membrane, it continuously triggers such local excitations,
resulting in a spatially localized band of Rho activity that follows the Ect2 front (Fig. 6.3f,
movie S14). Consequently, this model predicts that the width of the Rho-GTP band is
given by the product of the excitation time and the propagation speed. We confirm this
numerically using finite element simulations of the system in different geometries (movies
S15-S17). Indeed, we find that the band width is positively correlated with the propagation
speed (Fig. 4.9). To test this prediction experimentally, we confine oocytes in three different
geometries and also observe the predicted increase in band width with propagation speed
(Fig. 6.3g).

In oocytes that overexpress Ect2, we observe a propagating front of Rho-GTP spirals
(Fig. 6.2c). Viewed from a fixed position on the membrane, spirals correspond to os-
cillations in Rho-GTP concentration. In accordance with this experimental observation,
our model exhibits limit-cycle oscillations over a broad parameter regime (Fig. 6.3h to i,
Fig. 4.6; see also Sec. 4.5 and 6.B). Indeed, our simulations show that the resulting oscil-
latory medium can exhibit spiral waves (Fig. 6.3k, Fig. 6.7, movie S18). In fact, this is
generic because excitability and limit-cycle oscillations are closely related nonlinear phe-
nomena, and are often found in neighboring parameter regimes. Taken together, the model
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Figure 6.4 | Model of Ect2 front regulation by the Cdk1-cyclinB gradient.
a, Schematic of the reaction-diffusion dynamics of Ect2. b, Schematic representation
of the bistable regime of membrane-bound Ect2 when the Cdk1-cyclinB dependent
phosphorylation rate is varied. c, A uniform Cdk1-cyclinB distribution induces an Ect2
trigger wave. d, A stationary Cdk1 gradient pins an Ect2 front at the c∗Cdk1 threshold
level. e, A decaying Cdk1 gradient guides the propagation of the Ect2 front pinned
to the c∗Cdk1 threshold level. f, Snapshot of the Cdk1 gradient in star geometry. g-h,
Kymographs of simulated Ect2 front (g) and Rho band (h) in star geometry (movie
S17). Grey dotted line shows an isocline of the membrane Cdk1 gradient. The model
equations are defined in the Methods and parameters are as in Table 6.1 and 3.1, see
also Sec. 4.3 and 3.2. i, Experimental kymograph of Rho-GTP band propagation in a
star-shaped oocyte correlates with that of the Cdk1 gradient along the membrane. j-k,
The Rho-GTP band speed in different static (j) and dynamic (k) geometries plotted
against the quotient of decay rate and slope of the Cdk1 gradient. Error bars indicate
maximum and minimum values measured at the start and end of each segment (see
Sec. 6.A).

provides a mechanism that explains how different levels of Ect2 can account for both the
Rho-GTP band and spiral wave dynamics in the starfish oocyte. In addition, it shows that
the propagation of the Ect2 front fully determines the propagation of the Rho-GTP band,
and therefore the SCW.

To elucidate how the propagating Rho-GTP band adapts to changes in cell shape, we
ask how the propagating Ect2 front itself is controlled by the upstream Cdk1 gradient.
Propagating fronts are a generic feature of bistable media. These fronts connect two
plateaus, corresponding to the two stable steady states [153, 154], and propagate such
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that the steady state with the stronger attraction (dominant steady state) invades the
other steady state. While such a mechanism of front propagation does not depend on the
precise origin of the underlying bistability, we hypothesize that a candidate for bistable
dynamics in starfish oocytes is Ect2, potentially as part of an interaction network with
other Rho regulators, where active (unphosphorylated) Ect2 autocatalytically enhances its
own dephosphorylation (Fig. 6.4a and Fig. 3.1; see Sec. 3.2). Furthermore, we assume that
Ect2 can be phosphorylated by cytosolic Cdk1-cyclinB24 and that Ect2 can only bind to
or detach from the membrane in its active conformation. This reaction kinetics exhibits
bistability for a range of Cdk1-cyclinB concentrations, with the two steady states corre-
sponding to high and low Ect2 concentrations on the membrane (Fig. 6.4b and Fig. 4.9).
To demonstrate the bistable nature of Ect2 dynamics, we developed a photo-recruitable
GEF catalytic domain in starfish oocytes [212] (see Sec. 6.A). We showed that oocyte
contractility exhibits an abrupt and switch-like response to membrane GEF recruitment
(Fig. 6.5 and movie S19). This result, together with the observation that Ect2 forms a
front, suggests that Ect2 activation dynamics is bistable.

In the model, the Cdk1-cyclinB concentration determines the relative dominance between
the two steady states, and therefore the speed of the Ect2 front (Fig. 6.4c). For a critical
Cdk1-cyclinB concentration, c∗Cdk1 (purple line, Fig. 6.4b and Fig. 3.2), the front is equally
attracted to both steady states, resulting in a stalled front. Since Cdk1-cyclinB forms a
gradient, the critical concentration c∗Cdk1 at which the front stalls, corresponds to a certain
position on the membrane, and the Ect2 front will move towards this position, where it
in turn stalls [157] (Fig. 6.4d). As the gradient decays, this stalling point will itself move
in space, causing the Ect2 front to follow (Fig. 6.4e and Fig. 3.3). Hence, the speed at
which the stalling point moves along the membrane is determined by the ratio of the
decay rate (temporal variation of the concentration) to the slope (spatial variation of the
concentration) of the Cdk1 gradient (Fig. 6.4e). This implies that the speed of the Ect2
front, and thus of the Rho-GTP band, is determined by the same ratio. Simulating the
reaction-diffusion dynamics numerically, we indeed find that the Ect2 front propagates up
to the stalling point and then follows this concentration as the gradient decays (movies
S15-S17). Thus, propagation of the Ect2 front is strongly correlated with, and limited by,
the speed of the stalling point.

In summary, we have identified a direct link between the speed of the Rho-GTP band and
the decaying Cdk1 gradient. Based on this insight, we can now explain how the propagating
Rho-GTP band adapts to the cell shape. A striking example that illustrates this adaptation
is the propagation of the Rho-GTP band in a star geometry, where the different arms of the
star exhibit membrane Cdk1 gradients of varying slope (Fig. 6.4f). As a consequence, the
speed of the Ect2 front and the Rho-GTP band vary greatly from slow speed along arms
with steep gradients to high speed along arms with shallow gradients. We verified this
using finite element simulation (Fig. 6.4g-h), which agrees well with the experimental data
(Fig. 6.4i). To further test this relationship between the speed of the Rho-GTP band and
the decaying gradient quantitatively, we analyzed the Cdk1-cyclinB distribution in different
cell shapes and measured both the average slope and average decay rate of the membrane
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Figure 6.5 | Photo-activation experiments and Ect2 bistability. (A-C) Three
replicates of photo-activation experiment. (i) 405 nm light is turned on at 0 min. The
boundary intensity is obtained by integrating the fluorescence of YFP-tagged photo-
activatable GEF along the oocyte periphery and normalized with the intensity at time
0 min (blue line). Oocyte contractility is quantified using the average curvature change
|κ − κ̄0|, where κ̄0 is the mean curvature of the oocyte boundary at time 0 min. (ii)
Average curvature change plotted against normalized boundary condition. Note that
the intensity jumps in (B (i)) at around 2500s and in (C (i)) at around 5200s are
experimental artifacts due to background auto-fluorescence. The brown dashed lines
serve as guides for the eye. We can compare this observation with Ect2 bistability as
follows. The increase in normalized boundary intensity is analogous to the increase
in membrane-bound GEF through Cdk1 decay (dark purple arrows in A (ii)-(iii)).
Beyond a certain threshold level, the oocyte contractility (a measure of total membrane
bound, dephosphorylated GEF) abruptly increases (purple arrows in A (ii)-(iii)). Taken
together, this result and the observation that Ect2 forms a front further supports the
hypothesis that Ect2 activation is bistable in the starfish oocyte system.
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Figure 6.6 | Rho-GTP band in anaphase II is faster than anaphase I. Duration
of first wave T1 ∼ 10 mins while duration of second wave T2 ∼ 5 mins.

Cdk1 gradient . We estimated the front speed from the membrane deformation induced
by the SCW . Combining measurements of multiple SCWs from different cell shapes, we
indeed find that the propagation speed is positively correlated with, and limited by, the
ratio of the decay rate to the slope of the membrane Cdk1 gradient (Fig. 6.4j).

As a final test of our model, we ask whether the Cdk1-Ect2-Rho pattern hierarchy can ex-
plain the negative correlation between the speed of the Rho-GTP band and the magnitude
of deformation during the contraction wave (Fig. 6.1d). We reason that the contraction
wave must reorient the membrane with respect to the gradient, such that the Cdk1 gra-
dient along the membrane becomes steeper, resulting in a slower front propagation. In
agreement with this expectation, we find that for oocytes with a larger shape deformation,
the ratio of the decay rate to the slope of Cdk1 gradient is reduced (Fig. 6.4k). Further-
more, our proposed mechanism predicts that the Cdk1 gradient during meiosis II should
be shallower or should decay faster, resulting in a faster progression of the SCW during
meiotic anaphase II (Fig. 6.6).

In summary, we have demonstrated a mechanism that confers robustness to protein self-
organization against cell-shape changes. This mechanism integrates positional information
encoded in gradients and self-organized patterns [213]. Here, the cell shape information
is encoded in a cytosolic Cdk1 gradient. This is decoded by the propagating Ect2 front,
which is consistent with Ect2 bistability. Finally, the moving Ect2 front triggers excitable
dynamics of the shape regulator Rho. Thus, this hierarchical coupling of bistability and
excitability processes cell shape information to induce a mechanochemical response. The
excitable dynamics underlying the Rho-GTP band is reminiscent of the spiking dynamics
in neural systems [170], suggesting that information processing on widely differing scales
arises from similar organizing principles. In addition, this coupling elucidates how the
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Rho-GTP band and spiral front propagation arise from the same underlying regulatory
network, unifying the two phenomena that have been previously reported separately [144,
145, 214]. As Rho induces actomyosin contractility to change cell shape, this mechanism
provides a mechanochemical feedback loop which could also facilitate cell-shape control,
a process distinct from previously reported mechanochemical coupling mechanisms [215,
216]. Interestingly, the Cdk1-Ect2-Rho hierarchy shows striking similarities with surface
contraction waves in Xenopus eggs [217], nuclear positioning [218] and cell cycle waves
in Drosophila embryos [219, 220], and morphogenetic furrow formation during Drosophila
eye development [221], suggesting that our results may underpin a wide range of cellular
patterning processes. We hypothesize that this hierarchical coupling of protein patterns
is a generic mechanism that facilitates robust spatiotemporal information processing on
various scales, from single cells to tissues.

Appendices

6.A Methods

Experimental Methods

Starfish oocyte preparation. Starfish Patiria Miniata was procured from South Coast Bio-
Marine LLC. The animals were kept in salt water fish tank maintained at 15 °C. The
ovaries were extracted through a small incision made at the bottom of the starfish. The
ovaries were carefully fragmented using a pair of scissors to release the oocytes. Extracted
oocytes were washed twice with calcium free seawater to prevent maturation and incubated
in filtered seawater (FSW) at 15 °C. Experiments were performed within three days of
oocyte extraction. To induce large shape deformation, oocytes are incubated in 0.1 mg/mL
actinase E for 30 mins.

Constructs. The following constructs used were described in previous studies: GFP-
labeled rhotekin binding domain construct, EGFP-rGBD42 (Addgene plasmid #26732);
3XmCherry-labeled Ect2 [222] (gift from Kuan-Chung Su); EGFP-labeled cyclinB21 (gift
from Peter Lenart). Additionally, the constitutively active Ect2 construct fluorescently
labeled with mCherry, mCherry-Ect2-T808A, was a gift from George von Dassow.

To manipulate Rho activity with light, we adapted the TULIP optogenetic system30 to
enable photo-recruitment of GEF to the membrane. The system consists of two com-
ponents: (1) a membrane targeted photosensitive domain LOVpep, and (2) a nucleotide
exchange factor (GEF) LARG fused with tandem PDZ tag that binds to LOVpep in a
405nm light dependent manner. To adapt this system in starfish oocyte, we cloned the
Stargazin-GFP-LOVpep (Addgene plasmid #80406, using primers atggggctgtttgatcgagg
and ttacacccaggtatccaccgc) and PR-GEF-YFP (2XPDZ-YFP-LARG-DH, Addgene plas-
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mid #80408, using primers atggcaaaacaagagattcgagtga and ttagcgctgcttgttttctgcc) into
pCS2+8 backbone constructs [223] (Addgene plasmid #34931). Stargazin-GFP-LOVpep
and PR-GEF-YFP (2XPDZ-YFP-LARG DH) were gifts from Michael Glotzer and PCS2+8
was a gift from Amro Hamdoun.

in vitro synthesis of mRNA and microinjection. For in vitro synthesis of mRNA, we first
amplified the constructs by bacterial growth overnight. The plasmids were then purified
using Miniprep (Qiagen) and linearized using the appropriate restriction enzymes. EGFP-
rGBD and 3XmCherry-Ect2 mRNA were synthesized using the SP6 mMessage mMachine
transcription kits (Thermo Fisher Scientific). cyclinB-EGFP mRNA was synthesized using
the T7 Ultra mMessage mMachine transcription kits (Thermo Fisher Scientific). To express
the constructs, the synthesized mRNA was microinjected into the cytoplasm of the oocytes
and incubated overnight at 15 °C.

PDMS (Polydimethylsiloxane) chamber. Microfabricated chambers were fabricated by
casting PDMS onto patterned silicon wafers. The chamber shapes were designed with a
height of 80 µm and surface area of around 27000 µm2, to match typical volumes of the
oocytes. The patterned silicon wafer was manufactured using photolithography (Microfac-
tory SAS, France). The silicon wafer was silanized with Trichlorosilane (Sigma 448931).
PDMS was made by mixing Dow SYLGARD™ 184 Silicone Elastomer Clear solution at a
10:1 base-to-curing agent ratio. After mixing thoroughly, the elastomer was poured over
the silicon master mold, degassed in a vacuum chamber and cured at 60 °C in oven for an
hour.

Confocal imaging. Fluorescence imaging was performed on either the Zeiss 700 or 710 laser
scanning confocal system. The Zeiss 700 laser scanning confocal system consists of a Zeiss
AxioObserver motorized inverted microscope stand, a LSM photomutiplier detector and a
transmitted light detector. Images were acquired using 40x/NA 1.3 Oil Plan Apochromat
objective with the appropriate laser line and emission filter. The system is operated using
Zeiss Zen 2010 acquisition software.

The Zeiss 710 laser scanning confocal system consists of a Zeiss AxioObserver motorized
inverted microscope stand with DIC optics, motorized XY stage and two LSM photomu-
tiplier detector and a transmitted light detector. Images were acquired using 40x/NA 1.1
Water LD C-Plan Apochromat objective with the appropriate laser line and emission filter.
The system is operated using Zeiss Zen Black 2012 acquisition software.

Image analysis and quantification

Space-time kymograph of Rho-GTP. The space time kymograph of GFP-labeled Rho-GTP
IR(s, t) is computed by first extracting the boundary of the oocyte ~r(s) = (x(s), y(s)) and
then extracting the fluorescence intensity IR(s) along the boundary for all time frame t.
Here, we used s to parameterize the arclength of the oocyte boundary. For each time frame
t, we performed a Gaussian filtering step (with a standard deviation of 1.2 pixel) on the
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confocal image of the oocyte cross-section before applying a thresholding step (threshold
level set at 80% of the mean intensity of each frame) to make a binary image. The oocyte
boundary ~r(s) is obtained by using the bwboundaries function in MATLAB on the binary
image and then smoothed using the MATLAB function smoothing. The intensity IR(s)
is obtained by first identifying a local window of size 12-by-12 pixels centered at ~r(s) and
taking the mean intensity of the pixels in the top 50 percentile intensity within the local
window. To construct the full kymograph IR(s, t), the intensity IR(s) at each time frame
t is aligned such that the AP corresponds to the same arclength position and resampled
at the appropriate arclength s.

Space-time kymograph of membrane curvature change. From the oocyte boundaries ~r(s) =
(x(s), y(s)) measured for all time points, the positions x(s) and y(s) are aligned to a
common point (consistent with alignment done for IR(s)) and resampled at appropriate
arclength s to produce x̃(s) and ỹ(s). The in-plane membrane curvature is computed using
the resampled positions and according to the equation:

κ =
|x̃′ỹ′′ − ỹ′x̃′′|
(x̃′2 + ỹ′2)3/2

where primes refer to derivative with respect to arclength s. The full curvature kymograph
κ(s, t) is obtained by repeating the calculation for all time points t. The kymograph of
membrane curvature change κ̃(s, t) is obtained by subtracting the rest state curvature
κ(s, t = 0) from the kymograph. The contraction wave appears as a band of negative
values in the curvature change kymograph. The maximum curvature change plotted in
Fig. 6.1D is the average of six curvature values sampled mid-wave (when curvature change
is maximum). Error bar is the standard deviation of the six values. To minimize batch-to-
batch variation, all experiments in Fig. 6.1D are performed using oocytes from the same
batch.

Space-time kymograph and contour plot Cdk1. The Cdk1 concentration near the mem-
brane c(s) is obtained by averaging the intensity measurements within an annulus region
beneath the membrane. A set of 4 progressively smaller perimeters sharing the same cen-
troid are obtained from the oocyte boundary ~r(s) = (x(s), y(s)) with dilation factors (0.95,
0.91, 0.87, 0.83). The intensity ICi

(s) along the ith perimeter ~ri(s) is obtained by first iden-
tifying a local window of size 12-by-12 centered at ~ri(s) and taking the mean intensity of
the pixels in the top 50 percentile intensity within the local window. The concentration
of cdk1 IC(s) is obtained by taking the average of the four intensities ICi

(s). To construct
the full kymograph IC(s, t), the concentration IC(s) at each time frame t is aligned such
that the AP corresponds to the same arclength position and resampled at the appropriate
arclength s. The final kymograph is obtained by normalizing IC(s, t) with the concentra-
tion of Cdk1 at the point when the contraction wave first initiated, c0. The contour plot
is obtained from the kymograph using MATLAB function contour.

Space-time kymograph of Ect2. The Ect2 kymograph along cell boundary IE(s, t) is ob-
tained using a similar method as the Cdk1 kymograph with one significant difference. In
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addition to background fluorescence from cytosolic Ect2-mCherry, the cortex of starfish
oocyte also contains granules with significant autofluorescence in the mCherry fluores-
cence window. To better separate signal from background, the fluorescence intensity of
Ect2 IE(s) at each time point is first obtained from the oocyte boundary ~r(s) using the
same approach as Cdk1 intensity IC(s), but with 3 dilation factors (0.95, 0.91, 0.87) in-
stead of 4. To remove noise, a smoothing spline is fitted to IE(s) using Matlab smoothing
spline function spaps, with tolerance value set at 10% of the range of IE(s) (that is,
tol = [maxIE(s) − minIE(s)]/10). To remove background, the time difference of IE(s) at
subsequent time point ∆IE(s, t) = IE(s, t)− IE(s, t− 1) is obtained. The final Ect2 kymo-
graph IE(s, t) is taken to be the cumulative sum of the intensity difference ∆IE(s, t), that
is IE(s, t) =

∑t
τ=1 ∆IE(s, ). The Ect2 cumulative difference snapshot and kymograph in

Fig. 6.2B is obtained using a similar procedure for background subtraction. Starting from
the raw video IE(~r, t) (Movie S10, left), we computed the temporal intensity difference at
subsequent time point ∆IE(~r, t) = IE(~r, t) − IE(~r, t − 1). The final cumulative difference
snapshot is taken to be IE(~r, t) =

∑t
τ=1 ∆IE(~r, τ) (Movie S10, right). The kymograph in

Fig. 6.2B is obtained by taking the average intensity of a thin section in the middle of
membrane over the duration of the SCW.

Co-localization of Ect2 with Cdk1/Rho-GTP. To show that Ect2 front co-localize with
Cdk/Rho-GTP, we co-expressed Ect2-mCherry with cyclinB-GFP/rGBD-GFP (Rho-GTP
reporter) simultaneously and performed confocal imaging. We extracted the space-time
kymograph of Ect2 together with Cdk1/Rho-GTP the same way as described above. We
were unable to visualize co-localization of Ect2 with Rho pulse in wildtype condition, since
we lack the tools to label the endogenous pool of Ect2 proteins. However, our Ect2/Rho-
GTP two color imaging experiment clearly demonstrates that the Ect2 front co-localizes
well with a Rho-GTP spiral front.

Cdk1 decay rate and slope calculation. To estimate the decay rate γ, the total cdk1
intensity over the entire oocyte boundary ICT

(t) =
∑

s IC(t, s) is plotted as a function of
time. The intensity curve is approximately linear over the time window of the wave. The
decay rate γ is obtained by taking the slope of the linear line connecting ICT

(tstart) and
ICT

(tend). The spatial slope of cdk1 can be estimated from the spatial profile of Cdk1 at
mid-wave ICmid(s) = IC(s, tmid). The slope for each wave segment is obtained by taking
the slope of the linear line connecting ICmid(sstart) and ICmid(send), where sstart and send are
the initiation and the annihilation position of each wave segment. The slopes similarly
calculated from the spatial profiles of Cdk1 at the start and end of the wave IC(s, tstart)
and IC(s, tend) are used as upper and lower error bars.

Ect2 front speed calculation from oocyte shape deformation. Since the membrane de-
formation arises from the Rho peak, which in turn localizes at the Ect2 front, we use
the deformation of the membrane as a proxy for the Ect2 front position. To estimate
the Ect2 front speed, we track the point of maximal deformation of the membrane along
the arclength. From the curvature kymograph κ(s, t), the curvature difference ∆κ(s, t) =
κ(s, t)− κ(s, t− 1) is computed. For a particular arclength location s, we found that the
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point at which curvature change ∆κ(t) passes zero is a good estimate of the Rho peak
position. We verified this by performing Rho fluorescent imaging and showed that the
Rho peak trajectory corresponds to point of maximal deformation identified from ∆κ(s, t)
. After identifying all the points of zero crossing in the curvature difference kymograph
∆κ(s, t), a straight line is fitted for each wave segment. The slope of the linear line gives
the Ect2 front speed for the particular oocyte segment. Error bar is the 95% prediction
interval.

Reaction-diffusion model for Rho and Ect2 module

In this section, we specify the model equations and parameters.

Reaction-diffusion equations for the Ect2 module.
We propose a model in which Ect2 cycles between an inactive phosphorylated (concentra-
tion uEp(~r, t)) and an active non-phosphorylated state (uE(~r, t)). Furthermore, we assume
that active Ect2 can bind to and detach from the membrane (ue(~r, t)). Ect2 can diffuse
on the surface of a two-dimensional elliptical, triangular or star geometry, representing the
focus plane in experiments of geometrically confined oocytes. To describe the dynamics of
Ect2, we use a reaction–diffusion model

∂tuE = Dc∇2uE + fE(uE, uEp, ue) (6.1)
∂tuEp = Dc∇2uEp + fEp(uE, uEp, ue) (6.2)
∂tue = Dm∇2ue + fe(uE, uEp, ue) (6.3)

with

fE = koffue − konuE −
k[Cdk1]uE

Kp + uE

+ (kdp + kfbuE)uEp, (6.4)

fEp =
k[Cdk1]uE

Kp + uE

− (kdp + kfbuE)uEp, (6.5)

fe = konuE − koffue (6.6)

These reaction kinetics conserve total protein mass, such that
∫
Ω
d~r (uE +uEp +ue) = nE

remains constant, where Ω denotes the computational domain.

Parameters for the Ect2 module.
The parameters of this model are specified in Table 3.1. The reaction rates represent
effective rates which can depend on the concentration of other proteins. These rates are
chosen such that the model exhibits a bistable window for a range for phosphorylation rates
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(Cdk1 concentrations). The diffusion constants are chosen such that the diffusion constant
in the cytosol is much larger than the diffusion constant on the membrane (Dc � Dm).
The ratio of the Cdk1 decay rate to the Cdk1 slope can be estimated from the SCW
propagation speed (10-35 µm/min).

To emulate the effect of the Cdk1 gradient, we assume that the Cdk1-dependent phospho-
rylation rate k[Cdk1](~r, t) is a decaying linear gradient

k[Cdk1](|~r|, t) = (c0 − a|~r|)(1− t

γ + t
).

Here, γ is the Cdk1 concentration half-life and c0 and a are the maximum and slope of the
gradient, respectively. As an initial condition, we use that Ect2 is in the phosphorylated
state such that uEp = nE and ue = uE = 0.

Reaction-diffusion equations for the Rho module. We consider a model in which the Rho
GTPase diffuses on the surface of a three-dimensional volume and can cycle between three
conformations: (1) an inactive (GDP-bound) cytosolic conformation close to the membrane
(concentration uR(~r, t)), (2) an inactive state on the membrane (concentration urd(~r, t)) and
(3) an active (GTP-bound) conformation on the membrane (concentration urt(~r, t)). We
only consider the cytosolic concentration close to the membrane, assuming the absence of
cytosol gradients normal to the membrane. The corresponding reaction-diffusion equations
are given by

∂tuR = DR∇2uR + fR(uR, urd, urt) (6.7)
∂turd = Drd∇2urd + frd(uR, urd, urt) (6.8)
∂turt = Drt∇2urt + frt(uR, urd, urt) (6.9)

(6.10)

with the reaction terms

fR = koffurd − konuR + kgapurt, (6.11)
frd = konuR − koffurd − (kr + kdtu

2
rt)urd, (6.12)

frt = (kr + kdtu
2
rt)urd − kgapurt. (6.13)

(6.14)

These reaction kinetics conserve total protein mass, such that
∫
Ω
d~r (uR+urd+urt) = nR,

where Ω denotes the computational domain (here the surface of a 3D cytosolic volume).

Parameters for the Rho module.
The parameters of this model are specified in Table 6.1. Diffusion constants are chosen
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such that diffusion in the cytosol is much faster than diffusion on the membrane (DR �
Drd, Drt). The reaction rates of this model represent effective rates and may depend on
the concentration of other regulatory proteins that are not explicitly accounted for in our
minimal model. To reproduce the experimental observations, we choose the rate constants
such that the reaction kinetics are excitable. A detailed motivation for the parameter is
presented in Sec. 4.7 and 6.B.

To emulate the concentration profile of the propagating Ect2 front we use a propagating
front ξEct2 = 0.01+0.99Θ(|~r|− (|~r0|−VEct2t)), which we multiply with the activation rates
kr and kdt. This was done for the simulations shown in Fig. 6.3f and 6.3k and movies
S14 and S18. Note that one can also use ξEct2 = ue(~r, t) + uE(~r, t), which couples the
concentration profile of active Ect2 of the Ect2 module to the Rho module of the model.
The latter was used for the simulation in elliptical, triangular, and star geometry in movies
S15-S17.

Simulation methods, geometry and domain size. The simulations presented in Fig. 6.3f,
6.3k, and Fig. 6.8C and in movies S14 and S18 are finite element simulations on the
surface of a three-dimensional spherical volume, implemented in COMSOL Multiphysics
version 5.4 and with parameters as in Table 6.1. The simulations presented in Fig. 6.4f-h
and movie S15-S17 are finite element simulations on the surface of a three-dimensional
ellipsoidal-, triangular- and star-shaped domain, with parameters as in Table 6.1 and 3.1.
Here, the Rho and Ect2 dynamics are constrained to the surfaces of the static three-
dimensional geometries, while the Cdk1 concentration is modelled as a linear gradient in
the three-dimensional bulk which radially extends from the position of the nucleus into the
cytoplasm.

6.B Ect2 overexpression leads to a transition to local
oscillations

In the starfish oocyte, Ect2 overexpression leads to a front of Rho spirals, instead of a
single concentration peak at the Ect2 front. Thus, viewed at a membrane position in the
VP domain, the Rho-GTP concentration oscillates. This suggests that the Rho reaction
kinetics in the VP domain lies within regime 3 instead of regime 1 cf. Sec. 4.5. Notably,
the oscillation timescale is roughly 10 times faster than the excursion time for the Rho
pulse (Fig. 6.1c and 6.2c). This suggest that Ect2 overexpression does not only lead to
a transition to oscillations but also to an overall increase in the GTPase cycling rate.
This implies that Ect2 overexpression effectively also increases the attachment rate and
the hydrolysis-driven detachment rate of Rho, for example via interactions between Ect2
and other Rho regulatory proteins. Indeed, as discussed in Sec. 4.2, it has been suggested
that Ect2 plays a role in the localization of Rho to the membrane [151] and that Ect2 can
interact with a RhoGAP [162]. Furthermore, the hypothesis that Ect2 affects more than
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Figure 6.7 | Oscillatory media. A transition from the wild type parameters to local
oscillations is obtained by (A) increasing the attachment rate kon, (B) decreasing the
hydrolysis rate kgap, or (C) increasing the autocatalytic nucleotide exchange rate kdt.
In a spatially extended system, these oscillatory media show A) spirals, B) traveling
waves and C) extending rings (target pattern).

the nucleotide exchange is also consistent with our model, as only increasing the nucleotide
exchange rates in the VP domain does not lead to oscillations. Thus, this implies that upon
Ect2 overexpression more than one process of the GTPase cycle is varied.

Which process of the Rho GTPase cycle drives the system into the oscillatory regime? As
discussed in Sec. 4.5 a transition to oscillations can be realized by increasing the attachment
rate kon, decreasing the hydrolysis rate kgap, or increasing the autocatalytic nucleotide ex-
change rate kdt (keeping the linear nucleotide exchange rate small). Consistently, changing
one of these three rates leads to a transition to oscillations (Fig. 6.7). We therefore reasoned
that in oocytes where Ect2 is overexpressed, one of these processed must be enhanced with
respect to the wild type. However, in all cases the oscillation timescale in the model is still
similar to the excitation time of the Rho pulse, showing that such an additional change in
the rates is sufficient to explain the experiments only qualitatively, but not quantitatively.
To match the experimentally observed oscillation period quantitatively in our model, we
choose to increase the global timescale of the Rho dynamics by multiplying all rates with
a common factor τ .

Spatially (diffusively) coupled system – In a spatially coupled system, oscillatory dynam-
ics typically results in traveling waves [170]. When these traveling waves develop phase
defects, either due to a wave front instability or when they encounter obstacles, traveling
waves typically form spirals. Indeed, using finite element simulations, we confirm that the
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Parameter Wild type Ect2 over ex-
pression Unit Description

kon 1.5× 10−4 1.5× 10−3τ s−1 Rho-GDP membrane at-
tachment

koff 1.5× 10−5 1.5× 10−5τ s−1 Rho-GDP membrane de-
tachment

kr 1.5× 10−4ξEct2 1.5× 10−4τξEct2 s−1 Nucleotide exchange
rate/activation rate

kdt 9.45× 10−3ξEct2 9.45×10−3τξEct2 µm4s−1 Autocatalytic activation
rate

kgap 1.5× 10−2 1.5× 10−2 τ µm2/s
Rho-GTP membrane de-
tachment

nR 10 10 µm−2 Rho total concentration

DR 10 10 µm2/s
Diffusion constant Rho-
GDP in the cytosol

Drd 0.1 0.1 µm2/s
Diffusion constant Rho-
GDP on the membrane

Drt 0.05 0.05 µm2/s
Diffusion constant Rho-
GTP on the membrane

VEct2 0.2 0.2 µm/s Ect2 propagation speed

ε 1 1 µm
Width of Ect2 front inter-
face

τ 1 40 – Timescale scaling factor

ξEct2 [0.01, 1] [0.01, 1] µm−2

Ect2 front parameter in
low and high Ect2 domain
(movies S14 and S18)

ξEct2 ue + uE – µm−2

Ect2 front parameter to
couple Rho and Ect2 mod-
ule (movies S15- S17)

Table 6.1 | Model parameters for the Rho dynamics. Parameters are chosen
such that the model exhibits oscillatory dynamics.



136 6. Decoding cell shape information

Figure 6.8 | Rho front. (A) A decrease in de hydrolysis rate kgap, or (B) an
increase in the attachment rate kon, leads to a transition from regime 1 to regime 2
(cf. Sec. 4.5). (C) On the membrane, this leads to a propagating Rho front. (A)
and (B) show simulations of the reduced model (Eqs. 4.8), (C) shows a snapshot of a
simulation of the full model (Eqs. 6.7 and 6.11), performed on the surface of a spherical
volume.

system exhibits traveling waves in the parameter regime where it exhibits local oscillations
(Fig. 6.7). For an increased attachment rate, the system develops spiraling dynamics. For
the change in the hydrolysis rate we find traveling waves, and for a change in the auto-
catalytic nucleotide exchange rate the traveling waves form rings. We therefore choose to
increase the attachment rate to describe the front of Rho spirals.

6.C Propagating Rho front

So far, we have shown that as the Ect2 front travels along the membrane it leads to a
transition from one steady state to another steady state. For the wild type, both steady
states are in regime 1 cf. Sec. 4.5. For Ect2 over expressed oocytes, the Ect2 front leads
to a transition from a steady state in regime 1 to regime 3, giving rise to a front of Rho
spirals. What is the concentration profile of Rho-GTP on the membrane when the Ect2
front leads to a transition between regime 1 and 2? As discussed in Sec. 4.5, the steady
state in regime 2 is monostable with a high Rho-GTP concentration on the membrane.
A transition to regime 2 can be achieved for example by decreasing the hydrolysis rate
(Fig. 6.8B) or increasing the attachment rate even more than for Ect2 OE (Fig. 6.8C).
Thus, a sudden change from a steady state in regime 1 to a steady state in regime 2,
would lead to an increase in the Rho-GTP concentration that stays high as the Ect2 front
has passed. In a spatially extended system, this leads to a propagating Rho front rather
than a propagating Rho pulse or front of Rho spirals (Fig. 6.8D). Interestingly, such Rho
dynamics has been observed previously by using a Rok inhibitor [152].
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6.D Movie captions

All movies are available on
https://www.dropbox.com/sh/yzyqjvm6erkv4vd/AACp5KzHZuMLChRynGG4DSH0a?dl=0

Movie S1: Surface contraction wave (SCW) of starfish oocyte during meiosis I. Rho-GTP
is labeled fluorescently using rGBD-GFP reporter. Video taken with confocal microscopy
at cross section (left) and bottom plane (right) of oocytes. Time in min:sec.

Movie S2-5: Rho-GTP wave (labeled with rGBD-GFP) of starfish oocyte during meiosis
I when imaged in PDMS chamber of different geometries: ellipse with animal pole (AP) at
one corner (movie S2), ellipse with AP at side (movie S3), triangle with AP in the midle
(movie S4) and star shape with AP at one corner (movie S5). Video taken with confocal
microscopy at cross section of oocyte. Time in min:sec.

Movie S6: Spatiotemporal dynamics of Cdk1-cyclinB cytosolic gradient during meiosis I
in starfish oocyte. The Cdk1 complex is imaged with cyclinB-GFP fluorescent reporter.
Video taken with confocal microscopy at cross section of oocyte. Time in min:sec.

Movie S7-9: Spatiotemporal dynamics of Cdk1-cyclinB cytosolic gradient during meiosis
I in starfish oocyte in different geometries: ellipse with AP at the side (movie S7), triangle
with AP at different sides (movie S8-9). Video taken with confocal microscopy at cross
section of oocyte. Time in min:sec.

Movie S10: Dynamics of Rho-GTP spiral front at the oocyte membrane imaged using
fluorescently labeled reporter rGBD-GFP. Time in min:sec.

Movie S11: Ect2-mCherry front dynamics at the membrane. Due to significant auto-
fluorescent from cortex granules, we performed background subtraction by taking the cu-
mulative sum of the fluorescent intensity difference (same procedure as Ect2 space-time
kymograph). The left video shows the raw data. The right video shows the background
subtracted video. Note that the intensity around the periphery of oocyte in background
subtracted video is due to the oocyte motion during SCW. Time in min:sec.

Movie S12: Two color imaging of Ect2 (Ect2-mCherry fluorescent reporter) front and
Rho-GTP (rGBD-GFP reporter) spiral front. Time in min:sec.

https://www.dropbox.com/sh/yzyqjvm6erkv4vd/AACp5KzHZuMLChRynGG4DSH0a?dl=0
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Movie S13: Two color imaging of Cdk1-cyclinB (cyclinB-GFP fluorescent reporter) gra-
dient and Ect2 (Ect2-mCherry fluorescent reporter) front. Time in min:sec.

Movie S14: Simulation of the Rho model (cf. Eq. 6.7 and 6.11 in Section 6.A) on the
surface of a spherical 3D volume using parameters for the wild type as specified in Table 6.1.

Movie S15-17: Simulations of the Rho and Ect2 module in ellipsoidal, triangular and
star shaped 3D geometries. Left panel shows the Cdk1 concentration (log10(k[Cdk1])) in the
cytoplasm and Rho-GTP (urt) on the membrane, middle and right panel show the active
Ect2 concentration (ue + uE) and the Rho-GTP concentration (urt) on the surface of the
3D geometry.

Movie S18: Simulation of the Rho model (cf. Eq. 6.7 and 6.11 in Section 6.A) on the
surface of a spherical 3D volume using parameters for Ect2 overexpression as specified in
Table 6.1.

Movie S19: Photoactivation experiment. Global light illumination at 488nm begins at
0s. Increase in yellow fluorescence indicates the recruitment of PR_GEF_YFP (photo-
recruitable GEF labeled with yellow fluorescent protein) to the membrane. Beyond a
certain threshold level, the oocyte contractility abruptly increases.

Movie S20: Maximal intensity projection of microtubule front near oocyte membrane
during SCW imaged using ensconsin-GFP. Time in min:sec.



7 Symmetry breaking in response to
cytoplasmic flow

“You can’t buy happiness
but you can buy a surfboard”

– Jibe City, Bonaire

Important cellular processes, such as cell motility and cell division, are coordinated by
cell polarity, which is determined by the non-uniform distribution of certain proteins.
Such protein patterns form via an interplay of protein reactions and protein trans-
port. Since Turing’s seminal work, the formation of protein patterns resulting from
the interplay between reactions and diffusive transport has been widely studied. Over
the last few years, increasing evidence shows that also advective transport, resulting
from cytosolic and cortical flows, is present in many cells. However, it remains unclear
how and whether these flows contribute to protein-pattern formation. To address this
question, we use a minimal model that conserves the total protein mass to characterize
the effects of cytosolic flow on pattern formation. Combining a linear stability analysis
with numerical simulations, we find that membrane-bound protein patterns propagate
against the direction of cytoplasmic flow with a speed that is maximal for interme-
diate flow speed. We show that the mechanism underlying this pattern propagation
relies on a higher protein influx on the upstream side of the pattern compared to the
downstream side. Furthermore, we find that cytosolic flow can change the membrane
pattern qualitatively from a peak pattern to a mesa pattern. Finally, our study shows
that a non-uniform flow profile can induce pattern formation by triggering a regional
lateral instability.

This Chapter is based on our paper “Flow induced symmetry breaking in a conceptual
polarity model”, which has been published in Cells [224]. This work has been performed
together with Fridtjof Brauns, Ching Yee Leung and Erwin Frey
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7.1 Introduction

Many biological processes rely on the spatiotemporal organization of proteins. Arguably
one of the most elementary forms of such organization is cell polarization — the formation
of a “cap” or spot of high protein concentration that determines a direction. Such a polarity
axis then coordinates downstream processes including motility [225, 226], cell division [227],
and directional growth [40]. Cell polarization is an example for symmetry breaking [99], as
the orientational symmetry of the initially homogeneous protein distribution is broken by
the formation of the polar cap.

Intracellular protein patterns arise from the interplay between protein interactions (chem-
ical reactions) and protein transport. Diffusion in the cytosol serves as the most elemen-
tary means of transport. Pattern formation resulting from the interplay of reactions and
diffusion has been widely studied since Turing’s seminal work [171]. In addition to dif-
fusion, proteins can be transported by fluid flows in the cytoplasm [28, 228, 229] and
along cytoskeletal structures (vesicle trafficking, cortical contractions) driven by molecular
motors [230–232]. These processes lead to advective transport of proteins.

Recently, it has been shown experimentally that advective transport (caused by cortical
flows) induces polarization of the PAR system in the C. elegans embryo [8, 13, 25]. Fur-
thermore, in vitro studies with the MinDE system of E. coli, reconstituted in microfluidic
chambers, have shown that the flow of the bulk fluid has a strong effect on the protein pat-
terns that form on the membrane [233, 234]. Increasing evidence shows that cortical and
cytosolic flows (also called “cytoplasmic streaming”) are present in many cells [72, 235–239].
In addition, cortical contractions can drive cell-shape deformations [144], inducing flows in
the incompressible cytosol [28, 240]. However, the role of flows for protein-pattern forma-
tion remains elusive. This motivates to study the role of advective flow from a conceptual
perspective, with a minimal model. The insights thus gained will help to understand the
basic, principal effects of advective flow on pattern formation and reveal the underlying
elementary mechanisms.

The basis of our study is a paradigmatic class of models for cell polarization that describe
a single protein species which has a membrane-bound state and a cytosolic state. Such
two-component mass-conserving reaction–diffusion (2cMcRD) systems serve as conceptual
models for cell polarization [56, 91, 96, 103, 118, 228, 241]. Specifically they have been used
to model Cdc42 polarization in budding yeast [92] and PAR-protein polarity [97]. 2cMcRD
systems generically exhibit both spontaneous and stimulus-induced polarization [56, 97,
99]. In the former case, a spatially uniform steady state is unstable against small spatial
perturbations (“Turing instability” [171]). Adjacent to the parameter regime of this lateral
instability, a sufficiently strong, localized stimulus (e.g. an external signal) can induce
the formation of a pattern starting from a stable spatially uniform state. The steady state
patterns that form in two-component McRD systems are generally stationary (there are no
traveling or standing waves). Moreover, the final stationary pattern has no characteristic
wavelength. Instead, the peaks that grow initially from the fastest growing mode (“most
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unstable wavelength”) compete for mass until only a single peak remains (“winner takes
all”) [93, 94, 103]. The location of this peak can be controlled by external stimuli (e.g.
spatial gradients in the reaction rates) [94, 105].

Recently, a theoretical framework, termed local equilibria theory, has been developed to
study these phenomena using a geometric analysis in the phase plane of the protein con-
centrations [56, 106]. With this framework one can gain insight into the mechanisms
underlying the dynamics of McRD systems both in the linear and in the strongly nonlinear
regime, thereby bridging the gap between these two regimes.

Here, we show that cytosolic flow in two-component systems always induces upstream
propagation of the membrane-bound pattern. In other words, the peak moves against
the cytosolic flow direction. This propagation is driven by a higher protein influx on
the upstream side of the membrane-concentration peak compared to its downstream side.
Using this insight, we are able to explain why the propagation speed becomes maximal at
intermediate flow speeds and vanishes when the rate of advective transport becomes fast
compared to the rate of diffusive transport or compared to the reaction rates. We first study
a uniform flow profile using periodic boundaries. This effectively represents a circular flow,
which is observed in plant cells (where this phenomenon is called cytoplasmic streaming
or cyclosis) [242]. It also represents an in vitro system in a laterally large microfluidic
chamber. We then study the effect of a spatially non-uniform flow profile in a system with
reflective boundaries, as a minimal system for flows close to the membrane [8, 25, 228],
e.g. in the actin cortex. We show that a non-uniform flow profile redistributes the protein
mass, which can trigger a regional lateral instability and thereby induce pattern formation
from a stable homogeneous steady state.

The remainder of the paper is structured as follows. We first introduce the model in Sec.
7.2. We then perform a linear stability analysis in Sec. 7.3 to show how spatially uniform
cytosolic flow influences the dynamics close to a homogeneous steady state. In Sec. 7.4, we
use numerical simulations to study the fully nonlinear long-term behavior of the system.
Next, we show that upon increasing the cytosolic flow velocity, the pattern can qualitatively
change from a mesa pattern to a peak pattern in Sec. 7.5. Finally, in Sec. 7.6, we study
how a spatially non-uniform cytosolic flow can trigger a regional lateral instability and
thus induce pattern formation. Implications of our findings and links to earlier literature
are briefly discussed at the end of each section. We conclude with a brief outlook section.

7.2 Model

We consider a spatially one-dimensional system of length L. The proteins can cycle be-
tween a membrane-bound state (concentration m(x, t)) and a cytosolic state (concentration
c(x, t)), and diffuse with diffusion constants Dm and Dc, respectively (Fig. 7.1). In cells,
the diffusion constant on the membrane is typically much smaller than the diffusion con-
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Figure 7.1 | One-dimensional two-component system with cytosolic flow into the
positive x direction. The reaction kinetics include (1) attachment, (2) self-recruitment
and (3) enzyme-driven detachment.

stant in the cytosol. In the cytosol, the proteins are assumed to be advected with a speed
vf(x), as indicated by the blue arrow in Fig. 7.1. Thus, the reaction-diffusion-advection
equations for the cytosolic density and membrane density read

∂tc+ ∂x(vfc) = Dc∂
2
xc − f(m, c), (7.1a)

∂tm = Dm∂
2
xm+ f(m, c), (7.1b)

with either periodic or reflective boundary conditions. The nonlinear function f(m, c) de-
scribes the reaction kinetics of the system. Attachment–detachment kinetics can generically
be written in the form

f(m, c) = a(m)c− d(m)m, (7.2)

where a(m) > 0 and d(m) > 0 denote the rate of attachment from the cytosol to the
membrane and detachment from the membrane to the cytosol, respectively. The dynamics
given by Eq. (7.1) conserve the average total density

n̄ =
1

L

∫ L

0

dx n(x, t). (7.3)

Here, we introduced the local total density n(x, t) := m(x, t) + c(x, t).

For illustration purposes, we will use a specific realization of the reaction kinetics [56],

a(m) = kon + kfbm and d(m) =
koff

KD +m
, (7.4)

describing attachment with a rate kon, self-recruitment with a rate kfb, and enzyme-driven
detachment with a rate koff and the Michaelis-Menten constant KD, respectively. However,
our results do not depend on the specific choice of the reaction kinetics. Unless stated
otherwise, we use the parameters: kon = 1s−1, kfb = 1µms−1, koff = 2s−1, KD = 1µm−1, n̄ =
5µm−1, Dm = 0.01µm2/s,Dc = 10µm2/s.
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cytosolic flowA B

Figure 7.2 | (A) Sketch of real (solid) and imaginary (dotted) part of a typical dis-
persion relation with a band [0, qmax] of unstable modes. (B) The initial dynamics
of a spatially homogeneous state with a small random perturbation (blue thin line).
The direction of cytosolic flow is indicated by a blue arrow. The typical wavelength
(λ) of the initial pattern is determined by the fastest growing mode q∗ and the phase
velocity is determined by the value of the imaginary part of dispersion relation at the
fastest growing mode (vphase = −Imσ(q∗)/q∗). The growth of the pattern is indicated
by orange arrows, while the travelling direction is indicated by pink arrows.

7.3 Linear stability analysis

7.3.1 Linearized dynamics and basic results

To study how cytosolic flow affects the formation of protein patterns, we first consider
a spatially uniform flow profile (i.e. constant vf(x) = vf) and perform a linear stability
analysis of a spatially homogeneous steady state u∗ = (c∗,m∗):

f(m∗, c∗) = 0, m∗ + c∗ = n̄. (7.5)

Following the standard procedure, we linearize the dynamics for small perturbations u(x, t) =
(c(x, t),m(x, t)) = u∗+ δu(x, t) around the homogeneous steady state. Expanding δu(x, t)
in exponentially growing (or decaying) Fourier modes δu = ûq e

σteiqx leads to the eigen-
value problem

J ûq = σûq, (7.6)

with the Jacobian
J =

(
−Dcq

2 − ivfq − fc −fm
fc −Dmq

2 + fm

)
,

where fc = ∂cf |u∗ and fm = ∂mf |u∗ encode the linearized reaction kinetics. Note that for
reaction kinetics of the form Eq. (7.2), fc = a(m) > 0 and we consider this case in the
following.

For each mode with wavenumber q, there are two eigenvalues σ1,2(q). The case q = 0
corresponds to spatially homogeneous perturbations, where the two eigenvalues are given
by σ1 = fm − fc and σ2 = 0 [56]. Here, we restrict our analysis to homogeneously stable
states (σ1 < 0). The second eigenvalue (σ2 = 0) corresponds to perturbations that change
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the average mass n̄ and therefore shift the homogeneous steady state u∗(n̄) along the
nullcline f = 0. Because these perturbations break mass-conservation, they are not relevant
for the stability of a closed system as considered here. The modes q > 0 determine the
stability of the system against spatially inhomogeneous perturbations (lateral stability).
The eigenvalue with the larger real part determines the stability and will be denoted by
σ(q), suppressing the index.

A typical dispersion relation with a band of unstable modes is shown in Fig. 7.2A. The
real part (solid line), indicating the mode’s growth rate, has a band of unstable modes
[0, qmax] where Re σ(q) > 0. The fastest growing mode q∗ determines the wavelength λ of
the pattern that initially grows, triggered by a small, random perturbation of the spatially
homogeneous steady state. For vf = 0, the imaginary part of σ(q) vanishes, for locally
stable steady states (σ(0) ≤ 0). [56]. However, in the presence of flow, the imaginary part
of σ(q) is non-zero (dashed line in Fig. 7.2A), which implies a propagation of each mode
with the phase velocity vphase(q) = − Imσ(q)/q. This means that a mode q not only grows
over time (orange arrows in Fig. 7.2B), but also propagates as indicated by the pink arrows
in Fig. 7.2B. Further below, in Sec. 7.3.4, we will show that Im σ(q) always has the same
sign as the flow velocity vf, such that all modes propagate against the flow direction.

To gain physical insight into the mechanisms underlying the growth and propagation of
perturbations (modes) we will first give an intuitive explanation of a lateral instability
in McRD systems, building on the concepts of local equilibria theory [56, 106]. We then
provide a more detailed analysis in the limits of long wavelength as well as fast and slow
flow.

7.3.2 Intuition for the flow-driven instability and upstream
propagation of the unstable mode

Lateral instability in McRD systems can be understood as a mass-redistribution instability
[56]. Let us briefly recap the mechanism underlying this instability for a system without
flow. To this end, we first discuss the effect of reactions and diffusion separately, and explain
how these effects together drive the mass-redistribution instability. We then explain how
this instability is affected by cytosolic flow.

Consider a spatially homogeneous steady state, perturbed by a slight redistribution of
the local total density n(x, t). The dashed orange line in Figure 7.3A shows such a per-
turbation where the membrane concentration (Fig. 7.3A top) is slightly perturbed in a
sinusoidal fashion. In phase space this is represented by a density distribution that slightly
deviates from the spatially homogeneous steady state (marked by the orange dashed line).
Here, the open star and open circle mark the minimum and maximum of the local total
density, respectively. The local total density determines the local reactive equilibrium con-
centrations m∗(n) and c∗(n) (cf. Eq. (7.5), replacing the average mass n̄ by the local mass
n(x, t)). In phase space (Fig. 7.3A bottom) these local equilibria can be read off from the
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intersections (marked by black circles) of the reactive subspaces n(x, t) = m(x, t) + c(x, t)
(gray solid lines) and the reactive nullcline (black solid lines). A slight redistribution
of the local total density shifts the reactive equilibria, leading to reactive flows towards
these shifted equilibria (red and green arrows in Fig. 7.3A). Thus, the reactive equilib-
ria, and thereby the reactive flows, are encoded in the shape of the reactive nullcline in
phase space. If the nullcline slope is negative, increasing the total density leads to a de-
creasing equilibrium cytosolic concentration and therefore to attachment (green arrows in
Fig. 7.3A). Conversely, in regions of lower total density, the equilibrium cytosolic concen-
tration increases via detachment (red arrows in Fig. 7.3A). Hence, regions of high total
density become self-organized attachment zones and regions of low total density become
self-organized detachment zones [106] (green and red areas in Fig. 7.3 top and middle).

These attachment and detachment zones act as sinks and sources for diffusive mass-
transport on the membrane and in the cytosol: The attachment zone acts as a cytoso-
lic sink and membrane source, and the detachment zone acts as a cytosolic source and
a membrane sink (blue arrows in Fig. 7.3B). As diffusion in the cytosol is much faster
than in the membrane, mass is transported faster in the cytosol than on the membrane,
as indicated by the size of the blue arrows in Fig. 7.3B top and middle. This leads to
net mass transport from the detachment zone to the attachment zone. As the local total
density increases in the attachment zone, it facilitates further attachment and thereby the
growth of the pattern on the membrane. In short, the mechanism underlying the mass-
redistribution instability is a cascade of attachment–detachment kinetics (Fig. 7.3A) and
net mass-transport towards attachment zones (Fig. 7.3B).

How does cytosolic fluid flow affect the mass-redistribution instability? Cytosolic flow
transports proteins advectively. This advective transport shifts the cytosolic density pro-
file downstream relative to the membrane density profile (dashed to solid orange line in
Fig. 7.3C middle). This shift leads to an increase of the cytosolic density on the upstream
(cyan) side of the membrane peak and a decrease on the downstream (magenta) side, in
Fig. 7.3C (middle), respectively. In phase space, this asymmetry is reflected as a ‘loop’
shape of the phase space trajectory that corresponds to the real space pattern (Fig. 7.3C
bottom). The higher cytosolic density on the upstream side increases attachment relative
to the downstream side. This leads to a propagation of the membrane concentration profile
in the upstream direction.
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Figure 7.3 | Sketch of the initial dynamics of an laterally unstable spatially homo-
geneous steady state. The role of reactions (A), diffusion (B) and advection (C) for
a mass-redistribution instability are presented for the membrane (top) and cytosolic
(middle) concentration profiles and in phase space (bottom). (A) A small perturba-
tion of the spatially homogeneous membrane concentration (orange dashed lines in top
panel) leads to a spatially varying local total density n(x), with a larger total density at
the maximum of the membrane profile (open circle) and a smaller total density at the
minimum (open star). These local variations in total density lead to attachment zones
(green region) and detachment zones (red region). The reactive flow, indicated by the
red and green arrows, points along the reactive subspace (gray lines) in phase space
towards the shifted local equilibria (black circles). These reactive flows lead to the solid
orange density profiles after a small amount of time. (B) Faster diffusion in the cytosol
compared to the membrane (indicated by the large and small blue arrows in the mid-
dle and top panel, respectively), lead to net mass transport from the detachment zone
to the attachment zone. Again, dashed and solid lines indicate the state before and
after a short time interval of diffusive transport. (C) Cytosolic flow shifts the cytosolic
concentration with respect to the membrane concentration (orange dashed to orange
solid lines), increasing the cytosolic concentration on the upstream side of the pattern
and decreasing the cytosolic concentration on the downstream side . In phase space,
the trajectory of this density profile forms a ‘loop’.
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7.3.3 Long wavelength limit

To complement this intuitive picture we consider the long wavelength limit q → 0.1 In this
limit, the dispersion relation expanded to second order in q reads

σ(q) ≈ − 1

1 + snc

[
isncvfq + (Dm + sncDc)q

2 +
snc v

2
f

fc(1 + snc)2
q2
]
, (7.7)

where snc = −fm/fc is the slope of the reactive nullcline. The imaginary part Im σ(q)
is linear in q to lowest order, implying a phase velocity vphase = vfsnc/(1 + snc) that is
independent of the wavelength. The growth rate Re σ(q) is quadratic in q to lowest order.
If this quadratic term is positive, there is a band of unstable modes.2 Hence, the criterion
for a mass-redistribution instability can be expressed in terms of the nullcline slope [56]

snc < −Dm

Dc

[
1 +

v2f
(1 + snc)2Dcfc

]−1

. (7.8)

In the absence of flow, vf = 0, we recover the slope criterion snc < −Dm/Dc for a mass-
redistribution instability driven by cytosolic diffusion [56]. We find that flow always in-
creases the range of instability since the second term in the square brackets monotonically
increases with flow speed |vf|. Furthermore, the instability criterion becomes independent
of the diffusion constants in the limit of fast flow (|vf| �

√
Dcfc). The criterion for the

(flow-driven) mass-redistribution instability then simply becomes snc < 0, independently
of the ratio of the diffusion constants. This has the interesting consequence that, for suffi-
ciently fast flow, a mass-redistribution instability can be driven solely via cytoplasmic flow,
independent of diffusion.

7.3.4 Limits of slow and fast flow

To analyze the effect of flow for wavelengths away from the long wavelength limit it is
instructive to consider the limit cases of slow and fast flow speed.

We first consider a limit where advective transport (qvf)
−1 is slow compared either to the

chemical reactions or to diffusive transport. To lowest order in vf, the dispersion relation
is given by (see Appendix 7.A)

σ(q) ≈ σ(0)(q) + i
vfq

2
A(q), (7.9)

1In principle, the dispersion relation can be easily obtained in closed form using the formula for eigenvalues
of 2×2 matrices: σ1,2 = 1

2 trJ ∓ 1
2

√
(trJ )2 − 4detJ where trJ and detJ are the Jacobian’s trace

and determinant, respectively. Because the resulting expression is rather lengthy, we don’t write it out
it explicitly here.

2Homogeneous stability implies that the nullcline slope snc is larger than −1 [56], such that the prefactor
(1 + snc)

−1 is positive.
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where the zeroth order term, σ(0)(q), is the dispersion relation in the absence of flow,
which has no imaginary part [56] (cf. Eq. (7.11)). The function A(q) is positive for all
laterally unstable modes (Reσ(q) > 0). Equation (7.9) shows that to lowest order (linear
in vf) the effect of cytosolic flow is to induce propagation of the modes with the phase
velocity vphase(q) = − Imσ(q)/q ≈ −vfA(q). Since A(q) > 0 for laterally unstable modes,
all growing perturbations propagate against the direction of the flow (as illustrated in
Fig. 7.2B).

In the limit of fast flow (compared either to reactions or to cytosolic transport) we find
that the dispersion relation (given by the eigenvalue problem Eq. (7.6)) reduces to

σ(q) ≈ fm −Dmq
2 + i

fcfm
vfq

(7.10)

for non-zero wavenumbers. The real part of the dispersion relation in this fast flow limit
becomes identical to the dispersion relation in the limit of fast diffusion [56]. In both limits,
cytosolic transport becomes (near) instantaneous. In particular, in the limit of fast flow,
advective transport completely dominates over diffusive transport in the cytosol such that
the dispersion relation becomes independent of the cytosol diffusion constant Dc.

From the imaginary part of σ(q), we obtain the phase velocity vphase = −fcfm/(vfq
2). In

other words, an increase in cytosolic flow leads to a decrease of the phase velocity. This is
opposite to the slow flow limit discussed above, where the phase velocity increased linearly
with the flow speed.

To rationalize these findings, we recall the propagation mechanism as discussed above.
There, we argued that a phase shift between the membrane and the cytosol pattern is
responsible for the pattern propagation, as it leads to an asymmetry in the attachment–
detachment balance upstream and downstream. This phase shift increases with the flow
velocity and eventually saturates at π/4.3 On the other hand, the cytosol concentration
gradients become shallower the faster the flow. To understand why this is, imagine a small
volume element in the cytosol being advected with the flow. The faster the flow, the less
time it has to interact with each point on the membrane it passes. Therefore, for faster
advective flow, the attachment–detachment flux at the membrane is effectively diluted
over a larger cytosolic volume. This leads to a flattening of the cytosolic concentration
profile (see Movie 2), and therefore a reduction in the upstream–downstream asymmetry
of attachment. As a result, in the limit of fast flow, the pattern propagates slower the
faster the flow, whereas, in the limit of slow flow, the pattern propagates faster the faster
the flow. Thus, comparing these two limits, we learn that the phase velocity reaches a
maximum at intermediate flow speeds.

3The phase shift can be read off from the real and imaginary parts of the eigenvectors in the linear
stability analysis.
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7.3.5 Summary and discussion of linear stability

Let us briefly summarize our main findings from linear stability analysis. We found that
the leading order effect of cytosolic flow is to induce upstream propagation of patterns.
This propagation is driven by the faster resupply of protein mass on the upstream side
of the pattern compared to the downstream side. A similar effect was previously found
for vegetation patterns which move uphill because nutrients are transported downhill by
water flow [243]. Even though these systems are not strictly mass conserving, their pattern
propagation underlies the same principle: The nutrient uptake in regions of high vegetation
density creates a nutrient sink which is resupplied asymmetrically due to the downhill flow
of water and nutrients.

Moreover, we used a phase-space analysis to explain how flow extends the range of pa-
rameters where patterns emerge spontaneously, i.e. where the homogeneous steady state is
laterally unstable. This was previously shown mathematically for general two-component
reaction–diffusion systems (not restricted to mass-conserving ones) [243, 244]. Our anal-
ysis in the long wavelength limit explains the physical mechanism of this instability for
mass-conserving systems: The flow-driven instability is a mass-redistribution instability,
driven by a self-amplifying cascade of (flow-driven) mass transport and the self-organized
formation of attachment and detachment zones (shifting reactive equilibria). This shows
that the instability mechanism is identical to the mass-redistribution instability that un-
derlies pattern formation in systems without flow (i.e. where only diffusion drives mass
transport) [56]. For these systems, the instability strictly requires Dc > Dm. In contrast,
we find that for sufficiently fast flow, there can be a mass-redistribution instability even in
the absence of cytosolic diffusion (Dc = 0). While the case Dc = 0 is not physiologically
relevant in the context of intracellular pattern formation, it may be relevant for the for-
mation of vegetation patterns on sloped terrain [245], where c and m are the soil-nutrient
concentration and plant biomass density, respectively. In conclusion, advective flow can
fully replace diffusion as the mass-transport mechanism driving the mass-redistribution
instability.

7.4 Pattern propagation in the nonlinear regime

So far we have analyzed how cytosolic flow affects the dynamics of the system in the vicinity
of a homogeneous steady state, using linear stability analysis. However, patterns generi-
cally don’t saturate at small amplitudes but continue to grow into the strongly nonlinear
regime [56] (see Movie 1 for an example in which a small perturbation of the homogeneous
steady state evolves into a large amplitude pattern in the presence of flow).

To study the long time behavior (steady state) far away from the spatially homogeneous
steady state, we performed finite element simulations in Mathematica [246]. To interpret



150 7. Symmetry breaking in response to cytoplasmic flow

0 10
0

1200 membrane concentration

space

tim
e

space0

3x10-2

0 150
0

5x10-3

A

B

C

D
numerical 
numerical 
analytical upstream downstream

downstream

flow

upstream

FBS

Figure 7.4 | Pattern dynamics far from the spatially homogeneous steady state. (A)
Time evolution of the membrane-bound protein concentration. At time t0 = 240s a
constant cytosolic flow with velocity vf = 20µm/s towards the right is switched on
(cf. Movie 3). (B) Relation between the peak speed (vp) and flow speed (vf). Results
from finite element simulations (black open squares) are compared to the phase velocity
of the mode qmax obtained from linear stability analysis (green solid line) and to an
approximation (orange open circles) of the area enclosed by the density distribution
trajectory in phase space (area enclosed by the ‘loop’ in D). (The domain size, L =
10µm, is chosen large enough compared to the peak width such that boundary effects
are negligible.) (C) A schematic of the phase portrait corresponding to the pattern in
D. The density distribution in the absence of flow is embedded in the FBS (blue straight
line). In the presence of flow, the density distribution trajectory forms a ‘loop’ in phase
space. The upstream and downstream side of the pattern are highlighted in cyan and
magenta, respectively. Red and green arrows indicate the direction of the reactive flow
in the attachment and detachment zones, respectively. At intersection points of the
density distribution with the nullcline (cL and cR) the system is at its local reactive
equilibrium. (D) Sketch of the membrane (orange solid line, top) and cytosolic (orange
dashed line, bottom) concentration profiles for a stationary pattern in the absence of
cytosolic flow. Flow shifts the cytosol profile downstream (orange solid line, bottom).
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the results of these numerical simulations, we will use local equilibria theory, building on
the phase-space analysis introduced in Refs. [56, 106].

Figure 7.4A shows the space-time plot (kymograph) of a system where there is initially no
flow (t < t0), such that the system is in a stationary state with a single peak. For such a
stationary steady state, diffusive fluxes on the membrane and in the cytosol have to balance
exactly. This diffusive flux balance imposes the constraint that in the (m, c)-phase plane,
the trajectory corresponding to the pattern lies on a straight line with slope −Dm/Dc,
called ‘flux-balance subspace’ (FBS) [56] (see light blue line in Fig. 7.4C). At the plateaus
and inflection points of the pattern, the net diffusive flow vanishes and attachment and
detachment are balanced, i.e. the system is locally in reactive equilibrium (f = 0). Hence,
plateaus and inflection points of the spatial concentration profile correspond to intersection
points between the reactive nullcline and the FBS in the (m, c)-phase plane (blue and green
points in Fig. 7.4C). At the first intersection point (blue), the nullcline slope is larger than
the FBS slope. Thus, by the slope criterion snc < −Dm/Dc for lateral instability, this point
corresponds to a laterally stable state in the spatial domain—i.e. a plateau. Following a
spatial perturbation, the concentrations will relax back towards the flat plateau.

At the second intersection point (green point in Fig. 7.4C), the nullcline slope is more
negative than the FBS slope, indicating a laterally unstable state. This state corresponds
to the inflection point of the pattern and the lateral instability there can be thought of
as “spanning” the interfacial region of the pattern that connects the two plateaus. An
in-depth analysis of stationary patterns based on these geometric relations in phase space
can be found in Ref. [56]. Here we ask how the phase portrait changes in the presence of
flow.

At time t = t0, a constant cytosolic flow in the positive x-direction is switched on. Consis-
tent with the expectation from linear stability analysis, we find that the peak propagates
against the flow direction in the negative x-direction (solid lines in Fig. 7.4A). The diffu-
sive fluxes no longer balance for this propagating steady state, such that the phase-space
trajectory is no longer embedded in the FBS. Instead, as advective flow shifts the cytosol
concentration profile relative to the membrane profile, the phase-space trajectory becomes
a ‘loop’ (Fig. 7.4C). On the upstream side of the peak, the cytosolic density is increased,
such that net attachment — which is proportional to the cytosolic density — is increased
relative to net detachment. Conversely, the reactive balance is shifted towards detachment
on the downstream side. Because the reactive flow is approximately proportional to the
distance from the reactive nullcline in phase space, the asymmetry between net attachment
and detachment on the upstream and downstream side of the peak can be estimated by
the area enclosed by the loop-shaped trajectory in phase space.

To test whether the attachment–detachment asymmetry explains the propagation speed
of the peak, we estimate the enclosed area in phase space by the difference in cytosolic
concentrations at the points cL and cR (black dots in Fig. 7.4C and D) where the loop
intersects the reactive nullcline (f = 0 black line Fig. 7.4C). At these points, the system is
in a local reactive equilibrium. Indeed, we find that the propagation speed of the pattern
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obtained from numerical simulations (black open squares in Fig. 7.4B) is well approximated
by the difference in cytosolic density (vp ∝ cL − cR) for all flow speeds (orange open circles
in Fig. 7.4B). Furthermore, in the limit of slow and fast flow, the peak propagation speed
is well approximated by the propagation speed of the unstable traveling mode with the
longest wavelength, as obtained from linear stability analysis.4 For small flow speeds, the
pattern’s propagation speed vp increases linearly with vf (cf. Eq. 7.7) and for large flow
speeds the pattern speed is proportional to 1/vf (cf. Eq. 7.10).

In summary, we found that the peak propagation speed in the slow and fast flow limits
is well described by the propagation speed of the linearly unstable mode with the longest
wavelength (i.e. the right edge of the band of unstable modes qmax). Moreover, we ap-
proximated the asymmetry of protein attachment by the area enclosed by the density
distribution in phase space, and found that this is proportional to the peak speed for all
flow speeds.

7.5 Flow-induced transition from mesa to peak patterns

So far we have studied the propagation of patterns in response to cytosolic flow. Next, we
will show how cytosolic flow can also drive the transition between qualitatively different
pattern types. We distinguish two pattern types exhibited by McRD systems, peaks and
mesas [56, 103]. Mesa patterns are composed of plateaus (low density and high density) con-
nected by interfaces, while a peak can be pictured as two interfaces concatenated directly
(cf. Fig. 7.5A). Mesa patterns form if protein attachment saturates in regions of high total
density, forming a plateau there. As we argued above, the low- and high-density plateaus
correspond to laterally stable steady states, marked—in the phase plane—by intersection
points between the FBS and the reactive nullcline where the nullcline slope is larger than
the FBS slope. Peaks form if the attachment rate does not saturate at high density, i.e.
if the third intersection point between nullcline and FBS is not reached [56]. Thus, while
the amplitude of mesa patterns is determined by the attachment–detachment balance in
the two plateaus, the amplitude (maximum concentration) of a peak is determined by the
total mass available in the system [56].

How does protein transport affect whether a peak or a mesa forms? As we argued above,
a peak pattern forms if protein attachment in regions of high density does not saturate. In
general, this will happen if attachment to the membrane depletes proteins from the cytosol
slower than lateral transport can resupply proteins (see Fig. 7.5A). Let us first recap the
situation without flow, where proteins are resupplied by diffusion from the detachment
zone to the attachment zone across the pattern’s interface with width `int. Thus, a peak

4The phase velocity depends on the mode’s wavelength. The relevant length scale for the peak’s propaga-
tion is its width, which is approximately given by 2π/qmax at the pattern’s inflection point [56]. Thus,
we infer the peak propagation speed from − Imσ(qmax)/qmax at the inflection point of the stationary
peak.
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Figure 7.5 | Demonstration of the transition from a mesa pattern to a peak pattern.
Each panel shows a snapshot from finite element simulations in steady state. Top
concentration profiles in real space; bottom: corresponding trajectory (blue solid line)
in phase space. (A) Mesa pattern in the case of slow cytosol diffusion and no flow. The
two plateaus (blue dots) and the inflection point (gray dot) of the pattern correspond
to the intersection points of the FBS (blue dashed line) with the reactive nullcline
(black line). (B) For fast cytosol diffusion, the third intersection point between FBS
and nullcline lies at much higher membrane concentration such that it no longer limits
the pattern amplitude. Therefore, a peak forms whose amplitude is limited by the
total protein mass in the system. (C) Slow flow only slightly deforms the mesa pattern,
compare to (A). Fast cytosolic flow leads to formation of a peak pattern (D), similarly
to fast diffusion. Parameters: n̄ = 7µm−1, Dm = 0.1µm2/s and L = 20µm.

pattern forms if the rate of transport by cytosolic diffusion is faster than the attachment
rate (Dc/`

2
int � τ−1

react). Further using that the interface width is given by a balance of
membrane diffusion and local reactions (`2int ∼ τreactDm), we obtain the condition Dc � Dm

for the formation of peak patterns.

In terms of phase space geometry, this means that the slope −Dm/Dc of the flux-balance
subspace in phase space must be sufficiently shallow. For a steep slope −Dm/Dc of the
FBS, the membrane concentration saturates at the point where the FBS intersects with
the reactive nullcline blue dots in Fig. 7.5A. There, attachment and detachment balance
such that a mesa forms (Fig. 7.5A). For faster cytosol diffusion, the flux-balance subspace
is shallower such that the third FBS-NC intersection point shifts to higher densities. Thus,
for sufficiently fast cytosol diffusion a peak forms (Fig. 7.5B).

Adding slow cytosolic flow does not significantly contribute to the resupply of the cytosolic
sink (i.e. attachment zone) and therefore does not alter the pattern type (Fig. 7.5C). In
contrast, when cytosolic protein transport (by advection and/or diffusion) is fast compared
to the reaction kinetics, the cytosolic sink gets resupplied quickly, leading to a flattening
of the cytosolic concentration profile. Accordingly, the density distribution in phase space
approaches a horizontal line, both for fast cytosolic diffusion (Fig. 7.5B) and for fast cy-
tosolic flow (Fig. 7.5D). As a consequence, the point where the density distribution meets
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the nullcline shifts towards larger membrane concentrations, resulting in an increasing am-
plitude of the mesa pattern. Eventually, when the amplitude of the pattern can not grow
any further due to limiting total mass, a peak pattern forms (Fig. 7.5B,D). Hence, an
increased flow velocity can cause a transition from a mesa pattern to a peak pattern (see
Movie 4).

In summary, we found that cytosolic flow can qualitatively change the membrane-bound
protein pattern from a small-amplitude, wide mesa pattern to a large-amplitude, narrow
peak pattern. In cells, such flows could therefore promote the precise positioning of polar-
ity patterns on the membrane. Furthermore, we hypothesize that flow can contribute to
the selection of a single peak by accelerating the coarsening dynamics of the pattern via
two distinct mechanisms. First, flow accelerates protein transport that drives coarsening.
Second, as peak patterns coarsen faster than mesa patterns [52, 103], flow can accelerate
coarsening via the flow-driven mesa-to-peak transition. Such fast coarsening may be im-
portant for the selection of a single polarity axis, e.g. a single budding site in S. cerevisiae
[40], for axon formation in neurons [247], and to establish a distinct front and back in
motile cells [226, 248].

7.6 Flow-induced pattern formation

So far we have studied how a uniform flow profile affects pattern formation on a domain
with periodic boundary conditions, representing circular flows along the cell membrane and
bulk flows in microfluidic in vitro setups. However, flows in the vicinity of the membrane
can be non-uniform. For example, one (or more) components of the pattern forming system
may be embedded in the cell cortex [8, 25, 249] which is a contractile medium driven by
myosin-motor activity. Furthermore, the incompressible cytosol can flow in the direction
normal to the membrane, such that the 3D flow field of the cytosol is perceived as a
compressible flow along the membrane [229]. In this Section we will discuss how such
non-uniform, uni-directional flows lead to pattern formation.

A non-uniform flow transports the proteins at different speeds along the membrane. Start-
ing from a spatially homogeneous initial state, such a non-uniform flow leads to a redis-
tribution of mass. It has been demonstrated in previous work that this non-uniform flow
can induce pattern formation even if the homogeneous steady state is laterally stable (i.e.
there is no spontaneous pattern formation) [8, 25, 228]. Based on numerical simulations, a
transition from flow-guided to self-organized dynamics has been reported [8]. However, the
physical mechanism underlying this transition, and what determines the transition point
have remained unclear.

We address this question using the two-component model, which serves a conceptual model
that mimics the qualitative behavior of the more complex PAR system [97]. While flow
in the PAR system is governed by the myosin concentration, we assume a stationary
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Figure 7.6 | Flow-driven protein mass accumulation can induce pattern formation
by triggering a regional lateral instability. (A) Top: quadratic flow velocity profile:
vf (x)/vmax = 1 − 4 (x/L− 1/2)2. Bottom: illustration of the total density profiles at
different time points starting from a homogeneous steady state (i) to the final pattern
(iv); see Movie 5. Mass redistribution due to the non-uniform flow velocity drives mass
towards the right hand side of the system, as indicated by the blue arrows. The range
of total densities shaded in orange indicates the laterally unstable regime determined
by linear stability analysis. Once the total density reaches this regime locally, a regional
lateral instability is triggered resulting in the self-organized formation of a peak (orange
arrow). (B) Sketch of the phase space representation corresponding to the profiles
shown in A. Note that the concentrations are slaved to the reactive nullcline (black
line) until the regional lateral instability is triggered. (C) Schematic representation
of the state space of concentration patterns in a case where both the homogeneous
steady state and a stationary polarity pattern are stable. Thin trajectories indicate
the dynamics in the absence of flow and the pattern’s basin of attraction is shaded
in orange. The thick trajectory connecting both steady states shows the flow-induced
dynamics, corresponding to the sequence of states (i)–(iv) shown in A and B.
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parabolic flow profile that vanishes at the system boundaries (Fig. 7.6A, top). We use a one-
dimensional domain with no-flux boundary conditions that correspond to the symmetry
axis of a rotationally symmetric flow profile. In the following, we describe the flow-induced
dynamics starting from a spatially homogeneous steady state to the final polarity pattern
observed in numerical simulations (see Movie 5). Figure 7.6 visualizes these dynamics in
real space (A) and in the (m, c)-phase plane (B). To relate our findings to the previous
study Ref. [8], we also visualize the dynamics in an abstract representation of the state
space (comprising all concentration profiles) used in this previous study. In this state
space, steady states are points and the time evolution of the system is a trajectory (thick
blue/orange line in Fig. 7.6C).

Starting from the homogeneous steady state (i), the non-uniform advective flow redis-
tributes mass in the cytosol (ii). Due to this redistribution of mass, the local reactive
equilibria shift as we have seen repeatedly here and in earlier studies of mass-conserving
systems [49, 56]. In fact, as long as the gradients of both the membrane and cytosol profiles
are shallow, the concentrations remain close to the local equilibria, as evidenced by the
density distribution in phase space spreading along the reactive nullcline (see profile (ii)
in Fig. 7.6A,B). As long as there is no laterally unstable region, the mass accumulation
is limited by the counteracting diffusive flow in the cytosol. Eventually, the region where
mass accumulates (here the right edge of the domain) enters the laterally unstable regime
(see profile iii). In this laterally unstable region, cytosol diffusion will enhance the accu-
mulation of mass via the mass-redistribution instability, until it is limited by the much
slower membrane diffusion. In the phase plane (Fig. 7.6B), the laterally unstable regime
corresponds to the range of total densities n̄ where the nullcline slope has a steeper nega-
tive value than the flux-balance subspace slope (snc < −Dm/Dc)5. The mass-redistribution
instability in this region, based on the self-organized formation of attachment and detach-
ment zones (cf. Sec. 7.3.2) will lead to the formation of a polarity pattern there (iv). Thus,
the onset of a regional lateral instability marks the transition from flow-guided dynamics
to self-organized dynamics.

In the abstract state space visualization (Fig. 7.6C) the area shaded in orange indicates the
polarity pattern’s basin of attraction comprising all states (concentration profiles) where a
spatial region in the system is laterally unstable. In the absence of flow, states that do not
exhibit such a laterally unstable region return to the homogeneous steady state (thin gray
lines). Non-uniform cytosolic flow induces mass-redistribution, that can drive an initially
homogeneous system (i) into the polarity pattern’s basin of attraction. From there on,
self-organized pattern formation takes over, leading to the formation of a polarity pattern
(iv), essentially independently of the advective flow (orange trajectory).

In future work, it would be interesting to make the abstract state space representation,
Fig. 7.6C, more quantitative. For example, one could try to estimate the minimal flow
velocity required to drive the system past the separatrix, i.e. into the basin of attraction

5More precisely, the size of the laterally unstable region must be larger than the shortest unstable mode
(corresponding to the right edge of the band of unstable modes in the dispersion relation (Fig. 7.2A)).
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of the polarity pattern. A promising approach is to use the fact that prior to the onset
of regional lateral instability, the concentrations are slaved to the local equilibria that
depend on the local total density. Thus, one can obtain an approximate, closed equation
for the flow-driven evolution of the total density, similar to the “adiabatic scaffolding
approximation” made in [56]. Solving this equation would provide a criterion for when the
total density exceeds the critical density for lateral instability in some spatial region that
initiates the self-organized formation of a polarity pattern there.

Similar pattern forming mechanisms based on a regional instability have previously been
shown to also underlie stimulus-induced pattern formation following a sufficiently strong
initial perturbation [56] and peak formation at a domain edge where the reaction kinetics
abruptly change [105]. Thus, an overarching principle for stimulus-induced pattern forma-
tion emerges: To trigger (polarity) pattern formation, the stimulus, be it advective flow
or heterogeneous reaction kinetics, has to redistribute protein mass in a way such that a
regional (lateral) instability is triggered.

It remains to be discussed what happens once the cytoplasmic flow is switched off after the
polarity pattern has formed. In general, the polarity pattern will persist (see Movie 5), since
it is maintained by self-organized attachment and detachment zones, largely independent
of the flow. However, as long as there is flow, the average mass on the right hand side of
the system (downstream of the flow) is higher than on the left hand side. Hence, flow can
maintain a polarity pattern even if the average mass in the system as a whole is too low
to sustain polarity patterns in the absence of flow (see bifurcation analysis in Ref. [56]). If
this is the case, the peak disappears once the flow is switched off (see Movie 6).

In summary, the redistribution of the protein mass is key to induce (polarity) pattern
formation starting from a stable homogeneous state.

7.7 Conclusions and outlook

Inside cells, proteins are transported via diffusion and fluid flows, which, in combination
with reactions, can lead to the formation of protein patterns on the cell membrane. To
characterize the role fluid flows play in pattern formation, we studied the effect of flow
on the formation of a polarity pattern, using a generic two-component model. We found
that flow leads to propagation of the polarity pattern against the flow direction with
a speed that is maximal for intermediate flow speeds, i.e. when the rate of advective
transport is comparable to either the reaction rates or to the rate diffusive transport in the
cytosol. Using a phase-space analysis, we showed that the propagation of the pattern is
driven by an asymmetric influx of protein mass to a self-organized protein-attachment
zone. As a consequence, attachment is stronger on the upstream side of the pattern
compared to the downstream side, leading to upstream propagation of the membrane bound
pattern. Furthermore, we have shown that flow can qualitatively change the pattern from
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a wide mesa pattern (connecting two plateaus) to a narrow peak pattern. Finally, we have
presented a phase-space analysis to elucidate the interplay between flow-guided dynamics
and self-organized pattern formation. This interplay was previously studied numerically
in the context of PAR-protein polarization [8, 25]. Our analysis reveals the underlying
cause for the transition from flow-guided to self-organized dynamics: the regional onset of
a mass-redistribution instability.

We discussed implications of our results and links to earlier literature at the end of each sec-
tion. Here, we conclude with a brief outlook. We expect that the insights obtained from the
minimal two-component model studied here generalize to systems with more components
and multiple protein species. For example, in vitro studies of the reconstituted MinDE sys-
tem of E. coli show that MinD and MinE spontaneously form dynamic membrane-bound
patterns, including spiral waves [250] and quasi-stationary patterns [251]. These patterns
emerge from the competition of MinD self-recruitment and MinE-mediated detachment of
MinD [90, 95]. In the presence of a bulk flow, the traveling waves were found to propagate
upstream [233]. Our analysis based on a simple conceptual model suggests that this up-
stream propagation is caused by a larger influx of the self-recruiting MinD on the upstream
flanks compared to the downstream flanks of the travelling waves. However, the bulk flow
also increases the resupply of MinE on the upstream flanks. As MinE mediates the detach-
ment of MinD and therefore effectively antagonizes MinD’s self-recruitment, this may drive
the membrane-bound patterns to propagate downstream instead of upstream. Which one
of the two processes dominates — MinD-induced upstream propagation or MinE-induced
downstream propagation — likely depends on the details of their interactions. This inter-
play will be the subject of future work.

A different route of generalization is to consider advective flows that depend on the pro-
tein concentrations. In cells, such coupling arises, for instance, from myosin-driven cortex
contractions [8, 218] and shape deformations [28, 240]. Myosin-motors, in turn, may be
advected by the flow and their activity is controlled by signalling proteins such as GTPases
and kinases [252]. This can give rise to feedback loops between flow and protein patterns.
Previous studies show that such feedback loops can give rise to mechano-chemical insta-
bilities [253], drive pulsatile (standing-wave) patterns [254, 255] or cause the breakup of
traveling waves [256]. We expect that our analysis based on phase-space geometry can
provide insight into the mechanisms underlying these phenomena.
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Appendices

7.A Limit of slow flow and timescale comparison

The dispersion relation in the absence of flow (vf = 0) reads

σ(0) = −1

2

[
(Dm +Dc) q

2 + fc − fm
]
+

B(q)

2A(q)
, (7.11)

with A(q) =
[
1 − 4fcfm/B(q)2

]−1/2 − 1 and B(q) = fm + fc + (Dc −Dm)q
2. To find the

effect of slow flow, we first need to identify the relevant timescales such that we can define
a dimensionless small parameter to expand in. Because pattern formation is driven by
transport in the cytosol (diffusive and advective) and attachment from the cytosol to the
membrane, there are three relevant timescales: (i) The the rate of advective transport on
length scale q−1 is given by qvf; (ii) The rate of diffusive transport on that scale, given by
Dcq

2; and (iii) the attachment rate fc = a(m) (cf. Eq. (7.2)). To compare these timescales,
we form two dimensionless numbers: the Peclét number Pe = vf/(Dcq) and the Damköhler
number Da = fc/(vfq). Flow can either be slow compared to reactions (Da � 1) or slow
compared to diffusion (Pe � 1). In both cases, expanding the the dispersion relation σ(q)
to first order yields

σ(q) = σ(0)(q) + i
vfq

2
A(q) +O(ε2), (7.12)

where ε = min(Pe,Da−1). By elementary algebra using the assumptions Dc > Dm and
fc > 0 made above, it follows that A(q) is positive when snc < 0. As Eq. (7.8) in Sec. 7.3.3
shows, the condition snc < 0 is necessary for a band of unstable modes to exist. Therefore,
A(q) is positive for all unstable modes.
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8 Discussion and Outlook

“ All ends with beginnings.”
– Get Lucky, Daft Punk

In cells, many processes need to be coordinated in space and time to ensure functional
cellular behavior. Such processes are coordinated by proteins, which can self-organize in
spatial protein patterns. It has been studied extensively how such protein patterns arise
spontaneously from a homogeneous steady state, due to a combination between protein
transport and protein-protein interactions [59, 106, 107, 257]. In recent years, it has
become increasingly clear that many protein patterns depend on the cells size, shape and
biochemical interactions with other proteins [8, 16, 19, 21]. However, for many observations
the underlying biophysical mechanisms remain unknown. In this thesis, we used reaction–
diffusion models to study several mechanisms by which one protein pattern serves as a
template for the formation and steady states of downstream protein patterns inside cells. In
the following, we highlight three key implications of our work and make several suggestions
for future research.

First, our work shows how a hierarchy of self-organized protein patterns integrates two
main paradigms in the field of protein pattern formation: Turing’s idea that proteins
self-organize from a homogeneous state into patterns via reaction and diffusion [171], and
Wolpert’s idea that cells have a notion of positional information, which they use to form
patterns [211]. The mechanisms presented in chapter 3 – 5 show that the positional infor-
mation contained in a protein pattern can be used as an input for the reaction–diffusion
dynamics of a downstream protein. Such mechanisms, that arise from an hierarchical
sequence of self-organized protein patterns, are reminiscent of spatial computational oper-
ations to process spatial information inside cells. In chapter 6, we showed how a sequence
of two such computational operations leads to a protein pattern that adapts to the shape
of the cell. Thus, our work illustrates the importance of the self-organized formation of hi-
erarchical patterns in understanding emergent biological functions, complementing genetic
and molecular studies.

We believe that these mechanisms, based on the hierarchical coupling of self-organizing
protein ‘modules’ can be generalized to a wide range of processes in which spatial infor-
mation is processed, such as cell migration and cytokinesis. A major challenge in future
research will be to identify the underlying mechanisms that enable such spatial informa-
tion processing in living cells. To that end, it will be important to develop mechanistic
and quantitative models to understand how one protein pattern affects the formation of
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downstream protein patterns. In addition, as more quantitative data from single cell exper-
iments becomes available, such models can help to interpret these experiments, ultimately
leading to the characterization of general biophysical principles of information processing
in living cells.

A second implication of our work follows from our results in chapter 6, that demonstrate
a shape-adaptation mechanism, explaining how protein patterns can adapt to variations
in the cell shape. The interplay between protein patterns and cell mechanics is central
to a long-standing puzzle, first formulated by Alan Turing in his seminal paper on “The
chemical basis of morphogenesis”. There he notes that “the description of the state depends
on two parts, the mechanical and chemical,” and that “the interdependence of the chemical
and mechanical data adds enormously to the difficulty.” Thus, there are two distinct
scenarios: the formation of functional protein patterns could either rely on the interplay
with cell mechanics and cell geometry, or the formation of patterns has to adapt to such
mechanical and geometrical influences in order to be robust. As reviewed in chapter 1,
several mechanisms have been reported by which protein patterns are affected by cell
size, shape and cell mechanics. Furthermore, it has been suggested that the formation of
protein patterns can even rely on cell mechanics via changes in the cell shape and cortical
flows [8, 16]. In contrast to these mechanisms, the results in chapter 6 demonstrate how
the formation of protein patterns can adapt to be robust to cell shape. Future research
on pattern formation mechanisms in living cells will demonstrate whether there are more
examples where the formation of protein patterns adapts to be robust to the effects of cell
mechanics and geometry.

Finally, the pattern hierarchy presented in chapter 6, establishes a mechano-chemical feed-
back loop, coupling shape information to a cell shape regulator. Thus, such a pattern
hierarchy may also be important for how cells regulate cell-shape. Feedback-loops between
protein patterns and cell mechanics have also been suggested to play a role in other biologi-
cal model systems, such as during polarization of the C. elegans zygote [8, 13]. However, it
remains unclear to what extent the functional polarity pattern relies on the interplay with
cell mechanics [7]. To characterize the role of feedback-loops between protein patterns,
cell mechanics and cell shape for the formation of functional protein patterns, it will be
key to compare realistic three-dimensional models to experimental data. The properties of
such mechano-chemical models that include both protein reaction–diffusion dynamics, as
well as a dynamically varying three-dimensional cell shape, are challenging to study due to
the computational complexity of simulating such models [12, 258–260]. In future research,
it will be important to further develop such methods such that they can be compared to
quantitative experimental data and contribute to the interpretation of experimental results
in mechano-chemical model systems.
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