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Zusammenfassung
Diese Arbeit präsentiert zwei Experimente, welche für die Realisierung von Vielteilchenphysik
mit einem orbitalen Freiheitsgrad ultrakalte Atome verwenden. Insbesondere werden im
Rahmen dieser Arbeit experimentelle Techniken entwickelt, um das Fermi-Polaron-Problem
in der Nähe einer orbitalen Feshbach-Resonanz zu untersuchen und die Relaxationsdynamik
im eindimensionalen Fermi-Hubbard-Modell mit ungleichen Massen zu analysieren.

Quasiteilchen wie das Fermi-Polaron sind ein elementarer Bestandteil von Landaus Fermi-
Flüssigkeits-Theorie und �nden umfangreiche Anwendung bei der Beschreibung wechselwir-
kender Elektronensysteme. Im ersten Teil dieser Arbeit benutzen wir die kürzlich entdeckte
orbitale Feshbach-Resonanz in Ytterbium, um multiorbitale Fermi-Polaronen in Mischun-
gen aus Atomen im Grundzustand und metastabilen Uhrenzustand zu erzeugen. Zu diesem
Zweck setzen wir spektroskopische Messungen auf dem Uhrenübergang ein und identi�zieren
das attraktive als auch das repulsive Polaron im Vielteilchenspektrum des zweidimensiona-
len Teilchen-Bad-Systems. Außerdem bestimmen wir weitere wichtige Eigenschaften dieses
Quasiteilchens—nämlich das Residuum und die Lebensdauer. Die Resultate unserer Messun-
gen stimmen gut mit einer spezi�schen Vielteilchentheorie überein und bestätigen damit die
Bedeutung orbitaler Wechselwirkungen für das Fermi-Polaron-Problem.

Im zweiten Experiment untersuchen wir das Fermi-Hubbard-Modell für ungleiche Massen
mit Ytterbium-Atomen, die in einem zustandsabhängigen optischen Gitter für den Grundzu-
stand und metastabilen Uhrenzustand gefangen sind. In diesen beiden Zuständen werden
Atome präpariert und entsprechen dabei schweren und leichten Teilchen, die sehr unter-
schiedliche dynamische Zeitskalen aufweisen. Zuletzt wurden solche Modelle ausführlich im
Zusammenhang von Lokalisierungs- und Thermalisierungsprozessen in isolierten Quanten-
Vielteilchen-Systemen erforscht. Um die Nicht-Gleichgewichtsdynamik in unserem System zu
untersuchen, zeichnen wir die Dichte der leichten Spezies auf, nachdem das externe Fallen-
potential geändert wurde. Auf diese Weise identi�zieren wir eine starke Unterdrückung des
Transports zu frühen Zeiten und eine langsame Relaxation zu späten Zeiten mit signi�kanter
Abhängigkeit von der dynamischen Zeitskala und der Wechselwirkungsstärke beider Spezies.
Unsere Ergebnisse zeigen, dass Metastabilität und extrem langsame Thermalisierung aufgrund
dynamischer Einschränkungen auftreten können.

Die in dieser Arbeit entwickelten Experimente zu multiorbitaler Vielkörperphysik eb-
nen den Weg für Quantensimulatoren, die o�ene Fragen zu Theorien kondensierter Materie
beantworten könnten.
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Abstract
This thesis reports on two experiments employing ultracold atoms to realize many-body physics
in the presence of an orbital degree of freedom. In particular, we develop the experimental tech-
niques to probe the Fermi polaron problem across an orbital Feshbach resonance and examine
the relaxation dynamics in the one-dimensional mass-imbalanced Fermi-Hubbard model.

Quasiparticles like the Fermi polaron constitute an elementary part of Landau’s Fermi
liquid theory and �nd extensive application in the description of interacting electron systems.
In the �rst part of this thesis, we exploit the recently observed orbital Feshbach resonance in
ytterbium to produce multiorbital Fermi polarons in mixtures of ground state and clock state
atoms. To this end, we employ clock-line spectroscopy and identify the repulsive as well as
attractive polaron in the many-body spectrum of the two-dimensional impurity-bath system.
We also determine other important quasiparticle properties, namely, the residue and lifetime.
Our measurement results agree well with a tailored many-body theory, thereby con�rming
the relevance of orbital interactions for the Fermi polaron problem.

In the second experiment, we study the mass-imbalanced Fermi-Hubbard model with
ytterbium atoms trapped in a state-dependent optical lattice for the ground and metastable
clock state. Atomic populations are prepared in both of these states and correspond to heavy
and light particles exhibiting vastly di�erent dynamical time scales. Recently, such models
have been extensively explored in the context of localization and thermalization in isolated
quantum many-body systems. To probe non-equilibrium dynamics in our system, we record
the density of the light species after adjusting the external trapping potential. In this way, we
identify a strong suppression of transport at early times and slow relaxation at late times, with
a signi�cant dependence on the dynamical time scale and interaction strength of both species.
Our results demonstrate the emergence of metastability and extremely slow thermalization
due to dynamical constraints.

The implementations of multiorbital many-body physics established within this thesis
pave the way for quantum simulators that could shed light on open questions in condensed-
matter theory.
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Introduction

The detailed study of many-body physics with ultracold quantum gases has seen remarkable
progress in the last two decades [1, 2]. Various experiments can now probe complex quantum
systems in regimes challenging to access with simulations on classical computers [2, 3], thereby
realizing parts of Feynman’s vision for analog quantum simulations [4]. These advancements
have paved the way for exploring numerous open questions ranging from condensed-matter
physics and strongly correlated materials [5–7] to more fundamental aspects such as ergodicity
and thermalization in isolated quantum systems [8–10].

Discoveries at the forefront of research on cold atomic systems have been primarily driven
by the development of groundbreaking experimental techniques. This particularly applies to
optical lattices, which o�er a defect-free potential landscape for fermionic atoms simulating
interacting electrons in a crystal [2]. In contrast to real materials, the kinetic and interaction
energy of these atoms can be adjusted freely by varying the power of a laser beam or the
strength of an external magnetic �eld [1]. Such an unprecedented level of control and �exibility
opens the door for quantum simulation experiments of models highly relevant in solid-state
theory, most notably the Fermi-Hubbard model [11]. In this context, pioneering work has
employed alkali atoms in optical lattices to engineer tailored quantummatter that resembles the
Fermi-Hubbard model, as clearly demonstrated by probing its Mott-insulating phase [12, 13].
Remarkably, subsequent experiments have also observed and characterized antiferromagnetic
order emerging at low temperatures [14–18], where the doped Fermi-Hubbardmodel is believed
to describe unconventional superconductivity [6].

While the conceptual appeal of the Fermi-Hubbard model lies in its simpli�ed single-
orbital description of more complex materials, it does not capture fascinating multiorbital
phenomena such as heavy fermions, orbital ordering, or colossal magnetoresistance [5, 7].
In this context, orbitals describe the spatial wave function of electrons and thereby determine
their (directional) mobility and interactions in strongly correlated materials [5, 7]. Improving
our limited understanding of the physics governing these materials calls for the simulation of
the associated multiorbital models in the well-controlled setting of ultracold atoms [19–25].
Nevertheless, previous work in this setting has mainly focused on single-orbital physics since
orbital-dependent mobility schemes for alkali atoms have been plagued by short lifetimes,
increased complexity, and limited �exibility [26–29].

A promising avenue for realizing an orbital degree of freedom in cold atomic systems
has emerged with the use of di�erent atomic species whose electronic structure o�ers more
�exibility [30]. In contrast to alkali metals, alkaline-earth(-like) atoms, such as strontium and
ytterbium, feature a metastable electronic state known as clock state due to its application
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2 Introduction

in atomic clocks [31]. The ultranarrow clock transition connecting these two states has en-
abled optical lattice clocks to reach record precision and accuracy at the level of a few parts
in 10−18 [32–34]. For example, this astonishing level of sensitivity has also allowed stron-
tium and ytterbium clocks to join the search for dark matter [35, 36]. Besides atomic clocks,
alkaline-earth(-like) atoms have been considered for a broad range of quantum simulations
and potential applications, for example, exotic quantummagnetism [19, 37, 38], arti�cial gauge
�elds [39], (lattice) gauge theories [40, 41], and quantum computation schemes [42].

In tailored optical potentials, known as state-dependent lattices [43–45], the clock state
together with the ground state can be utilized as an orbital degree of freedom such that atomic
mobility robustly depends on the orbital state. Fermionic strontium and ytterbium isotopes
also possess a nuclear spin, which naturally leads to spin-exchange interactions between
atoms occupying distinct spin and orbital states [45–47]. In this way, numerous multiorbital
Hamiltonians from solid-state theory, for example, the double-exchange [25] or Kondo lattice
model [19], can be implemented with this type of atoms and state-dependent optical potentials.
First e�orts probing orbital mixtures of alkaline-earth(-like) atoms have been devoted to the
characterization of few-body physics, including the two-body interactions between atoms
in the same or distinct orbital states [46, 48–53]. Speci�cally, ytterbium has emerged as a
promising species in this context due to an orbital Feshbach resonance at accessible magnetic
�elds [54–56], o�ering a powerful tuning “knob” for controlling interactions of orbital mixtures.
This feature is complemented by a high level of experimental �exibility with two naturally
abundant fermionic isotopes and favorable interaction parameters [46, 53].

Recent advances have signi�cantly improved the theoretical understanding and control of
orbital ytterbium mixtures [30, 57], paving the way for experimental studies of impurity-bath
physics at variable interaction strength [58, 59]. Problems of this form lie at the heart of various
interesting phenomena [60–62]. For example, the Kondo e�ect, which describes the dramati-
cally altered transport properties in dilute magnetic alloys, has eventually been explained with
the coupling of localized impurity spins to a band of conduction electrons [61]. In Landau’s
Fermi liquid picture [63], coupling a mobile impurity to a fermionic medium leads to the
formation of a quasiparticle, known as Fermi polaron. This quasiparticle possesses strongly
modi�ed single-particle properties like an e�ective mass or �nite lifetime [64, 65], arising due
to entanglement with its surrounding medium. Experimental probes of these properties in
ytterbium quantum gases can benchmark existing theories of the Fermi polaron [64–66] due to
the increased complexity of interactions across the orbital Feshbach resonance [57, 67–70].

The phenomenology of the Fermi polaron has been widely studied with ultracold quantum
gases featuring interaction-tunability across Feshbach resonances [71–76]. Precise measure-
ments of the quasiparticle properties have opened the door to a particularly fruitful exchange
between experiment and theory [66, 77, 78], exempli�ed by the prediction and observation of
metastable repulsive polarons [73, 74, 79–81]. Lately, novel experimental techniques have fur-
ther improved our understanding of Fermi polarons by probing their dynamical formation with
many-body interferometry [82], analyzing their dependence on the medium temperature [83],
and observing the crossover to a molecular state [84]. In the context of this thesis, we probe the
Fermi polaron across the orbital Feshbach resonance in two dimensions, complementing pre-
vious realizations with alkali atoms [74, 75]. In particular, Fermi polarons in two-dimensional
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systems are relevant for semiconductor devices, as demonstrated by the recent observations of
Fermi polaron-polaritons [85]. Our experimental results also allow benchmarking theoretical
descriptions for systems exhibiting more complex forms of interaction [67–70].

The non-equilibrium time evolution of controllable quantum states under tailored many-
body Hamiltonians can be directly examined by holding atomic ensembles in optical traps
for variable duration. Experiments of this form o�er a direct way to investigate how isolated
quantum systems thermalize [86–89], a topic that has seen greatly renewed interest over the last
decades [8–10]. While e�cient numerical approaches likematrix product state algorithms exist,
the fast growth of entanglement usually limits classical simulations to one spatial dimension
and either small particle numbers or short duration [90]. Experiments with ultracold atoms
provide an alternative way to explore non-equilibrium dynamics by directly employing a
quantum resource for simulating the time evolution of many-body Hamiltonians. Recently,
this technique has enabled the �rst experimental observation of many-body localization with
ultracold fermions in a disordered optical lattice [91, 92]. This intriguing phase of quantum
matter describes non-integrable systems, which fail to thermalize such that a �nite memory of
an initial state can persist for arbitrarily long times—even in the presence of interactions [93].
Such non-ergodic behavior could �nd potential applications in quantum devices by preserving
delicate states [94, 95].

In light of the remarkable experimental �ndings, also featuring other platforms [96, 97],
a plethora of theoretical work has targeted this newly established �eld at the intersection
of statistical, quantum, and condensed-matter physics [98–100]. In numerous theoretical
studies, a central question has emerged concerning the existence of many-body localization
in translationally invariant systems without any form of static disorder [100]. Diverse model
systems have been proposed and analyzed in this context [101–106]. In particular, the mass-
imbalanced Fermi-Hubbard model can already be accessed experimentally in a fully tunable
manner with orbital ytterbium mixtures. Here, the orbital degree of freedom discussed above
corresponds to heavy and light particles which move with vastly di�erent time scales in a
one-dimensional lattice [104, 105]. Finite interactions between the two species introduce
dynamical constraints, which are believed to cause an extremely slow thermalization with
features reminiscent of many-body localization [105]. Emergentmetastability makes numerical
calculations in this regime extremely challenging [104, 105] and calls for an experimental
realization, which we present within this thesis.

This thesis
The work presented in this thesis builds on and extends the techniques developed for ultracold
ytterbium over recent years. In particular, we report on two experimental studies probing
many-body physics in the presence of an orbital degree of freedom. By engineering a state
preparation technique for population-imbalanced Fermi gases, we create multiorbital Fermi
polarons in the two-dimensional layers of a single-axis optical lattice. These quasiparticles and
their properties are precisely characterized by utilizing spectroscopic techniques and the clock
transition. Speci�cally, we probe the coherent nature of the Fermi polaron in two dimensions
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with Rabi oscillations between weakly and strongly interacting impurity states. For these
measurements, the orbital Feshbach resonance [54–56] allows us to analyze a broad range
of interaction strengths, all the way from weak to strong repulsive or attractive interactions.
By comparing theoretical predictions and experimental results, we identify a manifestation
of the multiorbital Fermi polaron in the many-body spectrum.

In a second experiment, we employ the recently developed state-dependent lattice tech-
niques [43] to probe non-equilibrium dynamics in an interacting mixture of heavy and light par-
ticles. The study of localization in such systems dates back to work from Kagan and Maksimov
in the context of helium physics [107] and has lately been investigated intensively for the real-
ization of many-body localization in translationally invariant systems [101–103, 105]. In our
experiment, the mass-imbalanced Fermi-Hubbard model is implemented by populating the
ground and clock state, which exhibit vastly di�erent dynamical scales in the state-dependent
lattice. By gradually translating the external con�nement, we precisely study the relaxation
dynamics of the system at variable interaction strength and mass imbalance. In this way, we
identify the emergence of extremely slow relaxation and behavior reminiscent of ergodicity
and thermalization at late times.

Outline
This thesis is divided into six chapters, which are structured as follows.

Chapter 1 reviews the electronic structure of fermionic ytterbium and explains how the
ground and clock state give direct access to orbital degrees of freedom in quantum simulation
experiments. To this end, we also discuss the scattering properties of atoms within the same
or distinct orbitals, which are also relevant for the orbital Feshbach resonance. We illustrate
the operating principle of state-dependent and state-independent optical traps, starting with
calculating the polarizabilities in the ground and clock-state orbitals. Lastly, we brie�y explain
the essential experimental techniques that allow us to routinely prepare and probe deeply
degenerate Fermi gases and orbital mixtures.

We review the theoretical description for Fermi polarons in Chapter 2. By deriving the
quasiparticle self-energy within the ladder approximation, we gain access to properties such as
the quasiparticle energy and residue. Then, these concepts are generalized to the situation of our
experiment, which features strong harmonic con�nement and orbital interactions. Having laid
the theoretical ground, we present the experimental results for the multiorbital Fermi polaron
in Chapter 3. First, we explain the techniques and measurements to prepare and characterize
ensembles of population-imbalanced gases in the two-dimensional layers of a single-axis
optical lattice. We then compare our measurement results for the quasiparticle energy, the
residue, and the repulsive polaron lifetime with theoretical predictions. Complementary to our
experimental observations, we also discuss recent developments concerning the theoretical
description of the repulsive Fermi polaron.

Chapter 4 examines thermalization and its absence in isolated quantum systems. Speci�-
cally, we review the phenomenology of many-body localization and the emergent metastability
in heavy-light mixtures. Here, our attention lies on non-equilibrium density dynamics in the
mass-imbalanced Fermi-Hubbard model, which we analyze with numerical exact diagonaliza-



Introduction 5

tion techniques. Chapter 5 covers ourmeasurements of the non-equilibrium density dynamics
in one-dimensional Fermi-Hubbard chainswith a �nitemass imbalance. This system is realized
using the ytterbium orbitals as light and heavy species in a state-dependent lattice, and we �rst
discuss the experimental techniques to tune the mass imbalance and interaction strength. We
then introduce a transport measurement technique, which allows us to observe the emergence
of extremely slow relaxation at strong interactions and signi�cant mass imbalance.

The �nal chapter brie�y summarizes the central �ndings of this thesis and presents
an outlook on potential future work in the light of the most recent advances with ultracold
alkaline-earth(-like) atoms.
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CHAPTER 1

Multiorbital physics with ultracold ytterbium

We present here an overview of realizing multiorbital physics with ultracold quantum gases of
ytterbium atoms. To begin, we introduce the electronic structure of neutral ytterbium and show
how the long-lived clock state provides access to an orbital degree of freedom. For the fermionic
isotopes 171Yb and 173Yb, we discuss the relevant interorbital and intraorbital interaction
channels. We also explain the concept of optical lattices and how they can be engineered to
introducemobility strongly dependent on the orbital state. In thisway, Hamiltonians ofmultiple
interesting solid-state systems can be realized, which we illustrate for relevant examples. Lastly,
we describe the key experimental techniques to prepare and probe multiorbital Fermi gases of
ytterbium, providing the starting point for the experiments presented in Chapters 3 and 5.

1.1 Electronic structure of neutral ytterbium
Ytterbium, a rare-earth element from the lanthanide series, occurs naturally as one of seven
stable isotopes with proton numbers Z = 168, 170, 171, 172, 173, 174, and 176 [113]. The
most abundant isotope 174Yb (natural abundance ≈ 32%) is bosonic. For the experiments
presented in this thesis, we employ the two fermionic isotopes 173Yb (natural abundance≈ 16%)
and 171Yb (≈ 14%). Only these two isotopes possess a non-vanishing nuclear spin I = 1∕2
for 171Yb and I = 5∕2 for 173Yb. Neutral ytterbium �nds applications in a variety of cold atom
experiments, ranging from atomic clocks [31] to search for new physics [114] and experiments
probing quantum many-body physics [30].

The electronic con�guration of neutral ytterbium takes the form [Xe]4f146s2 [115] with
two valence electrons on the outer shell, similar to alkaline-earthmetals like strontium, making
ytterbium an alkaline-earth-like element. The two valence electrons and their spin give rise
to helium-like energy levels with a singlet (S = 0) and triplet (S = 1) manifold. Figure 1.1
shows some of the lowest-lying energy levels together with their spin-orbit L−S coupling
term symbols and optical transitions relevant for our experiments. Generally, selection rules
forbid dipole transitions between the singlet and triplet manifolds as they involve a spin-�ip
(S → S ± 1). However, the L−S coupling scheme becomes less accurate with growing nuclear
charge Z and the relevance of j−j coupling increases for heavy atoms like ytterbium [116].
For instance, the 3P1 state in the triplet manifold acquires a �nite admixture of the 1P1 state

7
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Figure 1.1 | Electronic states and optical transitions. Energy level diagram of low-lying electronic states
in neutral ytterbium with their corresponding term symbols (2S+1)

LJ. Relevant optical transitions are indi-
cated by arrows labeled with the vacuum transition wavelengths as well as natural linewidths Γ inferred
from radiative lifetimes and approximate branching ratios calculated within the L−S coupling scheme.
The energy values shown in this figure are adapted from Ref. [115].

a Takasu et al. [48].
b Beloy et al. [118].
c Porsev et al. [119].
d Cho et al. [120].

from the singlet manifold, which makes the intercombination line connecting the 1S0 ground
state and the 3P1 excited state weakly allowed [117].

Cooling and imaging transitions.—In our experiment, we employ the nearly closed 1S0 →
1P1

cycling transition for Zeeman-slowing the atomic beam from a thermal source [121]. Moreover,
the large photon scattering rate of this broad transition enables our in-situ absorption imaging
with relatively short laser pulses (see Section 1.4.3). With a natural linewidth of only≈ 180 kHz,
we employ the intercombination line for narrow-line laser cooling in our magneto-optical
trap and state preparation across the di�erent nuclear spin states in the ground state using
an optical pumping technique [121]. For example, this preparation technique enables our
measurements of the Fermi polaron discussed in Chapter 3 (see Section 3.1.1).

Clock transition.—The �nite nuclear spin I ≠ 0 of the fermionic isotopes gives rise to
the hyper�ne structure. Moreover, the associated hyper�ne interaction leads to a small ad-
mixture of the 1P1, 3P1, and

3P2 states to the bare 3P0 state [117]. In this way, the doubly
forbidden 1S0 →

3P0 transition acquires a small �nite coupling for the fermionic species 171Yb
and 173Yb [119].1 The natural linewidth of this transition of order 10mHz [119] is tiny, a

1For the bosonic isotopes, a similar mixing and coupling can be induced with an external magnetic �eld [122].
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remarkable feature shared with other alkaline-earth(-like) atoms. Notably, the insensitivity of
the 1S0 and

3P0 states to magnetic �elds (J = 0) makes this clock transitionwell suited for appli-
cations in atomic clocks. The small linewidth combined with the optical transition frequency
yield an enormously large quality factor Q ∼ 1017 [31], a fundamental advantage compared
to the microwave transition of 133Cs, de�ning the current standard of the second [123]. Re-
markable progress in the construction of ultrastable optical cavities and laser systems have
enabled optical frequency measurements with unprecedented precision and accuracy [31]. For
example, this has also given experimental access to gravitational time dilation across small
and large distances [124, 125]. On the other hand, the ultranarrow linewidth is associated
with a particularly long lifetime≫ 10 s of the 3P0 clock state against decay to the lower-lying
ground state. In this way, the metastable clock state can also be utilized as an orbital degree
of freedom [19], as explored in the next section.

1.2 Interactions in orbital mixtures

In addition to precision spectroscopy, the metastable 3P0 clock state (denoted |e⟩) together
with the 1S0 ground state (denoted |||g⟩) also enables quantum simulation of multiorbital many-
body physics. Here, we focus on the fermionic isotopes since they are particularly suitable
for mimicking electrons in solid-state materials. Before discussing the details of interacting
atoms in the same or di�erent orbitals, we give a brief introduction to collisions in ultracold
quantumgases and the relevant quantities such as the s-wave scattering length. The collisions in
ultracold quantum gases are directly connected to the short-range interactions, which provide a
central building block for implementing and probing many-body physics. Hence, the following
discussion of elastic scattering enables us to calculate relevant experimental parameters and
engineer interactions tailored to multiorbital models of interest.

1.2.1 Elastic scattering in ultracold gases

For the dilute limit of ultracold quantum gases [1], we focus on elastic two-body collisions,
where the asymptotic wave function after the collision in the center-of-mass frame can be
described by the ansatz [126]

 (r) ∼ eik⋅r + f(k, �)e
ikr

r (1.1)

with the relative coordinate r. The �rst term of this wave function describes an incident plane
wave, and the last part describes an outgoing spherical wave as a result of the scattering process.
The above form de�nes the scattering amplitude f(k, �), related to the physical observable of
the scattering cross section �(k, �) = |f(k, �)|2. The incident wave vector k provides an axis
of rotational symmetry for the problem, and the wave function as well as scattering amplitude
can be expressed in terms of spherical harmonics, known as partial-wave expansion. For the
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small collisional energies and short-range interactions in cold atomic gases, only the lowest
partial wave (s-wave) contributes to the scattering amplitude [1]. It then becomes independent
of the angle � and can be expanded around k = 0 taking the form [126]

f(k)
k→0
= −1

a−1s − ref fk2∕2 + ik
, (1.2)

which de�nes the s-wave scattering length as, and the e�ective range ref f . This parameter deter-
mines the �rst-order energy-dependent correction of the scattering amplitude. The properties
of as are largely determined by the energy of the least-bound state in the molecular potential of
the atomic pair. This strong dependence can be exploited with Feshbach resonances to greatly
enhance or suppress the scattering length (see Section 1.2.4).

Let us emphasize a critical point regarding the scattering of indistinguishable fermions:
Since the wave function for s-wave collisions is isotropic and spatially symmetric, f(k) vanishes
for this case and only scattering at higher odd partial waves l = 1, 3, … becomes relevant, e. g.,
p-wave collisions. However, their contribution becomes negligible at low enough temperatures
due to a centrifugal barrier ∼ l3, and a fermionic ultracold gas of indistinguishable particles
can be well described by a non-interacting Fermi gas [1]. This has an important consequence:
evaporative cooling of fermionic atoms usually either requires another species or additional
internal states to enable collisions once the gas reaches the quantum-degenerate regime. While
collisions in the s-wave scattering channel are strongly suppressed for the same internal state,
atoms occupying distinct internal states do interact in the s-wave channel since the additional
degree of freedom enables the antisymmetrization of the wave function.

Themolecular potential giving rise to the interatomic interactions and collisional properties
generally takes a complicated form. Instead of the real interaction potential, a pseudo-potential
with a much simpler form can be employed. This potential still yields the scattering amplitude
in Eq. (1.2) for ref f → 0 and relates the relevant physical quantities, i. e., the interaction strength
to the s-wave scattering length, which can be determined experimentally. In the following,
we consider the Fermi pseudo-potential [1]

V(r) = 4�ℏ2
m as�3(r), (1.3)

which describes zero-range “contact” interactions in an atomic pair (atomic massm) captured
by the Dirac delta distribution.2 For the description of atoms in a speci�c internal pair state |�⟩,
we consider a projection operator P̂� = |�⟩ ⟨�|, such that V(r) → V(r)P̂�. The above pseudo-
potential also establishes a notion for the relation between the nature of interactions and
the sign of the s-wave scattering length: repulsive interactions (V > 0) correspond to as > 0
and attractive interactions (V < 0) are found for as < 0. In contrast, a vanishing as signals
a non-interacting regime. From the above pseudo-potential, we calculate the interaction

2This form of the pseudo-potential only holds for wave functions regular at the origin r = 0. Otherwise, the Dirac
delta distribution has to be regularized with �3(r) → �3(r))rr [127], which can introduce additional complexity.
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Figure 1.2 | Nuclear spin degree of freedom in the ground state. Illustration of the Zeeman splitting
in the 1S0 ground state for di�erent nuclear spin states (black lines) at finite magnetic field for the two
fermionic isotopes (a) 171Yb with nuclear spin I = 1∕2 and (b) 173Yb with I = 5∕2.

strength between two particles according to their second quantization creation (annihilation)
operators Ψ†1,2 (Ψ1,2) at the spatial coordinates r1,2 [128],

U = 4�ℏ2
m as

∫
dr1

∫
dr2Ψ

†
1(r1) Ψ

†
2(r1) �

3(r1 − r2) Ψ2(r2) Ψ1(r2). (1.4)

This formalism allows us to determine the interaction strength of atomic pairs in an optical
lattice, as discussed in Section 1.12.

1.2.2 Nuclear spin states
In the ground and clock state of fermionic ytterbium, the total electronic angular momentum J
vanishes and the nuclear spin alone gives rise to multiple mF states, each corresponding to
a projection of the atomic total angular momentum F = I + J = I onto the quantization axis
withmF ∈ {−F,−F + 1, … , +F}. Six distinct nuclear spin states exist for 173Yb (I = 5∕2) and
two for 171Yb (I = 1∕2), as shown for the ground state in Fig. 1.2. Since 171Yb possesses a
positive nuclear magnetic moment �I = 0.4919�N (nuclear magneton �N), nuclear spin states
with valuesmF > 0 experience a negative Zeeman shift at positive magnetic �elds, while the
sign is reversed for 173Yb with �I = −0.6776�N (see Fig. 1.2) [113].

In contrast to the spin-changing collisions typically found in alkali atoms, scattering pro-
cesses of |||g⟩ or |e⟩ atoms preserve the population across di�erentmF states.3 This conservation
of the nuclear spin state arises due to the vanishing electronic angular momentum J = 0 in
the |||g⟩ and |e⟩ states [19]. Intuitively, this can be understood by considering that the nuclear
spins of two atoms only couple once their nuclei are brought together close enough, which gen-
erally does not occur for the rather low density in cold atomic gases. Crucially, the conservation
of the nuclear spin gives rise to a special unitary symmetry described by the SU(N) group of
degree N, a generalization of SU(2) describing the two-valued spin of the electron. While this
symmetry remains SU(2) for 171Yb, the heavier species 173Yb provides access up to SU(N = 6),
where N ≤ 6 can be readily probed by preparing atoms across a subset of themF states [121].
This property of fermionic ytterbium and other alkaline-earth elements, particularly strontium,
gives access to exotic physics of SU(N) symmetric interactions in the controlled setting of ultra-
cold atomic systems [38]. From a practical perspective, the symmetry manifests itself in a single
scattering length describing the collisional properties for an arbitrary combination of nuclear
spin states. Since the experiments presented in this thesis mostly employ only two nuclear

3This symmetry is expected to be violated on a level < 10−3, which generally has no relevance for our experi-
ments [19, 46, 55].
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Table 1.1 | Scattering lengths and two-body loss coe�icients of fermionic ytterbium isotopes

s-Wave scattering lengths (Bohr radius a0) Two-body loss coe�icients (cm3s−1)

Isotope agg aee a
+
eg a

−
eg β

−
eg βee

171Yb −2.8(3.6)a 104(7)b 240(4)b 389(4)b ≤ 2.6(3) × 10−16b
4.8(2.1) × 10−12b

173Yb 199.4(2.1)a 306(10)c 1878[37]d 219.7(2.2)d < 3 × 10−15c
2.2(6) × 10−11c

a Kitagawa et al. [130].
b Bettermann et al. [111]; β+eg ≈ β

−
eg reported (within measurement uncertainty).

c Scazza et al. [46]; aee inferred from reported value of (aee − agg); reported results suggest β+eg ≫ β
−
eg.

d Höfer et al. [55]; value in brackets denotes a numerical fit error (experimental uncertainty most likely larger).

spin states, the large spin symmetry only plays a minor role. For a comprehensive discussion
of the SU(N) symmetry of ultracold ytterbium gases within the context of our experiment,
the interested reader should consult Ref. [129].

1.2.3 Orbital interaction channels
We now turn to the interactions of ultracold ytterbium gases, in particular, between atomic
pairs, which either occupy the same or distinct orbitals. For this purpose, we consider that
each of the atoms occupies a distinct nuclear spin state with mF < mF′ , labeled |↓⟩ and |↑⟩,
respectively. While these states are �xed for 171Yb (mF = ±1∕2), we choose themF = ±5∕2
states for 173Yb in most of our experiments (without loss of generality).

First, we consider interactions between atoms in the same orbital state � ∈ {g, e} described
by the antisymmetrized pair states |��⟩ ≡ |��⟩ ⊗ (|↑↓⟩ − |↓↑⟩) ∕

√
2, which feature the s-wave

scattering lengths agg and aee (see Table 1.1). Notably, these scattering lengths are distinct as the
electronic properties of atoms in either of the two orbitals di�er strongly. While 173Yb possesses
a sizable ground state scattering length agg ≈ 200a0 (Bohr radius a0), it almost vanishes for
the isotope 171Yb. In contrast, the scattering length in the |e⟩ orbital has an appreciable value
for both species with ≈ 300a0 and ≈ 100a0, respectively (see Table 1.1).

Interorbital interaction.—For the e−g pair, there are two distinct interaction states as dic-
tated by the total antisymmetry of the fermionic wave function under particle exchange. These
are the orbital “triplet” |||eg+

⟩
state and the “singlet” |||eg−⟩4 state [19],

|||eg+
⟩
= 1

2

(|||ge⟩ + |||eg⟩
)
⊗

(
|↑↓⟩ − |↓↑⟩

)
and |||eg−⟩ =

1
2

(|||ge⟩ − |||eg⟩
)
⊗

(
|↑↓⟩ + |↓↑⟩

)
. (1.5)

Each of these states is associated with an interatomic interaction potential and the correspond-
ing interorbital scattering lengths a±eg, which have been determined precisely via spectroscopy
on the clock transition—both for 173Yb [46, 47] and 171Yb [53, 111, 131] (see Table 1.1).

A �nite magnetic �eld B > 0 does not only introduce a spin-dependent potential, i. e.,
the Zeeman shift, but also an orbital-dependent energy shift. This di�erential Zeeman shift
originates from a small admixture of other states to the 3P0 clock state (see Section 1.1), which
causes a larger magnetic-�eld sensitivity compared to the J = 0 ground state [117]. The di�er-

4The orbital “singlet” state |||eg−⟩ also describes the interorbital pair states for the same spin state (|↓↓⟩ or |↑↑⟩).
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ential Zeeman shift is given as � = B�� = �g∆mF�B with the di�erential Landé g-factor �g and
∆mF = mF −mF′ the di�erence of themF value in the ground and clock state. The value of the
di�erential magnetic moment∆�∕∆mF can be obtained from clock-line spectroscopy and takes
the value−ℎ×399.0(1)Hz∕G and ℎ×110.7(5)Hz∕G for 171Yb and 173Yb, respectively [108, 111].
Besides the linear Zeeman shift, a �nite second-order (quadratic) Zeeman shift originates from
magnetic-�eld induced cross coupling of electronic energy levels within the singlet or triplet
manifold [117]. This e�ect also manifests as an increased coupling strength of the clock transi-
tion at largemagnetic �elds. However, the second-order Zeeman shift≈ −ℎ × 60mHz∕G2 [111,
132] has little relevance for the work presented in this thesis, and we only consider it when
addressing the clock transition at large magnetic �elds.

Importantly, magnetic-�eld induced mixing of the interorbital interaction channels leads
to signi�cantly modi�ed scattering properties, as explored in the following. For the atomic
pair, we �rst introduce a di�erent basis, a simple superposition of the singlet and triplet states,

|o⟩ = 1
√
2

(|||g ↑⟩ ⊗ |e ↓⟩ − |e ↓⟩ ⊗ |||g ↑⟩
)
= 1

√
2

(|||eg+
⟩
+ |||eg−⟩

)

|c⟩ = 1
√
2

(
|e ↑⟩ ⊗ |||g ↓⟩ − |||g ↓⟩ ⊗ |e ↑⟩

)
= 1

√
2

(|||eg+
⟩
− |||eg−⟩

)
.

(1.6)

The above eigenstates of the Zeeman-Hamiltonian correspond to the situation in 173Yb, whereas
the spin states have to be altered (↓→↑ and ↑→↓) for 171Yb since the sign of the nuclear
magnetic moment �I di�ers for the two isotopes. For the above basis and at �nite magnetic
�eld, the Hamiltonian describing the Zeeman, kinetic, and interaction energy of an atomic
e−g pair takes the form [57]

Ĥ = � |c⟩ ⟨c| +
∑

�∈ {o,c}
(−ℏ

2

m∇2) |�⟩ ⟨�| + Vdir(r)
∑

�∈ {o,c}
|�⟩ ⟨�| + Vex(r)

∑
�,�∈ {o,c},�≠�

|�⟩ ⟨�||| (1.7)

with the direct interaction energy Vdir(r) = [V+(r) + V−(r)] ∕2 and the spin-exchange inter-
action energy Vex(r) = [V+(r) − V−(r)] ∕2. Here, V±(r) denotes the interaction potential of
the singlet and triplet channels de�ned in Eq. (1.5). As we will see later in this chapter, the
presence of spin-exchange interaction coupling the two orbitals |||g⟩ and |e⟩ gives direct experi-
mental access to interesting many-body physics with ultracold ytterbium atoms. In contrast
to strontium, ytterbium provides two fermionic isotopes with a distinct ordering of the in-
terorbital scattering lengths a±eg, allowing to probe the regimes Vex > 0 with 173Yb as well
as Vex < 0 with 171Yb [46, 53].

Since the interactions are short-ranged, we expect the Hamiltonian to be dominated by
the interaction potentials for small distances, whereas the Zeeman term dominates at large
separation and sizable magnetic �elds. As a consequence, the eigenstates at short distance
are the singlet and triplet states from Eq. (1.5), whereas the superposition states |o⟩ and |c⟩
from Eq. (1.6) are eigenstates at large separation. In a deep optical lattice, the kinetic term
in Eq. (1.7) becomes strongly suppressed and the interaction takes discrete values. For this
setting, the altered nature of the pair eigenstates can be probed spectroscopically by adjusting
the magnetic �eld strength continuously. Then, the interaction eigenenergies of the e�ective
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Figure 1.3 | Interorbital interaction channels at finite magnetic field. (a) Interaction energies of 171Yb
measured with clock-line spectroscopy in a deep three-dimensional optical lattice (adapted from
Ref. [111]). Filled circles show the magnetic-field dependence of the single-particle states |e ↑⟩ and |e ↓⟩,
whereas empty circles correspond to the interorbital pair states that continuously evolve from |||eg
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to |o, c⟩. Solid lines show numerical fits, and the color gradient indicates the overlap of the magnetic-field
dependent state |ψ⟩ with |o, c⟩. Energies are shown relative to the mean of |e ↑⟩ and |e ↓⟩. (b) s-Wave
scattering length in the open channel |o⟩ across the orbital Feshbach resonance (dotted line) in 173Yb,
calculated with the theoretical model from Ref. [55]. The inset schematically shows the relevant molec-
ular potentials and how a finite magnetic field induces a detuning of the open and closed channel. This
allows bringing the open channel |o⟩ into resonance with the least-bound state at energy Eb. Note that
the roles of the orbital singlet and triplet states are reversed between 171Yb and 173Yb.

two-level system take the magnetic-�eld dependent values E±(�) = Vdir ±
√
V2
ex + �2 [46, 111].

Figure 1.3(a) displays a measurement of these interaction energies determined from clock-line
spectroscopy of 171Yb in an optical lattice.

Inelastic collisions.—So far, we have only discussed the elastic interaction channels for
intra- and interorbital pairs. However, inelastic scattering processes are also present and can
be accounted for with a �nite imaginary part of the otherwise purely real s-wave scattering
length. In particular, e−e and e−g pairs are prone to inelastic collisions as collisional partners
in these pair states can change their internal state due to a �nite coupling to various molecular
potentials [19]. Crucially, a signi�cant energy release accompanies the decay from |e⟩ to |||g⟩,
typically leading to escape from the trap. The di�erential equation for the time-dependent
atomic density, dn(t)∕dt = −�n2(t), captures this loss process. The most signi�cant loss
coe�cient �ee exceeds the interorbital parameter �−eg by more than four orders of magnitude
(see Table 1.1). For typical experiments, this results in a quick loss of e−e pairs from the trap.
However, this dissipative process can be strongly suppressed by employing spin-polarized
samples or isolating individual |e⟩ atoms in an optical lattice.

1.2.4 Orbital Feshbach resonances
Feshbach resonances are one of the most potent and widely used tools in the �eld of ultracold
atoms. They allow the s-wave scattering length of a collisional pair to be tuned with an external
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magnetic �eld [see Fig. 1.3(b)]. Across a Feshbach resonance, the nature of interactions in
an ultracold atomic gas can be adjusted freely from repulsive to attractive.

The key ingredients for a Feshbach resonance are two interaction channels or potentials
whose energy splitting at large particle distance can be tuned by an external magnetic �eld.
These two interaction potentials are labeled closed and open channel, with the latter having
the smaller energy at sizable separations. If the two interaction channels are coupled at small
atomic separation, a collisional pair entering the open channel couples to the bound states
in the closed interaction channel. Crucially, the closed channel and its least bound state can
be shifted relative to the entrance channel by adjusting its energy with an external �eld [see
inset of Fig. 1.3(b)]. Once the bound state is brought into resonance with the open channel,
the collisional pair in the entrance channel interacts resonantly, with the scattering length
approaching in�nity. Moreover, as the bound-state energy is tuned over the energy of the
entrance channel, the scattering length also �ips its sign from +∞ to −∞. An arbitrary value
of the scattering length can then be selected by setting the detuning of the entrance channel
relative to the bound state by choosing an appropriate magnetic �eld [133].

By closely inspecting the Hamiltonian in Eq. (1.7), we �nd that an e−g pair of ytterbium
atoms features the relevant ingredients for a Feshbach resonance. Speci�cally, the spin-
exchange interaction Vex provides a �nite coupling between the open and closed channel,
|o⟩ and |c⟩, respectively.5 For 173Yb, there fortunately exists a shallow bound state with Eb ≈
ℎ × 30 kHz in the triplet interaction potential [55]. Therefore, only a small tuning of the en-
trance energy is required, with the orbital Feshbach resonance occurring at ≈ 40G [54–56].
The location of this Feshbach resonance has another important consequence: The detuning
of open and closed channel at 40G is still comparable to typical scales in many-body systems
such as the Fermi energy, which can lead to frustrated interactions (see Chapter 3). In contrast,
the corresponding molecular state of 171Yb in the singlet channel has a much larger binding
energy Eb ≈ ℎ × 300 kHz. Hence, reaching a resonantly interacting regime requires a relatively
largemagnetic �eld of≈ 1300G [111]. In this thesis, we utilize the orbital Feshbach resonances
of both isotopes to probe many-body physics as a function of interaction strength, either in
the case of multiorbital Fermi polarons with 173Yb (see Chapter 3) or for a mixture of heavy
and light particles with 171Yb (see Chapter 5).

Feshbach resonances can be categorized into the two limiting cases of broad and narrow res-
onances. These terms are motivated by the magnetic-�eld dependence of Feshbach resonances
in alkali atoms. A more quantitative characterization can be determined from the dimension-
less resonance strength sres > 0 accounting for the magnetic-�eld dependence of the open
and closed channel detuning [133], which di�ers strongly for alkali and alkaline-earth(-like)
atoms. Here, sres ≫ 1 describes a broad Feshbach resonance, and sres ≪ 1 corresponds to a
narrow resonance. For this case, the admixture of the closed channel becomes relevant over a
larger range of magnetic �elds such that the interactions commonly have to be described by
a coupled two-channel approach [133]. The two-body problem then has two key parameters
as a function of the magnetic �eld: the bound-state energy and the coupling or admixture

5Feshbach resonances in alkali atoms commonly occur between hyper�ne states in the ground-state manifold.
However, the absence of electronic spin (S = 0) inhibits this form of Feshbach resonance for e−g pairs of alkaline-
earth(-like) atoms.
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of the closed channel. For both isotopes 171Yb and 173Yb, the resonance strength takes the
values sres ≈ 0.15 [111, 134], indicating a narrow Feshbach resonance. In combination with the
relatively long on-resonance lifetime of 173Yb [55, 56], this allows probing many-body physics
outside the “universal” regime of broad Feshbach resonances, which can be parameterized
by the s-wave scattering length alone. This unique property has inspired many proposals for
unusual pairing as well as impurity physics (see Ref. [57] and references therein). The details
of the orbital Feshbach resonance in 173Yb are explained in Ref. [134], whereas for the isotope
171Yb, a more detailed study will appear elsewhere [135].

1.3 State-dependent optical lattices
Fermionic atoms trapped in optical lattices can mimic electrons moving in a crystal, enabling
quantum simulation experiments of solid-state phenomena in a defect-free system, where
kinetic and interaction energy are freely tunable [2, 11]. In this section, we explore how the
orbital degree of freedom enables the study of more complex Hamiltonians describing orbital
phenomena in solid-state systems. For ytterbium atoms in state-dependent optical lattices, the
ground and clock state can take on the roles of electrons occupying di�erent orbitals in a crystal.

In our experiment, optical lattices are produced by retro-re�ecting a monochromatic laser
beamwithwavelength �, which results in a standingwave intensity pattern and a corresponding
potential for the atoms arising from the dipole force. Neglecting the envelope of the laser beam
intensity, the single-particle Hamiltonian for a one-dimensional optical lattice takes the form

ĤOL = − ℏ2
2m∇2 − V sin2 (kx) . (1.8)

Here, the intensity I0 of the laser controls the lattice depth V = I0∕(2�0c)Re [�(�)] considered
in units of the photon recoil energy Erec = ℏk2∕(2m) with wave vector k = 2�∕�. The atomic
ac polarizability �(�) quanti�es the magnitude of the atomic dipole induced by the electric �eld
of the laser light and thereby also the strength of ac Stark shift and the dipole potential [136].
For the above spatially periodic Hamiltonian, Bloch’s theorem yields the eigenstates and
eigenenergies, which take the form of Bloch (wave) functions and multiple energy bands [1].

Once the lattice depth becomes sizable compared to the energy scale Erec, the lowest
band takes the form of a cosine dispersion E(q) = −2t cos(qd) with quasimomentum q, band
width 4t, and lattice spacing d = �∕2 [1]. Apart from the transverse motion of the atoms, a
system restricted to the lowest energy band can be approximated by the tight-binding model
as hopping between neighboring lattice sites dominates,

ĤTB = −t
∑
i

(
ĉ†i ĉi+1 + h.c.

)
. (1.9)

Here, ĉ†i and ĉi are operators, which create or destroy a single fermionic atom on lattice
site i. In general, the hopping amplitude t becomes exponentially suppressed with increasing
lattice depth V and can be obtained from a numerical band structure calculation [1]. The
Hamiltonian ĤTB and its generalization to multiple dimensions provide the starting point for
simulating solid-state phenomena in the well-controlled setting of ultracold atoms with crystal-
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Figure 1.4 | Polarizability ratio of e–g mixtures in state-dependent lattices. (a) Schematic illustration
of state-dependent optical lattices for orbital mixtures. The red line indicates the lattice potential with
blue (yellow) areas showing the probability density (squared Wannier functions) of |||g⟩ (|e⟩) atoms for lat-
tice depth V = 3E rec (9E rec) and polarizability ratio p = 3. (Bottom) Band structure of |||g⟩ (blue) and |e⟩
atoms (yellow) with lowest band (solid line) and higher bands (dotted lines). (b) Comparison of ex-
perimentally determined polarizability ratios (markers) and theoretical predictions (solid line) from
the simplified calculation in Ref. [132]. Filled markers show measurements with 171Yb, whereas the
empty point corresponds to 173Yb. For the values determined within this work (filled circles), meth-
ods are explained in Chapter 5 (see Section 5.1.2). The dashed line shows the empirical relation p(λ) =
1+

∑
n
∆n

/[
(c∕λn) − (c∕λ)

]
with numerically fitted (fixed) parameters ∆1 = 38.9(4) THz (λ1 = 649.1 nm),

∆2 = 103.9(10) THz (λ2 = 1388.8 nm), and the vacuum speed of light c. The inset displays the scalar po-
larizability in atomic units (1 a. u. = 4πε0a

3
0) with dotted lines indicating atomic transitions. The thick

lines indicate the range of the main panel, and regimes À-Â are explained in the main text.

† Riegger et al. [43].
‡ Lemke et al. [137]; p(λm) = 1 inferred from the magic wavelength λm = 759.35594(2) nm of 171Yb.

like potentials produced by laser light. In the following, we employ Wannier functions w(x) in
the lowest band to describe the atomic density in optical lattices [1]. These wave functions are
related to the Bloch functions by a Fourier transform and are therefore maximally localized
on a single lattice. For example, this feature can be convenient for calculating the interaction
strength of an atomic on-site pair following Eq. (1.4) [1].

The atomic polarizability of the |||g⟩ and |e⟩ states di�ers since the accessible transitions
within the singlet and triplet manifold occur at distinct transition wavelengths. This provides
the unique opportunity to realize optical lattices with di�erent lattice depths for atoms in either
orbital [Fig. 1.4(a)] while operating the trap still far detuned from all relevant atomic transitions,
which minimizes o�-resonant photon scattering and heating [136]. Generally, the polarizabil-
ity can be divided into a scalar, vector, and tensor part [138], where the scalar polarizability
dominates for our typical experimental parameters (laser polarization). The scalar polariz-
ability �i(!) of state |i⟩ in a many-level atom can be determined by summing over all relevant
transitions to �nal states |||f⟩ with their reduced electric dipole matrix element ⟨i‖d‖f⟩ [138],

�i(!) =
2
3
∑
f≠i

!if
ℏ
(
!2
if − !2

) ||||⟨i‖d‖f⟩
||||
2
. (1.10)
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Here, ! = 2�c∕� denotes the angular frequency of the external laser �eld and ℏ!if the energy
separating the states |i⟩ and |||f⟩. Since isotope shifts of the relevant optical transition are of
orderGHz, the polarizability only di�ers negligibly for 171Yb and 173Yb over an extensive range
of relevant wavelengths. While the above formula appears straight-forward to calculate, deter-
mining the precise value of the matrix elements for a many-electron atom becomes non-trivial.
Nevertheless, a combination of experimentally measured lifetimes and advanced theoretical
calculations of the electronic structure allows for reasonably good estimates [139, 140].

For the qualitative discussion in this section, however, we consider approximate results
obtained by summing over a limited number transition and inferring matrix elements from
measured radiative lifetimes as well as estimated branching ratios (L−S coupling scheme).
This calculation of the scalar polarizability in the ground and clock state is identical to the
results discussed in Ref. [132]. We refer the interested reader to this reference for the detailed
calculation and a comparison to more accurate calculations. The inset in Fig. 1.4(b) displays
the dependence of the scalar atomic polarizability �g,e(�) on the trapping-light wavelength � for
ytterbium atoms either in the |||g⟩ or |e⟩ state. We also compare the calculation results to experi-
mentally determined values of the polarizability ratio p(�) = �e(�)∕�g(�) [see the main panel
in Fig. 1.4(b)], which describes the ratio of the lattice depths for |e⟩ and |||g⟩ atoms. The behavior
of the polarizability ratio at variable wavelengths can be classi�ed into three distinct regimes:

Magic wavelengths À.—At this wavelength, the polarizability ratio precisely takes the value
one, and hence the depth of an optical lattice becomes identical for |||g⟩ and |e⟩ atoms. This
type of trap enables the precise and accurate operation of optical lattice clocks as the transition
frequency becomes independent of the local trap depth, which typically varies across an atomic
ensemble [31]. Hence, large ensembles of atoms can be interrogated with minimal systematic
shifts or broadening [31]. In our experiment, we employ optical lattices operated at the magic
wavelength ≈ 759.4nm [137] for precision spectroscopy, calibration measurements, and state-
independent trapping, e. g., to realize two- or one-dimensional systems (see Chapters 3 and 5).
In such a lattice, the hopping amplitudes as well as Wannier functions of |||g⟩ and |e⟩ atoms are
identical and do not exhibit a dependence on the orbital degree of freedom.

Tune-outwavelengthsÁ.—This kind ofwavelengthmarks unique points of the polarizability
ratio where either the excited or ground-state polarizability vanishes, as recently demonstrated
for the alkaline-earth atom strontium [44]. This provides the experimental capability to ma-
nipulate atoms in a single orbital selectively while simultaneously leaving the other una�ected.
The polarizability shown in the inset of Fig. 1.4(b) strongly suggests that tune-out wavelengths
also exist for ytterbium, which currently still lacks an experimental demonstration.

State-dependent wavelengths Â.—This range of wavelengths corresponds to the generic
case with unequal polarizabilities of both orbital states, the focus of this section. For our
experimental realization of a state-dependent optical lattice with wavelength 671.5nm, the
polarizability ratio takes the value p ≈ 3 [see Fig. 1.4(b)]. Hence, the lattice depth for |e⟩ atoms
is much deeper compared to |||g⟩ atoms, a vital feature to minimize lossy e−e collisions. In an
optical lattice operated at a state-dependent wavelength, |||g⟩ and |e⟩ atoms are also described by
a tight-binding Hamiltonian but with distinct hopping amplitude tg,e for each orbital. Since the
hopping amplitude depends exponentially on the lattice depth V, adjusting the lattice depth
also tunes the relative ratio of the hopping amplitudes te∕tg.
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1.3.1 The multiorbital Fermi-Hubbard model
For a state-dependent lattice giving rise to the hopping amplitudes tg ≠ te, the Hamiltonian of
an interacting e−g mixture in the lowest band and at zero magnetic �eld can be described by a
multiorbital single-band Fermi-Hubbard model [19], as illustrated in Fig. 1.5(a),

Ĥm-orb = −
∑

⟨ij⟩,�,�
t�

(
ĉ†i�� ĉj�� + h.c.

)
+
∑

i,�,�≠�′
U��n̂i��n̂i��′ + Vdir

∑
i,�,�′

n̂ie�n̂ig�′

+ Vex
∑
i,�,�′

ĉ†ig� ĉ
†
ie�′ ĉig�′ ĉie�.

(1.11)

Here, ⟨ij⟩ denotes the set of neighboring lattice sites depending on the chosen dimensionality
and ĉ†i�� (ĉi��) are the fermionic creation (annihilation) operators for an atom on lattice site i
in the orbital state � ∈ {g, e} and nuclear spin state �. While the large spin symmetry of
173Yb gives access to up to six spin states, we only consider two distinct states with � ∈ {↓, ↑}
in the following. Furthermore, n̂i�� ≡ ĉ†i�� ĉi�� are number operators, and the interaction
energiesU��,Vdir = (U+

eg+U−
eg)∕2,Vex = (U+

eg−U−
eg)∕2 are obtained from the associated s-wave

scattering lengths and the Wannier functions w�(r) following the prescription in Eq. (1.4),6

U

�� =

4�ℏ2
m a
��

∫
dr |w�(r)|

2 |w�(r)|
2 (1.12)

with 
 ∈ {−,+} for interorbital interactions and 
 dropped for intraorbital interactions.
The Hamiltonian in Eq. (1.11) provides the starting point for studying orbital phenomena in

solid-state systems in the clean andwell-controlled setting of ultracold atoms. While this generic
Hamiltonian can also be realized with other alkaline-earth(-like) atoms, the availability of two
fermionic isotopes with distinct interaction properties and accessible Feshbach resonances
make ytterbium a particularly versatile atomic species for studies in this direction.

1.3.2 The Kondo model
While the central topics of this thesis are not concerned with Kondo physics, we still com-
ment on its potential realization with ytterbium motivated by the profound impact such an
experimental observation could have. Only recently, the relevant scattering lengths of 171Yb
have been found to be particularly favorable for such an experimental implementation [53,
111, 131]. The Kondo model (or s−d model) describes the coupling of a localized spin S
(S = 1∕2) to the spins of itinerant electrons in the conduction band with dispersion �k as
described by the Hamiltonian [5],

ĤK =
∑

k,�∈ {↓,↑}
�kĉ

†
k� ĉk� − J

∑
k,k′; �,�′∈ {↓,↑}

S ⋅
(
ĉ†
k′�′

��′� ĉk�
)

(1.13)

with � the vector of the Pauli matrices and the spin-exchange term J < 0. This seemingly simple
model reproduces the anomalous resistance minimum in dilute alloys of transition metals at
low temperatures, a phenomenon that puzzled theoretical physicists for decades [142].

6This approximate approach breaks down for large scattering lengths once the interaction energy becomes
comparable to the band gap. This can be an issue for the large triplet scattering length a+eg of 173Yb, but approaches
to renormalize the interaction strengths do exist [127, 141].
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Figure 1.5 | Many-body physics with multiorbital mixtures in state-dependent lattices. Schematics of
various multiorbital many-body models accessible with ultracold ytterbium atoms in state-dependent
lattices. Blue (yellow) circles show |||g⟩ (|e⟩) atoms with arrows indicating the nuclear spin state. Note that
the models are not restricted to the illustrated case of a square two-dimensional lattice. (a) Generic multi-
orbital Fermi-Hubbard model with relevant Hubbard parameters, including the hopping amplitudes tg,e
and the various interaction energies Ugg,ee and Vdir,ex. (b) Kondo model with a single |e⟩ impurity lo-
calized by an optical tweezer (red) that also cancels the direct on-site interaction V

′
dir = −µ0. Here, we

also indicate the formation of the Kondo singlet with a green dashed line. (c) Mass-imbalanced Fermi-
Hubbard model with a light (|||g⟩) and heavy (|e⟩) species as well as a magnetic-field tunable interspecies
interaction strength Ueg(B). Panel (a) of this figure is adapted from Ref. [25].

Kondo’s seminal work on the abovemodel employed a perturbative expansion of the scatter-
ing rate and predicted a logarithmic divergence at the characteristic temperature TK consistent
with the anomalous behavior of the resistivity [61]. Intuitively, the Kondo e�ect can be under-
stood along the lines of asymptotic freedom, a concept from quantum chromodynamics and
particle physics [143]: At high temperature, the impurity spin decouples from the conduction
electrons and becomes essentially free. Once we lower the temperature, however, the coupling
grows continuously, and itinerant electrons increasingly screen the localized spin by forming a
“many-body” singlet state, which allows the impurity spin to lower its energy [see Eq. (1.13)].
This results in a spinless scattering center dramatically altering the conduction properties. The
logarithmic divergence identi�ed by Kondo signals the breakdown of perturbation theory and
motivated a plethora of new theoretical approaches, most notably Wilson’s renormalization
group approach [144]. While the experimental work on the subject could have been considered
complete after the seventies [142], the observation of the Kondo e�ect in quantum dots led
to renewed interest at the turn of the centuries [145–148].

Opportunities for ultracold atoms lie primarily in the study of non-equilibrium dynamics
with local spin and charge resolution [149], such as the formation of the Kondo screening
cloud, which has recently been observed in a quantum dot device [150, 151]. Moreover, the
Kondo model has been extended to the case of many impurities in a lattice (Kondo lattice
model) for the description of various materials featuring heavy-fermion behavior sometimes
accompanied by unconventional superconductivity [5]. Here, coherence e�ects between
localized spins on distant lattice sites signi�cantly modify the phenomenology compared to
the Kondo e�ect of an isolated impurity [152]. The Kondo lattice model features intriguing
phases arising from a competition of Kondo-screening and long-range magnetic ordering due
to the Ruderman-Kittel-Kasuya-Yosida (“RKKY”) mechanism [143]. Quantum simulation
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experiments with ultracold ytterbium atoms could shed light on open questions regarding
the associated phase diagram [19–21, 143].

For an experimental realization of the Kondo model, we consider the isotope 171Yb,
which naturally features antiferromagnetic spin-exchange interaction (Vex < 0) consistent with
real materials exhibiting the Kondo e�ect.7 The |||g⟩ atoms take on the role of the conduction
electrons and a single |e⟩ atom on the lattice site i = 0 mimics the localized electron. While
the hopping of the |e⟩ atoms remains �nite in a state-dependent lattice, a suitable choice of the
lattice wavelength and depth makes te ≪ tg negligibly small such that for typical measurement
time scales, we disregard te ≈ 0. Since we only consider a single |e⟩ atom, the e−e interactions
are also not relevant. Moreover, the interaction termUgg ≈ 0 essentially vanishes due to the ex-
tremely small ground state scattering length of 171Yb (see Table 1.1). With these preconditions,
Eq. (1.11) can be simpli�ed to resemble the form of the Kondo Hamiltonian [155],8

Ĥ(exp)
K = −tg

∑
⟨ij⟩,�∈ {↓,↑}

(
ĉ†ig� ĉjg� + h.c.

)
− Vex

∑
�,�′∈ {↓,↑}

S0e ⋅
(
ĉ†0g���,�′ ĉ0g�′

)
+ V′

dir

∑
�∈ {↓,↑}

n̂0g�. (1.14)

Here, the |e⟩ spin operator S0e = (1∕2)
∑

�,�′ ĉ
†
0e,���,�′ ĉ0e�′ corresponds to Abrikosov’s pseudo-

fermion representation [156]. Besides the Kondo coupling J = Vex , the Hamiltonian features
a repulsive (scalar) interaction term V′

dir = (Vdir − Vex∕2) > 0, a consequence of the positive
interorbital scattering lengths a±eg > 0. This presents a central drawback for experimental
implementations since this term strongly suppresses the coupling to the impurity spin giving
rise to the Kondo e�ect in the �rst place [157]. Intuitively, this can be understood by consider-
ing that the |||g⟩ occupancy on the central site with the impurity (|e⟩ atom) becomes strongly
suppressed due to the direct interaction V′

dir > 0. With a quantum gas microscope [158–
160], this repulsive direct interaction could be canceled using a local attractive optical poten-
tial−�(n̂0g↓+n̂0g↑) (optical tweezer), whichwould restore the ground state occupancy of the |e⟩
site once � = (Vdir − Vex∕2) [155, 157]. An entirely di�erent approach could be the preparation
of a single |e⟩ atom on every lattice site, giving direct experimental access to the Kondo lattice
model [19], where the scalar interaction term merely becomes a global energy o�set.

Although currently not in direct reach of our experiment, we consider a scenario where the
last term in Eq. (1.14) can be canceled, and we recover Eq. (1.13). In this limit, we calculate the
Kondo temperature TK , which describes the regime where the scattering of the spin impurity
starts to become dominant, and a many-body singlet state forms between the impurity and
the conduction electrons. This temperature exhibits an exponential scaling [5],

kBTK = D
√
2 |J|�0 exp [− 1

2 |J|�0
+O (J�0)] (1.15)

with �0 the density of states at the Fermi surface and �0 ≈ 1∕(D�) for a half-�lled conduction
band in a one-dimensional state-dependent lattice with (half) band width D = 2tg [161]. In
the weak coupling limit |J�0| ≪ 1 of the above relation, we estimate a Kondo temperature on

7The isotope 173Yb exhibits ferromagnetic spin-exchange interaction (Vex > 0), but we have recently demon-
strated a con�nement-induced tuning mechanism of this parameter [43, 153]. Besides, Floquet engineering has
been proposed to realize anisotropic Kondo Hamiltonians with singlet formation despite Vex > 0 [154].

8This can be explicitly shown using the relation �ij ⋅ �kl = 2�il�kj − �ij�kl with the Kronecker delta �ij .
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the order kBTK ∼ tg for typical parameters. This appears to be a promising temperature regime
within reach of future experiments that can also eliminate the unfavorable e�ects of V′

dir.
While theoretical proposals exist for measuring the anomalous conduction directly [155],
signatures of the Kondo e�ect could alternatively be observed in spin relaxation dynamics at
variable temperature or magnetic �eld [45–47]. Here, a substantial deviation from the linear
temperature scaling of the spin relaxation rate ℏΓ ∼ kBT, known as Korringa law [154, 162],
occurs in the vicinity of the Kondo temperature [163].

1.3.3 The mass-imbalanced Fermi-Hubbard model
Lastly, we consider a regime in the presence of a sizable magnetic �eld B, such that the
Zeeman shift far exceeds the interaction terms U�� and Vex,dir. This strongly suppresses the
spin-exchange and allows us to tune the interaction strength utilizing the orbital Feshbach
resonance and a variable magnetic �eld. If atoms are prepared in the two single-particle
states |e ↓⟩ and |||g ↑⟩ of the open channel [see Eq. (1.6)], their population remains constant
and we drop the explicit spin state with the replacement |e ↓⟩ → |e⟩ and |||g ↑⟩ → |||g⟩. In this
regime, the Hamiltonian with the Feshbach-tunable interaction parameter Ueg(B) is given as

HFH = −
∑

⟨ij⟩,�∈ {g,e}
t�

(
ĉ†i� ĉj� + h.c.

)
+ Ueg(B)

∑
i
n̂ign̂ie, (1.16)

which resembles a form of the Fermi-Hubbard model when the states |||g⟩ and |e⟩ are identi�ed
with spin-↓ and spin-↑. This experimental realization provides versatility since both the
interaction strength and the ratio between the hopping amplitudes tg and te, i. e., the mass
imbalance, become tunable. In Chapter 5, we utilize this tunability to study thermalization
and relaxation in the one-dimensional mass-imbalanced Fermi-Hubbard model systematically,
which features particularly interesting regimes of emerging metastability (see Chapter 4).

1.4 Production and probing of multiorbital Fermi gases
Our experimental apparatus has entered a mature stage such that the technical details have
largely remained unaltered compared to previous thesis work, and interested readers are
encouraged to consult Refs. [121, 129, 132, 134]. This section focuses on the essential steps
and parameters to produce and probe deeply degenerate Fermi gases of 171Yb or 173Yb with
an orbital degree of freedom.

1.4.1 Producing degenerate Fermi gases
The�rst step towards producingmultiorbital quantumgases entails producingmulti-component
degenerate Fermi gases in the ground state of either 171Yb or 173Yb with the desired population
across the nuclear spin states. Here, we give a brief overview of typical experimental sequences
that allow us to prepare these degenerate gases routinely. After capturing atoms from a Zeeman-
slowed beam (broad 1S0 →

1P1 transition) and subsequent cooling in a magneto-optical trap
(MOT) on the narrow 1S0 →

3P1 transition for 8-12 s, the non-degenerate atomic gas is loaded
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into a red-detuned crossed optical dipole trap (ODT) operated at the wavelength 1064nm.
Subsequently, we cool the gas to quantum degeneracy over ≈ 20 s by successively lowering the
ODT potential depth against gravity. The forced evaporation procedures for the isotopes 171Yb
and 173Yb di�er signi�cantly, and therefore, we explain the details separately.

The scattering length agg ≈ 0 (see Table 1.1) in the ground state of 171Yb almost vanishes,
which makes thermalization through collisions extremely slow, hindering e�cient evaporative
cooling. To circumvent this practical issue, we instead employ sympathetic cooling with the
bosonic species 174Yb. The sizable interspecies scattering length a171−174gg = 429(13)a0 [130]
allows for fast thermalization and e�cient cooling. To this end, the crossed ODT is loaded
with both species simultaneously from a dual-frequency MOT, which we realize by frequency
modulation of the laser light using an electro-optical modulator (Qubig PM9-VIS) [164]. This
produces a carrier tuned to the 1S0 →

3P1 transition in 171Yb and a ≈ 3.8GHz detuned side-
band for the same transition in 174Yb. We load ≈ 106 171Yb and ≈ 1.5 × 106 174Yb atoms into
the crossed ODT for our experimental parameters. At the end of the evaporative cooling se-
quence, typically 2-60 × 103 171Yb atoms remain distributed equally across the two nuclear spin
statesmF ∈ {−1∕2, +1∕2} in the ground state. This deeply degenerate gas typically has a tem-
perature of T ≈ 0.15TF (Fermi temperature TF), which we determine by numerically �tting the
in-situ columndensitywith the theoretical prediction for a non-interacting Fermi gas. Although
most of the 174Yb atoms are lost from the trap during forced evaporation, we employ a short
isotope-selective pulse on the 1S0 →

1P1 transition to ensure no residual 174Yb atoms are left.
The preparation of degenerate 173Yb gases follows a much simpler procedure due to a larger

scattering length agg ≈ 200a0 in the ground state (see Table 1.1). Here, we load 2-3× 106 173Yb
atoms into the crossed ODT and perform forced evaporation to reach quantum degeneracy.
At the end of this procedure, typically 5-30 × 103 atoms per spin state remain at the temper-
ature T ≈ 0.2TF . This temperature strongly depends on the number of involved spin states
as evaporative cooling becomes increasingly ine�cient with a reduced number of collisional
partners in the s-wave collisional channel, which becomes dominant at low temperatures.

Since collisions preserve the nuclear spin state, we prepare the desired population across
the six di�erentmF states of 173Yb at the beginning of the evaporative cooling. To this end, we
employ a sequence of optical pumping pulses on the 1S0 →

3P1 transition between the F = 5∕2
and F′ = 7∕2 manifolds at a magnetic bias �eld ≈ 50G [121]. In Chapter 3, we discuss this
procedure for the production of strongly spin-imbalanced mixtures for studies of the Fermi
polaron. For the experiments presented in this thesis, both nuclear spin states of 171Yb are
utilized. Optical pumping for this species (between the F = 1∕2 and F′ = 3∕2 manifolds) is
only required for certain calibration measurements that rely on spin-polarized samples.

1.4.2 Preparing multiorbital mixtures
Generally, a requirement for utilizing the clock state as orbital degree of freedom is a narrow
laser, which allows preparing g−emixtures of 171Yb or 173Yb with high �delity and probing the
system with high-resolution spectroscopy. Fortunately, the precision measurement community
has pioneered the development of ultranarrow lasers, and nowadays, ultrastable optical cavities
have become commercially available products. Phase-locking a diode laser to such a cavity
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Figure 1.6 | Clock-line spectroscopy as powerful experimental probe. Circles show the fraction of
atoms detected in the |e⟩ state, solid lines correspond to numerical fits. Detunings of the clock laser are
given relative to the single-particle transition and scanned with an acousto-optical modulator. The top-
right and top-le� labels indicate the isotope employed for the corresponding measurement. (a) Clock-
line spectroscopy in a (le�) three-dimensional or (right) single-axis magic-wavelength lattice. The ob-
served full width at half maximum (le�) 234(13)Hz and (right) 377(22)Hz are comparable to the Fourier
limit of the rectangular-shaped clock laser pulse. (b) Fast on-resonance Rabi oscillation in a deep
single-axis magic-wavelength lattice with fitted Rabi frequency Ω = 2π × 7.21(1) kHz. (c) Spectroscopy
of pair states in a three-dimensional lattice generated from a combination of magic-wavelength and
state-dependent wavelengths. Here, we show the single-particle transition and two-particle transition
(inset schematic) with an interaction shi� of ≈ 4 kHz. (d) Spectroscopy of motional states in a three-
dimensional magic-wavelength lattice with the carrier transition at zero detuning and the red sideband
transition at≈ 19.5 kHz (inset schematic).

using the Pound-Drever-Hall technique [165, 166] allows reducing the linewidth of the laser
dramatically. To achieve the short-term stability required to address the ultranarrow clock
transition coherently, we lock our clock laser to a cavity formed by an ultra-low-expansion (ULE)
spacer and two optically contacted mirrors (Stable Laser Systems) [121]. This allows us to
probe the clock transition with Fourier-limited pulses down to a full width at half maximum
of ∼ 200Hz [see Fig. 1.6(a)]. We operate the ULE cavity at a temperature close to the zero
crossing of its coe�cient of thermal expansion [121]. In this con�guration, we �nd a remaining
linear frequency drift of ≈ 1.7 kHz per day,9 which can be easily canceled by feed-forward on
the cavity o�set lock. With this procedure, a residual non-linear frequency drift ∼ 100Hz per
day remains, which we cancel with daily calibration measurements.

We have recently upgraded our clock laser systemwith a fully commercial product (Toptica
TA pro), combining an external cavity diode laser as seed and a tapered power ampli�er.10 In

9This value describes the drift of the cavity relative to the frequency of the 1156nm light. The second harmonic
generation of 578nm light also doubles the drift relative to the atomic clock transition.

10The measurements in Chapter 3 have been realized with an intermediate upgrade of the clock laser system,
that combined the preexisting home-built seed laser [121] with a commercial tapered power ampli�er (Toptica
BoosTA pro). However, the parameters discussed in this section also approximately apply to this system.
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contrast to our previous home-built seed laser, frequency modulation of the current now works
reliably over a wide bandwidth ∼ 1MHz, which allows us to lock the seed laser onto the ULE
cavity with fast current feedback alone [167]. This system produces up to 650mW of �ber-
coupled 1156nm light, which we subsequently frequency-doubled with a home-built resonant
second-harmonic-generation cavity [121]. At the location of the atoms, we estimate amaximum
total 578nm clock laser power of ≈ 100mW and intensity ≈ 150W∕cm2 [132] by measuring
the optical power in front of the vacuum chamber. This abundance of available laser power
allows us to drive single-particle Rabi oscillations with frequencies up toΩ ∼ 2� × 10 kHz [see
Fig. 1.4(b)], a signi�cant increase compared to the capabilities of our previous laser system [121].

The clock laser has become the key tool in our experiment, and the apparatus features
three independent beam paths, which allow the clock transition to be addressed along arbitrary
lattice axes. In general, we employ at least a single lattice axis along the direction of the driving
clock laser beam to operate deep in the Lamb-Dicke regime, where recoil-free spectroscopy
can be performed. We employ the clock laser for a variety of measurements, which include:
calibration of the single-particle clock frequency, measuring the trap depth by addressing
sideband transitions [see Fig. 1.6(c)], probing few-body and many-body interaction shifts in
orbital mixtures [see Fig. 1.6(d), also see Chapter 3], and populating the second orbital with
high �delity for utilizing the orbital Feshbach resonance (see Chapter 5). Figure 1.6 shows
typical application examples illustrating the versatility of this experimental tool.

To detect 171Yb (173Yb) atoms in the |e⟩ state, we employ a repumping scheme on the 3P0 →
3D1 transition between the F = 1∕2 and F′ = 3∕2 (F = 5∕2 and F′ = 7∕2) hyper�ne mani-
folds [32]. Fortunate branching ratios allow transferring nearly all |e⟩ atoms back to the |||g⟩
ground state via the intermediate and short-lived 3P1 states by only scattering few photons.
With this procedure, we estimate that< 5% of the |e⟩ atoms are transferred to the long-lived 3P2
state, which are most likely subsequently lost from the trap. The 3P0 →

3D1 transition (wave-
length≈ 1389nm) is driven with a free-running distributed feedback laser (NTT Electronics
NLK1E5GAAA) [168]. The relatively large short-term frequency �uctuations of the free-
running laser (and �nite power) make laser pulses of duration ∼ 1ms necessary to deplete
the |e⟩ state fully, which leads to motional blurring and other undesired e�ects. In the future,
stabilizing the laser to an optical cavity should allow us to signi�cantly reduce the minimum
pulse duration to≪ 100 µs [169] and avoid issues associated with much longer pulses.

1.4.3 High-resolution absorption imaging
We primarily probe the atomic system with absorption imaging, which yields the in-situ
atomic density integrated along the line of sight. To this end, we drive the 1S0 →

3P1 transi-
tion with � = 399nm resonant light between the hyper�ne manifolds F = 1∕2 and F′ = 3∕2
for 171Yb, or F = 5∕2 and F′ = 7∕2 for 173Yb. We employ a small bias �eld of ≈ 1G such
that the Zeeman shift only negligibly splits transitions between individual mF states. The
alignment of the magnetic �eld and polarization of the imaging light ensure that predomi-
nantly �± transitions are driven. For 173Yb, the atomic population across di�erent nuclear
spin states is pumped to the stretched statesmF = ±5∕2 after scattering a few photons. The
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imaging light is collected with a quadruplet objective lens (LENS-Optics) characterized by
the numerical aperture NA = 0.27 and di�raction-limited resolution ≈ 1 µm [129]. In the
current setting, imperfections and limited possibilities for corrections deteriorate the imaging
resolution to≈ 3 µm, as inferred from ameasurement of themodulation transfer function [170].

The complex structure of the multiple transitions between distinctmF states and imperfect
laser polarization generally reduces the absorption cross section �ef f by a factor of ≈ 1.5-3
compared to the resonant cross section � = 3�2∕(2�) of a two-level atom [138]. Since the
scattering of imaging photons heats the atomic sample, we employ short imaging pulses 5-15 µs
to make these e�ects negligible. At the same time, this requires sizable imaging intensities
for the light to fully penetrate dense atomic clouds. These high intensities typically far exceed
the saturation intensity with Iimg ≈ 2-12Isat causing a non-linear response of the atoms, which
we account for with a modi�ed Lambert-Beer law relating the absorbed light collected on our
camera and the atomic column density n(x, y) [171],

n(x, y) = 1
�ef f

{ ln [
Iin(x, y)
Iout(x, y)

] +
Iin(x, y) − Iin(x, y)

Ief fsat
} . (1.17)

Here, Iout(x, y) denotes the intensity detected after the light has penetrated the atomic cloud,
and we determine the incident intensity Iin(x, y) from a reference image without atoms. The
second term in the above relation accounts for the saturation of the optical transition with
the e�ective saturation intensity Ief fsat > Isat. For quantitative measurements, we determine the
value of Ief fsat by measuring the absorbed intensity of nearly identical atomic samples for variable
incident light intensity. Requiring that Eq. (1.17) results in the same density independent of
the incident intensity yields Ief fsat [171]. Generally, we perform this procedure for each nuclear
spin mixture relevant in the experiment although the typical parameters vary only by ≈ 10%
across di�erent spin-state populations.

For the many-body measurements discussed in this thesis, comparing experimental and
theoretical results quantitatively requires the knowledge of the absolute atom number. To this
end, we analyze the atomic shot noise of thermal atomic samples with correlation lengths
below our imaging resolution. In this regime, the noise of the detected local density ni follows a
Poisson distributionwith variance∆n = (ni−⟨ni⟩)2 = ⟨ni⟩. This relation allows determining the
absolute atom number directly frommany realizations (absorption images) of a nearly identical
sample. Such a procedure �xes the e�ective cross section�ef f in Eq. (1.17). Note thatwe account
for the �nite noise correlations from the imaging system itself with the methods from Ref. [170].



CHAPTER 2

Fermi polarons

This chapter introduces the Fermi polaron, a quasiparticle which forms when immersing a
single impurity in a Fermi sea. First, we brie�y review a theoretical framework for Fermi po-
larons and solve the quasiparticle problem in two dimensions for the short-ranged interactions
of ultracold atomic gases. Then, we focus on applying our �ndings to practical realizations
and discuss the quasi-two-dimensional geometry relevant for experiments utilizing the strong
con�nement of optical lattices. Moreover, we show the di�erences that arise in the quasi-
particle problem for orbital mixtures of 173Yb atoms. The analysis in this chapter paves the
way for presenting the observation of multiorbital Fermi polarons covered in Chapter 3. The
theoretical results explained in this chapter have been partly published in Ref. [109].

2.1 The single quasiparticle problem
A central question in condensed matter physics is how the description of electrons changes
when interactions are introduced. Generally, there is no guarantee that the picture of single
particles with a well-de�ned dispersion relation still applies. For instance, this picture breaks
down in one dimension, where excitations are described by collective modes [172, 173]. For
many systems of interacting fermions in two or more dimensions, Landau’s Fermi liquid theory
provides a powerful picture in terms of quasiparticles [63]. The essence of this theory is that as
interactions are introduced, the free particle becomes adiabatically connected to a quasiparticle.
While the single-particle properties of this quasiparticle are signi�cantly modi�ed, the ground
state remains a �lled Fermi sea with a sharp Fermi surface. This allows for describing complex
systems in terms of their quasiparticles to determine relevant characteristics of a material.

The Fermi polaron corresponds to the quasiparticle that forms when immersing an inter-
acting impurity into a Fermi sea, which results in particle-hole excitations. Intuitively, this
quasiparticle can be understood as a local density enhancement or depletion of the medium,
depending on the nature of interactions. The Fermi polaron presents a minimal example of
Landau’s Fermi liquid [63], thereby enabling direct comparison of theoretical predictions with
experimental observations [71–76, 84, 109]. In particular, ultracold quantum gases provide
an ideal testbed to study the Fermi polaron as they provide a clean setting—free of undesired
disorder and with precise interaction tunability. Notably, the Fermi polaron has also found
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Figure 2.1 | Illustration of Chevy’s variational wave-function ansatz. Di�erent components of the
wave-function ansatz, i. e., the unperturbed Fermi sea and particle-hole excitations (gray box), illustrated
for an impurity at rest (p = 0). The yellow circle corresponds to the impurity, whereas the Fermi sea (with
holes) and the excited particle are shown in blue.

applications in the description of the extremely dense matter inside neutron stars [174, 175].
This section discusses a variational wave-function ansatz and the Green’s function approach
for the quasiparticle problem of the Fermi polaron.

2.1.1 Chevy’s variational wave-function ansatz

For the theoretical description of the Fermi polaron, we consider a single impurity interacting
with the majority particles in a Fermi sea. An instructive approach for this problem is the
Chevy ansatz [64], which we brie�y discuss in the following. In the non-interacting limit, we
obtain the wave function of an impurity with momentum p and an unperturbed Fermi sea,

|||Ψ0(p)⟩ =
(
ĉ†p↓ |0⟩↓

)
⊗ |FS⟩↑ . (2.1)

Here, the wave function is written in its second-quantized form, |FS⟩↑ describes the state of the
Fermi sea, and ĉ†p↓ denotes the fermionic creation operator for an impurity with momentum p.
We assign the two spin states � ∈ {↓, ↑} to the impurity and particles from the Fermi sea,
respectively. This notation is inspired by the typical experimental realization that involves a
multi-component Fermi gas with a strong population imbalance between two spin states. For
simplicity and without loss of generality, we assume that the impurity resides in a di�erent
internal state but is otherwise similar to the particles in the Fermi sea, in particular, the
masses are identical, m = m↓ = m↑. Starting from Eq. (2.1), we can now construct Chevy’s
wave-function ansatz for an interacting impurity [64],

|||Ψ(p)⟩ =
√
Zp

(
ĉ†p↓ |0⟩↓

)
⊗ |FS⟩↑ +

∑
q<kF<k

�p;kq
(
ĉ†(p+q−k)↓ |0⟩↓

)
⊗

(
ĉ†k↑ĉq↑ |FS⟩↑

)
(2.2)

with kF =
√
2mEF∕ℏ the Fermi wave vector and EF the Fermi energy, which corresponds to the

chemical potential of the majority particles at zero temperature. The above form is motivated
by the underlying physics and how we expect the interacting impurity to change the state of the
medium. The squared overlap with the non-interacting wave function from Eq. (2.1) reduces
according to |Zp| ∈ [0, 1]. The remaining weight (1 − |Zp|) is contributed by particle-hole
excitations of the Fermi sea, which originate from the �nite interactions between impurity and
medium and are described by the sum in Eq. (2.2). These particle-hole excitations correspond
to a hole at q < kF and a particle above the Fermi surface at k > kF , as illustrated in Fig. 2.1.



2.1 The single quasiparticle problem 29

The trial wave function in Eq. (2.2) allows us to �nd the energy E of the impurity by
minimizing the energy functional �(E) = ⟨Ψ(p)|(Ĥ − E)|Ψ(p)⟩. This can be achieved with a
variational method, i. e., calculating the gradient with respect to the coe�cients Zp and �p;kq.
The Hamiltonian for the description of interactions between the impurity and Fermi sea
generally takes the form [64]

Ĥ =
∑

k,�∈{↓,↑}

ℏ2k2
2m ĉ†k� ĉk� +

Ω
g

∑
k,k′, q

ĉ†(k+q)↑ĉ
†
(k′−q)↓

ĉ
k′↑
ĉk↓ (2.3)

with g the coupling constant determining the interaction between impurity and Fermi sea,
Ω the volume of the system, and q the momentum exchanged in the scattering process. In
general, g takes a relatively simple form for the dominant s-wave interactions in ultracold
quantum gases [64, 176], but still contains the relevant details of the dimensionality and
interaction channels.

The minimization of the energy functional �(E) yields an implicit equation for the energy
of the impurity immersed in the Fermi sea [64],

E −
p2
2m =

∑
q<kF

⎧

⎨
⎩

1
g −

∑
k>kF

1

E − (2m)−1
[
ℏ2k2 + ℏ2q2 − (p + ℏq − ℏk)2

]
+ i"

⎫

⎬
⎭

−1

. (2.4)

Here, the small imaginary term " > 0 allows us to �nd solutions corresponding to excited
states of the system with E > 0 and �nite lifetime, in contrast to the ground state. Indeed,
such an excited state exists, namely, the repulsive Fermi polaron [80, 81]. This quasiparticle
appears in addition to the attractive Fermi polaron, which corresponds to the ground state
(see Section 2.2). Note that above imaginary contribution can also be derived rigorously by
minimizing a time-dependent functional in the variational procedure [177].

2.1.2 The Green’s function approach
The Chevy ansatz provides an intuitive picture for the underlying physics, but the calculation
of experimentally relevant quantities can be donemore rigorously with methods from quantum
�eld theory, as commonly used in condensed matter physics [178]. In this context, Green’s
function G appears as a propagator, which contains the relevant physics and provides the
elementary building block for Feynman diagrams [179]. Dyson’s equation relates the dressed
propagatorG and the propagator of the free particleG0 = [E − p2∕(2m)]−1 via the self-energyΣ.
This quantity describes the energy that a particle acquires due to its interactions with the
surrounding medium. We schematically illustrate the underlying idea of the perturbative
expansion and how it reduces to a geometric series in Fig. 2.2(a). For the problem of the Fermi
polaron, Green’s function describes the propagation of a single impurity at momentum p in
the medium with the form [178]

G(p, E) = 1
E − p2 ∕(2m) − Σ(p, E)

. (2.5)

From Green’s function, all relevant quasiparticle properties can be derived, and the problem
reduces to �nding an expression for the self-energy Σ(p, E), which can still be an exceptionally
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Figure 2.2 | Green’s function approach for the Fermi polaron. (a) Illustration of Dyson’s equation
adapted from Ref. [179]. We schematically show how the full propagator G, free propagator G0, and the
self-energy Σ are related by the summation over an infinite perturbative expansion, which can be identi-
fied as a geometric series shown on the right. (b) Example showing an expansion of the polaron Green’s
function G(0, E) around a quasiparticle pole at energy E0. The solid line corresponds to Eq. (2.5) calcu-
lated for the self-energy Σ, and the dashed line corresponds to the expansion defined in Eq. (2.7) with
the appropriate parameters Z and Γ.

di�cult task. For the Fermi polaron, the summation over the Feynman diagrams contributing
to the self-energy can be truncated by considering at most one single particle-hole excitation
of the Fermi sea—in analogy to Chevy’s variational wave-function ansatz [64, 65]. Formally,
we make the expansion [66]

Σ(p, E) = Σ1PH(p, E) + Σ2PH(p, E) + … (2.6)

and neglect terms with more than one particle-hole excitation (1PH approximation) such
that Σ(p, E) ≡ Σ1PH(p, E) in the following discussion. This approach is also known as ladder
approximation due to the visual appearance of the corresponding Feynman diagrams [81].
Fortunately, the 1PH approximation already yields reasonably accurate results, veri�ed by
diagrammatic quantumMonte Carlo studies, that consider higher-order Feynman diagrams
beyond single particle-hole excitations at the cost of �nite statistical errors [77]. Nevertheless,
the approximative nature of this approach underlines the importance of experimental evidence,
which has been able to benchmark the results of the description in terms of the ladder ap-
proximation (see, e. g., Refs. [73, 76]). The underlying reason for the accuracy of theoretical
predictions, despite neglecting excitations beyond single-particle hole pairs, is believed to
originate from a fortunate canceling of higher-order Feynman diagrams [77]. Within the 1PH
hole approximation, the Green’s function approach is equivalent to the Chevy ansatz, and the
implicit relation in Eq. (2.4) de�nes the self-energy of the Fermi polaron [65].

In the vicinity of a pole E0, determined by E0 = Σ(p, E0) and corresponding to a quasiparti-
cle with energyE0, we can approximate Green’s function in Eq. (2.5) with the general form [178]

G(p, E → E0) ≈
Z

E − E0 − p2 ∕(2m∗) + iΓ
, (2.7)

which contains the quasiparticle residue Z, e�ective mass m∗, and damping Γ. The quasi-
particle residue quanti�es the weight of the quasiparticle peak in the spectrum, which we
have introduced as the overlap with the non-interacting wave function [see Eq. (2.2)]. The
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damping Γ quanti�es the width of the quasiparticle peak, which can be associated with a
�nite lifetime of the quasiparticle in certain systems [110]. As we will see in Chapter 3 (see
Sections 3.4), there is a caveat to a generalized association of Γ with the lifetime, particularly
for the repulsive polaron in ultracold Fermi gases.

We can extract the properties of the quasiparticle with energy E0 by comparing Eqs. (2.5)
and (2.7). For an impurity at rest (p = 0), we �nd the residue and damping [81],

Z =
{
1 − )E Re [Σ (0, E)]|E=E0

}−1
and Γ = −Z Im [Σ (0, E0)] . (2.8)

Interactions with the medium result in a mass enhancement with respect to the bare massm
of the free impurity [81],

m∗

m = Z−1
{
1 + )[p2∕(2m)] Re [Σ (p, E0)]|||p=0

}−1
. (2.9)

Another central result of the Green’s function approach is the spectral function [178],

A(0, E) = − 1
� Im [G(0, E)] , (2.10)

which is related to the linear response of the in-medium impurity for an excitation at energy E
in the experiment (see Section 3.3.2 in Chapter 3) [180]. Remarkably, the above quasiparti-
cle properties have been determined quite precisely in various experiments with ultracold
atoms [71–76, 84, 109].

2.2 Phenomenology in two dimensions

Having established the theoretical framework for the description of Fermi polarons in terms
of their Green’s function, we now proceed with a theoretical calculation in two dimensions
(2D). First, we explain the parameterization of interactions in 2D and calculate the self-energy
explicitly for short-range interactions, as typically found in ultracold quantum gases. Then,
we discuss the structure of the many-body spectrum and the appearance of the quasiparticle
branches corresponding to attractive and repulsive polaron. Finally, we explore the e�ects
of �nite momentum and temperature, which typically play a role in experiments. We note
that the key elements of the phenomenology discussed in this section also apply to the three-
dimensional case (see, e. g., Ref. [66]).

Due to the dominance of s-wave scattering in ultracold quantum gases, Fermi polarons
can usually be described in terms of a few universal parameters. In 2D, the low-energy s-wave
scattering amplitude takes the form [181]

f(k) = 4�
i� − ln

(
k2a22D

) , (2.11)

which de�nes the s-wave scattering length a2D > 0. In contrast to three dimensions (3D),
the low-energy scattering amplitude depends explicitly on the momentum k and diverges
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logarithmically for k → 0. For the short-range interactions in ultracold quantum gases, the
scattering length is related to the energy of the bound state �b with

a2D =
ℏ

√
m�b

. (2.12)

The dimensionless quantity ln (kFa2D) with Fermi wave vector kF =
√
2mEF∕ℏ and scattering

length a2D parameterizes the interaction strength of Fermi gases in 2D [182]. In general,
ln (kFa2D) > 0 can be associated with attractive and ln (kFa2D) < 0 with repulsive interactions.
We note that this contrasts with the typical parameterization 1∕(kFa) in 3D, where 1∕(kFa) > 0
indicates the repulsive regime.

2.2.1 The self-energy

To explore the phenomenology in ultracold 2D Fermi gases, we solve the Fermi polaron problem
in the limit of a zero-momentum impurity and a zero-temperature medium. Note that the
following calculation only holds for interactions with a negligible e�ective range, as in the
case of broad Feshbach resonances (see Section 1.2.4 in Chapter 1). In Section 2.3, we will
discuss howmore complex interactions in orbital mixtures of ultracold 173Yb canmodify certain
properties of the Fermi polaron. Nevertheless, the phenomenology remains mostly unchanged
with only minor adjustments for our experimental parameters.

In two dimensions, the coupling constant g for s-wave collisions takes the form [177]

1
g = −

∑
k

1
�b + ℏ2k2∕(2m)

(2.13)

with �b > 0 the binding energy of the molecular bound state in 2D, which can be related to
the scattering length with Eq. (2.12). Here, we have set the volume of the system to Ω ≡ 1.
For the chosen regime, the implicit energy relation in Eq. (2.4) can be solved analytically
except for the outer integral over the momentum below the Fermi surface (see Appendix A.1).
In the thermodynamic limit, where the sums can be replaced with integrals, the self-energy
then takes a relatively simple form,

Σ(0, E)
EF

= 2
∫ 1

0
dy

⎧

⎨
⎩

ln (
�b
EF

) − ln
⎡
⎢
⎣
1 − E

2EF
−
y
2 ±

√

(1 − E
2EF

)
2
− y

⎤
⎥
⎦

⎫

⎬
⎭

−1

, (2.14)

which we solve numerically to obtain the spectral function and other quasiparticle properties.
Here, the symbol ± denotes the sign function with ± = sgnRe [1 − E∕ (2EF)]. Lastly, we
note that similar calculations in the limit of 1PH have been performed much earlier for the
description of thin 3He �lms [183]. These perturbative results generally agree well with the
quasiparticle energies extracted from Eq. (2.14) at weak coupling [176].
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2.2.2 Quasiparticles and their energy landscape

The results of the numerical calculations are shown in Fig. 2.3. First, we focus on the spec-
tral function A(0, E) [see Eq. (2.10)] and the general features appearing in the many-body
spectrum of the dressed impurity as a function of the interaction strength. The resulting
energy landscape features two distinct quasiparticle branches, one at positive energies E+ > 0,
and one at negative energies E− < 0 (see Fig. 2.3). The former is known as attractive and
the latter as repulsive Fermi polaron in accordance with the sign of their energy. In the fol-
lowing, we brie�y discuss their (quasiparticle) properties (see Fig. 2.4) as well as the feature
between the two quasiparticle peaks known as the molecule-hole continuum (see Á in the
main panel of Fig. 2.3).

Attractive polaron À.—The quasiparticle at negative energies E− < 0 corresponds to the
ground state of the system within the 1PH approximation of the self-energy [64]. It has been
�rst observed in ultracold 3D Fermi gases [71, 72] and later also in 2D Fermi gases [74]. This
attractive polaron has vanishing energy for weak binding, �b ≪ EF [ln (kFa2D) ≫ 0]. In this
limit, the quasiparticle energy can be approximated by E−∕EF ≈ −2∕ ln(2EF∕�b) [184], an ac-
curate estimate within a few percent for ln (kFa2D) ≥ 2. The quasiparticle residue Z− vanishes
for strong binding, �B ≫ EF [ln (kFa2D) < 0], indicating that the wave function of the attrac-
tive polaron becomes increasingly dominated by an incoherent background of particle-hole
excitations [see Fig. 2.4(a)]. In this regime, the absolute value of the energy grows approxi-
mately linearly with the binding energy �b, E−∕EF ≈ −(�b∕EF + 0.582) [185]. This suggests
that the attractive Fermi polaron remains the ground state of the system for arbitrarily strong
binding �b →∞. However, the result can be understood as an artifact of the simpli�ed ansatz
with only a single particle-hole excitation.

Another eigenstate exists at negative energies, i. e., the dressed molecule corresponding
to a particle from the background Fermi sea tightly bound to the impurity [185]. Similar to
the polaron, interactions with the surrounding medium can dress this molecule. Crucially,
this state cannot be described within the 1PH approximation, as the description of the non-
interacting state already requires a single particle-hole pair. Extending the ansatz in Eq. (2.2) to
an additional particle-hole pair provides the approximate energy of this dressed molecule [185],
which has also been calculated in diagrammatic Monte Carlo studies [186, 187]. At the critical
interaction parameter ln (kFa2D) ≈ −1 [177, 186, 187], the energies of the dressed molecule
and attractive polaron cross. This indicates that the molecule indeed corresponds to the
ground state in this regime, making the attractive polaron an excited state for ln (kFa2D) ≲ −1.
In two dimensions, the exact nature of this transition point or crossover region remains a
subject of debate [177, 185–189], although recent experimental results have shed light on
the situation in 3D [84].

Molecule-hole continuum Á.—Between the two quasiparticle peaks [see ln (kFa2D) ≳ −0.5
in Fig. 2.3], the spectrum exhibits a particularly weak and broad feature. This molecule-hole
continuum arises due to the impurity forming a bound molecule with a single particle from
the Fermi sea [176]. Naturally, this excitation can have a large range of energies due to the
momentum spread of the medium, 0 < p < ℏkF . Because of its small weight in the spectrum,
the molecule-hole continuum only plays a minor role when probing spectra experimentally in
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Figure 2.3 | Energy landscape in two dimensions. Spectral function A(p = 0, E) of the Fermi polaron
numerically calculated within the 1PH approximation. The blue (red) dashed lines correspond to the
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for ln (kF a2D) = −1, 0, and 2 (from le� to right).

the linear response regime. However, for strong drive, the molecule-hole continuum becomes
increasingly relevant as also experimentally observed in a mass-imbalanced 3D Fermi gas [73].

Repulsive polaron Â.—The quasiparticle at positive energies E+ > 0 corresponds to the
repulsive Fermi polaron, which has been observed for the �rst time shortly after the attractive
Fermi polaron [73, 74]. Importantly, this eigenstate corresponds to an excited state of the system,
which can decay to lower-lying states, i. e., the attractive polaron or the (dressed) molecule.
The repulsive polaron energy depends much weaker on the interaction parameter ln (kFa2D)
compared to the attractive polaron. Its energy reaches amaximum close to EF before it becomes
ill-de�ned as indicated by the vanishing quasiparticle residue Z. Here, the damping Γ quickly
approaches the order of the Fermi energy [see Figs. 2.4(a,b)]. Similarly to the case of the
attractive polaron, we can approximate the energy of the repulsive polaron in the limit of
strong binding, �b ≫ EF [ln (kFa2D) ≪ −2], using E+∕EF ≈ 2∕ ln(�b∕EF) [190], which agrees
with the full expression on the percent level for ln (kFa2D) ≤ −2. In Fig. 2.4(b), we show
the damping Γ of the repulsive polaron, which has often been associated with its lifetime
against decay into lower-lying states. However, the experimental results in Chapter 3 (see
Section 3.4.2) show that Γ can rather be understood as the width of the quasiparticle peak
giving rise to many-body dephasing [110].
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to Eq. (2.15).

To motivate the illustrations in Fig. 2.3, which schematically shows the local medium
density in the vicinity of the Fermi polaron, we estimate the number of particles from the
Fermi sea in the dressing cloud,

∆N ≈ −
)E±
)EF

= − [12)x"±(x) + "±(x)]
|||||||x=ln(kFa2D)

. (2.15)

This equation can be obtained from the chemical potential (quasiparticle energy) under the
assumption that the density far away from the impurity remains unchanged [81]. Here, the last
term applies to "±(x) = E±(x)∕EF . In Fig. 2.4(c), we show the result for the density enhance-
ment and depletion for variable interaction parameters. As naively expected, the number of
particles in the dressing cloud of the polaron increases for attractive interactions. This regime
energetically favors a density enhancement in close proximity of the impurity. In contrast, for
the repulsive polaron, ∆N < 0, which indicates that the density of particles from the Fermi sea
is reduced in the proximity of the impurity. Notably, |∆N| ≲ 1 for both attractive and repulsive
interactions, even in the regime of strong interactions with ln (kFa2D) ∼ 0. This shows that
the local density modulation in the vicinity of the Fermi polaron has a rather small magnitude,
which generally also applies to 3D, as experimentally observed in Ref. [83].

2.2.3 Finite momentum and temperature
Finite momentum (p > 0) and temperature (T > 0) both a�ect the properties of the Fermi po-
laron and play a role in typical experiments with ultracold atoms, as illustrated in Fig. 2.5. This
section considers �nite-momentum and �nite-temperature e�ects individually, which simpli-
�es the theoretical calculations but still permits a qualitative discussion of the phenomenology.

The former arises since the preparation of a single impurity at p = 0 is usually impractical
in experiments. Instead, a strongly imbalanced two-component Fermi gas is prepared, e. g., by
populating two spin states [see Fig. 2.5(b)]. In this con�guration, the impurities correspond
to a minority Fermi sea and consequently occupy non-zero momentum states. Although
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their momentum is usually signi�cantly smaller than the Fermi momentum of the majority
Fermi sea, it still a�ects the many-body spectrum and the quasiparticle properties, which
we explore in the following.

For �nite momentum p ≠ 0, the integration over the relative angle of p and q has to be
considered, and we obtain the following expression for the self-energy (see Appendix A.2),

Σ(p′, E)
EF

= 2
�

∫ 1

0
dq′q′

∫ 2�

0
d�

⎡
⎢
⎢
⎣

ln (
�b
EF

) − ln
⎛
⎜
⎝
E

(
q′

)
±

√

[E (q′) + r2
2 ]

2

− r2
⎞
⎟
⎠

⎤
⎥
⎥
⎦

−1

, (2.16)

where p′ = p∕(ℏkF), E(q′) = 1− [E∕EF + q′2]∕2, r = (q′ +p′ cos �), and ± = sgnRe[E(q′) +
r2∕2]. From this expression for the self-energy, we numerically calculate the �nite-momentum
spectral function A(p, E) ≡ A(|p′|, E). We show this result for three interaction parameters in
Fig. 2.6, illustrating the dependence of both quasiparticle branches on the impurity momentum.
For small momentum p ≪ ℏkF , the change of the quasiparticle energy is determined by the
dispersion ∼ p2∕(2m∗) with the e�ective mass m∗ [see Eq. (2.9)]. Notably, this relation has
enabled obtaining the e�ective mass experimentally from the quasiparticle energy shift at
variablemean impuritymomenta [76]. For largemomentum, themany-body spectrum changes
signi�cantly: First, we observe that the dispersion of both the repulsive and attractive polaron
approaches that of a free particle [see Figs. 2.6(a) and 2.6(c)]. Hence, the Fermi polaron
essentially becomes a free particle at large momenta, and its quasiparticle energy approaches
zero, whenmeasured relative to a free particle at the samemomentum. This agrees with a naive
expectation, as the kinetic energy becomes the dominant energy scale, and the interaction with
particles from the Fermi sea then only has a perturbative e�ect on the impurity. Our second
observation concerns the molecule-hole continuum, which a�ects the attractive polaron at
large momenta and strong interactions, ln (kFa2D) ∼ 0, as shown in Fig. 2.6(b). In this regime,
the attractive polaron peak merges with an enlarged molecule-hole continuum, and the narrow
quasiparticle peak ceases to exist.
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sive polaron. Note that a finite broadening has been applied to the spectrum with the replacement
E → E + 0.05iEF , and the plot range is truncated to increase the contrast at small amplitudes.

In experiments with ultracold atoms in 2D, temperatures are typically T∕TF ∼ 0.2 (Fermi
temperature TF) [74, 109]. At this temperature, the Fermi surface of the medium acquires a
non-negligible �nite broadening ∼ T∕TF , in contrast to the sharp distribution at zero temper-
ature [see Fig. 2.5(a)]. For �nite temperature T > 0, the integrals in Eq. (2.14) are changed
considerably as the momentum distribution does not anymore feature an in�nitely sharp edge.
By considering the di�erence between the zero- and �nite-temperature results, we obtain the
self-energy at �nite temperature T (see Appendix A.3),

Σ(0, E; T)
EF

= 2
∫ 1

0
dy F(yEF , T) { ln (

�b
EF

) − ln [E′ −
y
2 ±

√
E′2 − y] + ∆T(y) }

−1

(2.17)

with the Fermi-Dirac distribution F(x, T) =
[
e(x−�)∕(kBT) + 1

]−1
and the chemical potential �.

Here, the expressions denote E′ = 1 − E∕(2EF), ±
√
a2 − b = sgn(Re a)

√
a2 − b, and the term

∆T(y) accounts for the �nite-temperature contributions,

∆T(y) =
∫ ∞

0
dx

F(xEF , T = 0) − F(yEF , T)

±
√
[x − E∕ (2EF)]

2 − xy
. (2.18)

Figure 2.7 shows the results of the numerically calculated �nite-temperature spectral func-
tion A(0, E; T) at variable interaction strength. For all interaction parameters and increasing
temperature, we can observe a signi�cant broadening of the quasiparticle peaks, signaling a
�nite decay width. This also applies to the attractive polaron, which otherwise corresponds
to a Dirac delta distribution at zero temperature. Moreover, the width of the quasiparticle
peaks quickly approaches the scale set by the Fermi energy. This agrees with our expectation
as the quasiparticle picture should break down once the Fermi surface becomes ill-de�ned. In
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addition to the broadening, the absolute value of the quasiparticle energy increases at �nite
temperature, particularly for the attractive polaron [cf. black crosses in Fig. 2.7]. This could
be caused by an enlarged phase space for the particle-hole excitations.

Recently, the temperature dependence of the many-body spectrum has been probed experi-
mentally for a 3D Fermi gas [83]. In their experiment, Yan et al. prepare a thermal equilibrium
state of a strongly spin-imbalanced Fermi gas and probe its spectral response as a function of
temperature. For strong interactions, the authors observe a broadening of the quasiparticle
peak and an increase of absolute quasiparticle energy for the attractive polaron, in agreement
with theoretical calculations [191–193]. At a critical temperature of T ≈ 0.75TF , they also �nd a
surprisingly sharp jump of the attractive polaron energy to approximately zero [83]. This could
be intuitively understood as the merging of both quasiparticle branches once the temperature
exceeds the gap between the attractive and repulsive branches.

Finally, we note that our �nite-momentum and �nite-temperature calculations do not
fully capture the physics in typical experiments with a �nite number of impurities. Here, the
�nite impurity density can also lead to collective e�ects, i. e., polaron-polaron interactions [82],
which are not accounted for with a single-impurity ansatz and require a treatment within
Fermi-liquid theory [194]. However, theoretical studies in 3D suggest that these e�ects are
rather small [195], as also con�rmed by the good agreement of single-impurity descriptions
and experimental measurements [71–74, 76, 84, 109].

2.3 The quasi-two-dimensional regime
The quasi-two-dimensional (quasi-2D) regime describes the geometry of ultracold quantum
gas experiments, where strong harmonic con�nement restricts the momentum of particles
to two dimensions. Most commonly, experiments employ a single-axis optical lattice for
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this purpose. For typical accessible con�nement strengths, the range of the microscopic
interactions between the atoms still has a much shorter length scale than the one set by the
external con�nement [182]. As a consequence, the scattering of individual particles needs to
be described in 3D, with only the momentum restricted to 2D. The additional complexity of
the external con�nement can be absorbed into “renormalized” quantities, allowing for the
description of experiments with the formalism of a purely 2D geometry. We note that detailed
derivations for the quantities discussed in this section can be found in Ref. [182].

In the experiment, the reduced dimensionality is achieved with a strong trap along a single
axis, assumed to be the z-axis in the following. For an approximately harmonic con�nement
potential, the single-particle Hamiltonian then takes the form

Ĥ0 =
∑
px ,py
n=0

[
p2x + p2y
2m + (n + 1

2) ℏ!z]
||||px, py; n

⟩ ⟨
px, py; n

|||| . (2.19)

Here, (px, py) denotes the momentum in the (x, y)-plane, !z corresponds to the trapping
frequency. Also, we assume the gas only occupies the ground state n = 0 of the harmonic
oscillator potential. For fermionic quantum gases, this can be achieved at su�ciently low
temperatures T ≪ ℏ!z∕kB and with strong con�nement such that ℏ!z ≪ EF .

The �nite harmonic con�nement along the z-axis modi�es the two-body scattering process
as determined by the characteristic length scale lz =

√
ℏ∕(m!z) of the harmonic oscillator.

For typical experiments, this length scale takes a much larger value than the range of the
interatomic interaction potential lz > 10nm ≫ rw ∼ 0.1nm. The s-wave scattering length can
then be determined from a low-energy expansion of the scattering amplitude [182],

a2D
lz

=
√

�
B exp (−

√
�
2
lz
a3D

) (2.20)

with the numerical factor B ≈ 0.905 [182] and a3D the s-wave scattering length in 3D.
In general, the binding energy �b of the dimer in quasi-2D cannot simply be calculated from

Eq. (2.12), which only applies to the limit lz∕a3D ≪ −1. Here, the size of the dimer becomes
much larger than lz such that it spreads out in the (x, y)-plane. In contrast, for lz∕a3D ≫ 1,
we expect the con�nement e�ects to be negligible since the dimer has a much smaller size
than lz. By determining the pole of the T-matrix for the two-body problem (binding energy of
the molecular bound state), we can �nd a relation that smoothly interpolates between these
two limits. The binding energy �b can be obtained from the implicit equation [182]

lz
a3D

= F (
�b
ℏ!z

) =
∫ ∞

0

du
√
4�u3

[1 − e−u�b∕(ℏ!z)
√
(1 − e−2u)∕(2u)

] , (2.21)

where the integral has to be determined numerically.1 We note that our experiment generally
operates in the regime 0 ≤ lz∕a3D ≤ 1, where the above description needs to be applied.

1The integrand has a singularity at u = 0, which can cause slow convergence and numerical instabilities for
common numerical integration techniques such as the Gauss-Legendre quadrature. Instead, we �nd that the
double-exponential formula [196], also known as Tanh-Sinh quadrature, converges particularly well.
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In conclusion, we have established a direct relationship between the experimental quantities
(con�nement length scale lz and scattering length a3D) and the single theoretical quantity in
the purely 2D geometry (scattering length a2D or binding energy �b). For the Fermi polaron
problem in 2D, we are now equipped with the tools to describe typical experiments with
strongly con�ned ultracold fermions using the experimentally accessible parameters EF , a3D,
and lz. Next, we discuss the deviation from this universal regime for 173Yb atoms in the vicinity
of the orbital Feshbach resonance.

2.3.1 Open-channel orbital interactions

Our experiment employs ultracold 173Yb atoms in the ground and clock state to realize strongly
interacting Fermi gases and probe Fermi polarons. For these two states, we can tune the
interaction strength with the magnetic �eld utilizing an orbital Feshbach resonance [54–56],
as explained in Chapter 1 (see Section 1.2.4). Following Ref. [109], we calculate the magnetic-
�eld-dependent scattering length for the orbital Feshbach resonance in 173Yb and a quasi-2D
geometry. We also introduce an e�ective two-channelmodel for the orbital Feshbach resonance,
that signi�cantly simpli�es the description of the interaction parameters and the Fermi polaron
problem for interorbital interactions.

For the description of an interacting e−g pair in two distinct nuclear spin states at �nitemag-
netic �eldB > 0, we employ the open and closed channel states, |o⟩ and |c⟩, introduced in Chap-
ter 1 (see Section 1.2.3). These states are directly related to the “triplet” |+⟩ =

(
|o⟩ + |c⟩

)
∕
√
2

and “singlet” |−⟩ =
(
|o⟩ − |c⟩

)
∕
√
2 states describing the interatomic interaction potentials.2

The �nite magnetic �eld introduces the e�ective detuning � = ∆�B between the open and
closed channel, determined by ∆� = ℎ × 554(3)Hz∕G [109] for the experimentally relevant
nuclear spin states with mF = ±5∕2 (see Section 1.2.3 in Chapter 1 and Chapter 3).

The Hamiltonian describing an e−g pair in a harmonic trap takes, analogously to Eq. (2.19),
the following form [109]

Ĥeg =
∑
p,n

2Epn |||o; pn⟩ ⟨o; pn||| +
(
2Epn + �

) |||c; pn⟩ ⟨c; pn|||

+
∑

p,p′;n,n′

nn′

(
U+

|||+; pn
⟩ ⟨
+; p′n′||| + U−

|||−; pn
⟩ ⟨
−; p′n′|||

)
.

(2.22)

Here, the �rst line describes the non-interacting part with the two-dimensional momen-
tum p = (px, py), the eigenstates of the harmonic oscillator labeled by n ≥ 0, and 2Epn =
p2∕m+ℏ!z(n+ 1∕2). The second line describes the triplet and singlet interaction energiesU±,
where 
nn′ is a numerical factor determined by the harmonic oscillator wave functions [182].
The form of Ĥeg illustrates how the scattering problem now involves two coupled channels,
which can signi�cantly alter the scattering properties. The vacuum T-matrix for the two-body
scattering problem in the ground state n = n′ = 0 and at energy E, can be obtained from the

2Compared to the discussion in Chapter 1, we have dropped the explicit state labels such that |±⟩ ≡ |||eg±⟩.
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Lippmann-Schwinger equation and the above Hamiltonian [109]. In the basis of open and
closed channel, it takes the form

T(vac)(E) =
√
8�ℏ2
m [R(

lz∕a+ 1
1 lz∕a−

)R − (
F [−E∕(ℏ!z)] 0

0 F [(−E + �)∕(ℏ!z)]
)]

−1

.

(2.23)

Here, a+ = 1878a0 and a− = 219.7a0 (Bohr radius a0) [55] denote the scattering lengths in 3D,
lz =

√
ℏ∕(m!z) the characteristic length scale of the harmonic oscillator, andF(x) corresponds

to the transcendental function de�ned in Eq. (2.21). The matrix R =
( 1 1
1 −1

)/√
2 describes

the basis change when considering the non-interacting |o, c⟩ and interaction eigenstates |±⟩.
In the following, we account for the e�ective ranges r+ = 216a0 and r− = 126a0 with the
implicit replacement [55]

1
a±

→ 1
a±

− 1
2mr± (E − �

2 +
1
2ℏ!z) . (2.24)

Having de�ned the two-body T-matrix and the relevant atomic properties, we now discuss
the scattering amplitude, which determines the interaction between an e−g pair in a strong
harmonic trap. Formally, the scattering amplitude in quasi-2D can be obtained by projecting
Eq. (2.23) onto the open channel |o⟩ [109],

fq2D(E) =
√
2�

⎧

⎨
⎩

l2z∕(a−a+) −
1
2
F [(−E + �)∕(ℏ!z)] (lz∕a− + lz∕a+)

lz∕a− + lz∕a+ − 2F [(−E + �)∕(ℏ!z)]
− 1

2F ( −Eℏ!z
)
⎫

⎬
⎭

−1

.

(2.25)

While this scattering amplitude fully captures the two-body problem of an e−g pair in a quasi-
2D geometry, it is not directly related to the relevant quantities for the many-body problem of
the Fermi polaron. Moreover, four seemingly independent parameters, i. e., lz, a−, a+, and �,
emerge in the description of the two-body problem [see Fig. 2.8(a)].

2.3.2 The e�ective two-channel model
In this section, we derive the parameters of an e�ective model for the orbital Feshbach reso-
nance, which signi�cantly simpli�es the theoretical description of the many-body problem.
In particular, we consider a two-channel model with the Hamiltonian [110]

Ĥ2ch =
∑

k,�∈ {↓,↑}

ℏ2k2
2m ĉ†k� ĉk� +

∑
k

(ℏ
2k2
4m + �) â†kâk + g

∑
k,k′

(â†kĉk′, ↑ĉk−k′, ↓ + h. c.) (2.26)

with ĉ†k� (ĉk�) the fermionic creation (annihilation) operator for a particle at momentum ℏk
with spin � ∈ {↑, ↓}. In this model, the interactions between the spinful fermions are deter-
mined by the coupling strength g andmediated bymolecules. Thesemolecules are described by
the bosonic creation (annihilation) operators â†k (âk) at momentum ℏk. Moreover, the bosonic
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Figure 2.8 | Full and e�ective model description in quasi-2D. Schematics comparing the full and e�ec-
tive model for an e−g pair in quasi-2D. (a) Full description of the interorbital interactions in a quasi-2D
geometry with axial confinement length scale lz. (Le�) Schematic of an in-plane collision for an e−g pair
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aration) and interacting eigenstates |s⟩, |t⟩ (small separation) described by the matrixR. Here, δ denotes
the detuning of the open and closed channel. (b) E�ective two-channel model in a purely 2D geometry
with spinful fermions and bosonic molecules. (Le�) Schematic of an in-plane collision of a fermionic
pair (light-blue circles with arrows) mediated by a bosonic closed-channel molecule (wiggly green line).
(Right) Illustration of the open and closed channel with their detuning ν.

molecules occupy a (closed) channel, energetically detuned by � from the open channel of
the collisional pair. The form of Ĥ2ch can be motivated by the nature of narrow Feshbach
resonances, for which the energetically closed channel has an increased relevance [133]. In-
deed, the model in Eq. (2.26) has been employed to describe the experimental results of an
interacting lithium-potassium mixture close to a narrow Feshbach resonance [197]. Therefore,
the above model also seems suitable for describing the orbital Feshbach resonance, which also
exhibits typical features of a narrow resonance (see Section 1.2.4 in Chapter 1).

The two-channel Hamiltonian in 2D gives rise to the low-energy scattering amplitude [198]

f2ch(k) =
4�

i� − ln
(
k2a22D

)
+ k2R2

2D
, (2.27)

which (re-)introduces the s-wave scattering length a2D and the e�ective range R2D, both related
to the bare model parameters � and g [198]. Note that in contrast to Eq. (2.11), this scattering
amplitude contains higher orders in k, in particular, k2 as parameterized by the e�ective
range R2D. This parameter is speci�c to the 2D scattering problem and not trivially related to
the e�ective range in 3D [198]. In the following, we are interested in relating the parameters of
the orbital Feshbach resonance to a2D and R2D. To this end, we directly compare the low-order
energy expansion of fq2D to f2ch(E). This straightforward but tedious process can be found
in Appendix B. Here, we only present the results, i. e., the scattering length [109]

a2D
lz

=
√

�
B exp

⎡
⎢
⎢
⎣

−
√
2�

�−1− �−1+ − 1
2
F(�)

(
�−1− + �−1+

)

�−1− + �−1+ − 2F(�)

⎤
⎥
⎥
⎦

(2.28)

and the e�ective range [110]

(
R2D
lz

)
2

= ln 2 −
√
2�

[
�−1− − F(�)

]2
�t +

[
�−1+ − F(�)

]2
�s +

(
�−1− − �−1+

)2
F ′(�)

[
�−1− + �−1+ − 2F(�)

]2 . (2.29)
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Figure 2.9 | Binding energy of the quasi-2D dimer. Magnetic-field dependence of the binding energy εb

(solid line) for an e−g pair in quasi-2D, numerically calculated from the relation in Eq. (2.30). The dashed
line depicts Eb, according to Eq. (2.31), and the dotted line corresponds to the limit R2D → 0.

Here, B ≈ 0.905 [182] and F ′(x) denotes the derivative of the transcendental function F in
Eq. (2.21). The atomic properties are considered in natural units of the harmonic oscillator
with � = �∕(ℏ!z), �± = r±∕lz, and �−1± = lz∕a± − �±(1 − �)∕4, where the e�ective-range
replacement has been carried out explicitly for the low-energy limit E → 0.

We now proceed with a veri�cation of our approach describing the orbital Feshbach reso-
nance with an e�ective model. To this end, we calculate the binding energy of the two-body
bound state in the two-channel model and compare it to the solution obtained from the poles
of the full T-matrix, which can be found by solving an implicit relation for �b [109],

[2
lz
a+

− F̃(�b) − F̃(�b + �)] [2
lz
a−

− F̃(�b) − F̃(�b + �)] =
[
F̃(�b) − F̃(�b + �)

]2
. (2.30)

Here, F̃(x) = F[x∕(ℏ!z)] and numerical results from the above relation have been veri�ed
experimentally with precise spectroscopy [134].

For the two-channel model, the following form parameterizes the binding energy [198]

Eb =
ℏ2

mR2
2D
W(

R2
2D

a22D
) , (2.31)

whereW(x) denotes the LambertW function. In Fig. 2.9, we compare the numerical results
for Eb and �b, which show good agreement from intermediate to large magnetic �elds. In this
regime, the closed channel detuning � corresponds to a signi�cant fraction of the harmonic
oscillator level spacing (see dashed line in Fig. 2.9). Let us emphasize that the binding energy
disagrees in the limit R2D → 0, which underlines the importance of R2D to describe the orbital
Feshbach resonance correctly (see dotted line in Fig. 2.9).
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Figure 2.10 | E�ective model for the multiorbital Fermi polaron. (a) Illustration of the nuclear spin and
orbital degree of freedom in the multiorbital Fermi polaron problem. (b) Numerical calculation of the
spectral function A(0, E) within the 1PH approximation for the multiorbital Fermi polaron in quasi-2D.
Here, we choose a typical experimental Fermi energy EF = 0.1̄hωz. This results in kF R2D ≈ 0.7 in the
strongly interacting regime ln (kF a2D) ∼ 0. Note that a finite broadening has been applied to the spec-
trum with the replacement E → E + 0.01iEF , and the plot range is truncated. Dotted blue (red) lines
show the quasiparticle energies of repulsive (attractive) polaron for R2D = 0. This limit corresponds to
the single-channel model, as realized across a broad Feshbach resonance.

In conclusion, we have derived the e�ective quantities a2D and R2D for the two-channel
model in a purely 2D geometry. These parameters now simplify the description of the two-body
problem for the orbital Feshbach resonance in quasi-2D. Next, we employ this result to �nd
the self-energy in the (N + 1)many-body problem, namely, the multiorbital Fermi polaron.

2.3.3 The multiorbital Fermi polaron
In the following, we consider a single |e ↓⟩ impurity immersed in a Fermi sea of |||g ↑⟩ atoms,
as illustrated in Fig. 2.10(a). This Fermi polaron occupies the open channel |o⟩ and has been
termedmultiorbital to emphasize the presence of an orbital degree of freedom. Thismultiorbital
nature can signi�cantly alter the quasiparticle properties, as we will explore experimentally
in Chapter 3 (see Section 3.6). Here, we discuss the theoretical description of this polaron
within the e�ective model introduced in the previous section. As �rst shown in Ref. [110],
this relatively simple approach leads to almost identical results as the full many-body T-matrix
theory [109] with the added bene�t of simpli�ed (numerical) calculations.

Again, we calculate the self-energy within Chevy’s variational ansatz in Eq. (2.2). For
the two-channel Hamiltonian in Eq. (2.26), the minimization of the corresponding energy
functional yields the following implicit equation describing the energy of the Fermi polaron
at zero momentum [197],

E =
∑
q<kF

⎡
⎢
⎢
⎣

E − � + ℏ2q2∕(4m)
g2

+
Λ∑

k>kF

1

−E + (2m)−1
[
ℏ2k2 − ℏ2q2 + ℏ2(k − q)2

]
⎤
⎥
⎥
⎦

−1

. (2.32)



2.3 The quasi-two-dimensional regime 45

For the two-channel model, the relation between the coupling constant g, the channel detun-
ing � and the bound-state energy Eb from Eq. (2.31) is given by the relation [198]

− �
g2

=
Eb
g2

−
Λ∑
k

1
ℏ2k2∕m + Eb

. (2.33)

Using ℏ ≡ 1 and R2
2D = 4�∕(m2g2) [198], we �nd the following expression for the self-energy

in the thermodynamic limit (see Appendix A.4),

Σ(0, E)
EF

= 2

1∫
0

dy { (kFR2D)
2 ( E

2EF
+
y
4 +

Eb
2EF

) + ln (
Eb
EF

) − ln [E′ −
y
2 ±

√
E′2 − y] }

−1

,

(2.34)

where E′ = 1 − E∕(2EF), ± = sgnReE′, and Eb can be obtained from Eq. (2.31). Note that
in the limit R2D → 0, we recover the single-channel result from Eq. (2.14). Figure 2.10(b)
depicts the spectral function A(0, E) calculated for the parameters of the orbital Feshbach
resonance. Compared to the quasiparticle energies of the single-channel model, we �nd a
signi�cant deviation in the regime of strong interactions with ln (kFa2D) ∼ 0, which underlines
the relevance of the e�ective two-channel model for the multiorbital Fermi polaron.

The above results �nalize our discussion of the theoretical framework for the description
of Fermi polarons in ultracold quantum gases and, speci�cally, in orbital mixtures of 173Yb.
Having introduced all relevant experimental quantities and the theoretical description in terms
of the 1PH approximation both for the single- and two-channel model, we continue with the
experimental techniques and measurements in the next chapter.



CHAPTER 3

Multiorbital polarons in
two-dimensional Fermi gases

This chapter presents the experimental observation of attractive and repulsive Fermi polarons
in a multiorbital two-dimensional quantum gas of 173Yb atoms. In particular, we present
measurements of the various quasiparticle properties, i. e., the quasiparticle energy, residue, and
repulsive polaron lifetime. First, the key techniques are explained that enable the preparation
of population imbalanced mixtures in two nuclear spin states of the ground state. Then, we
show how the combination of high-resolution absorption imaging and careful modeling allows
us to precisely determine the relevant properties of this initial state. Finally, we present the
detailed measurement procedures for the multiorbital Fermi polaron in two dimensions and
compare the experimental results to theoretical calculations discussed in the previous chapter.
The central �ndings of this chapter have been published in Ref. [109].

3.1 Population-imbalanced multiorbital Fermi gases
In the following, we �rst give a brief overview of the complete experimental sequence and
then explain the most relevant steps in detail. Our state preparation for the Fermi polaron
measurements is based on the procedures described in Chapter 1 (see Section 1.4.1) but in-
cludes certain re�nements.

The experiment begins with loading a non-degenerate Fermi gas of ≈ 2.5 × 106 173Yb
atoms into a crossed optical dipole trap (ODT) operated at the wavelength � = 1064nm. Ini-
tially, the atoms are equally distributed across the six di�erent nuclear spin states mF ∈
{−5∕2, −3∕2, … , +5∕2}. To probe the Fermi polaron, we require a strongly spin-imbalanced
Fermi gas, which we prepare by optical pumping, as explained in Section 3.1.1. We �rst perform
forced evaporative cooling in the crossed ODT, and for the �nal stage, we employ another
crossed optical dipole trap operated at the magic-wavelength �m ≈ 759.4nm. At the end of
the evaporative cooling sequence, we produce an array of quasi-two-dimensional systems
by loading ≈ 50 × 103 atoms at a temperature ≈ 0.2TF (Fermi temperature TF) into a deep
single-axis optical lattice. Having completed the state preparation, we transfer atoms into
the strongly interacting regime with an excitation pulse addressing the clock transition (see
Section 3.1.3). By ramping the magnetic �eld close to the location of the orbital Feshbach
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Figure 3.1 | Preparation of spin-imbalanced mixtures. (a) (Le�) Illustration of the top and bottom
beams driving the σ± transitions for optical pumping. (Right) Relevant nuclear spin states in the 1S0
(F = 5∕2) and 3P1 (F = 7∕2) manifolds are shown as solid black lines. States populated at the end of
evaporative cooling are highlighted in yellow. Blue (red) arrows show the optical pumping pulses driv-
ing σ+ (σ−) transitions. The gray wavy lines indicate the relevant decay channels. (b) Distribution of
atoms across di�erent mF states a�er evaporative cooling, detected with optical Stern-Gerlach separa-
tion [199] for (le�) a balanced spin-mixture and (right) the spin-imbalanced sample in mF = −3∕2,+5∕2
a�er applying the preparation sequence illustrated in panel (a).

resonance, we set the desired �nal-state interaction strength before the clock pulse. Finally,
resonant absorption imaging yields the state-resolved in-situ atomic density, providing our
primary source of information to compare experimental results and theoretical predictions.

3.1.1 Producing spin-imbalanced mixtures
Optical pumping techniques allow us to prepare spin imbalance between themF = −3∕2 (mi-
nority, denoted |||g 0⟩) andmF = +5∕2 (majority, denoted |||g ↑⟩) atoms in the 1S0 ground state.
These spin-imbalanced mixtures are characterized by the minority fraction N−3∕2∕(N−3∕2 +
N+5∕2) ≈ 0.2. We perform the optical pumping on the 1S0 →

3P1 intercombination line be-
tween the F = 5∕2 and F = 7∕2 manifolds at a magnetic bias �eld of ≈ 50G. This ensures
that the di�erentmF → mF±1 transitions are split su�ciently. To drive �+ and �− transitions,
we employ two individual laser beams, as illustrated in Fig. 3.1(a). Five sequential intensity-
stabilized pulses prepare the desired spin ratio by transferring a large fraction of atoms initially
in mF = −5∕2, −1∕2 to the target state mF = −3∕2. The remaining atoms are distributed
non-uniformly across the other nuclear spin states to yield the desired imbalance of approxi-
mately 1∶4 betweenmF = −3∕2 and +5∕2 at the end of evaporative cooling [see Fig. 3.1(b)].

We perform the optical pumping sequence at the beginning of the experiment, and the
spin mixture is subsequently cooled to quantum degeneracy by forced evaporation. This avoids
heating the gas in the degenerate regime, where a signi�cant temperature increase can be
caused by dissipative techniques such as optical pumping. On the other hand, preparing a spin
imbalance early in the experimental sequence can be challenging as the subsequent evaporative
cooling introduces non-linearities, enhancing the initial imbalance. This e�ect originates from
a higher probability of a collision between a low-momentum minority and a high-momentum
majority atom compared to the reversed process. While the non-linearities make it particularly
challenging to robustly prepare extreme spin imbalances with minority fractions≪ 0.15, we
can also improve the e�ciency of evaporative cooling by initially populating additional spin
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Figure 3.2 | Optical potentials for the quasi-two-dimensional geometry. Illustration of the Gaussian
laser beams which generate the trapping potential in the experiment. The red lines and circles indicate
the beam diameters (twice the waist). (a) Geometry of the laser beams in the imaging plane (x-y). For
the optical lattice, every 50th lattice plane is indicated with a horizontal line. The small blue ellipsis at
the center corresponds to a typical size of the atomic cloud. (b) Geometry of the laser beams in the (w-z)-
plane with the w-axis defined in panel (a). For comparison, the ellipse at the center indicates the beam
diameter of the optical lattice shown along its transverse plane [not the (w-z)-plane].

states. For an appropriate initial population ratio, the evaporative cooling results in a deeply
degenerate two-component mixture with the desired imbalance and no signi�cant population
of other nuclear spin states. We optimize this process iteratively while monitoring the overall
atom number, the spin imbalance, and the temperature.

3.1.2 Preparing quasi-two-dimensional ensembles
After the optical pumping procedure and the evaporative cooling of the spin mixture in the
optical dipole trap, the geometry of the system is still three-dimensional. To achieve the desired
quasi-two-dimensional geometry, we load the atoms into a single-axis optical lattice. At the
same time, we employ the crossed magic-wavelength optical dipole trap (mODT) to con�ne
the relatively heavy 173Yb atoms against the gravitational potential. The crossed mODT is com-
posed of two independent horizontal and vertical Gaussian laser beams with their orientation
approximately parallel and perpendicular to the plane of the optical table (see Fig. 3.2). The
horizontal mODT beam is strongly elliptical with waists ≈ 110 µm (horizontal) and ≈ 20 µm
(vertical) at the location of the atoms, which produces particular strong con�nement against
gravity. The vertical mODT beam encloses an angle of ≈ 20◦ with the gradient of the grav-
itational potential, and the projected in-plane beam waists are nearly equal with ≈ 80 µm
and ≈ 70 µm. At the end of the evaporative cooling in the crossed mODT, the trap depth is
increased with an s-shaped 600ms long ramp to compress the gas and avoid further undesired
evaporation. At this point and before loading the optical lattice, the approximate con�nement is
given by the harmonic trapping frequencies !w, !v, !z ≈ 2� × (50, 70, 230)Hz [see Fig. 3.2(a)
for axes]. These trapping frequencies are measured by �rst exciting the dipole mode with a
sudden displacement of the trap center, and then recording the center-of-mass oscillations.
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The �nal step of the state preparation procedure is the loading of the optical lattice generated
by retro-re�ecting a monochromatic laser beam with waists ≈ 150 µm× 40 µm [132]. This
results in an array of lattice planes spaced d = �m∕2 ≈ 380nm apart, which are staggered since
the lattice and horizontal mODT beams enclose an angle of ≈ 45◦. However, the staggered
arrangement does not pose a signi�cant issue for our measurements, which typically only
consider a few central layers (see Section 3.2). We employ two consecutive s-shaped ramps with
duration 120ms and 500ms to load the atoms into the optical lattice. The initial setpoint of
3Erec (recoil energy Erec = ℎ × 2.0 kHz) allows thermalization of the system as atoms still hop
between adjacent lattice layers with rate t∕ℎ ∼ 200Hz. Subsequently, we increase the depth
to 85Erec, where the hopping of atoms between individual lattice planes is e�ectively frozen
out (t∕ℎ ∼ 1mHz). The lattice loading is not fully adiabatic, which we probe by ramping the
lattice back down and comparing the temperatures before loading and after unloading. We
�nd a small temperature increase of ∼ 0.05TF , and hence we assume that the induced heating
is negligible for our initial temperatures ≈ 0.2TF .

The optical lattice produces an ensemble of uncoupled quasi-2D systems, which provide
the starting point for our Fermi polaron measurements. Each layer of the optical lattice is fully
characterized by the transverse and axial trapping frequency both equally important for the the-
oretical description of the medium in the Fermi polaron problem. Typical trapping frequencies
in the experiment are (!x, !z) ≈ 2� × (65, 250)Hz, corresponding to an asymmetric con�ne-
ment of the atomic cloud. The axial trapping frequency is determined by the depth of the optical
lattice, which we determine with lattice modulation spectroscopy. Since our theoretical de-
scription generally employs a harmonic potential, we expand the sinusoidal lattice potential up
to second-order. This yields the trapping frequency !y = 2(Erec∕ℏ)

√
V0∕Erec ≈ 2� × 37 kHz

for the typical lattice depth V0 ≈ 85Erec. For the description of the experiment, the y-axis
de�nes the strongly con�ned direction contrasting our theoretical description in Chapter 2,
which has employed the z-axis for this purpose.

3.1.3 Populating the second orbital
To probe the Fermi polaron at variable interaction strength across the orbital Feshbach reso-
nance, we �rst have to populate the clock state orbital in addition to the ground state orbital.
In general, we transfer the minority atoms from the initial weakly interacting ground state |||g 0⟩
(mF = −3∕2) to the strongly interacting |e ↑⟩ (mF = −5∕2) clock state. At zero magnetic �eld,
the transition energies between the six di�erent nuclear spin states in the ground and clock
state are degenerate. Figure 3.3(b) shows how the (di�erential) Zeeman shift lifts this de-
generacy at �nite magnetic �eld, as discussed in Chapter 1 (see Section 1.2.3). The number
of transitions addressed with the light from the clock laser can be limited by choosing an
appropriate polarization of the clock laser beam. For our measurement, the clock laser beam
is linearly polarized with the electric �eld perpendicular to the quantization axes. In this way,
the beam addresses both �± transitions [see Fig. 3.3(a)], and we couple atoms initially in |||g 0⟩
to the �nal state in |e ↑⟩ by choosing the detuning of the �− transition. However, a minimum
magnetic bias �eld is required to ensure that the other transitions of both |||g 0⟩ (minority)
and |||g ↓⟩ (majority) are su�ciently detuned and can be neglected. In Fig. 3.3(c), we show
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Figure 3.3 | Clock-line excitation scheme. (a) (Le�) Schematic of the clock laser beam (yellow arrow)
alignment relative to the planes of the optical lattice (gray ellipses). Black arrows indicate the wave vec-
tor k, the unit vector of the electric field E , and the quantization axes determined by the magnetic bias
field B. (Right) Relevant nuclear spin states in |||g⟩ and |e⟩ at finite bias field are shown as solid black
lines. Here, the thick red arrow corresponds to the σ+ transition between the weakly interacting initial
state in |||g 0⟩ (mF = −3∕2) and the strongly interacting state in |e ↓⟩ (mF = −5∕2). The remaining arrows
correspond to the (undesired) coupling of other accessible transitions. Note that the π-transitions are
generally strongly suppressed by choosing the correct polarization. (b) Detuning of the accessible tran-
sition relative to the mF = −3∕2 → −5∕2 transition for variable magnetic field strength.

the detuning of all relevant transitions. On this basis, we estimate that a bias �eld ∼ 10G
already su�ciently splits the transitions for small Rabi frequencies Ω ≲ 2� × 1 kHz employed
in typical spectroscopy experiments.

Our optical traps are operated at the magic-wavelength, where the ac Stark shifts of the |||g⟩
and |e⟩ states are identical, which avoids inhomogeneous broadening due to the trapping
potential (see Section 1.3 in Chapter 1). In strong contrast to rf spectroscopy with alkali
atoms, the coupling between weakly and strongly interacting impurity states is provided by an
optical transition. This implies that a photon driving the excitation transfers a non-negligible
recoil momentum onto an atom, given by the energy E578nm

rec = ℎ × 3.5 kHz, and comparable
to typical Fermi energies in the system. To avoid this transfer of kinetic energy, we use a
clock laser beam co-aligned with the propagation direction of the laser beams generating
the optical lattice, as shown in Fig. 3.3(a). In this con�guration, the gap of the lowest-lying
energy eigenstates far exceeds E578nm

rec , which allows recoil-free spectroscopy in the Lamb-
Dicke regime [31]. Any �nite (residual) angle between clock laser and lattice beam results
in a projection of the photon recoil along the weakly con�ned transverse axes of the optical
lattice. However, we estimate this angle to be below 0.03 rad which results in a negligible
transferred recoil energy of only ≈ ℎ × 2Hz ≪ ℏ!x, ℏ!z.

3.2 Characterization of the initial state
Before turning to the experimental results for the multiorbital Fermi polaron, we explain
the characterization of the initial state. This is a crucial step since the medium determines
the dominant energy scale and key properties of the many-body problem. The initial spin-
imbalanced Fermi gas occupies the electronic ground state and is distributed across the two
spin statesmF = −3∕2 (minority, |||g 0⟩) andmF = +5∕2 (majority, |||g, ↑⟩). We primarily analyze
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Figure 3.4 | Determination of the minority fraction. (a) (Le�) Illustration of the “push” laser beam ori-
entation relative to the atoms. (Right) Relevant nuclear spin states of the 1S0 and 3P1 manifold are shown
as solid black lines, where the state addressed by the “push” beam are highlighted in yellow. The gray
wavy lines indicate the relevant decay channels. The blue circle in the mF = −3∕2 state illustrates the
remaining minority component a�er the removal of atoms in mF = +5∕2. (b) Exemplary column density
of (le�) all ground-state atoms in |||g⟩ and (right) only the minority atoms in |||g 0⟩, recorded with absorp-
tion imaging before and a�er applying the “push” pulse. Here, the total atom number is Ng ≈ 58 × 103

with a minority fraction N0∕Ng ≈ 22%.

the properties of this initial state with absorption imaging of the atomic in-situ density. Since
our imaging on the broad 1S0 →

3P0 transition does not resolve individualmF states, another
technique is required to record the density of both spin states independently. To this end, we
apply a resonant “push” pulse that addresses the stretched mF = +5∕2 → +7∕2 transition
on the intercombination line at a magnetic bias �eld of 50G. This stretched transition is
essentially closed and allows continuous scattering of photons and transfer of recoil energy
onto the atoms during the 0.25ms long pulse [see Fig. 3.4(a)]. Eventually, the addressed atoms
are “pushed” out of the trap and the population in the remaining spin state can be imaged
after a short hold time of ≈ 5ms. This technique allows us to determine the density of majority
and minority atoms together (denoted |||g⟩) and of minority atoms alone (denoted |||g 0⟩) with
two consecutive experimental shots, as shown in Fig. 3.4(c). From these results, we determine
the minority fraction N0∕Ng across the (x-y)-plane, which provides the starting point for the
description in terms of e�ective parameters.

3.2.1 E�ective parameters

We now derive e�ective quantities, namely, the Fermi energy �F and the Fermi wave vector �F ,
that correspond to equivalent parameters in a homogeneous system. This is a necessary step
since our theoretical description in Chapter 2 assumes a homogeneous Fermi gas.

In the experiment, we prepare an ensemble of quasi-2D systems in the optical lattice and
the underlying harmonic con�nement along the y-axis leads to a signi�cant variation of atom
numbers in each of these systems. In Figs. 3.5(a) and 3.5(b), we show the atomic in-situ density
together with the inferred distribution of atoms across the di�erent layers of the optical lattice
determined with the “push” beam technique discussed above. To increase our measurement
�delity, we only consider ≈ 15 layers of the optical lattice close to the atomic cloud center,
which are indicated in Fig. 3.5. In this region, the atomic density and the minority fraction
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Figure 3.5 | Atomic distribution across layers of the optical lattice. Key properties of the atomic distri-
bution in each lattice layer determined from averaging eight measurements of the in-situ density with
the total atom number Ng ≈ 39 × 103. Note that the “push” beam technique has been employed to de-
termine the atom count of the minority component independently. Here, d = λm∕2 denotes the spacing
of the optical lattice along y. Shaded areas correspond to estimated uncertainties and the red hatching
indicates the region typically sampled in the experiment (size≈ 5.6 µm × 15d). (a) Averaged density dis-
tribution obtained from individual absorption images. (b) Atom count in the layers of the optical lattice
for all atoms (|||g⟩, dark-blue line) and minority atoms (|||g, 0⟩, light-blue line). (c) Minority fraction N0∕Ng

and (d) majority Fermi energy EF defined in Eq. (3.4).

are nearly constant (standard deviation < 5%), and our experiment essentially probes multiple
identical copies of the same system [see Fig. 3.5(a)].

Therefore, only a single quasi-2D system is considered for the description of the minority
and majority component. In the following, we assume that only the ground band of the
optical lattice is occupied, and the harmonic in-plane potential restricts the momentum of
each atom to two dimensions,

U(r) = 1
2m

(
!2
xr2x + !2

zr2z
)

(3.1)

with coordinate r = (rx, rz), the massm of a 173Yb atom, and trapping frequencies (!x, !z). We
describe the system in the local density approximation of a non-interacting ideal Fermi gas with
a phase-space distribution of each component according to the Fermi-Dirac distribution [200],

f(r, p) =
{
e�[p2∕2m+U(r)−�] + 1

}−1
. (3.2)

Here, p = (px, pz) denotes the momentum, and � = 1∕(kBT) with the temperature T. Note
that we neglect the gravitational potential, which leads to a small displacement of the atomic
cloud along the z-axis. The chemical potential � is �xed by the total atom number N ac-
cording to the relation [200]

N = 1

(2�ℏ)2

∫
drdpf(r, p) =

∫ ∞

0
dE

�(E)
e�E∕z + 1

(3.3)

with the fugacity z = e�� and �(E) = E∕(ℏ2!z!y) the density of states of the two-dimensional
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harmonic oscillator [201]. The Fermi energy EF corresponds to the chemical potential at zero
temperature and can be obtained from the above relation,

EF = ℏ
√
2N!x!z. (3.4)

In Fig. 3.5(a), we show EF across the di�erent layers of the optical lattice in a typical experi-
mental realization. Finally, integrating Eq. (3.2) over momentum p yields the in-plane density

n(r) = − m
2�ℏ2�

Li1
[
−ze−�U(r)

]
(3.5)

with polylogarithmLi1(z) = − ln(1 − z). The inhomogeneous in-plane density n(r) now allows
us to relate properties locally to an ideal and homogeneous Fermi gas in 2D. In this case, the
Fermi energy EF (≠ EF) is related to the density n through EF = ℏ2∕(2m) × (4�n) [202]. Thus,
we de�ne the local Fermi energy and wave vector,

EF(r) =
ℏ2
2m [4�n(r)] and kF(r) =

√
4�n(r) (3.6)

with the local density n(r) given by Eq. (3.5).
Our imaging intrinsically integrates over the z-axis of the system, which always yields a

�nite range of majority density sampled by the minority atoms. However, we do restrict the
imaging along x to a ∆x = 5.6 µmwide central region [see Fig. 3.5(a)] to minimize the sampled
inhomogeneity. For this region, we can calculate an e�ective Fermi energy �F of the medium
(majority component) sampled by the impurities (minority component). Combining Eqs. (3.5)
as well as (3.6) and integrating along the x- and z-axis yields

�F =
1

N0(∆x)

∆x∕2∫
−∆x∕2

drx

∞∫
−∞

drz n0(r) E↑F(r) =
1

N0(∆x)
ℏ2
2m 4�

∆x∕2∫
−∆x∕2

drx

∞∫
−∞

drz n0(r) n↑(r) (3.7)

withN0(∆x) =
∫ ∆x∕2
−∆x∕2 drx

∫∞
−∞ drz n0(r) and n0 (n↑) referring to the density of theminority |||g 0⟩

(majority |||g ↑⟩) component. For our parameters, �F ≈ 0.8 EF < EF due to �nite temperature
and the non-negligible size of the sampling region, as illustrated in Fig. 3.6. We note that the
dependence of �F on the temperature andminority fraction is relativelyweak and approximately
linear in our regime of interest with approximate slopes )(T∕TF)�F ∼ −1 and )C�F ∼ −0.2,
respectively. In analogy to Eq. (3.7), the standard deviation ∆�F can be determined to quantify
the width of the underlying distribution, which is typically given as ∆�F ≈ 0.2�F . From the
e�ective Fermi energy �F , we also calculate the e�ective Fermi wave vector �F =

√
2m�F∕ℏ.

The quantities obtained in the above calculations now allow us to apply the theory to the
experiment, as �F , �F , and the magnetic �eld, fully de�ne the Fermi polaron problem. We refer
the interested reader to Appendix C for a derivation of the quantities discussed in this section.

3.2.2 In-situ thermometry
To fully characterize the initial state, we also measure the temperature by �tting the in-situ
distribution of the atoms. The orientation of our imaging system averages the atomic den-
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Figure 3.6 | E�ective Fermi energy sampled by the minority component. Here, we show data for typ-
ical experimental parameters in a single layer of the optical lattice with N = 600 atoms, temperature
T∕T F = 0.15, minority fraction of 20%, and sample region ∆x = 5.6 µm (red hatching). (a) (Top) In-plane
density n(r) = n(x, z) in atoms∕µm2 of majority |||g ↑⟩ and minority |||g 0⟩ atoms from a theoretical calcu-
lation according to Eq. (3.5). (Bottom) Column density retrieved from integrating the in-plane density
in panel (a) along the line of sight (z-axis)—analogous to absorption imaging in the experiment. (b) Ef-
fective Fermi energy εF (solid black line) and standard deviation ∆εF (dashed black line, right axes) for
variable size of the sample region ∆x. The yellow star indicates the typical size of this region, and the
inset shows the binned distribution of εF along z for that point.

sity along the z-axis resulting in a column density, which can be described theoretically by
integrating Eq. (3.5),

cd(rx) =
∫ ∞

−∞
drz n(r) = −

√
m
2�

1
ℏ2�3∕2!z

Li3∕2
(
−ze−�m!

2
xx2∕2

)
. (3.8)

This result yields the fugacity z of an ideal single-component Fermi gas after numerically �tting
the in-situ column density. Also, the reduced temperature T∕TF = kBT∕EF can be obtained
from the fugacity z (see Appendix C). In contrast to the above considerations, we prepare a
spin-imbalanced Fermi gas with weak interactions, and therefore, we expect a systematic error
when �tting Eq. (3.8) to the density of the sample. Nevertheless, we �rst proceed with this
simple approach and then later discuss potential shortcomings of our method.

We record the in-situ column density of all ground-state atoms (minority and majority
component) and �t Eq. (3.8) along the x-axis for each pixel row obtained from the camera,
as shown in Fig. 3.7(a). This technique allows us to obtain �ts of the reduced temperature
averaged across a few adjacent layers of the optical lattice [see Fig. 3.7(b)].1 In general, we
expect the absolute temperature T across the di�erent layers of the optical lattice to be approxi-
mately constant. This assumption is veri�ed by comparing the �tted values to the expected
scaling T∕TF ∝ 1∕

√
N with the number of atoms N in each layer. Here, the reduced temper-

ature is expected to increase at the edges of the system, |y| ≫ 10d, where the atom number
and Fermi energy EF are signi�cantly lower. While the data in Fig. 3.7(b) exhibits fairly large
�uctuations, the expected scaling is still qualitatively reproduced. For the outermost regions,

1Our �nite imaging resolution ≈ 3 µm causes an e�ective averaging across approximately ten adjacent layers.
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Figure 3.7 | Thermometry in the optical lattice. (a) Typical temperature fit [blue line, T∕T F = 0.19(3)]
of Eq. (3.8) at a distance of ≈ 20d from the center of the cloud (dashed line in the inset). Here,
d = λm∕2 ≈ 0.38 µm denotes the lattice spacing. Data points are averaged between the le� and right
halves of the system. For comparison, we also show a Gaussian fit (gray line) corresponding to a Maxwell-
Boltzmann distribution (high-temperature limit). (b) Temperatures extracted from eight individual ab-
sorption images and averaged for constant distance from the center. Data points spaced less than 3d are
binned. The dashed line indicates the expected scaling of the reduced temperature (guide to the eye).
Red hatching indicates the region typically sampled in the experiment. (c) Histogram of temperatures
extracted from individual numerical fits shown in panel (b) restricted to the sampled region. The blue
line corresponds to a Gaussian fit with mean (standard deviation) T∕T F = 0.14(3).

we detect an increase of T∕TF up to a factor of two [not shown in Fig. 3.7(b)]. In the central
region considered for measurements, we typically extract a reduced temperature T∕TF ≈ 0.15
[see Fig. 3.7(c)] corresponding to kBT∕�F ≈ 0.2, which considers the typical e�ective Fermi
energy sampled by the minority atoms.

We now turn to the discussion of the systematic errors in the thermometry technique dis-
cussed above. Since our sample is strongly spin-imbalanced with a typical ratio of 1∶4 between
the two components, already a non-interacting Fermi gas would feature an overall modi�ed
density pro�le. This regime can be explored by summing the theoretical non-interacting density
across both components and numerically �tting the resulting pro�le with Eq. (3.8), which
yields overestimated temperatures. To probe for such an e�ect in the experiment, we compare
the extracted temperatures for di�erent minority fractions, which vary naturally between
layers of the optical lattice [see Fig. 3.5(c)]. However, we do not detect a systematic increase
of the extracted temperature. We attribute this observation to the presence of weak repulsive
interactions that reduce the central density [75]. This leads to an additional deformation of
the density pro�le, potentially canceling the e�ect of the spin imbalance.

The “push” pulse technique discussed earlier gives access to the density of the minority
fraction. When extracting the temperature from the minority density across the central layers
of the optical lattice, we �nd reduced temperatures ≈ 0.4 corresponding to T∕TF ≈ 0.2 for the
majority component. We additionally verify our results by simulating the lattice loading under
the assumption of constant entropy of initial and �nal state (see Section 5.2.1 in Chapter 5).
This procedure suggests a reduced temperature T∕TF ≈ 0.2 in the central layers of the optical
lattice for typical initial temperatures in the optical dipole trap.

The presence of the spin imbalance and our analysis indicate that our temperature estimates
are most likely biased towards lower temperatures. However, the magnitude of this systematic
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Table 3.1 | Typical parameters of a single quasi-2D system in the experiment

Trapping frequency (2π × Hz) Atom count Medium (majority component, ↑)

ωx ωy ωz N↑ N0∕Ng EF εF ∆εF kBT∕εF

65 37 × 103 250 600 20% h × 4.4 kHz 0.8EF 0.2εF 0.2

Estimated trap and medium properties in a single layer of the optical lattice with the majority (minor-
ity) atom count N↑ (N0), total atom count Ng, Fermi energy EF , e�ective Fermi energy εF , standard devia-
tion∆εF , and temperature T . Note that the interaction parameter ln (κF a2D) can be tuned relatively freely
by utilizing the orbital Feshbach resonance.

error should only have a minor e�ect on the relevant parameters for the Fermi polaron. The
temperature measurements complete our description of the initial state, and we summarize
the estimated typical parameters of our experimental system in Table 3.1.

3.3 Inverse clock-line spectroscopy
Two spectroscopic techniques have been established to probe the Fermi polaron experimentally:
Direct spectroscopy or spin ejection describes the preparation of an equilibrium state at variable
interaction strength followed by a subsequent outcoupling of the impurity into a weakly
interacting state [71]. Quasiparticle properties can then be inferred from measurements of
energies with respect to that state while modifying the interaction strength in the initial state.
For a low-temperature medium, this procedure only allows probing states close to the ground
state, and excited states like the repulsive Fermi polaron cannot be directly accessed. In
contrast, inverse spectroscopy or spin injection describes the preparation of a weakly interacting
initial state of impurity and medium [73].2 Subsequently, the impurity is coupled to a state
strongly interacting with the surrounding medium. This method also gives access to excited
states since the coupling process can transfer energy and the �nal state is not necessarily in
thermal equilibrium. In our experiment, we employ the inverse spectroscopy technique to
probe the energy landscape of the multiorbital Fermi polaron. Here, the clock laser excitation
couples the initial weakly interacting impurity state |||g 0⟩ and the strongly interacting �nal
state |e ↓⟩, as illustrated in Fig. 3.8.

3.3.1 Initial-state interactions
Before describing the experimental results, we brie�y discuss the weak but �nite interactions
in the initial state. The scattering length between the ground-state atoms in the initial state has
a signi�cant value with agg ≈ 199.4a0 (see Table 1.1 in Chapter 1). We consider the impurities
in the |||g 0⟩ initial state to form weakly interacting repulsive Fermi polarons, which can be
described by the single-channel theory introduced in Chapter 2 (see Section 2.2). To this end,

2A recent theoretical study has identi�ed a relatively simple relation between the injection and ejection spectra
in the limit of a single impurity [193].
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we �rst determine the scattering length of two ground-state atoms for our typical experimental
parameters with the harmonic oscillator length ly ≈ 750a0 [see Eq. (2.20) in Chapter 2],

agg,2D = ly
√

�
0.905 exp (−

√
�
2
ly
agg

) ≈ 12.5a0. (3.9)

Combining this result with the e�ective Fermi wave vector �F ≈ 11 µm−1 yields the interaction
parameter ln

(
�Fagg,2D

)
= −4.9(1). At zero temperature and zero momentum, we �nd the

approximate energy of the repulsive polaron in |||g 0⟩, E0
+∕�F = −1∕ ln

(
�Fagg,2D

)
≈ 0.2 (see

Section 2.2.2 in Chapter 2). We will employ this energy value in the following measurements
to correctly determine the quasiparticle energy in the �nal state.

3.3.2 Transfer rates

In the experiment, we couple a single particle state to many-body states, i. e., the attractive and
repulsive polaron, as well as the molecule-hole continuum. The transfer rate into these �nal
many-body states depends on the laser detuning ∆! and the interacting strength determined
by the magnetic �eld B [66],

I(!0 + ∆!; B) ∼
∫
dp

∫
dE F(E)A0(p, E)A↓(p, E + ℏ∆!; B). (3.10)

Here, !0 denotes the clock transition frequency at the given magnetic �eld, F(E) corresponds
to the Fermi-Dirac distribution. Finally, A0 and A↓ are the spectral functions in the initial |||g 0⟩
state and �nal |e ↓⟩ state, with the latter strongly depending on the magnetic �eld due to the
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presence of an orbital Feshbach resonance. For a �xed-duration laser pulse,3 the number of
atoms transferred into the �nal state is directly proportional to I(!0 + ∆!; B). Note that the
above relation only applies to the regime of linear response with a vanishing small population
in the �nal state |e ↓⟩. We assume A0(p, E) ≈ �

[
E − E0

+ − p2 ∕(2m)
]
with the Dirac delta

distribution �(x), an approximation for the only weakly interacting initial state |||g 0⟩ (see
Fig. 3.8). With this assumption, we estimate the transfer rate,

I(!0 + ∆!; B) ∼
∫
dpf

[
E0
+ + p2 ∕(2m)

]
A↓

[
p, E0

+ + p2 ∕(2m) + ℏ∆!; B
]

≈ A↓
[
p, E0

+ + p2 ∕(2m) + ℏ∆!; B
]
.

(3.11)

In the second approximation, we assume that the spectral function is a constant function
of its argument p, which holds strictly only for vanishing momentum or, in practical terms,
for a single impurity. In the limit of our approximations, the weak initial-state interaction
leads to an energy shift ∼ E0

+. The approximation in Eq. (3.11) allows us to relate the mea-
sured transfer rate or atom count in an inverse spectroscopy experiment to the theoretically
calculated A↓(p, E; B). Therefore, the inverse spectroscopy experiment can be identi�ed as
an approximate measurement of the spectral function.

3.3.3 The many-body spectrum
First, we ramp the magnetic �eld to a value in the range 15G ≤ B ≤ 225G to set the desired
interaction parameter −1.1 ≤ ln (�Fa2D) ≤ 5. We then drive the �− clock transition with a
rectangular-shaped laser pulse of duration 2.4ms, corresponding to a �-pulse of a free particle
without the medium and a Fourier-limited energy resolution of ≈ 0.1�F . This pulse transfers
a small fraction of the minority component in |||g 0⟩ to the clock state in |e ↓⟩, which we sub-
sequently detect. To this end, we �rst remove all remaining atoms in |||g 0⟩ and the majority
component in |||g ↑⟩ by o�-resonantly addressing the broad 1S0 →

1P1 transition with a high-
power “push” pulse. Then, the magnetic �eld is rapidly lowered to 1G by turning o� the power
supply driving the large-current coils. To ensure that any residual �eld from Eddy currents has
su�ciently decayed, a wait time of≈ 10ms is introduced before the excited state detection. The
atoms transferred into the clock state |e ↓⟩ are detected by �rst transferring them back to the
ground state with a 0.3ms long repumping pulse on the 3P0 →

3D1 transition. Subsequently,
the atomic in-situ density distribution is recorded via absorption imaging, which yields the
approximate in-situ density and number of transferred atoms.

Spectrum and line shapes.—As discussed in Section 3.2.1, the experimental data is only
evaluated in a small region close to the cloud center. This allows us to limit the inhomogeneous
broadening ∼ 0.2�F due to varying density across the harmonic trap. Figure 3.9 depicts the
recorded raw spectra from this region at selected magnetic �elds and variable clock laser
detuning relative to the transition of a free particle. At negative detuning, we �nd a peak
at energies that strongly decrease for lower magnetic �elds. Moreover, the width increases
signi�cantly as well until the peak is merely a single broad feature. At positive detuning,

3Here, we neglect the �nite pulse duration which leads to a convolution of the transfer rate with the Fourier
transform of the pulse shape.
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Figure 3.9 | Raw spectra of attractive and repulsive Fermi polaron. Number of atoms detected in |e⟩
(colored circles) for variable detuning of the clock laser and interaction set by the magnetic field B. Here,
we show the parts of the spectrum corresponding to the (a) attractive and (b) repulsive Fermi polaron.
This measurement is characterized by the e�ective Fermi energy εF = h × 3.7(2) kHz, (e�ective) minor-
ity fraction 0.26(2), temperature kBT∕εF = 0.17(3), and clock-laser drive strength h̄Ω ≈ 0.1εF . The solid
lines show a numerical fit of the skew normal distribution [203] with the black triangles and dotted lines
indicating the maximum. Each point corresponds to the average of three individual measurements with
the standard error of the mean comparable to the marker size. The top panels show sample in-situ im-
ages (averaged) of the (a) B = 210 G and (b) B = 20 G datasets. The red rectangle indicates the region
considered for the counts shown in the main panels. The displacement of this region is chosen to match
the e�ective Fermi energy of the measurements discussed in following sections.

we �nd a similar peak but at an energy that only weakly increases with the magnetic �eld,
although the shape of the peak broadens in the same manner. As discussed below, the two
peaks can be associated with the attractive and repulsive polaron.

The shape of the features can be reasonably reproduced with an asymmetric Gaussian
shape, as demonstrated by the numerical �ts in Fig. 3.9. Interestingly, the in-situ density allows
us to partly reveal the origin of the strongly asymmetric line shapes. The apparent width of
the recorded density changes from narrow to wide when scanning the detuning across the
peak [see top panels from left to right in Figs. 3.9(a) and 3.9(b)]. The variable width of the
density can be understood when considering that at a given detuning, only certain spatial
regions in the (x, z)-plane are resonantly addressed. Thus, the tails towards smaller absolute
values of the detuning originate from outer regions of the transverse lattice planes, where the
density, Fermi energy, and resulting (absolute) quasiparticle energy are small. In contrast, the
tails towards larger absolute values of the detuning originate from the central regions with
the largest density and quasiparticle energies.

For all probed magnetic �elds, the fraction of impurities driven to |e ↓⟩ remains below 15%.
This strongly suggests that the system is only weakly driven and the regime of linear response
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still applies. Notably, the observed spectral features are much broader than the Fourier-limited
resolution ≈ 0.4 kHz of the excitation pulse, con�rming that the spectroscopic resolution is
not limited by the �nite linewidth of the clock laser (see Section 1.4.2 in Chapter 1).

Comparison of experiment and theory.—For a quantitative comparison of experimental and
theoretical results, we normalize the detuning of the clock laser to the energy scale set by the
e�ective Fermi energy �F . We also subtract the quasiparticle energy E0

+ ≈ 0.2�F of the weakly
interacting initial state and convert all magnetic �elds to the interaction parameter ln (�Fa2D).
For example, this enables the comparison of our results to prior experimental work employing
a Fermi gas of 40K atoms in quasi-2D [74]. Figure 3.10 displays the resulting spectral response
for many interaction strengths and energies determined from the clock laser detuning. In accor-
dance with the raw spectra shown in Fig. 3.9 and for repulsive interactions with ln (�Fa2D) < 0,
we �nd a peak at positive energies which increases up to≈ 0.8�F at ln (�Fa2D) = 0. The contrast
quickly decreases beyond this point with merely a very broad feature visible. For attractive
interactions with ln (�Fa2D) > 0, we �nd the second peak at negative energies with a relatively
strong non-linear but monotonous dependence on the interaction parameter. In the regime of
strong interactions at ln (�Fa2D) = 0, this energy decreases to almost−2.5�F with a signi�cantly
broadened peak and reduced contrast. While we can observe a weak signal between the two
peaks for 0 ≤ ln (�Fa2D) ≤ 2, we do not attribute it to the molecule-hole continuum. Instead,
we expect the feature to originate from regions with a much smaller local density that exhibit
quasiparticle energies closer to E = 0. This hypothesis is supported by the fact that the largest
contrast of this spurious signal can be found close to zero detuning.
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We compare our experimental results to the theoretical predictions from Ref. [109], which
employ a many-body T-matrix approach for the calculation of the spectral function and the
quasiparticle energies. As explicitly shown in the Supplemental Material of Ref. [110], the
results of the T-matrix approach are almost identical to the simpli�ed two-channel model
discussed in Chapter 2 (see Section 2.3.2). The theory considers the �nite temperature of the
medium but not the �nite momentum arising from the non-vanishing number of minority
atoms forming a small Fermi sea in addition to the medium. For the comparison, we only
consider the quasiparticle energies since the intricate details of the experiment make it chal-
lenging to compare the experimental results and spectral function quantitatively. Generally,
we �nd excellent agreement between the theoretically calculated quasiparticle energies and
both quasiparticle branches appearing in the spectral response recorded in the experiment.
Thus, we identify the branch at positive energies with the repulsive Fermi polaron and the
one at negative energies with the attractive polaron. Interestingly, the theoretically calcu-
lated energy of the attractive polaron slightly disagrees with the experiment for all interaction
strengths. This con�ict can be resolved by shifting the theoretical curve down in energy by a
constant ≈ −0.2�F . The underlying reason for the discrepancy could be an incorrect estimate
of the repulsive polaron energy E0

+, experimental imperfections, systematic uncertainties of
the relevant parameters, or also a combination of multiple error sources. Following our dis-
cussion in Chapter 2 (see Section 2.2.3), we do not expect the �nite impurity momentum to
explain the observed disagreement since it would reduce the observed quasiparticle energy in
our measurement. Finally, we note that the attractive-polaron-to-bound-dimer transition is
predicted for −1.1 ≤ ln (�Fa2D) ≤ −0.8 and a broad Feshbach resonance, as typically found
in alkali atoms [177, 185–187]. In our measurements, we do not see any direct signatures of
this expected change in the ground state of the system.

The observed signatures in the spectral response demonstrate the existence of Fermi po-
larons in a two-orbital quantum gas with their energies well-described by the many-body
T-matrix approach from Ref. [109]. This also implies that the theoretical description within
the e�ective two-channel model is equally accurate [110, 204].

3.4 Coherent Rabi oscillations
We revisit Chevy’s variational wave-function ansatz from Chapter 2 [see Eq. (2.2)], which
describes the zero-momentum polaron wave function

|ΨP⟩ =
√
Z

(
ĉ†↓ |vac⟩↓

)
⊗ |FS⟩↑ +

∑
q<kF<k

�kq
(
ĉ†(q−k)↓ |vac⟩↓

)
⊗

(
ĉ†k↑ĉq↑ |FS⟩↑

)

=
√
Z

(
ĉ†↓ |vac⟩↓

)
⊗ |FS⟩↑ + ei�p

√
1 − Z |inc⟩ ,

(3.12)

where ĉ†↓ (ĉ↓) denotes the fermionic creation (annihilation) operator for a zero-momentum
impurity in the strongly interacting |e ↓⟩ state and |vac⟩ corresponds to the vacuum state. In
the last equation, we have summarized the incoherent part of the wave function into the
state |inc⟩ and the phase �p. For simplicity, we assume an impurity at zero-momentum here,
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but the following discussion also applies similarly to �nite impurity momenta. This zero-
momentum impurity in the weakly interacting initial state can be approximately described
by the non-interacting wave function

|||Ψi⟩ =
(
ĉ†0 |vac⟩0

)
⊗ |FS⟩↑ , (3.13)

where ĉ†0 (ĉ0) denotes the fermionic creation (annihilation) operator for an impurity in the |||g 0⟩
state. Ignoring the internal state � ∈ {0, ↓} of the impurity, we observe that the squared overlap
of the initial and �nal (polaron) state is given as |⟨Ψp|Ψi⟩|

2 = Z (quasiparticle residue Z).
The weight

√
Z in Eq. (3.12) quanti�es the coherent or single-particle-like contribution to

the polaron wave function.
The clock laser coupling does not depend on momentum and can be considered to be

approximately homogeneous across the typical sample size. Thus, the Hamiltonian describing
the on-resonance Rabi coupling of initial and �nal state within the rotating-wave approxi-
mation takes the form [73]

ĤR =
Ω0
2

∑
p

(
ĉ†p↓ĉp 0 + h.c.

)
(3.14)

with the Rabi frequency Ω0, which is experimentally determined by the intensity of the clock
laser beam. We can now calculate thematrix element for the transition rate induced by the drive,

⟨
Ψp

|||| ĤR
|||| Ψi

⟩
∼ Ω0

√
Z. (3.15)

Note that the incoherent part |inc⟩ only has contributions from particle-hole excitations of
the Fermi sea, which makes it orthogonal to the unperturbed Fermi sea |FS⟩. The result of
Eq. (3.15) is particularly helpful for experiments, as the quasiparticle residueZ can bemeasured
by simply driving Rabi oscillations between the initial and �nal state [73].

In the experiment, we probe the Rabi coupling with a variable duration of the clock laser
pulse tuned to the quasiparticle resonance. This frequency is determined in an independent
auxiliary measurement by extracting the quasiparticle energy of the attractive or repulsive
polaron from the spectrum with a numerical �t. For the main measurement, we employ a
sequence similar to the one for the spectral response discussed in the previous section. However,
we drive the clock transition with much larger Rabi frequencies Ω comparable to, or partly
even exceeding, the e�ective Fermi energy �F ≈ ℎ × 3.6 kHz. A strong drive is required since
dephasing processes become relevant on the Fermi time scale �F = ℏ∕�F , which hinders the
detection of coherent oscillations and the extraction of Z. In addition to the strong drive,
we also employ an altered state detection and determine the number of minority atoms N0
remaining in |||g 0⟩ after the variable-length clock laser pulse. For the present measurement,
this technique proves to be more robust compared to the detection of the atom count in |e⟩.
To detect the atom number in |||g 0⟩, we �rst remove all majority atoms of the Fermi sea and
then image the remaining atoms in |||g 0⟩ via absorption imaging. The state-selective removal
is achieved by applying a short 0.25ms long resonant “push” pulse on the intercombination
line that selectively removes all majority atoms in |||g ↑⟩ (see Section 3.2). In addition to the
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Figure 3.11 | Rabi oscillations of repulsive and attractive Fermi polaron. Oscillations between weakly
interacting |||g 0⟩ and strongly interacting |e ↑⟩ impurity states recorded for variable duration τ of the
clock laser pulse with Rabi frequency Ω, and for the (a) repulsive [̄hΩ∕εF = 0.9(1)] and (b) attractive
Fermi polaron [̄hΩ∕εF = 1.1(1)]. All datasets are characterized by the e�ective Fermi energy εF = h ×
3.6(4) kHz, Fermi time scale τF = h̄∕εF = 45(5)µs, (e�ective) minority fraction 0.28(3), and temperature
kBT∕εF = 0.16(4). Colored circles show the signal from the interacting regime (see legend) and gray cir-
cles correspond to a reference measurement without interactions. Error bars indicate the standard error
of the mean for points with multiple measurements. Solid lines correspond to numerical fits of Eq. (3.16).
Each time trace is normalized to its value at τ = 0, which compensates for the slightly varying atom num-
bers ≲ 20%. A signal amplitude of one corresponds to N0 ≈ 103 atoms inside the central region consid-
ered for the data evaluation.

measurements in the interacting regime, we perform a reference measurement without the
presence of the Fermi sea in |||g ↑⟩, which yields the single-particle Rabi frequency Ω0.

Figure 3.11 shows the experimental results for variable interaction strength selected with
the magnetic �eld. For all probed interaction parameters in the range −0.9 ≤ ln (�Fa2D) ≤ 7.5,
we �nd oscillations with large damping increasing towards the strongly interacting regime
at ln (�Fa2D) = 0. Comparing the interacting and non-interacting time traces, we also �nd a
reduced oscillation frequency as the interaction strength increases [see Fig. 3.11(b)].

3.4.1 The quasiparticle residue
For comparing the experimental results to theoretical predictions of the quasiparticle residue,
we numerically �t the detected time-dependence of the atom number in |||g 0⟩ to the function

N0(�) = aeΓbg� + beΓR� cos (Ωt) . (3.16)

Here, a and b are dimensionless constants, Γbg is a background decay rate, ΓR denotes the damp-
ing of the Rabi oscillations, and Ω corresponds to the Rabi frequency. According to Eq. (3.15),
we can extract Z from the experimental data by calculating (Ω∕Ω0)2 with Ω0 determined from
the reference measurements in the absence of a background Fermi sea. In Fig 3.12(a), we show
the experimental result and theoretical predictions for Z from the same many-body T-matrix
calculation already applied to the spectral response measurement. The quasiparticle residue Z
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Figure 3.12 | Quasiparticle residue of the multiorbital Fermi polaron. (a) Approximate values of the
quasiparticle residue Z ≈ (Ω∕Ω0)2 for repulsive (blue circles) and attractive (red squares) Fermi polaron,
extracted from numerical fits of Rabi oscillations [see inset schematic]. Empty markers indicate weighted
averages† from two or three separate measurements with variable drive strength at the same mag-
netic field, and error bars indicate the fit error. The blue (red) dashed lines show the result of a finite-
temperature theoretical calculation of the quasiparticle residue Z for the zero-momentum repulsive (at-
tractive) polaron, adapted from Ref. [109]. (b) Linearity of the coupling strength Ω0 and the measured
frequencyΩat ln (κF a2D) = −0.57(5) (repulsive polaron, blue circles) and 2.22(6) (attractive polaron, red
squares). The dashed gray line indicates the weighted average of the individual data points.

† The empty markers in Ref. [109] slightly deviate from the results shown above since the weight function di�ers.

along with the experimental value (Ω∕Ω0)2 decrease towards the strongly interacting regime
at ln (�Fa2D) = 0 for both polaron branches. For the attractive polaron, we generally �nd an
excellent agreement between experiment and theory, con�rming that the Rabi oscillations are
indeed suitable for the measurement of the quasiparticle residue. In contrast, the experimental
values for the repulsive polaron are systematically shifted by up to ∼ 0.2 when compared to the
theoretical prediction. For the experimental measurement, a systematic error in determining
the polaron energy or the particularly strong damping of the oscillation on the repulsive side
could potentially explain the disagreement [see Fig. 3.11(a)]. On the other hand, the theoretical
description neglects the �nite interaction strength in the initial state, which increases the
overlap with the repulsive polaron and could cause a sizable correction of (Ω∕Ω0)2. In the
following, we provide a simple estimate for the maximum deviation expected from the weakly
interacting polaron in the initial |||g 0⟩ state with residue Zi = 0.98. Considering an arbitrary
phase of the incoherent background, we can estimate a minimum and maximum overlap of
the initial |||Ψi⟩ and polaron wave function |ΨP⟩ [109],

|||⟨Ψi |ΨP ⟩||| ⪋
√
ZiZP ±

√
(1 − Zi) (1 − ZP) ≈

√
ZP ±

√
(1 − Zi) (1 − ZP), (3.17)

where the last approximation holds since
√
Zi = 0.99 ≈ 1. The estimated maximum overlap

provides an upper bound for the measured value of (Ω∕Ω0)2 and takes the value ≈ Z + 0.1
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Figure 3.13 | Quasiparticle damping of the multiorbital Fermi polaron. Quasiparticle damping ΓR ex-
tracted from numerical fits of Rabi oscillations (see inset schematic). The blue circles show the extracted
values for the repulsive polaron, and the red squares correspond to the attractive polaron. Empty mark-
ers indicate weighted averages† from two or three separate measurements with variable drive strength
at the same magnetic field, and error bars indicate the fit error. The blue dashed line shows the finite-
temperature theoretical prediction for the damping of the repulsive polaron, adapted from Ref. [109].
The red dashed line corresponds to (1 − Z) + c with quasiparticle residue Z of the attractive polaron and
fit parameter c = 0.06(2). Note that the experimental measurement is generally limited to h̄ΓR∕εF ≳ 0.02
by the typical dephasing of single-particle Rabi oscillations.

† The empty markers in Ref. [109] slightly deviate from the results shown above since the weight function di�ers.

across the relevant range of interaction parameters. Thus, we conclude that the initial state in-
teraction could indeed contribute to the disagreement between experiment and theory on
the repulsive side.

The strong drive ℏΩ0 comparable to the Fermi energy �F can pose another potential concern.
In principle, the response of the system can be signi�cantly altered, and we explore such
an e�ect by applying variable single-particle Rabi frequencies Ω0 at the same interaction
parameter, as shown in Fig. 3.12(b). In this measurement, we probe the repulsive polaron
at ln (�Fa2D) = −0.57(5) as well as the attractive polaron at ln (�Fa2D) = 2.22(6) and do not
observe a systematic non-linearity within our experimental error bars. This implies that the
Rabi oscillation response of the system remains linear for the employed drive strength in
the range 0.9�F ≤ ℏΩ0 ≤ 1.7�F .

3.4.2 Damping of the repulsive polaron
The numerical �ts of the Rabi oscillations also yield the damping ΓR, which strongly increases
towards the regime of strong interactions at ln (�Fa2D) ∼ 0, as can be seen in Fig. 3.13. We
�rst brie�y comment on the damping on the attractive side, where a simple description from
Ref. [109] appears to capture the physics in the experiment accurately. For this purpose, we as-
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Figure 3.14 | Numerical simulations of Rabi oscillations in the repulsive branch. Comparison of exper-
imental data (black circles) and theoretical calculation of the real-time dynamics (blue lines) within the
truncated basis method for interaction parameters (a) ln (κF a2D) = −0.73, (b) −0.57, and (c) −0.25 and
Fermi time τF = h̄∕εF = 45(5)µs. Here, N0 and N↓ correspond to the number of particles in |||g 0⟩ and
|||g ↓⟩, where the latter is estimated from N↓(τ) ≈ N0(0) −N0(τ). Error bars indicate the standard error
of the mean, and the blue-shaded area corresponds to the estimated experimental uncertainty of the
polaron energy. The experimental data has been modified to compensate for an estimated constant o�-
set of ≈ 0.2 from a spurious signal [110]. The theoretical curves and adjusted experimental data points
are adapted from Ref. [110] and have been kindly provided by H. S. Adlong.

sume that the Rabi drive couples the initial state not only to the attractive polaron but also to the
incoherent continuum of states with weight

√
1 − Z. Solving the resulting three-level system

with dissipative coupling to the continuum [109] yields the damping rate ℏΓR∕�F ∼ (1 − Z).
This relation agrees reasonably well with the experimental data on the attractive side, con-
sidering a constant o�set (see Fig. 3.13).

We now turn to the damping of the repulsive polaron, which increases monotonously
from ℏΓR∕�F ≈ 0.1 at ln (�Fa2D) ≈ −1 to ≈ 0.25 in the strongly interacting regime. In Fig. 3.13,
we show the experimentally determined damping together with the quasiparticle width Γ
from the theoretical T-matrix calculation, which agrees almost perfectly with the experimental
data. Previously, the quasiparticle width Γ has been commonly associated with the lifetime
of the repulsive polaron against decay into lower-lying states, i. e., the attractive polaron or
molecule [66]. However, this lifetime far exceeds the inverse damping, as we will show in
the following section. Notably, earlier observations in a 3D Fermi gas of 6Li atoms [76] have
found a similar agreement between the experimental measurement of the Rabi oscillation
damping and the theoretically determined quasiparticle width.

Subsequent to both experimental measurements, a novel theoretical approach for modeling
the real-time dynamics at �nite temperatures has been applied to the problem [110]. This
approach, known as truncated basis method (TBM) [205], considers a truncation of the Hilbert
space at a �xed number of particle-hole excitations. In this truncatedHilbert space, a variational
approach similar to the one for the polaron energy can be extended to the time-dependent case.
To this end, the Heisenberg picture introduces the time dependence of operators with ĉ†�(�) =
eiĤ� ĉ†�e−iĤ�. Here, the Hamiltonian Ĥ describes the time evolution of the system, i. e., after
turning on the Rabi coupling. The time propagation of an initial state is then determined
by considering the expectation value of the error quantity ��(�) = i)t ĉ

†
�(�) − [ĉ†�(�), Ĥ] [197].

Variational techniques can minimize the error quantity yielding the approximate evolution
of time-dependent observables such as N0(�).
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Figure 3.15 | Itinerant ferromagnetism in ultracold Fermi gases. (a) Illustration of competing pro-
cesses in repulsively interacting Fermi gases with short-range interactions, namely, the formation of spin-
polarized domains (ferromagnetism) and molecular pairing. (b) Schematic analysis for the stability of a
spin-polarized ↑-domain (blue) by considering a particle (blue circle) hopping from the top of the Fermi
sea across the domain border into the region of the ↓-domain (red).

The numerical simulations of the Rabi oscillations from Ref. [110] are shown in Fig. 3.14.
The decay of the repulsive polaron into lower-lying states at negative energies is not captured
by this approach since it involves more than a single particle-hole excitation. Therefore, the
agreement of theory and experiment strongly suggests that coupling to a quasi-continuum of
repulsive polaron states at positive energies dominates the damping of the Rabi oscillations. In
particular, this implies that the quasiparticle width Γ does not determine the decay rate to lower-
lying states as previously assumed [66]. As an intuitive picture, the �nite width of the repulsive
branch can be viewed as the result of a series of states at slightly di�erent energies, which
consequently dephase when driven. This contrasts with the spectral properties of the attractive
polaron described by a Dirac delta distribution at zero temperature. Generally, the lifetime of
the repulsive branch against decay into lower-lying states exceeds the time scale over which
the repulsive polaron stays a coherent quasiparticle. The two distinct processes, dephasing
and decay, can be probed independently in the experiment, either with Rabi oscillations or
a double-pulse measurement, which we discuss in the next section.

3.5 Decay of the repulsive branch
The stability of the repulsive Fermi polaron against decay into lower-lying states has direct
relevance for the stability of itinerant ferromagnetism in fermionic systems with short-range in-
teractions [80, 81]. Itinerant ferromagnetism, also known as Stoner magnetism [206], describes
the instability of a repulsively interacting Fermi gas against the formation of spin-polarized
domains [see Fig. 3.15(a)]. At a phase boundary of two domains, the hopping of a particle or
repulsive polaron is energetically suppressed if its interaction energy E+ exceeds the Fermi
energy �F [see Fig. 3.15(b)]. To stabilize a ferromagnetic phase, we expect that the energy of
the repulsive Fermi polaron has to exceed the Fermi energy of the domain, E+ ≪ �F . More-
over, the lifetime 1∕Γrep of the repulsive Fermi polaron has to be large compared to the Fermi
time �F = ℏ∕�F , which sets the dynamical time scale of domain formation.
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So far, an experimental realization of itinerant ferromagnetism in cold atomic systems with
an unambiguous signature has remained elusive—despite an early observation of potential
signatures [207]. However, these have later been attributed to the formation of molecular
pairs [208, 209]. For the short-range interactions in ultracold atomic gases, the underlying
molecular interaction potential has an attractive nature, and repulsively interacting atomic
pairs can decay into the near-threshold molecular bound state. This process naturally competes
with the formation of spin-polarized domains and fundamentally hinders the observation
of itinerant ferromagnetism once atoms start to decay into molecular pairs. A recent study
has chosen a novel approach by �rst preparing spin-polarized domains with an optical bar-
rier and probing their stability, which has enabled the observation of a metastable phase at
intermediate times [210].

Experimental measurement.—To probe the decay of the repulsive polaron into lower-lying
states, we employ a double-pulse technique similar to the one from previous experiments with
alkali atoms [73, 74, 76]. The experimental sequence for this measurement is almost identical
to the Rabi oscillations, but we employ a sequence of two clock pulses with a variable hold time
in-between. The frequency of both pulses is chosen tomatch the energy of the repulsive polaron
and the pulse duration corresponds to a �-pulse of a free particle. We choose a particularly
strong drive strength ℏΩ0 ≈ 0.8�F to also address the repulsive polaron branch with its �nite
width ∼ �F in the strongly interacting regime. Immediately after the �rst clock pulse, any
remaining atoms in the state |||g 0⟩ are removed with resonant “push” pulses4 on the intercom-
bination line (two subsequent “push” pulses with a duration of 20 µs + 50 µs = 70 µs ∼ �F).
The removal ensures that the second clock pulse can transfer the repulsive polarons in |e ↓⟩
back to the |||g 0⟩ state without simultaneously addressing potentially remaining atoms in |||g 0⟩.
After the variable hold time and the second clock pulse, we remove the Fermi sea with an
additional resonant “push” pulse (duration 100 µs). This enables us to detect the number of
atoms N0 transferred back to the initial |||g 0⟩ state.

Figure 3.16(a) depicts the time traces for variable hold time between the two pulses. Across
the probed interaction parameters −1 < ln (�Fa2D) < 0.25, we �nd an exponential decay of
the detected number of |||g 0⟩ state atoms indicating a continuous loss of the repulsive po-
larons. From the time traces, we extract a decay rate Γrep by �tting the experimental data
with an exponential decay,

N0(�) = ae−Γrep� + c, (3.18)

wherea denotes the amplitude and c an o�set. In general, we�nd a fast initial decay and anearly
constant o�set c > 0 at late times—in agreement with previousmeasurements employing alkali
atoms [74]. In our case, however, this o�set strongly depends on the interaction parameter
[see Fig. 3.16(a)], which could originate from the �nite spin-exchange coupling at low �elds.

4This technique is slightly modi�ed from the procedure discussed in Section 3.2 as the removal of themF = −3∕2
component requires an additional pulse. This pulse initially transfers atoms to themF = −5∕2 ground state, where
the continuous scattering of photons becomes possible on the closedmF = −5∕2→ mF = −7∕2 intercombination
line between the F = 5∕2 and F = 7∕2 manifolds. To allow for a fast successive pulse sequence, we use a separate
laser beam with rapid frequency switching enabled by a double-passed acousto-optic modulator.
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Figure 3.16 | Decay rate of the repulsive Fermi polaron. Measurement of the lifetime in the repul-
sive branch for experimental parameters εF = 3.4(2) kHz, kBT∕εF = 0.14(3), and (e�ective) minority frac-
tion 0.31(1). (a) Number of atoms (circles) transferred back to the initial state |||g 0⟩ for variable hold time τ
and three interaction parameters (see legend). The error bars indicate the standard error of the mean,
and solid lines correspond to numerical fits of an exponential function, as given in Eq. (3.19). The inset
illustrates how the hold time is defined in the double-pulse sequence, and the top axis indicates the hold
time in units of the Fermi time scale τF = h̄∕εF . (b) Decay rate Γrep (blue circles) extracted from the fits
shown in panel (a). The error bars indicate the fit error of Γrep and experimental uncertainty of ln (κF a2D).
The dotted line denotes the estimate of the three-body recombination rate Γ3 (see main text).

This process could populate the otherwise unoccupiedmF = −5∕2 ground state, which would
appear as a constant o�set since the absorption imaging does not resolve individualmF states.
The observed monotonous decrease ofN0(� = 0) for increasing interaction strength is most
likely caused by a combination of a reduced coupling strengthΩ∕Ω0 ∼

√
Z < 1 and the constant

pulse duration 2�∕Ω0. The extracted decay rates Γrep as a function of ln (�Fa2D) are shown in
Fig. 3.16(a). The particularly small decay rates of the multiorbital repulsive Fermi polaron,
also in comparison to previous work [74], might provide a favorable starting point for the
investigation of strongly repulsive Fermi gases and itinerant ferromagnetism [211]. Crucially,
Γrep is more than an order of magnitude below the quasiparticle damping Γ extracted from
the self-energy of the Fermi polaron. This con�rms the key point discussed in Section 3.4.2,
namely, that the quasiparticle width Γ describes the many-body dephasing and not the decay
into lower-lying states, which we have probed in this section.

3.5.1 Three-body recombination

A possible decay channel for the repulsive polaron is the three-body recombination into a
molecular bound state and a third atom from the Fermi sea absorbing the excess momentum
(↓ + ↑ + ↑ → ↓↑ + ↑). In three dimensions, the rate of this process was found to match the
experimentally obtained repulsive polaron decay rates over a signi�cant range of interaction
strengths [76]. The three-body recombination rate K3(E) has been determined for a purely
two-dimensional (2D) geometry in Ref. [212] and is a function of the collisional energy E. Here,
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quasiparticle energies relative to the single Fermi sea configuration for ε↓
F
≈ 0.94εF ≈ h × 3 kHz. Dotted

lines show the shi� for twice the closed-channel Fermi energy.

we neglect the (small) kinetic energy of the impurity, the �nite number of impurities, and
model the resulting decay due to three-body recombination as [212]

dn↓
dt = n↓

[
n2↑K3(E)

]
= n↓Γ3. (3.19)

This equation implicitly de�nes Γ3 = n2↑K3(E) as the decay rate for the impurity density n↓
under the assumption of a constant medium density n↑ (small minority fraction). The pa-
rameter Γ3 is a function of the interaction parameter as well as the local medium density. We
calculate this rate by averaging over the background density of the majority Fermi sea, using
the local kinetic energy and local Fermi wave vector (see Section 3.2.1). We show the results for
the expected three-body recombination rate in a purely 2D geometry in Fig. 3.16(a). However,
the theoretical predictions fail to accurately capture the experimental data apart from a crossing
of experiment and theory curves at ln (�Fa2D) ∼ 0. The overall signi�cant disagreement can
most likely be attributed to the incorrect geometry of the model as the quasi-2D geometry is
expected to signi�cantly change the collisional physics (see Section 2.3 in Chapter 2). Future
theoretical investigations of the three-body recombination rate in quasi-2D might provide a
better understanding of the decay channels for the speci�c geometry of our experiment.

3.6 Frustrated interactions
The presence of frustration in many-body systems can lead to rich physics, such as in the case
of certain heavy fermion compounds. These types of materials feature a quantum critical point
located between a magnetically ordered phase and a heavy Fermi liquid phase [143]. Once
geometrical frustration is introduced, the interactions causing long-range spin correlations are
hindered. Remarkably, this can give rise to an extended critical phase qualitatively di�erent
from a single critical point [213].
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Interestingly, the orbital Feshbach resonance in 173Yb also provides the opportunity to probe
a form of frustration in quantum many-body systems, i. e., the introduction of Pauli blocking
or frustration in the interaction channels [109, 214]. In particular, we consider the Fermi
polaron in the presence of two Fermi seas, one in the open and another in the closed channel,
as illustrated in Fig. 3.17(a). For a two-body collision, the spin-exchange process becomes Pauli
blocked up to the Fermi energy �↓F in the closed channel. For the simultaneous occupation
of both the open and closed channel, the e�ective two-channel model from Chapter 2 (see
Section 2.3.2) is not suitable, and we have to adapt the many-body T-matrix formalism. The
in-medium or many-body T-matrix for a zero-momentum impurity takes the form [109]

T(k, E) = {
(
T(vac)

[
E − ℏ2k2∕(4m)

])−1
+ (

∆Πo(k, E) 0
0 ∆Πc(k, E − �)) }

−1

(3.20)

with the vacuum T-matrix T(vac) from Chapter 2 [see Eq. (2.23)]. Here, the diagonal terms
account for the occupation in the open and closed channel [109],

∆Π�(k, E) =
∑
q

F�(q)

E − ℏ2∕(2m)
[
k2 − q2 − (k − q)2

]
+ i"

, (3.21)

with the small imaginary part parameterized by " > 0. The Fermi-Dirac distribution F�(q) ={
1 + e�[ℏ2q2∕(2m)−��]

}−1
and chemical potential �� describe the occupation of momentum states

at medium temperatures T = 1∕(kB�) in the open (� = o) and closed channel (� = c), respec-
tively. With this result, the self-energy of the zero-momentum Fermi polaron in the open
channel can be obtained from [109]

Σ(E) =
∑
k
Fo(k) ⟨o |||T(k, E)||| o⟩ . (3.22)

Here, the T-matrix has been projected onto the open channel |o⟩. Note that a �nite occupation
in the closed channel corresponds to a non-vanishing ∆Πc(k, E), which leads to a change of
the quasiparticle properties. Figure 3.17(b) shows the expected shift of the polaron energy for
variable interaction strength and Fermi energy in the closed channel. In particular, a shift
of the repulsive polaron branch to energies exceeding �F could be relevant for stabilizing a
ferromagnetic phase in a multiorbital quantum gas.

We realize the dual Fermi sea con�guration by initially populating the state |||g ↓⟩ ≡
|||g,mF = −5∕2

⟩
with a second majority Fermi sea in addition to minority and majority com-

ponents in |||g 0⟩ and |||g ↑⟩, respectively. This is achieved by modifying the optical pumping
sequence to yield an approximate ratio of 4∶1∶4 between the populations of the three states.

3.6.1 Fermi-liquid description of the medium

The interaction in the ground state is repulsive and the additional Fermi sea modi�es the
medium density (Section 3.3.1). We estimate the reduced density by modeling the dual Fermi
sea con�guration as a weakly interacting repulsive Fermi liquid in two dimensions [215]. To
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Figure 3.18 | Repulsive Fermi liquid in the ground state. Numerically determined in-plane density
and e�ective Fermi energy of a two-component ground state mixture in the presence of finite inter-
actions and temperature. Parameters are chosen to match typical experimental values in a single-
layer with atom number N = 600 per nuclear spin state. Comparison of the (a) zero-temperature
and (b) finite-temperature (T∕T F = 0.17) density along the x-axis for zero (gray) and finite interaction
strength (blue). The red hatching indicates the extent of the region typically considered in the experi-
ment (∆x = 5.6 µm). (c) E�ective Fermi energy of the repulsive Fermi liquid with a2D = 12.5a0 for the in-
tegration of x ∈ [−∆x∕2,∆x∕2] [central region, see panel (b)] and along the z-axis. Here, ε◦

F
corresponds

to the e�ective Fermi energy without interactions (a2D = 0).

this end, we combine the second-order perturbative expansion of the chemical potential for
repulsive interactions [216] and the temperature dependence of the chemical potential in
the absence of interactions [202],

� ≈ kBT
[
1 + 2g + 4g2(1 − ln 2)

]
× ln

[
eEF∕(kBT) − 1

]
. (3.23)

Here, T denotes the temperature and the coupling constant g > 0 is related to the bound-state
energy �b and Fermi energy EF by [216]

g = 1
ln [�b∕ (2EF)]

= 1
ln 2 − 2 ln (kFa2D)

. (3.24)

For the approximate interaction parameter ln (�Fa2D) ≈ −4.9 in the ground state, we �nd g ≈
0.1. To account for the inhomogeneous density in the experiment, we apply the local density
approximation �(r) = �0 −U(r) for the harmonic trapping potential U(r) given in Eq. (3.1).
Here, a dependence of Eq. (3.23) on the local density is introduced by replacing all relevant
quantities with their local equivalent forms, e. g., EF → EF(r) = ℏ2∕(2m) × [4�n(r)]. The
implicit equation for the local density n(r) can be solved numerically at a �xed atom numberN
by imposing the condition

∫
dr n(r) = N.

Figure 3.18 shows the comparison of non-interacting and interacting density at zero and
�nite temperature. As naively expected, we �nd a reduction of the density at the center
of the trap and an overall increased width of the distribution. For the dual Fermi sea con-
�guration in the experiment, we estimate the e�ective Fermi energies �↓F = ℎ × 2.7(2) kHz
and �F ≡ �↑F = ℎ × 3.0(2) kHz, which are reduced by approximately 10% due to the �nite in-
teractions in the ground state [see Fig. 3.18(c)].
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Figure 3.19 | Multiorbital Fermi polaron in the frustrated regime. Energies E± of the (a) repulsive
(blue circles) and (b) attractive (red circles) Fermi polaron for variable interaction parameter ln (κF a2D),
extracted from spectra recorded in the presence of two Fermi seas [εF = h × 3.0(2) kHz and ε

↓
F
=

h × 2.7(2) kHz]. The gray squares correspond to the reference measurement without a second Fermi sea
[εF = h × 3.2(2) kHz]. Error bars, partly smaller than the marker size, indicate the fit error of the energy
and uncertainty of the interaction parameter. The experimental data is shi�ed by the estimated initial
state interaction energy 0.2εF (single Fermi sea). We show the range of ±0.2εF = ±E

0
+ for the dataset

with a second Fermi sea as light blue and red bands. Solid blue and red (dotted gray) lines show the
theoretical prediction from Ref. [109] for the quasiparticle energies with (without) a second Fermi sea.
The inset in panel (b) shows spectra of the attractive polaron for single (gray) and dual (red) Fermi sea
configurations at the magnetic field B = 90 G, corresponding to ln (κF a2D) = 0.30(2) [0.16(4)].

3.6.2 Quasiparticle energies with two Fermi seas

Experimentally, we probe the Fermi polaron in the frustrated regime with the same technique
as in the case of a single-component medium (see Section 3.3). We compare the measured
spectra with the results from Section 3.3.3 for variable interaction parameters. In the measured
spectra, we can still identify two well-de�ned quasiparticle branches that correspond to the
repulsive and attractive Fermi polaron. To compare the experimental results to the theoretical
predictions, we extract the quasiparticle energies from the spectra with numerical �ts, as shown
in Fig. 3.19. For the repulsive branch, however, we do not �nd any signi�cant deviation between
the two con�gurations. In contrast, for the attractive polaron and interactions ln (�Fa2D) < 4,
we �nd a small shift ≈ 0.2�F towards higher energies, which would be inconsistent with the
theoretically expected decrease [see Fig. 3.17(b)]. Yet the observed shifts are on a similar scale
as our experimental resolution or the Fermi energy corrections, which account for the two-
component medium. Moreover, we have not considered any change of the initial state in the
presence of a second Fermi sea. For this weakly repulsive polaron, we also expect a modi�ed
quasiparticle energy due to simultaneous interactions with both Fermi seas. We explore such
an e�ect by considering the range

[
E±, E± + 2E0

+
]
for a potential change of the initial state

interaction energy (see Fig. 3.19). This shows that a signi�cant increase of the initial state
interaction could indeed explain the apparent disagreement between experiment and theory
in the frustrated regime. We �nally note that we have also probed the quasiparticle residue
and lifetime of the repulsive polaron, which qualitatively agree with the results obtained for
a single Fermi sea medium [109].
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3.7 Discussion
In this chapter, we have systematically studied the Fermi polaron in two dimensions and
presented direct measurements of its signatures in a multiorbital mixture of 173Yb atoms. Im-
portantly, the observed attractive and repulsive polaron branches agree well with the theoretical
predictions from a many-body T-matrix calculation and the equivalent two-channel model.
We have also probed a novel regime of the multiorbital polaron by introducing a second Fermi
sea in the closed channel. While our current experimental capabilities do not allow us to
con�rm or refute the predicted energetic shifts of the quasiparticle branches, we still �nd
well-de�ned quasiparticles in this regime.

In future experiments, it would be particularly interesting to study the dual Fermi sea con�g-
uration with either larger Fermi energies in the closed channel or a more precise measurement
technique. The latter is now within reach as our experiment has recently been upgraded to
prepare and image a single quasi-two-dimensional layer [217]. In contrast to the experimental
realization discussed in this chapter, the intrinsic integration of the absorption imaging across
an inhomogeneous region can be eliminated in this new con�guration. Therefore, a much
narrower distribution of local Fermi energies �F ± ∆�F can be probed. Moreover, the direct
measurement of the in-plane density eliminates the requirement to rely on a theoretical model
for the weakly repulsive Fermi liquid in the ground state. This could signi�cantly reduce the
error bars and consequently allow an unambiguous statement about the shifts observed in
the experiment and how they compare to the theoretical predictions.



CHAPTER 4

Absence of thermalization in
quantum many-body systems

In this chapter, we discuss quantum many-body systems that evade the fate of thermaliza-
tion and ergodic dynamics. First, we give a brief overview of a general theoretical concept
to describe thermalization and relaxation in isolated quantum systems. Next, we focus on
localization phenomena in disordered models, which exhibit broken ergodicity and an absence
of thermalization for arbitrary long observation times. Following this overview, we consider a
dynamical form of localization in translationally invariant binary mixtures without static disor-
der. To set the stage for our experimental realization of a mass-imbalanced mixture presented
in Chapter 5, we introduce a speci�c system of this kind, namely the mass-imbalanced Fermi-
Hubbard model. Following previous theoretical work, we numerically study the evolution
of long-wavelength density modulations in this system, which allow us to reveal regimes of
extremely slow relaxation. The key theoretical �ndings presented in this chapter are discussed
along our experimental work in Ref. [108].

4.1 Thermalization in isolated quantum systems
The absence or presence of thermalization in a many-particle environment determines how
and whether a system equilibrates. Once thermal equilibrium is reached, any memory of
an initial state is erased, and we can describe it with the laws of statistical mechanics. Key
properties then become independent of an initial microscopic state and its intricate details
are rather determined by a few macroscopic parameters such as the total energy and particle
number [218]. While thermalization for the canonical ensemble can be intuitively understood
via energy exchange with a bath, the situation seems more subtle for the microcanonical
ensemble. How does an isolated quantum system thermalize, and can we robustly decide
when the laws of statistical physics apply? These questions are of elementary importance for
understanding the success of statistical mechanics in the description of many-body systems.

Thermalization and its absence in isolated quantum systems have seen renewed interest
in the last decades (see, e. g., Ref. [219]). However, analytical methods are only available
for few models and numerical methods are typically limited to modest particle numbers or
short evolution times. In contrast, multiple emerging experimental platforms now allow

75
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probing isolated quantum systems for relatively long observation times, well outside the regime
accessible with numerical simulations. In particular, ultracold atoms in optical lattices o�er
unprecedented control over the relevant parameters, such as the interaction strength governing
the dynamical evolution [1]. Quantum simulation experiments on this versatile platform now
provide unique opportunities to study thermalization in the regime of quantummechanics.

4.1.1 Eigenstate thermalization

At �rst glance, we expect the mechanisms governing quantum thermalization to be funda-
mentally di�erent from the classical counterpart since the Schrödinger equation dictates a
linear time evolution for quantum states. This behavior strongly deviates for classical systems
where dynamical chaos provides a mechanism to transform an arbitrary initial state into a
generic thermal state at late times [219]. Nevertheless, experiments demonstrate that thermal-
ization can be observed in isolated quantum systems—even for small system sizes, such as
a chain of six interacting bosons [220]. Another illustrative example is evaporative cooling,
an integral part of many experiments with ultracold atoms since the �rst condensation of
a degenerate Bose gas [221–223]. Theoretical modeling of this cooling process shows that
a few collisions per particle su�ce to reach thermal equilibrium after removing part of the
initial population from the trap [224].

In the following, we explain how the eigenstate thermalization hypothesis (ETH), �rst
put forward by Deutsch and Srednicki [8, 9], provides a possible generic mechanism for the
emergence of thermalization in isolated quantum systems. We emphasize that our discussion
of this matter is neither complete nor rigorous but rather serves illustrative purposes and
establishes a notion for the phenomenology of ergodic quantum dynamics. Starting with a
realistic experimental setting, we consider preparing the pure state |||Ψ0⟩ of an isolated system.
This state evolves according to a stationary Hamiltonian Ĥ with a �nite number of discrete
eigenenergies {�n}n and orthonormal eigenstates {||| n⟩}n,

|||Ψ(t)⟩ = e−itĤ∕ℏ |||Ψ0⟩ =
∑
n
�n e−i�nt∕ℏ ||| n⟩ . (4.1)

Here, �n = ⟨ n |||Ψ0 ⟩, and for simplicity, we assume that the spectrum of Ĥ is non-degenerate
(�n ≠ �m for n ≠ m). With the above results, the expectation value of the observable O is
simply given as

⟨O⟩t = ⟨Ψ(t)|O|Ψ(t)⟩ =
∑
m,n

�∗m�n ei(�m−�n)t∕ℏ ⟨ m|O| n⟩ . (4.2)

The last term in this equation corresponds to the matrix elements Omn = ⟨ m|O| n⟩ of the
observable in the stationary basis of the Hamiltonian. For long observation times, we expect
the o�-diagonal matrix elements to dephase as described by the following in�nite-time average

⟨O⟩ = lim
T→∞

1
T

∫ T

0
dt ⟨O⟩t =

∑
n

|�n|
2 Onn. (4.3)
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While the existence of this quantity would indicate that a system equilibrates, we still have to
establish whether this limit can coincide with thermal equilibrium. To this end, we consider
the prediction of the expectation value within the microcanonical ensemble,

⟨O⟩(mc) =
1

N⟨E⟩

∑
n∶�n∈Γ⟨E⟩

Onn. (4.4)

Themicrocanonical ensemble is de�ned by a thin energy shell Γ⟨E⟩ = [⟨E⟩, ⟨E⟩+∆E] containing
N⟨E⟩ states, and with the initial state |||Ψ0⟩ �xing the total energy ⟨E⟩ =

⟨
Ψ0|Ĥ|Ψ0

⟩
. Combining

the above results yields the relation∑
n

|�n|
2 Onn =

1
N⟨E⟩

∑
n∶�n∈Γ⟨E⟩

Onn. (4.5)

Here, the left-hand side of the equation depends on the details of the initial state via �n,
whereas the right-hand side only depends on the expectation value of the energy ⟨E⟩ in the
initial state. As discussed below, this equation has signi�cant consequences for the prop-
erties of the eigenstates.

The eigenstate thermalization hypothesis formulates the above equality, which is closely
connected to the fact that a single eigenstate of the Hamiltonian contains the complete thermal
ensemble and can be understood as follows. For the equality to hold in the case of a generic
initial state, we haveOnn → ⟨O⟩(mc) within the thin energy shell de�ned by Γ⟨E⟩. In the extreme
case of only a single eigenenergy En contained in Γ⟨E⟩ (recall the discrete spectrum of the
Hamiltonian), the corresponding eigenstate ||| n⟩ fully describes the microcanonical ensemble.
Hence, Srednicki established the term eigenstate thermalization [9]. An intuitive picture for
the emergence of thermalization in the dynamics of ⟨O⟩t is presented in Ref. [10]: While the
thermal nature of the stationary eigenstates must already be present initially, the decoherence
of the initial state (dephasing o�-diagonal matrix elements) eventually reveals it.

Within the ETH, the matrix elements of local observables have been conjectured to take
the form [225]

Omn = o (
�m + �n

2 ) �mn + e−S[(�n+�m)∕2]∕2fO (
�m + �n

2 , �m − �n) Rmn, (4.6)

where o(E) and fO(E) are smooth functions of their argument, S denotes the (extensive)
thermodynamic entropy, and Rmn is a numerical factor. Crucially, the smoothness of o(E)
can be directly associated with the eigenstate thermalization, as illustrated in Fig. 4.1(a).
Moreover, the strong suppression of o�-diagonal matrix elements for su�ciently large systems
and entropies also places bounds the �uctuations of the in�nite-time average [225]

(
⟨O⟩t − ⟨O⟩

)2
= lim

T→∞

1
T

∫ T

0
dt

(
⟨O⟩t − ⟨O⟩

)2
∼ e−S, (4.7)

which has the important implication that the expectation value of the observable takes a value
close to ⟨O⟩ [and ⟨O⟩(mc)] most of the time [see Fig. 4.1(b)]. In this form, the ETH also makes
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Figure 4.1 | Expectation values of operators within the ETH. Schematic illustrations showing relevant
features of observables consistent with the eigenstate thermalization hypothesis (ETH). (a) Function o(E)
(red line) describing the nearly smooth behavior of the diagonal ensemble {Omm}m (red circles). Here, the
open circle refers to a specific value Onn close to the total energy ⟨E⟩, as described by Eq. (4.6). (b) Time-
evolution revealing the microcanonical expectation value at late times.

a statement about the dynamical evolution of a system reaching thermal equilibrium from
an initial out-of-equilibrium state.

To conclude our brief discussion of the ETH, we state a few important consequences,
which we did not explicitly show above but are still relevant for this chapter. First, the ETH
implies ergodicity and thermalization, i. e., an isolated quantum system for which the ETH
holds, will also exhibit ergodic dynamics [219]. In the upcoming discussions, the terms ergodic
and non-ergodic dynamics are therefore also used to describe thermalization or its absence.
Second, it is generally not straightforward to show whether the ETH holds for an arbitrary
Hamiltonian and observable—albeit rigorous proofs exist for certain types of systems and local
observables [219]. Third, the ETH does not hold for integrable quantum systems as they evade
ergodic dynamics through many conserved quantities parameterized by operators {Pi}i. In
this way, ⟨Pi⟩ ≈ ⟨Pi⟩(mc) is not necessarily ful�lled. As explored in the next section, certain
non-integrable models also feature completely non-ergodic behavior and violate the ETH.

4.2 Evading thermalization
How can isolated quantum many-body systems evade ergodic dynamics and thermalization?
Finding answers to this question not only allows us to advance our fundamental understanding
of quantum thermalization but could also be highly relevant from a more practical view-
point. The ever-present decoherence poses a central issue for utilizing many-particle states
in quantum sensing or memory applications, and non-ergodicity might o�er an elegant way
to circumvent such problems. This section introduces possible routes towards non-ergodic
dynamics and slow relaxation in quantum many-body systems. In particular, we focus on
localization phenomena providing an alternative scenario to thermalization in quantummany-
body systems. To this end, we �rst explore the absence of di�usion for a single particle in a
disordered potential—a phenomenon known as Anderson localization. Then, we discuss a
similar form of localization persisting in a many-particle environment despite �nite interac-
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tions, namely many-body localization. Finally, we introduce the emergence of non-ergodic
dynamics or extremely slow thermalization in systems without static disorder, i. e., mixtures of
heavy and light particles. Motivated by our one-dimensional (1D) experimental system (see
Section 5.1.1 in Chapter 5), we exclusively focus on 1D systems. This also aligns with the fact
that theoretical descriptions for larger dimensionality are often hindered by the inaccessibility
with numerical and analytical methods.

4.2.1 Anderson localization
To start our discussion of localization in many-body systems, we �rst study how a single
particle localizes in a random potential. This problem dates back to Anderson and his seminal
work establishing the phenomenon of Anderson localization [226]. The underlying reason
for this phenomenon is the destructive interference of the di�erent scattering paths in a
random potential landscape, a wave-like phenomenon absent for classical particles. In the
following, we consider a single (fermionic) particle hopping on a one-dimensional lattice
(tight-binding model) entirely determined by the hopping amplitude t. Besides, each lattice
site has a random energy o�set �i uniformly distributed across the interval [−W,+W]. The
single-particle Hamiltonian for this problem can be written as

Ĥ0 = −t
∑
i

(
ĉ†i ĉi+1 + h.c.

)
+
∑
i
�in̂i (4.8)

with ĉ†i and ĉi the fermionic creation and annihilation operators for a particle on the lattice
site labeled with i and n̂i ≡ ĉ†i ĉi . Throughout this chapter, we consider systems of �nite size
such that the sums in Eq. (4.8) and similar following equations are truncated at the system
size l. Hopping between neighboring sites becomes o�-resonant and signi�cantly suppressed
once we introduce strong disorderW ≫ t. Nevertheless, the higher-order hopping of particles
to more distant lattice sites could become relevant once resonances occur for �i ≈ �j. It can be
rigorously shown that these terms fall o� fast enough, and the eigenstates of Ĥ0 are localized for
any arbitrarily small disorder strengthW∕t > 0—also in the thermodynamic limit l → ∞ [227].
Here, the term localization refers to wave functions { n}n that are �nite in some region of space
and fall o� exponentially at large distance from that region, i. e., | ⟨ n||| n̂i ||| n⟩ | ∼ e−|i−in|∕� .

To illustrate the phenomenon of Anderson localization, we perform a “numerical experi-
ment”. In this simulation, we employ exact diagonalization techniques to probe the localized
nature of the eigenstates at variable disorder strengthW∕t with a quantum quench protocol
[see Fig. 4.2]. Initially, we prepare the state |||Ψ(� = 0)⟩ = ĉ†l∕2 |0⟩, describing a particle localized
on the lattice site i = l∕2 at time � = 0. Then, the state evolves under the Hamiltonian Ĥ0
for multiple hopping times ℏ∕t. For vanishing disorderW = 0, the wave function expands
ballistically in the one-dimensional lattice, as expected for the disorder-free single-particle
system. In contrast, for �nite disorder strengthW∕t = 3, we can observe a localization over a
few central lattice sites—consistent with our earlier discussion of Anderson localization [see
Fig. 4.2(b)]. Experimental protocols similar to our simple numerical study have enabled the
direct observation of Anderson localization in cold atomic gases [228, 229] following earlier
studies in photonic systems [230].
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Figure 4.2 | Absence of di�usion in a disordered lattice. Numerically calculated time evolution of the
state |||Ψ(τ = 0)⟩ initially localized at the origin in a one-dimensional (a) regular (W∕t = εi = 0) or (b) dis-
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indicate a ballistic expansion. In panel (b), we average over 104 individual realizations of the random
disorder potential {εi}i. The dotted red lines correspond to the approximate exponential suppression of
the density with increasing distance from the origin.

4.2.2 Many-body localization
A natural question concerns how interactions, inherently present in a many-body medium,
a�ect single-particle localization [231]. The phenomenology of Anderson localization can
indeed persist in an interacting many-body setting—a phenomenon known as many-body
localization (MBL). This intriguing phase of quantum matter corresponds to non-integrable
systems that violate the ETH and evade thermalization by retaining the memory of a non-
equilibrium initial state for arbitrarily long times [93, 98, 99]. The precise nature of the transition
from a thermal to an MBL phase is not fully understood yet, but key properties such as the
entanglement structure of eigenstates are drastically changed across this transition [98, 99,
232–234]. This section �rst explores the phenomenology of MBL by numerically studying the
disordered Fermi-Hubbard model. Then, we discuss how the emergence of local integrability
in an MBL system leads to logarithmic spreading of entanglement—a hallmark feature of this
phase. In Section 4.3.2, these results will allow us to identify typical signatures of MBL in
translationally invariant systems without static disorder.

Phenomenology in the disordered Fermi-Hubbard model.—To study the fate of localization
in the presence of interactions, we �rst set up a Hamiltonian similar to Eq. (4.8) but with two
internal states � ∈ {↓, ↑} and an interaction term U. This resembles the one-dimensional
Fermi-Hubbard model with on-site disorder {�i}i [see Fig. 4.3(a)],

ĤdFHM = −t
∑

i,�∈ {↓,↑}

[
ĉ†i� ĉ(i+1)� + h.c.

]
+ U

∑
i
n̂i↓n̂i↑ +

∑
i,�∈ {↓↑}

�in̂i�. (4.9)
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Figure 4.3 | Quench dynamics in the disordered Fermi-Hubbard model. Numerical calculations† for
four particles on eight lattice sites with periodic boundary conditions. All data points are averaged
over 102 realizations of the random disorder. (a) Schematic of an example state from the Hilbert space
of the Hamiltonian ĤdFHM and the relevant Hubbard terms U, t, and {εi}i. Here, red and blue circles
correspond to ↓ and ↑ particles, respectively. (b) Dynamics of the imbalance observable I for an ini-
tial charge density wave state (see schematic), fixed interaction strength U∕t = 2, and variable disorder
strength W∕t (colored lines). (c) Dynamics of the entanglement entropy Sent calculated across a central
cut of the system (see schematic). The colored lines correspond to the parameters in panel (b), whereas
the gray line shows the non-interacting case (U = 0, W∕t = 10). (d) Schematic illustration of the local
integrals of motions (LIOMs) and their coupling∼ Ekm.

† Exact diagonalization of the Hamiltonian is performed with the so�ware library QUSPIN [236].

To probe for dynamical signatures of MBL, we again perform a quantum quench experi-
ment within a numerical simulation. In line with the pioneering experimental work in the
�eld of ultracold atoms [91], we consider a charge density wave described by |||Ψ(� = 0)⟩ =(
ĉ†0↓ĉ

†
2↑ĉ

†
4↓…

)
|0⟩ = |↓ ⋅ ↑ ⋅ ↓ ⋅ …⟩. In this initial state, the even sites (denoted e) are empty,

whereas the odd sites (denoted o) are occupied in an alternating fashion. This pattern cor-
responds to a modulation of the total density at the largest possible wave vector k = �. The
chosen initial state represents a high-energy state, and therefore dynamics at energies far away
from the ground state are probed. This is crucial as the behavior of the ground state can strongly
di�er from other states in the Hilbert space, in particular for gapped Hamiltonians [235].

In Fig. 4.3(a), we show the dynamics of an experimentally accessible observable [91]
as a function of variable hold time and disorder strength at �xed interaction U∕t = 2. This
observable is the time-dependent imbalance I = (ne−no)∕(ne+n0) and describes the di�erence
of the density on even (ne) and odd (no) sites. In essence, the imbalance measures the memory
of the initial charge density wave state and takes the value I(� = 0) = 1 at the start of the time
evolution. For �nite disorder strengthW∕t > 0, we observe a �nite I > 0 that also remains
at a stationary value even for extremely long hold times � > 1010ℏ∕t. Although the system
relaxes initially, it remains far away from thermal expectation values due to the presence of
disorder. This can be understood as a signature of localization [91], which persists in the
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presence of interactions.1 Hence, the term many-body localization adequately captures the
nature of this quantum phase.

Spreading of entanglement and local integrals of motion.—Many-body localization can be
studied from various angles, but a particularly instructive viewpoint originates from quantum
information theory, i. e., the analysis of entanglement and its dynamical spreading across the
system. The bipartite von-Neumann entanglement entropy

Sent(A) = −Tr (�A log �A) (4.10)

is a measure of the entanglement between two subsystems A and B [235], which for our case
are the left and right halves. Here, �A = TrB(�) denotes the density matrix of the subsystem A
determined from the full density matrix � = ||| ⟩ ⟨ ||| by tracing out subsystem B. The initial state
in our numerical study and other product states can be written as a single tensor product across
the two subsystems, ||| ⟩ = ||| A⟩ ⊗ ||| B⟩ and therefore Sent ≡ Sent(A) = Sent(B) = − log 1 = 0.
The time evolution of a product state in a many-body environment naturally introduces entan-
glement of the two subsystems. The induced correlations lead to an increase of Sent(A) > 0 as
a function of time, which typically has a linear time dependence for ergodic systems exhibit-
ing thermalization [98]. In Fig. 4.3(b), we show the dynamical evolution of the numerically
determined Sent in the disordered Fermi-Hubbard model. For this case, however, we observe
a logarithmic growth of Sent in the strongly localized regime (W∕t = 10)—a characteristic
property and signature of the MBL phase.

The logarithmic growth of the entanglement is closely connected to the microscopic de-
scription of MBL in terms of local integrals of motion (LIOMs) [237–241]. LIOMs correspond
to the extensive number of locally conserved quantities that describe systems deep in the MBL
phase [see Fig. 4.3(d)]. Note that this emergent integrability is distinct from integrable systems,
which typically exhibit globally conserved quantities. As an illustrative example for the form
of LIOMs, one can consider the non-interacting disordered case where these are plain number
operators n̂k ≡ ĉ†k ĉk. Here, ĉ†k denotes the creation operator of an eigenstate |k⟩ localized
around the k-th lattice site. For an interacting regime deep in the MBL phase, the Hamiltonian
of the system in terms of the LIOMs takes the approximate form [238]

ĤLIOM =
∑
k

EkP̂k +
∑
k≠m

EkmP̂kP̂m + … (4.11)

with P̂k projection operators onto the subspace where the k-th integral of motion is invari-
ant. Crucially, the “interaction” energies Ekm between individual LIOMs labeled k andm are
suppressed exponentially with their distance r = |k − m| [238]. From this relation, we can
estimate the time scale � ∼ cer∕� over which two distant regions become correlated. Here, c
denotes a constant and � a characteristic length scale [100]. The time-dependent propagation

1Our technique employed for the numerical study of the disordered Fermi-Hubbard model is limited by the
fast growth of the Hilbert space with increasing particle number, and our results su�er from �nite-size e�ects.
Nevertheless, the analysis serves to illustrate the phenomenology of MBL in a realistic setting for experiments
with ultracold atoms. See Ref. [93] and references therein for a discussion of other systems where the MBL phase
transition has been studied rigorously.
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of entanglement in the system then simply becomes r(�) ∼ ln �∕c—explaining the observed
logarithmic spreading of entanglement [see Fig. 4.3(a)]. Finally, we note that the entanglement
entropy of individual eigenstates in the MBL phase grows with the boundary of the subsys-
tem [93]. This behavior is known as area-law entanglement and can also be found in ground
states of gapped many-body Hamiltonians with short-range interactions [235]. In contrast, the
entanglement entropy of an MBL system at in�nite time after a quantum quench settles to a
�nite value, determined by the volume of the system [93]. This also applies to the results in
Fig. 4.3(c) and can be understood by considering that our chosen initial state extends across
the whole system and thereby has a �nite projection onto an extensive number of LIOMs.

To summarize, we have explored the phenomenon of many-body localization, which
provides an alternative scenario for thermalization in isolated quantum systems. A system deep
in an MBL phase fails to thermalize and retains a memory of the initial state for arbitrarily long
times—a unique feature potentially useful for applications in novel quantum devices. Crucially,
this phase of quantum matter violates the ETH and is robust against small perturbations of
the system [93]. This contrasts with the setting of “�ne-tuned” integrable models where a
small change breaks integrability and reintroduces ergodicity as, e. g., studied experimentally
in Ref. [242]. To date, MBL has been observed in various experiments with probes of a �nite
initial-state memory but also measures of the entanglement and spectroscopic signatures [91,
92, 96, 97, 240, 243]. All these systems share the presence of static disorder, which breaks
translational invariance. In the next section, we explore a complementary regime and discuss
the possibility of MBL-like phenomena and non-ergodic dynamics in translationally invariant
models without static disorder.

4.2.3 Self-localization of mixtures
In recent years, the question of whether MBL or MBL-like phenomena could also be realized
in systems without static disorder has received signi�cant attention across multiple theoretical
studies [101–106, 244–249]. One particularly promising route explored in this direction con-
siders systems of interacting heavy and light particles [101–105, 244, 245, 250, 251]. Here, the
terms heavy and light refer to distinct dynamical time scales of the non-interacting particles,
i. e., the heavy particles move or hop much more slowly compared to the light ones. Numeri-
cal studies have considered spin ladders with distinct axial couplings [105], two-component
mixtures with inhibited hopping [102], and the mass-imbalanced Fermi-Hubbard model [104].

Notably, the study of such systems dates back to much earlier work of Kagan and Maksi-
mov [107] in the context of helium mixtures. In their study, the di�usion of a small number
of mobile 3He particles within a solid of 4He is considered. The fermionic 3He particles in-
teract via a simple power law potential, whereas the 4He atoms provide a regular crystalline
background and otherwise do not enter the model. The authors show that the crystalline
host and su�ciently strong interactions of the mobile particles can lead to the formation of
local clusters of immobile 3He particles essentially bound to the crystal [see Fig. 4.4(a)]. The
immobility and binding of clusters arise due to the interaction strength far exceeding the kinetic
energy in the system. This suppresses any collective motion of the clusters exponentially with
the number of its constituent particles. Assuming some form of random seed, e. g., from
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Figure 4.4 | Mixtures of heavy and light particles. Localization phenomena arising in heavy-light mix-
tures with two vastly di�erent dynamical time scales. (a) Illustration of cluster formation and self-
localization in helium mixtures studied by Kagan and Maksimov [107]. Here, we show single 3He atoms
(yellow circles) moving in a background of immobile clusters (shaded areas) on a two-dimensional
square lattice. (b) Illustration of a heavy-light mixture with particles (blue and red circles) hopping on
a one-dimensional lattice. Here, the relevant energy scales are given by the interaction energy U and the
hopping amplitudes tL ≫ tH. (Bottom) E�ective single-particle model emerging in the limit of vanishing
heavy hopping (tH = 0).

disorder in the crystal or thermal �uctuations, any remaining mobile 3He particles see the
immobile clusters as an e�ective disorder potential [see Fig. 4.4(a)]. In this way, di�usion
ceases entirely, and the system becomes fully localized—analogous to the phenomenon of
Anderson localization discussed in the previous section.

While the initial setting of Kagan and Maksimov’s work deviates from binary mixtures
carrying the di�erential mobility by construction, the underlying intuitive picture for the
emergence of self-localization remains valid. In the laboratory frame, a heavy-light mixture is
translationally invariant, but each instantaneous con�guration of the heavy particles realizes a
form of random binary disorder for the light species. As explicitly shown in the next section,
this leads to single-particle localization once the motion of heavy particles is completely frozen
[see Fig. 4.4(b)]. Whether introducing a small mobility of the heavy species destroys this form
of self-localization and re-enables transport presents a central question. Existing theoretical
studies [103–105, 251] suggest that �nite mobility of the heavy species leads to dynamics
consistent with ergodicity at late times. However, such mixtures still exhibit extremely slow
relaxation compared to the dynamical time scales of both heavy and light species, which could
be understood as a form of dynamical localization.

4.3 The mass-imbalanced Fermi-Hubbard chain
In this section, we study the phenomenology of dynamics occurring in a one-dimensional
chain described by the mass-imbalanced Fermi-Hubbard model, which we also realize in our
experiment (see Chapter 5). This model represents a straightforward realization of the heavy-
light mixture shown in Fig. 4.4(b): light and heavy particles hop on a one-dimensional lattice
and interact only via an on-site interaction. Notably, this model and similar variants have been
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Figure 4.5 | The mass-imbalanced Fermi-Hubbard model. Schematic illustration of the di�erent
regimes in the one-dimensional mass-imbalanced Fermi-Hubbard model for finite interaction strengths
|U|∕tL > 0: the e�ective single-particle limit described by the Falicov-Kimball model (green, tH∕tL = 0),
a transient regime (green-blue gradient, 0 < tH∕tL < 1), and the integrable limit of the mass-balanced
Fermi-Hubbard model (blue, tH∕tL = 1). Thermalization fails in the Falicov-Kimball model due to single-
particle localization and in the mass-balanced Fermi-Hubbard model due to integrability.

explicitly suggested to feature a dynamical form of many-body localization [105], which we will
explore in Section 4.3.2. To begin our discussion, we �rst set up the Hamiltonian of the system,

ĤHLM = −
∑

i,�∈ {L,H}
t�

[
ĉ†i� ĉ(i+1)� + h.c.

]
+ U

∑
i
n̂iLn̂iH (4.12)

with � = L the light and � = H the heavy species, t� the species-dependent hopping amplitude,
and U the interspecies interaction strength. In Fig. 4.5, we show a schematic diagram of the
dynamical regimes in the model. These correspond to the two well-understood single-particle
and integrable limits as well as the non-integrable intermediate regime, for which numerical
studies predict a rich dynamical behavior [105, 251]. Note that the sign of the interaction
parameter U∕tL has no relevance for the observables and initial states discussed in this section
due to a dynamical symmetry rooted in the nature of the tight-binding model on a bipartite
lattice [252, 253].2 We therefore only consider repulsive interactions U > 0 and restrict our
analysis mostly to the half-�lled case with the average on-site density ⟨n�⟩ =

∑
i⟨ni�⟩∕l = 0.5.

In the limit tL = tH , the two species � = L,H can be associated with two spin states, and
we recover the mass-balanced Fermi-Hubbard model, which is integrable and can be solved
with the Bethe ansatz [254]. However, this presents a “�ne-tuned” point in con�guration
space as a mismatch between tH and tL formally breaks integrability. The more relevant
limit in the context of localization corresponds to tH = 0, i. e., a completely frozen heavy
species. In this limit, the above Hamiltonian corresponds to the spinless Falicov-Kimball
model, originally formulated to describe insulator-metal transitions in crystals [255]. In the
context of solid-state physics, this model and its extension to more than one dimension has
mostly been studied in terms of its ground state and low-temperature physics, e. g., to describe
localized f-electrons interacting with itinerant electrons in the conduction band [256]. At
low temperature, the model exhibits phases with long-range order [257]. However, we are
only interested in the high-temperature (high-energy) limit, where the model instead exhibits
interesting dynamical properties.

2This symmetry is generally broken in our experiment due to the harmonic con�nement of the optical lattice
laser beams (see Section 5.1.1 in Chapter 5).
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4.3.1 Single-particle localization
In the following, we explicitly show how the limiting case of immobile heavy particles (Falicov-
Kimball model) gives rise to localized eigenstates in analogy to Anderson localization [258].
This study provides an intuitive starting point for understanding the intermediate regime
with small but �nite mobility of the heavy particles. First, we observe that in the limit tH = 0,
the Hamiltonian takes the form

ĤHLM
tH=0→ ĤFKM = −t

∑
i

(
ĉ†i ĉi+1 + h.c.

)
+ U

∑
i
ℎin̂i, (4.13)

where we have dropped the orbital indices � = L and replaced the number operators with
the classical �eld ℎi ∈ {0, 1} [see bottom panel of Fig. 4.4(b)]. This �eld is characterized by
the �lling of the heavy species as determined by ⟨ℎ⟩ =

∑
i ℎi∕l with ℎi ∈ [0, 1]. For each

static con�guration {ℎi}i, the above expression essentially takes the form of a single-particle
Hamiltonian, which we study in the following. For simplicity, we assume a system in the
in�nite-temperature limit where each con�guration has equal probability. In this limit, we can
simply consider an ensemble of random binary strings, for example, {ℎi}i = {0, 1, 0, 0, 1, 1, …}.
With this assumption, the model resembles a special form of the Hamiltonian in Eq. (4.8) with
the disorder taking only either of the two values, 0 or U.

To quantify the localization of the eigenstates at variable model parameters ⟨ℎ⟩ and U∕t,
we consider the inverse participation ratio IPR (|Ψ⟩) = IPR

(∑
i �i |i⟩

)
=

∑
i |�i|

4 [259]. For
the state ||| ⟩ = |||i0⟩ = |0… 010… 0⟩ localized on the lattice site i = i0, the inverse participation
ratio takes the value IPR (|Ψ⟩) = 1. In contrast, for an extended state ||| ⟩ = l−(1∕2)

∑
i |i⟩, the

IPR vanishes in the thermodynamic limit l → ∞. To quantify the parametric localization in
the Falicov-Kimball model, we average this quantity over all eigenstates of the Hamiltonian,
as shown in Fig. 4.6(a). For increasing |U|∕t > 0 and 0 < ⟨ℎ⟩ ≤ 0.5, the mean IPR (⟨IPR⟩)
grows as the eigenstates become increasingly localized due to the e�ective binary disorder
from the heavy species. Another way to determine the level of localization is to consider the
�nite-size scaling of ⟨IPR⟩. In a localized regime, the IPR averaged over all eigenstates becomes
independent of the system size l. Hence, we expect this quantity to settle to a �nite value as
soon as l exceeds the characteristic localization length. We analyze this regime by adjusting
the system size for a �xed set of parameters. For the numerically accessible l ≲ 103, we do �nd
a saturation of ⟨IPR⟩ towards a constant value for any �nite �lling and interaction strength
con�rming the localized nature of the eigenstates [see 4.6(b)]. In analogy to our analysis
of Anderson localization in Section 4.2.1, we also numerically simulate the expansion of an
initially localized wave function. The results shown in Fig. 4.6(c) also show a clear absence
of di�usion, but the tails of the wave function are extended across a larger region compared
to the continuous disorder in Eq. (4.8).

4.3.2 Quasi-many-body localization
Following our discussion of single-particle localization in the Falicov-Kimball model, we are
now interested in the transient regime at small but �nite hopping of the heavy species to
explore the e�ects on localization and dynamics. Our theoretical approach in this section
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Figure 4.6 | Single-particle localization in the Falicov-Kimball model. Localized nature of the eigen-
states in the Falicov-Kimball model. (a) Mean inverse participation ratio (IPR) for variable filling ⟨h⟩ and
interaction strength U∕t. Each data point is calculated for a system size of 100 lattice sites and averaged
over 102 random binary strings {hi}i. Note that the plot is axially symmetric around U = 0 and ⟨h⟩ = 0.5.
(b) Finite-size scaling of the mean IPR for parameters indicated by colored crosses in panel (a). The gray-
dashed line indicates the system size employed for the calculation in panel (a). (c) Expansion of a wave
function initially (τ = 0) localized at the origin in a background of stationary heavy atoms with U∕t = 10,
⟨h⟩ = 0.5. Here, we average the probability distribution over 104 realizations of the random binary string
{hi}i. (Top) Random binary string corresponding to a single realization of the disorder potential gener-
ated by the stationary heavy species (gray) and averaged over all realizations (black).

is based on the results from Yao et al. for a two-leg spin ladder [105]. This spin system can
be mapped onto the mass-imbalanced Fermi-Hubbard model by employing a Jordan-Wigner
transformation [251, 260].

Numerical techniques.—Since a dynamical form of MBL is believed to occur in the mass-
imbalanced Fermi-Hubbard with extremely slow relaxation and equilibration, we have to time-
evolve initial states for long times � ≫ 1010ℏ∕tL. This presents a challenge for various approxi-
mate numerical techniques such asmatrix product state algorithms [90] as well as Lanczos algo-
rithms [261]. In contrast, exact diagonalization of the complete Hamiltonian yields all eigenval-
ues {�n}n and eigenstates {||| n⟩}n. This allows the time-propagation of any initial state for arbi-
trary long times with computational e�ort independent of �, |||Ψ(�)⟩ =

∑
n ⟨ n|Ψ0⟩ ei��n∕ℏ ||| n⟩.

Therefore, we use exact diagonalization techniques for our numerical calculations, which
limits the accessible system size to l ≤ 8. We do note that more advanced numerical methods
have been employed to study larger system sizes, but the achieved increases remain relatively
modest [105, 251]. In Appendix D, we show approximate results for intermediate system
sizes l ≤ 12 but limited to small mass imbalances and short evolution times.

Dynamical correlators.—To illustrate the emergence of metastability and extremely slow
relaxation in the regime of quasi-MBL, we study the density dynamics in the mass-imbalanced
Fermi-Hubbard model [see Eq. (4.12)]. This sets the stage for the experimental results in
Chapter 5, where we also probe non-equilibrium density dynamics. In line with the analysis
from Refs. [105, 108], we consider a dynamical correlator which measures the decay of a
variable wavelength density modulation described by the wave vector k = 2�∕Λ. First, we
introduce the operator N̂k� =

∑
j e

ikjn̂j�, which can be understood as Fourier transform of
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the real-space number operators n̂j�. We quantify how correlations at the wave vector k decay
during the time evolution with ĤHLM by calculating the dynamical correlator [105, 108]

Ck�(�) =
⟨
N̂†
k� e

i�ĤHLM∕ℏ N̂k� e−i�ĤHLM∕ℏ
⟩
= 1
d

d∑
n,m

ei�(�m−�n)∕ℏ ||||⟨m|N̂k�|n⟩
||||
2
. (4.14)

Here, {�i}i ({|i⟩}i) are the eigenenergies (eigenstates) of ĤHLM and d is the dimension of the
corresponding Hilbert space. We consider an in�nite temperature ensemble represented by the
density matrix � = 1∕d. In essence, this allows us to sample the thermalization and relaxation
behavior across all states of the Hilbert space and the full spectrum of the Hamiltonian. For the
expectation value, we �nd ⟨…⟩ = Tr(� …) = Tr(…)∕d. In the following, we consider a normal-
ized version of the above correlator determined by the replacement Ck�(�) → Ck�(�)∕Ck�(0).

The above correlator can be understood to measure transport in the mass-imbalanced
mixture at in�nite temperature, as previously considered for a di�erent system [232]. For a
localized system, an equilibration of Ck� is expected but without a full relaxation to zero—in
analogy to the imbalance observable discussed in Section 4.2.2 (k = �). In contrast, for the
heavy-light mixture studied here, the value of Ck� at in�nite time must vanish due to the
underlying translational invariance of the Hamiltonian and the non-zero momentum carried
by N̂k� [105]. This does not exclude the possibility that the duration over which the correlator
vanishes diverges with the system size. Such behavior could be considered a natural de�nition
of MBL in translationally invariant systems. However, this seems not to be the case for the
mass-imbalanced Fermi-Hubbard model as suggested by numerical studies for small system
sizes or short evolution times [105, 248, 251]. Instead, a rich dynamical behavior with an
emergence of metastability can be observed, as shown below.

Our numerical analysis focuses on the largest accessible system size l = 8 with the modula-
tion wave vector k = 2�∕l. In this setting, we study the dependence of the density dynamics on
the model parameters, namely the interacting strength U∕tL and the hopping ratio tH∕tL. The
choice of a long-wavelength modulation is motivated by our experimental realization, where
we also exclusively probe the system at small k. Figure 4.7 shows the time evolution of the
dynamical correlator C(�∕4)� individually for both species � = L,H. In the time traces, we do
�nd a separation of di�erent time scales, which appears particularly clear in the signal for
the heavy species. The �rst regime À corresponds to the natural time scale � ∼ ℏ∕tH of the
heavy species, where the dynamics sets in, and the heavy particles have started to hop between
di�erent lattice sites. These dynamics are governed by an expansion of on-site wave func-
tions to neighboring lattice sites and a signi�cant amount of contrast from the initial density
modulation remains at that point. This regime appears to mark a metastable plateau for the
light species without a noticeable decay of C(�∕4)L. This feature can be intuitively understood
as a form of single-particle localization in the background of heavy particles [102, 105]—in
analogy to the single-particle localization in the Falicov-Kimball model. The behavior changes
signi�cantly in regime Á, where the contrast decays strongly for both species. Interestingly, the
system enters another metastable regime Â at � ∼ ℏU∕t2H , where a small but �nite amplitude
remains for the light species. The approximate scaling of the time scale for this last plateau
with U∕tL and tH∕tL is explicitly shown in Figs. 4.7(b) and 4.7(c) and agrees with the results
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Figure 4.7 | Emergence of metastability in the quasi-MBL regime. Decay of the dynamical density corre-
lator Ckα(τ) for each species α = L,H at the longest wavelength modulation with k = 2π∕l, analogous to
results from Refs. [105, 108]. All data points are obtained from a numerical calculation† for four particles
of each species on eight lattice sites (periodic boundary conditions). The dynamical regimes À-Ã are
explained in the main text. In panel (a), we show data for fixed hopping ratio tH∕tL = 0.01 and interaction
strength U∕tL = 10, whereas panels (b) and (c) display time traces of the heavy species for variable U∕tL

(fixed tH∕tL = 0.01) and variable tH∕tL (fixed U∕tL = 10), respectively. Here, the black crosses correspond
to the values of the interaction strength and hopping ratio in panel (a). Dotted (dashed) black lines indi-
cate the approximate scaling of the relevant time scales (see main text).

† Exact diagonalization of the Hamiltonian is performed with the so�ware library QUSPIN [236].

from Refs. [105, 108]. In Section 4.3.3, we introduce a possible microscopic process, which
could explain the relevance of this pronounced time scale. Finally, the contrast completely de-
cays, and the system can be considered fully relaxed in agreement with eventual thermalization
at late times (regime Ã). However, the duration after which thermal equilibrium is eventually
reached appears to be extremely long for this kind of heavy-light mixture. The associated time
scale is expected to scale exponentially with the modulation wavelength Λ = 2�∕k for small
and intermediate system sizes as studied in Ref. [105].

To connect to our discussion of the ETH in Section 4.1.1, we consider the �uctuations of the
dynamical correlator around its vanishing “thermal” expectation value. Following Eq. (4.7),
the in�nite-time average limT→∞

∫ T
0 d� C2k�(�)∕T should vanish in the thermodynamic limit.

This appears to be consistent with the observed complete relaxation of C(�∕4)�(�) → 0 for long
times � ≫ 109ℏ∕tL with only small-scale �uctuations around zero remaining [see Fig. 4.7(a)].
Compared to the dynamics of the system∼ ℏ∕t�, however, an astronomical time scale has to be
considered for the time averaging. In experiments, such long averaging times are typically not
accessible, and the observation window is restricted to the metastable regime. In this case, the
above relation does not strictly hold, and barely any relaxation of the system can be observed—
with observables remaining far away from their thermal expectation values. This distinguishes
the dynamical regime of our mass-imbalanced mixture from typical ergodic dynamics but also
from the everlasting memory of an initial state, which can be found in a “true” MBL phase.
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Figure 4.8 | Growth of entanglement in the quasi-MBL regime. Entanglement entropy Sent numerically
calculated† across a central cut of a system with four particles of each species on eight lattice sites (peri-
odic boundary conditions), analogous to results from Refs. [105, 108]. Here, Sent is obtained by averaging
over 102 random initial product states. Two datasets are shown for the interaction strength U∕tL = 10,
either with hopping ratio tH∕tL = 0.01 (black line) or 0 (gray line, Falicov-Kimball model). The dynamical
regimes À-Ã are explained in the main text. For comparison, the inset displays data from Fig. 4.7(a).

† Exact diagonalization of the Hamiltonian is performed with the so�ware library QUSPIN [236].

Dynamics of the entanglement entropy.—To complement our study of the dynamical density
correlator, we also consider the time-evolution of the entanglement entropy Sent for an initial
random product state of the form |Ψ⟩ = |011…⟩L |101…⟩H , and a central cut of the system [see
Eq. (4.10)]. Figure 4.8 shows the resulting dynamics for �nite hopping tH > 0 of the heavy
species compared to the regime of the Falicov-Kimball model with vanishing hopping of the
heavy species. For both cases, we observe a fast initial growth of the entanglement entropy,
which can be attributed to the delocalization of particles to the neighboring lattice sites (see
regime À in Fig. 4.8). While the entanglement entropy remains constant in the case of tH = 0
(expected for single-particle localization, see Section 4.2.2), multi-stage dynamics set in at
ℏ∕tH for the case of �nite hopping ratio tH∕tL = 0.1. In regime Á, Sent grows quicker and then
settles to a �nite value, which again grows much slower starting at � ∼ ℏU∕t2H (regime Â). The
slow and seemingly logarithmic growth is reminiscent of the entanglement entropy dynamics
deep in the MBL phase of the disordered Fermi-Hubbard model [see Fig. 4.3(c)]. Finally, Sent
reaches a nearly constant value in regime Ã, which coincides with the time scale where the
density dynamics cease and thermalization has fully set in. Crucially, the distinct behavior of
the entanglement entropy across the di�erent regimes is consistent with the density dynamics
and motivates the term quasi-MBL for the emergent metastable regimes [105].

Nature of quasi-MBL.—To conclude this section, we summarize our numerical study
and connect the key result to existing theoretical work on the dynamic regime of the mass-
imbalanced Fermi-Hubbard model. Non-equilibrium density modulations are expected to
relax fully at in�nite times as the underlying translationally invariant Hamiltonian suggests.
The numerical results from Refs. [105, 251] for intermediate system sizes indicate that the time
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scale for this relaxation does not diverge with the system size, and the model consequently
does not exhibit a “true” form of MBL or asymptotic localization. However, the evolution in
small systems features a clear separation of time scales with emergent metastability. These
observations can be considered as signatures of a dynamical form of MBL in line with previous
work [105]. While the system eventually thermalizes, consistent with ergodic dynamics at late
times, the extremely slow relaxation at intermediate times suggests a peculiar class of quantum
dynamics, that appears to be neither truly ergodic nor fully MBL [105, 248]. This behavior
can be understood to emerge from dynamical constraints arising at strong interactions. As the
natural time scales of both species di�er vastly, many constraints are introduced for the hopping
of particles to adjacent lattice sites. Such constrained dynamics can cause the emergence of
slow time scales once single-particle processes become o�-resonant and transport requires
collective motion. This general concept connects to other forms of non-ergodic dynamics
emerging in strongly constrained models, as found, e. g., in Rydberg arrays with long-range
interactions [262–264] or atoms in strongly tilted optical lattices [265, 266].

As explicitly studied in Ref. [104], �nite-size e�ects pose an issue for the analysis of nu-
merical results. Thus, it remains unclear, how the dynamics potentially might change in the
thermodynamic limit l → ∞, which has been probed for short times and large interaction
strengths [248]. Nevertheless, existing theoretical work [103, 105, 248, 251] does agree on the
fact that the model features an anomalous form of non-equilibrium density and entanglement
dynamics—distinct from an ergodic phase [102]. Such an intermediate metastable phase with
�nite memory of an initial state could also be of practical use for certain quantum devices.
The regime of quasi-MBL seems to be favorable for such applications since it does not require
static disorder and is solely controlled by the interaction strength, a fully tunable parameter
in the setting of ultracold atomic systems.

4.3.3 Few-body bound states
This section introduces a microscopic picture that could explain the time scale ∼ ℏU∕t2H ,
which signals the beginning of the last metastable density dynamics regime. Second-order
perturbation theory suggests the dynamics of doublons (doubly-occupied lattice sites) should
scale with ∼ ℏU∕(tHtL) [267] in the strongly interacting limit U ≫ tL, tH [see Fig. 4.9(a)].
Thus, the appearance of the time scale ∼ ℏU∕t2H is somewhat surprising and can likely not be
explained with the slower dynamics of doublons in the system. In the following, we show how
slowly moving trimers (three-body bound states) could give rise to this slow time scale. The
general notion of such few-body bound states is adapted from Schiulaz et al., who also study a
heavy-light mixture albeit for a modi�ed Hamiltonian compared to our case [102].

To study the phenomenology of few-body bound states, we consider a toy model with only
two heavy particles on neighboring sites and a single light particle delocalized across the two oc-
cupied lattice sites [see Fig. 4.9(b)]. Formally, we consider the following state in the Fock basis,

|||Ψ3⟩ =
1
√
2

(
|0… 0 01 0… 0⟩L + |0… 0 10 0… 0⟩L

)
⊗ |0… 0 11 0… 0⟩H , (4.15)

and study its dynamics under the Hamiltonian of the mass-imbalanced Fermi-Hubbard model
for variable hopping ratio and interaction strength. First, we investigate how the stability of |||Ψ3⟩
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Figure 4.9 | Trimers in the mass-imbalanced Fermi-Hubbard model. Emergence of bound trimer states
in the limit of large mass imbalance tL ≫ tH (small hopping ratio) and large interaction strength U ≫ tL.
Schematic illustration of (a) bound doublon (doubly occupied lattice site) and (b) bound trimer with
blue (red) circles corresponding to light (heavy) particles. Here, we also indicate the dynamical energy
scales of the compound objects and how the hopping of a single heavy particle in the bound trimer is
suppressed. (c) Numerically calculated† number of trimers T a�er preparing the trimer state |||Ψ3⟩ from
Eq. (4.15) at τ = 0 in a system with 24 lattice sites and periodic boundary conditions. The colored lines
correspond to the time evolution for U∕tL = 10 and variable hopping ratio tH∕tL, whereas the gray line
shows the non-interacting limit (U = 0).

† Exact diagonalization of the Hamiltonian is performed with the so�ware library QUSPIN [236].

changes as the hopping ratio is tuned away from the mass-balanced case at tH∕tL = 1. To this
end, we introduce the following operator to measure the number of trimers,

T =
∑
⟨ij⟩

n̂iHn̂jH
(
n̂iL + n̂jL

)
(4.16)

with ⟨ij⟩ denoting neighboring lattice sites. The expectation value for the initial trimer state
in Eq. (4.15) is given as ⟨Ψ3| T |Ψ3⟩ = 1. Figure 4.9(c) shows the dynamical evolution of
the correlator T (t) ≡ ⟨Ψ3(�)|T |Ψ3(�)⟩ for di�erent hopping ratios in the strongly interacting
regime with U∕tL = 10. While the value of T (�) quickly decays to nearly zero in the mass-
balanced case, the correlator remains near unity for tH∕tL = 0.1. This can be understood as
the emergence of a bound trimer state, which only exists in the mass-imbalanced regime of the
Fermi-Hubbardmodel. The enhancement of its binding can also be explained with perturbative
arguments. The di�erential hopping amplitude tH ≠ tL introduces an energetic cost for adjacent
heavy particles to move individually and break up once a light particle delocalizes across their
sites [see Fig. 4.9(b)]. This energetic cost can be associated with the hybridization energy ∼ tL
of the light particle, gained through delocalizing across the neighboring sites occupied by
heavy particles. In the limit of small tH∕tL and large U∕tL, the compound object can then
only move through second-order processes. These include the hopping of a single heavy
atom∼ tH∕tL and the movement of the heavy-light doublon∼ tHtL∕U, which yields the overall
scale (tH∕tL) × (tHtL∕U) = t2H∕U, consistent with our observations in Section 4.3.2.

To support our arguments, we explicitly study the density dynamics of the trimer. Again,
we consider the initial state |||Ψ3⟩ prepared at the center of a �nite system, but this time, we
calculate the mean density {⟨ni�⟩}i of each species (� = L,H). This allows us to directly observe
the expansion of the wave function for variable Hubbard parameters tH∕tL andU∕tL. For large
mass imbalance tH∕tL = 0.1 and �nite interaction strength, we do �nd a collective expansion
of the light and heavy wave functions [see top panels in Figs. 4.10(a) and 4.10(b)]. This strongly
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Figure 4.10 | Dynamics of trimers in the strongly mass-imbalanced regime. Numerical simulation† of
the trimer expansion a�er preparing the state |||Ψ3⟩ from Eq. (4.15) at τ = 0 in a system with l = 24 lattice
sites. Here, we show the on-site density ⟨n̂iα⟩ of (a) light (α = L) and (b) heavy (α = H) particles. The
top panels correspond to U∕tL = 10 and tH∕tL = 0.1, whereas the bottom panels show the contrasting
dynamics in the non-interacting (U∕tL = 0) limit with the absence of collective motion. The insets show
the mean-square widths w(τ) (circles) of the expanding wave functions with a quadratic fit (solid black
lines) yielding the expansion velocity v. (c),(d) Scaling of the expansion velocities (blue circles) for the
light particles and variable interaction strength U∕tL or hopping ratio tH∕tL extracted from the quadratic
fit of the mean-square widths. The dashed blue lines are linear fits to the data points and correspond to
the scaling v ∼ tL∕U and v ∼ (tH∕tL)2 as discussed in the main text.

† Exact diagonalization of the Hamiltonian is performed with the so�ware library QUSPIN [236].

contrasts the behavior in the non-interacting regime, where both species show vastly di�er-
ent expansion time scales [see bottom panels in Figs. 4.10(a) and 4.10(b)]. For a ballistic
expansion of the wave function, we expect the mean-square width w(�) of the density ⟨n̂i�⟩ to
scale quadratically with time, i. e., w(�) − w(0) = v2�2∕2 with the expansion velocity v [267].
The evolution of the light and heavy density is approximately consistent with this quadratic
scaling. We extract the expansion velocities v for variable Hubbard parameters, as shown in
Figs. 4.10(c) and 4.10(d). These results agree nearly perfectly with the linear relation v ∼ tL∕U
and v ∼ (tH∕tL)2, yielding the relation vtL ∼ t2H∕U and con�rming our perturbative arguments.

Our detailed study of a toy model with a single isolated trimer shows that this state moves
collectively with the slow time scale ∼ ℏU∕t2H at signi�cant mass imbalance. Moreover, the
amplitude in Fig. 4.7 shows a strongly asymmetric behavior between light and heavy particles.
This appears to be compatible with dynamics dominated by slow compound objects consisting
of multiple heavy atoms and fewer light atoms. Nevertheless, a handful of questions arise
about a situation with more than three particles. First, it remains unclear whether the trimer
continues to exist in the many-body medium or quickly delocalizes. Second, typical states
of the mass-imbalanced Fermi-Hubbard model have to be probed in order to check whether
the fraction of trimers in such states is appreciable. Third, other few-body states with more
than three particles could be similarly bound. A zoo of di�erent compound objects could then
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lead to a complex hierarchy of distinct time scales potentially hiding any sharp features in
the dynamics. Finally, �nite-size e�ects can also play a role as the system size determines
the maximum scale of few-body compound objects spanning multiple lattice sites. Some of
these questions require a careful study of the model beyond the scope of this thesis. In the
context of the experimental study in Ref. [108], we have con�rmed that the trimer states seem
stable in a few-body environment and occur in typical initial states. Further details on the
relevance of few-body bound states will appear elsewhere [268].

The above results �nalize our discussion of non-equilibrium dynamics in the Fermi-
Hubbard chain with �nite mass imbalance. In this chapter, we have numerically explored
extremely slow relaxation and emergent metastability, both exhibiting a strong dependence
on the interaction strength and mass imbalance in this system. By studying the dynamics
and stability of few-body bound states, namely, trimer states, we have identi�ed a possible
mechanism explaining the emergence of distinct time scales in the non-equilibrium density
dynamics. These �ndings will help us to understand the results of our experimental study
discussed in the next chapter.



CHAPTER 5

Slow relaxation in mass-imbalanced
Fermi-Hubbard chains

This chapter presents the experimental observation of slow relaxation in one-dimensional
systems or chains described by the mass-imbalanced Fermi-Hubbard model. We realize this
system with an ultracold ytterbium gas in a one-dimensional state-dependent optical lattice.
Here, light and heavy particles hop on the lattice with vastly di�erent time scales. First, we
introduce our experimental platform in-depth, andwe characterize how the relevant parameters
can be freely tuned. Then, we probe transport in this system by gradually displacing the
minimum of an external trapping potential. This measurement technique is benchmarked in
the non-interacting regime and then utilized to demonstrate how interactions signi�cantly
suppress the mobility of the light species in the mixture. Finally, we probe the system at
late times after the transport and reveal a particularly slow relaxation. These observations
agree with the theoretically predicted emergence of metastability and slow thermalization
in the mass-imbalanced mixture. The central results of this chapter have been submitted for
publication and can be found in Ref. [108].

5.1 Tunable heavy-light mixtures in optical lattices
In the following, we �rst give a brief overview of the experimental sequence and then explain
two important techniques in detail. Our state preparation is based on the procedures described
in Chapter 1 (see Section 1.4.1) with essential parameters discussed below.

The starting point for our measurements is a degenerate Fermi gas of 171Yb atoms. We
employ sympathetic cooling with 174Yb to reach a low-entropy state with this only weakly
interacting isotope. To this end, we initially load≈ 1.5 × 106 174Yb and≈ 1.0 × 106 171Yb atoms
into the crossed optical dipole trap (ODT). At the end of the evaporative cooling sequence,
typically 6-10 × 103 171Yb atoms remain and are distributed equally across the two nuclear
spin statesmF ∈ {−1∕2, +1∕2} of the ground state. By �tting absorption images of the in-situ
atomic distribution in the crossed ODT, we estimate an initial temperature of T ≈ 0.15TF
with TF the Fermi temperature. Although most of the 174Yb atoms are lost from the trap during
forced evaporation, we employ a short isotope-selective pulse resonantwith the broad 1S0 →

1P1
transition to ensure no residual 174Yb atoms remain.

95
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Figure 5.1 | Optical potentials producing the one-dimensional systems. (a) Geometry of the laser
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waist). Horizontal (solid) or vertical (dashed) lines indicate every 100th lattice plane. The small blue cir-
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lattices in panel (a)]. (c) Schematic of the mass-imbalanced Fermi-Hubbard chain realized in each 1D
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the Hubbard parameters U, tL, and tH are also shown.

5.1.1 One-dimensional systems

The initial step of the state preparation procedure is the subsequent loading of the di�erent
lattices, which allows us to prepare an ensemble of nearly isolated one-dimensional (1D)
systems with the hopping of individual particles restricted to the axial direction. Our ex-
periment employs multiple optical lattices for this purpose: either state-independent and
operated at the magic wavelength (�m ≈ 759.4nm) or state-dependent and operated at the
wavelength � ≈ 671.5nm. Here, the state independence refers to an optical lattice potential,
which does not di�er for atoms in the 1S0 ground state (denoted

|||g⟩) and excited 3P0 clock state
(denoted |e⟩), as introduced in Chapter 1 (see Section 1.3). In contrast, the state-dependent lat-
tice (SDL) is approximately three times deeper for |e⟩ atoms than for |||g⟩ atoms. We employ two
perpendicular magic-wavelength optical lattices [horizontal and vertical, see Fig. 5.1(a)], which
are produced by retro-re�ecting separate Gaussian laser beams with waists≈ 130 µm× 130 µm
and ≈ 150 µm× 40 µm [132]. The SDL potential is also generated with a retro-re�ected Gaus-
sian laser beam but with waists ≈ 230 µm× 115 µm [see Fig 5.1(a)].

The atoms are loaded from the dipole trap into the optical lattices using a series of successive
s-shaped ramps. First, we ramp up the vertical state-independent lattice within 120ms to
its �nal depth of ≈ 30Emrec (Emrec = ℎ × 2.0 kHz). Simultaneously, the optical dipole traps are
ramped down such that the atoms are held against gravity solely by the vertical lattice. Following
this transfer, the second state-independent lattice axis is ramped up to the same depth ≈ 30Emrec
within 300ms. At this point, the atoms are kinetically constrained to a single axis as the hopping
along the perpendicular axes is strongly suppressed with a residual amplitude of t⊥ ≈ ℎ × 1Hz.
The overall system can now be described by an array of 1D systems (tubes), as depicted in
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Fig. 5.1(b). Each of these tubes contains a variable number of atoms due to the combined
harmonic con�nement from the di�erent lattice beams. Our absorption imaging does not
resolve the corresponding distribution due to an intrinsic integration along the z-axis. However,
this distribution can be estimated from the initial parameters such as total atom number and
temperature (see Section 5.2.1).

Finally, we ramp up the SDL along the axial direction to 7Erec within 300ms (recoil en-
ergy Erec = ℎ × 2.6 kHz), and each of the tubes can now be described by a one-dimensional
tight-binding model, where atoms hop only along the axial direction with the amplitude tL ≈
ℎ × 100Hz. Subsequently, a clock laser pulse transfers themF = +1∕2 ground-state atoms to
the |e⟩ orbital. In essence, this pulse produces an approximately balanced mixture of |||g⟩ atoms
inmF = −1∕2 (denoted |L⟩) and |e⟩ atoms inmF = +1∕2 (denoted |H⟩). For the moment, we
ignore the details of the state preparation, which will be discussed in Section 5.3.1. Here, we
�rst focus on the theoretical description of the resulting mixture of light (|L⟩) and heavy (|H⟩)
atoms in each of the tubes with the Hamiltonian

Ĥexp = −
∑

i,�∈ {L,H}
t�

[
ĉ†i� ĉ(i+1)� + h.c.

]
+ U

∑
i
n̂iLn̂iH + 1

2�
∑

i,�∈ {L,H}
(i − i0)

2n̂i�, (5.1)

which, apart from the last sum, resembles the form of the mass-imbalanced Fermi-Hubbard
chain discussed in Chapter 4 [see Eq. (4.12)]. The experimental realization introduces the
parameter � = m!2d2 = ℎ × 3.1(1)Hz, which characterizes the harmonic con�nement of
the system. Here,m denotes the mass of a 171Yb atom, d = �∕2 the lattice spacing, and ! =
2�× 40(1)Hz the harmonic trapping frequency.1 Strictly speaking, the translational invariance
of the model is broken for any �nite con�nement |�| > 0. Nevertheless, the con�nement
term becomes less relevant close to the trap minimum where �(i − i0)2 ≲ t�, U. Since the
hopping of both species di�ers with tL ≫ tH , the con�nement generally has an increased
relevance for the heavy species (�∕tH ≫ �∕tL). While the geometry of the lattice beams �xes
the parameter �, the hopping ratio tH∕tL as well as the interaction strength U∕tL can be tuned
experimentally over a wide range. To utilize this independent control of Hubbard parameters,
we characterize their tunability in the following.

5.1.2 Tuning the hopping ratio
The state-dependent lattice (SDL) is characterized by a �xed relation set by the ac polarizabil-
ity �i in the two relevant states 1S0 (i = L) and 3P0 (i = H) and determines the lattice depth
for atoms in either state. The polarizability ratio p = �H∕�L fully determines this linear rela-
tion V ≡ VL = VH∕p. Since the hopping amplitudes are exponentially suppressed with the
lattice depth, tL∕tH depends non-linearly on V and, in this way, gives access to a freely tunable
hopping ratio (mass imbalance). However, this tuning range is limited from above to ensure
we operate in the tight-binding regime (V ≳ 3Erec), where the hopping to distant sites beyond
nearest-neighbors becomes negligible [1]. From below, the characteristic dynamical time

1We measure this parameter in an independent measurement with the SDL turned o�. In this way, the trapping
frequency can be determined by suddenly displacing the trap center and recording center-of-mass oscillations.
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Figure 5.2 | Polarizability ratio in the state-dependent lattice. (a) Numerically calculated hopping ra-
tio tH∕tL (solid line) at variable lattice depth V for p = 3.06. Here, the black circles and solid lines indicate
the regime accessible under the considerations discussed in the main text. (b) Typical band structure
with the lowest-lying bands for |L⟩ (blue lines) and |H⟩ (red lines) atoms. Energies are shown relative to
the mean energy of the |L, 0⟩band. Black arrows indicate the transition energies relevant for determining
the band gaps of each species. (c),(d) Example clock spectra for a V = 22.6(6)E rec deep SDL featuring the
transitions shown in panel (b). Circles correspond to data points, and solid lines show numerical fits em-
ployed to extract the transition frequencies. Here, we show the fraction of atoms detected in the state |L⟩
or |H⟩. (e) Binned distribution of the polarizability ratio p extracted from multiple measurements similar
to the one shown in panels (b)-(d) but for several di�erent lattice depths. The final result p = 3.06(4) is
the weighted average of these measurements.

scale ℏ∕tL introduces another limit of the tuning range, as it becomes increasingly large with
growing lattice depth. This makes probing the dynamical evolution of the system challenging
within the accessible maximum observation time of the experiment. For our SDL operated
at ≈ 671.5nm, hopping ratios in the range tH∕tL ∈ [0.05, 0.2] can be realized within these
limits [see Fig. 5.2(a)]. Nevertheless, a larger range of the hopping ratio can still be accessed by
changing the wavelength of the SDL, as discussed in Chapter 1 [see Fig. 1.4(b)].

Calibration of the polarizability ratio.—The polarizability ratio p together with the lattice
depth V determines the hopping ratio tH∕tL, a central parameter of the model in Eq. (5.1).
For the measurement of the polarizability, we prepare a spin-polarized sample of ground-
state atoms to avoid any interaction e�ects. The clock laser can not only change the orbital
state of atoms but can also drive transitions between di�erent motional bands of the SDL.
Thus, once an appropriate laser detuning is chosen, we can drive transitions |L, n⟩ → |H,m⟩,
where the indices n and m describe the initial and �nal motional band. This provides a
technique to spectroscopically measure the band gap, i. e., the relative energy di�erence of
the motional ground band (n = 0) and the �rst excited band (m = 1). More precisely, we
measure the transition frequencies �L,{0,1} and �H,{0,1} by �tting spectra of the clock laser for
variable detuning. These transition frequencies correspond to the resonance condition of the
transitions |H, 0⟩ → |||L, {0, 1}⟩ and |L, 0⟩ → |||H, {0, 1}⟩ [see Fig. 5.2(b)]. The former transition
can be probed by employing two consecutive clock laser pulses with the �rst one resonantly
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driving |L, 0⟩ → |H, 0⟩. Combining the results of the transition frequency measurements [see
Figs. 5.2(c) and. 5.2(d)], we independently obtain the band gaps E�1 for |L⟩ and |H⟩ atoms,

EL1 = ℎ × ||||�L,1 − �L,0
|||| and EH1 = ℎ × ||||�H,1 − �H,0

|||| . (5.2)

A theoretical band structure calculation [1] then relates the band gaps to the lattice depths
V ≡ VL and VH . Repeating such spectroscopic measurements multiple times for di�erent lat-
tice depths reduces the statistical uncertainty and yields the polarizability ratio p = VH∕VL =
3.06(4) at the lattice wavelength � = 671.509(1) nm [see Fig. 5.2(e)]. Note that the same meth-
ods employed for determining p allow us to calibrate the lattice depth for measurements
with the heavy-light mixture.

Finally, we comment on systematic uncertainties in our measurement of the polarizability
ratio. As fermionic atoms are employed for this purpose, many quasimomentum states in
the ground band are initially �lled. Due to the distinct width of each band, the transition
frequency is altered for atoms occupying di�erent quasimomentum states. The presence of
harmonic con�nement and other experimental uncertainties make it challenging to estimate
such an e�ect precisely. Instead, we approximate each band with its mean energy and assume
a systematic error ∼ 1∕3 of the band width.2 To minimize this systematic error, an increased
lattice depth can be advantageous as the bandwidths also become successively smaller. This also
explainswhy the abovemeasurement of the polarizability ratio ismore precise than our previous
measurement for the wavelength 670nm [43, 132]. For this prior experiment, transitions
from the n = 0 to the m = 2 band have been employed (lattice modulation spectroscopy).
However, them = 2 band exhibits a much larger band width, and consequently, the systematic
uncertainty also increases. Repeating the lattice modulation spectroscopy of Ref. [132] for the
present lattice wavelength ≈ 671.5nm yields p = 3.05(19), highly consistent with the above
result from clock-line spectroscopy but with an increased uncertainty.

5.1.3 Tuning the interaction strength
The interaction term U in Eq. (5.1) is determined from the Wannier functions of the optical
lattices and the interspecies s-wave scattering length aLH [1],

U = 4�ℏ2
m aLH

∫
dr |wL(x)|

2 |wH(x)|
2 |wy(y)|

4 |wz(z)|
4. (5.3)

Here,m denotes the mass of a 171Yb atom, andw�(x) the Wannier function of the light (� = L)
and heavy (� = H) atoms determined by the depth of the state-dependent lattice (SDL). The
remaining Wannier functions wy ≈ wz are �xed by the ≈ 30Erec deep perpendicular magic-
wavelength lattices and are therefore identical for both species. To enable tuning the interactions
over a wide range U∕tL ∈ [−20, 5], we apply a large magnetic bias �eld B ∈ [1400G, 1600G]
in the vicinity of an orbital Feshbach resonance at ≈ 1300G [111]. This allows us to adjust

2Here, the most conservative estimate would be to consider the complete band width, which increases the
combined uncertainty of p from 0.04 to 0.06. Our choice of 1∕3 is motivated by considering the range of energies
in the band as 99.7% con�dence interval of a normally distributed random variable such that the corresponding
distribution has a full width at half maximum of ≈ 2�.
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Figure 5.3 | Interspecies scattering length. Characterization of the magnetic-field dependent scattering
length in the vicinity of the orbital Feshbach resonance in 171Yb. Unless noted otherwise, the measure-
ments are performed in a nearly isotropic and 30.7(8)Em

rec deep three-dimensional magic-wavelength
lattice. (a),(b) Clock spectra obtained at 1450 G: two-particle transition (blue) and single-particle tran-
sition (red). The inset schematics show the transitions driven by the clock laser (yellow arrows) and
blue (red) circles correspond to |L⟩ (|H⟩) atoms with white arrows indicating the spin state. (c) Scatter-
ing length aLH extracted from clock spectra [see panels (a) and (b)] and Eq. (5.3). The solid line shows
Eq. (5.4) with the fitted parameters abg = 333(14)a0, ∆ = 255(6)G, and B0 = 1285(5)G.†(d) Dependence
of the scattering-length zero crossing (B0 + ∆) on the lattice depth V0 revealing an e�ective shi� of the
Feshbach resonance (see main text). The filled circle corresponds to the dataset shown in panel (c).

† The parameters deviate from the results in Ref. [111] since we consider a much smaller magnetic-field range here.

the interaction parameter U∕tL at constant lattice depth and hopping ratio by selecting an
appropriate magnetic �eld.

Calibration of the scattering length.—Since we lack a precise theoretical model for the
magnetic-�eld dependence of the scattering lengthaLH [111], we determine it in an independent
calibration measurement. As we are only interested in a relatively small range of magnetic
�elds, the following general form [133] proves to capture the functional dependence su�ciently,

aLH(B) = abg (1 −
∆

B − B0
) . (5.4)

The parameters of this model are the background scattering length abg, the magnetic-�eld
location of the resonance B0, and the width ∆ of the resonance. To numerically �t these
parameters, we determine aLH(B) at variable magnetic �eld B with clock-line spectroscopy.
For this measurement, a two-component spin mixture of ground-state atoms is loaded into a
deep three-dimensional and state-independent optical lattice operated at the magic wavelength.
This allows us to overcome the inhomogeneous broadening present in the SDL. Subsequently,
we ramp the magnetic �eld to the value of interest, and a clock laser pulse transfers atoms from
the mF = +1∕2 ground state to the mF = +1∕2 clock state (|H⟩). In this con�guration, we
can address two distinct transitions: the single-particle transition of an isolated ground-state
atom on a single lattice site and the two-particle transition of an mF = +1∕2, −1∕2 on-site
pair [see Fig. 5.3(a)].3 Figure 5.3 shows clock-line spectra, the extracted scattering length, and

3This simple relation only holds here since the interaction energy of the on-site pair in the ground state is
negligible due to the particularly small scattering length agg = −2.8(3.6)a0 [130].
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the numerical �t of the model. Overall, we �nd excellent agreement between experimental
data and the simpli�ed theoretical model.

The approximate relation in Eq. (5.3) breaks down for large scattering lengths or particularly
deep lattices [141]. To quantify the associated systematic error in our calibration, we consider
the model from Ref. [127], which becomes exact in the limit of an isotropic harmonic oscillator
potential. We approximate each lattice site with a harmonic potential ∼ O(x2), apply �rst-
order perturbation theory with an expansion of the lattice potential up toO(x8), extract the
scattering lengths aLH(B), and compare the results. At 1400G, we �nd a ≈ 20% deviation
of the two models, but for most of the experimentally relevant magnetic-�eld range 1450-
1600G, this deviation reduces to ≲ 5%. In the following, we ignore this estimated systematic
uncertainty of the interaction parameter, as typical calibration uncertainties of other parameters
are on a similar scale.

The scattering amplitude giving rise to the �nite s-wave scattering length aLH typically
has a non-zero energy dependence [214]. Consequently, Eq. (5.4) becomes a function of the
parameterE0, describing the entrance energy of a collisional pair. To �rst order, this dependence
can be modeled as an e�ective shift of the magnetic �eld B → B + B� with B� = E0∕|�| and
the di�erential Zeeman shift � = −ℎ × 399.0(1)Hz [111]. Neglecting the �nite band width
in the lattice, the energy E0 can be obtained from the summed approximate energies of the
ground bands of each lattice axis,

E0 =
∑

i∈ {x,y,z}
Ei0 ≈

∑
i∈ {x,y,z}

Emrec (
√
Vi ∕Emrec −

1
4) . (5.5)

We probe this energetic dependence of Eq. (5.4) by repeating our spectroscopic measurement
at di�erent lattice depths V0. Indeed, we �nd a signi�cant dependence on V0, captured by the
phenomenological shift of the magnetic �eld considered above [see Fig. 5.3(d)]. Applying this
correction to the situation in the SDL requires a slight modi�cation of Eq. (5.5). For this case,
we consider the summand Ex0 = (Erec∕2) [

√
pV∕Erec +

√
V∕Erec − (1∕2)], which is the mean

ground band energy of the heavy and light atoms in the SDL. We verify this shift independently
with transport measurements (see Section 5.2), which are particularly sensitive to the point
where the scattering length vanishes.

We conclude our discussion of the experimental techniques for tuning the relevant pa-
rameters of the mass-imbalanced Fermi-Hubbard model with Table 5.1, which shows these
parameters for typical lattice depths.

5.2 Probing transport
This section introduces ourmeasurement techniques for probing transport andnon-equilibrium
dynamics in the mass-imbalanced Fermi-Hubbard model. To benchmark the theoretical de-
scription and characterize single-particle phenomena in the harmonic trap, we �rst exclusively
consider the non-interacting limit by preparing the light species alone. The Hamiltonian for
a single tube then takes the form

Ĥ0 = −tL
∑
i

[
ĉ†iLĉ

†
(i+1)L + h.c.

]
+ 1

2�
∑
k
n̂iL(i − i0)

2. (5.6)
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Table 5.1 | Parameters of the experimentally realized mass-imbalanced Fermi-Hubbard model

Lattice depth Hopping amplitude Interaction Harm. confinement

V ≡ VL (E rec) VH (E rec) tL (h × Hz) tL[2d] tH∕tL |U|∕tL κ∕tL (10−2)

3 9.2 287 0.10 0.21 0 . . .11 1.1
5 15.3 170 0.05 0.09 0 . . .21 1.8
7 21.4 102 0.03 0.05 0 . . .39 3.0

All values are obtained from a theoretical band structure calculation for typical experimental parame-
ters. Here, tL[2d] denotes the next-nearest neighbor hopping amplitude. Note that the experimentally
accessible magnetic field strength limits the interaction strength on the repulsive side (U > 0).

In the following, we �rst model the atomic distribution across the array of tubes, which allows
us to perform theoretical simulations and compare their results to the experiment. Next, we
introduce the technique to adjust the trap minimum i0 dynamically over a large distance.
Finally, we utilize this technique for a �rst reference measurement where we characterize
single-particle localization occurring at the edge of the harmonic trap. This sets the stage for
our measurements in an interacting heavy-light mixture, which will be covered in Section 5.3.

5.2.1 Numerical simulations

Since the Hamiltonian in Eq. (5.6) takes a single-particle form, we can apply exact diago-
nalization techniques to calculate equilibrium properties and dynamics numerically. The
many-particle behavior in the non-interacting limit can then simply be determined from the
atom number and temperature in each tube. However, the tube-shaped potentials generated
by the perpendicular magic-wavelength lattices are distributed along both the y- and z-axis,
and our imaging technique intrinsically averages over many of them [see Fig. 5.1(b)]. To
still obtain an estimate for the density distribution, we develop an approximative model that
considers the initial entropy in the dipole trap to calculate the �nal tube distribution. This
calculation can be performed under the assumption of an adiabatic lattice loading process
which preserves the total entropy [269].

Distribution of atoms across the tubes.—Before loading the two-dimensional optical lat-
tice, the initial state can be described by a degenerate and weakly-interacting Fermi gas in a
three-dimensional harmonic trap. The main parameters of this system are the total light atom
number Ntot = 3-5 × 103 (in a single mF state), the temperature Ti ≈ 0.15TF (Fermi temper-
ature TF), and the trapping frequencies (!x, !y, !z) = 2� × [38(1), 35(1), 402(1)]Hz. These
parameters are either determined from numerically �tting absorption images (particle number
and temperature) or by exciting the sloshing mode of the trap and observing center-of-mass
oscillations (trapping frequencies). The total entropy of a Fermi gas in a harmonic trap of
dimension d at temperature T is given as [269]

S(d)(�,N, T) = �(E − �N) +
∫ ∞

0
dE �(d)(E) log

[
1 + e�(�−E)

]
. (5.7)
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Figure 5.4 | Distribution across the one-dimensional systems. (a) Typical distribution of atoms across
the array of one-dimensional systems (1D) generated by the perpendicular state-independent optical
lattices, viewed along the (z, y)-plane. Note that the distribution exhibits axial symmetry around i = 0
and j = 0. (b) E�ective atom number N in a single tube for variable total atom number Ntot. The yellow
star indicates a typical value in the experiment and the blue-shaded area corresponds to the standard de-
viation ∆N . (c) Binned distribution of the atoms across the various tubes, determined by averaging over
multiple relative phases of the lattice and dipole trap, i. e., (i, j ) → (i + ∆i, j + ∆j) with ∆i,∆j ∈ [0, 0.5).
(d) Axial density distribution along the state-dependent lattice within a single tube for a typical atom
number N = 20 and variable temperature kBT∕tL. Here, the harmonic confinement is indicated by the
gray-shaded area and parameterized by κ∕tL = 1.7 × 10−2.

Here, � = 1∕(kBT), E denotes the total energy, � the chemical potential, N the atom number,
and �(d)(E) the density of states of the d-dimensional harmonic oscillator [201]. For the initial
parameters, we �nd Si = S(3)(Ntot, Ti) = Ntot × 1.4kB.4 With this result, we consider the �nal
state in the two-dimensional array of tubes generated by the perpendicular lattices. This state
is described by the set of atom numbers {Nij}ij and entropies {S(1)ij }ij in each of the tubes. The
total entropy in this state takes the form

Sf =
∑
i,j

S(1)ij
(
�0 + �ij, Nij, Tf

)
(5.8)

with the chemical potential �0 and �ij = m(�m∕2)2 ×
(
!2
yi2 + !2

zj2
)
∕2 determined by the

harmonic con�nement of the traps. With our assumption of a fully adiabatic lattice loading
process, we set Sf ≡ Si and numerically �t the free parameters �0, Tf, and Nij under the
condition

∑
ij Nij = Ntot. This procedure converges and yields the atomic distribution {Nij}ij

over the di�erent tubes of the two-dimensional array, as shown in Fig. 5.4(a). From this result,
we can calculate the e�ective atom number and its standard deviation,

N = 1
Ntot

∑
i,j

N2
ij and ∆N 2 = 1

Ntot

∑
i,j

Nij
(
N −Nij

)2
. (5.9)

4At low temperatures T ≪ TF , the entropy per particle in a three-dimensional harmonic potential scales
approximately linearly with the reduced temperature according to s = S∕N ≈ �2(T∕TF)kB ≈ 10 × (T∕TF)kB [269].
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These quantities typically take the values N = 19 and ∆N = 9 [see Fig. 5.4(b)]. To reduce
the computational cost for numerical simulations, we distribute the atom numbers of the
signi�cantly �lled tubes (≈ 300 with Nij ≥ 1) iteratively across six bins such that the standard
deviation calculated across each bin is constant [see Fig. 5.4(c)]. For comparison with experi-
mental data, quantities are calculated for the mean atom number in each of these bins and
averaged according to the relative weight of the bins.

Local density in the state-dependent lattice.—Since the tunneling along the perpendicular
directions is strongly suppressed by the deep magic-wavelength lattices, we assume that the
distribution {Nij}ij remains unaltered when eventually loading the state-dependent lattice.
The lattice loading process is not fully adiabatic as we can detect an entropy increase of ≈ 30%
when loading the atoms back into the crossed optical dipole trap. In the following, we assume
that the loading and unloading increases the entropy similarly and account for it with the
replacement S(1)ij → 1.15S(1)ij . To characterize the state in the state-dependent lattice (SDL), we
numerically diagonalize the non-interactingHamiltonian in Eq. (5.6) on a large grid. This yields
a set of discrete eigenenergies {�n}n and the corresponding eigenstates {||| n⟩}n. Together with
the atomnumberNij and the bulk entropy S

(1)
ij , we can numerically determine the temperatures

in each tube after loading the SDL from the following relation [see Eq. (5.7)]

S(0)ij
[
�(0)ij , Nij, T

(0)
ij

]
= �

[
E (0)ij − �(0)ij Nij

]
+
∑
n

log { 1 + e�
[
�(0)ij −�n

]

} ≡ S(1)ij . (5.10)

Here, � = 1∕
[
kBT

(0)
ij

]
, �(0)ij denotes the chemical potential and E (0)ij the total energy in each tube.

All quantities are calculatedwithin the thermodynamics of the one-dimensional lattice. Solving
the above equation for a typical lattice depth of 4.7Erec and averaging it over the di�erent tubes,
we estimate an e�ective initial temperature of kBT(0)∕tL ≡ kBT ≈ 2.

In the experiment, we probe the system with absorption imaging, which yields the atomic
in-situ density distribution. To compare this key observable with theory, we also obtain the
local density in the state-dependent lattice of a single tube. Dropping the explicit indices (i, j),
the density on lattice site k can be determined from the Fermi-Dirac distribution and the
single-particle eigenstates,

nL(k) =
∑
n

1

1 + e�[�n−�(0)]
|⟨ n|ĉ

†
kL|0⟩|

2. (5.11)

Figure 5.4(d) shows the temperature dependence of the density. For the typical tempera-
ture kBT∕tL = 2 and con�nement strength �∕tL = 1.7 × 10−2, we also calculate an e�ective
�lling ⟨nL⟩ =

∑
i,j,k N

−1
ij nL(k)

2 ≈ 0.5 and the doublon fraction D =
∑

i,j,k N
−1
ij nL(k)

3 ≈ 0.3.
To numerically calculate the non-equilibrium density, we replace the eigenstates in Eq. (5.11)
with their time-evolution, |||Ψn⟩ → |||Ψn(�)⟩ = ei�n�∕ℏ |||Ψn⟩. By integrating the Schrödinger
equation, this approach also yields the density for a time-dependent Hamiltonian.

Let us emphasize that the above approach is only approximative as we consider a simpli�ed
single-step procedure for the loading process. Nevertheless, this modeling approximately re-
produces the column density of the atomic cloud recorded with in-situ absorption imaging. In
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Figure 5.5 | Continuous translation of the trap minimum. (a) Schematic illustration of adjusting the
minimum of the combined confinement potential U(x) (solid black line) by varying the strength Ud(x)
of an o�-centered potential (dark gray line). The dotted black line corresponds to the stationary har-
monic potential U0(x). (b) Sample atomic density integrated perpendicular to the transport direction x

for variable power in the additional dipole trap beam. (c) Example calibration of the trap minimum x0
for variable power Pd in the o�-centered dipole trap beam. Empty markers correspond to the power of
the dipole trap beam in panel (b).

Sections 5.2.3 and 5.4.1, we will also use the time-evolution of the non-interacting density dis-
tribution to make theoretical predictions for our measurements in the non-interacting regime.

5.2.2 Translation of the trap minimum
To probe transport in the system, we systematically translate the trap minimum [see parame-
ter i0 in Eq. (5.6)] over a �nite duration. This translation is achieved by employing an additional
potential from a vertical optical dipole trap beam displaced from the vertical lattice beam, as
illustrated in Fig. 5.5(a). We operate this beam at the magic wavelength to ensure the same
potential for heavy and light atoms. In the following, we brie�y discuss an approximation
for the combined potential and resulting trap minimum, which we determine directly from
an experimental measurement.

The additional dipole trap beam can be described as Gaussian laser beam with the in-
tensity distribution Id(x) ∼ e−(x−xd)∕w2

0 close to the focus, where the 1∕e beam waist has the
value w0 ≈ 60 µm. Here, we employ a Taylor expansion to obtain the harmonic approximation
of the optical potential

Ud(x) =
1
2m!d(x − xd)

2 { 1 +O [(
x − xd
w0

)
2

] } ≈ 1
2m!d(x − xd)

2 (5.12)

with the trapping frequency !d ∈ 2� × [0, 23]Hz and the displacement xd ≈ 50 µm. The trap-
ping frequency !d can be freely tuned by setting the power Pd of the dipole trap laser beam.
In the absence of the additional dipole trap, the intrinsic harmonic con�nement in each tube
is dominated by the Gaussian envelope of the perpendicular lattices, U0(x) = (m∕2) !2x2

with �xed trapping frequency ! = 2� × 40(1)Hz. Combining the two potentials yields the
overall con�nement potential U(x) = U0(x) + Ud(x). To determine the trap minimum at vari-
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able !d, we �nd the point x0, where the derivative )xU(x) vanishes. This procedure yields an
approximately linear relation between x0 and the power Pd of the additional dipole trap beam,

x0 = xd
1

1 + !2∕!2
d

!d≪!
≈ xd

!2
d

!2 ∼ xdPd. (5.13)

The additional potential Ud(x) also slightly changes the trapping frequency according to
)2xU(x) ≈ m!2[1 + (!d∕!)2∕2], and we neglect this increase typically below 20%.

We probe the linear relation in Eq. (5.13) experimentally by slowly ramping up the addi-
tional dipole trap beam before loading atoms into the state-dependent lattice. Then, we record
the atomic density with in-situ absorption imaging, which allows us to extract the approximate
location of the trap minimum from a numerical �t. Figure 5.5(b) shows data for a wide range of
laser powers, and we do �nd an approximately linear change of the trap minimum, con�rming
the approximation in Eq. (5.13). Typically, the accuracy and stability of our calibration are
mostly limited by drifts of the trap minimum i0 of order ≈ d.

5.2.3 Stark localization
The interplay of harmonic con�nement � and hopping tL leads to single-particle localization
at the edge of the trap, closely related to the phenomenon of Wannier-Stark localization [270].
Using a pure sample of light atoms, we probe this form of localization experimentally. In
this way, we can precisely characterize this single-particle e�ect and determine its in�uence
on the measurements for an interacting heavy-light mixture, the primary focus of this chap-
ter. Before discussing the experimental measurement, we �rst explain how the localization
phenomenon arises from the harmonic con�nement, as also previously studied in similar
cold atomic systems [271–276].

Let us consider the problem of a single particle hopping on a one-dimensional optical lattice
subject to harmonic con�nement. Figure 5.6(b) shows the probability density of the correspond-
ing eigenstates in the optical lattice, determined from an exact diagonalization of Eq. (5.6).
Eigenstates at energies �n ∈ [−2tL, +2tL] (within the band) are delocalized across the central
region of the trap as determined by the classically allowed region �n > (�∕2) × (i − i0)2 of the
con�nement potential. This behavior changes dramatically for states with energies above the
upper band edge at+2tL, which become increasingly localized to either side of the trap. Here, a
second turning point is introduced at the center of the trap, where �n = 2tL + (�∕2) × (i − i0)2.
This point corresponds to q = ±�∕d in the band structure of the translationally invariant
system, where a Bragg-re�ection occurs for the wave function of particles moving in quasi-
momentum space. Hence, the increasingly localized eigenstates at large energies can be
understood to be a signature of Stark localization controlled by the parameter �∕tL and the
local tilt determined from the derivative of the harmonic potential )iĤ0 = �(i − i0)n̂iL. The
parameter �∕tL can be tuned over a wide range by adjusting the lattice depth, which changes tL
signi�cantly but leaves � unaltered as the perpendicular lattice beams mostly determine the
harmonic con�nement [see Fig. 5.6(a)]. In the following, we utilize this fact experimentally by
probing localization with a transport measurement at variable lattice depth.
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only plotted on either side of the trap. (b) Fraction of light atoms transported to the right of the system
(blue circles) by the slowly translated trap minimum, for variable hopping amplitude tL determined by
the lattice depth V . Each point is the average of 2-5 individual measurements and error bars refer to the
uncertainty of κ∕tL. The blue line shows the result of a theoretical calculation with no free parameters
(see main text). The insets show sample absorption images of the light atoms. For this measurement,
the e�ective atom number per tube is N ≈ 19 (standard deviation ∆N ≈ 8) and the hopping amplitude
takes values tL = h × 33(4) … 488(2)Hz. The data contains an estimated constant o�set of ≈ 0.1 deter-
mined from measurements for zero transport distance ∆x = 0, which most likely originates from the
finite extent of the atomic cloud and our finite imaging resolution.

First, the ground state spin mixture is loaded into the perpendicular state-independent
lattices and the axial state-dependent lattice. Then, we employ a short resonant and spin-
selective “push” pulse on the narrow 1S0 →

3P1 transition to remove themF = +1∕2 ground-
state atoms completely. This procedure prepares a pure and non-interacting sample of |L⟩
atoms in the state-dependent lattice, described by the Hamiltonian in Eq. (5.6) for each tube.
Following this initial state preparation, the trap minimum i0 is linearly translated over a
distance ∆x ≈ 47d (lattice spacing d = �∕2) within the time ≈ 90ℏ∕tL using an additional
dipole trap as described in Section 5.2.2. Immediately after this translation, the atomic motion
is frozen by quickly ramping up the state-dependent lattice, and we record the atomic density
with absorption images. In general, we �nd two clouds well-separated along the direction
of translation, one at the initial trap minimum i0 and one at the �nal one, i1 = i0 + ∆x. We
repeat this measurement at variable lattice depth V and quantify the response by counting
the atoms in the two regions i ≤ i0 + ∆x∕2 (left half, Nl) and i > i0 + ∆x∕2 (right half, Nr).
Intuitively, the atoms in the right half of the system can be viewed as the fraction transported
to the new trap minimum while the atoms in the left half of the system have remained at
the original trap location.

To quantify this behavior robustly, we introduce the fraction of light atoms in the right
half of the system Nr∕(Nl +Nr) ≡ Nr∕N by counting the two regions separately. Figure 5.6(b)
displays this characterization of transport in the system for variable con�nement strength �∕tL
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as accessed with the variable lattice depth. As we increase �∕tL at constant atom number per
tube, a growing number of the fermionic atoms start to occupy localized states at the edge of
the trap. These states cannot e�ciently follow the smooth translation of the trap minimum
and remain at the initial trap location. Hence, a dramatic reduction of Nr∕N can be observed,
which signals an increased localization of the system.

Let us also brie�y comment on the role of the translation speed, which in the above
measurement takes the constant value v0 ≈ 0.5dtL∕ℏ. For all lattice depths, Nr∕N increases
monotonically with a reduction of the translation speed and follows approximately an expo-
nential saturation curve.5 Our choice of v0 corresponds to twice the 1∕e time constant of this
saturation curve, a fairly optimal value in terms of signal amplitude andmeasurement duration.

We compare our experimental results to predictions from a theoretical calculation of the
Hamiltonian in Eq. (5.6) with a linear time-dependence of the trap minimum i0. Following
the procedure outlined in Section 5.2.1, we numerically calculate the fraction in the right
half of the system Nr∕N. Overall, we �nd good agreement between experimental data and
numerical calculations with a small systematic shift of the theory to larger values of Nr∕N.
This disagreement most likely originates from experimental and systematic uncertainties in
the modeling of the lattice loading process. For example, a modest increase by 25% of the initial
temperature in each tube or the atom number yields a nearly perfect agreement.

Our experimental results are consistent with earlier studies in single-axis optical lattices,
which employed a sudden displacement (quench) of the trap minimum to probe transport.
A key question in these studies has been what role interactions play and how they could
delocalize states at the edge of the trap [271, 275]. In the context of many-body localization,
this question has been recently revisited and systematically analyzed with matrix product
state simulations for relatively large system sizes [277]. The authors of this study show that
the behavior can be understood analogously to Stark localization in the presence of interac-
tions, where a minimum critical strength of the gradient has been identi�ed [247, 249]. In
the harmonic trap, localized and extended regions co-exist depending on whether the local
gradient �(i − i0)n̂iL exceeds the critical gradient of≈ 2tL or not [277]. While these results have
been determined within a mass-balanced model, we also expect this behavior to persist for the
case of the mass-imbalanced mixture [108]. This has the important consequence that Stark
localization should play a less dominant role for measurements with an interacting heavy-light
mixture. More precisely, at least a central region of ≈ 30 lattice sites should remain extended
and respond to a change of the external con�nement [108].

5.3 Mobility in the mixture
Using the methods introduced for the non-interacting limit in the previous section, we now
study transport and mobility in a mixture of heavy and light particles described by the Hamil-
tonian in Eq. (5.1). This allows us to connect to the theoretical discussion of slow dynamics in
mass-imbalanced mixtures and the emergence of metastability (see Section 4.3.2 in Chapter 4).

5This behavior originates from states with energies close to the upper band edge, which experience a much
larger energy change for a �xed displacement due to their spatial extent [see Fig. 5.6(a)]. Thus, the associated
time constant for adiabatic transport also takes a signi�cantly larger value, giving rise to a reduced Nr∕N at fast
translation speeds.
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To characterize the dependence on both the interspecies interaction strength and the hopping
ratio, we probe the system for multiple combinations of these parameters. Before discussing
these experimental results, we describe the details of the initial state preparation.

5.3.1 Initial state preparation
Similar to our experiments in the non-interacting limit, we start with a balanced mixture of
ground-state atoms in the two nuclear spin statesmF = ±1∕2 distributed across the array of
tube-shaped systems. After loading the atoms into the state-dependent lattice (SDL), a short
resonant clock laser pulse drives themF = +1∕2 ground-state atoms to themF = +1∕2 clock
state, which produces the desired mass-imbalanced mixture in the states |L⟩ and |H⟩. The exci-
tation pulse is driven by a clock laser beam propagating perpendicular to the one-dimensional
tubes (along the y-axis, see Fig. 5.1), which avoids driving any motional excitations along
the shallow lattice. To overcome the inhomogeneous broadening of the clock transition in
the SDL, we employ a large Rabi frequency Ω ≈ 2� × 3 kHz. Before applying the pulse, we
ramp the magnetic �eld to the zero crossing of the orbital Feshbach resonance at ≈ 1530G,
where the scattering length aLH and the corresponding interaction term U vanishes. This
allows us to address singly and doubly occupied lattice sites with a single-frequency excita-
tion pulse as the transition energies are degenerate (U ≈ 0 in the initial and �nal pair state).
Since the duration of the pulse ≈ 0.2ms is much shorter than the natural dynamical time
scale ℏ∕tL ≈ 1.6ms, the excitation corresponds to an e�ective quench of the hopping ratio
with tH∕tL = 1→ tH∕tL ≪ 1, which produces an out-of-equilibrium state. By measuring the
depletion after the clock laser pulse, we estimate that more than 95% of the atoms initially
in themF = +1∕2 ground state are driven to |H⟩. Following the quench of the hopping ratio,
we ramp down the lattice according to the desired tH∕tL within 25ms [see Fig. 5.7(a)]. Since
the harmonic con�nement depends on the depth of the lattice, this ramp also causes an ex-
pansion of the atomic sample along the tubes. To set the interaction parameter, we �nally
adjust the magnetic �eld within 75ms corresponding to 50-140ℏ∕tL depending on the chosen
lattice depth. At this point, we have prepared the tunable heavy-light mixture described by
the Hamiltonian in Eq. (5.1). This provides the starting point for our experimental study of
dynamics in the mass-imbalanced Fermi-Hubbard model.

For our parametric studies, it is essential to understand the nature of the prepared state
at variable interaction strength. The quench of the hopping ratio and the subsequent gradual
adjustments of the parameters in the Hamiltonian yield a state distinct from thermal equi-
librium. Most importantly, we prepare a state far away from the ground state, which allows
us to probe dynamical properties of the system at high energies. A key property of our pre-
pared initial state is the fraction of doubly-occupied lattice sites, which can be estimated from
spectroscopy on the clock transition. In such a measurement, immediately after preparing the
initial state according to the above protocol, the atomic motion is frozen by quickly ramping
up the lattice. Subsequently, we ramp the magnetic �eld to a value where the peaks of singly-
and doubly-occupied lattice sites are well resolved due to a signi�cant interaction shift U. At
this point, a second clock pulse with variable detuning can drive atoms in |H⟩ back to the
ground state. By comparing the amplitudes of the single- and two-particle peaks in the result-
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Figure 5.7 | State preparation of the heavy-light mixture. (a) Schematic illustration of the di�erent
steps in the state-preparation procedure. (b) Time dependence of the Hubbard parameters during state
preparation for sample target values tH∕tL = 0.1 and U∕tL = −10. All parameters are estimated from the
control voltages in the experiment. Time is given relative to the clock laser excitation pulse, which also
suddenly changes the hopping ratio, tH∕tL = 1 → 0.05 (black circle). (c) Doublon fraction change D−D
(blue circles) determined from clock-line spectroscopy by comparing the relative amplitudes of the
single- and two-particle peaks. Here, D = 0.22 (experiment), 0.33 (theory) denotes the mean doublon
fraction. Points are partly binned to increase the signal to noise, and error bars denote the uncertainty
of D. The dashed line displays the result of a matrix product state simulation for the experimental se-
quence and ten particles of each species, kindly provided by P. Zechmann [108, 268].

ing spectrum, an estimate on the ratio of singly and doubly-occupied sites can be made [see
Fig. 5.7(b)]. Due to the limitations of our spectroscopic resolution in the SDL, this method has
an approximative nature, and we complement it with a theoretical calculation for our system
parameters. Qualitatively, the two results agree despite the large error bars of the experimental
data. Therefore, we conclude that the doublon fraction of the initial state only weakly depends
on the chosen interaction parameter. This allows us to probe the e�ects of di�erent interaction
strengths in dynamical experiments after preparing this state.

Within Ref. [108], we have identi�ed that a full replication of the experimental state prepa-
ration procedure is not required to approximately model the initial state. Instead, considering
an initially non-interacting thermal heavy-light mixture and performing a quench of the inter-
action strength yields a qualitative similar state compared to the full preparation procedure.
Here, we quantify the similarity of the states by considering the local density of singly and
doubly occupied sites in the lattice. The simpli�ed state preparation procedure employed for
the theoretical calculations enables prolonged evolution times, which are required for the
transport measurements discussed in the following section.

5.3.2 Inhibited transport
After preparing the heavy-light mixture, we probe the e�ects of interactions on the mobility of
the light species by repeating the transport experiment introduced in Section 5.2. We choose a
�xed hopping ratio tH∕tL = 0.104(7) [V = 4.7(2)Erec] and tune the interaction strength U∕tL
in the range −20… 5 by setting the magnetic �eld to an appropriate value in the vicinity
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Figure 5.8 | Inhibited mobility in the heavy-light mixture. (a) Fraction of light atoms Nr∕N transported
to the right half of the system (blue markers) for variable heavy-light interaction strength U∕tL, fixed hop-
ping ratio tH∕tL = 0.104(7), and confinement strength κ∕tL = 1.7(1) × 10−2 [V = 4.7(2)E rec]. Each point
is the average of 3-4 individual measurements. Error bars denote the standard error of the mean of Nr∕N

(partly smaller than the marker size) and the uncertainty in U∕tL. In the bottom panels, we show example
absorption images of the light atomic density (hexagonal markers in the main panel). The inset of the
main panel shows Nr∕N from matrix product state simulations for the experimental parameters but only
a single tube with five atoms of each species [108]. (b) Comparison of the experimentally determined
light atom density profiles integrated perpendicular to the transport direction (top) and the theoretical
prediction (bottom, matrix product state simulation) for various interaction strengths. All curves are av-
eraged across multiple measurements and normalized to their integrated value. The results of the matrix
product state simulations have been kindly provided by P. Zechmann [108, 268].

of the orbital Feshbach resonance (see Section 5.1.3). Subsequently, we translate the trap
minimum over the distance ∆x ≈ 47d within ≈ 92ℏ∕tL corresponding to a translation speed
of ≈ 0.5dtL∕ℏ. Again, the fraction Nr∕N of the light atoms transported to the right half of the
system is measured with absorption imaging, as shown in Fig. 5.8(a). For increasing interaction
strength |U|∕tL, we �nd a signi�cant suppression of the transported atoms compared to the
non-interacting limit dominated by Stark localization [see bottom panels of Fig. 5.8(a)]. This
suppression reaches almost a factor of two for |U|∕tL ≥ 4 and saturates as the interaction
parameter is further increased beyond the band width (4tL) of the light species. For interac-
tions |U|∕tL > 1, the functional dependence of Nr∕N is approximately proportional to tL∕U.
Remarkably, the signal is nearly symmetric around U = 0, which can be potentially attributed
to a dynamical symmetry [252, 253] of Eq. (5.1) in the absence of harmonic con�nement and
for a constant initial state independent ofU. Here, we expect the harmonic con�nement to only
weakly break the dynamical symmetry. In this way, the details of the non-equilibrium density
distribution might be a�ected but not the quasi-global observableNr∕N, which averages across
a signi�cant fraction of the system. A similar argument might apply to the weak dependence
of the initial state on the chosen interaction parameter U.

The dramatically reduced mobility of the light species at �nite interaction strength arises
from dynamical constraints due to only slowly hopping heavy atoms. Since we translate
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the trap minimum over a large distance ≈ 47d exceeding the typical system size ≈ 30d (root-
mean-square width of the atomic cloud), our measurement can be understood as a long-
wavelength probe of transport. This connects to the theoretical study of density dynamics at
long wavelengths, as discussed in Chapter 4 (see Section 4.3.2). For early times, we expect the
heavy atoms to remain approximately stationary thereby producing a binary disorder potential
(see regime À in Fig. 4.7, Chapter 4). In this picture, the light species experiences localization
due to this e�ective disorder. We assume that our present measurement only probes this early
time evolution exclusively due to the sizable local gradient �(i − i0 − ∆x) quickly applied to
neighboring lattice sites during the transport procedure. Towards the end of the trap minimum
translation, this gradient far exceeds the critical value ≈ 2tL (2tH) [277] in an extended region,
and the dynamics at the initial trap minimum should cease because of Stark localization. In
general, a more quantitative description and analysis of the system poses a challenge since our
experimental probe entails a continuous change of the trapping potential. This measurement
technique features the practical advantage of a relatively large signal-to-noise ratio in contrast
to the minuscule response after a quench of the trap minimum [276].

Matrix product state simulations.—To benchmark our experimental results, we compare
them to a matrix product state simulation [108, 268]. Since our measurement involves a
translation of the trap minimum over a signi�cant distance, a su�ciently large system size is
required to capture this type of experiment, and exact diagonalization becomes infeasible for
the typical particle numbers in each tube. In contrast, matrix product states allow the e�cient
description of weakly entangled states within large Hilbert spaces. For this description of
one-dimensional many-body systems, many numerical techniques have been developed, e. g.,
for dynamical time evolution and for �nite temperature [278]. These methods are commonly
restricted to short evolution times or small particle numbers unless the entanglement growth
slows down signi�cantly, e. g., deep in a many-body localized phase. For a single tube in our
experiment, accuracy limits the simulations to a simpli�ed state-preparation procedure and �ve
particles of each species. We show these results from Ref. [108] in the inset of Fig. 5.8(a). The
qualitative behavior of the transported fraction at variable interaction strength is reproduced
with this numerical simulation. However, a quantitative agreement is not found, which can be
attributed to the much smaller particle number compared to the e�ective atom number per
tubeN ≈ 19 in the experiment. Besides theNr∕N observable, we also compare the normalized
atomic density of the light species in Fig 5.8(b). Here, we also �nd a qualitative agreement,
in particular, at vanishing and maximum interaction strengths.

5.3.3 The mass-balanced regime
Since the hopping ratio in the experiment is tunable, a natural question concerns how the
reduced mobility of the light species is a�ected by this parameter. Speci�cally, we are interested
in the limit of equal masses (tH = tL), where the slow dynamics and emergent metastability
of the quasi-MBL regime should cease to exist. To probe this regime, we replace the state-
dependent lattice (SDL) with a state-independent lattice operated at the magic wavelength.
For comparison of measurements in the two con�gurations, we select the lattice depth 2.7Emrec,
where the harmonic con�nement strength �∕tL = 1.6(1) × 10−2 takes approximately the same
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Figure 5.9 | Mobility for equal hopping amplitudes. (a) Fraction of light atoms Nr∕N transported to the
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rec]. Each point corresponds to the average
of 5-7 individual measurements. The error bars denote the standard error of the mean of Nr∕N and
the uncertainty in U∕tL. The inset displays the doublon fraction D (black circles) in a 4.0(1)Em

rec deep
state-independent lattice. Data points are obtained from clock-line spectroscopy and the relative am-
plitudes of the single-/two-particle peak, and error bars denote the uncertainty of D. The dashed line
corresponds to a theoretical prediction from an exact diagonalization calculation for eight lattice sites.
(b) Direct comparison of the light (blue lines) and heavy (red lines) atomic density (integrated along y)
for variable interaction strength U∕tL (top to bottom) as well as the hopping ratios tH∕tL ≈ 0.1 (le�, see
Fig. 5.8) and tH∕tL = 1 [right, also see main panel in (a)]. All curves are averaged across multiple measure-
ments and normalized with their integrated value. Note that the measurements for the heavy species are
subject to systematic uncertainties (see main text).

value as for the 4.7Erec deep SDL considered in the previous section. The lattice depth distinct
from the mass-imbalanced con�guration leads to potential systematic di�erences, for example,
the hopping beyond neighboring sites becomes increasingly relevant. Moreover, a separate
smaller laser beam generates the state-independent lattice. This leads to a larger albeit still
small variation of the e�ective lattice depth and the associated Hubbard parameters when
averaging across multiple tubes. Nevertheless, we expect the experimental results for both
con�gurations to be comparable on a qualitative level.

Figure 5.9(a) shows the transported fraction Nr∕N of light atoms in the state-independent
lattice for variable interaction strength U∕tL after translating the trap center over the dis-
tance ∆x ≈ 44dm within the duration ≈ 94ℏ∕tL. Here, dm = �m∕2 denotes the spacing of the
magic-wavelength lattice. Compared to the con�guration with �nite mass imbalance, the
measurement results at tH = tL also exhibit signi�cant suppression of transport for �nite inter-
action strength |U|∕tL > 0. However, the parametric dependence on the interaction features
two qualitative di�erences: the amplitude of the suppression is much smaller with a maxi-
mum of ≈ 20%, and the shape exhibits a strong asymmetry between the attractive (U < 0) and
repulsive (U > 0) side. The suppression also takes systematically smaller values for the latter
range of interactions with a maximum of ≈ 10%. This does not come as a surprise since the
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reduced transport in the mass-imbalanced regime must originate from an e�ect unrelated to
the dynamical constraints at �nite mass imbalance.

We attribute the asymmetric signal and reduced transport to doublons arising from an
increased sensitivity of the state preparation procedure to the �nal interaction strength. In
contrast to the mass-imbalanced setting, the clock excitation pulse producing the mixture
does not quench the hopping ratio. Hence, the state preparation only consists of slowly
ramping the interaction parameter [see Fig. 5.7(a)]. Consequently, the doublon fraction in
the initial state before translating the trap center depends strongly on the selected interaction
parameter U∕tL. We verify this assumption with an experimental measurement shown in the
inset of Fig. 5.9(a). In particular, the number of doublons is signi�cantly reduced for repulsive
interactions U > 0. Since the dynamical time scale of doublon hopping becomes much slower
with ∼ ℏU∕t2L (U ≫ tL), the overall fraction of doublons also contributes to suppressing the
response after translating the trap minimum. Our measurement in the mass-imbalanced
regime can therefore be mainly considered a probe of the doublons and their dynamics, as
studied experimentally in Ref. [275].

Direct comparison of the atomic density.—Despite the added complexity due to the initial
state, the measurement in the mass-balanced regime provides an important basis for a qualita-
tive comparison of the atomic density. In Fig. 5.9(b), we compare the normalized densities of
both species for the mass-imbalanced (tH∕tL ≈ 0.1) and the mass-balanced setting (tH = tL).
Note that the density of the heavy atoms likely contains systematic uncertainties, which are
not fully characterized at this point.6 However, we assume this does not signi�cantly in�uence
the qualitative comparison presented in this paragraph. For equal masses, the densities of both
species agrees nearly entirely for the probed interaction parameters. In contrast, a �nite mass
imbalance leads to a substantial di�erence between the two species, with the heavy atoms
remaining mostly stationary at the initial trap location. But the di�erences between the two
con�gurations become even more apparent when solely comparing the atoms transported to
the right of the system. While almost no di�erences are discernible between non-interacting
and interacting regimes for tH = tL, a sizable reduction at �nite interaction strength can be
observed for the mass-imbalanced case [see Fig. 5.9(b)]. This agrees with our understanding of
the dynamics in the heavy-light mixture and how interactions with the heavy atoms severely
limit the mobility of the light species.

Gradual adjustment of the hopping ratio.—Finally, we brie�y comment on results for a con-
tinuously adjusted hopping ratio tH∕tL in the range 0.5… 0.2, which can be realized by changing
the state-dependent lattice depth. Experimental results for the values tH∕tL ≈ 0.05, 0.1, 0.2
suggest that the functional dependence on the interaction parameter appears to be insensitive
to tH∕tL. We only observe a signi�cant dependence of the maximum and minimum values of
the transported fractionNr∕N, which can likely be attributed to the con�nement strength �∕tL
(changes together with tH∕tL) and the corresponding number of extended and localized states

6Absorption imaging is performed after quickly turning o� the magnetic �elds. By �rst repumping on the
3P0 → 3D1 line, we enable the detection of the heavy atoms on the broad 1S0 → 1P1 imaging transition. This process
can be associated with losses of ≲ 30% [111] depending on the local density. Moreover, the fast ramp-down of the
magnetic �elds projects some heavy-light on-site pairs into the molecular bound state, which appears to be dark
to our detection technique. Hence, a precise reconstruction of the in-situ heavy atom density during the main
transport experiment poses a challenge.
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in the harmonic trap. Overall, the experimental results are consistent with the behavior of
the heavy-light mixture in the �rst regime (see Fig 4.7 in Chapter 4), which features a rather
weak dependence on the hopping ratio.

5.4 Late-time dynamics
Having identi�ed strongly inhibited transport of the light species at early times, we now fo-
cus on the late-time dynamics in the system. In essence, we investigate whether the density
of the light atoms eventually relaxes slowly (regime Á in Fig. 4.7), as predicted by the phe-
nomenology of quasi-MBL and in agreement with thermalization at late times. To answer
this question, we enhance our measurement sensitivity by slightly modifying our technique.
First, we signi�cantly reduce the transport distance to∆x ≈ 20d while retaining the translation
speed ≈ 0.5dtL∕ℏ. This distance is below the typical system size ≈ 30d and ensures that the
atomic cloud stays connected, i. e., a signi�cant fraction of both the heavy and light species
remains mobile over the traversed transport range. Second, we reduce the e�ective number of
light (or heavy) atoms per tube toN ≈ 17 by loading a smaller total number of atoms into the
optical lattices. This reduction helps to lower the occupation of Stark-localized states at the
edge of the trap. Following the translation of the trapping potential, we monitor the density of
the light atoms for variable hold time � ∈ [0, 400ℏ∕tL] and �xed trap minimum. This allows us
to detect a potential relaxation towards the �nal trap center for atoms that remain at the initial
position during the transport sequence due to interactions with the heavy species. In line with
our theoretical study of quasi-MBL (see Section 4.3.2), we expect a signi�cant dependence
of the relaxation dynamics when adjusting the hopping ratio. Hence, we do not only vary
the interaction strength U∕tL ≈ 0, −2, −10 but also consider two distinct values tH∕tL ≈ 0.1
and 0.2 by selecting the appropriate lattice depth.

Figure 5.10 depicts the atomic density integrated perpendicular to the transport direction
and obtained for early times � = 0 aswell as late times � ≈ 330ℏ∕tL using themeasurement tech-
niques described above. First, we focus on the tH∕tL ≈ 0.2 dataset shown in Fig. 5.10(a) and dis-
cuss the time evolution at di�erent interaction strengths. In the non-interacting limitU∕tL ≈ 0,
the density at early and late times is nearly identical, consistent with our expectations that relax-
ation should not be relevant here. For �nite interaction strength |U| > 0, the evolution of the
density shows a contrasting behavior. Initially, the suppression of transport can be qualitatively
identi�ed by observing that the center of mass shifts towards the initial trap minimum. At late
times, an evident relaxation of the atomic density towards the �nal trap center can be observed,
which appears to be more signi�cant for the case with weaker interactions U∕tL = −2 [see
the hatched region in Fig. 5.10(a)]. The tH∕tL ≈ 0.1 dataset shown in Fig. 5.10(b) indicates
qualitatively similar behavior. However, the overall magnitude of relaxation is signi�cantly
reduced, probably caused by an increased relevance of Stark localization and a smaller fraction
of atoms remaining mobile [�∕tL = 1.7(1) × 10−2 compared to 1.10(7) × 10−2 at tH∕tL ≈ 0.2].
In summary, our qualitative comparison of the density at two distinct hold times indicates that
this observable indeed relaxes towards a state compatible with thermalization at late times.

We also record the density of the heavy species, which shows a similar form of relaxation,
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Figure 5.10 | Time evolution of the non-equilibrium density. Atomic density of the light species inte-
grated perpendicular to the transport direction (solid lines) for the hopping ratios (a) tH∕tL = 0.203(8),
(b) 0.102(6) and variable interaction strength U∕tL (see top-le� label in each panel). Each curve corre-
sponds to the mean of four normalized measurements and variable hold time τ ≈ 0, 330̄h∕tL a�er trans-
lating the trap minimum from i0 to i1. The hatched region highlights the di�erence between the curves.

albeit less signi�cant and only appreciable for the maximum hold time � ≈ 400ℏ∕tL (see
Appendix E). This non-stationary density of the heavy species strongly suggests that indeed a
�nite number of heavy atoms remains mobile after translating the trap minimum. Therefore,
we are convinced that ourmeasurement probes the dynamical regime of the heavy-lightmixture
despite the presence of Stark localization at the edges of the trap. As discussed in Section 5.3.3,
however, the density of the heavy species contains systematic uncertainties, which makes
a quantitative analysis challenging. For the present measurement, the appreciable loss of
heavy atoms (see Section 5.4.2) poses an additional di�culty for comparing the density at
early and late times. Hence, we only consider the light species in our following quantitative
discussion of relaxation in the system.

5.4.1 Probing relaxation time scales
To probe relaxation more systematically, we introduce a new observable calculated at variable
hold time � from the normalized density n(x, �) with

∫
dx n(x, �) = 1. This observable is the

time-dependent density deviation �n(�), which recti�es the di�erence between the density of
the light species after translating the trap minimum and at later times,

�n(�) = {
∫
dx n(x, �) [n(x, �) − n(x, 0)]2 }

(1∕2)
. (5.14)

This dimensionless quantity takes positive values and grows monotonously for a continuous
relaxation of the density towards the �nal trap minimum while a constant value of �n(�)
indicates a stationary state. In contrast to the transported fraction of atoms Nr∕N or other
observables such as the center of mass, the density deviation exhibits less sensitivity to the
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Figure 5.11 | Slow relaxation at late times. Density deviation δn(τ) of the light atoms with respect
to the initial distribution a�er translating the trap minimum from i0 to i1 for variable hopping ratio
(a) tH∕tL = 0.203(8), (b) 0.102(6) and interaction strength U∕tL [see legend in panel (b)]. Each data point
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size) denote the uncertainty of τ tL∕̄h and standard error of δn(τ) as estimated from jackknife resam-
pling [279]. Colored lines are three-point moving averages of the data points. The gray band shows the
result of a numerical simulation in the non-interacting limit, and its height indicates the estimated sys-
tematic uncertainty in δn(τ) (see main text). The bottom-right inset in panel (a) illustrates the translation
of the trap minimum and the hold time τ.

calibration of the trap minimum. This can be advantageous for the present measurement to
signi�cantly reduce the transport distance and ensure the atomic cloud remains connected.

Contribution of technical noise.—Since the density deviation recti�es any di�erence be-
tween n(x, 0) and n(x, �) this observable exhibits an increased sensitivity to technical noise. To
quantify this dependence, we calculate �nM(�) for a variable number of measurements NM ∈
[0, 4], which are averaged to obtain n(x, �). Assuming uncorrelated noise n� with vanishing
expectation value ⟨n�⟩ = 0, �nite variance ⟨n2� ⟩ > 0, and vanishing third momentum ⟨n3� ⟩ > 0,
we �nd the contribution of n� by replacing n(x, �) → n(x, �) + n� in Eq. (5.14),

�n2M(�) =
⟨n2� ⟩
M + �n2(�). (5.15)

The noise-free quantity �n2(�) can then be calculated from a numerical �t of Eq. (5.15) with
the dataset generated by selecting a subsetM ≤ 4 for the averaging of n(x, �). Following this
procedure, we estimate the noise contribution �nM=4(�) − �n(�) ≈ 0.4 × 10−3 from a non-
interacting dataset. This value remains well below the amplitude of the density deviation, and
we consider it as an estimate of the systematic uncertainty in our measurement.

Time-evolution of the density deviation.—In Fig. 5.11, we show the density deviation for the
same variable interaction strengths U∕tL ≈ 0, −2, −10 and hopping ratios tH∕tL ≈ 0.1, 0.2 as
the bare density discussed previously (see Fig. 5.10). First, we focus on the non-interacting
case (U ≈ 0), which we also simulate numerically with the methods presented in Section 5.2.1.
Within this calculation, we average over non-integer o�sets ≤ 0.5 of the trap minima. This
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procedure accounts for the unstable relative o�set between trap minimum and lattice sites
in the experiment. At early times � ≲ 100, the time evolution of the density deviation shows
large-amplitude oscillatory dynamics for both hopping ratios. These transients originate from
the absence of collisional damping in the non-interacting case and are qualitatively reproduced
with our numerical calculation. A quantitative description would require considering the
non-harmonic corrections of the con�nement potential, which can a�ect the precise shape
of the early-time dynamics signi�cantly. At late times, the oscillations are damped and the
density deviation takes a nearly constant value ≈ 1.5 × 10−3. While the constant value would
also correspond to a fully relaxed system, the inspection of the raw densities directly shows
that the system remains stationary (see Fig. 5.10). At this point, atoms remaining at the initial
trap minimum occupy Stark-localized states and, therefore, cannot relax e�ciently [276].

For �nite interaction strength, the density deviation allows us to analyze dynamics in
the system quantitatively. Note that the density deviation does not encode the exact form
of relaxation. However, our previous discussion of the bare density has clearly shown that
the system does relax towards the �nal trap position—in agreement with a naive expecta-
tion of thermalization for this situation. The behavior of �n(�) shows a strong dependence
on the hopping ratio at �nite interaction strength in contrast to the non-interacting setting.
For tH∕tL ≈ 0.2, the time traces corresponding toU∕tL ≈ −2, −10 relax similarly starting from
initial values comparable to the non-interacting limit and reaching≈ 4 × 10−3 at late times [see
Fig. 5.11(a)]. The relaxation can approximately be described by exponential saturation curves
and appears slightly slower for the larger interaction parameter U∕tL ≈ −10. For tH∕tL ≈ 0.1,
the time traces of the two �nite interaction parameters show a strongly deviating behavior.
With the amplitude of the relaxation reduced to ≈ 3 × 10−3, the U∕tL ≈ −2 dataset shows a
continuous relaxation comparable to the form observed for larger hopping ratio. In contrast,
the U∕tL ≈ −10 time trace shows initially almost no relaxation with a plateau-like feature
for � ≲ 150ℏ∕tL at a constant value ≈ 1.5 × 10−3. At later times � ≫ 150ℏ∕tL, the density
deviation signals the onset of a slow relaxation which appears to extend beyond the maximum
observation window [see Fig. 5.11(b)].

Agreement with the phenomenology of quasi-MBL.—The observation of a plateau-like feature
at small hopping ratio tH∕tL ≈ 0.1 and large interaction strength U∕tL ≈ −10 is remarkable
as it agrees with the expected phenomenology of quasi-MBL (see Section 4.3.2 in Chapter 4).
In Ref. [108], the distinct features of the entanglement entropy are employed to extrapolate
the time �3 ≈ 270ℏ∕tL ∼ ℏU∕t2L for the onset of the �nal metastable regime with extremely
slow relaxation (see Fig. 4.8 in Chapter 4). This value is roughly compatible with the experi-
mentally observed features for � ≳ 250ℏ∕tL. However, we have to emphasize that it remains
unclear how much this extrapolation su�ers from �nite-size e�ects. Speci�cally, numerical
simulations for intermediate system sizes and the experimental parameters show an increased
smoothness with less distinct separations of time scales (see Appendix E). Nevertheless, the
experimental data demonstrates that the hopping ratio and interaction strength dramatically
in�uence the relaxation dynamics after translating the trap center. Even for the larger hopping
ratio tH∕tL ≈ 0.2, the time scale of the dynamics extracted with an exponential �t is already
much slower than the theoretical expectation for themass-balanced case [108]. This underlines
the relevance of the dynamical constraints in the system arising from the two di�erent time
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scales and �nite interaction strength. Generally, the mass-balanced con�guration could also be
probed experimentally by replacing the state-dependent lattice with a state-independent lattice.
However, this introduces systematic deviations, e. g., due to elevated relevance of dissipation
(see Section 5.4.2), and is therefore left for future studies.

Let us emphasize that the density can most likely not completely relax to the shape of the
non-interacting con�guration. As we translate the trap minimum over a �nite duration, some
regions of the trap start to exhibit Stark-localization due to the large local gradient. The motion
in these locations is subsequently frozen and a memory of the initial dynamics or their absence
remains. Consequently, our measurement does not yield a strict statement concerning the
ergodicity of the system orwhether the eigenstate thermalization hypothesis holds here. We can
only report on the observed relaxation as a potential signature of thermalization at late times.

5.4.2 Dissipative dynamics
Besides the closed-system dynamics according to the Hamiltonian in Eq. (5.1), dissipation is
also present in the heavy-light mixture. To demonstrate that our observations are not caused by
the �nite dissipation in the system alone, we precisely characterize the relevant loss channels.

O�-resonant photon scattering.—The heavy atoms reside in the electronic 3P0 state, and
our implementation of the state-dependent lattice is operated only ≈ 20nm detuned from the
3P0 →

3S1 transition wavelength (649.1nm [115]), causing signi�cant o�-resonant photon
scattering. To characterize this single-particle process, we �rst consider the relevant atomic
states and transitions, which are also schematically shown in Fig. 5.12(a). Once a lattice
photon excites a heavy atom to the 3S1 state, it quickly decays back to either of the 3PJ=0,1,2
states with the ratio 15∶40∶45 according to the Clebsch-Gordan coe�cients and the transition
frequencies. Since atoms decaying to the metastable 3P2 are likely lost, and the 3P1 is short-
lived, roughly 47% of the population is transferred to the 1S0 ground state after scattering only
two photons [see Fig. 5.12(b)].7 Hence, the o�-resonant scattering of lattice photons has two
consequences: single-particle loss (decay to 3P2) and a heavy-to-light conversion (decay to 3P1
and subsequently to 1S0). We probe this experimentally by preparing a pure sample of heavy
atoms and subsequently monitoring the atom number in the 3P0 and

1S0 state as a function of
hold time. For this measurement, we employ a small magnetic bias �eld far away from the
orbital Feshbach resonance in order to primarily probe single-particle decay. Figure 5.12(c)
shows the resulting time traces in a 4.5(3)Erec deep state-dependent lattice (SDL) together with
an exponential �t, which con�rms the approximative modeling introduced above.

Repeating our measurement for much smaller state-dependent lattice depths V ≪ 5Erec,
we �nd time traces which signi�cantly deviate from a simple exponential decay. To capture
this deviation, we consider additional two-body loss, such that the combined process can be
described by the di�erential equation

dNH(t)
dt = −ΓNH(t) − �NH(t)

2. (5.16)

7The o�-resonant scattering also scrambles the population across di�erent nuclear spin states. However,
independent spin-sensitive measurements show that this e�ect becomes rather negligible on the time scales
considered here.
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Here, the decay rate takes the form Γ = Γsc(V∕Erec) + 
, where Γsc accounts for loss due to
o�-resonant scattering of SDL photons and 
 describes independent background decay, e. g.,
induced by the perpendicularmagic-wavelength lattices. The parameter� in Eq. (5.16) accounts
for two-body losses of heavy atoms in the electronic 3P0 state [19], which are suppressed by
Pauli-blocking for on-site pairs. However, the experimental data suggests a �nite contribution
most likely originating from neighboring pairs in the lattice,

� = 2 ⟨nH⟩ �ee
∑
n=1

∫
dr |wH(x)|

2|wH(x + nd)|2|wy(y)|
4|wz(z)|

4. (5.17)

Here, wH(x) denotes the Wannier function in the SDL with lattice spacing d = �∕2, wy(y) ≈
wz(z) the Wannier functions along the perpendicular magic-wavelength lattices with depth
≈ 30Emrec, �ee = 4.8(2.1) × 10−12 cm3∕s the bare two-body loss coe�cient [111], and ⟨nH⟩ ≈ 0.5
the �lling. Note that the �lling could potentially display a complex dynamic due to the build-up
of correlations [280]. For each SDL depth probed in the experiment, we �t the parameter Γ
in Eq. (5.16) with � calculated according to Eq. (5.17) for n ≤ 3. With this procedure and for
V ≥ 2.7Erec, we �nd the numerical values Γsc = 25(1)mHz and 
 = 179(13)mHz—in quan-
titative agreement with a previous measurement for 173Yb [43]. Also, we extract an e�ective
lifetime �1∕e de�ned by NH(�1∕e) = NH(0)∕e for each lattice depth, as shown in Fig. 5.12(d).
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These �ndings underline that a signi�cant lattice depth V ≳ 3Erec is required to suppress
the otherwise substantial two-body losses of neighboring pairs. On the other hand, the o�-
resonant photon scattering increaseswithV and hence, an optimal region at intermediate lattice
depths ∼ 3Erec exists. In this region, the 1∕e lifetime related to the dynamical time scale ℏ∕tL
takes its maximal value and far exceeds 103ℏ∕tL, allowing for long enough observation times
in our measurements of the density dynamics.

Few-body losses close to the orbital Feshbach resonance.—Since we lack a precise model for
the loss mechanisms at the orbital Feshbach resonance,8 we focus on determining the overall
particle loss at a variable magnetic �eld. To this end, we perform an independent measurement
where the heavy-light mixture is held in the vicinity of the orbital Feshbach resonance and a
constant SDL depth of ≈ 3.6Erec. We monitor the total number of atoms (both light and heavy)
and numerically �t the short-term time dependence with the linear relation

N(t) ≡ NL(t) + NH(t) = N0 − Rt. (5.18)

Here, the initial atom count N0 and the linear decay rate R are the two �t parameters. The ex-
perimental data suggests negligible atom loss with R ≈ 0.12(5) × 10−3tL∕ℏ for the relevant
range of magnetic �elds 1450-1600G. The relative short observation times ≲ 400ms are
limited by the maximum duration our magnetic �eld coils can sustain the large currents
of ≈ 300A. For smaller magnetic �elds towards the location of the orbital Feshbach reso-
nance [111], losses increase approximately linearly with the magnetic �eld and reach the
value R = 0.55(7) × 10−3tL∕ℏ at 1300G. Additionally, we verify that the observed decay rate R
only weakly depends on the SDL depth by adjusting it over the range 3–7Erec at �xed magnetic
�eld 1350G. Overall, we do not expect any signi�cant dependence of loss on the chosen inter-
action parameter considering the invariant behavior for the relevant range of magnetic �elds.

Atom loss during the dynamical measurements.—Finally, we consider the evolution of the
atom number of both the light and heavy species during the measurements of the density devia-
tion discussed in the previous section. Figure 5.13 shows the number of atoms for the hopping
ratio tH∕tL ≈ 0.1, 0.2 and the interaction parameters U∕tL ≈ 0, −2, −10. We do �nd a signi�-
cant reduction of≈ 20-30% of the heavy atoms over themaximumhold time � ≈ 400ℏ∕tL, which
is more pronounced for the smaller hopping ratio. This is expected from our measurements in
the single-particle limit, where the lifetime for the lattice depth V ≈ 4.7Erec (corresponding
to tH∕tL ≈ 0.1) is signi�cantly reduced [see Fig. 5.12(b)]. For tH∕tL ≈ 0.2 and U∕tL = −10,
these losses become much more signi�cant, which can probably be attributed to the magnetic
�eld ≈ 1410G in close vicinity of the orbital Feshbach resonance. The number of light atoms
remains relatively stable, and no signi�cant loss can be detected, which can be partly attributed
to heavy atoms converted to light atoms by o�-resonant photon scattering. We conclude that
the rather weak dependence on the hopping ratio and interaction strength suggests that the
observations reported in the previous section are unlikely to be caused by dissipation. Instead,
they are signatures of the strongly constrained dynamics in the heavy-light mixture.

8A likely loss channel could be three-body recombination [133], where a heavy and light atom form a molecular
state and a third atom carries away the excess binding energy (L + H + � → LH + � with � = L,H).
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5.5 Discussion
This chapter has described the experimental realization of themass-imbalanced Fermi-Hubbard
model with fully tunable hopping ratio and interaction strength [108]. We have identi�ed a
signi�cant suppression of transport for strong interactions and largemass imbalance. Moreover,
the density deviation observable has allowed us to reveal the slow relaxation of the system at late
times. For the largest mass imbalance and interaction strength realized in the experiment, we
�nd the emergence of metastability at early times and the onset of extremely slow relaxation at
intermediate times. These results are in qualitative agreement with theoretical predictions and
therefore suggest that the mass-imbalanced Fermi-Hubbard model exhibits ergodic dynamics
but features an extremely slow time scale for thermalization.

For follow-up studies, the experimental �ndings could be extended by signi�cantly reducing
the strength of the harmonic con�nement so that the heavy species remains mobile across
a larger region of the trap. In this way, features of the dynamical behavior arising due to
heavy-light interactions and Stark localization at the edge of the trap could likely be identi�ed
individually. A simple approach to reduce the con�nement could be to increase the laser
beam diameters of the perpendicular state-independent lattice axes. Of course, the maximum
available laser power presents a fundamental limit but this approach should still allow for a
signi�cant increase of typical system sizes. However, the e�ective con�nement �∕tH ≫ �∕tL
would remain much larger for the heavy species. To introduce an equal con�nement strength
for both species, part of the harmonic potential could be canceled selectively for the heavy
species with an additional blue-detuned dipole trap beam such that �∕tL ≈ �∕tH .
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Thework presented in this thesis �rmly establishes ytterbium quantum gases as a powerful plat-
form for probingmultiorbital many-particle phenomena. By utilizing the electronic ground and
metastable clock state, we have realized an orbital degree of freedom in interacting ytterbium
mixtures con�ned by optical potentials of di�erent dimensionality. Speci�cally, the techniques
developed within this thesis have provided experimental access to the quasiparticle proper-
ties of multiorbital Fermi polarons and non-equilibrium dynamics in the mass-imbalanced
Fermi-Hubbard model.

The �rst experiment presented in this thesis has utilized the orbital Feshbach resonance
in 173Yb to systematically study the polaron problem in a two-dimensional Fermi gas [109]. To
this end, the preparation of strongly spin-imbalanced Fermi gases has been the experimental
starting point for this quasiparticle that forms when a mobile impurity is immersed into a
Fermi sea. To analyze the quasiparticle properties, we have driven the minority component
to the strongly interacting regime by employing clock-line spectroscopy. In this way, we have
precisely determined the quasiparticle energy of attractive and repulsive polaron for various
interaction strengths. These results agree well with theoretical predictions within the ladder
approximation, underlining the accuracy of this theory, also for two dimensions and the
complex interactions across the orbital Feshbach resonance. For the metastable repulsive
polaron, we have identi�ed particularly long lifetimes exceeding hundreds of Fermi times,
which could be favorable for realizing strongly repulsive Fermi gases.

For the �rst time, we have observed coherent Rabi oscillations into the attractive and
repulsive polaron branches in two dimensions, complementing previous experiments with
alkali atoms [74, 75]. A theoretical study has later utilized a novel variational approach tomodel
the real-time dynamics of Rabi oscillations in our experiment [110]. In this way, results from a
three-dimensional implementation [76] and our measurements have enabled a signi�cantly
improved understanding of the repulsive polaron. In particular, its quasiparticle width can
be associated with many-body dephasing, which also dominates the observed damping of
Rabi oscillations in the experiment [110].

The developed control and measurement techniques provide an excellent starting point for
future experiments. In particular, this applies to investigating the many-body physics of a spin-
balanced Fermi gas across the orbital Feshbach resonance. Here, the nature of the resonance is
expected to give rise to especially rich physics, such as two-band super�uidity and the elusive
breached pair phasewith unusual pairing inmomentum space [281–286]. A potential challenge
for experiments exploring this direction would be to overcome the intrinsic dissipation in the
orbital mixture or to identify probes in the transient regime [287].

123
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Other interesting directions to explore build on impurity physics, where the presence of
strong spin-exchange interaction in ytterbium allows studying impurity spins coupled to a
bath [45–47, 59, 288]. Moreover, state-dependent lattices could directly tune the mobility of
the impurities such that examining the crossover from mobile to localized magnetic moments
becomes feasible [43]. In this limit, the Kondo problem could be investigated with ultracold
atoms [19, 154, 155]. Even in the absence of spin-exchange interactions, a systemwith localized
impurities o�ers access to Anderson’s orthogonality catastrophe [62, 82, 289, 290]. Here, a
quench of the impurity-bath interactions leads to a characteristic response of themedium as the
system is driven into a �nal state (nearly) orthogonal to its initial non-interacting state [289, 290].
In this context, we also highlight recent developments with alkaline-earth(-like) atoms in
tweezer arrays, which have been demonstrated in multiple experiments [291–293]. Future
endeavors might enable this novel platform to complement optical lattice techniques in settings
similar to quantum gas experiments but with faster cycle times and local state-dependent
potentials [294]. Such a system could be an ideal platform for careful studies of impurity-bath
coupling with full control over the impurity and bath degrees of freedoms.

The second experimentwithin this thesis has probed the non-equilibriumdynamics of heavy
and light particles in the one-dimensional mass-imbalanced Fermi-Hubbard model. Our novel
and robust implementation with an orbital mixture of 171Yb atoms in a state-dependent optical
lattice has enabled the observation of dynamics for hundreds of tunneling times. Moreover,
we have realized mass-imbalance and interaction-strength tunability to probe for parametric
dependence of thermalization time scales, which have been extensively studied with numerical
simulations [104, 105]. Such studies have suggested the emergence of metastability in the re-
laxation dynamics, which we have examined experimentally by recording the density dynamics
after gradually translating the external trapping potential. At short times, compared to the
tunneling time scale of the heavy species, we have found a strong suppression of transport
for the light species, which depends directly on the heavy-light interaction strength. This
observation can be understood as a single-particle localization e�ect since the heavy species
initially takes on the role as a disorder potential for the light one. In contrast, we have identi�ed
�nite relaxation at late times, strongly suggesting that the system exhibits ergodic behavior and
eventually thermalizes. Our results for variable interaction strengths and mass imbalances
demonstrate that the relaxation time scales strongly depend on these parameters—qualitatively
consistent with numerical simulations of much smaller systems. Reducing the harmonic
con�nement strength in the experiment should allow future observations of signatures in the
heavy species density, which have not been accessible in our current implementation.

Our experiments have established a promising platform to study extremely slow thermaliza-
tion. While the behavior of this system is consistent with ergodicity at late times, the emergence
of metastability makes it distinct from other types of ergodic systems, which exhibit much faster
thermalization [105, 219, 248]. At the same time, the observed dynamics are distinct from a
“true” many-body localized phase, which features �nite memory of initial states for arbitrarily
long times [93]. Our regime, dubbed quasi-many-body localization [105], presents a notable
extension to the classi�cation of thermalization in isolated quantum many-body systems and
shares similarities with other forms of constrained quantum matter [264–266, 295, 296]. An
interesting question concerns whether future theoretical studies could apply new approaches to
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the problem and capture dynamical properties beyond the limits of current numerical calcula-
tions. Few-body bound states could provide the starting point for such an analysis in the context
of the mass-imbalanced Fermi-Hubbard model [268]. Notably, their role could also be probed
in the experiment by introducing a variable population imbalance between light and heavy
atoms. Such an experimental study would also naturally bene�t from our state preparation
techniques developed for population imbalance within the context of the Fermi polaron.

The mass-imbalanced Fermi-Hubbard model is also believed to feature interesting dy-
namical behavior close to mass balance, where it becomes integrable [297]. A tunable mass
imbalance close to one presents a unique opportunity to address the intriguing question of how
emergent integrability a�ects thermalization and transport [219]. Conceptually related studies
of strongly interacting dipolar atoms have identi�ed a separation of time scales for thermal-
ization close to an integrable point [242]. Similar experimental measurements for the Fermi-
Hubbard model could be realized with an orbital ytterbium mixture in a state-independent
optical lattice by slightly detuning the lattice laser and introducing aminusculemass imbalance.

In conclusion, our experiments have illustrated how rich quantum many-body physics
can arise in the presence of an orbital degree of freedom. Due to the relevance of orbital
physics in solid-state materials, various exciting opportunities emerge for orbital mixtures of
ytterbium atoms. In particular, recent advancements should allow engineering an impurity-
bath coupling, which features the essential physics of the Kondo e�ect with dominant spin-
exchange interaction between localized and itinerant particles [43, 45, 61, 154, 155]. This will
open up exciting new research directions for multiorbital quantum gases and pave the way
towards probing even richer phenomena in the Kondo lattice [5].
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Appendix A Derivation of the Fermi polaron self-energy
Throughout this section, we set ℏ ≡ 1, which generally does not a�ect our �nal results given
in units of the Fermi energy EF = k2F∕(2m) with the atomic massm. Note that we exclusively
consider a two-dimensional medium for the following calculations, as discussed in Chapter 2.

A.1 Zero temperature and zero momentum
We �rst present the calculation for the Fermi polaron at zero momentum and in a zero-
temperature medium. As discussed in Chapter 2 (see Section 2.2.1), the coupling constant g
characterizes the two-body problem and is given by [182]

−1
g =

Λ∑
k

1
�b + k2∕m

. (A.1)

Here, �b is the binding energy of the two-body bound state andΛ is a cuto�, whichwill be sent to
in�nity in the many-body expressions. For the self-energy Σ(p = 0, E) of the zero-momentum
Fermi polaron, we �nd according to Eq. (2.14) from Chapter 2,

Σ(0, E) =
∑
q<kF

⎧

⎨
⎩

1
g +

Λ∑
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1

−E + (2m)−1
[
k2 − q2 + (k − q)2

]
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⎭

−1

(A.2)

=
∑
q<kF

⎧
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⎩

−
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1
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+
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1
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.

In the thermodynamic limit, we convert the sums to integrals,
∑Λ

k=k0
→ (2�)−2

∫ Λ
k0
dk, and

send the cuto� to in�nity, Λ → ∞. With this procedure, we arrive at the integral equation

Σ(0, E) =
∫

q<kF

dq
⎧

⎨
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−
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dk 1
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k2 − q2 + (k − q)2
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⎬
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−1

.

(A.3)
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Here, we note that the factor (2�)2 from replacing the sums cancels for the present combination
of outer and inner integrals.

We solve the integrals inside the curly brackets, and for the �rst one, we �nd∫ 2�

0
d'

∫ kF

0
dkk 1

�b + k2∕m
= �m ln (1 + 2

EF
�b

) . (A.4)

De�ning the angle ' = ∠(k, q) between the two vectors yields k ⋅ q = kq cos', and we solve
the second integral using this result

∫ 2�
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(A.5)

Here, we have de�ned the variables q′ = q∕kF , k′ = k∕kF , and x = k′2. Finally, we determine
the self-energy by combining the solutions of the two inner integrals,

Σ(0, E)
EF

= 2
∫ 1

0
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, (A.6)

where y = (q∕kF)=q′
2 and ± = sgnRe [1 − E∕ (2EF)]. Note that the outer integral transforms

as E−1F
∫
q<kF

dq → (2m∕k2F) × 2�m
∫ kF
0 dq q → �m

∫ 1
0 dy, and that we perform the integra-

tion over y numerically.

A.2 Zero temperature and finite momentum
Here, we proceed with a description of the �nite-momentum Fermi polaron. We consider
the self-energy for an impurity at momentum p,

Σ(p, E) =
∫
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dq
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The inner integral can be solved using a change of variables,∫
k>kF
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with q̃ = q + p and Ẽ = E + q2∕(2m) − q̃ 2∕(2m). The remaining integration can be performed
analogously to the zero-momentum calculation such that we obtain for the self-energy at
momentum p′ = p∕(ℏkF),
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(A.9)

with the angle � = ∠(q, p), r =
(
q′ + p′ cos �

)
, E(q′) = 1 −

[
E∕EF + q′2

]
∕2, and the symbol

± = sgnRe[E(q′) + r2∕2]. In contrast to the zero-momentum result, we perform the integral
over � with numerical techniques as well.

A.3 Finite temperature and zero momentum
Finally, we consider the case of a zero-momentum impurity in a �nite-temperature medium.
At �nite temperature, the integration goes over all momenta (q and k) weighted with the Fermi-
Dirac distribution F(x, T) =

[
e(x−�)∕(kBT) + 1

]−1
. For the two-dimensional case considered

here, the chemical potential takes the form � = kBT ln
[
eEF∕(kBT) − 1

]
at temperature T. With

these considerations, we �nd the self-energy

Σ(0, E; T) =
∫
dq

F
[
q2∕(2m), T

]

I(q, T)
, (A.10)

and the expression

I(q, T) =
∫
dk

1 − F
[
k2∕(2m), T

]

−E + (2m)−1
[
k2 − q2 + (k − q)2

] − 1
�b + k2∕m

. (A.11)

In Eqs. (A.5) and (A.6), we have derived an analytical solution for the case of zero temperature
and, therefore, also for I(q, T = 0). Thus, we can consider the �nite-temperature contribution
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∆T(q) = I(q, T) − I(q, T = 0) to obtain I(q, T) at arbitrary temperature. By using the results
from Eq. (A.5), we �nd the �nite-temperature contribution,

∆T(q) = I(q, T) − I(q, T = 0) =
∫
dk

F
[
k2∕(2m), T = 0

]
− F

(
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] (A.12)

⇔ ∆T(y) = �m
∫ ∞

0
dx

F (xEF , 0) − F (xEF , T)

±
√[

x − E∕ (2EF)
]2
− xy

, (A.13)

with ± = sgnRe [x − E∕(2EF)] in the last equation. Combining the �nite-temperature con-
tribution and Eq. (A.6),
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yields the expression for the self-energy given in the main text,

Σ(0, E; T)
EF
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Here, E′ = 1 − E∕(2EF), and the symbol ± is rede�ned with ± = sgnReE′.

A.4 Two-channel model
As discussed in Chapter 2 (see Section 2.3.2), the two-channel model provides an accurate
description of the multiorbital Fermi polaron. The additional complexity of the orbital inter-
actions is captured by the e�ective range in two dimensions, R2D.

The relation between the coupling constant g, the detuning of the closed channel �, and
the binding energy Eb of the two-body bound state is given as [198]

� + Eb
g2

=
Λ∑
k

1
Eb + k2∕m

. (A.16)

The self-energy of the zero-momentum polaron in the two-channel model takes the form [197]
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With the above renormalization procedure and g2 = 4�∕(m2R2
2D) [198], we �nd for the �rst

term of the above expression,
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(A.18)
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In the thermodynamic limit (sum replacement and Λ → ∞), we therefore obtain
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Here, we have used the results from Eq. (A.5) and y = (q∕kF)2. Note that the factor of (2�)2 in
the �rst line of Eq. (A.20) arises due to the replacement of the sums, i. e.,

∑Λ
k=k0

→ (2�)−2
∫ Λ
k0
dk.

For the two-channel model, the interaction parameter ln (kFa2D) is related to the bound-
state energy with Eb∕EF = 2W

[
(R2DkF)

2e−2 ln(kFa2D)
]
∕(R2DkF)2, where W(x) denotes the

Lambert W function [see Eq. (2.31) in Chapter 2]. To illustrate how the spectral function
changes for �nite e�ective range, we show a direct comparison in Fig. A.1.

Appendix B Derivation of the low-energy scattering amplitude
Throughout this section, we set ℏ ≡ 1 and consider lengths in units of the characteristic har-
monic oscillator length lz = 1∕

√
m!z as well as energies in units of the (angular) harmonic

oscillator trapping frequency !z. The central result of this section is the low-energy expansion
of the scattering amplitude in quasi-two dimensions [see Eq. (2.25) from Chapter 2]. This
yields the magnetic-�eld-dependent scattering length a2D and e�ective range R2D in two di-
mensions for the orbital Feshbach resonance. The derivation in this section follows the results
discussed by Adlong et al. [110].

For the low-energy limit, |x| ≪ 1, we approximate the transcendental function F(x) [182],

F(x) = 1
√
2�

ln
(�x
B

)
+ ln 2

√
2�

x +O(x2). (B.1)
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Figure A.1 | Single- and two-channel description of the Fermi polaron. Comparison of the spectral
function A(p = 0, E) for the (a) single-channel (kF R2D = 0) and (b) two-channel model (kF R2D = 1). Note
that a finite broadening has been applied to the spectrum with the replacement E → E + 0.01iEF , and
the plot range is truncated.

Here, we de�ne the numerical factor B ≈ 0.905 [182]. Expanding F(−E + �) and F(−E) up
to order O(E) yields the following approximations,

F(−E)
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≈ 1
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E = F(�) − F ′(�)E. (B.3)

Here, F ′(x) denotes the derivative of F(x) and can be calculated from
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(B.4)

We now use the e�ective range replacement

a−1± → a−1± −
r±
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2 +
1
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E→0
≈ a−1± − 1

4r±(1 − �) ≡ �−1± (B.5)

and with �± ≡ r± as well as ∆ ≡ �, we �nd for the �rst term in the above expression,
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Figure B.1 | Scattering length and e�ective range for the orbital Feshbach resonance. Magnetic field
dependence of the parameters for typical experimental parameters ωz ≈ 2π × 37 kHz and lz ≈ 750a0,
where a0 denotes the Bohr radius. (a) Scattering length a2D (solid line) calculated from Eq. (B.9). Here,
the dashed line corresponds to a naive approximation calculated from the bound state energy εb alone,
a2D = h̄∕

√
mεb [see Eq. (2.12) in Chapter 2]. (b) E�ective range R2D (solid line) calculated from Eq. (B.10).

For the low-energy scattering amplitude, this yields the form

fq2D(E)
E→0
≈

√
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(B.7)

We note that the complex conjugate of fq2D can be considered equivalently, as the physical
observable (scattering cross section) depends on the squared complex modulus ∼ |fq2D|2.

By direct comparison of the above expression with the low-energy scattering amplitude
of the two-channel model [see Eq. (2.27) from Chapter 2],

f2ch(E) =
4�

i� − ln
(
a22DE

)
+ R2

2DE
, (B.8)

we identify the scattering length and e�ective range given in Eqs. (2.28) and (2.29),
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Figure B.1 shows these quantities for typical experimental parameters at variable magnetic
�eld. While the e�ective range diverges at small �elds, the value takes a nearly constant value
once the singlet and triplet channels fully mix at intermediate �elds.
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Appendix C Fermi gases in two dimensions
Throughout this section, we use � = 1∕(kBT) with temperature T, the fugacity z = e�� with
chemical potential �, andm generally denotes the atomic mass. In the following, we derive key
properties of the homogeneous and harmonically trapped Fermi gas in two dimensions. These
results allow us to derive the e�ective quantities discussed in Chapter 3 (see Section 3.2.1).
Following the convention of this chapter, we choose x and z to describe the coordinates in
the two-dimensional plane.

C.1 The homogeneous Fermi gas
To describe the homogeneous Fermi gas, we consider periodic boundary conditions in a two-
dimensional box with volume V = L2. Considering the number of states within the Fermi
sphere of radius kF , we obtain the total number of particles [202]

N = �k2F
V

(2�)2
. (C.1)

We use this result to relate the Fermi wave vector and energy to the density n = N∕V,

kF =
√
4�n and EF =

ℏ2
2mk2F =

ℏ2
2m4�n. (C.2)

These results will �nd application in determining the local density approximation of inhomo-
geneous systems, in particular, the harmonically trapped Fermi gas.

C.2 The harmonically trapped Fermi gas
Our derivation of the relevant quantities starts with Eq. (3.3) from Chapter 3. Integration of
the phase space distribution [see Eq. (3.2) in Chapter 3] over momentum in polar coordinates
yields the real-space density of the Fermi gas,

n(r) = 1

(2�ℏ)2
2�
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[
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]
(C.3)

with � = �p2 and the harmonic oscillator potential U(r) = (m∕2) ×
(
!2
xr2x + !2

zr2z
)
. Here, the

polylogarithm can be expressed as natural logarithm with Li1(x) = − ln(1 − x).
Integration of Eq. (C.3) along the line of sight (z-axis) yields the column density, which

we measure in the experiment using absorption imaging,
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(C.4)
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Here, �2x,z = 1∕
(
�m!2

x,z
)
and Lis(x) denotes the polylogarithmic function of order s. To extract

the fugacity z = e�� from experimental data, we employ the practical �t function

nf it (rx) = A
Li3∕2

[
−ze−r

2
x∕(2�2x)

]

Li3∕2(−z)
+ c (C.5)

with the amplitude A and constant o�set c. We relate the fugacity to the reduced tempera-
ture T∕TF (Fermi temperature TF = EF ∕kB ) by determining the total number of particles

N =
∫ ∞

0
dE

�(E)
e�E

/
z + 1

= 1
ℏ2!x!z

∫ ∞

0
dE E

e�E
/
z + 1

= − 1
ℏ2!x!z�2

Li2(−z), (C.6)

which yields T∕TF = 1∕
√
−2 Li2(−z) with Dilogarithm Li2(x). Note that the density of states

takes the form �(E) = E∕(ℏ2!x!z) for the two-dimensional harmonic oscillator [201].

C.3 E�ective Fermi energy in the harmonic trap
Our derivation of the e�ective Fermi energy for the harmonically trapped Fermi gas starts
with Eq. (3.7) from Chapter 3. This equation de�nes the e�ective Fermi energy �F sampled
by the minority component of a spin-imbalanced mixture,

�F(∆x) =
1

N0(∆x)
ℏ2
2m4�

∫ +∆x∕2

−∆x∕2
drx

∫ ∞

−∞
drz n0(r) n↑(r) (C.7)

with N0(∆x) the atom number of the minority fraction in the region of interest de�ned
by rx ∈ [−∆x∕2, +∆x∕2], and n0 (n↑) the density of the minority (majority) component. The
above result follows from the Fermi energy of a homogeneous two-dimensional Fermi gas,
as discussed in Appendix C.1. First, we calculate the total atom number in the region of
interest by integrating Eq. (C.4),

N(∆x) = −
m�z√
2�ℏ2�

+∆x∕2∫
−∆x∕2

drx Li3∕2
[
−ze−x2∕(2�

2
x)

]
= −

2m�y�x
√
�ℏ2�

∆�∕2∫
0

d� Li3∕2
(
−ze−�2

)
.

(C.8)

Here, wehave used that the integral features a symmetry, � = x∕
(√

2�x
)
, and∆� = ∆x∕

(√
2�x

)
.

Relating the e�ective Fermi energy �F to EF = ℏ
√
2N!x!z yields a dimensionless equation

with the fugacity z0 (z↑) of the minority (majority) component,

�F(∆�)
EF

= − 1
√
−2� Li2

(
−z↑

)

∫ ∆�∕2
0 d�

∫∞
−∞ d� Li1

(
−z0e−�

2−�2
)
Li1

(
−z↑e−�

2−�2
)

∫ ∆�∕2
0 d� Li3∕2

(
−z0e−�2

) . (C.9)

The value of this expression can be obtained fromnumerical integration for the region of interest
determined by∆�, which implicitly depends on the temperature and the trapping frequency!x.
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C.4 Integrals of polylogarithmic functions
Finally, we show the technique to solve a generic form of integral relevant inmultiple equations
of Appendices C.2 and C.3, e. g., Eq. (C.4). The polylogarithm Lis of order s can be de�ned
as power series on the complex unit disk |z| < 1 [298, Eq. 25.12.10],

Lis(z) =
∞∑
k=1

zk
kn , (C.10)

and by analytic continuation also for |z| ≥ 1. For constant A > 0, we solve the following
integral by employing the power series de�ned above,

∫ ∞

−∞
dx Lin

(
−ze−Ax2

)
=
∫ ∞

−∞
dx

∞∑
k=1

(
−ze−Ax2

)k

kn =
∞∑
k=1

(−z)k

kn

∫ ∞

−∞
dx e−kAx2

=
∞∑
k=1

(−z)k

kn

√
�
kA =

√
�
A

∞∑
k=1

(−z)k

kn+1∕2
=

√
�
A Lin+1∕2(−z).

(C.11)

Appendix D Approximate calculations of the dynamical correlator
In Chapter 4 (see Section 4.3.2), we numerically calculate the dynamical correlator Ck�(�) with
exact diagonalization techniques for the small system sizes l = 8. Here, we employ an approxi-
mative method, known as quantum typicality, to study the evolution of this correlator for larger
system sizes up to l = 12 but restricted to times � ≲ 104ℏ∕tL. This range of accessible times is
su�cient to explore the dynamics of the system for the moderate mass-imbalance tH∕tL ≤ 0.1
and interaction strength |U|∕tL ≤ 10, as also realized in the experiment.

D.1 Quantum typicality
For system sizes exceeding l = 8, the large size of the Hilbert space makes an exact diago-
nalization of the complete Hamiltonian unfeasible on a desktop computer. Fortunately, the
matrix elements are only sparsely �lled and can be stored e�ciently in the computer’s memory.
In this way, the action of the Hamiltonian or other operators onto a state can still be calcu-
lated relatively quickly. To further reduce the computational cost, we employ (dynamical)
quantum typicality, i. e., a feature of a many-body Hamiltonian Ĥ and the associated large
Hilbert spaces. Remarkably, the expectation value ⟨O⟩ T of an operator O calculated for a
weighted random state ||| T⟩ can su�ciently approximate the expectation value of the thermal
ensemble ⟨O⟩T ∼ Tr

[
Oe−Ĥ∕(kBT)

]
at temperature T [299]. More precisely, this feature can

be expressed with the relation

⟨O⟩T = ⟨O⟩ T + "(Ĥ) =
⟨ T|O| T⟩
⟨ T| T⟩

+ "(Ĥ). (D.1)

Here, ||| T⟩ = e−Ĥ∕(2kBT)
∑

j(aj + ibj) |||j⟩ denotes a state with the normally distributed (inde-
pendent) random parameters (aj, bj) and {|||j⟩}j an orthonormal basis of the Hilbert space.



136 Appendices

0.0

0.5

1.0

C (
2π

/l)
α(τ

)

a

System size l
8 (ED) 10 (DQT) 12 (DQT)

b

System size l
8 (ED) 10 (DQT) 12 (DQT)

10−1 100 101 102 103 104

Time τ (ħ/tL)

0.0

0.5

1.0

C (
π/

6)
L(τ

)

cħ/tH = 5ħ/tL

U/tL
2
10

10−1 100 101 102 103 104

Time τ (ħ/tL)

dħ/tH = 10ħ/tL

U/tL
2
10

Figure D.1 | Time evolution of the dynamical correlator. Time traces are obtained from evolving a
single random state (DQT, l > 8) or from exact diagonalization (ED, l = 8). The upper panels show the
finite-size scaling of the dynamical correlator C(2π∕l)α (system size l) for the (a) light (α = L) and (b) heavy
(α = H) species with parameters tH∕tL = 0.1 and U∕tL = 10. The lower panels display time traces for the
experimentally relevant hopping ratios (c) tH∕tL = 0.2 and (d) 0.1 calculated for the light species and
the largest accessible system size l = 12. The hatched region marks the observation times, which are
typically not accessible in the experiment.

For the calculation of Ck�(�), we are exclusively interested in the in�nite-temperature (high-
energy) limit, where eĤ∕(2kBT) → 1 and all states have equal occupation probability. In this
limit, the standard deviation of the error quantity "(Ĥ) scales with 1∕

√
d where d denotes the

dimension of the Hilbert space [299]. Since d generally grows exponentially with the particle
number, the standard deviation is extremely small—even for modest system sizes. Therefore,
we can calculate the approximate time evolution of expectation values by time-propagating
only a single random state ||| T=∞⟩ ≡ ||| r⟩.

The concept of quantum typicality is not equivalent to the eigenstate thermalization hypoth-
esis (ETH), which makes a much stronger statement about the matrix elements of observables
in the basis of the eigenstates [299]. The random state considered above remains random
also in the eigenbasis of the Hamiltonian. Thus, quantum typicality can rather be seen as
utilizing the largeness of the Hilbert space and not the structure of the eigenstates, which
constitutes the central statement of the ETH.

D.2 Numerical simulations and results
Following the concept of dynamical quantum typicality, we approximate the time evolution
of the dynamical correlator,

Ck�(�) ≈
1

⟨ r| r⟩
Re (

⟨
 r

|||||N̂
†
k� e

i�ĤHLM∕ℏ N̂k� e−i�ĤHLM∕ℏ|||||  r
⟩
). (D.2)

Here, the action of the time propagator e−i�ĤHLM∕ℏ onto the states ||| r⟩ and N̂k�
||| r⟩ is numer-

ically approximated by the highly optimized expm_multiply_parallel function from the
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Figure E.1 | Evolution of the non-equilibrium density distribution. Atomic density of the heavy
species integrated perpendicular to the transport direction (colored lines) for the hopping ratios
(a) tH∕tL = 0.203(8), (b) 0.102(6) and variable interaction strength U∕tL (see top le� label in each panel).
Each curve is the mean of four individual normalized measurements and corresponds to a variable hold
time τ ≈ 0, 405̄h∕tL a�er translating the trap minimum from i0 to i1. Note that the density is normal-
ized to their integral value, thereby compensating for a significant loss of heavy atoms at late times. The
hatched region highlights the di�erence between the two curves at di�erent hold times.

software library QuSpin [236], which implements an algorithm from Ref. [300]. The approxi-
mative nature of this procedure has the consequence that the computational cost at constant
truncation error increases dramatically with large time steps. With the commodity hardware
available to us, the accessible system sizes are limited to l ≤ 12. Figure D.1 shows the result of
this calculation for the experimentally relevant parameters |U|∕tL = 2, 10 and tH∕tL = 0.1, 0.2.
For increasing system size, we �nd time traces which exhibit less distinct separation of di�erent
time scales [see Figs. D.1(a) and D.1(b)].

Appendix E Density dynamics of the heavy species
Here, we present the raw density of the heavy species after translating the trap minimum,
as mentioned in Chapter 5 (see Section 5.4). Figure E.1 shows the corresponding plots for
variable interaction strengthU∕tL ≈ 0,−2,−10 and hopping ratios tH∕tL ≈ 0.1, 0.2. In particu-
lar, for the larger hopping ratio tH∕tL ≈ 0.2, a relaxation towards the �nal trap minimum
at i1 can be observed.
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