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1. Abstract 

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system 

(CNS) that involves demyelination and axonal degeneration. It remains controversial 

regarding the pathophysiology of MS whether brain-intrinsic degenerative cascades or 

recruited inflammatory processes drive the disease. In this thesis, I investigated the long-

term consequences of an acute demyelinating white matter CNS lesion with the hypothesis 

that focal white matter lesions can induce long-lasting neuropathologies in MS. For this 

purpose, acute demyelination was induced by 5-week-Cuprizone intoxication in male 

C57BL/6J mice, followed by 7-month remyelination with normal chow. I show that ongoing 

gliosis (i.e., astrogliosis and microgliosis) and axonal damage persist after 7-month 

remyelination using immunohistochemistry/immunofluorescence, accompanied with gait 

abnormalities quantified using the DigiGaitTM high speed ventral plane videography. 

Moreover, microglia presented a reactive phenotype with hyper-ramified morphology after 

7-month remyelination, determined by complex morphological analyses using 3D 

reconstruction of serial image sequences acquired for microglia. I further verified the 

ongoing pathology after 7-month remyelination using Affymetrix GeneChip microarrays 

and found that protein kinase C delta (PRKCD) expression is up-regulated and 

predominately expressed in microglia/macrophages using 

immunohistochemistry/immunofluorescence. Induction of PRKCD in 

microglia/macrophages was also found in chronic (active) lesions and the normal appearing 

white matter of progressive MS patients compared to non-MS controls. In summary, my 

findings suggest that an initial brain pathology (i.e., acute demyelination) per se could 

induce prolonged gliosis, axonal damage as well as gait abnormalities even after complete 

remyelination. A better understanding of factors regulating these persistent pathologies 

would pave the way for  novel MS therapies.  
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2. Abbreviations 

a: Research Resource Identifier  

#: Number 

ABC-HRP: Avidin–Biotin Complex coupled with Peroxidase  

AGCC: Affymetrix GeneChip Command Console 

ANXA2: annexin a2 

APP: Amyloid Precursor Protein 

Arc: Activity regulated cytoskeleton associated protein 

Bp: Base pairs 

CA3: Cornu Ammonis 3 

Cadps2: Calcium dependent secretion activator 2 

cc: corpus callosum 

cing: cingulum bundle 

CPG: Central Pattern-Generating Networks  

CTX: Cerebral Cortex; 

EAE: Experimental Autoimmune Encephalomyelitis 

EDSS: Expanded Disability Status Scale 

FDR: False Discovery Rate 

Gapdh: Glyceraldehyde 3-phosphate dehydrogenase 

GFAP: Glial Fibrillary Acidic Protein 

GO: Gene Ontology 

GWAS: Genome-Wide Association Study 

Hprt: Hypoxanthine Phosphoribosyltransferase 

Human Leukocyte Antigen:  LN3/HLA-DR 

IBA1: Ionized Calcium-Binding Adapter Molecule 1 

IFN-ß: Interferon-Beta 

IHC/IF: immunohistochemistry/immunofluorescence 

Lcn2: Lipocalin 2 

LF: Left Fore limb  

LH: Left Hind limb 

MBP: Myelin Basic Protein 
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MOG: Myelin Oligodendrocyte Protein 

MOSS: Motor Skill Sequence  

MRI: Magnetic Resonance Imaging  

mRNA: Messenger RNA 

MS: Multiple Sclerosis 

NAWM: Normal Appearing White Matter 

Ndst4: N-Deacetylase and N-Sulfotransferase 4 

NG2: Neural/Glial Antigen 2 

NHPT: Nine Hole Peg Test 

OLIG2: Oligodendrocyte Transcription Factor 2 

OPCs: Oligodendrocyte Progenitor Cells 

PBS: Phosphate-Buffered Saline 

PKC: Protein Kinase C 

PLP: Proteolipid Protein  

Pln: Phospholamban 

PRKCD: Protein Kinase C Delta 

RF: Right Fore limb 

RH: Right Hind limb 

RI: Ramification Index  

RIv: Volume Ramification Index  
RMA: Robust Multi-Array average 

ROI: Region of Interest 

RRMS: Relapsing-Remitting MS 

RT-PCR: Reverse Transcription Polymerase Chain Reaction 

SEM: Standard Error of the Mean 

Sgk1: serum/glucocorticoid regulated kinase 1 

Slitrk6: SLIT and NTRK like family member 6  

SPMS: Secondary Progressive MS 

T25-FW: 25-Foot Walk Test 

Ta: Annealing Temperature 

TH1, TH17: T Helper Type 1, 17 

Vc: Cell Volume 

VL: Lateral Ventricle 

Vp: Maximum Projection Volume 
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3. Introduction 

3.1 Multiple sclerosis 

Multiple sclerosis (MS), as an autoimmune, demyelinating disease of the central nervous 

system (CNS), is histopathologically characterized by demyelination, peripheral immune 

cell infiltration, gliosis and axonal damage (Popescu, Pirko, & Lucchinetti, 2013; Rohr et al., 

2020). MS is found to be more common in women than men and cause motor, sensory and 

cognitive disabilities in the patients (Kipp, Nyamoya, Hochstrasser, & Amor, 2017).  

Initially, most patients present with a relapsing-remitting MS (RRMS) disease course. In 

RRMS, the patients suffer from acute clinical attacks (i.e., relapse) and recover afterwards 

(i.e., remit) (Kipp, 2020). At the histopathological level, RRMS is characterized by focal, 

inflammatory white matter lesions. Around 85% patients with RRMS eventually develop 

secondary progressive MS (SPMS) in their 40s or 50s. Clinically, SPMS patients show a 

continuous worsening of the neurological function (Kipp, 2020; Thompson et al., 2018). 

Although various therapies are available nowadays for RRMS, options for delaying the 

progression of the disability during progressive MS are extremely limited (Faissner, Plemel, 

Gold, & Yong, 2019), which reflects the elusive mechanisms underlying the MS 

progression. Most clinical trials of progressive MS failed in phase II/III and currently only 

two drugs (i.e., siponimod and ocrelizumab) have been approved for the treatment of 

progressive MS (Correale, Gaitan, Ysrraelit, & Fiol, 2017; Faissner et al., 2019; Kappos et 

al., 2018; Kipp, 2020; Montalban et al., 2017). Histopathologically, SPMS is characterized 

by diffuse microglia activation and axonal injury, cortical demyelination and the expansion 

of existing white matter lesions (i.e., smoldering lesions) (Frischer et al., 2015). 

Focally demyelinated lesions have the potential to regenerate myelin by an endogenous 

reparative process termed remyelination. To remyelinate, oligodendrocyte progenitor cells 

(OPCs) need to proliferate firstly and migrate to the demyelinated lesion. After the OPCs 

find the demyelinated axons, they will differentiate into premature oligodendrocytes and 

thereafter wrap the axons (Kipp & Amor, 2012). Remyelination, together with neuronal 
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plasticity (i.e., functional reorganization of neuronal connectivity) appear to be key 

mechanisms to allow for complete clinical recovery after an episode of focal inflammatory 

demyelination (Flachenecker, 2015; Irvine & Blakemore, 2008; Kerschensteiner et al., 2004; 

Smith, Blakemore, & McDonald, 1979, 1981; Tomassini et al., 2012). 

There is ample evidence that despite complete recovery from clinical symptoms, there is 

ongoing neuronal damage in progressive MS patients. For example, it has been 

demonstrated that after complete remyelination, axonal degeneration progresses at a low 

level, and is thus accumulating over time (Manrique-Hoyos et al., 2012). In experimental 

autoimmune encephalomyelitis (EAE), the most commonly applied autoimmune model of 

MS, neurodegeneration continues despite arresting clinical relapses (D. W. Hampton et al., 

2013). In humans, advanced imaging modalities revealed metabolite abnormalities 

suggestive of ongoing glia cell activation and neurodegeneration despite a stable clinical 

disease course (Kirov et al., 2009; Wattjes et al., 2007). These results suggest that although 

at the clinical level, patients can completely recover from symptoms induced by such 

focally demyelinated lesions, these lesions eventually trigger an ongoing chronic pathology 

within the CNS.  

3.2 Detection of motor deficits in mice 

Rhythmic motor behaviors (e.g.; walking or running) are under delicate control of the CNS 

(Grillner & Wallen, 1985; Grillner, Wallen, Saitoh, Kozlov, & Robertson, 2008; Rossignol, 

Dubuc, & Gossard, 2006). In general, the basic locomotion pattern is known to be largely 

controlled by spinal central pattern-generating networks (CPG). During walking, the CPG 

per se receives afferent cutaneous and proprioceptive feedbacks from skin, muscles and 

special senses (i.e., vision, vestibular sense, audition) (Grillner & Wallen, 1985; Rossignol 

et al., 2006). Besides the basic locomotion pattern regulated by the CPG, various descending 

pathways from the brain dynamically coordinate adaptions of locomotion pattern in 

response to the changeable environment (Grillner et al., 2008).  

Motor performances in small laboratory animals can be evaluated by various methods. 

Different categories of the most frequently used motor tests in mice are summarized in table 

1 (Brooks & Dunnett, 2009). Motor abnormalities could be simply evaluated by 

observational tests such as the cylinder test (Emerich, Dean III, & Sanberg, 1999). In the 
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cylinder test, mice are put in a transparent cylinder allowing for observing the surrounding 

environment. Meanwhile, the number and time of paw contacts with the cylinder wall are 

recorded for evaluating the motor deficits especially during exploring the environment. This 

method was firstly developed and widely used for detecting unilateral motor deficits in 

Parkinson’s disease models of rats. However, the cylinder test is suboptimal for detecting 

bilaterally symmetric dysfunctions such as disorders in the coordination and balance 

(Brooks & Dunnett, 2009).  

Categories Representative 

Tests 

Descriptions Ref 

Observational 

test 

Cylinder test -mice are put in a transparent cylinder 

-useful for detecting unilateral but not bilateral 

motor deficits 

(Emerich et 

al., 1999) 

Motor 

coordination 

and balance 

Rotarod test -mice are put on a rotating rod 

-most frequently used for detecting coordination 

deficits. 

(Dunham & 

Miya, 1957) 

Beam walking test 

 

-mice are put on a balance beam. 

 

 

(Gentile, 

Green, 

Nieburgs, 

Schmelzer, & 

Stein, 1978) 

Locomotion 

activity 

 

Open-field test 

 

-mice are put in the center of an open arena. 

-useful for detecting exploration activity but 

confounded with the anxiety level. 

(Hall, 1934) 

Wheel running 

test 

 

-mice are put on a running wheel with regular 

intervals. 

-improved test on a running wheel with irregular 

intervals (i.e., the motor skill sequence, MOSS 

test) 

 

(Liebetanz & 

Merkler, 

2006; 

Sherwin, 

1998) 

Gait analysis Footprint test -mice walk over the paper in a narrow corridor 

after painting the paws with different dyes. 

-cheap and sensitive method but time-consuming 

during manual analyses 

(Klapdor, 

Dulfer, 

Hammann, & 

Van der 

Staay, 1997) 
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Commercial 

platforms 

(DigiGaitTM, 

CatWalkTM and 

TreadScanTM) 

-mice are recorded using a high-speed camera 

while running on a treadmill. 

-sensitive and objective but expensive 

(Amende et 

al., 2005; 

Dorman, 

Krug, 

Frizelle, 

Funkenbusch, 

& Mahowald, 

2014; 

Hamers, 

Lankhorst, 

van Laar, 

Veldhuis, & 

Gispen, 

2001) 

Table 1: Commonly used motor behavior tests in mice 
Table 1: Commonly used motor behavior tests in mice 

For analyzing the motor coordination and balance, Dunham and Miya developed a rapid 

and simple method (i.e., rotarod) for assessing drugs on animal behaviors (Dunham & Miya, 

1957). The rotarod apparatus is composed of a rod rotating at a constant or increasing speed, 

assessing the motor coordination of mice walking on it. The time duration, the maximum 

speed and the total distance travelled of mice walking on the rod are commonly used for the 

quantification of the motor coordination. Due to its ease to use, the rotarod test remains one 

of the most frequently used motor function tests in rodents (Brooks & Dunnett, 2009). The 

motor coordination and balance could as well be evaluated by another method (i.e., the 

beam walking test), which was developed for measuring sensorimotor coordination and 

balance in rodents especially following cortical injury (Gentile et al., 1978). The beam 

walking test, also called the balance beam test, assesses the mice’s ability to maintain 

balance while crossing a horizontal or elevated beam to reach the escape platform. The time 

taken by the mice to transverse the beam and the number of paw slips are recorded to 

evaluate the motor performance of balance.  

Besides assessing the motor coordination and balance, the motor performance could be as 

well evaluated at the level of locomotion activity. Two tests which allow the quantification 

of locomotion activity are the open-field test and the wheel running test (Brooks & Dunnett, 

2009). In the open-field test, mice are placed in the center of an open arena. Typically, the 
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mice will immediately run to the edge of the arena and continue exploring the arena while 

remaining close to the edge. After habituating to the environment, the mice will increasingly 

explore the center parts of the arena. Based on this distinct behavioral profile, the open-field 

test is a powerful tool for assessing the locomotion activity of mice during exploring a novel 

environment (Hall, 1934). With the development of automated recording using video 

tracking, the distance traveled as well as the number of arena center entrances can be 

automatically measured (Drai, Kafkafi, Benjamini, Elmer, & Golani, 2001). As mentioned 

above, the motor performance of mice in the open-field test is largely confounded by the 

anxiety level in mice. It is almost impossible to distinguish the anxiety-related activity from 

the motor-related activity in the open-field test (Brooks & Dunnett, 2009). Another method 

for assessing the locomotion activity is the wheel running test. The wheel running test is 

widely used to study the effect of the voluntary exercise in inactivity-related diseases such 

as obesity and type II diabetes (de Carvalho, Benfato, Moretto, Barthichoto, & de Oliveira, 

2016; Hicks et al., 2016). As the test name implicates, the mice are provided with a running 

wheel in the home cage with regular intervals (around 10-15 cm). The distance traveled, the 

speed of running and the number of breaks during running on the wheel are commonly used 

for the evaluation of voluntary locomotion activity (Sherwin, 1998). The sensitivity of the 

wheel running test is largely improved by replacing the regular intervals of the wheel with 

irregularly spaced crossbars, which require high coordination skills for mice walking on 

them. The improved version of the wheel running test is called the motor skill sequence 

(MOSS) test, which allows for detecting latent deficits in motor performance (Liebetanz & 

Merkler, 2006; Manrique-Hoyos et al., 2012). 

Although the abovementioned methods provide important insights into the abnormalities 

of motor coordination and locomotion activity, subtle abnormalities in the gait, for example 

alternations in individual limbs or missteps of fore and hind limbs, may not be detected 

using those methods. In 1997, Klapdor and colleagues developed a cheap and more precise 

method (i.e., footprint test/inked-paw test) for detecting subtle abnormalities in gait patterns 

(Klapdor et al., 1997). In the foot print test, the mice paws are painted with different dyes 

and the animals are put in a narrow corridor, which allows the mice to walk straightly over 

paper. The gait pattern of individual limbs is thus recorded manually. With the burgeoning 

development of computer science in the 21st century, the footprint of animals during 
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walking can be captured using high-speed cameras and further digitalized and evaluated by 

computer programming. In our days, there are several commercial platforms for fine-tuned 

gait analysis, such as the CatWalkTM (Noldus Inc., Wageningen, The Netherlands), 

DigiGaitTM (Mouse Specifics Inc., Framingham, MA), and TreadScanTM (CleverSys Inc., 

Reston, VA) (Amende et al., 2005; Dorman et al., 2014; Hamers et al., 2001). Worth to 

mention, the gait analysis is one of the few tests which can be directly translated from 

animal studies into clinical studies (Brooks & Dunnett, 2009). In this study, I used the 

DigiGaitTM platform for fine-tuned gait analyses in MS animal models (schematic drawing 

for DigiGait™ imaging system see figure 1).  
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Figure 1: DigiGaitTM gait analysis platform 
Figure 1: DigiGaitTM gait analysis platform 
„ (A) DigiGaitTM apparatus composed of a running chamber and a high-speed camera. (B) A mouse in the 

running chamber during recordings. (C) Representative picture of ventral plane video recordings. (D) 

Digitalization of individual paw signal using the provided analysis tool and representative time-course paw 

signal graph of right hind limb. (E) Schematic depiction of a single mouse stride. Each stride composes of a 

stance and swing part. The stance part can be further subdivided into a braking and propulsion phase. LF: Left 

Fore; LH: Left Hind; RF: Right Fore; RH: Right Hind.“ Figure 1 is revised from my previously published 

work (Zhan et al., 2019). 
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3.3 Detection of motor deficits in multiple sclerosis and 

associated animal models 

Motor deficits are major symptoms affecting the life quality of MS patients (Benecke & 

Conrad, 1980). Therefore, measurements of motor abnormalities are largely used to 

represent the functional deficits in MS patients. The extent of motor deficits in MS, such as 

impairments in gait and balance, can be estimated using different methods. The expanded 

disability status scale (EDSS), the most frequently used method to evaluate the disability of 

MS patients, is conducted by individual and subjective examination by a neurologist. Gait 

deficits are an important criterion for the EDSS. The EDSS score, ranging from 0 to 10 in 

0.5 increments, represents increasing levels of disability in walking (Kurtzke & Berlin, 

1954). Besides the EDSS, the timed 25-foot walk (T25-FW) and the nine hole peg test 

(NHPT) are also used to evaluate ambulatory function and manual dexterity respectively 

(Feys et al., 2017; Motl et al., 2017).  

Experimental autoimmune encephalomyelitis (EAE), the most frequently used animal 

model in MS, sheds light on the disease-modifying therapies for RRMS (Nutma, Willison, 

Martino, & Amor, 2019; Olitsky & Yager, 1949). In brief, the EAE model can be actively 

induced by immunizing rodents (C57BL/6, SJL/J mice or Lewis, Dark Agouti rats) with a 

CNS-related antigen e.g.; CNS homogenate, proteins/ peptides of myelin basic protein 

(MBP), proteolipid protein (PLP) or myelin oligodendrocyte protein (MOG), together with 

(in)complete Freud’s adjuvant and pertussis toxin (Stromnes & Goverman, 2006). „

Following immunization, antigens are phagocytized and presented by local professional 

antigen-presenting cells which travel to the spleen or local lymph nodes to trigger 

encephalitogenic Th1- and Th17-cell mediated autoimmune responses. This finally leads to 

multifocal inflammation in specific CNS regions such as the spinal cord and the cerebellum. 

At the behavioral level, EAE-induced mice develop a typical caudal-to-rostral paralysis, 

beginning at the tail, spreading to the hind limbs and, finally, fore limbs (Zhan et al., 

2019).“ (This paragraph is revised from my previously published work). According to this, a 

standardized scoring system is commonly used to evaluate the severity of the motor deficits 

in EAE-induced mice (Constantinescu, Farooqi, O'Brien, & Gran, 2011). However, there is 

already severe spinal cord inflammation at the time point when the first motor abnormalities 
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by conventional EAE scoring can be detected (i.e., tail limpness). Therefore, more 

sophisticated motor behavioral analyses, such as the gait analysis, are required to study the 

early phase of inflammation development or beneficial drug effects during the preclinical 

phase (Zhan et al., 2019).  

Each single MS animal model only reflects distinct features of the disease instead of its 

entire complexity (Kipp et al., 2017). While the EAE model provides significant insights 

into the autoimmune aspect of MS, other animal models, such as the cuprizone model, are 

available to study the non-immune mediated demyelination in MS. Several studies have 

demonstrated the functional deficits in the cuprizone model. The methods used for detecting 

functional deficits and their main findings are summarized chronologically in table 2. In 

2006, Liebetanz and Merkler developed a sensitive motor test (i.e., MOSS test), which is 

composed of wheels with irregularly spaced crossbars. It demands high-level motor 

coordination of mice walking on it, thus it can reveal subtle abnormalities in the gait. Using 

this method, they found obvious gait abnormalities in 6-week 0.2% cuprizone intoxicated 

mice (Liebetanz & Merkler, 2006), which could not be detected by visual observations 

(Morell et al., 1998). Moreover, latent gait abnormalities were observed using the MOSS 

test during remyelination (i.e., 4 weeks after cuprizone removal) (Liebetanz & Merkler, 

2006). They concluded that the extent of motor deficits seemed to be positively correlated to 

the extent of corpus callosum demyelination. Similarly, the genetic absence or surgical 

transection of the corpus callosum is associated with subtle behavior deficits in mice and 

humans (Bonzano et al., 2008; Kennerley, Diedrichsen, Hazeltine, Semjen, & Ivry, 2002; 

Schalomon & Wahlsten, 2002; Wahlsten, Crabbe, & Dudek, 2001). In 2007, Franco-Pons et 

al. found that 6-week 0.2% cuprizone-intoxication in mice results in an impaired motor 

coordination, quantified via the rotarod test. Moreover, the motor deficits did not recover 

during remyelination (i.e., 6 weeks after cuprizone removal) (Franco-Pons, Torrente, 

Colomina, & Vilella, 2007). Motor deficits in the cuprizone model were further confirmed 

by other studies (Hibbits, Pannu, Wu, & Armstrong, 2009; Manrique-Hoyos et al., 2012). 

Besides the motor deficits, other functional deficits, such as cognitive impairments and 

spatial working memory deficits were also found in cuprizone-intoxicated mice (Hibbits et 

al., 2009; Makinodan et al., 2009; Xu, Yang, McConomy, Browning, & Li, 2010; Xu et al., 

2009). 
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Year Methods Main findings Ref 

1998 Visual observation During cuprizone exposure: Cuprizone-intoxicated mice were 

less active 

After cuprizone withdrawal: Cuprizone-intoxicated mice were 

normal 

(Morell et al., 

1998) 

2006 Wheel running 

MOSS 

During cuprizone exposure: Cuprizone-intoxicated mice showed 

reduced running performance in both wheel running and MOSS 

tests 

After cuprizone withdrawal: Cuprizone-intoxicated mice 

appeared normal in the wheel running but exhibited motor 

impairments on the MOSS test 

 

(Liebetanz & 

Merkler, 

2006) 

2007 Observation battery 

Open field 

Rotarod 

During cuprizone exposure: Cuprizone-intoxicated mice were 

hyperactive and showed motor disorders 

After cuprizone withdrawal: Cuprizone-intoxicated mice showed 

impairments in the open field and the rotarod tests 

(Franco-Pons 

et al., 2007) 

2009 

 

Open field 

Climbing test 

Y-Maze test 

Social interaction test 

 

During cuprizone exposure: Cuprizone-intoxicated mice showed 

hyperactivity in the climbing test but appeared normal in the open 

field test 

Cuprizone-intoxicated mice presented damaged spatial working 

memory and social activity in the Y-maze test and the social 

interaction test 

(Xu et al., 

2009) 

2009 Wheel running 

MOSS 

Social interaction test 

During cuprizone exposure: Cuprizone-intoxicated mice showed 

impaired sensorimotor coordination in the MOSS test and 

increased interactive behaviors in the social interaction test 

After cuprizone withdrawal: Cuprizone-intoxicated mice showed 

persistent motor impairments in the MOSS test 

(Hibbits et al., 

2009) 

2009 Y-maze test  

Social interaction test  

During cuprizone exposure: Cuprizone-intoxicated mice 

presented damaged spatial working memory and social activity in 

the Y-maze test and the social interaction test 

After cuprizone withdrawal: Cuprizone-intoxicated young mice 

(P27) but not adult mice (P56) showed irreversible impairments in 

the spatial working memory and social activity 

(Makinodan et 

al., 2009) 

2012 MOSS After cuprizone withdrawal: Cuprizone-intoxicated mice showed 

initial recovery and later on decline of locomotor performance in 

the MOSS test 

(Manrique-

Hoyos et al., 

2012) 

Table 2 Functional deficits in the cuprizone model 
Table 2: Functional deficits in the cuprizone model 
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3.4 Hypothesis 

The hypothesis of this work is that focal white matter lesions induce long-lasting 

neuropathologies in MS. In order to test this hypothesis, I first induced focal white matter 

lesions followed by long-term (7 months) remyelination in mice using the cuprizone model. 

After 7-month remyelination, axonal degeneration and neuroinflammation were evaluated at 

both mRNA and protein levels using gene array/real-time reverse transcription polymerase 

chain reaction (RT-PCR) and immunohistochemistry/immunofluorescence (IHC/IF) 

respectively. Functional deficits (i.e., motor behavioral deficits) were evaluated using high 

speed ventral plane videography, namely DigiGaitTM. Finally, tissue pathologies in the 

applied animal model were compared to progressive MS post-mortem tissues. A schematic 

picture of the methods used in this study to test the hypothesis is shown in figure 2 

 
Figure 2: A schematic drawing of the methods used in this study to test the hypothesis 
Figure 2 A schematic drawing of the methods used in this study to test the hypothesis 
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4. Materials and Methods 

4.1 Animals 

C57BL/6J male mice at 8 weeks of age were purchased from Janvier Labs, Le Genest-Saint-

Isle, France. A maximum of five animals were housed per cage (500 cm2). The animals 

were kept under standard laboratory conditions (12 h light/dark cycle, controlled 

temperature 23 °C ± 2 °C and 50% ± 5% humidity) with access to food and water ad libitum. 

The mice were allowed to accommodate to the environment for at least 1 week prior to the 

beginning of the experiments and were provided with nestlets for environmental enrichment. 

Body weights of mice were controlled once per week. The mice were randomly assigned to 

the experimental groups as illustrated in table 3. Control group: mice were fed with 

standard pelleted rodent chow for the entire duration of the study (i.e., age-matched 

controls). Cup-Recov group: age- matched mice were intoxicated with a diet containing 

cuprizone (bis(cyclohexanone)oxaldihydrazone, C9012, Sigma-Aldrich, USA) mixed into 

ground standard rodent chow (V1530-0; Ssniff, Soest, Germany) for 5 weeks (first 2 weeks 

0.2% following by 3 weeks 0.25%) to induce acute demyelination, followed by 28 weeks 

standard pelleted rodent chow allowing for long-term recovery. Mice intoxicated with 

cuprizone for 5 weeks (5w Cup) and in-parallel controls (5w Control) from an independent 

experiment were included to demonstrate acute demyelination in the corpus callosum 

(Chrzanowski, Schmitz, Horn-Bochtler, Nack, & Kipp, 2019). All experimental procedures 

were approved by the Review Board for the Care of Animal Subjects of the district 

government (Regierung Oberbayern; reference number 55.2-154-2532-73-15; Germany). 

 Groups Number of Animals 

IHC/IF Cup-Recov 4 
Control 4 

Gene Array Cup-Recov 4 
Control 4 

RT-PCR Cup-Recov 4 
Control 4 

DigiGaitTM Cup-RecovDigiGait 19 
ControlDigiGait 19 
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Table 3 Experimental groups and number of animals 
Table 3: Experimental groups and number of animals 

4.2 Tissue preparation 

For immunohistochemical studies, mice (n = 5 per group) were deeply anaesthetized with 

ketamine (100 mg/kg i.p., 9089.01.00, Bela-Pharm, Vechta, Germany) and xylazine 

(Rompun®, 10 mg/kg i.p., Bayer, Leverkusen, Germany) and transcardially perfused with 20 

ml ice-cold phosphate-buffered saline (PBS), followed by 100 ml of a 3.7% formaldehyde 

fixative solution (pH 7.4) (see supplementary table 4). After overnight post-fixation in the 

same fixative solution, the brains were transferred to tissue cassettes and rinsed under 

running tap water for 6-12 hours and then incubated overnight at 4 °C in 50% ethanol 

(WAL642 6025, Walter CMP, Kiel, Germany). This was followed by the manual 

dehydration (table 4) and embedding in paraffin (1.07158.9025, Merck, Darmstadt, 

Germany).  

Steps Time 

70% ethanol 40 minutes 

70% ethanol 40 minutes 

96% ethanol 40 minutes 

96% ethanol 40 minutes 

100% ethanol 40 minutes 

100% ethanol 40 minutes 

100% ethanol 60 minutes 

xylene 40 minutes 

xylene 40 minutes 

xylene 40 minutes 

paraffin (65 °C)  60 minutes 

paraffin (65 °C) 60 minutes 

paraffin (65 °C)   2 days 

Table 4 Dehydration and embedding in paraffin of brain tissues 

Table 4: Dehydration and embedding in paraffin of brain tissues 
The paraffin blocks were then cut into 5-μm-thick coronal sections using a rotary microtome 

(RM2255, Leica Microsystems, Wetzlar, Germany) at the level 265 (shown in figure 3) 

according to the mouse brain atlas published by Sidman et al. ( „ Source: http:// 
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www.hms.harvard.edu/research/brain/atlas.html“). This level is defined as the first 

appearance of pyramidal cells in the hippocampal cornu ammonis region. The paraffin 

sections were stretched in a water bath at 42-45 °C, two sections each were drawn onto a 

Superfrost Plus (J1800AMNZ, Thermo Scientific, Germany) slide and dried overnight at 

37 °C in a heating cabinet. For gene expression studies, the corpus callosum (n = 8 per group) 

was manually dissected after PBS perfusion, immediately frozen and kept in liquid nitrogen 

until further processing (Krauspe et al., 2015). 

 
Figure 3: The anatomical hallmark of R265 
Figure 3 The anatomical hallmark of R265  

 (A) Hematoxylin and eosin (H&E) stained section at the level R265, defined as the first appearance of 

pyramidal cells in the hippocampal cornu ammonis region. (B) Arrowhead indicates the nucleus of a 

pyramidal neuron. Scale bar = 50 μm. 

4.3 Immunohistochemistry and immunofluorescence analyses 

For immunohistochemistry, sections were deparaffinized and rehydrated manually (table 5) 

and, if necessary, antigens were unmasked with heat in Tris/EDTA (pH 9.0) or citrate (pH 

6.0) buffer (supplementary table 4). After washing in PBS, sections were blocked in the 

blocking solution (serum of the species in which the secondary antibody was produced, 

supplementary table 4) for 1 h. Then, the sections were incubated overnight (4 °C) in 

primary antibodies diluted in the blocking solution (supplementary table 4). On the next 

day, the sections were washed in PBS and then incubated in 0.35% hydrogen peroxide 

buffer (supplementary table 4) for 30 minutes in the dark in order to reduce endogenous 

peroxidase activity. After the peroxidase blocking, sections were incubated in biotinylated 
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secondary antibody solution at room temperature for 1 h and then incubated in a peroxidase-

coupled avidin–biotin complex solution (ABC-HRP kit, PK-6100, Vector Laboratories, 

USA) (supplementary table 4). Alternatively, to better visualize the fine morphology of 

microglia cells, a peroxidase labelled polymer conjugate was used to visualize antigen-

antibody complexes (EnVision+System-HRP labelled polymer anti-rabbit, K4003, Dako, 

Hamburg, Germany). Next, sections were incubated in 3,3′-diaminobenzidine (DAB) 

solution (supplementary table 4) for 10 mintutes (K3468, Dako, Hamburg, Germany) 

(Chrzanowski, Bhattarai, et al., 2019; Hoflich et al., 2016). Sections were counterstained 

with hematoxylin solution to visualize cell nuclei if appropriate and covered with DePeX 

(18243.02, Serva, Heidelberg Germany). Negative control sections without primary 

antibodies were processed in parallel to ensure the specificity of the staining.  

Steps Time 

xylene 10 minutes 

xylene 10 minutes 

xylene 10 minutes 

xylene/ethanol 1:1 5 minutes 

100% ethanol 3 minutes 

100% ethanol 3 minutes 

96% ethanol 3 minutes 

96% ethanol 3 minutes 

70% ethanol 3 minutes 

50% ethanol 3 minutes 

distilled water 3 minutes 

Table 5 Deparaffinization and rehydration of paraffin slides 

Table 5: Deparaffinization and rehydration of paraffin slides 
For immunofluorescence double labeling experiments, sections were rehydrated, 

unmasked by heating in Tris/EDTA buffer (pH 9.0), blocked with PBS containing 5% 

normal donkey serum (D9663, Sigma-Aldrich, USA) (supplementary table 4) and 

incubated overnight (4 °C) in the appropriate combination of primary antibodies diluted in 

blocking solution. For mouse slides, anti-protein kinase c delta (PRKCD) antibodies were 

either combined with anti-oligodendrocyte transcription factor 2 (OLIG2) antibodies to 

visualize oligodendrocytes, with anti-glial fibrillary acidic protein (GFAP) antibodies to 

visualize astrocytes, or with anti-ionized calcium-binding adapter molecule 1 (IBA1) 
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antibodies to visualize microglia/macrophages. Anti-PRKCD antibodies were combined 

with anti-LN3 (HLA-DR) antibodies to visualize activated microglia/macrophages in human 

tissues. After washing, sections were incubated for 2 hours at room temperature in 

appropriate fluorescent secondary antibodies diluted in blocking solution. To quench 

autofluorescence in human tissues, sections were incubated 10 minutes in 0.1% Sudan 

Black B (S0395, Sigma-Aldrich, USA) diluted in 70% ethanol (Schnell, Staines, & 

Wessendorf, 1999). Subsequently, sections were mounted with Fluoroshield™ DAPI 

solution (F6057, Sigma-Aldrich, USA) for the staining of cell nuclei. Appropriate negative 

controls (i.e., omission of primary antibodies and/or incubation with the “wrong” secondary 

antibody) were performed in parallel (Fischbach et al., 2019; Nyamoya et al., 2019). 

Detailed lists of applied primary and secondary antibodies are provided in the 

supplementary material section (supplementary table 1, supplementary table 2).  

Sections were digitalized using a Nikon ECLIPSE E200 microscope (Nikon Instruments, 

Düsseldorf, Germany) equipped with a camera (Basler acA1920-40uc) or a Leica DM6 B 

automated microscope (Leica Microsystems CMS GmbH, Wetzlar, Germany) equipped 

with a DMC6200 camera. To analyze cell densities, the region of interest (ROI; midline of 

the corpus callosum or deep layer cortex) was manually outlined using the open source 

program ViewPoint Online (version 1.0.0.9628, PreciPoint, Freising, Germany) (figure 4A), 

positive cells within the ROI were counted by at least two evaluators blinded to the 

treatment groups and results were transformed into cells/mm2. ImageJ (version 1.52d, NIH, 

Bethesda, USA) was further used to evaluate the staining intensities using semi-automated 

densitometrical evaluation using a threshold algorithm. Relative staining intensities were 

semi-quantified in binary converted images, and the results were transformed into 

percentage of areas (figure 4B). 
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Figure 4: Histological evaluation of IHC stained slides 
Figure 4 Histological evaluation of IHC stained slides 

 (A) Evaluation of cell densities in anti-PRKCD stained slides using the open source program ViewPoint 

Online. Arrowheads indicate the PRKCD+ cells. (B) Principal of densitometric analysis in anti-PLP stained 

slides to quantify the demyelination in the corpus callosum. PRKCD: protein kinase c delta; ROI: region of 

interest. Scale bar = 50 μm. 
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To visualize acute axonal injury, we performed anti-amyloid precursor protein (APP) 

IHC in paraffin-embedded brain slides. „APP is an integral glycoprotein type 1, synthetized 

in the neuronal soma and then transported to the axonal terminal via the anterograde axonal 

transport machinery“ This paragraph is from my previously published work (Zhan et al., 

2020), the original idea originates from (Koo et al., 1990). In case of a disturbed axonal 

transport caused by acute injury, APP accumulates at the sites of axonal injury as spheroids 

and can be visualized by IHC (Sherriff, Bridges, Gentleman, Sivaloganathan, & Wilson, 

1994; Stone, Singleton, & Povlishock, 2000). A schematic picture demonstrating the 

principle of anti-APP immunohistochemistry for analyzing acute axonal injuries is shown 

in figure 5. 

 
Figure 5: Evaluation of acute axonal injury using anti-APP staining 
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Figure 5 Evaluation of acute axonal injury using anti-APP staining 

„ (A) Principle of anti-APP staining in visualizing acute axonal injury. Under physiological conditions, 

amyloid precursor protein (APP) is synthetized in the neuronal soma and transported to the axonal terminal via 

the anterograde axonal transport machinery. During acute axonal injury, APP accumulates at the sites of 

axonal injury as spheroids and thus can be visualized as spheroids using (B) anti-APP immunohistochemistry. 

The arrowhead indicates an APP+ spheroid. Scale bar = 10 μm. “ This paragraph is revised from my previously 

published work (Zhan et al., 2020). 

4.4 Analysis of microglial morphology 

Analysis of microglial morphology was done by a medical doctoral student, Florian 

Nepomuk Fegg under my supervision. Evaluation of the Sholl analyses data (see above) was 

performed by myself. The method is described as following for the sake of clarity. To 

analyze microglial morphology, anti-IBA1-stained sections were digitalized using an 

Olympus BX51-Wi microscope (Olympus, Munich, Germany). Serial z-stack images (n=40) 

were generated with a 0.5 μm step size. Randomly selected microglial cells (4-6 cells per 

animal, in total 25 cells per group) within the ROI were then traced and reconstructed 

(figure 9B) using Neurolucida360 (version 2017.01.2, MBF Bioscience, Williston, VT, 

USA). In this study, we consistently focused on cortical layer 5-6 (supplementary figure 1A) 

where microglial morphology is not biased by the dense network of axonal bundles in the 

corpus callosum. The structural complexity of microglial cells was quantified by Sholl 

analysis using NeuroLucida Explorer (version 11, MBF Bioscience). As shown in figure 9C, 

concentric circles (radii) of 1 μm increment were expanded from the center of the microglial 

soma to the ending point of the longest microglial process. The area between the 6 μm and 

31 μm radii were included for further analyses as previously described (H. W. Morrison & 

Filosa, 2013). For a schematic illustration of the morphological parameters see figure 9C. 

The following parameters were evaluated: “Intersection” which is defined as the number of 

intersections of the process within the shell (i.e., area between two concentric circles) at the 

given radius; “Area” which is defined as the surface area (μm2) of the occupied structure 

within the shell at the given radius; “Volume” which is defined as the volume (μm3) of the 

occupied structure within the shell at the given radius; “Avg.Diameter” which is defined as 

the average diameter (μm) of the occupied structure within the shell at the given radius; 

“Node” which is defined as the number of branch points within the shell at the given radius; 
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“Ending” which is defined as the number of process endings within the shell at the given 

radius. In addition, the morphology of microglia cells was quantified by determining a 

volume ramification index (RIv) using the following formula: RIv = maximum projection 

volume (Vp)/cell volume (Vc) (Becker et al., 2018; York, LeDue, Bernier, & MacVicar, 

2018). Vp, calculated by Convex Hull 3D analysis, represents the territorial volume of a 

polygonal object defined by the cell’s most prominent projections. Vc represents the total 

cell volume (supplementary figure 1C). When ramified or resting microglial cells are fully 

activated, they will adopt an amoeboid morphology by retracting their processes, which 

results in a decrease of the Vp.and RIv values (supplementary figure 1D). 

4.5 Gene array analysis 

Gene array analyses were performed by Dr. rer. nat. Bernd Denecke from the Gene-Chip 

Facility of RWTH, Aachen University as part of a scientific collaboration. Data evaluation 

and interpretation of the gene array was performed by myself. The method is described as 

following for the sake of clarity. Cup-Recov and control mice were included (n = 4 per 

group). Regulation of gene expression was analyzed using Affymetrix GeneChip 

microarrays (Affymetrix Santa Clara, CA, USA) as previously described (Kipp et al., 2011; 

Kipp et al., 2008). Total RNA was isolated, and the quality was assessed using RNA 

NanoChips with the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, 

California, USA). Probes for GeneChip Mouse Gene 1.0 ST Arrays were prepared and 

hybridized to the arrays according to the Affymetrix GeneChip whole transcript sense target 

labeling assay manual. Raw image data was analyzed with Affymetrix GeneChip command 

console (AGCC) software, and gene expression intensities were normalized and 

summarized with robust multi-array average (RMA) algorithm (Irizarry et al., 2003). Genes 

up-regulated in the Cup-Recov group vs age-matched control group were identified 

according to the following criteria: expression of genes in Cup-Recov sample was at least 

1.5-fold higher compared to control samples, and the false discovery rate (FDR) adjusted p-

value for changes in expression was <0.05.  

Gene enrichment analyses were performed using a Gene Ontology (GO) enrichment 

analysis online tool (Ashburner et al., 2000; Mi, Muruganujan, Ebert, Huang, & Thomas, 

2019; The Gene Ontology, 2019). Names of genes which were differentially expressed were 
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copied into the GO enrichment analysis online tool (Released version 20200323), where I 

selected the species (Mus musculus) and specific ontologies (biological process and 

molecular function) for the enrichment analyses. Fischer's exact test with FDR correction 

was used for testing statistic power. Results are presented from highest to lowest fold 

enrichment.  

4.6 Gene expression analysis 

Total RNA was isolated using the phenol-chloroform extraction method (Total RNA kit 

peqGOLD, 30-2010, Germany). RNA concentration and purity were assessed by using 

OD260 and OD260/OD280 ratio, determined by the spectrophotometer NanoDrop 2000 

(Thermo Scientific, Germany). 1 μg RNA was subsequently reverse-transcribed using the 

M-MLV RT-kit (28025-021, Invitrogen, Germany) and random hexanucleotide primers 

(48190-011, Invitrogen, Germany). Potential contamination with the genomic DNA was 

further checked by a conventional PCR using a hypoxanthine guanine phosphoribosyl 

transferase 1 (Hprt) primer pair (supplementary table 3), which was designed as an 

intron/exon spanning oligonucleotide. If the isolated RNA is contaminated with the genomic 

DNA, one will get two bands with one from the cDNA and the other from genomic DNA. 

The “contaminated” genomic DNA band is longer, thus migrating slower during 

electrophoresis. In this study, no genomic DNA contamination was observed for all 

included samples. After the reverse transcription, cDNA samples were diluted 1:10 in 

RNase/DNase free water (10977-035, Invitrogen, Germany). Before diluting the cDNA, a 

certain amount of each cDNA sample from all experimental samples was pooled and 

designated as ‘100% standard’. This 100% standard was 7-times diluted 1:1 to create an 

internal standard curve (i.e., 100%, 50%, 25%, 12.5%, 6.25%, 3.125%, 1.5626%). This 

standard is called “internal” standard because the DNA is obtained from cDNA which was 

generated within the experiment, so “internally”. The diluted cDNA samples and pooled 

internal standards were stored in -20°C until further usage. 

To verify the obtained gene array results, I chose appropriate primer pairs of four up-

regulated genes (i.e., Prkcd, Slitrk6, Pln, Ndst4) and four down-regulated genes (i.e., Lcn2, 

Cadps2, Arc, Sgk1) (supplementary table 3) from the online primerbank database („

Source: http://pga.mgh.harvard.edu/primerbank/“). The specificity of the primer pairs was 
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further checked using the Basic Local Alignment Search Tool (BLAST, „

Source: http://blast.ncbi.nlm.nih.gov/Blast.cgi“). Thereafter, the primer pairs of the 

abovementioned genes were then synthesized by the company Invitrogen, Germany. The 

annealing temperature of each primer pair was optimized by increasing the temperature in 

1.5 °C steps using the Mastercycler® gradient thermal cycler (Eppendorf, Germany). After 

the PCR reaction, the products were applied on a 2% agarose gel containing Midori Green 

Advance (MG03, Biozym, Vienna, Austria) and separated by electrophoresis (Bio-Rad, 

Germany). The annealing temperature giving rise to the brightest and single band of the 

expected size is determined as the most optimized annealing temperature for the primer pair. 

I performed real-time RT-PCR (Bio-Rad, Germany) using SensiMix Plus SYBR 

Fluorescein (QT615-05, Quantace, Germany) (Slowik et al., 2015) under the following 

conditions: 10min enzyme activation at 95°C, 40 cycles of 15 seconds denaturation at 95°C, 

30sec annealing at the optimized temperature, 30sec amplification at 72°C and 5sec 

fluorescence measurement at 80°C. Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) 

was used as the reference gene for normalization of Prkcd and Lcn2. Hprt was used as the 

reference gene for normalization of Slitrk6, Pln, Ndst4, Cadps2, Arc, Sgk1. Relative 

quantification was performed by the delta Ct method, which results in ratios between the 

expression of target genes and a housekeeping reference gene (i.e., Hprt or Gapdh). The 

concentration of the target genes was calculated by comparing Ct values in each sample 

with Ct values of the internal standard curve. Finally, data was expressed as the ratio of the 

amount of each transcript vs the concentration of Hprt/Gapdh. Melting curves and gel 

electrophoresis of the PCR products were routinely performed to determine the specificity 

of the PCR reaction. For each experiment, negative controls were performed in which 2 μl 

of RNase/DNase free water was added to the PCR reaction instead of cDNA. Positive 

controls using cDNA samples, which were affirmed to contain the template to be amplified, 

were performed as well. 

4.7 High speed ventral plane videography DigiGait™ and 

evaluation 

Gait parameters were assessed in the Cup-Recov and control mice between week 33 and 
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week 34 using the DigiGait™ imaging system along with the DigiGait™ analysis software 

(version 15.0, Mouse Specifics, Inc.; Quincy MA) as previously published (Zhan et al., 

2019). Figure 8A illustrates the timeline of the performed gait analyses. The DigiGait™ 

apparatus consists of a clear plastic treadmill with an under-mounted high-speed digital 

camera (140 frames/s, Basler Technologies Inc.) used for imaging paw prints (figure 1). 

Animals were habituated to the machine 1 day prior to testing. During the testing procedure, 

I alternately processed mice from the Cup-Recov and Control group to avoid potential 

confounding variables. The minimal duration of each video sequence required for 

subsequent foot-print analyses was 5 s, which has been shown to be sufficient for reliable 

gait analyses in mice (Kale, Amende, Meyer, Crabbe, & Hampton, 2004). Runs in which 

mice could not run at a speed of 15 cm/s for a minimum of 5 s were excluded from 

subsequent analyses (red boxes in figure 6). Data obtained from the training day were not 

included in the final data evaluation.  

As shown in figure 6, the gait of the mice was recorded daily for 4 subsequent days (i.e., 

d1-d4). Four animals could not run on the machine at the given speed and thus, these runs 

were excluded for further data analyses (i.e., #13, #23, #28 and #36; red boxes). Runs 

included for further data analyses are indicated by yellow crosses. Following this strategy 

and pooling the data from two independent experiments, 95 gait analyses were performed in 

the ControlDigiGait group for different time points with a success rate of 87% (equals 83 

completed gait analyses). 96 gait analyses were performed in the Cup-RecovDigiGait group 

with a success rate of 88% (equals 84 completed gait analyses). To analyze gait 

abnormalities in Cup-Recov mice, Evaluator#1 (J.Z.) quantified fore limb and hind limb gait 

patterns in 9 Cup-Recov and 10 control mice. This first group is referred to as Cohort#1. To 

verify results of this first experiment, fore limb and hind limb gait patterns were analyzed by 

Evaluator#1 in another cohort of 10 Cup-Recov and 9 control mice referred to as Cohort#2. 

Both cohorts were finally re-evaluated by a second evaluator blinded to the treatment groups 

(i.e., Evaluator#2, Julia Frenz). 
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Figure 6: DigiGait™ assessments of individual mice 
Figure 6 DigiGait™ assessments of individual mice 
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Days with successfully conducted DigiGaitTM recordings are highlighted in green, whereas days on which mice 

could not perform DigiGaitTM recordings at 15 cm/s are highlighted in red. Days when no DigiGaitTM 

recordings performed are shown in blank. Yellow crosses indicate time points included for data analyses. Cup-

Recov and control mice showed no difference in completed ratio on DigiGaitTM recordings. 

4.8 Multiple sclerosis tissues 

Paraffin-embedded post-mortem brain tissues were obtained by a medical doctoral student, 

Hannes Kaddatz, through a rapid autopsy protocol from subjects with progressive MS (in 

collaboration with the Netherlands Brain Bank, Amsterdam). The study was approved by 

the institutional ethics review board and all donors or their relatives provided written 

consent for the use of brain tissues and clinical information for research purposes. In brief, 

chronic active lesions were defined as lesions with a hypocellular center and a hypercellular 

rim. Staging of lesions was performed as previously described  using anti-PLP and anti-LN3 

stained sections (shown in figure 7B) (Grosse-Veldmann et al., 2016; Kipp, van der Valk, & 

Amor, 2012; Trepanier et al., 2018; van der Valk & De Groot, 2000). For this study, 7 

lesions from 5 progressive MS patients and 4 non-MS control patients were included. The 

average age of control patients in years was 76.50 ± 12.71 (mean ± SD). The average age of 

MS patients in years was 59.00 ± 7.483. The average disease duration of MS patients in 

years was 21.60 ± 8.905. Detailed clinical information is given in figure 7A. Normal 

appearing white matter (NAWM) of MS patients is often used as control reference tissue. 

However, accumulative evidence shows that various pathologies are present in those areas 

as well (Chard et al., 2002; Zeis, Graumann, Reynolds, & Schaeren-Wiemers, 2008). For 

the analyses, normal appearing white matter (NAWM) was defined as a white matter area 

where myelin appeared normal in anti-PLP stained sections and was distant to the rim of the 

lesions (illustrated in figure 7B) (Allen, McQuaid, Mirakhur, & Nevin, 2001; van Horssen 

et al., 2012).  
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Figure 7: Summary of progressive MS tissues used in this study 
Figure 7 Summary of progressive MS tissues used in this study 

(A) Patient demographics of the progressive MS tissues used in this study. (B) Representative pictures 

demonstrating criteria for NAWM applied in this study. ROIs of NAWM were defined as the white matter area 

where myelin appeared normal in anti-PLP stained sections and was distant to the rim of the lesions. F: female; 

M: male; ROI: region of interest; SPMS: secondary progressive multiple sclerosis; PPMS: primary progressive 

multiple sclerosis; N/A: not applicable; NAWM: normal appearing white matter; PLP: proteolipid protein; 

LN3: anti-HLA-DR. Scale bar = 5 mm 
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4.9 Statistical analysis 

The statistical analyses were performed using GraphPad Prism 5 (GraphPad Software Inc., 

San Diego, CA, USA). The data is presented as arithmetic means ± standard error of the 

mean (SEM). D’Agostino and Pearson test was applied to test for Gaussian distribution of 

the data. Pearson’s correlation analysis was used to test the correlation between the density 

of PRKCD+ and LN3+ cells in MS lesions. The definite statistical procedures applied for the 

different analyses are provided in the respective figure legends. The following symbols were 

used to indicate the level of significance: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 and ns = not 

significant.  

5. Results 

5.1 Ongoing glial activation and axonal damage after long-term 

remyelination  

It is well known that after 5 weeks of cuprizone-intoxication several white and grey matter 

areas are demyelinated, among the medial part of the corpus callosum at the level R265 of 

the rostral hippocampus (refer to the material and methods section). Spontaneous 

remyelination occurs when animals are provided with normal chow following acute 

cuprizone-induced demyelination (Goldberg, Clarner, Beyer, & Kipp, 2015; Kipp, Clarner, 

Dang, Copray, & Beyer, 2009; Nyamoya et al., 2019). To examine the long-term 

consequence of an acutely demyelinated white matter lesion, a first group of mice was 

subjected to a 5-week cuprizone intoxication period followed by 7-month normal chow for 

recovery (i.e., 28 weeks; Cup-Recov). A second group of mice was sacrificed after 5 weeks 

of cuprizone intoxication to verify the presence of acutely demyelinated lesions. Age-

matched controls were fed with a normal diet throughout the entire experiment. To verify 

demyelination at week 5, coronal sections were processed for anti-PLP staining intensity 

analyses. As shown in figure 8B, profound demyelination of the medial part of the corpus 

33 
 



callosum was observed after 5 weeks cuprizone, paralleled by cortical demyelination. After 

28 weeks of recovery, anti-PLP staining intensities (Cup-Recov, 96.33 ± 0.9803% vs control, 

96.88 ± 0.5042%, p = 0.6320) as well as the densities of anti-OLIG2+ cells (Cup-Recov, 

1672 ± 117.9 cells/mm2 vs control, 1702 ± 67.44 cells/mm2, p = 0.8334) recovered, thus 

were comparable in Cup-Recov and age-matched controls mice (shown in figure 8C), 

suggesting a complete remyelination of the previously demyelinated white matter tract 

corpus callosum. To address ongoing glial reactivity despite completed remyelination, brain 

sections from Cup-Recov mice and age-matched controls were processed for anti-IBA1 and 

anti-GFAP immunohistochemistry to label microglia and activated astrocytes, respectively. 

As shown in figure 8D, both stains, anti-IBA1 (Cup-Recov, 7.207 ± 1.316% vs control, 

3.289 ± 0.3240%, p = 0.0317) and anti-GFAP (Cup-Recov, 13.87 ± 4.282 vs control, 2.713 

± 0.7328%, p = 0.0317), revealed persistent activation of microglia and astrocytes in the 

corpus callosum of Cup-Recov mice. Consistent with a previous report (Manrique-Hoyos et 

al., 2012), the density of amyloid precursor protein-positive (APP+) axonal spheroids was 

significantly increased in Cup-Recov animals as compared to age-matched controls (Cup-

Recov, 7.262 ± 0.9408 APP+ spheroids/mm2 vs control, 4.077 ± 0.5502 APP+ 

spheroids/mm2; p = 0.0065; see figure 8E), indicating ongoing acute axonal injury. 
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Figure 8: Ongoing glial activation and axonal damage after long-term remyelination 
Figure 8 Ongoing glial activation and axonal damage after long-term remyelination 

(A) Schematic drawing illustrating the experimental setup. 8-week-old mice were intoxicated with cuprizone 
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for 5 weeks followed by 28 weeks normal chow (Cup-Recov). Age-matched controls were fed with normal 

chow throughout the experiment (Control). DigiGaitTM analyses were conducted during the last week of the 

experiment and mice were sacrificed after DigiGaitTM measurements for subsequent IHC/IF or molecular 

biological studies. (B) Histopathological characteristics of acute demyelination (arrowhead) after 5 weeks of 

cuprizone intoxication. (C) Representative anti-PLP and anti-OLIG2 stains of Cup-Recov and control mice. 

Densitometric analyses were used to evaluate staining intensity of anti-PLP stains. OLIG2+ cell numbers were 

manually counted by two independent evaluators (J.Z. and H.K.) blinded to the treatment groups (n = 5 per 

group, ns: not significant; unpaired t-test). (D) Representative anti-IBA1 and anti-GFAP stains of Cup-Recov 

and control mice. Densitometric analyses were used to evaluate staining intensity of anti-IBA1and anti-GFAP 

stains (n = 5 per group, * p < 0.05; Mann–Whitney test). (E) Representative APP+ spheroid (arrowhead) of 

Cup-Recov mice. Dashed line demarcates the corpus callosum region. Quantification of APP+ spheroids 

numbers was done manually by two independent evaluators (J.Z. and H.K.) blinded to the treatment groups (n 

= 5 per group, ** p < 0.01; unpaired t-test). OLIG2: oligodendrocyte transcription factor 2; PLP: proteolipid 

protein. IBA1: ionized calcium-binding adapter molecule 1; GFAP: glial fibrillary acidic protein; APP: 

amyloid precursor protein. Scale bar = 50 μm (B) (C) (D) (E). 

5.2 Reactive microglial phenotype after long-term remyelination 

So far I was able to demonstrate ongoing glial activation after long-term remyelination. 

Besides cell numbers, cell morphology is critical to distinguishing resting and activated 

microglia (Crews & Vetreno, 2016; H. W. Morrison & Filosa, 2013). To address this aspect, 

anti-IBA1 stained sections were digitalized, and the morphology of deep layer cortex 

microglia (25 cells per group) was analyzed using the software environment 

Neurolucida360. The following parameters were evaluated: Intersection, Node, Ending, 

Area, Volume and Avg.Diameter. For a schematic illustration of the morphological 

parameters see figure 9C and the material and methods section. As shown in figure 9D,E, 

in general all of the evaluated morphological parameters were by trend increased in Cup-

Recov compared to control mice. The increases applies to both, microglia processes near 

(i.e., 6-15µm) and distant (i.e., >15µm) to the cell somata (figure 9F, supplementary figure 

1B). The volume ramification index (RIv) determined by Convex Hull 3D analysis was 

comparable in Cup-Recov and age-matched controls mice (supplementary figure 1E). 

These results suggests that the microglia cells in Cup-Recov mice show an intermediate 

morphology between the resting microglia cells and the fully activated phagocytes. 
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Figure 9: Reactive microglial phenotype after long-term remyelination 
Figure 9 Reactive microglial phenotype after long-term remyelination 

(A) Representative anti-IBA1 stains of Cup-Recov and control mice. (B). Reconstruction of microglial 
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morphology using Neurolucida360 with z-stack images (n=40), generated with a 0.5 μm step size. (C) 

Representative images illustrating evaluation of microglial morphology using Sholl analysis. (D) Sholl 

analysis plots of morphological parameters in microglia (i.e., Intersection, Area, Volume and Avg. Diameter. 

n = 25 cells per group). (E) Overall and (F) subgroup differences between Cup-Recov and control mice were 

determined from the area under each Sholl curve (n = 25 cells per group, respective p-values were shown on 

the graph). IBA1: ionized calcium-binding adapter molecule 1; Avg.: Average. Scale bar = 10 μm. 

5.3 Verification of ongoing pathology after long-term 

remyelination at the transcriptional level by gene array analyses 

Our histological results suggest a minor yet distinct ongoing pathology 7 months after an 

acute demyelinating event. To verify this observation at the transcriptome level, mRNA 

samples from the corpus callosum and cortex of Cup-Recov and age-matched control mice 

were analyzed using  gene arrays. In the corpus callosum, the expression of 115 probe sets 

was found to be significantly up-regulatedand the expression of 103 probe sets was 

significantly reduced (figure 10A). In the cortex, the expression of 148 probe sets was found 

to be significantly up-regulatedand the expression of 112 probe sets was significantly 

reduced (supplementary table 5). To understand which pathways are involved, I performed 

gene enrichment analyses with the up- and down-regulated genes in the corpus callosum. 

Up-regulated genes are highly related to the biological processes ‘positive regulation of 

transcription by RNA polymerase II’ (3.17-fold enrichment), ‘positive regulation of cell 

population proliferation’ (3.22-fold enrichment) or ‘regulation of cell adhesion’ (3.27-fold 

enrichment). Down-regulated genes are highly related to the molecular function term 

‘hormone binding’ (14.86-fold enrichment). Taken together, the gene array data verifies the 

ongoing pathology in long-term remyelinating mice.   
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Figure 10: Transcriptome changes after long-term recovery 
Figure 10 Transcriptome changes after long-term recovery 

Differentially expressed genes determined by gene array analysis of mRNA isolated from corpus callosum and 

cortex. (A) Volcano plot of differentially expressed genes in corpus callosum and cortex samples of Cup-
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Recov compared to control mice. Genes differentially expressed in corpus callosum showed more prominent 

fold change than those in the cortex. Red dots indicate the genes that were significantly up-regulated in Cup-

Recov compared to control mice. Green dots represent the genes that were significantly down-regulated in 

Cup-Recov compared to control mice. Grey dots represent non-regulated genes. The dash lines indicate the 

applied threshold of a 1.5-fold change in the gene expression. (B) Gene enrichment analyses of biological 

process (GOTERM_BP) and molecular function (GOTERM_MF) were performed using GO online tool 

(http://geneontology.org/). Top10 terms of GOTERM_BP were shown on the graph based on gene numbers.  

 

Among the differentially expressed genes in the corpus callosum, the most up-regulated 

gene was protein kinase c delta (Prkcd, 5.01-fold up-regulated vs control, p = 0.046). The 

online RNA-seq Database („Source: http://brainrnaseq.org/“) indicates that PRKCD is 

highest expressed in microglia among all other cell types in the brain under physiological 

conditions (Y. Zhang et al., 2014). Gene array results were further tested at both mRNA and 

protein levels using independent biological samples. At mRNA level, I systematically 

detected mRNA expression of up-regulated genes (i.e., Prkcd, Slitrk6, Pln, Ndst4) and 

down-regulated genes (i.e., Lcn2, Cadps2, Arc, Sgk1) using real-time RT-PCR (figure 11C). 

Five out of eight re-investigated genes showed the same expression pattern in gene array 

and real-time RT-PCR. Beyond, at the protein level, I verified the induction of ANXA2 by 

immunohistochemistry (figure 11A, B). 
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Figure 11: Verification of the gene array results 
Figure 11: Verification of the gene array results 

(A) Fold change of Anxa2 expression levels in the corpus callosum of Cup-Recov mice compared to age-

matched controls identified by gene array analyses (n = 4 per group). (B) Cup-Recov showed increased 

intensity of anti-ANXA stains compared to age-matched controls (center). Autofluorescence of paraffin 

embedded slides was used to distinguish anatomical borders (left). Densitometric analysis was used to evaluate 

staining intensity of anti-ANXA2 stains (n = 5 per group, ***p < 0.001; Mann–Whitney test). (C) Gene array 

results were further verified by real-time RT-PCR for selected up-regulated genes (Prkcd, Slitrk6, Pln, Ndst4) 

and down-regulated genes (Lcn2, Cadps2, Sgk1, Arc) (n = 4 per group, ***p < 0.001; unpaired t-test or Mann–

Whitney test according to data distribution). ANXA2: annexin a2; Prkcd: protein kinase c delta; Slitrk6: SLIT 

and NTRK like family member 6; Pln: Phospholamban; Ndst4: N-Deacetylase and N-Sulfotransferase 4; Lcn2: 

lipocalin 2; Cadps2: calcium dependent secretion activator 2; Sgk1: serum/glucocorticoid regulated kinase 1; 

Arc: activity regulated cytoskeleton associated protein. Scale bar = 50 μm.  
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5.4 Ongoing functional deficits after long-term remyelination 

So far, I was able to demonstrate by means of histological and transcriptome techniques that 

7 month after a demyelinating insult, ongoing neuropathologies such as glia cell activation, 

axonal injury paralleled by transcriptome activity can be detected in the previously injury 

white matter. In a next step, I asked whether the persistent pathology, observed on the 

cellular and transcriptome level, is paralleled by motor behavioral deficits. To address this 

point, I systematically compared a set of different gait parameters in Cup-Recov (referred to 

as Cup-RecovDigiGait, n = 19) and age-matched control mice (referred to as ControlDigiGait, n = 

19) using the DigiGaitTM apparatus as previously published by our group (Zhan et al., 2019). 

„High speed ventral plane videography recordings were performed in two independent 

cohorts of animals, referred to as Cohort#1 (9 Cup-RecovDigiGait and 10 ControlDigiGait 

animals) and Cohort#2 (10 Cup-RecovDigiGait and 9 ControlDigiGait animals). In a first step, 39 

fore limb and 43 hind limb gait parameters were systematically evaluated by the first 

evaluator (i.e., Evaluator#1) in the Cohort#1 mice and statistically compared. As 

demonstrated in figure 12A, 5 distinct fore or hind limb gait metrics were found to be 

significantly increased or decreased in Cup-RecovDigiGait compared to ControlDigiGait. To 

verify these findings, the 5 gait parameters which were found to be significantly altered in 

the Cohort#1 mice were re-evaluated in Cohort#2 mice. 5 out of the 5 gait parameters were 

verified in the second cohort. These were the gait metrics Propel in fore limbs and Swing 

Time, %Swing Stride, %Stance Stride, Stance Width in hind limbs (figure 12B). Detailed 

illustration of those gait metrics is provided in the discussion section. 

Since the gait signals provided by the software require some manual, thus subjective, 

adjustments (T. G. Hampton, Stasko, Kale, Amende, & Costa, 2004), another independent 

evaluator (Evaluator#2) performed analyses of both Cohort#1 and Cohort#2 video 

sequences blinded to the treatment to validate the results. As shown in figure 12A, all 5 gait 

parameters which were found to be different in Cup-RecovDigiGait mice were verified by the 

second evaluator (Evaluator#2). “ The description of DigiGaitTM results is adopted from my 

previously published work to keep consistent (Zhan et al., 2019). 
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Figure 12: Gait abnormalities after long-term remyelination 
Figure 12 Gait abnormalities after long-term remyelination 

„(A) Summary of the 5 gait parameters found to be altered in Cup-Recov compared to control mice. Two 

independent experiments were performed, referred to as Cohort#1 (9 Cup-Recov and 10 control mice) and 

Cohort#2 (10 Cup-Recov and 9 control mice). Gait parameters were evaluated by two independent evaluators, 

referred to as Evaluator#1 (J.Z.) and Evaluator#2 (J.F.) blinded for the experimental groups. Arrows indicate 

whether gait parameters were increased (↑) or decreased (↓) in Cup-Recov compared to control mice. In fore 

limbs, time required for accelerating the motion and continuing forward (i.e., Propel) was found significantly 

increased in both Cohort#1 and Cohort#2. In hind limbs, time duration/percentage of the swing phase (i.e., 
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Swing Time, %Swing Stride) were found significantly increased, meanwhile percentage of the stance phase 

(i.e., %Stance Stride) and the width of step (i.e., Stance Width) significantly decreased in both Cohort#1 and 

Cohort#2 (indicated by respective p-values). All of these 5 parameters were verified by Evaluator#2 (last 

column). (B) Shown are the mean values of significantly changed parameters in Cup-Recov with the 

respective SEM. The D’Agostino and Pearson test was applied to test for normal distribution of the data. p-

values were calculated using unpaired t-test or Mann-Whitney test according to data distribution. * p < 0.05, 

** p < 0.01, *** p < 0.001.“ The description of DigiGaitTM results is adopted from my previously published 

work (Zhan et al., 2019). 

5.5 PRKCD is predominately expressed by 

microglia/macrophages 

Among the differentially expressed genes in the corpus callosum, the most up-regulated 

gene was protein kinase c delta (Prkcd, 5.01-fold up-regulated vs control, p = 0.046). The 

online RNA-seq Database („Source: http://brainrnaseq.org/“) indicates that PRKCD is 

highest expressed in microglia among all other cell types in the brain under physiological 

conditions (Y. Zhang et al., 2014). Induced Prkcd expression was further confirmed by real-

time RT-PCR (Cup-Recov, 865.5 ± 409.8% vs control, 100 ± 9.412%, p = 0.0207; figure 

14C). Next, I wanted to verify this finding on the protein level by processing slides for anti-

PRKCD immunohistochemistry. In line with the in situ hybridization data retrieved from the 

Allen Brain atlas (Lein et al., 2007), in control mice Prkcd was found to be highly expressed 

in the cornu ammonis 3 (CA3) field of the hippocampus, thalamic nuclei and lateral septal 

nuclei (see representative thalamic PRKCD+ neuron in figure 13), whereas in the corpus 

callosum of healthy mice, low numbers of PRKCD+ cells were found. In line with the 

mRNA results, the numbers of PRKCD+ cells were found to be increased after long-term 

remyelination compared to controls (Cup-Recov, 118.4 ± 7.667 cells/mm2 vs control, 73.00 

± 6.239 cells/mm2, p = 0.0002; figure 14A). It has been reported that in the injured CNS, 

PRKCD is expressed by microglia cells (Gordon et al., 2016; Y. Zhang et al., 2014). To 

determine the cellular source of PRKCD expression in Cup-Recov and control mice, we 

performed immune-fluorescence double labelling experiments and examined 178 

representative PRKCD+ profiles among 34 ROIs derived from 3 Cup-Recov and 3 control 

mice, analyzed by 2 independent evaluators (J.Z. and H.K.). This analysis showed that ~64% 
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and ~82% of PRKCD+ cells co-labeled with the microglia/macrophages marker protein 

IBA1+ in Cup-Recov and control mice, respectively. Beyond, densities of PRKCD+/IBA1+ 

cells (yellow) were low (23.24 ± 3.11 cells/mm2; figure 14B) in control mice, but increased 

in Cup-Recov mice (83.01 ± 7.18 cells/mm2; figure 14B).  

 
Figure 13: Validation of anti-PRKCD IHC stains 
Figure 13 Validation of anti-PRKCD IHC stains 
PRKCD+ thalamic neuron (arrowheads) as previously reported. PRKCD: protein kinase c delta; Scale bar = 50 

μm. 

 

To further verify our finding that PRKCD is predominantly expressed by microglia in the 

injured corpus callosum, we performed anti-IBA1 and anti-PRKCD immunohistochemistry 

with brain sections from 5 weeks cuprizone-intoxicated and control mice, where profound 

microgliosis can be found (Gudi, Gingele, Skripuletz, & Stangel, 2014; Nack et al., 2019). 

As demonstrated in figure 14D, E, the densities of IBA1+ and PRKCD+ cells were 

profoundly increased after acute cuprizone-induced demyelination. Furthermore, we found 

that PRKCD is predominately expressed by IBA1+ microglia/macrophages (figure 14F) 

rather than GFAP+ astrocytes or OLIG2+ oligodendrocytes (data not shown) in the corpus 

callosum of 5 weeks cuprizone-intoxicated mice. 
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Figure 14: Expression of PRKCD in microglia/macrophages of mice 
Figure 14: Expression of PRKCD in microglia/macrophages of mice 

(A) Expression of PRKCD was significantly induced in the corpus callosum of long-term remyelination mice 

(Cup-Recov) compared to age-matched control mice. Quantification of PRKCD+ cell numbers was done 
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manually by two independent evaluators blinded to the treatment groups (n = 5 per group, ***p < 0.001; 

unpaired t-test). (B) The relative numbers of PRKCD+ microglia/macrophages in Cup-Recov and age-matched 

control mice were determined by PRKCD/IBA1 immunofluorescence double staining. Arrowheads highlight 

PRKCD+ microglia/macrophages. Note that most (82.49%) of the PRKCD+ cells were microglia/macrophages 

in Cup-Recov. (C) Induced expression of Prkcd was further verified by real-time RT-PCR compared to age-

matched controls (n = 4 per group, *p < 0.05; Mann–Whitney test). (D) Representative anti-IBA1 and (E) anti-

PRKCD stains of mice intoxicated with cuprizone for 5 weeks (5w Cup) and control mice. (F) Representative 

images illustrating that PRKCD co-localizes with IBA1+ microglia/macrophages in the corpus callosum of 5 

weeks cuprizone-intoxicated mice. PRKCD: protein kinase c delta; IBA1: ionized calcium-binding adapter 

molecule 1. Scale bar =20 µm (A) (B) (E) (F); 500 µm (D). 

5.6 Induced expression of PRKCD in progressive MS patients 

As previously reported, there are several similarities between histopathological alterations 

described in post-mortem MS brain lesions and cuprizone-induced pathologies, which 

include profound demyelination, microgliosis, astrocytosis and axonal damage (Kipp et al., 

2017). Therefore, I next aimed to investigate whether the induction of PRKCD expression 

observed in cuprizone-intoxicated mice can as well be found in chronic (active) lesions of 

progressive MS patients. To this end, brain sections from 5 progressive MS patients together 

with 4 non-MS control patients were processed for anti-PRKCD immunohistochemistry. 

PRKCD+ cells, resembling microglia-like morphology with slender process (see arrowheads 

in figure 15C, left), were found to be evenly distributed throughout the white matter of the 

non-MS control patients. Moreover, high density of PRKCD+ cells were also observed in 

the periventricular areas of the non-MS control patients. 
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Figure 15: Induced expression of PRKCD in chronic (active) lesions of progressive MS patients 
Figure 15 Induced expression of PRKCD in chronic (active) lesions of progressive MS patients 

Representative chronic (active) MS lesion illustrated by (A) anti-PLP and (B) anti-LN3 immunohistochemistry. 

(C) Representative anti-PRKCD stains of a non-MS white matter control section (n = 4) and a chronic (active) 

MS lesion (n = 5). Black arrowheads highlight  PRKCD+ cells resembling resting microglia in non-MS white 

matter control. Representative images illustrating that PRKCD co-localizes with (D) IBA1+ 
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microglia/macrophages or (E) LN3+ activated microglia/macrophages in chronic (active) MS lesions. MS: 

multiple sclerosis; PLP: proteolipid protein; PRKCD: protein kinase c delta; LN3: HLA-DR; V: Ventricle; 

Scale bar = 200 µm (A); 50µm (B) (C); 20µm (D) (E). 

 

Increased numbers of PRKCD+ cells were observed in the active lesions and at the rim of 

the chronic active lesions when compared to the non-MS control patients. A representative 

periventricular chronic active lesion is shown in figure 15A, where the red-dotted line 

demarcates the lesion border in an anti-PLP processed section. Within the lesion high 

numbers of MHC-II/LN3-expressing cells can be found (figure 15B). In such lesions, 

numbers of PRKCD+ cells were highly increased with particular high numbers around the 

perivascular spaces (figure 15C, right), where clusters of LN3+ cells were found (figure 

15B). Double immunofluorescence stains showed almost complete co-localization of 

PRKCD with IBA1 (figure 15D) and partial co-localization of PRKCD with LN3 (figure 

15E). Next, I was interested whether the number of PRKCD+ cells is as well increased in 

areas of normal myelin densities (i.e., NAWM) (Evangelou, Esiri, Smith, Palace, & 

Matthews, 2000; Kipp et al., 2017; Kutzelnigg et al., 2005). As demonstrated in figure 16A, 

B, I found increased numbers of PRKCD+ cells in NAWM compared to non-MS white 

matter (Non-MS white matter, 26.56 ± 9.325 cells/mm2 vs NAWM, 78.22 ± 16.16 cells/mm2, 

p = 0.0368). Pearson’s correlation analysis revealed a significant correlation between 

density of PRKCD+ and LN3+ cells in the lesion sites (r = 0.7333; 95% confidence interval 

= 0.1346 to 0.9398; p = 0.0246; figure 16C). Furthermore, double immunofluorescence 

stains showed almost complete co-localization of PRKCD with IBA1 (figure 16D) and 

partial co-localization of PRKCD with LN3 (figure 16E) in the NAWM of MS patients. 
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Figure 16: PRKCD expression in activated microglia/macrophages of the NAWM 
Figure 16 PRKCD expression in activated microglia/macrophages of the NAWM 

(A) Representative pictures demonstrating induced expression of PRKCD in NAWM compared to non-MS 

white matter controls. See material and methods section for further detail regarding NAWM criteria. (B) 

Quantification of PRKCD+ cell numbers were done manually by two independent evaluators (J.Z. and H.K.) 
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blinded to the lesion type (n = 5 in NAWM and n = 4 in non-MS white matter controls, *p < 0.05; unpaired t-

test). (C) Correlation analysis for PRKCD+ and LN3+ cell densities (n = 9, *p < 0.05; Pearson’s test). 

Representative images illustrating that PRKCD co-localizes with (D) IBA1+ microglia/macrophages or (E) 

LN3+ activated microglia/macrophages in NAWM. Arrowhead highlights a PRKCD+/LN3+ cell. MS: multiple 

sclerosis; NAWM: normal appearing white matter; PLP: proteolipid protein; PRKCD: protein kinase c delta; 

LN3: anti-HLA-DR. Scale bar = 50µm (A); 20µm (D) (E). 

6. Discussion 

Within my thesis, I was able to demonstrate by various techniques that (i) there are ongoing 

cuprizone-induced pathologies (i.e., glial activation and axonal damage) and functional 

deficits (i.e., gait abnormalities) after long-term remyelination, (ii) that microglial cells 

present a hyper-ramified morphology and overexpress PRKCD during this chronic process, 

and (iii) that PRKCD expression in microglia/macrophages is characteristic for progressive, 

post-mortem MS lesions and NAWM areas. 

6.1 Ongoing long-term axonal injury and glial activation in the 

CNS  

It is a fascinating question whether the CNS ‘remembers’ focal pathologies which impact 

neuronal integrity in the long-term. To investigate this, I first induced a clearly defined 

pathology (i.e., acute demyelination) in the mouse brain by cuprizone intoxication, and let 

the mice recover for a period of 7 months.  Although the myelin density and the numbers of 

oligodendrocytes were at the physiological, age-matched range analyzed by routine stains 

(see figure 8C), slow-burning pathologies, such as glial activation and axonal damage 

remained detectable even after this long period of remyelination (see figure 8D, E). These 

results are in line with a previous study using comparable methods (Manrique-Hoyos et al., 

2012). In MS patients, ongoing pathology also persists after long-term remyelination 

(Lubetzki, Zalc, Williams, Stadelmann, & Stankoff, 2020). As a consequence of the initial 

myelin damage, OPCs might repopulate and form remyelinated areas, so-called shadow 

plaques, which are prone to second attacks (Bramow et al., 2010). However, the mechanism 
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underlying this selective vulnerability remains still unknown. Ongoing axonal injury and 

glia activation persist in many CNS disorders. Axonal injury following traumatic brain 

injury was found to be a progressive, long-term neurodegenerative process (Chen, Johnson, 

Uryu, Trojanowski, & Smith, 2009) and might contribute to the development of Alzheimer-

like pathologies (Johnson, Stewart, & Smith, 2010). A previous study indicated that the 

microglia-mediated immune memory (i.e., training and tolerance) could last for at least 6 

months after stimulation and modify neuropathology in animal models of Alzheimer’s 

disease and stroke (Wendeln et al., 2018). The glial scar, formed by reactive astrocytes, 

NG2 glia and microglia is prominent in many CNS disorders and limits the damage 

expansion in short term but plays divergent roles in long-term CNS regeneration (Adams & 

Gallo, 2018). 

In a next step, I further verified the ongoing pathology after long-term remyelination at 

the transcriptional level by gene array analyses. Interestingly, grey matter per se shows less 

severe damage than white matter in the cuprizone model (Clarner et al., 2012; Grosse-

Veldmann et al., 2016). This might partly explain why I found slow-burning abnormalities 

in the corpus callosum rather than in the cortex by gene enrichment analyses (see figure 

10B). Another interesting finding based on the gene array data is that the mRNA levels of 

genes related to axonogenesis, which should be expressed in the perikaryon of neurons 

under normal conditions, were increased in the corpus callosum of Cup-Recov mice 

(GO:0007409). This might indicate impaired axonal mRNA transport and accumulation of 

RNA transport granules (i.e., ribonucleoprotein complexes ) along the axon (Sahoo, Smith, 

Perrone-Bizzozero, & Twiss, 2018).   

As previously well established, microglial cells present different morphologies at 

different stages of their activation (Beynon & Walker, 2012). Upon activation, microglia 

can transform from a resting phenotype, characterized by ramified processes and a small 

cell body, into an activated amoeboid-like phenotype with no or only a few processes but a 

hypertrophic cell body. Therefore, one can distinguish resting and fully activated microglia 

by calculating a so called ramification index (RI) (i.e., microglial process territory area / cell 

body area) (Zhan et al., 2020). Additionally, microglia can also appear hyper-ramified or 

bushy at an intermediate stage transforming from rest to activation, characterized by 

increased secondary but not primary branching of microglial processes (Crews & Vetreno, 
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2016). To investigate microglial activation using a more fine-graded method, we 

reconstructed the microglia using Neurolucida360 and systematically analyzed different 

morphological parameters. I found that microglia showed a hyper-ramified morphology in 

Cup-Recov mice (see figure 9A), indicating that ongoing stress still persisted in the CNS 

even after long-term remyelination (H. Morrison, Young, Qureshi, Rowe, & Lifshitz, 2017).  

6.2 Function and expression of PRKCD in the CNS and MS 

Protein kinase C delta (PRKCD), a subtype of the Protein kinase C (PKC) family, regulates 

various inflammatory responses and signalling pathways in peripheral immune cells 

including neutrophils, B cells and macrophages (Bey et al., 2004; Carpenter & Alexander, 

2008; Mecklenbräuker, Kalled, Leitges, Mackay, & Tarakhovsky, 2004). In the brain, 

PRKCD is highly expressed in microglia, subtypes of neurons and neural fibers (Irani et al., 

2010; D. Zhang, Anantharam, Kanthasamy, & Kanthasamy, 2007). Moreover, previous 

studies have shown that PRKCD is also expressed by subpopulations of neurons in the 

thalamus, hippocampus, amygdala and cerebellum (Barmack, Qian, & Yoshimura, 2000; 

Cai, Haubensak, Anthony, & Anderson, 2014; Irani et al., 2010) and participates in the 

regulation of learning paradigms (Yu et al., 2017). Functional studies indicated that the 

pharmacological inhibition of PRKCD by the inhibitor rottlerin could alleviate neuronal 

apoptosis in a Parkinson’s disease model (Anantharam, Kitazawa, Wagner, Kaul, & 

Kanthasamy, 2002; Hanrott et al., 2008; Kaul, Kanthasamy, Kitazawa, Anantharam, & 

Kanthasamy, 2003). Moreover, pharmacological or genetic inhibition of PRKCD could 

ameliorate methamphetamine-induced dopaminergic toxicity and reduce serotonergic 

behaviors in different mouse models (Dang et al., 2018; Shin et al., 2019; Tran et al., 2019). 

However, the role of PRKCD in glial activation during MS is not well characterized and 

warrants further studies.  

Of note, I found that the expression of PRKCD was induced in IBA1+ 

microglia/macrophages after cuprizone intoxication and remained up-regulated even after 

long-term remyelination (see figure 14). In line with these findings, a previous study has 

shown in an Alzheimer's disease mouse model that peripheral inflammation could stimulate 

microglia and lead to epigenetic reprogramming of microglia, which persists for at least 6 

months (Wendeln et al., 2018). Moreover, PRKCD was previously shown to be expressed in 
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monocytes and macrophages/microglia in a neurodegenerative disease model (Gordon et al., 

2016). Worth to mention, it is difficult to further elucidate the function of PRKCD without 

conditional knockout in microglia (Gordon et al., 2016). From a translational viewpoint, our 

findings are of great significance because more and more evidence accumulates that 

progressive MS shares many similarities with neurodegenerative diseases such as 

Parkinson’s and Alzheimer’s disease, regarding neurodegeneration and axonal dysfunction. 

Therefore, our study might provide a potential insight into the interplay between microglia 

dysfunction and neurodegeneration in progressive MS.  

One of the most important findings in the present study is that PRKCD, which was found 

up-regulated in our long-term remyelination animal model, showed an induction of 

expression in chronic (active) lesions from progressive MS patients (see figure 15). 

Moreover, I was able to demonstrate that PRKCD expression positively correlates with the 

activation of microglia/macrophages in the lesions. In line with this study, a genome-wide 

association study (GWAS) showed that PRKCD, among other genes, is associated with MS 

susceptibility, disease severity and responsiveness to interferon-beta (IFN-ß) treatment 

(Mahurkar, Moldovan, Suppiah, & O'Doherty, 2013). Bergman and colleagues found, using 

next-generation sequencing (NGS), that Prkcd, Cxcr3 and Stat1 are direct targets of 

differentially expressed microRNAs in EAE-susceptible and EAE-resistant rat models 

(Bergman et al., 2013). Analyses using the Gene Expression Omnibus (GEO) ( „

Source: http://www.ncbi.nlm.nih.gov/geo/“) database indicated that PRKCD/Prkcd was up-

regulated in peripheral blood cells and brain lesions of MS patients and spinal cord of EAE 

mice (Han et al., 2012; Nakatsuji et al., 2012; Spach et al., 2004). Taken together, all those 

studies indicate the potential role of PRKCD in MS pathology.  

The normal-appearing myelin after the long-term remyelination in the cuprizone model 

shares, on the histological level, intriguing similarities with the NAWM in the CNS of MS 

patients. Surprisingly, I found PRKCD correlating with activated microglia/macrophages in 

the NAWM of MS patients (see figure 16). In MS patients, the NAWM refers to white 

matter areas that do not show classically demyelinated lesions by routine myelin stains and 

imaging techniques. More and more studies revealed that those ‘normal-appearing’ areas do 

have subtle abnormalities at both radiological and histopathological levels (Kipp et al., 2012; 

Loevner et al., 1995; Moll et al., 2011). It is now believed that NAWM injury is resistant to 
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currently available anti-inflammatory and immunomodulatory drugs for progressive MS 

patients and is as well associated with Wallerian-like degeneration within MS lesions 

(Evangelou, Konz, et al., 2000; Evangelou et al., 2001; Inglese et al., 2003; Moll et al., 2011; 

Richert et al., 1998). This study might provide a translational insight into the mechanism 

underlying pathology of NAWM and thus be useful for the research of new protective 

treatments for MS patients. 

6.3 Correlation between functional deficits and 

neurodegeneration in MS 

Functional deficits (e.g.; motor and cognitive deficits) are positively correlated with 

neurodegeneration in MS patients, especially in SPMS (Musella et al., 2018). Motor deficits 

are one of the hallmarks in MS which significantly influences the life quality of individuals 

(Heesen et al., 2008). Several measuring tools, such as the expanded disability status scale 

(EDSS), the timed 25-foot walk test and the 9-hole peg test, are currently used to evaluate 

the motor disability of MS patients. A follow-up study showed that early neurodegenerative 

signs, such as faster whole‐brain atrophy rate, are valuable for predicting the motor 

disability during disease progression (Dekker et al., 2019). Besides motor deficits, 

approximately 40% - 65% of MS patients suffer from cognitive impairments such as 

episodic memory, sustained attention and reduced verbal fluency (McIntosh-Michaelis et al., 

1991). Longitudinal studies indicated that neurodegenerative markers, such as atrophy 

determined by magnetic resonance imaging (MRI), might predict cognitive impairments 

during disease progression (Dekker et al., 2019; Filippi et al., 2013; Zivadinov et al., 2001). 

Other studies indicated that the observed cortical pathology might be associated with 

meningeal inflammation and finally contributes to cognitive impairments (Dendrou, Fugger, 

& Friese, 2015; Howell et al., 2011). Therefore, more objective and quantitative gait 

approaches would be of great benefit to reveal slow-burning processes before irreversible 

progression occurs (Manrique-Hoyos et al., 2012; Silva et al., 2014; Zhan et al., 2019). 

In this study, I found minor motor deficits, accompanying the slow-burning pathology, 

persistent after the long-term remyelination using the fine-graded behavior analyses 

DigiGaitTM (see figure 12). The gait parameters Propel, Swing Time, %Swing 
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Stride, %Stance Stride, Stance Width, were altered in Cup-Recov mice compared to age-

matched control mice. „ The definitions of these parameters, as provided by the 

manufacturer of the DigiGaitTM system are as follows: Propel—Time duration of the 

propulsion phase (maximum paw contact to just before the swing phase) given in seconds; 

Swing Time—Time duration of the swing phase (no paw contact with the belt) given in 

seconds; %Swing Stride—Percentage of the total stride duration that the paw is in the air 

(swing phase); %Stance Stride—Percentage of the total stride duration that the paw is in 

contact with the belt. Stance Width—The perpendicular distance between the centroids of 

either set of axial paws during peak stance given in centimeters (see figure 17) “. This is the 

direct citation from the guidelines of DigiGaitTM website: mousespecifics.com/digigait/. „

Having these definitions in mind, it is not surprising to find the parameters Swing Time 

and %Swing Stride to be increased while the gait parameter %Stance Stride is decreased, 

which verified the reliability of the method per se. “ This is revised from my previously 

published work (Zhan et al., 2019). In line with my findings, late-onset gait abnormalities of 

long-term remyelination mice were verified by other groups using an elegantly designed 

complex wheel test, namely MOSS test (Manrique-Hoyos et al., 2012). Previous studies 

also indicated that impaired gait abnormalities after cuprizone intoxication might be linked 

with the demyelination of the corpus callosum (Hibbits et al., 2009; Liebetanz & Merkler, 

2006; Xu et al., 2010). With an almost complete recovery at the myelin level, these 

prolonged gait abnormalities might not be detected through a ‘routine’ gait analysis method 

such as the rotarod test. 
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Figure 17: Motor deficits found in Cup-RecovDigiGait mice 
Figure 17 Motor deficits found in Cup-RecovDigiGait mice 

Schematic drawing illustrating the minor motor deficits found in Cup-RecovDigiGait mice. 

7. Conclusion Remarks 

Taken together, my work indicates that initial, cytodegenerative processes in the CNS per se 

could have prolonged effects. Ongoing axonal damage, gliosis as well as neurodegeneration 

might finally lead to functional deficits. This resembles the disease progression in MS. The 

patients might first suffer from vision loss or motor deficit at early age and recover from 

these deficits without any obvious clinical symptoms. However, ominous, 

neurodegenerative processes might still persist in the CNS and lead to the irreversible 

outcome which progressive MS patients inevitably face.  
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8. Supplementary Materials 

8.1 Supplementary Figure 1: Analysis of microglial morphology 

 
Figure 18 Supplementary Figure 1: Analysis of microglial morphology 
 (A) Schematic drawing illustrating the ROI selected for morphological analyses of microglial cells. (B) Sholl 
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analysis plots of morphological parameters evaluated in microglia (i.e., Endings and Nodes. n = 25 cells per 

group). (C) Microglial morphology was further evaluated by RIv (Vp/Vc) determined by Convex Hull 3D 

analysis. (D) The principle of quantifying microglia morphology by calculating RIv. (E) Comparison of 

microglial RIv between Cup-Recov and control mice. ROI: region of interest; CTX: cerebral cortex; 1, 2/3, 4, 5, 

6a, 6b: cortex layer; cing: cingulum bundle; cc: corpus callosum; VL: lateral ventricle; RIv: volume 

ramification index; Vp: maximum projection volume; Vc: cell volume; IBA1: ionized calcium-binding adapter 

molecule 1; Scale bar = 10 μm. 

8.2 Supplementary Table 1: Primary antibodies  

Table 6 Supplementary Table 1: Primary antibodies 
Antigen Specie

s 

Applicatio

n 

HIER 

method 

Purchase 

number 

RRIDa Supplier Info 

PLP mouse 1:5000 IHC None MCA839G AB_2237198 Bio-

Rad/Serote

c 

Myelin 

ANXA2 rabbit 1:4000 IHC Citrate ab41803 AB_940267 Abcam, 

UK 

Extracellular matrix 

OLIG2 rabbit 1:4000 IHC Tris/EDT

A 

ab9610 AB_570666 Millipore, 

Germany 

Oligodendrocyte 

OLIG2 mouse 1:250 IF Tris/EDT

A 

MABN50 AB_1080741

0 

Millipore, 

Germany 

Oligodendrocyte 

IBA1 rabbit 1:5000 IHC 

1:4000 

IHCEnVision 

Tris/EDT

A 

019-19741 AB_ 839504 Wako, 

Japan 

Microglia/Macrophag

e 

IBA1 goat 1:500 IF Tris/EDT

A 

SAB250004

1 

AB_1060029

6 

Sigma-

Aldrich, 

USA 

Microglia/Macrophag

e 

GFAP chicke

n 

1:8000 IHC Tris/EDT

A 

ab4674 AB_304558 Abcam, 

UK 

Astrocyte 

PRKCD rabbit 1:2000 IHC 

1:4000h 

IHC 

1:200 IF 

1:1500h IF 

Tris/EDT

A 

ab182126 Not found Abcam, 

UK 

Kinase 

HLA-

DRI/LN

3 

mouse 1:1500h 

IHC 

1:1000h IF 

Citrate MA5-11966 AB_1097998

4 

Thermo 

Fisher 

Scientific, 

USA 

Activated 

microglia/macrophag

e 

List of primary antibodies used for IHC and IF in this study. a: Research resource identifier; h: Application on 
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human paraffin slides. PLP: proteolipid protein; LN3: anti-HLA-DR; ANXA2: annexin a2; PRKCD: protein 

kinase c delta; IBA1: ionized calcium-binding adapter molecule 1; GFAP: glial fibrillary acidic protein; APP: 

amyloid precursor protein; OLIG2: oligodendrocyte transcription factor 2. 

8.3 Supplementary Table 2: Secondary antibodies 

Secondary antibodies Dilution Purchase 

number 

RRIDa Supplier 

Biotinylated Goat anti-chicken IgG 1:200 BA-9010 AB_2336114 Vector laboratories, 

USA 

Biotinylated Goat anti-mouse IgG 1:200 BA-9200 AB_2336171 Vector laboratories, 

USA 

Biotinylated Goat anti-rabbit IgG 1:200 BA-1000 AB_2313606 Vector laboratories, 

USA 

Biotinylated Goat anti-rat IgG 1:200 BA-9400 AB_2336202 Vector laboratories, 

USA 

Biotinylated Rabbit anti-goat IgG 1:200 BA-5000 AB_2336126 Vector laboratories, 

USA 

Alexa Fluor 488-coupled Donkey 

anti-rabbit IgG 

1:250 ab150065 Not found Abcam, UK 

Alexa Fluor 594-coupled Donkey 

anti-mouse IgG 

1:250 A21203 AB_2535789 Invitrogen, USA 

Cy3-coupled Donkey anti-goat IgG 1:300 705-165-

147 

AB_2307351 Jackson 

ImmunoResearch, 

USA 

EnVision System- HRP Labeled 

Polymer goat anti-rabbit 

1:1 K4003 AB_2630375 DAKO, Germany 

List of secondary antibodies used for IHC and IF in this study. a: Research resource identifier; IgG: 

immunoglobin G. 

Table 7 Supplementary Table 2: Secondary antibodies 
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8.4 Supplementary Table 3: Real-time RT-PCR primers 

Gene 

Symbol 

Sense Antisense Ta 

/°C 

Bp 

Gapdh AGG TCG GTG TGA ACG GAT 

TTG 

GTA GAC CAT GTA GTT GAG 

GTC A 

60 123 

Hprt TCA GTC AAC GGG GGA CAT 

AAA 

GGG GCT GTA CTG CTT AAC 

CAG 

62 142 

Prkcd CCT CCT GTA CGA AAT GCT 

CAT C 

GTT TCC TGT TAC TCC CAG 

CCT 

64.5 181 

Slitrk6 AGG CTC TTG CGA CAC TCT 

TTG 

GTG GCA CAC TGA TTT GGG 

ATA AT 

64 104 

Pln AAA GTG CAA TAC CTC ACT 

CGC 

GGC ATT TCA ATA GTG GAG 

GCT C 

64 56 

Ndst4 ACT TTT TGC TTG GTG AGC 

ATC C 

CCG ATA AGG GAG GTC TTT 

GAT GT 

64 126 

Lcn2 GCA GGT GGT ACG TTG TGG G CTC TTG TAG CTC ATA GAT 

GGT GC 

58 95 

Cadps2 AAT ATC GCC AAC AGT CTT 

CCC A 

TCC ACG GAG GAG TAG AAA 

AGC 

64 97 

Sgk1 CTG CTC GAA GCA CCC TTA 

CC 

TCC TGA GGA TGG GAC ATT 

TTC A 

64 175 

Arc GTT AGC CCC TAT GCC ATC 

ACC 

CTG GCC CAT TCA TGT GGT 

TCT 

64 244 

List of real-time RT-PCR primers used in this study. Gapdh: Glyceraldehyde 3-phosphate dehydrogenase; 

Hprt: Hypoxanthine Phosphoribosyltransferase; Prkcd: protein kinase c delta; Lcn2: lipocalin 2; Slitrk6: SLIT 

and NTRK like family member 6; Pln: Phospholamban; Ndst4: N-Deacetylase and N-Sulfotransferase 4; 

Cadps2: calcium dependent secretion activator 2; Arc: activity regulated cytoskeleton associated protein; Sgk1: 

serum/glucocorticoid regulated kinase 1; Ta: annealing temperature; Bp: Base pairs. 

Table 8 Supplementary Table 3: Real-time RT-PCR primers 
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8.5 Supplementary Table 4: Buffers and solutions 

Table 9 Supplementary Table 4: Buffers and solutions 
Avidin–biotin complex solution 
 

According to the manufacturer information from Elite ABC kit 

96% v / v PBS 

2% v / v reagent A. 

2% v / v reagent B. 

Blocking buffer for IHC/IF 95% v / v PBS 

5% v / v normal serum (species from the host species of the 

secondary antibody) 

Citrate buffer Distilled water 

2.1 g / l C₆H₈O₇ 

pH=6.0 

DAB solution According to the manufacturer information from Liquid DAB + 

Substrate Chromogen System 

98% v / v DAB Substrate Buffer 

2% v / v DAB chromogen 

Formaldehyde fixative solution Distilled water  

37 g / l TRIS formaldehyde 

4.6 g / l Sodium dihydrogen phosphate 

8.0 g / l Disodium phosphate 

pH=7.4 

Hydrogen peroxide buffer 99.65% v / v PBS 

0.35% v / v Hydrogen peroxide 

PBS Distilled water 

80 g / l sodium chloride 

2 g / l potassium chloride 

16.8 g / l disodium hydrogen phosphate dihydrate 

2.7 g / l potassium dihydrogen phosphate 

pH=7.4 

Tris-EDTA buffer Distilled water 

1.21 g / l EDTA disodium salt dihydrate 

0.37 g / l TRIS 

pH=9.0 
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8.6 Supplementary Table 5: Differentially expressed genes in the 

gene array 

Table 10 Supplementary Table 5: Differentially expressed genes in the gene array 
115 upregulated genes in the corpus callosum of the Cup-Recov mice 

# Gene 
Symbol 

ControlAverage 
(log2) 

Control
SD 

Cup-RecovAverage 
(log2) 

Cup-
RecovSD 

Fold Change (Cup-
Recov/Control) 

1 Prkcd 9.35 1.59 11.68 1.98 5.01 
2 Ndst4 6.91 1.1 8.6 1.53 3.22 
3 Pln 4.73 0.68 6.29 0.84 2.95 
4 Ntng1 10.92 0.69 12.39 0.9 2.76 
5 Slitrk6 6.93 0.79 8.29 1.07 2.57 
6 Tcf7l2 11.46 0.87 12.77 1.12 2.48 
7 Slc17a6 9.16 0.73 10.39 0.67 2.35 
8 Agt 9.5 1.16 10.73 0.55 2.35 
9 Calb2 6.85 0.86 7.93 0.56 2.1 

10 Zic1 10.19 0.69 11.25 1.11 2.1 
11 Srgap1 10.06 0.49 11.09 0.42 2.03 
12 Egfem1 8.93 0.17 9.95 0.39 2.02 
13 Kcne1l 6 0.36 7 0.35 2.01 
14 Shisa6 9.73 0.79 10.74 0.93 2.01 
15 Cbln1 8.3 0.54 9.3 0.53 1.99 
16 Klf5 9.15 0.2 10.14 0.26 1.98 
17 Epha6 11.44 0.68 12.41 0.31 1.96 
18 Ryr3 11.32 0.28 12.28 0.43 1.96 
19 Wfs1 10.44 0.7 11.39 0.14 1.94 
20 Anxa2 6.19 0.39 7.15 0.27 1.94 
21 Foxo1 10 0.2 10.93 0.46 1.91 
22 Prg4 5.83 0.37 6.76 1.42 1.91 
23 Lrrtm1 7.21 0.4 8.12 0.17 1.89 
24 Actn2 11.73 0.3 12.65 0.62 1.89 
25 Npsr1 7.61 0.6 8.52 0.5 1.88 
26 Isl1 7.82 0.35 8.72 0.24 1.87 
27 Synpo2 7.77 0.6 8.68 0.77 1.87 
28 Rab37 6.59 0.64 7.48 0.82 1.85 
29 Zfp735 3.88 0.36 4.75 0.29 1.83 
30 Cabp7 8.6 0.69 9.47 0.73 1.83 
31 Olfr1090 4.25 0.12 5.11 0.25 1.82 
32 Pbx3 10.08 0.58 10.95 0.33 1.82 
33 Dlx5 8.44 0.2 9.3 0.26 1.81 
34 Bmp4 6.08 0.47 6.94 0.42 1.81 
35 Necab2 10.78 0.14 11.62 0.52 1.79 
36 Unc13c 11.87 0.63 12.69 0.33 1.76 
37 Prrg4 7.56 0.42 8.37 0.35 1.76 
38 Nrep 10.3 0.26 11.11 0.2 1.75 
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39 Tox 13.48 0.06 14.28 0.41 1.74 
40 Olfr195 4.4 0.6 5.2 0.24 1.74 
41 Shox2 4.9 0.42 5.69 1.4 1.73 
42 Wdr83os 13.18 0.29 13.96 0.42 1.72 
43 Tshz2 12.34 0.74 13.12 0.56 1.71 
44 Etv1 12.95 0.11 13.71 0.57 1.7 
45 Six3 8.82 0.75 9.59 0.31 1.7 
46 Pcbd1 6.69 0.36 7.46 0.21 1.7 
47 Timp3 8.54 0.5 9.29 0.33 1.68 
48 Fmod 5.86 0.38 6.61 1.02 1.68 
49 S100a11 9.72 0.15 10.47 0.5 1.68 
50 Ndnf 6.93 0.19 7.67 0.09 1.67 
51 Rbms3 11.53 0.41 12.27 0.2 1.67 
52 Slc24a3 12.01 0.56 12.76 0.28 1.67 
53 Ccdc170 6.22 0.29 6.96 0.51 1.67 
54 Htr1d 8.56 0.08 9.3 0.74 1.67 
55 St8sia2 6.6 0.29 7.34 0.29 1.66 
56 Lhfpl3 11.36 0.55 12.09 0.33 1.66 
57 Rgs10 11.1 0.58 11.83 0.15 1.65 
58 Cd55 7.22 0.36 7.93 0.05 1.64 
59 Lfng 9 0.3 9.71 0.39 1.64 
60 Plppr1 10.69 0.36 11.4 0.53 1.64 
61 Zic2 7.15 0.4 7.87 0.33 1.64 
62 Rnf122 8.82 0.46 9.52 0.17 1.63 
63 Ascl1 9.43 0.21 10.13 0.51 1.62 
64 Ndst3 10.15 0.3 10.84 0.56 1.61 
65 Eya1 10.65 0.25 11.34 0.17 1.61 
66 Cd68 10.95 0.15 11.64 0.08 1.61 

67 F830001A0
7Rik 11.63 0.38 12.32 0.16 1.61 

68 Myb 6.52 0.41 7.21 0.14 1.61 
69 Gpr161 7.69 0.49 8.37 0.7 1.61 
70 Slc14a2 6.27 0.14 6.95 0.09 1.6 
71 Vmn2r89 5.99 0.26 6.66 0.23 1.6 
72 Gipc2 7.08 0.43 7.76 0.44 1.6 
73 Gli3 10.45 0.19 11.11 0.1 1.58 
74 BC026585 6.5 0.41 7.16 0.16 1.58 
75 Tek 7.78 0.12 8.43 0.28 1.57 
76 Gad1 12.08 0.16 12.73 0.24 1.57 
77 Gpr12 10.37 0.23 11.03 0.23 1.57 
78 Nipal2 10 0.27 10.65 0.2 1.57 
79 Jag1 7.53 0.13 8.18 0.34 1.57 
80 Esp15 4.63 0.15 5.29 0.86 1.57 
81 Tacr1 8.73 0.48 9.38 0.44 1.57 
82 Cachd1 8.11 0.29 8.75 0.3 1.56 
83 Nlrp1c-ps 5.41 0.17 6.05 0.1 1.56 
84 Dapp1 9.31 0.24 9.96 0.22 1.56 
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85 Tgif1 6.42 0.11 7.05 0.46 1.56 
86 Dynlrb2 7.08 0.22 7.72 0.48 1.55 
87 Pou3f4 9.68 0.29 10.31 0.62 1.55 
88 Gpr83 12.54 0.16 13.16 0.34 1.54 
89 Pltp 12.86 0.49 13.48 0.27 1.54 
90 Gm2573 11.29 0.21 11.91 0.24 1.54 
91 Gdpd2 7.44 0.31 8.07 0.41 1.54 
92 Stk32a 9.83 0.13 10.44 0.47 1.54 
93 Dpysl3 8.18 0.29 8.79 0.27 1.53 
94 Eps8 9.25 0.45 9.86 0.31 1.53 
95 Skint1 4.32 0.33 4.94 0.25 1.53 
96 Cdhr3 8.5 0.41 9.11 0.74 1.53 
97 Arhgap6 9.85 0.26 10.46 0.18 1.52 
98 Acta2 8.52 0.21 9.12 0.25 1.52 
99 Adcy8 9.99 0.1 10.6 0.3 1.52 
100 Ccdc115 8.98 0.61 9.58 0.4 1.52 
101 Lrrc9 8.57 0.35 9.18 0.08 1.52 
102 Nts 6.36 0.54 6.97 0.35 1.52 

103 B130024G1
9Rik 6.52 0.61 7.13 0.37 1.52 

104 Ano2 9.85 0.53 10.45 0.57 1.52 
105 Angpt1 8.08 0.29 8.67 0.33 1.51 
106 Sncg 6.75 0.52 7.34 0.25 1.51 
107 Lpp 9.56 0.34 10.16 0.34 1.51 
108 Gm8267 4.05 0.35 4.64 0.2 1.51 
109 Cyp2j9 12.02 0.34 12.62 0.24 1.51 
110 Eaf2 5.34 0.41 5.93 0.39 1.51 
111 Creg1 12.06 0.32 12.66 0.14 1.51 
112 Teddm3 8.04 0.38 8.64 0.58 1.51 

113 Ass1; 
Gm5424 10.05 0.21 10.64 0.2 1.5 

114 Whrn 11.17 0.42 11.75 0.32 1.5 
115 Dlx6 8.56 0.15 9.14 0.4 1.5 
 
103 downregulated genes in the corpus callosum of the Cup-Recov mice 

# Gene 
Symbol 

ControlAverage 
(log2) 

Control
SD 

Cup-RecovAverage 
(log2) 

Cup-
RecovSD 

Fold Change(Cup-
Recov/Control) 

1 Lcn2 6.22 0.86 4.76 1.04 -2.75 
2 Gm10591 11.28 0.69 9.88 2.05 -2.64 
3 Gm13304 11.14 0.71 9.79 1.97 -2.55 

4 
Gm13304; 
Gm21541; 

Ccl21b 
11.24 0.78 9.88 2.22 -2.55 

5 Gm1987; 
Ccl21a 11.4 0.64 10.08 1.67 -2.5 

6 Gm13304 10.89 0.71 9.57 1.66 -2.49 

7 Ccl21b; 
Gm13304 10.89 0.71 9.57 1.66 -2.49 

8 Sgk1 13.83 0.34 12.52 0.42 -2.48 
9 Gm13304 11.01 0.72 9.81 1.61 -2.3 
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10 Ccl21c; 
Gm21541 11.01 0.72 9.81 1.61 -2.3 

11 
Vmn1r90; 
Nlrp5-ps; 

Vmn1r181 
8.89 0.37 7.7 0.37 -2.29 

12 Rxfp2 6.86 0.27 5.76 0.2 -2.13 
13 Gm10600 14.71 0.3 13.63 2.77 -2.12 
14 Tmem196 11.57 0.24 10.58 0.22 -1.99 

15 Ccl21a; 
Gm1987 10.74 0.5 9.76 0.9 -1.97 

16 Fam205a2; 
Gm10600 13.88 0.28 12.91 1.37 -1.95 

17 Cbln4 8.91 0.29 7.96 0.15 -1.93 

18 
Gm3893; 

4933409K0
7Rik 

15.81 0.31 14.87 2.25 -1.92 

19 Arc 11.05 0.29 10.11 0.83 -1.92 
20 Cadps2 11.8 0.4 10.87 0.24 -1.91 
21 Arhgap15 7.68 0.44 6.74 0.07 -1.91 

22 4933409K0
7Rik 12.2 0.37 11.3 0.63 -1.87 

23 4933409K0
7Rik 12.2 0.37 11.3 0.63 -1.87 

24 Prss23 9.26 0.12 8.37 0.13 -1.86 
25 Ipcef1 11.19 0.21 10.32 0.37 -1.84 

26 Gm13298; 
Fam205a2 11.46 0.3 10.58 0.55 -1.84 

27 Myl4 11 0.24 10.13 0.53 -1.83 
28 C4a 6.97 0.42 6.12 0.25 -1.81 
29 Ide 13.71 0.2 12.86 0.67 -1.8 

30 3110035E1
4Rik 14.87 0.24 14.04 0.2 -1.78 

31 Skint8 6.73 0.48 5.9 0.24 -1.77 
32 Apold1 8.2 0.26 7.39 0.29 -1.76 
33 Ccl3 7.66 0.49 6.85 0.26 -1.75 
34 Hcrtr1 5.11 0.37 4.3 0.42 -1.74 

35 
Gm13298; 
Fam205a4; 
Gm20938 

11.86 0.33 11.06 0.51 -1.74 

36 Car10 10.82 0.44 10.03 0.14 -1.73 
37 Olah 6 0.38 5.2 0.12 -1.73 
38 Arhgap25 6.87 0.48 6.08 0.28 -1.73 
39 Sdk2 9.15 0.52 8.36 0.57 -1.73 
40 Gm3676 5.14 0.5 4.35 0.21 -1.73 
41 Rprm 10.19 0.12 9.41 0.34 -1.72 
42 Nptx1 10.53 0.45 9.74 0.21 -1.72 
43 H2-T23 8.59 0.4 7.8 0.3 -1.72 
44 Vmn1r100 5.89 0.25 5.12 0.26 -1.71 
45 Vmn1r148 5.89 0.25 5.12 0.26 -1.71 
46 Ttc9b 10.69 0.26 9.93 0.32 -1.7 
47 Steap1 6.39 0.84 5.63 0.46 -1.69 
48 Glra4 5.25 0.19 4.5 0.18 -1.68 
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49 Btk 6.65 0.31 5.91 0.41 -1.67 
50 Vipr1 9.3 0.31 8.57 0.31 -1.66 
51 Krt80 7.77 0.46 7.04 0.29 -1.65 
52 Fam205a1 10.7 0.29 9.97 0.58 -1.65 
53 Ccl9 7.78 0.18 7.08 0.19 -1.63 

54 F630003A1
8Rik 5.21 0.17 4.51 0.36 -1.63 

55 Cabp1 13.15 0.22 12.45 0.19 -1.62 

56 4933409K0
7Rik 12.23 0.43 11.53 0.78 -1.62 

57 Rgs6 11.66 0.22 10.97 0.17 -1.61 
58 Gm5468 6.3 0.62 5.61 0.25 -1.61 
59 Tmem132d 10.75 0.46 10.08 0.22 -1.6 

60 
Gm13298; 
Fam205a3; 
Gm21598 

11.85 0.32 11.17 0.53 -1.6 

61 Bpifa2 4.74 0.46 4.06 0.28 -1.6 
62 Ccdc22 7.96 0.37 7.28 0.1 -1.6 
63 Eif4ebp2 9.31 0.27 8.63 0.4 -1.59 
64 Chrng 4.6 0.37 3.92 0.22 -1.59 
65 Jdp2 9.74 0.45 9.07 0.15 -1.59 
66 Cybb 6.97 0.49 6.3 0.15 -1.58 
67 Mmp17 10.04 0.49 9.37 0.45 -1.58 
68 Keg1 6.66 0.35 6.01 0.15 -1.57 
69 Vmn2r122 6.2 0.41 5.56 0.16 -1.57 
70 Slc26a8 8.31 0.16 7.66 0.13 -1.56 
71 Frmd6 9.4 0.34 8.76 0.19 -1.56 
72 Olfr780 4.89 0.41 4.24 0.25 -1.56 
73 Il17ra 8.62 0.34 7.99 0.25 -1.55 
74 Pcdh7 14.66 0.26 14.03 0.42 -1.55 
75 Ces3a 5.89 0.27 5.26 0.27 -1.55 
76 Rasl10a 8.72 0.54 8.08 0.24 -1.55 
77 Olfr885 5.89 0.46 5.25 0.18 -1.55 
78 Serpinb8 8.22 0.56 7.6 0.36 -1.54 
79 Sstr3 8.46 0.25 7.84 0.13 -1.54 
80 Cldn2 5.74 0.42 5.12 0.3 -1.54 
81 Gm12394 11.82 0.31 11.19 0.85 -1.54 
82 Ntn5 7.12 0.41 6.49 0.21 -1.54 
83 Lilrb4a 8.03 0.8 7.41 0.64 -1.54 
84 Pisd-ps3 13.72 0.52 13.1 0.79 -1.54 
85 Per1 11.22 0.07 10.61 0.24 -1.53 
86 Olfr1457 5.39 0.49 4.78 0.31 -1.53 
87 Adcy1 13.29 0.42 12.68 0.19 -1.53 
88 Il10ra 7.78 0.32 7.17 0.22 -1.53 
89 Kcnt2 12.06 0.37 11.46 0.12 -1.52 
90 Vwa5b2 10.02 0.25 9.42 0.06 -1.52 
91 Tmem252 7.21 0.28 6.61 0.36 -1.52 
92 Tmem132a 9.97 0.44 9.36 0.34 -1.52 
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93 Il23r 6.04 0.34 5.44 0.18 -1.52 
94 Hgf 7.05 0.53 6.45 0.26 -1.52 
95 Chrm3 9.86 0.47 9.25 0.3 -1.52 

96 1700016D0
6Rik 4.98 0.11 4.37 0.26 -1.52 

97 Acer2 7.26 0.36 6.66 0.26 -1.51 
98 Anp32e 8.03 0.34 7.44 0.11 -1.51 
99 Gm9745 5.79 0.12 5.19 0.21 -1.51 
100 Hpcal4 12.11 0.36 11.51 0.38 -1.51 
101 Mettl24 7.02 0.24 6.43 0.21 -1.5 
102 Lypd6 11.28 0.3 10.69 0.31 -1.5 
103 Tagap 6.24 0.2 5.65 0.27 -1.5 
 
148 upregulated genes in the cortex of the Cup-Recov mice 

# Gene 
Symbol 

ControlAverage 
(log2) 

Control
SD 

Cup-RecovAverage 
(log2) 

Cup-
RecovSD 

Fold Change(Cup-
Recov/Control) 

1 LOC102639
117 5.92 0.19 7 0.53 2.13 

2 Gm17611 4.95 0.16 6.02 0.44 2.11 
3 Olfr919 5.6 0.53 6.63 0.26 2.04 
4 Smim3 6.29 0.17 7.31 0.63 2.03 
5 Olfr341 4.01 0.72 5.03 0.27 2.03 
6 Nxpe2 6.24 0.23 7.26 0.6 2.02 
7 Gm19607 5.37 0.31 6.36 0.14 1.99 
8 Mpeg1 7.39 0.22 8.35 0.37 1.95 
9 Sntb1 6.79 0.4 7.76 0.36 1.95 

10 Vmn1r70 5.4 0.16 6.37 0.42 1.95 
11 Skint11 6.15 0.48 7.08 0.54 1.9 
12 Ugt2b35 4.64 0.29 5.57 0.59 1.89 
13 Inhba 8.63 0.57 9.52 0.31 1.85 
14 Olfr724 5.76 0.22 6.65 0.25 1.85 
15 Stat4 5.53 0.45 6.4 0.19 1.82 
16 Ankrd35 6.19 0.31 7.02 0.51 1.78 
17 Olfr391-ps 4.53 0.48 5.36 0.61 1.78 
18 Olfr1346 4.05 0.56 4.87 0.54 1.77 
19 Gm21921 4.97 0.21 5.78 0.19 1.76 
20 Erp27 6.07 0.32 6.89 0.47 1.76 
21 Gpr18 5.28 0.2 6.09 0.41 1.76 

22 4930563E22
Rik 5.38 0.13 6.19 0.13 1.75 

23 Ifna16 6.49 0.49 7.29 0.14 1.75 
24 Olfr557 4.78 0.28 5.58 0.25 1.74 
25 Trim55 5.61 0.39 6.41 0.54 1.74 

26 Kif27; 
Mir6369 5.87 0.25 6.66 0.39 1.73 

27 Obox8; 
Gm5585 4.28 0.31 5.07 0.42 1.73 

28 Lst1 5 0.33 5.79 0.24 1.73 
29 Vmn1r76 4.75 0.42 5.54 0.61 1.73 
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30 Psd4 5.99 0.39 6.77 0.37 1.72 
31 Sdr16c6 4 0.44 4.79 0.16 1.72 
32 Nnmt 7.04 0.41 7.82 0.4 1.72 
33 Gm15850 5.58 0.35 6.35 0.28 1.71 
34 Olfr1317 4.53 0.2 5.3 0.41 1.7 
35 Fbxw27 4.86 0.48 5.61 0.15 1.69 
36 Gm21891 5.43 0.2 6.19 0.95 1.69 
37 Gm21828 5.43 0.2 6.19 0.95 1.69 
38 Gm21725 5.43 0.2 6.19 0.95 1.69 
39 Gm21904 5.43 0.2 6.19 0.95 1.69 
40 Gm21764 5.43 0.2 6.19 0.95 1.69 
41 Gm21852 5.43 0.2 6.19 0.95 1.69 
42 Olfr723 4.83 0.31 5.59 0.22 1.69 
43 Gm732 4.38 0.34 5.14 0.62 1.69 
44 Vmn2r104 4.32 0.38 5.06 0.6 1.68 
45 Vmn1r129 6.35 0.26 7.1 0.39 1.68 
46 Mid1 13.02 0.5 13.77 0.22 1.68 
47 Mid1 13.02 0.5 13.77 0.22 1.68 
48 Gm13088 5.03 0.18 5.77 0.44 1.68 
49 Psmb10 8.35 0.17 9.1 0.46 1.68 

50 Gm16442; 
Gm16451 4.56 0.52 5.3 0.53 1.68 

51 
Gm10330; 

LOC100861
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7.72 0.56 8.47 0.28 1.68 

52 Serinc4 5.09 0.3 5.82 0.27 1.67 
53 Tex30 6.93 0.15 7.67 0.34 1.67 
54 Ms4a4a 6.19 0.15 6.93 0.44 1.67 
55 Ddx19a 7.1 0.68 7.83 0.37 1.66 
56 Gm5592 5.24 0.36 5.97 0.19 1.66 
57 Psg27 6.01 0.23 6.75 0.44 1.66 
58 Ovol1 4.01 0.24 4.73 0.4 1.65 
59 Mov10 7.06 0.21 7.78 0.35 1.65 
60 Nlrp1a 3.79 0.12 4.51 0.6 1.65 
61 Gm436 6.47 0.06 7.19 0.54 1.65 
62 Gm5751 5.02 0.37 5.73 0.65 1.64 
63 BC067074 5.47 0.51 6.18 0.36 1.64 
64 Epha3 8.34 0.12 9.05 0.35 1.64 
65 Serpinb6e 5.41 0.25 6.13 0.41 1.64 
66 Spag17 4.4 0.4 5.11 0.26 1.64 
67 Gm5615 4.24 0.17 4.94 0.36 1.63 
68 Ifna7 6.41 0.41 7.11 0.17 1.63 
69 Esp4 4.61 0.23 5.31 0.23 1.63 
70 Gm1070 5.26 0.53 5.96 0.39 1.62 
71 Olfr769 4.59 0.18 5.28 0.57 1.62 
72 Ear1 5.34 0.3 6.04 0.5 1.62 
73 Plag1 6.47 0.22 7.16 0.2 1.62 
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74 Rnd3 8.63 0.23 9.32 0.29 1.62 
75 Pim1 5.98 0.43 6.66 0.14 1.61 
76 Gpr183 4.96 0.1 5.65 0.32 1.61 
77 Klra16 4.91 0.11 5.59 0.24 1.61 
78 Pabpc4l 4.18 0.15 4.87 0.53 1.61 
79 Lipi 5.69 0.41 6.38 0.51 1.61 
80 Nlrp12 4.15 0.17 4.85 0.54 1.61 
81 Klf6 10.52 0.25 11.21 0.06 1.61 
82 Olfr1247 5.18 0.35 5.86 0.66 1.6 
83 Olfr239 7.46 0.47 8.14 0.21 1.6 
84 Olfr1044 5.67 0.29 6.34 0.42 1.6 
85 Slfn4 5.02 0.36 5.7 0.32 1.6 

86 1110017D1
5Rik 5.95 0.36 6.62 0.34 1.59 

87 1700012A0
3Rik 5.28 0.26 5.95 0.28 1.59 

88 Ivl 5.22 0.29 5.9 0.23 1.59 

89 4931400O0
7Rik 6.51 0.26 7.18 0.33 1.59 

90 9030612E09
Rik 5.37 0.33 6.04 0.55 1.59 

91 Syt10 11.63 0.41 12.29 0.24 1.58 
92 Olfr1162 4.24 0.2 4.9 0.26 1.58 
93 Esp34 4.14 0.39 4.8 0.2 1.58 
94 Gm21447 6.39 0.18 7.05 0.55 1.58 
95 Gm21657 6.39 0.18 7.05 0.55 1.58 

96 Gm3005; 
Gm2897 10.52 0.12 11.18 0.25 1.58 

97 Olfr1535 5.52 0.42 6.16 0.39 1.57 
98 Gm21739 5.17 0.21 5.82 0.43 1.57 
99 Gm21739 5.17 0.21 5.82 0.43 1.57 
100 Gm21739 5.17 0.21 5.82 0.43 1.57 
101 Gm21739 5.17 0.21 5.82 0.43 1.57 
102 Gm21739 5.17 0.21 5.82 0.43 1.57 
103 Gm21739 5.17 0.21 5.82 0.43 1.57 
104 Il1f6 6.29 0.19 6.93 0.36 1.57 
105 Mid1 12.5 0.59 13.15 0.27 1.57 
106 Gm3424 4.94 0.2 5.59 0.48 1.57 
107 Vmn2r116 4.18 0.38 4.82 0.3 1.56 
108 Gm13128 4.91 0.29 5.56 0.51 1.56 
109 Vmn2r77 5 0.44 5.64 0.28 1.56 
110 Gm21913 5.13 0.55 5.77 0.25 1.56 
111 Gm21776 5.13 0.55 5.77 0.25 1.56 
112 Cldn1 6.93 0.25 7.58 0.24 1.56 
113 Alg3 8.77 0.15 9.39 0.06 1.55 
114 Esyt3 5.74 0.42 6.37 0.19 1.55 

115 
Samt2; 

4930524N1
0Rik 

4.72 0.53 5.35 0.43 1.55 
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116 Rhox3c 5.16 0.2 5.79 0.67 1.55 

117 Gm3752; 
Gm2897 10.15 0.13 10.78 0.36 1.55 

118 Faiml 5.6 0.27 6.24 0.77 1.55 
119 Lrrc71 5.19 0.36 5.82 0.29 1.54 
120 Cdkn1a 10.1 0.35 10.72 0.34 1.54 

121 Ccnf; 
Mir5134 4.88 0.24 5.5 0.34 1.54 

122 Saa3 5.94 0.07 6.56 0.26 1.54 
123 Tcp11 4.89 0.34 5.51 0.24 1.54 
124 Gm17019 5.15 0.38 5.76 0.3 1.53 
125 Bglap2 6.33 0.17 6.95 0.39 1.53 

126 4933411G0
6Rik 4.38 0.34 4.99 0.51 1.53 

127 Olfr543 3.45 0.13 4.06 0.15 1.52 
128 Ipp 6.97 0.34 7.58 0.25 1.52 
129 Dsc2 4.58 0.27 5.18 0.39 1.52 
130 Gm21866 4.99 0.21 5.6 0.62 1.52 
131 Efhc2 6.84 0.23 7.45 0.19 1.52 
132 Slco1b2 4.78 0.26 5.38 0.29 1.52 
133 Olfr763 6.02 0.43 6.62 0.26 1.52 
134 CK137956 4.93 0.42 5.52 0.06 1.51 

135 Gm5891; 
Gm10662 5.24 0.33 5.83 0.17 1.51 

136 Gm10662; 
Gm5891 5.24 0.33 5.83 0.17 1.51 

137 Crocc 6.79 0.26 7.38 0.41 1.51 
138 Muc3 6.05 0.42 6.65 0.4 1.51 

139 4930447F04
Rik 4.87 0.27 5.47 0.21 1.51 

140 Krt20 6.03 0.18 6.62 1.08 1.51 
141 Atp10b 5.43 0.36 6.02 0.11 1.5 
142 Chchd5 6.49 0.29 7.07 0.27 1.5 
143 Mul1 7.6 0.32 8.19 0.22 1.5 
144 Mpzl2 6.02 0.17 6.61 0.33 1.5 
145 Hemgn 5.96 0.14 6.54 0.35 1.5 
146 Zw10 7.28 0.05 7.86 0.3 1.5 
147 Ly6d 6.83 0.39 7.42 0.31 1.5 
148 Tlr11 4.75 0.47 5.33 0.22 1.5 
 
112 downregulated genes in the cortex of the Cup-Recov mice 

# Gene 
Symbol 

ControlAverage 
(log2) 

Control
SD 

Cup-RecovAverage 
(log2) 

Cup-
RecovSD 

Fold Change(Cup-
Recov/Control) 

1 Gm11096 7.38 2.56 4.85 0.63 -5.79 
2 Kif4 6.34 0.22 5.32 0.6 -2.03 

3 
Gm3893; 

4933409K0
7Rik 

15.87 0.37 14.9 2.01 -1.95 

4 Gm11077 5.56 0.16 4.6 0.5 -1.94 
5 Sec14l5 8.47 0.6 7.51 0.54 -1.93 
6 Gm11559 5.4 0.59 4.45 0.3 -1.93 
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7 Hapln2 7.69 0.22 6.75 0.26 -1.92 
8 Mptx2 7.12 0.62 6.2 0.14 -1.9 
9 Zfp202 6.31 0.42 5.41 0.43 -1.87 

10 Gm21719 5.83 0.5 4.93 0.31 -1.87 
11 Ifi44 7.39 0.12 6.53 0.26 -1.82 
12 Pah 5.81 0.2 4.97 0.37 -1.78 
13 Mog 10.55 0.17 9.72 0.46 -1.78 

14 Gm13298; 
Fam205a2 11.93 0.47 11.11 0.74 -1.77 

15 1700013H1
6Rik 7.11 0.2 6.28 0.23 -1.77 

16 
Gm13298; 
Fam205a4; 
Gm20938 

12.32 0.48 11.5 0.7 -1.76 

17 Vmn1r4 5.68 0.44 4.86 0.36 -1.76 
18 Gm12394 11.96 0.3 11.15 1.02 -1.75 
19 Traf2 6.97 0.16 6.17 0.19 -1.75 
20 Arhgef33 6.56 0.06 5.75 0.24 -1.75 
21 Myrf 10.46 0.26 9.66 0.19 -1.73 
22 Adamts1 6.97 0.12 6.19 0.33 -1.73 
23 Dppa1 5.24 0.36 4.45 0.23 -1.73 
24 Olfr533 5.62 0.36 4.83 0.41 -1.73 
25 Fpr-rs6 5.53 0.32 4.75 0.21 -1.72 
26 H1foo 5.03 0.19 4.24 0.3 -1.72 
27 Olfr1386 5.16 0.26 4.39 0.43 -1.71 

28 Olfr224; 
Olfr329-ps 5.05 0.34 4.3 0.45 -1.69 

29 Fam205a1 11.05 0.36 10.3 0.74 -1.68 
30 Gm5927 7.96 0.28 7.21 0.26 -1.68 
31 Vmn2r102 5.17 0.28 4.42 0.42 -1.68 
32 Scnn1a 7.96 0.09 7.21 0.37 -1.68 
33 Nat9 6.87 0.26 6.13 0.1 -1.68 
34 Kcnq4 7.63 0.28 6.88 0.42 -1.68 
35 Vmn1r103 5.34 0.11 4.59 0.55 -1.68 
36 Prkd2 7.38 0.66 6.64 0.36 -1.67 
37 Rnf17 5.86 0.34 5.12 0.45 -1.66 

38 
Gm13298; 
Fam205a3; 
Gm21598 

12.17 0.44 11.44 0.7 -1.65 

39 Mobp 13.08 0.27 12.36 0.53 -1.65 
40 Urb1 8.51 0.23 7.79 0.36 -1.65 
41 Lmcd1 7.47 0.47 6.75 0.22 -1.65 
42 Olfr1484 6.06 0.23 5.35 0.27 -1.64 
43 Vmn2r9 5.96 0.11 5.25 0.3 -1.64 
44 Pcdhb6 8.52 0.23 7.81 0.15 -1.64 
45 Ybey 6.19 0.13 5.48 0.2 -1.63 
46 Gm3763 4.79 0.3 4.09 0.28 -1.63 
47 Cyp2j12 7.29 0.17 6.59 0.67 -1.62 
48 Gm5483 5.75 0.34 5.05 0.64 -1.62 
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49 Tmem252 7.22 0.11 6.53 0.21 -1.61 
50 Ccdc79 7.5 0.1 6.81 0.36 -1.61 
51 Nlrp5 5.76 0.27 5.09 0.45 -1.6 
52 Gata2 7.15 0.41 6.47 0.22 -1.6 

53 4930481A1
5Rik 7.37 0.12 6.7 0.21 -1.6 

54 1700009J07
Rik 7.05 0.24 6.37 0.22 -1.6 

55 Slc26a11 7.08 0.41 6.41 0.28 -1.59 
56 Zfp217 5.77 0.47 5.1 0.69 -1.59 

57 2410131K1
4Rik 6.51 0.19 5.85 0.21 -1.59 

58 Olfr1436 5.12 0.5 4.46 0.39 -1.58 
59 Dkk2 6.23 0.56 5.57 0.23 -1.58 
60 Vmn1r12 5.08 0.32 4.41 0.12 -1.58 

61 4933409K0
7Rik 12.27 0.39 11.62 0.65 -1.57 

62 4933409K0
7Rik 12.27 0.39 11.62 0.65 -1.57 

63 Etnk2 9.43 0.35 8.78 0.22 -1.57 
64 Olfr603 4.54 0.31 3.89 0.21 -1.57 
65 Pcdhb9 10.04 0.25 9.39 0.25 -1.57 
66 Ssfa2 9.29 0.21 8.64 0.23 -1.56 
67 Il12a 7.15 0.14 6.51 0.38 -1.56 
68 Gm5709 4.85 0.59 4.2 0.17 -1.56 
69 Hsfy2 5.36 0.24 4.72 0.09 -1.56 
70 Ltbr 8.46 0.45 7.82 0.19 -1.56 
71 Casc5 4.72 0.28 4.08 0.07 -1.56 
72 Ppef2 5.18 0.23 4.54 0.35 -1.56 
73 Asb4 6.09 0.36 5.44 0.55 -1.56 
74 Rxfp3 5.76 0.15 5.12 0.39 -1.55 
75 Clec4a2 5.84 0.57 5.2 0.35 -1.55 
76 Agxt 4.76 0.27 4.13 0.14 -1.55 
77 Foxred2 7.43 0.11 6.8 0.45 -1.55 
78 Tnfsf18 5.03 0.28 4.4 0.22 -1.55 
79 Khdc3 5.39 0.21 4.75 0.36 -1.55 
80 Sel1l2 6.26 0.55 5.63 0.43 -1.55 
81 Klf11 7.26 0.16 6.63 0.41 -1.55 

82 4933409K0
7Rik 12.3 0.49 11.68 0.71 -1.54 

83 BC061237 5.2 0.21 4.57 0.06 -1.54 
84 Col1a1 7.89 0.38 7.26 0.1 -1.54 
85 Olfr1245 6.06 0.31 5.44 0.15 -1.54 
86 Olfr194 5.25 0.62 4.63 0.28 -1.54 
87 Gm5861 5.56 0.39 4.94 0.27 -1.54 
88 Arl5c 5.2 0.37 4.58 0.28 -1.54 
89 Erbb3 5.67 0.26 5.05 0.59 -1.53 
90 Peo1 5.93 0.41 5.32 0.31 -1.53 
91 Ak8 8.56 0.14 7.95 0.27 -1.53 
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92 Klf10 9.16 0.3 8.55 0.49 -1.53 
93 Gm13157 5.59 0.35 4.98 0.46 -1.53 
94 Btc 7.13 0.25 6.52 0.46 -1.53 

95 
Jmjd7; 

Pla2g4b; 
Gm28042 

6.62 0.17 6.01 0.31 -1.53 

96 D6Ertd527e 8.44 0.4 7.83 0.49 -1.53 

97 Fam205a2; 
Gm10600 13.87 0.4 13.26 1.39 -1.52 

98 Mmp10 5.14 0.14 4.54 0.16 -1.52 
99 Olfr843 5.01 0.33 4.4 0.11 -1.52 
100 Iigp1 6.45 0.27 5.85 0.33 -1.52 
101 Olig1 9.47 0.3 8.88 0.23 -1.51 
102 Zfp189 8.14 0.46 7.55 0.32 -1.51 
103 Fbxo48 5.58 0.33 4.99 0.33 -1.51 
104 Ddx4 6.44 0.29 5.84 0.37 -1.51 
105 Ddx51 8.03 0.45 7.43 0.35 -1.51 
106 Crybb1 7.81 0.08 7.21 0.44 -1.51 
107 Prl8a2 4.72 0.41 4.13 0.16 -1.51 

108 4932415M1
3Rik 6.48 0.45 5.89 0.48 -1.51 

109 Gpr37 10.49 0.27 9.9 0.15 -1.5 
110 Etnppl 11.03 0.3 10.44 0.33 -1.5 
111 Als2 8.91 0.14 8.32 0.52 -1.5 
112 Tmem266 7.29 0.39 6.7 0.25 -1.5 
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