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Abstract

Chaos in many-body quantum systems is of great importance to both many-body physics
as well as black hole physics. In the field of many-body physics, interactions and disorder
in the system can lead to various dynamic phenomena, be it thermalisation, many-body
localisation, chaotic behavior and scrambling of quantum information. In the field of high
energy physics, the holographic principle connects chaos and scrambling in many-body
quantum systems with the information-theoretic properties of black holes. Theoretical
quantum physics provides the framework for the models, methods, and results in this
thesis, while black hole physics partly provides some motivation and inspiration.

First, we introduce a new model for a many-body quantum system based on random
quantum circuits. These are a popular framework for theoretic study of disordered spin
chains. By drawing the random unitaries in the circuit from different ensembles, we can
adjust the disorder strength in the interactions, which in turn leads to a thermal/many-
body localisation phase transition.

Next, we study the Brownian SYK model, a disordered model of Majorana fermions
with all-to-all interactions, motivated by its link to the holographic principle. We develop
a new numerical method based on an effective permutational symmetry to reduce compu-
tational cost from exponential to linear or quadratic in system size N . As a consequence,
we can compute scrambling quantifiers in detail, and find a logN scrambling time, as
conjectured in the context of fast scrambling for black holes.

Finally, we develop a model based on the continuous-time limit of a random quantum
circuit. It serves as a microscopic toy model for the evaporation of a black hole. With a
similar method as developed for the Brownian SYK model, we can analyse its information
theoretic properties. In particular, we follow established protocols for information retrieval
from the Hawking radiation. We find a separation of time scales for entanglement growth
and information retrieval, related to the intrinsic black hole dynamics (∝ logN) and the
coupling to the environment (∝ N).





Zusammenfassung

Chaos in Quantenvielteilchensystemen ist sowohl für Vielteilchenphysik als auch die Physik
schwarzer Löcher von großer Bedeutung. Im Bereich der Vielteilchenphysik können Wech-
selwirkungen und Unordnung im System zu allerlei dynamischen Phänomenen führen, sei
es Thermalisierung, Vielteilchenlokalisierung, sowie chaotisches Verhalten. Im Bereich der
Hochenergiephysik verbindet das holographische Prinzip Chaos in Quantenvielteilchensys-
temen mit den informationstheoretischen Eigenschaften schwarzer Löcher. Theoretische
Quantenphysik bildet den Rahmen für die Modelle, Methoden und Ergebnisse dieser Dis-
sertation, derweil die Physik schwarzer Löcher teils etwas Motivation und Inspiration bietet.

Zunächst führen wir, basierend auf zufälligen Quantenschaltungen, ein neues Modell
für Quantenvielteilchensysteme ein. Zufällige Quantenschaltungen sind ein beliebtes Rah-
menkonzept für die theoretische Erforschung von ungeordneten Spinketten. Indem die
zufälligen unitären Abbildungen aus der Schaltung aus verschiedenen Ensembles gezogen
werden, können wir die Unordnungsstärke der Wechselwirkungen anpassen. Das wiederum
führt zu einem Phasenübergang zwischen thermischer und vielteilchenlokalisierter Phase.

Als nächstes untersuchen wir, motiviert von seiner Verbindung zum holographischen
Prinzip, das Brown’sche SYK Modell, ein Modell ungeordneter Majoranafermionen mit
Wechselwirkungen aller Teilchen. Wir entwickeln ein neues numerisches Verfahren, das auf
einer effektiven Permutationsinvarianz beruht, um den Berechnungsaufwand von exponen-
tiell auf linear oder quadratisch in der Teilchenzahl N zu verringern. Dadurch können wir
Chaosindikatoren im Detail berechnen und finden eine Zeitabhängigkeit logN des Chaos,
wie von der fast scrambling conjecture für schwarze Löcher vorausgesagt.

Schließlich schlagen wir ein Modell beruhend auf zufälligen Quantenschaltungen im
kontinuierlichen zeitlichen Limit vor. Es dient als mikroskopisches Spielzeugmodell für die
Verdampfung schwarzer Löcher. Mit einer Methode ähnlich zu der für das Brown’sche
SYK Modell entwickelten können wir die informationstheoretischen Eigenschaften des ver-
dampfenden schwarzen Lochs analysieren. Insbesondere folgen wir etablierten Protokollen
für die Wiederherstellung von Information aus der Hawkingstrahlung. Wir finden eine
Trennung der Zeitskalen für den Aufbau von Verschränkung und die Wiederherstellung
von Information, verknüpft mit der intrinschen Dynamik des schwarzen Lochs (∝ logN)
und der Wechselwirkung mit der Umgebung (∝ N).
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Chapter 1

Introduction

In recent years, experimental progress allows unprecedented access to and control of inter-
acting many-body quantum systems. For example, ultracold atoms in optical lattices allow
the microscopic study of thermalisation or the absence thereof [7–9]. Within theoretical
quantum physics, this greatly revived interest in genuine many-body phenomena mediated
by interactions. Disorder in the system leads to phenomena such as thermalisation [10–13],
many-body localisation [9, 14, 15], and related concepts of chaos and scrambling [16–18].
These dynamical properties are vital to anybody wishing to understand the behaviour of
generic condensed matter systems.

Chaos in many-body quantum systems also received a strong and perhaps unexpected
impulse from the study of black holes. As the holographic principle relating black holes
to a dual quantum theory was was fleshed out [19–21], it became increasingly clear that
chaotic properties of many-body quantum systems play a fundamental role for black holes.
In fact, high energy physicists contribute to the study of quantum chaos to better their
understanding of the black hole information paradox and other information theoretic prop-
erties of black holes [22–25]. It is exciting that quantum chaos in many-body systems is
relevant to both many-body quantum physics as well as high-energy physics, and research
activity is greatly enriched by this intersection of fields.

This thesis studies chaos in many-body quantum systems. While the systems, methods
and results are quantum, for some of them the link to black hole physics is a source of
inspiration and motivation. The first article [1] concerns many-body localisation in an
interacting one-dimensional system. We study a new model based on random quantum
circuits, a popular framework for disordered systems. By adjusting the strength of disorder,
we can drive a phase transition between thermal and many-body localised phases. The next
article [2] uses the OTOC and tripartite information as indicators of chaos and scrambling
in many-body quantum systems. The quantum model whose chaotic properties are studied
in detail (the Brownian SYK model) is motivated by the holographic principle, which links
a gravitational space-time to a quantum system, and the fast scrambling conjecture for
black holes. In this context, we learn valuable lessons about the dynamics and speed of
scrambling. Our new numerical method allows access to vast numbers of particles up
to N = 106, such that a logN dependence can be accurately extracted. Finally, in the
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third article [3], we propose and study a model consisting of a continuous version of a
random quantum circuit coupling a system to an environment. As it is supposed to be a
microscopic toy model for black hole evaporation, we perform research on its information-
theoretic properties. This includes information retrieval: After qubits were injected into
the black hole, they can be recovered from Hawking radiation at some later time. In
our model, we find a separation of time scales for entanglement growth and information
retrieval, related to the intrinsic black hole dynamics ∝ logN and the coupling to the
environment ∝ N .

A presentation of relevant background is in order. First, we focus on a topic of math-
ematical nature, namely random unitaries in chapter 2. Then, we move to physics. Core
physical concepts are explained in chapter 3, ranging from rather general terms like entan-
glement entropies and thermalisation to introducing the the much more specialised OTOCs
and tripartite information that appear when studying chaos and scrambling. Background
on the study of disordered many-body quantum systems follows in chapter 4, covering
many-body localisation as well as random circuits that are widely used to model disor-
dered dynamics. Black hole physics contributes towards the motivation of two of the
articles. A quantum physicist may not be familiar with these topics, yet it can be in-
teresting to appreciate also these aspects. Therefore chapter 5 concludes the background
chapters with an accessible conceptual introduction to information theoretic properties of
black holes. Links to the more quantum topics of the thesis will be pointed out. Finally,
the articles [1–3] are reproduced in appendices A, B, and C, along with a short summary
each.

Original research

The physical background as well as mathematical tools presented in the
chapters do not stand alone. Instead, they form the basis for the original
research included in this thesis, which in turn contributes to the physical
understanding presented. To make clear this connection, this box will occur
in every section and highlight the link to different aspects of the articles [1–
3].



Chapter 2

Random unitaries

Classical information can easily be drawn from a uniform random distribution, since the
set of possible bitstrings of length n is finite. The same holds for classical operations,
namely functions f : {0, 1}n → {0, 1}n.

The notion of random quantum information is much more subtle. To define a uniform
distribution over all quantum states of n qubits, we may try to invoke the classical analogy
and randomly draw product states from the finite set {|0 . . . 0〉 , . . . , |1 . . . 1〉}. This proce-
dure however misses out on important aspects of quantum information, never generating
superpositions and entanglement. Quantum states form a continuum, and one must use
a uniform continuous distribution that includes entangled states. The same complications
arise for quantum operators, corresponding to unitary matrices, which form a continuous
group. In this section, we define and study the invariant Haar measure, which provides an
intuitive generalisation of the uniform distribution for the unitary group. Once the Haar
measure is defined, the notion of random state can be made precise by applying a random
unitary to a product state, U |0 . . . 0〉.

Apart from the unitary Haar ensemble, there are further random matrix ensembles. In
physics, random matrices were introduced in the 1950s to model neutron resonances [26].
Since a lot of very complicated interactions of many constituent particles appear in the
nucleus of heavy elements, they can be viewed as a disordered system with a random Hamil-
tonian. Thus, nuclear physicists study the statistical properties of suitable random matrix
ensembles. In fact, there is remarkable consistency between the spacing of experimentally
determined energy levels and the eigenvalues of random matrices. Random matrix theory
since evolved into an established branch of physics, see for example the standard book [26].

Recently, random unitary matrices are used to model disordered unitary dynamics of a
quantum system. Haar random unitaries can either be used directly as the time evolution
operator for the entire system [27], or they can be used as buildings blocks to build a
random circuit stepping in as the time evolution operator [16, 17, 28], introducing some
kind of local structure (see section 4.2 for details).

In the next section 2.1, the Haar measure will be defined. Then, methods to compute
averages with respect to the Haar measure both analytically (section 2.2) and numerically
(section 2.3) will be presented.
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Original research

Haar-distributed random unitaries form the basis of different unitary en-
sembles used in [1] to couple two spins. Specifically, the random ensembles
characterised by a coupling strength h are defined by

(u1 ⊗ u2)eia σx⊗σx+ib σy⊗σy+ic σz⊗σz(u3 ⊗ u4), (2.1)

where u1, u2, u3, u4 ∈ U(2) are distributed according to the Haar measure,
and a, b, c ∈ [−h, h] uniform. Adjusting the parameter h unveils an MBL
phase transition (see section 4.1).

Global Haar unitaries are maximally scrambling and provide a theoret-
ical upper bound. The Haar measure thus serves as a benchmark for the
scrambling power of the Brownian SYK model in [2].

Finally, in [3], unitary matrices are used for the intrinsic interaction within
a system. They form a random circuit, whose continuous time limit is a toy
model of an evaporating black hole for the purpose of information-theoretic
study.

2.1 The invariant Haar measure
We are mostly interested in the unitary group, but the beautiful idea underlying the Haar
measure is more widely applicable to groups in general. For ease of presentation, we focus
on the integral rather than measuring subsets. Translational invariance is a basic feature
of conventional integration ∫

R
f(x)dx =

∫
R
f(x+ a)dx ∀a ∈ R (2.2)

and encompasses the essence of uniformity: Each number x ∈ R is treated on equal footing
to every other number x+ a ∈ R, there is no special origin. The Haar measure generalises
this idea to right-invariance of locally compact groups G:∫

G
f(g)dg =

∫
G
f(ga)dg ∀a ∈ G. (2.3)

The Haar theorem [29] shows that, up to global scaling and some regularity conditions,
there exists a single unique measure satisfying this condition of right invariance. As the
group operation (here written as a multiplication) need not be commutative, there is in
general a second and distinct left-invariant Haar measure. For abelian or compact groups,
the left and right invariant measures can be shown to coincide. The Haar theorem goes
back to A. Haar in 1933 [30], and a version for Lie groups dates even earlier to A. Hurwitz
in 1897 [31].
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The unitary group U(d) is compact, such that there is a single both left- and right-
invariant Haar measure. Morever, it has finite total volume such that the Haar integral can
be normalised, giving a probability density for the unitary group. The beautiful simplicity
of the Haar measure’s definition shows that this is indeed a “uniform” distribution, where
any two unitaries U and V = UA are treated the same by the Haar measure, for all
U, V ∈ U(d). Applied to random states, we see that any two states |ψ〉 = U |0〉 and
|φ〉 = V |0〉 are treated on equal footing. In random matrix theory [26], the invariant Haar
measure on U(d) is also called CUE (circular unitary ensemble), where circular refers to
the uniform eigenvalue density on the unit circle.

To calculate the expectation value of a function f(U) on the unitary group, we must
perform the integration (2.3). The first method coming to mind may be a parametrisation
of the unitary group with several angles, and subsequent transformation of the integral
in terms of these angles. This can be done [31–33] and leads to myriads of trigonometric
functions in the integrand and very hard integrals. An alternative approach solves the Haar
integral algebraically for polynomials f(U). In the next section 2.2, we will explain this
algebraic method. In the age of computers, numerical sampling of Haar random unitaries
is a viable method to approximate the distribution. We visit this in section 2.3.

Original research

Haar invariance underlies the twirling technique developed in [1]. It exploits
that the distribution of random unitaries used in the model possesses single
site Haar invariance, where a in (2.3) is a tensor product of identities at all
but one site. The twirling technique allows us to make statements closely
connecting the initial and final state of a time evolution. Thus, we can study
localization rather directly (see section 4.1).

2.2 Computing integrals with Weingarten functions
An important result for Haar random unitaries is the integral [34–36]∫

U(d)
Ui1j1 · · ·Uinjn U∗i′1j′1 · · ·U

∗
i′nj
′
n
dU =

∑
σ,τ∈Sn

Wg(d, σ, τ) δi1i′σ(1)
· · · δini′σ(n)

δj1j′τ(1)
· · · δjnj′τ(n)

.

(2.4)
This allows to expand and compute the integral of any polynomial function f(U). If the
number of factors n of U and U∗ were not the same, the integral would vanish, as can
be seen by exploiting Haar invariance (2.3) with a = eiφ1. The coefficients Wg are called
Weingarten functions. They depend only on the conjugacy class of the permutation στ−1,
and are the matrix inverse of the d!× d! matrix

Wg(d, σ, τ) =
(
d#(στ−1)

)−1
, (2.5)
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where # denotes the number of cycles in the permutation. The expansion (2.4) can be
proved with tools from representation theory, including Schur-Weyl duality that relates
irreducible representations of the symmetric and unitary groups. This procedure also
yields a group-theoretic formula in terms of characters, partitions, and Schur polynomials
for Wg, in addition to (2.5).

For practical usage of (2.4), the Weingarten functions can be looked up in tables
(cf. [34]). Here we print the Weingarten functions for n ≤ 2 factors, in terms of the
cycle structure of στ−1:

n = 1 : Wg(d, (1)) = 1
d
, n = 2 : Wg(d, (2)) = 1

d2 − 1 , Wg(d, (1)(1)) = − 1
d(d2 − 1) .

(2.6)
To facilitate the application of (2.4), a graphical calculus [37, 38] was developed. It is very
useful if the integrand is drawn as a tensor network containing the random matrix U .

A fundamental issue of the Weingarten calculus is the superexponentiality: The sum
in (2.4) contains (n!)2 terms. For small n and arbitrary matrix dimension d, it can still be
performed explicitly. For large matrix size d� 1, asymptotic formulas for the Weingarten
functions have been developed [34, 39]. These can lead to many terms in the sum (2.4)
being subleading and negligible.

Original research

To study the random circuit model for an evaporating black hole developed
in [3], Haar integrals of up to n = 2 have to be evaluated. Thanks to the
Weingarten formalism, this is easily possible.

The random unitary circuit (see also section 4.2) used in [1] features ran-
dom unitaries of fixed matrix size d = 4, that reappear at each timestep.
Therefore n is large for late-time behaviour. Direct application of the Wein-
garten formalism is impossible since the integrals lie in the regime of super-
exponentiality. Instead, we develop a trick, the twirling technique, based
directly on Haar invariance.

2.3 Sampling with the QR decomposition
In the age of computers, it is a very natural idea to sample random unitary matrices
numerically. Expectation values can likewise be computed numerically.

A simple and standard way to sample a random Haar-distributed unitary matrix makes
use of the QR-decomposition (see [40, 41]). The QR-decomposition is a standard matrix
decomposition [42] and is available in many software packages such as Matlab and Scipy.
It decomposes a (complex) matrix M into the product M = QR of a unitary matrix Q
and an upper triangular matrix R. Furthermore, if M is invertible, the decomposition is
unique once the signs of the real diagonal entries of R have been chosen.
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To generate a random Haar unitary, we start with a random matrix M with all real
and imaginary parts of each matrix element independently normally distributed. Then,
the Q from the unique QR decomposition is a Haar distributed unitary. This is because
the joint probability density p(M) of all of M ’s matrix elements is invariant under unitary
multiplication:

p(M) ∼ e
∑

i,j
|Mij |2 = etrMM† = etr(UM)(UM)† ∼ p(UM) ∀U ∈ U(d) (2.7)

Since the QR decomposition is unique, the invariance of p(M) under unitary left-multi-
plication carries over to the generated Q. Invariance is the unique definition of the Haar
measure, such that Q must be distributed accordingly.

When implementing the procedure outlined above, a possible caveat is that popular
implementations of the QR decomposition do not perform it in a unique fashion, and the
signs of the diagonal entries of R must be adjusted manually. For example, in Matlab, the
following code can be used to create a Haar-distributed unitary Q:

d = 4;
M = randn(d) + j*randn(d);
[Q, R] = qr(M);
Q = Q*diag(sign(diag(R)));

Let us remark that in order to generate a Haar random state, it is not necessary to
generate a full random unitary and take a column, or apply it to any other reference
state. Instead, the real and imaginary parts of the random state’s coefficients may be
independently drawn from a normal distribution, and the state subsequently normalised
[43]. This results in the same random state distribution.

Original research

The above code to generate a Haar random matrix is employed in [1]. Af-
ter applying the twirling technique based on single-site Haar invariance, one
parameter determining the time evolution remains. It must be found nu-
merically. For this, the problem is simplified, shedding a factor exponential
in time from the total Hilbert space dimension necessary for the circuit.
Then random unitary matrices are sampled with the help of the QR de-
composition. In order to improve the sampling and reduce the variance, a
Monte-Carlo Metropolis method is used.





Chapter 3

Core concepts in many-body
quantum physics

This chapter introduces a number of core concepts in many-body quantum physics related
to topics of chaos and scrambling. We start with rather general introductions to entan-
glement (section 3.1) and thermalisation (section 3.2). Then, we move to more specialised
topics, and present two main quantifiers of chaos and scrambling, namely out-of-time
ordered correlation functions (OTOCs) in section 3.3, and the tripartite information in
section 3.4.

3.1 Entanglement and entanglement entropies
Entanglement is perhaps the most quintessential quantum phenomenon. In the classical
everyday world, it cannot be experienced directly. As such, it can seem very elusive and
strange. Indeed, even for physicists: When Einstein, Podolsky, and Rosen published their
famous thought experiment on entangled particles very far away from each other [44],
even Einstein himself referred to entanglement’s consequences as spukhafte Fernwirkung
(spooky action at a distance) [45]. Later, Bell’s theorem [46] paved the way to a number of
experiments, most notably the recent loophole-free Big Bell test [47]. Bell test experiments
probe for strong correlations obtainable with entanglement, yet impossible to achieve with
local classical systems. The consequence is striking: Entanglement cannot be explained by
any local hidden variable theory. Instead, entanglement is a physical concept here to stay
and a pillarstone of quantum physics. It is relevant and important to understand nature
and opens up new possibilities to process quantum information and for emerging technical
applications such as quantum computers or quantum communication. For all of the con-
cepts introduced in this thesis, entanglement is a crucial ingredient. Even mathematically,
entanglement is a difficult concept. While there is a hierarchy for two-body entanglement,
classification of multi-body entanglement between three or more parties is still an open
question [48].

In the physics of many-body quantum systems, entanglement is the origin of the di-
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mensionality curse. The state space needed to fully describe a system grows exponentially
with the number of particles. The dimension of the Hilbert space of N particles with
d-dimensional state space each is dN , as the composite Hilbert space is the N -fold tensor
product of Cd. The dimensionality curse prohibits numerical investigations of many-body
quantum systems for more than just a very small number of particles. For larger systems,
numerical analysis relies on clever methods to handle this, for example density functional
theory [49], quasiparticle pictures [49] or tensor network methods including DMRG [50].
All of these methods are approximate, restricting the amount of entanglement included in
computations.

A particularly simple way to assess entanglement of a many-body system, described by
a density matrix ρ, is to bipartition the system into two parts A and B, and consider only
the two-body entanglement between these two parts. The subsystem A is described by the
reduced state

ρA = trB ρ, (3.1)

tracing out the other degrees of freedom. If a pure state ρ is entangled, then the reduced
state will be mixed. The eigenvalues of ρA, also called entanglement spectrum, determine
the entanglement between A and B. Convenient measures for entanglement are the Rényi
entanglement entropies

S
(α)
A = 1

1− α log tr(ραA). (3.2)

The limit α→ 1 gives the von Neumann entanglement entropy

SA = − tr(ρA log ρA). (3.3)

Numerically, it is often easier to deal with the exponentials of Rényi entropies with integer
α (see section 4.2), due to the lack of logarithm. However, the von Neumann entanglement
entropy mimics classical Shannon and thermodynamic entropy more closely and has a
stronger information-theoretic meaning. For example, in quantum information theory, the
von Neumann entropy often appears when characterising capacities of quantum channels
[48].

Entanglement entropy is excellent for pure states. Pure states have tr ρ = tr ρ2 = 1, and
all correlations between the particles stems from entanglement. Two maximally entangled
systems A and B each of dimension d will have entanglement entropy SA = SB = log d.
Conversely, for an unentangled product state, SA = SB = 0. When A and B are composite
systems of qubits, it can be useful to use logarithms base 2, such that the entanglement
entropy counts the number of maximally entangled qubit subsystems. In contrast, mixed
states (tr ρ2 < 1) contain classical correlations, along with any entanglement. Then, mutual
information

I(A : B) = SA + SB − SAB (3.4)

is a good measure to quantify the amount of information shared between the systems A
and B, both classical and quantum correlations [51].
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Original research

Entanglement plays a central role in all of the articles [1–3], and we compute
entanglement entropies in all of them. In [1], we compute the entanglement
entropy of eigenvectors of the time evolution operator. This is a diagnostic
of a many-body localisation phase transition, see section 4.1. To characterise
scrambling in the Brownian SYK model (see section 5.3 for an introduction
to the SYK model), in [2] we compute entanglement entropies, mutual in-
formation, as well as tripartite information (see section 3.4). Finally, in [3],
we calculate entanglement entropies and mutual information related to the
action of the time evolution operator. With this, we can determine how in-
formation thrown into the system (a model for a black hole) can be later
retrieved (see also section 5.2).

Since it is always multi-particle systems under investigation, the dimen-
sionality curse of entanglement affects all of the work. Therefore, in [1], we
can only compute the von Neumann entanglement entropy for a spin chain of
12 particles. (Further understanding beyond numerical calculation of entan-
glement entropy is gained by the Haar measure, see chapter 2.) In the other
articles, we bypass the dimensionality curse by considering systems that be-
come effectively permutation invariant after considering a disorder average
(see chapter 4 for an introduction to disordered systems). The permutational
invariance strongly restricts the possible states in the Hilbert space and al-
lows us to work in an effectively polynomial rather than exponential space.
Instead of the von Neumann entropy, we compute the Rényi-2 entropy, and
Rényi-2 version of mutual information, which is better accessible with our
approach.

3.2 Thermalisation of closed systems
At first sight, it may seem surprising that closed quantum systems can thermalise. Af-
ter all, the Schrödinger equation always evolves an initially pure state into pure states,
thus prohibiting the development of a thermal mixture. The idea behind thermalisation
in closed systems is to consider reduced systems, i.e. observables that are local and act
only on limited subsystems. Thermalisation is then closely linked to entanglement: As
entanglement builds up, the reduced density matrix of each subsystem becomes mixed.
Thus, subsystems can become thermal, and the rest of the system acts as a bath [11–13].

Progressive build-up of entanglement between the subsystem A and B (with B now
acting as environment/bath) will typically lead to a mixed state of ρA, approaching the
Gibbs ensemble

ρA ∼ trB(eβH). (3.5)

The Gibbs ensemble is the thermal mixed state of the system. It depends on the values
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of conserved quantities, which cannot change upon evolution from the initial state and
must therefore be present in any thermal state. In the above equation, this is the time-
independent Hamiltonian H (energy conservation), which fixes inverse temperature β =

1
kBT

. If the system has further conserved quantities, such as particle number or parity,
the equilibrium ensemble reached is called generalised Gibbs ensemble with the further
conserved quantities appearing in the exponent [10]. If there are no conserved quantities,
not even energy, the notion of a finite temperature does not exist. Instead, the infinite-
temperature thermal state is simply

ρA ≈ 1A/ dim(A), (3.6)

the maximally mixed state, which is the only fixed point of the system.
Integrable systems (i.e. with an extensive number of local conserved quantities) are too

constrained to thermalise, yet are still expected to reach the equilibrium state given by the
generalised Gibbs ensemble [10, 12]. On the other hand, generic non-integrable systems
will build up entanglement and thermalise. There is abundant evidence and explanation,
for example the eigenstate thermalisation hypothesis [11, 52, 53]. Regardless, the system
may still escape thermalisation. This (surprising) absence of thermalisation in interacting
many-body systems is called many-body localisation, see section 4.1.

Original research

In [1], we study single site reduced density matrices, after evolution with
a random unitary circuit (see also section 4.2). Since the circuit does not
preserve energy, the corresponding thermal state is of infinite temperature.
However, depending on the strength of interactions, we can show that single
sites either become thermalised, or retain information about the initial state.
This absence of thermalisation is an example of many-body localisation (see
section 4.1).

For the Brownian SYK model in [2], we study OTOCs as identifiers of
quantum chaos (see the next section 3.3). The system thermalises to an
infinite temperature state, and when calculating OTOCs, we take correlation
functions with respect to this infinite temperature state.

3.3 Chaos and out-of-time-ordered correlators (OTOCs)
OTOCs (out-of-time-ordered correlation functions) are an excellent quantifier for quantum
chaos and operator spreading. While they were originally introduced in the study of
disordered superconductors [54], they are now widely used in many-body physics [55]. For
example, studies of random circuits often focus on OTOCs, see section 4.2.

In order to motivate the intimate link to quantum chaos, let us first consider classical
chaos [18]. In classical physics, chaos is defined as exponential dependence of a system’s
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path on the initial condition. Only very slightly different setups will give rise to vastly
different time evolutions, i.e. the system is chaotic. This is also termed the butterfly
effect, as a small perturbation such as a butterfly flapping its wings will later lead to vast
differences in the system. The Hamiltonian formulation of classical mechanics relies on the
Poisson bracket. For a chaotic system with canonical coordinates q and p, this exponential
dependence on the initial state q(0) can be written as

{q(t), p(0)} = dq(t)
dq(0) ' eλt (3.7)

with the Lyapunov exponent λ. A positive Lyapunov exponent is indicative of chaotic
dynamics.

In the quantum-classical correspondence, Poisson brackets i{·, ·} are replaced with the
commutator [·, ·]. Rather than position and momentum operators, we consider the com-
mutator of any observables O, O′ in the Heisenberg picture:

C(t) = 1
2 tr

(
ρ[O(t), O′(0)]†[O(t), O′(0)]

)
. (3.8)

As in the classical equation (3.7), one of the the operators is evolved in time while the
other is fixed at time 0. The commutator C(t) can be understood intuitively for local
operators in a picture of operator growth, see Fig. 3.1. If we consider two local operators
acting on different parts of the system, they will initially commute, C(0) = 0. Time
evolution will grow the support of O(t), such that the magnitude of the commutator
increases C(t) > 0, indicative of operator spreading. If operators would not not follow
chaotic evolution (but correspond to particles moving across the system ballistically, for
example), then the commutator would not increase as the support does not spread. In
contrast to the classical case, quantum observables are bounded operators such that C(t)
cannot grow indefinitely, although in chaotic systems they do have a time window of
exponential growth.

The OTOC is defined as

FO,O′(t) = tr {ρO(t)O′(0)O(t)O′(0)} . (3.9)

Its name out-of-time ordered correlator stems from the fact that in this correlation function,
the operators do not appear ordered in time but rather t → 0 → t → 0. To establish
the connection between operator growth and the OTOC, the commutators in (3.8) can be
expanded. Apart from usual time-ordered correlation functions, the OTOC is an important
prominent part in C(t).

Since the OTOC is a correlation function, it can depend on the choice of state ρ.
Typically, a thermal Gibbs ensemble

ρβ = e−βH

tr(e−βH) (3.10)
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Figure 3.1: Illustration of operator growth. At time t = 0, the local operators act on
different parts of the system and commute. As O(t) is evolved in time, its support grows
and it eventually stops commuting with O′. This behaviour is quantified with the OTOC
commutator (3.8).

can be used, see section 3.2. In chaotic systems, the commutator C(t) will exhibit initial
exponential growth before it saturates. As in classical chaos, this exponential growth can
be characterised by a Lyapunov exponent λ; at small times:

C(t) ' εeλt. (3.11)

While ε depends on the system [55], there is an upper bound for the Lyapunov exponent,
[18, 56, 57]

λ ≤ 2π
β
, (3.12)

which is expected to be saturated for black holes, part of the fast scrambling conjecture
(see also section 5.1). In local systems, OTOCs typically spread (decay) ballistically (i.e.
in a time proportional to t) with a speed called the butterfly velocity vB. See section 4.2
for studies of quantum circuits and more discussion on the behaviour of OTOCs.

Original research

When working with fermionic systems and operators, C(t) can analogously
be defined with anti-commutators rather than commutators to motivate the
OTOC. This is the situation in our work [2] on the Brownian SYK model,
which is based on Majorana fermions (see section 5.3).

In this model, we develop a toolbox based on emergent permutational
symmetry to study the OTOC numerically with very high efficiency. This
allows us to access a very large number of particlesN , up to one million Majo-
rana fermions. Thanks to this, we can find the dependence of the scrambling
time t∗ = 3/4 logN needed for OTOCs to decay; the fast onset of chaotic
behaviour is important in the context of holography and the fast scrambling
conjecture, see chapter 5. With a scaling collapse for system size, we can
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identify the Lyapunov exponent.
Since the model features all-to-all interactions, there is no spacial depen-

dence of the OTOC, and it only depends on time and initial operator choice.
Surprisingly we find, that its late time behaviour only depends on the length
of operators.

3.4 Scrambling and the tripartite information
Scrambling refers to the scrambling of quantum information across the system. This means
that it cannot not be recovered by means of any local measurements. The concept of scram-
bling is closely related to chaos (see the previous section). In 2016, Hosur et al suggested
a new measure for quantum scrambling, the tripartite information [58]. It quantifies the
scrambling power of a quantum channel. Here we consider a unitary operation, whose input
is split into two regions A and B, and output split into two regions C and D, c.f. Fig. 3.2.
The tripartite information is then defined as

I3 = I(A : C) + I(A : D)− I(A : CD). (3.13)

Mutual information I(X : Y ) (see section 3.1) is defined through the von Neumann entan-
glement entropies:

I(X : Y ) = SX + SY − SXY , SX = − tr(ρX log ρX). (3.14)

The meaning of the tripartite information (3.13) is illustrated in Fig. 3.2.
Even from the defining formula (3.13), we see that the tripartite information is minus

the information of A that can only be learnt by joint measurement of CD. The more
negative the tripartite information is, the more the unitary scrambles any information,
and it becomes hidden in nonlocal correlations (entanglement) in the output.

Oftentimes, it is simpler to use the Rényi-2 tripartite information, as the Rényi-2 en-
tropy S(2)

X = − log tr(ρ2
X) can be more amenable to analytic as well as numeric considera-

tions than the more information theoretic von Neumann entropy. A maximally scrambling
channel can be modelled by a Haar random unitary (see chapter 2). In this case, by virtue
of the Weingarten calculus, the average and thereby typical Rényi-2 tripartite information
can be computed exactly [58]. This can be seen as a lower bound for tripartite information,
that will be approached if the system in question is an excellent scrambler.

As mentioned in the beginning of this section, scrambling is very intimately related
to chaos. In fact, it was shown [58] that the butterfly effect (quantum chaos) implies
scrambling. An expression involving the average of all OTOCs from a basis of observables
is an upper bound for the tripartite information.

Finally, let us emphasise that scrambling as captured by the tripartite information
and chaos as captured by OTOCs go above and beyond thermalisation and entanglement
growth. A typical picture for entanglement growth in Gaussian models (free fermions) is
that of quasiparticles [59, 60]. While they spread ballistically and generate entanglement
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Figure 3.2: Scrambling of quantum information, as measured by the tripartite informa-
tion. Left: classical situation. The unitary scrambles classical information. By separately
measuring regions C and D, all initial information in A can be recovered. Right: quantum
situation. The unitary can spread some information into the entanglement between regions
C and D, such that this information cannot be recovered by separate independent mea-
surements of C and D. The negativity of the tripartite information (3.13) quantifies how
much information is hidden in the entanglement between C and D, i.e. the green jigsaw
piece.

throughout the system, they do not scramble information. One need just measure the
small subsystem of where the two quasiparticles are located to recover information about
them.

Original research

A direct relation between the Rényi-2 tripartite information and averages of
OTOCs of all operators was found for bosons in [58], while we extended this
relation to fermions in [2].

With a similar technique used to calculate OTOCs, we can make use of an
emergent permutational symmetry in the Brownian SYK model [2] to study
various Rényi-2 entanglement entropies, and thereby, the Rényi-2 mutual
information. While they undergo non-trivial dynamics at early times, we
recover the maximally scrambling Haar values at late times. Thus we show
that the Brownian SYK model indeed shows strong scrambling of quantum
information. This is important in the context of SYK as a holographic model
(see chapter 5).

The integrable Gaussian version of the Brownian SYK model (appendix
A in [2]) contains disordered 2-body rather than 4-body interactions. While
entanglement does grow, as an integrable system it does not display chaos
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or scrambling dynamics; we check this by computing OTOCs and tripartite
information. It is thus an example showing that chaos and scrambling goes
beyond mere entanglement growth.





Chapter 4

Dynamics of disordered many-body
quantum systems

Randomness is inherent to disordered many-body quantum systems: The Hamiltonian or
the time evolution operator contains disorder and random components. In this chapter,
we first present a possible dynamical property of disordered systems: Typically, disordered
systems are expected to be chaotic and thermalise. Even for interacting systems, this can
be avoided and is dubbed many-body localisation (MBL), which we introduce in section 4.1.
Then, we present a method to create models for disordered systems. Random quantum
circuits allow to construct many useful models to study the dynamics of disordered many-
body quantum systems, these are covered in section 4.2.

4.1 Many-body localisation (MBL)
Localisation for single-particle systems has been known for a long time, since 1958, and
is called Anderson localisation after its discoverer [61–64]. Anderson localisation relies on
disorder in the system: A particle hops in a disordered potential (that is, constant in time
but random in space). If the disorder is strong enough, eigenstates will be localised in
space, with exponential tails. This means that the probability to find the particle at a
position other than its initial placement is exponentially suppressed. In one dimension,
the statement is even stronger—localisation holds for arbitrarily low disorder. A bizzare
analogy displaying the power of this statement is the following: Apart from the necessary
one-dimensionality, a quantum plane flying over Europe would get stuck in the Alps, even
if it sours hundreds of kilometers above.

The analogous phenomenon for interacting many-body systems is called many-body
localisation (MBL), see [9] for a recent review of this topic. It is a surprising phenomenon:
Unless the Hamiltonian is integrable (i.e. has an extensive number of conserved quantities),
it was found that thermalisation is quite ubiquitous. General explanations for thermal-
isation were developed, such as the eigenstate thermalisation hypothesis [52, 53]. See
section 3.2 for details on thermalisation. Due to this preponderance supporting thermali-
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Figure 4.1: Schematic view of the MBL transition and MBL mobility edge. In the MBL
phase, all eigenstates at every energy are localised and display low area law entanglement,
independent of system size for 1D (red). As the disorder parameter h moves below the
critical value hc, eigenstates near the middle of the spectrum become thermal and highly
volume-law entangled (blue). Deep in the thermal phase, all eigenstates are thermal, except
for those at the very bottom and top of the spectrum.

sation very generally [11], one would not expect localisation in seemingly chaotic interacting
systems. Yet, there exists experimental evidence of MBL [7, 8].

As in single-particle Anderson localisation, MBL is contingent on disorder, the stronger
the better. By varying the disorder strength in a Hamiltonian, a thermal/MBL phase
transition can be induced. The prototypical MBL Hamiltonian for one dimension is the
XXX Heisenberg chain for a chain of spin 1/2 particles [14]

H =
∑
i

J(Sxi Sxi+1 + Syi S
y
i+1 + Szi S

z
i+1) + hiS

z
i . (4.1)

In this model, the local magnetic fields hi are disordered and drawn uniformly and inde-
pendently from the interval hi ∈ [−h, h]. Above the critical disorder strength h > hc ∼ 3.5
(for J = 1), the system ceases to be thermal and becomes many-body localised. Before we
move on to general properties of MBL eigenstates, a quick note about the nomenclature of
the XXX chain: The three X refer to the coupling constant J , which couples the x, y and
z spins alike. Physicists also study models with coupling constants Jx = Jy 6= Jz, which is
called XXZ chain. The case Jx 6= Jy 6= Jz is accordingly referred to as XYZ chain.

The two dynamical phases in MBL systems have vastly different consequences for the
entanglement of the Hamiltonian’s eigenstates. This so-called MBL mobility edge [15] is
summarised in Fig. 4.1. Deep in the thermal phase, all eigenstates are thermal states. In
order for reduced density matrices to resemble the thermal Gibb’s ensemble, they must
have very high volume law entanglement, growing linearly with system size. In the MBL
phase however, all eigenstates are lowly entangled. Entanglement does not grow with sys-
tem size in 1D. This is because in the MBL phase, an extensive number of quasi-local
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integrals of motions (conserved quantities) emerge. These correspond to local operators,
with exponentially small tails. Thus, in an MBL system, all eigenstates have the same
entanglement properties as the ground state. There is not enough entanglement for sub-
systems to look thermal; MBL thereby impedes thermalisation. See section 3.2 for more
on thermal states and entanglement.

Even across the phase transition, lowly entangled eigenstates persist, as sketched in
Fig. 4.1. In fact, the ground state of a gapped local Hamiltonian will have area law
entanglement throughout. The entanglement properties along a cut through the system
can be used as a diagnostic for the MBL transition point [65]. The average entanglement
entropy across the spectrum is a first crude indicator, as it will rise as the system enters
the thermal phase. As found in the letter cited above, the variance of the entanglement
entropy across the spectrum is a better indicator. Near the transition point, it will have a
distinct peak, because both thermal and area-law entangled eigenstates are present. Deep
in either phase, the variance will vanish because (almost) all eigenstates display the same
entanglement properties.

When studying MBL, Floquet systems proved useful [66, 67]. A Floquet system refers
to a time-periodic Hamiltonian H(t) = H(t + T ). These types of systems can be bar of
any conserved quantity, as even energy is not conserved. Prototypically, a Floquet system
can be engineered by adding a periodic driving force to an otherwise time-independent
Hamiltonian. Integrating the Hamiltonian over one period then gives the Floquet unitary

UF =
∫ T

0
H(t)dt (4.2)

that determines the stroboscopic evolution at times nT, n ∈ N. The driving force can be
thought to inject energy into the system, which is therefore expected to thermalise to the
infinite temperature Gibb’s ensemble. This is the relevant thermal ensemble for a system
without any conservation laws. However it was found that adding driving to an MBL
Hamiltonian can result in a Floquet system that stays MBL and avoids thermalisation. In
fact, the thermal/MBL transition can be made more abrupt by adding a driving force [68].

A main open question concerns the microscopic details of the MBL transition. Another
question concerns the role of disorder. It asks, whether spatial disorder is strictly necessary,
or whether localisation can persist in translational invariant systems. It is thought that
translational invariance will eventually lead to thermalisation [9].

Original research

In [1], we consider a unitary Floquet model, where the Floquet unitary UF is
made up of a random unitary circuit (see section 4.2 for more about unitary
circuits). Rather than varying the disordered potential’s strength, comple-
mentarily we vary the coupling strength. This is done by choosing different
random ensembles for the random unitaries. Thereby, we can drive a ther-
mal/MBL phase transition.

We can make rather direct statements about the evolved state and lo-
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calisation in terms of reduced density matrices thanks to the Haar measure
(see chapter 2 for more about the Haar measure). Specifically, we compute
how close individual sites become to the maximally mixed infinite tempera-
ture state. The model is thereby a rare occurrence in MBL studies, which
often rely on exact diagonalisation. Additionally, we apply the diagnostic
of the MBL mobility edge, using the eigenvectors’ entanglement, to further
pin-point the critical coupling strength.

On top of unitary Floquet evolution, [1] also considers Floquet evolution
with Gaussian operations. Then, both inhomogeneous and homogeneous
(translational-invariant) evolutions can be considered. While inhomogeneous
evolution displays localisation, a random homogeneous evolution operator
delocalises the initial state. This gives further evidence that MBL cannot
exist without spatial disorder.

4.2 Random unitary circuits—a formidable model for
disordered dynamics

Unitary circuits (also called quantum circuits) are well known from the usual model of
circuit-based quantum computation [48]. A set of unitary gates act on a number of qubits
(or more generally, higher dimensional qudits). Graphically, a circuit can be conveniently
represented as in Fig. 4.2. For random quantum circuits, the gates are drawn from an
ensemble of unitaries, such as the Haar measure. There are several factors characterising
random circuits. First is the spacial dimensionality. For simplicity, usually one-dimensional
circuits acting on spin chains are considered. Dimensionality is only relevant for local
circuits where gates act on adjacent qubits only. In non-local circuits, gates can act on
arbitrary groups of (possibly far-away) spins. Second, is the geometric structure of the
circuit. Many examples consider regular brickwork-pattern circuits (as in Fig. 4.2), but
sometimes even the geometry and placement of gates are random. Third, the specific gate
content in the circuit. The exact measure for the gates (for example, the Haar measure, see
chapter 2), and any independence or interdependence of gates are important ingredients.

The Haar measure is intricately linked with random circuits. On the one hand, the
unitary Haar measure is often employed as the defining element of the constituent gates.
On the other hand, deep random circuits, viewed as a black box, resemble a single big
random Haar unitary [69, 70]. This notion of convergence to the Haar measure can be
made more precise with unitary t-designs. A unitary t-design is a unitary measure, whose
first t moments are identical to the Haar measure. For polynomials up to degree t of
random unitaries, a t-design is indistinguishable from the Haar measure. It was proven
[69] that t-designs can be well approximated by random quantum circuits with sufficient
depth dependent on t and the number of qubits. In line with this link, techniques from
random matrix theory [26], such as the spectral form factor or eigenvalue spacing are
sometimes also used in studies of unitary circuits.
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Figure 4.2: Sketch of a unitary circuit. Vertical lines represent qubits. Each box represents
a unitary operator, in this case a gate acting on two qubits. Time flows from bottom to top
in these types of sketches. In a random circuit, the gates would be chosen from a random
ensemble. This one-dimensional unitary circuit is local, since gates only couple adjacent
qubits. Further, this example possesses a regular brickwork structure. The green dashed
line indicates the lightcone of one site, showing which qubits the site can affect.

In the study of interacting disordered many-body systems, random unitary circuits
have proven as an ideal testbed for their dynamics. The average of physical quantities over
the unitary ensembles of the individual gates can oftentimes be computed analytically by
making use of the random ensemble’s properties. By concentration of measure arguments,
the average results will often be expected to resemble that of a single random circuit
instance. This analytical access is in stark contrast to disordered interacting systems
with random potentials in the Hamiltonian, where often numerical exact diagonalisation is
necessary. Therefore, toy models based on random circuits are very important in studying
and understanding physical concepts like chaos, scrambling and entanglement spreading.

In the last years, the field of random circuits has flourished and a number of studies have
appeared, for example [16, 17, 28, 71–77]. In the following, these works will be discussed
in more detail.

A regular brickwork circuit with all gates independently Haar random is studied in [16,
17, 77]. Since each subsequent timestep of the circuit is independent, each random unitary
only appears a small number of times in quantities of interest. Therefore the Haar measure
can be explicitly integrated with the help of Weingarten functions (see section 2.2). Again
owing to the Brownian nature of the circuit (i.e. uncorrelated in time), [16, 17] can setup a
hydrodynamic equation for the progression of time, and [77] a recursion relation. Among
the objects of interest are the OTOCs (see section 3.3) and the entanglement entropy (see
section 3.1). The spreading of OTOCs is related to the butterfly effect, how soon a local
operation affects far away regions, defining the butterfly velocity vB. It is found that
operators spread ballistically (meaning ∝ t) with vB, and the wavefront of the propagating
OTOC spreads diffusively (meaning ∝

√
t). Entanglement spreads with a separate velocity

vE, both of which are lower than the lightcone velocity vLC : vE < vB < vLC . The lightcone
velocity corresponds to the maximal speed limit that information can be moved due to the
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geometry of the circuit, see the green dashed example in Fig. 4.2.
A similar situation is studied in [71, 72]. The circuit again follows a regular brickwork

pattern with all gates independent, but each obeying U(1) charge conservation. For a qubit
circuit, this means the individual gates coupling nearest-neighbours have the block form

U =

UQ=0
UQ=1

UQ=2

 . (4.3)

This is called charge-conserving because it preserves the charge sector of the number of
spin down. Within each charge sector, the unitaries UQ themselves are Haar random,
UQ=0, UQ=2 ∈ U(1) and UQ=1 ∈ U(2). Again, the OTOC spreads ballistically, but part of
the OTOC is slower: It has a diffusively spreading tail.

The above articles made use of the Brownian nature of the quantum circuit. Instead,
[73, 74], consider a brickwork Floquet circuit. The geometry is again as in Fig. 4.2, but the
unitaries are not independently drawn from the Haar distribution. Instead, in the spirit
of Floquet evolution (see also section 4.1), it is time-periodic: Each time step (two sub-
layers in the circuit) are repeated identically. Every random unitary then appears several
times in physical expressions, and contrary to the Brownian case, the Weingarten method
is unwieldy. Instead, as a major simplification the authors consider a local dimension
d → ∞ instead of spin 1/2 particles for each site. In this limit, expressions of random
unitaries can be solved, because Weingarten functions have known asymptotic behaviour
(see section 2.2). This allows the authors to compute the spectral form factor, OTOCs,
and Rényi-2 entropies. The spectral form factor K(t) = trU t trU∗t is the Fourier trans-
form of the eigenvalue spacing. In random matrix theory, its behaviour for Haar random
unitaries is well known, saturating to the maximal value N (the matrix dimension) after
t = N timesteps. Using the one timestep of the random circuit as U , the authors find the
same behaviour. OTOCs and Rényi-2 entropies display ballistic growth. They both have
the same velocity as the light cone, which is attributed to the d→∞ limit.

In [75], a Floquet circuit with a different structure than the prototypical brickwork-
pattern is considered. A timestep includes one layer of single-site Haar random unitaries,
followed by a random coupling which is diagonal and depends on adjacent sites. The
random coupling strength is tunable, and in d = 3 dimensions they can find a many-body
localized (ML) phase transition (MBL is discussed in the previous section 4.1).

Finally, let us turn to models where the geometry of the circuit itself is random. In
[28], a random circuit is considered, where Haar random unitaries are applied to two neigh-
bouring spins at a random position each timestep. They are able to map the entanglement
growth to the Kardar-Parisi-Zhang (KPZ) equation. The KPZ equation stems from classi-
cal surface growth problems. The result is in line with above models; entanglement grows
ballistically, with a velocity vE < vB slower than the butterfly velocity describing operator
growth. In [76], the actual goal was to study disordered continuous dynamic Hamiltonian
systems (related to holography, see section 5.3), and see when they approach random ma-
trix behaviour. The main diagnostic for random matrix behaviour considered in this work
is the spectral form factor. However, since disordered Hamiltonian dynamics are hard to
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grasp analytically, they also consider Brownian random quantum circuits instead. They
use both geometrically local 1D brickwork circuits, as well as k-local random geometry cir-
cuits. This common nomenclature is confusing: k-local circuits are not at all geometrically
local, instead, each gate is added such that it randomly couples any set of k possibly very
distant qubits. Since the Brownian quantum circuits don’t have energy conservation, they
also consider quantum circuits with a different conserved charge, with gates as in (4.3).
In this situation, they find different timescales N2 and logN until the local and k-local
circuits reach random matrix theory behaviour.

The recent experimental advances in building quantum computers have moved random
circuits into the spotlight from a yet another perspective [78]. In order to show quantum
supremacy, output bitstrings of random quantum circuits can be sampled. Sampling from
random quantum circuits classically with a high fidelity is a very hard computational task,
but execution on a quantum processor is straightforward. In [78], the authors sample a
million outputs of a 53-qubit circuit in 200 seconds on their Sycamore quantum processor.
They argue that the device samples the circuits with a sufficiently low noise of 0.2% (they
use the so-called cross entropy benchmarking to quantify this) that classical simulation
would exceed 10.000 years.

Original research

The regular brickwork structure shown in Fig. 4.2 is the basis for [1]. We
consider a random quantum circuit in a Floquet setup, i.e. periodic in time.
Further, each site’s dimension is a fixed integer d, for example spins d = 2.
This is a regime not covered elsewhere in the literature to the best of the
author’s knowledge. Due to the hardness of analytically tackling this regime,
other studies take the limit d → ∞ or use a Brownian non-Floquet setup
(which is simpler as each time evolution step can be viewed independently in a
Markovian fashion). We choose the constituent unitaries from the Haar mea-
sure, or a family of random ensembles parametrised by a coupling strength.

Since the circuit’s regime is difficult, we do not study OTOCs. Instead,
we concentrate directly on information moving from one site to another by
considering single site reduced density matrices. Thanks to the brickwork
geometry and the single-site Haar invariance of the random unitary ensembles
used, we can show the main result for the reduced state at a single site:

ρred(t) = 1/d+ α(t)ρ̄ (4.4)

for initial state ρred(0) = 1/d+ ρ̄ at the same site. The constant α(t) can be
determined numerically and its behaviour evidences an MBL phase transition
(see also section 4.1).

In [2], we study the Brownian SYK model. This can be seen as a Hamil-
tonian analogue of a Brownian, non-local quantum circuit. Similarly to [76],
the motivation to study it stems from the holographic principle (see also



26 4. Dynamics of disordered many-body quantum systems

section 5.3).
Our toy model [3] for black hole evaporation is based on a random quan-

tum circuit. Again, it does not display any geometric locality (apart from
grouping sites into system and environment). Random unitaries are ap-
plied between random sites within the system at a certain rate, such that a
continuous limit of a quantum circuit is achieved. The unitaries are either
drawn from the Haar distribution, or from the distribution (4.3) conserv-
ing a charge. The charge of the system flowing into the environment then
mimics the mass of a black hole evaporating. Due to the Brownian nature
of the circuit, we can compute Rényi entropies and mutual information to
quantify the evaporation process, and information retrieval properties (see
section 5.2).



Chapter 5

Black holes from a quantum
information perspective

The two fundamental theories in modern physics that shape our understanding of nature
are quantum theory and gravity. Both theories are experimentally tested to extraordi-
nary precision. Quantum physics becomes relevant as the de Broglie wavelength λ = h/p
becomes comparable to relevant length scales of the system in question. Since Planck’s
constant h is extremely small (compared to scales of everyday objects, such as books), the
mass of a particle also has to be extremely small such that the momentum p is of a similar
scale and the wavelength λ is appreciable. First and foremost, quantum physics therefore
describes the basic interactions of particles, summarised in the standard model. Experi-
mental evidence abounds. As an example, take the dimensionless fine structure constant
α, which is related to the strength of the electromagnetic interaction. It is perhaps most
readily manifest in the spectrum of atoms, where it leads to splittings of energy levels. The
fine structure constant α was measured with an error less than 1 part per billion [79]. This
extremely precise measurement result perfectly matches theoretical calculations based on
quantum electrodynamics, the quantum field theory describing the electromagnetic inter-
action; serving as an excellent experimental test.

Gravity may seem easier to grasp than quantum physics, because we experience it
directly in everyday life. Nobody is surprised that pens or rain fall down, or that it takes
effort to jump or lift a wardrobe. Even mathematically, it first seems deceptively simple:
Grade schools teach that all objects fall with the same acceleration 9.81m/s2. However,
this is not the end of the picture. Our best understanding of gravity is Einstein’s theory
of general relativity, which has many facets escaping our everyday experience of nature.
At heart, it is a geometric theory, describing how mass affects the geometry of space-time,
and vice-versa. Since larger masses lead to larger effects, gravity can mostly be neglected
when studying small systems like atoms, and is very relevant at large, cosmic, length
scales. Experimental evidence for various predictions of general relativity were found. For
example, the Nobel prize was recently awarded in 2017 for the detection of gravitational
waves, caused by two merging black holes [80], and in 2020 for the detection of the black
hole in the center of our milky way galaxy [81].
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General relativity and quantum physics can work also work in tandem in the same
experiment. For example, in the remarkable experiment in [82], the authors built two
atomic clocks that operate using techniques based on principles from quantum physics.
They were then able to measure a height difference of 33cm by comparing the speeds of
the clocks. Due to larger gravity at the clock closer to the earth’s core, time passes slower
compared to the higher clock.

Yet, at a fundamental level, gravity and quantum theory have escaped unification
into one grand physical theory of everything. While high-energy physicists undertook
much effort towards unifying the theories, sprouting large fields like string theory or loop
quantum gravity, the search for the holy grail of physics is not concluded.

Black holes are an extreme situation. As such, they are a particularly interesting and
fruitful setting to study the clash of general relativity and quantum physics. A prominent
example for this clash is the black hole information paradox. What happens when quantum
information falls into a black hole? In section 5.1 we discuss the paradox, and also cover
how its resolution is related to scrambling of quantum information, providing the link to
the previous chapters. Next, in section 5.2, we consider more closely information falling
into a black hole, and that emitted by Hawking radiation. Hayden and Preskill developed
a famous thought experiment to study this setting [27]. Finally, we turn to a different
link between black holes and quantum physics in section 5.3. Through the holographic
principle, a black hole itself may be described by a dual quantum theory.

Because of the importance of quantum scrambling in high-energy physics, considerable
work on quantum chaos and scrambling in many-body systems is published by high-energy
physicists and in respective journals. It is exciting that these two fields of physics intersect.

Original research

While the articles [2, 3] are both concerned with chaos, scrambling, and in-
formation in many-body quantum systems, motivation stems from the link to
black hole physics . In fact, they are published in the Journal of High-Energy
Physics. For the former, the link comes from the holographic principle, from
which our model is loosely inspired. For the latter, the link is the Hayden-
Preskill thought experiment, for which we develop a microscopic random
quantum circuit model matching black hole features.

5.1 Black hole information paradox and fast scram-
bling conjecture

Black holes excite people’s imagination since decades. Even the brightest physicists struggle
to reconcile black holes with the known theories of gravity and quantum mechanics. Until
a satisfactory microscopic quantum gravity description of black holes is found, the two
theories remain at clinch. This clinch becomes apparent in the black hole information
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paradox.
Black holes are, in fact, not completely black. Instead, they emit Hawking radiation

[83, 84], first predicted by Stephen Hawking in 1974. A popular picture for the origin
of the radiation is the following. Due to quantum fluctuations in empty space, particle-
antiparticle pairs always temporarily pop up randomly everywhere, before annihilating
again. When such a pair forms just at the event horizon with one particle on either side,
one of them will be sucked further into the black hole, while the other can still escape.
The escaping particles make up the Hawking radiation. This picture is still somewhat a
toy model. Accurate calculations consist of quantum mechanics in a curved space-time.
Since back-reactions to the fixed space-time curvature are excluded, Hawking radiation is
sometimes called a semiclassical effect. Hawking radiation is the gravitational analogue to
the Unruh effect, in which an accelerated observer in a vacuum does not observe a vacuum,
but instead a thermal bath [85].

These calculations of Hawking radiation lead to exact thermal radiation, like any black-
body radiation. It has temperature

T = ~c3

8πGkB
1
M
, (5.1)

where G is Newton’s constant, kB Boltzmann constant, and M the mass of the black
hole. As the black hole emits radiation, it looses mass. In fact, because the radiation’s
temperature increases as the black hole becomes smaller, it looses mass quicker and quicker,
until it has completely evaporated.

During the lifetime of a black hole, it absorbs various quantum information, the infalling
objects. According to Hawking’s calculations, after the evaporation, the information has
been destroyed, as only thermal radiation has been emitted. The black hole thus maps
a pure state (the infalling matter) to a mixed density matrix (the Hawking radiation).
This is at clinch with the unitarity of quantum mechanics. Time evolution of an entire
system (including its environment) in quantum mechanics is always unitary; in fact, the
Schrödinger equation is, in principle, reversible. Thermal Hawking radiation breaks uni-
tarity because even mathematically, the mixed thermal state can never be translated back
to the initial pure state. This is the basic black hole information paradox.

This basic black hole information paradox puzzled physicists and there was been much
debate on its resolution: Stephen Hawking and John Preskill entered into a famous bet
on whether black holes destroy information. These “black hole wars” were even covered
in a popular science book [86]. To resolve the basic black hole information paradox, strict
thermality of the radiation, or unitarity of quantum mechanics must be given up.

The debate was closed when Hawking conceded to losing the bet. Nowadays, the basic
paradox is mostly resolved by keeping unitarity, but adding corrections to the thermal
Hawking radiation. In fact, tiny corrections cannot be captured by Hawking’s calculations
[87]. Even if the radiation would be a completely pure state, it could still appear thermal
locally. This is the same idea underlying thermalisation of closed quantum systems (see
section 3.2): A reduced density matrix of a pure state can resemble a thermal density
matrix. For example, in [88] the author’s show how all of the information can be encoded
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in Hawking radiation that looks completely thermal unless you harness superpolynomial
quantum computational power. A powerful set of evidence to resolve the basic black hole
information paradox in this fashion and leading to forfeiture of the bet, stems from the
AdS-CFT correspondence. As will be explained in section 5.3, it offers a mapping of the
gravitational theory with the black hole to a dual quantum theory. This dual quantum
theory strictly obeys unitarity, which should be carried over by the duality.

Although the conservation of information was established at the cost of strictly thermal
Hawking radiation, more subtle issues in the clinch between gravity and quantum physics
remain. In fact, the information paradox persists, but the situation has to be studied more
closely. Here we present a few cornerstones and possible resolutions.

As black holes eventually reemit information, one can study the speed of information
retrieval. The next section 5.2 studies information retrieval from black holes more closely.
The paradox arising is related to the no-cloning theorem in quantum physics. Due to the
large space-time curvature, information appears twice within and outside of the black hole
in the same spacelike slice, in violation of quantum no-cloning [27]. The reconciliation with
quantum physics is further complicated by requiring that an infalling observer does not
notice crossing the horizon. The Schwarzschild metric

ds2 =
(

1− 2MG

c2 r

)
c2dt2 −

(
1− 2MG

c2 r

)−1
dr2 − r2dΩ2, (5.2)

describes an uncharged non-rotating black hole in general relativity with massM , Newton’s
constant G, and coordinates time (t), radius (r) and solid angle (Ω). It is written in such
a way that asymptotically, r � 2MG, a far away observer is manifestly situated in flat
Minkowsky space and uses his coordinates t and r. The horizon is situated at r = 2MG/c2,
where the Schwarzschild metric becomes singular. However, this does not mean that
space-time curvature itself becomes singular! In fact, a coordinate transformation from
these Schwarzschild coordinates that removes the singularity at the horizon is possible, for
example using Kruskal coordinates. An observer who falls into the black hole does not
experience any discontinuity or anything strange when crossing the event horizon. [89]

Black hole complementarity [88, 90] is an important concept used to resolve such issues.
Its main postulate is that the inside and outside of a black hole are not two distinct
(albeit possibly correlated) quantum systems. Therefore, the overall system is not a tensor
product of black hole and environment, Htotal 6= Hblack hole⊗Henvironment. Instead, inside and
outside of the black hole are in fact complementary descriptions of the identical quantum
system. Any observable Oblack hole is related to the observables on the environment in some
(non-trivial) fashion, Oblack hole = P (O1

environment, O
2
environment, . . .). Reference [88] suggests a

possible encoding P which is highly non-trivial. The inside operators correspond to logical
operators of a quantum error correction code which are very difficult to access. Quantum
information appearing twice on the same timelike slice is then no longer a problem; of course
it must occur on the inside and outside, as they are just complementary descriptions of the
same system. A guiding principle of black hole complementarity is an operational definition
of the violation of laws of nature. As long as no observer can operationally confirm that no-
cloning has been violated, it needn’t bother us. This in fact places an lower bound on the
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speed of information scrambling in black holes (see also the next section 5.2), which must
not be faster than order ∼ logN , where N is the black hole’s size. (For the information to
be released, it must first become scrambled with the entire black hole.)

The authors AMPS [91] flesh out another aspect of the black hole information paradox.
It is a paradox arising when considering entanglement between different regions both close
and far from the horizon, violating monogamy of entanglement. Monogamy of entangle-
ment refers to the fact that it is impossible for one qubit to be maximally entangled to two
different qubits at the same time. One resolution would be a firewall behind the horizon,
that breaks entanglement and kills anybody trying to cross it.

We noted above (and see also the next section 5.2 for more details), that an upper speed
limit of ∼ logN is imposed on scrambling to avoid the black hole information paradox,
at least when operational viewpoints of black hole complementarity are imposed. On the
other hand, there is a conjecture concerning the lower speed limit of scrambling: According
to the fast scrambling conjecture, no quantum system can scramble faster than ∼ logN ,
and black holes are the fastest scramblers found in nature, saturating this bound [18, 24,
25]. In finite dimensional many-body quantum systems with local interactions, this bound
ts ∼ logN never becomes saturated. Due to the locality of the interactions, it takes longer
for information to traverse the system. For example in one dimension with nearest-neighbor
interactions, it is clear that it takes at least time ∼ N for information from one end to
spread to the other end of the system. Section 4.2 gives details of scrambling in various
unitary circuit models. In order to achieve the logN limit, a quantum system must exhibit
non-local interactions. Sometimes, such systems are called infinite dimensional, because
in local systems, the number of dimensions is related to the connectivity and number of
neighbours of each particle (see eg. [24]).

Scrambling at the maximal speed ∼ logN provides a pathway to just barely steer clear
of the black hole information paradox, at least when operational viewpoints of black hole
complementarity are imposed. Because of this, scrambling in many-body quantum systems
is not only of interest to many-body physics (see the previous chapters), but also high-
energy physics. In fact, the holographic principle allows to describe a black hole in form of a
quantum theory, see section 5.3. Many authors studied scrambling in disordered quantum
systems with all-to-all interactions on a quest to learn more about maximal scrambling
with ts ∼ logN , see for example [22, 56, 76].

Original research

The articles [2, 3] study scrambling in quantum many-body systems. The
systems in question are disordered, time-dependent, and non-local. We find
that they, in fact, saturate the bound ts ∼ logN for maximal scrambling.
This gives further credibility to the fast scrambling conjecture.

In both articles, the systems we study are inspired from black hole physics.
The time-dependent Hamiltonian dynamics of [2] is motivated by the SYK
model, a holographic model frequently used to study the information-theoretic
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properties of black holes (see section 5.3). The continuous random circuit
model of [3] follows the tradition of studies of random circuits (see section
4.2), and is is set up to allow analysis of information retrieval properties of
black holes, see section 5.2.

5.2 Information retrieval from black holes
When quantum information falls into a black hole, it is eventually released with the Hawk-
ing radiation - this is the resolution of the black hole information paradox, see above.
Astonishingly, this relation can be further analysed quantitatively. Here, we consider two
different scenarios from the recent Hayden-Preskill thought experiment [27] from 2007.
Some of the ideas go back to the Page curve [92, 93] from 1993. In their landmark article,
Hayden and Preskill consider quantum information consumed and emitted by black holes.
The protocol they introduced to quantify the quantum information in this process has
since been coined the Hayden-Preskill thought experiment.

The microscopic dynamics of a black hole are not yet known. A full theory of quantum
gravity would be needed to understand exactly what happens in detail. Instead, to study
the information retrieval properties, black holes can be viewed as a black box, and their
dynamics modelled as large random unitaries. In information retrieval protocols, Alice
throws some information/qubits into the black hole. Together with the other black holes
degree of freedoms, these are evolved in time by the black hole’s unitary dynamics U .
Then, a certain number of qubits are seen as radiation, which is collected by Bob. Bob
then tries to infer Alice’s original qubits from the collected Hawking radiation. The names
Alice and Bob as sender and receiver are standard in classical and quantum information
theory alike. Different scenarios exist, depending on Bob’s knowledge of the initial black
hole. See Fig. 5.1 for an illustration of the information retrieval scenarios. Since we are
dealing with quantum information and wish to assess identity of quantum information,
Alice’s qubit is maximally entangled to an outside reference qubit. If, from the Hawking
radiation, Bob can extract qubits maximally entangled to this outside reference qubit, he
can fully reconstruct Alice’s quantum information.

In the first scenario (see Fig. 5.1 a)), Bob does not have access to the initial black hole
state, which is taken to to be a product state. Then, Bob will have to wait until half of
the black hole’s qubits have been released as radiation (and collected by him). The next
radiation quanta will then very quickly reveal Alice’s secret [27]. This scenario is related
to the Page curve [92, 93]. The Page curve describes the entanglement entropy within
a random pure state, such as the evolved state of an initially product state black hole.
Consider a bipartition of a state of N = n+m particles into two regions of n and m spin
1/2 systems each (without loss of generality, m < n). The maximal possible von Neumann
entanglement entropy between the two regions is Sm,n = logm. Page calculated [92] that
for a random state, this is almost saturated up to order 1/n corrections:

Sm,n ' logm− m

2n. (5.3)
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Figure 5.1: Information retrieval from a black hole, whose dynamics are modelled by a
black-box random unitary U . Alice injects her qubit into the black hole. Bob has access to
the Hawking radiation and tries to recover Alice’s qubit. In order to compare his extracted
information to Alice’s qubit, a maximally entangled reference qubit to her information
is kept outside of the black hole. This model has no explicit time dependence, instead,
it must be entered by hand, by increasing the dimension of the outgoing radiation and
reducing the dimension of the evolved black hole. In scenario a), the black hole is initially
in a product state. After the Page time, when a little more than half of the black hole has
evaporated, the radiation becomes (almost) maximally entangled with the reference qubit
and Bob can recover Alice’s information. In scenario b), Bob has access to the initial black
hole. This means that in addition to the Hawking radiation, he holds a reference system
that is maximally entangled with the initial black hole. Using this further knowledge,
he must not wait till more than half of the black hole has evaporated: His joint system
of radiation and reference to initial black hole becomes (almost) maximally entangled to
Alice’s reference qubit very quickly, when only a little more than one qubit is radiated.
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A random state is defined by applying a Haar random unitary to an arbitrary state, see also
chapter 2. Page’s result shows that (large) random pure states are very highly entangled,
almost maximally entangled between any choices of subsystems. From this perspective, it
is not surprising that Bob has to wait for about half of the black hole to evaporate: After a
bit more than half of the black hole has been released as radiation, the radiation is almost
maximally entangled to the rest of the evolved black hole as well as the reference qubit.
The relevant time scale for information retrieval is the Page time tp ∼ N .

In the second scenario (see Fig. 5.1 b)), Bob has access to the initial black hole state.
This scenario could arise for a black hole which Bob has studied for its entire lifetime and
therefore knows its state. Alternatively, the black hole could be very old, and Bob has
collected a huge amount of Hawking radiation, such that he controls a system maximally
entangled to the rest of the black hole; this trail of thought corresponds to the Page curve
presented in scenario (a). Hayden and Preskill [27] analysed this setting in detail, and
found that the information is almost immediately revealed to Bob. Only little more than
one qubit has to be released in the Hakwing radiation for Bob to recover Alice’s qubit.
The relevant time scale for information retrieval is no longer the Page time tp ∼ N as in
scenario (a), but the much shorter scrambling time ts ∼ logN . Before information can be
released, it must first become scrambled with the entire black hole. This is because the
choice of qubits to emit as Hawking radiation is random and does not favor Alice’s recently
injected information.

In the single random unitary model depicted in Fig. 5.1, scrambling is in fact instanta-
neous, as the large random unitary couples all spins at once. In more realistic black hole
models, and in nature, the scrambling time is not instant but still very fast, much faster
than the Page time, where we have to wait for a large amount of radiation to be released.
Refering to scenario (b), the authors titled their celebrated article “Black holes as mirrors"
that reflect quantum information almost immediately.

Actual black holes are more complex systems than simply a large random unitary U .
The previous section 5.1 highlighted some paradoxes that arise when combining quantum
and gravitational properties of black holes. Due to the intricate space-time geometry
of a black hole, reflection of quantum information may violate the no-cloning theorem.
In quantum physics, whenever unitary time evolution is present, quantum information
cannot be copied [48]. However, there are spacelike surfaces on which both Alice’s infalling
qubit and Bob’s Hawking radiation are present. A resolution is to use the black hole
complementarity viewpoint, and an operational definition of the no-cloning theorem: As
long as nobody can operationally verify that cloning has occured, we do not let us be
bothered by any cloning. In order to verify the cloning, Bob has to dive into the black
hole together with his collected information to compare to Alice’s qubit, as the latter can
never exit the horizon. In order for it to be impossible to verify the cloning, a lower bound
is imposed on the time until reflection. Thus, to save the complementarity solution of the
black hole information paradox, it turns out that the reflection of quantum information
must not be faster than ∝ logN , where N is the size of the black hole [24, 25, 27]. In fact,
this bound is saturated, see also section 5.1.
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In [3], we study a random circuit model for the evaporation of a black hole.
The exact microscopic dynamics of a black hole dictated by quantum gravity
are not known yet. Instead, we propose a microscopic quantum model that
can mimic a black hole evaporation. While it is a toy model, it shows that the
expected information retrieval properties can arise from a simple microscopic
dynamics without any fine tuning, instead of global random unitaries.

The model is based on a continuous version of a random quantum circuit
(see also section 4.2). SWAP-gates couple the black hole’s degrees of freedom
with the environment, and random gates provide the intrinsic dynamics. We
can setup exact differential equations, whose solutions tell us about build-up
of entanglement entropy, and information retrieval times for both scenarios
(a) and (b). The results match the expectations of black holes explained
above. In particular, both the tp ∼ N and ts ∼ logN dependencies of the
Page time and scrambling time, governing scenarios (a) and (b) respectively,
can be picked up explicitly. This is thanks to the system of differential
equations, which can be integrated for a large number of particles N .

To make the model more realistic, we consider a variant where the random
gates conserve a U(1) charge. This corresponds to energy conservation. A
fully analytical system of differential equations is no longer available, but
the exponential Hilbert space can be reduced to calculations in a polynomial
Hilbert space size by making use of an emergent permutational symmetry.
The results are similar to the case without charge conservation and show the
expected properties of black holes.

As quantifiers of interest, we calculate both entanglement entropies, as
well as mutual information (see section 3.1). Mutual information between
Alice’s qubit and the systems accessible by Bob is a direct measure of possible
information retrieval.

5.3 Holographic principle and the SYK model
Back in the 1970s, Jacob Bekenstein and Stephen Hawking closely studied the entropy of
black holes. Since entropy can only increase across the entire universe, an object falling
into a black hole must increase the black hole’s entropy [94]. When Hawking discovered
Hawking radiation and thereby computed a black hole’s temperature, this opened another
pathway towards black hole entropy [84]. The entropy of a black hole

SBH = kBc
3

4~GA (5.4)

has been named Bekenstein-Hawking entropy. It is proportional to the surface area A of
the event horizon. This is surprising, because usually entropy is an extensive quantity, and
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proportional to the volume of the system. The microscopic interpretation of the entropy
is the logarithm of the number of microstates. For an ideal gas, it is clear that bringing
two volumes of equal temperature together, the entropy is additive.

Since the entropy is linked to the surface area of the black hole, it is conceivable that an
equivalent description of the black hole exists with all degrees of freedom localized at the
surface. This is at heart of the holographic principle. The holographic principle is a general
idea, that a d dimensional system may equivalently be described by a corresponding d− 1
dimensional system [19, 20]. For example, tourist shops frequently sell hologram postcards:
The image appears three dimensional, although all of the image is encoded on the two
dimensional postcard.

For the study of black holes, the holographic principle was formulated in the form of
the AdS-CFT correspondence. The AdS-CFT correspondence encompasses a family of
holographic theories that connect a gravitational bulk, an anti-de-Sitter space (AdS), with
a conformal field theory (CFT) on the boundary of one dimension less. High energy physics
studies several examples, such as the duality between string theory in a 4+1 dimensional
AdS5×S5 space and 3+1 dimensional supersymmetric Yang-Mills theory, which has been
fleshed out in a mathematically rigorous fashion [21].

Anti-de-Sitter space is a space-time geometry with negative curvature, in which space-
like slices are hyperbolic. A weak point of research on the AdS-CFT correspondence is,
that our actual universe is not anti-de-Sitter, having a positive cosmological constant. As
such, the correspondence does not help in the study of actual real-life black holes. Rather,
it provides toy models, and some results and intuition may hopefully also be applicable to
the real world. Conformal field theories are a certain kind of quantum field theory with
strong conformal symmetry constraints.

In holography, the Ryu-Takayanagi conjecture is an important milestone [95]. It directly
relates the entanglement within the boundary to the geometry of the bulk. In particular,
the von Neumann entanglement entropy SA of a boundary region in the quantum theory
is conjectured to be

SA = Area ofγA
4G . (5.5)

The curve γA is that of minimal area through the bulk geometry that can isolate A from
the rest of the system. G is simply Newton’s constant. As described in section 3.1, entan-
glement entropy plays a major role in many-body physics. The Ryu-Takayanagi formula
manages to bring this important concept across the holographic duality, establishing a
strong connection between entanglement and geometry.

Examples of the AdS-CFT correspondence can be exactly constructed with the help
of tensor networks [96]. Tensor networks are an important toolbox to deal with and un-
derstand entangled many-body systems both analytically and numerically. Above and
beyond AdS-CFT and tensor networks, the cited article also connects error correcting
codes to these concepts. Quantum error correction is a major branch of quantum infor-
mation theory. Since any actual physical implementation of a quantum computer will be
noisy, a mechanism to correct for errors is necessary. This is much more difficult than
classical error correction, as qubits change their value when measured and can further-
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more be entangled. Surface codes are one class of quantum error correcting codes. The
mapping between bulk and boundary corresponds to mapping between logical (error-free)
and physical (noisy) qubits. The article further proves the Ryu-Takayanagi formula for
the holographic examples constructed. As a by-product, apart from understanding AdS
black holes, study of the holographic principle may prove useful in quantum computation
by yielding new forms of error correction. Further, some difficult calculations in CFTs may
be carried out more easily in the dual gravitational theory [97].

Before moving to the popular SYK model, let us point out a further connection where
the general idea underlying holography manifests itself. Topological quantum systems
are many-body systems featuring exotic phases, above and beyond the picture of Landau
symmetry breaking [98]. These topological phases are characterised by different patterns of
long-range entanglement. A well-known example for a topological quantum system is the
topological insulator, and the quantum Hall effect. The general idea underlying holography
is present in topological systems in the form of a bulk-boundary correspondence: The bulk
physics is reflected in special edge mode excitations occurring only on the boundary.

A popular holographic model that received a lot of attention in the last years is the
SYK model, named after its creators Sachdev, Ye, and Kitaev [99, 100]. The SYK model
describes a quantum system of N Majorana fermions ψi interacting in a disordered q-local
all-to-all fashion. Its Hamiltonian is

HSYK = iq/2 ∑
1≤i1<...<iq≤N

Ji1,...,iqψi1 · · ·ψiq , (5.6)

where the interaction constants Ji,...,iq are random and uncorrelated for different sets of
indices. They all have the same mean 0, and the same variance which can be adjusted to
tune the energy scale of the system.

Majarona fermions correspond to the the real and imaginary parts of usual complex
fermions. Usually, (spinless) fermions in a fermionic Fock space are described by the
creation and annihilation operators with anticommutation relations

{ak, a†l} = δkl, {ak, al} = 0, {a†k, a
†
l} = 0. (5.7)

Majarona fermions are then defined as the real and imaginary parts of the these operators

ψ2k−1 = (ak + a†k), ψ2k = (ak − a†k)/i, k = 1 . . . N/2, (5.8)

and inherit the following characteristic anticommutation relations:

{ψi, ψj} = 2δij, ψi = ψ†i , i, j = 1 . . . N. (5.9)

The Hilbert space of N Majorana fermions therefore has dimension 2N/2 since they cor-
respond to N/2 fermions. This can be made explicit by mapping Majorana fermions to
spins with the Jordan-Wigner-transformation [101, 102]. A set of N Majorana fermions
is mapped to a one-dimensional chain of N/2 spin 1/2 particles. Each fermionic operator
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then corresponds to a Pauli σx or σy operator with a tail of σz operators:

ψ2k−1 →
(
k−1⊗
i=1

σzi

)
⊗ σxk (5.10)

ψ2k →
(
k−1⊗
i=1

σzi

)
⊗ σyk . (5.11)

The σz tail is necessary for the correct anticommutation relations (5.9). These follow
straightforwardly from the usual Pauli anticommutations

σαi σ
β
i =

−σ
β
i σ

α
i α 6= β

1 α = β.
for α, β ∈ {x, y, z} (5.12)

The SYK model is of interest for the study of black holes, because it is maximally
scrambling (see also section 5.1), as needed for holographic black hole models. Moreover,
the large N limit, in which it becomes conformally invariant, is amenable to exact field-
theoretic calculations.

Much study was therefore carried out on the chaotic properties of the SYK model. For
example, in [103], the authors study the OTOCs and growth of operators. Numerically,
they can compute the size distribution of operators for q = 4 and N = 30. Analytically
however, they can make use of the fact that many Feynman diagrams become negligible
in the N →∞ limit, and can give an explicit formula at large N and large q.

In [23], the spectral form factor | trU(t)|2 (here U(t) is the time evolution operator,
and overline indicates the disorder average) is studied. As explained in the context of
quantum circuits in section 4.2, it is a diagnostic of scrambling and linked closely to the
Haar measure. The spectral form factor for the SYK model is a difficult undertaking,
therefore they further introduce and study the SYK model’s Brownian companion. In the
Brownian SYK model, the disordered coupling constants J in the Hamiltonian (5.6) are
not only random and uncorrelated for different subsets of particles, but also random and
uncorrelated in time. They therefore acquire a time-dependence; the correlations can be
expressed as

Ji1...iq(t)Ji′1...i′q(t′) = δi1i′1 · · · δiqi′qδ(t− t
′)σJ

(q − 1)!
N q−1 . (5.13)

The correlations are thus as in Brownian noise, motivating the name. This model is
simpler, because each timestep can be disorder averaged independently of the previous, in
a Markovian fashion. For the spectral form factor of the Brownian SYK model, the authors
[23] are able to give a mapping to a classical Ising model that can be solved exactly. The
aim of [76] is also to study the spectral form factor of the SYK model. Instead of the
Brownian SYK model, the authors turn to a Brownian qubit model and analogous discrete
quantum circuits, see also section 4.2. The Brownian SYK model is the starting point for
our work [2].
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In [2], we study chaos and scrambling in the Brownian SYK model. The mo-
tivation clearly stems from the fact that SYK plays an important role in the
holographic duality. Similarly to discrete quantum circuits, the model be-
comes simpler to study by considering its time-dependent Brownian version,
and it is expected that is still describes well the high-temperature regime.

In order to compute the chaos identifiers tripartite information for in-
formation scrambling (section 3.4) and the OTOC for operator spreading
(section 3.3), we make use of an emergent permutational symmetry: Individ-
ual disorder realisations are not permutationally symmetric, but the chaos
identifiers become so after performing the disorder average.

The new numerical method thus developed allows us to consider systems
at large finite N , a regime which has previously been very difficult to study.
In turn, because we have access to up to a million particles, the logN be-
haviour that is expected and necessary for fast scrambling (see section 5.1)
can be clearly identified and verified.





Appendix A

Localization with random
time-periodic quantum circuits

In this article, we study thermalisation and many-body localisation (see section 4.1) in a one
dimensional disordered system, modeled by a random unitary brickwork circuit. Random
circuits have ushered in a gold rush in the study of disordered systems (see section 4.2),
we consider a new setup: The circuit for a chain of d-dimensional qudits (finite d) is
disordered in space, but periodic in time, mimicking Floquet evolution. As this makes
calculating disorder averages with respect to the random constituent unitaries difficult,
previous studies have shied away from this setup, considering local dimensions d→∞ or
disorder random in time, c.f. section 4.2.

Thermalisation of this circuit bar of conserved quantities would lead to maximally
mixed reduced density matrices for each site (see chapter 3.2). By making use of the Haar-
invariance of the random unitaries (see section 2), we introduce the twirling technique,
allowing us to investigate final reduced density matrices. In particular, we prove the
following formula for reduced states at a single site:

ρred(t) = 1/d+ α(t)ρ̄, (A.1)

for initial state ρred(0) = 1/d + ρ̄ at the same site. The constant α(t) can be determined
numerically and allows to investigate thermalisation (α(t)→ 0) or many-body localisation
(finite α(t)) for d = 2. The numerical computation of α(t) is exponential in t, and we
combine a Monte-Carlo method with tensor network tricks to reduce cost.

The behaviour of α(t) shows a phase transition between thermal and MBL phases when
tuning the coupling strength defining the ensemble of random unitaries for the circuit. The
phase transition can be further pin-pointed in a time-independent manner by studying
entanglement entropy (see section 3.1) of the time evolution operator (see section 4.1 for
details on this procedure).

Beyond unitary circuits and spin chains, we study the corresponding problem for Gaus-
sian circuits and free fermion chains. Since Gaussian states are fully characterised by the
covariance matrix, this setup is simpler and allows stronger arguments both analytically
and numerically.
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We consider a random time evolution operator composed of a circuit of random unitaries coupling even and
odd neighboring spins on a chain in turn. In spirit of Floquet evolution, the circuit is time-periodic; each time
step is repeated with the same random instances. We obtain analytical results for arbitrary local Hilbert space
dimension d; on a single site, average time evolution acts as a depolarising channel. In the spin 1/2 (d = 2) case,
this is further quantified numerically. For that, we develop a new numerical method that reduces complexity
by an exponential factor. Haar-distributed unitaries lead to full depolarization after many time steps, i.e., local
thermalization. A unitary probability distribution with tunable coupling strength allows us to observe a many-
body localization transition. In addition to a spin chain under a unitary circuit, we consider the analogous problem
with Gaussian circuits. We can make stronger statements about the entire covariance matrix instead of single
sites only, and find that the dynamics is localizing. For a random time evolution operator homogeneous in space,
however, the system delocalizes.
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I. INTRODUCTION

The dynamics of many-body quantum systems has re-
vived the interest in thermalization and localization. In closed
systems, there are states that do not thermalize. A simple
example is a single particle in a random potential that is
Anderson localized [1]. But even if one includes interactions,
a new way of many-body localization (MBL) can emerge
that also prevents thermalization [2]. Despite great progress
in understanding MBL during the last years (see, e.g., Ref. [3]
or the review [4]), there are still many open questions.

A typical scenario studied in the context of localization is
a system on a one-dimensional lattice, with a short-ranged
Hamiltonian containing a kinetic term and a random potential
for each site. In the absence of interactions, this single-particle
problem displays Anderson localization: starting in one posi-
tion, the probability of finding the particle at the same position
after arbitrary time is lower bounded, and the probability for
other positions is exponentially suppressed [5,6]. If one adds
interactions, the system can find itself in the thermal or MBL
phase, usually dependent on disorder strength. Starting with
some information in a specific position, in the thermal phase
it will flow away and cannot be recovered locally, and in
the MBL phase there will still be traces present at the same
position after arbitrarily long times, despite some information
slowly flowing away [7–9].

Another scenario is the so-called Floquet evolution. There,
one considers not a continuous time evolution generated by
time-invariant Hamiltonians, but a discrete-time evolution op-
erator repeated for subsequent time steps. It may arise from a
periodic drive or be directly given as a unitary model. Floquet
systems are a formidable setting to study localization, because
even energy ceases to be a conserved quantity. Anderson

localization has been proven for specific Floquet systems
[10]. It has been found that Floquet systems are compelling
examples for MBL [11,12], which yield sharper transitions
between thermal and MBL phases [13].

In addition, circuits of random unitaries have recently been
used as a model of chaotic systems [14–22]. In Refs. [14,17],
time evolution by a unitary circuit of fixed geometry but
independently Haar-distributed random gates at each time step
was studied. That model exhibits thermalization to an infinite
temperature state, and the authors found ballistic spreading of
quantum information by considering the out-of-time-ordered
correlator. Subsequently the model was extended to a similar
setup [15,18] with a conservation law. In Ref. [16], the authors
consider the same unitary circuit in a Floquet setting, where
subsequent time steps are repeated with the same random
instances. In the limit of infinite local Hilbert space dimension
for each qudit, they find thermalization to an infinite temper-
ature state and calculate several values like the spectral form
factor or the exponentials of some Renyi-entropies. In other
related work [23–25], thermalization of spin chains for certain
continuous-time dynamics was found in the context of the
average spectral form factor.

Here, we consider several variations of Floquet evolution
with a unitary circuit, and analyze if there is localization.
We consider as time evolution operator a quantum circuit of
depth two, which consists of two alternating layers of random
nearest-neighbor unitaries coupling even and odd pairs of sites
in turn. The two layers are repeated identically for subsequent
time steps such that the total circuit is periodic in time, in
the spirit of Floquet evolution. This circuit geometry is the
discrete analog of local time-independent Hamiltonian evolu-
tion (and could also be obtained by a Trotter decomposition,
or the standard form of an index zero matrix product unitary

2469-9950/2018/98(13)/134204(16) 134204-1 ©2018 American Physical Society
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[48], for example). We perform an average within a (sub)set
of unitaries. Typically, we start with a completely mixed state
everywhere and a pure state at one site and look at the reduced
state of that and other sites at some later time, and determine
whether it depends on the initial state, corresponding to local-
ization.

The scenarios we consider are the following: (A) Gaussian
circuits, acting on fermionic chains with one mode per site
and Gaussian evolution, where the nearest-neighbor unitaries
in the circuit are operations that stay within the manifold of
fermionic Gaussian states. (B) Spins, with a qudit per site
and arbitrary constituent unitaries in the circuit. The first
scenario, (A) Gaussian circuits, extends the typical situation
in Anderson localization, since the particle number is not
conserved. In this scenario, we consider inhomogeneous as
well as homogeneous Floquet circuits, where the unitaries
coupling sites are independently random for each pair of
neighbors or the same along the entire chain. We find that
the inhomogeneous setting exhibits localization, whereas the
homogeneous Floquet circuit leads to delocalization.

The second scenario, (B) spins, is similar to the models
studied in Refs. [14,16,17]. In contrast to Ref. [16], in our
work the local Hilbert space dimension of each spin is finite,
and in contrast to Refs. [14,17], we work in a Floquet setting.
We prove that on a single site, the time evolution acts as a
depolarising channel. Further, we find that a chain of qubits
can exhibit thermalization or MBL, depending on the proba-
bility distribution used to average the unitaries in the circuit;
we observe the corresponding phase transition.

Our setup is difficult computationally and analytically,
because it requires to study dynamics of many-body systems,
averaged over instances of the random Floquet circuit. Meth-
ods to exactly calculate averages [26,27] work well when each
random matrix appears a small amount of times, or for large
dimensions where asymptotic behavior is available. These
methods are not useful in our setting, since the same random
matrices reappear in each time step (contrary to Refs. [14,17])
and we have a fixed finite dimension of the spins (contrary to
Ref. [16]). Instead, we derive analytical results in both cases
with a technique we call the twirling technique. It is based on
a property of the average, which basically allows us to move
arbitrary single-site unitaries through the quantum circuit such
that they only appear twice, at the beginning and end, relating
initial and final states.

Apart from that, we also perform numerical calculations
[47] in both cases. For (A) Gaussian circuits, we can work
with the covariance matrix formalism, which is very efficient
and allows us to explore very large systems. For (B) spins,
the Hilbert space is exponential in chain length. We develop a
new numerical method which combines tensor networks and
Monte Carlo ideas, drawing from simplifications provided by
the analytic results. It reduces the memory and time complex-
ity from 24t to 2t for t time steps. This allows us to study
relativity long times which, in turn, enables the simulation of
up to 39 spins.

This article is organized as follows. First, we introduce the
precise models in Sec. II and the quantities we will compute.
In Sec. III, we present the main results of this work, and leave
the derivations for Sec. IV. There, we also present the twirling
technique (Sec. IV A) used throughout the paper, which can

FIG. 1. Random time evolution operator U 2 for two time steps.
The vertical lines indicate sites of the chain; each unitary couples
two neighboring sites. In the spirit of Floquet evolution, the total
evolution operator is time-periodic; the time step is repeated with the
same random instances of Ui, Vi .

also be of interest on its own. Finally, in Sec. V, we present
the new numerical method used for spin chains.

II. SETTINGS & QUESTIONS

For a one-dimensional chain of N particles, we consider
a random unitary time evolution operator U composed of
random nearest-neighbor gates according to some probability
distribution. The time evolution operator is the unitary circuit
with the fixed geometry sketched in Fig. 1 and can be written
as

U =
(⊗

i

Vi

)(⊗
i

Ui

)
. (1)

The unitary Ui acts on particles 2i − 1 and 2i while Vi acts on
sites 2i and 2i + 1. These two layers are repeated identically
(with the same random instances of Ui, Vi) in spirit of Floquet
evolution, in contrast to other models [14,17] where each time
step is different.

In this article, we study the random circuit as a time
evolution operator that is a (A) Gaussian circuit for fermionic
chains or (B) Unitary circuit for spin chains. Throughout, the
average 〈· · · 〉 denotes averaging over Ui, Vi . In the next two
subsections, we give details of both settings, and define the
probability distributions used for the average 〈· · · 〉 in either
setting.

A. Gaussian circuits

First, we consider the problem for a chain of fermionic
systems with one fermionic mode per site. Each of the N

modes has two Majorana operators

c2n−1 = a†
n + an, c2n = −i(a†

n − an), (2)

with the creation/annihilation operators a
†
n/an. The two-

point correlation functions of Majorana operators for each
fermionic state ρ can be gathered in the covariance matrix

�kl := i

2
Tr(ρ[ck, cl]). (3)

Each site of the chain corresponds to a 2 × 2 block be-
cause each site is associated with two Majorana operators.
A fermionic Gaussian state (i.e., those that can be generated
by the vacuum of an by Gaussian functions of the Majorana
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operators) is completely and uniquely characterized by its
covariance matrix. Here, we consider the covariance matrices
of not only Gaussian but arbitrary initial states with vanishing
two-point correlators at nonzero distances.

We build the Gaussian circuit of transformations that map
Gaussian states to Gaussian states (but can still be applied to
general states). The most general such unitary operation acts
on the covariance matrix by an orthogonal transformation O ∈
O(2N ), specifically � → O�OT.

We will consider two classes of these unitary trans-
formations: Gaussian operations generated by Hamiltonians
quadratic in the Majorana operators, which correspond to
special orthogonal transformations O ∈ SO(2N ) in the co-
variance matrix formalism [28,29], and the larger class of
all operations O ∈ O(2N ), which includes local particle-hole
transformations [30]. Subsequently, we only consider the
covariance matrices of initial and final states.

In this setup, the unitary-circuit time evolution operator (1)
is represented as an orthogonal transformation O ∈ O(2N )
built of random two-site operations Pi,Qi ∈ O(4). With pe-
riodic boundary conditions,

O = G

(
N/2⊕
i=1

Qi

)
GT

(
N/2⊕
i=1

Pi

)
, (4)

where

G =

⎛
⎜⎜⎝

0 I2

I2 0
. . .

. . .
I2 0

⎞
⎟⎟⎠ (5)

takes care of circularly shifting
⊕

Qi by one site; i.e., two
matrix elements down and right. Thereby Pi couples site 2i −
1 with 2i and Qi couples site 2i with 2i + 1.

Our quantity of interest is the average final state 〈�t 〉 after
t time steps of an initially uncorrelated product state �0,
i.e., with a 2 × 2 block-diagonal covariance matrix. In this
formalism, its covariance matrix is

〈�t 〉 = 〈Ot�0O
t†〉. (6)

For the expectation value 〈· · · 〉, we consider two probability
measures for the Pi,Qi : the Haar measure for the orthogonal
group Pi,Qi ∈ O(4) and the Haar measure for the special
orthogonal group Pi,Qi ∈ SO(4). The Haar distribution (see,
e.g., Ref. [31]) for the orthogonal (special orthogonal) group
O(4) [SO(4)] is defined as the unique distribution with the
property of Haar invariance, which mandates that any trans-
formation

P → APB, for any A,B ∈ O(4) [SO(4)] (7)

does not affect averages 〈· · · 〉 with respect to P ∈
O(4) [SO(4)] [32]. The long-time behavior of an initial co-
variance matrix is readily accessible to numerical calculations
even on long chains, because we need only operate on its
covariance matrix, whose dimension grows merely linearly in
system size.

We consider two scenarios. In the first scenario, all Pi,Qi

are independently distributed according to one of the Haar
measures. This situation is related but not equivalent to that

studied in context of Anderson localization. The main reason
is that the average over O includes transformations Pi,Qi

that do not conserve particle number. Thus a question to
be addressed is whether the well-studied phenomenon of
Anderson localization still exists, or if it is modified. To this
end we ask, does the average final state 〈�t 〉 contain remnant
information about the initial state �0? The corresponding
results are reported in Sec. III A 1.

Furthermore, we study a second scenario, the homoge-
neous setting where the time evolution operator O is two-site-
translation invariant. In that scenario, randomness is the same
for all sites, Pi = Pj and Qi = Qj , such that there are only
two independent transformations; here we consider only the
Haar measure over O(4). Again, we ask the same question:
Does an impurity in an otherwise translation-invariant state
spread all over the chain or stay localized? We present the
answer in Sec. III A 2. Occasionally, the time average

〈�t-avg〉 := lim
T →∞

1

T

T −1∑
t=0

〈�t 〉 (8)

is used to assess the localising or delocalising properties.
Physically, it captures the long-time behavior of a typical
state. The additional average allows us to make stronger
statements.

B. Spins

After studying the evolution of a chain of fermions under
Gaussian circuits, we turn to a chain of interacting spins. All
particles along the chain have a local Hilbert space dimension
d, which may be arbitrary. In that setting, all of the unitaries
Ui, Vi composing the circuit U are general unitaries of U (d2),
independently distributed according to some probability dis-
tribution for the average 〈· · · 〉.

We will consider different probability distributions for
Ui, Vi ∈ U (d2) with the common property of single-site Haar
invariance. This means that any transformation of a Ui or Vi

of the form

Ui ↔ (w1 ⊗ w2)Ui (w3 ⊗ w4) (9)

does not affect averages 〈· · · 〉, for arbitrary choice of wj ∈
U (d ). For example, the unitary Haar distribution on U (d2)
has this property. It is a distribution uniquely defined by Haar
invariance (see, e.g., Ref. [31]), which means that transforma-
tions of the form U → AUB, for arbitrary A,B ∈ U (d2), do
not affect any averages with respect to the Haar distribution of
U ∈ U (d2) [32].

In this paper, we characterize the average final state 〈ρt 〉
obtained from an initial density matrix ρ0 after t time steps:

〈ρt 〉 := 〈Utρ0U
t†〉. (10)

In particular, for arbitrary initial states ρ0, we will
find a relation between the reduced initial state ρred

0 :=
Tr{1,...,N}\{n} ρ0 on a single site n and the reduced state
〈ρred

t 〉 := Tr{1,...,N}\{n}〈ρt 〉 of the average final state on the
same site. We find that on a single site, average time evolution
acts as a depolarising channel. This result is formulated in
Sec. III B 1.
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With this local characterization of initial and average final
states, we assess the long-time behavior of 〈ρred

t 〉 numerically.
Interacting systems may thermalize, or else display many-
body localization. In this context, we ask, does 〈ρt 〉 locally
remember the initial state (localization) or not (thermaliza-
tion)? For example, imagine an initial state that is homoge-
neous except for an impurity at one site. Then we ask, after
average time evolution, can we perform local measurements
at the same or other sites to recover information about the
position and initial state of this impurity? We present our
corresponding results in Secs. III B 2 and III B 3.

III. RESULTS

In this section, we present our main results for (A) Gaus-
sian circuits or (B) spins. We leave the details of the deriva-
tions, as well as the methods used to obtain them, for the next
sections.

A. Gaussian circuits

First, we consider the setting of Gaussian circuits. We
will first consider the inhomogeneous case, where orthogonal
matrices for different sites are independently random. Then
we will give the results for the homogeneous case, where the
time evolution operator is invariant under translations by two
sites.

1. Inhomogeneous evolution exhibits localization

For uncorrelated initial states �0, i.e., 2 × 2 block-diagonal
�0, we find the following result:

〈�t 〉 = c(t, N )�0. (11)

The constant c(t, N ) is independent of the initial state. We
obtain this result for both the orthogonal Haar measure,
Pi,Qi ∈ O(4), as well as the special orthogonal Haar mea-
sure, Pi,Qi ∈ SO(4), with the same constant c(t, N ) in both
cases. The latter case holds as long as t < (N − 1)/2, i.e. the
system is large enough to accommodate the lightcone without
self-intersections. Hence in the thermodynamic limit, O(4)
and SO(4) Haar averages are equivalent in this setting. We
prove these results in Sec. IV B.

We further study c(t, N ) numerically, and plot it in Fig. 2
as a function of time steps t for different system sizes N .
We observe that c(t, N ) converges to a fixed value c ≈ 0.06,
irrespective of N . After one time step, c(1, N ) = 0 exactly,
which simply is thermalizing evolution with independent Haar
distributed orthogonals. Only at longer times does the time-
periodic structure of the circuit become manifest and result
in appreciably change in measure. Since c(t, N ) reaches a
nonzero value, we find that Anderson localization still hap-
pens in this extended setup; an initially localized impurity
stays localized. Each site of the initial state is simply scaled
towards the thermal mixture � = 0 by the same factor c(t, N ).
Nevertheless, after average time evolution, the initial state’s
covariance matrix can still be fully reconstructed from mea-
sured expectation values, albeit their variances increase.

0 10 20 30 40 50 60
t

-0.01

0
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0.02
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t,N
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N=200

FIG. 2. The constant c(t, N ) with which a fermionic covariance
matrix is scaled by random time evolution for t time steps, see
Eq. (11). We generate 104 samples of O(4)-Haar-distributed Pi,Qi ∈
O(4) for each data point. Surprisingly, c(t, N ) does not depend on
system size N even for t large enough such that the lightcone wraps
around the periodic boundaries.

2. Homogeneous evolution delocalizes

Next, let us consider a homogeneous time evolution op-
erator, where Pi = Pj ∈ O(4) and Qi = Qj ∈ O(4) are dis-
tributed according to the orthogonal Haar measure. Let �n

0
be an initial state with a single site n occupied and all others
maximally mixed. This is a zero matrix, except that the 2 × 2
block for site n is γ := ( 0 1

−1 0

)
. In Sec. IV C, we show the

time-averaged final state of this initially localized state to have
the covariance matrix

〈
�n

t-avg

〉
:= lim

T →∞
1

T

T −1∑
t=0

〈
�n

t

〉 = 1

N/2
��, (12)

under a plausible assumption about disjointness of spectra
of matrices that are multiplied by Haar-random orthogonal
matrices which we also verified numerically. We characterize
�� further in Sec. IV C.

An important part of the result is that the covariance matrix
�� depends not on the precise value of n but only on n mod 4.
Thus the location n of the impurity cannot be reconstructed
from 〈�n

t-avg〉. Moreover, in the thermodynamic limit, the
prefactor 1/(N/2) causes 〈�n

t-avg〉 to reach the infinite tem-
perature thermal mixture 0. In conclusion, our result implies
the absence of localization.

A complementary viewpoint of delocalization is provided
by the delocalization of eigenvectors of a single generic
random instance of the time evolution operator. In Sec. IV C 1,
we prove how this allows us to bound all matrix elements of
�n

t-avg for a generic evolution operator O with nondegenerate
spectrum:

∣∣(�n
t-avg

)
ij

∣∣ � 16

N
→ 0, (13)
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in the thermodynamic limit, without resorting to an ensemble
average 〈· · · 〉. On the one hand, this result is stronger than
(12) insofar as it shows �n

t-avg → 0 in the thermodynamic limit
already for single instances of the time evolution operator. On
the other hand, it only gives a bound � 16

N
and not an explicit

form.

B. Spins

We now move from Gaussian circuits to interacting spins.
The average 〈· · · 〉 is now an average over all nearest-neighbor
unitaries Ui, Vi ∈ U (d2) comprising the time evolution oper-
ator, independently distributed according to some probability
distribution with single-site Haar invariance (see Sec. II B).
Here we will first present the statement that relates the evo-
lution of a single site with a depolarising channel. Then, we
show results, which indicate the absence of localization when
averaging with the Haar measure on U(4). Finally, we will
consider different unitary ensembles, which vary in the degree
of entanglement the Ui, Vi generate and present numerical
evidence for a thermal-MBL phase transition.

1. Depolarising channel on each site

Our first result is, that on a single site, the average time
evolution (10) acts as a depolarising channel. To make this
result precise, consider an arbitrary initial state ρ0. Split its
reduced density matrix for one site

ρred
0 = Id/d + ρ̄red

0 (14)

into traceful and traceless part ρ̄red
0 . For the evolved reduced

state at the same site, we prove〈
ρred

t

〉 = Id/d + α(t ) ρ̄red
0 . (15)

This corresponds to a depolarising channel [33] with de-
polarization probability 1 − α(t ). The real constant α(t ) is
independent of the initial state. Provided the lightcone (2t + 1
sites in width) around the site fits into the system, it is also
independent of the position of the site and of system size.
Moreover, it is striking that the final state on a single site
is affected only by the initial state on the same site, and is
independent of the initial state at all other sites. We prove (15)
in Sec. IV D where we also derive a similar formula for the
two-site reduced density matrix.

If the initial state is free of intersite correlations, with all
but one site completely mixed, the final state can be fully
characterized. Thereby the initial state ρ0 = Id/d ⊗ ρred

0 ⊗
Id/d ⊗ Id/d ⊗ · · · evolves to a final state with the same
structure 〈ρt 〉 = Id/d ⊗ 〈ρred

t 〉 ⊗ Id/d ⊗ Id/d ⊗ · · · .
To understand the behavior of the system, it is necessary

to determine the behavior of α(t ). For this, we will study
α(t ) numerically for spin 1/2 particles, d = 2. In order to
access long times, we use a new numerical method (Sec. V).
It reduces the complexity for t time steps from 22(2t+1) to
2t and uses an importance sampling technique to lower the
variance. Since the number of spins involved after t time steps
is 2t + 1, this in turn has allowed us to reach 39 of them while
maintaining an effectively infinite system size.

t
2 4 6 8 10 12

(t
)

10 -3

10 -2

FIG. 3. The constant α(t ) relating initial and final states (15) for
Haar-distributed unitaries. The figure is indicative of thermalization
at long times as α vanishes exponentially in time. For each data point,
103 samples of random unitaries were generated.

2. Haar-distributed unitaries thermalize

As a concrete probability distribution for the unitaries
Ui, Vi , we first consider the Haar distribution on U(4). In
Fig. 3, we present numerical results for this probability dis-
tribution. They show that α vanishes exponentially as t →
∞, with a half-life of about 1.8 time steps. Therefore we
find thermalization to a locally infinite temperature state:
the map (15) describing a single site’s evolution becomes
completely depolarising in the limit t → ∞ where α → 0. A
similar result has been obtained in Ref. [23] in a Hamiltonian
(continuous time evolution) setting.

This result is in stark contrast to the analogous setting
with Gaussian circuits (Sec. III A 1). A Floquet operator built
of unitaries conserving Gaussianity as studied in that setting
causes localization, while taking into account all unitaries, it
causes thermalization. The reason for this difference can be
attributed to the fact that MBL phases are not ubiquitous in
parameter space [34], whereas Anderson localization is (in 1D
models, as analysed here).

3. Tunable coupling strength and MBL transition

As seen in the previous section, the Haar distribution
exhibits thermalizing behavior, since MBL can typically only
be found for strong random potentials relative to the coupling
[34]. In practice, Haar-distributed Ui and Vi contain many
highly entangling operators, which can move information
that is initially contained in one site across the chain. This
opens up the question of whether MBL can be found by
considering less entangling operations. We therefore modify
the distribution used for the unitaries composing the time
evolution operator.

Every unitary in U(4) can be cast in the form [35]

(u1 ⊗ u2)eia σx⊗σx+ib σy⊗σy+ic σz⊗σz (u3 ⊗ u4) (16)

with ui ∈ U(2) and coefficients a, b, c ∈ R. σi denote the
Pauli matrices. We define a probability distribution for all
Ui, Vi ∈ U(4) composing the time evolution operator by
means of this form, drawing each ui from the Haar measure
for U(2) and a, b, c uniformly from the interval [−h, h]. Note
that this distribution possesses single-site Haar invariance, so
that the results of Sec. III B 1 still apply.

In Fig. 4, we present numerical results for α(t ) for dis-
tributions with various coupling strengths h. In the figure,
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t
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(t
)

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

h=0.01
h=0.1
h=0.2
h=0.5
h=0.8
Haar

FIG. 4. The constant α(t ) relating initial and final states (15)
for unitaries distributed according to (16) with random coupling
strength h. For strong coupling, α(t ) relaxes to zero and the system
thermalizes. In contrast, α(t ) reaches a finite value at weak couplings
and the system displays localization. Horizontal lines indicate α = 0
and the exact decoupled value h = 0 and α = 1/3. See Sec. V for the
numerical method used.

we find a crossover from thermalization for large coupling
where α(t ) → 0 and localization for small coupling where
α(t ) reaches a finite value and the map (15) keeps information
about the initial state. In the completely uncoupled case h =
0, α = 1/3 is reached exactly (Appendix B), consistent with
the behavior for h → 0.

The MBL transition can be extracted from α(t = ∞) as
a function of h. Alternatively, it may be pin-pointed by
considering the entanglement entropy of the time evolution
operator’s eigenstates in the limit of an infinite system. In the
thermal phase, the eigenstates have volume law entanglement
while in the MBL phase they have lower area law entangle-
ment [36,37]. Results obtained from exact diagonalization of
small systems are shown in Fig. 5 alongside α(t = 18). It
is interesting to consider also the variance of the different
eigenstates’ entanglement, also plotted in Fig. 5. Because
all eigenstates have similar entanglement properties in both
thermal and MBL phases, the variance peaks near the phase
transition where the entanglement is intermediate between
these limits in a way that varies strongly between eigenstates
[38]. Those measures all agree and clearly indicate a finite-
size or finite-time estimate of the MBL transition at coupling
strength near h0 ≈ 0.3. Such estimates are known to drift
systematically towards the MBL phase as the size of the
system is increased [13], as can be seen from the crossings
in the middle panel of Fig. 5, so the actual phase transition is
most likely at a value of h smaller than this.

IV. PROOFS

In this section, we give detailed proofs for the analytic
results reported above. The numerical method is explained in
the section after. First, we present a technique used throughout

0.01 0. Haar

h       

0

0.2

0.4

(t
=

18
)

0.01 0.

1 1

1 1 Haar

h       

0

0.5

1

S
 / 

(N
/2

)

0.01 0.1 1 Haar

h       

0

0.2

0.4

S
rm

s
 / 

(N
/2

)

N=2
N=4
N=6
N=8
N=10
N=12

thermal
phase

MBL
phase

h0 0.3

FIG. 5. MBL transition at h0 ≈ 0.3. (Top) Late-time value α(t =
18) (as in Fig. 4) as a function of the random coupling strength h, and
(rightmost datapoints) for Haar-distributed unitaries. (Middle and
bottom) Average bipartite entanglement entropy (base 2) of eigen-
states of 103 samples of the time evolution operator U , for several
system sizes N . In addition to the average entropy of all eigenstates
of a random instance U (middle), we calculate the standard deviation
of the eigenstates of an instance (bottom). These measures show clear
signals of an MBL transition that become more pronounced as the
chain length N increases.

that we call the twirling technique (Sec. IV A). Then we show
our results for Gaussian circuits, under inhomogeneous evolu-
tion in Sec. IV B and homogeneous evolution in Sec. IV C. In
the latter case, we also explain the complementary viewpoint
provided by eigenvector delocalization. Finally, we proof the
results for spin chains in Sec. IV D.

A. Twirling technique

In this section, we present a technique we call twirling
technique, which recurs in the proofs of our results. The idea
is to exploit single-site Haar invariance of the probability dis-
tribution for the unitaries. Single-site Haar invariance means
that any transformation of a Ui or Vi of the form

Ui ↔ (w1 ⊗ w2)Ui (w3 ⊗ w4) (17)

does not affect averages 〈· · · 〉, for arbitrary choice of wj ∈
U (d ).

Our procedure is depicted in Fig. 6. At any site 2n (here we
demonstrate for even sites), we perform the transformation

Un → (Id ⊗ w2n)Un; Vn → Vn(w†
2n ⊗ Id ) (18)

with arbitrary w2n ∈ U (d ). Then w2n cancels with w
†
2n in a

repeated application of the time evolution operator U , which
transforms as

Ut → w
†
2nU

tw2n, (19)

w2n only acting on site 2n.
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Haar invariance =

FIG. 6. Illustration of the twirling technique (see
Appendix IV A). By single-site Haar invariance, replacing
U1 → (Id ⊗ w)U1 and V1 → V1(w† ⊗ Id ), w ∈ U (d ) does not
affect the averaged result. The sketch shows an excerpt of the time
evolution operator U . In a repeated application Ut , most w and w†

cancel.

Thus Haar invariance allows us to relate the initial state to
the average final state:

〈ρt 〉 = 〈Utρ0U
t†〉 = 〈w†

2nU
tw2nρ0w

†
2nU

t†w2n〉 (20)

= w
†
2n〈ρ ′

t 〉w2n with ρ ′
0 = w2nρ0w

†
2n. (21)

This holds for arbitrary w2n ∈ U (d ) and can be iterated in-
dependently at each site. In some cases, it will prove useful
to integrate over w2n in (20), which, again, does not alter the
result 〈· · · 〉. An important simplification arises when tracing
over sites of the final state, because then in (20) the left-
and rightmost w

†
2n and w2n cancel. In this paper, we consider

only distributions with single-site Haar invariance. Even in its
absence, for example, if transformation only with certain w2n

are allowed, some results may carry over.

B. Gaussian circuits: Inhomogeneous evolution

In this section, we show the result (11). First, we take
Pi,Qi ∈ O(4). Then, we show how to reduce Pi,Qi ∈ SO(4)
to the former case.

1. Haar measure on orthogonal group

By linearity of time evolution and Haar-averaging, it suf-
fices to consider only initial states �n

0 = ⊕N
i=1 δinγ having all

but site n maximally mixed. The 2 × 2 covariance matrix for
the occupied site is given by γ = ( 0 1

−1 0

)
.

We adapt the twirling technique (Sec. IV A) to the setting
of Gaussian circuits to show that all components of 〈�n

t 〉
are zero, except the 2 × 2 block corresponding to on-site
correlations at site n. To this end, consider the transformation

⊕
Pi →

(⊕
Pi

)
�;

⊕
Qi → G†�G

(⊕
Qi

)
(22)

with a diagonal matrix � of signs ±1. Because � and
G†�G have the correct structure to be split among the Pi

and Qi , in spirit of the twirling technique we may perform
this transformation using the Haar invariance of the Haar-
distributed Pi,Qi . Specifically, fix �2n−1,2n−1 = �2n,2n = +1
such that ��n

0� = �n
0 . Then, similarly to (20), single-site

Haar invariance implies that〈
�n

t

〉 = 〈
�Ot��n

0�Ot†�
〉 = �

〈
�n

t

〉
�. (23)

For each i �= 2n − 1, 2n, we are free to choose �i,i = −1 and
all other signs positive. From this we learn that the entire ith
row and ith column (except the diagonal entry) of 〈�n

t 〉 are
zero. The only matrix elements that can be nonzero are the
diagonal and the 2 × 2 block corresponding to site n.

Moreover, the final covariance matrix is real antisym-
metric, so the diagonal is also zero and only two entries
〈�n

t 〉2n−1,2n, 〈�n
t 〉2n,2n−1 remain. These form an antisymmetric

2 × 2 block at site n. Therefore this block is proportional to
the same block of the initial covariance matrix; we can write〈

�n
t

〉 = c(t, N, n)�n
0 . (24)

It remains to show that c(t, N, n) are equal for all n. The
Haar average treats all unitaries on equal footing, such that
within an average O possesses translational invariance by two
sites. Therefore 〈�n+2

t 〉 = c(t, N, n)〈�n+2
0 〉, mandating that

there can only be two distinct values for n even or odd.
Inversion of the chain corresponds to

Pi →
(

I2

I2

)
PN/2−i

(
I2

I2

)
, (25)

and accordingly for Qi . It is a symmetry because in the
average,

( I2
I2

)
can be Haar-absorbed by PN/2−i . Inversion

invariance implies that there is only one value c(t, N ) =
c(t, N, n) for both n even and odd, the required form for (11).
Any uncorrelated initial state can be decomposed as a linear
combination of �n

0 ’s, so by linearity, (11) holds with the same
constant c(t, N ) for each initial state.

We state a few further conclusions. Note that the particle
number of the state changes. Precisely we can formulate

c(t, N ) = n(〈�t 〉)/N − 1/2

n(�0)/N − 1/2
(26)

because the particle number n(�) = ∑
(λi/2 + 1/2) is related

to the sum of every second entry λi along the state’s first
offdiagonal. Although we consider Gaussian circuits, trans-
formations beyond those preserving particle number are of
paramount importance in this setting (as c(t, N ) �= 1) and
our results go beyond mere Anderson localization of a single
particle.

After one time step, c(t = 1, N ) = 0 exactly, as direct in-
tegration of Pi,Qi shows [39]. After that, it becomes nonzero.
To assess the localising properties of the system, the long-time
behavior of c(t, N ) is of interest. For this, its time average

c(t-avg, N ) := lim
T →∞

1

T

T −1∑
t=0

c(t, N ) (27)

is a useful value. This removes the dependence on the eigen-
values eiθi of O: from (11) we can write

c(t, N ) = − 1
2

〈
Tr �n

0Ot�n
0Ot†〉 (28)
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for any 1 � n � N . Inserting the spectral decomposition O =∑
i |vi〉 eiθi 〈vi |, the generic nondegenerate case θi �= θj yields

c(t-avg, N ) = −1

2

〈∑
i,j

δij︷ ︸︸ ︷
lim

T →∞
1

T

T −1∑
t=0

eiθi t−iθj t

× Tr �n
0 |vi〉〈vi | �n

0 |vj 〉〈vj |
〉

(29)

= 1

2

〈
2N∑
i=1

∣∣〈vi |�n
0 |vi〉

∣∣2〉 � 0. (30)

While it is expected that this average is strictly positive, its
scaling in the thermodynamic limit N → ∞ is unclear. To
establish that c(t, N ) reaches a finite value and localization
holds, we resort to numerical calculations of c(t, N ) as shown
in Fig. 2.

2. Haar measure on special orthogonal group

We will now show that the results for the O(4) Haar
measure equally apply when using the SO(4) Haar measure.
Let the number of time steps t < (N − 1)/2, such that the
lightcone fits into the periodic system without overlapping.
Relate the orthogonal to the special orthogonal group by
writing Pi,Qi ∈ O(4) in the form

Pi =

⎛
⎜⎝

1
1

1
−1

⎞
⎟⎠

pi

P̃i , Qi = Q̃i

⎛
⎜⎝

1
−1

1
1

⎞
⎟⎠

qi

(31)

with P̃i , Q̃i ∈ SO(4) and pi, qi ∈ Z2. Note that the orthogo-
nal Haar distribution for Pi corresponds to the special orthog-
onal Haar distribution for P̃i in combination with the uniform
distribution for pi .

Our strategy will consist in showing that the average〈
Ot�n

0Ot†〉
Pi ,Qi∈O(4) = 〈〈

Ot�n
0Ot†〉

P̃i ,Q̃i∈SO(4)

〉
pi ,qi∈Z2

(32)

= 〈
Ot�n

0Ot†〉
P̃i , Q̃i ∈ SO(4)

pi , qi fixed

= 〈
Ot�n

0Ot†〉
Pi ,Qi∈SO(4) (33)

is independent of how pi, qi are fixed, i.e., the equality of
(32) and (33). Then the equality of O(4) and SO(4) averages
immediately follows for all states; these can can be written
as linear combinations of �n

0 ’s. We may absorb all qi into
pi by the transformation qi → 0, pi → pi + qi , which uses
associativity of matrix multiplication to regroup qi from Q̃i to
pi and P̃i .

Thanks to SO(4) Haar invariance of Q̃k and P̃k+1 (for
each index k in turn), whenever pk = 1 we may perform the
transformation pk → 0, pk+1 → pk+1 + 1. Specifically, this
follows from the SO(4)-Haar-invariant transformations

Q̃k → Q̃k

⎛
⎜⎝

1
−1

1
−1

⎞
⎟⎠,

P̃k+1 →

⎛
⎜⎝

1
−1

1
−1

⎞
⎟⎠P̃k+1. (34)

Iterating this transformation for increasing values of k, we
may set all pi = 0 except for pN/2 which may be 0 or 1. Due
to the lightcone size, all occurences of pN/2 are multiplied by
the zeros in the initial state �n

0 = ⊕
i δinγ (for n = N/2, other

initial sites n follow similarly). In conclusion, the average (33)
is independent of all pi, qi and the main result (11) holds for
both the O(4) and SO(4) Haar measures.

C. Gaussian circuits: Homogeneous evolution

In this section, the time evolution operator O is homo-
geneous, P = Pi = Pj ∈ O(4),Q = Qi = Qj ∈ O(4). We
show the result (12) summarized in Sec. III A 2.

a. Fourier transformation of problem. First, let us perform a
Fourier transformation of the problem. The periodic structure
of O suggests a Fourier transform of two-site blocks with F ⊗
I4, employing the N/2 × N/2 discrete Fourier matrix

Fkj := 1√
N/2

exp

(
−2πi

(k − 1)(j − 1)

N/2

)
, (35)

where k, j = 1, . . . , N/2. We will denote Fourier trans-
formed quantities with a hat. The time evolution operator O

is block-circulant (4), hence its Fourier transform is block-
diagonal and can be written in terms of the diagonal compo-
nents

O
F⊗I4−−−→

N/2⊕
k=1

Ôk, Ôk = ĜkQĜ
†
kP ∈ U(4), (36)

with Ĝk := ( 0 exp(2πik/(N/2))I2
I2 0

)
.

b. Localized initial state. Consider now the localized initial
state �n

0 = ⊕N
i=1 δinγ with site n occupied (without any loss

of generality, we consider n odd) and all other sites maximally
mixed. Its Fourier transform is not block-diagonal as for the
time evolution operator (36), but also has off-diagonal blocks

�n
0

F⊗I4−−−→ (
�̂n

0

)
kl

= 1

N/2
eiφkl

(
γ

0

)
(37)

with phases φkl = 2π (n − 1)(k − l)/N . Accordingly, the fi-
nal state has off-diagonal blocks, too

〈
�n

t

〉 F⊗I4−−−→ 〈
�̂n

t

〉
kl

= 1

N/2
eiφkl

〈
Ôt

k

(
γ

0

)
Ô

t†
l

〉
. (38)

Numerical calculations provide evidence that all blocks 〈�̂n
t 〉kl

vanish as t → ∞, except for the diagonal k = l, and the pairs
(k, l) = (N/2, N/4), (k, l) = (N/4, N/2). These pairs only
exist for N divisible by four and correspond to the Fourier
phases 0 and π . Only for these two pairs are both Ôk and Ôl

real.
c. Time-average for localized initial state. As we now argue,

in the time average 〈�n
t-avg〉 all Fourier blocks 〈�̂n

t-avg〉kl, k �=
l, (k, l) �= (N/2, N/4), (k, l) �= (N/4, N/2) are zero. Insert-
ing the spectral decomposition Ôk = ∑4

i=1 eiθk,i |vk,i〉〈vk,i |,
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the time average is

〈
�̂n

t-avg

〉
kl

= eiφkl

N/2

〈
4∑

i,j=1

(∗)︷ ︸︸ ︷
lim

T →∞
1

T

T −1∑
t=0

ei(θk,i−θl,j )t

× |vk,i〉〈vk,i |
(

γ

0

)
|vl,j 〉〈vl,j |

〉
. (39)

For each fixed pair (k, l), whenever the sets of eigenvalues
{eiθk,i , i = 1, 2, 3, 4} of Ôk and {eiθl,i , i = 1, 2, 3, 4} of Ôl

are disjoint, (∗) is zero. Moreover, for the Haar average
〈�̂n

t-avg〉kl to vanish for any given pair (k, l), it suffices that the
eigenvalue sets are disjoint for all P,Q except a measure zero
set. We conjecture that this holds for all pairs (k, l), k �= l and
(k, l) �= (N/2, N/4), (k, l) �= (N/4, N/2) [40].

In conclusion, in the time average of (38) of an initially
localized state, only Fourier components k = l and k, l =
N/2, N/4 survive:

〈
�n

t-avg

〉 F⊗I4−−−→ 〈
�̂n

t-avg

〉
kl

(40a)

= δk=l

N/2
lim

T →∞
1

T

T −1∑
t=0

〈
Ôt

k

(
γ

0

)
Ô

t†
k

〉
(40b)

+ δk=N/2,l=N/4 + δk=N/4,l=N/2

N/2
(40c)

× eiφkl lim
T →∞

1

T

T −1∑
t=0

〈
Ôt

k

(
γ

0

)
Ô

t†
l

〉
. (40d)

Note that the position n of the initial localization is present
in (40b) only as n mod 2, determining

(
γ

0

)
or
(0

γ

)
, and

in (40d) only as n mod 4, in the phase φkl = 2π (n − 1)(k −
l)/N = ±π/2 (n − 1).

The Fourier back transformation is

〈
�n

t-avg

〉 = 1

N/2
�� := 1

N/2
(�′

� + �′′
� ), (41)

where �′
� denotes the back transform arising from the diagonal

Fourier components (40b) and �′′
� the back transform arising

from the Fourier components k, l = N/2, N/4 (40d), each
without the prefactor 1/(N/2). As discussed in the previous
paragraph, �� is only dependent on n mod 4 and, thanks to
the prefactor, vanishes in the limit N → ∞. This concludes
our result (12).

d. Translation-invariant initial state. On top of the results
summarized in Sec. III A 2, we provide a characterization of
�′

�. For this, we need to first consider the translation-invariant
initial state �t.i.

0 with each site occupied. It is invariant under
Fourier transformation:

�t.i.
0 =

N⊕
i=1

γ
F⊗I4−−−→ �̂t.i.

0 =
N/2⊕
k=1

(
γ

γ

)
. (42)

The final state has a block-diagonal Fourier transform and
each block has the form〈

�t.i.
t

〉 = 〈
Ot�t.i.

0 Ot†〉 F⊗I4−−−→ 〈
�̂t.i.

t

〉
k

=
〈
Ôt

k

(
γ

γ

)
Ô

t†
k

〉
.

(43)

We will now relate the translation-invariant state’s time aver-
age 〈�t.i.

t-avg〉 to �′
� in the time average of localized initial states.

e. Relating �′
� to 〈�t.i.

t−avg〉. We now show that �′
� = 〈�t.i.

t-avg〉
except that all rows and columns corresponding to even sites
are zero. For this, we exploit Haar invariance, similarly to the
twirling technique and the case of inhomogeneous fermionic
time evolution. The twirling technique can be used either with
the original time evolution operator (4) and (6) or equivalently
directly in the Fourier transformed quantities (36) and (43),
which in the following is the perspective we take.

First, we show that 〈�̂t.i.
t 〉k [see (43)] is 2 × 2 block-

diagonal. This follows from the transformation

P → P�, Q → Ĝ
†
k�

†ĜkQ (44)

with � = (±I2
±I2

)
. Note that Ĝ

†
k�

†Ĝk is real orthogonal as
required to apply O(4) Haar invariance. This transformation
effects, as in (20),〈

�̂t.i.
t

〉
k

= 〈�†Ôt
k�

(
γ

γ

)
�†Ôt†

k �〉 = �†〈�̂t.i.
t

〉
k
�. (45)

With appropriate choice of signs in � it follows that the off-
diagonal blocks of 〈�̂t.i.

t 〉k vanish.
Now we are in a position to show the relation between〈

Ôt
k

(
γ

γ

)
Ô

t†
k

〉
and

〈
Ôt

k

(
γ

0

)
Ô

t†
k

〉
appearing in the Fourier

transformations of 〈�t.i.
t-avg〉 and �′

�, respectively. For this, use
the transformation (44) with

� =

⎛
⎜⎝

1
1

0 1
1 0

⎞
⎟⎠. (46)

Again, note Ĝ
†
k�Ĝk is real. Then〈

Ôt
k

(
γ

0

)
Ô

t†
k

〉

= 1

2

[〈
Ôt

k

(
γ

γ

)
Ô

t†
k

〉
+
〈
Ôt

k

(
γ

−γ

)
Ô

t†
k

〉]

= 1

2

[〈
Ôt

k

(
γ

γ

)
Ô

t†
k

〉
+
〈
Ôt

k�

(
γ

γ

)
�Ô

t†
k

〉]

= 1

2

[〈
Ôt

k

(
γ

γ

)
Ô

t†
k

〉
+ �

〈
Ôt

k

(
γ

γ

)
Ô

t†
k

〉
�

]
,

(47)

with the last equality due to Haar invariance. Thanks to one
term without and one term conjugated by �, the first block
stays the same and the second block (which corresponds to
even sites) cancels. This carries through the Fourier transform
F ⊗ I4, concluding our proof that �′

� = 〈�t.i.
t-avg〉 except that all

rows and columns corresponding to even sites are zero.
f. Characterization of 〈�t.i.

t 〉. Now we will further charac-
terize 〈�t.i.

t 〉 arising from the translation-invariant initial state.
In terms of the Fourier components of 〈�t.i.

t 〉, we show below
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that 〈
�̂t.i.

t

〉
k

= c(t, k,N )

(
γ

γ

)
, (48)

with a real constant c(t, k,N ). This is a similar form as the
main result (11) except that there is one constant per Fourier
component. The methods in the proof following are also very
similar.

We have shown already that 〈�̂t.i.
t 〉k consists of two 2 × 2

blocks, in the paragraph of equation (44). 〈�̂t.i.
t 〉k is evidently

anti-Hermitian as a real antisymmetric matrix conjugated with
a unitary (43). To prove (48), it remains to show that both
blocks are real and identical.

First, we show that both blocks are real. To this end, use
the transformation (44) with

� =

⎛
⎜⎝

0 1
−1 0

0 1
−1 0

⎞
⎟⎠. (49)

Note that Ĝ
†
k�

†Ĝk is real orthogonal, so Haar invariance of
P and Q’s probability distribution is applicable. For anti-
Hermitian 2 × 2 matrices X,

X =
(

0 1
−1 0

)†
X

(
0 1

−1 0

)
⇒ X real antisymmetric.

(50)

Therefore the transformation’s effect (45) shows that both
blocks are real.

Lastly, we show that both blocks are identical. This is
achieved by considering inversion symmetry of the chain.
Inversion corresponds to

P →
(

I2

I2

)
P

(
I2

I2

)
(51)

and likewise for Q. This is equivalent to

Ôk →
(

I2

I2

)
Ô∗

k

(
I2

I2

)
(52)

and 〈
�̂t.i.

t

〉
k

→
(

I2

I2

)〈
�̂t.i.

t

〉∗
k

(
I2

I2

)
. (53)

Thus inversion invariance mandates that both real blocks are
the same.

g. Characterization of c(t, k,N ). To understand 〈�t.i.
t 〉, it

remains to characterize c(t, k,N ). In Fig. 7, we therefore
show numerical calculations of c(t, k,N ).

The figure shows that c(t, k,N ) converges, except for
2π
N/2k = 0, π, 2π , where there are oscillations in t . We can
calculate the time average of values

c(t-avg, k,N ) = 1

4
for

2π

N/2
k = 0, π, 2π (54)

exactly. In these cases, Ĝk is real orthogonal and can be
absorbed by the Haar-invariant transformation Q → Ĝ

†
kQĜk .

In turn, Q can be absorbed by the transformation P → Q†P .
Then we have simply Ôk = P ; this corresponds to two sites
in the uncoupled case and is explained in Appendix A.

0 /2 3/2 2
2 /(N/2)  k

0.15

0.2

0.25

0.3

0.35

c(
t,k

,N
=

20
0)

FIG. 7. Constant c(t, k, N = 200) for the characterization of
〈�t.i.

t 〉 (48) for homogeneous evolution of fermions. Each of the lines
shows data for a fixed t from 20 to 50. We perform the orthogonal
Haar average by considering 106 samples.

The symmetries k ↔ −k = N/2 − k and “k ↔ k + π” of
c(t, k,N ) are apparent in Fig. 7. The first corresponds to
complex conjugation of Ôk , and is a symmetry because 〈�t.i.

t 〉k
is real. The latter symmetry only exists for even N/2 and
then reads k ↔ k + N/4. It is equivalent to the Haar-invariant
transformation

Q →
(−I2

I2

)
Q

(
I2

−I2

)
, (55)

which effects e±2πik/(N/2) → −e±2πik/(N/2) in (36).

Homogeneous evolution: Eigenvector delocalization

In this section, we explain in detail a complementary view-
point to delocalization summarized in Sec. III A 2, eigenvector
delocalization. The eigenvectors �vi to eigenvalues eiθi of each
generic instance of the homogeneous evolution operator O

are delocalized. To see this, let T be the orthogonal operator
effecting translation by two sites (four matrix entries). It
commutes with O and has T N/2 = I2N . Each �vi is therefore
eigenvector of T to a phase φi and for its components the
relation v

j+4
i = eφi v

j

i holds circularly. Taking �vi normalized,

∣∣vj

i

∣∣2 = 2

N

(
N/2−1∑
k=0

∣∣vj+4k

i

∣∣2) � 2

N
| �vi |2 = 2

N
. (56)

In the generic case, where O does not have degenerate
eigenvalues, we can give an estimate of the final covariance
matrix even without resorting to a Haar average. We expand
�n

t-avg with the spectral decomposition O = ∑
k |vk〉 eiθk 〈vk|

of the specific instance of the time evolution operator:

�n
t-avg = lim

T →∞
1

T

T −1∑
t=0

Ot�n
0Ot† (57)

=
2N∑

k,l=1

δθk ,θl︷ ︸︸ ︷
lim

T →∞
1

T

T −1∑
t=0

ei(θk−θl )t |vk〉〈vk| �n
0 |vl〉 〈vl|. (58)

Similarly to (29), the time average cancels cross terms.
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Let �ej be the standard basis. The matrix elements of �n
t-avg

are then

〈
ei |�n

t-avg|ej

〉 = 2N∑
k=1

〈ei |vk〉 〈vk|�n
0 |vk〉 〈vk|ej 〉. (59)

With the bound (56) for the eigenvector’s components, we
can show the estimate (13) by expanding �n

0 = |e2n−1〉〈e2n| −
|e2n〉〈e2n−1|:∣∣(�n

t-avg

)
ij

∣∣ = ∣∣〈ei |�n
t-avg|ej 〉

∣∣ (60)

�
2N∑
k=1︸︷︷︸
2N

|〈ei |vk〉|︸ ︷︷ ︸
�√

2/N

|〈vk|�n
0 |vk〉|︸ ︷︷ ︸

�4/N

|〈vk|ej 〉|︸ ︷︷ ︸
�√

2/N

� 16

N
.

(61)

D. Spins

In this section, we prove our analytic results about spin
chains summarized in Sec. III B 1, using the twirling tech-
nique from Sec. IV A. We require the probability distribution
for the unitaries Ui, Vi comprising the unitary-circuit time
evolution operator to possess single-site Haar invariance, as
introduced in the settings II B.

The integral over the unitary group∫
U (d )

dwn w†
nAwnBnw

†
nCwn

= In
d

d
Trn(Bn) ⊗ d Trn(AC) − Trn(A) Trn(C)

d2 − 1

+Bn ⊗ d Trn(A) Trn(C) − Trn(AC)

d(d2 − 1)
(62)

can be computed exactly [41]. Here, A,C ∈ U (dN ) are multi-
qudit operators and wn,Bn ∈ U (d ) act only on one qudit at
site n. The left side of the tensor products is qudit n, while
the right side contains all the other sites. The same result is
obtained when averaging over a unitary 2-design such as, for
qubits, the Clifford group [42] instead of entire U (d ).

Similarly, we have the integral∫
U (d )

dwi wiDw
†
i = Tri (D) ⊗ Ii

d/d, (63)

where D ∈ U (dN ) is a multiqudit operator and wi ∈ U (d )
acts only on one qudit at site i. The identity Ii

d/d is at the
qudit site i, which is traced out from D. The integral holds
equally for the integrand w

†
i Dwi . For this integral, a unitary

1-design is sufficient for wi , such as for d = 2 the Pauli
matrices together with the identity.

To show our result (15) for a single-site reduced density
matrix at site n, let I = {1 . . . N}\{n} be the set of all other
sites. Let ρ0 be the (arbitrary) initial state. With this notation,
we will compute the relation between TrI ρ0 and

TrI 〈ρt 〉 = TrI 〈Utρ0U
t†〉. (64)

At each site i ∈ I in turn, the twirling technique (20)
results in

TrI 〈ρt 〉 = TrI 〈w†
i U

twiρ0w
†
i U

t†wi〉 = TrI 〈Utwiρ0w
†
i U

t†〉.
(65)

We may integrate over wi , whose choice is arbitrary, by setting
D = ρ0 in formula (63). This gives

TrI 〈ρt 〉 = TrI 〈Ut [Tri (ρ0) ⊗ Ii
d/d]Ut†〉. (66)

Iteration of this procedure for each i ∈ I yields

TrI 〈ρt 〉 = TrI 〈Ut [TrI (ρ0) ⊗ II
dN−1/d

N−1]Ut†〉. (67)

The twirling technique at site n allows us to use formula
(62) with A = Ut, Bn = TrI (ρ0), C = Ut†:

TrI 〈ρt 〉 = 1

dN−1
TrI 〈w†

nU
twn TrI (ρ0)w†

nU
t†wn〉 (68)

= 1

dN−1
TrI

〈
In
d

d
TrnTrI (ρ0) (69)

⊗ d Trn(AC) − Trn A Trn C

d2 − 1
(70)

+ TrI (ρ0) ⊗ d Trn A Trn C − Trn(AC)

d(d2 − 1)

〉
(71)

= In
d

d

d2 − λ(t )

d2 − 1
+ TrI (ρ0)

λ(t ) − 1

d2 − 1
(72)

= In
d

d
+ λ(t ) − 1

d2 − 1︸ ︷︷ ︸
α(t )

ρ̄n
0 . (73)

In the third equality, we have used that TrnTrI (ρ0) = 1,
TrI Trn(AC) = dN and defined the constant

λ(t ) =
〈

1

dN−1
TrI (Trn Ut Trn Ut†)

〉
(74)

into which we have moved the remaining Haar average. λ is
manifestly real and non-negative. In the final equality, we have
rewritten the expression in terms of the traceless part ρ̄n

0 of
the initial reduced density matrix TrI ρ0. The form (15) of our
result can be obtained by setting α(t ) = λ(t )−1

d2−1 .

A lightcone structure emerges in the definition of λ. Only
constituent unitaries of U within a lightcone of velocity 2
around site n contribute to λ, all others cancel with their
daggered counterpart in consequence of TrI . A longer chain
will have an additional Tri (Id ) at each additional site i outside
the lightcone, which is precisely canceled by the higher N in
the prefactor. (Figure 8 shows a graphical representation of a
slightly different quantity but also serves to illustrate this fact.)
In combination with Haar invariance of U , within the average
〈· · · 〉 that treats all constituent unitaries on equal footing, we
realize the following. λ(t ) is independent of site position n

or chain length N as long as the lightcone around n does
not intersect a boundary, or, in the case of periodic boundary
conditions, itself.

After a single time step, λ(1) = 1 exactly such that the
evolution results in a locally maximally mixed site (73). For
longer times, we resort to a numerical method for evaluating
α(t ) = λ(t )−1

d2−1 , explained in the next Sec. V.
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|s

s|

|0
0|½ ½ ½ ½ ½ ½ ½ ½ ½ ½

FIG. 8. Diagrammatic representation of (84) for t = 4. Unitaries
outside of lightcones cancel and two rhomboids remain. A larger
system results in more empty traces that do not contribute as they
each have a factor 1/2 attached. Sites are shown in the horizontal
direction, unitaries Ui (Vi) are shown as blue (red) boxes. Their
daggered counterparts lack a thick border.

Next let us calculate the entire final density matrix 〈ρt 〉 for
the initial state

ρ0 = ρn
0 ⊗ II

dN−1/d
N−1 (75)

that has all sites maximally mixed apart from site n. The
twirling technique and formula (63) with D = Utρ0U

t† can
be applied at each site i ∈ I iteratively:

〈ρt 〉 = 〈w†
i U

twiρ0w
†
i U

t†wi〉 = 〈w†
i U

tρ0U
t†wi〉 (76)

= 〈Tri (U
tρ0U

t†)〉 ⊗ Ii
d/d (77)

= 〈TrI (Utρ0U
t†)〉 ⊗ II

dN−1/d
N−1 (78)

= TrI 〈ρt 〉 ⊗ II
dN−1/d

N−1. (79)

All sites of the final state are maximally mixed except for site
n, it is related to the initial ρn

0 = TrI (ρ0) as per (72).
Let us turn to the behavior of two-site reduced density

matrices for the not necessarily adjacent sites n and m, now
I = {1 . . . N}\{n,m}. Assume the initial state’s reduced den-
sity matrix to be a tensor product and split it

TrI (ρ0) = (
In
d/d + ρ̄n

0

) ⊗ (
Im
d /d + ρ̄m

0

)
(80)

into traceful and traceless parts.
To determine the final state TrI 〈ρt 〉, we employ the same

method as before. However we will have to use formula (62)
twice, at sites n and m, and the resulting Trn and Trm terms
couple. A calculation yields the compact result

TrI 〈ρt 〉 =
(
In
d

d
+ λ − 1

d2 − 1
ρ̄n

0

)
⊗
(
Im
d

d
+ λ − 1

d2 − 1
ρ̄m

0

)

+ λ′ − λ2

(d2 − 1)2
ρ̄n

0 ⊗ ρ̄m
0 . (81)

Here, λ = λ(t ) is the same as before in (74), so the first term is
simply an uncorrelated tensor product of the single site result
(73). The coefficient

λ′(t ) =
〈

1

dN−2
TrI (Trn,m Ut Trn,m Ut†)

〉
(82)

appearing in the second term is also real and positive. It
depends on |n − m| until the sites are far enough apart such
that their lightcones do not intersect. (This requires a sufficient
system size.) In that case, λ′ = λ2 and the two-site result (81)
reduces to the single-site result (73).

Our method to show that the evolution of a single site
is a depolarising channel (73) may readily be generalized to
further time evolutions other than the specific quantum circuit
considered here. For this, the time-evolution operator must al-
low for transformations of the form (19), such that the twirling
technique can be applied analogously. One such example was
studied in Refs. [43,44], which considered a random nonlocal
Hamiltonian coupling all N spins, whose diagonalizing matrix
is distributed according to the U (dN ) Haar measure. In that
case, the expression for α(t ) can be simplified in terms of the
spectral form factor of the Hamiltonian.

V. NUMERICAL METHOD FOR SPINS

In this section, we present the new numerical method we
use for the setting of spin chains. Obtaining numerical values
for α(t ) of (15) is much more difficult than for c(t, N ) in the
fermionic case, because the Hilbert space grows exponentially
while covariance matrices grow only quadratically in system
size N . In the following, we describe a new numerical method
that significantly decreases the complexity from 42t+1 to 2t for
t time steps, at effectively infinite system size. For definite-
ness, we set the local Hilbert space dimension d = 2 although
our numerical method can be adapted to higher spins.

We determine α(t ) by preparing an initial state where one
site is spin up |0〉〈0| and all other sites are maximally mixed.
After applying Ut , we project the final reduced density matrix
of the one site onto |0〉〈0|. According to (15), this procedure
yields

(α + 1)/2 = 〈R(U, 0)〉U , (83)

R(U, s) = Tr[(· · · ⊗ I2 ⊗ (|s〉〈s|) ⊗ I2 ⊗ · · · )

×Ut (· · · ⊗ I2/2 ⊗ (|0〉〈0|) ⊗ I2/2 ⊗ · · · )Ut†].

(84)

The average 〈· · · 〉U refers to averaging the random Ui, Vi

composing U . Leaving the final spin s free allows us to
use an importance sampling technique. Before explaining this
technique, we will show how to evaluate R(U, s) for a given
U, s in a way that is significantly more efficient than the naive
procedure.

The evaluation of R(U, s) can be sketched diagrammat-
ically as in Fig. 8. Unitaries outside the light cones cancel
in pairs with their daggered counterparts and two rhomboids
of width 2t + 1 sites remain. Considering only this part of
the chain, and evaluating the diagram time step by time
step, starting from ρ0 in the middle, we encounter objects of
dimension 42t+1.
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|0 0|

|s s|

½
½

½
½

½
½

½
½

FIG. 9. The rhomboids from Fig. 8 can be folded above each
other. The diagram is contracted diagonally, beginning with the
shaded green part.

After folding the daggered rhomboid upwards (Fig. 9), we
can evaluate the folded rhomboids diagonally. This leads to a
square root improvement, we encounter objects of dimension
22t . Note that this idea may be more generally applicable in
tensor network contractions.

Owing to the single-site Haar invariance, the average of
(84) remains the same when replacing all of the identities
(“U-turns”) in the folded rhomboid diagram (Fig. 9) by |0〉〈0|.
How this can be achieved is explained in detail in Appendix C.
We obtain two (disconnected) rhomboids that correspond to
the absolute square of a single rhomboid as illustrated in
Fig. 10. Again evaluating diagonally, we gain another square
root as the objects only have dimension 2t .

When sampling 〈R(U, 0)〉U according to the single-
rhomboid method (Fig. 10), we observe a higher variance than
using the folded-rhomboids procedure (Fig. 9). The data in
Fig. 3 were compiled with the folded-rhomboids procedure
only such that the strongly decreasing variance allows us to
resolve the exponential decay of α(t ). The exponentially de-
creasing variance is also indicative of self-averaging of (84).
To compile the data in Fig. 4, we want to access longer times
and therefore make use of the single-rhomboid optimisation.
To counteract the increasing variance, we use an importance
sampling technique.

|0

s|

|0

|0

|0

|0

|0

|0

|0

|0

0|

0|
0|

0|

0|

0|

0|
0|

2

2²

FIG. 10. The absolute value squared of a single rhomboid. The
diagram is contracted diagonally starting with the shaded green part.
After averaging the unitaries, this diagram has the same value as
Fig. 9. See Sec. V and Appendix C for details.

To perform importance sampling, we extend the random
variable set to include s alongside {Ui}, {Vi}. Then we gener-
ate samples according to the probability distribution R(U, s)
with a Metropolis algorithm. Now note that 〈R(U, 0)〉U +
〈R(U, 1)〉U = 1 follows immediately from (84). Thus the
normalization of the probability distribution R(U, s) is trivial.
The average value of δs0 with respect to this probability
distribution therefore results in 〈R(U, 0)〉U = (α + 1)/2.

The method presented here allows us to reduce the com-
plexity of calculating the time evolution of t steps in a system
of 2t + 1 sites (size of light cone). Naively, time and space
complexity both scale as 42t+1. Our simplifications give two
square roots improvement, yielding a scaling of 2t . Apart from
the average over random unitaries, the numerical procedure is
free of approximations.

The Monte Carlo aspect of the method can be general-
ized to improve the variance of expectation values RO =
〈Tr(Oψt )〉 of arbitrary observables O over arbitrary ensem-
bles of initial states or time evolutions determining ψt . To-
wards this end, extend s to a POVM including O instead
of just |0〉〈0| and |1〉〈1| as for R(U, s) above. Then perform
Metropolis sampling of 〈Tr(sψt )〉 with respect to the random
variables determining ψt as well as s, which is taken as an
additional random variable. Because of the normalization of
the POVM, 〈δsO〉s,ψt

= RO .

VI. CONCLUSION AND OUTLOOK

In this paper, we have studied one dimensional particle
chains under a random unitary time evolution operator con-
sisting of random nearest-neighbor gates. In spirit of Floquet
evolution, the operator is repeated identically for subsequent
time steps.

We considered two cases, where the time evolution opera-
tor is a Gaussian circuit or consists of general unitaries. First,
we were able to show strong results about the average evo-
lution of chains of fermions under the Gaussian circuit time
evolution. For Gaussian circuits inhomogeneous in space, we
find that any initial state with vanishing two-point correlations
at nonzero distances is simply scaled further towards the
thermal mixture (11) and the initial two-point correlations can
be recovered measuring expectation values; time evolution
is localising. If the random time evolution operator is taken
homogeneous in space, it delocalizes and leads to thermal-
ization in the thermodynamic limit (12). We expect one can
generalize our results to higher order correlation functions
than the two-point functions studied in this work.

Next, we also considered spin chains under random unitary
nearest-neighbor Floquet dynamics, inhomogeneous in space,
with fixed finite local Hilbert space dimension. Our main
result is (15); on a single site, the average evolution acts as
a depolarising channel, completely independent of any other
initial sites.

We employ new numerical methods (Sec. V) to demon-
strate that a time evolution composed of Haar distributed uni-
taries thermalizes. Under a different distribution with tunable
random coupling strength, we find two regions of thermal-
ization (strong coupling) and many-body localization (weak
coupling), respectively.
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As we have studied spins and fermions, it is natural to ask
about a bosonic version of the problem. Since, contrary to
fermions, each bosonic mode defines an infinite-dimensional
Hilbert space, the generalization of Haar unitaries may pose
mathematical problems. Nevertheless, for future work it is
conceivable to work directly in the symplectic space (that
corresponds to the covariance matrices) which is finite.

Both our analytical results as well as the numerical method
can readily be generalized to higher dimensions. In the future,
they may further also be applied to circuits with different
topology and to Hamiltonian Floquet or stroboscopic dynam-
ics with an ensemble of Hamiltonians having single-site Haar
invariance.

Note added. During preparation of this manuscript, related
work [45] appeared on arXiv that provides evidence for an
MBL transition in a different unitary circuit with random
coupling strength.
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APPENDIX A: GAUSSIAN CIRCUITS: UNCOUPLED CASE

In this Appendix, we calculate (54), which we repeat for
convenience:

c(t-avg, k,N ) = 1

4
for

2π

N/2
k = 0, π, 2π.

For these values of k, Ĝk is real and may be absorbed by the
Haar-invariant transformation Q → Ĝ

†
kQĜk in (36). In turn,

Q can be absorbed by the transformation P → Q†P . Then
we have simply Ôk = P .

This corresponds to two sites in the inhomogeneous un-
coupled case where Qi = I4 in the time evolution operator (4)
and only Pi are independently random. We find much stronger
localization (intuitively, information cannot spread) where the
constant c(t-avg) is one quarter:

〈�t-avg〉 = 1
4�0. (A1)

To show this it suffices to consider the first two sites �
1,2
0

and P1 ∈ O(4). We introduce an arbitrary A ∈ O(4) by P1 →
AP1A

† using Haar invariance〈
�1,2

t

〉 = 〈
AP t

1A
†�1,2

0 AP
t†
1 A†〉 (A2)

and are free to integrate A over the orthogonal group. The
integral can be evaluated [39] as

〈
�1,2

t

〉 = 1

12

〈(
Tr P t

1

)2 − (
Tr P 2t

1

)〉
�

1,2
0 (A3)

= 1

12

〈(
4∑

i=1

eiβi t

)2

−
4∑

i=1

eiβi2t

〉
�

1,2
0 , (A4)

which is determined by the spectrum {eiβi , i = 1, 2, 3, 4} of
P1. We can evaluate this in the time average by observing that
almost always

β1 = −β2, β3 = −β4 for det P1 = +1 (A5)

and

β1 = −β2, β3 = 0, β4 = π for det P1 = −1. (A6)

One can then show that in the time average of (A4),
〈· · · 〉det P1=+1 = 4 − 0 and 〈· · · 〉det P1=−1 = 4 − 2. Altogether
the prefactor in (A3) matches the 1/4 announced in (A1).

APPENDIX B: SPINS: UNCOUPLED CASE

In this Appendix, we find α(t ) for the completely uncou-
pled probability distribution (16), the limit h = 0. In that case,
Ui = ui,L ⊗ ui,R and Vi = vi,L ⊗ vi,R are tensor products of
single-site unitaries from the U(2) Haar distribution. It then
suffices to consider only one site ρ0 = I2/2 + ρ̄0 as all sites
are completely independent. Using the transformation u →
v†u, the v can be Haar-absorbed into the u, and we have the
time evolution 〈ρt 〉 = 〈utρ0u

t†〉 which we evaluate for general
dimension of ρ0 and u [43,44].

By Haar invariance the transformation u → w†uw shows

〈ρt 〉 = 〈w†utwρ0w
†ut†w〉. (B1)

We can integrate out w with formula (62) and get the result

〈ρt 〉 = Id

d
+ λ(t ) − 1

d2 − 1
ρ̄0 (B2)

with the spectral form factor

λ(t ) = 〈Tr ut Tr ut†〉, (B3)

which is just (73) and (74) for a one-site chain and empty
set I . For Haar-distributed u ∈ U (d ), the spectral form factor
saturates at its maximal value λ(t ) = d for t � d [46]. In
particular, for our d = 2 chain and t > 1, λ(t ) = 2 and the
final state (15) stays constant with α = 1/3.

APPENDIX C: SPINS: SIMPLIFICATION FOR
NUMERICAL CALCULATIONS

In this section, we show that the computationally more
efficient single rhomboid contraction in Fig. 10 is equivalent
to the function R(U, s) from equation (84) when taking the
average in Ui, Vi . This is needed in Sec. V.

As argued in Sec. V, R(U, s) is equal to the folded rhom-
boids in Fig. 9. Let us consider each site (i.e., column) of that
diagram in turn, apart from the central site containing s. The
identities (“U turns”) at the top and bottom of the column
can be expanded. Linearity gives four new diagrams with all
combinations of |0〉〈0| and |1〉〈1|. Each column has either Ui

or Vi both at the top and bottom. In the first case, single-site
Haar invariance

Ui → (w ⊗ I2)Ui, Vi → (I2 ⊗ w†)Vi (C1)

allows to insert w and w† that cancel everywhere except at
the very top. By choosing w = σx the Pauli matrix, |1〉〈1|
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at the top can be transformed into |0〉〈0|. This process can
be repeated similarly to transform a |1〉〈1| at the bottom into
|0〉〈0|.

In total, applying this procedure at all sites results in 42t

identical diagrams where all top and bottom parts are |0〉〈0|

(except for |s〉〈s|). This only partially cancels with 2−2t from
the original bottom “U turns,” giving the prefactor. The two
rhomboids of unitaries and daggered counterparts are then
disconnected and can be written as the absolute square of a
single rhomboid.

[1] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[2] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H.
Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Ob-
servation of many-body localization of interacting fermions in
a quasi-random optical lattice, Science 349, 842 (2015).

[3] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phenomenol-
ogy of fully many-body-localized systems, Phys. Rev. B 90,
174202 (2014).
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Appendix B

Quantum chaos in the Brownian
SYK model with large finite N:
OTOCs and tripartite information

In this article, we study chaos and scrambling in the Brownian SYK model, a time de-
pendent, disordered model with (infinite-range) all-to-all interactions. It was introduced
in section 5.3 and is based on the holographic SYK model, which is oftentimes used for its
link to black holes.

As explained in section 3.3 and 3.4, OTOCs and the tripartite information are excellent
quantifiers of chaos and scrambling. Here, we develop a new method to compute them for
finite numbers of particlesN . Traditionally, work on the SYK model focuses on theN →∞
limit, thwarting any attempt to asses finite size scaling of scrambling times.

The new numerical method consists of transforming the disorder-averaged evolution of
OTOCs or Rényi entropies into an effective quenched imaginary-time evolution problem
void of any disorder. Thanks to an effective permutational symmetry, the dynamics then
take place only in a polynomial subspace of the total Hilbert space, which is exponential in
N . It admits a description in terms of bosonic modes. By exploiting a further symmetry,
the effective dimension can be reduced to N or N2 for the OTOCs or Rényi entropies.
Thus, OTOCs can be computed numerically exactly up to one million (N = 106) particles.
The numerical procedure developed may also be applicable to other observables or other
systems with Brownian all-to-all disorder.

The high numerical power allows us to study the OTOCs and tripartite information in
detail in their time-dependence and system-size dependence. In particular, we can follow
their relaxation to maximal Haar-scrambling at large times. Additionally, a scrambling
time t∗ ∝ logN proportional to the logarithm of system size can be seen and verified
with a scaling collapse. The logarithmic dependence is of great importance to the fast
scrambling conjecture for black holes (see section 5.1), and it is remarkable that we can
access such a vast scale of N to see a logarithmic dependence as clear as day.
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4.2 The Rényi-2 tripartite information 20

5 Deriving the key formulas 22

5.1 The Hamiltonian 22

5.2 Extracting OTOCs and entropies 24

5.2.1 The OTOCs 25
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1 Introduction

The study of many body quantum chaos is currently experiencing a golden age, also due to

its implications on important aspects in many-body physics such as the thermalization [1, 2]

of isolated systems [3–8], or the scrambling of quantum information [9–11]. In fact, the
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field has already enjoyed intense research activity more than thirty years ago [12, 13], when

the relations between chaotic many-body systems and random matrix theory were first ex-

plored. Recently, a renewed interest came from the study of black hole physics and concepts

such as scrambling of quantum information, and computational complexity [14–20].

An important milestone in the recent literature is the Sachdev-Ye-Kitaev model [21–

23], which was originally proposed by Sachdev and Ye as a model of strongly correlated

electron systems, and generalized by Kitaev in 2015 who pointed out its connection to

holographic duality. This model describes N Majorana fermions or complex fermions with

random all-to-all interactions. In the work we will focus on the Majorana fermion version.

The SYK model has already drawn enormous attention from different communities, ranging

from quantum gravity [24, 25] to condensed-matter and many-body physics [26–32], due

to the concomitance of several unique features. Among these, the model has been shown

to be maximally chaotic and yet amenable to exact analysis in the large-N limit [21, 22,

26, 27, 33, 34], making it an ideal playground for the study of chaos and scrambling of

quantum information.

In the same years, the effort to better characterize quantum chaos led to the system-

atic development of reliable indicators for its diagnosis. In particular, out-of-time-ordered

correlation (OTOC) functions, historically introduced in the context of disordered super-

conductors [35], were naturally selected as ideal probes to detect the “scrambling” of lo-

cal observables [17, 21, 22, 36–38], namely the spreading of their spatial support in the

operator basis. It is important to mention that these ideas had far reaching ramifica-

tions, motivating the study of OTOCs also in many-body systems with short-range inter-

actions [30, 39–47, 47, 48, 48–53] and in spatially local “quantum unitary circuits” [54–67],

which provide minimally structured models for chaotic quantum dynamics. In fact, related

studies on information scrambling in a class of random, and in general non-local, circuits

(the so-called approximate t-designs) were already carried out within quantum informa-

tion theory [68–82], where the latter were used to provide rapid approximations to random

unitary operators. Finally, we note that OTOCs were also shown to be directly related to

the growth of the operator size, i.e. the size of its support [38, 83].

So far, computations of OTOCs in the SYK model have been carried out through field-

theoretical approaches in the large-N limit [21, 22, 24, 26]. On the other hand, despite

the many works devoted to this topic, results for finite values of N are difficult to obtain,

and remain scarce [84–86]. This is also true for numerical computations: the exponential

growth of the Hilbert space dimension, and the presence of disorder averages yield strong

limitations on the sizes of the systems that can be simulated [38, 87–89]. Still, it would be

highly desirable to develop a systematic approach to investigate the properties of the SYK

model at finite N , even numerically. Indeed, not only would this allow for inspection of

finite-size corrections to the large-N results, but also to compute quantities beyond multi-

point correlation functions, for which field-theoretical approaches might be difficult to

apply. A notable example is given by the (negative) tripartite information of the evolution

operator introduced in ref. [9] in the context of unitary circuits. This was suggested as a

valuable tool to quantify the scrambling power of a quantum channel, namely its ability to

delocalize information provided as an input. We note that, so far, this quantity has been

– 2 –
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computed only numerically for small system sizes [9, 90] (see also refs. [91–93], where the

tripartite information of given states, and not of the channel, was studied).

Motivated by the above picture, we consider a simpler, but closely related, Brownian

SYK model, and address the problem of its exact analysis at finite sizes. The model was

introduced in ref. [94], and differs from the traditional SYK in that the random couplings

are chosen to vary independently at each time. The simplification arising in this case is

similar to the one we have in unitary circuits by choosing random gates independently

in each layer. Experience from the latter framework suggests that the main features of

the chaotic dynamics remain qualitatively unaltered by introducing an additional time-

dependence to the spatial disorder, except that random circuits and Brownian models

behave like infinite-temperature systems since they do not display energy conservation.

In this work, we focus on the development of a systematic approach to the chaotic

dynamics in the Brownian SYK model, which could also be applied, more generally, to other

time-dependent, disordered Hamiltonians with infinite-range interactions. In particular,

we aim to compute OTOCs of arbitrary local observables, and other dynamical quantities

which can be extracted from disordered averages involving up to four unitary evolution

operators. These include a Rényi-2 version of the tripartite information introduced in [9],

which has been shown to encode information about all possible OTOCs [9].

As a main result of our work, we show that the averaged dynamics of the OTOCs and

of the Rényi tripartite information can be studied as a quench problem at imaginary times

in a model of N qudits, where the Hamiltonian displays full site-permutational symmetry.

We analyze this problem by means of a description in terms of bosonic collective modes,

and prove that for the quantities of interest the dynamics takes place in a subspace of the

Hilbert space whose dimension grows either linearly or quadratically with N . This allows

us to perform numerically exact calculations up to one million particles, and, consequently,

analyze in great detail the behavior of OTOCs and of the Rényi tripartite information, high-

lighting their most interesting features. While some of our results depend on simplifications

arising in the special case of the SYK model, we expect that suitable generalizations of our

method could be successfully applied also to the study of other disordered time-dependent

Hamiltonians with all-to-all interactions.

It is useful to compare our method with that of existing studies, as some of the ideas

used in our work are related to other approaches in the literature. First, ref. [94] proposed

the Brownian SYK model as a simplified version of the original SYK, and mainly focused

on the computation of the spectral form factor [95]. For this specific quantity, it was

shown that in the Brownian SYK model an exact solution could be achieved, by means

of an elementary mapping to a classical partition function. Our results on OTOCs and

tripartite information cannot be obtained using the same approach.

Next, we discuss refs. [73, 74, 77], where a class of random quantum circuits was con-

sidered, in which at each layer a single unitary gate is applied to a pair of qudits randomly

chosen. There, it was shown that the moments of the evolution operator associated with a

time step could be mapped onto a permutational invariant Hamiltonian which generalizes

the Lipkin-Meshkov-Glick model [96]. Even though the idea underlying our method is

similar, both our mapping and the quantities studied in this paper are different.

– 3 –
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Figure 1. Pictorial representation of the Brownian SYK model described by the Hamiltonian (2.1),

for q = 4. At each time, all the Majorana fermions are coupled together within clusters of q particles,

with time-dependent random interactions.

We also note that the computation of OTOCs in models with a continuous-time evolu-

tion in the presence of Brownian disorder and infinite-range interactions have been already

addressed in [97, 98] (see also [99, 100]). The system studied in these works, consisting of N

qudits driven by an Hamiltonian which is bilinear in the Pauli operators, was introduced

as a chaotic toy model in ref. [15], where its scrambling time was first estimated to be

logarithmic in N (see also ref. [101], where the spectral form factor was analyzed for the

same system). The approach of [97, 98] relies on the derivation, based on an application of

Itô calculus [102], of a system of differential equations for the OTOCs of interest. Solving

the latter, numerical results were given in ref. [15] for sizes comparable to those that can

be reached with our method, while an analytical solution was found in [98] for a particular

average of OTOCs. As we will see, our approach differs from that of [97, 98], as we tackle

directly the computation of the averaged moments of the evolution operator. This allows

us to use the same formalism to also analyze the tripartite information discussed above,

which was not addressed in these studies. Finally, we note that rigorous results, relevant

to the present paper, for the scrambling properties of continuous-time evolution generated

by random Hamiltonians were recently presented in refs. [103, 104].

The organization of the rest of this paper is as follows. In section 2 we introduce

the Brownian SYK model and the quantities which will be investigated in this work. We

proceed to present the key features of our method in section 3, while our physical results are

reported in section 4. The most technical aspects of our study are consigned to section 5

and to a few appendices. Finally, our conclusions are discussed in section 6.

2 The model and the chaos quantifiers

The object of study of this work will be the Brownian SYK model, describing a set of N

Majorana fermions with q-local, all-to-all random interactions, cf. figure 1. It is defined

on a Hilbert space HN of dimension D = 2N/2, with N operators ψj acting on HN . They

are the representation of standard Majorana fermions, and thus satisfy {ψj , ψk} = 2δj,k
and ψ†j = ψj (the quantities of interest in this work will not depend on the representation
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chosen for the N Majorana fermions). Its time-dependent Hamiltonian reads

HSYK(t) = iq/2
∑

1≤i1<i2<...<iq≤N
Ji1,... ,iq(t)ψi1ψi2 . . . ψiq . (2.1)

Here, the couplings Ji1,... ,iq(t) are random variables, which we assume to be Gaussian

distributed with vanishing mean and variance

Ji1...iq(t)Ji′1...i′q (t′) = δi1i′1 · · · δiqi′qδ
(
t− t′

)
σJ

(q − 1)!

N q−1
, (2.2)

where we denoted by [. . .] the average over disorder realizations. While our method could

be applied for arbitrary integer values of q, we will focus for concreteness on the case q = 4.

Furthermore, we will choose the constant σJ in such a way that

Ji1... ,i4(t)Ji′1... ,i′4 (t′) = δi1i′1 · · · δi4i′4δ
(
t− t′

) 1

N3
. (2.3)

In comparison, the original SYK Hamiltonian shares the same form of (2.1), but with

time-independent couplings. In appendix A we additionally discuss the case q = 2, which

lacks chaotic behavior as each disorder realization is non-interacting.

2.1 The OTOCs and the operator spreading

As we have already discussed in section 1, we will be mainly interested in two quantifiers

of quantum chaos and scrambling. The first one is given by OTOCs of local observables:

explicitly, given two operators O, O′, we define their OTOC on a state ρ as

FO,O′(t) = tr
[
ρO(t)O′(0)O(t)O′(0)

]
, (2.4)

where O(t) = U †(t)OU(t), and U(t) is the unitary evolution operator. In this work we

will choose the infinite-temperature Gibbs density matrix ρ = 1/2N/2, which represents a

stationary state for the time-dependent Hamiltonian (2.1).

Importantly, we recall that the OTOC (2.4) can be related to an intuitive notion of

the spreading of localized operators under unitary evolution. To this end, we choose for

simplicity O = ψj , O′ = ψk with j 6= k, and consider the quantity

C(t) =
1

2
tr
[
ρ ({ψj(t), ψk(0)})† ({ψj(t), ψk(0)})

]
, (2.5)

which measures the magnitude of the anticommutator between ψj(t) and ψk(0). At time

t = 0, one simply has C(t) = 0. On the other hand, as time increases, the spacial support

of ψj(t) will also increase; namely ψj(t) will evolve into a complicated sum of strings of

Majorana operators. Then, we see that deviations of C(t) from zero signal that the support

of ψj(t) has grown to include site k. Accordingly, C(t) can be understood as a measure of

the spatial spreading of the local operator ψj(t). The connection between the latter and

OTOCs is finally established by the simple relation

C(t) = 1 + Re [tr (ρψj(t)ψk(0)ψj(t)ψk(0))] . (2.6)
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U

A B C

input output

D

Figure 2. Pictorial representation of the state |U〉〉 defined in eq. (2.8). The operator U is depicted

as a box, while its legs correspond to the local Hilbert spaces hj . The output legs are bent to create

a state in a doubled Hilbert space HN ⊗H′N . Each space is partitioned into two regions: A and B

for the input space HN , and C and D for the output space H′N .

In conclusion, the discussion above allows one to view the OTOCs as a measure of chaos:

chaotic dynamics corresponds to OTOCs that vanish sufficiently rapidly with time. On the

other hand, for a non-chaotic Hamiltonian one expects information to spread coherently:

for large system sizes this results in either a slow decay or a non-vanishing asymptotics of

OTOCs [47, 48], while for small ones this causes revivals, consisting in OTOCs frequently

returning close to their original value [105].

2.2 Diagnostic of scrambling: the tripartite information in fermionic systems

The OTOCs provide a physically clear definition of quantum chaos in terms of correlation

functions between local operators. Other measures probing different features intuitively

associated with chaos exist. Among these, the notion of scrambling of information, origi-

nally introduced in the study of black hole physics [14, 16], is particularly clear: a quantum

system is a good scrambler if a localized perturbation in the initial state spreads over all its

degrees of freedom, in such a way that it can no longer be detected by local measurements

at large times. In this context, it is useful to think of the unitary evolution as a quantum

channel, taking an initial state as the input, and returning the evolved state as the output.

In this logic, it was proposed in ref. [9] that the scrambling power of a channel could be

conveniently measured by the tripartite information between bipartitions of its input and

output, as we review in the following.

For simplicity, let us first consider a system of N qudits, associated with a Hilbert

space HN = h1 ⊗ . . . ⊗ hN , where hj ' CD, and a unitary operator U : HN → HN . In

order to study the scrambling properties of U , we wish to interpret it as a state in a suitable

space. To this end, we introduce a copy of the original Hilbert space H′N , and define the

maximally entangled state |I〉 ∈ HN ⊗H′N as

|I〉 =
1

DN/2

DN∑

j=1

|j〉 ⊗ |j′〉 , (2.7)

where {|j〉}DNj=1, {|j′〉}DNj′=1 are orthonormal bases for HN and H′N , respectively. Note that

we choose the basis such that |I〉 is a direct product of EPR pairs between qudits in the
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two systems, as is illustrated in figure 2. Then, the operator U can be interpreted as a

state in HN ⊗H′N through the Choi-Jamiolkowski mapping

U 7→ |U〉〉 = (1⊗ U) |I〉 . (2.8)

Here the operator U is depicted as a box, whose legs correspond to the local Hilbert spaces

hj ; we see that one could intuitively think of the state |U〉〉 as obtained by “bending” the

output legs, so as to treat input and output, associated with HN and H′N respectively, on

an equal footing. It should be noted that the mapping from U to |U〉〉 is not unique, as it

depends on the choice of state |I〉. However, different |I〉 are related by a local unitary trans-

formation, which does not affect the entropy-related quantities we discuss in the following.

Given |U〉〉 ∈ HN ⊗H′N , one can compute the entanglement entropy between different

spatial regions in HN and H′N . We consider in particular bipartitions of HN and H′N into

the complementary subsystems A, B and C,D respectively; in figure 2 a special choice

for these regions is shown. Given a pair of bipartitions (A,B) and (C,D), we define the

tripartite information as [9]

I3(A : C : D) = I(A : C) + I(A : D)− I(A : CD) , (2.9)

where CD denotes the union of the regions C and D. Here I(X : Y ) is the mutual

information between the regions X and Y

I(X : Y ) = SX + SY − SXY , (2.10)

where SX is the von Neumann entropy of the reduced density matrix ρX . For instance, we

have

SAC = − tr [ρAC ln ρAC ] , (2.11)

where ρAC = trBD[ρ].

The tripartite information in eq. (2.9) was suggested in ref. [9] as a natural and conve-

nient diagnostic for scrambling. In fact, as in the case of OTOCs, its underlying physical

meaning is easy to grasp. From eq. (2.9), we see that −I3(A : C : D) quantifies the amount

of information on the input region A that can be recovered by global measurements in C∪D,

but can not be obtained by probing C and D individually. Recalling that H′N = C∪D cor-

responds to the output, this is exactly a measure of scrambling: if −I3(A : C : D) is large,

it means that the information localized in a subsystem A of the input state can be recovered

only by global measurements in the output state, and information has been scrambled. Ac-

cordingly, if for any bipartition of HN and H′N , I3(A : C : D) is negative with an absolute

value close to the maximum possible value, the channel U has large scrambling power. Fi-

nally, a close connection was established in ref. [9] between the tripartite information (2.9)

and the OTOCs, which further corroborated the appeal of the former as a valuable diag-

nostic of scrambling and, more generally, of chaotic dynamics. This connection is reviewed

in appendix B, where we also discuss its generalization to the fermionic setting.

The above discussion is carried out in terms of qudits, whereas in our work we are

interested in a fermionic system. At this point, one could employ a Jordan-Wigner rep-

resentation of the Majorana operators in the Hamiltonian (2.1), interpret the resulting
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system a {

A B

C D

Figure 3. Pictorial representation for the state |Iab〉 in eq. (2.12). The black bullets in the lower

and upper rows represent the original and “replica” fermions ψaj and ψbj , respectively. Each link

is a maximally entangled pair, which corresponds to the vacuum for the complex Fermi operators

cj = ψaj − iψbj . The evolution operator U , generated by the Hamiltonian (2.1), is applied only to

the original system.

evolution operator as a unitary channel acting on a system of N/2 qubits, and define the

tripartite information for the latter according to the discussion above. However, given a

correspondence between Majorana and Pauli operators via the Jordan-Wigner transforma-

tion, it is known that the reduced density matrix of disjoint intervals written in terms of

the two is not the same, leading to different results for the corresponding von Neumann

entanglement entropy [106, 107]. In our case, we stress that the physical degrees of freedom

are represented by the Majorana operators and, accordingly, the tripartite information in

eq. (2.9) should be computed in terms of the latter. In this respect, we find it useful

to discuss explicitly the generalization of the above construction for Majorana operators,

without making direct reference to the tensor-product structure of the doubled Hilbert

space associated with the input and output of the channel.

As a first ingredient, we wish to interpret the evolution operator generated by the

Hamiltonian (2.1) as a state. To this end, we introduce a system of 2N Majorana operators

ψαj , where j = 1 , . . . , N , while α is an index labeling two different species which we denote

by a and b. The maximally entangled state |Iab〉 is then defined as the vacuum state for

the complex fermions cj = ψaj − iψbj [108], namely

(
ψaj − iψbj

)
|Iab〉 = 0 , ∀j . (2.12)

The operator U can now be interpreted as a state in the doubled system through the

mapping

U(t) 7→ |U(t)〉〉 = Ua(t) |Iab〉 . (2.13)

Here the superscript a indicates that the Hamiltonian generating the unitary evolution

operator Ua(t) is written in terms of the fermions ψaj . A pictorial representation of this

construction is shown in figure 3. One can now proceed to compute the fermionic reduced

density matrices for the evolved state |U(t)〉〉, and consequently the corresponding tripartite

information as in eq. (2.9). We refer the reader to section 5 for further details.

Unfortunately, despite its great interest, the computation of the tripartite informa-

tion (2.9) is a very difficult task, which so far has been carried out only numerically for

qudit systems of small sizes [6, 90]. For this reason, we study a simpler but closely related
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quantity, which is obtained from I3(A : C : D) by considering Rényi, rather than von Neu-

mann, entropies. Specifically, we will compute the following Rényi-2 tripartite information

I
(2)
3 (A : C : D) = I(2)(A : C) + I(2)(A : D)− I(2)(A : CD) , (2.14)

where

I(2)(X : Y ) = S
(2)
X + S

(2)
Y − S

(2)
XY , (2.15)

and

S
(2)
X = − ln

[
tr
(
ρ2
X

)]
. (2.16)

We note that, strictly speaking, S
(2)
X is not the averaged Rényi entropy of order 2, as the

disorder average is taken inside the logarithm. However, ref. [6] showed that the OTOC for

a pair of operators in A and C averaged over all operator choices is determined by tr
(
ρ2
AD

)
.

Therefore the averaged purity tr
(
ρ2
X

)
is a meaningful physical quantity to consider. Also,

for N not too small, one expects the effect of fluctuations in the disorder to be small, so

that S
(2)
X remains a good approximation for the Rényi-2 entropy [6, 57].

It is worth to notice that eq. (2.14) can be simplified in general. Indeed, it is easy to

show [9]

I
(2)
3 (A : C : D) =

N

2
ln(2)− S(2)

AC − S
(2)
AD , (2.17)

where we used that the dimension of the Hilbert space associated with N Majorana fermions

is D = 2N/2. Eq. (2.17) tells us that, in order to obtain the tripartite information, it is

sufficient to compute the entropies S
(2)
AC and S

(2)
AD between different regions of the input

and the output.

We conclude this section by stressing that while the Rényi tripartite information (2.14)

differs quantitatively from I3(A : C : D), based on previous studies [108], we can still expect

it to display the same qualitative features of the latter, and thus to be a suitable measure

for scrambling.

3 Exact approach from emergent permutational symmetry

Having introduced the model and the quantities of interest, we proceed by presenting the

general ideas of the method developed in this work. The physical results will be then

discussed in section 4, while we postpone the most technical details of our calculations to

section 5.

3.1 Decomposing the dynamical problem

We will begin our discussion with the concrete problem of computing the OTOC (2.4),

which we rewrite as

FO,O′(t) =
1

2N/2
tr
{
OU(t)O′U †(t)OU(t)O′U †(t)

}
. (3.1)

We recall that the time-dependent, disordered Hamiltonian (2.1) gives rise to a dynamics

which can be interpreted as the continuous limit of the discrete process defined by

U(t) = e−i∆tHSYK(tn)e−i∆tHSYK(tn−1) . . . e−i∆tHSYK(t1) , (3.2)
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where ∆t = t/n and tj = j∆t, while the delta function in eq. (2.3) is regularized as

Ji1... ,i4(tr)Ji′1... ,i′4 (ts) = δi1i′1 · · · δi4i′4
1

N3

δr,s
∆t

. (3.3)

In practice, one can work with the discrete form (3.2) of the evolution operator, and take

the continuum limit at the end of the calculations.

In order to compute FO,O′(t), we first introduce a resolution of the identity between

each pair of operators in (3.1), yielding

FO,O′ =
1

2N/2

∑

i,j,k,l
m,n,o,p

〈i|O|j〉〈j|U |k〉
〈
k
∣∣O′
∣∣ l
〉 〈
l
∣∣∣U †
∣∣∣m
〉

× 〈m|O|n〉〈n|U |o〉
〈
o
∣∣O′
∣∣ p
〉 〈
p
∣∣∣U †
∣∣∣ i
〉
. (3.4)

Here {|j〉} denotes a basis for the Hilbert space HN [introduced before eq. (2.1)] on which

the operators ψj act. Rearranging the above sum, we obtain

FO,O′ = 〈L| (U ⊗ U∗ ⊗ U ⊗ U∗) |R〉 , (3.5)

where

|L〉 =
∑

i,j,m,n

〈i|O|j〉〈m|O|n〉 |j,m, n, i〉 , (3.6)

|R〉 =
∑

k,lo,p

〈
k
∣∣O′
∣∣ l
〉 〈
o
∣∣O′
∣∣ p
〉
|k, l, o, p〉 . (3.7)

Here U∗(t) denotes the complex conjugate of U(t) (which is well defined, once a basis {|j〉}
of HN is given) and we introduced the vectors |i, j, k, l〉 = |i〉 ⊗ |j〉 ⊗ |k〉 ⊗ |l〉 ∈ H⊗4

N .

According to eq. (3.5), the dynamical information about the OTOC is uniquely encoded

in the operator U(t) ≡ U ⊗ U∗ ⊗ U ⊗ U∗, while O, O′ only affect the “left” and “right”

states |L〉, |R〉, cf. figure 4 .

From eq. (3.2), we see immediately that U(t) is written in terms of the operators

χaj := ψj ⊗ 1⊗ 1⊗ 1 , χbj := 1⊗ ψ∗j ⊗ 1⊗ 1 , (3.8)

χcj := 1⊗ 1⊗ ψj ⊗ 1 , χdj := 1⊗ 1⊗ 1⊗ ψ∗j , (3.9)

which provide a basis for all the operators in H⊗4
N . Note that, as we already stressed, ψj is

the representation of a Majorana fermion, and thus is an operator acting on HN , for which

the tensor product is defined in the usual way. Due to the tensor-product structure of

H⊗4
N , the operator χαj satisfy mixed commutation and anticommutation relations, namely[
χαj , χ

β
k

]
= 0 if α 6= β, while

{
χαj , χ

α
k

}
= 2δj,k. On the other hand, it is possible to introduce

related operators in H⊗4
N which are all anti-commuting with one another, realizing a truly

fermionic algebra. We consider for concreteness the case N ≡ 0 (mod 4) [if N ≡ 2 (mod 4),

one has a similar treatment], and introduce

Qα =

N∏

k=1

χαk , α = a , b , c , d . (3.10)
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U U*UU*

OTOC

operator-state mapping
into a bosonic Fock space;
effective imag.-time Ham. 

Perm. symm. time ev. operator

U U*UU*

O O

O'O' |R⟩

⟨L|

Figure 4. Schematic diagram summarizing our method. The dynamical information about the

OTOC is uniquely encoded in the operator U(t) ≡ U ⊗U∗⊗U ⊗U∗(t), while the observables O,O′
define the “right” and “left” states |L〉, |R〉 (cf. section 3.1). Exploiting the emergent permutational

symmetry, we can map U ⊗ U∗ ⊗ U ⊗ U∗(t) onto a state |U(t)〉〉 in a bosonic Fock space, in which the

dynamics is governed by an effective imaginary-time Hamiltonian evolution (cf. section 3.2). Finally,

we express the matrix element of U(t) with respect to |L〉 and |R〉 as the overlap between |U(t)〉〉 and

an appropriate state 〈〈WO,O′ | (cf. section 3.3). As a result, the entire computation of the OTOC can

be performed very efficiently within a bosonic space, whose dimension grows linearly with N . The

Rényi-2 entanglement entropies S
(2)
AC and S

(2)
AD are amenable to a similar treatment as the OTOCs.

Then, we can define

ψaj = iQaχaj , ψbj = Qaχbj , (3.11)

ψcj = iQaQbQcχcj , ψdj = QaQbQcχdj . (3.12)

One can easily verify that {ψαj }j,α satisfy fermionic anticommutation relations, namely

{ψαj , ψβk } = 2δα,βδj,k, and that
(
ψαj

)†
= ψαj . Furthermore, since (Qα)2 = 1, we have

∏M
k=1 χ

α
jk

=
∏M
k=1 ψ

α
jk

for any even integer M . Since the Hamiltonian (2.1) contains a sum of

products of Majorana operators with an even number of particles, it is then straightforward

to show

U(t) = Ua+(t)U b−(t)U c+(t)Ud−(t) , (3.13)

where

Uα±(t) = e∓i∆tH
α
SYK(tn)e∓i∆tH

α
SYK(tn−1) . . . e∓i∆tH

α
SYK(t1) , (3.14)

while Hα
SYK is the Hamiltonian (2.1) written in terms of the fermions ψαj . We see that U(t)

can be viewed as an evolution operator on the space of four “replica” Majorana fermions

ψαj , labeled by α = a, b, c, d. Eq. (3.13) represents the starting point for our subsequent

calculations.

The above discussion allows us to decompose the problem of computing the

OTOC (3.1) into two logically separated steps:

• compute the disorder average of the generator of the dynamics U(t), defined in

eq. (3.13) (cf. section 3.2);
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• given the operator U(t), evaluate the matrix element 〈L|U(t)|R〉, where |L〉, |R〉 were

introduced in eq. (3.5) and pictorially represented in figure 4 (cf. section 3.3).

Importantly, it is possible to show that the same procedure can be employed for the Rényi-2

tripartite information (2.14): one can express also this quantity in the form of a matrix

element 〈L|U(t)|R〉, for an appropriate choice of the vectors |L〉 and |R〉, cf. section 3.3.

We will address the two points above separately in the following subsections, for both the

OTOCs and the tripartite information, providing a complete overview of the approach

developed in this work.

3.2 The generator of the dynamics: mapping to a bosonic system

We start by addressing the computation of the average evolution operator defined in

eq. (3.13). Using that even numbers of different Majorana operators commute, and that

one can factor disorder averages at different times, we note that eqs. (3.13), (3.14) imply

U(tn) = e−i∆tHa(tn)ei∆tHb(tn)e−i∆tHc(tn)ei∆tHd(tn) × U(tn−1) . (3.15)

This allows us to write down a linear differential equation for U(t), as follows.

First, from eq. (3.3), we see that, in order to expand the first line at the first order

in ∆t, each exponential factor has to be expanded up to the second order. By doing this,

and carefully taking into account the correlations between the couplings, one obtains an

equation of the form

U(tn) = U(tn−1) + LU(tn−1)∆t+O(∆t2) , (3.16)

namely, taking the limit ∆→ 0
d

dt
U(t) = LU(t) , (3.17)

where

L =
1

N3

[
− 2

(
N

4

)
+

∑

α,β=a,b,c,d
α<β

(−1)γα,β

×
∑

i1<i2<i3<i4

(
ψαi1ψ

β
i1

)(
ψαi2ψ

β
i2

)(
ψαi3ψ

β
i3

)(
ψαi4ψ

β
i4

)]
. (3.18)

Here, the indexes a, b, c, d are ordered as a < b < c < d, while we introduced

(−1)γα,β =

{
1 (α, β) = (a, b), (a, d), (b, c), (c, d) ,

−1 (α, β) = (a, c), (b, d) .
(3.19)

We note that, since the disorder average has been already taken, the operator L is time- and

disorder-independent. Eq. (3.17) can thus be seen as a Schrodinger equation (at imaginary

times) for U(t) in the space End(H⊗4
N ) of the linear endomorphisms acting on H⊗4

N , where

the left matrix multiplication by L is interpreted as a superoperator. In the following, it

will be useful to denote by |O〉〉 the state in End(H⊗4
N ) associated with the operator O.
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In order to proceed, we note that at every time t, the operator U(t) can be written as

a linear superposition of operators of the form

Oα1
1 Oα2

2 . . .OαNN , (3.20)

where Oαjj is chosen within the set of operators

Ij = {1, ψajψbj , ψajψcj , ψajψdj , ψbjψcj , ψbjψdj , ψcjψdj , ψajψbjψcjψdj } . (3.21)

Indeed, due to the anticommutation relations of the Majorana operators and the form of

the Hamiltonian H, it is easy to see that U(t) can not contain terms with an odd number

of fermions at site ψαj . Hence, the dynamics of |U(t)〉〉 takes places in the Hilbert space

generated by the vectors

|α1 . . . αN 〉 := |Oα1
1 Oα2

2 . . .OαNN 〉〉 . (3.22)

Here, αj ∈ {1, ab, ac, ad, bc, bd, cd, abcd}, with the convention O1
j = 1, Oabj = ψajψ

b
j , . . .,

Oabcdj = ψajψ
b
jψ

c
jψ

d
j , i.e the ordered set {Oαj }abcdα=1 coincides with Ij in eq. (3.21).

Eq. (3.22) defines the previously announced mapping to a system of N qudits, as one

can interpret

|α1 . . . αN 〉 = |α1〉 ⊗ . . .⊗ |αN 〉 ∈ KN , (3.23)

where KN = h1 ⊗ . . .⊗ hN and hj ' C8 is the space generated by {|1〉 , |ab〉 , . . . , |abcd〉}.
In this picture, the differential equation (3.17) is equivalent to a quench problem in KN :

the system is prepared in the initial product state

|U(0)〉〉 = |1〉〉 = |1〉 ⊗ |1〉 ⊗ . . .⊗ |1〉 , (3.24)

and left to evolve according to the differential equation

d

dt
|U(t)〉〉 = H |U(t)〉〉 . (3.25)

Here, H [not be confused with HSYK in (2.1)] is an operator acting on KN which plays the

role of the Hamiltonian driving the imaginary-time dynamics. The precise form H in terms

of local operators can be derived by computing the action on the basis operators (3.20) of

the left multiplication by L in (3.18); however, even without doing this explicitly, it is easy

to show that H is invariant under any permutation of the sites in KN . This comes from

the fact that the operator L in (3.18) is left unchanged under the exchange of the pairs

ψαi ψ
β
i and ψαj ψ

β
j for any choice of i and j. Since the initial state (3.24) also enjoys the

same symmetry, we can conclude that the dynamics of |U(t)〉〉 takes place in the subspace

SN ⊂ KN which is invariant under arbitrary permutations of the sites. This is of course

a great simplification for our problem. The permutational symmetry of the Hamiltonian

H is “emergent” in the sense that it manifests itself only after taking averages over the

Brownian disorder, while the Hamiltonian HSYK in eq. (2.1) does not display this symmetry

for individual random realizations.
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In order to study the dynamics in this subspace, we introduce the basis vectors |O~n〉〉
for SN

|O~n〉〉= |n1 ,nab ,nac ,nad ,nbc ,nbd ,ncd ,nabcd〉=
1√

N !n1!nab!nac!nad!nbc!nbd!ncd!nabcd!
(3.26)

×
∑

π∈SN
π |1〉⊗...⊗|1〉︸ ︷︷ ︸

n1

⊗|ab〉⊗...⊗|ab〉︸ ︷︷ ︸
nab

⊗|ac〉⊗...⊗|ac〉︸ ︷︷ ︸
nac

⊗...⊗|abcd〉⊗...⊗|abcd〉︸ ︷︷ ︸
nabcd

π−1 ,

where we used the same notations as in eqs. (3.22), (3.23). Here π is the unitary operator

associated with a generic element in the symmetric group SN , whose action permutes

different sites in KN . Note that, since the sum runs over all the permutations, not all the

elements in the sum are linearly independent.

The basis vectors (3.26) of the permutation symmetric space SN are labeled by sets

of 8 integers {nj}, satisfying
∑

k nk = N , where each integer nk [with k = 1 , ab , . . . , abcd]

“counts” the number of qudits in the level associated with k. In fact, it is possible to

employ a more convenient representation, by viewing the state (3.26) as an 8-mode Fock

state generated by bosonic creation operators acting on a vacuum |Ω〉. In particular, we

have the identification

|n1, . . . , nabcd〉 =
1√

n1! · · ·nabcd!
(a†1)n1(a†ab)

nab · · · (a†abcd)nabcd |Ω〉 . (3.27)

Here, each operator a†k creates a collective mode corresponding to the level associated with

k. In this language, the initial state (3.24) is written as |U(0)〉〉 = 1√
N !

(
a†1
)N
|Ω〉.

This representation is particularly convenient, due to the fact that the Hamiltonian H

in eq. (3.25) can be written in terms of the same bosonic operators appearing in eq. (3.27):

H =
1

N3

(
−2

(
N

4

)
+

1

4!

6∑

r=1

(−1)γr
[
X4
r −X2

r (−6N + 8) + 3N(N − 2)
]
)
, (3.28)

where Xr is a bilinear operator of bosons. The explicit form of Xr is derived in section 5.1,

cf. eqs. (5.7)–(5.12). A formal solution to the problem of computing U(t) is then obtained as

|U(t)〉〉 = eHt |U(0)〉〉 = eHt
1√
N !

(
a†1
)N
|Ω〉 . (3.29)

From its explicit form, one can see that the Hamiltonian H commutes with the operator∑8
j=1 a

†
jaj , which “counts” the total number of bosonic modes; accordingly, the evolved

state (3.29) always belongs to the finite-dimensional Hilbert space generated by the basis

vectors (3.27). However, the dimension of the latter is D =
(
N+7

7

)
, which grows as N7,

strongly limiting any numerical computation based on a brute force implementation

of eq. (3.29). Luckily, it is possible to show that the Hamiltonian H has additional

symmetries, which are unveiled by means of an appropriate Bogoliubov transformation

an =
1√
8
Cn,mbm , (3.30)
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further reducing the dimension of the effective Hilbert space explored by the dynamics.

The matrix element Cn,m are reported in section 5.1 [cf. eq. (5.13)]. Then, from the form

of the Hamiltonian H in terms of the modes bj [cf. eqs. (5.14)–(5.19)], one obtains that

the number operators

n1,2 := b†1b1 + b†2b2 , n3,4 := b†3b3 + b†4b4 (3.31)

n5,6 := b†5b5 + b†6b6 , n7,8 := b†7b7 + b†8b8 (3.32)

are conserved, namely they commute with H. Of course, the initial state can also be

expressed in terms of the modes introduced in eq. (3.30). Using the explicit form of Cn,m,

we obtain

|U(0)〉〉 =
1

√
N !
√

8
N

(b†1 − b†2 − b†3 − b†4 + b†5 + b†6 + b†7 − b†8)N |Ω〉 (3.33)

and find that the total conserved number n1,2 + n3,4 + n5,6 + n7,8 is N .

As we will see in the next section, these formulas allow us to work with effective Hilbert

spaces whose dimensions grow either linearly or quadratically with N , and hence to provide

numerically exact results for very large system sizes.

3.3 The OTOC and the tripartite information

We now discuss the last step of our method, namely the computation of the matrix elements

of the form (3.5). Let us consider the most general OTOC

F(p,n,m)(t) =
1

2N/2
tr
{

Φ(p,n)(t)Φ(p,m)(0)Φ(p,n)(t)Φ(p,m)(0)
}
, (3.34)

where we introduced

Φ(p,n) = ψi1 · · ·ψip ψj1 · · ·ψjn , (3.35)

Φ(p,m) = ψi1 · · ·ψip ψk1 · · ·ψkm , (3.36)

and where all indices are different, i.e. the operators have only p Majorana fermions in

common. Considering eq. (3.5), we can expand U(t) = U ⊗ U∗ ⊗ U ⊗ U∗ into the basis of

operators O~n corresponding to the vector (3.26) in End(H⊗4
N ). We obtain

F(p,n,m)(t) =
∑

~n

c~n(t) 〈L| (O~n) |R〉 , (3.37)

where the sum runs over all the sets ~n = {nj} with j = 1, ab, . . . , abcd and
∑

j nj = N , while

c~n(t) are the coefficients of U(t) in the basis of the operators O~n. One can now interpret

the sum (3.37) as the scalar product between an appropriate state |W(p,n,m)〉〉 ∈ End(H⊗4
N )

and |U(t)〉〉; namely we can write

F(p,n,m)(t) = 〈〈W(p,n,m)|U(t)〉〉 . (3.38)

The whole problem of extracting the numerical value of the OTOC from the knowledge

of U(t) then boils down to writing down explicitly |W(p,n,m)〉〉. After this is done, one can

straightforwardly compute the overlap (3.38).
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Figure 5. OTOCs Fx,x(t) and Fx,y(t) of single-site Majorana fermions. Subfigures (a) and (b)

show our numerical results for increasing system sizes for operators on the same site (from top to

bottom) and on different sites (from left to right) respectively. In Subfigure (a) the black dashed

line is the analytic prediction (4.2). Subfigure (c): the two different OTOCs are reported in the

same plot, where the dynamics after the scrambling time is seen to coincide.

The derivation of the explicit form of |W(p,n,m)〉〉 is however rather technical, and for

this reason we postpone it to section 5.2. The final result, instead, is extremely simple,

and reads

|W(p,n,m)〉〉 =

√
8
N

√
N !

(−1)m(m−1)/2+n(n−1)/2+nm(−b†3)p(−b†2)n(−b†4)m(b†1)N−p−n−m|Ω〉 ,
(3.39)

where |Ω〉 and bj were introduced in eqs. (3.27) and (3.30) respectively.

Surprisingly, one can also express the Rényi-2 entropies entering in the definition of

the tripartite information (2.14) in the same form. More precisely, choosing the same

conventions as figure 2 for the bipartitions of input and output of the evolution operator,

one can write

exp
[
−S(2)

AC(¯̀)
]

= 〈〈W
S

(2)
AC(¯̀)

|U(t)〉〉 , (3.40)

exp
[
−S(2)

AD(¯̀)
]

= 〈〈W
S

(2)
AD(¯̀)

|U(t)〉〉 . (3.41)

Here ¯̀ is the length of B and D (chosen to be of the same size), while we will use ` for the

length of the regions A and C.

Once again, we refer the reader to section 5, where this is explicitly shown, while in

the following we report the final result of this analysis, which gives

|W
S

(2)
AC(¯̀)

〉〉 =

√
8
N

√
N !

1

2N
(b†1 − b†2)`(b†1 − b†4)

¯̀|Ω〉 , (3.42)

and

|W
S

(2)
AD(¯̀)

〉〉 =

√
8
N

√
N !

1

2N/2+¯̀(b†1)`(b†1 − b†2 + b†3 − b†4)
¯̀|Ω〉 . (3.43)

Similar formulas could be in principle derived also for more general choices of the biparti-

tions of input and output. This, however, would introduce additional technical difficulties,

so we don’t derive them here.
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It is now very important to comment on the form of the formulas presented above, as it

allows us to reduce the computational cost required to obtain the physical quantities of in-

terest. Let us first consider the case of the OTOC (3.34), which is conveniently rewritten as

F(p,n,m)(t) = 〈〈U(0)| exp (Ht) |W(p,n,m)〉〉∗ . (3.44)

Namely, in order to compute F(p,n,m)(t), one can evolve |W(p,n,m)〉〉 and then take the

overlap with the state |U(0)〉. This is important, as is best appreciated by looking at

the simplest instance p = 0, n = m = 1. In this case, eq. (3.39) implies that the state

|W(0,1,1)〉〉 belongs to the sector of the Hilbert space labeled by the quantum numbers

n1,2 = N − 1, n3,4 = 1, n5,6 = n7,8 = 0, where ni,i+1 were introduced in eq. (3.31)–(3.32).

Since nj,j+1 are conserved by the Hamiltonian H, the dynamics takes place in this sector

of the Hilbert space, whose dimension can be easily seen to be D = N . Accordingly, one

can conveniently represent the restricted Hamiltonian in a basis consisting of N elements,

and compute eHt|W(0,1,1)〉〉 in this basis, which allows us to go to system size one million.

Similar considerations hold for the generic OTOC |W(p,n,m)〉〉 (which belongs to the

sector n1,2 = N − p − m, n3,4 = p + m, n5,6 = n7,8 = 0) and for the Rényi-2 entropies

corresponding to (3.42), (3.43). In the latter cases, expanding

(b†1 − b†4)
¯̀

=

¯̀∑

r=0

( ¯̀

r

)(
b†1
)r (
−b†4

)¯̀−r
, (3.45)

(b†1 − b†2 + b†3 − b†4)
¯̀

=

¯̀∑

r=0

( ¯̀

r

)(
b†1 − b†2

)r (
b†3 − b†4

)¯̀−r
, (3.46)

one is left with a sum of terms, each of which requires a simulation within Hilbert spaces up

to dimensions N ¯̀∼ N2. Putting all together, we see that the computation of the quantities

of interest requires us to simulate the dynamics in a Hilbert space whose dimension grows

either linearly (for the OTOCs) or quadratically (for the tripartite information) with N .

4 The physical results

In this section we present the main physical results of our work. We begin with the

analysis of the OTOCs, and continue with the Rényi-2 tripartite information introduced

in eq. (2.14).

4.1 The OTOCs: numerical results

We start by presenting our numerical results for the simplest OTOC

Fx,y(t) =
1

2N/2
tr {ψx(t)ψy(0)ψx(t)ψy(0)} . (4.1)

Due to the infinite range of the interactions and the disorder averages, Fx,y(t) does not

depend on the precise choice of x and y, but only on whether x = y or x 6= y. Both cases

are displayed in figure 5, where we report data for increasing values of the system size

N . We see that Fx,x(t) and Fx,y(t) (with x 6= y) behave qualitatively differently at short
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Figure 6. Subfigure (a): rescaled logarithmic OTOC `N (t) [defined in eq. (4.5)]. Solid lines

correspond to increasing values of N (from bottom to top), while the dashed black line is the linear

ansatz y(t) = 4
3 t + ln(2). Subfigure (b): data collapse using the shift (4.7) for the OTOCs Fx,y(t)

(with x 6= y). Subfigure (c): data collapse for different OTOCs. The curves correspond (from

bottom to top) to the OTOCs in eq. (4.1), (4.8) and (4.9) respectively. In order to compare the three

curves, we have multiplied Fα,β by the global phase (−1)σα,β , which is −1 for (α;β) = (x, y; z, w)

and 1 otherwise.

times: the former displays an initial exponential decay, while the latter appears to remain

approximately constant. In fact, based on the formulas of the previous section, one can

make these statements more precise and show

lim
N→∞

Fx,x(t) = −1 + 2 exp

(
−2

3
t

)
, (4.2)

lim
N→∞

Fx,y(t) = −1 , (4.3)

where the convergence is point-wise in t. This is proven in section (5.3). In both OTOCs

Fx,x(t) and Fx,y(t), we see the emergence of a characteristic time t∗(N), increasing with

N , which is required before they begin to decay towards zero at large times. One naturally

interprets t∗(N) as a scrambling time, which is also consistent with our subsequent analysis

of the tripartite information. Finally, in figure 5(c) we plot together the OTOCs for x = y

and x 6= y, for different systems sizes. We see that after an initial time window, the two

OTOCs become indistinguishable, meaning that the information on the initial operators

chosen has been completely washed out by the chaotic dynamics.

In order to quantitatively characterize the dependence of the scrambling time t∗(N) on

the system size, we test the short-time behavior of Fx,y(t) against the analytical ansatz [33]

Fx,y(t) ∼ −1 + cx,y
eλx,yt

N
, (4.4)

where cx,y is a constant (independent of N). In particular, we compute

`N (t) = ln [1 + Fx,y(t)] + lnN , (4.5)

and compare the numerical data against a linear behavior. The results are shown in

figure 6(a). We clearly see that as the system size is increased, the curves for `N (t) approach

the linear fit y(t) = 4
3 t + ln(2), within an initial time interval that is also increasing with

N . In turn, this means that the ansatz (4.4) is valid, with the free parameters fixed as

λx,y = 4/3 , cx,y = 2 . (4.6)

From this result, we can identify the scrambling time with t∗(N) = 3 ln(N)/4.
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Figure 7. Subfigure (a): time evolution of different OTOCs corresponding to initial strings of

Majorana operators with the same length. Each curve is labeled by three integer numbers, according

to the convention of eq. (3.34). We see that in this case all the OTOCs quickly approach the same

curve. Subfigure (b): large-time behavior of the logarithm of the OTOC Fx,y(t).

The initial behavior in eq. (4.4), together figure 5(b), suggests that a data collapse

should take place if we consider the shifted functions

Fx,y(t+ 3 ln(N)/4) , (4.7)

where we assumed that the parameters (4.6) are exact. This is plotted in figure 6(b),

where we see a remarkable data collapse at all times. In particular, the data appear to be

perfectly collapsed already for N & 800.

Next, we have tested how robust the above predictions are, against different choices of

the local observables. We have considered in particular

Fx;y,z(t) =
1

2N/2
tr {ψx(t)ψy(0)ψz(0)ψx(t)ψy(0)ψz(0)} , (4.8)

Fx,y;z,w(t) =
1

2N/2
tr {ψx(t)ψy(t)ψz(0)ψw(0)ψx(t)ψy(t)ψz(0)ψw(0)} . (4.9)

We have verified that at short times the ansatz (4.4) is always valid, and that a data collapse

always takes place using the shift in eq. (4.7). Furthermore the exponent is universal,

namely it is independent of the observables chosen (while the prefactor is not). However,

the OTOCs corresponding to distinct choices of local operators are quantitatively different,

also after the scrambling time t∗(N), as it can be appreciated from figure 6(c). This can

be interpreted by saying that, at finite times, the system retains some information on the

initial observable chosen.

In order to investigate this point further, we plot in figure (7)(a) different OTOCs,

corresponding to distinct choices of local observables, which are labeled according to the

convention of in eq. (3.34). The curves correspond to initial operators that all have the

same length, namely that are product of the same number of fermions. In this case, we

see that all the OTOCs converge to the same function (up to small corrections) after the

scrambling time. Comparing with the results displayed in figure 6(c), we can conclude the
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Figure 8. Subfigure (a): time evolution of the Rényi-2 entropies S
(2)
AC for the subsystem A∪C, as

displayed in figure 2, with ¯̀ = 10. Solid lines correspond to increasing values of N (from bottom

to top), while the black dashed line is the analytic prediction (4.11). Subfigure (b): time evolution

of the Rényi-2 entropy S
(2)
AD for the subsystem A ∪ D, with ¯̀ = 10. Note that S

(2)
AD is shifted

by its maximum value (N/2) ln 2. Solid lines correspond to increasing values of N (from top to

bottom). Subfigure (c): time evolution of the Rényi-2 tripartite information I
(2)
3 (A : C : D), for

the bipartitions A ∪B, C ∪D displayed in figures 2 and 3 , with ¯̀= 10. Solid lines correspond to

increasing values of N (from bottom to top).

following: after the scrambling time, information regarding the specific initial observables

is lost, whereas OTOCs corresponding to operators with different initial length can still be

distinguished.

Finally, we have investigated the large-time exponential decay of the OTOCs. The

data in figure 5 suggest to consider an ansatz of the form

Fx,y(t) ∼ dx,y exp [−t/τN ] , (4.10)

where τN should be asymptotically independent of N . In figure 7(b), we plot ln(−Fx,y(t))
for large values of t, and we see that the data are indeed consistent with an exponential de-

cay of Fx,y(t). To be quantitative, we have performed a fit of ln(−Fx,y(t)) using rN (t) = a−
t/τN−b/t. For the values of time t available, we have found that the fitted τN has a weak de-

pendence on N , with τN ' 1.53±0.04 for N ' 105. The fitted value appears to be indepen-

dent of the choice of the local observables, up to the inaccuracy of the extrapolation method.

4.2 The Rényi-2 tripartite information

We finally present our results for the Rényi-2 tripartite information introduced in eq. (2.14).

As we discussed in section 3.3, for this quantity the effective dynamics to be computed

takes place in a Hilbert space whose dimension grows quadratically with N , so that we

are restricted to smaller system sizes than in the case of OTOCs. Furthermore, for large

subsystems the value of the entropy becomes very large, so that we also have to deal with

issues of numerical precision. Overall, for the computationally worst case of bipartitions

of equal size, we are able to provide data up to N ' 400. More details on the numerical

implementations are reported in appendix C.

In figure 8 we present data for the time evolution of the Rényi entropies of the subsys-

tems A∪C and A∪D, where we used the same partitions as figure 2. The plots correspond

to fixed subsystem size and increasing N . Based on the formulas of section 3, in this limit
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Figure 9. Subfigure (a): Rényi-2 entropies S
(2)
AC for the subsystem A∪C, as displayed in figure 2, for

N = 200 and different subsystem sizes ¯̀. Solid lines correspond to the times t = 0, 0.4, 1, 2, 4, 6, 15

(from bottom to top). The black dashed line is obtained by Haar average as computed in ref. [9].

Subfigure (b): Rényi-2 entropies S
(2)
AC computed at t = 1, for different subsystem sizes ¯̀. Solid

lines correspond to system sizes N = 50, 100, 200, 400 (from bottom to top). Subfigure (c): Rényi-2

tripartite information (2.14) for N = 400 and different subsystem sizes ¯̀. Solid lines correspond to

the times t = 0, 0.4, 1, 2, 4, 6, 15 (from top to bottom). The black dashed line is obtained by Haar

average as computed in ref. [9].

we are able to compute (cf. section 5.3)

lim
N→∞,`,t fix

S
(2)
AC(¯̀, t) = ` ln

2

1 + e−2t/3
. (4.11)

We see from figure 8(a) that the numerical results are in perfect agreement with this pre-

diction. For finite N , the entropy S
(2)
AC(t) displays an initial linear increase, eventually

reaching a saturation value, as expected from the traditional picture of quantum quenches.

The behavior of the Rényi entropy S
(2)
AD(t) is instead not monotonic, as displayed in fig-

ure 8(b). Indeed, one has S
(2)
AD(0) = (N/2) ln 2, which is the maximum entropy possible,

so that at small times S
(2)
AD(t) has to decrease. Its dynamics is then non-trivial during

the initial scrambling time t∗(N), after which it begins an exponential decay towards its

large-time stationary value.

Figures 9 and 10 show the same quantities for all the possible values of the subsystems
¯̀, at different times and system sizes. First, we notice that the entropies and the tripartite

information are symmetric under exchange ¯̀↔ ` = N− ¯̀, as they should. Furthermore, we

see that for different values of ¯̀we have the same qualitative behavior, where at large times

an asymptotic value is always reached. In fact, it is possible to compute the latter exactly,

as it is known that unitary evolutions driven by Brownian Hamiltonians converge in the

infinite-time limit to unitary k-designs, for arbitrary positive integers k [103, 104]. As a

consequence, the asymptotic properties can be computed using Haar averages. The latter,

which were already computed in ref. [9], are reported as dashed lines in figure 9 and 10,

towards which convergence is apparent. We note that, while their infinite-time limit could

be expected, the entropies undergo non-trivial dynamics at short and intermediate times.

This is best appreciated by looking at the entropy S
(2)
AD(¯̀) in figure 10. We see that up to

the scrambling time t∗(N) it appears to be decreasing (precisely, its average over ¯̀), while

at later times it increases again. This results in the non-trivial dynamics of the tripartite

information, which can become positive at short times [cf. figure 8(c)].
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Figure 10. Time evolution of the Rényi-2 entropies S
(2)
AD for the subsystem A ∪ D, as displayed

in figure 2, for N = 200 and different values of ¯̀. Solid lines in subfigures (a) and (b) correspond,

respectively, to times t = 0, 0.2, 0.4, 1 (from top to bottom) and t = 2, 4, 6, 15 (from bottom to top).

The black dashed line in Subfigure (b) is obtained by Haar average as computed in ref. [9].

5 Deriving the key formulas

In this last section, we finally address the most technical aspects of our calculations, includ-

ing several details of the method outlined in section 3. We start by presenting the explicit

form of the Hamiltonian driving the dynamics in the four-replica space in section 5.1. Next,

we derive the key formulas (3.39), (3.42) and (3.43) in section 5.2. Finally, in section 5.3

we report the proof of eqs. (4.2) and (4.11) for the large-N limit of the OTOC Fx,y(t), and

of the Rényi entropy S
(2)
AC(¯̀).

5.1 The Hamiltonian

In this section we show how to derive the explicit form (3.28) of the Hamiltonian driving

the imaginary-time evolution in eq. (3.25), from eq. (3.18). We start with the identity

4!
∑

1≤j<k<l<m≤N
xixjxkxl = X4 −X2(−6N + 8) + 3N(N − 2) , (5.1)

with X =
∑N

i=1 xi, for commuting operators xi satisfying x2
i = −1. This can be easily

derived as follows (see e.g ref. [94]). First, define

fq = q!
∑

1≤i1<...<iq≤N
xi1 . . . xiq . (5.2)

Then, using x2
j = −1, it is straightforward to show

Xfq = fq+1 − q(N + 1− q)fq−1 , (5.3)

which immediately yields the desired identity. Eq. (5.1) allows us to write the Hamiltonian

in terms of global sums of pairs of single-site Majorana operators.

Next, suppose that for a single-site operator xi we have

xiOαi = c(α)Of(α)
i ∀α ∈ {1, ab, . . . , abcd} , (5.4)
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where Oαj have been defined after eq. (3.22). Then one can make the following identification

X =
abcd∑

α=1

c(α)a†f(α)aα , (5.5)

namely the action of X on the permutation symmetric basis (3.26) is the same as the r.h.s.

of eq. (5.5), as can be checked directly. From this, the final form of the Hamiltonian in

terms of bosonic modes aj is readily obtained, and reads

H =
1

N3

(
−2

(
N

4

)
+

1

4!

6∑

r=1

(−1)γr
[
X4
r −X2

r (−6N + 8) + 3N(N − 2)
]
)
, (5.6)

where (−1)γr is given in (3.19), while the operators Xr are defined as

Xab = a†aba1 − a†1aab − a†bcaac − a
†
bdaad + a†acabc + a†adabd + a†abcdacd − a

†
cdaabcd , (5.7)

Xac = a†aca1 + a†bcaab − a
†
1aac − a†cdaad − a

†
ababc − a

†
abcdabd + a†adacd + a†bdaabcd , (5.8)

Xad = a†ada1 + a†bdaab + a†cdaac − a
†
1aad + a†abcdabc − a

†
ababd − a†acacd − a

†
bcaabcd , (5.9)

Xbc = a†bca1 − a†acaab + a†abaac + a†abcdaad − a
†
1abc − a†cdabd + a†bdacd − a

†
adaabcd , (5.10)

Xbd = a†bda1 − a†adaab − a
†
abcdaac + a†abaad + a†cdabc − a

†
1abd − a†bcacd + a†acaabcd , (5.11)

Xcd = a†cda1 + a†abcdaab − a
†
adaac + a†acaad − a†bdabc + a†bcabd − a

†
1acd − a†abaabcd . (5.12)

Inspection of eq. (5.6) reveals that the Hamiltonian displays several conservation laws.

It is natural to look for a Bogoliubov transformation of the modes which makes some of

the symmetries apparent. In addition, one would also like this transformation to simplify

the convoluted a-mode expression |W(p,n,m)〉〉 for the OTOCs (5.36). Motivated by this, we

look for a transformation where the first boson b1 is associated with the macroscopically

occupied mode in eq. (5.36), and choose the other modes bj to satisfy canonical commu-

tation relations. While this can be done in different ways, it turns out that a particularly

convenient transformation is the one defined by eq. (3.30), where Cn,m is the element in

the line n and in the column m of the matrix

C =




1 −1 −1 −1 1 1 1 −1

i −i i i i −i −i −i
1 1 −1 1 −1 1 −1 −1

i i i −i −i −i i −i
i i i −i i i −i i

−1 −1 1 −1 −1 1 −1 −1

i −i i i −i i i i

−1 1 1 1 1 1 1 −1




. (5.13)

Indeed, after this Bogoliubov transformation the form of the Hamiltonian immediately

reveals the presence of additional symmetries which can be directly exploited for our com-

putations.
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It is straightforward to rewrite the operators (5.7)–(5.12), and hence the Hamilto-

nian (5.6), in terms of the new modes bj . In particular, we have

Xab = i(b†1b2 + b†2b1 + b†3b4 + b†4b3 − b†5b5 + b†6b6 + b†7b7 − b†8b8) , (5.14)

Xac = −b†1b2 + b†2b1 + b†3b4 − b†4b3 − b†5b6 + b†6b5 + b†7b8 − b†8b7 , (5.15)

Xad = −i(b†1b1 − b†2b2 − b†3b3 + b†4b4 − b†5b6 − b†6b5 − b†7b8 − b†8b7) , (5.16)

Xbc = −i(b†1b1 − b†2b2 − b†3b3 + b†4b4 + b†5b6 + b†6b5 + b†7b8 + b†8b7) , (5.17)

Xbd = b†1b2 − b†2b1 − b†3b4 + b†4b3 − b†5b6 + b†6b5 + b†7b8 − b†8b7 , (5.18)

Xcd = i(b†1b2 + b†2b1 + b†3b4 + b†4b3 + b†5b5 − b†6b6 − b†7b7 + b†8b8) . (5.19)

5.2 Extracting OTOCs and entropies

We now wish to show how to derive an explicit expression for the vectors |W(p,n,m)〉〉,
|W

S
(2)
AC(¯̀)

〉〉 and |W
S

(2)
AD(¯̀)

〉〉 in eqs. (3.39), (3.42) and (3.43), respectively. In order to simplify

this task, we start by proving the following lemma. Let

|WN 〉〉 =
∑

n1+···+nabcd=N

1√
N !n1! · · ·nabcd!

∑

π∈SN
π

N∏

x=1

αx(zx)π−1|n1, . . . , nabcd〉, (5.20)

where zx ∈ {1, ab, ac, ad, bc, bd, cd, abcd} is the operator at site x for the permutation π,

cf. (3.26) and αx(zx) constants. Then

|WN 〉〉 =
1√
N !

N∏

x=1

(
abcd∑

z=1

αx(z)a†z

)
|Ω〉 . (5.21)

The equivalence between eqs. (5.20) and (5.21) is best established by directly expanding

the product in eq. (5.21), and regrouping the different terms.

Next, we introduce some notations to handle our subsequent calculations in a compact

way. In particular, let us rewrite the basis operator O~n in eq. (3.26) as

O~n =
1√

N !n1! · · ·nabcd!
×
∑

π∈SN
πΨab

abΨ
ac
acΨ

ad
adΨ

bc
bcΨ

bd
bdΨ

cd
cdΨ

abcd
abcd π

−1 . (5.22)

Here we introduced the notations Ψab
ab =

∏
p∈Iab ψ

a
pψ

b
p, Ψac

ac =
∏
p∈Iac ψ

a
pψ

c
p, . . ., Ψabcd

abcd =∏
p∈Iabcd ψ

a
pψ

b
pψ

c
pψ

d
p , where Iab, Iac, . . . Iabcd are ordered, pairwise disjoint, subsets of

{1, 2, . . . N}, such that |Iab| = nab, . . . |Iabcd| = nabcd. In this notation, upper indexes

in Ψα
β indicate the type of single-site operators, while lower indices specify which subset of

{1, 2, . . . , N} the product of such operators runs over. Consistent with this convention, we

also introduce

Ψa
a =

∏

p∈Ia
ψap , (5.23)

where Ia is the ordered set defined by

Ia = Iab ∪ Iac ∪ Iad ∪ Iabcd , (5.24)
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and whose elements are ordered as they appear in eq. (5.24) (namely, the first nab elements

of Ia are those of Iab with the same order, followed by those of Iac, and so on). Analogously,

one can define Ψb
b, Ψc

c and Ψd
d, where

Ib = Iab ∪ Ibc ∪ Ibd ∪ Iabcd , (5.25)

Ic = Iac ∪ Ibc ∪ Icd ∪ Iabcd , (5.26)

Id = Iad ∪ Ibd ∪ Icd ∪ Iabcd , (5.27)

with the elements of Ia, Ib and Ic ordered as they appear in eqs. (5.25), (5.26) and (5.27).

Finally, let us consider two disjoint subsets A ∪B = {1 . . . N}. Then, we define

Ψab
abA =

∏

p∈Iab∩A
ψapψ

b
p , Ψab

abB =
∏

p∈Iab∩B
ψapψ

b
p , (5.28)

Ψa
aA =

∏

p∈Ia∩A
ψap , Ψa

aB =
∏

p∈Ia∩B
ψap , (5.29)

and analogously for the other cases. Using these notations, we can rewrite

O~n=N
∑

π∈SN
πΨab

abAΨac
acAΨad

adAΨbc
bcAΨbd

bdAΨcd
cdAΨabcd

abcdAΨab
abBΨac

acBΨad
adBΨbc

bcBΨbd
bdBΨcd

cdBΨabcd
abcdBπ

−1

=N
∑

π∈SN
πΨa

aBΨb
bBΨc

cBΨd
dBΨa

aAΨb
bAΨc

cAΨd
dA(−1)γA+γBπ−1

=N
∑

π∈SN
πΨa

aBΨa
aAΨb

bBΨb
bAΨc

cBΨc
cAΨd

dBΨd
dA(−1)γA+γB+δπ−1 , (5.30)

where N = (N !n1! · · ·nabcd!)−1/2 is the normalization. In order to write down the first

line, we used that even string of different fermions commute, while sorting the Majorana

operators in the second line resulted in the phases (−1)γA , (−1)γB . We will not write γA,

γB explicitly, as they will cancel at the end of the calculations. Conversely, one can easily

compute the phase (−1)δ appearing in the last line of eq. (5.30):

(−1)δ = (−1)naA(nbB+ncB+ndB)+nbA(ncB+ndB)+ncAndB

= (−1)(n2
aB+n2

bB+n2
cB+n2

dB)/2 . (5.31)

Here we have used that na = naB + naA and naB + nbB + ncB + ndB are even, which can

be seen by writing explicitly naB = nabB + nacB + nadB + nabcdB etc.

Eq. (5.30) is the starting point to derive the explicit form of the vectors |W(p,n,m)〉〉,
|W

S
(2)
AC(¯̀)

〉〉 and |W
S

(2)
AD(¯̀)

〉〉 for OTOCs and Rényi entropies respectively. These are treated

in the following, in dedicated subsections.

5.2.1 The OTOCs

We wish to calculate the OTOC (3.34) of the initial operators (3.35), (3.36). Starting

from (3.5)–(3.7), we can insert (5.30) for the correlated time evolution operator, where sim-

ply A = {1 . . . N}, B = {} such that there is only one (−1)γ and no (−1)δ and we omit the

labels A,B. Since this expression involves products of even numbers of Majorana fermions
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acting on the same “replica” space, we may switch to the operators χαj in eqs. (3.8), (3.9),

and perform backwards the steps to derive eq. (3.5) from eq. (3.1). This gives

F(p,n,m) =
∑

~n

N c~n(t)
∑

π∈SN
π tr

[
Φ(p,n)ΨaΦ

(p,m)Ψ†bΦ
(p,n)ΨcΦ

(p,m)Ψ†d

]
(−1)γπ−1/2N/2 ,

(5.32)

where Φ(p,n), Φ(p,m) are defined in eqs. (3.35), (3.36). Here, we simply wrote Ψa, Ψb, Ψc

and Ψd without superscript, as we only have a single copy of the fermionic space. More

explicitly, we have, for instance

Ψa =
∏

p∈Ia
ψp , (5.33)

where Ia is defined in (5.24).

Next we move the operator pairs Φ(p,n) and Φ(p,m) together such that they cancel. Of

course, this generates phases through the anti-commutation relations of the fermions; we

obtain

F(p,n,m) =
∑

~n

N c~n(t)
∑

π∈SN
π tr

[
ΨaΨ

†
bΨcΨ

†
d

]
(−1)γ(−1)na,c({iα})+na,b({jα})+nb,c({kα})

× (−1)m(m−1)/2+n(n−1)/2+mnπ−1/2N/2 , (5.34)

where na,c ({iα}) is the number of indeces in {iα}pα=1 which also belong to Ia ∪ Ic [as

defined in eqs. (5.24), (5.26)]. Analogously, na,b ({jα}) and nb,c ({kα}) are, respectively, the

numbers of indexes in {jα}nα=1 and in {kα}mα=1 which also belong to Ia ∪ Ib and Ib ∪ Ic.
Finally, noticing

tr
[
ΨaΨ

†
bΨcΨ

†
d

]
= (−1)(nb+nd)/2 tr [ΨaΨbΨcΨd] = 2N/2(−1)(nb+nd)/2(−1)γ , (5.35)

we see that the factor (−1)γ in (5.34) is exactly canceled. We are left with an equation of

the form (5.20), setting α’s appropriately. Thus we may apply the lemma proved before

[cf. eq. (5.21)], which directly gives

|W(p,n,m)〉〉 =
1√
N !

(−1)m(m−1)/2+n(n−1)/2+nm

× (a†1 − ia†ab + a†ac − ia†ad − ia
†
bc − a

†
bd − ia

†
cd − a

†
abcd)

p

× (a†1 + ia†ab − a†ac − ia
†
ad − ia

†
bc + a†bd + ia†cd − a

†
abcd)

n

× (a†1 − ia†ab − a†ac + ia†ad + ia†bc + a†bd − ia
†
cd − a

†
abcd)

m

× (a†1 + ia†ab + a†ac + ia†ad + ia†bc − a
†
bd + ia†cd − a

†
abcd)

N−p−n−m |Ω〉 . (5.36)

The result (3.39) is finally obtained after expressing the operators a†j in terms of the

b-modes, introduced in eq. (3.30).

5.2.2 The Rényi-2 entanglement entropy S
(2)
AC(¯̀)

Next, we turn to the task of deriving the vector |W
S

(2)
AC(¯̀)

〉〉 introduced in eq. (3.40), corre-

sponding to the exponential of the second Rényi entropy S
(2)
AC(¯̀).
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As we have explained in detail in section 2.2, in order to compute S
(2)
AC(¯̀), we need to

consider the evolved state Ua |Iab〉, where |Iab〉 was introduced in eq. (2.12), while the time

evolution operator Ua acts only on the “replica” space a (cf. figure 3). For our fermionic

system, the reduced density matrix of the union of the disjoint sets A and C can then be

written as (see e.g. [107])

ρAC =
∑

FaA,F
b
C

1

2`
(F aAF

b
C)† 〈Iab|Ua†(F aAF bC)Ua|Iab〉 . (5.37)

Here we denoted by {F aA}, and {F bC} a complete basis of operators in A, C respectively;

namely F aA and F bC take value in all the possible strings of Majorana operators supported

in A and C. Here, as before, we followed the convention that upper indexes indicate the

type of single-site operators, while lower indices specify which subset of {1, 2, . . . , N} the

product of such operators runs over. Through simple manipulations, we have

tr
[
ρ2
AC

]
=

2`

22`

∑

FA,FC

〈Iab|Ua†︸ ︷︷ ︸
〈Iab|Ub−

F aAF
b
CU

a |Iab〉 〈Icd|U c†︸ ︷︷ ︸
〈Icd|Ud−

F d†C F
c†
A︸ ︷︷ ︸

F cAF
d
C(−1)α

U c |Icd〉 (5.38)

=
1

2`

∑

FA,FC

(−1)α 〈Iab| ⊗ 〈Icd| F aA ⊗ F cA Ua+U
b
−U

c
+U

d
− F

b
C ⊗ F dC |Iab〉 ⊗ |Icd〉 ,

where Uα±(t) are defined in eq. (3.14). From this equation we clearly see that, in complete

analogy with the case of the OTOCs, we can write also tr
[
ρ2
AC

]
in the form 〈L| U(t) |R〉. As

anticipated, this allows us to apply a procedure similar to the one employed for the OTOCs,

and derive the vector |W
S

(2)
AC(¯̀)

〉〉. In particular, we can use the notations introduced in

section 5.2, and exploit directly eq. (5.30). This yields straightforwardly

tr
[
ρ2
AC

]
=

1

2`
√
N !n1! · · ·nabcd!

∑

~n

c~n(t)
∑

π∈SN
π(−1)γA+γB+δ (5.39)

×
∑

FA,FC

(−1)α 〈Iab|F aAΨa
aBΨa

aAΨb
bBΨb

bAF
b
C |Iab〉〈Icd|F cAΨc

cBΨc
cAΨd

dBΨd
dAF

d
C |Icd〉

︸ ︷︷ ︸
(∗)

π−1 .

Next, we compute

(∗) =
∑

FA,FC

〈Iab|Ψb
bBΨb

bAF
a
AΨa

aBΨa
aAF

b
C |Iab〉 〈Icd|Ψd

dBΨd
dAF

d†
C F

c†
A Ψc

cBΨc
cA|Icd〉

=
∑

FA,FC

〈Iab|(Ψa
bBΨa

bA)†F aAΨa
aBΨa

aAF
b
C |Iab〉 〈Icd|F d†C (Ψc

dBΨc
dA)†F c†A Ψc

cBΨc
cA|Icd〉

=
∑

FA,FC

〈Iab|Ψa†
bAΨa†

bBF
a
AΨa

aBΨa
aAF

a†
C |Iab〉 〈Icd|F cCΨc†

dAΨc†
dBF

c†
A Ψc

cBΨc
cA|Icd〉

=
∑

FA,FC

(−1)naB#FA+ndB#FA 〈I|Ψ†bA Ψ†bBΨaB︸ ︷︷ ︸
2−¯̀/2 tr Ψ†bBΨaB

FAΨaAF
†
C |I〉

× 〈I|FCΨ†dAF
†
A Ψ†dBΨcB︸ ︷︷ ︸

2−¯̀/2 tr Ψ†dBΨcB

ΨcA|I〉 (5.40)
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In (5.40), all Majorana operators are in the same system, so we leave away the doubled

system label. To extract the traces, note that those are the only operators acting on the

region B of the system. Thus the Majorana fermions on those sites B already have to

cancel in pairs, or the expectation value 〈I| · |I〉 will be zero. Similarly, the only value of

FC with non-zero contribution has

Ψ†bAFAΨaAF
†
C = ±1⇒ FC = ±Ψ†bAFAΨaA , (5.41)

which can be inserted into the second expectation value, canceling the ±1 and giving

(∗) =
1

2¯̀/2
tr
[
Ψ†bBΨaB

] 1

2¯̀/2
tr
[
Ψ†dBΨcB

]
〈I|I〉

× 〈I|Ψ†bA
∑

FA

(−1)#(ΨaAΨ†dA)#FAFAΨaAΨ†dAF
†
AΨcA|I〉

= 2−
¯̀

tr
[
Ψ†bBΨaB

]
tr
[
Ψ†dBΨcB

]
tr
[
ΨaAΨ†dA

]
tr
[
Ψ†bAΨcA

]

= 2−
¯̀
(−1)

nb+nd
2

+nbB+ndB tr [ΨaBΨbB] tr [ΨcBΨdB] tr [ΨaAΨdA] tr [ΨbAΨcA] . (5.42)

Here, in order to go from the first to the second line, we made use of the identity (B.8) in

appendix B.2. The last line of (5.42) is non-zero only for

n1 = n1B + n1A , nab = nabB , nac = 0 ,

nad = nadA , nbc = nbcA , nbd = 0 ,

ncd = ncdB , nabcd = nabcdB + nabcdA .

(5.43)

With this we see that the traces evaluate as (−1)γB+γA . Also, it shows that naB ≡ nbB ≡
nbA ≡ ncA ≡ ncB ≡ ndB (mod 2), such that (−1)δ = +1. Putting all together, we get

tr ρ2
AC =

∑

~n

c~n(t)√
N !n1! · · ·nabcd!

×
∑

π∈SN
π (−1)(nb+nd)/2δ(π)π−1 (5.44)

where the Kronecker delta δ(π) enforces the constraints (5.43). This expression can also

be cast into the form (5.20) by setting some α’s to zero. Then eq. (5.21) gives us

|W
S

(2)
AD(¯̀)

〉〉 =
1√
N !

[
ia†ab + ia†cd + (a†1 − a†abcd)

]` [
ia†ad + ia†bc + (a†1 − a†abcd)

]¯̀

|Ω〉 . (5.45)

Transformation to b-modes (3.30) finally yields the result anticipated in eq. (3.42).

An analogous treatment can be carried out for the case of the entropy S
(2)
AD. Since the

technical steps are very similar, we report them in appendix D.

5.3 Some large-N limits

In this section, we finally show how one can compute the limit N → ∞, while keeping

time t fixed, for the OTOCs and the Rényi-2 entropies, and derive in particular eqs. (4.2)

and (4.11).

We start with the case of OTOCs, and consider eq. (3.44). As a first simplification, we

only need to keep modes b1 through b4 in the Hamiltonian and initial state 〈〈U(0)| as the
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others are not present in |W(p,n,m)〉〉. Next, we switch to ladder operators with an unusual

normalization, specifically

b̃†i |ni〉b̃ = |ni + 1〉b̃ , b̃i |ni〉b̃ = ni |ni − 1〉b̃ . (5.46)

This now allows us to take the leading order in N for each term of the exponential eHt,

using that b̃1 ∼ N as p, n,m� N . We obtain

lim
N→∞

〈〈U(0)|eHt|W(p,n,m)〉〉 =

∞∑

m=0

〈〈U(0)|
(

lim
N→∞

H

)m
|W(p,n,m)〉〉tm/m! , (5.47)

with

lim
N→∞

H = HA +HB +HC , (5.48)

HA =
2

3
(b̃†22 b̃

2
1/N

2 − 1)b̃†2b̃2, (5.49)

HB =
2

3N3
b̃†32 b̃

3
1b̃
†
4b̃3, (5.50)

HC = −2

3
b̃†3b̃3 . (5.51)

As 〈〈U(0)| (b̃†22 b̃
2
1/N

2 − 1) = 0 at the highest order in N , terms with HA do not contribute

at the leading order. For the OTOC Fx,y(t), also HB and HC cannot occur, because

|Wx,y〉〉 (3.39) does not contain any b3-modes. The asymptotic result is then the constant

Fx,y(t) → 〈〈U(0)|1|Wx,y〉〉 = −1, as reported in (4.3). In contrast, for the OTOC Fx,x(t),

the state |Wx,x〉〉 does contain one b3-mode such that HB can appear at most once. The

remaining Hamiltonian is still simple enough to finally derive the exponential decay (4.2).

We stress that we can only expect these limits to be point-wise in t due to the exchange of

limits in (5.47); in fact, convergence is clearly not uniform, as can be seen from the exact

numerical results.

The case of the entropy S
(2)
AC(t) is treated along similar lines. We first perform a further

mode transformation

c1 = (b1 − b2)/
√

2 , c2 = (b1 + b2)/
√

2 ,

c3 = (b3 + b4)/
√

2 , c4 = (b4 − b3)/
√

2 , (5.52)

such that

|W
S

(2)

AC(¯̀)

〉〉 =
2N√
N !

1

2¯̀(c†1)`(c†1 + c†2 − c†3 − c†4)
¯̀ |Ω〉 . (5.53)

We may now follow the same procedure as for the OTOCs. In fact, the Hamiltonian has

the exact same form in terms of the modes bj and cj . Taking ¯̀� N , eq. (5.48) is therefore

valid, after substituting the modes b̃j with c̃j . Now, the initial state

〈〈U(0)| = 〈Ω| (c1 − c3)N
1√
N !2N

(5.54)

annihilates both HA and HB ensuing in a very simple (quadratic) asymptotic Hamiltonian

HC . From this, eq. (4.11) follows straightforwardly.
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6 Conclusions

In this work, we have developed an approach to analyze the chaotic dynamics in the

Brownian SYK model, a system of N Majorana fermions coupled together via random,

time-dependent interactions. We have shown that the OTOCs and the tripartite informa-

tion of the unitary evolution can be studied as a quench problem (at imaginary times) in

a system of N qudits, which can be conveniently investigated in terms of bosonic modes,

due to an emergent permutational symmetry. Exploiting the latter, we were able to pro-

duce numerically exact results up to N = 106, and to study several features of the chaotic

dynamics at finite size.

We have analyzed in detail the dependence of the OTOCs on the observables chosen,

highlighting the pieces of information on the initial operators which are not washed out by

the chaotic dynamics. In particular, after the scrambling time t∗(N) ∼ lnN , the OTOCs

of distinct operators converge to the same curve if they have the same length, namely if

they are written as products of the same number of Majorana fermions, whereas the curves

of different OTOCs can be distinguished after the scrambling time t∗(N) if the length

is different. Furthermore, we have verified that the exponent of the initial exponential

growth of the OTOCs is universal and performed a data collapse for increasing system

sizes. Regarding the tripartite information, we have shown that its evolution is non-trivial

during the initial scrambling time, while at large times it always decays exponentially to

the corresponding Haar-scrambled value; this result is consistent with the rigorous recent

findings of refs. [103, 104]

The approach developed in this paper can be generalized to other models where the

Hamiltonian displays all-to-all random interactions, with time-dependent Brownian disor-

der. Indeed, one can straightforwardly follow the steps outlined in section 3, and study

the dynamics of OTOCs and tripartite information as a quench problem in a qudit system

with site permutational symmetry. In turn, this implies that the effective imaginary-time

dynamics takes place in a Hilbert space whose dimension grows as a polynomial in N .

Of course, one would need to investigate for each case whether a further reduction of the

effective dimension takes place, as for the Brownian SYK model studied in this paper.

It is possible that the final formulas obtained with our method (which have been

used in this work mainly for efficient numerical computations) could be simplified further

and evaluated to exact analytic expressions in the large-N limit. In fact, by means of a

different approach, an exact result for a suitable average of OTOCs was found in ref. [98]

for the Brownian dynamics generated by a disordered Hamiltonian in a qudit system. It

would be interesting to see whether ideas related to the work [98] could be used here, to

obtain analytic expressions for the OTOCs of arbitrary observables and for the tripartite

information, in the large-N limit.

Finally, the approach presented in this paper could also be applied to compute quan-

tities involving higher moments of the evolution operator U(t), such as Rényi entropies of

higher order, or the Rényi-2 operator entanglement entropy of local observables [109, 110].

In these cases, however, the application of our method would be inevitably more compli-

cated. More importantly, it is not granted that a reduction of the Hilbert-space dimension
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could be achieved by means of a transformation analogous to (3.30). In any case, it would

be certainly interesting to investigate these points further.
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A Non-interacting case: q = 2

In this section, we study the Brownian SYK model (2.1) for q = 2. We choose the constant

σJ in (2.2) such that the disorder’s correlations are given by

Jij(t)Ji′j′(t′) = δii′δjj′δ(t− t′)
1

N
. (A.1)

Each disorder realization is governed by a free Hamiltonian, therefore we do not expect

any scrambling of operators or decay of OTOCs.

The method developed in this article can be applied to arbitrary q and we may study

the non-interacting case within its framework. The states

|W(p,n,m)〉〉, |WS
(2)
AC(¯̀)

〉〉, |W
S

(2)
AD(¯̀)

〉〉, and |U(0)〉〉 (A.2)

representing the OTOC (3.39), Rényi-2 entanglement entropies (3.40) and (3.41), and

initial time evolution operator (3.33) are independent of q as long as q is even. However,

the effective Hamiltonian reflects the change of q and is simpler. Along the same lines as

for q = 4 (see section 3.2), we can compute

d

dt
U(t) = LU(t), (A.3)

L =
1

N


−2

(
N

2

)
−

∑

α,β=a,b,c,d
α<β

∑

i<j

(ψαi ψ
β
i )(ψαj ψ

β
j )


 . (A.4)

The corresponding representation of the effective Hamiltonian after operator-state

mapping in bosonic modes is

|U(t)〉〉 = eHt |U(0)〉〉, (A.5)

H =
1

N

[
−2

(
N

2

)
− 3N − 1

2

cd∑

r=ab

X2
r

]
(A.6)

= − 4

N
(b†1b

†
3 − b†2b†4)(b1b3 − b2b4), (A.7)
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Figure 11. OTOCs Fx,x(t) (solid lines) and Fx,y(t) (dashed lines) for single site Majorana fermions.

We show the analytical results (A.9) and (A.8) for various system sizes N . At long times, they

decay to the same value −1 + 2
N 6= 0, indicating the absence of scrambling.

where the six Xr operators are the same as in the corresponding expression (3.28) for q = 4.

For the two simple OTOCs Fx,y(t) and Fx,x(t) the dynamics only explores the two-

level subspace spanned by |N − 1, 0, 1, 0〉 and |N − 2, 1, 0, 1〉. Therefore we can compute

these OTOCs analytically and obtain

Fx,y(t) = −1 +
2

N
− 2

N
e−4t , (A.8)

Fx,x(t) = −1 +
2

N
+

2

N
e−4t(N − 1) . (A.9)

The curves are plotted in figure 11. As expected, the OTOCs do not decay to zero at long

times, as the non-interacting model is not chaotic. Since the tripartite information can be

written as an average of OTOCs [9], it too will lack the characteristics of scrambling.

We now make a comment on the so-called “length” of the operator ψj(t), see e.g. [38].

At any time t, we can always write

ψj(t) =
∑

s

∑

{kj}
ψk1 · · ·ψks︸ ︷︷ ︸

length s

cs,{kj}(t) , (A.10)

and define the average length L(t) as

L(t) =
∑

s

s
∑

{kj}
|cs,{kj}|2 . (A.11)

It can be shown that the average length is related to an appropriate average over OTOCs,

namely [38]

L(t) =
N + Fx,x(t) + (N − 1)Fx,y(t)

2
. (A.12)

Using this relation, if follows from our results (A.8)–(A.9) that the length is constant

1. This is expected because the Gaussian dynamics preserves the length of products of

Majorana operators.
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Figure 12. For the free case (q = 2), we show the time behavior of the entanglement entropies

S
(2)
AC (a), S

(2)
AD (b) and tripartite information I

(2)
3 (c) for several system sizes N and fixed subsystem

size ¯̀= 10. In (a), we also indicate the limit (A.13). The tripartite information is always positive,

which means that the non-interacting system does not scramble quantum information.
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Figure 13. The entanglement entropies S
(2)
AC (a) and S

(2)
AD (b) for various subsystem sizes ¯̀ and

several times t in the free case. The black dotted lines show the values reached with Haar-scrambling.

Next, we can calculate the entanglement entropies numerically, just like in the interact-

ing case. We present the results in figure 12. In the limit N →∞, ¯̀, t fixed, we can derive

lim
N→∞,¯̀,t fix

S
(2)
AC(¯̀, t) = ¯̀ln

2

1 + e−4t
, (A.13)

along the same lines as in section 5.3. While the entropy S
(2)
AC(¯̀) saturates to its maximal

Haar value at large N and t, the behavior of S
(2)
AD(¯̀) is qualitatively different from the

interacting case (figure 8). This leads to the tripartite information being positive at all

times and system sizes, indicating the absence of scrambling.

As for the interacting case, we can also study the entanglement entropies’ dependence

on the subsystem size, see figure 13. Comparing against figures 9 and 10, we see that in

the free case, the entanglement entropies do not reach the maximal Haar scrambled values

at finite ratios ¯̀/N .

B Relation between OTOCs and Rényi-2 entropies

In this appendix we review the relation between OTOCs and Rényi-2 entropies in the

case of unitary evolution operators defined on qubit systems, and generalize the latter for
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fermionic (Majorana) systems. We focus on the configuration displayed in figure 2, taking

the regions A and C of the same size and position (and analogously for B and D).

B.1 The case of Pauli matrices

We start by giving a derivation of the aforementioned relation for a system of qubits, along

the lines of the one in ref. [9]. First, we can write the reduced density matrix ρAC as

ρAC =
1

2a+c

∑

j,k

(
OAj O

C
k

)† 〈I|U †ABOAj OCk UAB|I〉 , (B.1)

where the sum is over the complete bases {OAj } and {OCk } of strings of Pauli operators in

A and C, while a and c are equal to the number of sites in A and C. The state |I〉 is the

maximally entangled state connecting A ∪B and C ∪D, satisfying

OCj |I〉 =
(
OAj
)T |I〉 , (B.2)

while UAB is the evolution operator acting non-trivially only on the system A ∪B. Then,

using the orthogonality of the Pauli operators, and after simple simplifications, we have

tr
[
ρ2
AC

]
= 2−a−c−2N

∑

j,k

tr
[
U †ABO

A
j UABO

A
k

]
× tr

[
OAk U

†
ABO

A
j UAB

]
. (B.3)

Consider now the sum

2−a−c−3N
∑

j,k,j̃,k̃

tr
[
OA
j̃
OB
k̃

(
U †ABO

A
j UABO

A
k

)
OA
j̃
OB
k̃

(
OAk U

†
ABO

A
j UAB

)]
. (B.4)

Using the identity [9] ∑

j

AjOAj = |A| trA{O} , (B.5)

(here Aj are a complete basis of operators for the Hilbert space associated with A, while

|A| is its dimension), one immediately obtains that the r.h.s. of eq. (B.3) is equal to (B.4).

Therefore

tr
[
ρ2
AC

]
= 2−a−c−3N

∑

j,k,j̃,k̃

tr
[
OA
j̃
OB
k̃

(
U †ABO

A
j UABO

A
k

)
OA
j̃
OB
k̃

(
OAk U

†
ABO

A
j UAB

)]

=
1

23N−a+c

∑

j,l

tr
[
OBl O

A
j (t)OBl O

A
j (t)

]
(B.6)

In the last step, we summed over k, used once again the identity (B.5), and finally renamed

the indexes k̃ = l. Putting all together, we find

1

4a+d

1

2N

∑

j,k

tr
[
OAj (t)ODk (0)OAj (t)ODk (0)

]
= 2N−a−d−S

(2)
AC . (B.7)

This is exactly the same result as in [9]. An analogous derivation holds for the case of

S
(2)
AD. This equation encodes a close connection between the tripartite information and the

OTOCs, and allows one to establish that chaos, as measure by small values of all OTOCs,

implies scrambling [9]. In the next section we show that a similar relation, with the addition

of proper signs, holds in the case of fermionic systems.
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B.2 The case of Majorana operators

For Majorana operators one needs a different treatment. Indeed, the identity (B.5) is no

longer valid, but should be modified as follows. Let O be an operator with a well defined

parity of Majorana operators, i.e. O is the sum of strings of operators that are either all even

or all odd. Then, by expanding in the operator basis of Majorana operators, one can prove

∑

j

(−1)`j`OAjOA†j = |A| trA{O}. (B.8)

Here `j is the length of the operator Aj . For example, if Aj = ψ1ψ4 then `j = 2.

Analogously, `O is the length of one of the terms in O. Since all these terms have the same

parity, it does not matter which one we choose. We can then proceed as in the previous

sections, now paying attention to the order of the operators involved in the calculations.

First, we have

ρAC =
1

2a+c

∑

j,k

(
OAj O

C
k

)† 〈I|U †ABOAj OCk UAB|I〉 , (B.9)

where now a and c are half the number of sites in A and C. Proceeding as before, we have

tr
[
ρ2
AC

]
= 2−a−c−2n

∑

j,k

tr
[
U †ABO

A
j UAB

(
OAk
)†]× tr

[
OAk U

†
AB

(
OAj
)†
UAB

]
, (B.10)

where n = N/2. Consider now the sum

2−a−c−3n
∑

j,k,j̃,k̃

(−1)`j̃(`j+`k)+`k̃(`j+`k)

× tr

[
OA
j̃
OB
k̃

(
U †ABO

A
j UAB

(
OAk
)†)(

OB
k̃

)† (
OA
j̃

)† (
OAk U

†
AB

(
OAj
)†
UAB

)]
. (B.11)

Noticing now that the evolution operator can always be written as sum of even strings

of Majorana operators, one can directly apply the identity (B.8) to prove that the r.h.s.

of (B.10) is equal to (B.11). On the other hand, using

`j̃(`j + `k) + `k̃(`j + `k) = `j(`j̃ + `k̃) + `k(`j̃ + `k̃) , (B.12)

we can sum over k by employing once again the identity (B.8), and finally rename k̃ = r.

Putting all together, we obtain

tr
[
ρ2
AC

]
=

1

23n−a+c

∑

j,r

(−1)`j`rtr
[
OBr O

A
j (t)

(
OBr
)† (

OAj (t)
)†]

. (B.13)

We see that additional signs appear in the sum over the OTOCs with respect to the case

of Pauli matrices. However, the Rényi-2 entropy still encodes global information about

the sum of the OTOCs over extended regions of the system.

– 35 –



J
H
E
P
1
1
(
2
0
1
9
)
0
3
8

C Details on the numerical implementation

In this section, we explain a few details for the numerical computation. For the OTOCs,

we implement (3.44) in terms of the modes b1, b2, b3, b4, as explained in the main text. For

the entropies however, we use different modes. While we could likewise implement (3.40)

and (3.41) in b-modes, this introduces large numerical error as N increases, due to can-

cellations of large numbers. Instead we have found that for the entropy S
(2)
AC , a numerical

calculation in terms of modes c1, c2, c3, c4 (5.52) is most stable. For the entropy S
(2)
AD, we

found that using the modes b1, b2, c3, c4 gives the most stable results. For our numerical

calculation we have therefore transformed initial state |U(0)〉〉 (3.33), effective Hamiltonian

H (5.6) and |W
S

(2)
AC,BD(¯̀)

〉〉 (3.42)–(3.43) into these modes.

D The Rényi-2 entanglement entropy S
(2)
AD(¯̀)

In this appendix, we turn to the task of deriving the vector |W
S

(2)
AD(¯̀)

〉〉 introduced in

eq. (3.41), corresponding to the exponential of the second Rényi entropy S
(2)
AD(¯̀). The

discussion goes along the same lines of the one presented in section 5.2.2 for the entropy

S
(2)
AC(¯̀). Writing out the partial trace as done for the other entropy, we get

ρAD =
∑

FaA,F
b
D

1

2N/2
(F aAF

b
D)† 〈Iab|Ua†(F aAF bD)Ua|Iab〉 , (D.1)

where we denoted by {F aA} and {F bD} a complete basis for the operators in A, D respec-

tively; namely F aA and F bD take value in all the possible strings of Majorana operators

supported in A and D. We can continue along the same lines as for the other entropy,

giving

tr
[
ρ2
AD

]
=

1

2N/2
√
N !n1! · · ·nabcd!

∑

~n

c~n(t)
∑

π∈SN
π(−1)γA+γB+δ (∗)π−1 . (D.2)

Here the term (∗) can be evaluated as for the other entropy up until (5.40). Then, however,

Ψa†
bB and Ψa

aB are not the only parts in the first expression acting on this subspace, now F aD
also does. So, continuing from (∗) and dropping the doubled system label as all operators

are in the same system, we have

(∗) =
∑

FA,FD

〈Iab|Ψa†
bAΨa†

bBF
a
AΨa

aBΨa
aAF

a†
D |Iab〉 〈Icd|F cDΨc†

dAΨc†
dBF

c†
A Ψc

cBΨc
cA|Icd〉

=
∑

FA,FD

〈I|Ψ†bAFAΨaAΨ†bBΨaBF
†
D|I〉 〈I|FDΨ†dBΨcBΨ†dAF

†
AΨcA|I〉 . (D.3)

The left side is only non-zero for

Ψ†bAFAΨaA = ±1⇒ F †A = ±ΨaAΨ†bA (D.4)

Ψ†bBΨaBF
†
D = ±1⇒ FD = ±Ψ†bBΨaB (D.5)
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such that we can evaluate the sum
∑

FA,FD
, inserting these in the right side. We get

(∗) = 〈I|I〉 〈I|Ψ†bBΨaBΨ†dBΨcB Ψ†dAΨaAΨ†bAΨcA|I〉
= tr Ψ†bBΨaBΨ†dBΨcB/2

¯̀/2 tr Ψ†dAΨaAΨ†bAΨcA/2
¯̀/2

= tr ΨdBΨcBΨbBΨaB/2
¯̀/2 tr ΨaAΨbAΨcAΨdA/2

¯̀/2(−1)
nb+nd

2
+nbB+ndB

= tr(ΨaBΨbBΨcBΨdB)†/2
¯̀/2 tr ΨaAΨbAΨcAΨdA/2

¯̀/2(−1)
nb+nd

2
+nbB+ndB

× (−1)(naB(naB−1)+nbB(nbB−1)+ncB(ncB−1)+ndB(ndB−1))/2 (D.6)

= (−1)γA+γB (−1)(nb+nd)/2(−1)(naB(naB−1)+nbB(nbB+1)+ncB(ncB−1)+ndB(ndB+1))/2 .

The traces now give (−1)γA and (−1)γB , respectively. Inserted back into (5.40), these

cancel, and the δ partially cancels the other phases,

tr
[
ρ2
AD

]
=

1

2N/2
√
N !n1!···nabcd!

∑

~n

c~n(t)
∑

π∈SN
π(−1)(nb+nd)/2(−1)(−naB+nbB−ncB+ndB)/2π−1 .

(D.7)

Again, this has the form (5.20) with suitable choices of α’s. Then, according to eq. (5.21)

we obtain

|W
S

(2)
AC(¯̀)

〉〉 =
1

2N/2
√
N !

[
a†1 + ia†ab + ia†ad + ia†bc + ia†cd − a

†
abcd + a†ac − a†bd

]`

×
[
a†1 + ia†ab + ia†ad + ia†bc + ia†cd − a

†
abcd − a†ac + a†bd

]¯̀

|Ω〉 . (D.8)

Finally, the transformation to b-modes in (3.30) results in eq. (3.43).
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Appendix C

A random unitary circuit model for
black hole evaporation

In this article, we propose and study the continuum limit of a random unitary circuit
(see section 4.2) as a model for black hole evaporation. The intrinsic dynamics within
the system (corresponding to the black hole) are non-local 2-body random unitaries, while
the coupling with an environment is provided by SWAP operations at random (non-local)
positions. While it is a toy model, our work shows that the information-retrieval properties
of a black hole can stem from a quantum model without any fine tuning, as expected from
the holographic principle (c.f. chapter 5).

For random unitaries in the circuit drawn from the Haar measure, we can set up a
linear system of N + 1 differential equations that can be easily numerically integrated
(system size N). However, we also turn to a more realistic model, where the random
unitaries conserve a U(1) charge, mimicking energy conservation. Then, the system does
not reach a maximally mixed state at late times, but leaks charge to the environment until
it reaches the zero-charge fixed point. In this setup, we can use a similar numerical method
to the one developed in our work on the Brownian SYK model (see appendix B), based on
an effective permutational symmetry after performing the disorder average. Numerically
exact calculations then allow us to study the information-theoretic properties in detail for
various system sizes N .

The build-up (and decay) of entanglement entropy allows the identification of two
distinct timescales: The scrambling time ts ∝ logN due to the intrinsic dynamics of the
system, and the Page time tp ∝ N due to the coupling with the environment. Further, we
directly study the information retrieval properties of the evaporating black hole. In line
with the Hayden-Preskill protocol explained in section 5.2, we compute mutual information
between Alice’s qubit injected into the black hole, and Hawking radiation collected from
the evaporating black hole by Bob. Depending on Bob’s access to the black hole’s initial
configuration, we clearly see that the relevant timescale is either the Page time or the much
lower scrambling time, in line with the theory presented in section 5.2.
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1 Introduction

In the past decade, quantum information ideas have become increasingly relevant in high

energy physics, especially in connection to the black hole information paradox [1–5]. In this

context, a particularly fruitful line of research was initiated by the seminal work by Hayden

and Preskill [6], where the authors studied how quantum information is released from a

black hole, under the assumption that it is not destroyed during the evaporation process.

Their study suggested that information could be released in a time which is much shorter

than the black hole lifetime, and related to the time needed for localized information to

spread, or scramble, over all the degrees of freedom.

These considerations provided an obvious motivation for a systematic study of infor-

mation scrambling and the related concept of many-body quantum chaos, also due to the

subsequent conjecture by Sekino and Susskind that black holes are the fastest scramblers

in nature [7, 8]. In turn, this led to the development of several measures of information

spreading and chaos, including out-of-time-ordered correlation (OTOC) functions [9–14]
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(historically introduced in the context of disordered superconductors [15]), and the tripar-

tite mutual information defined in ref. [16].

Due to the intrinsic complexity of generic many-body quantum systems, several works

on the topic relied on the study of a class of simplified dynamical models given by random

unitary circuits (RUCs), originally introduced within quantum information theory [17–27],

and continuous Brownian dynamics [28–30]. These models are generally defined in terms

of a set of d-level systems (qudits), sequentially updated by randomly chosen unitary gates

(RUCs) or time-dependent random Hamiltonians (continuous Brownian dynamics). It

turns out that these systems are typically fast scramblers [28], and their study allowed us

to investigate quantitatively several interesting features that are expected in more realistic

chaotic systems [28, 31–34]. As a parallel development, these ideas also had important

ramifications in condensed matter and many-body physics, where local RUCs have been

extensively studied in the past few years [35–47], for instance in connection with aspects

of entanglement spreading and thermalization in isolated systems [48, 49].

In this work, motivated by the recent technical advances in the study of RUCs, and in-

spired by the Hayden-Preskill evaporation protocol, we consider the dynamics of a quantum

many-body qudit system coupled to an external environment, where the time evolution is

driven by the continuous limit of certain 2-local RUCs. These consist of qudits nonlocally

coupled, but with only two of them interacting at a time. This setting allows us to study

quantitatively the contribution of the environment and internal dynamics on the scram-

bling of information. Furthermore, we consider a modified tensor network model with

U(1) charge conservation, which evaporates to a unique vacuum state, instead of reaching

the maximally entangled state. This provides a more realistic toy model of evaporating

black hole in flat space, for which the entropy after the Page time eventually decreases to

zero [50, 51]. The U(1) charge conservation is an analog of the energy conservation.

In the rest of this paper, we focus on two aspects of the dynamics. First, we study

analytically and numerically the growth of the second Rényi entropy of the system, high-

lighting the implications of conservation laws and the emergence of two different time scales:

one is intrinsic to the internal dynamics (the scrambling time), while the other depends on

the system-environment coupling. Second, following Hayden and Preskill [6], we study the

time needed to retrieve information initially injected in the system from measurements on

the environment qudits, and how this depends on the knowledge of the initial configuration

of the system.

In the past years, several works have appeared discussing ideas and techniques related

to those of the present paper. First, we note that our setting differs from those studied

in refs. [52–60] in the context of measurement-induced phase transitions. Indeed, in our

model no projective measurement is taken, and we consider instead an environment which

is eventually traced over in our calculations. A similar setting was studied in ref. [61],

but there the authors considered random global Hamiltonians, with no notion of local

interactions. Next, quantum mechanical evaporation protocols displaying some analogy

with our setting were investigated in refs. [62, 63] for an SYK model [11, 64] coupled to an

external environment (see also [65]). However, the dynamics studied in these works is not

Brownian, and is analyzed by means of the Keldysh formalism.

– 2 –
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It is also worth to stress that over the years many qudit models have been introduced

to capture aspects of the black hole evaporation process [66–82]. In particular, a Page-

like behavior in time for the entanglement entropy has already been observed in some of

these [67, 68, 79, 81]. However, in most of these examples the evolution is very carefully

engineered and allows one to only study numerically small system sizes.

We also mention that very recently the effects of decoherence on information scrambling

has been analyzed in ref. [83] within a quantum teleportation protocol related to the setting

of this paper, see also ref. [84] for an experimental implementation. Furthermore, we note

that the Hayden-Preskill protocol with a U(1) conserved charge has been studied before

in ref. [85], where global random unitary transformations (instead of k-local circuits) were

considered. Finally, two papers closely related to the present article appeared very recently.

First, a random quantum circuit model for black hole evaporation was studied in ref. [86],

but there the authors focused on a different setup and quantities. Second, analogously

to our work, the emergence of a Page curve in a unitary toy model for a black hole has

also been shown in ref. [87], based on recently-developed concepts of many-body quantum

chaos. However, in this work we focus on a specific microscopic model which is different

from the one studied in ref. [87], and employ different techniques in our calculations.

The rest of this manuscript is organized as follows. In section 2 we introduce our

model, while in section 3 we analyze the growth of the entanglement both in the case of

Haar-scrambled local unitary evolution (section 3.1) and in the presence of a U(1) conserved

charge (section 3.2). The retrieval of quantum information initially injected in the system

is studied in section 4, while we report our conclusions in section 5. Finally, the most

technical aspects of our work are consigned to a few appendices.

2 The model

We start by introducing the model studied in the rest of this work, which is pictorially

depicted in figure 1. We consider two sets of N and M d-level systems (qudits), denoted

respectively by S (the system) and E (the environment). The Hilbert spaces associated

with S and E are then HS =
⊗N

j=1 h
(j)
S and HE =

⊗M
j=1 h

(j)
E , with h

(j)
S , h

(j)
E ' Cd. We

anticipate that in our calculations we will always take the limit M →∞, corresponding to

the physical situation where the number of degrees of freedom in the environment is much

larger than in the system.

Motivated by the Hayden-Preskill evaporation protocol [6], we would like to construct

a quantum circuit which implements a fast-scrambling dynamics for S and with a tunable

coupling between S and E . Let us begin by considering a discrete process, and divide the

time interval [0, t] into n steps tj = (j/n)t, so that tj − tj−1 = ∆t = t/n. At each time

step, the system evolves according to the following rules:

1. with probability p1, two qudits in S, placed at random positions i and j, interact.

We model this process by the action on h
(i)
S ⊗ h

(j)
S of a unitary operator Ui,j , chosen

out of a suitable random ensemble;
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Figure 1. Pictorial representation of the model introduced in section 2. We consider a system S
and an environment E consisting of N and M qudits respectively. The evolution is driven by the

continuous limit of a random quantum circuit which implements a fast-scrambling dynamics for S
with a tunable coupling between S and E . At each infinitesimal time step ∆t a random unitary

operator Ui,j is applied to randomly chosen qudits in S with probability p1 = Nλ1∆t, while a swap

Wl,m between a qudit in the system and one in the environment (randomly chosen) is applied with

probability p2 = λ2∆t.

2. with probability p2 ≤ 1− p1, one qudit in S and one qubit in E at random positions

are swapped. This models the simplest possible interaction between S and E .

Note that at each time step the system is not evolved with probability 1 − p1 − p2. The

random choice of interacting qudits should be considered as “fixed once chosen”: as we will

see later, this means that when multiple replicas of the system are considered, the circuit

is always identical in each copy.

The above rule defines a quantum circuit with discrete time steps. It is convenient

to take a continuous limit of the former, which allows us to simplify some aspects of the

computations. In order to do so, we choose the probability p1 and p2 to scale with the time

interval ∆t as

p1 = Nλ1∆t , (2.1)

p2 = λ2∆t , (2.2)

where λ1, and λ2 are two positive real numbers. Note that while both p1 and p2 are

proportional to ∆t, they have a different dependence on N . As we will comment on again

later, this ensures that the internal time scales are much shorter that those related to the

interaction with the environment, as it is assumed within the Hayden-Preskill protocol [6].

With the above choices, expectation values of observables computed at time t display a

well defined limit for ∆t→ 0 (namely n→∞), yielding a continuous dynamics for S ∪ E .

Importantly, we will be interested in the limit of an infinitely large environment, which

will then play the role of a “qudit” reservoir. In the discrete dynamics, it is enough to

choose the number M of environment qudits to be M � Nt/∆t, so that M → ∞ in the

continuous limit.

In the rest of this work, we will focus on the computation of averaged physical quan-

tities: at each time step this amounts to averaging over all the possible choices of pairs
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of qudits and of gates Ui,j , with the proper probability distribution. For a given fixed

time t, this is equivalent to averaging over all the realizations of allowed quantum circuits.

A crucial point is that each individual realization corresponds to a unitary evolution. In

particular, if the initial state of S ∪ E is pure, it will remain so for any realization, and its

von Neumann entanglement entropy will remain zero for all times (and so will its average

over realizations).

Finally, regarding the ensemble of two-qudit gates Ui,j , we will consider two distinct

physical situations. In the first one, the internal dynamics is “maximally chaotic”, namely

each gate Ui,j is drawn out of a Haar distribution. In the second situation, we assume a

locally conserved U(1) charge, namely we choose each gate Ui,j to preserve the U(1) sectors

in the product h
(i)
S ⊗h

(j)
S , as it was done in refs. [39, 42] for the case of spatially local RUCs.

3 The entanglement growth

In this section we study the entanglement growth for a subsystem K ⊂ S, which is naturally

quantified by means of the von Neumann entanglement entropy

SK(t) = −trK [ρK(t) log2 ρK(t)] , (3.1)

where ρK(t) is the density matrix reduced to the subsystem K. Denoting by {|j〉}d−1
j=0 ,

a basis for the local Hilbert spaces hS ,hE , we will assume that both the system and the

environment are initialized in product states, denoted by |ΨS0 〉 and |ΨE0 〉 respectively. In

particular we set, for finite M ,

|ΨE0 〉 = |0〉⊗M , (3.2)

while we will consider different initial product states for S. Note that by construction there

is no entanglement between S and E at time t = 0.

Despite the importance of the von Neumann entanglement entropy, it is known that

the latter is difficult to obtain in the setting of RUCs [35]. For this reason, in the following

we focus on the related Rényi-2 entropy; more precisely, we will compute

S
(2)
K (t) = − log2

{
trK

{
E
[
ρ2
K(t)

]}}
. (3.3)

We note that S
(2)
K (t) is not the averaged second Rényi entropy, as the disorder average

is taken inside the logarithm. In fact, eq. (3.3) is proportional to the logarithm of the

averaged purity PK , which is defined as

PK(t) = trK
{

E
[
ρ2
K(t)

]}
. (3.4)

However, for large N one expects the effect of fluctuations in the disorder to be small,

so that the behavior of S
(2)
K (t) should be qualitatively the same as the averaged Rényi-2

entropy [38].

Let us now define K = S \K and rewrite

trK
{

E
[
ρ2
K(t)

]}
= trK

{
E
[
trK [ρS(t)] trK [ρS(t)]

]}

= trK⊗K
{
XK trK⊗K {E [ρS(t)⊗ ρS(t)]}

}

= tr {XKE [ρS(t)⊗ ρS(t)]} (3.5)
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where XK is a swap operator exchanging the two copies of K, while in the last line,

“tr” represents the trace over the entire Hilbert space. From this expression it is clear

that S
(2)
K (t) is completely determined by the knowledge of E [ρS(t)⊗ ρS(t)]. In order to

compute the latter, it is convenient to recall the Choi-Jamiolkowski mapping which allows

us to interpret the operator ρS(t)⊗ ρS(t) (defined on the tensor product of two “replicas”

HS ⊗HS) as a state in H⊗4
S . In particular, we define

|ρS(t)⊗ ρS(t)〉〉 = (1HS
⊗ ρS(t)⊗ 1HS

⊗ ρS(t)) |I+〉1,...,N , (3.6)

where we introduced the maximally entangled state

|I+〉1,...,N =

N⊗

k=1

|I+〉k , (3.7)

with

|I+〉k =

d−1∑

a,b=0

(|a〉k ⊗ |a〉k)⊗ (|b〉k ⊗ |b〉k) . (3.8)

In the following, we label with 1 and 2 the Hilbert spaces of the two replicas associated

with ρS(t) in eq. (3.6), and with 1̄ and 2̄ the other two. Accordingly, the Hilbert space

corresponding to the four replicas is

H̃S = H(1̄)
S ⊗H

(1)
S ⊗H

(2̄)
S ⊗H

(2)
S . (3.9)

Finally, we also define

|I−〉k =
d−1∑

a,b=0

(|a〉k ⊗ |b〉k)⊗ (|b〉k ⊗ |a〉k). (3.10)

Within this formalism one can recover the value of the purity using

PK(t) ≡ trK
{

E
[
ρ2
K(t)

]}
= 〈〈WK |E [ρS(t)⊗ ρS(t)]〉〉 , (3.11)

where

|WK〉〉 =
⊗

k∈K
|I−〉k

⊗

k∈K
|I+〉k . (3.12)

Eq. (3.11) can be verified straightforwardly by expanding the scalar product. We note that

when the initial state |ΨS0 〉 is a product state and invariant under arbitrary permutations

of qudits in HS , then the initial state |ρS(0)⊗ ρS(0)〉〉, is invariant under permutation of

qudits in H̃S . As it will be clear from the subsequent discussion, this is also true for the

evolved state |ρS(t)⊗ ρS(t)〉〉: accordingly, the value of the purity PK(t) only depends on

the cardinality of K, k = |K|, and not on which sites belong to K and we may write

Pk(t) = PK(t).

The formalism above allows us to write an equation describing the evolution of the

state E [|ρS(t)⊗ ρS(t)〉〉] under the continuous RUC introduced in section 2. In particular,

in the limit M →∞, we derive in appendix A

d

dt
E [|ρS(t)⊗ ρS(t)〉〉] = −LE [|ρS(t)⊗ ρS(t)〉〉] , (3.13)
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where L is a super operator (the Lindbladian) acting on H̃S , which reads

L =
2λ1

N − 1

∑

1≤j<k≤N
(1− Uj,k) +

λ2

N

N∑

j=1

(
1− |0, 0, 0, 0〉j 〈I+|j

)
, (3.14)

with

Uj,k = E
[
U∗j,k ⊗ Uj,k ⊗ U∗j,k ⊗ Uj,k

]
. (3.15)

In order to proceed further, we need to specify the probability distribution for the two-

qudit unitary gates Ui,j , which in turn determines the average in eq. (3.15). As we already

anticipated, we focus on two different physical situations. First we consider the case where

Ui,j are Haar-distributed over the group U(d2), which corresponds to a maximally chaotic

evolution. Second, we consider random gates Ui,j with a block structure determined by

the presence of a U(1) charge, as done for local RUCs in refs. [39, 42]. The two cases are

treated separately in the next subsections.

3.1 Random Brownian circuit without conservation law

As we have anticipated, we start by choosing the unitary gates Ui,j to be Haar distributed

over U(d2). In this case, the average in eq. (3.15) can be computed easily, and we have (see

for instance refs. [37, 38])

Uj,k =
1

d4 − 1

[
|I+
j,k〉 〈I+

j,k|+ |I−j,k〉 〈I−j,k| −
1

d2

(
|I+
j,k〉 〈I−j,k|+ |I−j,k〉 〈I+

j,k|
)]

, (3.16)

where

|I±j,k〉 = |I±〉j ⊗ |I±〉k . (3.17)

Furthermore, throughout this section we initialize the system in the product state

|ΨS0 〉 = |1〉⊗N , (3.18)

With the above choices, one can now plug the explicit expression (3.16) into (3.14) and

solve, at least numerically, eq. (3.13).

Unfortunately, the exact numerical solution to eq. (3.13) is difficult to obtain for large

values of N , as the dimension of H̃S grows exponentially with the system size. Luckily, in

the present case the problem can be considerably simplified due to permutation symmetry

between different qubits, and one does not need to solve eq. (3.13) directly. Instead, based

on eq. (3.11), it is possible to derive the following system of differential equations

dPn(t)

dt
=

2λ1n(N−n)

N − 1

d

(d2+1)

[
−
(
d+

1

d

)
Pn(t) + Pn−1(t) + Pn+1(t)

]
− λ2n

N
(Pn−Pn−1) ,

(3.19)

for n = 0, . . . , N and with the convention P−1(t) = PN+1(t) ≡ 0. Here Pn(t) is the

purity for a subsystem with n qudits, while the initial conditions [corresponding to the

state (3.18)] are

Pn(0) = 1 , n = 0, . . . , N . (3.20)
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Figure 2. Rényi entropy dynamics for different subsystems, obtained by solving eq. (3.19) with

λ2 = 0 (no coupling with the environment), λ1 = 1 and local dimension d = 2. Subfigure (a), main

panel: Rényi-2 entropy S
(2)
κN (t) as a function of time, for N = 640 and κ = 1/4. Inset: the plot

shows the difference between S
(2)
κN (t) and its maximum possible value κN as a function of time and

for increasing system sizes N . Denoting by t∗(κN) the amount of time needed before S(2)
κN (t) − κN

becomes larger than a small negative constant ε (cf. the main text), it is clear from the plot that

t∗(κN) ∼ ln(N). Subfigure (b): Rényi-2 entropy S
(2)
n (t) as a function of the subsystem size n, for

different times.

We note that eq. (3.19) represents a rare example where an explicit result for the dynamics

of the Rényi entropy can be obtained for open systems [88]. Since its derivation is rather

technical, we reported it in appendix B.

It is important to comment on this result. First, we note that setting λ2 = 0 in

eq. (3.19), we recover the same set of equations (up to prefactors) that was derived in

ref. [28] for a Brownian Hamiltonian evolution. Thus, the internal dynamics driven by the

RUC defined in section 2 is qualitatively equivalent to a continuous Brownian Hamiltonian

evolution. This observation allows us to apply directly some of the results of ref. [28] to

our model.

In particular, it was shown in ref. [28] that the system (3.19) leads (for λ2 = 0) to

the emergence of a time scale which is logarithmic in N . More precisely, let us call t∗(k)

the amount of time needed before the purity of a subsystem of size k becomes less than

(1 + δ)2−k, where δ is a small positive real number, and 2−k is the purity of a maximally

mixed state. Then, for 0 < κ < 1 fixed, it was shown that t∗(κN) ∼ ln(N)t∗(1). In our case,

due to the choice made in eq. (2.1), we have that t∗(1) has a constant limit for N → ∞,

so that t∗(κN) ∼ ln(N) for large N . In ref. [28] this was defined as the scrambling time of

the system. Note that, following later developments, the scrambling time is now usually

defined as the time needed for OTOCs to decay to zero. However, the latter was shown

to be also logarithmic in the system size N for the Brownian Hamiltonian evolution of

ref. [28], see ref. [33], so that, up to prefactors, they can be identified in our model.

The features of the entanglement dynamics for λ2 = 0 discussed above are illustrated

in figure 2, from which the emergence of a time scale logarithmic in N is manifest.
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Figure 3. Rényi entropy dynamics for different subsystems, obtained by solving eq. (3.19), for

local dimension d = 2 and N = 60. Subfigure (a): Rényi-2 entropy S
(2)
n (t) as a function of the

subsystem size n, for different times, with λ1 = 1 and λ2 = 10. Subfigure (b): S
(2)
n (t) as a function

of time for subsystems containing 15 and N−15 = 45 qudits. The parameters are chosen as λ1 = 1,

λ2 = 1.5.

Next, note that for λ1 = 0 eq. (3.19) predicts the purity of any subsystem to remain

constant, namely Pn(t) ≡ 1 for all values of n. This is due to the fact that, in each

realization of the quantum circuit, S remains a pure state, since the evolution only amounts

to an exchange of qudits |1〉 and |0〉 between S and E . On the other hand, when both

λ1, λ2 6= 0, the entanglement growth is non-trivial. In the following, we present our results

based on the numerical solution of eq. (3.19).

In figure 3(a) we report the numerical values of S
(2)
n (t) as a function of the subsystem

size n, for different times t and λ2 6= 0. We can immediately appreciate that the effect of

the environment is to increase the entanglement of S, even though the environment itself

consists of a product state. This is due to following mechanism: if j is a qudit in S, the

internal dynamics will generate entanglement between j and S \ j. When j is swapped

with a qudit in E , the latter becomes entanglement between S \j and E . As a consequence,

S does not remain in a pure state, and its entanglement grows in time. We also see that

the Rényi entropy of K and S \K is not equal anymore, since the larger of the two can

accommodate more entanglement with E .

It is particularly interesting to follow the time evolution of a subsystem K larger than

half of the system size, as displayed in figure 3(b). We see that there are two relevant time

scales that characterize its qualitative behavior: for short times, the Rényi entropy S
(2)
K (t)

is essentially on top of S
(2)
N\K(t). After a time ts, S

(2)
K (t) starts to increase with a constant

slope up to a time tp, at which saturation occurs (the indices s and p stand for “scrambling”

and “Page” respectively: the use of these names will be justified in the next section). We

can interpret the increase of S
(2)
K (t) for t < ts as mainly due to the internal scrambling

dynamics. Based on this picture, we expect ts ∼ ln(N), while, due to the normalization

choice in eqs. (2.1) and (2.2), tp � ts for large N .

To verify this, we have computed numerically the time derivative of S
(2)
K (t), from

which the emergence of different regimes is manifest, cf. figure 4. We see that for t < ts

– 9 –



J
H
E
P
0
4
(
2
0
2
0
)
0
6
3

0 10 20 30 40
t

0

1

2

3

4

5

6
d
S

(2
)

κ
N

(t
)/
d
t (a)

N = 40

N = 60

N = 80

3 4 5 6 7 8
t

1.0

1.2

1.4

1.6

1.8

2.0

d
S

(2
)

κ
N

(t
)/
d
t (b)

N = 50

N = 100

N = 200

N = 400

N = 800

Figure 4. Subfigure (a): time derivative of the Rényi-2 entropy S
(2)
κN (t) as a function of time, for

different values of the system size N . The constant dotted line corresponds the value sλ defined in

eq. (3.21). Subfigure (b): same data shown in the region close to ts (cf. the main text). In both

figures we chose κ = 3/4, local dimension d = 2 and λ1 = 1, λ2 = 1.5.

the derivative is large and increases with N , while for ts < t < tp it approaches a constant

sλ2 as N → ∞. It is not straightforward to compute sλ2 directly from eq. (3.19): indeed,

while at short times the r.h.s. of eq. (3.19) is dominated by the term proportional to λ1,

for t ∼ ts the absolute value of the latter becomes comparable to the term proportional

to λ2 and both contribute in a non-negligible way to sλ2 . Nevertheless, we can make the

conjecture

sλ2 =
(d− 1)

d

λ2

ln(2)
. (3.21)

In order to motivate eq. (3.21), we consider the case K = S, so that only the term propor-

tional to λ2 in eq. (3.19) is non-vanishing. In the limit λ2 → 0, one can make the assumption

that that after a time t > ts ∼ ln(N) the system is almost maximally scrambled. Then,

for large n one would get Pn(t) ' d−N+n, so that

dPN (t)

dt
' −λ2(d− 1)

d
PN (t) , (3.22)

and so
d

dt
S

(2)
N (t) = − d

dt
log2 PN (t) = − 1

PN (t) ln 2

d

dt
PN (t) =

(d− 1)

d

λ2

ln 2
. (3.23)

Remarkably, we found that eq. (3.21) is in perfect agreement with the numerical solution to

eq. (3.19) for arbitrary values of λ1 and λ2, and also for general K ⊂ S (with |K| > N/2),

suggesting that it should be possible to derive it rigorously from eq. (3.19).

We can estimate ts precisely, by defining it as the amount of time needed in order for

dS
(2)
K (t)/dt to become smaller than sλ2 + ε, where ε is a positive small number. We see

clearly from figure 4(b) that ts ∼ ln(N), as we also verified with a quantitative fit. On the

other hand, one can define analogously tp to be the amount of time needed in order for

dS
(2)
K (t)/dt to be smaller than a small positive constant, and as it is clear from figure 4(a),

one has tp ∼ N , so that indeed tp � ts.
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In summary, the above analysis shows that in the presence of both internal dynamics

and system-environment interaction, two distinct time scales emerge: one can be associated

with the internal scrambling time ts, with ts ∼ ln(N), while the other, tp, depends on the

interaction with E , and for the RUC constructed in section 2 we have tp ∼ N .

3.2 Random dynamics with a conserved U(1) charge

In the previous subsection we have seen that the second Rényi entropy for a subsystem

K ⊂ S grows always monotonically with time, even if E is initialized in the product state

|0〉⊗M . On the other hand, in a unitary black hole evaporation process, one expects that

the entanglement follows a “Page-like” behavior in time [51]: namely it initially grows but

starts to decrease in the middle stage of the evaporation, and eventually vanishes when

the black hole evaporates completely.1 This difference between a black hole and random

tensor networks originates from the absence of energy conservation in the latter. In the

long-time limit, the black hole returns to a vacuum state since its energy leaves with the

radiation, while the random tensor network model approaches a random state with large

entanglement entropy between the system and the bath.

It is difficult to introduce energy conservation in tensor network models, but it is

possible to introduce a U(1) charge conservation, which plays a similar role. When the

bath is infinitely large and initialized in the zero (i.e. lowest) charge “vacuum” state, the

black hole charge will gradually decrease and approach zero in the final state. As long as the

zero-charge state is unique, the black hole entropy will eventually vanish in the long-time

limit (for a very different approach that achieves similar phenomena, see ref. [67]).

We implement a dynamics with a U(1) conserved charge by imposing that the two-

qudit unitary gates Ui,j have some special structure, as done in refs. [39, 42] for the case

of spatially local circuits. For the rest of this section, we will focus on the case of qubits,

namely d = 2. Then, following [39, 42] we consider gates of the form

Ui,j =



UQ=0

UQ=1

UQ=2


 , (3.24)

where the first and last blocks are 1×1 and the second block is a 2×2 Haar-random unitary

matrix. Since the interaction with the environment is driven by swap gates, eq. (3.24)

defines a dynamics conserving the charge

QS∪E =
∑

j∈S∪E
qj , (3.25)

where the charge operator is

qj =

(
0 0

0 1

)
. (3.26)

on each site.

1In some toy models such as ref. [86], this was introduced by hand, moving qubits from black hole to

the bath at each time step.
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Averaging over unitary gates of the form (3.24) introduces additional computational

difficulties with respect to the case of Haar-distributed operators. In particular, by exploit-

ing the results derived in ref. [39], eq. (3.16) has to be replaced by

Uj,k =
∑

s=±

∑

Qj 6=Qk

1

dQjdQk

∣∣∣IsQjQk

〉〈
IsQjQk

∣∣∣

+
∑

s=±

∑

Q

1

d2
Q − 1

[∣∣IsQQ
〉
〈IsQQ| −

1

dQ
|IsQQ〉 〈I−sQQ|

]
.

(3.27)

Here |I±QjQk
〉 are states living in the tensor-product of two local sites of the four replica

space. In terms of single-site states, they can be written as

∣∣∣I+
QjQk

〉
=
∑

αβγδ

|ααββ〉j |γγδδ〉kδα+γ=Qjδβ+δ=Qk
, (3.28)

∣∣∣I−QjQk

〉
=
∑

αβγδ

|αββα〉j |γδδγ〉kδα+γ=Q1δβ+δ=Qk
, (3.29)

where, for the case of qubits, the Greek indices take value in {0, 1}, while d0 = d2 = 1 and

d1 = 2.

The form of eq. (3.27) makes the computations considerably more involved. In par-

ticular, one can not derive a set of N differential equations for the purity, and a different

strategy is needed to obtain S
(2)
K (t) efficiently. Luckily, one can exploit an observation of

ref. [39]. Namely, the states |I±QjQk
〉 can be written in terms of the following 6 states [39]

|0〉 ≡ |0000〉 , |1〉 ≡ |1111〉 , (3.30)

|A〉 ≡ |1100〉 , |B〉 ≡ |0011〉 , (3.31)

|C〉 ≡ |1001〉 , |D〉 ≡ |0110〉 . (3.32)

Once again, we stress that the states |0〉, |1〉, |A〉, |B〉, |C〉 and |D〉 live in a single local

space of the four replicas. This means that the evolution dictated by the averaged gates

Uj,k effectively takes place in a Hilbert space H̃eff
S = heff

1 ⊗ · · · ⊗ heff
N , where heff

j ' C6 so

that Ui,j is a matrix acting on the space C6 ⊗ C6.

The above consideration becomes particularly powerful when combined with the un-

derlying permutational symmetry of the operator L and of the initial state |ρS(0)⊗ ρS(0)〉〉.
Indeed, this allows us to exploit a logic which is similar to the one developed in ref. [34],

and obtain an efficient scheme to compute the evolution of the system in a numerically

exact fashion.

We start by introducing the following class of permutationally invariant states on the

space H̃eff
S

|n0, n1, nA, nB, nC , nD〉
=

1√
N !n0!n1!nA!nB!nC !nD!

∑

π∈SN

π |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
n0

⊗ · · · ⊗ |D〉 ⊗ · · · ⊗ |D〉︸ ︷︷ ︸
nD

π−1 . (3.33)
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Importantly, we can rewrite these states by introducing a set of bosonic creation operators

as [34]

|n0, n1, nA, nB, nC , nD〉
=

1√
n0!n1!nA!nB!nC !nD!

(
a†0
)n0

(
a†1
)n1

(
a†A

)nA
(
a†B

)nB
(
a†C

)nC
(
a†D

)nD |Ω〉 , (3.34)

where [aj , ak] =
[
a†j , a

†
k

]
= 0 and

[
aj , a

†
k

]
= δj,k, while |Ω〉 is a vacuum state. One

of the advantages of the bosonic representation is that the operator L, the initial state

|ρS(0)⊗ ρS(0)〉〉 and the vector |WK〉〉 defined in eq. (3.12) admit a simple expression in

terms of the a-operators. Since we won’t make use of them in the following, we report

them in appendix C, to which we refer the interested reader.

Since both the initial state and the Lindbladian L are invariant under arbitrary permu-

tation of qubits, the states (3.34) form a basis of the Hilbert space in which the dynamics

takes place. Crucially, the corresponding dimension is

Dperm =

(
N + 5

5

)
= N5 +O(N4) , (3.35)

and thus grows only polynomially (rather than exponentially) with N . In practice Dperm

is still very large for the values of N considered in the previous subsection. Nevertheless,

we were able to perform numerically exact calculations up to N = 80. This was done by

implementing the matrix corresponding to L in the vector basis (3.34), and then comput-

ing the evolved state |ρS(t)⊗ ρS(t)〉〉 solving the system of differential equations encoded

in eq. (3.13). Note that in this way we did not need to diagonalize exactly the matrix

associated with L, which would be unfeasible for N = 80. In rest of this section, we report

the numerical results obtained by following the above procedure.

We first consider the case where the system is initialized in the product state (3.18),

and study the time evolution of the Rényi entropy S
(2)
K (t) for different subsystems K ⊂ S,

as reported in figure 5. We immediately see that the qualitative behavior is different from

the Haar-scrambled case, since S
(2)
K (t) is a non-monotonic function. For a given subsystem

K, with |K| = κN and κ ∈ [0, 1], we have verified that the time tp at which S
(2)
κN (t) reaches

its maximum grows linearly with N/λ2. We call tp the Page-time [51]. After tp, we see from

figure 5 that S
(2)
κN (t) decreases and approaches zero exponentially fast, with an exponent

that does not appear to depend on κ.

Besides its non-monotonic behavior, S
(2)
K (t) displays another qualitative difference.

Indeed, the initial state of S, defined in eq. (3.18), is a fixed point for the internal dynamics.

Hence, at short times, one can not distinguish clearly the contribution of the internal

scrambling, since the initial growth of S
(2)
K (t) is only due to system-environment coupling

(there is no evolution if λ2 = 0). For this reason, we consider in figure 6 the Rényi entropy

S
(2)
K (t), for the initial state

|ΨS0 〉 =

N/2⊗

j=1

|0〉j
N⊗

j=N/2+1

|1〉j . (3.36)
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Figure 5. Rényi entropy S
(2)
n (t) as a function of time for λ1 = 1 and λ2 = 2. The plots correspond

to a random evolution in the presence of a global U(1) conserved charge, while the system is

initialized as in eq. (3.18). Subfigures (a): S
(2)
κN (t) for different values of the system size N and

κ = 0.5, 1. Subfigure (b): S
(2)
n (t) for N = 60 and subsystems containing 15 and N −15 = 45 qubits.

Inset: lnS
(2)
n (t) for the same values of n.
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Figure 6. Subfigure (a): Rényi entropy S
(2)
n (t) as a function of time for N = 60 and subsystems

containing 15 and N − 15 = 45 qubits. The plot corresponds to a random evolution in the presence

of a global U(1) conserved charge, while the system is initialized as in eq. (3.36). The evolution

parameters are set to λ1 = 1 and λ2 = 2. Subfigure (b): time derivative of the Rényi-2 entropy

S
(2)
κN (t) as a function of time, for κ = 7/10 and increasing values of N . The evolution parameters

are set to λ1 = 1 and λ2 = 2. The inset shows the same plot in the time region close to ts (cf. the

main text).

Note that this state is not invariant under permutation of qubits. Accordingly, we consider

a protocol where not only we sample over different realizations of the RUC, but we also take

an average over all the initial product states obtained by permuting the qubits in (3.36):

namely, we average over all product states where half of the qubits are initialized to |0〉,
and the rest are set to |1〉. It is straightforward to see that in the four replica space H̃S the

state |ρS(0)⊗ ρS(0)〉〉 (obtained after averaging over the initial configurations) is indeed

permutationally invariant, and we can employ the approach explained above.

– 14 –



J
H
E
P
0
4
(
2
0
2
0
)
0
6
3

0 50 100 150 200
t

0.0

0.2

0.4

0.6

0.8

1.0
Q
S(
t)
/N

(a)

0.00.20.40.60.81.0
QS(t)/N

0

10

20

30

S
(2

)
N

(t
)

(b)

Figure 7. Subfigure (a): time evolution of the system charge QS(t) defined in eq. (3.37). Subfigure

(b): Rényi entropy S
(2)
N (t) as a function of the charge QS(t) (note the inverted scale on the x-axis).

The plots correspond to a random evolution in the presence of a global U(1) conserved charge, while

the system is initialized as in eq. (3.18). The evolution parameters are set to λ1 = 1 and λ2 = 2,

and the system size is N = 60.

As expected, we see from figure 6(a) a separation of time scales for the initial

state (3.36). In order to make this more transparent, and following the previous section,

we report in figure 6(b) the time derivative of the Rényi-2 entropy S
(2)
κN (t). Although the

results are now plagued by larger finite-N effects, we can see the same qualitative behavior

displayed in figure 4 for the Haar-scrambled dynamics. In particular, after a time ts ∼ lnN

the derivatives appear to approach a plateau, and it remains approximately constant for

ts < t < tp, where tp ∼ N is the Page time.

Finally, in order to push further the analogy between our model and a unitary black

hole evaporation process, it is interesting to study the time evolution of the system charge

QS(t) = trS

{
E [ρS(t)]

∑

j∈S
qj

}
. (3.37)

The computation of QS(t) can be carried out using the very same techniques outlined above

for the second Rényi entropy. In fact, we note that the calculations are simpler, since they

only involve two replicas, instead of four. In particular, it turns out that the average charge

can be obtained as the solution to a system of (N+1)2 coupled linear differential equations,

which can be easily treated numerically. Since no additional complication arises, we omit

the details of the computation here, and only report our final numerical results. These are

displayed in figure 7, where we also show S
(2)
N (t) as a function of QS(t).

We note that the dimension of the Hilbert space associated with a given integer value

Q of the charge is
(
N
Q

)
. Of course, the evolved system state will have nonzero projection

onto different sectors of the charge at a given time. Nevertheless, we can define an effective

“black hole” Hilbert space dimension associated with the averaged charge as

DBH(t) =

(
N

QS(t)

)
. (3.38)

We see that the behavior of DBH(t) depends on the initial state chosen for S. If the system

is initialized as in eq. (3.18), then the effective Hilbert space dimension will first increase,
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and then decrease after QS(t) reaches the value N/2. On the other hand, if the system is

initialized in the state (3.36), the effective Hilbert space decreases monotonically, as one

would expect in a more realistic unitary black hole evaporation process.

Before leaving this section, we comment on the choice (3.2) for the initial state of the

environment. As we have mentioned, this is motivated by an analogy with the black hole

evaporation process, where (3.2) plays the role of the “global” vacuum state. However, it

is natural to wonder what would happen if E is initialized, instead, in a random product

state. In this case, a non-vanishing charge would be pumped into the system at each time

interval, so one would expect that the qualitative behavior of the Rényi entropy would be

similar as in the evolution without the U(1) conserved charge. We have verified by explicit

numerical calculations that this is indeed the case. In particular, if E is initialized in a

random product state we observe no monotonic decrease of the Rényi entropy after the

Page time.

4 Retrieval of quantum information

In this section we finally discuss how the RUC introduced in section 2 provides a microscopic

model for the information-retrieval protocol studied by Hayden and Preskill [6], and allows

us to investigate quantitatively several aspects of the latter. We start by briefly reviewing

the setting of ref. [6], and then proceed to present our results.

We recall that the information stored in a black hole is emitted in the form of Hawking

radiation [2], so that one can ask what is the minimum amount of time that is needed

before such information can be recollected from measurements performed outside of the

black hole. In order to make contact with our model, we interpret S as the black hole,

while E consists of all its exterior degrees of freedom (hence including Hawking radiation).

Following ref. [6], we then imagine that Alice injects a qudit A into the system at time t = 0,

and that a third party C (Charlie), holds a reference qudit which is maximally entangled

with the former. The system is in contact with E and evolved by the RUC introduced in

section 2. Finally, we imagine that Bob wants to recover information on the injected qudit

by only performing measurements outside of S. Depending on the initial configuration of

the system, the ability to faithfully do so after a given time t is captured quantitatively by

the mutual information between different sets of qudits, as we now explain.

First, let us consider the setting pictorially depicted in figure 8(a): in this case, Bob

has no control over the initial configuration of the system S, which is initialized in a given

product state at time t = 0. The capability of recovering information on the injected qudit

by measurements on E is quantified by the mutual information

I(a),[C,E](t) = SC(t) + SE(t)− SC∪E(t) , (4.1)

which tells us how much information can be extracted from the reference qudit C by ac-

cessing those in E . In particular, if I(a),[C,E](t) is close to its maximal value, then Bob can

faithfully recover the information initially injected into S. Note that in eq. (4.1) we used

an index (a) to distinguish the two settings in figure 8. As usual, due to computational
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Figure 8. Pictorial representation of the two settings considered in section 4. In the first case

[subfigure (a)], we initialize the system S (the “black hole”) in a product state. A qudit A is initially

injected into the black hole, and a third party (C) holds a reference system, namely an ancilla which

is maximally entangled with the former at time t = 0. The system is in contact with E (representing

the exterior of the black hole, including Hawking radiation) and evolved by the RUC introduced in

section 2. In the second setting [subfigure (b)], the retriever (B) initially holds a copy of the black

hole, namely S is initialized in a maximally entangled state with a set of ancillary qudits.

limitations, in the following we will not compute the quantity in eq. (4.1), but rather its

Rényi-2 version, namely

I
(2)
(a),[C,E](t) = S

(2)
C (t) + S

(2)
E (t)− S(2)

C∪E(t) , (4.2)

where S(2)
K (t), for a given system K, is defined in eq. (3.3).

In the second setting, displayed in figure 8(b), we imagine instead that the black hole

formed long ago, and that Bob has been collecting its emitted Hawking radiation ever

since. Accordingly, by the time the qudit A is injected, the black hole S is in a maximally

entangled state with the previously emitted radiation system, which is under Bob’s control

[region B in figure 8(b)]. In this case, Bob can also access these qudits, together with those

in the environment E , and his capability to recover the initially injected information is

quantified by I(b),[C,E∪B](t). Accordingly, analogously to the previous case, in the following

we will compute its Rényi-2 counterpart

I
(2)
(b),[C,E∪B](t) = S

(2)
C (t) + S

(2)
E∪B(t)− S(2)

C∪E∪B(t) . (4.3)

It turns out that the formalism introduced in the previous section is adequate to

compute numerically the mutual information in eqs. (4.2) and (4.3), for both RUCs without

and with a conserved U(1) charge. To see this, we can exploit the fact that the Rényi

entropy of a subsystem K is equal to that of its complementary one (with respect to the

whole space), and rewrite

I
(2)
(a),[C,E](t) = S

(2)
C (t) + S

(2)
S∪C(t)− S

(2)
S (t) , (4.4)

I
(2)
(b),[C,E∪B](t) = S

(2)
C (t) + S

(2)
S∪C(t)− S

(2)
S (t) . (4.5)

Each individual entropy in the r.h.s. of the above equations can be computed by exploiting

the approach in section 3.1 (for the maximally chaotic RUC) and in section 3.2 (in the

presence of a conserved U(1) charge). In particular, in each case we can map the problem

onto the computation of the time evolution in a four replica space H̃S , where the dynamics
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Figure 9. Subfigure (a): mutual information I
(2)
(a),[C,E](t) [defined in eq. (4.2)] for the setting

displayed in figure 8(a), and increasing values of N . Subfigure (b): mutual information I
(2)
(b),[C,E∪B](t)

[defined in eq. (4.3)] for the setting displayed in figure 8(b), and increasing values of N . For both

plots, the evolution is driven by the maximally chaotic RUC of section 2 (without conserved charges),

where we set λ1 = 1, λ2 = 2 and chose d = 2.

is driven by the Lindbladian operator (3.14). The only difference with respect to the steps

presented in the previous section is in the initial state and purity vector 〈〈WK |, which have

to be modified for each individual term in the r.h.s. of eqs. (4.4) and (4.5). Since these

calculations do not present additional difficulties, we report them in appendix D, and in

the rest of this section we present our final results.

We begin by discussing figure 9, where we report data for the maximally chaotic RUC

(no conserved charge). Subfigures (a) and (b) correspond to the two different settings

discussed above, and display respectively I
(2)
(a),[C,E](t) and I

(2)
(b),[C,E∪B](t) for increasing values

of N . In both cases, the mutual information has a monotonic behavior, although with

qualitative differences. In the first case, it reaches its maximum value in a time which is

clearly proportional to the system size N . Interestingly, we see that after a time scale of the

order of the scrambling time ts ∼ lnN , the mutual information reaches a small non-zero

value, which, however, is seen to decrease with the system size N . We can interpret this as

follows: after the scrambling time, Bob is able to only reconstruct a small amount of the

initially injected information, and needs to wait for a time proportional to the black hole

size in order to retrieve all of it.

Conversely, we see from figure 9(b) that the information retrieval is much faster in the

case Bob holds a copy of the black hole [cf. figure 8(b)]. In particular, from the plot we

clearly see that the mutual information reaches its maximum value after a time which is

logarithmic with the system size N , namely the scrambling time.

We have repeated the same calculations for a RUC with a conserved U(1) charge, and

reported our results in figure 10. We see that the functions I
(2)
(a),[C,E](t) and I

(2)
(b),[C,E∪B](t) dis-

play the same qualitative features. It is interesting to note that, in the setting corresponding

to subfigure (a) of figure 8, the value of the mutual information after the scrambling time

is larger than that in the maximally chaotic case, although still vanishing for N → ∞.

This is intuitive: the presence of conservation laws constrains the Hilbert space that can

be explored by the system, hence generally increasing the knowledge on its state.
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Figure 10. Same plots as in figure 9. The evolution is now driven by the RUC with a conserved

U(1) charge defined in section 3.2, where we set λ1 = 1, λ2 = 2 (and d = 2).

In energy conserved systems, the Lyapunov exponent measured by OTOC growth

generically depends on temperature. Usually a slower scrambling occurs at lower temper-

ature T , and an upper bound of 2πT has been proven for a particular regularized version

of the OTOC [13]. The analog of temperature dependence in our model is the charge

dependence of the information retrieval time. We expect that when the charge is closer to

0 or 1, the Hilbert space size is smaller, leading to a similar effect as reducing temperature

in energy conserved system. For this purpose, we study the mutual information growth

for states with different charge. To this end, we first consider the protocol depicted in

figure 8(a), but we initialize the system S in the product state

|ΨS0 〉 =

n⊗

j=1

|0〉j
N−1⊗

j=n+1

|1〉j . (4.6)

As we have clarified after eq. (3.36), we actually consider averages over all the initial states

obtained by permuting different qubits in eq. (4.6), namely over all the product states with

n qubits initialized to |0〉 and (N − 1−n) to |1〉 (where the last qubit N corresponds to A,

and is entangled to the ancilla C). This allows us to exploit the permutational symmetry in

the four-replica space, and proceed following the very same steps outlined above to obtain

numerically exact data for the mutual information I
(2)
(a),[C,E](t).

We report our results in figure 11, for different values of n, and a fixed system size

N = 60. In subfigures (a) and (b) we report data for decreasing values of the initial charge

Q = N−1−n, respectively larger or smaller than N/2. As we have already pointed out, in

the former case the effective Hilbert space dimension (3.38) has a non-monotonic behavior,

whereas in the latter case it is monotonically decreasing, as one would expect in a more

realistic unitary evaporation protocol. This is reflected in the fact that, at short times, the

two plots display a different qualitative behavior as n increases: in subfigure (a), I
(2)
(a),[C,E](t)

decreases as n increases, while the opposite happens in subfigure (b).

In subfigure (c) we report instead the logarithm of the difference between the maxi-

mum value 2 of the mutual information and I
(2)
(a),[C,E](t) at late times. The plot shows the
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Figure 11. Mutual information I
(2)
(a),[C,E](t) [defined in eq. (4.2)] for the setting displayed in fig-

ure 8(a). Subfigures (a) and (b) correspond to the initial state (4.6) for different values of the

initial charge Q = N − 1 − n, respectively larger and smaller than N/2. Subfigure (c) shows

ln
[
2− I(2)

(a),[C,E](t)
]

for the same state (and different values of Q) at late times. For all plots, the

evolution is driven by the RUC with a conserved U(1) charge defined in section 3.2, where we set

λ1 = 1, λ2 = 2 and N = 60 (while we chose d = 2).

emergence of an exponential decay, which starts first for smaller initial charge (a larger

initial charge takes longer to evaporate).

Next, we consider the protocol reported in figure 8(b). In this case, the initial state

is given by a maximally entangled state between S and B. This has a non-vanishing

projection over all the charge sectors, so we can not vary arbitrarily its charge, as for

figure 8(a). For this reason, we consider a different setting, which maintains some of its

features, but allows us to tune the initial charge of S. This is depicted in figure 12. The

idea is to initialize the system in a product state, and let the RUC generate an entangled

state between S and E . After the Page time, S is approximately a maximally mixed state

in a certain charge sector (with charge decreasing in time), as we discussed earlier. At

time t = t1, we introduce a new qubit which is maximally entangled with an ancillary one,

denoted by C. After that, the dynamics of E ∪S is dictated by the same RUC for a time t2.

We are interested in the retrieval of this qubit in E . Thus we study the mutual information

I
(2)
(c),[C,E](t2) = S

(2)
C (t1 + t2) + S

(2)
E (t1 + t2)− S(2)

C∪E(t1 + t2) , (4.7)

where the index (c) here is used to distinguish this protocol from those in figure 8. As

usual, we average over the choice of the qudit A: this allows us, once again, to rely on the

permutational symmetry in the four-replica space, and exploit the exact same techniques

developed so far to efficiently simulate the dynamics (cf. appendix D.3). We report our

numerical results in figures 13 and 14, which we now discuss.

First, figure 13(a) displays the mutual information I
(2)
(c),[C,E](t2) for increasing values of

t1. The plot corresponds to N = 40 and initial charge Q = N − 1 = 39, while λ1 = 1,

λ2 = 2. For this choice of the parameters, the Page time is tp ∼ 25 [cf. figure 10(a)], so that

t1 < tp for the data reported in figure 13(a). In this case, we see that I(c),[C,E](t2) saturates

faster as time increases, which is what we expect. Indeed, for t1 smaller than the Page

time tp, the RUC increases the entanglement between S and E , so a retriever accessing E
at time t = t1 has more control over the configuration of the “black hole” when the extra

qubit is injected.
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Figure 12. Pictorial representation of the third settings considered in section 4. We initialize the

system S (the “black hole”) in a product state, except for a qubit A, randomly chosen, which is

maximally entangled with an ancillary one, denoted by C. The system E ∪S \A is evolved with the

RUC with a U(1) conserved charge for a time t1. After that, E ∪ S is evolved with the same RUC,

for a time t2.
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Figure 13. Mutual information I
(2)
(c),[C,E](t2) [defined in eq. (4.7)] for the setting displayed in

figure 12. Subfigures (a) and (b) show the mutual information for initial charge Q = 39 and

increasing values of t1, respectively smaller and larger than the Page time tp. For all plots, the

evolution is driven by the RUC with a conserved U(1) charge defined in section 3.2, where we set

λ1 = 1, λ2 = 2 and N = 40 (while we chose d = 2).

At t1 ∼ tp, S and E will be maximally entangled within a given charge sector. Thus,

the retriever should be able to faithfully recollect information on the injected qubit after

the scrambling time ts. However, since the charge is conserved, the portion of the Hilbert

space that can be explored during the dynamics is smaller that 2N . For this reason, we

expect ts ∝ logS, where S = lnDBH(tp) and DBH(tp) is the effective dimension defined in

eq. (3.38). Unfortunately, we can not reach large enough system sizes to test this statement

quantitatively.

Next, we report in figure 13(b) the mutual information I
(2)
(c),[C,E](t2) for t1 > tp and fixed

initial charge Q. The plot shows that as t1 increases the mutual information saturates

more slowly, which is due to the fact that the entanglement between S and E decreases

for t1 > tp. In this respect, it is particularly simple to understand the limit t1 → ∞: in

this case the configuration of S at time t = t1 will be extremely close to the vacuum, and

there will be essentially no scrambling of information in S, leading to an extremely slow

saturation of I
(2)
(c),[C,E](t2).
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Figure 14. Subfigure (a): scrambling time ts(t1) as a function of S
(2)
N (t1). Here ts(t1) is defined as

the value of t2 at which I
(2)
(c),[C,E](t2) reaches the value 2−δ. In the plot, we chose δ = 0.2. Subfigure

(b): mutual information I
(2)
(c),[C,E](t2) for various initial charges Q and fixed t1. For all plots, the

evolution is driven by the RUC with a conserved U(1) charge defined in section 3.2, where we set

λ1 = 1, λ2 = 2 and N = 40 (while we chose d = 2).

From figure 13(b) we can also extract the dependence of the scrambling time for infor-

mation injected at time t1 on the system Rényi-2 entropy at time t1, namely S
(2)
N (t1). Here

the scrambling time ts(t1) is defined as the value of t2 at which the mutual information

reaches the value 2 − δ, where δ is some small positive number. This is reported in fig-

ure 14(a), where we chose δ = 0.2. From the plot it is clear that ts(t1) is a monotonically

decreasing function of S
(2)
N (t1) for t1 > tp, as we already discussed above.

Finally, figure 14(b) shows I
(2)
(c),[C,E](t2) for different values of the initial charge Q, for

fixed t1 ∼ tp(Q = 39) (the Page time depends on the initial charge). In this case, we

see that I
(2)
(c),[C,E](t2) is decreasing with Q, which is what we expect: if the initial charge

is small, then the corresponding Page time is short. So, for Q < 39 and a given time

t1 > tp(Q = 39), the entanglement between S and E will be small, leaving the retriever

with little control over the configuration of S when the extra qubit is injected.

5 Conclusions

In this work, we have considered the dynamics of a quantum many-body qudit system

coupled to an external environment, where the time evolution is driven by the continuous

limit of certain 2-local random unitary circuits. We have shown that the growth of the

second Rényi entropy displays two different time scales that are related to the internal

information scrambling and the interaction with the environment. Furthermore, we have

characterized the qualitative differences that emerge choosing the unitaries to be Haar-

distributed or with a conserved U(1) charge. In the latter case, we have shown that the

entanglement displays a Page-like behavior in time, where it begins to decrease in the

middle stage of the “evaporation”. Finally, we have shown that our model provides a

microscopic realization of the Hayden-Preskill protocol for information retrieval, studying

quantitatively the time evolution of the mutual information between different subsystems.
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The conserved U(1) charge provides a tunable effective Hilbert space size, and allow us to

study the charge dependence of scrambling dynamics.

The RUC considered in this work can be enriched in a number of ways. For instance, we

have always considered the limit where the environment has an infinite number of qudits,

that are non-interacting with one another. One could wonder whether the qualitative

features described in this work are modified by considering an environment with a finite

number of qudits, possibly with a non-trivial internal dynamics.

Next, it would be extremely interesting to consider the growth of local operators [9–14]

in our setting. While the effect of decoherence on the latter has been already considered in

the literature [83], our model provides an ideal playground where numerical and analytic

results can be derived for large values of N , and the implications of conservation laws

explored in detail. We plan to go back to these questions in future investigations.

Finally, when compared to holographic duality, our model gives us a toy model for the

boundary dynamics. It would be interesting to use a tensor network approach to describe

bulk degrees of freedom, and study the entanglement wedge structure.
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A Derivation of the Lindbladian for the Rényi entropies

We wish to write down an evolution equation for the state |ρS(t)⊗ ρS(t)〉〉. To this end,

we start with the discrete version of the quantum circuit introduced in section 2. Choosing

a time tj fixed, we focus on an individual realization of the circuit. This defines a global

unitary transformation on S ∪ E which we denote by U(tj). Then, we have

|ρS(tj + ∆t)⊗ ρS(tj + ∆t)〉〉 = 1HS ⊗ trE
{
U(tj + ∆t)ρU †(tj + ∆t)

}
⊗

1HS ⊗ trE
{
U(tj + ∆t)ρU †(tj + ∆t)

}
|I+〉1,...,N . (A.1)

The operator U(tj + ∆t) is obtained from U(tj) by applying a suitable unitary operator.

In particular, according to the evolution described in section 2, we have three possibilities:

• with probability 1−p1−p2 no unitary is applied at time tj , so that U(tj+∆t) = U(tj);

• with probability p1 a unitary between j and k is applied, so that U(tj+∆t) = Uj,kU(t)

• with probability p2 a swap exchanges one qudit in S and one qudit in E .
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We can now take the average over all possible realizations. We note that the average can

be taken independently at each time step, so that, due to the above considerations, the r.

h. s. of eq. (A.1) splits into the sum of three contributions

E [|ρS(tj + ∆t)⊗ ρS(tj + ∆t)〉〉] = (1− p1 − p2)C1 + p1C2 + p2C3 . (A.2)

The first, corresponding to no unitary applied, is trivial

C1 = E [|ρS(tj)⊗ ρS(tj)〉〉] . (A.3)

Next, C2 can be easily determined, since the action of Uj,k, for j, k ∈ S, commutes with

tracing over E . We obtain

C2 =
2

N(N − 1)

∑

j<k

E
[
U∗j,k ⊗ Uj,k ⊗ U∗j,k ⊗ Uj,k

]
E [|ρS(tj)⊗ ρS(tj)〉〉] . (A.4)

The term C3 is more complicated, because it couples the system S and the environment E .

However, it can be computed explicitly in the limit M →∞. Indeed, let us denote by j and

k the qudits in S and E respectively that are swapped at time tj . Assuming M � Ntj/∆t,

we have a negligible probability that qudit k in the environment has interacted before with

S. Hence, we can assume k to be in its initial configuration |0〉k, and hence having no

entanglement with the rest of the qudits in E . Under this assumption (which becomes

exact in the limit M →∞), it is straightforward to compute

C3 =
1

N

N∑

j=1

|0, 0, 0, 0〉j 〈I+|j E [|ρS(tj)⊗ ρS(tj)〉〉] , (A.5)

where |I+〉j was introduced in (3.8). Putting all together and scaling the probabilities p1

and p2 with ∆t and N as defined in (2.1) and (2.2) results in

E [|ρS(tj + ∆t)⊗ ρS(tj + ∆t)〉〉] = (1−∆tL)E [|ρS(tj)⊗ ρS(tj)〉〉] (A.6)

with the final Lindbladian (3.14) as L. In the limit ∆t → 0 we recover the differential

equation (3.13).

B Derivation of the system of differential equations for the purity in the

Haar-scrambled case

In the maximally chaotic case, we do not need to evaluate directly (3.13) to obtain

|ρS(t)⊗ ρS(t)〉〉. Instead, we can derive the system (3.19) of N + 1 coupled differential

equations for the purities Pn = 〈〈Wn|ρS ⊗ ρS〉〉 (see (3.11)) for subsystems of size n.

To this end, we insert the Lindbladian (3.14) into the equation (3.11) defining the

purity,
dPn(t)

dt
= 〈〈Wn|(−L)|ρS(t)⊗ ρS(t)〉〉. (B.1)
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Next, the action of 〈〈Wn| from (3.12) onto the Lindbladian L from (3.14) with Ui,j
from (3.16) can be computed. Using the identities

〈I±j |I±k 〉 = d2δjk, 〈I±j |I∓k 〉 = dδjk, and 〈I±j |0, 0, 0, 0k〉 = δjk , (B.2)

and keeping in mind that for 〈〈Wn| = 〈〈WK | only the size |K| = n of the region matters,

this results in

〈〈Wn|(−L) =

− 2λ1

N − 1

(
N(N − 1)

2
〈〈Wn| −

n(n−1)

2

1

d4−1

[
d2〈〈Wn−2|+ d4〈〈Wn|

− 1

d2

(
d2〈〈Wn|+ d4〈〈Wn−2|

) ]

− (N−n)(N−n−1)

2

1

d4−1

[
d4〈〈Wn|+ d2〈〈Wn+2| −

1

d2

(
d4〈〈Wn+2|+ d2〈〈Wn|

)]

− n(N − n)
1

d4 − 1

[
d3〈〈Wn−1|+ d3〈〈Wn+1| −

1

d2

(
d3〈〈Wn+1|+ d3〈〈Wn−1|

)]
)

− λ2

N
(N〈〈Wn| − n〈〈Wn−1| − (N − n)〈〈Wn|)

= − 2λ1

N − 1

(
n(N − n)〈〈Wn| −

n(N − n)d

d2 + 1
[〈〈Wn−1|+ 〈〈Wn+1|]

)

− λ2n

N
(〈〈Wn| − 〈〈Wn−1|) (B.3)

by considering separately the three sets of terms in the sum
∑

1≤j<k≤N where the j’th

and k’th site of 〈〈Wn| consist of 〈I±|j , 〈I±|k with the signs +,+ or −,− or opposite,

respectively. The differential equation (3.19) for the purities Pn(t) then easily follows.

C Derivation of the relevant formulas in the bosonic formalism

In this section we discuss in more detail the formalism introduced in section 3.2, and derive

a set of formulas that are needed for numerical implementations. We start by showing how

to write operators in terms of the bosonic a-operators. First, we notice that one simply has

N∑

j=1

(|x〉 〈y|)j = a†xay , (C.1)

as can be explicitly checked by comparing the action of the two sides on any state. From

this, is follows

N∑

j<k

[
(|x〉 〈z|)j ⊗ (|y〉 〈t|)k + (|y〉 〈t|)j ⊗ (|x〉 〈z|)k

]

=

( N∑

j=1

(|x〉 〈z|)j
)( N∑

j=1

(|y〉 〈t|)j
)
− δy,z

N∑

j=1

|x〉 〈t|

= a†xaza
†
yat − δy,za†xat

= a†xa
†
yazat . (C.2)
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for x, y, z, t = 0,1, A,B,C,D. One can now prove a general formula, which can be directly

applied for implementing the effective Hamiltonians appearing in the main text. Let us

consider ∑

j<k

∑

x,y,z,t

(
Γx,y |x〉j ⊗ |y〉k

)(
Λz,t 〈z|j ⊗ 〈t|k

)
=: (∗) , (C.3)

where Γx,y = Γy,x and Λz,t = Λt,z are symmetric matrices. We can rewrite

(∗) =
∑

j<k

∑

x,y,z,t

Γx,yΛz,t (|x〉 〈z|)j ⊗ (|y〉 〈t|)k ,

=
1

2

∑

j<k

∑

x,y,z,t

Γx,yΛz,t

[
(|x〉 〈z|)j ⊗ (|y〉 〈t|)k + (|y〉 〈t|)j ⊗ (|x〉 〈z|)k

]

+
1

2

∑

j<k

∑

x,y,z,t

Γx,yΛz,t

[
(|x〉 〈z|)j ⊗ (|y〉 〈t|)k − (|y〉 〈t|)j ⊗ (|x〉 〈z|)k

]
. (C.4)

In the second term, the parenthesis that multiplies Γx,yΛz,t is antisymmetric under simul-

taneous exchange x ↔ y, z ↔ t. Since Γx,yΛz,t is instead symmetric, the sum is zero.

Accordingly, we have

(∗) =
1

2

∑

j<k

∑

x,y,z,t

Γx,yΛz,t

[
(|x〉 〈z|)j ⊗ (|y〉 〈t|)k + (|y〉 〈t|)j ⊗ (|x〉 〈z|)k

]

=
1

2

∑

x,y,z,t

Γx,yΛz,t

[
a†xa
†
yazat

]
. (C.5)

where we used eq. (C.2).

Finally, we show how to write symmetrized states in terms of bosonic a-operators.

For this we consider a general state described by coefficients ci,z, i ∈ {1, . . . , N}, z ∈
{0,1, A,B,C,D}, which we symmetrize:

1

N !

∑

π∈SN

π

N⊗

i=1

(ci,0 |0〉i + ci,1 |1〉i + ci,A |A〉i + · · · )π−1

=
1

N !

∑

π∈SN

π
∑

I0∪I1∪IA∪···={1...N}
cI0,0 |0〉⊗I0 cI1,1 |1〉⊗I1 cIA,A |A〉⊗IA · · ·π−1

=
1

N !

∑

I0∪I1∪IA∪···={1...N}

√
N !#I0!#I1!#IA! · · ·cI0,0cI1,1cIA,A · · · |#I0,#I1,#IA, . . .〉

=

√
N !

N !

∑

I0∪I1∪IA∪···={1...N}
cI0,0(a†0)#I0cI1,1(a†1)#I1cIA,A(a†A)#IA |Ω〉

=
1√
N !

N∏

i=1

(ci,0a
†
0 + ci,1a

†
1 + ci,Aa

†
A + · · · ) |Ω〉 (C.6)

where cI,z =
∏
i∈I ci,z.

From the above general formulas, it is now straightforward to rewrite the Lindbla-

dian (3.14), with the choice (3.27), in terms of bosonic operators, together with the states
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relevant for our computations. In particular, we derived

∑

j<k

Uj,k =
1

2


 ∑

α=0,1,A,B,C,D

a†αa
†
αaαaα


+

∑

α=A,B,C,D

(
a†0a
†
αa0aα + a†1a

†
αa1aα

)

+
1

3

(
a†0a
†
1aAaB + a†Aa

†
Ba0a1 + a†0a

†
1aCaD + a†Ca

†
Da0a1

)
(C.7)

+
1

3

(
2a†0a

†
1a0a1 + 2a†Aa

†
BaAaB + 2a†Ca

†
DaCaD − a

†
Ca
†
DaAaB − a

†
Aa
†
BaCaD

)
,

and

N∑

j=1

|0, 0, 0, 0〉j 〈I+|j =
N∑

j=1

|0〉j (〈0|j + 〈1|j + 〈A|j + 〈B|j) = a†0(a0 + a1 + aA + aB) . (C.8)

Furthermore, it follows from eq. (C.6) that eq. (3.12) can be rewritten in terms of bosonic

modes as

|WK〉〉 =
1√
N !

(a†0 + a†1 + a†A + a†B)N−k(a†0 + a†1 + a†C + a†D)k · · · |Ω〉 , (C.9)

where k = |K|. Note that eq. (C.9) actually corresponds to symmetrizing over all possible

sets K of k elements. This is correct, since we are interested in the overlap (3.11), and the

state |ρS(t)⊗ ρS(t)〉〉 is invariant under arbitrary permutations.

Finally, let us consider the initial state (3.18). It is immediate to see that this corre-

sponds to the state

|ρS(0)⊗ ρS(0)〉 = |n0 = 0, n1 = N,nA = 0, nB = 0, nC = 0, nD = 0〉 . (C.10)

Similarly, averaging the initial state (3.36) over all the possible permutations of qubits, we

obtain the initial state

|ρS(0)⊗ ρS(0)〉 =
(N/2)!√
N !
|n0 = N/2, n1 = N/2, nA = 0, nB = 0, nC = 0, nD = 0〉 .

(C.11)

D Details on the computation of the mutual information

In this section we provide all the necessary details to obtain the results on information

retrieval presented in section 4. For ease of presentation and numerical efficiency, we

restrict to qubits.

D.1 Scenario (a)

Let us begin with scenario (a), in which the black hole is in an initial product state except

for one qubit A [cf. figure 8(a)]. Rather than the initial product state (3.18) for the system

S, the initial state is now an entangled state

|ΨS∪C0 〉 =
1√
2

∑

s=0,1

N−1⊗

j=1

|1〉j ⊗ |s〉A ⊗ |s〉C , (D.1)

– 27 –



J
H
E
P
0
4
(
2
0
2
0
)
0
6
3

with the two-replica Jamiolkowski representation

|ρS∪C(0)⊗ ρS∪C(0)〉〉 =
1

4

∑

s∈{0,1}4

N−1⊗

j=1

|1〉j ⊗ |s〉A ⊗ |s〉C . (D.2)

After time evolution, we may extract the purities necessary for the mutual information (4.4)

similarly to (3.11), but the vector |W 〉〉 is now defined on systems S and C. In particular,

for the various Rényi entropies needed, we have

|WC〉〉 =
⊗

j∈S
|I+〉j ⊗ |I−〉C (D.3)

|WS∪C〉〉 =
⊗

j∈S
|I−〉j ⊗ |I−〉C , (D.4)

|WS〉〉 =
⊗

j∈S
|I−〉j ⊗ |I+〉C . (D.5)

In order to perform the calculation of the purities

PX(t) = 〈〈WX |e−Lt|ρS∪C(0)⊗ ρS∪C(0)〉〉, (D.6)

we symmetrize over system S, including the location choice of qubit A entangled to C. Due

to the projection onto 〈I±|C , the sum over s may be restricted to s ∈ {0,1, A,B,C,D}.
In the maximally chaotic case, we can derive and use the differential equation (3.19)

as in section 3.1, with initial conditions

PK∪C =
k

N
+

1

2

N − k
N

, (D.7)

PK =
1

2

k

N
+
N − k
N

, (D.8)

where K ⊂ S, k = |K| as usual.

For the case with conservation laws, the symmetrization allows us to express all the

states in the four replica space in the bosonic formalism as in section 3.2, within which

we can numerically compute the purities. For this, one needs to write down explicitly an

expression for |ρS∪C(0)⊗ ρS∪C(0)〉〉. To this end, let us generalize the case considered in

eq. (D.1), by considering instead the case corresponding to the initial state (4.6), where we

sum over all the possible permutations of qubits. Then, following the technical derivations

in the previous section, it is possible to derive

|ρS∪C(0)⊗ ρS∪C(0)〉〉 =
1

4

∑

s∈{0,1,A,B,C,D}

1√
N !
a†s(a

†
1)N−1−n(a†0)n |Ω〉S ⊗ |s〉C . (D.9)

Note that here we have N − 1, and not N , appearing in the second exponent, because one

qubit is maximally entangled with C, so only N − 1 qubits in S are in a product state.
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D.2 Scenario (b)

Now let us move to scenario (b), in which the black hole is maximally entangled to a

retriever B, except for one qubit A, that is maximally entangled to C [cf. figure 8(b)]. Here,

the initial state is an entangled state which reads

|ρS∪C∪B(0)⊗ ρS∪C∪B(0)〉〉 =
1

4N

N−1⊗

j=1

∑

sj∈{0,1}4
(|sj〉S,j⊗|sj〉B,j)⊗

∑

s∈{0,1}4
|s〉A⊗|s〉C . (D.10)

The |W 〉〉 vectors for the purities involved in the mutual information (4.3) are as in (D.5)

with an additional |I+〉B,j for each j ∈ B, since B is never within a region we compute the

purity of. Therefore we may directly evaluate
∑

sj∈{0,1}N |sj〉S,j 〈I+|sj〉B,j = |0〉 + |1〉 +

|A〉+ |B〉 and use the simplified initial state

|ρS∪C(0)⊗ ρS∪C(0)〉〉 =
1

4N

∑

s∈{0,1}4

N−1⊗

j=1

(|0〉j + |1〉j + |A〉j + |B〉j)⊗ |s〉A ⊗ |s〉C (D.11)

=
1

4N

∑

s∈{0,1,A,B,C,D}

1√
N !
a†s(a

†
0 + a†1 + a†A + a†B)N−1 |Ω〉S ⊗ |s〉C

(D.12)

after restriction of s and symmetrization of S as above. For the evolution with charge

conservation, this bosonic formalism is again the basis for our numerical calculations.

Note, finally, that in the case of Haar-scrambled evolution, we can again use the dif-

ferential equation (3.19), where the initial conditions are now

PK∪C =
k

N

1

2k−1
+
N − k
N

1

2k+1
, (D.13)

PK =
1

2k
. (D.14)

D.3 Scenario (c)

In order to implement the two-step protocol depicted in figure 12, it is crucial to remember

that the interaction with the bath is Markovian. First, we simply evolve for time t1 the

initial pure (and symmetrized) state (4.6) of N−1 qubits in a given charge sector. Then, we

add a qubit s maximally entangled to the ancilla. Symmetrizing its position, this amounts

to the following change of basis vectors of the system state:

|n0, n1, . . . , nD〉S →
1

4

∑

s∈{0,1,A,B,C,D}

√
ns + 1

N
|n0 + δs0, n1 + δs1, . . . , nD + δsD〉S ⊗ |s〉C .

(D.15)

The rest of the protocol is then analogous to scenario (a) for time t2 and the initial mixed

state above.

Open Access. This article is distributed under the terms of the Creative Commons
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[20] M. Žnidarič, Optimal two-qubit gate for generation of random bipartite entanglement, Phys.

Rev. A 76 (2007) 012318 [quant-ph/0702240].

– 30 –



J
H
E
P
0
4
(
2
0
2
0
)
0
6
3
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